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ABSTRACT

Preliminary results of a two-layer quasi-geostrophic box
model of a wind-driven ocean are presented. The new aspects
of this work in relation with conventional eddy models are a
finite element formulation of the quasi-geostrophic equations
and the use of mo-slip boundary condition on the horizontal
solid boundaries.

In contrast to eddy resolving models that utilize
free-slip boundary conditions our results suggest that the
obtention of ocean eddies with the no-slip constraints
requires a more restricted range of parameters, in particular
much lower horizontal eddy viscosity eddy coefficients Ay
and higher Froude numbers F{ and Fy. We show explicitly
that a given range of parameters, which is eddy generating
when the free-slip boundary condition is used, leads to a
quasi-laminar flow in both, upper and lower, layers. An
analytical model to interpret the numerical results is put
forth. It is an extension of an earlier model of Ierley and
Young (1983) in that the relative vorticity terms are of
primary importance for the dynamics. Thus, it is shown that
the boundary layer dynamics is active in the interior of the
second layer, and it can be concluded from our method that

for given Fq and Fy such that the lower layer geostrophic
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contours are closed, to the existence of the western boundary
layer will prevent the homogenization of the potential

vorticity so long as Ay is large enough to stabilize the

northwestern undulations of the flow.
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CHAPTER 1
INTRODUCTION

During the past fifteen years or so, oceanographers have
made great progress in the development and understanding of
large-scale oceanic phenomena. This progress is the result
of a balanced scientific approach involving better
observational techniques as well as more sophisticated
theoretical models. The impetus for the development of eddy
resolving general circulation models (EGCMs) came from the
need to simulate numerically and to understand a posteriori
the nature of the eddies which were the most outstanding
observational features of field programs such as POLYGON,
MODE, and POLYMODE. The EGCMs, which include eddy motions at
least on some space-time scales, require much greater
hérizontal resolution to take into account the instability
properties of the larger-scale circulation, which yields
mesoscale eddies on the spatial scale of Rossby radius of
deformation. Thus, in contrast with the earlier analytical
models and numerical models with coarse resolution and high
viscosity which produced an inadequate representation of the
process involved in the ocean dynamics, EGCMs depict a
circulation that is strongly turbulent and time-dependent.
The first experiments of this kind were carried out by

Holland and Lin (1975) in which they showed that instability



in the swift boundary currents and their intertial return
flows led to significant eddy energy production and that the
eddies then modified the large-scale flow in a fundamental
way. The success of this early work led to further
eddy-resolving calculations that continued to explore the
details of eddy production and eddy interaction with the mean
flow and the effects of the inclusion of thermodynamics
(Robinson et al., 1977, Semtner and Mintz, 1977). All these
models were designed to simulate the mid-ocean gyre dynamics
of the North Atlantic Ocean by using the primitive equations
(PE) and as ocean domain an idealized box without bottom
topography or with a very simple shelf and slope. The
forcing wind stress was a steady sinusoidal signal.

If one thinks that the main dynamical variable of a

baroclinic mid-latitutde ocean is the potential vorticity q

_ (28 + ) - v
q 5 ,

where & is the earth's rotation vector, ¢ is the relative
vorticity and p a conservative fluid property, then it seems
natural to simulate the eddy dynamics by making use of the
quasi-geostrophic approximation. Several modellers working
with an EGCM-baroclinic ocean have followed this approach
particularly since 1978 when Holland (1978) initiated an
extensive set of numerical experiments with a two layer box

ocean and the quasi-geostrophic approximation to the PE.



Later on, Holland has extended these 1978 experiments by
including more layers (up to 8, 1986 personal communication)
and enlarging the geometrical dimensions of the box ocean.
The improvement in the resolution of the vertical structure
yields such interesting results as the homogenization of
potential vorticity in the intermediate layers--a result
predicted theoretically by Rhines and Young (1982).

The advantages of a quasi-geostrophic model over a PE
model are mainly computational (Semtner and Holland 1978) so
long as we assume that the mid-latitutde ocean circulation is
within a range of parameters. How representative such a
parameter range is of the real ocean is a debatable matter.
More accurate observational and numerical results and further
theoretical developments show that the quasi-geostrophic
approximation is insufficient to display some important
features of the ocean dynamics such as the outcropping of the
isopycnals allowing the ventilation of subsurface layers.

The latter is believed to play a fundamental role in the
dynamics of potential vorticity (Luyten et al. 1983).

Any numerical model designed to elucidate the role of
certain mechanisms of the dynamics of the ocean circulation
requireé the adoption of compromises in carrying out the
calculations. Two compromises of this kind are the
parameterization of the sub-grid scale motion and the choice
of the boundary conditions. As for the first one,

geostrophic turbulence theory (Charney, 1971) shows a cascade



of energy to larger length scales while the enstrophy
cascades towards the smaller ones. This enstrobhy cascade,
on sub-deformation radius scales, must be represented with a
physically motivated parameterization. At present, this is
an unsolved problem in ocean dynamics; however, two explicit
parameterizations are popular in EGCMs. The first one is the
classic Laplacian friction in which the lateral dissipative
terms of the relative vorticity equation are represented as

V « (Ag Vi), where Ay is a diffusion coefficient; the

second one is known as biharmonic friction because the
explicit dissipation is of the form By Vv4¢, where By is

" a constant coefficient. The physical motivation of both
parameterizations or closures has no solid ground. The
Laplacian friction is a molecular-type diffusion operator,
usual in most subsonic fluid dynamics computations. It has
very poor damping selective properties, which necessitate
keeping Ay as low as possible in order not to damage

severely the energy spectrum of the motion. The biharmonic
friction is highly selective so it damps very efficiently the
small wavelength scales and, therefore, the enstrophy can be
non-intrusively removed (Holland, 1978). A possible
inconvenience of this type of closure is that it requires
boundary conditions that are somewhat artificial in the sense
that vorticity derivatives of order higher than 2 are
arbitrarily set to zero in order to close the mathematical

problem. Other alternative closures have been suggested



recently (Basdevant et al.; 1978 and Sadourny and Basdevant,
1981).

The choice of boundary conditions, particularly on the
horizontal solid boundaries, is a matter that is not yet
settled. There are several possibilities such as slip,
no-slip and other less conventional choices. The latter
ones, such as those used by Marshall (1982, 1984), are so
mathematically conditioned that it seems unrealistic that the
real ocean obeys such conditions. Most of EGCM modellers
eager to get an ocean full of eddies (with reasonable
computer expenses) have used the slip boundary condition;
however, it is not clear whether that condition is more
realistic than the non-slip one. 1If one follows Stewart's
(1964) argument that the ocean water is a real fluid and,
therefore, adheres to the solid boundaries so that the
velocity must be zero on them, then it seems that the
non-slip boundary condition is the proper one. Other
arguments supporting the choice of this boundary condition
are shown in Section 2.1 of this thesis. However, if one
looks at the no-slip constraint from a computational
point-of-view, the results are somewhat discouraging,
because, as the author of this thesis has learned in the
course of these preliminary experiments, such a boundary
condition implies a larger amount of dissipation of energy by
the lateral friction terms than in the case of the free-slip

constraint. (Ierley and Young, 1986, personal communication,



have noted that the energy dissipation of a barotropic model
with the no-slip condition is 30 percent larger than with the
free-slip one.) This means that if a given range of
parameters is valid for the obtention of eddies with the
free-slip condition, the same range may become laminar by
using the no-slip constraint. (This has been our experience
in these preliminary experiments with our model.) Therefore,
a drastic change in some of the parameters such as Ay

(which has to be considerably reduced), is necessary in order
to simulate the eddy dynamics of the ocean; such an
alteration of the values of the parameters involves a great
increase in the computational burden.

One important aspect of any numerical model to which
little attention has been paid by many ocean modellers is the
accuracy of the method. Most of the GCMs and EGCMs are
finite difference models of second order in time and space
accuracy. Very few attempts to use higher order methods have
been done so far; however, we feel it is time to move to more
accurate methods because the present computer technology
allows large-scale simulations at reasonable price. The
purpose of our work, of which this thesis is a first step, is
twofold; first, the development of an eddy model using finite
element as a numerical technique because it is well known
that for regular grids (see Fix, 1975, Staniforth and
Mitchell, 1977, Haidvogel et al., 1980) the accuracy of

linear finite element is much higher than that of standard



finite difference methods which are commonly used in the
present operational ECGM; secondly, the systematic study of
EGCM dynamics, under several parameter regimes, when the
no-slip condition is used as a lateral constraint.

We believe that the first stage of our projected task
has been fulfilled in the sense that we have developed a
finite element model to integrate numerically a set of
coupled parabolic-elliptic equations, and we have found a
range of parameters which produces eddies with the free-slip
boundary condition but which yields a quasi-laminar dynamics
with the no-slip one. An analytical boundary layer method to
understand the numerical results has also been developed.

The contents of the thesis are divided into chapters,
and the latter into sections as follows:

Chapter 2 - In Section 2.1, we obtain the equation of
the potential vorticity for mid-ocean gyres based on the
relative vorticity equation and the B-plane-quasi-geostrophic
paradigm of mid-ocean dynamics. 1In Section 2.2, it is
established that the application of the no-slip condition on
the solid boundaries to the potential vorticity equation
removes McWilliams' incompatibilities of those equations and
the free-slip condition. In Section 2.3, a method is
described to discretize the vertical structure of the
potential vorticity equation into a finite number of layers.

Chapter 3 - This chapter describes the procedure to

construct a finite element version of the potential vorticity



equations in a two layer ocean. After the introduction in
Section 3.1 of some notation and basic definitions, standard
in finite element literature, we set up the variational
formulation of the two-layer potential vorticity equations in
Section 3.2, 1In Section 3.3, we describe the Galerkin
technique to discretize the variational equations. Special
care has been taken to derive the discrete no-slip boundary
condition. Time discretization of the equations of Section
3.3 and their stability analysis is taken up in Section 3.4.
We have not presented any error estimate analysis of the
discrete equations because such matters will be reported
elsewhere.

Chapter 4 - This chapter presents the results of three
numerical experiments. We have chosen for this stage of our
study the same paramters Holland used in his experiment of
1978 with the addition of linear bottom friction. The
reasons of choosing such a range of parameters was to compare
consistently our results with those of Holland.

In Section 4.2, we develop an analytical model to
interpret the numerical results of the experiment-3. This
analytical model is based on boundary layer methods and has
as non-linearities the vortex stretching and relative
vorticity terms. A non-dimensional analyis reveals that the
upper and lower layers dynamics are uncoupled in the western
boundary because the stretching terms are much smaller than

the other terms of the equations; however, the downward



momentum flux produced by the stretching terms in the
Sverdrup interior is the driving mechanism of the motion in
the lower layer., Our analytical model is a generalization of
Ierley and Young's (1983) model because it includes the
important contribution of the relative vorticity at the solid

boundaries.

The conclusions and the list of references terminate the

thesis.

The obtention of the relative vorticity equation is

carried out in the appendix.



CHAPTER 2

2.1 Equation of Potential Vorticity in a Stratified

Mid-Ocean Gyre

Let us consider a bounded stratified oceanic domain D
centered at a mid-latitude 8y The equation of the relative

vorcity ¢ in such domain is (see Appendix):

1
%T% + 4 s VE = fwz + Aﬁvﬁg + %E (V A T), (2.1)
where
a (x,y,2z) = (u,v) is the horizonal velocity vector,

w is the vertical component of the velocity,

29 coseO
f = fO + By, B = Ty , f0 = 2Q 31n90 ,

AH is the lateral eddy viscosity coefficient,

> . . .
T is the extermal forcing function,

[w}

I TR

k

t

Since our main interest is the description of motions which
take place at mid-latitudes and such that their metric can be
accurately described by the tangent plane approximation, we
introduce the standard scaling variables for a mid-latitude
B-plane.

The scaling parameters are (Pedlosky 1979)



p = pS(Z) (1 +eF p"),
g = L Rossby Number
fOL y ]
g =& Eﬁi p? = (EQ)Z
f z 2 .2 L ’
s f0 L
2
Nz B S f0 L
- 2
D
B 1.2
B = 0 (2.2)
fcz)L2
where F = <D

L is a typical longitude scale of the motion
D is the mean depth of the ocean
U is a typical velocity scale of the floor

p'(x,y) is a perburbation density in excess of pS(Z)

For ocean gyre scales, the following parametric relations

hold (Pedlosky, 1979).

B>>1, F“O(1)’

% Lp

BS = i ~ 0(1),
BAL

% - ?Q_ - (%_) <1,



2
s folp
€ U

&

> 1, (2.3a,b,c,d)

where rg is the radius of the earth.

The equation (2.1) is up to order 0(1)

VBy = fw (2.4)

or, equivalently, the advection of planetary vorticity in the
interior of the mid-ocean gyres is balanced by vortex-tube
stretching, The vertical integral of (2.4) from z = -h,
where it is assumed that the velocity is zero, up to the
surface, where an Ekman layer type is allowed, gives the

classic Sverdrup relation:

8o /O vdz = £[w]%, = ((vn), ), (2.5)

where T is the surface wind stress.
The geostrophic equilibrium allows the introduction of a
stream function ¢ as a function of the perturbation pressure

p' to the hydrostatic pressure Pg. Thus, we define ¢ as:

v = B (2.6)




ap
because SEE is of the order of 0(10-3%). w, is given as

(see Appendix)

D’ 3 o 3 G
w o= — [z (- —)] + = (—)
z D't 02z Psz 9z Psz
S Psfo w6
D't "3z gpsz 3z 3z ey
D' .3 ,fo ay 3, G
= -9t lsz (531 + 53 (B_—)’ (2.7)
N sz

where G is defined in (A.12).
Substituting (2.7) into (2.1) and arranging terms yields to

the classic equation of the potential vorticity:

f2

D' 3 (20 3y

D't[c + £+ 92z (NZ az)]

_ 3 G 2 ) >

The heat equation (A.12) becomes in terms of wz = %%
D'lpz N2 2
S = ag
E TE YT e (2.8b)

where q is now given by

N

_ i
qQ=1t+ £+ (N2 52 ° (2.9a)



At planetary scales (gyre-scales) and outside certain narrow
areas attached to the boundaries, the potential vorticity q

can be aproximated by

m
NO N

q = £+ 2 (-2 4oy, (2.9b)

N
whereas, for the motions of the mesoscale, q is given by

(2.9a) . Hence, we can conclude that so long as %— €1, no
0

thermocline processes, and N2 = Nz(z) equations (2.8) are
valid either for synoptic scales or gyre-scales.

