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Abstrac t 

The possibility of using a nonlinear empirical atmospheric model for hybrid coupled 

atmosphere-ocean modelling has been examined by using a neural network (NN) model 

for predicting the contemporaneous wind stress field from the upper ocean state in the 

tropical Pacific. Upper ocean heat content (HC) from a 6-layer dynamic ocean model 

was a better predictor of the wind stress than the (observed or modelled) sea surface 

temperature (SST). The results showed that the N N model generally had slightly better 

skills in predicting the contemporaneous wind stress than the linear regression (LR) 

model in the off-equatorial tropical Pacific and in the eastern equatorial Pacific. 

Next, the N N and LR atmospheric models were separately coupled to the dynamic 

ocean model, yielding respectively a hybrid coupled model with a nonlinear atmosphere 

(NHCM) and one with a linear atmosphere (LHCM). The POP (Principal Oscillation 

Pattern) analysis shows that the N H C M can produce more realistic ENSO oscillatory 

behaviour than the L H C M . The phase-locking between the peak of the warm events and 

the seasonal cycle is more realistically distributed in the N H C M than the very narrow 

phase-locking in the L H C M . Sensitivity experiments show that in the absence of external 

forcing, neither N H C M nor L H C M displays the irregular behaviour of ENSO oscillations, 

suggesting that stochastic forcing (instead of chaos) is likely to cause the irregularity of 

ENSO. 

ENSO prediction skills in the two hybrid coupled models have also been investigated 

under two initialization schemes. The stress-from-ocean initialization scheme, which 

considers the ocean-feedback in the initial conditions, generally has better predictive 

skills than the stress-only scheme, where the ocean is simply forced by the observed 
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wind stress. The stress-from-ocean scheme also manifests less decadal variability in the 

forecast skills than the stress-only scheme. From 1964-1998, with the stress-from-ocean 

initialization scheme, the forecast correlation skill at 12-month lead time for the NIN03 

SST anomalies (SSTA) is about 0.55 for the N H C M and 0.50-0.55 for the L H C M . The 

main difference in forecast skills between the N H C M and the L H C M occurs in the 1990s, 

where the N H C M has better skills. A nonlinear canonical correlation analysis of the 

wind stress and the SSTA shows that the relation between the two was indeed more 

nonlinear in the 1990s than in the 1980s, which would give the N H C M an advantage over 

the L H C M in the 1990s. 

The impact of assimilating different types of data on ENSO simulations and predic­

tions was investigated by separately assimilating the SST, sea surface height anomalies 

(SSHA), upper ocean heat content anomalies (HCA), and wind stress, with the 3-D Var 

(variational assimilation) technique. For ENSO prediction, H C A assimilation is the best 

in improving the correlation skills of the prediction for lead times greater than 5 months. 

The improvement from SST assimilation is the best for lead times of 4 months or shorter; 

at longer lead times, SST assimilation degrades the predictions. Wind-stress assimilation 

is generally the second best for lead times 6 months or longer, while SSHA assimilation 

generally produces prediction skills only slightly better than without data assimilation. 

In general, data assimilation yielded less significant improvements to ENSO prediction 

in the 1990s than in 1980s, which was explained upon examining the H C A in the western 

and in the eastern equatorial Pacific. 

In summary, this thesis has initiated the fusion of neural network techniques into 

dynamical models. Using an N N model for the atmosphere, it has produced the first 

H C M with a nonlinear empirical atmospheric component, and showed that the nonlinear 

atmosphere could have advantages over a linear atmosphere in modelling ENSO vari­

ability and in ENSO prediction. This study has introduced N N for the assimilation of 
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non-prognostic variables (e.g. HCA) by using N N to relate the non-prognostic variable 

to prognostic variables, which are then assimilated into the model. While the full 4-D 

Var H C M is beyond the scope of this thesis, a neural-dynamical hybrid approach under 

4-D Var has been developed to study the simple Lorenz system. 
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Preface 

This thesis presents my efforts to improve ENSO (El Nino-Southern Oscillation) sim­

ulation and prediction using hybrid coupled models (HCMs). The goals of this thesis 

are to investigate two essential problems in hybrid coupled modelling— (i) atmospheric 

model construction and (ii) oceanic model initialization. Towards the first goal, a non 1 

linear technique, neural networks, is used to construct a nonlinear empirical atmosphere 

instead of the traditional linear atmosphere in the H C M . For the second goal, the 3D-

Var data assimilation technique is applied to the H C M . While the full 4-D var H C M is 

beyond the scope of this thesis, a neural-dynamical hybrid approach under 4-D var has 

been developed to study the simple Lorenz system. 

Because of the weakly nonlinear nature of the tropical ocean-atmosphere system at 

ENSO time scales, the difference between the nonlinear atmosphere H C M and the lin­

ear atmosphere H C M is not dramatic. But this study provides an extension and an 

alternative viewpoint to the hybrid modelling strategy— supplying information on the 

linearity and nonlinearity of the tropical Pacific ocean-atmosphere interaction, which has 

implications beyond the focus of this study. 

The goals of this thesis were arrived at gradually during the four years of research 

work. Only towards the end, and after five journal papers have been written (Tang et al., 

2001; Tang and Hsieh, 2001a; Tang, 2001; Tang and Hsieh, 2001b and Tang and Hsieh, 

2001c), did the final structure of the thesis crystallize to a clear shape. Tang et al (2001) is 

presented in Chapter 2, introducing the ocean model and developing the two atmosphere 

models. Tang (2001) and Tang and Hsieh (2001b) cover Chapter 3 and Chapter 4, 

respectively, comparing the two HCMs in terms of ENSO simulation (Chapter 3) and 
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ENSO prediction (Chapter 4). The 3-D var and 4-D var data assimilation, presented 

Chapter 5 and Chapter 6, respectively, were from Tang and Hsieh (2001c, 2001a). 
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Chapter 1 

Introduction 

1.1 E N S O theory 

1.1.1 ENSO and its characteristics 

ENSO is an acronym for the E l Nino-Southern Oscillations, itself a combination of two 

terms. Originally, E l Nino referred to an annual weak warm current that flows south­

ward along the coast of southern Ecuador and northern Peru about Christmas time, 

but subsequently became associated with the unusually large warming that occur at the 

equatorial eastern Pacific and off the coast of Peru every few years, changing the local 

and regional ecology. Southern Oscillation (SO) referred to the interannual seesaw pres­

sure fluctuations between the Indian Ocean and the eastern tropical Pacific— "When 

pressure is high in the Pacific Ocean, it tends to be low in the Indian Ocean from Africa 

to Australia" (Philander 1990). 

It became clear by the beginning of the 1980s that the E l Nino and SO are intimately 

related, with the large-scale warming (El Nino) coordinated with a negative SO phase, i.e., 

lower pressure in the eastern-central tropical Pacific and higher pressure in the western 

tropical Pacific-Indian Ocean compared with normal conditions. The seesaw structure 

over the tropic Pacific is associated with the relaxation of the trade winds over the 

equatorial Pacific and a southward displacement ofthe ITCZ (Intertropical Convergence 

Zone). Hence scientists coined the term ENSO to describe this large-scale, coupled 

atmosphere-ocean interaction. The robust tropical features of the observed warm ENSO 

1 
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event are as below (Battisti and Sarachik 1996): (i) quasi-stationary warm SST anomalies 

appear in the eastern and central equatorial Pacific; (ii) at an event onset, a relaxation of 

the trade winds is associated with positive SST anomalies; (iii) the thermocline deepens 

in the east and shoals in the west along the equator; (iv) the oscillation of ENSO is 

irregular, with a quasi-period of 3-7 years; (v) the peak anomaly usually occurs in winter 

(i.e. phase-locking to the annual cycle). 

In the next subsections, we will briefly summarize several of the most influential 

hypotheses about the ENSO mechanism. 

1.1.2 Bjerknes hypothesis 

Although Walker documented the interannual variations in the circulation of the trop­

ical and global atmosphere and proposed the famous concept of Southern Oscillation 

at the turn of this century, the study of ENSO in view of the relation between inter­

annual oceanographic and meteorological variations in the tropical Pacific did not start 

until Bjerknes proposed the well-known "trade-wind" theory. In his famous paper "At­

mospheric teleconnections from the equatorial Pacific" (Bjerknes 1969), he organized 

the intertwined elements of the Southern Oscillation, E l Nino, and large-scale air-sea 

interactions into a new conceptual framework supported by plausible dynamic and ther­

modynamic reasoning. 

Under the normal action of the easterly trade winds, a system of westward surface 

currents accumulate in the upper waters of the western equatorial Pacific, with a deep 

thermocline (150-200m), in contrast to the shallow thermocline in the eastern boundary 

(30-50m). According to the Ekman theory, the easterly winds cause a steady movement 

of the water away from the equator (Ekman transport) into both hemispheres, creating 

a horizontal divergence of surface water that in turn induces an equatorial upwelling of 

water from below. Upwelling produces an elongated east-west tongue of cool surface 
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water in the central and eastern equatorial ocean, where the winds are strong and cooler 

water is brought up from beneath the shallow thermocline. The cooling does not occur in 

the western Pacific where the winds are weaker and the thermocline is deep (150-200m). 

When the easterly trade winds decrease, the forces that maintain the zonally asym­

metric thermocline and the upwelled cold tongue disappear, so the thermocline in the 

east becomes depressed and equatorial upwelling weakens. Meanwhile, the upper layer 

of warm water moves equatorward and eastward, resulting in a readjustment, or "relax­

ation", of the ocean system away from the normal state. A l l of these local and remote 

responses to the wind contribute to the rises in sea level and sea surface temperature 

(SST) at the eastern equatorial Pacific that are characteristic of E l Nino. Because of 

the deep thermocline in the western Pacific, the readjustment of ocean system there is 

not as pronounced as in the east. A similar argument but with opposite conditions and 

consequences can be made to explain the cold phase of ENSO, i.e., the La Nina (also 

called the E l Viejo). 

In this paradigm, ENSO arises as a self-sustained cycle in which anomalies of SST in 

the Pacific cause the trade winds to strengthen or slacken and that in turn drives the ocean 

circulation changes that produce anomalous SST. For example, when the easterly trade 

wind weakens or withdraws, the warming in the east reduces the zonal SST gradient and 

hence weakens the Walker circulation, resulting in weaker trade winds at the equator. 

Such a positive feedback between SST and trade winds leads to unstable interactions 

between the ocean and the atmosphere in the equatorial Pacific, so anomalous episodes 

of ENSO develop. However, Bjerknes did not include the mechanisms for moving the 

coupled system from a phase with warm SST anomalies to one with cold SST anomalies, 

nor the mechanism for stopping the warming (the positive feedback) in the eastern Pacific. 

There was also uncertainty on where the initial changes in SST (or in the trade wind) 

come from in order to start the unstable growth. These questions had puzzled scientists 
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until the delayed-oscillator theory was proposed at the late 1980s. 

1.1.3 Delayed-Oscil lator mechanism 

The equator is an efficient waveguide for atmospheric and oceanic waves trapped to 

propagate along the equator due to the vanishing Coriolis force at the equator. These 

waves play an important role in the adjustment of the equatorial ocean and tropical 

atmosphere in response to changes in the surface forcing. Two types of waves, the 

equatorial Kelvin and Rossby waves, are of particular importance for the adjustment of 

the ocean on seasonal to interannual time scales. The Kelvin wave is a special gravity 

wave, which propagates eastward with a speed of approximately 2-3 m s _ 1 and has its 

maximum amplitude centred at the equator. The Rossby waves, whose propagation is 

prompted by the latitudinal variation of the Coriolis parameter (the /3-effect), propagate 

westward at a rate of 0.6-0.8 m s - 1 near the equator. The oceanic Kelvin and Rossby 

waves propagate energy and momentum received from the wind stress and they provide 

the oceanic memory that is so important to interannual variability and ENSO. Similar 

waves exist in the atmosphere, but their propagation rates are far greater than the oceanic 

counterparts. Therefore, the adjustment time scale of the tropical atmosphere to changes 

in SST is much shorter (10 days or less) than the adjustment time scale of the equatorial 

ocean (approximately six months) to changes in the wind stress. The short adjustment 

time of the atmosphere allows one to make the assumption (good to zeroth order) that 

the atmosphere is in a statistical equilibrium with the SST on time scales longer than a 

few months. Thus, the memory of the state of the climate system primarily resides in 

the ocean. 

The delayed-oscillator mechanism is based on the theory of equatorial waves and was 
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proposed by Schopf and Suarez (1988) and Battisti and Hirst (1989). In the delayed-

oscillator theory, the ENSO cycle ascribes a central role to equatorial oceanic wave pro­

cesses which affect sea surface temperature (SST) and subsequent ocean-atmosphere in­

teractions through redistribution of upper ocean heat content. According to the delayed 

action oscillator scenario, the easterly wind anomalies over the western Pacific prevailing 

during the cold phase of the ENSO cycle force an upwelhng Kelvin wave packet, which 

propagates eastward along the equator and causes coohng at the sea surface in the east­

ern Pacific, where the thermocline is shallow. The ocean response to the easterly winds 

in the west, however, consists also of a downwelling Rossby wave packet, which propa­

gates westward. This Rossby waves response has its strongest signals off the equator. 

It does not influence the SST in these regions because the thermocline is deep in the 

western Pacific. The Rossby waves then reflect at the western boundary into a packet of 

downwelling Kelvin waves, which have maximum amplitudes at the equator and propa­

gate eastward. Once it has propagated far enough into the eastern Pacific, it is able to 

affect the SST, and a positive SST anomaly develops, which can grow by unstable air-sea 

interactions into the warm phase of ENSO. Thereafter the sequence of events repeats 

itself but with reversed signs. In this view, ENSO is a low-frequency basin-wide mode of 

oscillation which is perfectly predictable. 

1.1.4 E N S O chaos and stochastic forcing 

While the delayed-oscillator answers the questions on how the ENSO cycle moves from 

a warm phase to a cold phase and on what stops the warming, it still fails to explain 

the irregularity and the phase-locking in the ENSO cycle. In the early 1990s, some 

studies with theoretical models and intermediate coupled models showed that the chaotic 

behaviour inherent to nonhnear interactions between annual cycle and coupled ENSO 

mode are responsible for the irregularity and phase locking. For example, Jin et al. 



Chapter 1. Introduction 6 

(1994) and Tziperman et al. (1995) found independently that nonlinear interaction of 

the annual cycle and the coupled ENSO mode leads to ENSO chaos. Chang et al. (1995, 

1996) investigated the relationship between such a frequency-locking behaviour and the 

transition to chaos in several ENSO coupled models. They found that a further increase 

of the coupling strength could lead to chaotic behaviour of the coupled ENSO mode. 

However, there has been considerable debate as to whether chaos is a main cause of 

ENSO irregularity and phase-locking because some coupled models, e.g., the coupled 

general circulation model (Philander et al. 1992), lack low-order chaotic behaviour. 

The role of noise forcing on ENSO cycle has been addressed at various times during 

T O G A (Tropical Ocean-Global Atmosphere), especially since the late 1990s. Recent 

studies show that the effects of realistic noise apphed to a hybrid coupled model or an 

intermediate coupled model in a regime that would otherwise be periodic are sufficient 

to produce irregularity generally consistent with observed ENSO signals. (Blanke et al. 

1997; Eckert and Latif 1997). The spectral signature in the presence of noise typically 

differs from models with irregularity induced purely by chaos, which tend to retain fairly 

sharp dominant spectral peaks. 

1.2 E N S O models and E N S O prediction 

Over the last decade, a considerable number of models have been developed to investigate 

the ENSO mechanism and to improve ENSO prediction (Neelin et al. 1998; Latif et al. 

1998). The operational ENSO predictions several seasons in advance are performed at 

present by about a dozen of forecast models. The skills attained by the models are 

generally comparable, with around 0.6 correlation at a lead time of 6 months. 

Models for ENSO prediction can be categorized into purely statistical models, hybrid 

coupled models and coupled ocean-atmosphere models. Advanced statistical techniques 
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have been widely used, ranging from linear models (Barnett and Preisendorfer 1987) to 

nonlinear models (Tangang et al. 1998a, b; Hsieh and Tang 1998). Statistical models 

have several drawbacks as discussed in Latif et al. (1998): (1) forecast skills degrade 

relatively quickly with increasing lead time; (2) artificial skill remains a problem in all 

statistical forecast schemes; and (3) a statistical relationship does not always imply a 

causal relationship. 

In coupled ocean-atmosphere models, the forecast skills drop more slowly with in­

creasing lead time than the statistical models. The problems associated with the coupled 

models are: (1) climate drift exists in almost all CGCMs (coupled general circulation 

models); (2) some physical processes still have to be parameterized; (3) proper initial­

ization of the coupled model is difficult; and (4) the cost is much greater than statistical 

models. 

The hybrid-coupled model (HCM) combines a dynamical ocean model with a statis­

tical atmospheric model for coupled interaction studies (Barnett et al. 1993; Syu and 

Neelin 2000; Balmaseda et al. 1994). H C M shares the advantages of both dynamical 

models and statistical models, although some drawbacks associated with the dynamical 

model and statistical model are also retained. The main advantages of a hybrid model 

are: (1) climate drift problem avoided, (2) easier understanding of the coupled mecha­

nisms and lower computing cost than a full C G C M (Blank et al 1997), (3) comparable or 

even better simulation and prediction skills relative to a C G C M (Palmer and Anderson, 

1994; Kang and Kug 2000). 

Currently, all empirical atmospheric models used in HCMs have been linear statistical 

models. Although the dynamic response of the atmosphere and ocean in the tropical 

Pacific is quasi-linear (Tang et al. 2000; Tang et al. 2001), the coupled interactions 

between the two components seem more complicated than the relations extracted from 

data and from uncoupled model responses. In this thesis, two HCMs of the tropical 
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Pacific were developed and studied for their interannual variability. The first, the 'linear' 

hybrid coupled model (LHCM) has a 6-layer nonlinear dynamical ocean model coupled 

to a linear regression atmospheric model. The second, the 'nonlinear' H C M (NHCM) has 

the same ocean model but a nonlinear neural network atmospheric model. The differences 

between the N H C M and L H C M in ENSO prediction are also studied. 

1.3 D a t a assimilation in E N S O prediction 

An important issue affecting the ENSO prediction skills is the initialisation scheme of the 

prediction models. When Zebiak and Cane (1987) first made ENSO predictions with dy­

namical coupled model, they used the observed surface wind stress in the tropical Pacific 

to force the ocean model for several years prior to the prediction data. Predictions were 

then made by running the coupled model forward in time from the established ocean 

initial conditions. Due to the fast response of the atmosphere to the ocean, the initial 

conditions of the atmosphere model was a 'slave' to the ocean state as expressed through 

sea surface temperature (SST). This initialization scheme has been widely adopted in 

subsequent intermediate coupled models and coupled general circulation models (Bal-

maseda et al. 1994; Latif et al. 1993; Kleeman 1993; Kirtman and Zebiak 1997) and can 

produce a reasonable prediction skill of around 0.6 correlation at a lead time of 6 months. 

The above initialization scheme only uses the surface wind stress information and 

ignores the model feedback from the ocean to the atmosphere. Although it has shown 

a great deal of success in establishing the initial conditions for prediction models, it has 

also been of interest to initialise the prediction models considering the feedback from the 

ocean to the atmosphere and using other observations, in particular the direct observa­

tions of ocean states. The hybrid coupled model of Barnett et al. (1993) is initialised 

with observed SSTs and obtained similar hindcast skills. Chen et al. (1995) developed 
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an ocean initialization scheme for the Zebiak and Cane (1987) coupled model with the 

consideration of feedback from ocean to atmosphere through a nudging approach. Fur­

ther, they assimilated the sea level data using a similar nudge scheme for the coupled 

model (Chen et al. 1998) improving the forecast skills of the Lamont model. Kleeman 

et al. (1995) assimilated the 400-m depth-averaged equatorial temperature anomaly into 

an intermediate complexity coupled model by using the adjoint variational technique. In 

their work, the subsurface information was used as proxy data and an empirical relation 

between it and the model prognostic variables were used to initialise the model states. 

The results indicated that such an initialization approach can lead to a marked increase 

of hindcast skills, in particular for long lead times of over 8 months. A similar approach 

using the proxy data to assimilate subsurface structures were also performed by Fischer 

et al. (1997), in which the sea level observations are inserted into the 3-dimensional tem­

perature field with a statistically based relation. J i et al. (1998) and Rosati et al. (1997), 

on the other hand, used the observed three-dimensional temperatures to directly initialize 

the coupled general circulation models through a 3D Var assimilation system, and found 

that initialization of the ocean by the assimilation of observed subsurface temperature 

data generally leads to improved prediction skills. 

However, as mentioned in Latif et al. (1998), compared with the field of numerical 

weather prediction, techniques of data assimilation and initialization in ENSO prediction 

are still at a relatively early stage of development. We are at present unclear on a basic 

issue, i.e. which observations are most useful in initialising ENSO predictions and how do 

the prediction skills differ for assimilating different types of data? It seems that we need 

a systematic comparison of assimilating different types of data on ENSO predictability 

based on an identical assimilation system and an identical forecast model. Since ENSO 

is a fundamental oscillatory mode of the coupled ocean-atmosphere system and that the 

memory of the coupled system resides in the ocean thermocline state (Neelin et al. 1998), 
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one might expect that such a systematic comparison can provide insights for most ENSO 

models which share the same basic ENSO dynamics. However, at the present stage, the 

most useful data to be assimilated might still be model dependent—this is not totally 

satisfactory but we are still at a relatively early stage in understanding ENSO and its 

predictability (Latif et al. 1998). 

1.4 Nonlinear physical processes in the tropical atmosphere 

Nonlinear physical processes that will be discussed here are only confined to the atmo­

spheric response (coupled) processes to the ocean (SST), as at low frequencies the atmo­

sphere over the tropical Pacific can be regarded as a strongly forced quasi-equilibrium 

system governed by the state of the tropical Pacific SST (Latif et al, 1998). Some other 

physical processes, such as the feedback of the extra-tropical atmosphere to the tropical 

atmosphere, the internal variability in the tropical atmosphere etc., are neglected because 

they make small contributions to the ENSO oscillations. 

1.4.1 Physical processes associated with SST in the tropical atmosphere 

Observations indicate latent heat release to be the primary energy source in the tropics. 

The latent heat release occurs in association with convective cloud systems and verti­

cal motion from the external forcing specified by sea surface temperatures (SST). The 

scale analysis of large-scale tropical motions show that the diabatic heating is mainly 

nonlinearly balanced by vertical motion (Holton 1992; Hoskins and Pearce 1983). A 

comparison of the SST pattern with the convective patterns reveal that, over the ocean, 

moist air rises where SSTs are highest while dry air subsides where surface waters are 

cool (Philander, 1990). The warmest waters are in the western tropical Pacific and in a 

band of latitudes just north of the equator where the ITCZ (Intertropical Convergence 
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Zone) is located. The large-scale convection over the warmest surface waters is associated 

not with increased local evaporation from the ocean but with the convergence of moist 

air onto those regions. High SST is a necessary condition for active deep convection, the 

intensity of which increases with SST in the range from 26°C to 30°C. However, convec­

tion can have a large spatial variability which SST does not have and its occurrence is 

intermittent, indicating that relation between SST and deep convection is very complex 

(Delecluse et al., 1998). 

