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ABSTRACT

Multi-element stream sediment reconnaissance in the
Hess River region of the Eastern Yukon has outlined an ex-~
tensive area characterized by anomalously high molybdenum
values. An accessible region in the Hess Mountains, within
the high molybdenum zone, was selected for detailed study
of trace element levels in stream sediment, rock, soil and
vegetation. In view of the frequently observed relationship
between high forage molybdenum concentrations and the in-
cidence of copper deficiency in cattle, molybdenum concen-
trations in plant species likely to be consumed by caribou
and moose were of particular interest.

High sediment molybdenum valugs are‘characteristic
of catchments underlain by dark shales and less commonly
dark limestone. These rocks and associated soils are rich
in molybdenum. Concentrations in vegetation growing on
anomalous shaly soils are characteristically low, while
most plants growing on soils derived predominantly from lime-
stone are molybdenum-rich. The Mo-Cu status of vegetation
on limey soils is typically within the range associated with
molybdehum induced hypocuprosis in cattle.

Low molybdenum uptake by plants on soils derived from
shales likely reflects the unavailability of the molybdate

anion, resulting from its adsorption onto clay minerals
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and sesqﬁioxides under acidic conditions prevalent in these
soils., In neutral to mildly.basic environments, typical

of dark limestone soils, molybdenum adsorption is greatly
decreased, and therefore molybdenum is relatively avail-
able to plants.

In the detailed study area soil pH values are
typically similar to pH levels in associated stream water.
Therefore by combining stream sediment molybdenum concen-
trations with stream pH data, catchments 1ikel§ to contain
molybdenum-rich vegetation can be predicted. Unfortuﬁately
stream pH values were not obtained in the regional survey.

In view of the apparent rarity of dark limestone
- throughout the Eastern Yukon, however, molybdenum-rich
vegetation is noet likely to be particularily widespread.
Wildlife in this area, therefore, is probably not signifi-

cantly affected by molybdenum induced copper deficiency.
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NUTRITIONAL SIGNIFICANCE OF CRUSTAL TRACE ELEMENT ABUNDANCES

According to V., M. Goldschmidt

"Modern geochemistry studies the amounts
and the distribution of the chemical elements
in minerals, ores, rocks, soils, waters and

in the atmosphere" (Goldschmidt, 1954).

Many elements are essential to both plant and animal
life, Of the minor or trace elements for example, adequate
supplies of iron, copper, cobalt, manganese, zinc, molybdenum,
selenium, chlorine and iodine are considered essential to
mammals (Schutte, 1964)., Other trace elements such as lead,
mercury and arsenic are well known for their potentially
toxic effects.,

If ingested in sufficient amounts however, even the
essential elements can be toxic. For example, a high dietary
intake of molybdenum,'in the presence of inorganic sulfate,
may induce a state of copper deficiency in ruminants
(Underwood, 1962). Knowledge of the regional distribution
of the elements, therefore, is of considerable importance in
nutritional studies and epidemiology.

Trace elements in most soils and vegetation are ultim-

ately derived from the underlying bedrock. Acidic igneous,
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and coarse sedimentary rocks tend to contain relatively low
concentrations of the trace elements associated with
nutrition. For example, the coastal plain sands of the
Eastern United States support crops which are commonly de~
ficient in such elements as copper, iron, manganese and
cobzlt (Cannon, 1969).

Metal toxicities, on the other hand, are commonly
associated with shales. In Co. Iimerick, Ireland, for example,
toxic levels of selenium and molybdenum are present in soils
and herbage overlying the Clare Shales, which contain up to
30 p.p.m. selenium and 150 p.p.m. molybdenum (Webb and
Atkinson, 1965). Similarily, wheat crops grown in the north-
central plains of the United States contain texic amounts of
selenium, derived from selenium-rich volcanic ash layers

within the underlying shales (Cannon, 1969).

APPLTCATION OF STREAM SEDIMENT SURVEYS TO THE DETECTION OF
TRACE ELEMENT IMBALANCES IN AGRICULTURE ‘

A stream sediment approximates a coﬁposite sample
of weathered rock and soil material upstream from the sampling
point (Webb, 1968). Soluble products of weathering may be
incorporated into the sediment by either absorption or pre-
cipitation. The trace element content of a stream sediment
sample therefore, may reflect to some extent, that of the soils,
rocks and even vegetation in the catchment as a whole.

Stream sediment sampling has been used successfully
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in mineral exploration programs (Webb et al, 1968). 1In
Canada stream sediments are being utilized in pollution
studies (Fortescue et al, 1971). In the British Isles they
have been used extensively to detect agricultural disorders
arising from trace element imbalances (Thornton and Webb,
1969).

In Co. Wicklow, Ireland, the_cobalt content of stream
sediments has been related to the occurrence and severity
of cobalt deficiency in sheep and cattle on soils derived
from granite (Webb, 1964). On the Vale of Clwyd, Wales, low
manganese levels in sediments (<500 p.p.m.) have been assoc-
iated with low levels in herbage and unthriftiness in live-
stock (Thornton and Webb, 1969).

Drainage reconnaissance over part of Co Limerick,
Ireland, has outlined large areas characterized by high
molybdenum values (up to 200 p.p.m.) related to an éutcrop of
marine black shale (Webb and Atkinson, 1965)., Detailed
studies have shown the anomalies to be associated with molyb-
deniferous soils and rocks. Though symptoms of molydenum
toxicity have been reported in cattle in the molybdenum-
anomalous region, the sediment pattern defined large areas
where previously unsuspected sub-clinical molybdenum induced
copper deficiency is significantly inhibiting agricultural

productivity.



THESIS OBJECTIVES

During the course of a mineral exploration program
undertaken by Spartan Explorations Ltd., Vancouver, in the
Hess Mountains, Yukon Territory, an area of over 100 square
miles, characterized by stream sediments with anomalously
high molybdenum contents (up to 50 p.p.m.), was recognized.
Biack shales, which were thought to be the source of the
molybdenum, are common over a total area of more than 8,000
square miles in the Eastern Yukon.

In view of the possible existence of extensive
regions characterized by enhanced molybdenum levels in rock,
soil and forage materials, this study was undertaken

(1) +to investigate, using sediment samples collected

during a mineral exploration program, the
regional extent of anomalous molybdenum levels
in an area of over 6,000 square miles in the
Eastern Yukon.

(2) to determine, on a local scale, trace element

contents of bedrock, soil and vegetation in

molybdenum-anomalous and non-anomalous regions.



SECTION A

REGIONAL STUDY
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CHAPTER TWO

DESCRIPTION OF REGIONAL STUDY AREA



LOCATION AND ACCESS

The regional survey area in the Eastern TYikon extends
from gpproximately 130° to 135° west longitude and 62° to 64°
north latitude (Figure 1).

It is accessible by air from the town of Ross River.
The Canol Road, which traverses the southeastern half of
the area (Figure 1), is open between Ross River and the

MacMillan Pass during the summer months.

GEOLOGY

The distribution of the five major geological units
within the regional study area is indicated in Figure 1. The
geology has been described by Bostock (Map 8904, 1947),
Roddick and Green (Maps 12 - 1961, 13 - 1961), Campbell
(G.S.C. Memoir 352, 1967), Campbell and Wheeler (Map 12214 -
1967) and Blusson and Templeman-Kluit (G.S.C. Paper 70;1A,,
1970).

Proterozoic to Mississippian metasedimentary and
sedimentary strata underlie most of the area. These rocks
are intruded by small, pfobably Cretaceous, granitic stocks
and are locally overlain by Tertiary lavas.

The Proterozoic rocks of the Yukon Group range in
composition from quartz-mica, graphite,and chlorite schists
in the northwest, to quartzite and dark shales in the central

and southern regions. They are overlain by a rather uniform
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succession of Paleozoic cherts and shales.

These dark, interbedded shales and cherts cover
much of the eastern portion of the area. Their estimated
aggregate thickness is 10,000 feet, with the basal portion
dominated by shale and the upper portion by chert. Chert-
pebble conglomerate, limestone, quartzite and phyllite are
present in minor amounts. Graptolites, found in certain shaly
members, suggest an Ordovician to Silurian age for part of
this unit (Roddick & Green, 196la). The rocks of the Earn
Group, exposed in the southwestern corner of the area, are
Devonian to Mississippian in age. They consist mainly of
chert, chert-pebble conglomerate and argillite.

- Magsive dark lava flows, exceeding 5,000 feet in
aggregate thickness, locally overlie the Paleozoic Strata.
The upper flows are dacitic, while the lower ones are domin-
antly andesitic and basaltic. Several small granodiorite and
quartz monzonite stocks intrude both the Precambrian and
Paleozoic rocks. Hornfels, and locally mineralized skarnms,
are developed near their contacts. A potassium-argon date
on biotites. from the Itsi Range indicates a Middle Creta-~
ceous age for the granitic rocks (Roddick and Green, 196la).

Several lead-zinc-copper vein and skarn deposits have
been reported in the area, and tungsten and molybdenum min-
eralization is associated with the granitic intrusives
(Findlay, 1969). At present the most promising deposits are
the Tom Préperty (Hudson Bay Exploration and Development
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Company Ltd.), comprising stratabound galena and sphalerite

in Paleozoic shales, and the MacTung Property (American Metal
Climax Incorporated), with pyrrhotite-scheelite mineralization
in a skarn zone surrounding a small stock. Both properties

are located in the northeast, near MacMillan Pass.

GLACIATION

Evidence of the most recent Pleistocene glaciation,
the McConnell advance, is abundant within the study area
(Hughes et al, 1968). During the McConnell glaciation ice
accumulated in the Hess Mountains up to an elevation of 5,000
feet (Bostock, 1948), and flowed westward onto the Yukon
Plateau. Ice movement was controlled to a‘greét extent by
the main drainage channels, which as a result were consider-
ably deepened, especially on the Stewart Plateau.

In the MacMillan River valley the total thickness of
glacial drift generally ranges from 400 to 500 feet. Normally
it consists of a basal boulder clay unit, overlain by an
irregular sequence of silts, sands and gravels (McConnell,

1903).

TOPOGRAPHY AND DRAINAGE

The regiqnal study area is divided into two major
physiographic regions (Figure 2), the Hess Mountains in the
northeast, and the Eastern Yukon Plateau in the southwest

(Bostock, 1948). The Hess Mountains comprise a group of



q4°

1330 1329
- "

130

130°

63 7

MACMILLAN

STEWART

H_E

v
R €5

LEGEND

MS - Mount Sheldon KP - Keele

SM - Selenous Mountain MP - MacMillan Pass

Peak

HESS

\
*
M?/
e/
/

PELLY

63

MILES S
o s £ s { PLATEAU
| W T
</
</
[
1359 134° 1330 - 1320 1310 1300
Figure 2. Physiographic subdivisions of the regional study area.



~1%-

irregular, somewhat subdued ranges, underlain predominantly
by Paleozoic sediments. The highest peaks, in excess of
7,000 feet, are generally cored by granitic intrusives.
The Eastern Yukon Plateau is subdivided from northwest to
southeast, into the Stewart, MacMillan and Pelly Plateaus.

Within the study area both the Stewart and MacMillan
Plateaus consist of tablelands, 4,000 to 5,000 feet in
elevation, dissected by a well developed network of struc-
turally controlled valleys. Small mountain ranges, rarely
exceeding 7,000 feet in elevation, commonly crown these table-~
lands. The Pelly Plateau, on the other hand, is only mildly
dissected, with a few small mountains separated by broad
relatively shallow valleys.

The Hess and MacMillan Rivers drain most of the
region, Both head in the Hess Mountains and flow westward

across the plateau.
CLIMATE

Cut off from the prevailing westerly winds by the
peaks of the Saint Elias Range, the climate is predominantly
continental, characterized by relatively little rainfall and
extreme temperature ranges (Kendrew and Kerr, 1955). The
mean daily temperatures range from approximately -20°F during
the wiﬁter months, to about 60°F in the summer. Thé high
summer mean is in part due to the nearly continuous sunlight

experienced at that time., There is no pronounced rainy



season, though most of the precipitation falls in late summer
and early fall. The total annual precipitation increases
from west to éast, from about twelve inches on the plateau

to over twenty inches in the mountains.

SOIL

Topography is one of the primary factors controlling
the distribution of soil types. Regosols, and to a lesser
extent Brunisols, are common on the well drained upland
regions, whereas flat poorly dfained valley bottoms are
characterized by Gleysols and Organic soils. Because of the
cold climate, relatively rugged topography and recent glaci-
ation the depth of the solum of mineral soils seldom exceeds
two feet. Permafrost is distributed discontinuously through-
out the area, |

A oné to twoe inch layer of volcanic ash underlies
the organic surface horizon in most areas. Capps (1915) has
suggested that the ash was derived from a major volcanic
eruption in the Saint Elias Range approximately 1,500 years

ago.

VEGETATION

The distribution of plant species is chiefly topo-
graphically controlled. Dense forests occupy the bottoms of
the major river valleys. The predominant species is white

spruce (Picea glauca), though several other species including

black spruce (Picea mariana), aspen (Populus tremuloides),
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and alpine fir (Abies lasiocarpa) are present (McConnell,

1903). The lower parts of the valley slopes, up to the
treeline at about 4,500 feet, are covered with spruce and
locally willow (Salix) and alder (Alnus). Dwarf birch and
caribbu moss range between the treeline and scree slopes at

the highest altitudes in mountainous regions. -

WILDLIFE

A wide variety of mammalian species are known to in-
habit the region. Of the larger mammals the grizzly bear

(Ursus horribilis), caribou (Rangifer arcticus) and mountain

sheep (Ovis dalli) roam chiefly above timerline, while the

black bear (Ursus americanus) and moose (Alces americana)

occupy the forested valley bottoms., Mountain sheep and
caribou consume mainly grasses, sedges and willows (Rand,
1945b)., In the winter, however, caribou subsist almost en-
tirely on caribou moss. Moose consume willows and assorted
aguatic.: plants, while grasses,'berries and roots are the

major food sources for the bear population.
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SAMPLE COLLECTION AND PREPARATION

Atlas Explorations Limited, Vancouver, contributed
nearly 600 minus-80 mesh stream sediment samples., They were
collected during the summers of 1968 and 1969, originally
for mineral exploration purposes, over an area of approximately
7,000 square miles in the Eastern Yukon.

Sample density ranges from about one sample per 5
square miles to approximately one sample per 50 square miles.
Catchment areas upstream from sample sites are normally from

two to five square miles,

SAMPLE ANALYSIS

Stream sediments were analyzed by a semi-~quanti-
tative DC-arc spectrographic procedure (Fletcher, pers. comm.)
for fifteen elements: Sr, Ba, Cr, Co, Ni, Ag, Ti, Cu, V,

Mo, Bi, Ga, Sn, Pb and Mn,
Pre-Analytical Treatment

A small amount of minus-80 mesh stream sediment mat-
erial_was ignited at 550°C for three hours., One hundred
milligrams of ignited sample were then mixed with an equal
weight of graphite, containing indium as an intermnal standard,
and homogenized by shaking in a Spex "Mixer/Mill" for three
minutes. The mixture was then packed into the cavity of a

graphite anode and sealed with one drop of sugar solution
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(20 gm. sucrose dissolved in 75 ml. of ethanol and 25 ml.

of distilled water).
Analytical Method

The equipment and operating conditions for stream
sediment analjsis are given in Table I. Metal concentrations
were estimated by visual comparison of the sample spectra
with those of synthetic standards as described by Nichol and
Henderson-Hamilton (1965). The spectral lines used and

approximate detection limits are indicated in Table II.



Table I

Spectrograph

Source

Arc/Spark Stand
Microdensitometer
Anode

Cathode

3-Step Neutral
Filter

Neutral Filter
Emulsion
Wavelength Range”
Mask

Slit Width

Arc Current

Plate Processing

Arc Gap

Exposure Time

Spectrographic equipment and

operating conditions.

-19-

Hilger-Watts automatic quartz spectograph

Electro-Matic Products (ARL), Model PEKS,

Type 2R41

Spex Industries #9010

ARL Spectroline Scanner #2200

Graphite, National L3709SPK

Graphite, National L3803AGKS

Spex Industries #l090, 5% 20% and 100%

transmitance

Spex Industries #9022, 20% transmitance

Spectrum Analysis #

2775-4800 K
17 mm,

15 u

12a
developer
stopbath
fixer

4 m.m.

20 sec.

Kodak D-19
Kodak
Kodak

%3 min. at 23°¢
30 sec.

5 min.
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Table II Wave lengths and approximate detection
limits for spectral lines used to
estimate element abundances in stream
sediments.