At this point, it is necessary to stress the fundamental
role played by equations (2.4) and (2.5) to explain why there
must exist zonal velocities in the ocean or, in other words,
why the ocean circulation is composed of gyres. For an
homogeneous ocean, it is obvious from the Sverdrup relation
that there exists a return flow along the western boundaries
of the oceans and, hence, the existence of zonal velocities.
In the case of a baroclinic ocean where the thermocline
effects as well as the horizontals variations of the
isopycnals are neglected, the driving mechanism is the

vertical velocity from the divergent Ekman layer at the

surface. A scale analysis of (2.4) leads to



If we now assume that the circulation is two-dimensional in
meridional planes, that is, that the divergence of the Ekman
layer yields to closed cell circulations in meridional
planes, the mass comnservation equation requires that

vy + wz = 0. A new scale analysis of the latter relation

yields to the new ratio

A4 o 3
(w)2 D

where Ly is the north-south scale of the flow. The ratio

of these estimates gives:

So, there must be a zonal velocity flowing into the

meridional planes.

2.2 Boundary Conditions

This is one of the most conflicting issues of the
quasi-geostrophic models, and therefore, one of the
shortcomings of the quasi-geostrophic dynamics. The
sensitivity of these models to the type of boundary
conditions is well known. Blandford (1971) shows how the
solutions of the vorticity equation of a barotropic ocean can

be altered by changing the boundary conditions. Ierley and



Young ((1986) personal communication) reassert Blandford's
conclusions for a baroclinic ocean. McWilliams (1977) shows
that the application of freeslip boundary condition on the
boundaries of a multiply connected closed domain leads to
incompatibilities between the order of the potential
vorticity equation and the number of constraints required for
the problem to be well-posed. To remove both
incompatibilities, McWilliams concludes that neither
horizontal diffusion of temperature nor vertical diffusion of
momentum are processes to be represented by the
quasi-geostrophic dynamics. However, if one considers that
the ocean water is a real fluid, then the condition required
on the solid boundaries is that the tangential velocity be
zero. It is this condition, together with the kinematic
condition (that the normal component of the velocity be zero
on the solid boundaries) that is required to remove
McWilliams' indeterminancies without ruling out any diffusive
process from the quasi-geostrophy dynamics. It is worth
noting that the imposition of the no-slip boundary condition
on the bottom and a slight modification of it at the free
surface allows the existence of Ekman boundary layers
(Pedlosky, 1979).

The boundary conditions for the velocity are:

a. solid boundaries

> >

u-+n=20
on ¢ U @ (2.10)

a«t=0



where Qy denotes the horizontal solid walls and Qp stands
for the bottom. n and € are the outward normal vector and
clockwise tangent vector, respectively, on such boundaries.

b. free surface

The rigid 1lid condition and the continuity of
frictional stress across the surface are the
constraints used at the free surface.

As for buoyancy, we use Kotchine's theorem (Krauss,
1973) and assume that the solid boundaries are insulated,
whereas, at the free surface, there is an atmospheric
buoyancy flux which is commuﬁicated to the ocean via boundary

layer process on ageostrophic scales. Such a flux is given
ga Q
by a5 C where H& is the thickness of the uppermost
u Po P
level of penetration of atmospheric heat Qp. We further
assume that there are no internal processes of generation/

sinking of buoyancy. Thus, we have

>
KH VHp *n =0 on QH

(K, 57 - Kg VHg = V) o = 0 on g
KV 3% = 0 at the free surface, (2.11)

where Hp(x,y) is the bottom profile.

Conditions (2.10) and (2.11) can be written in terms of the



geostrophic stream function, through a leading order in ¢, as

3 3y _ 3 aYy _
v=C(t), 5 =0, Ky == (57) =0 on a, ,
> 2 32¢
W= up * VHB -y VT, Kv — = 0 on 2p
A
(VA) 2
w = Oz ;w, Kv 32% =0 at z =0 (2.12a,b,c)

where ((VA)z ?w) denotes the z-component of the curl of the
wind stress. C(t) is a time dependent constant on the
perimeter of the domain. dUp is the horizontal velocity at
the edge of the bottom Ekman layer. <y is a bottom friction
coefficient. Notice that the condition (no-slip) %% =0
implies that there be no fluxes of buoyancy by Newtonian
processes through the horizontal solid walls. $So, we have
just removed one of McWilliams' incompatibilities, that is,
we can include Newtonian diffusion of buoyancy in the
horizontal direction without demanding any additional
boundary condition.

The conditions (2.12b) and (2.12c¢c) can be written with

the help of (2.8a) as

Dllpz N2 > 2 2 33¢
et g (ug « VHp + v Vyg) - Ky Vv, - K =3 =0,
K Ezi =0 on @ (2.13)
v B ° B ‘



and

D'q)z . N2 ((VA)Z ‘%W ) K V2 ) K 83‘1) _ EQAG _ 0
D't £, T E, H " ¥ v, H oy O
2
IR
K. —s =0, (2.14)
v az2

These boundary conditions are not incompatible with the
differential order of (2.8) with respect to the
z-coordinate. Hence, the strict application of the no-slip
boundary condition to the Q.G.E. allows the inclusion of
Newtonian frictional and diffusive mechanisms in both
vertical and horizontal directions on the ageostrophic
scales. A simple scale analysis shows that for typical
values of Ky and Ky (Ky = 10° Ky), the lateral
diffusion of buoyancy is dominant with respect to the
vertical one, so the latter process is not included in many
quasi-geostrophic models.

The usual way of computing the solution of (2.8) is by
discretizing the vertical structure of the ocean in a given
number of layers of constant density. As we will see in the

next section, in doing so, the vertical diffusion of momentum

appears as a drag term of the form AV%(w wi), where 1

i+1
denotes the i-th layer, A is a drag coefficient equal to
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Ay/Hi and Hi is the thickness of the i-th layer. The

drag term is similar to the form of the lateral diffusion of
buoyancy. Again, a scale analysis shows that the lateral
diffusion of buoyancy is much larger than the drag term. The
similarity between both processes goes further than a pure
mathematical expression in the context of quasi-geostrophic
potential vorticity, for as it has been mentioned in the

previous section, the potential vorticity in the interior of

P
mid-latitude ocean gyes is given by f 3E , in a layered

B-plane ocean by f + (wi+1 - wi), so the lateral diffusivity

of potential vorticity in such an ocean is Vﬁ(¢i+1 - wi).
This means that the role played by the horizontal diffusion
of buoyancy and the vertical diffusion of momentum in the
quasi-geostrophic dynamics is equivalent to the lateral
diffusion of potential vorticity. Rhines and Young (1982a)
and de Szoeke (1985) show that the homogeneization of
potential vorticity inside closed geostrophic contours at
intermediate layers is only possible if the dominant
dissipative mechanism is lateral diffusion of potential
vorticity by mesoscale eddies. It turns out that a good
parameterization, at least qualitatively, of the diffusive

effects of the mesoscale eddies is given by a term of the

form v « ( V(wi+1 - ¥;) ( a coefficient) which is similar

to the lateral diffusion of momentum in the case that is

taken as constant.



The quasi-geostrophic equations (2.8), (2.13) and (2.14)
are consistent through leading order in &, but they are
themselves insufficient to assure an asymptotically correct
solution to the primitive equations. In particular, some
additional constraints are to be imposed to insure correct
integral budgets of energy, circulation and mass
conservation. As McWilliams (1977) shows, the mass
conservation constraint in a closed domain requires that at

each level-i

[¢f wda = 0. (2.15)

This constraint will be used to determine the constant C(t)

of the stream function on the perimeter of the domain.

2.3 Equations of a Layered Ocean

Let us consider that the vertical structure of the ocean
domain D is composed of N layers of constant density pk and
depth Hyi(k = 1,2,...,N). We wish to obtain the new form of
equations (2.8) for such an ocean.

Since the perturbation density pk is constant within
each layer, the vertical variation of the stream function
Yk 1s controlled by the upper and lower density jumps of
each layer, that is to say, within each layer the Taylor-
Proudman theorem applies if the fluids were inviscid, but, it
is the presence of density jumps that permits jumps in the

velocity.



- 21.1 -

LT
v
‘{)"1
—_— 4

Fig. 1

Vertical finite difference grid.
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The derivatives with respect to the z-coordinate in
equations (2.8) are computed by using centered differences.
Thus, for instance, the z-derivative of a given magnitude A

at the level j + 1/2 (see Fig. 1) is:

A,y - A,

& S . N (2.16)
z’., 1 z. -z,
jt 3 T3 3

The value assigned to the potential vorticity in each layer
is its value taken at the mid-level. Mid-levels are denoted
by integer numbers in Figure 1. The interfaces between
adjacent layers are labelled with integer numbers plus 1/2.

So, the potential vorticity of the k-th layer is given by

2

££2 ¥ - Y, - ¥
+ -

qk=ck+f+H{'[k.1 11‘- k k11], (2.17)
g 1 g _ 1
k + 5 k - 5
where
P - P
: k+1 Kk
k + % k+1

and (2.16) has been applied twice. Likewise, the vertical

derivatives of f%E 39—) and (VA)Z T at the k-th layer are
sz

given by
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(£ 3 5ot - : (G -GS
sz Zy 4+ % -z % sz k + 5 sz k - vl
(2.19a)

Neglecting the vertical diffusion of buoyancy

_ 2 o
G—KHVH¢Z+-C—gQ,
p
(2.19a) becomes
2 56 Ve - % Ve T Vi (k)
Ky Vg g (= - T )] + £ , (2.19b)
g g 0 H
R K - 4 k
2 2
where
(k) _ _nF
Q Q 1
) 7
* _o Bt Hp 490 Qv g0 (2.19¢. d)
k +4 C 2 g 1’ ) ’
2 P K + =
7
> >
A+ 172 = (TAD y _qyp NN
k + 172 " %k - 12
>
oy, 1= | D vy (1)
Z Z
k + 1/2
(VAT)
ZN + 1/2 ~ %N - 1/2




A standard parameterization of (VA)Z T is

9

Y

>
(VA)Z T = AV 3% ° (2.21)
By using (2.21) and (2.16), the formulae (2.20) become
A ¢, -t
(1) _ "v °2 1
T - Vv ) (2.22)
H1 H1 + H2
2
A 4 - T Ty - G _
T(k)=H_v_[2Hk+1 “ kg kT Skely
k k+1 k k k-1
(N) _ Ay N " °N-1
T = - 2 [ q .
HN + HN+1 N.

This parameterization is equivalent to a drag interface
friction. This form of coupling between layers has been used
by Rhines and Young (1982) to parameterize the vertical
transfer of momentum by eddy activity. Particularly
interesting is the fact that (2.22) is the only drag
friction formulation which allows the homogenization of
potential vorticity in the intermediate layers because in
the quasi-geostrophic approximation Ly = Vﬁwk so that (2.22)
is equivalent to a lateral diffusion of potential vorticity.
When lateral diffusion of buoyancy is included and
parameterized according to (2.19b) a comparison between
(2.22) and (2.19b) reveals that lateral diffusion of

potential vorticity by buoyancy diffusive processes is
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2
He Ky £y

Ay Bry1/9

friction, so in this case it is justified to neglect

=~ 0(10%) times greater than the interfacial drag

interfacial stress as a way of parameterizing the vertical
transfer of momentum by eddies. Typical values of the
coefficients, Ky and Ay, in mid-latitude ocean are

K, ~ 102 m? s'l, AV ~ 10-% m?2 s-! for an FEkman layer depth

H
§, = (ZAV/fO)

Substituting (2.17), (2.19) and (2.22) into (2.8a)
yields:

1/2 of the order 5-10 m.

: £2

D P -y P - ¥
Kk _ 2.0, Yk+1 k k k-1 2
D—,'qu_KHV['}K( 1 - T 1+ Ay Vg
Bk+1/2 Br-1/2
fo (k) o (k)
+ g Q + T K (2.23)
k
where
‘Dl
k _ 9 3 3
AP 3y
_ k 9V
U = T3y Yk T wE (2.24)

Thus, equation (2.23) is the equation of potential vorticity
for an ocean whose vertical structure is composed of N-layers
of constant density. To solve (2.23), it is necessary to

apply the boundary constraints (2.12a), (2.13) and (2.14) in

a form suitable for a layered ocean. In doing so, one can
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obtain another version of (2.23), which is more convenient
for numerical implementation by incorporating the surface and
bottom constraints into the potential vorticity equation and
thus leaving as boundary conditions to be imposed the lateral
conditions (2.12).

The vertical velocity of the K-th layer is given by the
difference between the vertical velocities of the upper and

lower interfaces. Thus,

Wy, = wk_”2 - Wk+1/2' (2.25a)
From (2.8b) one obtains
v = lpre (E% vy - i EH Vv, - & f% Qlyrr /2
NS 2 N z p N
f f £
D 0 o Ky oo ag 0

It is now clear, by using (2.16) and taking

D o _ MMes /20, Y172 5
D't kx1/2 ot Ay ax X y ’

that (2.25b) becomes:

v -y Vv, = ¥
3 0 k+1 k k k-1
C Y 1}

&
=
@



£ f
0 0
Yy T e 2?0 e g g2)
ket k-z
£, v - v I £
2. 50 Vit ko Y T ke 0 ~(k
- Ky Yyl [— T T I+ ), (2.250)

K Bre)2 Br-1/2

where

J(A,B) = gi 25 - g? 22 is the Jacobian. The stream

functions wk+1/2 are taken as the interpolation values of

Yyt ¥y and ¥y .q+ Thus, for example,

Viex1/2 = Ckx172 Va1 = (1 = Cpyq o) vy (2.26a,b)
C I S
k+1/2 Hk + Hk+1 .

It is a simple exercise to show, by using (2.26), that

£ f
0 0
k + 5 k -5
Vel T Y Yk T Vit
= J[f - - ' , . 2.2
[ O( 2 1 o ] ) wk] ( 7)
k, + —2— k, - _2"

Hence, (2.25c¢) becomes:
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B A S Bl S Sl S S
kDY 708 B 1
K+ k -
2 2
(k)
Vw1 - e W - £, Q
2 kel T Y YT Yk 0
- Ky T LE (S - o+ L. (2.28)
s ] k
2 -2

After combining the last equation and (2.25) we can write

(2.23) as:
D' f
1 _ 2 _ 0 (M)
oy G P Ay TR S Vi T
N S - w y + (K
DAY HO'H "k TOH Mk-1/2 k+1/2 ‘
1 <k <N
D' f
N _ 2 0 (N)
ﬁ': (CN + f) = AH VH CN + ﬁﬁ WN~1/2 + T 5 (2.29)
where 1(1) and T(N) are given by fhe following expressions:
f
(1) - 0 (1)
T = W W1/2 + T s
f
. e g+ T (2.30a,b)
N
T(]) and T(N) are the interface stress at the upper and

bottom layers, respectively, and their formulations in terms

of the relative vorticity are given by (2.28). wy + 1/2
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and wy + 1/2 are the vertical velocities at the surface and
on the bottom, respectively, that enter the problem as the
boundary conditions (2.12b,c). So, with the help of (2.22)

and (2.12b,c) (1) and t(N) can be written as

*w
1y _ (VAT )z A Ty = T4

T S A 4
: H1 H1 H1 + H2
2
£ A 4 -z
(N) _ 0 /= v ,°N-1 N
T = ~ =— (uy * VH, + vyz) + 24— (+7——F—). (2.31a,b)
HN N B N Hy H1 + Hyoq
T(k), the interface stress at the K-th layer, is given by
(2.12b).

