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ABSTRACT

In this thes1s two dlfferent problems 1n geophf51cal
lfluld dynamlcs ars studled In_Part_A we consider the
'general problem‘of the generatieh of'unSteble shelf.waves, a-
problem that rslates fo'the gederation of the meandefs ie
ﬁhe Gilf Stream. In Part B we consider the generatiOn of
transverse motlons of the thermocllne in long two layer
:bodles of water by general wind stresses,

The instability of fluid systems has been studied for a
long time, but the problem of how. the instabilities are
generated and grow has been negiected, Recently, hoéeveﬁ,
in the studyeog the interaction of plasmas with eleetton
strz2ams, techniquas have been developed to study thefgrewth
"ef-instabilities; These technigues can in prineiple be
~applied to any unstable linear system that is excited bj
'ététienary_forcing. In Part A we describe these techniquesb
and extend them to cover the case of moving forciﬁg effects.
He then.uee the results’tb sthdy the generation of unstable
shelf waves, | |

Long barotfopic vaves trappedvon an abrupt ehénge in_
bottom fopography are shelf waves; the presence of lateral
shear in the peréistent ocean currents gives rise to
Unstable-shelf wayes.‘ The possible presence of such’uavesr

in the Gulf Strean system could explain the generation of
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fhe meanders im.themcmlf Stfeam.  Thus we study the response'
of a moﬁel Gulf Stream.that Supports unstable shelf wsves.to
_ the‘wind. Only curl free ulnd stress is con51dered méimly 2
for conveniance. It 1s found that only on the ‘offshore side
of tme stream, mhere the’response ls»always larger than on
the 1nshor° 31ia, are the unstable waves always domlnant._ A
silnd system mov1ng slowly in the dlrectlon of the stream is
the most efficient at gznerating the unstable waves, but its
afficiency is affected quite drastically by the:duration of
the iisturbance._ A wind system moving coumtér to the stream
is less efficient by about a factor of.eight, but‘is
practically unaffected by a‘change in duration,

In Part B we consider a stable system. We use simple
Fourier expansion to study the motions of the thermocllne in
an»infinitely long two layer body of water gsnerated by both
long axis and éross'channel winds; It is found that in 5’
.qide-lake, such as Lake Michigan, cross channei winds‘dre
more efficiant in generating transverse motions which in 511
sases are multi-modal Here w1de means wide in comparlson
-Vto the . Rossby radlus of curvatur These ;esults agree only
jualitatively with observations made on lake Michigan. 1In
fact reasoﬁabla wind stresses only give responses about one--
‘tenth of those observed. ‘In a narrow lake it is found that
the rasponsa to a long axis vind is larger than that to a

- cross channel wind, both giving-a uni-modal response,
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Observations of wind and thermocline depth taken at Babine

. Lake in northarn B. . C. . agree guite well with the théory. _
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PART A

The Generation of Unstable Waves

with Applications to the Meanders in the Gulf Stream -



GHAPIER I- Introductlon

—— s e e . e

‘A ~§mmon problaﬁ-in‘many branches of physical'sciénce
is to datarmlne under what condltlons or parameter ranges,
if any, a phy51ca1 system is unstable. when perturbed by a
certain class of time dszpendent disturbances., One technigue
1sed to,solve_this problem is that developed in linear
hydrodynamic stability‘theory (Lin, 1955; Chandrasekhar,
1961; Ried, 1967). For a cne-dimensional systam the scalar
or vector valusd functioh'¢(x,t)'describing the
- perturkations to the syétém dué to the disturbance is

written as a travelling wave with

¢(mt)==AexP[L(Qt—ka. | _ B (1.

introducing (I.1) into the eqhations fdr ¢(x,t).tha£
describe the system it is assuped that.the amplitudes of the
'partﬁrbations are small enough so that any products of
pertarbations are negligible. Thus a set of linear
2quations for the implitudes A 15 gbtained thatvhas a

solution only if a certain relation between k and w,
is satisfied. This relaticn is called the disparsion

- relation anid the graph >f w=w(k) obtained by sblving (I;2)

for w with k real is called the disperion curve, If for



some real k‘afsolutibn w(k) cf (1.2) is cbmplex uiih'_-ﬁ
Im{w(k) KO, .the syétem iSISaid to be unstable since the ﬁa§e
#ith wavenumber k grows éXponéntially in tima.'

In most problzams this is a$ far as_ihe'study of
‘stability is taken.,. The intervals on the real k axis fbr
which'there qré unstabie_robts of ﬁhe dispersion relaticn
'éré agﬁermined. Alternatively,‘a>is assumed real and roots
of the disparsion relation with k complex are sought.. In
the former case the system has a temporél instability, and
in the latt=ar a spatial instability. Another approach to |
the inétability problam that is usaful in‘systems‘with
Jamping is thréugh "peutral stability" curvasas (Qr surfaces)
along which Im{w(k }=0, in a suitable parametsr space. Foi
2xample, in the stability of parallel flows (Betchov gnd.v
Criminale, 1967) neutral stability curves ars drawn in the
(k,R) plans, ﬁere R is the Reynélds number. .Such curves
represent transitions from stability to instability. These
approaches hava yi2lded much useful infdrmation about many
interesting and important systems (Chandrasekhar, 1961). in‘
: most cases it ié diffibultlfo go beyqﬁd this "simple"
stability analysis, In féct; it is:often impossibla even to
obtain a clos23 fornm expression for the diépersion relation
(Reid, 1967).

Aﬁduevar, if A(k,w) can be expreésed in closed form and

is a simple enough function, it_would be us2ful to éolve'the



“initial ﬁalue problemlfor'¢kx,t) in order to see how the
Aunstabla Waves acfually grou.,»This‘wouid serve at least as
a check on the assuﬁption implicit in all the aéproaqhés to
the stability problen mentioned ébove, i.e. if the systenm
has 2. temporal instability it will évéﬁtually doﬁinate the -
response of ‘c.he_sys’t_em._,= AS will be seeﬂ,lit is possible for'.
fhe unstablé wavés to pfop;gate'out of a fihite geqphysical
system before it grows to significant size. This'probleﬁ
has been nzglected, especially in geophysical problens,
mainly due to the difficultiés nentioned abéve. However,
Zriminale and vaasznay (1962) have solved tha problem of
»the growth of an initial'disturbance in a laminar boundary
layar., Also, in the study of the interaction of électron
stréams with plasmas th2 growth of unsatble waves is
important, and in that field-techniqués have been developed
to find the asymptotic behaviour for‘1arge-time-of an’
,ungﬁable systém (Briggs, 1964).

In the study of unstable plasma systems it is useful to
:lassify the instability of a system into two types,
absolute ﬁnd éonvective. Both types are unstable by the
criterion given above, i.e. Im{w(k) }XO for some real k. Iﬁ
a system with an absolute instability an obsarvér at any
point sees =2xponential growth in time. 1In a system with
o>nly convective instabilities only observers mdving qith.

non-zaro velocities in a certain range see exponential



growth., Thus in a,cohvactively unstab1e systém a staticnary
Observer at a distance from some_initiéirdisturbahce seés
growth with time initially, but eﬁentualiy he musi*sée'the
.perturbatidns ﬁacay uith(time as the instability is
“convected" past him. It is important to be able to
iistinguish batween conﬁective and absolute instabilities in
‘designing plasma systenms bécausé in a convectively unstable
systém it is possible for a potentialy dangerous instability
to convect out of thé finite systen befora it has a chance
to grow to destructive proportions-(ﬂall’aﬁa Heckrotte,
1968) .

Another way to_siate the distinction between absolute
and :onvéctiva instabilities is in termé of the group
veio:ity. Recali that the gtoup velocity, Vj(k), is giyen

by
Vj(k)=cu’Lk). _ ' | C (T.3)

An obsérver moving at the velocity vj(k) sees a wava of the
form exp{if[w(k)t-kx]}. This islderived using the method of
statiohéry phaSe (e.9. Lighthili, 1965) . An absolhtely 
'unstablaasystemlis one for uhiéh there is an unstable wave
that has zéro group velocity; a convectively unstable systenm
is bne for which there are no unstable waves with zero group
velocity. Theoretical plasma;physicisté havs developed:

‘methods for determnining whether an unstable system has an

{




absolut2 instability or only convectivéuinstabilities
(Brigés, 196& and Derfler, 1970) and the velocity ranges;in,
which’grouth will be observered for both absolutely and
convectively unstabie systemé (Ball and Heckrotte, 1968).,

"The results raferrad to above can be used to obtain |
expliéit asymptotic expressions for the response of an
unstable system to a éﬁatibnarj.disturbance. In Part A of
this thesis these results are used to studj the growth of
unstabls waves in a geophysical.- system, Since it is of
“interest to find the respcnse_for travelling disturbances,
.the rasults are also extended.to cover this-casa.‘-To my
‘knowledge this is the first tim2 that such mathods have bean
' useﬂvto stuly the response of an uhstable geophysical
systenm., |

The system that we study here is a laterally sheared

-flow over a variable bottoﬁ.topoérapﬁy; The flow is assunmed
to bz vertizally homogeneous and uniformly rotating. With
or without a basic flow, low frequency waves with pariods of
the order of days propagqte as gerturbations on the fluid
velocities in a ditectiéﬁ.ferféhdiéuiar to.the depth |
gradisnt, Such waves are called shelf waves and are said to
be “trapped" by the defth gradient (Robinson, 1964 ; Mysak,
1967; Buchwald and Adanms, 1968)., Niiler and-nysak}(1971),
hereafter referred to as NM, have found.that the presence of

the lataral shear gives rise to unstable waves propagaiing



. in the Jdirection of the;flow,_these are -unstable shelf
jaavés.,‘Here'the generation of such wavés'by<a wind stress
:ctiné-at'the sucface is studied. In the éasajof stable
shelf waves this problem ﬁas beeh studied by Adams and
-Buchwald (1969 . This -p‘r_oblem ié ofi interest in that 'it‘
:elat?s to the problem of the méahders in the Gulf Strean.
Ept many years it has'been‘known that ths Gulf.Stregm
changes position 5var periods of days. Such changes have
been termed meanders. TﬁeVGulf Stream is a phenomenon that
is similar to phenomena seen on the western side of most of
‘the ocean basins of the Qorld. It is a region of an intense
poleward surface current that is the return floﬁ of the
sverall surface circulation of the North Atlantic. The flow
is concentratel strongly aioné the coast due to the
variation of the Coriolis paraﬁter vith latitude.(Stommel,
1948 ini Munk, 1950 ; for a physical,ekplanation seevstewart;
,lgﬁuf;~'ASSOCiated with the Gulf Streaﬁ.are large surface
temparﬁtura gradients with temperature increasing away from
.the coast. It is found that these large gradients coincide
with the naximun su:face.curreht.velocities (Stommel; 1966).
Thus the lpcatioﬂ of Gulf Stream can be accomplished bj
ietarminin§ the position of the lérge sufface'tehpefature
gradients. Observations of the position of the Gulf Stream
over many y=ars have revealed th#t its position is not at

all steady; in fact this meandering seems to be an intrinsic



property of the Gulf Stream and 6ther wesferh intensified
currants. | |

Hau;witz and Panofsky (1950) were the firét to suggest
that the mesanders might be the~£esult of low frequency
anstabls waves propagatihg aloné the Gulf Stream. Théir
‘model inclpdes,fairly.réalistic.piecewiée continuous
appfoximationé to ihe laterally-sheared flow of fhe Gulf
'Stréam but does not‘include the effeéts of bottom
- topography. Since vertical variatiomns. of density and
velocity are also neglected.it is called a barotropic modei.
.with this simplz mddel they predicted that the sysﬁém'will
suppatt unstable waves if the region of lateral shear is far
snough from thé boundary.m_fhe unstable waves predicted by
their model have pro?erfies.similai to the wave prope;ties
of the meanders in the Gulf Streanm.

Since the.work of Haurwitz and Panofsky many models
that ars applicablz to the'Gulf Stream and support unstable
#aves have been studied, MNost of thess modzls have included
the most important feature of the Gulf Stream ignored_by
Haurwitz and Panofskj-*ﬁhe vertical variation of density and
velocity. Sﬁch.moiels-are4ca11ed.baroc1inic. Two methods
forvmodeling such variations have been usea."The siﬁpleét
is to assumz the flow t> be divided into horizontal layers
in which there are no vertical variations; proparties change

jiscontinuously across the interface between layers. Two-



la yor modals'in‘whi¢ﬂ the lower layer is'Stationéry andvfhé
.apper layer is latéfally sheared havé been studied.by Stern
(1961),‘Lipps-(1963), Jaéobs (1971) and Sela and Jacobs
'(197T)._ orlanski (1963) has studied two layer models” that
inclade the dynamlca of the lower 1ayer in order to examine
the affect of bottom topography on the stability of the
flow, Verticai structure zay aisd,be modeled by cqntinuoﬁs
vertiéél changss. This has been done by Pedlosky (1964 a
and b) who considered both two-layer and continuous
variation-models. All of the models mentioned above are
complicated enough that, even though they bfvno means
include all of ths physics oflthe Gulf Stream, it is
possible to only do the "simple" stability analysis-
ies:ribgd above, ’Huch/work'has bsen expended in determining.
the parameter ranges in which the models are unstable‘and
the simplest properties of the unstable waves, e.9., growth
‘rate,_waveléngth, frequency and phase speed.

The baratropicz model of NM on the other hand is sinmple
enough that the asympfétic techniques developaed for unstable
plasma systams are =asily applied. ThdS'the response of the
model to various disturbances can be calculat2d. The model
is similar to that of Haurwitz and Panofsky except that it
incluodes bottom topography. In Part A of this thesis we
.:al:ulaté the response of thié model to curlvfree;wind

systems Loth stationary and moving. This mayfba regarded as
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a. first step in the problem: of calculating the respdﬁse‘of'
mnors éomplicated models £o'mcre genéral wind‘systeﬁs; -Aisd,
as will be seesn, the response to a curl free wind stress
certaihly gives a lower bound to the total re5ponse'of‘thé
systam, Furthsr, this probleh also serves the purpose
mentioned above of checking the basic assumptioﬁ of
iétability thzory that inrah unStable system the instablity
eventﬁglly dominates the response., It is alrszady apparent
that in a convactively unstable system, as tha NHM model is,
this assumption must be treated with care, but explicit
_:al:ulations indicate furthar.ramifications. For exanmple,
it is found that in the NM model while the rsspons2 on the
of fshore side of thes streanm is.always dominated by the
1nétable uaves,.tﬁat on the inshore siae is not., Finally,
again to my knowlédge this is the first time that the |
explicit asymptotic respOnse}ofﬂén unstable gaophysical
systan has been calculated, in spite of the large nunber of
such systems that have been studied. | o

It might bz useful here to givé a brief history of this
project. When firstiproposed it was intended as a | |
" qualifying problem for the Institute of Applied Mathgmatics
at U. B. C. to be coméieted in_aFCOuple'of'months.'The
initial boundary value ptoblém for the response of the NN
1o0del was to be solved using Fouiier-Lapiace transforms'with‘

the resulting inversion integrals,



11

. eieo © o ' S o : ’
Py 4= :l_\_g estASX ek etRy - @y
RS O o BLRS) , : )

to belevaluafedbusing stﬁndard'aéympfotic techniqdés,'éuch
2s the method of steepest descent, Usinglthis a?proacb the
fLaplace in&e#siop integral.is eyaluat¢d first by summing
;esidueé; and theﬁ ihé Fouriefvinversion integrdl is |
QValu;fed asynptotically for large time and small y bj the
method of steepest descent. . In order to ektend.the :esults.
to finite y let.y=y;+vt and do the asymtotids for each V of

interest.

