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Abstract

This thesis examines buovyancy driven steady flows 1n
mouths of sea straits and around coastal protrusions. At high
latitudes, the Coriolis force keeps these currents banked
against the coast even around relatively sharp re-entrant
(convex) corners with radii of curvature that are comparable to
the width of the current. On the other hand, if the radius of
curvature of the corner is much smaller than the width of the
current, the current may leave the coast at the apex of the
corner.

A central part of the thesis is the solution of the
nonlinear problem of a steady inviscid reduced gravity flow in
a wedge, 0<0<n/a (with ari/2), around a sharp corner on an
f-plane. An expohential upper layer upstream depth profile,
h=Hexp (—x/X) {(where x and X are the offshore distance and the
current width scale, respectively), is combined with conservation
of potential vorticity., Bernoulli and transport equations. The
resulting nonlinear equations are expanded in a Rossby number

=V/+X (where ¥ is the Coriolis parameter and V i1s the upstream
boundary value of velocity). The 0¢(1) and 0O(e) equations are
solved. First, they are simplified via transformations of the

transport-streamfunctinn variables: We=p?/s and ¥,=2p*'/3q. By
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modifying the results of Bromwich’'s (1915) and Whipple’'s (1216)
diffraction theory, the 0(1) solution is expressed in a compact

integral form,

2a sin(ad) S°° cos{krsinhu) cosh{(au) du
w o sinhz*{au) + sinZ{(a9)

The O(e) contribution q is calculated using an approximate
Green s function method. The wedge of an angle 3r/2 (a=2/3) is
used as an example to shaw details of the solution. The results
exhibit the relative importance of the centrifugal, Coriolis and
pressure gradient forces. Centrifugal upwelling (surtacing) of
the interface occcurs very close to the apex. For a rounded
re—-entrant corner, the upwelling is important only if the radius
of curvature is much smaller than the lateral scale X. Morever,
for re—-entrant corners, the flow is supercritical within an arc,
whose size depends upon the Rossby number and the angle of the
wedge. Using two or more corner solutions, plausible flow
streamlines can be generated in more complicated domains, as
long as no twa corners are élnser than the Rossby radius of
deformation. This procedure is illustrated with two examples:

- {a) circulation in a channel mouth and (b) flow arocund a square
bump in a coastline. Finally, baroclinic circulation is modéled
for boundaries that approximate coastlines near the mouth of

Hudson Strait.
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Chapter 1

Introduction

There have been an increasing number of oceanagraphic
investigations of the Canadian Arctic in the past decade. This
is mainly due to recent oil exploration activities and increased
marine traffic in thé area. Details of circulation patterns in
Arctic straits have now begun to be determined. While the water
movement in the Arctic Archipelago is generally from northwest
to southeast (e.g., Collin, 1962), many of the straits are wide
enough to accommodate two baroclinic currents in opposite
directions (LeBlond, 1780). Because of this, coastal currents in
the area tend to loop in and out of channels. In some instances,
a portion of the incoming flow continues even further intao the
channel, against prevailing eastward transports. Some examples
of these re—-entrant flows may be seen on Figure 1, which shows a
part of the sub-—polar gyre aof the North Atlantic and, in
particular, the movement of Baffin Current in and out of
Lancaster Sound and Hudson Strait. The understanding of the
physical processes which govern the motion of water masses in
the area is required for theoretical and predictive maodels of
{a) icebergs and sea—-ice hazards to drilling and navigation, (b)
pollutant transport from drilling and shippiﬁg sources and (c)
biological production zones.

The existence of the opposing currents in arctic channels

was explained by LeBlond (1980) in terms of simple geostrophic



dynamics of upper layer wedge—-type boundary flows. Here, 1
concentrate mainly on the details of baroclinic currents turning
various corners, as they loop in and out of channels (such as
Lancaster éound and Hudson Strait), or navigate coastal
protrusions. This topic of rotating flows around sharp corners,
and its relation to the circulation in and out éf sea straits,
'has not yet been examined in detail.

The formulatian is similar to that used by Whitehead et al.
(1974), Gill (1977), Nof (1978a,b) and others, to study the
rotational hydraulics of channel flows, but it is not restri;ted
to slowly varying coastlines. The full two-dimensional nonlinear
problem is treated here. In contrast to previous investigations,
~the model potential vorticity is not.assumed to be uniform.
Instead, it is derived from a chosen upstream profile.

The re-entrant flows in Lancaster Sound and in Hudson
Strait were observed and measured via the distribution of water
praperties (Caﬁpbell, 1958: Osborn et al., 1978; Fissel et al.,
1982), flow measurements from drifting and moored instruments
(LeBlond et al., 1981; Fissel et al., 1982; Drinkwater, 1983),
and by iceberg drift observations {(Marko et al., 1982). Surface
drogue tracks in the mouths of Lancaster Sound and Hudson Strait
are shown on Figure 2 {(from Fissel et al., 1982; LeBlond et al.,
1981). Among the many drogues that were released near the
entrances of these two channels, not a single one was observed
to penetrate much further than a distance comparable to the

width of the channel. On the other hand, current meter records



{(Figures 3a,b, from Drinkwater, 1985 an& LeBlond, et al., 1981),
~iceberg sightings (Smith, 1931),.géostrophic calculations
(Campbell, 1938: Drinkwater, 1985) and drogues released inside
the channels (Fissel and Marko, 1978), all show the presence of
opposing currents much farther {nside these channels. This
apparent contradiction will also be addressed.

The plan of this thesis is as follows: certain relevant
theoretical models of flows in straits are reviewed in Chapter 2.
Chapter 3 contains the formulation of the problem of baroclinic
circulation near a channel mouth. Chapter 4 includes discussion
about the upstream conditions. One—-dimensional solutions far
inside a channel are derived in Chapter 5. The governing equations
for a two—dimensional Eeduced gravity flow around an arbitrary
corner are derived in Chapter &6 via a regular perturbation
expansion in a Rossby number €. The 0(1) and 0O(e) solutions are
calculated in Chapter 7. The re—entrant wedge of an angle 3n/2 is
used as an example to show the details of the solution. In Chapter
8, the model is extended to more complicated génmetrieé, such as
channel mouths and bumps in coastlines, while in Chapter 9, the
model is used to construct a baruﬁlinic circulation in the mouth
of Hudsan Stréit. Finally, an overview of the results and

suggestions for further work are presented in the last Chapter.



DOR SE
o Gy~
T

LABRADOR

HUDSON  BAY

pa £

L n,

Figure 1. The western part of the sub—-polar gyre of the North Atlantic
(adapted from Fenco and Slaney, 1978).




(a)

VELOCITY

YT
0 50 100
CM/SEC.
el ZONE
‘/”* VA e~ = = s s
\ \:-.,t.\;! oy L o« 1

-, - o W on - an oo
- - -
bk TN et

VUL U
BYLOT N\ \ !
a& A A\ 'ﬁ' 'Y
Figure 2.

Reentrant circulation in (a) Lancaster Sound (reproduced
with permission from Fissel et al., 1982) and (b) Hudson
Strait (reproduced with permission from LeBlond et al.,

1981), as exhibited by near-surface drogue tracks.
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Chapter 2

Models of sea straits

The early theory of water movements through éea straits is
given in chapter 5 in Gill (1982). Marsili (1681) used a taut
rope to measure currents at various depths in the Strait of
Boéphorus. He found that below a certain depth the water moves
in opposite direction to the surface currents. He then weighed
water samples from the Black Sea and from the Mediterranean and
found that the Black Sea water is lighter. From this, he deduced
the classical picture of a two-layer estuarine exchange between
two seas. Not yet satisfied, he also performed an experiment
(¥igure 4), in which a partition separated the dyed undercurrent
water from the lighter surface water. Two holes, one near the
top and the other near the bottom, were opened and the resulting
flow reproduced the currents in the Bosphorus.

The Strait of Bosphorus is narrow and hence the
cross—channel intefface slope, resulting from the earth’'s
rotation, is not important. On the other hand, when a channel is
wide, the sloping interface eventually meets the surface. The
outgoing light water forms a current wedge on the right side
(looking downstream), while the incoming denser flow is now
mainly concentrated on the opposite side. A good example of a
wide channel estuarine exchange is that of Hudson Strait. Figure
S shows temperature salinity and density (sigma—t) sections

across the mouth of Hudson Strait (from MacLaren Atlantic, 1977,



reproduced from Osborn ét al., 1979). Note that in addition ta
the light water wedge near the south side (see the sigma—t
section on figure 3), there is also a smaller one on the north
side.

The theory of water exchange through straits in a rotating
frame of reference is quite recent. A seminal énd often quaoted
work is that of Whitehead et al. (1974), who carried out a
theoretical and laboratory study of a two-layer rotating channel
flow under geostrophic balance. They solved the problem of a) a
bottomllayer flow and b) two—layeréd flows in opposite
directions over a weir. Since they assumed an infinite bottom
depth in the upstream basin, their pnteﬁtial varticity function
was identically zero and the Bernoulli function a constant.
These assumptions led to a linear geostrophic velocity profile
and parabolic shape for the interface. For small upstream
height, they found that the interface intercepts the channel
floor at some distance from shore. Because of the assumptions
involved (one-dimensional flow, infinite depth upstream), their
model is inapprapriate for the present study, although it
provides a useful guide for understanding the physics of the
situation.

Nof (1978a,b}), in his studies of ouflows from channels into
wider basins, expanded the potential vorticity equation and the
Bernoulli equation, in powers of the Rossby number e=V/2fb
{where ¥ is the Coriolis parameter, V is the velocity scale and

b is the half-width of the channel) for the one-layer case



(1978a), and in powers of the Froude number F=V2/g°'H (where H
is the upper layer depth in the channel) in his two—layer model
(1978b). The important assumption for the latter case was that.
F/7e<<1 (i.e., a narrow channel). He used these expansions to
saolve the ane— and two-—-layer problems of the geostrophic
adjustment in outflows over a step from a channel into a wider
basin. He found that the flow separates from the right‘or from
the left (depending on step-up or step—down in the one-lavyer
case and on the length of the channel in his two—-layer model) if
-the Rossby number is smaller than same critical value. Since
velocity profiles in the mouth of the channel were prescribed a
priori, his solutions are not directly applicable to the present
study. |

Gill (1977) was the first to obtain analytical solutions
for the flow of a homogeneous fluid with a nonzero potential
vorticity (i.e., a finite depth upstream) down a rotating
channel with a sill and a slowly varying cross—section. He then
determined the position of a "control" section, where the
long—wave disturbances have a zero phase speed. For certain sill
heights and upstream potential vorticity values, he found that a
part of the flow is reversed before the sill, i.e., a re—-entrant
circulation pattern was established (figure &). Bill‘'s (1977)
model is concerned mainly with the hydraulic control of a
downchannel floﬁ by a sill and a gradually narrowing profile,
which does not include flows arcund sharp corners and in channel

mouths. In some respects, the present work may be complementary
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to that of Gill (1977), since his solutions for a slowly varying
channel can be matched to (and prescribe the relative transports
for) the model of circulation in the mouth of a channel. Roed
(1980) performed a similar analysis for the case of a single
coastline with a slowly varying curvature and depth profile.