Changes in the strength and position of the convection over the warm pool can affect 

the sea level pressure. Variations in the pressure gradients in turn are correlated with 

variations in the trade winds over the Pacific ocean by the Hadley circulation and Walker 

circulation variations. During the warm phase of ENSO (El Nino), the ITCZ moves 

equatorward, the South Pacific Convergence Zone moves northward, and the convergence 

zone over the western Pacific moves eastward. The zonal Walker circulation is weak; the 

trade wind weakens and retreats eastward during these periods. The opposite happens 

during the cold phase of ENSO ( La Nina). 

Therefore, the tropical SST changes influencing the atmosphere is through the surface 

fluxes of moisture, heat, and momentum and a readjustment of the tropical circulation 

in a thermally direct sense. These fluxes depend directly on the SST, but they also 

depend nonlinearly on the wind speed, the near-surface air temperature and the near-

surface specific humidity. The response of the tropical atmosphere to SST is associated 

with important processes such as the variations in the ITCZ, the Walker cell and the 

Hadley cell, in position and extent. These physical processes should yield highly nonlinear 

behaviour. In other words, the processes involved can be complex and may involve 

feedback mechanisms which make the processes anything but straightforward (Zebiak, 

1985). Hence it is important to be able to model the nonlinear response of atmospheric 

winds to SST. 
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1.4.2 Nonlinearities and linearization 

For a simple view on how the tropical SST anomalies affect the atmosphere, the linear 

theory for small perturbations of a resting atmosphere, i.e. with the heating rate assumed 

to be small enough for linear theory to apply, was first developed by Gil l (1980). Using 

the linear shallow water equations, Gill investigated the response of the tropical atmo­

sphere to a given distribution of heating and obtained some realistic tropical atmospheric 

characteristics. In the field of ENSO studies, most intermediate atmospheric models fol­

low the essence of the Gill model (Zebiak 1986, Zebiak and Cane 1987; Battisti 1988). A 

typical Gil l model can be written as (Neelin et al, 1998): 

£aua - fva + dxp = 0 (1.1) 

eava + fua + dyp = 0 (1.2) 

eap + c2

a(dxua + dyva) = -Q (1.3) 

where ea is an inverse damping time, ua and va are low-level velocities in the atmosphere, 

and p is a pressure perturbation scaled by the mean density, which is sometimes taken 

proportional to a layer mean temperature perturbation Ta. The forcing, Q, and the 

effective phase speed, c a , have different interpretations in different approaches. 

The success of these simple atmospheric models is partly because, to a first approx­

imation, what is required of them in ENSO theory is modest, a rough representation of 

the anomalous wind stress response to the SST anomaly. Because the ocean response 

to the wind stress tends to be non-local, it turns out that the coupled response can, 

in some circumstances, be fairly forgiving of atmosphere errors in position or extent of 

wind stress anomaly (Neelin et al, 1998). Nonetheless, it was a piece of good fortune 

for ENSO studies that the complexity of tropical atmospheric dynamics could be even 

roughly captured in simple models. For mid-latitudes, the current lack of such models is 
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a primary hurdle to advancements in mid-latitude coupled theory. 

However, even for the Gill models, the response of tropical atmosphere to the heat 

forcing is still nonlinear by nonlinearly parameterising the forcing Q (Gill, 1980; Zebiak, 

1986; Battisti 1988). When the forcing Q is specified from SST, the problem of atmo­

spheric response becomes harder because the known relation between SST and convection 

is far from perfect. 

The fact that the coupled models with a linear atmosphere can realistically model 

ENSO behaviour (e.g., Barnett et al. 1993; Balmaseda et al. 1994) indicates that the 

nonlinearity in the tropical atmosphere at very low frequencies is not strong. Fig. 1.1 

shows the leading three E O F time series for the zonal wind stress and the SST, indicating 

that the first E O F time series of the zonal wind stress has a good linear relation to 

the first E O F time series of the SST, but the linear relations dramatically weaken for 

the higher E O F modes. The same happens for the relations between the meridional 

component of the wind stress and SST (not shown). Our results (see Chapter 2) show 

that the skill improvements are very small when we predict the first E O F mode of a 

wind stress component from the upper ocean state using a nonlinear neural network 

atmosphere instead of a linear regression atmosphere. But there is improvement using a 

neural network model when predicting the second and third E O F modes of a wind stress 

component. 

1.5 Objectives of the thesis 

In the thesis, the main objective is to develop a better hybrid coupled model of the 

tropical Pacific, and to improve ENSO prediction. 

One important aspect affecting H C M performances is the construction of the atmo­

spheric model, i.e. the method for estimating the surface wind stress for a given upper 
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Figure 1.1: E O F time series for SST and zonal wind stresses. Solid line is for wind 
stresses and dashed line for SST. Upper: E 0 F 1 ; middle: E0F2 ; bottom: E 0 F 3 . A l l 
time series are smoothed by a 5-month running mean filter. 
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ocean state and the choice of representative ocean states as predictors. Previous empiri­

cal atmospheric models ranged from the hnear correlation model (Latif et at 1990, Latif 

and Villwock 1991) to the SVD model (Syu et al. 1995). However, all the atmosphere 

models used for H C M so far are based on hnear statistical theory. This motivates the 

following questions: How big are the errors from assuming a hnear wind stress response 

to the upper ocean changes over the seasonal time scale? How much improvement will 

occur if nonlinear theory is applied to construct the empirical atmospheric model in a 

H C M ? 

Another important aspect affecting model predictability is the initialization scheme 

of the numerical model. How to optimally choose the initial conditions, i.e., how to 

assimilate data, especially subsurface heat content data into an intermediate complexity 

layered ocean model with low vertical resolution is the another objective of the thesis. The 

effects of assimilating different types of data on model predictability is also investigated. 

The last objective is to try solving a potential problem inherent to the traditional 

hybrid model. In the traditional hybrid model, the atmospheric model is constructed 

from the observed data or the output of the ocean model. Such a constructed statisti­

cal equation cannot be guaranteed to be consistent with the oceanic model dynamics, 

i.e. potential inconsistency exists between the constructed statistical equation and the 

other dynamical equations. This might lead to dramatic errors after a period of model 

integration. Therefore, in this thesis, a new approach is proposed which combines a 

neural network and four dimensional variational data assimilation to simulate a missing 

dynamical equation. 

This thesis is structured as follows: Chapter 2 describes the construction of two 

atmospheric models and discuss the response of the ocean to the two atmospheric models. 

Chapter 3 displays the ENSO characteristics in the two hybrid coupled models. The 

performances of the two coupled models in terms of ENSO prediction are examined in 
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Chapter 4. The issues as to how to assimilate different types of data into our coupled 

model and how the assimilations affect ENSO simulation and prediction are investigated 

in Chapter 5. Chapter 6 formulates a general procedure for optimally constructing a 

missing dynamical equation using N N and variational data assimilation, and presents 

some numerical experiments. The summary and discussions are given in Chapter 7. 



Chapter 2 

The construction of two hybrid models 

2.1 Introduction 

The term hybrid coupled model (HCM) was introduced by Neelin (1990) to describe a 

coupled model consisting of a simple atmospheric model and a complex oceanic model. 

Latif and Villwock were motivated by this concept to couple an empirical (statistical) 

atmosphere model to an oceanic G C M (Latif and Villwock 1990). Since then, the term 

hybrid coupled models usually refers to models which couple a statistical atmospheric 

model to a dynamical ocean model (e.g. Latif and Villwock 1990; Syu et al. 1995; 

Barnett et al. 1993; Balmaseda et al. 1994). This design uses the fact that the ocean has 

the long-term memory in the coupled atmosphere-ocean system. The fast adjustment of 

the atmosphere to the ocean variables such as the sea surface temperature (SST) and 

upper ocean heat content (HC) motivates the use of a steady-state statistical model for 

the atmosphere. A l l HCMs are based on the assumption that for monthly or longer 

time scales, contemporaneous correlation between wind stress and oceanic variables is 

associated with the atmosphere's rapid non-local adjustment to the oceanic anomaly 

patterns throughout the basin (Syu et al. 1995). 

In this chapter, we will develop two coupled models, i.e. one intermediate complexity 

dynamical ocean model with two different statistical atmospheric models. One atmo­

spheric model is linear from linear regression and the other is nonlinear from neural 

networks. Our focus will be on the two most important issues affecting the performance 

17 
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of the atmospheric models, i.e. the methodology in constructing the atmospheric model, 

and the choice of predictors in the atmospheric model. The response of the dynamical 

ocean to the two atmospheric models will also be investigated. 

This chapter is structured as follows: Section 2.1 briefly describes the dynamical 

ocean model and its performance in terms of ENSO simulations. Section 2.2 constructs 

the empirical atmospheric models, including linear and non-linear models. Section 2.3 

compares the estimated wind stress using the linear and nonlinear models. Section 2.4 

presents the ocean model forced with the wind stress from the two empirical atmospheric 

models. 

2.2 Ocean M o d e l 

2.2.1 The model l ing strategy 

The ocean model used in this research, one of intermediate complexity, originated from 

Anderson and McCreary (1985) and Balmaseda et al. (1994, 1995), but is extended 

to six active layers in this study. It consists of the depth averaged primitive equations 

in six active layers, overlying a deep inert layer. The model allows for an exchange of 

mass, momentum and heat at each layer interface by a parameterisation of entrainment. 

The model uses an Arakawa C grid layout, with a resolution of 1.5° x 1.5°, covering an 

extension from 30°N - 30°S in latitude and from 123°E - 69°W in longitude. The time 

step for integration is two hours. The boundaries are closed, with no-slip conditions. It 

has been shown to be a useful tool for studying the ENSO problem and can compare 

favourably with much more elaborate GCMs (Palmer and Anderson 1994). The model 

equations and some parameters are shown in Appendix A. 

The ability of the ocean model to reproduce the interannual variability of SST has 

been tested by forcing the ocean model with the observed F S U (Florida State University) 
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observed wind stress (Goldenberg and O'Brien 1981) during the period 1961-1990. The 

wind stress used to force the model was computed from the pseudo-stress as 

r = /v_C0|U|U (2.1) 

where U is the wind speed (m/s), p a = 1.2 kg m 3 is the density of air, Ca is the drag 

coefficient, taken to have the value C_=0.0015 (Balmaseda et al. 1994), and fx is a 

parameter controlling the strength of the forcing. 

The model was first spun up for 100 years with monthly climatological wind stress 

and heat flux Qg as forcing fields. The climatological wind stress used consisted of the 

seasonal mean of the F S U stress, while the heat flux was represented by the Oberhuber 

(1988) heat flux Qo plus a relaxation term to T0, the observed SST, i.e. 

Qa = Q0 + X(T-T0), (2.2) 

where T is the model SST, Q0 and T 0 are the monthly climatological heat flux and SST, 

respectively, and A (which is negative) controls the rate of relaxation to the observed 

SST and varies with individual grids. The values of A are taken from the Oberhuber 

climatology (1988). 

After the 100-year spinup by the seasonal forcing, the model seasonal climatology 

was obtained. We then made a 30-year model control run, with forcing by the F S U 

wind stress from January 1961 to December 1990. The initial state was taken to be 

December of the model seasonal cycle. For this integration, the surface heat formulation 

was modified to 

Qs = £ o + A ( T m - T o ) + 0 . 2 A ( r - T m ) , (2.3) 

where Tm represents the model SST climatology. The factor 0.2 allows a weaker re­

laxation to the model seasonal cycle, so that the model SST anomalies have similar 

magnitudes to those observed (Balmaseda et al. 1994). 
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Figure 2.1: Location of the various oceanic regions used in the analysis. 

2.2.2 The model l ing skills 

For easier comparisons and discussions hereafter, the ocean domain was divided into 

several standard regions, Nihol-4 and Eql-3 (Fig. 2.1). 

The very good performance of the model is seen from the statistics given in Table 

2.1. In order to allow more direct comparison with the other models, we smoothed our 

time series by a 5-month running mean filter. The model has generally relatively good 

correlation skills in the whole equatorial Pacific except in the area of Ninol+2. 

In order to further quantify the performance of the model over the whole model 

domain, a point by point comparison between model and observations has been carried 

out by calculating the correlation and the RMS ( Root Mean Square) error, as in Miller 

et al (1993). Good correlation skills appear in the equatorial Pacific band of 15°S and 

15°N, where the maximum correlation (0.6-0.8) is achieved over a relatively broad area in 

the central Pacific, decreasing smoothly westward and eastward (Fig. 2.2a). In the RMS 

error map (Fig. 2.2b), the largest error is located in the eastern Pacific, along the coast 

of South America. In the remainder of the basin, the RMS error is much smaller, with 
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Table 2.1: Correlation between the observed SST and that from 10 models. The results 
of the first 9 models are taken from Palmer and Anderson (1994). The final model is the 
one used in this study. Model A , described in Wu et al (1994), is a l | layer model with 
specified mean climatology. Model B , is a 2|-layer model, described in Balmaseda et al 
(1994). Model C, described in Davey et al(1994), is also a 2|-layer model. While model 
D and E are versions of the G F D L Modular Ocean Model, with resolution of l | ° x l | ° 
and | ° latitude x l | ° longitude respectively. 

Model Region 
EQ3 Niho4 EQ2 Niho3 EQ1 Nihol+2 

Cane-Zebiak - 0.46 - 0.60 - 0.68 
Max-Planck Institute - 0.76 - 0.74 - 0.59 

O P Y C - 0.72 - 0.63 - 0.46 
G F D L - 0.81 - 0.69 - 0.57 

A 0.43 0.64 0.77 0.73 0.69 0.54 
B 0.27 0.59 0.77 0.75 0.69 0.40 
C 0.34 0.55 0.67 0.62 0.51 0.26 
D 0.60 0.76 0.79 0.55 0.55 0.54 
E 0.59 0.76 0.79 0.65 0.60 0.58 

Model used here 0.55 0.73 0.82 0.80 0.75 0.38 
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typical values of 0.4-0.6 °C. Compared with GCMs (Miller et at 1993), the ocean model 

presented here shares with the GCMs the high RMS error near the South American coast. 

In the western Pacific the RMS errors are smaller than those in the other models. 

Fig. 2.3 is the time evolution of the SST anomalies in the area of Nifio3, Niho4, and 

EQ2 from the model and from the observations. It shows that the model simulation is 

in very good agreement with the observations in these areas. 

2.3 Atmospheric models 

2.3.1 EOFs for predictors and predictands 

Two empirical atmospheric models were constructed: One was the traditional hnear 

regression (LR) model widely used in HCMs (Barnett et al 1993); the other was a non­

linear regression model, a neural network. 

As potential predictors for both atmospheric models, several oceanic variables were 

chosen, namely the observed SST, the model SST and HC from the ocean model forced 

with the observed wind stress. The time period taken for the model construction was from 

1964-1990, since in the first 3 years, the output of the ocean model was greatly affected 

by the ocean initial conditions and had poor agreement with observations. The observed 

SSTs were from the Comprehensive Ocean Atmosphere Data Set (COADS, Slutz et al. 

1985; Smith et al. 1996). HC is defined here as the integral of the temperatures over the 

first two layers, calculated from 

H C i = T M HC = J2HCh (2.4) 

where Tr is the temperature of the bottom layer, and Hinit(i) is the initial thickness of 

layer i. The actual model depths in the two layers, climatologically monthly averaged 

over 30 year simulations, range from 89m to 144m in the first layer and from 134m to 

188m in the second layer, with variations in season and in space. 
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Figure 2.2: Statistics for the model SST anomalies relative to the COADS SST data:(a) 
correlation (contour interval=c.i.=0.1) and (b) RMS error (c.i.=0.1°C). 
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Figure 2.3: Time evolution of SST anomalies from the ocean model forced with F S U 
observed stress (sohd line) and observations (dash line) in regions EQ2, NIN03 and 
NIN04 from top to bottom. The Y-axis units are ° C. 
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Table 2.2: The contributions of the first 10 principal components in % 

The EOFs mode Obs. SST Mod. HC Mod. SST •y 

22.91597 
8.233033 
5.775219 
4.890564 
4.015489 
3.757824 
3.070947 
2.894300 
2.803019 
2.457046 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

50.13675 60.17405 44.09614 
11.31180 14.96291 14.42467 
5.907232 10.23942 8.322747 
4.483858 3.862239 3.926422 
3.820368 1.903810 3.047551 
3.321202 1.400397 2.473582 
2.390177 1.121487 2.052638 
2.323771 0.721858 1.838482 
1.712472 0.616893 1.607294 
1.529594 0.462901 1.179851 

14.87040 
11.42141 
8.899261 
7.412765 
4.464581 
3.539740 
3.350200 
3.117069 
2.697852 
2.283948 

As in other studies (Barnett et al. 1993; Balmaseda et al. 1994), an E O F (Empirical 

Orthogonal Function) analysis was first applied to each dataset to extract the predictors 

and predictands. The oceanic predictor field T(x, t), and the predictand field r(x,<), the 

zonal or meridional component of the wind stress, were expressed by E O F analysis as 

where n is the mode number and the seasonal cycle had been removed for both fields 

prior to the E O F analysis. Table 2.2 is variance contribution explained by the first 10 

E O F modes for the variables used in statistical atmospheric model. 

As shown in the table, for the model SST and HC, the first 3 E O F modes accounted 

for over 65% of total variance, whereas for the observed SST about 67% of total vari­

ance was explained by the first 3 E O F modes. The variance contribution by individual 

modes became rather small after the first 3 modes. In contrast, the first 3 wind stress 

EOFs explained only about 35% of the total variance, due to presence of high frequency 

oscillations and noise in the wind stress field. The first three wind E O F modes captured 

the main low frequency signals, e.g. ENSO (Fig. 2.4), and are highly correlated with the 

T ( X , i ) = E «n(*K(x) T ( X , i ) = E /M<)/n(x) (2.5) 

n n 
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Figure 2.4: The time series of the first E O F mode, the second E O F mode and third E O F 
mode from top to bottom. The left panel is for zonal wind and right panel for meridional 
wind. 

observed SST anomaly averaged over the NIN03 area. Hence, following the suggestions 

of Latif et al (1990) and Goswami and Shukla (1991), we used the first 3 E O F modes of 

oceanic variables T as predictors, and the first 3 E O F modes of zonal or meridional wind 

stress as predictands, in constructing both the linear and the non-linear models. 
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2.3.2 Neural Network Model 

A feed-forward neural network ( N N ) is a non-parametric statistical model for extracting 

nonlinear relations in data. A common N N model configuration is to place between the 

input and output variables (also called 'neurons'), a layer of'hidden neurons' (Fig. 2.5). 

The hyperbolic tangent function is used as the transfer function (Bishop 1995, pl27). 

The value of the jth hidden neuron is 

yj = t a n h ( ^ wi]xi + bj), (2.6) 
i 

where X{ is the i-th input, W{j the weight parameters and bj the bias parameters. The 

output neuron is given by 

z = Yl™Jyj + l). (2.7) 
j 

A cost function 

J = ({z- zohsf) (2.8) 

measures the mean square error between the model output z and the observed values z0\,s. 

The parameters Wij, Wj, bj and b are adjusted as the cost function is minimized. The 

procedure, known as network training, yields the optimal parameters for the network. 

As in Tangang et al (1998a,b), steepest descent with momentum and adaptive learning 

rates was used during the optimization, without any constraints imposed. The random 

number generator in M A T L A B which generates uniformly distributed random numbers 

on the interval (0.0, 1.0) was used to initialize these parameters. 

For an N N with m i inputs and m2 hidden neurons, the number of model parameters 

is m i x m2+2 x m 2 + l . In this chapter, we set the number of hidden neurons to 3, 

so the N N has 16 parameters. The 3 input neurons were the first 3 E O F time series 

ctn(t) (either for SST or for HC), and the single output neuron was one of the (zonal 

or meridional) wind stress E O F time series 3n{t), i.e. a separate network was used to 
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Input Layer 

Figure 2.5: A n example of a neural network model, where there are four neurons in the 
input layer, three in the hidden layer, and one in the output layer. The parameters Wij 
and Wj are the weights, and bj and b are the biases. The parameters bj and b can also 
be regarded as the weights for constant inputs of value 1. 

predict each of the wind stress modes. There was no time lag between the predictors and 

the predictand. 

One critical element in N N design is the size of the architecture, i.e., the number of 

hidden neurons. A smaller than optimal network fails to learn all the relevant information 

from the data, i.e. underfits, whereas a larger than optimal network often ends up learning 

the noise in the data, i.e. overfits. The strategy we employed to determine the number 

of hidden neurons was based on cross-validating the correlation skills of the network. 



Chapter 2. The construction of two hybrid models 29 

A cross-validation procedure involves dividing the data record into several segments, 

selecting one segment for the test data and the rest for training data. The N N model 

is built using the training data only, and model predictions are tested on the test data. 

Next, another segment is selected as the test data, and a new model version is built. This 

is repeated until the entire data record has been used for testing. The cross-validation 

scheme ensures that no training data are used for testing the prediction skills, hence the 

artificial skill associated with the overfitting problem (von Storch and Zwiers, 1999) can 

be effectively eliminated by the cross-validation scheme. 

In this study, the record of 1964-1990 was divided into 3 segments, the first 7 years 

and the remaining two 10-years periods. We tested different N N models by increasing 

the number of hidden neurons. Cross-validation skills (correlation and RMS error) were 

monitored for each network. As the number of hidden neurons increased starting from 

1 to 3, the cross-validation skills were enhanced. These skills were little changed as the 

number of hidden neurons was increased to 4-6. But the skills were greatly degraded 

with further increase in the number of hidden neurons. Hence we used 3 hidden neurons 

in the atmospheric model. In the case where both SST and HC are used as predictors, 

the network had 6 input neurons but still only 3 hidden neurons. Cross validation was 

also used to choose the the error goal (i.e. the level of J to terminate the optimization) 

and the maximum number of iterations (epochs) in the training process. 

Finally, an ensemble of 25 NNs with random initial parameters were used and the 

final output of the N N model was actually the ensemble average of the 25 individual 

model outputs. Ensembles can greatly alleviate the instability problems associated with 

N N modelling (Hsieh and Tang, 1998). 
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2.3.3 Linear model 

The linear regression model is similar to that of Barnett et al (1993). Assume that the 

wind stress anomalies r are a linear response to T, we have 

T(x, t) = Y, « n ( * ) e n ( x ) r(x, *) = £ /3„(*)/„(x), (2.9) 

Pn = J2Cmai (2-10) 
i=l 

where T, CK, /3, e, m and n have the same meaning as in (2.5); and i is a mode number. 

The matrix of regression coefficients (C) relating the two datasets is defined by 

< Cti[3n > 
(2.11) 

where < ... > denotes a time average. The statistical estimate of the surface wind- stress 

field (r) is obtained from 

ai(t) = Y/T{x,t)ei{x) (2.12) 

M) = TlCniai{t) (2-13) 
i 

and finally 

r(*,0 = E&(0/nOO (2-14) 
n 

2.4 Results from atmospheric models 

2.4.1 The predictors 

Most HCMs used either simulated SST from ocean models or observed SST to estimate 

the wind stress (Barnett et al. 1993; Syu et al. 1995). Whether SST is the best 

predictor for the wind stress is debatable. Observations show that the SSTs do not reflect 

the changing subsurface temperatures in the tropical western Pacific, where subsurface 

temperature anomalies and thermocline displacements have an important role in the 
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Table 2.3: Cross-validated correlation between the predicted wind stress E O F time series 
and the observed wind stress E O F time series for the first 3 modes, using the observed 
SST, the model SST, the model HC, and the model HC+SST as predictors. Results are 
shown for both the N N model and the L R model, and for the zonal (x) and meridional 
(y) components of the wind stress. 