The coefficient vy in (2.31b) is expressed in terms of
the eddy viscosity coefficient Ay and the parameter fg as
(Pedlosky, 1979):

_ 1 (e
Y 2 fo L]

The vertical velocity at the level j + 1/2 (j = 1,2...N-1) in

(2.29) are computed from (2.8b) by using (2.16) as

£
_ Y
Wj+‘]/2 - g' 1 {ﬁ (\Pj_*_] - 'PJ) = J(‘Pj‘H - ‘Pj, ll)] + l_)
ity C
2
+ K, v ]+ o (3 (2.32)
g 'r (Vgep - ¥ g 77 .
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In general, Q(j) is taken to he zero for j > 1. For j = 1

f

o

(1) _ ag Qs
: Q EB—EE—ET ’ | (2.33)

3

where Qg is the amplitude of the surface heat flux.

Now, the boundary conditions of the problem (2.29) and
(2.32) are the lateral boundary conditions and the mass
conservation constraint (2.31). As for the lateral
constraints, we have carried out experiments with the

free-slip and non-slip boundary conditions, i.e.,

Free-slip
e (x,y) = G (t), (x,y) € @5

g (x,y) =0, k=L,2...N ' (2.34a,b)
Non-slip

wk(x,y) = Ck(t), (x,y) € 2p

T

5= Oor g #0, k=1L2...N (2.35a,b)

As already discussed in the previous paragraph, the free-slip
condition leads to incompatibilities in equations (2.29)

unless the buoyancy diffusive processes are neglected. Such



incompatibilities do not exist when non-slip constraints are
used. Other more sophisticated forms of boundary conditions
have been used by Marshall (1982) and Ierley and Young
((1986), personal communication). The equations for a
two-layer ocean with no thermal processes, no stress at the
interface and constant depth H are readily obtained from

(2.29 - 2.32) as

ar 3y £ (VATY)
1 _ 1 2 0 z
st "G W) B Ay T s s VW T
2
(2.36a,b)
28y 242 2 £o
gt - T V) B Ay Tt Mt s
2
T I S T R T )
2 Vi 2
(2.36¢)
PG
where ¢ = g is the linear bottom friction coefficient.
2

Equations (2.36a,b) are the relative vorticity equations
. . . _ g2 _ 2
which are closed with the relations gy = VH¢1’ Ly = Vsz.
In solving (2.36) the difficulties arise from the term w 7

7
A-way of overcoming such a problem, particularly when a time

explicit scheme is used, is by forming the modal equations.
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The equation for the baroclinic mode ¥ = Y7 - y2 is
determined by subtracting (2.36b) from (2.36a) and using

(2.36c). Thus

in D, (2.37a)

where

0

Ya= J(C1"P1) - J(Cz;q)z) = B?}z (1P1 - ‘Pz)
vATY
- 2% gy, - )+£—-—£+AV2(-)+8
bim¥er Vo , H'H (51752 tpe
2

1

Hf%/H1H2g'. (Note that A7 is the internal radius

of deformation).

The mass conservation constraint (2.15) together with (2.36c¢c)

yield

éf 2 (¥) dx dy = 0. (2.37b)

From the boundary conditions either (2.34a) or (2.35b) we

have that

(¥) = C(t) on Q.. (2.38)

3
ot H

.To solve (2.37a) and (2.37b) we let
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v v
Ho It C® (2.39)
where
oY
2 2 a _ .
(VH - A7) 35 - Y, in D,
a —
T ‘Pa = 0, on QB
d 3 _ 0 if N.S.C.
oh (3t Ya) T free if F.S.c.’ OO fy- (2.40a)
and
v
2 .2, ¥
(VH - A ) gt— = 0,
2 ¥. = 1 on 9
ot b ’ H’
0 d _ 0 if N-S.C.
on (3f q)a) = free if F-S.C.’ °0 9y- (2.40Db)

The constant C(t) is

as

R

determined by using (2.37b) and (2.39)

éf EEE dx dy
c(t) = - Y . (2.41)
[J 57 dx dy
) ot
By * b
The equation for the barotropic mode ¢ = T
is
3oy _
VH(EE) Y (2.42a)
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where

W
1 (VAT )Z

Yb = [H1 J(C1;1p1) + Hz J(Cz;d’z)]ﬁ + ——H—_

2 1 €
+olagvy (Hywy + Howod] g - 7 &5

The boundary conditions of (2.41a) are

S
-8

|

= 0, on QH’

¥
T

9 _ 0 is N-S.C.
(58 ®) = free if F-$.C.’ OO - (2.42b)

3°



CHAPTER 3

NUMERICAL FORMULATION

In this chapter, we described the numerical formulation
of the quasi-geostrophic equations of a two-layer ocean by
finite element. Extension to a n-layer ocean is only a
matter of adding more equations to be solved; however, the
numerical basis remains unaltered. Our numerical formulation
uses finite element to discretize the continuum equations in
space and finite differences to step forward in time the
computations., We first begin introducing some notations and
definitions, which are standard in the context of finite
element theory. Then we transform the equations into an
integral form which permits obtaining the weak solution of
such equations. The next step consists of passing from a
continuum formulation of the equations to a discrete one
which is suitable for numerical computation. This is carried
out by Galerkin's method and the finite element technique of
partitioning the domain D into a finite number E of almost
disjoint subdomains T, and interpolating any function
defined in D, A key role in our method is played by the
boundary spacefqh which allows the correct imposition of
the no-slip boundary condition. To construct such a space,
we define our solution space in the form suggested by

Glowinski et al. (1985) to study the steady state stream



function-vorticity formulation of the Navier-Stokes

equations,

3.1 Basic Notations and Definitions

Before embarking in the construction of the variational
formulation of the equations to compute their weak solution,
it is useful to write down the definitions of mathematical
spaces on which we are operating and some notations that we
use throughout this chapter.

Q denotes an open bounded domain in the n-dimensional
Euclidean space R? with boundary r. We always assume that
Q is "well-behaved" and that T is at least Lipschitzian.

I' is Lipschitzian if in a neighborhood of a given point

x'¢ T, '§ - §" <&, I can be represented as Xg = F(x1, XZ)’
F being continuous mapping and ¢ sufficiently small.

Qr = QU[0,T]} where [0,T] is a time interval. Points in Q

or R" are denoted by X = (x1,x2,...,xn) whereas points

belonging to QT are written as (X,t). An element of surface
of either Q or Qr is denoted by dx and an element of arc by
ds.

Let u be a smooth function defined in Qr. We
sometimes use multi-index notatioﬁ to represent the
derivatives of u; that is, let o = (a1,a2,...,an) be an

n-tuple of non-negative integers and denote



‘a' = a1+a2+...+aN. Then by D* u, we shall mean the a-th

derivative of u defined by

a a'“'u

a a o
1 2 N
) x1 32 ...BxN

c® (QT) = the linear space consisting of all functions
u with partial derivatives D%, 0 < 'a' <m
continuous on Q.

c” (QT) = the linear.space of functions infinitely

differentiable in Qr.
ch Qp, C8 (Qp) = linear subspaces of c® (Qp) and
c” (QT), respectively, such that if
ch Co h X =0
u € 0 (QT)’ O (QT) then U(X,t) -

- ¥ (X,6) € C" (Qp), €7 (Qp).

c? (QT) = linear subspace of C" (QT) such that if

u cM (QT) then D'a' u is bounded and

uniformly continuous in Q.

L (QT) space of functions u defined on QT such that
fq 'u|P dx < ®», 0 < £t KT
The norm of LP (QT) is defined as

_ 1/P )
hut ) = (jQ|u|de) , 1 <P <=,
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2

For p = 2, L (QT) is a Hilbert space with

inner product:

(u,v)2 = IQ u v dx.
Let m be a non-negative integer and let p satisfy 1 { p { =,
The Sobolev space Wg (QT) of order (m,p) is defined as:

Wg = {u‘Dau e LP Qp), 0 <ol m}.

The spaces Wg are generally endowed with the norm

ul = (/J, ) pa|Pyl/p 1 <p <=
m,P,QT IQ 0 _<- 'E' Sm I | t e [O,T]

0

WP (Qp) € WE (Qp) = {u €W |u], = 0]

2 m O2 m
for p = 2. wm = H and Wm = HO

H® and Hg are separable Hilbert spaces with inner product

(u,v) = | % D*u D% dx
R o< |e] <

and with the associated norm

Tl = ful
Sm,Qp T e, 2,0,

(See Adams, 1975).



3.2 Variational Formulation

For the sake of completeness, we write down again the
equations (2.37) and (2.41) whose weak solutions we wish to
compute. Since the vorticity and modal equations are linked
together by the corresponding (¢,z) Poisson equations, we
need to set up an associated variational formulation of
(2.37) and (2.41) of mixed type in order to use linear finite
elements. Actually, we could compute the weak solutions from
the modal equations alone, but in this case, we should use
finite elements of class C! (Qr) which are expensive from
a computational point of view, although the solution is more
accurate; hence, a mixed type variational formulation
represents a compromise between computational burden and
numerical accuracy. An associated variational formulation
(or more properly a finite element method) is of mixed type
whenever independent approximations are used for both the
dependent variable and its derivatives. 1In our particular
problem, the independent variable is the stream function yj
(i=1,2); however, we chose to substitute VZyp; = ¢ and
the result is two new equations (vorticity and modal
equations) of lower order which are approximated
independently.

Let us consider the vorticity-modal equations for the

two-layer ocean
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9z, Y. f

i _ i i -0 2
st = JGy, ¥y) - B gt (1) WWZ‘FAH Vq ¢y
s La s Y e+ L - D E (3.1)
-2- i 2_ v H1— » .
in QTD zl’ Z]_ = {(X:V’ HI(X,Y>)€ R3}, 1=1’2
where
f 3y = ¥,)
o 1 2
wy = gr = —% I -y, ¥y )]
Ci‘r = Ui(x:th); Ciltzo = 0. (3.2)

6i can be zero (free-slip boundary condition) or non-zero
(non-slip boundary condition), or zero on some Ty € T and

distinct from zero on I'p ¢ T such that rq U rgp = r.

(v - A% ¥l = v, in Qg , (3.3)
“lr =0 ¥i]lemo = O (3.4)
(v - 2%) ¥ =0 in Q, (3.5)
wl.o=1, (3.6)
¥'o= ¥l o+ C(E) ¥, (3.7)

Iq ¥:
c(t) = - 7%—4,—3—&, | (3.8)



where
v __ 9
k4 - ﬁ (¢’1 - ‘Pz)s
_ IPq Yy
Ya = J(C1, W1) = J(CZ’ wZ) - 8(32— T 9x
2 2 F
- A J(¢1 = ¢2, ¢1l) + AHVH (C1 = 52) - 852 + ﬁ? .
2
V2 o' = v, in Q (3.9)
H b T ¢
o' lp =0 o' |g =0, (3.10)
where
I S RA 1)
¢ 3t A ,
Hyyps + Hyy
1 d 1% 272
Hygqy + Hyg H, - .
2 151 2°2 2 F
+ AH. VH ( i ) - € H— C2 + H .

1

Following Glowinski et al. (1985), we define two new

spaces WES and WSS as follows:

WNS = {(6,0) € H1 1

o = | (Qp) x H

@), e|, = c(t)

- IQT Vg ¢ Vg q dx = IQT 6 q dx

'fr %% ds, ¥q ¢ H1 (QT)}
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ESs 1

oo = [(8,0) e 1l (@) x u!

Qp. o|, = c(o)
- IQT Vit -+ Yy q dx = IQ'I‘ 8 q dx

1

3¢
- fr I ds, Vg e H (QT)}
wgs is the space of solutions for the non-slip boundary

IS
o

condition while W is for the free-slip condition.

An associated mixed variational formulation of equations
(3.1 - 3.10) is:

Find {(z.,v.)0} € WS, (& = ns, rs)
1’71 o’ o

such that'V(6,¢) € Hé X H]

OI
9L . R . fw
1 _ 1 i 072
(at y 9) - (J(Cl,lpl)’ 9) - (B E)_{—" 6) + ((_1) H]; 9)
2 1, i
+ (A” VH Cl' O) + 72' (1 + (-1) ) (Clye)
REICS DL . in Qu N 2, (i=1,2)
7 Tl WARS! '
Cl'r 94
(2 v =%y ey = (v ) in Q. A zZ
H "a a’ a’ ' T N i
Wé po= 0,
(v2 v —)\2 Y., ) =0 in Q Z
H Yp b ' N2
Wb’r =1,
2, _ .
(VH ¢) ’ d)) - (Yb; (b)) 1n ern Zi.



where (u,v) = IQ u - v dx.

Intepgrating by parts those terms operated by Vé yields

T, LR . f
(g5 0 = Ity ¥, 0 - (8 5=, 8) + ((-1)F ﬁg wy, )

1 .
- Ay Ty oy, Yy O 5 (0 (<D (g, 0)

(1-(-)* F
A B (]_'1'1—, ), (3.11)
CL’F - 01’
v 'SV 2y =
( H ‘ya, H d)) - ()‘ ya; (b) - (Ya) ¢)»
“’é|r = 0, (3.12a)
(v, v, V. 8) = (A ¥’ ) =0
H 'b’ 'H a’ ’
wg)’r = 0, | (3.12b)
- (VH ‘t’" VH (I)) = (Yb’ (p)’

' =0, (3.13)

Notice that the largest order of the derivatives in (3.11) -
(3.13) is first order in contrast with the second order
derivatives of the original equations (3.1) - (3.10); this
means that we can relax the smoothness requirements of the
solutions of (3.11) - (3.13) with respect to those
requirements of the classical solutions of (3.1) - (3.10).