Element Wavelength Detection Limit
A (p.p.m.)
Sr 4607.33 50
Ba 4554 .04 1
Cr 4254 .35 1
Co 5455.51 >
Ni 3414,77 5
Ag 5382.89 1
Ti 3372.80 20
Cu 3273 .96 10
In 3256.09 1
\ 3185.40 20
Mo 3170.35 2
Bi 3067.72 10
Ga 2943 .64 1
Sn 2839.99 5
Po 2833 .07 2
Mn 2801.06 1
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Table III Analytical precision for spectrographic
analysis of stream sediment at the 95%
confidence level, calculated from 50
separate analyses of U.B.C. Standard
Rock.
Element Mean Concentration Precision
(p.p.m.) (at 95% confidence
level)
Sr 1285 85
Ba 1320 85
Cr 8 90
Co 9 80
Ni 8 85
Ag n.d.* -
Ti 1410 60
Cu 15 50
In 25 45
v 55 60
Mo n,d.* -
Bi n.d.* -
Ga 15 320
Sn n.d,* -
Pb 4 95
Mn 275 85

*n.d. = not detected
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Analytical Control

Analytical precision was estimated by replicate
analysis of a standard rock sample included in each analyt-
ical batch (Fletcher, pers. comm.). Precision, at the 95%
confidence level, is indicated, for each element, in Table
III, Samples with less than 10 p.p.m., oY greater than

50 p.p.m. of the internal standard indium, were re-analized.

PRESENTATION OF DATA

Range and geometric mean trace element values for
stream sediments derived from each of the principal geological
units are indicated in Table IV. Figures 3 to 11 show the
regional distributions of Mo, V, Ni, Cr, Cu, Pb, Sr, Mn and
Co. Ag, Bi and Sn, which were detected in only a few samples,
Ba and Ti, which were commonly present in concentrations
above’that of the highest standard, and Ga, which.is very
uniformly distributed over all rock types, are not considered.

Distribution maps were compiled by computing the
geometric mean trace element levels within the 10,000 meter
squares of the National Topographic Series map sheets
(Fletcher, pers. comm,). These mean values were then grouped
according to specific class intervals, the limits of which
correspond to the midpoints between the spectrographic
standards.

This method 6f data presentation has the advantage
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Table IV Range'and geometric mean trace element content (p.p.m.)
of minus-80 mesh fraction of stream sediments associated
with each of the major bedrock units within the regional
study -area,
BEDROCK
ELEMENT YUKON GROUP  EARN GROUP UNIT 3 GRANITIC ROCK ; VOLCANIC ROCK
Proterozoic Paleozoic Paleozoic Cretaceous Tertiary
schist, quart- chert, dark shale, granodiorite | dacite, andesite
zite, phyllite | quartzite chert basalt
shale
Mo* 2 3 11 2 2
2-3 2-6 3-35 2-4 2-5
v 110 200 L80 80 170
75-170 120-36C 250-930 40-170 85-350
Ni 65 70 140 35 L5
50-85 50-100 €0-320 15-90 30-75
Cr 140 120 180 - €0 95
100-190 90-150 120-270 25-130 65-150
Cu 50 60 50 25 . us -
30-80 N\ 35-95 50-160 15-l5 25-90
Pb 18 18 . 15 17 20
11.28 8-20 8-29 13-21 14-29
Sr . 270 330 200 - 310 720
150-470 210-520 100-420 210-470 500-1030
Mn 770 970 L30 . 370 860
390-1550 630-1500 170-1090 220-620 - 530-1350
Co 35 30 35 20 30
: 25-55 20-45 15-65 10-35 20-50
Number of 123 28 295 18 17
Samples

t Range = geometric mean + log standard deviation

* Values less than 2 p.p.m. taken as 1 p,p.m.
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of emphasizing the regional patterms by smoothing over local
irregularities. However, because of the uneven distribution
of sample sites, the number of sediment samples used to
calculate each map value ranges from one up to about ten.
Consequently, in this case, isolated anomalous values could

give a false indication of local background levels.

TRACE ELEMENT PATTERNS IN STREAM SEDIMENTS

Regional distribution patterns of the various elements
may be subdivided into two relatively distinct groups. In
the first, which includes molybdenum, vanadium, nickel,
copper and chromium, the highest concentrations occur in the
northeast, chiefly underlain by the dark shales and cherts
of Unit 3. In the second, comprising lead, strontium, man-
ganese and cobalt, high values are most common in the south-

west.

Distribution of Mo, V, Ni, Cr and Cu

As indicated in Table IV, sedimentsAassociated with
Unit 3 typically contain enhanced molybdenum values (11 p.p.m.).
Concentrations in sediments derived from other units are
generally low and often below the 2 p.p.m. detection limit.
High concentrations, up to 100 p.p.m., are most common in
the central portion of Unit 3 (Figure 3). Molybdenum levels

over the small lens:. of Unit 3 rock in the south-central



6 30

-63°
‘e e®
@ o
Mean Mo Content (p.p.m.) Major Geologicol Units
‘ >14 E Tertiary volcanics
‘ 714 E] Granitic rocks
Unit 3
. 4-6 Earn Group
lI] Yukon Group
o <4
MILES
3 53]
1 J
1350 1340 1330 1320 1310
Figure3. Regional distribution of Mo in minus-80 mesh fraction of stream sediment from

10,000 meter

squares.,

.-.ge....



-63°

63°W

Y

Mean V Content (ppm.) Major Geological Units

‘ 750
. 320-750
. 150319

® <50

Terticry voiconics

Granitic rocks
Unit 3

Earn Group

DREEEE

Yukon Group

MILES
o] 8
. i

| —
(]

1 T 1 lo
135° 134° |:‘53° 132° 130

Regional. distribution of V in minus-80 mesh fraction of stream sediment from
10,000 meter squares. ‘

Figure 4.



6 30+

2 @ e
c O

S

Meon Ni Content (pp.m.)

Major Geological Units

. >320 E] Tertiary volcanics
Granitic rocks
Nl
. 180 3“9 Unit 3
@ Earn Group
. 70-149
LTl Yukon Group
o <70
MILES
. [o] 8 16
L [1 —
T
1350 1340 1530 (32° - 1310

Figure 5. Regional distribution of Ni in minus-80 mesh fraction of stream sediment from

10,000 meter squares.

.._AZ...



63°

Mean Cr Content (p.p.m.) Major Geological Units

. > 150 @ Tertiary volcanics
204150 E Granitic rocks
‘ @ Unit 3
. <70 Earn Group
) m Yukon Group
0 MILES
8
. ) P
1 ° 1 ] 1 1
135 134° 133 132° 131°

Figure 6. Regional distribution of Cr in minus-80 mesh fraction of stream sediment from

10,000 meter squares.

-63°



l3l4° 1° |?|°
3
| @ o 000
® o 0 00000000O
o 000 e ® o 000 000000
® c 0000 ¢ 000 LXK 000000000
® 0 O ¢ o o o oo . 00000000
oo o 0 o o @0 0
L N L I . 0@ |-
X
o0 ’
Meaon Cu Content {(pam.) Major Geologicg! Units .
. > 160 E] Tertiary volcanics
20-15 EI Gronitic rochks
-150
‘ E unit 3
2
. 32-69 Earn Group
) El Yukon Group
o <32
o MILSES
% ,
T T T T T N
135° 134° 1330 132° 1310 %)

Figure 7. Regional distribution of Cu in minus-80 mesh fraction of stream sediment from
i0,000 meter squares.



t34° ’ 133° 132° 131°
[l 1 1 )

639

Mcjor Geological Units

Tertiory volcanics

Granitic rocks

®
DEEE &

Unit 3
. 15-31 Earn Group
Yukon Group
@ <15
MILES
8 16
L 1 -
T L T T o =0
135° 134 133° 132 131

Figure8.  Regional distribution of Pb in minus-80 mesh fraction of stream sediment from
10,000 meter squares.

63 °©

mogw



134°
[l

6 3°

Mean Sr Content (p.p.m.)

Major Geologicol Units

Figure 9. Regional distribution of Sr i1 minus-80 mesh fraction of stream sediment from

‘ >750 Tertiary volcanics
. 320-750 E] Granitic rocks
E unit 3
‘ 150-319 [2] corn sroup
[I] Yukon Group
® <150
MILES
[¢] 8 16
L )
1 T T
135° 1340 1330

{0,000 meter squares. -




134°
1

6 3° =

Mean Mn Content (p.p.m.) Major Geological Units
i ‘ >1500 @ Tertiary volcanics
750-1500 Granitic rocks
-1
o A & o s
2] €
. 320-749 D arn  Group
: m Yukon Group
[ ) <320
MILES
6] 8 (53}
[ 1 1
1 1 :
I;5° l;4° 133° 132° 131

. !
Figure 0. Regional distribution of Mn in minus-80 mesh fraction of stream sediment from N
10,000 meter squares !



134° 131°
1 1

- 63°
6 3°4 o L
°e®
o ®
Mean Co Content (p.p.m) Major Geological Units
‘ >150 @ Tertiary volcanics
Granitic rocks
‘ 70-180 B unit 3
. 32-69 Earn Group
II] Yukon Group
i <32 ' \
MILES
[¢] 8 16
L 1 i :
|§5° 154° |£3° |!2° |il°
Figurell. Regional distribution of Co in minus-80 mesh fraction of stream sediment from ’&
10,000 meter squares. !



-3

portion of the study area are somewhat lower than those
associated with the main body of this unit to the northeast.

Sediments from each geological unit are characterized
by relatively distinct vanadium levels (Table IV). Con-
sequently, the positions of all major geological contacts
are clearly evident in the vanadium distribution pattern
(Figure 4). The northern contact of the Barn Group with the
Yukon Group for example, which is indistinguishable in the
distribution patterns for the other elements, is defined
by an abrupt change in concentration from approximately 250
P.p.m. over the Earn Group to about 100 p.p.m. over the Yukon
Group. The highest vanadium concentrations, up to 1,500
P.p.m., are associated with Unit 3, and the lowest with the
granitic rocks.

The distribution of nickel (Figure 5) resembles that
of vanadium, though the locations of the major geological
contacts are only vaguely reflected. Nickel concentrations
over the small lens: of Unit 3 southwest of Selenous Mountain
(Figure 2) are relatively erratic, with adjacent values dif-
fering by as much as 140 p.p.m.

As indicated in Figure 6, the chromium patterm is
subdued in comparison with those of the previously mentioned
elements. This uniformity is reflected in the similar mean
chromium levels (120 to 180 p.p.m.) associated with the three
most abundant rock types (Table IV).

The highest mean copper contrations (90 p.p.m.) are

associated with Unit 3, while the lowest (25 p.p.m.), occur
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in sediments derived from granitic rocks. A few strikingly
high copper values, up to 500 p.p.m., occur over Unit 3
(Figure 7).

Large sca}e regional variations in the trace element
content of stream'sediments over both Unit 3 and the Yukon
Group are apparent for many of these elements., For example,
relatively high molybdenum (>8 p.p.m.), vamnadium (>320 p.p.m.),
nickel (>150 p.p.m.) and chromium (>150 p.p.m.) values in
the central portion of the main body of Unit 3 contrast with
moderate to low values over the narrow northwestern arm of
this unit., Similarily, over the Yukon Group, relatively en-
hanced vanadium (>150 p.p.m.), chromium (>150 p.p.m.) and
to a lesser extent nickel (70 p.p.m.) values are more abun-
dant in the southeast than in the northwest.

Certain isolated anomalous values over both Unit 3
and the Yukon Group may reflect the presence of small in-
clusions of foreign bedrock. The position of a granitic
stock, for example, about twenty miles northwest of the Itsi
Range (Figure 2), is clearly indicated by anomalously low
trace element levels (Figures 3 to 7). Isolated high moiyb-
denum (>14 p.p.m.) and vanadium (>320 p.p.m.) values (Figures
3 and 4), situated about twenty miles northwest of Selenous
Mountain (Figure 2) over the Yukon Group, strongly suggest

the presence of a small unmapped outlier of Unit 3.
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Distribution of Pb, Sr, Mn and Co

Concentrations of these elements in stream sediments
derived from Unit 3 are not particularly enhanced. With
the exception of cobalt, their distribution patterns
typically display little geological control.,

Range and mean lead values associated with all five
major geological units are remarkasbly similar (Table IV).
Consequently the distribution pattern for lead is very uniform
(Figure 8). Five anomalously high values (up to 180 p.p.m.)
are indicated in Figure 8, four of which occur over Yukon
Group rocks, High lead values in sediments draining Tertiary
volcanic rocks, about twenty-five miles south of Selenous
Mountain, are not apparent in Figure 8 due to dilution of
the anomalous samples with surrounding ones, in the same
v.T.M. square, with low lead contents.

Strontium levels in stream sediments are particularly
erratic over Unit 3 (Figure 9). Both abnormally high (>750
P.P.m.) and low (<150 p.p.m.) values are confined, with few
exceptions, to regions underlain by Unit 3. As indicated imn
Table IV, the mean strontium concentration in sediment derived
from Tertiary volcanics (720 p.p.m.) is substantially higher
than mean levels associated with other rock types.

Relatively wide manganese concentration ranges are
associated with each of the major geological units (Table IV).
As a result, the distribution pattern for manganese (Figurev

10), like that of strontium, is erratic. High manganese
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values are typically associated with the Yukon Group, Earn
Group and Tertiary volcanic rocks. _
The relatively uniform distribution of cobalt values
(Figure 11) is reflected in the narrow range of mean cébalt
concentrations (20 to 35 p.p.m.) in sediments derived from
the various bedrock units. Nevertheless, the positions of
the boundaries of both the Earm Group and the Tertiary
volcanics are clearly reflected in the cobalt distribution

pattern.

DISCUSSION OF DISTRIBUTION PATTERNS
Relationship to Bedrock Composition

Data are available only on the regional distribution
of molybdenum within the granitic rocks. Garrett (1971a) has
reported that the mean molybdenum concentration in all majdr
stocks is characteristically less than 2 p.p.m. and never
exceeds 6 p.p.m. . Low molybdenum levels in stream sediments
derived from these rocks (Table IV) are in excellent agree-
ment with Garrett's figures.

Gleeson (1967) has noted enhanced molybdenum values
(occasionally > 10 p.p.m.) in stream sediments associated
with graphite and pyrite-rich phyllites in the Xeno Hill
region, Yukon Territory. These findings are consistent with
the high mean molybdenum level (11 p.p.m.) in sediments
derived from the Unit 3 rocks, which inclﬁde significant

amounts of orgamnic-rich, occasionally pyrite bearing, shales.
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Depending upon the influence of secondary environ-
ment, trace element levels in stream sediment should
reflect, to some extent, concentrations in associated bed-
rock (Webb et al., 1968). Thus, Table IV suggests that
the dark cherts and shales of Unit 3 are likely enriched,
relative to the other geological units, in molybdenum and
vanadium, and to a lesser extent nickel, copper and chromium.
Similarly, the Tertiary volcanics likely contain large
amounts of strontium, while the levels of both cobalt and
lead are probably very similar in all of the major bedrock

types.

Relationship to Glaciation

_ As previously noted, during the Pleistocene, glacial
ice accumulated in the Hess Mountains (Figure 2) and flowed
westward across the Yukon Plateau. Interpretation of stream
sediment patterns in terms of bedrock geology could there-
fore be complicated by the presence of exotic drift over
geological units in the west.\ The generally sharp change
in sediment molybdenum, vanadium and nickel values (Figures
3, 4 and 5) across the contact between Unit 3 and the main
body of the Yukon Group however, suggests that the influence
of glaciation on regional sediment patterms has been rela-

tively slight.



-39~

Possible Relationship to Animal Nutrition

In Ireland and the United Kingdom mdlybdenum levels
of over 10 p.p.m. in stream sediment have delinéeated regions
wherein abnormally high molybdenum concentrations in soils
and herbage give rise to molybdenum induced hypocuprosis and
molybdenosis (Thornton and Webb, 1969). Comparably high
values are common over large areas underlain by Unit 3%, espec-
ially in the east.