Predictors Obs SST Mod.SST HC HC+SST 
Predictands N N L R N N L R N N L R N N L R 

rx ft 0.74 0.72 0.81 0.81 0.89 0.89 0.88 0.88 
rx ft 0.57 0.52 0.54 0.52 0.76 0.73 0.75 0.70 
rx ft 0.38 0.24 0.11 0.06 0.40 0.35 0.29 0.26 
Ty ft 0.86 0.83 0.83 0.81 0.86 0.86 0.84 0.86 
Tv ft 0.53 0.43 0.47 0.46 0.66 0.66 0.57 0.62 
Ty ft 0.47 0.45 0.21 0.19 0.24 0.21 0.28 0.24 

ocean-atmosphere couphng processes (e.g. White and Pazan 1987, Latif and Graham 

1992). Furthermore, SST is noisier than the HC, probably resulting in the wind stress 

being less well correlated with SST than with HC. In addition, as the ocean memory 

resides in the thermocline depth, HC is a more stable variable than SST, leading to HC 

having a higher correlation with wind stress. Therefore, using the upper ocean heat 

content (HC, defined in Eq. 2.4) as predictors might produce higher skills than SST. 

The first E O F modes for the HC, the zonal and meridional wind stress (Fig. 2.6), are 

the modes associated with the ENSO oscillation-where the HC anomaly shifts east-west 

along the equator (Fig. 2.6a), the zonal wind anomaly develops in the western equatorial 

Pacific (Fig. 2.6b), and the trade winds show anomalous convergence along the equator 

(Fig. 2.6c). Because of their ENSO nature, the anomalies in these E O F modes are all 

mainly confined to within 15°N - 15°S. To explain the anomalies outside this narrow 

equatorial belt, the second, third, and even higher modes are needed. 

Table 2.3 shows the cross-validated skills attained by the N N and L R models with the 

observed SST, model SST, model HC, and model SST+HC serving as predictors for the 
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Figure 2.6: The first E O F mode for (a) the heat content (HC) from the ocean model 
driven by the F S U wind stress, (b) the F S U zonal wind stress and (c) the meridional 
wind stress. Negative contours are shown as dashed curves and zero contours as dotted 
curves. Contour interval = 0.01. 
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wind stress E O F time series fln (n = 1,2,3). Here SST + HC does not mean combined 

EOFs, but that their separate E O F time series normalized by the standard deviations 

are the predictors. HC as predictors generally had the highest skills as expected, whereas 

both observed SST and model SST generally attained the lowest skills. SST+HC predic­

tors attained lower skills than HC alone. This suggests that the first 3 EOFs of HC well 

represent the ocean status, and more SST EOFs as input only bring additional noise and 

overfitting. For the first zonal wind stress mode, the model SST actually did better than 

the observed SST, probably because the ocean model acted as a complicated space-time 

filter, thereby removing some noise in the SST (Latif and Graham 1992). For the other 

wind stress modes, the model SST did not do as well as the observed SST. In general, 

N N did not predict the first zonal or meridional wind stress mode much better than LR; 

only for the second and third modes did N N seem to have an edge over LR. Some small 

differences between LR and N N can be seen in Fig. 2.7, where the N N curves almost 

overlap the straight lines, indicating weakly nonlinear relations. 

2.4.2 Prediction skills of the N N and L R models 

Since we only tried to predict the first 3 wind stress modes, the prediction skills were 

compared in later sections against an idealized wind stress -the wind stress reconstructed 

from only the first 3 E O F modes of the FSU wind stress. Such a comparison more 

objectively evaluates the skill of the atmospheric model, as it excludes the noisy higher 

modes which are not modelled. The correlation map between the idealized wind stress 

and the F S U wind stress shows that the idealized field is a reasonable representation, 

especially in the western and central Pacific (Fig. 2.8). 

As the model HC has the best prediction skills for the wind stress, henceforth we will 

only use the HC as predictor. The reconstructed stress field was obtained by multiplying 

the predicted E O F time series (either by N N or LR) to the first 3 E O F modes. The 
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Figure 2.7: (a) The first mode of the zonal wind stress plotted as a function of the third 
mode of the SST, and (b) the second mode of the zonal wind stress versus the first mode 
of the SST. The observations are shown as dots; the simulated zonal wind stress mode 
from the NN model is indicated by the small circles and from the LR model by the 
straight lines. 
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Figure 2.8: Correlations of the F S U wind stress and the idealized wind stress (recon­
structed from the first 3 E O F modes of the F S U wind stress) for (a) the zonal stress and 
(b) the meridional stress. Contour interval = 0.1. 
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cross-validated correlation and the sum of squared error (SSE) of the reconstructed stress 

field from N N model verified against the idealized field are shown in Fig. 2.9 and Fig. 

2.10. As seen in Fig. 2.9, for zonal stress, the best skills occurred in the equatorial 

western and eastern Pacific, whereas the worst occurred off the coast of South America, 

in the Australian summer monsoon region and in the subtropical North Pacific. The 

high skill areas are associated with the anomalous SST areas during ENSO events where 

the response of zonal stress to the ocean status is strong due to active couphng. The 

lower correlation along the coast of South America might be attributed to the fact that 

wind-stress is almost 'white' in this region (Goldenberg and O'Brien, 1981, Latif and 

Flugel 1991). For meridional stress, the highest skills were found in the Intertropical 

Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ) areas. 

The map of SSE (Fig. 2.10) indicated that the estimation of the amplitude by the 

N N model was good, especially in eastern Pacific ocean. Large errors only occurred at 

the ITCZ and SPCZ areas, in contrast to the correlation map (Fig. 2.9), where these two 

areas have good skills (especially for the meridional stress). The active couphng in these 

areas induced large anomalous variations in the stress, which generated large amphtude 

errors even though the phase errors were small, producing good correlations but large 

SSE. 

Differences between the prediction skills of the N N model and the L R model for the 

period of 1964-1990 are shown in Figs. 2.11 and 2.12. The correlation skill differences 

(Fig. 2.11) between N N and L R were very small, though N N skills were indeed slightly 

ahead of L R skiUs in most areas. For the zonal stress (Fig. 2.11a), the N N model outper­

formed L R in almost the whole subtropical domain of 15°N - 30°N and near the Niho3 

region. That the improvements occurred in these regions can be understood from our 

earlier finding (Table 2.3) that the N N and the L R had the same skill in predicting the 

mode 1 zonal stress (Fig. 2.6), but the N N had an edge over L R for modes 2 and 3. Hence 
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Figure 2.9: Cross-validated anomaly correlation between the predicted wind stress by 
N N (with model H C as predictors) and the idealized wind stress (i.e. the F S U wind 
stress with only the first 3 E O F modes): (a) zonal stress, and (b) meridional stress. 
Contour interval=0.1. The seasonal cycle has been removed prior to the analysis, and in 
all following maps. 



Chapter 2. The construction of two hybrid models 38 

Figure 2.10: The sum of squared error (SSE) of the predicted wind stress by NN verified 
against the idealized wind stress: (a) zonal stress, and (b) meridional stress. Contour 
interval=0.2 N 2 m~4. 
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only in regions outside the main anomaly area of mode 1 (i.e. the western equatorial 

Pacific in Fig. 2.6) would the N N appear to have slightly better skills than LR, as found 

in Fig. 2.11a. For the meridional stress (Fig. 2.11b), N N did slightly better in the eastern 

Pacific away from the equator. 

The difference of the SSE between the two models (Fig. 2.12) indicated that the N N 

model slightly outperformed the L R model for much of the domain except for the western 

equatorial region of 150°E - 160°W centred at 5°S. The slight advantage of N N over L R 

is manifested more clearly in the error map (Fig. 2.12) than in the correlation map (Fig. 

2.11), suggesting that model nonlinearity may be slightly more useful in estimating the 

amplitude than in estimating the phase of the wind stress anomalies. 

The very small skill differences between N N and L R follows from the fact that the 

equatorial dynamical system is almost linear, so a nonlinear model does not give much 

better results than a linear model. Tang et al. (2000) found that with sea level pressure 

(SLP) as predictors for the SST anomalies, N N slightly outperformed L R in the Niho3 

region, but not so in the Niho4 region, suggesting that nonlinearity is quite weak in 

the eastern-central equatorial Pacific, but even weaker in the western-central equatorial 

Pacific. Here, Fig. 2.12 and to a lesser extent Fig. 2.11 are consistent with the Tang et 

al. (2000) finding. 

2.5 The ocean model driven by the empirical wind 

2.5.1 SST skills 

To assess the effect of the empirical wind stress from the N N and the L R models on the 

ocean model, we ran the ocean model twice, with forcing by the two model predicted 

wind stresses during the period 1964-1990. The outputs of the ocean model forced by 

the idealized wind stress (i.e. the first 3 EOFs of the FSU data) were later used to verify 
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Figure 2.11: The correlation between the wind stress predicted by the N N model and the 
idealized stress minus the correlation between the wind stress predicted by the L R model 
and the idealized wind stress, for: (a) zonal stress, and (b) meridional stress. Contour 
interval = 0.02. The zero contours are the dotted curves, while the negative contours are 
the dashed curves. Positive values means the N N predicted wind stress is outperforming 
the L R one. 
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Figure 2.12: The SSE ofthe N N wind stress minus the SSE ofthe L R wind stress, (both 
verified against the idealized wind stress), for: (a) zonal stress, and (b) meridional stress. 
Contour interval=0.02 N 2 m - 4 . Negative values means the N N predicted wind stress is 
outperforming the L R one. 
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the skills from the empirical wind stress. Fig. 2.13 compares the SST and HC from the 

ocean model driven by the idealized wind stress with that driven by the full F S U stress, 

showing a generally close relation, especially in the western and central equatorial Pacific. 

This justifies the use of the ocean model driven by the idealized stress as the standard 

for comparing the empirical winds. 

Fig. 2.14 shows the skills of the SST from the ocean model forced with the empirical 

wind stress from the N N model. As seen in the correlation map (Fig. 2.14a), the skill 

is good, with a correlation of over 0.8 covering much of the model domain. The highest 

skill, up to over 0.9, occurred at the central equatorial Pacific region. 

A comparison of ocean models driven by the empirical wind stress from the N N model 

and that from the L R model was then made. Fig. 2.15a depicts the difference in the model 

SST correlation skills between the N N model and the L R model when they were each 

verified against the standard SST. For the equatorial western and central Pacific, the 

difference was negligible. As mentioned earlier, this is probably due to the mainly hnear 

dynamics in the equatorial western and central Pacific. The largest differences occurred 

in the off-equatorial areas and in the eastern equatorial Pacific, where the N N winds 

tended to outperform the L R winds. The maximum correlation difference reached 0.34 

in the northwest region around 150°E and 15°N. The positive correlation skill areas in the 

off-equatorial regions of Fig. 2.15a roughly coincided with the positive zonal wind stress 

skills attained by the N N over LR in Fig. 2.11a. There was no such agreement between 

Fig. 2.15a and Fig. 2.11a in the eastern equatorial Pacific, where the skill differences 

between N N and L R were small for the zonal stress, but relatively large for the SST. 

This could be due to the fact that in equatorial western Pacific, the oceanic response is 

mainly locally forced by the wind stress, whereas in the eastern Pacific, equatorial Kelvin 

wave propagation, upwelling and vertical mixing are thought to predominantly control 

the SST variabihty (Battisti 1988). 
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Figure 2.13: A comparison of the ocean model driven by the F S U wind stress and that 
driven by the idealized stress (i.e. with only the first 3 EOFs), (a) SST correlation be­
tween the two models (c.i.=0.1) and (b) SST RMS error (c.i.=0.05°C); (c) HC correlation 
(c.i.=0.1) and (d) HC RMS error (c.i.=0.005°C). 
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Figure 2.14: A cross-validated comparison of the ocean model SST between that driven 
by the idealized wind stress and that driven by the empirical wind stress from the N N 
model (with H C as predictors), by (a) correlation (contour interval=0.05), and (b) R M S 
error (contour interval=0.1°C). 
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The difference in the SST RMS error between the ocean models driven by the N N 

and L R wind stress (Fig. 2.15b) generally agreed with Fig. 2.15a, i.e. higher correlation 

skiU areas corresponded with lower RMS error regions, and vice versa. 

In summary, using a nonlinear empirical atmospheric model to drive the ocean might 

bring modest benefits for SST simulation in the off-equatorial tropical regions and in the 

eastern equatorial Pacific. Improvements in the equatorial western and central Pacific 

would be unlikely as the dynamics in these regions appeared very nearly hnear from other 

studies (e.g. Tang et al. 2000). 

2.5.2 Heat content Skills 

The HC redistribution in western tropical Pacific can lead to the evolution of SST anoma­

lies in eastern Pacific and has been known to be an important factor in the evolution 

of many ENSO episodes. In particular, the HC anomalies over the equatorial band 5°N 

to 5°S can be a very good precursor for the SST anomalies in the Nino3 region (Zebiak 

1989; Latif and Graham et al. 1992; Balmaseda et al. 1994). We therefore examined the 

HC in the ocean model forced with the wind stress from the N N model and from the L R 

model. The HC from the ocean model forced with the idealized stress was taken as the 

verification standard. 

The HC skills from the ocean forced with the N N model wind stress was generally 

better than those with the LR stress for the western Pacific basin, in particular in the 

western and central Pacific over the equatorial band of 10°N to 10°S (Fig. 2.16). From 

the ocean model driven by the idealized stress, the HC anomalies averaged over the whole 

equatorial Pacific (124 oE-70°W,5 oN-5°S) led the observed Nino3 SST anomalies by few 

months (Fig. 2.17). Their correlations were 0.73 and 0.72 with the HC leading by 3 and 4 

months respectively. The 3-month lag correlations of the observed Nifio3 SST anomahes 

and the HC index averaged over whole equatorial Pacific for the ocean model forced by 
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Figure 2.15: The skill differences in the model SST between the model driven by the 
NN model wind stress and that driven by the LR model stress, with both model SSTs 
verified against the standard SST, i.e. the SST from the model driven by the idealized 
wind stress: (a) correlation skill difference (Contour interval = 0.02), and (b) RMS error 
difference (contour interval=0.02°C). Positive regions in (a) indicate NN ahead of LR, 
while negative region in (b) indicate NN ahead of LR. 
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the N N wind and by the L R wind did indicate the N N wind to have slightly better skill 

(0.62 for N N and 0.58 for LR). 

In summary, this chapter investigated the possibility of using a nonlinear empirical 

atmospheric model for hybrid coupled modelling by developing a neural network (NN) 

model for predicting the contemporaneous wind stress field from the ocean state, and 

comparing the N N model with a linear regression (LR) model. The oceanic response to 

the two atmospheric models were also examined. The N N model generally had slightly 

better skills than the simple LR model in the off-equatorial tropical Pacific and in the 

eastern equatorial Pacific. Compared with the oceanic response to the L R atmosphere, 

the oceanic response to the N N atmosphere generated slightly better SST simulation skills 

in the off-equatorial tropical Pacific and in the eastern equatorial Pacific, and better H C 

simulation skills in the western and central equatorial Pacific, 
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Figure 2.16: Cross-validated skill differences in the model HC between the ocean model 
driven by N N model wind stress and that driven by the L R model stress, both verified 
against the model HC driven by the idealized wind stress: (a) correlation difference 
(c.i.=0.02), (b) RMS error difference (c.i.=0.05°C). Positive regions in (a) indicate N N 
ahead of LR, while negative regions in (b) indicate N N ahead of LR. 
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Figure 2.17: Time evolution of observed SST anomalies in NIN03 (solid curve) and 
model HC averaged over 124°E-70°W, 5°N-5°S (dot-dashed curve) forced by the F S U 
observed wind stress. Both curves were normalised and smoothed by a 3-point running 
mean. 



Chapter 3 

Hybrid coupled models of the tropical Pacific — Interannual variability 

3.1 Introduction 

During the last decades, the study of a variety of coupled models, including simple models 

(e.g., Suarez and Schopf 1988; Hirst 1986), intermediate coupled models (e.g., Zebiak and 

Cane 1987; Anderson and McCreary, 1985), hybrid coupled models (e.g., Barnett et al 

1993; Balmaseda et al. 1994,1995; Neelin 1990), and fuUy coupled general circulation 

models (GCM) (e.g.,Philander et al. 1992; Latif et al. 1993), led to a better description 

of the phenomenon and understanding of the underlying cychc nature of ENSO (Schopf 

and Suarez 1988; Battisti and Hirst 1988; Jin et al. 1994; Tziperman et al. 1994; Chang 

et al. 1995,1996). 

As emphasized in previous chapters, the hybrid coupled model has been widely applied 

in the understanding and prediction of ENSO (Barnett et al. 1993; Davey et al. 1994; 

Chang et al. 1995; Syu et al. 1995; Balmaseda et al. 1994, 1995; Blanke et al 1997; Eckert 

and Latif 1997). An important aspect affecting the H C M performance is the construction 

ofthe empirical atmospheric model, e.g. what method was used for estimating the surface 

wind stress field from a given ocean state. A l l empirical atmospheric models used in 

HCMs have so far been linear statistical models. In Chapter 2, the possibility of improving 

the empirical atmospheric model by a nonlinear approach using neural networks (NN) was 

investigated. However, in Chapter 2, the ocean model was not coupled with atmospheric 

model and all simulations were driven from uncoupled experiments. This chapter is an 

50 
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extension of Chapter 2. In this chapter, we couple the ocean and atmosphere, examine the 

dynamical behaviour of the H C M with a nonlinear atmosphere (henceforth the N H C M ) , 

and a hnear atmosphere (LHCM), and investigate the differences between N H C M and 

L H C M . 

This chapter is structured as follows: Section 3.2 briefly describes the coupling strat­

egy. Section 3.3 displays the performances by the N H C M and compares N H C M with 

L H C M . Section 3.4 discusses the dynamical behaviour of both coupled models. 

3.2 The Coupl ing strategy 

After an atmospheric model is constructed, a coupling between the atmosphere and the 

ocean can be implemented. The SST anomalies from the ocean model are projected 

onto the first three E O F modes to extract the predictors. An atmospheric model (LR 

or NN) is then performed to reconstruct the zonal wind stress r_, and a similar one for 

the meridional component r y . As common with statistical models, the variance of the 

predicted variables are lower than the variance in the observed variables, hence the wind-

stress estimates are scaled up to their observed variance by an adjusting scale factor of 

1.2, as in Barnett et al. (1993). The stress anomalies are further multiplied by a scalar 

parameter o, i.e. the relative coupling parameter, to examine the impact of the coupling 

strength on ENSO oscillations. The reconstructed wind stress anomalies are added to 

the climatological wind stress field to force the ocean model. The couphng interval is 15 

days as in Balmaseda et al. (1994, 1995). Fig. 3.1 demonstrate the schematic diagram of 

coupling process. The ensemble of atmospheric models derived with the cross-validation 

scheme is used in the couphng. 
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Given initial conditions for 
ocean model 

Extract EOF time coefficients for SST 
and HC (to be used as predictors in the 
atmos. model) 

Extract EOF time coefficients for SST 
and HC (to be used as predictors in the 
atmos. model) 

Run Atmos. Model to predict wind stress 

+ Climatological 
wind stress 

f Drive ocean model with wind stress 

F i g u r e 3.1: A schemat ic d i ag ram of coup l ing s trategy for the coup led models . 
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3.3 Simulations from the standard coupling experiments 

In the section, we present results of the standard coupling experiments. Standard cou­

pling is defined as having the coupling coefficient S equal to unity. Two coupled models, 

the dynamical ocean with either a nonlinear atmosphere or a linear atmosphere, are in­

vestigated. Each coupling begins from the end of the ocean climatology run of 100 years 

and is integrated forward for 100 years. As the two models require in general about 3 

years to reach their equilibrium, the integration of first 3 years will be removed in the 

discussions. The seasonal cycle has been removed prior to E O F and P O P (principal oscil­

lation pattern) analyses in order to explore the model's interannual variability. We also 

use the subsurface simulations from the control ocean model forced with the observed 

F S U wind stress (called 'idealized' data) instead of actual observed subsurface data as a 

standard to verify the coupled model's subsurface behaviour. 

3.3.1 N H C M simulations 

Fig. 3.2 is the N H C M SST climatology averaged over the integration of 97 years and 

the observed climatology during 1961-1990, showing that the N H C M can well generate 

realistic climatology in both spatial structures and amplitudes although its 'warm pool' in 

the equatorial western Pacific and 'cold tongue' in the equatorial eastern Pacific are both 

slightly stronger than observed. The N H C M also captured well the pronounced seasonal 

cycle of SST in the eastern Pacific, although the simulated amplitudes are smaller than 

the observations (Fig. 3.3a). The seasonal cycle of the zonal wind stress also compares 

well with the observations (Fig. 3.3b). Note that the atmospheric model only calculates 

the anomalous wind stress, which is added to the observed climatological wind stress 

to drive the ocean model. Hence the good climatology simulation for the ocean with 

N H C M comes mainly from the contributions of the uncoupled response of the ocean to 
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the observed climatological winds. In a coupled model with an anomaly atmospheric 

component, the contributions from the coupled feedbacks to the model climatology are 

generally much smaller than from the uncoupled response of the ocean to the observed 

climatology winds. 

With the seasonal cycle removed, Fig. 3.4 compares the two leading E O F modes of the 

modelled SST from N H C M with those derived from the observed SST during 1964-1990. 

The observed SST field is taken from the COADS. The first two EOFs of the modelled 

SST account for 53% and 24% of the total variance respectively, which compares with 

50% and 11% of the total variance accounted for by the two leading modes from the 

observations. As seen in Fig. 3.4, the leading EOFs for the simulated SST (upper panel 

of Fig. 3.4) generally resembled the observed modes, except that the simulated modes 

appear to be more narrowly confined to the equator, with less variability at the eastern 

boundary. These are common defects in all HCMs, and even in coupled G C M models 

(Barnett et al 1993; Chang et al 1996)— the weak eastern boundary variability is often 

blamed on the poor parameterization of vertical mixing in the eastern equatorial Pacific 

Ocean. 

The first two E O F modes of the simulated zonal wind stress and those from the 

observed F S U zonal wind stress (Fig. 3.5) reveal that the structures of simulated modes 

are in good agreement with those from observations. The variance accounted for by the 

first two modes of the N H C M modelled zonal wind stress is 81% and 10% respectively. 

The major dynamical processes associated with the ENSO cycle in the tropical Pacific 

ocean are the westward off-equatorial propagation of information and the eastward prop­

agation of information along the equator (Barnett et al 1993, Philander 1990). These 

information propagations mainly result from the propagation of Rossby waves and equa­

torial Kelvin waves in the tropic Pacific. In order to explore the main features of propa­

gating modes in the coupled model, a POP analysis has been made using the 3 leading 
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Figure 3.2: (a) The SST chmatology of N H C M from the run of 97 years (c i . = 1°C) and 
(b) The observed SST chmatology during 1961-1990 (c i . = 1°C) and (c) the difference, 
i.e. (a) minus (b). (C.i.= 0.5°C). 
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Figure 3.3: Time-longitude distribution of the mean seasonal cycle of (a) SST and (b) 
zonal wind stress, repeated once with the annual mean removed, for the N H C M . Negative 
contours are shown as dashed curves and zero contours as dotted curves. C.i.=0.2°C for 
(a) and 0.02 N m " 2 for (b). 
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Figure 3.4: (a) E 0 F 1 of SST from the N H C M , (b) EOF2 of SST from the N H C M , (c) 
EOF1 of the observed SST and (d) EOF2 of the observed SST. Negative contours are 
shown as dashed curves and zero contours as dotted curves. C i . = 0.01°C for (a),(b) 
and (d), and c i . = 0.005°C for (c). 
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Figure 3.5: (a) E 0 F 1 of the zonal wind stress from the N H C M , (b) E 0 F 2 of the zonal 
wind stress from the N H C M , (c) E 0 F 1 of the FSU zonal wind stress and (d) E 0 F 2 of 
the F S U zonal wind stress. C i . = 0.01 N m " 2 for (a), (c) and (d), and c i . = 0.005 N 
rn"2 for (b). 
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combined E O F modes of three fields from the coupled model— SST, upper ocean heat 

content (HC) and zonal wind stress. 