I am aware of only one example of an analyfical solution
for the flow around a fast changing coastline. Hughes (1981,
1982) has madeled an upper laver flow with separation (and a
downstream control by another coastline) around a sharp corner
on a low-latitude f-plane; i.e., in the limit of slow rotation.
In the present case, 1 attempt to do the same, but for the case
of a mid- to high—latitude f-plane, where the stronger Coriolis
force tends to keep the boundary current attached to the coast

on its right, even around corners with significant curvatures.
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Sample surface canfiguration (exaggerated scale) from
6Gill, 1977 (with permission). Dawnchannel is at the
bottom. Note how the surface slopes on opposite sides
before the channel narraws, indicating geostrophic
flow along directions shown by the arrous.



Chapter 3
Statement of the problem

In this chapter, we present ocur problem in a general form
for an arbitrary domain. More specific examples are given in
subsequent chapters. The analysis of steady inviscid coastal
flows is based on the conservation principles that govern the
‘motion of an incompressible fluid in a rotating frame of
reference. The first two equations express conservation of

energy and varticity. These are the Bernoulli equation

(uz + v23)/2 + g'h = G(¥), | (3.1)

(where ‘'={(AP/9)g is the reduced gravity) and the potential

vorticity equation

(v — u, + f)/h = K(¥). ' (3.2)

Their derivation can be found in standard textbooks (e.g., Gutman,
1972; Pedlosky, 1979). The transport streamfunction ¥ is related
to the depth of the interface h and the horizontal velocity

components u and v through

hv = Y, and -hu P, . (3.3)

The latter two equations follow from the volume conservation



principle for a nondivergent motion
(thu) + (hv), = O . (3.4)

GY) and K¥)=6'(¥Y) (Charney, 19533 Gutman, 1972) are
functiuns of integration that are derived from the upstream
conditions. This derivation is done in the next chapter for a
particular case of an exponential wedge profile. The boundary
condition at the coast is gpecified by assuming it to be a
streamline. For example, QE; the case of a channel mouth (figure
7)), we need to specify the value of ¥ on each boundary. The
difference between these two boundary values is the net
transport out of {(or into) the channel and is determined by
conditions far inside the channel. Mpreover, if a channel has a
slowly varving ﬁrnss—sectinn and a sill (weir) inside, theﬁ
Gill ‘s (1977) model can be used to find the net transport. On
the other hand, if the channel is wide (and/or the sill is too
far inside, as in the case of Lancaéter Sound) the net
baroclinic transport is a'parameter of the problem. This is
discussed in detail in Chapter 35, where one—-dimensional
salutions for a channel are given.

The problem must also be well-posed. This is true as long
as the flow does not separate from a boundary. In this inviscid
case, the separation may be caused either by adverse pressure
gradients or by a flow around a very sharp re—-entrant corner. In

the latter case, the strong centrifugal force will move the



fluid away from the corner and, according to (3.1), the
separation will result from a vanishing upper layer depth. As we
shall see in Chapter 7 (and Appendix C), in the case of a
right-bounded wedge-type flow, this centrifugal separation
occurs only at re-entrant corners that have radii of curvature
much smaller than the lateral scale of the flow. When this
happens, the prablem is not well-posed and the solutions, that

are derived below, are no longer valid.
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Schematic representation of a channel mouth. It is
assumed that the problem of the circulation in the
mouth (region 1) can be separated from that inside

the channel (region II1).

Figure 7



Chapter 4

The upstream profile

LeBlond (1980) showed that when a coastal current is in a
geostrophic balance with the pressure gradient due to a linearly
sloping interface (Figure 8a), then the interface meets the

surface (forming a front) at a distance.x, given by

R/F = C=2/¥V . ) (4.1)

>
i

Here, R=C/+ is the Rossby internal deformation radius, F=V/C is
the Froude number based on the velocity C=(g'H)!/2 of long
internal gravity waves, and V and H are, respecfively, the flow
speed and the upper laver thickness at the coastal boundary. In
order to allow for a smoﬁth transition between the coastal
current and the offshore region we assume that the interface
depth decreases exponentially offshore (therefore eliminating
fronts; sée Figure 8b) with the same scale X. Letting k=1/X, we

have
h(x) = He-%*. (4.2)

If we assume that the velocity is geostrophically balanced, we

also have

vixn) g 'h./f = —Ve *~, (4.3)



where V=g 'H/fX (=FC) if we use (4.1). When the first equation in
(3.3) is integrated with respect to x, we find that the

transport streamfunction is given by

"Pi{x) = RQe~2kx, (4.4)

where the constant of integration was set to zero and
E@=%¥(0)=VHX/2. Note that @ is also the total transport in a
triangular profile (Figure Ba), which lends support to using X

as the horizontal length scale. It is worthwhile to note that for
an exponential depth profile, X rémains invariant (i.e., it does
not change with the distance offshore) if we replace C and F

with their local values ci{x)=[g h(x)1*/2 and F{x)=ivix)|/c(x).

In order to see the connection between the deca& scale X
and the Rossby radius of defurmatiun, used by many authors as a
lateral scale for coastal flows (e.g., Nof 1979a,b; Stommel and
Luyten, 1984), we consider (for a moment) a current thickness

profile that is given by
h{(x) = D + He ** (4.5)

where D is some nonzero constant reference depth (Figure 8c). If
we now assume a uniform potential vorticity, then, for the

one—dimensional case, equation (3.2) becomes



(v + f2/h = f/D. _ A (4.6)
But, v.=kVe~** and kV=F2f, so that from (4.6) we get
(/D) (1 + F2@~%*)/(1 + He %*/D) = £/D , 4.7)

which gives

H/D F=. {4.8)
Thus,

X = R/F = (g'D)*’2/f = Rp , 4.9

which means that in this case (when D#0), X is the Roséby radius
based on the reference depth D. We note that for F<1, H<D, so
that for a vanishing D (Figure 8b) the uniform potential
vorticity equation (4.6) is not applicable, Rp is meaningless
and X as defined by (4.1) is the natural decay scale. By defining
a potential depth H,=H/F2, we get a modified expression,

X=(g 'Hx)*’2/f, so0 that in a wider sense, we can call X a Rossby
defaormation radius (based on H,). The use aof the "potential
depth" in constant potential vorticity models, though not always
so named, is not new (e.g., Stommel, 1965; Flierl, 1979; Gill and

Schumann, 197%9; Luyten and Stommel, 1984).

We now use (4.2)-(4.4) in the one—dimensional versions



of (3.1) and (3.2) and obtain

G

(g’ f)172(2¥) 172 + e(f/HOY , (4.10)

and,

K(¥) (g f)r72(2¥) 1’2 + e(f/H), (4.11)

where the Rossby number € is given by

€ = F2 = V2/(g'H) = V/{+X). (4.12)
When these are combined with (3.1) and (3.2) we get a pair of
nonlinear equations which, together with (3.3) and appropriate

boundary conditions (to be specified later), define the physical

problem of inviscid rotational flow along a coast.
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Chapter S

Solutions inside a channel

For simplicity, let us assume initially that, as shown on
Figure 7, the channel is of uniform width 2d. For strict%y
alung—channe; flow, the cross—-channel velocity v and all the
x—derivatives are zero. The?e{ore, the momentum equations reduce

to the geostrophic relation
—fu = g'hy. . {S5.1)
When combined with (3.3) and integrated once, we find that

h=2

2¢%¥/g’, (5.2)
i.e., h is also a streamline. For an exponential upstream
profile, (4.11) gives the potential vorticity function in terms
aof h,

K{h) = ¥/h + ef/H . (5.3

When the last equation is substituted into (3.2), we get, after

using (S.1), a linear equation for h

hyy — k2h = 0 . (5.4)



Here, as in Chapter 4, k=1/X. The boundary values of h are
hi{xd) = (2f84/g°)1/2, (S5.5)

where B.=¥(xd) are the transport streamfunction values on each
boundary. . | /

For cnmpﬁtatiunal convenience, it was tacitly assumed here
that X, and hence also k, in (5.4), are uniform across the
channel. This is the siﬁuation which':ofrespunds to a Qnifurm

stratification. The solution of (5.4) and (5.5) is

h(y) = hcosh(ky)/cosh(kd) - Asinh(ky)/sinh(kd), (S.6)
where, .

h = Ch(-d)+h(+d)1/2 and A = Ch(-d)-h(+d)1/2 . (3.7)

Finally, ¥ and u can be calculated using (5.1) and (5.2).
Figures %9a,b show profiles of h for several values of d/X when
Qs are.equal (Figure 9a, the case of zero net transport) and
when @_=28; (Figure 9b). For small d/X, the two boundaries
inflﬁence each other strongly, dictating either a zero flow
condition (for @_-=84) or unidirectional down-channel flow {(for
Q@_=284+). As d/X increases, the two sides become decoupled,
allowing independent existence of coastal currents on each side
and, hence the possibility of penetration of flows into the
channel at the mouth.

Equation (5.6) is the same as Gill’'s (1977) (5.2). It may



often be valid to assume that d/X (either d, or X, or both)
varies gradually along the axis of the channel, on a scale that
is much larger than X. In this case, Figures 7a,b may also be
thought uf as a view into a channel of a slowly varvying relative
width d/X, showing the same recirculation across the channel as
in Figure 6 (Gill‘'s, 1977, Figure‘9e). We note that in contrast
to most previous investigations (as in Gill, 1977), we did not
assume a uniform potential vorticity. Indeed, even inside the

- channel, K(h) is not uniform (equation (5.3)). In contrast, the
quantity

~u,/h = ef/H = V/XH, | (5.8)

is uniform in this one—-dimensional case. Note that for an area
element dA=dxdy, this quantity is the ratio between circulation
dC=—-Lu(y+dy/2)—u(y—-dy/2) lJdx=—u,dA and volume dV=hdA of a
material vortex tube element.

It is easy to match (join) nonuniform (e.g., narrowing)
‘'channel splutions (like the one above, or Gill ‘s, 1977) to a
solution around the channel mouth. For example, it can be done
(as on Figure 7) one X unit away from the mouth, where,
presumably, the corners no longer influence the flow and the
streamlines are approximately parallel to the sides of the

channel.
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(b) @-=2Q4, for several values of width, d.



Chapter &

Scaling and derivation of the governing equations.