Thus, whereas the classical solutions are to be of class
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C2(QT), the solution of the variational formulation belongs
to H'(Qr), but €2(Qr)CH'(Qr), so we have

expanded the space of functions that can be solution of

(3.1) - (3.10). 1t is clear that if an initial boundary
value problem of elliptical and parabolic type has a classic
solution it also has a weak solution because every classic
solution is also a weak solution; however, there may be weak
solutions which are not classical solutions,  although
equation (3.11), which is parabolic, and equations (3.12) and
(3.13), both of which are elliptic, have unique weak
solutions which, under certain regularity requirements for
the coefficients and forcing function F, coincide with the
classic solutions. (See V.P. Mijailov, 1977). Bennét and
Kloeden (1981) have shown the existence and uniqueness of the
classical solution of the dissipative quasi-geostrophic

equations with periodic boundry conditions.

3.3 Galerkin-Finite Element Method

Galerkin's method consists of approximating the
solutions of the equations (3.11) - (3.13) through the
solutions ¢ih, ¥ih of the projections of (3.11) - (3.13)
onto the finite dimensional space Wﬁh. We assign a subscript
h to the finite dimensional subspaces and discrete variables
to iﬁply that their properties generally depend on some real

parameter h (such as mesh size) such that, as h decreases,



the finite dimensional spaces tend to fill up the
corresponding infinite spaces. To be more specific, assume

that {ei(i,t)} e CO(QT) is a complete set of linearly
i=1,2

independent functions in H1(QT) that generate a finite
dimensional subspace, say Vh(QT) C:LZ(QT), Galerkin's method

is to seek a function wh(x,t) € Vh(Q which is the

Y
orthogonal projection of u € H1(QT) on Vp, such that

wh(x,t) satisfies the original partial differential

equation in Vp as well as the initial and boundary

conditions projected from H!'(Qr) onto Vy. This

procedure cannot be a general method for constructing the
finite dimensional subspaces. It is at this juncture that
the finite element method (f.e.m.) plays its role as an
approximation method, first by partitioning the domain Q into
a finite number E of almost disjoint subdomains Te, and
secondly, by approximating any function define on Q from its
values at the vertices of>the subdomains, Te.

Thus, consider that the bounded domain Q has been
divided into a finite number of almost disjoint subdomains
Te. These subdomains form for a given h (the mesh size) a
finite family {q;} such that

~ E

(i) Q = connected model of Q = U Te,
e

~

Qp = Q U [0,T];
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(ii) ¥ Te, Te' 5311, Te # Te' , we have either
Te N Te' = (empty set),

or Te, Te' have only one vertex in common,

or Te, Te' have only a whole edge in common.

Once the continuum domain Q = QUr has been partitioned,
we approximate the spaces H1(QT), Hé(QT)’ Wis, Wis by the

finite dimensional spaces.

1 0 /A
Hy = {Vh’vhﬁ C (QT), v ’Te6 PK’ 'VTe eTn}

n

1y 1 _
H' = /\ H Qp) = {vp|vy © By vyl = O,

Oh

NS _ 1 1 _
Wop = 18y, o) € Hp x Hp h‘ = C, (©)

a¢h ds
- fd " % g9 T fé *Wh - Jr om0
T T
¥ q € Hﬁ}.

Py is the space of polynomials in (x,y) of degree < K, so

Vh'T € Pk means that the functions of the discrete spaces
are polynomials in (x,y) of degree < K on the subdomains Te.
It follows that Nyh = number of vertices of g% which are
interior to dT’ is the dimension of Héh while the dimension

of H; is equal to the number of Nh of vertices of S; which

belong to QT.
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Ch(t) is a convenient approximation to C(t) in H;(QT).

Inspired by Glowinski and Pironneau (1979), we build up
an additional finite dimensional space Mp in order to
impose properly the no-slip boundary condition on the

vorticity equation. Mp is the complementary space of

1

H, in H; Qp), i.e.,

1 ~

1

_ ol

Hence, V’;ih € H& (QT), (i = 1,2), which verifies that

_ * %
Sih = Gy 7 fin) t Sine
where

* M * ¢ wul
Zih € Mpo Tin - %in oh®

*
So Zih is the component of the relative vorticities Zih in

Mh‘ The restriction of the integrability property of W§i

in My is

1 1 i
V (elh"plh) € Hh X Hh’ V Uh € Mh

Y.
ih
[

RO T T f& %ih *n " Jr TEn Me 98 (51,2

Q T
(3.14)



Confining ourselves to Lagrange-type elements of order (XK=1
in Pk) we generate the global basis functions vy € H; (QT)

from local approximation via the formula

E Ne (e)N (e) ,»
v,., = U T Q. v (x)
hj e=1 N=1 J N
where
j =1,2...Np

Ne is the number of vertices of a given Te

(e)N is the Boolean transformation matrix for the
Y
j element Te,
vée) is the local interpolation function corresponding

to the element Te.

The Galerkin approximations, Sine Yip are written as

h

>
Zih (x,t)

N
>
i Cinz(t) th(x)’ x € H

2=1

h

Vip (X,0) Ving (V) Vi, (D). (i=1,2) (3.15)

i~ =

2=1

Recalling the relationships among barotropic and baroclinic
modes and stream functions, Y1 and yp, as well as

relationsﬁips among ¢1 and ¢2 and v 1 we can write

1y
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Np

> Nh
\ybh (X,t) - 251 \th,Q(t) th(X),

> Nh
op (x,t) = 221 ¥, (6 Ve (X)
. U Hy by H Yoy (3.16)
15 h Hy + H,

The variational formulation (3.11) - (3.13) is now

approximated as:

Find {z3p, v;ple Wy

such that

Mo e ul - e H e M
h h’ %ih = %inh € Hon» %ip € My

L. Y.
( ath, (Dh) = (J (Cih’ ‘pih)’ ‘I’h) - (3 _]a-‘;l ’ ‘I’h)

£
i 0
DT g ons o) - (A Tyegy, Tuoy)
1

+ 3 (DD (g, 0

+ (l:iilli) (ET , @) in dTh{l Zi, (3.17a)
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y f& Vi Yin © YgMh T fé Sih Mo Y I 3 vn 9ss
Th Th

(3.17b)

- (Vg Yan» Yy o) - (A7 ¥au, o) = (vay, @) in QppflZ;,

Wah‘rh =0, |0 =0, (3.18a)
1 2 1] — 3
(Vg ¥hpo Ty o) - A7 ¥ppe 8)) =0 in Qp 0V 74,

thlrh =1, (3.18b)

- (Vg ¢ Tutn) = Ovpps #y) im Qpp/) 24,

= 0, = 0. (3.19)

oy | in o] =0

Upon substituting (3.15) and (3.16) into (3.17) -
(3.19), we obtain the following implicit systems of ordinary

differential equations for the weight functions:

Eih = {Cihl}’ —Vrih = {wihﬁ}’ (i=1:2)’ (2=1’2"'.Nh)'

(i) Relative vorticity equations:

5 > > >
MZin = Inleiny ¥Yipe B - Ay Koy

1 i > > . -
+2- (t + (-1)") e M Cin +§~h in QThn Zi’

>
= 0

Th

®ih ih* (3.20)



(ii) Baroclinic mode equations:
S x2ME. =%, inQ z
ah = Yah thl 25>

ah| . = 0. (3.21a)

- K ?bh - A" M ¢bh =0 in QOh[\ Zis

¥ = 1. ' (3.21Db)
wl

(iii) Barotropic mode equations:
> . -
- Kby = Yy 00 Qpy N2

$h|r =0 (3.22)

An upper dot on the variables stands for time-derivative,

the "mass matrix" M has the entries
IQ ik th dx (k,j=1,1...Nh),

and the entries of the "stiffness matrix" K are given by
IQ Vg Vhke * VH Vhj dx, (k,j=1,2,...Nh).

M is symmetric and positive definite, whereas K is symmetric
only.

J(Z;ys b B) in (3.20) is the matrix which includes
the contributions of the Jacobian and B terms of the

equations., Depending on the time scheme used to step forward

in time the equations J can-.be either a column vector matrix
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or a skew symmetric square matrix. yfh_is a (2 x Np)

column vector whose entries are:

. £ i
i 0 Fooo1-(-1)

1 _
T Fhpe (G=1,2,.,.8

>
= Wy + 1 .

B
The right-hand sides ;ah and Ybﬁ of the equations (3.21a)
and (3.21b), respectively, are matrices which came from the
terms (Ygh, %h) in (3.18a) and (yph, %n) in (3.19).

An important aspect that still remains to be elucidated

is the computation of 3ih in (3.20). If we assume, a priori,

the validity of the free-slip boundary condition on the solid
boundaries then we take gih equal to zero at the points of
such boundaries and we go on with the computation of the

solutions of (3.20); however, if we wish to impose on the

solid boundaries the no-slip condition, then aih are unknown
values at the points situated on the solid boundaries that
have to be computed from the relation (3.17b) which is highly
dependent on the properties of the spaceh4h, so we should
choseMh such that the values of C:h on the solid boundaries

were easy to compute from (3.17b). Let us first define

general properties that we wishp4h to have:
(i) Since*1h is a complementary space of Héh, then we

take

dim (Mh) = NE = No. boundary points.
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(ii) We wish that the support ofﬁ{h be as small as

possible. A convenient support would be

e My =>“h.Te =0 ¥ Te ¢ j}lsuch that

Te N Ty (empty set).

(iii) The above properties (i) and (ii) suggest how to

define a canonical basis By of the space Mh'
h _

By = {Wl} (2 = 1,2,...,Ng) such that

h
> _ . >
(iii-2) Wz(xj) = sz if (Xj) r,
> - . >
Wy (%) = 0 if %, ¢ r.

Properties (i) to (iii) are quite general and do not depend
on how the boundary and an interior narrow strip of éh
adjacent to the boundary are discretized. They are also
independent of the existence of tangential velocity on the
boundary. In our particular problem, the tangential velocity

is zero on the solid boundaries, so if we require that

¥ Te eThB Te T # (empty set),

either

one side of Te is normal to the boundary with a vertex
on it,

or
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two vertices of Te, one on the boundary another in the
interior, can be connected along the outward normal to
the boundary.
We can define another property such as
>
(iv) a—:—i(—X)=0 ¥ 2er,
where t is the clockwise tangent vector on the boundary.
Notice that (iv) is a particular property in the sense
that it depends, first, on the topology of the discrete space
éh close to the boundary and, secondly, on the vanishing of

the tangential velocity on the boundary.

The support of My is then composed of the segments

pB

i P; normal to the boundaries. See Fig. 2.

In that figure {PB}j denotes boundary points and
{Pl}; are the interior points closest to the boundaries

along the normal direction. It is clear that (3.14) becomes

Y. du
ih h _
- ng 5n an 9*h T ng ih Y 9%
B
. N
B iy h
h Q = PO PI L [ ]
where @ = { ; J}J=1

By using Lagrangian linear basis functions, the above

integral becomes



Fig. 2

i=1

Support of the space Mn
discussed in Section 3.3



S D Qg P (3.23)
i,w 2 i,w i,I 2 )
*h
where 25w and Vi, are the vorticity and stream function

values, respectively, at a given boundary
points;
ST and wi,I are the same quantities but taken at the
corresponding interior points;
24, is the distance along the normal direction between
a boundary point and its corresponding interior
point.
Equation (3.23) is Woods' formulation for wall vorticity, a
commonly used second order accuracy approximation. Roache
(1972) has pointed out that such formulation for the wall
vorticity can yield instabilities at high Reynolds numbers
(Re > 300). This is not our case because as we will see
later our Reynolds number is Re = 50. The same formula has
been derived by Barret (1978) using a variational principle
of Bateman's type for the stream function vorticity
formulation of the Navier-Stokes equations with no-slip

conditions in conjunction with finite element.

3.4 Time Discretization

In order to carry out the time integration of equations

(3.20) - (3.22), we use the leapfrog scheme with the



Laplacian frictional terms lagged by one time step and the
bottom friction terms taken as the average of the forward and
backward time steps to avoid linear numerical instability.
Richtmyer (1967). The reasons for using such a scheme are:

(i) It is explicit so it is easy to implement.

(ii) It is second order accuracy in time.

(iii) It is non-dissipative.
The latter reason is more theoretical rather than practical,
because the existence of numerical phase dispersion, which is
unavoidable, is equivalent to a damping mechanism (Roache
(1972, pp. 56-60 and 80-81).

A disadvantage of the leapfrog scheme is its
computational mode (Arakawa-Messinger, 1976) which leads, on
one side, to the splitting of the solutions and, on the other
side, it acts as a trigger mechanism for the appearance of
non-linear instability, Briggs et al. (1983). All these
troubles can be mitigated by using every 50 time steps a
restart consisting of taking

u(n+1/2) _ u(n+])2+ u(n)

(n-1/2) _ ufm 4 y(@-1)
u - »
2
where n is the number of time step, and then to continue the
computation in the usual way. Sadourny (1975) reports very
good results with such a restart, as for the non-linear

instability concerns, in the integration of the
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quasi-geostrophic equations with finite difference potential

vorticity quasi-conservative schemes in space and leapfrog

scheme in time. Killworth (1985) showed the good

characteristics of the above restart when it is compared, in

terms of an equivalent filter, with other standard restarts

in geophysics.

For every time step, the equations that have to be

solved

are:

Mo (2{BHT) g (n-1), - 28t r(n)

If n=1

(n+1

4
ih

K ¥
1

we S

) (n+1)
= g , (3.24)
ih

R

(n) -
®1, - o. .25
olve (3.21b)..

>(n)
—th ’

SCONT
5™, = o. (3.26)

i

r(n) _

(3.27)
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>(n+1) >(n+1)
s(n+1) _ Hp ¥qp  *+ Hy ¥y
11111 h - H ’

2
wil) = ™ g L m g (3.28)
2
where
(M - J(E§E), $§ﬁ), B) - Ay Z§ﬁ"1)
+(n+1) +(n-1)
; C. + )
A R e s s
(3.29)

Since the

start the

leapfrog scheme is a three-level one, we cannot

computations with it, so we need another scheme,

say, a two-level one. The most common scheme used for this

purpose is the Euler forward scheme given by

u(n+]) = u(n) + At R(n),

which is highy unstable if it were used to carry out the time

integration of the equations for many time steps. The

initial values of all variables are equal to zero.

As we see from (3.24) - (3.26), we have to solve four

systems of equations every time step. Two systems for the



vorticity equations and other two for both the baroclinic and
barotropic modes. This is a disadvantage of f.e compared to
second order finite differences where only the modal
equations are to be solved. One form of remedying this is to
lump the mass matrix M by adding all the elements of a given
row onto the diagonal of the row and then set the off-

diagonal terms to zero. That is

M. .
1]

]
™
e

i

-

Mij =0 i# ]

Later on, we will give the main reason to lump the matrix M.