Several measures, e.g. the oscillation period T, the decay time scale and the variance 

contribution, as discussed in Wu et al. (1994), can be used to pick out useful or significant 

P O P modes from the POP analysis. The ENSO-related mode is found to explain 32% of 

the total variance, with a period of 57 months. A maximum correlation of 0.99 between 

the imaginary part and the real part of the POP coefficient occurs at a lag of a quarter of 

the period (15 months), as expected. The spatial patterns of the P O P mode are shown 

in Fig. 3.6. The POP technique interprets the pattern as evolving cyclically in time: Q 

P -»• - Q -> - P -> Q ... 

The characteristics ofthe POP patterns are very similar to those found by Balmaseda 

et al. (1994), Latif et al (1993), and Barnett et al (1993). In the peak phase of an ENSO 

warm event (pattern P), the warm water present in the equatorial central and eastern 

Pacific ocean yields the warm SST and HC anomalies in the region. A strong zonal HC 

gradient at the equatorial central Pacific weakens the upwelhng there and intensifies the 

warm Kelvin waves propagating eastward. From the warm SST, atmospheric convection 

occurs, resulting in a convergence of mass and heat in the atmosphere on both sides 

of the equator, which enhances the oceanic upwelhng in the off-equatorial regions and 

induces the cold westward propagating Rossby waves. The warm eastward propagating 

Kelvin waves bring warm waters to the eastern Pacific ocean to further intensify the 

anomahes; while the westward propagating Rossby waves are reflected at the western 

boundary as cold Kelvin waves to propagate eastward. When the cold Kelvin waves 

arrive at the central and eastern Pacific ocean to weaken the warm anomahes in the 

region, the transition phase of ENSO (warm-to-cold phase) appears as pattern —Q. 

The zonal wind stress anomahes are closely related to the information propagation 

in the ocean, which can be demonstrated using Fig. 3.6e and Fig. 3.6f. During the peak 
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Figure 3.6: Spatial patterns of the ENSO-related POP mode for N H C M . Patterns P 
(real) are shown on the left, and patterns —Q (imaginary) appear on the right. SST 
anomalies are in panels (a) and (b), HC anomahes are in panels (c) and (d), and zonal 
wind stress are in panels (e) and (f). C.i.= 0.005°C for (a),(b),(c) and (d); C.i.= 0.005 
N rn"2 for (e) and (f). 



Chapter 3. Hybrid coupled models of the tropical Pacific — Interannual variability 61 

phase of ENSO, large westerly wind anomahes prevail over the equatorial central Pacific 

associated with the eastward propagating equatorial Kelvin wave; whereas during the 

transition phase ( — Q), the westerly wind anomahes in the equatorial central Pacific are 

much weaker, and easterly wind anomahes dominate over much of the tropic Pacific. The 

wind stress anomahes in turn act on the ocean. 

In summary, the coupled model with nonlinear atmosphere can produce a realistic 

climatology; and major features of ENSO variabihty in the tropic Pacific can be weU 

captured. The ENSO dynamics shown in the coupling simulation can be explained by 

the delayed-action oscillator. 

3.3.2 Some differences between N H C M and L H C M 

The same analysis procedure is also performed for L H C M . The L H C M chmatology is 

basically in good agreement with the N H C M chmatology described above, i.e. the L H C M 

also produces a realistic mean structure. In this subsection, we will emphasize some 

differences between the L H C M and the N H C M in terms of their chmatology and ENSO 

features. Some studies have shown that ENSO osciUations in the H C M can be sensitive 

to small changes in the construction of the atmosphere model. For example, Syu and 

Neelin (2000) found noticeable sensitivity in the simulated ENSO cycles using a slightly 

shorter or longer data period in estimating the SVD model, in particular for the coupled 

period. However, as mentioned in Chapter 3.2, an ensemble average over individual 

atmospheric models derived from the cross-validation scheme (Chapter 2) should to some 

extent alleviate the sensitivity of ENSO characteristics to the data record. 

One difference is shown in the simulation of the equatorial cold tongue of the eastern 

Pacific. Fig. 3.7 is the L H C M SST climatology and its difference with the N H C M ch­

matology. The L H C M produces a warmer SST climatology at central equatorial Pacific 

than observations. Fig. 3.7c shows that the N H C M is warmer than L H C M in the western 
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equatorial Pacific and cooler in the central-eastern equatorial Pacific. 

Some differences are also found in the subsurface ocean temperature at the depth of 

around 100m. Fig. 3.8 shows the errors of subsurface temperature climatology of L H C M 

and N H C M verified against the idealized subsurface temperature. As shown in Fig. 3.8, 

the errors of the L H C M are generally larger than those of the N H C M , reaching about a 

factor of 2 in the equatorial eastern Pacific. However, as the errors are generally small, 

these differences between the climatology mean of the two models are not very significant. 

The spatial distribution of the SST differences between N H C M and L H C M is in notable 

contrast to that between the uncoupled ocean responses to the two atmospheric models 

shown in Chapter 2. For example, the SST difference between the uncoupled ocean 

response to the linear atmosphere and that to the the nonlinear atmosphere is remarkable 

in the off-equatorial areas and the equatorial eastern Pacific (Fig. 2.15). 

A notable difference between L H C M and N H C M occurs in the upper-ocean thermal 

structure. Fig. 3.9 shows the Hovmoller diagrams of heat content anomalies along the 

equator for N H C M and L H C M during year 31 to year 60 in the standard coupling run 

of 100 years. For comparison, the time-longitude diagram of the heat content anomalies 

taken from a control integration from 1961-1990 is also presented (Fig. 3.9b). The most 

pronounced feature in Fig. 3.9a and Fig. 3.9c is the regular oscillation structure in equa­

torial Pacific, especially in the eastern Pacific. Fig. 3.9a and Fig. 3.9c also demonstrate 

some differences between L H C M and N H C M : (1) L H C M has a longer oscillation period 

than N H C M , with about 5 years for N H C M and 7-8 years for L H C M ; (2) the western 

Pacific has a much stronger oscillation in L H C M than in N H C M ; and (3) For the L H C M , 

often when there is a strong anomaly in the eastern and central equatorial Pacific, there 

is an anomaly of comparable strength but opposite sign on the western side, which is not 

observed for ENSO. Compared with Fig. 3.9b, L H C M does not capture ENSO features as 

well as N H C M . These differences between N H C M and L H C M in terms of ENSO can also 
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Figure 3.7: (a) The SST chmatology of L H C M from the run of 97 years (c i . = 1°C), (b) 
The SST chmatology of L H C M minus the observed SST chmatology during 1961-1990 
(c i . = 0.5°C) and (c) The SST climatology of N H C M minus the SST climatology of 
L H C M (c i . = 0.1°C). 
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Figure 3.8: The model error of subsurface ocean temperature at the depth of around 
100m verified against the idealised subsurface temperature for (a) L H C M and (b) N H C M . 
Negative contours shown as dashed curves denote that the subsurface model temperatures 
are lower than the 'idealized data', c i . = 0.02°C. 
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be seen in the structure of SST anomahes (Fig. 3.10). The structure of SST anomalies 

in N H C M shows anomalies starting in the central equatorial region, spreading eastward 

and westward (Fig. 3.10a), with a period of about 4-5 years. The lack of interannual 

signals in the west in N H C M is consistent with observations. In contrast, the L H C M 

SST anomalies are able to propagate to the western Pacific, with a period of about 7-8 

years (Fig. 3.10c). 

A P O P analysis was performed for the L H C M simulation as was done for the N H C M . 

Fig. 3.11 is the leading POP mode, which explains 29% of the total variance. This mode 

has a period of 87 months, much longer than the period of the N H C M and realistic ENSO 

oscillations. During the peak phase, the equatorial SST anomahes change sign at 170°W 

(Fig. 3.11a), in contrast to those for the N H C M , where anomalies of the same sign reach 

150°E (Fig. 3.6a). During the transition phase, the SST and HC anomahes are very weak 

in the eastern equatorial Pacific unlike the structures found in N H C M (Fig. 3.6). For 

the — Q pattern, the easterly anomalies in the off-equatorial areas in L H C M are slightly 

weaker than the anomalies found in N H C M . Similarly, during this transition phase, the 

westerly anomalies in the equatorial central Pacific do not withdrawn so quickly as in 

N H C M , with the strong westerly anomahes still dominating the equatorial central Pacific 

in the L H C M . The POP analysis with observed data shows that during the transition 

phase, the whole domain of the central equatorial Pacific is almost dominated by easterly 

anomalies (Latif and Fhigel, 1991). The withdrawal rate of the westerly anomalies in 

the model may influence the period of the oscillation— the slow withdrawal may explain 

why L H C M has a longer period than N H C M . 

An important feature of the ENSO oscillation is its phase-locking, i.e. the peaks tend 

to occur during a particular season. The phase-locking might be mainly due to the non­

linear interactions between the seasonal cycle and self-sustained interannual osciUations. 

The seasonal cycle plays a central role and often dominates the strength of phase-locking 
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Figure 3.9: Time-longitude diagrams of ocean heat content anomalies along the equator 
from (a) N H C M , (b) control run forced with observed FSU and (c) L H C M . C.i.= 0.1°C. 
Fig. 3.9b was smoothed by a 5-point running mean in time. 
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Figure 3.10: Time-longitude diagrams of SST anomalies along the equator from (a) 
N H C M , (b) control run forced with observed FSU and (c) L H C M . C.i.= 1°C. Fig. 3.10b 
was smoothed by a 5-point running mean in time. 
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Figure 3.11: Spatial patterns of the ENSO-related POP mode for L H C M . Patterns P 
(real) are shown on the left, and patterns —Q (imaginary) appear on the right. SST 
anomahes are in panels (a) and (b), HC anomahes in panels (c) and (d), and zonal wind 
stress in panels (e) and f. C.i.= 0.005 in all panels. 
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(Chang et al. 1995). Fig. 3.12 is the histogram of the number of warm ENSO events per 

month of the calendar year according to the time series of SST anomalies averaged over 

the NIN03 (150°W-90 oW,5 oN- 5°S) region for both coupled models. While annual phase-

locking exists in both models, the phase-locking in L H C M appears to be too strong and 

about 3 months too late in comparison with observations, implying that the seasonal 

cycle is over-emphasized in L H C M . In contrast, the more scattered phase-locking be­

haviour and the timing of the phase-locking found in N H C M (with warm events peaking 

mainly in late fall and winter, and never in summer) are more realistic ( Syu and Neelin 

1998). The M E M (maximum entropy method) analysis of the NIN03 index derived from 

the N H C M simulation exhibits double significant spectral peaks at 53-month period and 

28-month period, compared with only a single significant peak at 85-month period in 

the L H C M , revealing that the N H C M oscillations are more complicated than simply the 

sinusoidal oscillations found in L H C M . 

3.4 Sensi t ivi ty experiments 

To fully explore nonlinear interactions between the seasonal cycle and interannual oscil­

lations in the two coupled models, a series of experiments are conducted by varying the 

coupling parameter 8. Each experiment consists of a three-year initial spin-up followed 

by a 47-year simulation. The experiments show that the oscillatory behaviour of both 

L H C M and N H C M has a sensitive dependence on the parameter, with L H C M being 

slightly more sensitive. In the first experiment, we decrease 8 to 0.83, a value equivalent 

to setting the adjusting factor in section 3.2 to unity for the standard coupling runs. A 

damped oscillation with a period of 55 months was found in the N H C M , compared with 

a similar oscillation with a 75-month period in the L H C M . As the coupling strength 8 is 

gradually increased starting from the standard coupling, the oscillatory behaviour of the 



Chapter 3. Hybrid coupled models of the tropical Pacific — Interannual variability 70 

2 

1 

0 

-1 

-2 

-3 
20 40 60 80 100 120 

1 2 3 4 5 6 7 8 9 1011 12 1 2 3 4 5 6 7 8 9 1011 12 

Figure 3.12: The NINO 3 index found in N H C M and L H C M in the standard case, (a) 
The time series of NINO 3 index, with solid curve for N H C M and dot-dash curve for 
L H C M . A histogram of the number of warm events peaking in Jan. (month 1) to Dec. 
(month 12) for (b) N H C M , and (c) L H C M . 
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two coupled models are basically similar to those obtained in the last section, i.e. reg­

ularity and phase-locking. As the coupling parameter increases, the period is gradually 

shortened. As the coupling parameter 8 is further increased up to a specific critical value, 

the two models finally produce a 2 year quasi-periodic oscillation, with the peaks always 

occurring at the same months of the calendar year, as in many other ENSO models (Syu 

and Neelin 1995; Chang et al 1995, 1996). The critical value is 1.5 for L H C M and 1.68 

for N H C M . The lower critical value for the L H C M results from the L H C M being more 

sensitive to 8 than the N H C M . 

Frequency locking has been noted in a number of other ENSO models (Anderson 

and McCreary 1985; Battisti 1988; Syu et al. 1995). Chang et al (1995, 1996) and 

Tziperman et al.(1994) investigated the relationship between such a frequency-locking 

behaviour and the transition to chaos in several ENSO coupled models. They found 

that a further increase of the coupling strength led to chaotic behaviour of the model 

ENSO. Interestingly, a further increase of the coupling parameter 8 in our models did 

not exhibit the typical behaviour of a chaotic system. Instead a further increase of the 

coupling parameter beyond the critical value leads to a climate drift for N H C M (8 = 2.0) 

and for L H C M (8 = 1.66). The climate drift at high coupling is likely associated with 

the spurious effects of flux correction in the coupled system as discussed in Neelin and 

Dijkstra (1995). 

Further analyses for the N H C M and L H C M simulations with the critical values are 

given in Fig. 3.13. A mode-locked state with a quasi-periodic cycle of 2 year can be found 

for both N H C M and L H C M in Fig. 3.13. The L H C M has a very strong phase-locking to 

January; but N H C M shows a more realistic broader phase locking. In the M E M analyses, 

the single sharp peak is clearly shown, and a broad spectrum, a necessary indicator of 

chaos, does not appear for either model. In the construction of the phase plane, we 

still use the methods commonly used in ENSO studies, i.e. decorrelated time-step K for 
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the time lag arid 2 dimensions SST(i) and SST(£ -f- K) for dynamical dimensions, to be 

consistent with the discussions of other ENSO models. Fig. 3.13e and Fig. 3.13f are the 

phase planes reconstructed with K—W months, which also clearly show the limit cycle 

solution for the both models. 

As we have not covered the entire parameter regime in our search, there might exist 

some specific parameters which can produce chaotic behaviour associated with ENSO in 

our models, but recent works do show that the random forcing may play a central role in 

ENSO evolution ( Blanke et al. 1997; Eckert and Latif 1997). The irregular interannual 

oscillation simulated by coupled CGCMs (Philander et al. 1992) does not appear to be 

low-order chaos. The nonlinear time series analysis performed by Chang et al. (1996) 

suggests that stochastic processes, rather than chaotic dynamics, are likely to be a major 

source of ENSO irregularity in CGCMs and in nature. 

In summary, the characteristics of the N H C M (with an N N atmosphere) and the 

L H C M (with an L R atmosphere) in terms of ENSO oscillations have been investigated in 

this chapter. A series of sensitivity experiments were carried out to further examine the 

dynamic behaviours of the two coupled models. The results show that the L H C M has a 

longer ENSO oscillation period (87 months), than the more realistic period found in the 

N H C M (57 months), and a very narrow phase-locking to the annual cycle compared to 

the more realistic phase-locking in the N H C M . 
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Figure 3.13: Analyses of the NIN03 index for N H C M and L H C M at the critical coupling 
parameter S. N H C M are shown on the left (5 = 1.68), and L H C M appear on the right (5 
= 1.5). (a) and (b) are the histograms of the number of warm events peaking in month 
1 to 12 (i.e. January to December); (c) and (d) are the power spectra; (e) and (f) are the 
phase planes reconstructed from the time series. 



Chapter 4 

Hybrid coupled models of the tropical Pacific — ENSO prediction 

4.1 Introduction 

In chapter 2 and chapter 3, We have developed two hybrid coupled models, and examined 

their ENSO behaviour. Although the dynamic response of the atmosphere and ocean in 

the tropical Pacific is quasi-linear (Chapter 2), the coupled interactions between the two 

components seem more complicated than the relations extracted from data and from 

uncoupled model responses (Chapter 3). In this chapter, we compare the N H C M and 

L H C M in ENSO prediction. 

This chapter is scheduled as follow: Section 4.2 briefly describes the prediction strat­

egy. Section 4.3 displays the prediction skills with the 'stress-only' initiahzation scheme 

for the N H C M and L H C M . Section 4.4 shows the prediction experiments with the alter­

native 'stress-from-ocean' initialization scheme for the two coupled models and, gives the 

prediction results of several typical ENSO episodes. 

4.2 The strategy of prediction experiments 

For both N H C M and L H C M , two kinds of prediction experiments were carried out in this 

study, 'hindcasts' from 1964-1990 and 'forecasts' from 1990-1998. More precisely, during 

the 'forecast' period, the latest forecasts were made in 1998, but the forecasts were into 

1999, while during the 'hindcast' period, the forecasts were into 1991. To aUeviate the 

artificial skills, the cross-validated atmospheric models described in Chapter 2 were used 

74 
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in the hindcasts experiments, i.e. the atmospheric models were developed excluding data 

from the hindcast period. For example, when the period 1970-1980 is being hindcasted, 

the atmospheric models used were only built from the data of 1964-1969 and 1981-1990. 

Thus, no data from the hindcast period have entered the coupled model through L R or 

N N reconstructed winds in any hindcast experiments. For the forecast experiments of 

1990-1998, the atmospheric models are the ensemble of individual cross-validated models 

built for the hindcast experiments from 1964-1990, so data from 1990-1998 were never 

used in model building. There is a slight difference with the atmospheric models used in 

Chapter 3. The atmosphere models with upper ocean heat contents as predictors were 

used here for all the prediction experiments because they yield slightly better skills than 

the atmospheric models with SST as predictors (Chapter 2). The dynamical behavior 

and interannual variability of the coupled models with upper ocean heat contents as 

predictors are generally very similar to these described in Chapter 3. 

An important factor affecting the ENSO oscillation and model predictability is the 

coupling coefficient S (Chapter 3), as the change in the coupling strength can easily modify 

the amplitudes of the coupled oscillation, and exert a strong influence on the frequency 

locking behavior (Chang et al. 1996; Chapter 3). After many sensitivity experiments, 

we found that the best hindcast and forecast skills for L H C M and N H C M are attained 

neither from the standard coupling with regular ENSO oscillations as in Chapter 3, 

nor from stronger coupling than the standard coupling. The best hindcast and forecast 

skills occurred for 'damped' coupling, with S between 0.7 to 0.8. We thus chose 8 to 

be 0.7 for all hindcast and forecast experiments presented in this study for both N H C M 

and L H C M . The seasonal cycle, used to obtain the surface sea temperature anomalies 

(SSTA) for evaluating the model skills, was calculated from the hindcast experiments 

during 1964-1990. 
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4.3 Prediction experiments with 'stress-only' initializations 

The ocean model was forced with the observed FSU (Florida State University) wind stress 

(Goldenberg and O'Brien 1981) from 1961 to 1998. From April , 1964 onward, at three 

months intervals (1 January, 1 April , 1 July, 1 October), the conditions of this control 

run were selected as the initial conditions for the N H C M and L H C M , which were run for 

15 months. We will refer to this type of initialization as 'stress-only' initialization, to be 

contrasted with a different initialization in the next section. For each H C M , a total of 

104 runs were made starting from April 1964 to January 1990 (the hindcast period), and 

35 runs starting from April 1990 to October 1998 (the forecast period). 

Fig. 4.1 shows the N H C M and L H C M predictive skills for the NIN03 index for the 

hindcast period and the forecast period. In the first 2 months, the correlation skills of 

the two HCMs are below persistence (the predictions at all lead times being simply the 

initial observed SSTA), due to initialization shock caused by the initial conditions taken 

from the control run not being consistent with the governing equations of the coupled 

model. The two HCMs outperform persistence at lead times greater than 3 months, with 

the skills of the HCMs decreasing gradually up to a lead time of 6 months, beyond which 

the skills are relatively stable up to a lead time of 15 months. For N H C M , the correlation 

is around 0.5 up to a lead time of 14 months for the hindcast period and greater than 0.5 

at all lead times up to 15 months for the forecast period (Fig. 4.1). Compared to N H C M , 

L H C M has the slightly higher skills during the hindcast period but slightly lower skills 

during the forecast period. 

Both coupled model predictions have weak amplitudes, in particular at long lead time. 

In order to alleviate the weak amplitude, a systematic error correction is adopted for the 

predictions at each lead time by scaling: 

S S T A 
S S T A ™ = ^±L<Tobs, (4.1) 

CT 
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Figure 4.1: Correlation skills for the predictions of SST anomahes in the NIN03 area as 
a function of the forecast lead time for (a) the hindcast period from 1964-1990, and (b) 
the forecast period from 1990-1998, by N H C M (solid), L H C M (dashed) and persistence 
(dot-dashed). Both HCMs use the 'stress-only' initiahzation scheme. 
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where r is the lead time, and SSTA is model prediction and S S T A n e u ; is the corrected 

prediction. crT, the standard deviation of SSTA at lead time r , is obtained from the 

104 hindcast cases. The 0~obs is the standard deviation of the observed SSTA from the 

hindcast period of 1964-1990. The systematic error correction does not change any 

correlation scores but effectively improves the R M S E skills for the prediction of ENSO 

events. 

Fig. 4.2 and Fig. 4.3 show the time series of predicted NIN03 SSTA by the N H C M 

at lead times of 3 , 6 and 9 months (solid line). The predicted NIN03 SSTA shown here 

has removed the systematic errors using Eq. 4.1. The observed NIN03 SSTA are also 

shown (dash line) for comparison. The N H C M predicted the low-frequency interannual 

evolution ofthe SST anomalies reasonably well, especially at short lead time. The model 

successfully predicted all typical E l Nino and La Nino events, such as the 1972/73, 

1982/83, 1986/87, 1997 E l Ninos and the 1988, 1998 La Nihos, up to a lead time of 

9 months. For lead time greater than 9 months, the model has also useful predictive 

skills and can to some extents predict these typical ENSO events in amphtude and phase 

(not shown). But for the two strongest warm events 82/83 and 97, the model suffered 

the same problem as many prediction models, i.e. weak amphtude prediction for 82/83 

and lagging behind in the phase prediction for 97 (e.g. Syu and Neehn 2000; Fliigel and 

Chang 1998; Saunders et al. 1998). The model also produced a spurious warm event for 

74/75 (a good case to test model skill in ENSO community) at the prediction of 9 month 

lead time, like many coupled models (Wu et al. 1994). In the observation, there seemed 

to be an incipient E l Nino in the middle of 1974, but it aborted later in 1974. However 

the model predicted the aborted event well at short lead time. 

The time series of predicted NIN03 SSTA with L H C M shows almost the same features 

as N H C M . Fig. 4.4 is its prediction for the forecast period. Compared with the N H C M , 

the amphtude prediction in L H C M seemed weaker than that in N H C M . 
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Figure 4.2: Predicted NIN03 SST anomalies (°C) by the N H C M from 1964-1990 at (a) 
3-month, (b) 6-month and (c) 9-month lead times. Solid line is for the predicted values 
and dash line for observations. 