A detailed study was therefore undertaken to relate
the regional geochemical patterns to molydenum levels in
bedrock, soils and vegetation. Particular attention was
given to sampling those plant species likely to be consumed

by moose and caribou.
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SECTION B

DETAILED STUDY
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CHAPTER TV

DESCRIPTION OF DETAILED STUDY AREA
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LOCATION AND ACCESS

Detailed geochemical investigations were undertaken
in an area of approximately 100 square miles, near the
crestline of the Hess Mountains, in the vicinity of MacMillan
Pass (Figure 1). Access is provided by both the Canol Road,
which is open between the village of Ross River and MacMillan
Pass during summer months, and a small air strip which is
situated in the valley of the South MacMilian River, a few

miles southwest of the pass.
GEOLOGY

Unit 3 rocks are most abundant of the three major geo-
logical units within the detailed study area (Figure 12). Much
of the northern regions, however, are underlain by the Yukon
Group. A few granitic stocks, typically less than three
miles in diameter, intrude both Unit 5 and the Yukon Group.

Lithological characteristics of rock material sampled
are summarized in Table V. Of particular interest is the
wide variety of rock types comprising Unit 3, including light
to dark colored shale, siltstone, chert-pebble conglomerate
and limestone. No cherts, reported by Roddick and Green
(1961a) to be common within this unit were noted, though the
light grey shales are typically very siliceous. Styliolinsa,
observed in certain limestone samples (Best, pers. comm.),
suggest a Middle .. Silurian to Upper Devonian age for at least

a portion of Unit. 3, Tight folding, complex faulting and
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Table V Lithological characteristics of major bedrock units within
the detailed study area.

AGE GEOLOGICAL DESCRIPTION
UNIT
MESOZQIC GRANITIC Biotite Granodiorite: disseminated sulfides relatively
(Cretacecus?) ROCK rare.

Dark grey to black Shale: organic carbon abundant; small
(50%)* spherical silica grains{<.5m.m. in
diameter) resembling diatoms
(Best, pers. comm,) common in
siliceous varieties; locally
euhedral pyrite crystals occupy
cores of silica spheres,

Medium to light grey Shale: organic carbon less common
(10%)* than in black shale; certain
varleties are very rich 'in silicay
no true cherts,with conchiodal
fracture, were noted.

(2]

jod

e

8

! Dark Siltstone: chiefly interbedded silty, shaley and

a (308) * sandy laminations; individual

PALEQZOIC laminations range from less than

(Middle Silur- one to & few millimeters in
jan to Upper UNIT 3 thickness; silty laminations are
Devonian in most common and sandv ones lnast
part) . acrron; organic carbon is

abundant in shaley ard silty layers.

Conglomerate: associated with siltstones; angular chert
(5%)* pebbles (up to 10 m.m, in length)
are common black shale and
quartzite pebbles are relatively
rare; gradded bedding may be
present.

Dark grey to black Limestone: fine grained; orcanic
(58)* - carbon common; locally fossiliferousy
contains lina (Eest, pers,
comm.) which ranges from Middle
S4lurian to Upper Devonian (Moorse,
1962),

CAILCAREOUS

Chlorite Schists mainly chlorite with some quartz.
PROTEROZOIC YUKON
GROUP Quartz Phillite: mainly quartz with minor muscovite
and chlorite,

* relative abbundance of Unit 3 rock material sampled for anslysis
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the absence of distinctive marker horizons combine to make
determination of relative stratigraphic positions of various

Unit 3 lithologies difficult.
SOIL

Each of neérly 100 so0il profiles examined was classified
to the subgroup level according to the classification system
of the Canadian Department of Agriculture (1970). Members
of the Regosolic (Figure 13), Brunisolic (Figure 14), Gléysolic
(Figure 15) and Organic Orders are recognigzed.

Regosols are the most abundant Order, comprising nearly

seventy percent of the soils examined. They are distributed
throughout a wide variety of environments ranging from the
floors of the MacMillan and Ross River valleys, to the mountain-
.ous uplands above timerline.

Brunisols, Gleysols and Organic soils are generally
confined to main valley bottoms., Both Gleysols and Organic
soils, characteristic of poorly drained environments, are
commonly saturated with water within one foot or less of the
soil surface. Brunisols develop on porous, well drained parent
materials. Their virtual absence in upland regions may be due
to rapid erosion in these areas.

A discontinuous ash layer, generally less than two
inches thick, separates the L-H from the underlying mineral
horizon in many soils (Figures 13 and i4). Permafrost was
encountered at a variable depth in about ten percent of the

soils examined.
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Figure 153%. Regosol in grassland environment northeast

of MacMillan Pass (Site 33).
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Figure 14. Brunisol on a dwarf birch and caribou moss

covered knoll in the main valley of the South

MacMillan River (Site 19).
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Figure 15, Gleysol developed on dwarf birch flats north-
east of MacMillan Pass (Site 29).
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It is common beneath dwarf birch flats northeast of MacMiilan
Pass and in the densely forested regions of the MacMillan

and Ross River valleys. The absence of permafrost in upland -
regions may be due to relatively sparse vegetation and rapid

drainage in these areas.
VEGETATION

Distribution of plant types in the detailed study area
is controlled primarily by topography and drainage. Grasses
and willow characterize much of the flat wet floor of the
South MacMillan River valley. Comparatively well drained
knolls, scattered near the margins of the valley floor, are

covered chiefly by dwarf birch (Betula glandulosa) and caribou

moss (Cladonia alpestris). Near the head of the valley, in

the vicinity of MacMillan Pass, these knolls merge into ex-
tensive dwarf birch~-caribou moss flats.
With the exception of certain lichens such as

Umbilicaria, summits of most mountains are essentially devoid

of vegetation. Atv lower elevations lichens and dwarf birch
become abundant. At about 4,000 ft. alpine fir (Abies

lasiocarpa) replaces dwarf birch as the dominant woody species.

Mixed stands of alpine fir and white spruce (Picea glauca)

blanket the lower portions of valley walls in the southwestern

corner of the detailed study area.

Shrubs such as white heather (Cassiope tetragona) and

crowberry (Empetrum nigrum) are common on knolls in valley

floors and at lower elevations along valley walls. Forbs,.
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including fireweed.(Epilobium latifolium) and lupin- (Lupinus

arcticus), and various grasses are characteristic of alpine
meadows, which occur near the heads of many tributary streams
draining into the main valley of the South MacMillan River.
Certain meadows and adjacent uplands, underlain by
dark Unit 3 limestone, characteristically support a strik-
ingly wide variety of plant types. Caribou moss and dwarf .
birch however are conspicuously absent in these calcareous

environments,
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SAMPLE COLLECTION AND PREPARATION

Between June 15th and July 31st, 1971, approximately
1,100 samples were collected within the detailed study area
and along the Canol Road. Of these approximately 120 were
stream sediments, 350 soil, %50 vegetation, 250 rock and 30

animal faeces.

STREAM SEDIMENT

Stream sediment sample sites are indicated in Figures
16 and 18. Fine, active, organic free sediment was collected
where possible., At each sample site brief descriptions were
made of the stream and its load, and stream water pH was
measured with BDH Liquid Universal Indicator. Samples were
collected in kraft paper bags and oven dried in the field.

A porcelain mortar was used to disaggregate samples in
the laboratory. After thorough mixing, a 10 to 15 g. sub-
sample was passed through a minus-80 mesh nylon  sieve, and

fines were retained for spectrographic analysis.

ROCK
Rock sample locations are shown in Figure 16, Most
samples were collected as continuous chips taken perpendicular
to bedding of selected rock sections, FEach sample consisted
of a mixture of small, lithologically similar chips, collected
over an interval of ten stratigraphic feet. A few random
chip samples were also obtained, chiefly from small stream

exposures., A representative specimen - of each major lithology
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sampled was taken for thin section examination.

Initially rock chips were passed through a jaw crusher
and then between ceramic plates. After thorough mixing a
10 g. sub-sample was ground in a Spex "Shatterbox" to minus-
100 mesh, Between runs the Jjaw crusher and ceramic plates
were cleaned with compressed air and brushes, and the dish
of the Shatterbox was rinsed in tap water and dried with
acetone., Samples were ground in numeric order to ensure that,
if contamination eccurred, its source could be readily ident-

ified.
SOIL

Figures 17 and 18 show locations of the nearly 100 soil
profiles examined. At each soil site a small pit was dug
and each soil horizon identified and its morphology noted.
Vegetation, drainage and parent material,Aas well as other
important variables in the soil environment were also des-
cribed, Samples of each soil horizon were collected in kraft
bags and oven dried in the field. Coarse rock chips from C
horizons were collected separately.

Mineral and organic horizons selected for trace element
analysis were disaggregated in the laboratory with a porcelain
mortar. Because in agriculture, trace element content of soil
is typically expressed in terms of the minus-2 m.m. fraction,
disaggregated samples were passed through a 2 m.m. nylon'
sieve. DFines were then mixed and a 10 g. sub-sample ground

to minus-100 mesh in a "Shatterbox! Organic horizon material,
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intended for pH measurement, was initially ground in a rotary

blender.

VEGETATION

Plant material was collected in a roughly 10 x 10 m.
perquadrat in the vicinity of each soil bit. Species common
over a wide range of soil parent materials and altitudes
were sampled preferentially. Sampling procedures for various
plant types colleected are indicated in Table VI, Samples,
in large paper bags, were air dried as soon as possible in
the field and again at 70°C in the laboratory, before being

ground in a Wiley mill.

FAECES

Where available, samples were taken of both caribou
and moose faeces., A few grams of dried sample were ground

in a small blender prior to digestion.

SAMPLE ANALYSIS

Stream sediment and rock samples were analyzed by a
semiquantitative DC-arc spectrographic procedure for Sr, Cr,
Co, Ni, Cu, V, Mo, Pb and Mn. Atomic-absorption spectro-
photometry was used to measure Cu, Mn and Zn levels in soil,
vegetation and faeces, and Zn in selected sed%ment and rock
samples (Fletcher, pers. comm.). Mo was determined colom-
metrically in soil, vegetation and faecal material.v Glass

electrodes were used to measure soil pH.
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Table VI Plant species and parts sampled
for trace element analysis.

Plant Type Plant Species Sampling Procedure
Abies lasiocarpa (Fir) ' o
Trees Picea glauca (white spruce) First and second

year leaves and
twigs taken to in-

Betula glandulosa (dwarf

: clude flowers and
birch) fruits, where
Salix alexensis (willow) - present
Shrubs Salix phylicifolia (willow)

Cassiope tetragona (white
heather) Terminal 2 inches

Empetrum nigrum (crowberry) Eig%ﬁrzoaigcﬁﬁgsts
Potentilla flabeliformis
(shrubby cinguefoil)

Senecio triangularis

Lupinus arcticus (lupine) Cut 1 inch above

Forbs Epilobium latifolium (fire- ggééeggngngégg:;
weed) - | 0ld growth ex-
Epilobium angustifolium cluded
(fireweed)

Valarian sitchensis

Veratrum viride (false
hellibore)

Polygonum alaskanum

Festuca altaica (rough
fescue) Cut 1 inch above

Frasses Carex aguabalis (sedge) fnolude clums;
b

Calamagrostis canadensis old growth excluded
Carex microshaeta

Cladonia alpestris (caribou

moss) Sampled above
Lichens Stereocaulon pigment line

Alectoria

Umbilicaria Stripped from rock

surfaces
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SEMI-QUANTITATIVE SPECTROGRAPHIC ANALYSIS

Procedures used for stream sediment material are
identical to those described for the regional study (pages
17 to 22). PFor rock material however, changes were made in
operating conditions (Table VIIA) and in wavelengths used
to estimate copper and manganese abundances (Table VIIB).
Precision for rock analyses, at the 95% confidence level,

is indicated in Table VIII,
ATOMIC-ABSORPTION ANALYSIS
PreéAnalytical Treatment

Soil and Vegetation: Either a 0.5 g. sample of minusé
100 mesh soil material or 1 g. of dried and milled
plant material was weighed into a 100 ml. beaker.
After adding 10 ml. of 4:1 nitricQPerchloric acid,

the sample was refluxed for one hour at low heat.

The solution was then evaporated to dryness and the
residue taken up with 10 ml, 6 M. hydrochioric acid.
After standing, a 5 ml. aliquot of clear solution

was set aside for colorimetric determination of molyb~
denum. The remaining 5 ml. were diluted to 20 ml.
with distilled water and this solution reserved for

determination of copper, zinc and manganese.

Rock and Stream Sediment: A 0.5 g. sample of minus-
100 mesh rock, or minus-80 mesh stream sediment

material was digested in 10 ml. of 4:1 nitric-per-
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Changes in spectrographic procedure

Tables I and II) introduced for
analysis of rock material.

Operating Conditions
Changed
from %o
Arc Gap 4 m.m. 6 m,m.
Exposure Time 20 sec. 50 sec.
Plate Development 3 min. 5 min.
Spectral Lines
Wavelength Detection Limit
(&) (p.p.m.)
Changed Changed
From to From to
Cu 3273.96 3247.55 10 2
Mn 2801.06 2794.82 1 1
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Table VIII Analytical precision for spectrographic
analysis of rock material, at the 95%
confidence level, calculated from 25
replicate analyses of U.B.C. Standard

Rock,
Element Mean Precision
Concentration %
(p.p.m.) (at 95% confidence level)

Sr 685 30

Cr 5 50

Co 4 30

Ni 7 95

Cu 25 60

In 25 40

v 35 75

Mo n.d.* -

Pb 8 65

Mn 145 65

* n.,d, = not detected.
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chloric acid and evaporated to dryness. The residue
was taken up in 20 ml. of 1.5 M hydrochloric acid for

the determination of zinec.

Faeces: A 1l g. sample of ground faecal material was
ignited in a porcelain crucible for twelve hours

at 550 C. The ash was treated with 1 ml. of 6 M hydroQ
chloric acid and evaporated to near dryness. The
residue was taken up in 10 ml. 6 M hydrochloric acid

and treated as described for soil and plant materials.

Analytical Method:

Calibration standards were prepared in 1.5 M hydroé
chloric acid. ©Samples and standards were aspirated into the
air;acetylene flame of a Techtron AA-4 spectrophotometer,
Operating conditions for hollow-cathode lamps are shown in

Table IX.

Analytical Precision:

Each analytical batch contained at least one standard
and one pair of duplicate samples. Precision at the 95% con;
fidence level, calculated from analytical results for both
standard énd paired samples (Fox, pers. comm.) is indicated
in Table X. The technique of precision calculation using
paired samples is described by Garrett (1969).

Generally precision values obtained by different
methods compare favourably. Low precision for copper in the
standard moss sample is attributable to the fact that copper

concentrations in this material are very near to the anal-
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Table IX Operating conditions for the Techtron
A A-4 Spectrophotometer
Element* Current Air Slit Wavelength
(na) Pressure | Width (£)
(psi) ()
Cu 5 21 50 3247.5
Mn 10 20 100 2795
7n 6 20 100 21%8.6

* Standard settings for all elements:

flame height

fuel guage

2.3
2.5
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Table X. A. Analybtical precision (%) for Cu, Mn and Zn in
soil and plant material, at the 95% confidence
level, calculated from results of atomic-
absorption analysis of both standard and
paired samples

Element Vegetation Soil

Paired Replicate Paired Replicate

Analyses Analyses Analyses | Analyses
U.B.C. | TU.B.G. U,B.C.

Standard |Standard Standard

Moss Grass Rock

Cu 25 45 20 15 20
Mn 12 10 10 9 9
Zn 10 14 12 8 25
No. of samples 18 pairs 18 17 15 pairs 6

B. Arithmetic mean Cu, Mn, and Zn concentrations*
(p.p.m.) in U.B.C. standard samples.
Element U.B.C. Standard
Moss Grass Rock
Cu y 13 25
Mn 75 165 210
Zn 14 35 20

* HNOB/HCIO4 extractable metal content
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ytical detection limit.
COLORIMETRIC ANALYSIS

Molybdenum was determined colofimetrically by the
method of Stanton and Hardwick (1967). Sample digestion
procedures are described in the section on atomic-absorption
analysis (page 56).

Briefly the method involves extraction of a gfeen
molybdenum-dithiol complex into a layer of petroleum spirits,
and visual comparison of the color of this layer with that
of standards. Because of high iron concentrations in certain
soil samples the staﬁdard procedure was modified slightly.

An additional 1 ml, of iron solution was uséd to prepare
standards, and an extra 2 ml. of reducing solution was added
to both standards and samples before addition of zinc dithiol.

Analytical precision calculated from paired sample

analysis is indicated in Table XI.