An algorithm of the computations is as follows:

(1) Compute the element components of the matrices M
and K and store them into one dimensional compact vectors.
This compact form of storing the matrices is particularly
convenient for the Conjugate Gradient Method and for solving
the algebraic equations, because rather than operating with
matrices and vectors, we only operate with one-dimensional
vectors that represent faster computations even on scalar
computers as the one we have used. Another remarkable
feature of the compact storing is the substantial saving of
computer memory (up to 60 percent) in relation with more
standard techniques used in finite element codes which solve
the system of equations by direct methods. The computations

of M and K are done once for all.



and

(2)

(1)
(ii)

(iii)

(iv)

(v)
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H
Hh
3
I

—
w

®
T
a7

—~

0) = {0 ang $f?> =0 (i=1,2)
7

solve (3.25), (3.21b) and (3.26);
compute $$1), $§1) and ¢(1) from (3.22) by using

7
the Euler forward scheme rather than the leapfrog
one;
compute §§1) from (3.28) and §(1) from (3.29);
if the non-slip conditions are applied on the
vorticity equations and the matrix M is retained,
then compute the boundary conditions; otherwise, go
on to solve (3.24);
solve equations (3.24) and impose the boundary
conditions; if the matrix M is lumped and the
non-slip constraints imposed, then the computation
and impositions of the boundary conditions are made

together.

For n > 2, steps (2-i) to (2-v) are repeated

successively, but using the leapfrog scheme instead of the

Euler forward one.

Observe that we have to solve one Helmholtz equation for

the baroclinic mode (two equations when n=1) and one Poisson

equation for the barotropic mode. The numerical experiments

have shown that for the values of A2 and the grid spacing



used in our computations, the Helmholtz matrix is well-
conditioned while the Poisson one is only fair-conditioned
resulting, therefore, in a computation of the baroclinic mode
which is relatively cheap and fast, whereas the barotropic
mode is expensive and lengthy of computing. The matrix M is
very well conditioned, so the solution of (3.24) is obtained
relatively fast (few iterations); however, if the experiments
are to be carried out for a large number of time steps, then
the process of solving two additional systems can become
burdensome. This is an argument that many analysts used to
justify the lumping of the matrix M so long as the loss of

accuracy is not badly damaged.

3.5 Stability Analysis

It is customary to choose the grid spacing from the
beginning based on the physics of the phenomena one wants to
simulate numerically, unless a moving mesh or automatic
refinement mesh method be used. Once the grid spacing has
been fixed, the time interval is determined by the stability
condition of the discretized equafions. The study of the
stability criterion of the discretized equations is relevant
because as the Lax equivalence theorem states: if a linear
differential problem which is well posed is approximated by a

consistent difference scheme, then the resultant



approximation converges to the true solution for all initial
data as the space-time mesh is refined if and only if the
difference scheme is stable for this refinement (Richtmyer,
R.D. and K.W. Morton, 1967). A consequence of this theorem
is the closed relationship between the well-posedness of the
continuum problem and the stability of the discretized one;
actually, for any continuum (even non-linear) partial
differential equation, the common way of determining the
uniqueness of the solution is via energy norm. The solution
of the discrete approximation of an initial boundary value
problem (either linear or hon-linear) is stable if and only

if

¥ >0, 6§ >0 such that

O)u% < § => sup uﬁ(n)ug < e.

> (
na
h M

The above definition of stability is the LZ norm
stability. For linear problems, and assuming that the domain
éT is infinite or the problem has periodic boundary
conditions, Fourier analysis is the technique which gives
stability criteria that most of the times are equivalent to
the LZ-norm stability criterion (see Kreiss, 1978). If the
equations are of variable coefficients it is still possible

to apply Fourier analysis by "freezing" coefficients and the

local stability criterion obtained in this form can give an



estimate of the overall stability in cases of dissipative
systems (Kreiss, 1978); otherwise, the estimate is only
indicative of how things can transpire. If the equations are
~non-linear, as the q.g.e. are, the properties of the
linearized equations are not at all sufficient for
determining numerical stability because the LZ-norm of the
latter does not imply the LZ-norm of the full non-linear
equations (Phillips, 1959). The boundedness of the LZ-norm
implies that certain quadratic quantities are to be bounded
(if there is no dissipation, they are to be conserved);
therefore, the first condition we have to require from our
discretized scheme is to keep bounded (or to conserve) such
quadratic quantities. In quasi-geostrophic dynamics, it
turns out that the quadratic quantities, which are bounded or
conserved if dissipation is neglected, are the kinetic energy
and the enstrophy. The conservation of such quantities
implies the conservation of the average wave number and
specifies the direction of the non-linear energy transfers.
The energy is transferred towards lower wave numbers while
the potential enstrophy is in the opposite direction
(Charney, 1971). Therefore, it is clear that the discrete
schemes of the q.g.e. which are able to conserve the kinetic
energy and the potential enstrophy can reproduce the
exchanges of energy among the modes better than those which

are not. A first success in this direction was achieved by



Arkava in 1966 when he produced a particular form of the
convective terms of the vorticity equation which in terms of
enstrophy is quadratically semi-conservative. Fix (1975)
shows that f.e. discretization of the barotropic
quasi~-geostrophic equations are potential vorticity
semi~-conservative and kinetic energy and potential entrophy
quadratically semi-conservative. See Appendix B for
definitions. In fact, Jespersen (1979) shows that Arakawa's
scheme is a finite element scheme. The trouble is that
neither finite element nor Arakawa's scheme are able to
generate schemes that in the absence of dissipation are
kinetic energy and potential enstrophy quadratically

conservative; at most, they can yield

Zén+1) Zén) - Cte

if leap frog scheme is used.

where ¢ is potential vorticity,

n is the number of time step,

m denotes the number of the grid points.
The loss of the strict conservation of the quadratic
properties when the complete discretization of the equations
has been carried out, can make the numerical solution go
unstable. Basdevant and Sadourny (1975) show that in
addition to the kinetic energy and potential enstrophy,

higher order moments have to be conserved by any complete



scheme of the non-linear equations if one wants to avoid the
onset of non-linear instability. At present, it seems
difficult to devise higher order moment conservative schemes
which may be computationally feasible, so we will have to
live with the threat of the non-linear instability and to
combat it by using recipes as the one we use in our
computations. The main mechanism in provoking non-linear
instability in those schemes which are neither quadratically
semi-conservtive nor quadratically conservative is aliasing
(Phillips, 1959). However, with schemes such as the Arakawa
scheme or finite element method, in which the alisaing
problem is almost ruled out, very little is known about the
subtle mechanisms responsible for the onset of the non-linear
instability. This instability is very different from the one
present in linear equations when the stability criterion is
violated. 1Its peculiar features in those schemes which are
quadratically semi-conservative are:
(i) 1t shows up after several hundred time steps of
successful computations.
(ii) As a threshold is reached, it starts locating at a
few points of the grid, then focuses and later on,
after a few steps of integration, extends very fast

all over the domain. At this point, the
computations blow up.

(iii) Possible trigger mechanisms are (Briggs et al.,

1983) the computational mode if the leapfrog scheme



is used, the spurious oscillations produced either
at boundary points which are not well-resolved, or
at discontinuity interfaces and others.

At this point, it seems obvious to ask about the
relevance of carrying out a linear stability analysis by
"freezing" the coefficients of the non-linear partial
differential equation. The answer may be given by assuming
that the first stages of the non-linear numerical instability
are very similar to those of the non-linear hydrodynamic
stability. In doing so, we can determine which are the most
unstable modes on one side, and an assessment of the
non-linear instability threshold in terms of the values of
the linear stability criterion on the other side (Briggs
et al. 1983).

As is common practice in the theory of the hydrodynamic
stability (Pedlosky, 1970, 1971), we start by decomposing the

stream functions yi as

‘J)]-_(X;y,t) = 'J)S_()) + q):'i_, (i = 1,2)
such that
(0) (0)
BT Lo PN o)
3y i Tax i

(0)

where us and vgo) are the basic flow velocities. In our
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context, they can be interpreted as the Sverdrupean
velocities (in the first layer) in the interior of the ocean
and the jet stream velocities in the western boundary layer.

Pl

i (x,y,t) represents the perturbation to the basic flow.

With such a decomposition, the Jacobian terms of the
vorticity and modal equations (3.1 - 3.10) become, upon

linearization,
0) =
J (Ci’ ‘Pl) > - Vl v Ci’ 1 1;2’

where Vﬁo) = (ugo), v§0)). The (') sign has been dropped
from the vorticity of the right-hand side. The stability of
the linearized equations (3.24) - (3.29) will be dictated by
the stability of the first layer vorticity equation because
it is in this layer where the velocities (U§0>, Vﬁo)) attain
the highest values. It is well known that the stability of
the homogeneous equation implies the stability of the
inhomogeneous one provided the forcing term is bounded
(Kreiss, 1978). Therefore, we have to study the linear

stability of the following equation:

gR - (0) (n) AT
- . +(n) _
M ( N3 ) = - Vin Y4 %1h B —ax
- Ay K Zgg‘1), (3.30)

The equation equivalent to (3.30) at the node (p&x, qAy) is
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* + [ ]
poa-1 ¥ pri,q ¥ %p-1,q’

(Cott,q+1 T Spt1,q-1 ¥ Cp-1,q1 * Cp—1,q—1)}

{0
7imx Cprt,q41 = Fpa1,q+1 * SpHl,q-1 = Pp-1,q-1

p+1 »q - Cp-1 aq))

ax  (Ppa1,q#1 7 Fpal,q-1 T %p-t,q+l T Sp-1,q-1

p,q+l ~ Cp,q-1))§n)

ékl—{ 4 -z + ¢ + ¢
3 p+1,q+1 P,q+l p-1,q+1 p+l.q

-8z + + g

+
P,q p-1,q9 7 %p+i,q-1 p,q-1

-1
+ gp_1’q_1}(n ), (3.31)

where:

u%o) and v are assumed to be constants.

(0)
1

- (C(n+1) _ z;(n—1))
(2At) *

Assume that

n .
A1 exp[l(kxp + zyq)]
Xp = PAX, yq = qby, 0{p<LP,0<qgLAQ

Pax = Lx’ Qay = Ly
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Ay is an amplification factor

Equation (3.31) gives

(0) —_—
U4 A x2

A Ax 4+2&+ﬂ+xy(y

2 .
T+ 16 A at]

(0) —
M /1 - y2
AXx 4 + 2 (xty) + xy

(x + 2)}

AH 48 At
- - AX Ay

4+ 2 (xty) + xy
where

x = coskAx, y = cossay, -1 < x,y £ 1.
Equation (3.31) is stable if and only if

] <

From (3.33) we obtain that

A, = 1 3atB £ (- 9ac?B? + 1 - a1/
where
ufo) /Y1 - x2 va) /1 - y2
B2 7+ x * ™ 773y
A = 48 AH At (4 - (x + v) - 2xy)
Ax Ay (2 +x) 2+y) 7"

(4 - (x+y) - 2xy )} =

+ 2)

0, (3.33)

(3.34)

(3.35a)

(3.35b)



Then

|*112

for 3atB < (1
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1 - A,

-mt/2,

Taking into account that -1 < x, y < 1 then

max A

max B

If Ax = Ay

max A

max B

_ 192A4A¢
Ax Ay
> o,
u1(0) V1(0)
== Ot Ay ) -
V3 Y
and ugo) = v%o) =V , this gives
V2
_ 192AHAt
h2
2 0,
_ 2V
= '3 &

(3.36)

(3.37a)

(3.37b)

By using (3.37b) the stability criterion (3.36) becomes

1 -

192A,44¢ 2
—z S M|

h

<'>\

<A<,



for

19244t

—2 <

h
and
192A,At
BT - —H 12 (3.38a,b,c)
h

where h is the smallest value of the grid spacing, and V is
the highest possible velocity.

Conditions (3.38a) and (3.38b) are quite a severe stability
criterion for the grid size and Ay that we have to use in
order to make feasible the computations. Notice that (3.35b)
is the stability criterion for the hyperbolic part of the
equations. From (3.36a) we can show (see Appendix C) that
the scheme is dissipative of order 2 according to Kreiss'
definition. (See Kreiss (1978)). The term responsible of
the harshness of (3.38) is the consistent mass matrix M that
makes implicit in space the time derivative operator. A
standard technique for converting the implicit discretization
into an explicit one is the lumping of the mass matrix M.
Thomée (1985) shows that the approximation error of the
lumped scheme is of the same order as the consistent scheme;
however, the evolutionary error of the lumped scheme is of
second order in contrast with the fourth order error that can
be achieved by wusing the consistent scheme. The most

standard finite difference models used in oceanography, such
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as Holland (1978) and Bryan-Cox's models are second order
accuracy too. Since it is not the purpose of this thesis to
discuss the positive properties of consistent Galerkin-finite
element method in relation to the evolutionary error, we do
not go further on such topic. Results on evolutionary error,
phase propagation and group velocity of the finite element,
applied to the quasi-geostrophic equations, will be reported
elsewhere.

As we have already explained, the way of lumping the
matrix M is by adding all the elements of a given row onto
the diagonal of the row and then set the off-diagonal terms
to zero. In doing so, the term on the left-hand side of
(3.31) becomes

(n+1) _ . (n-1)
°p.q °p.a

whereas the terms on the right-hand side remain unaltered.

The equation for the amplification factors A7 is

2O L0
A% + i % A At[—LS{— /1-x2 2+ vy) + iy /1-—y2 (2 + x)1]
4 At AH
_{1_§AxAy(4-(x+1) (y + 1)} = 0. (3.39)
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Hence
o= AEp AT g2 L, 12 (3.39)
1= b3 5 * q °1 1 ’ _ y
where
A AL
_ 4 “H
A1—§M(4—(X+Y)-2XY),
(0) (0)
u v
_ i P < 2
(3.40a,b)
The stability criterion is
2 _
|x1| =1 - A,
for
AtB
<0 -2 Gk y, <, (3.41)
and
Ay 2 0.
At (x,y) = - (1/2, 1/2) A1 has a relative maximum in the
interval -1 < x, y < 1.
AAT
_ H
max A1 = 18 Axdy
w0 y(0)
max By = 3(—p— + Ay ) .
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oy~ and uy = v = V_, then

If Ax =
V2
max B, = 3/2 Y: ,
V2
and
A AL
max A1 = 18 H2
h

Thus (3.41) becomes

A AL
H 2
1 - 18 G P <1,
for
18 AH At
) <1,
h
and
- 18 A, At
= AtV H
V2 —h—-s 1 -———h'z—),

where h and V represents, as before, the smallest value of

the grid spacing and the highest possible velocity,

respectively.
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By comparing (3.38) and (3.42) two obvious conclusions
emerge: (i) The constraint imposed by the diffusive terms is
much less severe in (3.42) than in (3.38) because max A = 10
max Aj. On the other hand, for the smallest values Ax, Ay,

Ay (3.42b) gives

AtAH

< 0.55

h

which is not difficult to satisfy for the usual parameters,
Ay, At, h used in eddy models.