Chapter 4. Hybrid coupled models of the tropical Pacific — ENSO prediction 80 

Figure 4.3: Predicted NIN03 SST anomalies (°C) by the N H C M from 1990-1998 at (a) 
3-month, (b) 6-month and (c) 9-month lead times. Sohd line is for the predicted values 
and dash line for observations. 
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Figure 4.4: Predicted NIN03 SST anomalies (°C) by the L H C M from 1990-1998 at (a) 
3-month, (b) 6-month and (c) 9-month lead times. Solid line is for the predicted values 
and dash line for observations. 
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Decadal dependence of ENSO predictability has been found in many ENSO forecast 

models (e.g. Balmaseda et al. 1995; Chen et al. 1997; Flugel and Chang 1998). While 

all models tended to have very good forecast skiUs in the 1980s, they suffered low skiUs 

in the 1990s— even with an improved initiahzation strategy (Chen et al. 1997). A 

clear contrast in terms of the characteristics of the interannual variability between 1980s 

and 1990s also exists in many observations such as sea level pressure, SST, low-level 

zonal wind, and subsurface ocean heat content anomahes in the Pacific (Kleeman et al. 

1996; Latif et al. 1997; J i . et al. 1996). It has been suggested that the mechanism 

of decadal dependence of predictability is associated with the decadal changes in the 

mean state leading to decadal variability of ENSO (e.g., Wang 1995; Zhang et al. 1997). 

Several recent studies suggested that the changes in mean state is probably caused by (1) 

the remote response in the tropical atmosphere to the mid-latitude decadal osciUations 

(Wallace et al. 1998); (2) anthropogenic global warming (Trenberth and Hoar 1997); (3) 

the interaction between tropical and extratropical oceans to produce decadal variations 

in the mean thermocline structure of the tropical Pacific (Gu and Philander 1997); and 

(4) amplification of the decadal signal through atmospheric high-frequency variability 

(Kirtman and Schopf 1998). 

Fig. 4.5 shows the decadal dependence of predictabihty in the two coupled models. 

The obvious decadal changes of predictability appear only for L H C M . For N H C M , except 

for low skill in the 1970s which is probably associated with poor data quahty and low 

signal-to-noise ratio (Chen at al. 1997), prediction skills did not have significant changes 

among the 1960s, 1980s and 1990s. In particular, in L H C M , there is a large drop in skills 

from the 1980s to the 1990s, which is absent in N H C M . What could be the cause for this 

difference? 

Using a neural network model for nonhnear canonical correlation analysis ( N L C C A , 

Hsieh 2000), Hsieh (2001) found that the relation between the tropical Pacific SST and 
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Figure 4.5: Predictive (correlation) skills of the NIN03 SSTA from (a) L H C M and (b) 
N H C M , for the 1990s (solid), 1980s (circled), 1970s (dashed), and the 1960s (dot-dashed), 
as a function of the lead time. Both coupled models use the 'stress-only' initialization 
scheme. 
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the sea level pressure has become more nonlinear with time. We apphed the N L C C A 

of Hsieh (2001) to study the relation between the first 3 principal components (PCs) 

(i.e. the E O F time coefficients) of the observed zonal wind stress anomahes and the first 

3 PCs of the observed SSTA. P C analysis (i.e. E O F analysis) was first performed for 

the period 1964-1999 for the zonal wind stress anomahes and the SSTA separately. The 

N L C C A was then applied to the PCs in the 1980s, then to the PCs in the 1990s. The first 

N L C C A mode for the 1980s is shown in the PC-space of the zonal wind stress anomalies 

(Fig. 4.6), and in the PC-space of the SSTA (Fig. 4.7). The classical C C A solutions are 

shown as straight hnes in Figs. 4.6 and 4.7 for comparison. As a measure of the degree 

of nonhnearity in the relation, the ratio R between the M S E (mean square error) of the 

N L C C A mode to the M S E of the C C A mode can be calculated. A small R would indicate 

a nonhnear relation, while R 1 would indicate an essentially hnear relation. R is 0.941 

for the zonal wind stress, and 0.917 for the SSTA in the 1980s. In contrast, the N L C C A 

mode 1 is shown in Figs. 4.8 and 4.9 for the 1990s. It is evident the relation in the 1990s 

has become more nonhnear. R is 0.810 for the zonal wind stress and 0.507 for the SSTA, 

both considerably lower than the corresponding values for the 1980s. 

Using the nonlinear technique of N L C C A , we have found that indeed the relation 

between the zonal wind stress and the SSTA has become more nonlinear in the 1990s 

than in the 1980s. This could explain why L H C M , which did well in the 1980s, fared 

poorly in the 1990s, and why N H C M , which is capable of simulating the nonhnear relation 

between the wind stress and the surface ocean conditions, did not suffer a loss of forecast 

skills as the relation turned more nonhnear for the 1990s. These decadal comparisons 

suffer from the fact that a decade is far too short for statisical significance. One can 

only interpret the N L C C A findings as being at least consistent with our finding that the 

L H C M forecast skills appeared lower than those of the N H C M during the 1990s. 

As in other models (e.g. Balmaseda et al. 1995; Zebiak and Cane 1987), the two 
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Figure 4.6: Nonlinear C C A (NLCCA) mode 1 for the 1980s shown in the P C (principal 
component) space of the zonal wind stress anomalies. The N L C C A analyzed the relation 
between the first three PCs of the zonal wind stress anomalies and the first three PCs of 
the SSTA. The data are shown as dots, and their projection onto the N L C C A mode 1 are 
the circles, and the classical C C A solution is shown as a straight line for comparison. The 
solutions are shown in (a) the PC1-PC2 space, (b) the PC1-PC3 space, (c) the PC2-PC3 
space, and (d) a 3-D view. Following the principle of parsimony, the architecture of the 
N L C C A was set for minimal nonlinearity, i.e. only 2 hidden neurons used, and the weight 
penalty parameter was 0.1 in all cost functions (Hsieh 2001). 
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Figure 4.7: N L C C A mode 1 for the 1980s in the P C space of the SSTA. 
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Figure 4.10: Seasonal dependence of the predictive skills for the NIN03 SSTA during 
1964-1998 from (a) L H C M and (b) N H C M . Both coupled models use the stress-only 
initialization scheme initialized on January 1 (dot-dashed), April 1 (solid), July 1 (dotted) 
and October 1 (dashed). 

coupled models show the seasonal dependence of predictability as shown in Fig. 4.10, 

where the correlation is calculated with all 139 cases during both the hindcast and forecast 

periods. Clearly, the 'spring barrier' appears for both models, i.e. the correlation skill of 

the predictions decreases markedly as the predictions pass through northern spring. The 

two models share a similar characteristic of seasonal dependence of predict ability. 

The cause of seasonal dependence of predictability is still not clear. One explanation 

is that spring has the minimum signal-to-noise ratio, i.e. the signal variance is minimum 

(Xue et al. 1994). However this is only true for SSTA. For other observed quantities such 

as wind stress and heat content, their variances are not minimum in spring (Fig. 4.11). 
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Figure 4.11: Seasonal variation of variances of NIN03 index for (a) observed SST, (b) 
observed HC , (c) observed zonal (solid) and meridional (dashed) wind stress and (d) 
model SST taken from control run forcing with FSU winds. 
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4.4 Prediction experiments with 'stress-from-ocean' initialization 

The above prediction experiments are all based on the initialization scheme which only 

uses the surface wind stress information and ignores the model feedback from the ocean 

to the atmosphere. Although it has shown considerable success in establishing initial 

conditions for our models, we will further explore a different initialization scheme, which 

takes into account the feedback from the ocean to the atmosphere, by using ocean states, 

including subsurface ocean states. 

This 'stress-from-ocean' initialization scheme uses the output from the ocean model's 

control run forced by the observed wind stress to reconstruct the atmosphere wind stress 

which is then provided to initialize the ocean model for predictions. It thus involves 

two steps: (1) the ocean model is forced with the observed F S U wind stress to obtain 

the model ocean states; (2) the upper ocean heat contents from (1) are input into the 

empirical atmospheric models (LR or NN) to obtain the model wind stress. This model 

wind stress then drives the ocean model, until the start of a forecast when the H C M 

is run for 15 months. As in section 4.3, 104 hindcast cases and 35 forecast cases were 

carried out with initialization on January 1, April 1, July 1 and October 1. As upper 

ocean heat contents are used to derive the wind stress and only the first 3 E O F modes 

were used in the atmospheric models for estimating the zonal or meridional wind stress, 

this initialization scheme largely removes the weather noise in the initial conditions. Such 

a 'stress-from-ocean' initialization has been used in Barnett et al. (1993) and Syu and 

Neelin (2000). 

The correlation skills of the predictions by the stress-only initialization scheme is 

compared with those of the stress-from-ocean initialization scheme, during the hindcast 

period from 1964-1990 (Fig. 4.12) and the forecast from 1990-1998 (Fig. 4.13) for L H C M 

and N H C M . In Fig. 4.12, the prediction skills of the stress-from-ocean initializations are 
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almost identical to those of the stress-only initializations for L H C M during the hindcast 

period. However, the stress-from-ocean initiahzations have higher prediction skills at 

lead times greater than 6 months for N H C M during the same period. For the forecast 

period of 1990-1998, the skill improvement by the stress-from-ocean initializations can 

be observed for both models, slightly more so for L H C M (Fig. 4.13). Thus it appears 

that the stress-from-ocean initialization is better than the stress-only initiahzation. 

The time series of predicted NIN03 SSTA under the stress-from-ocean initiahzation 

for lead times of 3, 6 and 9 months (sohd line) are shown in Fig. 4.14 for N H C M and 

in Fig. 4.15 for L H C M . As the standard deviation of the predicted values are generally 

smaller than the observed ones, especially at longer lead times, the predicted values have 

been scaled to match the observed standard deviations in Figs. 4.14 and 4.15. 

A comparison of predicted skills between L H C M and N H C M (Fig. 4.16) reveals that 

the skills are very similar during the hindcast period, but N H C M has higher skills than 

L H C M during the forecast period. This is again consistent with the earlier finding by 

N L C C A that the relation between zonal wind stress and surface ocean condition has 

become more nonlinear in the 1990s, which would put L H C M in a disadvantage against 

N H C M . 

4.4.1 Case study 

In previous sections, we have presented the general skills of N H C M and L H C M with two 

different initialization schemes. Here we will examine the model predictive capability 

for typical ENSO events by case studies. Three most renowned episodes of ENSO, the 

1982/83 and 1997 E l Nino and 1998 La Nina, were chosen for study. As the stress-

from-ocean initialization generates slightly better skill than the stress-only initialization 

for both N H C M and L H C M , the cases were thus selected from the stress-from-ocean 

initialization experiments. Each case starts from the 1 January initial conditions and the 
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Figure 4.12: Contrast of the predictive skills for the NIN03 SSTA during 1964-1990 
between the stress-only initialization scheme (sohd hne) and the stress-from-ocean ini­
tiahzation scheme (dashed line) for (a) L H C M and (b) N H C M . 
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Figure 4.13: Contrast of the predictive skills for the NIN03 SSTA during 1990-1998 
between the stress-only initialization scheme (solid line) and the stress-from-ocean ini­
tialization scheme (dashed line) for (a) L H C M and (b) N H C M . 



Chapter 4. Hybrid coupled models of the tropical Pacific — ENSO prediction 95 

Figure 4.14: Predicted NIN03 SST anomalies (°C) by N H C M using the stress-from-ocean 
initialization scheme during 1964-1998 at (a) 3-month, (b) 6-month and (c) 9-month lead 
times. Solid line is for the predicted values and dash line for the observations. 
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Figure 4.15: Predicted NIN03 SST anomalies (°C) by L H C M using the stress-from-ocean 
initiahzation scheme during 1964-1998 at (a) 3-month, (b) 6-month and (c) 9-month lead 
times. Solid line is for the predicted values and dash line for the observations. 
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Figure 4.16: Correlation skills of the predicted NIN03 SSTA for (a) the hindcasts period 
from 1964-1990, and (b) the forecast period from 1990-1998, by N H C M (sol id) , L H C M 
(dashed). Both H C M models used the stress-from-ocean initialization scheme. 
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forecast period is 15 months. The predicted value at each grid point is scaled to match 

the observed standard deviation at that grid. 

The evolution of the predicted monthly SSTA along the equator are shown in time-

longitude sections. Fig. 4.17 shows the 1982/83 E l Nifio. Compared with the observed 

SSTA, N H C M and L H C M both successfuUy predicted the peak of this event about a 

year ahead. A restart of warming at March 1983 (i.e. month 15) in the observations were 

also well captured by the two models about 15 months in advance. But both models 

predicted the start of the warming about two months too early. The predicted warming 

was too narrowly confined around 120°W, and the equatorial western Pacific also had 

spurious cooling predicted. 

For the 1997 E l Nino (Fig. 4.18), the two coupled models predicted weU the start 

time, mature time, and the amplitude for this strongest event in this century. But they 

both have later decay and end time than the observations. The predicted warmings were 

too narrowly confined around 120°W, and entirely missing near the eastern boundary, 

when compared with observations. Again, the predictions by both N H C M and L H C M 

had spurious cooling in the west. 

In the 1998 La Nino (Fig. 4.19), N H C M displays a much better prediction than L H C M . 

This event appeared at June 1998 and reached its mature stage at around December 1998. 

The maximum anomahes reach -2°C. These features were basically predicted by N H C M 

except the start time, which was 2 months late. In contrast, L H C M predicted the start 

time 5-6 months later than observed. In the equatorial Pacific just east of the dateline, 

the models performed badly, missing the the transition from warm to cold conditions, 

especially for L H C M . 

In summary, the prediction skills for the two coupled models, N H C M and L H C M , with 

two different initialization schemes have been studied in this chapter. The ensemble of 104 

'hindcasts' experiments from 1964-1990 and 35 'forecasts' experiments were performed 
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Figure 4.17: Time-longitude diagrams of predicted SSTA along the equator from N H C M 
(left panel) and L H C M (right panel) initialized on 1 January 1982. The observed SSTA 
from January 1982 to March 1983 is shown in the middle panel. The ordinate ranging 
from 1 to 15 is the calendar month from January 1982 to March 1983. 
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Figure 4.18: Time-longitude diagrams of predicted SSTA along the equator from N H C M 
(left panel) and L H C M (right panel) initialized on 1 January 1997. The evolution of the 
observed SSTA from January 1997 to March 1998 is shown in the middle panel. 
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Figure 4.19: Time-longitude diagrams of predicted SSTA along the equator from N H C M 
(left panel) and L H C M (right panel) initialized on 1 January 1998. The evolution of 
observed SSTA from January 1998 to March 1999 is shown in the middle panel. 
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to examine the prediction skills of the two coupled models. Three typical ENSO episodes 

were chosen to further show the predictive ability of the two coupled models. The stress-

from-ocean initiahzation scheme generally has better predictive skills than the stress-only 

scheme. The main difference in the forecast skills between the N H C M and the L H C M 

occurs in the 1990s, where the N H C M has better skills. The N L C C A was used to further 

examine the possible reasons to cause the prediction skill differences between the two 

coupled models in the 1990s. 



Chapter 5 

Impact of data assimilation on ENSO simulations and predictions 

5.1 Introduction 

In Chapter 4, we examined ENSO predictability in two hybrid coupled models. The 

results show that the initialization has an important impact on model skills. ENSO 

prediction is an initial value problem, and the further evolution of the system depends 

highly on the initial state from which it started. This is at least valid over a certain period, 

which is called the predictability time. Although ENSO is a phenomenon of the ocean-

atmosphere coupled system, its evolution is determined mainly by the ocean. Therefore, 

the initialization can be considered as an initial value problem for the ocean. Thus, a 

very important task in carrying out an ENSO forecast is to determine the oceanic initial 

state as accurately as possible. Knowing that neither the model nor the observations are 

perfect, the goal of data assimilation is to estimate optimally the past and present states 

with an imperfect model and noise observations. 

As discussed in Chapter 1, techniques for data assimilation and initialization in the 

ENSO field are still at a relatively early stage of development. We are at present unclear 

on a basic issue, i.e. which observations are most useful in initialising ENSO predictions 

and how do the prediction skills differ for assimilating different types of data? It seems 

that we need a systematic comparison of assimilating different types of data on ENSO 

predictability based on an identical assimilation system and an identical forecast model. 

Another key issue is how to assimilate subsurface heat content data into an intermediate 

103 
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complexity layer model which has low vertical resolution. Compared with the model 

prognostic variables such as SST, the distribution of upper ocean heat content anomahes 

dominate ENSO characteristics and predictabihty. As an integral of the thermal infor­

mation in upper ocean, the upper ocean heat content anomahes extracted from data 

are less sensitive to missing values in datasets than the model prognostic variables. The 

problem of missing values often occurs in subsurface data sets (e.g. TAO and X B T ) . 

A n ideal method to assimilate heat content data into a numerical model is to use the 

adjoint 4-D Var approach, which can define a cost function involving the heat content. 

The heat content correction can be transfered to the corrections of model prognostic 

variables directly. However, expensive computation cost and complicated coding hmit 

the application of the 4-D Var approach. Therefore, our main focus in this chapter is 

on: 1) how to assimilate observations, especiaUy subsurface heat content data into a 

numerical model with a simple 3D Var assimilation scheme; and 2) which data type is 

the most useful in initializing the ocean model to improve the predictive skiUs? 

This chapter is structured as follows: Section 5.2 briefly describes the assimilation 

system. Section 5.3 introduces the data and proposes strategies for assimilating sea 

surface height anomalies and upper ocean heat content into the coupled model. The 

impact of assimilating different types of data on ENSO simulation and prediction are 

presented in Sections 5.4 and 5.5, respectively. 

5.2 The assimilation system 

The data assimilation system is the 3D Var assimilation system described by Derber and 

Rosati (1989). It has been used in operational ENSO forecasts at N C E P (National Center 

of Environment Prediction) and at G F D L (Geophysical Fluid Dynamics Laboratory) (Ji 
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et al. 1998; Rosati et al. 1997). The 3D Var minimizes the cost function 

/ = ^ T T E - 1 T + ^ ( D ( T ) - T 0 ) T F - 1 ( D ( T ) - T o ) (5.1) 

The superscript T represents the transpose, T is an N component vector containing 

the correction to the guess field (the guess field being generated by the model before 

assimilating the latest data), E is an estimate of the N x N first guess error covari-

ance matrix, D is a simple bilinear operator interpolating from the model grid to the 

observation stations, T 0 is an M component vector containing the difference between 

the observations and the interpolated guess field, and F is an estimate of the M X M 

observational error covariance matrix, where N and M denote the number of model grid 

points and the number of the observational stations respectively. The first term of the 

functional ( T T E _ 1 T ) is a measure of the fit of the corrected field to the guess field, while 

the second term measures the fit of the corrected field to the observations. The result is 

a weighted average of the guess field (which contains information from earlier periods) 

and the observations. 

The estimated spatial error covariance matrices, E and F determines the spatial 

structure and amplitude of the correlation field. An ideal method to estimate the matrices 

is to use the Kalman filter (Gelb 1974). However, extremely high computation cost for 

the Kalman filter prohibits its use on coupled models. Here a simple Gaussian function 

is used to determine E while ignoring the vertical correlations as in Derber and Rosati 

(1989), i.e. the horizontal covariance between any two points is given by 

where (f> is the latitude of the grid point, r the distance between any two points, o=0.01, 

and b = 570 km, as in Derber and Rosati (1989). For the observational error covariance 

matrix F, we assume that the observational errors are not correlated, i.e, the matrix 
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F has only diagonal elements which are the observational error variances. For SST, 

surface wind stress and SSHA, each element of the diagonal error covariance matrix is 

constant, with the value (0.5°C) 2 for SST, (0.25 N m" 2 ) 2 for wind stress and (15 cm) 2 

for SSHA. For the HC anomaly, the error variances assigned are (0.25°C) 2 in the western 

Pacific and (0.5°C) 2 in the eastern Pacific due to fewer observational stations in the 

east. These values are obtained empirically from sensitivity experiments, and following 

recommendations from previous studies (e.g. J i at al, 1995; Hao and Ghil, 1994). 

The function / in (5.1) is minimized using a preconditioned conjugate gradient al­

gorithm (GiU et al. 1981). The preconditioning in the algorithm is supphed by the E 

matrix, which allows the solution to be found without directly inverting the E matrix. 

Further details about the algorithm can be found in Derber and Rosati (1989) and GiU 

et al. (1981). 

The assimilation system also includes data quahty control. The initial gross check is 

to ensure that the data used was not over land. This is implemented by one land-ocean 

mask in which the grid weights are set to 1 over ocean and 0 over land. Before the 

guess field and observations enter the assimilation system, they were both mask-filtered. 

Further quality control is to remove observations with large errors. When the magnitude 

difference between the guess field and the observations is greater than the 25% of the 

magnitude of the guess field, the observations are ehminated. This might lose effective 

corrections for poor simulations in a few model grid points, but ensures the ocean model 

is graduaUy adjusted, without problems arising from the imbalance between the velocity 

and density fields. The data are inserted daily into the model. 
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Table 5.1: Information on the datasets used 

Data SST SSHA Wind stress H C A 
Domain in space 1°E-359°E, 122.25°E-71.25°W, 120°E-70°W 30°W-30°W, 

89°S-89°N 35°S-45°N 30°S-30°N 60°S-60°N 
Resolution in space 2° x 2° 1.5° x 1° 2° x 2° 5° x 2° 

Domain in time 1950-2000 1980-1999 1961-1999 1955-1999 
Resolution in time monthly monthly monthly monthly 

5.3 Methodology for assimilating different types of data 

5.3.1 Data 

The data used in this study are the monthly mean SST obtained from COADS , the 

monthly mean surface wind stress from FSU, the monthly mean sea surface height 

anomaly (SSHA) from the reanalysis data set of N C E P and the monthly 400-m depth-

averaged heat content anomahes (HCA) from the Joint Environmental Data Analysis 

Center at Scripps Institution. Table 5.1 describes the datasets in some detail. 

SST and wind stress can be directly assimilated into the model because of their very 

realistic climatology and because they are prognostic variables in the model. With SSHA 

and H C A , the situation is more complicated. 

5.3.2 SSHA observations 

As SSH is only a diagnostic variable in the model and so the SSHA observations cannot 

be directly assimilated into the ocean model. Fischer et al. (1997) used a statistical 

relation between the SSHA and the leading P C of the temperature vertical profile to 

inject the SSHA information into the temperature profile of their ocean model. We will 

use the SSHA to adjust the model interface (H1A) between the top layer and the second 

layer. The interface anomahes are mainly dominated by the lowest-order baroclinic mode 
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and approximately reflect the thermocline perturbations. 

A simple statistical relation between model SSHA and H1A can be found with E O F 

analysis. Fig. 5.1 compares the PCs of first two E O F modes for the observed SSHA, and 

the SSHA and the H1A from the control model run. The model SSHA was diagnosed 

by computing the sea surface pressure in the control run. The first two E O F modes 

accounted for a total of 67%, 64% and 61% of the variance for the observed SSHA, the 

model SSHA, and the model H1A, respectively. There is close agreement among these 

time series (Fig. 5.1). Fig. 5.2 shows the first two E O F spatial modes of the model 

SSHA and the H1A, also showing a good agreement between the spatial patterns. The 

almost opposite spatial structure between Figs. 5.2a and 5.2c and between Figs. 5.2b and 

5.2d actually reflect the out-of-phase variations between the sea surface height and the 

thermocline due to baroclinic motion. So, SSHA can approximately be assumed to be 

negatively proportional to the H1A, i.e. 