It is not possible to tackle directly the set of nonlinear
partial differential equations (3.1)—-(3.3) in thebgeneral
two—dimensional case. Instead, we use a regular perturbation
expansion in the Rossby number € (=F2). First, it is convenient

to nondimensionalize the variables according to
(Xa¥y)=X(X "4y )y (U,v)I=V(u’',v'), h=Hh", ¥=0%", . (6.1)

where X, V, H and @ are the lateral scale and the upstream
boundary values of velocity, interface depth and transport
streamfunction, respectively, as defined in Chapter 4.
Substitution into (3.1)-(3.3) gives (after dropping the primesf

the nondimensional equations

h + (e/2)(u?2 + v2) = Y172 + (e/2)¥ , (6.2)
1 + elve — u,). = h¥-*/2 + ¢h, : (6.3
2vh = ¥, and -2uh = ¥,. (6. 4)

We eliminate square roots by changing to a new

streamfunction variable s, according to

¥ = g% ., (6.3)



As a result, (4.2)-(6.4) become

2h + e(uz + v2) = g5(2 + €s) (6.27)
sll + e(v, — u,)1 = h(1 + es) (6.37)
vh = ss,. and —uh = ss,. - (6.47)

We consider s, h, u and v as regular functions of the
Rossby number &, expressing them in regular perturbation

expansions of the faorm

[~ =]
(s,h,u,v) = E € (s, ,h;,uy,Vv,) (6. 6)

1m0

As a result, we get from (6.2°') to orders e°, € and €2,

respectively

ho = Soq (6.7a)
2h; + Wwo? + vo2 = 25, + 502, {6.7b)
hz + UoW; + VoV: = S5 + S555;:. (6.7C)

From (6.3°), we obtain
So = ho, (6.8a)
{&.8b)

S5, + So{Vox—Uoy) = hi + hoSoy

S + 85, (vox—Uo,) + So(ng"ley) = ha + hi1So + hoSi« {6.8c)



!

Finally, the continuity equations (6.4°) Yield

voho = SoSox s —Uoho = Soﬁoy, (6.9a)

vohy + viho = (S05:1)x 4 —Uoh: — UWjho = (SoS1)y. (6.9b)

We can now use these equations to get a single equation
for the 0(1) streamfunction variable s and another one for
the 0(e) contribution s,. From either (4.7a) or (6.8a), we have

he = Soy, . {6.10)

which shows that the 0(1) interface'depth is a streamline. As

a result, from (6.9a), we abtain the O(1) velocities,
Vo = Sox and, ~Uo = Soys (6.11)

so that, at least to this order, the flow is geostrophic.

Consequently, we also get the 0(1) relative vorticity

Vox — Uoy = V250 | (6.12)
and, the 0(1) kinetic energy

Uo = (Uo®? + vo?)/2 = (Us0)2/2 . (6.13)

From (6.7b) it follows that the 0O(e) layer depth is



related to s, via

hy = 5, + [56% ~ (¥s0)21/2, | (6.14)
while, from (6.8b), we find

h:, = 5, + 50(¥25, — So). ‘ (6.15)

We caombine the last two equations to obtain the differential

equation for so:
V250 — S0 = [502 — (950)21/2S0. (b.16)

Even fn this leading order, the equation is nonlinear.
This nonlinearity can be traced back to the nonuniformity aof the
potential vorticity, which is a consequence of (4.2). From
(6.14), we see that the right hand side of (6.16), which looks
like the departure of the 0(1) kinetic ehergy fraom its value
upstream (divided by the depth ho, see egquations (&6.2) and
(6.7b)), is also the 0(e) departgre of the depth h from the
streamline s (as given in (46.14)), and this difference
contributes to the balance between the relative vorticity term,
V250, and the vortex stretching term so (=ho). As we shall see
in the next section, the riéht hand side of (6.16) vanishes
whenever the motion is rectilinear, which is the case upstream

or far away from boundaries. In particular, upstream, where h=s



identically, h,=s,=0 and hence, the relative vorticity is equal

to s and the kinetic energy is equal to s2/2 (which can be

verified directly from the exponential prnfile)..Following the

same method, it is not difficult to show that in the case of a

uniform potential vorticity function K{¥), the right-hand side of

(6.16) vanishes and hence, the 0(1) equation for s, is linear.
The derivatian.of the.equatinn for s, is given in

appendix A. The result is

SoV28, + 9US56°VS; + (P25, — JIsel)s: = W, (6.17)
where (see appendix A)

W = [506® — (9US0)2]12/45, + S0° — 1/2(Vse°V) (Vso) 2. (6.18)
The function W can be rewritten more concisely as

W = 50(M2 + 502) — (V50-V)Uo (6.19)
where M=s5,/2-Us/5c. is the right—-hand side of (6.16) and U is
"the 0(1) kinetic energy, given by (6.13). It can be shown that
far from the apex, in regions of rectilinear flow, W vanishes
identically, together with M. The question of singularity near
the apex of a re—entrant corner is considered in the next

chapter, where explicit solutions are derived.

We can linearize (6.16) and simplify the left side of



(6.17) if we use transformations

So = p2/3 (6.20)

and,

s, = p-1/3q . (6.21)

This results in two modified Helmholtz equations, a homogeneous

one for p:

v2p - (3/2)%p = 0 ; (6.22)
and an inhomogeneous one for q:

v2q - (3/2)2q = p‘*’3N - (6.23)
Also, since s?2=Y=Y.+e¥,+..., we get

Yo = pe’3 and ¢, = 2pt/3q. (6.24)

Equations (46.20)-(6.24) define the physical problem if the
shape of the domain and the baundary conditions are specified. In
the next chapter, we solve these equations for a domain bounded
by two straight walls, i.e., a wedge of an arbitrary angle n/a,
where the angular parameter a is not smaller than 1/2. We will

then obtain, in Chapter 8, approximate solutions for flows along

coastlines, which can be represented by a (possibly discontinuous)



i

combination of corners, as long as no two caorners are closer than

one Rossby radius.



.Chapter 7

Rotating flow around a sharp bend

We proceed now to solve the problem, stated in the prévinus
chapter, for the case of a domain bounded by two straight walls,
which are located at =0 and ©=m/a, with a>1/2 (Figure 10). As
stated previously, we assume that a geostrophic current with an
exponential depth profile, given by (4.2), approaches the bend
from upstream, with the ©=n/a boundary on its right. We also
assume that, unless it should appear explicitly from the
sulutiun:af the problem, there is no separation of streamlines
from the bounding wall. Consequently, the current turns the
bend, even far é re—ehtrant corner, and the far downstream depth
prdfile is identical to that far upstream of the corner.

The equations to be solved are (6.22) and (6.23), and the

corresponding boundary conditions are

Q.,mr/a (7. 1)

he]
I
-
y
<
]

.and

q = 0 at ©

O.,m/a. (7.2)

We begin with the first set.



The 0O(1) soclution

Before we start, it should be pointed out that equations
(6.22) and (7.1) are closely connected with the problem of
diffra;tiun of a Kelvin wave by a wedge. The latter was solved
by Roseau (19267) and also by Packham and wiiliams (19648) for a
general wedge angle using a complex integral representation.
Buchwald (1968) used the Wiener—-Haopf technique to solve the
diffraction problem for the particular case of a kKelvin wave
incident at a right-angled corner. In principle, the solution of
our problem should be obtainable from the latter by a limiting
process, wherein the Kelvin wave transforms into avgeostrophic
current with an exbonential profile, in the limit of zero
frequency. Unfnrtunately, due to its cnmplexity, only asymptotic
forms of the wave solution were presented in the above papers.

The methods employed by Roseau and by Packham and Williams
are related to the "Sqmmerfeld diffraction problem”, which deals
with the diffraction of electromagnetic waves by a conducting
wedge. Sommerfeld (1896) solved this problem for the case of a
half—-screen {(wedge of an angle 2Zr) and for an angle which is a
submultiple of 2nm, where n is a paositive integer (for an
illuminating discussion, the reader is refered to Sommerfeld’'s
book "Optics", 1954, section 38). His method was generalized to
an arbitrary angle by Macdonald (17215), Bromwich (1915), Whipple
(1916) and Carslaw (1219). Saome of the extensive literature on

the subject has been reviewed by Oberhettinger (1934).



Since we intend to use the results of diffraction thenry,
we briefly review its formulation. We need consider only the
special case of a plane wave of unit strength,
Fo=exp{ikict+rcos(9-6,) 1}, incident from the direction &, at
a right angle to an edge of the wedge. After removal of the time
dependence, the Sémmerfeld diffraction problem reduces to

solving the Helmholtz equation,
V2V + k2 = 0 i (7.3)

subject to conditions that the solution V is zero on each
boundary and that it satisfies a suitable radiation condition.
Bromwich (1915) used ﬁhe case of the wedge n/n, where n is
a positive integer, as a starting point of the familiar method
of images. He replaced the sum of the images by a complex
integral and then extended his faormulae to hold for any (real
and positive) value of n=a. Subsequently, by deforming the
integration path, Whipple (1?216) was able to show that the

solution can be written as

V = "sum of visible images" -

- F{m+8-9,) — F{m—9+8s) + F(m—9-8,) + F(r+9+0.), (7.4)

where the diffraction terms F are given by



asin(ay) 5°° exp(-ikrcoshu) du
2n o cosh(au) ~— cas(a¥)

F(y) = . (7.5)

integrated along the positive u-axis. The "“visible images" are
the incident wave Fo and ité images that are "visible"” at (r,9).
Whipple also showed that each diffracted term F(Y) satisfies
equation (7.3).

In order to solve the boundary value problem, defined by
(6.22) and (7.1), we change k to ik (k=3/2 in equation (6.22))
and describe the incoming current as an evanescent plane "wave"
emanating from the boundary at &=r/a. Thus, the "Qave source" is
presuhed to "rédiate“ fram the'directinn Go=w/a+n/2 (Figure 10),

in which case
Fo = explkrcos(9-965,)]1 = explkrsin(e-nr/a)l, (7.48)

As a result, the diftfracted term (7.3) becomes (see Whipple,

19146, for details)

a sin{a¥) 5°° exp({ikrsinhu) du

F 2n o cosh(au) - cos((a¥)

sin(ay) 5°° explfikrsinh{(us/al)l du
4an o sinh2(us/2) + sin=(a¥/72)

. (7.7a,b)

Due to the difference in boundary conditions (p=1, while
V=0 on both boundaries), we cannot use (7.4) directly, but must

seek an alternate combination of the F terms. We investigate



first the functional behaviour of F(Y), which may be summarized

as follows (Figures 1la,b):

i) F(¥) is continuous for 0<{¥<2m/a and has a period of 2r/a,
1i) F(#¥)—>0 as ¥Y—>m/a, and

iiil) F(¥)—>1/2 as ¥Y—-—>+0 and F(¥)——>-1/2 as Y—>—0.