(ii) The condition (3.43c) to be satisfied by the hyperbolic
terms is practically the same as that of the f.d. formulation
and is, of course, less severe than (3.38c) because for given
values of Ay, At and h2 the right-hand side of the
inequalities is much larger in (3.43c¢) than in (3.38c).

The scheme is again dissipative of second order. Conclusions
(i) and (ii) have been the main reasons for the lumping of
the mass matrix.

From this simple study of the stability properties
exhibited by two standard discretizations of the mass matrix
M of the finite element--leapfrog scheme applied to the
quasi-geostrophic equations, it is clear that to exploit the
full advantages of the implicitness of the finite element, it
is better to use implicit schemes to time-discretize the

equations. The main problem with such schemes is that the



algebraic sysems are not symmetric any more and are
time-dependent also, so special care has to be taken to
compute the solution in these cases. Work in this direction
is currently under way to solve the non-linear quasi-
geostrophic equation by using a more powerful version of the
Conjugate Gradient Method in conjunction with least squares

techniques.



CHAPTER 4

THE EXPERIMENTS

4.1 The Model and Its Parameters

We have carried out three experiments. Two single gyre
experiments denoted as Exp. 1 (free-slip boundary condition)
and Exp. 2 (no-slip boundary condition). The symmetric
double gyre experiment with no-slip boundary condition is
denoted as Exp. 3.

Two model basins are used. The single gyre model basin
is a square of Ly = Ly = 1,000 km as horizontal
dimensions, a uniform depth H = 5 km and is centered at
35°N. The double gyre model basin has Ly = 1,000 km,

Ly = 2,000 km and H = 5 km and is centered at 40°N.
Subgrid-scale horizontal diffusion of momentum is
parameterized by a constant eddy diffusion coefficient

Ag = 330 m? s-!. No thermal forcing nor thermal diffusion
are allowed in these preliminary experiments.

The model is forced by a sinusoidal wind stress

T = - T(Q COS (ny/Ly).

The numerical grid is composed of either squares or
rectangles with variable Ax and Ay. The range of values of

Ax and Ay is from 20 km up to 40 km. Adjacent to the
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boundaries there are strips with Ax = Ay = 20 km. Thus for
instance, the western strip is 200 km wide, then the grid
size increases progressively with the sequence (25 km, 30 km,
35 km) up to Ax = Ay = 40 km at approximately 350 km from the
western coast; this size is kept from this point up to

x = 880 km where again the grid is decreased progressively.
A similar pattern is repeated along the north and south
boundaries. See Figure 3. The vertical resolution consists
of two layers with depths Hy = 1000 m and Hy = 4000 m,
respectively. The choice of these conditions and quantities
deserves explanation. The time step At is, according to
(3.36b), equal to 4 hours, |$<0)| =1 ms™! and h = ax = 20
km. Notice that in order to calculate At we have used the
smallest value of Ax and multiply the result by a factor of
0.8 which is an empirical criterion in dealing with
non-linear or variable coefficient equations. The physical
parameters Ay, tg and the vertical resolution are the

same as those of Holland (1978) so that we can compare the
results of our model with those of Holland's model. On the

2 g-1 pecause,

other hand, Ay cannot be smaller than 200 m
otherwise, the western boundary layer width, as we will see
later, is not resolved properly by a grid with ax = 20 km

and, therefore, the solution exhibits oscillations at the

boundary which propagate to the interior (see Gresho and Lee



1981). The horizontal grid distribution was determined by
the need of keeping as low as possible the computer storage
requirements compatible with the resolution needed at the
western boundary and possible eddy areas. The largest value
of Ax, Ay is smaller than the internal deformation radius, so
even in the central region we still keep a resolution high
enough to resolve the eddies.

It is, of course, the non-dimensional statement of the
model and its parameters which are physically meaningful.

The standard non-dimensionalization scheme is (Holland,

1978):
(x,y) = L(x", v, t = (L)~ ¥,
(u,v) = U(u* v*) w = (I_E&_ig) w*
’ ’ ’ fOHL ’

where the star quantities are dimensional ones,

T T
U = (————9—) is a typical horizontal velocity.
B H, L P

Using such a scheme, we define the following non-dimensional
parameters:
L

R, = ————— (Rossby number),
O u, 8213
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By -1
Re = T (Reynolds number) ,

P2
H

r1m
w

These non-dimensional parameters can be used to relate the

various boundry layer widths to L:

*
WS = % = e L Stommel Layer;
A R
_ ( H1/3 _ ,70,1/3 .
WM = (8 ) = (Re) L Munk Layer;
WI = (%—)1/2 = R1/2 L Intertial Layer.

The values of the non-dimensional parameters and the boundary
widths in all of our experiments are:

U= 0.0157 m s-!

4 x 10-3

=
I

8 x 10-"%, R_ = 50, €

Wo = 5 km, W 25 km, W

M 28 km

Notice that according to the values of Wy and Wy, the
model is a compromise between a non-linear and a frictional

model.



. 4.2 Results

The main objective of Exp. 1 was to check the internal
logic of our model by comparing the finite element results
with those given by finite difference models with the same
parameters as Holland (1978). The only difference between
our experiment and Holland's experiment No. 1 is the
inclusion of bottom friction. Exp. 1 was carried out for 200
days. Figure 4 shows the upper layer stream function pattern
at T = 200 d. The dominant features are:

(i) a western boundary current;

(ii) a northern wall boundary current flowing to the

east;
(iii) a recirculation system flowing predominantly to the
west;

(iv) a mid-ocean circulation dominated by closed
circulation systems which, at this stage, is
qualitatively similar to the traditional Svendrup
interior.

Although there are no eddies yet, the ocean should start
shedding them from about 400th day; according to Holland
(1978). The features of our solution agree well with the
average pattern of Holland's results. Therefore, we assume
that the logic of our model is correct.

The next computation, Exp. 2, differs from the previous

one in that no-slip boundary conditions are used on the solid



Fig.4.

Stream Function Distribution

Ist Layer
(CI S00 m?* S-l)




- 81.2 -

Fig. S
. Strcam Functlion Distribution 2nd Layer
(Cl 50 m" 571



- 82 -

boundaries. Insofar as the author's knowledge is concerned,
no experiment with a baroclinic ocean and such boundary
condition has been reported. Figures 6 and 7 show the upper
and lower layer stream function patterns after 200 days of
integration. The dominant features of Figure 6 are:

(i) a western boundary;

(ii) a separation of the flow from the western boundary

past the point of maximum amplitude of wind stress;
(iii) the entry of the flow to the interior via
undulations;
(iv) a mid-ocean circulation dominated by a circulation

system in Sverdrup balance.

The differences between this pattern and that of Exp. 1 are

the absence of the northwest recirculation and the separation

of the flow from the westen boundary.

The flow pattern of the first layer in Exp. 2 is very
similar to that of the Bryan (1963) barotropic ocean with
comparable Re and Ro and no-slip boundary condition on the
West and East boundaries.

The undulations of the stream function in the
north-western part of the basin are more conspicuous in the
vorticity plots shown in Figure 8.

Results of the symmetric two-gyre experiment with
no-slip boundary condition are shown in Figures 9 to 11; they
represent upper and lower layers stream function

distributions at instants T = 130 days, 300 days and 400
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days, respectively. We observe the absence of the upper
layer free jet at mid-latitude which is a characteristic
feature when free-slip boundary condition is applied with the
same Ay and wind étréss distribution (Holland and Lin
(1975). This fact is due to the separation of the flow from
the western boundary.

The circulation of the upper layer is established at
T = 130 days and from that instant on there exists a balanced
boundary layer-interior Sverdrup pattern even when the ocean
is being spun up as Figs. 15 (kinetic energy per unit of area
of the upper layer) and 16 (stream function at x = 700 km,
y = 390 km) show. This circulation pattern is indicative of
the barotropicity of the regime of the first layer. As for
the lower layer, it takes longer to reach a regular pattern,
which is similar to that of the upper layer out of the lower
southern/upper northern corners of the channel where an eddy
is setting up. This eddy, which matches with the upper/lower
interior dynamics, stays at the same location and increases
its intensity at the same rate of the boundary layer
circulation., The eddy region is just below the region of the
upper layer where the western boundary is more inertial. We
have not attempted to provide a theoretical analysis of the
eddy dynamics because our analytical approach is able to
explain the boundary layer-Sverdrup interior of the lower
layer as well as the upper layer dynamics.

The lower layer gyres are displaced poleward in agree-

ment with empirical observations, Rhines and Young(1980).
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The numerical results for both upper and lower layers
can be conceptually explained by Stewart's (1964) arguments.
In the western boundary layer the relative vorticity is zero
before the current reaches the separation point; but the wind
stress inputs clockwise relative vorticity and the fluid has
no relative vorticity when it enters in the boundary layer.
Thus, the only possibility is for counter-clockwise vorticity
to form at the boundaries and to diffuse into the current
laterally. Further north of the separation point, and as
long as the interior circulation is in Sverdrup balance, the
stream lines turn seaward, but the relative vorticity in the
interior of the ocean is negligible, so the water which
leaves the boundary to re-enter the interior has to cancel
its relative vorticity by a new mechanism. This new
mechanism is the undulations of the stream functions which
dissipate either positive or negative relative vorticity
coming out from the boundary layer. Thus, the role of the
undulations is to allow time for the excess of the relative
vorticity to be dissipated before the boundary flow matches
the interior one. Figures 12 to 14 show the adjustment of
the relative vorticity. If the flow is such that the
dissipative terms are larger than the inertial ones, then the
cancellation of boundary vorticity will be faster and, hence,
the undulating re-entry will be less conspicuous, or, in the
absence of non-linearities, there will not be such a re-entry

at all (Munk's dynamics). Now, upon comparing the pattern
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of the lower layer with that of the first layer (Figs. 10-11)
we see that the former has more of a dissipative character;
this is so because the driven mechanism of the second layer
is the weak vortex stretching term while the coefficient Ay
is the same at both layers. On the other hand, the
circulation pattern of the first layef resembles the eddy-
free patterns reached by barotropic models which have the
same Re and Ro. Bryan (1963) and ITerley and Young ((1986),
private communication). In the next section, we describe an

analytical model to interpret the numerical results.

4.3 Theoretical Analysis

In the last section we have discussed the results of our
experiments, emphasizing those results of Exp. 3. Our
purpose now is to describe an analytical method to explain
the main features of Exp. 3 and to isolate the mechanisms
that control the dynamics when the no-slip boundary condition
is imposed. Specifically, we wish to clarify the roles
played by the western boundry laver and the stratification.

Let us write the continuum equations of the first and

second layers in terms of the potential vorticities, qj,

q2 Aas

_ 2 curl T
e = JQq, V) + Ay Vg oy F g —

(4.1a,b)

a]
il

2
+ AV - v
J(qz, ¢2) q n 5 e v ¢2,

2t
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where

- vl -
q1 - VH 11)1 + £ + F] (‘pz ll)1 ) ’
q, = vﬁ by * f + F, (¢1 - wz), (4.2a,b)
£ £
F1 = ﬁ-“— , F1 = -g—lH—z- N (4.3)

We form the equation for the barotropic mode, viz.,

Hy vy + Hy 4y
]'pB H 9

El H

by adding & (4.1a) to g (4.2b). Thus,

8t | vy
a_t— = ﬁ {H“ J(C1»w1) + Hz J(Czywz)} - 8 -éX_
a2, M2 curl « (. ba)
H'H °B T H H V2 R -fa
H, ¢z, + H, ¢
1= 2 >2
tg = q . (4.4D)
Note that the vortex stretching terms, = Fi(w1 - ¢2) have

cancelled. 1In the Sverdrup interior, outside the frictional
western boundary layer, the Jacobian and fractional terms can
be neglected. Although the ocean is still spinning up, Figs.
9-11 show that there is a balance between planetry vorticity

and the curl of wind stress in the interior of the ocean



- 87 -

g
SO we can neglect 3?2 there. Hence, the equation in the
interior is
oY
B _ curl =t
Box = g §<x <L, (4.5)

where § denotes the width of the western boundary layer.

The solution of (4.5) is

— X
where
oo = - x" %0
B H B L’
y
£(y) = sin (§0), (4.7)
y

The potential vorticity of the second layer in the Sverdrup

interior is written in terms of yp and yp as

*
q2’1=f+F (‘PB'\P2>;

F = -H— F2 . (4.8)

Using (4.8) one can write (4.1b) in the Sverdrup interior as

J(q, ¥y) + O(hy, ) = 0, (4.92)
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where
*
q=f+F wB (4.9b)

represents the geostrophic contours of the second layer. Use
has been made of the identity J(y2, ¥2) = 0 to obtain
(4.9a) upon substituting (4.8) into (4.1a).

The solution of (4.9) up to zero order is

by = G(@). (4.10)

The geostrophic contours q will close in the northwest part

of the basin if

%
F oo TO .
by -~ <0
or
*
F = TO
H 8™ L
y

In our experiments: Tg = 10-%, F* = 6.25 X 10'10, Ly = 10° m,
H = 10°> m and hence Yy = 0.2. Thus the geostrophic contours
should not close. However, there exist closed streamlines

¥2 that go through a western boundary layer and other ones
that exhibit eddy nature. Rhines and Young (1982) and Young

and Rhines (1982) show, by application of the Batchelor-



Prandtl theorem, that inside the closed geostrophy contours
the potential vorticity is homogenized whereas outside such
contours the whole region is threaded by geostrophic contours
that hit the eastern boundary where y9 = 0. It is this
boundary condition that forces the function G of.(4.10) to be
identically zero. The parameter Yy is greater than 1.0 if
either the forcing tg is strong enough or F* 4 1 or both
together. Homogenization of potential vorticity arguments
require the existence of frictional forces, no matter how
weak they are, with no additional hypothesis on the existence
of western boundary layers. Indeed, Young and Rhines (1982)
close their theory by appending a western boundary layer in
the classic sense. Ierley and Young (1983) show, however,
that the presence of a Stommel frictional boundary layer type
prevents the homogeneization of the potential vorticity
inside the closed geostrophic contours of the second layer.
In our numerical experiments, the value of F* is so
small that we can consider q = By + O(F*) in the interior
while the existence of a weak lower layer flow (¢ # 0)
must be due to the action of the weak vortex stretching terms
and the eddies that have just started setting up in the lower
left corner of the second layer. However small this flow is,
the presence of a western boundary layer, where relative
vorticity is generated, is so influential on the overall

circulation that there are closed stream functions y2 going
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through the boundary layer and returning well into the
interior, in contraposition to RY theory. This feature will
be dominant on the lower layer dynamics (at least in the
range of parameters we use and with the non-slip boundary
condition) even in the presence of eddies.