( S S H A ) i = - ^ ( H l A ) , , (5.3) 

where i indicates the zth observational station, and the proportional coefficient LI is simply 

taken to be the ratio of the standard deviation of the SSHA to that of the H1A at the 

ith station. With (5.3), the observed SSHA can be converted to HI A , a prognostic 

model variable. Gill (1982) dynamically derived the same relation as (5.3) for a 2-

layer shallow-water model without external forcing, where \i is determined by the model 

vertical density profile. 

5.3.3 HCA observations 

A n important component of the coupled ocean-atmosphere system on the interannual 

timescale is the upper ocean heat content, which is the source of memory for the system. 
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Figure 5.1: The time series of (a) the first principal component (PC) (i.e. E O F time 
coefficient) and (b) the second P C , for the observed SSHA (sohd hne), the SSHA (dotted 
hne) from the control run (with the ocean model forced by the F S U wind stress), and 
the first interface H1A (dash line) from the control run. 
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Figure 5.2: The spatial patterns of the first two E O F modes from the control model run 
for the SSHA (a and b) and for the HI A (c and d). Solid hnes indicate positive contours, 
dashed hnes, negative contours, and dotted hnes, the zero contour. 
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Many studies have shown (e.g. Zebiak and Cane 1987; Rosati et al. 1997) that the fluc­

tuations in upper-ocean heat content are both systematic and significant in the evolution 

of ENSO. 

According to (2.4), the model H C A can be computed at each model step; how­

ever, assimilating the H C A data is not easy as H C A is not a prognostic model variable. 

When Kleeman et al. (1995) and Moore and Anderson (1989) assimilated subsurface 

temperature into their ocean model, they used a linear empirical relation to transfer the 

corrections in the subsurface thermal fields to the corrections of the model prognostic 

variables. We will use nonlinear NNs to find the empirical relations between H C A and 

the four prognostic variables— SST, H1A, the second layer temperature anomalies (T2A) 

and the second layer thickness anomalies (H2A). 

The procedure to model these relations is very similar to the construction of atmo­

spheric models in Chapter 2: (1) An E O F analysis is applied to the control model H C A 

and each of the four prognostic variables during the period 1964-1990. The first three 

modes are retained to construct the empirical equation as they explained over 60% of 

the variance for all variables. (2) An ensemble of neural networks (25 NNs used here) is 

trained where the inputs to each N N are the 3 PCs of the H C A and the output is one of 

the PCs of a prognostic variable. Three hidden neurons are used in each N N . The final 

relation is the ensemble average over 25 NNs. The cross-validation scheme described in 

Chapter 2.3.2 is used to obtain each empirical equation of the 25 NNs to ensure that no 

training data are used for testing the prediction skills. A total of 12 ensembles of NNs are 

needed to reconstruct the 3 leading PCs of the 4 prognostic variables from H C A . (3) As 

the observed heat content is the integral of the temperatures over the upper 400 meters, 

while the model HC is defined as the integral of the temperatures over the first two layers 

(275 meters), the observed H C A values are scaled to match the standard deviation of the 

model H C A before being assimilated. 
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Figure 5.3: Scatter plot of the first P C of the H C A versus (a) the second P C of the 
SSTA, and (b) the first PC of the H2A, the thickness anomahes of the second layer. The 
observations are shown as dots, the N N relation is indicated by the small circles and the 
linear regression by the straight line. 

Fig. 5.3 depicts some of the empirical relations between the first H C A P C and the PCs 

of the prognostic variables, showing that the nonhnear NNs better represent the relations 

than hnear regression. The sum of squared error from the N N simulations are about 15% 

and 6% lower than those from the linear simulation in Fig. 5.3a and b respectively. 

Next, we perform a consistency check: H C A from the control run was used to estimate 

the prognostic variables, which were then used to recompute H C A using (2.4). Fig. 5.4 

shows a time-longitude plot of the H C A along equator during 1980-1998, taken from 

observations, control run and recomputed from the prognostic variables. As shown in 

Fig. 5.4c, the recomputed H C A agreed well with the original control run values, and both 

agreeing fairly weU with the observed values. 
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Figure 5.4: Time-longitude plots of the ocean heat content anomalies along the equator 
during 1980-1998 from (a) the observations and (b) the control run. (c) The H C A 
calculated from the prognostic variables estimated by the cross-validated ensemble N N 
model using (b) as predictors. Values prior to 1980 are not shown, as the quality of the 
observed HC is poor. 
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5.3.4 Assimilation strategies 

Because two different classes of data, i.e. oceanic data and wind stress data, are as­

similated into the numerical model, two different strategies need to be applied. For the 

oceanic data (SST, SSHA and H C A ) , the assimilation is performed only for ocean model. 

As the SSHA data starts from 1980 only and the H C A data has relatively poor quahty 

prior to 1980, aU assimilation experiments are therefore set to start from 1980. As in 

the control run, the ocean model is forced with observed F S U wind stress, but monthly 

oceanic data are assimilated during the 'hindcast' period, January 1980-December 1989, 

and the 'forecast' period, January 1990-October 1998. Predictions are then made by 

running the coupled model forward in time from the established ocean initial conditions 

for 15 months. For the wind stress data, the assimilation is carried out for the hybrid 

coupled model. The observed FSU wind stress are assimilated into the N H C M for 6 

months before letting the N H C M to proceed with the 15-month prediction run. The 

assimilation domain is confined to the equatorial belt, 15°S - 15°N. 

Decadal dependence of ENSO predictability has been found in many ENSO forecast 

models (e.g. Balmaseda et al. 1995; Chen et al. 1997; Fhigel and Chang 1998). While 

aU models generally have very good forecast skiUs in the 1980s, they tended to have 

lower skills in the 1990s— even with an improved initialization strategy (Chen et al. 

1997). This might be caused by decadal changes in the mean state that could lead to 

the decadal variability of ENSO (e.g., Wang 1995; Zhang et al. 1997). We will study the 

skill differences between the 1980s and the 1990s. 

5.4 Impact of data assimilation on ENSO simulation 

First, we will examine the impact of data assimilation on ENSO simulation in the 1980s 

and 1990s. The ocean data was continuously assimilated into the ocean model during 



Chapter 5. Impact of data assimilation on ENSO simulations and predictions 115 

1980-1989 and 1990-1998 so that a continuous assimilated ocean field from 1980-1989 

and 1990-1998 can be obtained. In contrast, for the wind stress data, the assimilation 

was carried out by repeatedly integrating the coupled model for 6 months prior to each 

forecast, hence there is not a continuous assimilated field. So our discussions are restricted 

to ocean data assimilation in this section. As the assimilated ocean fields are also the 

initial fields of the predictions to be discussed in the next subsection, the following 

analyses will actually explore the features of the initial fields for the predictions. 

The correlations between the observed tropical Pacific SSTA and the modeled SSTA 

with or without data assimilation are shown in Fig. 5.5 and Fig. 5.6 for the 1980s and 

1990s, respectively. For the 1980s, the simulations with data assimilations are generally 

better than that without data assimilation (Fig. 5.5a). The most pronounced improve­

ment in the tropic Pacific SSTA simulation is from SST assimilation (Fig. 5.5b), with 

high correlation (over 0.8) between observations and simulations for the whole assimi­

lation domain. Since the model simulations are compared to the same data that were 

assimilated, it is not surprising that such a high correlation was achieved. For H C A 

assimilation, the improvement is less than with SST assimilation but is stiU considerable 

(Fig. 5.5d). The assimilation of SSHA brought httle improvement to the simulation. 

The correlation skills from the 1990s (Fig. 5.6) share similar features to those in the 

1980s, i.e. SST assimilation has the best skills, followed by H C A assimilation, while SSHA 

assimilation contributed almost nothing to improve the simulation. 

Comparing the 1990s (Fig. 5.6) with the 1980s (Fig. 5.5), one notes that the cor­

relation skills of SSTA simulation dropped in the 1990s for all cases with and without 

data assimilation. The skill improvements from data assimilation in 1990s is less obvious 

than in the 1980s. For example, the 0.8 correlation skills with SST assimilation are only 

confined to 10°S-5°N in the 1990s, in contrast to the 1980s, where the 0.8 correlation 

can be found over the whole assimilation domain (15°S-15°N). In the 1980s, the H C A 
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Figure 5.5: Correlations between the observed tropical Pacific SSTA and the SSTA from 
the ocean model forced by the FSU wind during 1980-1989, (a) without data assimilation, 
(b) with SSTA assimilation, (c) with SSHA assimilation, and (d) with H C A assimilation. 
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Figure 5.6: Correlations between the observed tropical Pacific SSTA and the SSTA from 
the ocean model forced by the F S U wind during 1990-1998, (a) without data assimilation, 
(b) with SST assimilation, (c) with SSHA assimilation, and (d) with H C A assimilation. 
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assimilation seems to have a remote impact, as correlation up to 0.6 can be found outside 

the assimilation belt (Fig. 5.5d). In contrast, such remote impact cannot be found in the 

1990s for all ocean data assimilation. 

Fig. 5.7 shows the evolution of the observed and modeled SSTA in the Ni£io3 region. 

The correlations between the modeled and observed SSTA in the 1980s are 0.73 for the run 

without data assimilation, 0.93 for SST assimilation, 0.74 for SSHA assimilation and 0.79 

for H C A assimilation, in contrast with the values of 0.76, 0.91, 0.76 and 0.77 respectively, 

in the 1990s. While all assimilation runs captured the major observed ENSO events, the 

H C A assimilation has the better capability for generating the anomalous extremes than 

SSHA assimilation and the run without assimilation although it sometimes exaggerates 

the extrema. The common deficiencies for all models (except that with SST assimilation) 

are the delay in simulating the occurrence of the 1982-83 warm event (Balmadesa et 

al. 1994), and the relatively weak simulated amplitude for the 1997 event. But the 

phase delay in 1982 and the weak amplitude in 1997 were much alleviated with H C A 

assimilation. 

In summary, assimilating several types of data can all benefit the ENSO (Niho3 

SSTA) simulations in the 1980s, with the best simulation skills appearing in SST as­

similation, followed by H C A and then SSHA. However, in 1990s, their contributions to 

ENSO simulation seem very minor except for the SST assimilation. 

5.5 The impact of data assimilation on ENSO prediction 

Next we examine the predictions by the N H C M . A total of 40 prediction runs were made 

from April 1964 to January 1990 (the 'hindcast' period) and 35 prediction runs from 

Apri l 1990 to October 1998 (the 'forecast' period), starting at three months intervals (1 

January, 1 April , 1 July, 1 October), and continued for 15 months. 
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Figure 5.7: Time evolution of observed and modeled Nino3 SSTA during January 
1980-December 1997. Solid line denotes observed SSTA in all figures and dash hne is 
from the ocean model run (a) without assimilation, (b) with SST assimilation, (c) with 
SSHA assimilation, and (d) with H C A assimilation. 
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Fig. 5.8a shows the N H C M predictive skills with and without data assimilation during 

1980-1990, where the predicted Niho3 SSTA is compared against the observed values. 

Compared with the persistence skill (not shown), all predictions beat persistence at lead 

times greater than 2 months. In particular, SST assimilation beat persistence at all 

lead times. Generally, except for the predictions with SST assimilation, all suffer an 

initialization shock in the first 2 months, leading to lower skill than persistence. The 

prediction skills with the assimilations of SSHA and wind stress varies in a similar way 

with lead time, i.e. they rapidly decline with lead time, reaching a minimum at 9 months, 

beyond which their skills rebound and stabilize till a lead time of 14 months— in contrast 

to the predictive skills with the assimilations of SST, which basically simply decline with 

lead time. The best overall predictive skills were attained by H C A assimilation, with a 

correlation skill of above 0.7 at a lead time of 14 months. The wind-stress assimilation 

generated the second best performance with correlation of over 0.6 at a lead time of 14 

months. SSHA assimilation, which did not contribute any additional skill at lead times 

under 6 months, was the third best at long lead times (10-15 months). Finally, SST 

assimilation which did best at 1-2 month lead times, finished last at long lead times, 

even worse than the predictions without data assimilation (which have correlations of 

above 0.5 at lead times of 10-14 months). 

For 1990-1998, Fig. 5.8b shows the skill improvements with data assimilation to be 

considerably less impressive than in the 1980s (Fig. 5.8a). Overall, H C A assimilation 

remained the best. SSHA assimilation, like in the 1980s, was consistently ahead of the 

predictions without assimilation at all lead times. Wind stress assimilation, unlike the 

1980s, failed to beat predictions without assimilation at lead times of 12 months and 

beyond. SST assimilation again finished last at long lead times. 

Overall, the predictions with H C A assimilation are significantly better than the pre­

dictions without assimilation. Wind-stress assimilation is generally the second best, 
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Figure 5.8: Correlation between observed and predicted SST anomalies in the Niho3 
region, as a function of lead time for (a) the 1980s and (b) the 1990s. Solid line is from 
the prediction without data assimilation. The correlation from the predictions with data 
assimilations are shown by the dash hne for the wind stress assimilation, asterisks for 
SST assimilation, dot-dash for SSHA assimilation and circles for H C A assimilation 
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followed by SSHA assimilation, which shows some improvements over the predictions 

without assimilation, but not as much as found by Chen et al. (1998) and Fischer et al. 

(1997). 

The physical basis for ENSO prediction is that a delayed oscillator operates over the 

equatorial western Pacific and the equatorial eastern Pacific, as discussed in many studies 

(e.g. Schopf and Suarez 1988; Battisti 1988), which requires a phase shift between the 

upper ocean heat content variation in the equatorial western Pacific (Nifio4 region) and in 

the equatorial eastern Pacific (Niho3 region), with the variations in Niho4 leading those 

in Niho3. The ENSO forecast skills depend highly on how strong the phase shift relation 

is and how long the lag is. Fig. 5.9 shows the correlation between the monthly mean 

H C A in Nifio3 and Niho4 as a function of the time lag. As shown in Fig. 5.9b, for the 

observed H C A , the positive correlation coefficients are significantly higher in the 1980s 

than in 1990s for lags longer than 10 months, implying ENSO events could be predicted 

more accurately at long lead times in the 1980s than in the 1990s. In Fig. 5.9a, for the 

model with H C A assimilation, the positive correlations at positive phase lags are much 

higher in the 1980s than in the 1990s, indicating that the delayed oscillator mechanism 

was much stronger in the 1980s. Both Figs. 5.9a and b point to the 1990s as a period 

of lower forecast skills, and a period where assimilating H C A did not provide as great a 

boost in forecast skiUs as in the 1980s. 

The difference in prediction skills between the 1980s and the 1990s is not due to our 

having split the record into a 'hindcast' period (up to 1989) and a 'forecast' period (1990 

onward) when we built our empirical model— as we tested another empirical model built 

with the observational data of 1980-1998, which still manifested the decadal difference 

in assimilation skills. What could be the cause for this difference of predictive skills 

between in 1980s and 1990s? It has been found in many studies that very persistent 

anomahes have occured in a number of Pacific oceanic and atmospheric variables in 
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Figure 5.9: (a) Correlation between the monthly mean heat content anomalies in the 
Niho3 and Niho4 regions as a function of time lag between the two time series, with 
H C A from (a) the model with H C A assimilation and (b) observations. Dashed line is 
for the 1980s and solid line for the 1990s. A positive time lag means that the signal in 
Niho4 is leading the signal in Niho3. 
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1990s, which is associated with the decadal dependence of ENSO predictability (Kleeman 

et al. 1996; Latif et al. 1997; Ji . et al. 1996). Perhaps, the most striking of such 

anomalies has been SST and wind stress, characterized by persistent large-scale positive 

SST anomalies in the tropical Pacific and a weakening of the trade winds. A quite large 

positive anomaly also exists at 55 ° N off the Canadian west coast in contrast a cooling in 

the North Pacific. Corresponding to the changes in the ocean, many atmosphere variables 

also display persistent anomalies in 1990s, e.g the strongly enhanced convection in the 

equatorial dateline region, enhanced ITCZ and deepened Aleutian low and consistently 

negative Southern Oscillation Index (SOI) etc.. However it is still an open question how 

the persistent large-scale anomalies of ocean and atmosphere in 1990s affect the ENSO 

prediction skills. 

The predictions of the SSTA along the equator from various assimilation experiments 

are plotted in time-longitude diagrams as shown in Fig. 5.10 for the 1982/83 E l Nino. 

The predicted values at each grid point have been scaled to match the observed standard 

deviation at that grid. Compared with the observed SSTA, all experiments successfully 

predicted the anomalous warming in the equatorial central-eastern Pacific. However, 

except for the experiment with SST assimilation and that with wind stress assimilation, 

the other experiments all had an unrealistic, cool western equatorial Pacific, especially 

for the H C A assimilation experiment. 

In terms of the timing of the ENSO start, peak and decay, the experiment with H C A 

assimilation seems to be best. The experiments assimilating SST and wind-stress had the 

warming starting earlier than observed. The experiment assimilating SST and to a lesser 

extent, that assimilating SSHA did not decay much even by March, 1983. Compared 

with observations, the warming in the models are generally weaker at peak amplitude 

and too narrowly confined to between 110°W-150°W (except the one assimilating SST). 

Fig. 5.11 shows the time-longitude diagram of predicted SSTA along the equator for 
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Figure 5.10: Time-longitude diagrams of predicted SSTA along the equator for several 
assimilation experiments for the 1982/83 warm event. The predictions are all initialized 
on January 1, 1982. For comparison, the observed SSTA and the SSTA from the model 
without data assimilation are shown. The ordinate with values 1 to 15 is the calendar 
month from January 1982 to March 1983. 
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the 1988/89'La Nina. A l l assimilation experiments predicted the anomalous coohng in 

the equatorial eastern Pacific, but the coohng was too weak in the SST assimilation ex­

periment, and too strong in the SSHA and wind stress assimilation experiments. The 

H C A assimilation experiment had generally the best performance, as it successfully pre­

dicted two separate coolings, centered around July 1988 and December 1988, found also 

in the observations around June 1988 and November 1988. The models all had spurious 

warming in the western equatorial Pacific. 

For the 1997 E l Nino (Fig. 5.12), all experiments predicted weU the start time for 

this very strong event. The best performance was attained by H C A assimilation, which 

not only predicted well the peak time, decay time and the amplitude, but also avoided 

spurious coohng in the west, as found in most of the other experiments. SSHA assimila­

tion also predicted well the mature time, decay time and the amphtude but had strong 

spurious cooling in the west. Again, aU predicted warmings were a little too narrowly 

confined around 120°W, when compared with observations. 

In summary, a 3D var assimilation system was developed to investigate the impact of 

assimilating different types of data on ENSO simulations and predictions. The data ex­

plored were the sea surface temperature (SST), sea surface height anomahes (SSHA), 

wind stress, and the upper ocean 400 meter depth-averaged heat content anomahes 

(HCA) during 1980-1998. Neural network (NN) techniques have been used to relate 

data for the diagnostic variables (e.g. HCA) to prognostic variables in the model, so that 

the assimilation of non-prognostic data can be performed. Overall, H C A assimilation is 

the best in improving the prediction skills for lead times greater than 5 months. The 

improvement from SST assimilation is the best only for lead time of 4 months or shorter; 

at longer lead times, SST assimilation degrades the predictions. Wind-stress assimilation 

is generally the second best for lead times 6 months or longer, SSHA assimilation gen­

erally produces prediction skills only shghtly better than the experiment without data 
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F i g u r e 5.11: Same as i n F i g . 5.10 but for the 1988/89 cool event. T h e p r e d i c t i o n was 

i n i t i a l i z e d on J a n u a r y 1, 1988 
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Figure 5.12: Same as in Fig. 5.10 but for the 1997 warm event. The prediction was 
initialized on January 1, 1997 
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assimilation. 



Chapter 6 

Constructing hybrid coupled models via 4-D variational data assimilation 

6.1 Introduction 

In Chapter 2, two statistical atmospheric models were constructed using hnear regression 

and neural network, based on a traditional procedure: assuming a function form relating 

predictors (oceanic HC) to predictands (wind stress), the parameters in the function 

are estimated by optimally fitting data. The dynamics in the ocean are ignored in 

constructing the atmospheric model, which might lead to inconsistencies between the 

atmosphere model and the ocean model in dynamical couphng, leading to prediction 

errors. Is it possible to construct statistical relations while satisfying the dynamical 

constraints? 

4D variational data assimilation provides a good technique for optimization under 

dynamical constraints. It has become popular in assimilating data into numerical models 

(Daley 1991; Ghil and Malanotte-Rizzoli 1991; Bennett 1992; Navon 1998). The method 

is commonly used to optimally estimate model parameters or initial conditions, and is 

being implemented in operational weather and climate prediction models (e.g., Zhu and 

Navon 1999; Gauthier et al. 1999; Courtier et al. 1998). 

The objective of this chapter is to estimate a statistical equation subject to the 

constraints of the dynamical equations of the system. As the dynamical equations in 

meteorology and oceanography are generally nonlinear, N N is used to model the statistical 

relation. 

130 
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The chosen dynamical model is the simple Lorenz (1963) model, with 3 variables, aris­

ing from the Fourier truncation of the Rayleigh-Benard equations describing atmospheric 

convection. In the field of data assimilation, the celebrated Lorenz model has served as a 

test bed for examining the properties of various data assimilation methods ( Miller and 

Ghil 1990; Gauthier 1992; Miller et al. 1994; Evensen 1997) as the Lorenz model shares 

many common features with the atmospheric circulation and climate system in terms of 

variability and predictability (Palmer 1993). By adjusting the model parameters which 

control the nonlinearity of the system, the model can be used to simulate near-regular 

oscillations or highly nonlinear fluctuations. 

This chapter is structured as follows: Section 6.2 describes the hybrid Lorenz model, 

while section 6.3 shows some simple experiments involving the hybrid model. Section 6.4 

gives a general formulation for coupling a N N to a dynamical model via variational data 

assimilation. Section 6.5 uses variational assimilation to estimate the N N parameters in 

the hybrid Lorenz model. Section 5.6 studies not only estimating the N N parameters, 

but also retrieving the dynamical model parameters and initial conditions. 

6.2 Hybrid neural-dynamical Lorenz model 

The non-dimensionalized Lorenz (1963) nonlinear system of 3 differential equations is 

dX 

dY 

^- = XY- cZ. (6.3) 
dt 

where variables X, Y, and Z are related to the intensity of convective motion, and 

the temperature gradients in the horizontal and vertical directions respectively. The 

Jx =-aX + aY, (6.1) 
dt 

= -XZ + bX-Y, (6.2) 
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parameters a, b and c will be referred to as dynamical parameters, in contrast to the 

empirical parameters of the N N model. 

The so-caUed observed data or true data are from the integration of the Lorenz 

equations (6.1)-(6.3) over 15,000 time steps at a step size h of 0.001, using a fourth-

order Runge-Kutta integration scheme. As this system is very sensitive to changes in 

the initial conditions and model parameters, two cases are studied (Fig. 6.1): The first 

case, called the weakly nonlinear case, with the parameters a, b and c set to 10, 28 and 

8/3 respectively, and initial conditions for (X, Y, and Z) to (-9.42, -9.43, 28.3) (as in 

Gauthier 1992), displays near-regular oscillations with a graduaUy increasing amphtude 

in the devised integration period. The other case is the highly nonlinear case, with a, b 

and c set to 16.0, 120.1 and 4.0 respectively (as in Eisner and Tsonis 1992), and initial 

conditions to (22.8, 35.7, 114.9). 