In the method of steepest descent integrals of the form
) v
i) - E LR expl tf(RY]dk , (I.5)
A :

.are to be avaluateid asymtotiéally for large t by deform;ng
the path of iﬁtegration.in the complex k piane into a path
‘of stsepest dsscent, i.e. a path along which Re(f(k)}

| decreases most rapidiy.' Obvioﬁsly the most important
‘contribution to tharintégral comes from the point on the new
path of integration at-ghich Re{ £(k) } is a maximum., There
are only two'possibilities._ Eithe: the maximum.occursvat ah
eudpoint-A:or B, or the maximum occurs at an interior point,
ke, 3t which £'(k,)=0. The point ko is a saddie_point of
 f(k)._ Only in the second case does the saddle point

contribute to the aysmptotic development of I(t). The form
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of thé asymptotié 2 xpansion depénds on which of thé two
éossibiiities arise (Sirovich, 1971 or Jeffréys and
Jéffréys,‘1956). In evaluaiing the asymptotic behaviour of
| thé Fouriér'inveréion integrallforythe response of the NN

| rodel by the mz2thol of stéépesf descent.problems arose. The
func;ign'A(k,s) is quadratic in s but is a complicated
transcendental fun;tipn of k. Thus finding the paths.of '
steepes£ descent in the k plane along which Im{s} is
constant sezmed impossible, Thus deciding between the two»
possibiiities'given above would also be_impossibie.

" Therzfore, at that point it séemed advisable; if the problen
#as indeed to be finished in a short time, just to evaluate
the Fouriér intejril numerically in ordér_to get'somé idea
>f the growth of the unsﬁable waves. Unfortunatelj_the’
nﬁmetical integrations turned out to be quite expensive, due
mainly to the large number of evaluations of the integrand
required for convergencas. For this reason the integral wvas
evaloated only at one point in the stream which was chosen
to b2 the point of veloéity maximum, The expected growth of
the anstable Qaves was nat seen.

Shortly after thié rather discouraging résult was
>btained the work of‘tﬁe plasma physicists éame to my
attention through Briggs (1964), The method used there is
eséentially the same as the method of-sfeepest descent; but

the point of view is changed. 1In this approach the Fourier
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integral is esvaluated first by summing reSidﬁes. Then
¢ausality in the form of the requirement that the integrand' 
»iﬁ tﬁé Laplace invarsion integral nmust be analytié to fhe |
right of thé*Laplace’inversion path is used to find a
 étit3rion for ieciiiﬁg whethér a given séddle point
‘contributes or not; The criterion is thaf if thé paths'of
stéépeSt descent approaéh a saddlé point from opposite sides
of théﬂreal k axis the-saddle-point'éontributes, otherwise
it does not ani the aéymptotic representation is |
exponentially small compared to the contribution from the
saddle point. | |

Apparently the criterion given above stillbrequires
that paths of steespest descent be drawn and saddle points be
determined for each V. chéver, in a paper by Hall and
~Heckrotte (1968).a,me£hod is given for determining intervals .
for v within which saddle points contribute and outside of
which they do nof. It is then only necessary to fiﬁd the
endpoiﬁts of these intervals and to test ons saddle point on
each side. In tha same paper it is pointed out that the
problem of determiﬁing saddle points as a function of V is
the same as solving the system of equations

Alk,sy = O,

' : (I.6)
A (R8)+ LV OGLRS) =0,

wvhich can bs rscast as a differential equation in V to be
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solvad humsrically. ft:uas found to be easier, however, to
‘solve'(i.6) directly using Newton's method; Iiiis Sfili
nécassary to solve~tﬁe-dispersion relatién in order to draw
steepest descent paths and to find‘starting vaiues for_
Newton's method. This problem is solved byb a method vdué to
FDelves and Lyn2ss (1967). | |
Using the'conglomeration of methods described:briefly
~abova it was possible.to calculate the respdnse of the Nﬁ
mnodel to curl free wind stresses. O0Of courss, the first
thing fo do was to verify'the results withlthe numerical
integrations, Ihe calculafions agreed quite well, so
further calculations were made using the asymptotic methods.
It was found that on the offshore side of the stream the
unstabls waves ars always dominant, but on the inshorg side
this is not always the case. This is due to the fact that
on the inshorz sidz.the integrand is smail in the ihterval
,;f;idstability,icompared to its value in the stable regihe;
wheraaé on the offshore side it is of the same order in the
stable and_unstable regimes., This explained the.results of
the numerical'integ#atign.  |

The coilection of results uSed to solve the problenm
considered here should in principle be applicable to any
“initial value problem that can be solved using Fourier-
Lapl;ce transfdrms.. Thus any linaar system that can bé

considered infinite in one direction can be handled by this



15

method., The main pféblem is tc solve the dispersion
relaiipn; Sih:e in mény Caseé it is impossiblé eveh to .
arits a closed form'expressiob for the dispersion relation:
this can be a very dlfflcult problem. Howevar, since the
ilsp=r51on ralation can be analysed once and for all, and
the results then be used fcr any forcing fun"tlon, it is
poss:.bla that it would be feasible to consider such
difficult systems. This cculd require guite extensivé,
numerical work howzver, 1In the remainder of this
introduction we give a brief outline of Part A 6f.thi$
thesis.,

In Chapter II the NM modélvis describad in‘more detail,
and the &quations of motion‘gaverning it are derived. These .
ejuations are solved by Fourier-Laplace transforms subject
to the initial_coniition that at t=0 a general wind stress
is applied.. The inversion integrals are gritten out
2xplicitly only for a curl free wind stress., This is done
mainly for mathematical convenience. However, the methods
ﬂevalopad and usad here can be extonded to cover more |
general wind stress models. Further,’thesa calculatlons
should only be ragarded as a first step in solving more
éomplicated_probiems. ~Finally, the calculations cannot be
axpa-tel to be very good répreéentations'of'the response -of
the Gulf Stream to a géneral wind stress as-the uﬁstable

waves that are genzrated are of a large enough amplitude
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that a'linear'modelﬂwduld not really apply.

In Chapter III the fésults deveioéed,by the plasmai
Physicists that ars relevant to the problem at hand are
pfesented._ These are then extended to cover th2 case of a
travaling distﬁrbance, a problem that has not been

considered before in the case of unstable systems.

In Chapter IV the results of Chapter III are appliéd'to S

the pgbblem of calculating thea response of th2 model
presantad in Chaptar II to curl free wiﬁd stresses; It is
found that -on th2 coastal side of the stréam the unstable
wavas do not appear untii.aftér they have travelled well out
>f the system. Oh the offshere side of tha stream,_héWever,
the unstabls waves certainly do dominate the ﬁespohse;trk
disturkance mbving éiowly'in the dirsction of the stream is
thg most efficieni at generating the'unstablévwéves. ~A

disturkance moving upstream is much less efficiant.
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Section 1, Introduction

In this chapter we study the generation of low
» frequén:y,wavas in a rotating, léterally sheared flow over‘a‘
- changing bottom topography. In a study of,the-pfopagation
of such wavas NM found that the presence ofhthe.lateralbi
shear in the flow gives rise to unstable waves that
propagate in the directibn.of the stream., It is our purpose
here to solve the initial boundary value problem for the
gensration of thes> waves from an ejuilibrium configuration
in order to study the growth of the unstabls waves. The
approcah uszd her is to derive the linsarized 1long waQe
eguations for perturbations'to a lateraily shzared flow and
ﬁhen solva the equations using Fourier-Laplace transforms
for beneral forcing. The inveréion integrals are written
‘out éiplicitly, howaver, only for speciél curl free Qind

stresses,

Section 2.  The Eguations

Consider a laterally sheared flow parallal to a long
straight coiSt, running north-south, in a uniformly rotating
>cean with the bottom topography'varying only in a direction

perpandicular to ths coast, It is assumed that the flow is
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~depth indepandent and fhat the_denéity is a constant,
i.erfthé'flow is bérotrdpic.  In studies of more general
modals tha£ inélude continuous stratification it is found
that the higher‘béroclinié ﬁodes have slower growth rates
than the barotropic and firstvbaroclinic modes; Thus it is
pe§sonabie to considér a bafotropic model., Introduce a
' ri§ht-handad ractangular cobrdinafe system with i eastward,
4 norﬁﬂward and z vertically upward. The origin is on the 
zoast at thz lavel the free surface would assume if there |
dere no flow. The bottom is at z=-h(x). At time t=0 theré
is an equilibriﬁm state with the flow northward with
velocity profile V;(x).- At this time a surface wind stress
T=(7,t,) is appli2d. Here the equations goVerning'the |
cesponse of tﬁis systen to'% are derived. The 5ottom
topography and 6bsarved depth averaged velo;ity prdfile
ceptesentative'of the Gulf Stream over the Blake Plateau off
South Carolina ars shown in Figure II. 1. |

Let U, V and W be the tctal velocity in the x, y and z
direction respsctively and u, v and w the perturbation to
the.équilibrium velocity. Further, let_P; and <, be the
aquilibrium pressure and surface displacement above z=0 and

P and %4 the total pressure and surface displacements. Then
u:u,'fr:V,+'\r)w=w,’?‘=P°+? , '-ﬁg')?o.‘.'y] ') . . . (11.1)

if we put (II.1) into the Navier-Stokes equations for a
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aniformly rbtatingvsystem, and Ey'ﬁhe usual m2thod of linear
-hyd:odynamic-stabilitj theb:y Ve drop éll products of B
pertuarbations, then a s=2t of lineat equations for the
perturbatiéns is obtained; The equilibrium state 1is

geostrophiz and hydrostatic, so that
?V:r}-——“-\ B - (IL1.2)
P°='93('7°-‘£‘)+Pa , : ' (II.3)

where p, is the atmospheric pressure, assumsd unifornm.

We supposa.that th2 shelf waves are long compared'ﬁo
vthe depth so that the vertical velocitieé.and accalerations
are 111 n2gligible, Then_the vartical eQuation of,motich
implies that the total pressure is hydrostatic, so that

(IT.1) ani (IT.3) give

Py o ' | (II.4)

Since V, depenis only on x, (II.2) and (IT.3) show that
depends only on x and p, depends only on x and z. This,.
along with the lony wave hypothesis, .gives the following

equations'of motion in the x and y directions:

‘Bu I3T*
——+v--—$v-- ——ﬁ-—'—~ C(I1.5
2t 2y o T _ o )
YT o\v‘, 27 \ af’ '
ot aj (-5 I3y Ty e e

whers f=2Qsiné (4=latitude and Q=angular velocity of the
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Earth's rotation) ié the Coriolis parametér, heré assumed'
Constanf. All friétidnal effects are neglected except for
the wind stress-at the surface which is ﬁodeled aé a body
forcz., For a good discussion éf the justification for this
see Pollard (i970) . |

The boundary condition at the bottom,-z=—h(k), is

'w-dﬁwo Lat ZE-h(x). o (ILT)

This is just a stat=ment of the fact that the velocity
normal to the bottom is zero. The kinematic boundary

condition at the free surface, z=%(x,y,t), _is

27 27 d" : .
We e Y —— U2y at Zem(X,u . t). (1II.8)
” ot ’ bj dx ) ’ RN

Now integrats tha2 continuity equation vertically using

(I1.7) and (II.8) . If we further assume that 7<<h we get

2 w27 LA (II.9
Dx(k&’+\‘»5— (;t i V°?3 ) | ‘ )

Note that the assumption %<<h is not equivalent to the’
iinear hydrod ynamic stability proc=dure as ﬁ'is the tofal
surface displacement.~'ﬂowéver, from (II.2) that
% £y, L
-3
vhera L is a chata:teristié hﬁfiantal length scale, Frém'

Figure II.1 we see that Lx5x106 cm and v,»102 cm/sac. Then

‘Y’%'50cm 4 (05 cm ,



21

«hich concursknith the‘apbroximation §<<h.

Fihally'supppse that the right hand side ofv(II;9) cah
be ignored, i.e. the motions ars horizoﬂtally non-divergent,
This assumption is jhstified/if“the‘time“scale of the
motions is 1long comparedvio L/{§Ez10'min. ’Since‘the shelf
waves h;ve periods of the order of days this assumption is
éeftainly justified. By ignoring the right handvside of
(I1.9) we are filtaring out the surface gravity waves. "In’

light of this assumption a transport stream function,

V(x,Yy,t), is introluced such that

»\b .
¥ ad w22 | (II.10)

hwz -
* Ej X

Introducing (II.10) into (IT.5) and *{I1.6) and

‘intgrating Vertically,_remembering that <<h, we obtain
_l:[('ht*\’"-'bj)’bj ““&\}x] c]'ax. 9\“’{ ) . , 4 (II.11)-

ﬂ(%'*v,w)” “ ‘W" } j 1 (1I.12)

#e have assumed that u and v are independent of z, a
consequence‘of the lohg wave hypothesis.

We can eliminate % by differentiating (II 11) with
respact to y and (II.12) with Trespect to x. Since f»is

independent of x and y, this gives

R G B MR

:L{.’L(L@)-‘_’ZL‘X g
s WU w ey ) - o
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This is the equation of motion for tﬁe model that we wish to
© solve, This is the vorticity equaiion,‘and_the term on the
right{hand sidé, essenti&lly the curi of the wind stress, is
the source of vorticity. . Note thgt in the absence of curl
~in thg wind stress, however, the slope of the botton still
gives a forcing term. |

.Befdre (II.13) can»be solved we must specify a form for
h{x) and V,(Xx). W2 choose the simple form shown in Figure.
II.2 which is the simplest that includes all of the features

of the Gulf Stream that we wish to includa. One major

advantaée gained from using discontinuous depth and shear
profiles is that they givevfise,to only one mode, whgreas_
asing a continuous»profile results in an infinite number of
- modes, és in-ﬁuchwald and Adamé‘f1968)._ For appropriéte
parameters this is an adequate model of the Gulf Sfréam over
the Blake Plateau, For the configuration shown in Figure
I1.2 equatibn kiI.B) beéomeé |
Fredp o535 -3 ] e
in each of the regions marked 1, 2 and 3. 'The-boundary

condition at the coastal edge of region 1 is

Y o,y =0 . , (II.15)
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_sinéemthe.coast must be a streamline, Matching conditions
at x=L and x=2L ars reguired.  There the surface
displécements and the mass transport peréendicular to the
discontihuity must be continuous. The second of these

' requires that 3*/by be continuous from- (II.10), which means
iwLmT:o at  x=L and %=20L. _(1-1-1,6)'
- Here

?wuV} WU&\ WL&\

~If m is continuous at x=L and x=2L then so is 37M/3¥. Then

(IT.12) gives
R RN AL R f. : _
v - - Lol o o evan @

From (II.14) we se2 that only one initial condition is

- needed and it is
H(x,4,0 =0, R (11.18)

since at t=0 the perturbatlons are a11 zero. Beﬁpre

proceedlng we non- dlmen51onallze the equatlons as follows-

- *
x—.Lx* Coyslyr, e Y VvV,
GRS TR S A T S
y = Tl g4 (w,7) e — (W

> N | (I1.19)
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- Then equation (II.14) ‘is written

( **V“>w ’(%%'%%) (II.20)

hera)k=v /Lf.' We have dropped the * above as we will do in
the sequel and rem2nber that the varlables are now non-

dimensionalized. The boundaty and ma tching conditions are

#(0,4¢) =0 ) , , ‘ ’ | (II.271)
v + + ' e
i*\'(\,\‘))-{;)} = ng,mt)} = 0, (IT.22)
T 2 w2 20 (e RN T L e e a2
{h‘; \ ot 5‘3\3&  <\ \B‘)._‘i n ‘}_ yab +=\2, (1L, 23)
| YUY, V<M | X0, ‘ (II.24)

Now for the model in Figure II.2 we have

X o;xé\ s
V,'Us) = _z;x I EIN ' : 0 (IT1.29)
0 26%
and
I oe x| o , ,
WK = o  (1I.26)

jres 1¢ X
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.where}k=1+D/d>2.,

 section 3. The Transformed Eguations

fhe'prﬁblem stated in the last section is an-initial
bounlary value problem for d(x,¥,t). . Thé domain is
~oo <y<oo, 0<x<e and 0<t<ceco. Such a problem lends 1tself to
transform methods, where we take a Laplace transform in time
and a Fourier transform in y. After we have taken the
Fourier-lLaplace transform (hereaftef denoted by FLT) Qe are
left with an ordinary differentialvequatiqn in x.-

Define the FLT of +4(x,y,t) as

e oo.. . N .
P (%,RS) = S '“‘S‘“‘As[ e*""'«k(x,mt)g_.j ' o (I1.27)

_-w

and apply it to (II.20) and (IX.23). This gives

(s- ,Av \a)(w;— k %) = F(MeS) | | (I1.28)

Vo 2% . Vo vy, Pt . .
i_k(s_bwb\g)ﬁ H(‘u“)ii_ -kT 1(__0 94: %=\, 2 (II1.29) |
where F(x,k,s) is the FLT of (curlT):k and Tﬁ(x;k,s) is the
FLT of T,‘J(x Yet) o
He denote ‘the solutlon of (II.28) in region i by Q
It is possible to find particular solutions of (II.28) that

satisfy
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S Rloks T L) = F 0068) = R, 02k S) - ¥ (2,)3)0, (I1.30)
and,
1E,, ks E N, X% 2, | - (I1.31)

They are given by

. . \ .. [ ¢

- FE, k5 ) dahalle (-]

&‘eLx\\q,s)g-._‘_- [mng A le )] 5
: : v (S=i%ke wle)]

R sk

o _
_ FlTk,s) ek kY v
-x) . .
+ Zuah (R (1-2)] ( ERRTTAE ] , (11.32)
A (%l $) : [ e e (2=0)] (TFE L) b 2o7)]
I X S S = e .; LR k- ot - T 0}‘?~
e ki L e 'L“\s— L X Ve 03] *
| R b ey e [ (1Y) .
. o [M?—-*ﬂf ® LA g (I1.33)
| B CEANFRAE Y
_ ] %
- _ exp ~ReliX=2) . -
”239(&\:5)“—‘“———-% LFL? Js) (R U5-2)) dg (II.34)
Pl (%-2Y)

Tk XXF(ﬁ,’\e\S) e&p&-\\c\(q-ﬂ] dg .