Froperties 1) and‘ii) are readily seen by inspecting (7.7a).
Property iii) heans that F has a jump discontinuity at Y=Q.
This is because as Y-—>0, sin(a¥) multiplied by the integral
has a finite limit there, while the sin function changes its
sign. Indeed, if we put b=sin(a¥/2), then, as b——->0, most of
the contribution to the integral comes from the vicinity of
u=0, in which case sinhu®u, sinh{(au/2)%aus/2. The real part of
(7.7b) gives, for bR0O (since sin(a¥)=2sin(a¥/2)cos(a¥/2)%2b

there),

F(b) »

ab 5°° cos (kru) du
2n ‘o {au/2)2 + b=

Changing to x=au/2, du=2dx/a, we get

b S°° cos{2krx/a) dx _ b

r — = - ibi/a). (7.8)
F(b) = 5. Vg S SXP(-2kribi/a

Hence; for small ¥
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2F(Y) ® sign{¥iexp{(-kri¥Pi) —-> sigﬁ(w), as ¥Y-——>0.

From the above properties of F(¥), it follows that the
solution of the boundary value problem (6.22) and (7.1) is given
by the sum of the four diffraction terms

plr,8) = 2F(8) + 2F(m/a-9),

or, explicitly,

_ 2a sin(a%9) S°° exp(ikrsinhu) cosh(au) du
T ° cosh®(au) - caosz(a9)

2 sinfa®) 5°° explikrsinh(u/a)l] coshu du
4 ° sinh?u + sinZ{(a8)

. (7.9a,b)
Since each F term satisfies (4.22) (with k=3/2), then so
does p. One can also show this directly by taking derivatives of
p with respect to r and & and substituting back into (4.22).
While trying this out, it is useful to know that the value of
the integral in (7.9b) does not change when its upper limit is
replaced by oco+id, with the only condition that O<d<am. This is
needed since when differentiated with respect fo ry (7.9b) gives
an apparently divergent integral, that can be transformed into a
convergent one by integration by parts, and the integrated terms
vanish when the upper limit has this extra +id (analogous to

artificial viscocity, which is often used as a convenient way to



get convergenﬁe‘at infinity; see; for example, Cafriekget al.,
1966, p. 337).

It is also a simple exercise to show that for the
particular case of a straight coastline, a=1, (7.9) reduces
to the upstream profile p=e~**, where x is the normal distance
to the boundary'and k=3/2 (hence, So=e"*). For a#l, a numerical
quadrature can be used to evaluate (7.9), or (7.7). The term
Z2F(n/a—-9) can be thought of as Eepresenting a linear rotating
flow from the upstream into a sink at the apex of the corner.
Similarly, 2F(8) would be a source flow from the apex. Their
sum, raised to the power 2/3, according to (6.20), gives so, the
0(1) streamfunction, which is plotted on Figure 12a for a=2/3
(most of the Figures are drawn for this chpice of a). Sne the
solution to the homogeneocus counterpart of (6.16i, is also shown
on this Figure. The difference bgtween the two is very small,
€0.03. This means that M, the nonlinear forcing term on the right
hand side of (6.16), plotted on Figure 12b, has a small»effect on
the 0(1) solution (it moves the streamlines somewhat away from
the corner). As expected, for large r, s. reduces to the upstream
profile e+, where x is ihe diétance from either boundary, while
for small r, it is given by the potential flow streamfunction p,,
raised to the power 2/3. This is shown in more detail in Appendix
B. We should add that while looking at Figures 12Z2a,b and the
figures that follow, we must remember that, since the distances
are in units of X=R/F, the actual dimensions of these dréwings

are inversely praportional to F=et/=2,



The O(e) solutian

We now proceed to solve the second boundary value problem,
equations (6.23) and (7.2). Farmally, the solution may be written

as

gix,y) ='fj £,y IBx,yix ,y )dxdy’ , (7.10)

where the integration is over the specified domain, £ is the

right hand side of (6.23),

f = p-:/3W, (7.11)

and W is given by (6.19). The Green’'s function Glx,yix 4,v¥v")

satisfies
926 — k26 = f(x—x VL ({y-y") o (7.12)

and vanishes on the boundary. It can be written in terms of the

modified Bessel functions (see, for example, Stakgold, 12468},
o .
G(r,0ir',0") = —22 ) sin(ma®)sin(ma® )Kma (krs) Iaa (kre), (7.13)
with ry=max(r,r’) and r<=min(r,r’'). Due to the symmetry of the

wedge problem, only the odd terms in (7.13) contribute to the

integral in (7.10). We will also be satisfied with approximating



the 0O(e) term g. Calculations show that even if only the leading

term in (7.13),
G % —(2a/m)sin{ag)sin{ad’ K. (kr,) I.(kr ), (7.14)

is retained, the value of q is increased by no more than a few
percent. We compute (7.10) using a simple gquadrature routine.
Figures 13a,b show contours of the function f and of s,=s.,"!"2q,
respectively. Saomewhat surprisingly, the maximum value of s, is
less than 0.2, and as a result, no separation is evident in the
streamlines of W=s.2+2eses:, which are shown on Figure 13c for
€e=0.5. While this value of € may seem to be somewhat large (for
(4.6) to be valid), it is, nevertheless, used here for
demonstration purposes. The only noticeable effect of the O(e)
term on the transport streamfunction ¥ is to move the streamlines
away from the corner (Figure 13d), an effect which may be
attributed to the centrifugal acceleration of the fluid. A word
of caution: since we nondimensionalized distances with X=R/et/2,
we cannot compare dimensional velocities for the two values of
e=0 and 0.5 on the bésis of streamline separations only (Figure
13d). In fact, since e—-2>0 implies X—->o0o, statements concerning
the 0 case can only be interpreted in this limiting sense.

Using (6.14), we calculate the 0O(e) depth,

hy = 5, + Mso, (7.15)
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and, from (6.%b) and (7.15), we obtain the 0(e) velocities,

U = —-s,, — Mue . ' (7.15a)
and

Vi = 81, — Mvo. : (7.1Sb)

Contours of h, are plotted on Figure 14a, while Figures 14b and
14c show the total depth of the intertftace h=ho+eh;. The depth

integrated kinetic energy
hd = h[UQ + E(LloUg'.'Vng)]

is shown in Figures 15a,b for the two values of 0 and e=0.5.
Figure 14c shows the effect of fhe nonlinear advection terms:

a centrifugal upwmelling for a re—entrant (a<l) corner. In
cantrast, downwelling would be expected at an inside (a>l)
corner. It is also apparent that for large € and/or large corner
curvature, we may expect a surfacing of the pycnocline; i.e.,
separation of the streamlines from the boundary just before or
at the caorner. This is only vaguely discernible on Figure 13c.
Due to the assumed power series form, equation (4.6), there is
little confidence in the above derived solution (see belaw) that
close to the corner, whe;e the O(e) terms are larger than the
0(1) term (next section). This is especially true for re—entrant
corners. A separate calculation, which was done for smaller

scales (see Appendix C), shows a separation of streamlines very



_45_
clase to the apex. The gquestion of the validity of the solutiaon
is examined below, while separation is discussed in the end of

the chapter.

The validity of the soclution

For a re-entrant corner of infinite curvature, the solution
is not valid at the apex, where the velocities u and v are
infinite. We must also réquire that each of the four series in
(6.46) converge to a finite limit. We cannot praove convergence of
(6.6);4but ask, as an appraximate requirement, that the 0(e)
terms be of the same order of magnitude, or smaller, than the

0¢1) terms. To be more definite, we require that

151} < So, (7.16a)
ihi! < ho = So, (7.16b)
and U} < Uo, (7.16c)

where U;=ucu;+vevy is the 0(e) kinetic energy term. Using

(7.15) and (6.11), the last inequality may also be written as

iVS0°V5;, — 2MUosi < Uo (7.17)

Figures 12a and 13b shaow that (7.16a) is satisfied everywhere.

Forming the ratios



Fi = thiZho! = IM + 5,/50! : (7.18)
and

r= = 12M — 9Vs4-Vs/Uo ! ’ . (7.19)

we plot contours of r, ana r= on Figureé isa,b, superimposed
upon a few streamlines ¥ (for =0.5). We notice that for the
chosen parameters (a=2/3, e0.35), our solution is valid (r, and
r- both less then 1) for streamlines ¥<0.9.

Figures léa,b show that, depending on e,_the solution is
valid for relatively (but, not infinitely) sharp re-entrant
corners, as long as.the rounded boundary {(e.g., the ¥=0.9)

streamline does not penetrate far inside the curve r;=1.

Supercritical +1ow

Since for a re—-entrant corner the velocity of the fluid is
high near the apex, we expect the flow to be supercritical there.

The local Froude number,
Fr = FL(u® + v2)/h1r72 , : (7.20)

is contoured together with ¥ on Figure léc. For the chosen
parameters (e=F2*=0.3, a=2/3), half of the t?tal transport is
passing through the supercritical region, where F.>1. This means
that disturbances generated downstream of the corner cannot

propagate upstream, which may cause a hydraulic jump near the



second (downstream) Fr=1 line. In our case, the conditions
downstream are determined by the upstream parameters since, in
the absence of another boundary close-by, the Kelvin wave can
propagate only with the boundary on its right. Hence, (for this
steady model) na hydraulic jumps are expected as the flow
re—enters the subcritical regime.

It should be pointed out, however, that while no
stationary Jjumps are predicted at a corner, travelling
disturbances‘in a form of shock—-waves or bores are quite likely.
These may arise, for example, when there is a sudden change in
upstream conditions (like an increase in transport), in which
case a fuily nonlinear shaock—wave will be generated. According
to Nof (1984), this shock would then propagate downstream (along
a strait vertical boundary) at a speed larger than that of a
Kelvin wave associated with both the disturbed and the
undisturbed flow. Because the shock is faster than the sum of
the downstream (with respect to the shock) advection speed and
the downstream Kelvin wave speed but slower then the
corresponding sum upstream of the shuck; nao energy is lost from
the shock {(except for small {rictiunal losses) and the shock
retains its form (Nof, 1984). It is not clear however, how such
shock is transformed when it rounds a sharp carner. As in the
case of monochromatic Kelvin waves (FPackham and Williams, 1968;
Buchwald, 19248; Miles, 1972), ane may expect that a certain
amount of diffracted energy loss (Poincare waves) Qill agccur in

its higher (superinertial) frequency compaonents. Thus, the



shock—-wave downstream of the corner will be less energetic and,

paossibly, of a different shape than when it was upstream of the

corner.