Next we assume the third Lorenz equation is unavailable, and we must approximate 

it empiricaUy with an N N equation. Our hybrid model thus consists of: 

^ = -aX + aY, (6.4) 
at 

dY 
— = -XZ + bX-Y, (6.5) 
at 

^ = NN(Xt,Yt,Zt). (6.6) 

where NN is a feed-forward N N model (Hsieh and Tang 1998). Xt, Yt and Zt are the 

3 input neurons (also denoted by V{, i = 1,2,3), inputting the values of X, Y and Z at 

time t, and the single output neuron is dZ/dt. 

6.3 Simple hybrid model experiments 

A simple-minded approach to the missing third Lorenz equation, is to use data to get 

the N N (6.6), and then integrate (6.4)-(6.6), with (6.6) as a replacement for the missing 
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F i g u r e 6.1: T h e L o r e n z sys tem in tegra ted over 15000 t ime steps for the w e a k l y non l inear 
case (left co lumn) and the h igh ly nonl inear case (right c o l u m n ) . 
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Lorenz equation. The N N has X, Y, and Z as the inputs and (Zt+1 — Zt)/h as the target 

during training (with the optimization minimizing the M S E between the target and the 

model output), so the model output is approximately dZ/dt. The optimization of the N N 

model was determined over a training period of 3000 time steps, and the following period 

of 1000 time steps was used to independently test the N N model skills in estimating 

dZ/dt. The appropriate number of neurons in the hidden layer is chosen based on the 

trade-off between under-fitting (too few neurons) and over-fitting (too many neurons) as 

in Chapter 2. After trying models with different numbers of hidden neurons, we found 

that 5 hidden neurons yielded the best skills over the test period. 

To alleviate the instability problems associated with N N modelling (Hsieh and Tang, 

1998), an ensemble of 25 identical NNs were trained with random initial weights and 

biases, with the outputs from the 25 NNs used to provide an ensemble mean output. 

The skills of the ensemble mean generally exceeded the skills of an individual member 

(Hsieh and Tang 1998). The ensemble mean N N simulations of dZ/dt for both the weakly 

nonhnear and the highly nonlinear cases during the training period and the test period are 

shown in Fig. 6.2, where the N N gave good simulations of dZ/dt, although the oscillation 

peaks were underestimated. 

Now that the third Lorenz equation seems to be reasonably approximated by the 

N N (6.6), we proceed to integrate the hybrid system (6.4)-(6.6) from perfect initial 

conditions and compare the output with respect to that from the true Lorenz system 

(6.1)-(6.3). This simple-minded hybrid approach worked reasonably well in simulating 

the true Lorenz system for the weakly nonlinear case (Fig. 6.3), but failed completely 

for the highly nonlinear case, where the hybrid model yielded X and Y values which 

were off by orders of magnitude. The highly nonhnear Lorenz system is known for its 

extremely high sensitivity to perturbations. Clearly, the N N approximation to the third 

Lorenz equation introduced significant errors in Z, which quickly caused the X and Y 
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F i g u r e 6.2: T h e ensemble m e a n of 25 N N s (dot-dash curve) for a p p r o x i m a t i n g the t h i r d 
L o r e n z equa t ion (sol id curve) for the weak ly nonl inear case (left co lumn) a n d the h i g h l y 
non l inear case (right c o l u m n ) . Top panels (a) and (b) are for the t r a i n i n g p e r i o d of 3000 
t i m e steps, and b o t t o m panels (c) and (d) for test p e r i o d of 1000 t i m e steps. 
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Figure 6.3: The hybrid model (dot-dash curve) and the true Lorenz model (solid curve) 
integrated from identical initial conditions for the weakly nonhnear case (left column) 
and the highly nonlinear case (right column). 

values to deviate far off course. 

The defect of this simple approach lies in the fact that the optimization of the N N 

was achieved without imposing the dynamical constraints of (6.4) and (6.5). A better 

approach is variational assimilation, where the dynamical constraints are imposed. 

6.4 The hybrid model using variational data assimilation 

The scalar equations (6.4)-(6.6) can be expressed as a vector equation: 
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^ = f ( v , P > 0 (6.7) 

where v is the vector denot ing (X,Y,Z), and p is the paramete r vec tor ( w h i c h c o u l d 

con t a in the parameters o f the N N or o f the d y n a m i c a l equat ions) . 

T h e va r i a t i ona l ass imi la t ion m e t h o d involves m i n i m i z i n g a quadra t i c cost f unc t i on J 

subject to m o d e l const ra int (6.7), where J is defined as 

J ( v , p , v 0 ) = [T D{v,t)dt (6.8) 
Jo 

D= ( v - V o b . y ' W - ^ v - V o b . ) (6.9) 

where the subscr ip t obs denotes the observed values, the superscr ip t tr the t ranspose, 

T the l e n g t h of the ass imi la t ion w indow (also ca l led t r a i n i n g pe r iod ) , Vo the i n i t i a l 

cond i t ions , a n d W the covariance m a t r i x of the measurement errors, assumed here to 

be d iagona l . 

I n t roduce the Lagrange func t ion L, 

L = J+ [T

v*tr[^-f}dt (6.10) 
Jo at 

where v*(i) is a vector of Lagrange mul t ip l i e r s (or adjoint var iables) . A f t e r i n t eg ra t ion 

by par ts , L becomes 

TT r1v*tr 

L = [ v * % £ + Jo[D- ( — v + v*trf)]dt (6.11) 

T h e first order va r i a t ion of L is 

SL = [v*tr8v}l + / [ V v M v - [ ( -77 - ) < r Jv + (5-)* pv'*v + (?-)trv*8p}dt (6.12) 
Jo at ov ap 

T h e h y b r i d adjoint m o d e l can be ob ta ined by le t t ing 8L/8v = 0: 
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v*(T) = 0. (6.14) 

According to (6.13) and (6.14), the formulas for computing the gradients of J with 

respect to p and v 0 can be obtained by differentiating (6.12) with respect to these un­

knowns (Lu and Hsieh 1998): 

< 6 1 5 > 

r j 
^ = - V ( 0 ) . (6.16) 

Details of the variational assimilation are given in Appendix B . 

As the above assimilation process, also referred to as the training process, is com­

pletely subject to the model (6.4)-(6.6) after the initial guesses are given, it is caUed the 

strong continuity constraint assimilation scheme (SC). 

6.5 Determining N N parameters via variational assimilation 

In this section, we determine the N N parameters, i.e., the weights and biases, in the 

hybrid model by variational data assimilation. A N N with 5 hidden neurons is used. 

Preliminary experiments are done in Section 6.5.1 and 6.5.2 to determine the best first 

guesses and assimilation window sizes, respectively, before the main experiments are run 

in Section 6.5.3. In this section, all experiments were performed with perfect initial 

conditions and dynamical parameters a and b. 

6.5.1 The initial guesses 

Whether an assimilation process is successful depends greatly on the choice of the first 

guesses. To help get a good initial guess, two assimilation schemes are introduced in 
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addition to the SC scheme. Under SC, at each step of the integration, the initial con­

ditions are the model outputs from the previous step (Fig. 6.4a). In the no continuity 

constraint assimilation scheme (NC), at each integration step, the initial conditions are 

the observed data, rather than the model output from the previous step (Fig. 6.4b). 

Between these two extremes, we can have the partially strong continuity constraint 

assimilation scheme (PSC) (Fig. 6.4c), where the assimilation window T is divided into 

smaUer assimilation segments (AS). Within each AS, integration at each step uses the 

model output from the previous step as the initial conditions. Only at the start of the 

AS, are the data used directly as the initial conditions. Both SC and NC can be regarded 

as special cases of PSC, where the AS is T in SC and 1 time step in NC. 

The reason for introducing NC and PSC is that using SC without good initial guesses 

generally does not lead to successful assimilation over a long assimilation window. Chop­

ping the window into shorter AS means that the dynamic model constraints are no longer 

imposed over a long period, thereby making the nonhnear optimization a much easier 

task. Our strategy is to divide the assimilation process into 2 stages: (a) use less de­

manding schemes such as NC and PSC to obtain reasonable parameters estimate, which 

will then be used as initial guesses in (b) the full variational assimilation under SC. 

For the weakly nonlinear case, the NC assimilation scheme was first applied to the 

hybrid model (6.4)-(6.6), with initial guesses for the N N parameters taken randomly from 

one of the 25 NNs in Section 6.3. The assimilation window is 3000 time steps. The N C 

scheme can produce good results during the training period but poor skill during the 

test period (Fig. 6.5). Since the AS is very short (1 time step) in the N C scheme, the 

initial values at each integration step vastly outweigh the importance of the dynamical 

constraints, hence the poor skill during the test period. However the result from the N C 

can provide reasonable first-guesses for the following PSC. 

A series of PSC assimilations with AS = 100, 200, 500 and 1000 time steps was 
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Figure 6.4: Schematic diagram for the (a) SC (Strong Continuity constraint), (b) N C (No 
Continuity constraint) and (c) PSC (Partial Strong Continuity constraint) assimilation 
schemes. The solid curves are the model trajectory, dots, the observed values and dash 
lines, the model errors to be minimized. Here a model trajectory starts from an observed 
value. 
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F i g u r e 6.5: T h e N C ass imi la t ion results , w i t h the m o d e l t r a i n i n g results shown o n the left 
panels , a n d pred ic t ions over the test pe r iod on the r ight panels; where the sohd curves 
show the t rue da t a and dot-dash curves the outputs of the h y b r i d m o d e l . T h e do t -dash 
curves over lap the sol id curves i n the left panels. 
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performed with the hybrid model (in the weakly nonhnear case) to gradually improve 

the first guesses to be used in the stage (b) SC assimilation. A longer AS increases 

the importance of dynamical constraints relative to initial conditions in influencing the 

model outputs. The first guesses of the N N parameters in a PSC experiment are the 

parameters obtained from the previous PSC experiment with the shorter AS. The first 

PSC experiment (not shown) with AS = 100 time steps uses the results from the N C 

case (i.e. AS = 1 time step) for its first guess. 

The PSC assimilation over the training period, i.e. a window of 3000 time steps, with 

AS = 200 time steps (Fig. 6.6), and AS = 1000 time steps (Fig. 6.7), reveal that the test 

skills improved with the increase of the AS. The parameters estimated from the PSC 

experiment with AS= 1000 time steps will serve as the first guess for the stage (b) SC 

assimilation (in the next Section) for the weakly nonhnear case, where the assimilation 

window is also taken to be 1000 time steps. 

This approach of using a series of PSC assimilations to improve on the parameter 

estimates to be used as initial guesses in the stage (b) SC assimilation did not work 

for the highly nonhnear case. Unlike the weakly nonhnear case, the first guesses from 

PSC, if found, is only effective for a specific experimental configuration (e.g. AS, window 

length, etc.). Hence, for the highly nonhnear case, the parameters estimated from the 

N C assimilation over 3000 time steps are directly used as the first guesses for the stage 

(b) SC assimilation. 

6.5.2 Impact of assimilation window in the highly nonlinear case 

The greatest difficulty in variational assimilation, namely the presence of multiple min­

ima in the cost function arising from the nonhnearity of the problem, often renders the 

problem intractable. The number of local minima dramatically increases with the window 

T for a strongly nonlinear dynamical system. Gauthier (1992) and Miller et al (1994) 



Figure 6.6: The PSC assimilation results with AS= 200 time steps. The model training 
results are shown on the left, and model predictions on the right, with solid curves for 
the true data and dot-dash curves for the outputs of the hybrid model. 
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have shown with the Lorenz model that variational assimilation is effective only for suf­

ficiently short windows. In the weakly nonlinear case (Section 6.5.1), T did not have 

a major impact; hence, the following discussion will only focus on the highly nonhnear 

case. 

To study the impact of the window, SC assimilation experiments were performed, 

where T was varied between 100, 300, 500 and 800 time steps. For each T, 10 experiments 

were performed with the same first guess, but the assimilation periods were shifted by 

100 time steps between one experiment and the next. 

The effect of T on the assimilation is different for training period (Fig. 6.8a) and 

the test period (Fig. 6.8b). With a short window (T = 100 time steps), the correlation 

skills were excellent for all 3 variables during training, but yielded no prediction skiUs 

over the following test period of 300 time steps. As T increased to 300 time steps and 

then 500 time steps, there were increases in the prediction skills (Fig. 6.8b), but as T 

increased to 800, the prediction skill dropped sharply, as the problem with local minima 

in the cost function worsened with increasing T. Hence in the following SC assimilation 

experiments, the window will be 500 time steps for the highly nonhnear case, and 1000 

time steps for the weakly nonhnear case. FoUowing the training (assimilation) period, 

there is a test period of 300 time steps for the highly nonhnear case, and 1000 time steps 

for the weakly nonlinear case. 

6.5.3 SC assimilation 

We now perform the main SC assimilation experiments, repeated 100 times, to examine 

the skills of the hybrid model for the weakly nonhnear and highly nonhnear cases. The 

choices of windows and first guesses are those found in Sections 6.5.1 and 6.5.2. The 100 

experiments are implemented with their assimilation periods shifted by 100 time steps 

from one experiment to the other. 
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Var iab les 

Figure 6.8: Correlation skills (averaged over 10 experiments) for the variables X, Y and 
Z at various assimilation windows (T = 100, 300, 500 and 800 time steps) during (a) the 
training period, and (b) the test period. 
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For the weakly nonlinear case, the average correlation between model and data (over 

100 experiments) exceeds 0.96 for each of X, Y and Z during both the training period 

and the test period (Fig. 6.9a). The relative estimate error, R E E , i.e. (estimated 

value - true value) 2/ (true value)2) is very small, less than 0.004 (Fig. 6.9b). Thus, via 

variational assimilation, a hybrid model has successfuUy reconstructed the Lorenz model 

in the weakly nonlinear case. For comparison, the results of the simple hybrid model 

without data assimilation from Section 6.3 are also show in Fig. 6.9. The improvement 

due to variational data assimilation is dramatic for X and Y. 

In contrast, the highly nonlinear case has much lower skill. During training, the skills 

were good- 80% of the experiments had correlation above 0.75, and 60% had R E E under 

0.05 (not shown). However, during the test period, the correlation skiU and R E E attained 

were much poorer (Fig. 6.10). 

Generally, for the highly nonlinear case, there were three classes of assimilation results 

found in the 100 experiments. A typical example of the class 1 results is shown in Fig. 

6.11, showing successful assimilation. About 15% of the total experiments are of this 

class. Almost 60% of the total experiments belong to a class 2 of moderately successful 

assimilation, as illustrated by the example in Fig. 6.12, where during the test period, 

the forecast skills were fairly good for the first 200 time steps. The remaining 25-30% 

of the experiments belonged to a class 3 of failed forecasting, as illustrated in Fig. 6.13, 

where despite excellent fitting during the training period, the forecast results were totally 

wrong. 

To see why there is a drastic difference between class 1 and class 3 behaviour, we 

plotted the system trajectories of the two cases in the X — Y — Z space (Fig. 6.14). The 

Lorenz attractor for the highly nonhnear case is known to have a 'butterfly' shape with 

two wings. In the class 1 experiment, both wings of the Lorenz attractor were covered 

by the training data trajectory. In contrast, with the class 3 example, the training data 
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Figure 6.9: (a) Correlation skills and (b) R E E for the variables X, Y and Z during the 
training and test periods (averaged over 100 experiments), for the weakly nonlinear case, 
where the SC assimilation retrieves the N N parameters. The error bars show the standard 
deviation. Results from the simple hybrid model without data assimilation (Section 3) 
are also shown for comparison. 
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trajectory resided in one wing. The system then evolved to the other wing during the 

testing period. As the model had never been trained with data from the second wing, it 

obviously could not forecast properly in that regime, hence the disastrously poor forecast 

results found in Fig. 6.13. Thus the bimodality of the highly nonlinear Lorenz system 

created cases where the training data covered only one wing of the attractor, and the 

model thus trained had no capability of forecasting the transition to the other wing. 

One would be tempted to think that the problem could be corrected by simply using 

longer training periods, so that the full Lorenz attractor would have been learned by 

the model. Unfortunately, a longer training period greatly increases the difficulty in 

the nonlinear optimization due to multiple local minima in the cost function, leading 

eventually to the failure of the variational assimilation method. 



Figure 6.10: Bar charts from 100 assimilation experiments for the highly nonhnear case 
showing the number of experiments with (a) correlation above a particular correlation 
level and (b) R E E below a particular R E E level, during the test period. 
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F i g u r e 6.11: A t y p i c a l exper iment w i t h class 1 results for the h i g h l y non l inear case, 
showing (a) the fitting d u r i n g the t r a in ing pe r iod (left panels) a n d (b) the forecast ing 
d u r i n g the tes t ing p e r i o d (right panels) . Sohd curves denote the t rue value, wh i l e dot-
dashed curves denote m o d e l results . 
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F i g u r e 6.12: Same as F i g . 6.11 but for a t y p i c a l exper iment w i t h class 2 (i.e. m o d e r a t e l y 
successful forecast) results . 
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F i g u r e 6.13: Same as F i g . 6.11, but for a t y p i c a l exper iment w i t h class 3 (i.e. unsuccessful 
forecast) resul ts . 
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F i g u r e 6.14: T h e sys tem trajectories i n the X — Y — Z space d u r i n g the t r a i n i n g p e r i o d 
( t h i n curves) and the tes t ing p e r i o d ( th ick curves) for (a) the class 1 expe r imen t a n d (b) 
the class 3 expe r imen t . 
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6.6 Determining dynamical parameters and initial conditions by the hybrid 

model 

In variational data assimilation, parameters and initial conditions can be jointly estimated 

(e.g., Le Dimet and Talagrand 1986; Tziperman et al 1989; Lu and Hsieh 1998; Zhu 

and Navon, 1999). I next conducted an experiment, for the weakly nonlinear case, to 

estimate simultaneously the dynamical parameters a and 6, and the initial conditions of 

X,Y and Z in the hybrid Lorenz system (6.4)-(6.6). The N N from Section 6.5.1 (i.e. 

PSC assimilation with AS = 1000 time steps) was used. 

For the initial guess, a and b and the initial conditions were all scaled down by 10% 

from their true values. The result of retrieving the 2 parameters and 3 initial conditions 

by the hybrid model with an assimilation period of 3000 steps under SC showed the 

retrieval to be very good, as the REEs were all of the order of 1 0 - 3 - 10~4 (not shown). 

Next the true values were scaled down by 20% to provide the initial guesses, and the 

retrieved results were still generally good (Fig. 6.15). But when the initial values were 

the true values scaled down by 30%, the retrieval nearly failed (not shown). 

Next, we had the N N parameters retrieved as well during the assimilation, i.e. we 

conducted 100 additional SC experiments to estimate simultaneously the N N parameters, 

the dynamical parameters a and b, and the initial conditions of X, Y and Z, for the weakly 

nonlinear case. The first guess for the initial conditions and the parameters a and b were 

simply the true values scaled down by 10%. The choice of the first guess of the N N model 

parameters, cost function and assimilation window were the same as those discussed in 

the previous section. 

The average correlation skills over the 100 experiments are shown in Fig. 6.16, while 

the average R E E are all around 0.05 (not shown). The correlation and R E E were generally 

poorer than those in Fig. 6.8, where only the N N parameters were retrieved. This agrees 
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F i g u r e 6.15: T h e results f rom re t r i ev ing the d y n a m i c a l parameters a, b and the i n i t i a l 
condi t ions of the h y b r i d m o d e l , where the i n i t i a l guesses were the t rue values scaled d o w n 
by 20%. 
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F i g u r e 6.16: T h e cor re la t ion s k i l l averaged over 100 exper iments where the N N parame­
ters, the d y n a m i c a l parameters a and 6, and the i n i t i a l condi t ions were r e t r i eved for the 
w e a k l y nonhnear case. E r r o r bars ind ica te the s t anda rd dev ia t ion . 
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with many studies which found that the assimilation quality deteriorated while retrieving 

more model unknowns (Thacker and Long 1988; Lu and Hsieh 1998), as the problem of 

multiple minima in the cost function might become worse when retrieving more model 

unknowns. 

Likewise, 100 experiments for the highly nonlinear case were also carried out to si­

multaneously estimate the N N parameters, the dynamical parameters a and b and the 

initial conditions. The first guesses were the true values scaled down by 10%, and the 

first guess for the N N model, the cost function and assimilation window were again taken 

from Section 6.5. While the skills in the training period were as good as those retrieving 

the N N parameters only (not shown), the skills during the testing period (Fig. 6.17) were 

considerably lower than those found when only N N parameters were retrieved (Fig. 6.10). 

Class 1 examples like Fig. 6.11can hardly be found now. 

In summary, a hybrid neural-dynamical variational data assimilation procedure aimed 
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Figure 6.17: Bar charts from 100 assimilation experiments for the highly nonlinear case 
showing the number of experiments with (a) correlation above a particular correlation 
level and (b) R E E below a particular R E E level, during the test period. The N N param­
eters, the dynamical parameters a and b, and the initial conditions were retrieved. 
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at simulating missing dynamical equations has been formulated in this chapter. This pro­

cedure was then applied to the Lorenz model, where the third dynamical equation of the 

model was missing and had to be simulated empirically by an N N equation. Several 

important issues in 4 D var assimilation were discussed with a series of numerical ex­

periments. Overall the numerical experiments showed that the hybrid model based on 

N N and variational assimilation is successful in simulating the weakly nonlinear Lorenz 

model, with forecast skills similar to the original Lorenz model. For a highly nonlinear 

Lorenz system, the hybrid model can also produce reasonable prediction skills for most 

experiments, although the assimilation basically failed for a fair portion of the experi­

ments. 



Chapter 7 

Summary and Discussion 

In this thesis, two hybrid coupled models were developed by coupling two different at­

mospheric models to a 6-layer nonlinear dynamical ocean model. Neural network and 

linear regression were used to construct the two atmospheric models— one nonlinear and 

the other linear. A variety of numerical experiments were carried out to investigate the 

two coupled models in terms of ENSO oscillations and ENSO predictions. To explore 

the effects of assimilating different types of data for initializing the model for ENSO pre­

dictions and to further improve model prediction skills, a three-dimensional variational 

system was developed to assimilate various observational data into the coupled model. 

The possibility of a hybrid coupled model with '4D' variational data assimilation was 

tested with the simple Lorenz model. 

1. Empirical atmospheric models and the oceanic responses to them 

In Chapter 2, the possibility of using a nonlinear empirical atmospheric model for 

hybrid coupled modelling was investigated by developing a neural network (NN) 

model for predicting the contemporaneous wind stress field from the ocean state, 

and comparing the N N model with a linear regression (LR) model. Upper ocean 

heat content (HC) from an ocean model was found to be a better predictor of the 

wind stress than the (observed or modelled) SST. The N N model generally had 

slightly better skills in predicting the contemporaneous wind stress than the simple 

L R model in the off-equatorial tropical Pacific and in the eastern equatorial Pacific, 

mainly through better predictions of the second and third wind stress modes. 

162 
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When the N N and L R model produced wind stresses were used to drive the ocean 

model, slightly better SST skills were found in the off-equatorial tropical Pacific 

and in the eastern equatorial Pacific when the N N winds were used instead of the 

L R winds. Better skills for the model HC were found in the western and central 

equatorial Pacific when the N N winds were used instead of the L R winds. Because 

changes in the HC in the western equatorial region can lead to SST anomalies in 

eastern Pacific, the potential skill improvement for HC by N N could be of interest. 