Note that for (iI.3u) to satisfy (II.31) F(x,k,s) must be
' bounied as x+w. Now the solutions of- (II1.28) that are

continuous at x=1 and x=2 are
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¥, (%, 8,8)= ALRSY sl ax + ¥, (%X, k,8)

B, (X R,6)= Alks) dmbe kX + B(\e,S)IMK\zLx-\)]- v ¥ (GkS), (11.35)

¥, (%,%,5) . exv[s\\e\(x-Z)]{A(\‘i\ﬂMZk + BlkS) Mk]ﬂv

+ ’}3? Lx)k.S)

The functions A(k,s) and B(k,s) can ke found Lty
applying the matching condtiéns (IT.29) at x=1 and x=2. The
| equations thus derived are |

Atk {2305 -ide) sorkk v 4 [Uee2) 400 ks k] - B3Nk ).

EE TS ) s EERIR k) _u‘-\ﬁ\\,‘_(\)k,m] , . (I1.36)

Aw,g{sé““ “ih s Zl] £ 8Lk, ) (5™ - gty kY »
: | (I1.37)
- 5 { B, (009 - T Oiri ]

These are of the forn

Ay Axoliy B = b, y

"k-uA *dsz:' bl N

and the solutions are

AA’ ‘(b\d‘z'l; bzdll)/A )

th “(bﬁ’(\\ - b."(z\)/A )



28

where
A(hS) = 0(‘\0(11 —0(1\0‘\1 ‘

=sii#emhmmk—Q-is{Mk&@kkcm&k

e Gkt k- ik ) - (o) ' ) \Q_;_M], | (11.38)
4 e {o-2) ik = gk (Rcoshy e = ik WY
The equation T T
Atks);o, (11.39)

is the dispersion relaticn as dsfined in (I.1) with s=iw.

In Figure IV.2 we plot In{s} as a function bf k fcr real k.
dver a certain range cf k the‘Im{s] curves coalesce sc that
in this rangé there are twc complex scluticns cf.(II.39)
that fcrm a compex conjugate pair for is. Thus there is 6ne

for which Re{s}>0 and hence the system is unstable.

Section 4. The Inversion Integral

The inversion theorems for Fourier and Laplace
transforms give

T+ic0

. .
Y Ye )= -Lj CStolS’J e““ff'?icx,k,s)dk, : (11.41)
4L 4 .

sies - o
.where the Laplace inversicn path (LIP), Re{s]}=7%, must be to
the right of ali singularities. Here we will write cut
these inversioh integrals for the wind stress mcdels we wish

to consider.



.29

First note thét even for thé Simplesfﬂform of F(x,k,s)
the integrals in (II.32) and (II.33) are n@t.expressible in
terms of elementary fqnctions.and that %, and %, are multi-
valued in the complex k and s planes due to the'fs-ikva(ﬁ))
in the dehominator of the integrals. Thus in o;der to make
the problem of evaluating the inversion integrals as easy as
pbééible lét F(x,k,3)=0, Thus vwe consider only’curl.freé
uind'stresses. There is still a‘response,vas wesee from
(IT.13), due to thaz discontinuity of the bottonm iopography.
As we pointed out earlier we do not expect to get results
from our calculations that can be comparéd directly with
data due to the fact that conce the unstable waves have grown
to appreciable sizs the lihear'model no 1onger applies.

- Thus it makes very little semse to try to do calculations
fofArealistic wind stresses, What our calculations should
tell us is whether surface wind stresses are efficient in
’geneféting the unstable waves and what particular forms of
the wind stress are mést efficient. The problenms involved
in calculating the responge for wind stress withlcﬁrl ﬁave
been iooked at and are céftainly not insurﬁquntable. It is
”possible that this could be the topic of a future paper.

In the case of a curl free wind ;tress'the coefficients
A (k,s) and B(k,s) are of the form-

-2 TNk s ™ :w,d« Y

- . - (IT. 42
Alk,s) WNCES) _ ) ( )
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Blk,s)=

(-2 T ks) [s €™ = % vk 2k

. (II.43)
k Alk,s) '

Notice that for a curl ftee wind stress T’ (x,k,s) is
inqegendgnt of x'and so we have written it as TY(k,s). Then

from (II.35) and (II.41) we have

RICKED] .
B0 ] [ ki .
Thes)! SN awda b ] s ~
L S o5t ‘“g $se i\ s b] il U e
q“"; %100 -00 k A(.\Q,S) ' ' (II. '-HJ)
"\',_(.1,1\{:)
trac0 @ Werl2-x) . o
\ (7 Tes)se ) she 250 Rk :
S 5t 4s - R A, (II.u5)
4g'. ) . k AlkS)
f-ato -0
R AR D) , _
I+io0 © i ~teilx2) | .
THeS) € anh ko ik
. S eStas [ e _ & de s | (II.46)
4 kA (e, . _ ‘

P - Treo

notice.that the integrals in (II.44)~(IX.46) will appear
whether or not the wind stress is curl free, Thus thé :'
resulté for a curl free wind stress can be cbnsidéred to be
a lower_boﬁnd;for the feéponse-to general wind stresses,
unless it turns out that the response from the curl of the
#ind cancels the curl free resPOhse.

Finally the two forms of T?(k,s) for which explicit
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:alculationé will be done in Chapter IV are giien., The-

first is an impulsive line source of wind stress at y=0 for

vhich’

 FM&w¢3='u\)€&), o | i‘ o (Ii-97)
;nd thus

f”‘?33“~ | (II;HB)

The raspdnse calculated for fhis caée will represent a
Green's function from which the :esponsé to any other kind
of wind stress in principlse can be calculated using
convolutionbtechﬁiques. "The éecond form of T?(k,s) is that
for a moving iine sourcsa of_wind stress traveling with

velocity v* and having time behaviour éxp(s*t). Then

2 oty e - II.u9
TIx Y ) = Sly-vitre” "HW) : _ (I1.49)

where H(t) is the Heavyside step function. Then we have

TV (k,$) = (s-s¥-ikV*)™, (I1.50)

He could of course compute the response for this Tﬂ(k,S)
using the Green's function found in the-first problem, but
it is easier to treat this case separately. The wind stress.
givén in (II.49) is a ﬁore reaiistic representation of the
wind stress acting on tha Gulf Stream‘than the stationary

one given in (II.47) and we will find some interesting
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results for the moving wind stress, Now we must turn,to.the
‘problem of eValuating the integrals in (II.QH)4(II.Q6), to

which we devote the next chapter.
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CHAPTER III - Asymptotics

Section 1.  Introduction to the Methed for F(k,s) and

In the pfevibus chapter we have expressed the sclution
of the initial boundary value problem for the unstable shelf

waves in terms of integrals of the form

Yrico o '
F(RS) . :
g e”'tcuy LT oiky . _ (III..1)

Nlqt) =
%F-ico ~ o0 Aks)

4ns
This chépter.will be devoted to the problem of evaluating
4 (y,t) asymptotically for large t and arbitrary y. It is to
'pé expected‘in a sysﬁem thgt supports unstatie waves that
?evéﬁtually the "most unstakle wave" will dominaie the
responses This is essentially the_basic assumpticn tehind
the "simple" stabiiity analysis described in the
introductioﬁ.' Here we .present a method for determining the
_total,’both stabtle and unstable, resgcnse cf ihe éystem iﬁ
order to make this rather vague statement mbre.precise. In
the next chapier we apply the methcd develcped here tc the
unstable shelf wave problem. .

As an introduction tc the mefhod we ouvtline the
‘aprroach for the simplest possible casé, in which toth
P (k,s) and A(k,s)»are entire functicns of k énd s. In this
form the results are mainly due to Briggs (196&) and Ball:

and Heckrotte (1968) who-investigated such problemé in
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connecticn with un$tablé Qaves'in plasmas. In the case of
stable wayesiéimilaf techniques have beéniused by Rdams
(T972); In (III.1).w2'évalu§te fhe k intégral'first;: If‘
F(k,s) is entire in -the conmplex k plane and . |
|F(k;s)/a(k,s)|qo as ]Jk|=o in the cdmglex k plané cc that
Jordan's lemma holds then, for a given s, the valuevof the

Fourier integral is determined entirely ky the rccts cf
Alles) =0 » . ‘ - ’ (111.2)

in the complex k plans, We close the ccntcur in the Vyfprer
or lower k plane acccrding as y<0 or y>0. For y>0 we kLave

by evaluating residuses

.l‘ Yo 0 . st .
RACK DL T g Glysye dg, (111.3)
o CIT S ' '
whare
Q4= -k L RPN (1114
= -A e .
. ) n Ah(k-:“)a$> ’ ( )

for any s on the LIP such that A(k,s) has cnly simgle 
zeroes, The sun extends ovar all the =z=eroes of A(k,s),
k{n), that 1ie‘in the lower half k plane, A similar
expressionvholds for y<0 with k£“>-rep1aced by k("), where
kW) are tha zeroas cf Aik,s) that lie in the upper half %
plane, For y<0 there ié no minus sign ir frcnt cf the sunm
in (III.4). | |

It is necessary for causality, iege A (Y, t)=0 fcr f<0,- o
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that G(y‘,s) .be).an'alytic to the r\ight of the LIP. Thus we
" must investigate the éingularitiesrof G(y,s). 1If wé.let 5
vary the zeroes kf“)-and.kf“), which depend'on s through
(III;2f, vary tdo, ‘It is possible that as s Qaries a zetro.
ki“):orka“) will crosé the real k axis. When this happens
G(Y,S) aS*defined by (IIT.4) undergoes a jump és one tern oh
the-rightvside of (IIX.4) is lost or gained. fhus thev-
images'of the real k axis und=2r the mapping (III.2)
represent branch lines of G(y,s) in the complex s plane

See Figure III.1. Thus causality requires that the LIP be
to the right of all such hfanch lines. However, G (y,s) can
be continusd through thzsse branch lines., Suppose G(y,g) is
to bes evaluated at.s whi§h is to the left c¢f a branch line,
Choose s, on the LIP with im{s, }=Im{s,}. TFor s, a(k,s) has
.zeroes k&) and k}%>. We let s vary along the line
In{s}=Ir{s.} from s, to s,. As s varies at least one of the
kCx) 0r4k5£> Crosées the real k axis since s, is ‘tc the left
of a branch line, When this happens we indent the Fcutier
‘.contour around the encroachlng k<~) and k(&) SO that it is

- still included or excluded when evaluatlng residues; see

Figure III.2. Thus we‘define'"

Flks) -Lk :
6ly,9)= —L S s © J dk , (III.5)

where C is the indented Fourier contour. The G(y,s) defined

in (II1.5) agreés with that defined in (III.4) for s tc the
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right of the LIP. ihus it is an analytié ccntinuaticn cf
G(y,s) as défined.in (III.4), and it no lenger has jumps
écross the,branch lines, When ve refer to-G(y,s)‘frcm_now
on it is to ke undefstood as tﬁe analytic Contiﬁuaticn
defined in (III.5).

| The fqnction G(y,s) still has singularities; If two
zeroes;kfi) and kfﬁ)ﬂmerge across the real k axis then,if is
no longer possitle tc indent the rcuiier'écntou: arcund |
g}ﬁher of them. 1In this case the s .at which this merging
takes place is a singularity of G{(y,s); see Figure IIi.B.

We will now investigats the nature of this singularity.' If

-two zeroes of A(k,s) mzrge at'ko_fcr s=s, then we must have
Ay (8, S =0, . (ITI.6)
Expanding A (k,s) abcut (k.,s,) gives

(o)

ALRSY= AL (5-50)+ LAWY (Rekalrar o - (III.7)

where A ¢°)= (k.,s,), etc. Remember that 4£°3=0 since'ko is
a.double zero of A(k,s). If A{°?#0, the two leading terms

in (I1I.7) indicate that
h'kn= Q\(S-S.)\/z.\. q1($"$o) + - '. . . (III. 8)

We can find the coefficients in (I1I.8) ty sukstituting in
(III.7) and equating powers of (s—s,f“. The first two

coefficients are
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q:-zd“/Am

b
(I11.9)
- _ (A(b) \_ “zAl\.:k\A / An) , . :
Thus if we denote the two zeroes of A(k,s) near k, by k, and
k, we have
b~k . q\Ls-s.)"z{c\szs.,) x - - )
(111,10)
ka-lew = —0, (5.5 v a, (5-500 4 -
If k, and k., coalesce acrcss the real k axis then only cne
of them gives a'contributibn whan evalvating the integral in
(III.5). Suppose that it is k,. Then the contrituticn frcm
the résidue at k|, is =xpanded akout s, as

ik o)
g+l '
a0 F sy,

(&)
a, by,

Thus if k, and k, ccalesce acrosé the real k axis G(y;s) has
a ngSOY& singularity at s,. However, if k,6 and k, ccalesce
' frcm'the same side cf the real k axis they both cecntribute
to‘the integral in {III.5). 1In this case it is nct hard to
sth that the (s-s.)% , n=0,1, 2,.;., terms in the expansion
abcut s, all cancel, and hence that G(y,s) is analytlc at

Sp e Thus tha only 51ngu1ar1t1cs cf G(y,s) are thcse s's
that correspond to double zeroes of A(k,s) that ccalesce
across the real k axis. |

We find the asymptotic tehaviour for large t cf +(y,t)
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by applying Laplaces method (sea Carrlpr,‘et al 1966) to
the 1ntegra1.1n (III.3). In order to apply this methcd we
must have |G(y;s)|+0 as ]s|»w so that Jordan's lemma
“aprlies, 1If |

(m
FlRe /-———> (@] as \S\—»
.Ak’(-Rt_ ,$) .