To proceed further in our analysis, let us write the
equation for the baroclinic mode ¥. Since ¥ = y1 - V2,

substracting (4.1b) from (4.1a) yields

FioJCys ¥)) = Fy T (byy ¥)) + 8 2= (4 = ¥y)

_ 2 2 2 curl =
= AH VH (z;1 - ;2) + € VH wz + ——HT—— , (4.12)

where the %E terms have been ignored.

To study the Sverdrupean dynamics of (4.12), we again
assume that the relative vorticity is very small in the
interior. The dimensional arguments such as

*
vp = U Loy

_ *
vy = Uy L 9y

H

where U2 <0 (ﬁl U1) and parameter values
F, = 1.25 x 10-'%, F, =5 x 10-1°
lead to
FR oY curl = -
F1U1 % t B r g — t ()(1'2 J (q;1, “’2)) + O(AH, £) .

1

(4.13)



Hence, the interior dynamics of the baroclinic mode is
similar to the first layer dynamics. We should point out
that for larger values of ¥y and F2 (that is, increasing

the strength of the vortex stretching terms by improving the
vertical resolution of the model), the character of the
interior dynamics of the few first baroclinic modes as well
as of the upper layers would be less of Sverdrup type and

more non-linear. The solution of (4.13) up to first order in

F,U
151, .
(_B—) 18:
¥=20 (0 -1 £y (4.14)
X
L, w1 F,. U F. U
_ X 0 1 -1 1 -2
Whereﬂ—-ﬁrB—L—}’—'—(1- B)+O(B)+0(AH,E)
(4.15)
and f(y) is given by (4.7b).
Since y2 is given in terms of the baroclinic and
barotropic modes as
iy
Vo T Vg - @ ¥
H2 '
¥y = b t = ¥ (4.16)
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then from (4.15), (4.6), and (4.16) one obtains the following

expression of y2 in the interior.

F1 U1 Lx'ﬂ 0

by 1= - —5 - (- Zﬁ—) sin (-EZ). (4.17a)
I x y
Analogously,
L rmt
=2 0 0y DXy (Y
w1’1 = T, By (1 Lx) 31n(Ly). (4.17b)

This expression yields a circulation in the second layer that
is, at least, 1/13 times weaker than that in the first layer
and with the same sinusoidal pattern. Both features are

- qualitatively confirmed by the numerical experiments except
in the left lower/upper corners where eddies are setting up

with intensity greater than yp 1. See Figs. 10b and 11b.

4.3.1 Boundary Layer Equations

In this subsection, we confirm analytically the features
exhibited by the upper and lower flows in the western
boundary layer. As pointed out previously, we believe that
Stewart's arguments about the role of the relative vorticity
in the western boundary are able to explain conceptually the
features of the numerical experiments. Our approach to
examining the behaviour of the non-linear terms of the

equations (4.1a,b) in the presence of lateral friction will
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be in the line of Moore's (1963) heuristic model of a damped
stationary Rossby wave supported by the eastward efflux from
the western boundry. Although such a model is asymptotically
correct at the outer edge of the boundary layer and agrees
with Munk's model when the boundary layer Reynolds number
tends to zero, it has the deficiency of replacing the
tangential and normal advection of relative vorticity by the
normal advection of relative vorticity at the outer edge of
the layer. This shortcoming can be explained by the main

hypothesis of the boundary layer theory, i.e.,

9 9
3% 7 3y

and by the lack of knowledge of the structure of the
u-component of the velocity within the boundary layer.
Similar criticism can be made of the inertial theories of the
western boundary dynamics.

As we have already pointed out in Section 4.1, the
structure of the western boundary in our experiments is a
blend of inertial and Munk's boundary layer types. The
Stommel layer is relatively unimportant so we neglect in the
sequel the bottom friction terms. Our analysis assumes that
the time dependence of the variables is inconsequential for
the structure of the boundary layer because the eddy

viscosity coefficient Ay is so large that we allow enough
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time for the existence of a balance among the generation,
advection and dissipation of relative vorticity in the
boundary layer at any instant. Taking for granted that

%; > %; within the boundary layer we write (4.1) as

3 4
DA A A T Lk Wk e T A D2 RN
B aX3 axX B 23X 3 3x4 B H1
u, 33¢2 o9, U,F, 3b, Ay a4¢2
20272y + ;| , (4.18a,b)
8 ax3 ax B 939X 8 3x4

Bwi

where we have replaced 5y by - Ui(x,y), (i = 1,2), which
are the interior velocities in the upper and lower layers.
It is consistent with the interior field flow to assume also

that in the boundary layer ¢1 > V2.
U, F u,F
3 = 0(10'1) and % 2

experiments, then we can approximate (4.18a,b) as

Since

w 0(10'2), in our

3 4

El(a ¢1) + 3¢1 - ﬁﬂ 9 l,)1 + <curl TS,
B 8x3 axX B 3X4 B H1
U.F, 3¢ U,F, 39
171 2 171 2
+ B 9X 0 ( B 23X ’

3 4
Uy 374, 3by  UpFy 3y Ay 374,
B ¢ T ¢ "% L&

) (4.19a,b)
B 3 X B oX 5%

ax

The symbol < > means that the curl t is not an active term of

(4.19a).
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The above equations show that up to order
0 (__E_ 32—) the upper layer is uncoupled from the

lower one, but it is not obvious that the lower layer be

independent of the upper one because we do not know yet
UpFy 3%
the relative magnitude of the term —F % with respect

to the terms of (4.19b). Thus, let us consider as tentative

the following scaling scheme:

Upper Layer

- 1/2
Lig = (Uy/8) ,
*
¢1 = U1 L1B w1: (4.20a)

= 1/2
X = LZBX’
* .
wz = U2 LZB ¢2 (4.20b)

L1g and Lygp are the inertial boundry layer widths of the
upper and lower layers, respectively. Typical values of
L1g in our experiments are Lig = 28 km, Lo = 14 km.

The non-dimensional equations are (dropping asterisks)



32"’1 994 1 a4‘”1 v 00)
+ b
aX3 23X Re1 3X4
3 : 4
870y ¥y Fy Uy Lyg oy 370
+ + + 0( )’ (4'21a7b)
aX3 9X B LZB Re2 3X4
where
G312
Rey = ——77
AH 8
US/Z
and Re, = , (4.22a,b)
2 AH B172

are the boundary layer Reynolds numbers in the first and
second layers, respectively. In order to know whether the
scaling scheme (4.20a,b) yields a system of uncoupled
equations, we have to verify that the third term of the
left-hand side of (4.21b) is much smaller than the other
terms of the equation; this is true in our experiments
because |

FoU; Lyg t¥q1
B Lyg Tv,l

1

~ 010" )

The boundary conditions associated with (4.21a,b) are
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ipl=3—w—2=o at X = 0, (4.23)
9xX 9x
and
V9= M1
v = ¥y 1 at X » =, x + 0. (4.24)

Notice that (4.23) includes the non-slip condition at the
western boundary of the basin, whereas (4.24) represents the
typical matching conditions between the boundary layer
solutions and the interior solutions.

The difference between (4.21a,b) and Munk's model lies

83w.

in the term 31 which arises from the Jacobian of the

X

relative vorticity terms. The greater Req (Rep) is, the

more inertial the flow becomes, eventually as Re1 (Rez) > o
the flow becomes Fofonoff's inertial flow. On the contrary,
the smaller Reti1 (Rep) becomes, the more frictional the

flow is; thus, as Rei1 (Rep) + 0, the flow reduces to

Munk's solution because the only non-trivial combination of
(4.21) is, for this case, between the right-hand side and the
second term of the left-hand side.

Solutions to (4.21a;b) are of the form

AewX

vy g (x,¥)

BeaX

vy g (X,¥) , (4.25a,b)
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Substituting (4.25) into (4.21) yields

Wl - Re, (w2 +1) =0, w, =0,

ol - Re, (a2 +1) =0, ap = 0. (4.26a,b)

The above equations are two cubic equations. The nature of
their roots depends on the values of the coefficients
(Abramowitz and Stegun, 1964). 1In our experiments, when the

values of Ui (y) and Ug(y) are

Uy (3), Uy(y) > 0

or if negative,

%1)1/3 1/3 ,2/3

|U1(Y) B H

~~

the roots of (4.26) are

wp = py * iby, wy = py + iby, wy > 0,

a1 T Po + ibz: @y = Po + ibz, ag > 0, (4.27a,b)
where

py = -ly [y + e P v (ay - eptP) - Sy,

o
it
-~
N Wl

[(a; + ¢! - (@ - e/, i-1,2).

For positive velocities Uy(y) and U2(y)
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1 Re%
a; = Re; (5 + 577,
2
Re?
_ 1 iy1/2 .
c; = Re, (g + 57577, (i=1,2). (4.29)

;  Ref
ai=Re (7"27)’
2
Re:
= 1 CTi1/2 .
c; = Rei (Z - 57 , (i=1,2). (4.30)

The solutions y1,B and y2 B are, .then, of the form

;l X ;g X “3 i§‘
by g = Ag t A e 1B, A, e 1B Ay e 1B
%l X ;g X %3 IE‘
¥y p =By + By e 2B, B, e 2B By e 2B (4.31)

By imposing the boundary conditions (4.23) and (4.24) and
taking into account that the uniform solution valid for the

whole domain is given as

v (x,y) = ¢ (interior) + ¢ (boundary) - ¢ (matching)

yields
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where

-1
.= b, <2+ 8,, 8, = t /b.
3T Tyt T 1 T (py/by)

wj 1 (¥,y) are given by (4.17).

When the velocities Ui (y) and Ug(y) are positive the
solutions (4.32) are valid for the northwest region of the
basin where the flow leaves the boundary and re-enters the
interior. The wavy nature of (4.32) in this region increases
with the value taken by Rej and represents a damped

standing wave whose role, as we have already mentioned, is to
contribute to the dissipation of the positive relative
vorticity that the flow owns when it leaves the boundary. A
way to verify qualitatively the numerical results is to
computing the damping scale LDj, the wave-length A; and

the number of the undulations that the standing wave

undergoes before being completely damped.
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In our experiment, we have the following wvalues:

Upper Layer Lower Layer
Re1 = 1.333 Re2 = 0.167
LD1 = 130 km LDZ =~ 63 km
A1 s 208.6 km Az = 186.3 km

Notice that the wavelengths of the standing waves in the
upper and lower layers are comparable; however, Lpy = 2 Lpo»
so the damping of the lower standing wave will be much
stronger than that of the upper layer, a fact that the
numerical results confirm. If the wavelength is greater than

the damping scale, the number of undulations will depend on

the ratio %—. Thus, we have,
D

1.6, e 1+6 = 201

so it will be possible to observe a second crest of the
standing wave; this means that Nuj = 2 as we can see in
Figures 9-11,

For the lower layer

A
2 - 2.9, e2:9

~ 5%,
Lpy

so a second crest of the wave will be drastically damped

(Figs. 9-11).
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We should point out that for asympototic values of Rej,
i.e., Ref{ » 1 and Rej € 1, the results of eqn. (4.32)
accord with those given by Pedlosky (1979), sections 5.7 and
5.8.

We have just shown that a simple analytical approach
based on the boundary layer theory and the Sverdrup regime
in the interior is able to explain, at least qualitatively,
the dynamics of our numerical experiments with the no-slip
condition at the solid boundaries. The main point of our
analysis lies in the fact that weak vortex stretching terms
and local boundary scale analysis permits us to uncouple the
dynamics of both layers and, therefore, to study the motion
of each layer using the boundary layer theory for a
homogeneous ocean. In the case where the vortex stretching
terms were large enough to yield a strong coupling between
the layers, we still can perform a local boundary scale
analysis to isolate the boundary layer dynamics of each layer
and then to solve a system of fourth order partial
differential equations in one variable that would replace
(4.21a,b). 1In this case, equation (4.11) also predicts the
existence of closed geostrophic contours in the northwest
region of the second layer and according to YR (1982) the
homogenization of potential vorticity within those contours;
however, with base on our method to obtain the analytical

solutions of the potential vorticity equations, we feel that
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the function G(q) in (4.10) is so dependent on the western
boundary dynamics that it prevents the homogenization of the
potential voriticity. In this respect, we can consider our
method as a generalization of that of Ierley and Young's
(1983) which was used to study the influence of the boundary
layer on the distribution of potential vorticity in the
interior. They choose a Stommel boundary layer closure in a
linearized problem (their non-linearities are strong vortex
stretching terms which they linearized by using an "ansatz"
such as y2 = k yg, k a constant) and neglect the relative
vorticity all over the whole domain.

However, the homogenization of potential vorticity has
recently been observed by McDowell et al. (1982), Coats
(1981), etc., so any reliable numerical model has to be able
to reproduce this feature (Holland, 1985). We believe that a
possible way to obtain that in our model is: (1) by
increasing the vertical resolution, particularly in the upper
thermocline, in order to force the existence of closed
geostrophic contours which herald the onset of baroclinic
instability; (?) by decreasing the value of Ay, say A =
50 m? s-! instead of Ag = 200-300 m? s-!, and increasing
the forcing term up to a more realistic value. The
consequences of (2) are a reduction in the dissipation time
and an increase in the amount of positive relative vorticity

generated at the boundary, so the standing waves might become
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unstable and shed eddies to dissipate the relative vorticity
coming from the boundary. It is possible that disturbances
amplify in this region and eventually equilibrate by inducing
a mean flow in the lower layer which removes the reversal in
sign of the mean potential vorticity. Analytical details of
weakly non-linear instability in the presence of friction can
be seen in Pedlosky (1970, 1971 and 1972) and Newell (1972).
To accomplish this equilibration, a large fraction of the
total transport must migrate down to the lower layer. This
process may make the potential vorticity gradient equal to
zero; if this is so, then the baroclinic instability,
localized in the northwest, produces a source region of
uniform potential vorticity.