Table XTI Analytical precision for molybdenum in plant and
. soil material, at the 95% confidence level, cal-
culated from the results of colorimetric analysis
of paired samples

Material Number Precision
of
Pairs (at 95% confidence
level)
Plant 7 30
Soil 15 25
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MEASUREMENT OF pH

Soil pH determinations were made on dried samples
in the laboratory. Organic samples were initially ground
in a blender and a 10 g. sub-sample mixed with 50 ml. of dis-
tilled water (Lavkulich, pers. comm.). For mineral horizons
a 1:1 mixture by weight of minus-2 m.m. soil material and
distilled water was used. Soil-water mixtures were allowed
to equilibrate for at least one hour with regular stirring
(Jackson, 1958) before pH measurement with a glass electrode
meter. Electrodes were calibrated periodically, between sample

measurements, in buffer solutions of pH 4,0 and 9.0.
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CHAPTER VI
TRACE ELEMENT CONCENTRATIONS
IN
ROCK MATERIAL
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PRESENTATION OF DATA

Range and geometric mean trace element levels for
rock samples from Unit 3, the Yukon Group and granodiorite
are listed in Table XII. Concentrations within the various:
lithologies of Unit 3 are indicated in Table XIII. Overall
levels for Unit 3 were calculated assuming that the number
of samples of each rock type reflects its relative abund;
ance within the unit. Appendix A lists analytical results -
for individual rock samples.

It should be noted that, because of the limited number
and distribution of rock sample sites, and generally low
precision for rock analyses (Table VIII), values in Tables
XIT and XIIT must be considered only approximations to the
mean metal content of the various rock types. Furthermore,
in situ leaching of many of the exposures sampled may, to

some extent, have altered primary rock composition.
TRACE ELEMENT CONCENTRATIONS IN BEDROCK

As Table XIT indicates, Unit 3 is strikingly enriched
in both molybdenum (10 p.p.m.) and vanadium (435 p.p.m.),
and relatively poor in manganese (15 p.p.m.) and to a lesser
degree strontium (70 p.p.m.). Relatively wide concentration
ranges for most elements reflect the chemical heterogeneity
of this unit.

‘Molybdenum concentrations in both Yukon Group phyllites

and schists and granitic rocks are low (1 p.p.m.). High
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Table XII Range'and geometric mean trace element levels
(p.p.m.) for major bedrock units within detailed
study area,

ELEMENT BEDROCK
UNIT 3 YUKON GROUP GRANODIORITE
Mo* 10 1 1
3-29 <1-3 -
v 435 80 30
180-1075 50-130 15-470
Ni 30 bs 6
10-85 30-60 1-8
Cr 75 55 18
L40-140 30-105 12-25
Cu 30 30 7
10-90 15-60 2-20
Pb 15 16 19
7-25 11-25 17-21
Sr .70 - 145 300
20-225 100-210 -
Mn i5 L85 - 175
5-65 275-855 130-240
Co 4 <14 7
2-8 9-25 5-8
Zn** 18 5
3-90 -
Number of
Samples 213 13 5
t Range = geometric mean it log standard deviation
* Values <2p.p.m. taken as 1 p.p.m.
** Number of zinc analysis: Unit 3 = 46, Granodoirite = 1,
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Range! and geometric mean trace element levels (p.p.m.) for
various rock types within Unit 3,
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ELEMENT ROCK TYPR
SILICIOUS CALCARECUS
dark grey medium to dark chert-pebble silicenus dark
to light siltstone conglomerate rock limestore
black shale grey shale combined
Mo* 17 .12 4 2 9 bs
. 8-35 6-20 2-5 <2l . 3-25 13-1€5
v fLs 3k0 260 55 410 1095
315-1320 155-730 160-430 30-95 170-695 560-2135
Ni 25 10 40 15 30 190
13-bs 4-30 35-95 5-55 10-65 90-415
Cr 6C Ls 115 25 70 215
35-105 25-75 90-140 18-40 35-125 130-350
Cu 18 55 70 bs 30 4s
6-50 30-105 35-140 30-70 10-90 25-80
Pb 16 € 13 1o 13 7
10-30 2416 10-18 6-15 7-25 5-11
Sr 55 55 90 - 20 60 680
2¢-180 < 25-120 L4s5-175 - 20-170 310-1480
N
¥n e 5 75 30 15 140
4-15 2-15 25-150 10-95 L-55 55-175
Co <5 <5 9 <5 4 <5
- <5=5 5-20 <5-10 2-8 <5-7
in¥* 8 5 100 55 a5 185
2-30 3-9 50-195 - 1-200 170-200
Number of -
Samples 112 20 59 9 205 13

t Range = geometeric mean 4 log standard deviation
*-Values <Zp.p.m. taken as 1 p.p.m.

** Number of zinc analyses: black shale = 26, grey shale = 5, siltstone
1, limestone = 2,

conglomerate =
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manganese concentrations (485 p.p.m.) characterize Yukon
Group while granodiorite is distinguished by low copper,
nickel and chromium values.

A wide range of molybdenum and vanadium values occur
within the individual rock types of Unit 3 (Table XIII).
Molybdenum levels are low in siltstones and conglomerate
(<5 p.p.m.), relatively high in shales (up to 35 p.p.m.)
and strikingly high in dark limestone (up to 165 p.p.m.).
The distribution of vanadium resembles that of molybdenum,
with mean concentrations ranging from an average of 55
P.p.m. in conglomerate up to 1095 p.p.m. in limestone.

High conbentrations for most elements are found in
dark limestone, while low values are typical in chert-pebble
conglomerate, For example the mean strontium content of
limestone is 680 p.p.m. while that of conglomerate is only
20 p.p.m.

Concentrations in dark and light colored shales are
remarkably similar. Both rock types are strikingly low
in cobalt (<5 p.p.m.), manganese (<15 p.p.m.) and zinc

(<30 p.p.m.).

COMPARISON OF CONCENTRATIONS IN BLACK SHALES FROM UNIT 3
WITH ESTIMATES OF NORMAL CONCENTRATIONS IN SIMILAR ROCK
TYPES

Table XIV lists mean metal values in black shales
from Unit 3, estimates of average concentrations for all

types of shales, and median levels in North American black

shales. It should be noted that different parameters are
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Table XIV Comparison of trace element levels
(p.p.m.) within dark grey to black
shales of Unit 3 with estimates of
average metal concentrations in
shales of all kinds and median levels
within North American black shales.

Element Dark Grey Shales* Black Shale**
Blagﬁ Shales (average) (median)
of Unit 3
(geometric
mean)
Mo 17 2.6 10
v o45 130 150
N 25 70 50
Cr 60 90 100
Cu 20 45 70
Pb 15 20 20
Sr 55 300 200
Mn 10 850 150
Co <5 19 10
“n & 95 300

*

** Vine and Tourtelot (1970)

Tourekian and Wedepohl (1961)
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used to measure the central tendency of the analytical
datalin each column,

The relatively high molybdenum concentration in Unit
3 black shales (17 p.p.m.) is consistent with that of North
American black shales (10 p.p.m.) and much greater than
the average molybdenum &alue for all types of shale
(<3 p.p.m.). Vanadium is far more abundant in the black
shales of Unit 3 (645 p.p.m.) than in either typical North
American black shale or in shales generally.

Most other elements, especially manganese, strontium
and zinc are low in Unit 3 black shales. The manganese
concentration in typical shales, for example, is 850 p.p.nm.
while the mean value in the black shales of Unit 3 is only
10 p.p.m.

POSSIBLE MECHANISMS CONTROLLING TRACE ELEMENT LEVELS WITHIN
CERTAIN UNIT 3 LITHOLOGIES

Enhanced molybdenum values in black shales are generally
attributed to sorption of molybdenum from sea water by
sediments collecting in anaerobic, stagnant basins. This
contention is supported by the presence of high molybdenum
concentrations in sediments from modern land-locked marine
basins where anaerobic conditions prevail.

Manheim (1961) has reported up to 80'p.p.m. molybdenum
in organic rich, oxygen deficient sediment collecting in
the Baltic Sea. Gross (1967) has noted molybdenum concen-

trations as high as 67 p.p.m. in reducing sediments in the



-1~

central portion of Saanich Inlet, a small fjord near the
southeastern end of Vancouver Island. He concluded that
sea water was the source of the molybdenum and observed
that relatively little of the total molybdenum content of
the seawater in the fjord need be removed to account for
levels in the sediments.

LeRiche (1959) investigating éamples of black shale
from the United Kingdom, and Vine and Tourtelot (1970)
studying North American black shales, both found that molyb-
denum is strongly associated with orgénic matter. In Saanich
Inlet sediments however, molybdenum showed no correlation
with organic carbon, but was related to the reducing capacity
of the sediments (Gross, 1967).

Korolev (1958) has shown experimentally that relatively
large amounts of molybdenum may be coprecipitated with iron
sulfide gels, such as hydrotroilite (FeS.nH,0), which
eventually age to pyrite. He suggests that high molybdenum
concentrations in organic shales are due to the presence of
molybdenum-rich sulfides in the original sediments.

Sulfides are actively forming in modern, anaerobic,
molybdenum-rich basins (Gross, 1967, Dunhan 1961). Manheim
(1961) has noted that molybdenum has a strong tendency to
follow iron sulfide in Baltic Sea sediments.

No quantitative organic carbon or sulfide determin-
ations were carried out during this investigation, The molyb-~

denum-rich black shales of Unit 35 however, are obviously
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also rich in organic material and locally contain abundant
pyrite. The dark limestone, which contains even more molyb-
denum than the shales, also contains considerable amounts

of organic matter.

Vine and Tourtelot (1970) have noted that very high
median molybdenum values (up to 300 p.p.m.) in certain
North American black shales are difficult to explain, simply
by extraction of molybdenum from sea water. They suggest
that externally derived, metal-rich connate solutions may
have penetrated and enriched certain black shales, either
during or after diagenises. ©Such post-depositional enrich-
ment however, is unlikely to have affected the rocks of
Unit 3 since:

(i) the maximum molybdenum concentration found
within Unit 3, 100 p.p.m., is not very differ-
ent from the 80 p.p.m. in modern Baltic Sea

“sediment (Manheim, 1961).

(ii) excessively large quantitieé of connate fluids
would be required to enrich the thousands of
cubic miles of Unit 3 rock.

With the exception of molybdenum and vanadium, trace
element concentrations in Unit % black shales are relatively
low. This could be a primary feature or a result of in situ
leaching of outcrops sampled. It is interesting to note
that elements in which these rocks are poorest are most
soluble in acidic environments such as those of streams

draining the shales (Hawkes and Webb, 1962).
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In addition to molybdenum, Vanadium, nickel, copper,
chromium and zinc are associated with the organic fraction
of many black shales (Vine and Tourtelot, 1970). High
levels of most of these elements in the dark limestone could
therefore be a consequence of metal sorption by the organic
component of these rocks.

Strontium and manganese, according to Vine and
Tourtelot (1970) are characteristic of the carbonate fraction
of most North American black shales. High concentrations
of both of these elements are present in the dark limestone
member of Unit 3. This association likely reflects the
comparative ease with which both strontium and manganese

can replace calcium in the calcite lattice.



CHAPTER VII
TRACE ELEMENT CONCENTRATIONS
IN
SOIL MATERIAL
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PRESENTATION OF DATA

Because trace element concentrations in soils are
primarily a function of the composition of geological parent
materials (Vinogradov 1959, Swaine and Mitchell 1960,
Mitchell 1964), soils in this study are grouped according
to their occurrence over chemically distinctive bedrock
types. Furthermore, because parent materials in upland
areas are likely of residual character, while those in main
valleys may have been transported relatively far from their
source, valley and upland soils over the same bedrock are
grouped separately. The boundary between these two environ-
ments was arbitrarily set at 4000 ft. above sea level.

Initially samples of only one horizon from each soil
profile were analyzed. The C horizon was chosen since it
is the only mineral horizon present in all profiles. Con-
centrations of molybdenum, copper, zinc and manganese in
the minus-2 m.m. fractions of this horizon, grouped according
to topographic position and associated bedrock, are summar-
ized in Tables XV and XVI,

Some of the more interesting soil profiles were analyzed
in their entirety. Trace element concentrations and mor-
phological characteristics for each horizon in six of these
profiles are given in Tables XVII and XVIII respectively.

Metal levels in the thin volcanic ash layer which
underlies the L-~H horizon in many soils are summarized in

Table XIX., Appendix B lists separately trace element levels
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for all soil horizons analyzed.

TRACE ELEMENT CONTENT OF C HORIZONS

Variations in C horizon compositions in upland soils
associated with different bedrock types are evident in
Table XV, Calcareoﬁ33 Unit 3 soils are considerably enriched
in molybdenum (30 p.p.m.), copper (65 p.p.m.) and zinc
(585 p.p.m.). Granitic soils, in contrast, contain strik-
ingly low concentrations of these elements. Somewhat en-
hanced molybdenum values (11 p.p.m.) occur in siliceous
. Unit 3 soils, while upland soils over the Yukon Group are
characﬁerized by low molybdenum levels (<1 p.p.m.) and high
concentrations of manganese (690 p.p.m.).

Metal concentrations in C horizons of valley soils
(Table XVI) are generally not very different from those over
similar bedrock in upland regions. The mean molybdenum
level in Unit 3 valley soils (7 p.p.m.) is, however, some-
what less than that of corresponding upland soils (11 p.p.m.).
Relatively low manganese concentrations in valley soils

over the Yukon Group are also noteworthy.
DISTRIBUTION OF TRACE ELEMENTS IN SELECTED SOIL PROFILES

Enhanced levels of manganese and zinc are typical of
many L-H horizons (Table XVII). In profile no. 72, for
example, the L-H horizon contains 8445 p.p.m. manganese and
500 p.p.m. zinc, while corresponding values in the underlying

C horizon are only 135 p.p.m. and 130 p.p.m. respectively.
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Table XV Range and arithmetic mean concentrations*
(p.p.m.) of Mo, Cu, Zn and Mn in the
minus-2 mm fraction of soil C horizons
in upland regions within the detailed
study area.

Bedrock
Element Unit 3 Yukon Granitic
Calcareous Siliceous Group Rocks
Mo 30 11 0.7 1.5
10-48 1-26 0.2-1.6 0.8-2.4
Cu 65 35 30 5
40-120 15-90 15-45 2~10
Zn 585 150 115 45
355-1400 25-570 50-170 25-65
Mn 210 360 690 255
30-305 15-2700 240-~-1220 180~-315
pH 6.7 4.3 4.5 4,7
No. of
Samples 7 23 12 %

* HNOa/H01O4 extractable metal content




Table XVI Range and arithmetic mean concentrations*
(p.p.m.) of Mo, Zn, Cu and Mn in the
minus~-2 mm fraction of soil C horizons
in major river valleys.

Bedrock
Element Unit 3 Yukon Group
Mo 7 2.6
1-2 4 0.8-5.2
Cu 40 30
10-85 20-40
Zn 180 130
10-475 70-250
Mn 155 300
5-480 - 135-415
pH 4.7 5.2
No., of
Samples 26 8

* HNOB/HClO4 extractable

metal content
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Table XVII Distribution of HNOB/HClO4 extractable metal
concentrations in selected soil profiles.

Bedrock Site Horizon| Mo Cu Zn Mn pH
Unit Number
(ppm)
Unit 3 45 L-H 20 45 305 270 6.6
Calcareous c 45 40 355 235 9.2
48 L-H 14 55 730 415 .

4,2
Icy | 17 95 570 210 5.3
IC, | 14 45 210 280 5.5
Ash 1 10 25 30 5.9
Bm 14 80 495 165 5.9
IIC | 10 60 465 165 5.5

Unit 3 50 L-H 9 55 290 120 4.4
Acidic Cq 15 55 290 175 3.8
Cs 15 75 570 460 4.4

Yukon 30 Ash |0.8 15 40 125 4.9
Group | Bm |2.8 25 115 450 | 4.5
IC |2.0 30 190 830 | 4.6
TIC |3.6 30 250 435 | 4.8

72 L-H (0.4 30 500 8445 4.8
Ash (0.4 20 15 225 5.0
C 2.8 55 130 135 4.5

Granitic 35 I-E| 7 25 80 220 | 4.1
Rock Bm |0.2 5 40 295 | 4.6
¢ |o.8 > 25 315 | 4.6




Table XVIII

Morphological characteristics of soil proflies .

considered in Table XVII. N
BEDROCK { SOIL | HORIZON DEPTH MORPHOLOGY
SITE (inches)
46 L-H- 2-0 chiefly lichens
AV 0~ very dark grey (10YR 3/1)3 sandy loam; 50% coarse fragmentsy
single grain; loosej slightly stickyj non-~plastic.
48 L-H 5=0 chiefly liochens
: Icq 0-4 .very dark greyish brown (10YR 3/2); silty clays no coarse
fragmentss fine granularj friable; stickys plastic.
Unit 3 ICp 4-6 very dark greyish brown zIOYR 3/25; shaly silty clay loamg
15% coarse fragments; fine granularj looses sllghtly sticky;
calc—
aTCOUS slightly plastic.