" we can insure that Jordan's lemma holds by taking the limit
as y-0. Then the first ternm of the asymptotic expansicn.for

+(y,t) at y=0 is

Mot Xk e S et | ' | (I11.11)
] {TT—'E Q‘ A;;:) ) . . .

where the sum extcnds over all double zercss of Alk,s),
: ‘ko,sd), at which k , and k1 coalesce across the k axis.
"-Note that Qe chocse a, in (III.11) sc that Kk, apprcaqhes the
real k axis ffom below. WNocte that if one of the saddle
points (ko,éo) has Re{s5.,}>0 theh.the\system is abSclutely
unstable., This is kecause there is exponenfial grcwth in
time in a neighborhcod of the origin.

Nofice;that (III 6) 1mp11es that ko is a saddle pcint
of the functlon s (k) defined 1mp11c1t1y by (III 2), i.e. k

satisfies

S'(ks)= 0. | S o (111.12)
For this reason we call the k,'s saddle pcints and the k. 's
for which k, and k, coalesce across the real k axis pinching

saddle points. Scmetimes we will alsc refer tc the pair
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(kosySo ) as a saddle point. This.ﬁomencla£ure points out the .~
relationshipvbetﬁeen‘ihe;méthod éiven here‘and the ﬁethod of'l
stecepest descent as described in the introduction. In fact
the above result can be derived directly from the method of ,
'steapest descent. Recall ihat.to use tﬁe method of steépgst
. descent the Laplace integral is evaluated first, and then an
asymptotic representation of tha Fourier integfai is |
obtained by deforming thg rath of integration into a
steapest>descant.path. If a saddle point is of thé pinching
type, then the endpcints cf the path of integration,te , lie
in different valleys (Sirovich, 1971), and the path cf
stcepest descent must go thrcﬁgh the saddle point. Cn the
other hand, if the saddle‘pqint'is not of the’éinching tyre
onevof the endpoints.lies in a valley, and the other lies on
a hill; see Figure III.4,

So far we are limited tc finding the asymptotic
behaviour of (III.1) at y=0. However, we can get arcund
this limitation ip the fcllowing way. Let y=Vt+y, and‘make

_thg change of variable in (III. 1)

$=¢-ibV
‘ I11.13
k= k., ¢ )
Then (III.1) beconmes
o \ Yrico e _;lcbjo‘E(k .
: -~
AVt ,.\.\ )-t) = — x ) eSt % g Q ]S)
° 41t ob

Y- 100

Ak, 3) ' (III.
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where

Alk3y= AR, §xikV) |
: | | (111.15)
Flr3)= Flk,S+ik V).

Then we proceed with (III.14) the same way we did with
(III.1). For each V we find the saddle points for A(k,¥)
' and determine which of then are.of the pinching tyfe._ Then
we form the sum as in (III.11) with L~*0‘fof the pinching_
saddle péints. In this way we can find the asymptctic
behaviour for any Qalue'of Y. Note that saddle fcints are

those roints at which

‘3;'(5“«:3350’- | | - (111.16)
" But by (III.15) this is equivalzant tc
verle L | - (II1.17)

In wotds this says that an observer moving with velocity V
» sees.a wave with wavenumber:k° and frequency -is, that has
grcdp veloéity V. This is as we expected. Recall the
definition of grodp velocity in (I.3). However, nct all
such vaves are observed but only thosé that correspond to a
pinching saddle point.

The genéral prcceduie for determining the asymptctic
behaviour of (III.1) for large t-in the case ccnsidered heré‘

is the following.‘ For each V determine the saddle pcints
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for a(k,S). For a.sfstém that supports unstable and/cr
decaying vaves fhis'is.not neceésarily étraight fciward.
The methods used to solve this préblem §re discussed'in
section 5, Then we must determine which of the saddle
points are of the pinchingitype. This is nct as bad as it
sounds, as thefe are intervals for V in ﬁhich-the saddle
points are pinching and outside of which they are nct.

There are criteria that can be used to find the endpcints cf

each V the asymptotic bshaviour is given as a sum in the
form of (III.11).

The case considered here, in which Af(k,s) and F(k;s)
;ﬂrefentire,funcﬁipns, unfcrtunataly dces nct ccver the -
- prcblem of unstable shz2lf waves as can ke seen from
(IT.44)-(I1.46), In this case bbth F(k,s)vand A{k,s) have
branch points at k=0 du2 to the présence of Jk]. ‘This is

'.thebpnoblem we investigate in the next section,

As pointed but ahové we must now consider the case in
vhich A (k,s) ‘and/ocr F(k,s) have bfanch ﬁointé.atvk=0. We
will find that the results‘aré:the'same as tefcre. The
resulfs given here'are-duevtc‘nerfler (1970) and were

developed to study the growth of instatilities in hot~
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plasmas,

We start with equation (III.3) where ncw we define

' (. kg ELR)9) - : . . N
o — - \'S____________ . . . I.
6(153 pyos e | ALkﬁ)dh B _ o .(II ”18)

‘Since the branch point at k=0 is due to the presence of (k|
in both F(k,s) and p(k,s) we split the integral in (III.18)
atvk#Q, Making the change of variables k=-k in the integral

over  (-o,0), we have

V(7 kg Fetsy oy Elks)
'G£%§>=—~J el == JR 7 === ke
o ) A, LRS) v ), a_(ks)

(I11.19)
= G lY,8 + G. (Y,3)

" The function 4,(k,s) is the same as A(k,s) with |k| replaced
by k, and A_(k,s) i€ the same as A(-k,s) with k| replaced

. by k. similarly for F,(k,s) and F_(k,s). Now A,, 4., F

+
and F_ are all entire functicns. Now expard in partiai
.frqctions1

;Ej Fe Lw?\s) \
B 8) o Lo lels) k- kY

' : (111..20)
F‘(ks) :Ej £ L@“ Y ,
Al =0 (69 k- kT

1 We can do this if we can find a sequence cf contcurs C. On
which. F_/A8, (or F_/A.) is bounded such that R,=clcsest '
distance of Cwm to the origin becomes infinite as m+w, since
F,/A, and F_/A. are analytic except at the zerces cf 84 and
A..- .
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-where k{%) and k(") are the roots of
8,(65)=0 - and &.Lkys)= 0, ' . '(III.21)

respectively, and the sum extends over all such rccts.,

Thus for G4 (y,s) we have

‘ Fo(eYs ® o
G, (4,8 = — RSN S e (T1I.22)
27 AL (RS) kRl ' .
Note that
. i - B | | _ , _
S Emfﬁ>dh T PO -k ) | (II1.23)
© - R ‘

whiere ~(1,1;2) is the confluent hypsrgsometric function of V

the second kind with

naw

. ' - < \ ' zn '
YL e = e ¥ gnlez) + Ei (\*z*"'*R)'Ki ) (I1I.24)

,anq‘c=er (¥=e5772... is Fuler's constant). See Erdelyi, et
al (1953) eguations 6.5(12) and 6.7.1(13). The function
W(J,1;fikfh>y) is a multi-valued function, and as defined in
(II1.23) 1is diséontinuous along the images in the s-fplane of
the positive real k axis under the mapping in (III.21).

Thus these:image curves are branch curves of G (y,s) as
defined in (III.22). Again continue G (y,s) through the
-branch lines by indenting the Fodrier'contcur around anj

encroaching kjﬂ’} see Figure IIX.3. In this way we define
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"~ an analytic‘cbntinuétion of G+(j,$) as définéd in (ITII.22)
“that is not.diécontinuous'across the,branch‘lineg;_.This
analytic continuatich is defined as in (III.22) with the
path of integration in the integrals replaced Ly tke:

indented paths C,. We have

e PR tm . Sk
j; ‘k-’k;ﬂ\&k=’\\}t\.s\’_ikﬁ ‘3)‘1“&8 »4.‘5

n

(111.25).

if k{") crosses the postive real k_aﬁis frcm the lcwei half
plane into th2 upper half Flane as s varies alonq lines
In{s}=constant frem right to left; sce Figure III.3..

Agaih G, (y.s) still hasvsinguiarities even after the
analytic continuaticn has teen carreid cut,. The
singularitieé are now the saddle pointsvk° of A+(k,S) that
pinch the positivs real k axis. Near ki, thére are two
"solutions-k‘ and k,; of (III.21), Jjust as in (III.10). If
§nly one of k, and k, cross the écsitive real k axis then
only one term in (III.22) will have‘the extra term és in
(IIXI.25). In this case G, (y,s) has a (s-sof*& singuléiity
just as before and the leading term in the asymptbtic‘
exransion is'as given in fIII.11). If k;'and k, tcth cross
the positive real k axis or neither dc then we can‘show‘that
all of the irrational terms in the expansion of G{(y,s) atcut
S, Cancel_and thus that G+fy,s§ is analytic at s=s,. Notice

that there is no prcblem with a 1ogarithmic singularity at

s=s, unless k =0, This'pcint will be_takeh ur later.
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Exactly the same arguments as akcve arprly in
- considering the contributicn from G_(y,é); Thus the first
term in the asymptotic expansion for (111.1) in the case

considered here-is

. Soot‘:”) ' eS_ut F(e) ] . » : .
¢(0t3~* — 3 : . I111.26
v ) y X_ SN WA Z Q. Amhk C : ( )

Now the sums extend cver the saddle pcints of A, and A- that

pinch the postive real k axis We extend the results to

non-zero y just as we did in secticn 1,

Section 3. Transiticn Va2locities

————— e —— —— —— - —— — — - — — —

In the last twc secticns we have found asymptctic
exrressicns for the inteqral in (III.1) for large t and
arktitrary y. In order to evaluate these expressicns it is
necessary to find the éaddle points of 4(k,s) that pinch the
'(pdStive) real k axis for each value of V. This seers to ke
a rather formiaahle task. First we must find the saddle
points for each V, then for each saddle point we must‘find
the imaées of In{s}=In{s.} to determine if fﬁe twc zerces cf
A(k,s)  near k, cpalesce from oppcsite sides of the
(positive) real k axis. Even given an efficient methcd of
solving a(k,s)=0 this could bevveryztime ccnsuming, In this
section we introduce a method for streamllnlng this fprccess.

The results given here are due mainly toc Hall and.Heckiotte
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(1968) .

,As V'varieé the saddle point,ko(V) aléovvaries; Fcr
éome interval I, ko(V) is of the pinching type if Vel and is
not of the,pinching type if VéI. We call the endpcints 6f
any.sﬁch interva1 transi£i6ns velocities, VNotice that al1
the inte;vals I must be tounded since otheruise there would
:be an;infinite propagation velocity. There aré three_féirly
simple criteria for determining when.a_given velccitj'is»a‘
transition velocity. They are:

C1) If, as V~V,, there is a k,.(V) such that jk (V) |+, then
Vo 1S @ transition velocity.

C2) If at V=V, thsre is a k, (V) such that
Ag =0, : | (111.27)

then VvV, is a transition velocity. Ncte that in general thié
is equivalent to solving the system of equations

Ak3)=0, )

A, lk,8)=0, _ (I1I.28)

B (k,5)=0,

which is a set of six‘real equations (a is a ccmplex valued
fuhction) in the five real unknowns k; ,k.,s,,s, and V., Here
k=k,+ik; and s=s.+is;. Thus ip general there %ill nct be

any solutibns., Howevef, vhen there are statle, non-decaying

waves, i.e. when there is an interval J such that k real and
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k e J‘implies that any roct of A(k,s)zo.is.imaginary, then V
found from o

B, (8,8) = Ay (,3+ikV)+iVAglk,SsikVv)<o - C (111.29)

is automatically real. This is because (IT1.29) gives

C Ae(R, S+ kW) _ds
Vs o —————"" " 7 ~4 —
- Bg (R,S+ akV) S AR

which is real.  Thus the system (III.28) is a set cf three
equations in three unknowns when the waves are stakle -and
non-decaying. In this case Vy is a maximum or minimum value

for V as (III.27) requires that when V=V,

Then thé péint y=V,t is the leading or trailing edge cf the
vave, | |

.C3{;i£ for v=Vy, there are two saddle points (kga),g}ad) and
(kgb>,§;b>) such that In{3£*)}=Im{8Lb>}, then V; is a
transition velocity, Figure III.5 illustrates the
inier;ction of the twougaddle points that takes place here,
For V<Vy, say, both the saddle points A and B contribute
with branch I coming from the-ubper half plaﬁe and trénch 11
going into the lower half plane, sece Figure III.5(a). For
V=V; the-two saddle éoints "intefact" and franch I and IT

coalesce., See Figure III.5(b). The curve In{S)=In{&, } goes
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through B first thenyﬂ since. B lies tc the rightlcf A iﬁ the
compiex s plane. Fcr V>V; only B éontributes and now branch
I comés.in-from the lower half'plane and>branch 1T goes info
£he.ﬁpper‘half plane, éee Figure IT1X,5 (c). The.brahches,I
and II have exchanged posiﬁions. Note that it is only fhe
saddle point with the smaller Re{s} that caﬁ-be lcsi in this
waf. —Note.also that this criterion only makeé sense iﬁ a
system that supporté unstakle or decaying waves sc that ali
of the saddle points do not lie along the imaginafy s-axis;'
The procedurc then for determining the asyrptctic
~development for (III.1) is to.find the saddle points fcr
each V and then uselfhe critsaria above tc find the
transition veocities. Than it is necessary only tc check
one velocity in'each interval to see if the saddle fpcints
are pinching or not in the whole interval. Note that we
must check both sidés of the;transition velccities since the
criteria above are not sufficient conditions to insure a

transition,

Section 4, Moving Cisturkances

In sections 1 and- 2 we have assumed that F(k,s) has nc
~poles. This corresgcnds tc finding the response to a.
stationary'diéturbance that is finite in time and space.
Now wé extend the results given above to the case in which

F(k,s).has a simple pole‘which is due to a moving and/cr
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oscillating disturbaﬁée. Lighthill (1967) has ccnsideied
“the prcblen of mbviﬂg disturkances in.sfable_systems and
Briggs (1964) has touchéd cn the probleﬁ ofloscillatiﬁg
disturbances in uﬂstable systems. Howevar, no one has
. u&rked §ut the details of the respoﬁSe of an unstaktle systen
to moving osgillgting disturtances.

| As ve see from (II;SO)'a disturktance moving with
velocity V* and with time dependenée exp(s*t) gives rise to
ah integral of the form - |
40&*%M&\=3—-§m22t43 (wﬁ(h§) e tkd,

HT'd J Eoseowl & (k3>

- A D ~ a0

dk, (III.30)

.We know from our previous reéults that the asymptctic

behavicur of (IXI.30) is governed by thé pinéhing saddle

points of the denominator., These are of two types here: i)

the saddle points of aA(k,s); and 2) tﬁe foints (k°;§°) such

that -
§°-§t;k;(vtv)=0,

. (111.31)

Bk, 3,)=0.

We have al;eady treated the saddlé»points of a(k,s) in

sections 1'and 2, and we need only rerlace f(k,g) by‘

F(k,s) /[S-s*-ik (V¥ -V) ) in (III.11). We call this the

transient response, 14;' Ncte thét if (X111.31) is satisfied

"at a saddle point_then this is unbounded., Special
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éonsideration can be éiven to such points but the details
afe not given here,

ﬁe now datermine the respohse due to the points given
by (II1.31), which we will call~the fofced responSe, w;.'
Given an s nsar s. there are two ks, k,and k,, near k,
that éontribute to the Fourier integralﬁin (I11.30). These

are given by“

by ko - 55 BT | | (111.32)
and

-k, = an(S5-Sady+e, (RSt e ' | (1‘11'33)‘

We assume here that Alk.,3.)#0, i.e. k, is . not a.szddle
point for Z(k,%),_as we mention=2d above., From the arguments
in. section 1 and 2 we know that if k, and k, coalesce across

the (postive) real k axis, then s, is singularity cf

\
4,,8)= —.
G ‘30)S 2“‘

S"" Flle,3) e -nky

. k. ~ (I11.34)
o [3=S™ k(v V] ALk D) ' '

We must investigate thisAsingularity.
~The contribution to G(y,s) from k,, assuming that y>0
so that we close below and that Im{k, }<0, is

ewt-;\z\w,\?ck)%
Lvi-yv) K(\eJ )

and from k,, under the same assumptions, is
-herp(-ikay,) Fle,,3)
[5- - ik (vtend) B, Ly ¥)
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Now

o INYVL)
A(kn?)= TR

AL (3-5.9
where V =iA(°)/af®) is the group velccity cf (ko,S,). Also

Vo=-yt
Vo-W

E'-%.*’—‘;\e,_ Cv*-y)] - (3-$°3+ cee ,
Asince'a;=-i/(V°-V). NOw

Ay Gey 8= -4 .A‘;’ (No-V)
so that

[5-s™- ik (VW B s )8 ) = =4 A (VoA X(S-Sa) v -

Therefore, the contributions from k and k , are expanded
abcut s, as

e¥ pl-ikey,) ¥ \

ey
(\I*‘Vo‘) A(:} (C"-S")

.and.

ex? (-1 ) FO
LVQ—V* ) Algﬂ) Lg"gc)

respectively.- The rest of the terms in the expansicn are
analytic at éo. Thus we see that if k , and k, approach the
real k axié from the sane side, then the singular ternms
cancel. On the other hand if they appraoch from cppcsite
sides only one contributes and thére is no cancelaticﬁ.