Separation

The power series expansion (6.6) is not valid very close

to the apex. We rewrite (6.2')-(4.4"):

h + em2/2 = s + e52/2, ‘ (7.21)
1 — €W, + Ww/r) = h/s + eh, (7.22)
-wh = ss,, . (7.23)

where w=(u?*+v2)7/2 is the speed, r is the radiué of curvature of
a streamline and the subscript n denotes a normal derivative. We
now consider a boundary streamline, s=1, and assume r. to be the
radius of curvature that causes its separation. Upon separation,
h=0, from (7.21), the speed w=(1+2/e)'/? is constant, and from

{(7.22) the relative and the planetary vorticities are equal,
Elwn + wW/re) = 1 . o (7.24)

Differentiating (7.21) in the normal direction, and substituting

into (7.24) vyields the momentum equation,

—hn + EWZR/rc = W, (7.25)



which étates that the balance between the pressure gradient and
the centrifugal force is held by the Coriolis force. Equation
(7.25) is satisfied for any, however small, r- (with a
carrespondingly steeper ihterface slope h,.). Hence, our model
does not give us the critical separation curvature. We can get
some idea about the size of the upweiling region and, hence,
about the critical radius r., if we solve the same problem
{equations (6.2°)—-(4.4°)) but for émallér scales, of the order of
€2X, near the apex. This is done in Appendix C. The results of
these calculationsishow that, for example, for 0.5 and a=2/3,
re<0.02, and the centrifugal upwelling is hot important if the
radius of curvature of the rounded corner is larger than about
0.1X. It may be of some interest to match the two solutions
{(e.g., using the method of multiple scales). But this would take
us beyond the scope of thié wark and also may be of little
cansequence, since all of the coastal radii of curvature
considered here (as, in the mouth of Hudson Strait) are larger
than O.1X.

In this respect, we would like to point out that the
centrifugal upwelling at a sharp cape, and the resulting
doughnut-like shape of the interface (Figure 14c), are exactly
analogous to (hypothetical, since no one has ever observed them)
anomalnus'warm eddies with a cold core, which have surfaced, for
example, as a passible solution in Flierl’'s (1979) analytical

two—-layer model of the structure of warm and cold core rings.



-_— 50 '_—
The balance of farces‘is the éame —-- geastrophy on the autside
and a cyclostraophic balance on the inside. Figure 13 in Flierl
({1979) shows a straight line relation petween the strength of
the ring, as it was defined by Flierl: e-=—(2e+e2)'/2, and its
inside radius ro. Although this line stops shuft of the ro=0
axis (presumably due to the singularity of his governing
equation), it does seem to indicate that for e>-1.5 (0.8},
the inner (cold) core of the ring disappears. In that case, the
smaller centrifugal force is no longer sufficient 'to hold the
inner slope for the upwelling to take place, and the ring stops
being anomalous. Despite the differences, Flierl 's constant
potential vorticity (and, hence, deeper upper laver; see
Chapter 4) radially symmetrical model seems to indicate thaﬁ
the horizontal extent of a centrifugal upwelling around a sharp
re—-entrant corner should be rather small for € values that are
consistent (e.g., €1/2) with the power series expansion (4.46).
This agrees well with our results, and in particular with Figure
14c (drawn for the a=2/3, e=1/2 case).

Because of its limited extent, the centrifugal upwelling
is not the most likely cause of separation of the boundary
streamline. Other effects may be more important. For example, if
there is an adverse pressure gradient which raises the depth of
the upper layer to its maximum value, 1+e/2, then, from (7.21),
we get a stagnation point, where w=0, and hence, separation.
This pressure gradiént could be due to changes in buovancy, wind

forcing, or due to barotropic effects (e.g., changes in



bathymetry). In:addition, énhanced Ekman pumping (due to higher
velocities at the cofner) may contribute to upwelling and, hence,
to separafion. Consequently, a three—-dimensional frictiaonal
model may be required to answer this question about the
separation at a sharp cape. Merkine and Solan (1979) have sﬁnwn
that in the case of a uniform stream (V.=constant) of dépth H
past a circular cylinder of diameter D and for a small Rossby
number, Ro=V./fD<<1 (i.e., large D, or small V.), the flow
separates at some point on the cylinder, o<m, if the ratio
(E./72)*72/Ro=(v+£)1/2D/ (2HV:)<1, where E, is the vertical Ekman
number and v is the eddy viscosity. For e~1/2, the condition
Ro<<1 is equivalent to X/D<<1. Althﬁugh this éuggests that
Merkine and Solan’s f1979) results are not applicable to strong
flows around sharp corners, an analngnus4apprnach may prove
fruitful.

| While the problem of separation remains to be solved, let
us assumé for the sake of argument that the flow does separate.
This results in an anticyclonic baroclinic jet that would impinge
on the straight coastline (downstream of the corner) at some
nonzero angle. But, since the speed on the free streamline (¥=1,
h=0 for the inviscid model) is finite, it cannot pass through a
stagnation point and, hence, it must turn right, away from the
boundary (Figure 17a). A transient adjustment process follows,
whereby part of the flow pours into a closed gyre, while a
different streamline, ¥<1, passes through a stagnation point. As

the size and the depth of the gyre increase, higher valued



streamlines move through the stagnation point. An equilibrium is
reached, when the depth of the separated streamline attains its
maximum value, h=1l+e/2, which allows it to pass through the
stagnation point (Figure 17b). In this context, the work of
Whitehead (1983) on the deflection of a baroclinic jet by a wall
becomes relevant. His results indicate that upon impingement the
flow bifurcates with a larger part turning to the right, in
support of fhe above description of the adestment proceés. The
final size of the gyre may be a function of the wedge angle, the
Rossby number, and the interfacial friction. This rather
qualitative description is based on the assumption that the
Bernoulli functipn and the potential vorticity on each
streamline remain invariant during the adjustment process. This
assumption may not be entirely true. If generation of some type
of gravity or second clasé wéves accompanies the process, then
the energy and the final size of the gyre will be affected. It
should be emphasized that after separation, the free streamline
could turn away from the boundary (i.e., to the left), in which
case there will be no reattachment. Therefore, until an explicit
solution is found, this paragraph should be regarded as a
hypothesis that may guide future studyk In addition, comparison
shaould be made with solutions of an equivalent nonrotating (£=0)

problem.



So=mr/a+mn/2

e=n/a

Figure 10. The fn:oming current profile as an evanescent “wave”
emanating from the boundary along 6=n/a.



- 54 -

2F (3n/2-0)

1.09 ¢ 2 1

s Y
ey ]

———
w

2F (3 /2-8)

(b)

-1.0 0.8 -0.6 -0.¢

AN

Figure 11. Diffraction term 2F(Y), with ¥Y=mr/a-0 and as=2/3:
(a) its functional behaviour in the range -2n<{é<{2mr
for r=0.1 and r=1.0; (b) as a rotating sink of a
unit strength. The domain is 2Xx2X large and contour
spacing is O0.1. Unless noted otherwise, the same
applies to subsequent contour plots.
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-l .
Figure 12. (a) The 0(1) streamfunction s.=p2/3 (continuous
contours) and its homogeneous counterpart s, (dashed
contours); s, is the solutiaon of ¥2s,-s,=0.
(b) Contours of M=[sc*—(V50,)21/250.
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(a)

(b)

{a) The right hand side of (6.23), f=p~*/3W. (b) The 0(&)
streamfunction variable s;. Here, contour spacing is 0.02.
(c) The total transport streamfunction Y=Y.+e¥,, for

{(d) Comparison between ¥, (e=0) and ¥ (e=0.3).

Figure 13.

€=0.5.
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Figure 16. Contours of (a) ri=ih; /hei=0.3,1.0,2.0; (b)
r2=il,/Us 1=0.1,1.0,3.0 and (c) Froude number
Fr=0.7,1.0,2.0. These are superimposed upon
streamlines of ¥=0.4 to 1.0 (e=0.5).
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Figure 17. Conceptual drawing of the boundary streamline ¥=1 v
(a) just after separation and (b) after reattachment.



Chapter 8

The case of more complicated geometries

The corner solution, given in the previous section, i1s
readily extended to coastlines which are composed of two or more
corners, as long aé no two corners are closer than about one
(ndndimensional) unit. We invoke this restriction because of the
nonlinear behaviour of the caorner solution up to distances of
0.5 from the apex (Figure 13b), and because, for r<1, the normal
derivative of the diffraction term F(®) does not vanish at the
boundary =0 (Figure 11a). For the case of a channel mouth, this
restriction of minimum width can be relaxed if the nonlinear
terms are small (E<<15. I chose thg following examples to

demaonstrate the method.

Circulation in the mouth of a channel

teBlond (1980) showed that in the case of wide channels,
two barqclinic jets can coexist independently on opposite sides
of the channel. In this respect, it méy be convenient tao
classify channels into 3 categories: i) narrow channels, which
are narrower than the Rossby radius of deformation; ii)
intermediate channels, whose widths are between 1 and 3 Rassby
radiiy and, iii) wide channels, with widths larger than 3 Rossby

radii. In a case when Rossby radii are different on opposite



sides of the channel, some average value can be used. In the
absence of additional dynamical constraints (e.g., adverse
pressure gradients), the last category, that of a wide channel
is trivial, since the two jets do not interact at all. In order
to give a simple example, I chose the case of a channel whose
sides are at a right angle to the coastline. We orient the axés
so0 that the two sides are parallel to the'negative ®x axis, with
the origin halfway between the two corners (as in Figure 7).

Thé solution Yo=p*/3 is constructed as a linear superposition

af . two corner solutions,
p = B;p; + szz - (8.1)

As we have shown in the previous chapter, our solutions are not
valid in small areas around each sharp re-entrant corner. We can
overcome tﬁis praoblem by rounding off these corners, so that the
areas in question are removed from the domain of the solution. In
order to round off the apex of each corner, p:, and p: were rescaled
by factors which we call recession parameters, exp(1.5f;) and
exp(1.5§,), respectively. Each 4§, (i=1,2) is actually the distance
between the side of the (recessed) corner and the boundary
streamline, ¥=1 (away fraom the apex; for example, on Figures
1?2a,b, it is the distance between the boundary x=0, y>2 and the
rescaled streamline ¥Y=1, since for x>0‘and y>2 the presence of
énnther corner has negligible effect on ¥).

The constants B, and B, are calculated {(for this case of



a nondivergent cﬁannel) from the requirement that far inside the

channel

pix,d) =1 ,
and,

pix,—d) = (1 + A)3/4 = 1 + B, (8.2a,b)

where A>—1 is the additional transport out of the channel, 2d is
the width of the channel and B is defined by (8.2b). For large
negative x, pi=expl—-1.5(-y+d+§,)1 and pz=expl-1.5(y+d+42) 1.
Assuming for simplicity that p, and p: have equal radii of
deformation and that §,=£{.={, we get from the Z-point matching,

equations (8.1) and (8.2),

B,

exp(1.5§) (e3¢ - (1 + B)1/2sinh(3d),

and,

Bz = exp(1.5{)[(1 + B)e3¢ — 11/2sinh(3d), (8.3a,b)

50 that far inside the channel, where p is independent of x,
p=(1+B/2)cosh(1.Sy) /cosh(1.5d)—-{(B/2)sinh(1.5y)/sinh{(1.5d). (8.4)

The resulting 0(1) depth of the interface, ho=p2/3, is shown for
S different values of d on Figures 18a (A=0) and 18b (A=1). It is
compared to the exact solution h {(dashed line) from chapter O5.