There are several possible reasons why N N failed to show more significant improve­

ments over L R in the equatorial Pacific for wind stress and SST. The first (and the 

most probable) is that the relation between the surface ocean and the atmosphere 

in the equatorial Pacific over the seasonal time scale is basically linear, with nonlin­

ear processes playing only minor roles. The linear assumption was also supported 

by Xue et al. (1994) and Tang et al. (2000). 

Another reason why N N failed to show more significant improvements over L R in 

the equatorial Pacific for wind stress and SST is that the data records are not long 

enough. N N is more capable than L R but the data requirement is also considerably 

higher. To extract more than the linear rules from the data, longer records of good 

quality data are needed. As Barnett et al. (1993) built L R models for individual 

calendar months, we also tested empirical atmospheric models for individual sea­

sons. Although the seasonal approach can include the effect of the different basic 

states in different seasons of the year, we did not find the overall cross-validated 

anomaly skills better than the model developed using all the data - the tradeoff 

being that by dividing the data record into seasons, we have even less data to 

construct each seasonal model. 

2. E N S O oscillations in the two hybrid coupled models 



Chapter 7. Summary and Discussion 164 

The characteristics of the N H C M (with an N N atmosphere) and the L H C M (with 

an L R atmosphere) in terms of ENSO oscillations were investigated in Chapter 

3. The N H C M can simulate a realistic chmatology and the seasonal cycle, and 

captures the major features of ENSO variability. The L H C M has a longer ENSO 

oscillation period than the more realistic period found in the N H C M , and a very 

narrow phase-locking to the annual cycle compared to the more realistic phase-

locking in the N H C M . 

Model sensitivity studies demonstrated that both the N H C M and the L H C M are 

sensitive to the coupling strength of the system, with the L H C M being more sen­

sitive. Depending on the changes in the coupling parameter, both coupled models 

can change from damped oscillations to periodic oscillations. With the increase 

of the coupling strength, the seasonal cycles have more effect on the inherent os­

cillation of the coupled models. As the parameter reaches the critical value, both 

models are locked in a biennial frequency oscillations peaking in winter. 

The chaos mechanism has been proposed in many ENSO models. Our sensitiv­

ity studies do not exhibit chaotic behaviour for either coupled model. Instead, 

the coupled models will shift to another climate regime as the coupling parame­

ters increase beyond their critical values. There are two possibilities why the two 

coupled models did not exhibit chaotic behaviour: (1) There might exist some crit­

ical parameters which we failed to find, which would produce chaotic behaviour. 

(2) Chaotic behaviour might not play a central role in ENSO oscillations, instead 

stochastic forcing may be the source of ENSO irregularity. Several recent works do 

show that the random forcing may play a central role in ENSO evolution (Blanke 

et al. 1997; Eckert and Latif 1997). The irregular interannual oscillation simulated 

by coupled CGCMs (Philander et al. 1992) does not appear to be low-order chaos. 
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The nonlinear time series analysis performed by Chang et al. (1996) suggests that 

stochastic processes, rather than chaotic dynamics, are likely to be a major source 

of ENSO irregularity in CGCMs and in nature. 

3. ENSO predictions in the two hybrid coupled models 

In Chapter 4, the prediction skills for the two coupled models, N H C M and L H C M , 

with two different initialization schemes were studied. The ensemble of 104 'hind-

casts' experiments from 1964-1990 and 35 'forecasts' experiments from 1990-1998 

shows that both models yielded useful predictive skills for the prediction of the 

equatorial east Pacific SST anomalies up to 1 year lead time. Two initialization 

schemes were tested: The stress-from-ocean initialization scheme, which considers 

the ocean-feedback in the initial conditions, generally has better predictive skills 

than the stress-only scheme, where the ocean is simply forced by the observed wind 

stress. The stress-from-ocean scheme also manifests less decadal variability in the 

forecast skills than the stress-only scheme. From 1964-1998, with the stress-from-

ocean initialization scheme, the forecast correlation skill at 12-month lead time for 

the NIN03 sea surface temperature anomalies (SSTA) is about 0.55 for the N H C M 

and 0.50-0.55 for the L H C M . The main difference in the forecast skills between the 

N H C M and the L H C M occurs in the 1990s, where the N H C M has better skills. A 

nonlinear canonical correlation analysis of the wind stress and the SSTA shows that 

the relation between the two was indeed more nonlinear in the 1990s than in the 

1980s, which would give the N H C M an advantage over the L H C M in the 1990s. The 

predictions for 3 typical ENSO episodes in 1982/83, 1997 and 1998 shows that both 

models can fairly predict these events in terms of their mature time and strength 

of anomalies around 1 year in advance. But both models displayed weakness in 

predicting the start time and end time, especially for the L H C M . 
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4. The impact of data assimilation on ENSO simulations and predictions 

The impact of assimilating different types of data on ENSO simulations and pre­

dictions has been studied using a 3D Var assimilation scheme. The data explored 

were the sea surface temperature (SST), sea surface height anomalies (SSHA), 

wind stress, and the upper ocean 400 meter depth-averaged heat content anomalies 

(HCA) during 1980-1998. Neural network (NN) techniques have been used to relate 

data for diagnostic variables (e.g. HCA) to prognostic variables in the model, so 

that the assimilation of non-prognostic data can be performed. 

In terms of ENSO simulation (SSTA simulation), the most pronounced improve­

ment in correlation skills resulted from SST assimilation as expected, whereas the 

skill improvement from H C A assimilation was less significant than SST assimila­

tion but was still considerable. SSHA assimilation did not significantly improve the 

SSTA simulation. 

ENSO predictability is strongly influenced by the phase shift relation between the 

variations of the upper ocean heat content in the eastern equatorial Pacific (Nifio3 

region) and in the western equatorial Pacific (Niho4 region). Compared with the 

phase shift relation in the 1980s, both the observed H C A and the assimilated model 

H C A contain less pronounced phase relations between the Niho3 and Nifio4 regions 

in the 1990s, leading to less significant improvements to ENSO prediction with data 

assimilation in the 1990s than in 1980s. 

Overall, H C A assimilation is the best in improving the prediction skills for lead 

times greater than 5 months. The improvement from SST assimilation is the best 

only for lead time of 4 months or shorter; at longer lead times, SST assimilation 

degrades the predictions. Wind-stress assimilation is generally the second best for 

lead times 6 months or longer, though it degrades the prediction skills for lead times 
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longer than 12 months in 1990s. SSHA assimilation generally produces prediction 

skills only slightly better than the experiment without data assimilation. 

5. Hybrid coupled models via 4-D variational data assimilation 

Proceeding from 3-D var to 4-D var, a hybrid neural-dynamical variational data 

assimilation procedure aimed at simulating missing dynamical equations was for­

mulated in Chapter 6. This procedure was then applied to the Lorenz model, where 

the third dynamical equation of the model was missing and had to be simulated 

empirically by an N N equation. 

First guesses in variational data assimilation can be vital to retrieving the model pa­

rameters and initial conditions successfully. In order to get reasonable first guesses, 

the N C (No Continuity constraint) and PSC (Partial Strong Continuity constraint) 

schemes were proposed in this study. Experiments show that such a treatment of 

choosing first guesses is effective in the weakly nonlinear case, which allows the 

cost function to be successfully optimized in almost all experiments under the SC 

(Strong Continuity constraint). For the highly nonlinear case, the N C scheme pro­

vides reasonable first guesses for the SC experiments. 

The length of the assimilation window is very significant for the highly nonlinear 

case. When the window is either too short or too long, the prediction skills are poor. 

This strict demand for an appropriate assimilating window results from a delicate 

balance between the need for more data (longer window) and the avoidance of severe 

multiple minima during optimization with the highly nonlinear model, which calls 

for a short window. 

Our numerical experiments showed that the hybrid model based on N N and vari­

ational assimilation is successful in simulating the weakly nonlinear Lorenz model, 

with forecast skills similar to the original Lorenz model. For a highly nonlinear 
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Lorenz system, the hybrid model can also produce reasonable skills of simulations 

and predictions for most experiments, although the assimilation basically failed for 

a fair portion of the experiments. Deterministic optimization algorithms often have 

difficulties reaching the global minimum in the cost function, due to the presence 

of local minima. It has been shown that the variational assimilation with deter­

ministic optimization algorithms often loses its power for strongly nonhnear models 

(Miller et al. 1994; Evensen 1997). Stochastic optimization methods such as sim­

ulated annealing may help (Kruger 1993; Hannachi and Legras 1995). However, 

even if the global minimum is found, the data in the assimilation window might still 

only consist of data from one wing of the butterfly-shaped attractor, whereas the 

data in the forecasting test period could he in the second wing, thereby resulting 

in failed forecasts. Alternatively, other assimilation approaches, e.g. the Extended 

Kalman filter might be more powerful in deahng with strongly nonhnear systems 

(Miller et al. 1994; Evensen 1997; Houtekamer and Mitchell, 1998). 

This thesis has initiated the fusion of neural network techniques into dynamical mod­

els. Using an N N model for the atmosphere, it has produced the first H C M with a 

nonhnear empirical atmospheric component, and showed that the nonhnear atmosphere 

could have advantages over a linear atmosphere in modelling ENSO variability and in 

ENSO prediction. This study has introduced N N for the assimilation of non-prognostic 

variables (e.g. upper ocean heat content) by using N N to relate the non-prognostic vari­

able to prognostic variables, which are then assimilated into the model. An operational 

ENSO prediction system has been developed and is starting to be used to issue routine 

ENSO prediction (Tang and Hsieh, 2001d). The forecast correlation skills of the N H C M 

model without data assimilation are comparable to those attained by the pure N N model 

for lead time of 12 months or less, but surpass the pure N N model skiUs for lead time 
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exceeding 12 months— e.g. the N H C M with the stress-from-ocean initiahzation scheme 

has a correlation skill of 0.49 at a lead time of 15 months versus a correlation of 0.38 for 

the pure N N (Tang et al. 2000). With the best data (HC) assimilated, the prediction 

system generates noticeably better skills than the pure N N model at long lead times, 

and compares very favorably with the most influential prediction models in the ENSO 

community (Chen et al. 1995, Chen et al 1998, J i . et al. 1998, Syu and Neehn 2000). 

Table 7.1 is a comparison of correlation skills between the observed SST NIN03 index 

and that from the Lamont model, described in Chen et al (1995, 1998) and the N H C M 

with HC assimilation for several different periods. The Lamont model has been used 

routinely in real time for ENSO forecast since 1986. In particular, it was one of the 

few real-time forecast models that predicted the onset and evolution of the 1991-1992 

warm ENSO phase correctly. The Lamont model has been widely used in prediction and 

predictability studies (Latif et al. 1998). 

Table 7.1: Correlation between the observed SST NIN03 index and that from Lamont 
model, described in Chen et al (1995, 1998) arid the N H C M with HC assimilation 

Time period Model Lead times 
3 months 6 months 9 months 12 months 15 months 

1992-1997 Lamont 0.91 0.78 0.40 0.39 0.60 
N H C M 0.80 0.74 0.66 0.65 0.62 

1988-1995 Lamont 0.69 0.60 0.50 0.49 0.49 
N H C M 0.71 0.69 0.57 0.54 0.53 

1980-1987 Lamont 0.90 0.86 0.85 0.80 0.80 
N H C M 0.78 0.77 0.75 0.75 0.73 

As shown in Table 7.1, the N H C M with HC assimilation has better performance in 

1990s than the Lamont model, in particular for lead time greater than 9 months. But 

in the 1980s, the Lamont model has higher correlation skills than the N H C M . However, 

it should be noted that such a comparison is not completely fair since different samples 
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were used in calculating the correlation skills for the Lamont model and the N H C M . 

While the fuU 4-D var H C M is beyond the scope of this thesis, a neural-dynamical 

hybrid approach under 4-D var has been developed to study the simple Lorenz system. 
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Appendix A 

Ocean model formulation 

Like the two-layer model of Balmaseda et al (1994), this 6-layer model includes explicit 

nonlinear thermodynamics for all layers, accounting for horizontal advection, vertical heat 

transport, diffusion and, in the first layer, surface heat flux. Besides the physical processes 

considered in the two-layer model, the 6-layer model includes a viscosity between these 

layers to account for wind driven Ekman effects, simple convective mixing between two 

adjacent layers due to upwelling and horizontal advection. 

The model equations are as follows: 

— + ui— + vi— + / k A him = {-VPi + M i + — + ^ V 2 ( ^ U i ) + V i , ( A . l ) 
ot dx dy J po po 

(wt+Uii+v%)h< = D > + d V % ' <A2» 

where layer subscript i = 1,...,N. The symbols u and v are the zonal and meridional 

components of velocity respectively, p is the pressure, h is the layer thickness, r is the 

wind stress, T is temperature, / is the Coriolis parameter given by / = By, p0 is a 

constant density, and u, d and n are the coefficients of momentum, thickness and heat 

diffusivity. V 2 is horizontal Laplacian. The terms D{,Mi,Hi are the mass, momentum 

and heat exchanges between layers and are discussed below. The term Qa is the surface 

heat flux determined as for the 2-layer model and V i is a vertical viscosity used if the 

Ekman layer is resolved. V i is parameterized as 
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V i = Aj(ui_i - U i ) + Ai+1(ui+1 - ui), where Ai+l < A{ 

The pressure gradients are 

^VJH = gaV^hj(Ti-TN+l) + ^ - g a ^ + f^h^JVTt (A.4) 

where g and a are the gravitational constant and the thermal expansion coefficients 

respectively. The pressure at the sea surface is 

( N \ N 
Ho ~ zZ hj] -9J2 Pihh (A-5) 

J'=I / i=i 

and Ho is the total depth of the model (a constant), and pj is the density of the j t h 

layer. Di is based on the upwelhng, ee,-, and downwelling, e^, velocities between layers i 

and i + 1 which are parameterised as follows: 

eei = (Hi - hi)2/teiHi, if h{ < Hi else eei = 0, (A-6) 

tdi = — {Hi — hi)2/tdiHi, if /ii > Hi else = 0, 

where Hi is the nominal layer depth towards which entrainment or detrainment tend to 

force layer i, and tei and t<n are the entrainment and detrainment time scales respectively. 

The total vertical velocity may therefore be expressed as 

e'i = 2^ e " ^ l e " ^ 2^€di ~ 

The thickness of the ith layer can be changed by mass exchanges at both its top and 

bottom surfaces, with layer i — 1 above and i + 1 below. The total mass exchanged in 

eq. A.2 is given by 

Di = e'i-
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Table A . l : Values of the parameters used in the 6-layer ocean model 

Layer H(m) todays) id(days) Hinit(m) Tinit(°C) A 
1 100 1 500 100 26 0.75 
2 175 150 500*150 175 16 1 
3 250 150 ' 500*150 250 13 1 
4 320 150 500*150 320 10 1 
5 400 150 500*150 400 8 1 
6 500 150 500*150 500 6 1 

Note that within each layer the parameters only control entrainment or detrainment with 

the layer below. Any entrainment or detrainment with the layer above is determined by 

the thickness of the layer above. 

The momentum exchanges for layer i are 

M i = <.ui+1 - c ; _ l U , for e\ > 0, > 0, (A.7) 

M i = e> i + 1 - e U u ^ for e\ > 0, t[_x < 0, 

M i = e > - e^Ui -x for <• < 0, e\_x < 0, 

M i = ejm - e ^ U i for e[ < 0, e\_x > 0. 

The heat transport term related to upwelling and downwelling is 

Hi = -e'MTi - Ti+1)/hi - eUAi-iCZU - Ti)/hi for t\ > 0, < 0, (A.8) 

Hi = 0 for e[ < 0, > 0, 

where \ is a parameter controlling the effective vertical temperature gradient, taken to 

be 1. Table A . l lists the parameters used in the model. 



Appendix B 

Discrete form of Lorenz hybrid model for coding 

The computer code is directly generated from the discrete form of the hybrid model. The 

4th- order Runge-Kutta is used to discretize the vector equation (6.7): 

, k i n . k 2 n k 3 n k 4 n . . 

v n + 1 = v n + - ^ - r - r + ^ - + - r , (B. l) 

k l n = fcf(vn>P>tn), (B.2) 

k 2 n = W(v„ + 0 .5k l n > p ,< n + 0.5J»), (B.3) 

k 3 n = hf(vn + 0.5k2 n, p, tn + 0.5h), (B.4) 

k 4 n = fcf(vn + k 3 n > p , *„ + /»)> (B.5) 

where the subscript n indicates the time level, f = ( / l , / 2 , / 3 ) t p , and f l , f2 and f3 are 

scalar functions: 

fl = -aX + aY, (B.6) 
fl = -XZ + bX - Y, (B.7) 

/3 = Wj[tanh{WljX + w2jY + w3jZ + bj)} + b, (B.8) 
j 

j=l,2. . M (M=5, the number of hidden neurons). 

Eq. B . l can be written as 

v n + i = v n + K n (B.9) 

The Lagrange function of Eq. (6.10) is discretized as 
N-l 

L = J+Y1 < t r (v n + 1 - v n - K n ) , (B.10) 
n=0 
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J = E(v» - ) t r W - 1 ( v „ - ), (B.ll) 
n=l 

where v* is the vector of Lagrange multiphers and its dimension is the same that of v . 

The equations for the best fit are obtained by requiring that all derivatives of L vanish: 

OL 

dL 

= 0, (B.12) 

= 0, (B.13) 

| = »• <B-"> 
where the partial derivative with respect to a vector indicates a partial derivative with 

respect to each ofthe vector components. Eq. (B.12) gives nothing more than the (B.9); 

whereas (B.10) gives 

! = t 1 ( - l f K ' < B - i 5 > 

The gradients from (B.15) are then provided to a quasi-Newton method to seek the 

optimal parameters. 

The equations describing the trajectory ofthe Lagrange multiphers v*, i.e., the adjoint 

equations, can be obtained from d L/d v n and Eq. (B.10) (also see Anderson and 

Willebrand, 1989): 

2 £ W - 1 ^ - v f ) + - < - ( ^ ) v ; = 0, n = 1 , N , (B.16) 
n=l a V " 

w. = ( B 1 7 ) 

= 0. (B.18) 

The SKn/<9vn and <9Kn/<9p can be obtained by chain-rule, e.g. 

dkn ldkln l d k 2 n < 9 k l n 1 <9k3„ dk2n dkln 1 <9k4n <9k3n dk2n dkln 

5vn 6 <9vn 3dkln <9vn 3<9k2„<9kl n <9v„ 6 dk3n dk2n dkln <9vn 
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Thus, the cycling procedure for computing the best fit of the hybrid model (6.4)-(6.6) 

to Lorenz model (6.l)-(6.3) is: 

(i) Given initial guess values for the unknown parameters, using (B.9) to step the hybrid 

model forward in time from 1 to N to compute a first approximation to the Lorenz model. 

(ii) Step equations (B.16) - (B.18) backward in time from N to 1 to compute approximate 

values of the Lagrange multipliers. 

(iii) Evaluate the gradient of the cost function with respect to these parameters using 

Eq. (B.15)) (and/or Eq. (B.17) if initial conditions need to be retrieved). 

(iv) Use a descent algorithm to find the minimum of the cost function in the direction 

opposite to the gradient by a hne search. 

(v) Take results of the line search as the next guesses for the parameters and repeat the 

process starting from (i) until convergence criteria are satisfied. 

The quasi-Newton method of Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Press et 

al. 1992) is used in the above procedure for searching the optimal solutions. Fig. B . l is 

the variations of the normalized cost function and normahzed gradient with the number 

of iterations for a weakly nonlinear case (Fig. 6.7) and a strongly nonlinear case (Fig. 

6.11). The BFGS algorithm has a memory requirement of 0 (N 2 ) where N is the number 

of parameters involved in the optimization. In our case, the memory is 183 K B . For 

problems with larger N , the conjugate gradient method with a memory requirement 

of O(N) could be more suitable. A typical case here requires about 50 iteration for 

convergence, using about 3 minutes of C P U time on an SGI Origin 200 server. 

In practice, the adjoint codes were not developed from Eqs. (B.16)-(B.18), but by 

the T A M C (Tangent and Adjoint Model Compiler, Giering and Kaminski, 1996) via the 

tangent hnear equations. These equations are derived from Eq. (B.9): 

o v n + 1 = A n J v n (B.19) 
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5 10 15 20 25 30 10 20 30 40 
Number of iterations Number of iterations 

F i g u r e B . l : V a r i a t i o n s of the no rma l i zed cost func t ion (J/ Jo) (sohd hne) a n d n o r m a l i z e d 
gradient (||g|| ||go||_1) (dash hne) w i t h the number of i te ra t ions for (a) the w e a k l y non­
l inear case of F i g . 6.7 and (b) the s t rongly nonhnear case of F i g . 6.11. T h e be t te r i n i t i a l 
guesses i n (a) meant tha t the cost func t ion and its gradients h a d re l a t ive ly less d is tance 
to d rop to convergence t h a n i n (b). 
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where the m a t r i x A n is the tangent l inear m o d e l at t ime-step n , and 

A n = I + ^ p (B.20) 

w i t h I the the i den t i t y m a t r i x . T h e adjointness has been checked us ing the r e l a t i on 

be tween the tangent- l inear code A and its adjoint code A* (Ta l ag rand 1991; N a v o n et 

a l . 1992): 

{a, Ab} = {A*a,b} (B.21) 

where {,} denotes the inner p roduc t , and a and b a rb i t r a ry vectors . 



Append ix C 

Summary of Exper iments 

Table C l : Summary of main experiments and results 

Experiments Results Locations 
Ocean model control run Fig 2.2 and Table 2.1 Chap. 2.2.2 

Choice of number of hidden neuron 3 Chap. 2.3.2 
Construction of two atmospheric models Table 2.3 Chap. 2.4.1 
Response of ocean to two atmos. models Figs. 2.11-2.16 Chap. 2.5 

L H C M and N H C M standard coupling runs (5=1) Figs. 3.2-3.12 Chap. 3.3 
L H C M and N H C M coupling runs (£=0.83) damped oscillation Chap. 3.4 

L H C M and N H C M coupling runs (<f=1.5 and 1.68) Fig . 3.13 Chap. 3.4 
Predictions with 'stress-only' initialization Figs 4.1-4.5 Chap. 4.3 

Predictions with 'stress-from-ocean' initialization Figs L 1.12-4.16 Chap. 4.4 
H C A assimilation experiment for ENSO simulation Figs 5.5-5.7 Chap. 5.4 
SSHA assimilation experiment for ENSO simulation Figs 5.5-5.7 Chap. 5.4 
SST assimilation experiment for ENSO simulation Figs 5.5-5.7 Chap. 5.4 

Wind assimilation experiment for ENSO simulation Figs 5.5-5.7 Chap. 5.4 
H C A assimilation experiment for ENSO prediction Fig 5.8 Figs 5.12-5.14 Chap. 5.5 
SSHA assimilation experiment for ENSO prediction Fig 5.8 Figs 5.12-5.14 Chap. 5.5 
SST assimilation experiment for ENSO prediction Fig 5.8 Figs 5.12-5.14 Chap. 5.5 

Wind assimilation experiment for ENSO prediction Fig 5.8 Figs 5.12-5.14 Chap. 5.5 
Simple Lorenz hybrid model experiments Figs. 6.2-6.3 Chap. 6.4 

Initial guess experiments for 4D Var assimilation Figs. 6.5-6.7 Chap. 6.5.1 
Assimilation window experiments Fig. 6.8 Chap. 6.5.2 

SC assimilation experiments (100 cases) Figs. 6.9-6.13 Chap. 6.5.3 
Experiment for determining all parameters Fig. i 5.16-6.17 Chap. 6.6 
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