Note that we have assumed here that V' >V so that k.,



52

approaches the real k axis:formithe lower half plane. If
4v*<v then the signs mﬁs£ be reversed. If F(k,s) and/or.

& (k,s) have branch points as considered in section 2 then
 the results"are extended asAthey weré there. - |

| The results glven above show that the leading term in

thp asymptotlc expan510n of the forced response is given by

.- to) S,f

) ,
“VF (Vt, £y = sqn LV v) Z vl \/m)&os ) ‘  (II1.35)

where the sum ext=nds over all solutions of (III 3N fhap
arz of the pinching typ,. Th2 total rnsponse is N +%:e The
criteria given in sectionv3'can be applied here to determin=
the transition velocitizs. Nota that v=v% is a transition.
velocity since from (III.32) as v -y changes sign so does
the direction that k, moves as S moves towdrd s, from the
‘:ight. A transition byVCZ comes about when the soluticn of
(I1I.31) is a saddle point. When C3 is applied somelra£hef
_int;fasting results arise. This will be pursued further in

Chapter 1V.

Section 5, Numerical Methods

As we have seen the problen of determining the
asymptotic behaviour of the integral in (III.1) reduces to

the problem of finding the solutions (k,,s,) of

Be3)=0 - o . (II1.36)
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Ba(e¥y=0, - - . (II1I.37)

where A(k,s) is defined in (III.15). This systenm is

equivalent to the system
8(ks)=0, | R ' (I11.36")
A (3,8) +uVAgLRisy =0 | (ITII.37')

After we have solved sither of thése systeﬁ; for a given Vv
we must map the lines Imfs}=Im{s°} into the complex k flane
by (I1I.36) in order to determine whether (k,,S.,) 1is a |
‘pinching saddle point. This requires that we be abls tc
solve (IIT.36) for k as afunction of s,

In finding the r<sponse to a moving disturbancévye are
led to the problem of evaluating the aymptotic behavibur of
the integral in (III.30). This problém reduces to that of
-solving (IT1I.36) and (ITI.37) again and the system (III.31).
Solving (III.31) is equivalent to solving the singlg

equation

Ale,s*4ikvi)zo. (111.38)

‘This equation needs only be solved once for a given s* and
v*. call the solution k,. Howaver, we still need to map
the lines Im[§}=1m{s*4ik‘(v*—V)} for each V in order tc

- devermine the pinching behaviour of the solutions of
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(III.31);
| ‘The basic methcd‘that we use tc sclve (II1.36') and
(I1I.37%) is Newton's methéd for a system of equations. We
make an initial quess, (k,,s 5, for the 'soluticn of the
system. Then we calculate a new gue~~, sz,sl), by R
AL (AL w2 VA ) - A (A + 4V A%
BY ALY « 0L (AVAS =AY Y -iv i AR

B o '  (II1.39)
AU)(AL\) Au\ - U)(Ak -&4VA ) .

DEY ALY + AR (AV AL - 8 - L VA &Y

[ >

Sz‘sl =

These expressions are obtained by expanding (III.36') and
(IITI,37') about fhe unkncwn point te first order. Then.ﬁe
ascsume that (ko,s,) is indeed'a sclution of the system.
This leads to a linear szt of equaticrns fcr (k,,s.) whbsa
soluticn is given in (III;3§); Cpnt}nue in this way tc
generaté a sequence of (k,~) pairs., This sequence w111
converge ifvthe initial guéss was clcse encugh tc the
solution of the.system. Cnce we have solved this system fcr
one value of V we can use this soluticn as an initial guess
for a.slightly»different V. In this way we can generate all
of the branches of (kg(V),So(V)) given by ‘(III.36') and
(III.,37'). All we need is a first guess for each cf the
branches. These are obtained by sclving (III.36') fcr <.
with k, given, say, and then computing the V. for whiéh_
(III.37') is satisfied. Then (k,,s,) can be used as an

initial guess for a V close to V.. 'If k, is in the range of
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ins£ability; i.e. s;'ccmplex,vthen Vo mai ke ccmplex. 1In
that case the first sfep is to use (IIT.39) to find the
~ soluticn for vV with Re{V}=Re{Vo} and Im{V}=0.

Affer wevhave found_(ko(vf,sc(V)) as“deScrjbed abcve we
.must.dpply the criteria inen in section 3 to find the 
transition velocities. To apply C1 and C3 is straight
forwagd,. For C1 we just plot Ref{k (V) } and Im{ko(V)] ahd
look for vertical asymptotes., For C3 we plot Im{s (V)] for
each branch. Points of intersecticn cf twc branches are
transiticn velocities, For C2 we muét finds points where
(III.27) is satisfied. Note that this requires nc extra
corputation since when (III.36') and (I111.37') are satisfied

then the denominators in (III.39) are just
87 BAS = A% (Bl w24V BT - VP AL,

Thus we can compute Ziias we compute (k ,(V),s,(V)) at nc
extra expense.and thus applying C2 is also easy.

Finally we must determine the pinching beshavicur cf the
saddle points (k (V) ,s,(V)) on either side of the tramnsiticn
velocifies. This.requires that we sclve (III.36) for k as a
function of §, near a double zero. Newton's method arplied
to the single equation (III.36) ccnverges ;lowly, if at all,
ét such points»and‘even iflit aoes ccnverge deflaticn nust
be used to find both solutions. A method due to Celves and

Lyness (1967) can be used to solve this prcblar,
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We use the following theorem from the theory of complex
variablas, If f(z) is analytic in a closed bounded region

.of the z-plane and has zerces z,, i=1,...,n0 inside C-2C then

"

. ‘ ] . . . ) - . X .
Se = — z'i(z—’ Az=Zz.'.. : '  (III.b0)
215 Je £y . : - » .

L2y

A multiple zero is counted according to its multipliciti.in
this formula which is just i consaquence of Caﬁcﬁylé
thearém. For =0 the value of the integral in (III.40) is
just the numbzr, n, of z=roes within C., Using the s, for
t=1,...,0 it is possible‘to-construct a polynomial of degrée
n that has the sanz zeioes as the‘function f (z) insidebc by
means of the so-calléd Newtoﬁ‘relations. There are powerful
techniquass for solving polynomials numerically sQ wé.can
‘consider the problem solved when we find the polynomial.
Anyway, in the prohlem we are considering we are interested
only in cases‘where there are only two-or three zeroes in
the region of interest,

In order to determine the pinching behaviour of a .
saddle point (k.,s,) we map the lihes Im{$}=Im{s°}‘into the
.complex k plane by (I1I.36). We choos2 an s on this line
near s, dnd apply the abovas method to find the two k's close

¢

to k, by letting
£0e)z AC.S)

in (III.40). We choose C to be a small circle around k .
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The contour integrai»in (IIT.40) is computed numerically}
‘The rarid convérgence of numerical centour integraticns is
discussed by Lyness and Lelves (1967) iﬁ a companicn pafper
to their one on rcot fiﬁding; Once_wé-have found the two
k*s near k, we can use Newton's‘methéd 6n the Siﬁgle |
equation (III.36)‘tc trace the lines Im{s}=Im{s,)} away fron
the saddle point,

Finally we note that in order to solve (111.38) WE can

use the method of Delves and Lynass,
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CHAPTER IV - Discussion and: necu]ts '

——— e D - e G e s St St

Section 1. Intrcductlon

In NM it is suggested that the uﬁsfable shelf Qaves
studied there might be the origin cf the meanders in the
Gulf Stream and in particular that a fast;moving disturtance
might;be mést,efficient in generating the unstable waves,
We are now in a poéition'to make‘a first step in checking
this hypothesis. In NM tvwe models are ccnsidered, cne that
-is-aprplicable to the regiorn in which.the Gulf Stream flcws
over the Blake Platcau and one that is appllcablc tc the
reglon northeast of Cd‘° Hattaeras after the Gulf btream hae
detached from the ccntinental shelf, Hers we ccnsider the
first mod2l, which has been descrited in'Chaéter 11,

Of course; our linear mcdel is nct applicable tc large
amplitude waves and cannot be expected to test the |
-hyﬁbtﬁesis in NM in any detail. - Fcr example, it wculd be
unrealistic to compute th2 detailed response of cur mocdel fo
complicatea, though realistic, wind_stresses'and expect the
calculated response to resemkle the aétual tehavicur cf the
Gulf Streanm, ‘Hence we have resﬁriéted curselves tc
considering the simple curl free wind stress mcdels
described in‘seption 4 of Chapfer II. Using these mcdels
aicnenit i$_p6Ssible, for example; to‘determine hcw the

efficiency of the generaticn of the unstable waves varies
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with the speed and dﬁratioh_of'the disturbancé.

| In»oidei to apply the methods_of_cﬁaptér IIi to cbtain
these results we must fifst_study the disperSicn relaficn.".
This ve do in secticn 2. 1In secticn 3 we calculate the
feséonse for an impuisive 1ine_source of wind stress, mainly
~in order to gain éxperience in using the methods without the
'addit%onal complications introduced by moving disturtan;es.
In Section.u we'tufn our attention tc the moving distutbance

-prcblem.

Section 2, The Eispersiorn Reslaticn

The actual bctton tcpcgrarhy and degpth ayeraged curient
prcfile of the Gulf Stream over the Blake Platéau are shown
in Figure II.1. The best fit to this bty the mcdel shcwn in
Fiqure II.2 is qiveﬁ'by

N=.22 and p=2.8
‘ﬁifh'ﬁ=800m, I=50km and f=10-4¢sec—-1, We now study the

dispersion relation
blksY=0 o S (Iv.1)

"where A(k,#) is given in (II.38),-for these values cf )\ And
M .

Before.we proceed wevnote that A(k,s) ié of the fcrm
studiéd in section 2 of Chapter III and thus we must

consider the two functions
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A*Lk,s)=sl¢cpx-;sﬂ(k)+ Wik
| - | | (IV.2)

A_(h,s)=€z¥(k)+133(k3-xk(k),

Frcm (III.38) we see that'f; g and h are real when k is real

and that

§(RY= 40> | qler= qled , W) = Wik , (1v.3)

where - denotes the conmplex conjugate. This allcws us to
Write | |

Al (es) = 4,(k,3). _
From (II.4U4)-(II.46) we sze that F_(k,s) and F_(k,s) also
satiéfy this reléticn. Thus w2 have |

6. (4,5) * G l4,3)
so. that | '

K'Y*LOO T*'LOO N

G.(4,syetds = -‘2;‘ Gelyys) €% gg
. A

T-100

\

e,

2“," F-io

and the total response is just given by
' \ i 4 ‘
Re ) — Ge (4, ) e ds §
2 ke e | LT 5S) '
Y-200
Hence in the follqwing we consider only A,(k,s) which here
we write as A(k,s).
As we s2e from the results of Chapter III it is first
nacessary to solve (IV,1) for s with k taking real values.

ThiS'gives the branch lines of G(Y,S) in the ccmplex s-
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plane.v Sinée ¢(k;s)_is quadraiic in's this is nct hardjtd

do-aﬂd the results are given in Figure IV.1 where we plot
Im{s}.for k real.. forwmost'réal vélhes of k there are two
pure imaginary solutions of (IV.1). Héwever, in § émall
interval the soluticns are compléx with soluticns s‘éhé ~-Se
,This»is the "intg;val of instabiliﬁy" since omne éf the
sélﬁt%ons has positive real part.

Next for each V ¥e must find the saddle pcints (k.,s,)

that are solutions cf the system (I1I1.36') and (I111.37'). .
Outside of the interval of instability this is straight
foward and we do not need'the’methods”described in secticn

III.5. By (IV.2) and. (IV.3) we have that

. AplRs) LSt —asq (R WLR)
A = & hd N .

bs CRS) C asfan -iqlk)

is. real when k is real and s is pure imaginary. Thus when
we solve (IV.1) for s, with k, real and éﬁtside,the interval
of instability, the point (k,,S,) is a saddle pcint fcrx

Vo LA /a8 . |
Then grayhically We can invért énd?gef‘k. as a function of
Vo. Within the interval'of‘insfability We must use Newton's
méthod_as described in section III.5. As a starting pcint

we use the real k, at which Refs,} is a maximum, At this



62

point V°=iAé°)ZQ:°) is real.! In Figure'IVQZ we have plctted
~Ré{k} as a-fhnction'of‘v'fcr_the stable saddle pcints.' in-
Figure IV.3 we have plotted Re{k}, In{k}, Re{s) and'im{s} as
a function of V for the unstable saddie points,

| The saddle points found in this.way are the cnly cnes
that can be of :the pinéhing type. This is because if any
other,saddle points are found for some real V thej~cannct ke
of the pinching type sincé neither of the paths cf steepest
descent through ko, can have crossed the real k axis.

. Once we have found all of the saddle_fciﬁts that'can-be
of the pinching type we must determine which of these really
arc pinching saddle points. A glanée at Fiqure IV.2 shcus
us‘that there certainly must be transition velccitiés, since
otherwise we Qoulé have signals traveling at arbitrarily
large velocities. This physical criterion is a gccd check
on the mathematical results that we cbtain., 1In crder tc
‘find the transition velocities-we apply the critericn given
iﬂ section III.3. Recall that we do not expect C2 tc apply
in the interyal of instability and that C3 can only arply
there as it.requires two saddle pcints with different Re{s}.

From Figure IV.3(a) we see that by C1 the unstatle

1 This is because ds/dk=- 4,/A; and when Re{s} is a maximum
dRe{s },/dk=0. Thus Im{1i 4r/4As }=0.
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vaves only ¢on£ribute over a. finite inter&al with endpoints
given by?2 | ‘ |

V=0 and =;zm€; _
Thus the system is convectively unstable., We will refer to
this inteﬁval as the (Qeiocity) interval of instability
(dropéing the veiocity when no confusion will arise). 1In
figurg IV.2 we have marked the points where trénsitionsvtake
place by C2 and C3 by the number of the criterion.used to
find it. To find transitions by C2 we need only find the
maxima and minima in the graph of V as a function of real k.
In this ﬁay we find a transition at

Ve .2\945 72,
labaled A in Figurs IV.2, To find the transitions given by
C3 we must plot Im{s} for all the branches of (k ,(V),s.(V))
in the interval of -instability and any points of
intersection of these curvés will be transition velocities,
In Figure IV.3(d) we have plotted Im{s} for the unstable
saddle points, branch C, and Im{s} for the two ;ets of
stablé saddle points, branches A and B. There are two

points of intersection at

V= ,004 % and V=.2056

2 A1l of the velocities are given in dimensional units in =
vhich the velocity of the stream is \=,22=77km/day, since in
dimensional units s/k=Lfs®/k*v s*/k*=\= s/k=v,. ' ’
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labeled B aﬁd C‘respectiyély in Figure'Iv.Q, In Fiqure Iv;u.
we show how the'tranéiticn‘takes place for one of thése‘
transition Velocities;‘ Finally, since we aré'dealihgxﬁith
A+(k,s) oﬁly a saddle'poiht that arisesrfrom a merging
across.the negative real k axis aoes not contribute, Thus
from Figure IV.2 we se2= that D and E are also transiticn
pbintswwith

Vz,22 ond V=-.444..,
.respectivély. Aﬁ thes§ vzlocitiss (k,,5,)=1(0,0), a.
situation that requires special treatm2nt. At these points
we sez from Figurs IV.1 that (k,,s5,)=1(0,0), and frenm
(I11.22) or (ILIi.z4) 1t se&ms that this iﬁtioduces a’
logarithmic‘singularity which would gyive rise to a respoase
for 31l V. Howaver, a detailed =xpansion ocf G(y,s) abcut
s=0 indiﬁates that the singular terms canéel out so that the
two velocities given above are indsed transiticn velccities.
The expansions are qqita mesey and have not been workad out
completely so are not given here,

When we check which intervals contain pinching saddle
points we findbthat beéides'the interval df instability the
sections AF, BD and EC in figure Iv.2 contain pinching
séddle points. All of tha rest are non-pinching saddle
points. This is as w2 shculd éxpéct since otherwiss
“infinite signal veloéities would have resulted.