They are not exactly the same since the function M no longer



vanishe§ inside the channel and h, satisfies the nonlinear
equatidn {(6.16). The difference is relatively small, and
insignificant for narrow (d<0.35) or wide (d>3) channels. The two
solutions would be the same, if we used s in (8.1) instead of P
But theﬁ; in order for the linear superposition to be valid, we
have to limit ourselves to d>0.5. Note that while this 2-point
matching procedure is not exact, it results in only minér
distortions of boundary streamlines and is very simple to
implement. (Only if d<0.5 and A>>1 or 1+A<<1, the distortion may
become large, in which case it is advisable to use different
recession parameters, a larger one for a corner with a smaller
transport.) Note that equation (8.4) is essentially Gill’'s
(1977) equation (S5.2), and is applicable fa a channel of slowly
varying cross—section. |

Figures 1%a,b show the resulting circulation, ¥, for the
case d=1, {=0.1, and for A=0 (zero net outflow) and A=1 (net
outflow equals to the upstream transport). Only about 30% in the
first case (A=0) and about 40%Z in the second case (A=1) of the
upstream transport is recirculated acraoss the mouth and out of
the channel. The rest of the incoming transport &Dntinues up the
channel. This is of course due to the dynamical control placed
by the Rossby radius and the width of the channel upon the
relative transports on the opposite sides. Differentiating (8.4)

we find that p has a minimum at y., given by

tanh(1.5ye.) = [B/ (2+B) Icotanh (1.5d) . (8.3



In that case,; Yo(yo) is, in effect, the fraction of the
incoming transport that is deflected acrass and out of the
channel. ;n particular, when B=0 (A=0), yo=0 and %o {yo)=
=[cash(1.5d) 14’3, If 1+B>cash(3d), then yo>d, and the flow is
out of the channel even on the left bank (looking downstream).
Similarly,.when O<i+B<sech(3d), then yo.<{-d, and the flaw is
uniformly into the ﬁhannel. Figure 20a shows the relation
between A and yo for 3 values of d: 0.5, 1.0, and 1.5 (which
span the intermediate width category), while Figure 20b displays
corresponding values of W ({ye)=p{ys)*’3, the fraction of the
incaming transport that is recirculated out of the channel.

A few remarks are in order. For the case of a channel
with diverging coastlines, the same Z-point matching technique
can be applied to the corners themselves, in which case 2d is
the distance between the two apices. This 1is done in the next
chapter, where we model the baroclinic flow in the mouth of
Hudson Strait. In general, if it is deemed important, the 0(e)
cantribution s, can be calculated using either a narrow channel
Green's function (see Buchwald, 1971) or via a numerical approach.
Its effect is limited, as was seen in chapter 7, to the

immediate neighborhood of each corner.

Flow around a square bump

In order to construct a solution for the second example,
I



we start with two corner sulutinnE} one for the 3n/2 (a=2/3)
re—-entrant corner, which was described in detail in chapter 7,
and the other for an inside n/2 (a=2) corner. In addition, we

use source and sink transport streamfunctions, 2F(®) and 2F{(r-9),
for a straight (a=1) coastline. The procedure is best described
graphically, as shown in Figures 21a—-f. We first subtract the
sburce and sink functions, 2F(®) and 2ZF(r—-€), from the re-entrant
corner solution (Figure 21a), one unit distance upstream and
downstream of the apex. This gives us the source and sink

flow, shown on Figure 21b. Deleting the sink function 2F (n—9)
from the inside corner solution (Figure 21c), one unit distance
upstream of the apex, yields the source flow, shown on Figure 21d.
Qombining the last source with the sink on Figure 21b gives us
‘the source flow, which is shown on Figure 21e. Finally,.combining
this snﬁrce with its image (in the x—-axis) sink and raising to
the power 4/3 results in %%, the flqw about the 2x2 square bump,
as shown aon Figure 21+f. However, subtracting'a source and a sink
at a point on a straight boundary is equivalent to subtracting

an exponential profile from that boundary. In other words,
instead of using sources and sinks in the above procedure, one
can simply add two corner solutions with a common boundary, and
then subtract the resulting surplus exponential current praofile
from that boundary. The restrictiaon of the common boundary being
at least one unit long, stands as before, since the procedure is
no longer valid close to the corners, where the profile is not

exponential.



It is trivial to add a current in the nppoéite
direction, which is (say) bounded by a wall 2Z units away from
the bump. The resulting baroclinic circulation around a square
~bump in a wide channel is shown on Figures 21g (the case of
equal transports) and 21h (double transport in the opposite
direction). Note that about 30%Z of the incoming transport in the
fifst case, and about 40% in the second case is diverted back
upstream by the opposing curreﬁt. This is the same recirculation
as in the tase of the channel mouth (Figureé 19a,b) and is
caused by the dynamical constraint due to the scale of the

Rossby radius of the flow.
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Chapter 9

Baroclinic circulation in Hudson Strait

In this Chapter we use the methad outlined in the previous
Chapter to model the baroclinic.circulation near the mouth of
Hudson Strait. It is expected that such a model would provide an
adequate description of an upper layer flow above a quiescent
lower laver, aor whenever the changes in bathymetry are small
enaugh, so that a modal decomposition is valid. Since the
bathymetric changes in the mouth of Hudson Strait are not small
(Figures 3Ib and 22a), we may alternatively caonsider the present
model to represent only the "baroclinic part” of the total flow
in and out of the strait.

Far the purposes of this model (in arder to pravide
upstream conditions), we require estimates of transports and of
lateral scales for various currents inside and upstream of
Hudson Strait. Where available, we rely on historical
oceanographic data to obtain these quantities. Otherwise, we
must make an intelligent guess.

The existing hydrographic and surface drogue data
(Campbell, 1939; Drinkwater, 1983, 1985; Osborn et al., 1278
LeBlond et al., 1981, and references therein) and satellite
imagery combine to give us a consistent picture of the late
summer residuwal circulation in the strait. The Baffin Current

flows south along the coast of Baffin Island (see Figure 22a).



At about &63°N it branches into two parts. %he eastern part
continues south past the mouth of.Hudsun Strait, while the
western branch enters the strait on either side of Resolution
Island. Inside the strait, one part of the flow is recirculated
across and out of the channel. The remainder continues along its
northern boundary and is gradually drawn acrdss the strait into
an estuarine type circulation, driven by the significant
melt—-water outflow from quson Bay. This water forms the current
on the south side of the strait. It is fresher, colder and more
straongly stratified than the one on the narthern side. From the
salinity and temperature sections across Ungava Bay (see Figure
23, from Campbell, 1959), it is apparent.that a significant part
of this current turns the corner at Cape Hope’ 's Advance and
enters Ungava Bay west of Akpatok Island. The remainder joins
the above—mentioned cross—strait flow north of Akpatnktlsland‘
and exits Hudson Strait past Cape Chidley together with the
coastal current from Ungava Bay. Additional evidence for the
Ungava Bay cyclonic gyre is provided by thermal satellite
imagery (an example of which is shown on Figure 24) and also by
the mution of ice into and out of the Bay. An example of the

latter is shown on Figure 23 (from Gray et al., 1985).

The transports

Drinkwater (1985) made current measurements (Figure 3) and

caollected CTD data (Figure 26) in the eastern Hudson Strait. His



calculétions of the total transport show that about 1.2x10*m>/s
is crossing the channel from north to south between his moorings
HS3 and HSS (see Figure 3). Similér amounts were given for flows
along the north (0.82x10°m3/s) and south (0.93x10°m3/s) sides.
This indicates that a total of about 2x10°m3)5 enters and exits
the eastern entrance qf the.strait, which includes both the
baroclinic and the barotropic parts of the flbw. There are not
enough data to calculate the transports of other éurrent branches
in the strait. Nevertheless, it may be logical on the basis of
drogue tracks (Figure 2b) and satellite imagery (Figure 24) to
assume that the flow that continues westward, on the north side
of the channel, comes mainly from the shelf water east aof Baffin
Island and, hence, that most of it enters through Gabriel Strait.
This would then indicate ﬁhat the approximate transports on
either side of the Resolution Island are of the order of 10*m3/s
each. Similarly, we may assume that a large part of the
0.9%10°m>/s flowing eastward at Cape Hope’'s Advance enters
Ungava Bay east of Akpatok Island, while more than 1x10°m3/s,
mastly from the cross—channel flow, rounds this island on its
northern side. This completes the total transport estimates.
Since we are attempting a baroclinic model, we are more
interested in estimates of geostrophic transports, which vyield
the baroclinic part of the flow. These are calculated from the
temperature and salinity transects, assuming existence of a level
of no motion (say, at 200m). Campbell ‘s (1938) geastrophic

calculatians for July 1956 gave southeast transports along the



Quebec side of 0.6x10°m3/s and northeast trénsports along the
Baffin Island coast of 0.3x10°m*/s. He admitted that these migﬁt
be underestimates, since his stations were not close enough to
the shore. Drinkwater ‘s (1985) calculations yielded comparable
values of 0.66x10*m3/s and 0.26x10m3/s, respectively. After
adjusting to current meter rea&ings (at 200m at HS1 and at 100m
at HS54), Drinkwater gave revised total transpart figures of
0.99%10*m* for the nurth side and virtually unchanged 0.&6xX10°m3/s
for the south side of the strait.

In our baroclinic quel, we will assume that about
0.6%10°m>/s enters Ungava Bay around Cape Hope's Advance, while
0.4%x10°m>/s rounds Akpatok Island on its north side, so that the
total baroclinic outflow from the strait is about 10°m3/s. In
addition, we "“"guess" é value aof 0.3x10°m>/s entering the strait
along the south side of Resolution Island. These values of
baroclinic transports are marked beside the corresponding

current arrows on Figure 22a.

Lateral scales

We now turn our attention to the lateral scales of the
currents. We use the measured offshore values af depth,
stratification and velocity in order to calculate X according to
(4.1). For the south side of the strait (near Cape Hope's
Advance), Drinkwater ‘s calculations gave C=0.8m/s and R=é&km.