Ash 6-8 light yellowish brown (1OYR 4/6); silty clay loamj no coarse
fragmentss single grainj; firmg stlcky; slightly plastic.

Bm 8-11 dark brown (IOYR 4/3) s loamy 30% coarse fragmentsjy single
grain 3 loose; slightly stickys non-plastic,

IIC 11 very dark greyish brown (10YR 3/2)3 candy loams 20% coarse
fragments; fine granular; very friables slichtly stickys
slightly plastic,

50 L-H 1-0 chiefly lichens N
Unit 3 Ic 0~5 very dark greyish brown (1O0YR 3/2); clay loam; 15% coarse
silic— fragmentss fine granu1ar; looses stickys- Sll"htly plastic,
eoUS IIC 95— as for IC with 20% coarse fragments. .
30 Ash 0-3 yellowish brown (1OYR 5/4}; silt loamj no coarse fragmentss
sinzle grain; friable; sli~htly stickys slichtly plastie,
Bm 3-6 derk orown’ (IOYR 3/3); silt loamy no coarse fragments;
Yukon fine granular; friable; stickyjslightly plastie.

ic 6-12 yellowish brown (10YR 5/4)3 as for Bm,

Group IIC 12—~ light olive brown (2.5Y 5/4)3 slaty sand; 60% coarse
fragmentss single grain; loosej slightly stickys non-plastic.
T2 L-H 3-0 chiefly lichens

Ash 0~3 light grey (10YR 7/2); silty clay loams no coarse fragmentsj

single graing loosej stickys plastic,
o 3= brown (7.5YR 4/4)3 cobbly sands 45% coarse fragments; single
grain; loose; slightly stickyj; non-plastic,
cps 35 L-H 2-0 chiefly lichens )
Granitic Bm 0-6 light yellowish brown (10YR 6/4); sandj <5% coarse fragments;
Rock single grainj looses slightly stickyj non-plastic,

c 6= brownish yellow (10YR 6/6); sand; <5% coarse fragmentsg

single grainj loosej slightly plasticj slightly sticky.




Table XIX Range .and arithmetic mean trace element
levels* in samples of volcanic ash
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Element Concentration
(p.p.m.)
Mo 1.1
0.2-6.4
Cu 11
5-18
Zn 18
5-40
Mn 65
15-225
pH 4.9
No. of Samples 9

* HNOB/HC104 extractable metal content.
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M61lybdenum and copper levels in most L-H horizons are not
remarkably high,

Concentrations in B horizons (profile nos. 30 and 35)
are generally about equal to,or less than,those in under-
lying C horizons. Adjacent C horizons with different
lithelogical characteristics may vary greatly in composition.
In profile no. 50, for example, horizons C; and C, are
distinguished only by the presence of slightly fewer coarse
rock fragments in the former horizon. Horizon Cl contains
175 p.p.m. manganese, while 02 contains 460 P.P.M.

The valcanic ash layer, which separates L-H and mineral
horizons in many profiles contains uniformly low concen-

trations of all elements (Table XIX).
FACTORS AFFECTING THE METAL CONTENT OF SOILS

Concentrations of both molybdenum and copper in soil
C horizons are very similar to those in associated bedrock.
As shown in Table XX, granitic soils and rock both contain
sbout 1 p.p.m. molybdenum and siliceous Unit 3 rock and
soil material contain 9 and 11 p.p.m. molybdenum respectively.
Copper concentrations are equal (30 p.p.m.) in Yukon Group
soil and rock.

Webb et al (1965, 1968) have noted the close assoc-
iation between molybdenum concentrations in soils and bed-
rock in both Ireland and the United Kingdom. Vinogradov

(1959) has remarked on the importance of parent materials



Table XX Comparison of mean' trace element levels (p.p.m.) in soil
C horizons* in upland areas with those in the associated

bedrock**,

ELEMENT UNIT 3 CALCARIOUS UNIT 3 SILICEOQUS YUKON GROUP GRANITIC ROCK
ROCK SOIL ROCK SOIL ROCX SOIL ROCK SCIL
Mo 4sg 30 9 11 1 0.7 1 0.5

Cu L5 65 30 35 30 30 7 5

Zn 185 585 35 150 115 5 ks

Mn 140 210 15 360 485 690 175 255

pH 6.7 4.3 1 4.5 4.7

t Rock means geometric; soil means arithmetiec.
* HNO3/HCl04extractable metal content
** Total metal content

..,.28..
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in determining the copper content of Russian soils.

Relative zinc and manganese levels in soils are
consistent with relative concentrations in associated bed-
rock. Absolute soil levels however are invariably above
those in rock. Enrichment factors for zinc range from
3 to 8, and for manganese may be over 20.

High soil values could be due either to residual
enrichment or external additions of metals. Residual en-
richment could result from’either high manganese and zinc
concentrations in so0il minerals which are particularly
resistant to weathering,or from fixing of these elements in
the soil after their release to the soil solution. 3Both
processes however require extensive chemical weathering,
unlikely in the pedologically young soils of the MacMillan
Pass area. Extremely high manganese levels in certain soils
(32500 p.p.m.) derived from rock material low in this element
suggest that some manganese is of external origin.

Bleeker et al (19695 found manganese levels in
certain New Guinea soils to be substantially higher than
concentrations in underlying parent materials. Enrichment
is greatest in soils subject to frequent alternating periods
of oxidation and reduction. They suggest that manganese is
mobilized deep in the parent ' material under reducing con-
ditions, and transported up profile with a rising water
table, where at a later stage it is immobilized by oxidation.

A similar process could be active in the MacMillan

Pass area. It is noteworthy however that Gleyscls, which
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should be most affected by alternating oxidizing and re-
ducing conditions, are not excessively enriched in manganese.

Enhanced concentrations of manganese and zinc in
certain L-H horizons are likely a result of biocycling.
This process involves removal by plant roots, of inorganic
material from lower soil horizons, and its accumulation in
surface organic layers (Barshad, 1964). As indicated by lack
of high metal concentrations in B horizons, other soil
forming processes, such as illuviation, have not noticeably
altered the primary trace element distribution in most soil
profiles.
POSSIBLE SIGNIFICANCE OF VARTATIONS IN COMPOSITION OF UPLAND
AND VALIEY SOILS

The molybdenum content of Yukon Group valley soils
(2.6 p.p.m.) is somewhat higher than that in upland regions
(0.7 p.p.m.). Since several valley sample sites are
located downstream from exposures of molybdenum~rich Unit 3
rocks, debris derived from Unit % is likely present in
valley fill over parts of  the Yukon Group.

Molybdenum concentrations in valley soils over Unit
3 (7 p.p.m.) are slightly lower than those in upland areas
(11 p.p.m.). Examination of the geographical distribution
of valley soils poorest in molybdenum (<4 p.p.m.) reveals
that most such soils occur outside of the detailed study
area, on the eastern edge of the Yukon Plateau. These

molybdenum-poor soils may have been derived from Unit 3
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lithologies low in this element, such as siltstone or

conglomerate. Alternatively, parent materials for these

soils could contain significant amounts of rock debris

from other molybdenum-poor geological units.



CHAPTER VIII
TRACE ELEMENT CONCENTRATIONS
IN
PLANT MATERIAL

-87-
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PRESENTATION OF DATA

Concentrations of molybdenum, copper, zinc and
manganese in a few selected plant species, and overall
levels in each of the five major vegetation classes (trees,
shrubs, forbs, grasses and lichens) are summarized in
Tables XXI to XXIV., Since upland and valley soils assoc-
iated with the same bedrock are compositionally very similar
(Tables XV and XVI), plants were not subdivided on the
basis of their relative topographic positions. Metal con-
centrations and sample site numbers for all plants analyzed

are listed in Appendix C.
METAL CONTENT OF PLANTS

Low molybdenum concentrations, typically less than
0.2 p.p.m., occur in nearly all species associated with
Yukon Group soils (Table XXI). Plants on siliceous Unit 3
and granitic soils may contain somewhat higher molybdenum
levels., Over the Yukon Group, for example, forbs contains
an average of 0.2 p.p.m. molybdenum, while those associated
with siliceous Unit 3 and granitic soils contain 1.2 p.p.m.
and 0.7 p.p.m. respectively,

Of particular interest however is the remarkably
high molybdenum content of nearly all species sampled over

calcareous Unit 3 soils. Fireweed (Epilobium latifolium),

for example, contains up to 44 p.p.m. molybdenum and rough

fescue (Festuca altaica) up to 50 p.p.m. Warren and




Table XXTI Range and arithmetic mean molybdenum
content! of vegetation (ppm dry weight)
assocliated with various soil types.

CLASS SPECIES SOIL TYPE
UNIT 3 ONIT 3 YU KON GRANTTIC
: ALCARKGUS [ STLICECUS GROUP
Abies lasiocarpa 0.2 0.1 0.4
(fir) 0.1-1.4 - -
o (*) (11) (5) (1)
i
& Trees** 0.2 0.1 0.2
l 091'1""’ - 0,1-0,l+
(16) (8) (3)
Betula glandulosa 0.1 0.1 0.1
(dwarf birch) 0.1-0.4 - -
(43) (10} (2)
§ Salix alaxensis L 0.2 0.1 .4
= (willow) 1.,2-12( 0.1-1.2 - -
& (4) (22) (10) (1)
Shrubs »» 5 0.2 0.1 0.2
0.5-12 | 0.1-1,2 0.1-0.5/ 0.1-0.4
(9) (89) (43) (5)
Senecio triangularis .9 0.4 0.1 0.4
1.6-18 0.1-1,2 - -
(&) (5) (2) (1)
4 Epilobium latifolium 22 4.5 0.5
= (fireweed) 12-44 - 0.1-0.8
& | (1) (1) (3)
. Fort s*x* 12 1.2 0.2 0.7
1,6-L4 0.1-4.5 0.1-0.8] 0.1-1.,2
(11) (13) (12) (&)
Festuca altaica 40 0.9 0.2 1.2
(rough fescue) 12-50 0.1-3.6 0.1-0.6 -
(3) - (8) (5) (1)
@3 |Calmagrostis canadensis 2.4 0.9 0.3 0.4
1] . - “0.1"306 - -
: ¢y (9) SN ICW
S ‘
Grasses** 16 0.9 0.4 0.8
0.3-50 0.1-3.6 | 0.1-1.2] 0.4-1.2
(8) (22) (12) (2)
Cladonia alpestris 0.1 0.1 0.1
- (caribou moss) 0.1-2.4 - -
5 - 35 | aw | (@
O
3 Lichens ** 0.2 0.1 0.5
Oal"z-u' had 001‘0.8
(42) (20) (2)

t values less than 0.2 p,p.m. taken as 0.1 p.p.m.
*  number of samples
for varlious species included in this vegetation

class see Table VI,
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Table XXII

I

!

Range and arithmetic mean manganese content
of vegetation (ppm dry weight) assoclated
with various soll types.
CLASS SPECTES S50IL TYPE N
UNTT 3 ORIT 3 YUKON | GRANITIC
: CALCANEQUS| SILICEQUS CROUP .
Abies lasioecarpa - 510 1210 320
€¥ED) 250-745 | 270-1670 -
a (*) (11) (5) (1)
o Treeskx . 565 900 - 310 .
; 65-1145 | 135-1670| 95-515
(16) (8) (3)
Betula glandulosa 680 - 790 395
(awarf birch) 70-1755 | 270-1360| 305-485
. (43) (10) (2)
A Salix alaxensis 60 - 280 430 310
g (willow) 40-85 | 30-690 | 55-865 -
0 (6) - (22) (10) (1)
Shrubs x* 50 © 395 k95 L65
20-100 | 30-1755 | .55-136Q 225-975|
(9) (89) (43) (5)
~Sengelo trianpularis 30 105 225 14o
’ 15-40 .} . 20-175 180-270 f..
‘ (&) (5) (2) (1)
Q@ Epiloﬁium Jatifolium 50 igs5 - 120 .
& (fireweed) 20-90 - 35-215
- ' (&) 1) (3 |-
Forbs *x 40 125 310 . 125 [
10-90° 20-300 35-1395 65-185
(11) (13) (12) (&)
Festuca altaica 55 230 300 | 270
(rough fescue) 30-70 115-435 170-780 -
- (3) - (8) (5) (1)
) Calmagrostis canadensis 285 . 180 . 210 230
a - 70-375 - -
2 (1) (9) W | @
Grassesx* 100 200 290 250
Lo-285 50-435 50-780 230-270
(8) - (22) (12) (2)
Cladonia alpestris 55 60 - 30
n (caribou moss) 20-155 20-110 - .
& (35) (14) (1)
(&) -
a « Lichensx 50 50 20
5-155 | 20-110 | 10-30 |
(42) (20) (2)

*  number of samples

*%  for varlious species included in this vegetation
class see Table VI,
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Table XXIII

Range and arithmetic mean copper content

of vegetation (ppm dry weight) assoclated
with various soil types. .

CLASS SPICIES SOIL TYPW
Unit 3 UrIT 3 YU RON GranitTIc
CAICARECUS |SILICECUS CRCU?
Ables lasiocarpa 5 L [£
(fir) 3-10 3-6 -
9 () (a1 s | @
i
& Treessx 5 K L
2-1C 2-6 3-5
(16) (8) (3
Betula glanduloss 7 6 )
(dwar{ birch) 3-10 39 5-7
(43) (10) (2)
@ Salix alaxensis 6 6 6 6
& (willow, 1-9 2-10 3-8 -
2 (6) (22) (i0) {+)
Shrubs ** é 7 & 6
3-9 2-15 L-15 5-7
(9 (89) (43) (s
Seriecio trianpularis 8 14 12 9
5-10 9-17 =17 -
(&) (5) (2) (1
Epilobium latifolium 6 7 6
é (firewesd) 5-6 - y-7
o (&) (1) (37
. Forks. ** 8 10 8 7
) 5-20 6-17 b-17 1 3-11
(il (13) (12) )
Festuca a2ltaicsa 5 6 5 €
(rough fescue) L-6 3-7 L-6 -
{3) N (8) (5) (1)
A | Calmaprostis canadensid 12 9 8"
g - |7 €é-12 -
1 ‘e ra N
2 1) (9) W | @
Grasses ** 7 7 7 . 7
510 3-12 b-12 6-8
(8) (22} (12) (2)
Cladonia alpestris 3 2 2
0 (caribou moss) 1-4 1-3 -
= | (35) (14) (+)
O
e
— . Lichens** 3 b 3
. e 1210 1-14 225
(42) (20) (2)

*  number of samples

x%

class see Table VI,

for various species included in th

is vegetation
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Table XXIV  Range and arithmetic mean zinc content
of vegetation (ppm dry weight) associated
with various soil types,
CLASS S2uCIEs SOIL TYPY
UnTt 3 oRIT 3 YUROX G AL ITIC
CAlCARRCUS) S1LICECUS ROUP
Abies lusiocarpa 4s Ls 30
(fir) 35-65 35-60 -
" (+) (ar) (5 | )
@
& Troes *+ 50 55 75
35-70 35-130 | 35-140
(16) (8) {3}
Setula glanculosza 180 160 165
{dwari birch) 60-310 80-195 | 120-215
(&43) (19) (2)
é Salix alaxsnsis 220 170 150 190
= (willow) 12e-33¢C 100-280 55-250 -
0 (6) (22 (10) {3
Shrubs ** 175 80 95 135
125-330 15-310 | 19-2c0 30-215
(97 (89) (&3) (5
Serecio trianzularis 55 80 165 25
36-75 55-115 | 120-205 -
(&) (5) (2 ()
Zpilobiuw letifolium 30 75 ho
é (firevesd) 20-4o0 - 20-70
I (&) (1) (33
Forbs *x* 4s 70 45 25
25-75 55-115 | 20-205 20-20
(i) (13) (12) &
Festuca altaics £5 50 30 20
(rouzh fescue) hc-380 30-105 2C-4C -
{3) (8) (3) (1)
a Calragrosiis canadensis 195 55 - 25 o5
(%) - - 3n_pr - -
¢ U=
2 () (9) @ oW
Grassos ** G5 n5 Lo 30
35-195 252105 | 20-50 -
(&) (22) (12) (?)
Clodonia alvesiris 19 14 15
% (caridou moss) 5-30 B-25 -
4 - (35) (1L} ey
2
e . Lichens*x 15 15 20
5-30 8-30 15-2%
(42) (20) (2)

nunber of camplou
speeics included in this vegotation

for various

Y

class see Tablo VI.
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Delevault (1965) have reported high molybdenum levels in
fireweed growing over molybdenite mineralization in British
Columbia. | |
Where molybdenum is available forbs and grasses
usually contain more of this element than do woody species.
Forbs growing on calcareous Unit 3% soils, for example,
typically contain 12 p.p.m. molybdenum, while shrubs, such

as willow (Salix alaxensis) associated with the same soil

generally contain less than 5 p.p.m.