One very interssting consequance of the above results is
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that ho waQe traveliné.in the dqwnstream direction.travels
faster ﬁhat the maximum speed'of the bagic flow. - Also,
vaves traQeiing upstream can travel_twicé as fast as thcse
going downstreanm. However, thevﬁnstable waves only travel
downsiream. . From Figure IV.3(c), where we havevﬁlctted
Re{s} as a function of V, we see that the fastest growing
wave travels at a speed VzA/2=.,11, The e-folding time cf
the fastest growing wave is about 81.3 in dimensionless

units or about 9.4 days.’

Section 3. Responsgsz to a Stationaryv Disturbance

PR alll s R halonxloid ARl aE=s

Here we pres=nt th2 rssults of calculations made using
the above results for the impulsively applied stationary
line source of wind stress given in (II.47). This is ncw
straight forward using the results given in Chapter 111,

In Flgure IV.5 we plot W(l Yy, 100) and ~(1, y,ZOO) as
 found using the asymptotic solution given in Chapter II1I.
This corresponds to a snapshot of the response respcnse
taken at times t=100 and t=200, i.e., 16 and 32 days after
the wind stress was'applied, at fhe ceﬁter cf the étream{
"The important fact to notice here is‘that-the unstatle waves
are certainly not dominant. At t=200 the most unstable wave
has propagated 1100km, thé 1en§th of the region in which the
model.is applicable. This result Seems to indicate that the

instability is convected out of the system bkefore it grows
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to signifiCant:proporfions.- Note that no wave travelé
~ faster than ébouf .22,‘$c that beyond tﬁis point no vaves
appear.ﬂ That is why in this and the-fcliowing figures the
carves are Cu£ off at a point corresponding to V=,22,
Actually there should be a smooth exponential decay to zero
as shown by an Airy phase analysis, but this was nct dcrne
here, |

However, in Figure IV.6 we plot < (x,4,200) for 0<x<2,
and we see that the respcmnse at x=2, thevoffshére_edge of
the steeanm, is much larger than the response at x=1, the
point of maximum velccity. The prefile is similar at all
points along the stream, In Fiqure IV.7 we plot w(2,j,100)
and (2,y7,200), and we see fhat not only is the response
larger than at x=1, but also it has a different form. Here
the unstable waves are completely dominant. Thus we see
that the stationary curl free wind stress g=n2rates the
-ungt#ble waves much more efficiently on the offshoie~side cf
the stream than on the inshore side, 1If we look at (II.4i)
and (II.u45) along with Figures 1IV.3(a), (c) and (d) the
reason for this is clear. 1In the interval of inétaﬁility
Im{;}x;/2=.11, Re{s }=.01 and Re{k }x3. Thus here
'sinhkz.Sexé(k) so that tHe iptegrand in (II.ub) is only of
Aorder Re{s}=01 while the integrand in XII.MS) is ¢f crder
Im{s}z.11. This argument in faéf shois that the “free:

wvaves" have this behaviour so that we can expect that fcr
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all vind stresses the‘uﬁstable waées Qi1lAbe generated most
_ effeciently on the offshore side of the stream.
In Figure IV.8 we plot &(xizo;t) as .a- function éf t for.
(a), x=1) and (b), x=2, for 100<t<350, Here,thejdiﬁférence'
in the behaviour batween x=1 and x=2 is again apparent.
Note that when computing y(x,x,t) a$ a function of t fof a
fixei vélue éf y it is‘s and Aot_§ £hat determines the
response, This is'becduse the exponant in the asymptotic
formula is |
SE= (%t gk - Ly,
~and y is a constant.
Finally w2 estimats the current valocities generated in
_this case. We are mainly intarasted in the cross stréam |
:velo:ity, u, as this will tell us how far we can expect the
stream to be displaced due t0‘thé-wave'motions. By (II.10)
ve must find the long shore derivative of A in order toc find
2. From Figure IV,7 we estimate u for x=2 and t=200 at the
position of the fastest growing wave to be about 1 km/day
for a 1 dyne/cm2 wind stress. Since for the fastest growing
wave In{s}~.11 the period is approximately 6,7 days. Hence
a4 as estimated above would result in displacements_qf about
4 km, which is small’cémpared to thé observed Gulf Strean

meanders.
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Section 4. . Moving Disturbances

Now we present results for the ﬁoving line source of
vind stress as givenvin‘(II,QS){: io.éalculate'ﬁhevtfansiént
response, Yr, we proceed exactly aé we did for the
stationary wind stress except.ue raplace F(k,g) by
F(k,g)/[gié*-ik(vt-V)].‘ To calcﬁlate the forced response,.
V., it is nacessary tq solve (ITI,38) for the values of F
and s that are of interest, It is found by solving
(I1TI.38) for various: values of s*‘imaginary énd v* that only
real values of k arise. Thué.moving and/or.oscillating
“disturbances do not forceAthe unstable Waves directly,

i.2. through ¥, ,Aiso, a3 will be seen iater a tima
decaying disturbance, R2{s }<O; only givas rise to a time
decaying wg.' | . |

To begin we will consider the problem in the case for
which s*=0. Then since there are no complex solutions cfA
'(111{38), solving it is equivalent to finding the
intersections of the curves in Figure IV.1 with ﬁhe line
Im{s}zikvk, i.e, we find the:wave'that has phase velocity
V*. Note that we can also treat the caée of s* pure
iﬁaginary this way too. When statedvthis way the problem is
fairly simple. Note first that k=0 is always a solution of
(III,38) for s¥=0. Again we note that this gives rise to a
logarithmic singularity, In this case,’uiﬁh a moving

disturbance with no exponential time behaviour, the
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logarithmic.singularity can givé rise to a small'additicnal
response in a finite §elccity interval, ‘Again this»result |
is based oﬁ_a detailed expansion of G (y,s) about s=0 in
which it is seen that the singular terms cancel outside of
certain finite velocity intervals. ©Next note that for
-.uu<v*<o there is only one non-zero solution and that for
0<V¥<.22 there ars always twC nOn-zero slqutioﬂs. |
Othervise, k=0 is the only solution.

After we héve fcund k, for a given v* ffom (III.38) wé
must determine over Qhat range of V the pbint (KosSo)
obtained from (III.31) is cf the pinching'type. First we
know that V¥ is a transition Qelocity. Next when V=V,, the
group veloéity at k., the point (k,,S,) is a saddle point of
A(k,S+ikV,). 1If this saddle point is of the pinching type
then we have a_situétion as shown in Figufé Iv.9. As V goes
through Vg, the poiht (ko eSp) changes from pinching tc non-
pirnching, Thus in this case V=V, is atransition velocity.
However, if the saddle point at (ko,S,) is not of the
pinching type, then we see from Figure IV.10 that V=V, is
not a trahsitibn velccity. There must be another transition
velocity, since otherwise we would have infinite signal
Qelocitiés. Note that the critericn that V=V, is a
transition velocity is equivalént to C2 as given in secticn
I11.3, since at (k,,s,)

“s =k (v*-vf_{ A L\z,s)}hh =0

when v=V,,
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- What about C3? 5ansider the situation in Figure.IV;11.
- Here Qe'have'(ké,go) iﬁteracting:with absaddle pcint (k,;S))
for which im{§q}=1m{§;}; at V=vV;. As V Qoes through Vg the
'vpoint'(ko,gg)'changes.from pinching to nén-pinching when
Re{g;}>Re{§o}. Othérwiée there is no transition at V¢ (just
change the direction of the arrows through the séddle Fcint
k, inufigure IV.11) . Thus if V, is not a transition
velocity we should be able to find a transition velccity,
Vs, by C3;- W2 ses that fecr the forced rasponse the group
velocity of the excited wave i§ not nescessarily the signal
velocity., | |
We now apply the above remarks to the problem of

finding the response fer garticular mcving distufbances.
First we consider a slow downstream moving disturbance with
Y*=.03. We choose this value for v¥as it illustrates the
remarks above about.c3 and as it happens is one cf the most
.efﬁicignt.disturbance velccities for generafing the unstable
- vaves, Solving (III.38) for V*¥tb3i§i§es two soluticns with
“ ko=3.6% , V,=-.00038 |

ko=2.61 ) V,=.254.
From Figure IV.1 we see that tha saddle points for these
gréup velocities are non-pinching. Thus we must apply C3.
Again we recall that C3 cnly applies in the interval of
instablility. Hence if we plot

Imigz'—‘ h,(V*-\I)

as a function of V for each of the k,'s above along with
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In{s} for thé>unstablé waves in the-interval of instabliity,
the §oints of intersecticn willvbe transition velocities.
In thisvway we find transiticn velocities at .
200082 for  R,=3.67
veagz fov  Ro=2061

Thus for the forced response we have the fcllowing
| situagion: for V<.600816S3 and V>.1815881>on1y'the transient
response is observed, for ,00081663<V<,03 the forced
response has wavenuuber k,=3.67 and for .03<V<.181$881‘it
haé vavenunber kg=2.6i. | o |

In Figure IV.12 we plct a(x.y, 100) and 4(x,y,200) for
V =.03. 1In (a) and (b) w= plot '\PT énd N o respectiveiy,»fof
x=2.: We see thatvbehind the disturbancelthe transient ana
forced responses are cf abcut the same magnituds, However,
in front of the disturbance the transient response dcminates
since here thé uﬁétéble waves éte important. In (c) and (4)
we plot ¥, and ¢, respectively, for x=1, ﬁere’we see that
t hough thgﬁresponse_is still much smaller than at x=2 the
.uhsfible.ﬁévgs aré £5:Mdominant, as they were not in the
case of the‘sfationary disturbance. This is‘because the.
phas2 speed, -is/k,'of the unstable waves is very clcse (in
‘the compex plane) to tﬁe velccityvof the disturbance so that.
(s-ikV )".1 is very large in the asymptotic formula. Thus
the unstakle waves are amplified. ‘A cemparison of Figures

IV.12 (a) and IV.7 shows that the amplification factor is
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about 40, Hence we see that a-slow‘downstream moving
.disfﬁrbahce is véry-efficientvat géneratihg the unstable
vaves., In fact we find that the maximun amplification is
produced by a'diéturbance moving with v*=,03902.

" In contrast to the last example we now consider a fast ..
upstrean moving disturbance uith,v+=—.1. ~In this case thefé
is on%y.one solution to'(III.SB)_with “ |
SR,z LHE v =AY,

Sinc2 the saddle point for this V, is a pinching one VvV, is é
transition velocity. Thus fcr -, 1<V<, 141 there is a forced
_Tesponsa with wavenumber X =1;u5 and outsids this interval
there is only the transient response. In Figure iV.13 we
plot‘&Q(2,y,100) And V(2,3,200). We ignor= the forcad
fesponse since, as in the last example, it is small qémpared
to.the'transient response in the regicn of wave-growth. |
Hera ve see thatﬂal£hough-the unétable Waves arevamplified,
the amplification is cnly abcut one-fifth that in the.
previous case. The diécontinuities in the plots cof
Yr (x,y,t) occur at V=V, which, as was pointed out in Chépfef
III, is a point at>uhich'£he asymptotic formulas dec nct -
apply. We will sce below that introducing damping into the
~wind stress removes thé discontinuities,

Now we consider the abcve examples in the case that the
disturbances are decéying in time with's*=-.06;_ This

corresponds to an e-fclding time of about two days which is
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a reésqnable time scale fcriweathervsystemé.“-Now when
solving (IiI;38) both the”ko'S'and vo's'oﬁtained are
complex, so that now :in bcth cases the tfansition velccities
must~bé foundvusing C3., The k,'s, Vo's and transition
velocities for V' =,03 are now | |

_ -h°=3.g?'—L2.o and Vo= ~.48we *;LG?)“&H\ with  Vp: 206 ¢
Re =2.64 ¢ 032) awd Vp 2,209 +i (. 00BS) with AV;:.Oo\

and for v¥=-,1 are
ko= lU540.028) and y°=Aq\*;(@03?$ with v1=A3#.

It is important tc nct2s that th2 transition velocities‘are
‘such that Re{s*+ik(V*-V)]<0 for all V's for which there is a
forced response., In Figure IV.14 we show ~(2,y,t) and

Ne (2,y,t) for f:.03 in this case. We see that here the
amplification of thé unstable waves is not as great as with
‘the nou-décaying,disturbance since the transient LeSECcnse 1is
only akout one-half of what it is in that case. The forced
response now decays from the transition velocity. Hence we
can see the significan;é cf the transition velocity as the
signal velocity. In Figure IV.15 we plot A(x,y,t) fcr
Vi=-.1, We sce that in this case the decay of the
iisturbance has no effect. on thé transient response, cther
than smoothing out the diScontinﬁities. Again. the forced

Tesponse is significant only near the transiticn velccity,
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and s2ven here it ' is completely-negligible.

Section 5. Discussion

In this section we will diécuSs the application of the
results presénted”aboﬁe to the proklenm of meandérs in the
Gulf Stream. As has been goinfed out in NHM thé Qavelength
of the unstable waves is ébout 140 km and-the peri¢d abcut
10 days, which corrésponds w21l to the wave-like
characteristics of the meandsrs in the Gulf Stream (sce
Hansen, 1970). Thus it is reasonable to consider the wind
generation problean, |

All of the rssults given above indicate that the
~unstable waves are geherated on the off shere éide of the
velocity maximum by any kind of wind, since the curl free
component studied here would contribute in any case, The
displacenments of the streaw that can be expécted to result
.frém £hese waves can be estimated from estimates of the
cross stream velocity by multiplying the maximum cross
stream velpcity.by one-half the period of the waves. This
Was doné above for the staticnary wind strss. For the windv
stress moving with V*=.03( 1Q>km/déy) the ressponse
calculated is about 40 times that for the statiohary'
disturbance and thus so aie the displacements. The
vdisplécements for tﬁe upstieanm moving.disturbancé.ﬁith

V*=-.1 are about 8 times those for the stationary
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iistufbance; ,Thus_diSplacements.ofvthe order of 150 Km can
be accounted for as uhstable waves generatéd by moving
disturtances.