Using his HS1 30m value of V=0.3m/s, we get F=0.37 and, from



(4.1), X=18km. We can élén estimate X using the exponential
profile for velocity v(x) {(equation (4.3)) and the two
along—strait 30m velocity values at HS1 and HS2, which are
0.29m/s and 0.07m/s, respectively. Since the distance between
HS2Z and HS1 mooringg is about 2Z8km (see Figure 3), we get

28km/ X=1n{(0,.29/0.07), thch gives X=20km, in good agreement with
the 18km above. We also note that Drinkwater s mooring HS1 is
located near the Cape Hope’'s Advance where at least part of the
flaw turns the corner into Ungava Bay and, it may be narrower
there than the flow farther upstream.

Despite different water masses and weaker stratification
an tﬁe north side of the strait (Figure 26), the lateral scale
there may be comparable to that on the south éide. This is
because of the inverse dependeﬁce on V {(equation (4.1)); in
order to conserve the total transport, slower flows must be
wider and deeper. To see this, let us use Aw=0.3kg/m3_(cnmpared
to 1.5Skg/m® on the south side; see Figure 26) and assume a
reasonable value of H=90m, which is half the depth at HS4. Then,
using the 30m (HS54) value of V=0.09m/s, we get fraom (4.1) a
camparable value, X=25km. We also note that since HS54 is about
20km offshore, Drinkwater 's measurements may have missed most of
the baroclinic wedge at that location.

Because of large uncertainities in the method used to
calculate these values of X, and in order to keep our madel
simple, we will assume that X=20km on both sides.of the strait.

Maorover, in order to see the effect of larger scales, we will:



repeat our calculations with a larger value, X=30km. The
following argument lends support to also using a higher value of
X in our model. The transport in a model baroclinic wedge

profile (4.1) is given by
@ = VHX/2Z = g 'H=2/2¢f, : (?.1)

whiéh for the southern side of the strait, near Cape Hope's
Advance, gives (using Drinkwater 's values, extrapolated to within
2km offshore, H=735m and V=0.45m/s) @=0.34x10°m3/s, which is about
half of Drinkwater ’'s geostrophic (relative to 200m) transport
value of 0.66x10°m>/s. On the north side (near HS4), a similar
calculation (with H=?20m, X=20km and, V=0.19m/s, extrapolated to
within Skm offshore, since the bottom is less steep there) also
gives B3=0.34x10*°m3/s, which is comparable to Drinkwater’'s

value of 0.26x10°m3/s.

There is a disagreement between the two methods used to
calculate @ on the south side, near Cape Hope’'s Advance. One
possible reason for this is that we may have underestimated X.
From the cross—-channel density contours (Figure 26, if the
sigma—t surface of 235.75 is taken as the interface) we may infer
that the cross—stream scale is closer to X=35km. Then, using the
same extrapolated values of H=75m and v=0.45m/s, we get a revised
figure of @=0.39x10*m>, which is much closer to Drinkwater’s
0.66x10*m3/5, or to Campbell ‘s (1938) value of 0.6x10°m3/s.

This last calculation lends extra sqppnrt for trying both valueé,



X=20km and X=30km in our model.

The circulation

We now procced to construct analytical solutions of the
baroclinic circulation in the mouth of Hudson Strait. Since the
Rossby number of the flow upstream of Cape Chidley is of the
order of 0.2 (based on F=0.37, from Drinkwater 's (1983)
values), the extent of the centrifugal upwelling is quite small
({less then 0.1X iﬁ this ﬁase, which is 3km at most), and is even
smaller at other capes. Hence, for corners with radii of
curvature of the order or greater than 0.1X, the centrifugal
upwelling is negligible. The radius of curvature of the Cape
Chidley coastline {(or even of the Button Islands group) is of
the order of 10km. Hence, except for the extra spreading of
streamlineé near the apex, the 0(1) saolution is quite adequaté
to describe the baroclinic flow around Cape Chidley. The same
applies to other capes in our model, such as the southern tip of
Resolution Island.

Using the method of a linear superpqsitinn of recessed
corner solutions, which was described in the previous chapter, we
construct the contours of the function p in the 320x320km area,
centered at the midpoint of the mouth of Hudson Strait (Figure
22b). We approximate the 100m contours (where available; or else, .
we interpolate inside the 200m contours; see Figure 22a) with

straight line segments, which are combined to represent the tip



df Resnlution Island, the Labrador Peninéula and the shallow
(abnut 100m deep) bank east of Akpatok Island (see Figure 22b).
The 100m value was chosen, since no charts with lesser contours
are available and also because the boundary value H is claose tao
this value. The resulting contours of h=p2/c and ¥=h?® are shown
faor X=20km on Figures 27a,b, and for X=30km on Figureé 27c,d. The
transpnfts were normalized to the baroclinic outflow around Cape
Chidley, which was assumed to‘be about 10°m/s (composed of
0.6x10°m*/s from Ungava Bay and the more uncertain value of
0.4x10°m3/s from the hnrth side of Akpatok Island; alternatively,
the last value may be treated as'andther parameter of the model).
We also selected the baroclinic part>nf the transport on the
south side of Resolution Island to be 0.3x10*m®/s, which is
comparaﬁle to the given value of the geostrophic transport &n the
north side of Hudson Strait.

Comparison betﬁeen Figures 27a-d and the sigma-t section in
Figure 5 seems to indicate that the higher value of X=30km fits
the data better. This is especially true +or the south side of
the strait, where there is a more pronounced two—layer structure..
We can conclude this section by saying that despite our
assumptions of a uniform stratification and of equal scales for
the two sides of the strait and despite "guessing"” the value of
¥ on the north side, we got a good qualitative agreement between
the model and the known circulation pattern near the mouth of
Hudson Strait. In drder to have an even better agreement, it may

be neccessary to have a model which combines two (or more) moving
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lavers with the.realistfc bathymétry of the strait. Such task is

best accomplished using numerical methods.
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Figure 22. (a) The eastern Hudson Strait and Ungava Bay area. Only 200m and-’
100m (where available) contours are shown. The dashed box contains
the area covered by the present baroclinic model. Arrows with
numbers show directions and approximate values (X104m3/s) of
baraclinic transports (see the text). Place names ahbreviations: CHA
~ Cape Hope's Advance, A — Akpatok Island, R — Resolution Island,

CC — Cape Chidley, B — Button Islands and G — Gabriel Strait.
(b) Simplified model boundaries, with adopted values of Y.



- 84 -

C. Hope's

OO b
Advance

DO s

- 3

[-.% e 0 e,

MILES
TEMPERATURE °C

saumntry %,

Figure 23. East-west sections of temperature and salinity across

the mouth of Ungava Bay (reproduced with permission
from Campbell, 19358).



Figure 24 (next page). An example of thermal surface
signature of circulation in Hudson Strait and Ungava
Bay. Tﬁe coldest water (-2 deg C) is dark blue, while
the warmest (about 5 deg C) is deep red. Clouds, fog
and ice are at about the same temperature, they were
given here a bright blue shade..Land (black) features

can be identified from Figure 22.
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'Figure 25. Map of the ice cover in Ungava Bay and eastern Hudson
Strait on July 2nd,

1974 (reproduced with permission
from Gray et al., 1985).
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Figure 26. Temperature, salinity and sigma-t transects across Hudso
Strait in Aug. 1982. These transects were made along the
line occupied by moorings HS1-HS4, shown on Figure 3a
(reproduced with permission from Drinkwater, 1989).
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Baraoclinic model contours af the 0(1) depth ho and the 0(1)
transport streamfunction ¥, for (a,b) X=20km and (c,d) X=30km.
As before, contour spacing is 0.1, except that one extra 0.01
contour was added to plots of ¥, (dashed line), indicating
schematically the edge of the flow, where ho=0.1. -
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Chapter 10

Discussion

From the nonlinear conservation equations that govern an
inviscid upper-layer flow in a two—l&yer rotatiﬁg fluid, we
obtained the first two terms of the power series which represents
the solution to the praoblem of a flow around an arbitrary corner.
It was found that the 0(1) term is geostrophic and, except for
narrowing (widening) of the flow near a re—-entrant (inside)
corner, it does not differ qualitatively from the flow upstream.
The effects of the nonlinear (advectiﬁn) terms in the equation of
motion become guite evident when the 0O(e) term is added to the
first: the flow widens (for re—entrant corners) due to the
centrifugal accelerétinn of the fluid and, in addition, the
depth of the upper layer decreases to almost zero near the apex
of the corner (although we did not calculate this explicitly, we
assumed that near inside cornérs the effect is opposite; the O(g)
terms cause some increase in the depth). This is a manifestation
of the centrifugal upwelling {(downwelling). This upwelling is.
only important +or relatively sharp corners. The validity of the
sulgtinn and the continuity of the boundary streamline (i.e.,
the absence of separation) require that the sharp apex of the
re—entfant corner be blunted to a certain extent. This can be
succesfully accomplished if one of the neighboring streamlines

is assumed to be the physical boundary, the choice depending



upon the required radius of curvature. Using these recessed
carner solutions we were able to generate streamlines of
plausiblg flows in more general domains: inside channel mouths
and arocund coastal indentations.

The relative simplicity of the model as well as thé
scarcity of data do not allow for more than a qualitative
comparison between the theory and actual baroclinic corner flows
in the vicinity of the mouth of Hudson Strait. Nevertheless,
there is fairly good agreement between the model flow and the
baroclinic circulation in the eastern part of the strait. There:
is no contradiction betﬁeen the tracks of drogues that were
reléased near the mouth of Hudson Strait (figure 2b) and - the
current meter measurements inside this channel (figure 3).
Surface drogueé show the Lagrangian component of the motion that
is subject to prefefential diffusion in a shear current and to
wind drift effects. On the other hand, current meters and
geostrophic calculations give Eulerian velocities at a fixed
location. The existence of opposing currents is strong evidence
of the importance of stratification in these channels, and,
hence, justifies the use of a baroclinic model. The reversals in
these currents are most likely éaused by adverse {(baroctropic
and/or baroclinic) pressure gradients, which may be due to the
ihflux of fresh water or changes in bathymetry.

Further improvements to the present model will come frdm
the incorporation of alongshore pressure gradients effects. These

may be due to changes in buovyancy (e.g., due to coastal sources),



dr due télcnmpressiﬁn of the vurteg lines by changes in the

total depth. For example, in the case of a "long"” bathymetry
(horizontal scale L much largeF than X), we may use a methaod
similar to that of Cushman-Roisin and O0'Brien (1983) and apply a
perturbation expansion in a small parameter X/L. For X/L<<ell,
the full corner solution is still valid locally near each corner,
including the O(e) terms, except that k (e.g., in equation (7.9))
is modulated (in the WKB sense) by changes in bathymetry. If
X/Lwe, then the 0(e) equation (7.10) must also be modified to
include these barotropic effects.