Manganese levels in plants growing on calicareous
Unit 3 soils are typically low,while plants growing on
Yukon Group soils are characteristically rich in manganese
(Table XXII). Shrubs, including such species as willow

(Salix alaxensis) and dwarf birch (Betula glandulosa), con-

tain an average of 495 p.p.m. manganese associated with the
Yukon Group and only 50 p.p.m. in more basic Unit 3 environ-

ments. Calsmagrostis canadensis is exceptional in its

relatively high manganese content (285 p.p.m.) associated
with calcareous Unit 3% rocks.
All woody plants contain large amounts of manganese.

Dwarf birch (Betula glandulosa),in particular ,may contain

up to 1755 p.p.m. of this element. Kubota et al (1970) found
similarily high manganese levels (1120 p.p.m.) in leaves
from this species in Alaska.

Variations in copper concentrations in plants assoc-
iated with different soil types are slight. Overall mean
levels in grasses, for example, are 7 p.p.m. associated with

all four soil types (Table XXIII).
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Copper concentrations also vary little between
species. Mean values typically range from about 4 p.p.m.

in trees up to 8 p.p.m. in forbs. Only Senecio triangularis

snd Calamagrostis canadensis characteristically contain
copper levels of 8 p.p.m. or greater., In contrast, Kubota
et al. (1970) found an average of only 3.5 p.p.m. copper

in Calamagrostis canadensis from Alaska.

Relationships between zinc levels in plant species
and soil type are often contradictory. As indicated in
Table XXIV, for example, mean zinc concentrations are highest
in trees growing on granitic soils (75 p.p.m.) while grasses
are poorest in zinc (30 p.p.m.) when associated with the
same soils.,

Zinc levels in certain shrubs are particularly high,

Willow (Salix alexensis) may contain up to 330 p.p.m. zinc

in contrast to usual Valuesfof less than 100 p.p.m. in most
other species.

Lichens generally, and Cladonia in particular, con-
tain low concentrations of all elements. Copper concen-
trations do not exceed 5 p.p.m., while average zinc levels
are only about 15 p.p.m. Scotter and Miltimore (pers. comm.)
in the Northwest Territories, and Havre (1969) in Norway,
have both reported similarly low metal values in various

Cladonia species, including Cladonia alpestris.
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FACTORS AFFECTING METAL LEVELS IN PLANTS

Metal concentrations in plants are influenced by
both the total metal content of the soil and the form in
which metals are held. Trace elements within the crystal
lattice of primary and secondary soil minerals are relatively
unavailable compared to ions present in the soil solution
or adsorbed on either clay minerals or organic matter.

The proportion of soil solution and adsorbed ions available
to the plant is determined, to a large extent, by Eh and pH
conditions in the soil.

Low molybdenum levels (typically<0.2 p.p.m.) in
pPlants of most species growing on Yukon Gfoup soils are
consistent with low total molybdenum concentrations
(<3 p.p.m.) in these soils. Relétively high molybdenum con-
centrations (8 p.p.m.) in siliceous Unit 3 soils, however,
contrast with low values in associated woody plants and

lichens. Forbs such as fireweed (Epilobium latifolium), and

grasses such as rough fescue (Festuca altaica), growing on

these siliceous soils may contain somewhat enhanced molybdenum
levels (up to 4.5 and 3.6 p.p.m. respectively).

The average molybdenum concentration in calcareous
Unit 3 soils (30 p.p.m.) is about four times greater than
that of siliceous varieties. However, mean molybdenum levels
for plants growing in basic soils may be, as in the case of

rough fescue(Festuca altaica), over forty times greater

than levels associated with acidic soils (Table XXI).
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Barshad (1951) has reported that soil clay minerals
adsorb increasing amounts of molybdenum, as MOJ; with de-
creasing pH. Similarly, Reisenaur et al (1962) have shown
that the amount of molybdenum adsorbed by hydrous oxides
of iron and aluminum, both common in soils, decreases with
increasing pH.

Generally low concentrations of molybdenum in plants
growing on molybdenum-rich siliceous Unit % soils therefore
reflect the dominant influence of low pH (mean value 4.5)
over total metal content in restricting molybdenum availabil~-
ity. In the calcareous soils (pH 6.7) both molybdenum and
pH values are high, and hence both factors favour plant
uptake.

Molybdenum-rich vegetation has also been reported
growing on organic-rich acidic soils (Walsh et al, 1953,
Kubota et al, 1961). 1In the MacMillan Pass area, however,
no enhanced plant molybdenum levels were noted associated
with soils of this type.

In contrast to molybdenum, availability of manganese
to plants increases with decreasing pH (Hodgson, 1970).
Plants growing in acidic soils, such as those derived from
the Yukon Group, high in total manganese (520 p.p.m.),
contain high manganese concentrations (Table XXII). Soils
with similar manganese contents but different pH levels,
for example calcareous and siliceous Unit 3 soils, support
plants with very different manganese levels. Willow (Salix

alaxensis) contains approximately 280 p.p.m. manganese on
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acidic siliceous soils and only 60 p.p.m. on more basic
calcareous soils.

Soil type generally exerts little influence on
copper concentrations in plants investigated., For example,
grasses contain an average of 7 p.p.m. copper on both
granitic soils, which contain 5 p.p.m. copper, and
siliceous Unit 3 soils, with 35 p.p.m. copper. . Furthermore
mean copper values for various plant species character;
istically range between only 4 and 8 p.p.m. It therefore
appears that certain homeostatic mechanisms, common to
most‘plant species studied, effectively regulate copper in-
take.

Copper availability, like that of manganese, re-
portedly decreases with increasing pH (Hodgson, 1970). This
is consistent with the lack of high plant copper values
associated with basic copper-rich (65 p.p.m.) Unit 3.so0il. In
view of the importance of plant response factors in limiting
copper uptake however, the absence of enhanced plant copper
concentrations is not necessarily only a pH effect.

Zinc levels in plants are often not consistent
with soil pH and total zinc content. Both Yukon Group and
siliceous Unit 3 soils, for example, contain similar amounts
of zinc and have similar pH values (Tables XV and XVI). The

mean zinc concentration in Senecio triangalaris growing on

the former soils, of 165 p.p.m., is however, approximately
twice that associated with the latter soils. Variations of

this type could be due to soil factors such as organic matter
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content and the chemical fbrm in which zinc is present,
which were not investigated in this study.

Relatively high zinc levels in shrubs and grasses
associated with calcareous Unit 3 soils are not in ag'ree~~
ment with the reported low availability of zinc in basic
soils (Hodgson, 1970). These high concentrations may
reflect the abilities of plants concerned to absorb zinc
more than the ability of soils to supply it.

POSSIBLE INFLUENCE OF METAL LEVELS IN PLANTS ON THE HEALTH
OF WILDLIFE, PARTICULARLY CARIBOU AND MOOSE

The ability of an animal to tolerate molybdenum is
affected by a number of factors, including its copper status
and intake and the inorganic sulfate content of its diet
(Underwood, 1962). Although the nature of metabolitic
interactions of these elements are poorly understood, it
appears that the principal toxic effect of prolonged high
dietary molybdenum uptake is to induce a state of copper
deficiency (hypocuprosis). A minimum amount of inorganic
sulfate must however be present if this toxic action is to
be effective. Cattle experiencing molybdenum induced hypo-
cuprosis suffer severe loss of condition and scouring.

Tolerance to high dietary intakes of molybdenum
varies considerably with different animal species (Underwood,
1962). Of domestic farm animals, for example, cattle are
much less tolerant of molybdenum than are horses and pigs.

Tolerance limits of caribou and moose have not been studied.
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Nevertheless, since as ruminants, these animals share
certain basic metabolitic processes with cattle, their
tolerance levels could be similarly low.

Precise tolerance levels for cattle are not well es-
tablished. Kubota et al (1961)'have suggested that on im-
perfectly to poorly drained minersl soils in the western
United States, molybdenum concentrations of over 15 p.p.m.
in forage plants are potentially toxic to cattle, while on
organic soils 2 to 3 p.p.m. in forage may be toxic. In
Ireland, on the other hand, the provisional threshold level
for toxic herbage is given as 5 p.p.m. in dry matter (Walsh
et al., 1952). |

In view of the metabolitic interaction of copper
and molybdenum, the Cu/Mo ratio of forage is perhaps a more
meaningful parameter of toxicity. Miltimore and Mason (1971)
have observed that, in British Columbia, feeds with Cu/Mo
ratios of less than 2.0 are associated with symptoms of
copper deficiency in cattle.

Average Cu/Mo ratios for plants growing in all but
basic Unit 3 soils are well above 2.0, With very few ex-
ceptions however, plants associated with basic soils have
ratios below this limit. Overall ratios for forbs and shrubs,
for example, are 0.68 and 1.25 respectively. The lowest
Cu/Mo ratio for an individual species is 0.13 for rough fescue.
These basic soils, derived primarily from dark limestone,

are relatively rare within the detailed study area.

While little is known about the feeding habits of
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either caribou or moose, most plant species sampled are
at least potential forage for these animals. Caribou moss

(Cladonia alpestris) in particular is likely to be one of

the main food sources for caribou during winter months, It
is interesting to note that, while molybdenum levels in
this lichen are low (<0.2 p.p.m.), concentrations of both
copper (3 p.p.m.Y and zinc (15 p.p.m.) are well below the
minimum dietary levels of 10 and 50 p.p.m. respectively,
recommended for domestic cattle (Agricultural Research
Council, 1965).

An indication of the metal intake of these animals
may be given by the metal content of their faeces (Table
XXV). Of 30 samples analyzed, only two contained more than
2 p.p.m. molybdenum. Removal of molybdenum by digestive
processes or leaching of faeces by rainwater, however, may
be responsible for some of the low values.

In summary, if

(i) molybdenum-rich calcareous rock is relatively

uncommon within Unit 3 as a whole, as is
suggested from studies in the MacMillan Pass
area and published geological reports,

(ii) molybdenum tolerance levels of caribou and

moose are similar to those of cattle,

(iii) grazing habits of caribou and moose are in-

dependent of soil type,

it is unlikely that these animals suffer from molyb-

denum induced copper deficiency.
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Table XXV Range and arithmetic mean concentration*
(p.p.m.) of Mo, Cu, Zn and Mn in caribou
and moose faeces.

Element Faeces
Caribou Moose
Mo 1.6 1.2
0.1-9.7 0.1-14.0
Cu 14 10
11-22 7-16
Zn 260 %265
175-415 175-515
Mn 700 465
300--1405 . 130--1010
No..of
Samples 12 18

* HNOB/HClO4 extractable metal content expressed in terms
of sémplé dry weight.
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However, if caribou moss is the principal food
source for caribou in winter, the possibility of deficiency
symptoms resulting from low levels of copper and zinc in
this species is very real. Similar conditions may affect
reindeer in Norway (Havre, 1969) and the Northwest

Territories (Scotter and Miltimore, pers. comm.).
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CHAPTER XTI
TRACE ELEMENT CONCENTRATIONS
IN
STREAM SEDIMENT
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PRESENTATION OF DATA

Tables. XXVI and: XXVII summarize metal concentrations
in sediments asséciated with different bedrock types.
Samples collected over Unit 3 were subdivided on the basis
of their association with either basic, or neutral to acidic
stream water, Basic streams invariably drain areas under-
lain, in part, by dark limestone.

Sediments from valley bottoms o#er the Yukon Group
are considered separately since streams in these environments
commonly drain areas underlain partially by Tertiary vol-
canics and/or Unit 3., Trace element concentrations and
U.T.M, co-ordinates of all stream sediment samples collected
within the detailed study area and along the Canol Road are

listed in Appendix D.
METAL CONCENTRATIONS IN STREAM SEDIMENT

As shown in Table XXVI Unit 3 sediments from the
MacMillan Pass region contain large concentrations of molyb-
denum (26 p.p.m.), vanadium (720 p.p.m.) and copper (200
P.P.m.). Molybdenum and vanadium levels in particular are
considerably higher than values for Unit 3 sediments from
the regional study area (11 and 480 p.p.m. respectively).
Sediments associated with basic stream waters (Table XXVII A)
are enriched in nickel (420 p.p.m.), molybdenum (40 p.p.m.),
vanadium (905 p.p.m.) and strontium (275 p.p.m.), relative

to those of acid streams.



Table XXVI Rangé’and geometric mean trace
element content (p.p.m.) of
stream sediment associated with
ma jor bedrock types within the
detailed study area and along the
Canol Road.

ELEMENT BEDROCK
UNIT 3 YUKON GROUP | GRANITIC ROCK
Mo* 26 3 1
10-65 1-6 -
v 720 115 30
385-1345 55.230 20-40
Ni 100 80 11
30-345 L5-145 3-20
Cr 200 165 22
130-320 130-215 15-30
Cu 110 60 8
60-210 35-110 5.12
Pb 25 20 17
15-45 15-35 15-20
Sr 145 230 175
65-320 145-375 50-300
Mn 340 770 200
95-1230 425-1400 -
Co 30 Ls 6
10-70 30-80 3-10
Ink* 135
35-530
Number of 69 30 2
Samples

+ Range = mean + log standard deviation
* Values less than 2 ppm taken as 1 ppm
** Number of zinc analyses =

36
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T .
Range and geometric mean trace element
content (p.p.m.) of stream sediment

associated with, (A) Unit ) subdivided

on the basis of stream pH, (B) Yukon

Group subdivided topographically.

ELEMENT | SEDIMENTS SAMPLED
OVER UNIT 3
Stream Stream
pH>? pH<?
Mo* 49 24
15-105 10~-55
v 905 680 ,
720-1145 345-1345
Ni 420 75
265-660 | 25-220
Cr 345 180
240-505 | 125-260
Cu 130 105
85-200 55-210
Pb 20 25
10-40 15-L5
Sr - 275 125
130-600 60-225
Mn 490 310
170-1400 | 80-1175
Co 50 25
35=75 10-65
Zn** 375 b5
210-680 15-115
Number of 13 56
Samples '
1+ Range

ﬁean + log standard deviation
* Values less than 2p.p.m. taken as 1p,

B.

ELEMENT | SEDIMENTS SAMPLED
OVER YUKON GROUP
Uplands | Valleys
Mo* 1 3.5
<1-1.5}1.5-8.5
'8 65 145
55-80 70-290
Ni 70 90
60-85 L5-175
Cr 190 160
170-210 | 120-210
Cu 75 55
60-110 | 30-105
Pb 30 20
- "20-40 10-30
Sr 250 225
190-320 | 130-390
© Mn- 1020 685
' 640-1625] 370-1260
Co 75 40
65-85 25-65
Number of 9 21
Samples

*% Number of zinc analyses: siream pi>7

stream pHE7

b

m
19
17
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Yukon Group sediments are generally low in molyb-
denum (3 p.p.m.) and rich in manganese (770 p.p.m.). A
few high molybdenum and vanadium values (greater than 10
and 480 p.p.m. respectively) occur in valley sediments over
the Yukon Group. Overall concentrations in sediments
associated with the Yukon Group from both regional and-
detailed study areas are remarkably similar.

Both sediment samples derived from a biotite grano-
diorite stock southwest of MacMillan Pass are strikingly
low in all elements (Table XXVI). Metal levels in granitic
sediments from the regional study are typically higher,by
factors of from two to three, than concentrations in these
granédioritic sediments, Furthermore, low molybdenum levels
(<2 p.p.m.) in the sediments near MacMillan Pass contrast
with enhanced concentrations (up to 16 p.p.m.) reported in
sediments associated with granitic intrusions in the Keno
Hill region (Gleeson, 1966).