" A result that could be important to the experrimertal
probieh of observing unsfable shelf waﬁes propagating aiopg
the Gulf Stream is contained in thé resulﬁs given abcve,

The method used for detecting shelf waves has been to -
analyse tide gauge records taken along the coast,
Non—barometric resPChses are attributed to shelf.waﬁes
propagating along the coast (see Mysak and Hamcn, 1969).
Ouf results indicate that the unstable waves have small"
amplitudes on the inshore sidé of the stream, and that in
some cases they are cf abcut the same amplitude as the
stabls waves, Thus it is gquestionable that the unstable
waves could be observad in this WaYe

Note that though our results have'been derived.fcr curl
free wind stresses it is expec{ed that the results for wind’
stress with.curl would agree at least gualitativeiy because
of the structure of theV"free waves", Before considering
the problem of more r=alistic wind Stressés it would ke mcre
important to try to locck at a mcre realistic model. For
"éxample we have completely ignored the stratificaticn and
vertical shear in the streém. ~finally, though, we point out
again that the methods developed here apply only fer limear
ﬁodels that cannot hcpe tc ccpe accurately with finite

ampli tude phenomena such as the meanders in the Gulf Strearn,
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' CHAPTER V - Conclusion

In Part A of fhis thesis we hévé studied the prcblem cf
- the generation of ﬁnétable shelf waves by the'ﬁind in a |
vbarotropic mbdel that ;ould abply to ;he Gulf Stream cver-
the Blake Plateau. This waé done in order to test the
hypothesis that the neanders observed in the Gulf Strear
might originate as unstable shelf waves that extract energy
from the lateral Shear_of the stream énd are generated Ly
the wind., The propagaticn of‘such waves was studied iﬁ‘NM

- whers it was found that the unstakle shelf waves have
properties similar to the waveliks prcperties of the
meaniefs. Hare we héve studied ths generation of these
waves in order to find under what conditions the wind
generates then most efficiently.

In-ordér to solve this prcblenm ué solved the initial
boundary value problem for the response of the mcdel tc an
applied wind stress‘by mearns of Fouriér—Laglace transforms.
This leads us to the problemlof evaluating thé asymptéfic
behaviour for large t cf Fcu:ie:—Laplace-inversion integrals
for éysfems that support unstaﬁle waves, This prcktler has
been worked out by plasma physicists studying.the 
interaction of plasmas with electron streams for the case cf
stationary forcing functicrns. An observer moving at

velocity V will see the wave exp(s,-ik,y) if (kO,s;) is a
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Vdoublgtze:o of A(k,s+ikv) (A(k;s)zo.is the dispersion
relation), such that the steepest descent paths through kb
approach k., from opposite sides of the (poéitive) real k
”axis.,‘SuCh_a-ko:is'Called a pinching'éaddig péint.  |
Criteria caﬁ be found to determihe frahsition velocitieé at
vhich saddle péints change from pinChiné‘tqfnon-pinchingf
Tﬁése'results ares éasily extended to the problenm of
determining the asymptotic response for a moving fcrcing:
function. The respcnse is the sum of two terms, the fprced
response and the transient response.: The transient resgcnse
-is determined exactly as the respcnse for a stationary
forcihg function, ‘Thé forcad résponse is a wave whcse phasé
velocity, -is/k, is the same as fhe veélocity of the forcing
function, It appears only in a finite tangé of velccities -
the endpoints of which may or may not be the group velocity
of the forced wave, |
He havé applied the above tachniques to the problem of
the generation of unstable shelf waves by the wind fcr
simple curl free wind stresses. The results.ihdicate that
moving wind systenms cah"ﬁe verylefficient in generating the
unstakle waves. A siog acwnstreaﬁ moving system is‘thebmosﬁ.
efficient at generating the unstable waveé, thcugh its
efficiéncy_is‘affected quite considerably by.the duration of
the 3isturbance. A fast upstream moving wind system is less

efficient at generating the unstable waves, but the
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efficiency here is alﬁost ccnpletely independent of the
- duration ofsthebdisthtbéQCe. It is fouﬁd’in general fcr the
:curl free wind étresses‘that the unstablé waves are mﬁéh
larger 6n‘thé-offshore edge of the stream than anyWherér.
else.’ The results describad above'c¢uld be usefui in
intefpreting Gulf Stream meander dafa‘éiﬁCe now we“éan_
obiain'é relatiohship between.the,velocity.and time scale of
a weather system, and its efficiency af genérating the
unstable wa&es. | |

Invsolving the problem of the generaticn of the
unstable shelf waves by the wind w2 have made many
simplifying_assﬁmptions; The stratificaticn and vertical
shear in the Gulf Stream have been ignored., The nodel
studied is linear so that it>cannot deseribé the finite
amplitude meanders accurately. The wind stresses that we
have considered are curl free when alhost all wind systenms
~in‘tﬂe real world have ncn-zerc curl. However, e have
solvad fhe problem we set»out to:do which was to gc beycnd
the stability analysis that is usuélly done and to determine
how much faith can be put in their results. Our results
indicate that care should be exercised in,dpplyingbgenéral
‘stability énalysis to géobhysical systems and that if
~possitle it should be augmented by at least determinipg
wvhether the system is convéctiVely or ébsoldtely unstable.’

Further as we have seen'it is possible for the instability
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to be of importance cnly in a part of’tﬁe,system.' Besides
this we have obtained results that can possiblf‘be of use in
interpreting meander dafa.

. The work presented here showus how methods developed in
-one field can be used profitably in'another. We have sclved =
~a problem in geophysical fluid dyramics, not atfempted
beforg; by methods developesd in plasma physic#. This werk
" at least indicates é ditecfién that instability studies of
mors realistic models in geophysical fluid dynamics cculd
take, since the methcds gathared tcgether hare are
.sufficiently general that they could te applied to a iarge
class of such modzls. PFurther, th2 results are of interest
in tﬁemselves as £hey indicate that certain wind systers, in
particular thoée zoving slcwly‘in the direction of the
strean, are very efficient at generating the unstahle‘waves;

at least on the offshore side of the streanm.
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AJ Transverse Upwelling in a Long Narrow Lake
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CHAPTER I - Introduction

Uéuelling can be imfcrtant to the hiological FILccesses
in any tody of water. In parficular it can be‘a limiting
factor in the productiQe bapacityvof'a nutrient pccr lake,
Thus it is importént to understand the processes responsiblé
for the generation of the thefmocline motiéns that‘wcu1d be
associated_with upwelling in lakes.

It is well established that longitudinal thermccline,
‘motions (longitudinal internal seichés) are generatéd“inv
lakss and ihleté-by winds parallel to the long axis cf the
lake or inletv(sge Heaps'and'Ramsbottcm (1966),-Farmer
(1972)). Csanady (1973) has also found that transverse
_internal seiches are generated by winds invlarge obldhg
iakes.‘ His ﬁork‘indiéates that.uinds perpendicular tc the
long axis of the-lake are mcst efficient in generatiﬁg these
'&ofions, espacially for narrow lakes., However, in leng
narrow glacial lakes the tcpcgraphf around the lake usueally
confines the winds to bloﬁ parallel to the.axis cf the lake.
.Thus wve wish to knoﬁ whéther such winds can generate
siginficant transverse thermocline;MOtions.. Csanady's Qork
does show that long axis winds do generate'transverse'
‘motiqns that grow with tiﬁe buf-no‘numerical resulté.are
given.

Here we investigate the response of a long narrcw lake
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to érbittary wiﬁds'ahd com?are_thebtheoretical‘results to
observations made at Babine Lake in ncrthern British
Columbia.A We also compare our results to those given ty
Csanady for Léke“MiChigan. The médel-thatrue-use iélmuch
the same as the iﬁfinitely long two layer Channel mcdel used -
by Csanady., The main Qiiference‘being that wé inciude fhe
effects of horizdntal turbulence whereas Csénady's_modeliié
comletely inviscid, M |

In the next section we descrite the model in more
detail and present the equatiqns ¢f mction for.arbifrary
~wind stress. Next we przs=nt the solutions for twe
different impulsively appli2d wind strssses, a lcng axis
wind.and a cross-channel wind, both uniform in.space and
time., We find that the inclusion,cf‘eddy'viSCcsity-improves-
‘the ccnvergence of the series representing the soluticns sc
that it is practical to sum them. Next we-present
calculated reshlts for a model Babine Lake and a mcdel Lake
Michigan. Finally we compare the results from the modél

with data taken at Babine Iake by the author.
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CHAPTER II - Formulation

ﬁe consiéerﬁa rctating ‘infinitely lcng -tuc iayer'
chahnel with a flat botton. Horizoniél turhulenﬁe.is.
modeled through a éonsfant'CCéfficient of eddy visccéity, a,
"that is assumed to be the same in hothilaYGrs. .WE igncre
vertical stresses, except for the wind streSS'at:thev.
surface., Thus both bottom friction and interfacial fricticn
are ignored. O'Brien and Hurlburt (1972) have found that
these are negligible in_theif‘numérical models of‘oceén
‘upwelling. The lincarized equations cf ﬁotion fecrx this

model are

W -Bv =g v )+ Awy + TS ML _ N (1a)
Vi LU= Avig . TSN, | | (1b)
k,{*—H,u,,:o,. | o (1¢)
| Uae=Fva=-q(hth, ) ¢! by + AlUayy, o (14d)
vzumi—.Av.;x;) | ‘ o (1e)
hae +Q1u,*=o. - o D | (11)

The subscripts 1 and 2 refer to the uprer and lower layers,
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respactivelf, and g!=g(&_-9|)/£_;, The'cofiéliS'paréméter,
f{iis assuned cbnstani.» T he Qeomefry‘is'shown in Figure 1,-
uheie'H; are the equiligfiuﬁ depths of fhevlayers, assumed
constant and the h; are the‘perturbed depfhé.

These equations inciude the assumptigns that the tottonm
is flat and that the channel is infinitley long. Thisklaét
assumgtion allows us tc aséume no y dependence‘if the uind_
stress is uniform along the lake. Csanady has discusged tﬁe
juStification for these assusmpticns. Brisfly, the infinite
channel approximation is valid for times less than thé tire
required for internal wavas to travel th= length of the-
lake. In ignoring variations‘in tottom topography WE are
neglecting singularities in.the equations cf motion that"
result from the depth going to zero at the side. Fcr a lake
vith steep sides and a shallcw thermccline the possitle |
effects of neglecting this.singularity‘uilllbe ccnfired tc a
narrow ‘layer at the sides.

In 1ineariziﬁg the equatidns we have also neglectéd‘the
effect of any curvature tbgt_;@e lake might have. However;
it is possible'to eSiimate thé importancé’cf the curvature
by comparing v, /R with f. Here R is the radius of
éurvatufe. After we have computed v, using the linear rodel
above we will maké this ccﬁparison to maké sure that we were
- justified in naglecting curvature.

Finally, it has beern assured that the motion is depth



independent and
~the wind stress
is only coupled

equilibrium,

The system

113
horizental in. each layer separately. - Thus
acts as a bodj‘force in the upper layer and

to the lower laYer by m2ans of hydrostatic

of equaticns (1) is solved subject to the

boundary conditions

Wi lo,t) = vitoyt) = wp(k,ed = vl tY=0, (2)

and the initial

wilx,0) = V(%X 0) =0,

conditions

S (3) .

“'\;, LY‘,O)*: \'\A-'
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The sYstem (1) is solved by expandihg in Fourier series.
in'k.v This is equivalent to éxpanding in terms cf the
internal and gravity wave modes., From the houhdafy

conditions (2) we see that the expansicns will:be cf- the

form
. w )
L‘LLC*)t\' = Z Winlt) Ix{»hrflg__.l( ) _ (Lla)
. ne , . _ .
: o0
'\f;_(.x)t\)=- 2 'U';m.(t\ F YN Y_‘..‘l&!‘ 3 . (ub) .

. n=!
and then we must have

»V(x¢3= Hp 2{ knJi3c01%%¥- (tc)
- b _ . .

Substituting these -expressions intc (1) gives a systen cf
first otder.ordinary differential equations in t. They are

then solved subject to the initial ccenditicns

Uzy (0 =V, (0=t LO) =0, v - (5)
We now present solutions chtained in this way for a unifornm
long axis wind and a uniform cross channel wind.
Section A.  Long Axis Hing

For the long axis wind we have fcr the wind stress
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TS (x,£)=0, (6a)
, 1 ts>o
.ts‘jt‘l)-t7= To (6b)
©  t<0
Then ”‘*(x t) can be expanded in a Fourier series as
4, <
____o \ . [2nan o -
TSH(n ) = e Am(—\:—'n’x>. | | | | (7)

neit

Thus we see immediately that for uniform wind only 0dd rodes

will ke excited.

The Fourier coefficients for tha upper layer for this

wind stress are

3 . - -
. 88 96
L\‘“Lf)= 1‘{APH‘3 (T )[\1’2({)1‘_ EKP(szit)t\'\)EL Cl?(selt))] )‘ : (8)
. L-l . N .
T f. 8 |
Ly = o= C- p(s1 )
Vil zAfH(m “ wvzl e el +C“‘ems”ﬂ)] )
£ 2 ’
‘l’t [ :
Uy lt) = ?‘“‘3“ ™ Z‘_&IL gﬁ?(.ﬁli) +‘ds},€¥.p(§i;t3] , (10)

i.\l

for odd n. They are all zerc for n even, The expressicns
for the lower layer are sisilar but are nct given here.  The-

suchrlptc I and ref=r to the baroclinic and tarctroplc
modes, respectively. The cocsfficients in the abcve

exrressions are given by
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$3(1-%¢ )

dqp = — N (11)
R -SE(S- 1) (ST - 55 |

_ ) dri o _ . S : R ‘
CI“." . (SIL +An7~“'lL‘7-) ) | R . . (12)
bi; = 31% STk O\'IA'. > » » : ._ o ‘ - {13)

where j and k are the cyclic permutafions of 1i. Identical.

~expressions hold for the barctropic mcde with the pcsitiohs

of I and E interchanged, | |
The exponents, s, in (8)-(10) satisfy the cubic

equaticn
N l\v\"‘\'\zfzglf[ﬂ\inqﬂ“fq-‘-. £+ g ’)]S*Qly\"vl\_‘z NA = o, _ (14)

where for the sy, =Xy and for the s¢, L=)¢ with

Y= agwir /0008 | W =atvee (e iTmer ) /2) X (15)
~and
e WETT DN /e nd] | ¥ = gL (16)

" The length scales ¥r and Yg are the baroclinic and
Barotropic Rossby radii of curvature, respectively, as

defined by.OﬁBrién (j973).A.Futther

&« (VT 2)0s W) My st /00 R 9N ) . (1)
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vhere

e %5 /%e. o . o - {(18)

Note_ihaf the coupling between the barcclinic and the
‘barotrcpic_modeé, which is measured by €, is sméll
 ,if”9&<<?E- This is always the case, since both in thé.
oceans .and in lakes g'<{g. Further the harotropic;mcde‘is

| less important than the baroclinic since 8§<<9} fcr the same
'reéson. | | | |

Using (14) it is possible to shcw that

g, = - AWLE (- X)) 5 (19)
where in situations that are nct dcminated by fricticn,

ke OFent)TY , I . (20)

These are the situations of interest tc us. Fecr smail n,

the other two solutions of (1&) are a complex conjugate pair

with

rfsleRefal e gt liey, e
and |

Tmisi} s I“‘iﬂ sty g ;'?“?zn“<3fxiﬂmv(\ )Yz (22

We will see later that the second term in (22) is small for

n small enough. Thus we see that at least the first few
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modes have fréqpenciés_close-to thqse given bf'the'inviscid
‘theory (see Csanady). When n becomes,lérge; of ccurse, fhe
sécond term dominates and then (22) nc ionéer‘holds. ~When
this. happens all of the solutions of (11) tecome real aﬁd»

instead of (21) and (22) we have
G = ~AR LW S?) . g ' (23)
Sy =~ AT (W Y S (24)

where s=-s,-K. The transition cowmes when n=n, where n. is

given ky

nex 2 W80 /ant sONST - o (25)
or

Ne VT L /Am | %\ 4, ‘ | (26)

The important thing tc ncte is that all cf the mcdes have a
tige decaying component and a steady state component (in
some cases_;he steady state cqmponent isvzero) and that up
to a certain value of ﬁ, £he higher the mode numter the
faster the decay. Of course, after all the rccts turn r=sal
s, no longer increases with n, but we will see that the
contributions from such ternms are negligible. The stéady
stéte.components,can be summed éiaétly and the sums with the

decaying components ccnverge very'rapidly. Thus it is
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1pra¢ti¢a1 to sum the series numerically.