The infra—red image of the surface temperature in Hudson
Strait (see figure 24) is an especially good example of
complexity of the flow and, in particular, of the role of
bathymetry and mixing, which were not included in the present
model. The effect of bathymetrv on the circulation inside tﬁe
strait can be seen from the cross—channel +low north of.Akpatok
Island. It can be traced by the intrusion of cold (blue coclour)
water into the warmer (red and pink) flow on the south side.
Similar, bu£ weaker (because of smaller along—-channel bottom
slaopes), current reversals can be seen farther inside ihe
channel. In addition; the bathymetry has a strong channeling
effect on the outflow east of Cape Chidley, where the presence
of relatively shallow (with depth of the order of 100m) and wide
’(about 120km) shelf splits this cold fblue) outflow into two
parts. Temperature is only a surface tracer and, hencé, it is a

poor indicator of actual transports. Nevertheless, it seems to



shaow that 5 larger partion of the flow follows thé shelf—b;eak
eastwards into the Labrador Sea, while the rest flows along the
eastern coast of Labrador Peninsula.

Diffusion affects coastal currents on scales that are much
larger than the width (X) of the flow (e.q., Sanderson and
L.eBlond, 1984). In the same satellite image (figure 24), the
cooling and warming of coastal currents along the eastern shores
of GQuebec and Labrador are mast likely due to tidal mixing.
Mareover, it is most pronounced in the mouth of the channel,
where the sill and the constriction produce very strnng.tidal
currents, of the aorder of 2m/s (Osborn et al., 1979). As a
result of the strong mixing in the mouth, the generally warmer
(pink and red colours) surface flow east of Regolutinn Island
cools down closer to an average tempgrature of the water column
(blue colouwr) as it enters‘the strait south of the island. The
same th%ng happens to the outflow around Cape Chidley. The warm
(pink) surface layer is mixed closer to the average temperature
of the water column. It is interesting.tn note that despite this
vigorous mixing, the strong residual motion keeps the flow
stratified in the mnuth‘(see figure 3).

Effects stemming from the variability of the flow were not
included in the present study. For example, the criterion for
separation of the flow at a sharp cape (chapter 7 and appendix
£) would have to be modified if the sum of residual and tidal
currents is sufficient to cause separation at some stage of the

tide. Once separated, the flow is likeiy to remain that way,



i
t

even during reversals:uf the t{de. Thi% is due to the adverse
pressure gradient from the closed gyre (see figure 17) that was
created on the downstream side of the cape. It is tempting to
suggest that this mechanism may be responsible for the
separation of the Gibraltar surface flow from the right bank as
it eﬁters the Alboran Sea. A detailed investigatinn af the

available data may provide a test of this suggestion.
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Appendix A

Derivation of the 0(e) equation for s,

We derive an equation for s,, treating s as a known
function of x'and v. 1If we add (6.7c) to (6.8c) and use (6.10)
and (6.11), we obtain

(SoVi)x — (SoUi)y + S5:1V25, = 25051 + Sohi. (A1)

But, fram (&6.9b)

(SoVi1d. — (Son)y = 9% (5051) - hiV?35, — VSQ‘th, (AZ2)
so that,

V2(s051) — h;:19%250, — ¥sSo*Vh; + 5,925, = 2505, + Séh" (A3)
We eliminate h, in favour of s, using (6.14), which also gives

VSe*Vh, = 9UsS5°9s; + S0(VS06)?2 — (Vs0-V) (Vss)2/2, (A4)
from which, (6.17), the equation for s,, follaws:

S0V25, + US0+Vs; + (V25, — 350)5: = W, (6.17)
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where

w=(vzso+sg)[502—(VS0)2]/2+50(750)2—(VS0-V)(VSO)Z/Z.

But, from (46.16), we have
V2350 + S0 = [5S02 — (Vso)21/25.6,
so that, W simplifies to

W = 502 — (Vs0)212/435, + So° —

(VSo'V) (V50)2/2.

(AD)

(A&)

(6.18)
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Appendix B

Behaviour of so for small and large r

In this appendix we derive simple expressions for se, which
are valid for small, or large, distances from the apex of the
corner. If we réplace p with p'=1-p, then, for small r, we get

from (&6.22)

v2p* ® O (B1)
and hence,

p’ % (kr)dsin(a®), (B2)

which is a potential flow streamfunction solution in a wedge

w/a. Consequently,

p ® p, = 1 — (kr)3sin(ao) (B3)
and hence,

So ¥ 5, = Pp2/S = [1 — (kr)dsin(a®)12/s ., (B4)

s, and the exact solution so are shown on Figure 2B8a for several

small values of r.-



'

In order to get the behaviour of s. for iarge ry, we ﬁbte
first that in this case, the integrand in (7.9) is a rapidly
oscillating function of u and hence, most of the contribution to
the integral comes from the vicinity of u®0. Therefore, since

for small u,
sinh(u/a) = sinhu/a + 0{u3) , (BS)

we get the apbroximate expression

2b (% cos(krsinhu/a) coshu du
x = ==
PP e sinh2u + b2 i (B&)

where b=sin(a®), for short. Replacing sinhu with %, we get

2b S°° cos(krx/a) dx
T o X% + b=

= expf(—krb/a) . (B7)
The function s,=p;2/3 and so are plotted for comparison on
Figure 28b for several values of r. They agree best near the

boundaries, where most of the transport takes place.
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Figuré 28. (a) An approximation s, (solid) and the exact s. (dashed)
for 3 small values of r. (b) As in (a), except for large r.
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Appendix C

The extent of the centrifugal upwelling

In this appendix we follow thé method of chapters 6 and 7
in deriving an explicit solution for the upwelling region at
.distances from the apex which afe of the arder of e€2X. We are
mostly interested in the size of the upwelling region, and not in
exact details, so that no attempt is made to match the new
solution to the aone derived in chapter 7. We nondimensionalize,

. as in chapter &6, equation (6.1), except for
(Ryy) = €2X(®x 4y )y, h = H{l-h") and ¥ = @(1-2e2%¥"). (C1)

The last scaling was used, since WG near the apex. Dropping

primes, we get (as in chapter 6)
(1 — h) + e(u?2 + v2)/2 = (1 - 2e2¥)*/2 + (1 — 2e2¥) (CZ)
Ve — U4, + €= (1l - WIL(1 — Ze2¥)"172 + g] (C3)
v(l — h) = -%, and u(i - h) = %, . (C4)
Expanding in powers of €, while using

(1 — 2e2¥P)*1/2 = 1 * 29 + D(e*) ,

and retainining terms up to 0O(e?), we get



ho=
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0 (C2a)

and hence, h=eh,+e*hz+.... Similarly,

Vox

Vix

V2

+

(Uo? + vo2)/2 = 172 , o (C2Zb)
UoU;: + Vovi = ¥ (C2c)
Uoy = O ' (C3a)
Uiy = 0 , (C3b)
uzy = 1 — hy , (C3c)

where we have used (C2a) to derive the last two equations. Also,

we get

-V
-V,

—Va

o ) ' e = Wo, (C4a)
voh: = W, u; — uch;y = ¥,, , (C4b)
vih: + voha = Wa,, u2 — uihy =~ uchz = ¥2, . (C4c)

Equations (C3a) and {(C4a) give immediately

734,

=0 (CS)

while from (C2b), together with (C4a), we get

hy

(V¥,)2/2 — 172 . (Ca)
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Differentiating (C4b) with respect to x and y, respectively, and
adding, upon using (C4a) and (C3b), we obtain
vz‘l'l = -V"l"o'th . (C7)

We multiply the first of (C4b) by -ve, the second by u. and add,

using (C4a). Then, from (C2c) we get

he = IH-9¥, + hi(V¥)2 + Yy . (C8)
The solution of kCS), with %¥.=0 on o=0,m/a, is

Yo = ridsintad) , (C?
where the multiplicative constant was chosen tao be unity, for
consistency with the solution in chapter 7 (see also (Cl)3; this
can be verified if we expand the nondimensional counterpart of
(4.4) in powers of small x). We get from (Cé)

h, = [tasr*-8)2 - 113/2 . ' (C10)

Note that, consistent with (Cl1) and an expansion of (4.2) in

small x, h;=0 identically for a=1. Using (C10), C(7) becomes.

92y, = -a3(1 - a)sin(a®)/r*-33, ' (C11)
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with ¥,=0 on =0,nr/a. The solution to (Cl1l1) is
¥, = —a3sin(a®)/[4(2a-1)r2-38] + C,%, , (C12)

which is a sum of the particular solution, ¥.,, and the solution
of the homogeneous problem (CS),.multiplied by an érbitrary
constant C,, which, in general, is a function of a (the angular
parameter). In order to be caonsistent with (Cl) and thé expansion

of (4.4) in small %, we must have ¥,=0 for a=1 and hence,
Yela=1) = rsing/4 = -C,rsing,

so that C, (a) must satiéfy Ci(1)=—1/4. That is as far as we get,
without doing a formal matching with the solution from chapter 7.
There are many functions of a that satisfy the last condition. In

particular, we can use the power functions
Ci€a) = —a®/4 , {C12a)

where b is any real number. We can narrow the choice of b if we
demand, for example, that ¥ and h have a similar upwelling area.

After some algebra, we get from (CB)

a*f2(a—1)sin2(ad)—-Sa+21 (2C;,—-1) a®
- 4(2a_1)r411—a) + 2,-2(:-8)

he = + risin(a®). (C13)
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Again, we note that for a=1 (C,=-1/4), h:=rsin@, which agrees
with (C1) and the power expansion of (4.2), for small x. We tried
several values of b (in (Ci12)), both positive and neqgative, and
found that the best agreement between ¥ and h happens for b=-3.
This is evident from Figufes 29a-c, which show the plots of the
total streamfunction 1-2e2Y and the total depth of ghe interface
1-h (see (C1)) for three values of b=-2,-3,-4. We note that the
effect of C: on ¥ is much stronger than on h. In.fact, for b<-4,
the area of upwelling shown by ¥ extends beyond the area plotted
on these figures, while for b>-2, the upwelling area shown by %
is much smaller than the one shown by h.

~ What is more important, we have shawn in this appendix that

for 0.5 the upwelling region is smaller than about 0.03X. For

example, if X=20km, this amounts only to about lkm radius.



- 112 -

o 0.10n . »
¥ (e=0.5)
0.08:
A 0.0
b=-2 ’ mj
S
0.02]
-0.10 -0.08 -0.06 -0.04 -0.02

(a)

h (e=0.5) o.0of

b=-2 - 0.04]

0.10 -0.08 -0.06 -0.04 -D.02

- \

Figure 29. Contours of ¥ and h (e=0.5) for (a) b=-2, (b) b=-3
and (c) b=—4. The domain is 0.2X by 0.2X large and
contour spacings are 0.1 for h and 0.01 for Y.
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