COMPARISON OF METAL CONTENT OF STREAM SEDIMENT WITH THAT
OF ASSOCIATED ROCK AND SOIL

Trace element concentrations in rock, soil énd
stream sediment material are summarized in Tables XXVIITI
and XXIX,

Low concentrations of molybdenum in granitic and
Yukon Group sediment and relatively and high values in
calcareous Unit 3 sediment are clearly reflected in associated

rock and soil. Calcareous sediment, for example, contains



~-108-

Table XXVIII Molybdenum, copper and manganese
concentrations (p.p.m.) in
stream sediment and associated
soil material,

ELEMENT BEDROCK STREAM SOIL**
SEDIMENT *
Unit 3 40 30
Calcareous 15-105 10-50
Unit 3 24 8
Mo Siliceous 10-55 1-26
Yukog 1 0.7
Group <1-1.5 0.2-1.6
Granitic 1 1.5
Rock - 0.2-2.4
Unit 3 130 65
Calcareous 85-200 45-120
Unit 3 105 40
Cu Siliceous 55-210 10-90
Yukon' 75 30
Group 60-110 15-45
Granitic 8 5
Rock 5-12 2-10
Unit 3 490 210
Calcareous 170-1400 30-305
Unit 3 310 250
Mn Siliceous 80-1175 5-2695
Yukon' 1020 690
Group 640-1625 240-1220
Granitice 200 255
Rock - 180-315

* Total analysis by emission spectroscopy; geometric
mean values quoted,

ok HN03/HClo4 extractable metal content determined by
atomic-absorption spectrophotometry; arithmetic means.

T Sediment values refer to upland areas only.



Table XXIX Geometric mean trace element concentrations (p.p.m.)*

in rock and associated stream sediment.

ELEMENT . CALCAREOUS UNIT 3 SILICEOUS UNIT 3 YUKON GROUP GRANITIC ROCK
ROCK.. . .. SEDIMENT | ROCK SEDIMENT ROCK SEDIMENT | ROCK |SEDIMENT

Mo 45 40 .9 24 1 1 1 1

v 1095 905 410 680 80 65 80 30

Ni 190 420 30 75 45 70 6 11

Cr 215 345 70 180 55 190 18 22

Cu 45 130 30 105 30 75 7 8

Pb i 20 13 25 16 30 19 17

sr 680 275 60 125 145 250 300 175

Mn 140 490 15 310 485 1020 - 175 200

Co <5 50 4 25 14 75 7 6

Zn** 185 375 35 a5 - - 5 -

Number of

Samples 13 13 205 56 12 9 5 2

* total analysis by emission spectroscopy (except for zinc)

**HNOB/HCM)4 extractable Zn measured by atomic-~absorption spectrophotometary

~60T~
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an average of 40 p.p.m. molybdenum, while concentrations in
associated rock and sbil are 45 and 30 p.p.m. respectively.
Mean molybdenum concentration in siliceous Unit % sediment
(24 p.p.m.) however, is approximately three times greater
than rock and soil values. ©Similar relationships exist

for vanadium concentrations in rock and stream sediment
material.,

Sediments derived from both Unit 3 and the Yukon
Group contain two to three times more copper than associated
rock and soil. Manganese levels are also relatively high
in sediments, though the enrichment factor is more variable
than that of copper. The mean manganese concentration in
siliceous Unit 3 sediment, for example, is 310 p.p.m. while
those of associated bedrock and soil are 15 and 250 p.p.m.
respectively. Concentrations of all other elements in Unit
% and Yukon Group stream sediment are similarly enhanced
relative to rock values, with the single exception of stron-
tium in calcareous Unit 3 environments (Table XXIX).

Metal levels in sediments derived from granodioite,
in contrast to levels 6f most elements in sediments from
other bedrock types, are typically very similar to concen-
trations in rock and soil material. For example, granitic
stream sediment contains 8 p.p.m. copper, while levels of
.5 and 7 p.p.m. characterize associated soil.. and rock
respectively. Vanadium and strontium concentrations in
granitic sediment are exceptional in that levels are less

than those of:the source rock.
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FACTORS AFFECTING TRACE ELEMENT LEVELS IN STREAM SEDIMENT

Since stream sediments approximate a composite
sample of rock and soil material upstream from the sample
site, their composition is controlled, to a considerable
extent, by compositions of these materials. Processes
active in the stream channels however, such as leaching or
adsorption, may alter sediment composition to some extent.

A comparison of Tables XXVIII and XXIX indicates
compositions of rock and soil material in the MacMillan Pass
area, are generally not very different. Relatively large
differences are common however, between the composition of
thesé two materials and the associated sediment.

The extent to which sediment composition is modified
in stream channels is determined by a number of factors
including Eh and pH values in the channel and the associated
soil, the amount and nature of dissolved material in stream
water, the grain size and mineral composition of the sediment,
and the nature of the element being considered.

Metals may be dissolved in soil or stream water as
either cations or complex anions. Of the elements con-
sidered in Table XXIX only two, molybdenum and vanadium,
are mobilized as anions (Hawkes and Webb, 1962)., Eh and pH
changes affect these two groups of ions in opposite fashions.

So0il and stream pH values are summarized in Table
XXX, Stream pH values are typically one or more units

above so0il levels, Though no Eh measurements were made
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stream channels are likely to be more oxidizing than soil
environments,

Considering the elements mobilized as cations,
concentrations are typically much higher in sediments than
in the associated rock (Table XXIX). The magnitude of this
enrichment is variable, ranging from less than 2 to greater
than 20. Only granitic sediments are not enriched in this

fashion.

Table XXX Mean pH values of soils and stream waters
associated with various bedrock units.

Bedrock pH

Soils Stream

waters

Calcareous 6.7 7.8

Pnit

5 Acidic 4,5 5.3
Yukon GToup 4,8 6.7
Granitic Rocks 4.7 6.7

Iron oxide precipitates are common on sediment in
many of the more acidic streams draining Unit 3 lithologies,
particularly pyrite bearing dark shale. According to

Stumm and Morgan (1970) oxidation of pyrite releases both
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ferrous and hydrogen ions. Ferrous ions may subsequently
be oxidized to the ferric state and precipitated as ferric
hydroxide in stream channels. Precipitation of ferric
hydroxide releases more hydrogen ions thus accounting for
very low stream pH values associated with iron precipitates.

Iron and manganese precipitates may scavenge con-
siderable amounts of such trace elements as nickel, cobalt,
copper and zinc from stream water (Theobald et al., 1962,
Hornsnail et al. 1969). Chemical analysis of precipitates
in the MacMillan Pass area however (Table XXXI) reveal low
values for most elements with the exception of molybdenum
and zinc.

An alternative and more likeiy mechanism for enrich-
ment of sediment relative to rock and soil material is
cation adsorption. This involves adsorption of positively
charged ions by the clay-size fraction of stream sediment,
such as clay minerals and organic matter. Since the effect-
iveness of cation adsorption increases with increasing pH
(Hawkes and Webb, 1962), cations mobilized in the relatively
acidic soils of the MacMillan Pass area should tend to be
adsorbed in the more basic stream channels (Table XXX).

Lack of enrichment in granitic sediment is somewhat
surprising in view of relatively large pH differences be-
tween soils and stream channels (4.7 vs. 6.7). Sediment in
these channels however is composed chiefly of sand-size
grains of quartz and mica, whereas, as previously noted,

adsorption occurs principally on the clay-size component
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Table XXXI Range and arithmetic mean trace element
content* (p.p.m.) of iron oxide precipi-
tates from acidic stream channels

Element Concentration
(p.p.m.)
Mo 20
<0.2-70.0
Ni 5
3-12
Cu 45
15-115
Pb 11
3-45
Mn 14
6-35
Co S
| 4-8
Zn 75
30-200

* 6M HCl extractable metal concentration determined by
atomic-absorption spectrophotemetry.



~115~

of the sediment.

Anions of molybdenum and vanadium (1"1004-2 and
V0,”), in contrast to cations, should be most mobile in
the relatively basic oxidizing stream channels. Since
molybdenum and vanadium concentrations in sediment are
typically similar to associated rock and soil levels, these
elements however are not likely being leached from sediments
to any great extent.

Siliceous Unit % sediments are exceptional in that
they contain more molybdenum and vanadium than the assoc-
iated rock. As previously noted however, hydrous iron oxide
precipitates which are common as crusts on these sediments
may contain large amounts (up to 70 p.p.m.) of molybdenum.
Jones (1957) has shown that hydrous iron oxides are superior
to clay minerals in their ability to sorb molybdenum.
Vanadium concentrations in these precipitates are unknown,
but it seems probable that, like molybdenum, they are
relatively high.

COMPARISON OF METAL CONCENTRATIONS IN STREAM SEDIMENT WITH
THOSE OF ASSOCIATED VEGETATION

Low molybdenum concentrations in stream sediment
derived from both Yukon Group and granitic rock are clearly
reflected in low mean molybdenum concentrations in vegetation
growing over these rocks (Table XXXII). However high con-
centrations typical of Unit 3 sediments are not always
associated with‘enriched vegetation. The mean molybdenum

concentration in siliceous Unit % sediment, for example,
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Table XXXII Mean molybdenum, copper and manganese
concentrations in stream sediment :
and vegetation, and assoclated mean
stream pH values,

ELEMENT BEDROCK CONCENTRATION (ppm) STREAM
Stream Vegetation** PH
Sediment* '
Unit 3 40 10 7.8
Calcaréous
Unit 3 24 0.4 5:e3
Mo Siliceous
Yukon'! 1 0.2 64T
Group
Granitic 1 0.4 6.8
Rock
Unit 3 130 7 7.8
Calcareous
Unit 3 105 6 5.3
Cu Siliceous
Yukon! 75 6 60T
Group )
Granitie 8 5 6.8
Rock
Unit 3 490 60 T8
Calcar@ous
Unit 3 310 330 563
Mn Siliceous
Yukon' 1020 380 6.7
Group
Granitic 200 260 6.8
Rock

*  Total analysis by emisslion spectroscopy; geometric means.

**  HNO5/HC10, extractable metal content determined by

atomic-absorption spectrophotometry; arithmetic meanss
concentration expressed in terms of dry weight.

t Sediment values refer to upland areas only.
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is 24 p.p.m. while that of associated vegetation is only
0.4 p.p.m.

4 As previously noted, low molybdenum values in vege-
tation growing over'siliceous Unit 3 rock are primarily
an effect of low pH values in soils derived from these
rocks. As Table XXXITI indicates these low soil pH values
are reflected in low pH levels in associated stream water.
Similarly high stream pH values associated with calcareous
Unit 3 sediment (7.8) are consistent with high values in
the calcareous soils,which typically support molybdenum
enriched vegetation. Thus by considering both stream sedi~
ment concentrations and stream pH values, prediction of areas
likely to contain enhanced molybdenum levels in vegetation
should be possible.,

Soil pH is also an important factor in determining
the availability of manganese to plants. Consequently, as
in the case of molybdenum, both sediment concentrations and
stream pH values must be known if estimates are to be made
of plant molybdenum levels, For example, in view of the
relatively high concentrations of manganese in the sediment
of streams draining Unit 3 limestone (Table XXXII), low vege-
tation values would not be expected unless these environments
were known to be relatively basic, as indicated by stream
pH levels,
In contrast to molybdenum and manganese, plant

copper concentrations are apparently unrelated to either

PH levels or metal concentrations in sediment, This situ-
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ation is not surprising, since as Table XXIIT indicates,
copper concentrations in vegetation are to a large extent
independent of soil type, including soil copper content

and pH.
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CHAPTER X
SUMMARY, CONCLUSIONS
AND
SUGGESTIONS FOR FURTHER RESEARCH
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SUMMARY AND CONCLUSIONS

A regional stream sediment reconnaissance survey
was undertaken in the Eastern Yukon, using sediment samples
originally collected by Atlas Explorations Ltd. Vancouver,
for mineral exploration purposes. A total area of over
6,000 square miles was covered, chiefly within the drainage
basins of the Hess and MacMillan Rivers.

Enhanced molybdenum values (>8 p.p.m.) are present
in sediments over an area of more than 1,300 square miles,
Most of these enriched sediments are derived from a thick
succession of Paleozoic sedimentary rocks, consisting pre-
dominantly of dark shales and chert (Unit 3). Molybdenum
levels associated with the other major bedrock units, namely
the Yukon Group, Earn Group, Tertiary volcanics and granitic
rocks, are typically low (<4 p.p.m.).

Stream sediments derived from Unit 3 are also notice-
ably enriched in vanadium (480 p.p.m.), and to a lesser
extent nickel (140 p.p.m.), copper (90 p.p.m.) and chromium
(180 p.p.m.). Those associated with Tertiary volcanics
are relatively rich in strontium (720 p.p.m.), while granitic
sediments contain low concentrations of most elements.

A detailed follow-up study of trace element con-
centrations in rock, soil, stream sediment and piant material
was undertaken in the vicinity of MacMillan Pass, near the
eastern limit of the reconnaissance study areé. This region

is underlain by Unit %, Yukon Group metasediments and granitic
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rocks. Unit 3 is composed of a wide variety of lithologies
including black and light grey shales, dark siltstones,
chert-pebble conglomerate and dark limestone.

The dark gréy to black shales, which in the MacMillan
Pass area are the most abundant rock type within Unit 3,
contain relatively large amounts of molybdenum (17 p.p.m.j,
as do the less common light colored shales (12 p.p.m.).
Siltstones and chért-pebble conglomerates typically contain
less than 4 p.p.m. molybdenum. Concentrations are highest
(up to 100 p.p.m.) in the relatively uncommon dark limestone
member of Unit 3. Vanadium, nickel, chromium and zinc values
are also high in the limestone.

In addition to molybdenum, black shales are enriched
in vanadium (645 p.p,m.), but are relatively poor in most
other eléments, especialiy strontium (55 p.p.m.), manganese
(8 p.p.m.) and zinc (8 p.p.m.). Enhanced molybdenum and
vanadium values are likely a consequence of sorption of* these
elements, by organic-rich sediments, from sea water in a
large anaerobic basin. Low values for other elements could
be a primary feature of the sediments, or could be a result
of in situ leaching of shale exposures sampled.

The C horizons of all soils associated with Unit 3
contain high molybdenum concentrations. Soils derived from
dark limestones contain an average of 30 p.p.m. molybdenun,
while those associated with other rock types of Unit 3
typically contain about 10 p.p.m. Molybdenum levels in both

Yukon Group and granitic soils are low (<3 p.p.m.).
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Copper levels in soil C horizons are usually very
close to values in the underlying rock. Both manganese
and zinc however are enriched in soil relative to rock
material. ©Soils derived from siliceous Unit 3 rocks, for
example, contain an average of 360 p.p.m. manganese and
150 p.p.m. zinc while rocks themselves contain only 15 and
35 p.p.m. of these elements respectively.

Molybdenum availability to plants is chiefly con-
trolled by soil pH. Plants are capable of absorbing molyb-
denum only in neutral to basic soils such as those associated
with Unit 3 limestone. These molybdenum-rich calcareous
soils typically support vegetation with enhanced molybdenum
levels, Average concentrations in forbs and grasses, for
example, are 12 and 16 p.p.m. respectively. In acidic con-
ditions however, characteristic of molybdenum-~rich Unit 3
soils, concentrations in plants are generally less than 0.2
P.p.m. Molybdenum-poor Yukon Group and granitic soils also
support vegetation low in this element.

Manganese concentrations in plants are also dependent
on soil pH. Restricted manganese availability in basic en-
vironments is reflected, for example, in low manganese levels
in plants growing on calcareous Unit 3 soils.> Copper levels,
on the other hand, are remarkably uniform, and apparently
independent of soil conditions. Variations of zinc concen-
trations in certain species - 0ften contradict estimates of
zinc availability based on the total metal content and pH

of associated soils.
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Molybdenum levels in stream sediments are generally
consistent with rock and soil values. Similarily, low
sediment values typically reflect low concentrations in
associated vegetation., However, either molybdenum-rich
or molybdenum-poor vegetation may be associated with sedi-
ment containing enhanced amounts of molybdenum. In anomalous
areas, characterized by molybdenummpoor vegetation, stream
pH values are generally acidic. Neutral to basic stream
water, on the other hand, is typically associated with
molybdenum-rich vegetation.

Because of the absence of stream pH values from
the regional study area, the distribution of molybdenum-rich
vegetation cannot be predicted. However, in the vicinity
of MacMillan Pass, high plant values are associated with
dark molybdenum-rich limestone only. Since these limestones
are apparently not common within the reconnaissance study
area, it may be tentatively concluded that molybdenum-
enriched vegetation is not likely to be sufficiently wide-
spread to endanger the health of wildlife in this portion

of the Eastern Yukon.
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SUGGESTIONS FOR FURTHER RESEARCH

In view of the significance of trace elements to
plant and animal nutrition, maps showing the regional
distribution of trace metals are urgently required on a
world-~wide scale. Geochemical data should then be combined
with epidemiological information in an attempt to assess
possible causal relationships between trace element abund-
ances and disease patterns.