The sums of the steady state part of the solutions are .

- - T KL\L#/L)’- 6 (X/L )% x} S o (27)
S Ay L ' o :
X .
: . N o ‘ )
\J]LX){_}-E-—— LY\/L—) K \* LX/L-J\k ) ‘ ‘ . . (28) )
2A%, W : :
Wy =0, , . . v (29)

Thise are the asymptctic distributions fer tew» of the
'solutiéns in (8)~-(10). Theyﬁmay te oktained from (1)
.directly assuming steady state (and that h, (x)=0 at x=1/2).
‘Notice that there is no coaétal jet contained in these
steady state soluticns, as is to be expectad, since the
coastal jet,isva timé'dependent éhenomenon, as has béen
pointed out Lty O'Brien and Hurlburt'(1972) in the case of

coastal upwelling

Section B. Cross Channel Wind

For the cross channel wind stress we have

. | tvo, ‘
’ts*()k,t) = T, ‘ ) ) . (303)
(-} téo

)
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T (%)= 0. o : “  | - (30b)

Then TS is expanded as in (7) for T®Y 1in the previous

case, The coefficients ncw are

o g\ Sttt .k .
kmlﬂ-‘l“‘; ("“‘“”2(\’“ e’ 4 bel e )] ' ' (31)

29,
- ) 3 N .
T . . 3 ;‘L . . . Ett . -
vmtt)--.__.q“[" L Siabsi e 4 Seabei leg ) o (32)
PR AR ST T Sgrs Aol
j,:l )
3 | ‘ -
ug, @t
W lt) = LI X X ZK Sgabg @ +Sc-,,;\>e; ESE ] N S (33)
wvhers we have
A . 2 -
Fvtdg (Spashe M) 83 (1-€g) (34)

by = -
S O N N 2 3D

Again an identical expression holds for the b, With T and E

interchanged., Here the steady state respcnses are

MO =M = = (Tel /2p Ky D-2ex/00] | - 35)

V) ULy s o, : | - (36)

and we see that the thickening_df the ﬁpper layer c¢n the
downwind side of the lake is fcrced directly by the cross

channel wind. Whereas for the long shore wind the
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thickening on the side of the lake to the right cf the wind‘
l(in the Nothern Hehisphere) ié forced iﬁdirectiylby‘the Qindv
through the Coriolis force due to the earth's rotaticn..

Note that the series in (31)-(33) woﬁld notbconvergé.at
all ra'pidly if it were n;)t for the decrease in decay tirme
with mode numher; This illustrates the difficulfies

encountersd in trying to sum these series in the inviscid

case,
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CHAPTER IV - Computed Results

We nowvw present numerical results cbtained for the above
modei-in two different situations.” The first is fct a mcdei
'Babiﬂe Lake and the second is for the wmodel Lake Michigan
considered by Csanady. Thg relevaht parametéfs for tﬁe tvwc

- models are given in Table I.

Table I
r -T T R
| Paramater | Babine Lake | Lake Michigar |
t- 1 e 4
| H, | 10 o { 12 m [
| H, | 190 m | 60 © |
| L | 2 km { 120 km |
| g? | 1 co/sec? | 2 cr/sec? |
| £ { 10-% sec-1 I 10—4% sec—1? |
| 2 { 3.1 km i 4,9 km |
| e i 450 km | 920 km |
L 1 L . ]

Note that no values are given in this table fcr &,
This is tkecause we kncw very little about the value of B for
’lakes excépt that it certainly should ke smaller than
oceanic values since the largest horizontal-length scales
are smaller. Thus fqr_Babine Lake.results are presented fcr
a range of vaiues"of A. It is found that for A<104 cn2/sec
the results are almost independent.of A, .For Lake Michigan
we preseht results fcr only cne representative A,

in order to calculate the'responsé of the model we nust
sum tge series in (4) with the coefficients giveh in-(8)-

(10) for long axis wind and (31)-(33) for cross channel



123

winds.: As has beénfpointed édf before this will presert nc-
problemé f§r3times 1onger than.the decay timeé éf fhe higher,>
modes. This is not the éase for the inviscid prcbler where-
' the:coefficiénts in the series do not decay in time. Thus
intrbducing eddy viséosity is at 1eas£.a ccmputaticnal
convenience in that it greatly improves the convergence df.
the series. This‘is especiaily tfue for the ctoss_chanhel
wind ;Bere the coefficients decrease cnly as (y*ﬁwwﬂ‘ fof

the inviscid model (sze Csanady (1973)).

Section A. Babine Lake

— - . - ——

We will presznt results for A=10S, 104 and 103 cr2/sec,

Using the values in Table I we have
V= 2338, Mg = SR,

$1: 1083 | Sg= §xwS,
Thus we see immediately that the barotropic modes are
negligible compared to the baroclinic, since - . ihus
we only consider the barcclinic mode in the-disgussion
below,

Before we prééént the scluticns we will»fi:st point out
the relevant tinme scalés for the ﬁotion.v From equaticns
_(1§) and (Zi)-we'haﬁe, sinceiﬁx;>\ |

S, % - Anr/L0

Re‘{ﬁ;.k '-Reis;.\( x - Am‘n‘/z'l}» '
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up to m=n.. From (25) n. is given by

nex 3 L 105/A)

For n>n (23) and (24).give o ' ' .

Gx - A /2
‘At
5= -E0N /a
for n<n, then, the inportant time scale is

——

7 [N s
Pax LD, /'-i-rv‘) o

For n>n, we must also conszider the time scale for the

$3 compon=zut, which is
- -5
(% .003 (107% A) Ly,

Thus we sce that the contributicns from the s, components
for n>n,. are unimportant for aﬁy times longer than cre hour
and, therefore, the T, are the important time'scales{ For
A=105vcm2/sec, T,=11Ahr and for Aa=103 cm2?/sec, T,=1100 hr sc
that for A=105 cn2/sec the systan will reach equilibrium
affer only about one day. Wheoreas for A=103 cn2/sac
equilibrium is reached only after more than two or three
month s, However, even for A=103 cm2/s¢zc, T§=1.1 hr sc that
even then not too many terns are n2aded té approximate the
sums. Finally, ths frejuencies of the oscillating mcdes are

6‘,\:4‘?(_1%).;\’\1)./?'%@\1?\.
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The first mode has a pericd cf abcut 3.6 hr.

The results obtained for a long axis south wind are
ishoun in Figures 2-6. In Figures}2 and 3 we show the derth
anomaly of the upper layer ahd thé long shcre velocity'in
the upper layer after a 1 dyne/cm2 wind stréss has been
_appligd for 22 hrs. Note that there is 1little differenﬁe
be twsen the profiles for A=103 and A=10% cmf/séé} excert in
a narrow viscous boundary layer. Thé derth profile is
unimodal, as is to be expected fof a narrow lake. The
~difference in the depth cf thé interface acroés_the lake is
12 m., As A.O these profilss approach those for thevinviscid
problen, InvFigdres 4 and 5 fhe‘maximum yalués of the depth
anomaly and the lbng shore velocity are plctted as fqncticns
of time for a 1 dynescm? wind stress. The depth.anomaly
oscillates slightly at the frequency of the first internél
mode .tut the velocity does nct. Again we note that there is
little difference betweén 3=103 and A=10% cm2/sec, In fact
the curves for A=103 and A=10% c@z/sec:fﬁr v are
indistinguishible. Internal oscillations at the frequehcy
of the first internal mode dcmina te the cross strean
velocity as is seen in.Figure 6. Note that the léke'is tce
narrow for inertialescillaticns.

vin Figuresb7 and 8 we show some results for a crcss

channel wind., Here we. see that the internal oscillations
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dominaté the deptﬁ_ahomaly_responsé, as seen in Figure 7.
‘Again the depth profile is unimodai and.aimost_ccmpletely
‘independent of A, One impcrtant differénce,between the
respolse to a cross channel wind‘and-long axis gindlis.that.
fhe response to the formgr'is much faStér._,The.maﬁiiuﬁ

- displacements are reached within the first internal wave
perioq for the cross channel wind. The displacements fcr a
long axis wind grow almdét linearly in time. So that for
short periods the cross channel response dominates, tut as
is seen bty comparing Eigures 4 and 7 the résponse.due-to a
1Qng axis wind'eventually domiates, in contrast tc what

Csenady suggests.

Section B.  lake Michigan

' For the case of a wide lake we expect the results_télbe
'quite different., Csanady has found that for the inviscid
case fhe first few mcdes are almost'bf equal importance so
that the response is expected to be multi-modal instead of
unimodal as for a narrow lake. This agrees with
observationsbmade atiLake-Miéhigan (sée Csanady (1973)).
He Qill present results only for A=106 cmz/séc as ﬁhis
is as large as we expect A to be (it ié abcut the lowest
value used fof the CCean)'and it is found that again the
resulfs afe pretty much indépendeht of: A for A€10°‘cm2/$ec.

From Table I we find

M=o . Ner260/us
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Speles | 8g= quioh

. ' - : . ‘ . S | ot
Thus again the baroclinic mode dominates, i.e., Sz&8;.
_ _ . S . o
However, now X1¢\ so that we are in a.different regime,"
Here we have

S\ At _)\\-_L /1
Req Sz"s‘" Ke‘{?{} ::g[ﬁv\}hu./LL

antil w>»'Y)y, i.e., for £<7. Fcr. n>7 uwe have again

The time-scales of the first few mecdes gc as
4 -y Y :
Tn':s \0'n c 0.7' ,

Thus .the response time for the first mode is about 30 years.

.Further

ncxzooo)

~and the tinme scale for the S, mode for n>n . is atout 7 mins.
The important time scales for n>7 then go as
Ta S B¥A0° =2 e

for n¥63, T.=1 hr. So that again summaticn of the series is

tractable; however, here more terms are required tc ckttain
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satisfactqry acCuracy for times of the order of hours. The -
frequencies of the first few modes aré almost inertial,
i.e., with periods of about 18 hrs.

- .In Figures 9-11 we éﬁow-some‘results obtained fcr the
mﬁdel.Lake Michigan. . IﬁiFigure 9 we show the depth anomaly
as a function of x for times of one, fwo and three days.fcr
é wind stressiéf 1 dyne)cmz. AWe see that again the response
is very fast with the maximum response being reached wiﬁhin
the first inertial period.. Tha prefile is’multi-modal as we:
expeéted. Howsver, the full structure doeé‘not develcr
within the first oscillaticn. Note that ths maximum
dicplacemant away froa the sides is of the order cf 1 ., 1In
Figdre 10 we show the depth ancmaly for a long axis wind
with a 1 dyne/cn? stress for times of 10, 20 and 30 days.

We see that only the first and third mbdes are in evidence
and that only’for.rdther long times does the respense tc a
‘iong-axiS’wind dominate the response to a crbés channel
wind, In Figure 11 we show the long shore velccity as a
function of x for a 1 dynescr?2 long axis wind. We note that
the coastal jét is present here. |

The resﬁlts described above indicate that a steady wiﬁd
stress in an infinitely long channel model is not sufficient
to account for the observed disrlacements in Lake PMichigan
which_are of the order of 10 m isee Csanady (1973)). These

larger displacements cannct be 2xplanied as a response of
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the-infinitély'long‘éhahnel‘{o a long fefm 1oﬁg axis wind
since the~obsérved-diSplaCements definitelj.have a multi-
modal'strﬁcture._ Anyway, such long term winds woculd
certainly require inclusicn cf éndfeffeCtsg " Two

possibilities that could be considered within a linear rcdel

are that-either the respcnses are a resonance effect'orfthat_.A

end effects are important. Fither of these possikbilities

requires that a closed basin mcdel be considered,.
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CHAPTER V -'Comgarisbn with Cbservaticns fcr Eakine Lake

. Here we present some_obsé;vatibns made at Eahine‘Laké
By_fhe.author and ccmparevthem ¥ith fhe thécretical results
giyen above. During 21-25 August, 1973 a series of
temperature transects was.madé a£ Babine Lake;. Three
transects were made at different locations twice avday,_oﬁce
in the morning and cnce in 1ate'afterncoh cr early evening,
See Figure 12 for map of Babine Lake and locations of
transects., During this pericd wind data were being reccrded
by instruments placed by L. Farmer of the Mzrine Sciences
Branch, The instrumentaticn was placed as part cf a larger
prégram"of étudy being conducted by Farmer iﬁ conjuncticn
with the Fisheries Research Board at Babine Lake. The
purpose of doing tﬂe transects was to determine whether
'there were Significant transverse disrlacements cf tﬁe
thermoéline that could be correlatsd with winds.

On two separate occasiohs there were significant tilts
in the thermocline, These occurred on the afternccn run cf
21 August and the mcfning run cf 24 August, sze Figure 13,
On the 21st there was a large disélacement'at two staficns 
but none was obseryed on thé other. The maximum | |
displacement across the lake was o m. On thé 24th
displacements wers cbserved on all transects with a

displacement of about 4 m across the lake, 1In tcth cases
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the 3isplacements uére unimodal as‘preaicted by the‘mcdei.

It was found that the tilting observed on the 2ist was -
obsarved just after a 5 hr period of.rather strong ncrth
- winds, beginning at abcut 11:00 PST, see Figure 4. ﬁote
that the winds are in the Tight direction to,giQe the
observed tilts. On the transect where there was no tilting
6bserved cross channel winds Qeré alﬁost as 1argé as the
long éhore wind. This cculd explain the-lack of observed -
displacemants., At the other two transects the wind stréss'
had an average value cf abcut 1 dynescm2 fcr the 5 hr
_period. Going to Figure 3 we'see that we get: a disp]acemenf
of about 3 m‘in this casse. A

‘The tilting of the isotherms'SbSetQéd'on the 2uth
follows a period of aﬁcut 2“dajs‘cf‘mild intermittent long
shora north windé with a short period of_strénger logg shcre
vinds occurring just befcre‘the measurem2nts were taken, see
Figurs 15. The average value of the wind stress fcr-this
period was akout .1 dyneycu?2. Figure 3 gives a displacement
of about 3 m across the lake for this case.

Even though the thecretical results agree fairly well
with the observations we will estimate the effect cf
neglecting the curvature cf thevlake to determine whether Qé
are justified by the success of the agreement. As caﬁ be
seen from Figure 11 there is appreciable curvature in thé

area where the méaSurements were taken, The radius cf
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curvature here is about.s km. As stated earlier vwe car
‘ésfimate,thé*importanée cf the curvatﬁfe by comparing v, /R
with £. Now for both cagéé.described'abové figure 4
‘indicates that v, <.5 n/sec. Thus v,/R<10-% sec™1, and we
‘see that inertial effects cértainly dc nct dominate bpt'that
they mighf hodify the flow somewhat. Finally we menticn
that end effects afe probably not important siﬁce it |
requires about 60 hrs for an internal wave to travel the

“length of the lak=.
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In part B of this thesis we have presented a model ﬁhat
desqribés the generaiion of transveréé motions éf the .
‘interface in an infinitely 1cng two layer'lake by‘uniform_
“wind of arbitrary directionr‘,We*havefincludeﬁ;fhé effébt@"
of horizontal eddy viscosity. The main consequence of its
inclusion sesms to be that the convergence of the series
solutions for the mcdel is.greatly-improved and makes
numerical summation practicable;

A compariéon of the ccmruted results with data froﬁ‘
I Lake-michigén indicates that a cro§s‘channel wiﬁd”genéfatés
.the mulfi-modal structute cbserﬁed there, but that the
magnitude of the'displacementsAaré larger bty a factéf cf 10
thén those predicted by fhe theory. 1Iong axis winds do not
gven génerate motions of the‘bbserved,form. It seenrs that a
'modei including end effects and/or non-linear effects is
required. |

Applying the thecry tc a narrower lake gives better .
results, 'Observationé_made by the author at Babtine Lake
'show that in a long narrcw lake significant interface
displacements are:generated by long shore winds. The rcdel
predicts dispiacements that agree both in'mégnitude and form

‘with those observed,
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