In order to confirm these somewhat speculative
arguments, new numerical experiments are underway. The first
group of such experiments deals with the increase of vertical
resolution in the upper thermocline, with the rest of
parameters (i.e., Ax, Ay, Ag. Curl 1, etc.) being similar
to those we have used so far, and it is intended to extend
the computations up to at least five years. The main purpose
these first experiments is to compare their results with the
present ones and to validate our analysis. The second group
of experiments will include (1) and (2) together. This
experiments are computationally very demanding because, in

addition being strongly non-linear, a very narrow boundary
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layer develops at the western side that requires Ax = 5 km in
a strip adjacent to that side and, therefore, At { 30 minutes
if an explicit scheme is to be used. The only rational way
of overcoming such a severe problem is by using a time
implicit scheme, which allows a At ~ 6 to 8 hours, in
conjunction with a least squares-conjugate gradient method to
reduce the full non-linear problem to a sequence of Poisson
problems at every time step. In order to solve as
efficiently and economically as possible this sequence, we
are present implementing a more powerful version of the

conjugate gradient method.
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CONCLUSIONS

The numerical model constructed here is the first step
of a longer series of numerical studies on ocean circulation
using higher accuracy models. We have shown that a finite
element formulation with lumping and variable grid spacing of
the dissipative quasi-geostrophic equations is able to
deliver reliable solutions. To take advantage of the
implicitness of the method and its higher accuracy to
represent a wave, a time implicit scheme has to be used.

If one considers that the ocean water is a real fluid
then the imposition of the no-slip constraint on the solid
boundaries removes the incompatibilities between certain
physical processes and the quasi-geostrophic equations which
arise when free-slip constraints are used (McWillians 1977).
However, for a given range of parameters such as Ay, 8%, 4y,
F1 and FZ’ which is eddy generating as the latter constraint
is imposed, the flow becomes quasi-laminar in both upper and
lower layers with the no-slip condition. Thus, it is
concluded that the generation of eddies with this constraint
requires a much lower Ay and higher F{ and F»y.

The western boundary layer is active in controlling the

dynamics of the second layer, as is seen in the analytical

model, and it is expected that even at higher Fy and Fp
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such that the lower geostrophic contours are closed the
western boundary layer will prevent the homogenization of the
potential vorticity in the second layer unless A{ is small
enough to allow the appearance of instabilities in the

northwestern meanders.
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APPENDIX A

Equation of The Relative Vorticity in a Stratified Mid-Ocean

Gyre

Consider a restricted oceanic domain D, The dynamical
variables usually required to describe the motion in such a
system are the density p, the pressure p, the vector velocity
4 = (u,v,w), and certain further thermodynamic variables as
the temperature T, the internal energy per unit of mass e and
the specific entropy s. In certain situations, depending on
the physical nature of the fluid, additional variables such
as salinity may be required, or in cases when the
thermodynamic relations can be simplified, some state
variables can be dispensed.

In an Eulerian description of the motion, the dynamical
variables are functions of the vector position X = (x,v,2)
and of time t. The equations of motion of a Boussinesq fluid
in a rotating coordinate system are:

Conservation of mass

%% + 9V e+ pl=20 or %% + pV ed =0 (A.1)
Momentum equation
g
Du = 1 '
et 23A4 5 Vp + Vo + 5 (A.2)

Heat equation
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%E_=.<VZT+%— (A.3)

where %E = + 4 « V is the material derivative

At

¢ is the speed of rotation of the earth = 7.2910-° s-}

k is the coefficient of thermal diffusivity
Cp is the specific heat at constant pressure
Q is the rate of heat addition per unit of mass by heat
sources.
To complete the system, further thermodynamic state relations
expressing the physics nature of the flid are required. For

salt water
o= p(p,T,S) (A.4)

If the effects of compressibility are minor, then (A.4) can

be written as
p = p0[1 - a(T - TO)] (A.5)

Hence, equation (2.3) can be written entirely in terms of the

density as

DE = K Vip = E—g Q. (A.6)
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It is worth noting that equations (A.1) and (A.6),
although both given in terms of density, are related to
different physical principles; the former expresses mass
conservation and the latter, for a liquid, expresses energy
conservation.

If we assume that the ocean water is an incompressible
liquid, or very nearly so, density differences are so slight
that their effects on the mass balance can be neglected, so

that

Veua=20 (A.7)

Equation (A.7) does not mean %% = 0. Indeed, %% is given by

(A.6) in terms of internal heating and heat diffusion. g%
is identically zero if the fluid is incompressible and the
motion is adiabatic.
_.l
The terms, Vé and g: in equation (2.2) represent the
body force and the non-conservative forces respectively. ¢
is the potential of the conservative forces and is, in this

study, the frictional force acting on the fluid which is

given in terms of the vector velocity as

Q>
ey

(A.8)

gl
Il
>
s s}
<]
mull &
(=14
+
e
3
N
N
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Ay and A, are the horizontal and vertical eddy viscosity
coefficients, respectively, which are taken as constant.
The large-scale gyre ocean motions are primarily

characterized by the following non-dimensional parameters:

| v
Rossby Number e = 5oL << 1 (A.9a)
. Ap D LD2
Burger's Number S = g — 7y = (f—) << 1 (A.9b)
4oL
Vertical Ratio Number § = % KL 1 (A.9¢)

where U,L,D denote typical scales of velocity, horizontal
length and depth of the motion, respectively. The small
value of the Rossby Number e implies that the Coriolis force
will be dominant over most part of the ocean gyres except in
narrow areas where the inertial and the frictional terms of
the momentum equations can become important. On the other
hand, the strong stratification of the ocean leads to
large-scale oceanic motions which are nearly horizontal. The
hydrostatic balance of the motion is guaranteed by § € 1. So
as a first approximation the dynamics of the large-scale
oceanic motions can be described by the geostrophic and

hydrostatic equations (Pedlosky, 1979). Naturally, as is

evident from the parametrization involved, the geostrophic
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approximation breaks down in the vicinity of the equator and
in high latitudes; in the latter area, there is no way with
the geostrophic relations only to calculate the pressure
field. As a diagnostic tool, the geostrophic equations
inform us that if the velocity field slowly varies in time,
then the Coriolis force will be balanced by the evolving
pressure gradient; however, no information about the pressure
field is conveyed by such an approximation. In fact, any
pressure field with a small Rossby number is acceptable
because the continuity equation (A.7) is always satisfied up
to 0(e). This indeterminancy of the geostrophic
approximation can be removed by taking into account the
effects of small departures from geostrophy, in other words,
by introducing higher order dynamics. In doing so, we should
notice that by applying the curl operator to the geostrophic
equations the contribution of the Coriolis and pressure
gradient forces to the vorticity balance vanish, so that it
is in terms of the higher dynamics that the vorticity balance
can be achieved. The forces which determine such a dynamics
are usually the small non-geostrophic forces as:

a. the inertial forces which yield to non-geostrophic

velocities of order 0(¢);
b. the vortex tube stretching by the Ekman

suction/pumping velocities at the bottom/surface,
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acting on the planetary vorticity filaments, will

produce a variation of the relative vorticity

proportional to O(El/z). (EV = 2Av/29D2). These

non-geostrophic effects arise from the vertical

friction and give place both to an Ekman bottom

layer which acts as a sink of vorticity and a

surface Ekman layer at the basis of which the

external mechanical forces input relative vorticity;
c. horizontal diffusion of momentum which is

24, E
H o CH _ p-l

ZQLZ’ € e

d. sources, sinks and diffusion of heat.

proportional to O(Eyp . (Ey = )

The absolute vorticity in our rotating ocean system is
z + 28, T = VAU is the relative vorticity and 28 is the
planetary vorticity which dominates ? because e << 1. The
dominancy of the planetary vorticity introduces some
distinctive peculiarities into the vorticity dynamics of a
rotating system. Thus, for instance, the classic effect of
vortex line stretching of three dimensional non-rotating
fluids is absent here. It is not useful now to take Z as a
tracer of the motion because the production '2'2 and the
accelerated dissipation of kinetic energy cannot occur at
planetary scales at which Re is large. 1Instead, the
potential vorticity q will be a good tracelike scalar on

surfaces of constant potential density. Deformation of
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contours of q leads to dissipation of q2 itself. The
equation of the potential vorticity q as a conserved property
is given by Ertel's theorem.

Following Pedlosky (1979) we take the curl of (A.2) and

obtain
Dz &
a _ 2 . > 2 - Vo A VE f
From (2.1)
.4 =1De
V u p W -

Hence, Vv - 4 can be eliminated from (2.10) and then

> > -
g g ‘
D fa, _ fa . . ox 1 1 &
e ) =G - »ur 23 (Vo b vp) + o (A, (ATT)

where Ea= T + 2%

In the absence of frictional effects and for adiabatic
motions the conserved magnitude X which leads to the
conservation of potential vorticity in the ocean is the
density p. In a more general context, where dissipative
effects are to be taken into account to remove the

indeterminancy of the motion, it is still convenient to keep

p as a valid choice of a scalar property of the fluid that

together with Ea can yield to a useful version of Ertel's



- 119 -

theorem applied to the ocean circulation.

Let us write equation (A.6) as

ap
—=G=KV2p-C-—OQ, (A.12)

P

and consider the following identities:

z z z
a . DVp— a . RE . a [ >
z z Vo A Vp
Vo + B (5B = vo + [(Z2 - W A + v - | ]
Dt ‘p p3
(A.13a,b)

The sum of (A.13a) and (A.13b) then yields with (A.12)

vaF

+ 2§ Vo . [_T . (A.11+)

z
e V = VG *« = - +
p} P P

P__{§+_2§
Dt o)

Equation (A.14) is the most general equation of the potential

>

vorticity q = 5—%—gé « Vp; but it is not in this form as

this equation is used in oceanography. Further manipulations
in (A.14) using the relations of the geostrophy dynamics and
Boussinesq approximation yield a more suitable form of the
equation of potential vorticity. Thus, the horizontal
components of relative vorticity which are produced mainly

by the buoyancy twisting term, Vp A Vp, are computed from the

thermal wind relation (Pedlosky, 1979); whereas, the vertical
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components of the absolute vorticity and of the gradient of
density are the components which actually are used in

(2.14). Therefore, this equation can be written as

D' Py G L, fE+ ¢ Py 2
pt [(f+ o) ;‘] = 55 ( 5 ) + e Ay V7t
£ 223 oy D (A.15)
o 9z ( z .
where
D' _ 3 5 > _ (9 d
'D_T_t - a_f + uH VH’ uH - (U,V), VH - (Q_X— » W) ’

T are the stresses which act on the water column,

z is the vertical component of the relative vorticity,

= 2|§|sin6.

rh

It is convenient to write equation (A.12) in terms of

the operator %;% as
Do - wle+a. (A.16)

The equations (A.15) and (A.16) form the basis for the study
of oceanic motions which extend from the synoptic scales to
the planetary scales. However, in order to facilitate the
theoretical and numerical analysis of any dynamical state, it
is necessary to isolate the relevant mechanism of such a

state at a given scale. A detailed description of such
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mechanisms as well as of their interact;ons with other scales
of the global dynamical state requires the introduction of
complementary and physically and mathematically consistent
approximations to the equations (A.15) and (A.16). Since our
main interest is the description of motions which take place
at mid-latitudes and such that their metric can be accurately
described by the tangent plane approximation, we now
introduce the standard scaling variables for a mid-latitude
g-plane.

The scaling parameters are (Pedlosky, 1979):

o= pg(2) (1 + eFo'),
U
€=_f_t’
0
dp 2 L
-8 _s D" _ D2
S p_ oz 22 Sl (A.17)
S fOL
2
9 SfOL

N® = ——57— Brunt-Varsala frequency,

B

B
0 0
£ =1, O+ vy, 7 <0,
0 £, £,
2
BoL  ByL
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£21.2
where F = ——, £

> . .
) 0= 2|9'31n60, 8y is a reference latitude.

Notice that the buoyancy frequency is taken to vary only with
depth. Although this is an unrealistic assumption for the
real ocean we take it as valid because in our computations we
exclude any dynamical change caused by horizontal variations
of the density.

It is easy to obtain from (A.15) and (A.16) the equation

for the relative vorticity:

et a e vuE = fw, + Ay vﬁ; + %E (VAT) . (A.18)
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APPENDIX B

Consider that the magnitude ¢ obeys the equation

9C > _ >
— L] — L] = -
= + u Vo 0, v u 0

We classify a numerical scheme as:

(i) Semi-Conservative

If neglecting errors in time differencing

9

a—t'fDCdX:O.

The integral has been represented by a summation formula of

the same order as the discretization method.

(ii) Conservative

If the values of ¢ given by the numerical solution obey

fD ¢z dx = const.

(iii) Quadratically Semi-conservative

If neglecting errors in the time differencing

) 2

-B—EIDC dx = 0.



- 124 -

(iv) Quadratically Conservative
If the values of 2 given by the numerical solution

satisfy
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APPENDIX C

We prove here that the approximation (3.31) is
dissipative of second order for either a consistent mass
matrix formulation or a lumping mass matrix formulation.

We use Kreiss' definition of disspativeness (see Kreiss
(1978). Thus, the approximation (3.31) is dissipative of

order 2r if there exists an ag such that

|K(sh)| < eaSAt - 5|g|2r), 'El < M,
where

|K' is the modulus of the largest eigen-value of the
discrete operator Sy of the approximation. In our case 'K'
is the modulus of the amplification factor. & > 0 is some

. = (kax A

constant independent of h and At. ¢ ~5—» —72).

Let us consider, for example, the equation (3.36); that
is

48A At

2 _ H 4 - (x+ vy - 2
M7= - =y G YR §§—>, (C.1)

where

x = coskAx, y = cosfAy.

For kaAx and 2Ay small,

4 - (x+y) -2xy=(1 -x) + O -y) +2(1 - xy)
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becomes

a - cos2€1) + (1 - cosZez) + 2 - cos2e1 cosZez) =

2 2

2sin € + 2sin €y + 2(1 - cos2e, cosZez),' (C.2)
where
_ kax _ AAy

By expanding in Taylor series the right hand side of (C.2)

and retaining up to 2nd order terms yields
b= (x+y) - 2xy = 6(e? + €2) = 6|e|2 (C.3)

Likewise, the numerator (2 + x) (2 + y) is equivalent to 4

for kAx and %Ay very small. Therefore, we can write (C.1) as

]2 =1 - 72 %5%; || (C.4)
since iﬂi; < 797 according to (3.38b),
then

P - e (¢.3)

where § = 72/192.,
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Similarly, we can show that for the lumped mass matrix

formulation

|*1|2