Where adequate surface drainage exists, stream
sediment surveys can be used to compile such maps. Basic
research, however, is required into possible modifications
of stream sediment reconnaissance techniques oriented toward
environmental, rather than mineral exploration programs.

For example, while it is standard practice in mineral
exploration to measure the metal content of the minus-80 mesh
fraction of sediment, other size fractions may be more
meaningful in terms of regional rock and soil chemistry.
Furthermore, application of various cold and hot extraction
techniques to stream sediment material may prove more useful
than the total metal content in assessing trace element
availability to plants.

Since well developed river drainage systems are not
always present in areas of geochemical interest, research
is required into use of rock and/or soil material in

regional surveys. JIinally, possible'applications of remote
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sensing techniques, such as measurement of metal levels in
the atmosphere, to geochemical reconnaissance projects

should be investigated.
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140.495
1€69.420
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8

9 APPENDIX C

10 RESULTS OF ATOMIC-ABSORPTION ANALYSIS GF PLANT MATERIAL

11 MACMILLAN PASS AREA

12

13 HNO3/HCLC4 EXTRACTABLE METAL CONTENT

14 EXPRESSED AS P.P.M. DRY WEIGHT

15

16
17 IC NG cu FE MN IN MO SPPp  SITE
18 :
19 SITE = SOIL SITE NUMBER

20 SPP= SPECIES ABBREVIATICON TREES

21 ABL = ABIES LASIOCARPA

22 PIG = PICEA GLAUCA

23 PCT = POPULUS TREMULOIDES
24 SHRUBS

25 BEG = BETULA GLANDULOSA
26 SAA = SALIX ALAXENSIS

27 SAP = SALIX PHYLICIFOLIA

28 CAT = CASSICPE TETRAGONA

29 EMN = EMPETRUM NIGRUM
30 POF = POTENTILLA FABELLIFORMIS

31 DYI = DRYAS INTEGRIFQLIA

32 FCRBES

33 LUA = LUPINUS ARCTICUS

34 EPL = EPILOBIUM LATIFOLIUM

35 EPA = EPILOBIUM ANGUSTIFOLIUM
36 VAS = VALARIAN STICHENSIS

37 VEV = VERATRUM VIRIDE

38 SET = SENECIO TRIANGULARIS
39 PCA = POLYGONUM ALASKANUM
40 GRASSES"

41 CAA = CAREX AQUATALIS

42 - FEA = FESTUCA ALTAICA

43 CAC = CALAMAGRQOSTIS CANADENSIS

44 CAM = CAREX MICROCHAETA
45 DEC = DECHANMPSIA CAESPITOSA
46 LICHENS

47 CLA = CLADONIA ALPESTRIS

48 AR
49 &
50 !
51



53

112

54

55

56

57

58

59

60

61

62

63 , CEN = CETRARIA NIVALIS

64 ALX = ALECTCRIA

65 UMX = UMBILICARIA

€6 ' A $TX = STEREGCAULGCN

67

68

69 3 0 0 10.805 81.344 104.559 67.057 0.6 CAA
70 4 C 0 10.805 88.824 218.674 243,435 SAA
71 7 0 0 10.084 60.774 190.567 307.654 BEG
72 1¢ 0 0 10.805 73.864 387.879 110.516 BEG
13 11 0 ¢ 3.602 169.223 16. 864 11.500 CLA
14 17 0 0 10.805 69.189 241.160 140.386 BEG
15 18 0 0 3.602 202.893 21.524 12.993 CLA
16 24 0 Q 10.805 80 . 409 421.607 134.412 BEG
117 25 ¢ 0 3.602 155.208 27.545 12.694 CLA
78 32 0 C T.923 89.759 213.052 97.075 BEG
19 33 0 0 3.6C2 143,053 17T.426 22.253 CLA
80 31 0 0 3.602 1C3.784 82.635 11.201 CLA
81 38 0 Y 10.084 100.044 11C1.801 141.879 BEG
82 43 0 o 4,322 131.833 54.528 17.025 CLA
83 44 0 C T.923 65. 449 803. 865 141.879 BEG
84 52 0 C 3.602 107.524 82.635 14.039 CLA
85 53 0 0 6.983 88.928 653.920 162.902 BEG
86 56 0 0 11.173 $5.551 115.893 64 .459 cac
87 51 0 0 6.285 87.982 240,202 279.462 SAA
88 58 0 0 6.983 88.928 157.329 228.906 BEG
89 62 0 0 3.492 105.011 102.944 17.273 CLA
30 63 0 C 6.983 1C3.119 1754.578 167.115 BEG
g1 66 0 c 9.776 T4.T738 219.484 237.332 BEG
92 67 0 0 6.983 65.277 159.919 164.307 SAA
93 72 0 G 6,983 69.061 17.C46 136.220 SAA
94 16 0 c 2,793 87.982 156.034 17.835 CLA
35 T 0 C 1.681 62.439 163B.0338 174.137 BEG
96 78 c. O 8.380 48,248 407.891 53.224 ABL
97 81 0 0 3.492 72.846 49.206 12.499 CLA
38 82 0 o 6.8G3 56.868 €10.8C0 259.313 BEG
99 83 0 C 5.586 69.061 427.314 63 .054 ABL
100 86 0 C €.983 82.3206 213.01¢0 209.245 SAA
101 81 0 0 1.681 74.738 1569.191 265.418 BEG
102

103

104
105

106
107

108

109

110

111
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113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
1€1
162
163
164
1€5
166
167
168
1€9
170
171
112

88

92

93
108
109
111
112
116
117
121
122
123
261
268
279
280
284
285
289
290
294
295
298
299
302
303
308
309
310
311
316
317
318
322
325
326
329
330
331
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9.7176
5.586
6.983
3.446
€.893
4,825
6.893
6.893
5.514
8.644
1.923
5.042
13.786
9.650
4,136
6.8G3
6.8G3
6.893
6,204
2757
6.204
6.893
6.853
6.893
3.446
6.863
9.112
7.250
2.430
10.327
4,252
7.290
71.290
6.075
6.682
6.682
3.645
0.607
5.467

47.302
116,264
80.414
97.888
131.449
97.888
81.1C7
90.420
103.481
86.9%54
69.189
28.985
2004.371
1165.332
30.4320
58.733
77.3278
71.784
84.826
66.191
116.533
92.294
92.294
105. 246
81.107
88.565
68.073
70.305
90, 392
236.583
68.0173
65.841
179. £69
63.609
65.841
79.233
47.986
85.929
50.218

420.840
284.229
524 .431

55.186
£30.473
280.218
1189.452
1393.052
407.200
494.686
1349.144
1068.073

67.509

35362

€8, C45
1553.789
107.694
546.505
921.558

80.368
600. 084
1264.463
632.231
1098.368

13.40G3
269.502
915.033
643.137

58.562
204.967
294.379
173.856

34.510

56.993
449,613
141. 699
€37.908

33.987
496,732

57.437
167.115
265.418

15.532
162.071
168.824
226.899
202.589
110.748
235.968
171.749

44.057
108.0417

45.785

14.181
175.577
114.800
129.657
164.772

11.480
110.748
189.083
151.266
229.600

11.210

73.607
178.119
130.518

14.587

50.518

31.171
153.551

712.416

36.084
176.583

41.766

12.438

11.516
153.551

ABL
SAA
BEG
CLA
BEG
SAA
BEG
BEG
SAA
SAA
BEG
PIG
CAA
VAS
CLA
BEG
SAA
BEG
BEG
CLA
SAA
BEG
SAA
BEG
CLA
BEG
BEG
SAA
CLA
CAA
FEA
BEG
EPL
POF
SAA
CAA
EMN
cLA
BEG

15
16
16
18
18
19
19
20
20
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21
21
22
22
23
23
24
24
25
25
26
26
27
27
28
28
29
29
29
29
30
30
130
230
31
31
32
32
32
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173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
221
228
229
230
231
232

335
336
1337
2337
338
340
342
347
348
346
350
351
352
353
354
355
35¢
357
360
361
362
363
370
371
372
373
379
380
381
382
383
389
390
391
392
293
394
395
402
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7.29C
0.607
3.645
7.897
8.505
4,900
71.290
12.15¢C
6.682
11.542
9.720
3.645
3.037
6.075
4,860
7.290
9.720
7.962
9.112
5.467
6.075
71.349
4.860
1.822
6.682
5.467
3.645
2.574
T7.722
6.435
T1.71722
2574
6.435
3.861
5.792
6.435
9.010
5.792
2.574

61.378
85.929
43,522
70.3C5
1450.742
66,657
248 .858
113.465
49.700
42,198
53.451
27.194
25.319
70.2320
34,696
137.846
152.850
16.317
75.556
162.227
68.454
144385
137.0170
209.114
59. 077
17.8321
468.865
148.027
57.082
70. 627
64.822
117.067
59.017
41.602
51.277
62.887
63.855
49,342
109.227

184.314
43.399
250.458
136.471
690.196
435,C2C
286.536
102.901
100.179
21.234
50.634
1143.344
336.453
301.081
256.436
103.95¢C
451.893
2484245
150.812
173.679
157.346
2€1.485
8.711
31.034
306.525
256.436
7.078
40.233
275.669
256.795
299.511
110.765
794.723
521.537
71.C28
208.118
620.877
86.923
44,2C6

168.906
15.048
23,628
65.873

191.939
30.369
43.762
69.333
63.852
49,185
53.481
47.852
36.889

207.407
72.741

100.741
53.481
39.652
59.556
17.630
12.741
58,483
23.556
14.074

214 .815
28,000
20.593
14.243

194.343
26.489
67.221
13.710
15.042
36.339
36.073

130.449

215.641

" 62.695
11.181
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BEG
CLA
FEA
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SET
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PIG
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SAA
PIG
EPA
CAA
CAC
PCA
CAT
EMN
FEA
UMX
CLA
BEG
CAT
UMx
CLA
BEG
CAT
PCA
CLA
EMN
ABL
CAC
SAP
BEG
POA
CLA
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233
234
235
236
237
238
239
240
241
242
243
244
245
246
2417
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
2€5
2€6
267
268
269
270
211
272
273
274
215
216
217
278
219
280
281
282
283
284
285
286
287
288
289
290
291
292

403
404
405
409

1410

2410
415
416
417
425
426
421
428
434
435
436
437
438
443
444
445
446
450
451
452
458
459
460
464
465
466
467
468
474
475
486
487
488
489

5.792
6.435
3.8¢1
5.148
2.574
10.297
7.079
5.148
5.102
2.551
-B.291
7.015
5.740
3.827
3.827
5.740
3.827
1.913
3.189
3.189
6.378
3.827
24551
1.913
2.551
3.189
1.913
4.464
€.175
4,322
9.262
54557
6.175
6.175
4.322
9.262
19.141
6.792
10.497

47 . 407
51.277
£6.757
57.082
97.717
1596.373
52.245
13.530
99.065
118.682
59.831
1275.096
89.257
124,567
79.448
67.618
104.950
165.763
25.502
25.502
48.061
61.793
53.946
83.372
57.870
1C4.650
81.410
44.138
97.210
42.179
63.699
49.065
62.838
55.091
50.787
62.838
63.699
42.179
56.812

120.217
417.229
145.052
461.933
44,206
30.299
69.042
224.013
28.104
T72.048
268.264
T.665
194.683
2717.461
602.954
510.978
367.904
50.587
£€13.174
65.916
80.224
36.279
210.012
174.244
163.002
203.88C
13.C70
510.978
12.759
27.342
38.465
55.148
19.928
12.513
19.928
57.4¢€6
38.465
28.269
25.952

158.403
18.502
42.463

127.787
14.509
24.093

295.507

2664223

225.216

8.705

172.712
20.311
19.482

103.627
16.995

168.566
22.798

B.428
56.788
12.262

165.803
24,594

172.712
96.718
25.838

165.8C3
15.889

149.223
21.521
42.743

331.988
24.207
25.314
26.697
29.464

307.089
75.112
43.020
T5.€66
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EMN
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BEG
CLA
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337
338
339
340
341
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343
344
345
346
347
348
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4930
491
492
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6.792
5.557
6.792
12.349
24410
5.557
3.7C5
1.235
6.7592
5.929
6.522
T.114
5.336
6.522
1.186
8.893
6.522
2.371
11.857
15.415
5.929
2.371
5.929
15.415
6.522
7.114
14.822
1.186
5.032
5.920
3.848
5.032
2.664
8.585
5.920
6.809
10.657
4.736
71.993

59.395
52.508
54,230
49.0¢€5
93.827
76.611
37.014
71.446
54.220
41.167
81.376
54.570
64.144
46.911
96.694%
60.314
75.632
175.198
50. 740
T73.717
113.927
123.500
1072.251
299.656
89.035
56.485
69.888
108.182
€0.652
62.828
27.194
42.198
96.586

62.828

60.952
92.835
62.828
32.821
70.330

19.928
71.832
43.099
285.938
64.417
260.912
625.634
8B.516
194.178
39.399
55.815
€00. 366
483.107
544.C82
34,1709
89.586
183.393
23.921
375.229
95.214
6l.444
52.063
8,912
205.907
254.687
187.146
154.313
22.045
178.801
223.168
532.409
475.168
8l.192
137.095
2€8.423
376.083
105.151
319.445
228.492

36.104
73.729
89.914
196.426
21.164
131.412
&4 . 876
23.654
74.006
42.728
181.050
13.470
18.974
112.975

9.704
32.299
48.232
20.422
47.942
54 . 894
20.133
16.657
17.815
27.375
56.343
105.733
115.872
13.180
32,275
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CAC
CLA
SAA
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EPL
CAA
SAA
£ MN
CAT
BEG
LUA
CLA
FEA
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ALX
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FEA
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ABL
ENMN
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SAP
LUA
ABL
CAC
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3€E6
367
368
369
370
371
372
373
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377
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379
380
381
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392
393
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395
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398
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401
402
403
404
405
406
407
408
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605
€06
607
608
€12
€13
€la
615
Ele
€18
€22
€23
624
625
€2¢
627
€33
634
635
€36
637
€38
639
640
€4l
€42
€56
657
€58
659
660
665
€66
667
668
675
€€
617

7.105
2.368
2.664
3.256
2.960
7.697
3.848
9.177
4.736
6.203
5.075
14,661
8.458
8.458
2.819
5639
14.097
5.639
8.458
5.639
4.642
16.916
5.075
11.841
1.692
6.761
12.968
6.203
5.639
5.998
2.399
4,199
1.769
3.599
5.968
5.998
2.369
2.999
2.399

68.454
83.458
81.582
218.491
19.707
70.330
74.081
87.209
135.971
59.831
138.299
2550.193
63.755
83.372
392.337
75.525
1667 .433
59.831
83.372
50.023
42.825
87.295
46.100
61.793
150.C69
67.618
1618 .391
95.142
128 .490
48.209
132.821
32.467
73.789
30.500
54,112
38.271
103.305
105.273
34.425

621.144
31.501
101.601
32.3¢8
31.501
213.407
255.113
240.915
319.445
231.868
254.9C0
231.868
455.251
652.832
64.833
459.233
22.061
432.219
115.7C9
1305.663
0.0
180.542
281.393
105.804
42.772
432.219
27.014
585 .297
€15.343
974.378
58.463
1283.327
17.475
1663.573
1359.376
903. 082
57.037
27.092
46.105

229.445
8.71S
14.532
19.732
6.577
73.576
46.042
62.868
16C.612
179.426
114.833
27.416
132.057
186.603
25.694
29.426
22.823
13.062
284565
57.847
37.053
117.703
20.813
79.665
21.675
106.220
30.287
60.431
73.378
149.523
10.070
36.771
7.781
364465
175.461
14.800
13.579
22.134
9.002

BEG
CLA
CEN
STX
AL X
CAM
ERA
CAC
SAP
BEG
SAA
CAT
BEG
SAA
CLA
FEA
ALX
EMN
VAS
ABL
FEA
SET
CAY
VEV
cLA
SAA
ALX
LUA
SAP
BEG
CLA
ABL
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ABL
BEG
EMN
CLA
STX
ALX
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432
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438
439
440
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444
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447
448
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454
455
456
457
458
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460
461
4€2
463
464
465
4€6
467
468
469
470
471
472

678
679
681
682
€83
688
€89
690
691
692
698
€99
760
701
702
703
704
726
727
728
732
733
734
735
136
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744
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746
747
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155
756
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759
713
174
775
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4,642
7.158
11.996
€.5G8
8.397
5.998
4.7S3
2+399
6.124
8.357
5.802
4.642
5.222
1.741
5.222
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Figure 16. Stream sediment and rock sample locations within the detailed study area.
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