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A b s t r a c t 

This thesis seeks to answer the question "how much of the internal tide propagating 

up Knight Inlet, B.C. is reflected by a right-angled bend ?" The internal tide in Knight 

Inlet is generated by the interaction of the barotropic tide with a shallow sill seaward of 

the bend. It then propagates in both directions as a travelling Kelvin wave. The up-inlet 

propagating wave then encounters the bend, where some of it may be reflected. This 

question is looked at with both theory (Chapter 2) and observations (Chapter 3). 

The theoretical study investigates the propagation of a Kelvin wave around a bend in 

a channel. The solution of the linearised long wave equations is expressed as a truncated 

series of cross-channel modes in each of three regions. The solution is matched across 

the two common boundaries by a least squares point matching process. The "rectangular 

bend" gives unsatisfactory results because of a singularity in the velocity field at the 

sharp inside corner. However, the "annular bend" gives good results. The bend acts as 

a diffraction grating, with total transmission for certain bend angles and "lobes" of high 

reflection for intermediate angles. Bends to the left give rise to the same reflection as bends 

to the right of the same angle, even if the incident Kelvin wave has a small cross-channel 

decay scale. For the parameters corresponding to the M<x internal tide in Knight Inlet, the 

energy flux reflection coefficient is very small, much less than 1%. The method of solution 

breaks down inexplicably for diurnal tides. 

The observational study is based upon 2~ months of cyclesonde current meter data 

from four stations in Knight Inlet taken during the summers of 1981 and 1983. The 

vertical profiles of amplitude and phase of the M 3 constituent of longitudinal velocity and 

density fluctuations are found to be the same from month to month at a particular station, 

but different from station to station. These complex amplitude profiles are decomposed 

into a truncated series of normal modes for waves propagating both up-inlet and down-

inlet. The phase speeds and zero-crossing depths of the normal modes do not agree with 

those calculated by Farmer and Smith (1980a) using 1977 data. Two simple models of the 

stratification are used to explain the differences in the normal modes in terms of differences 
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in the Brunt-Vaisala frequency profile used to calculate them. At the two stations up-inlet 

of the sill, acceptable fits can be obtained using only two up-inlet propagating waves, 

indicating that the data are compatible with the low reflection found in the theoretical 

study. When down-inlet waves are included in the fit, their amplitudes are found to be 

small, although care must be taken to avoid trying to fit too many modes since some of 

them are highly correlated in the depth range for which data are available. At the two 

stations seaward of the sill, the up-inlet energy flux is of the same order of magnitude 

as the down-inlet flux, indicating a second source of internal tide seaward of those two 

stations. The results indicate that only 30-50% of the power removed from the barotropic 

tide is being fed into the internal tide in the summer. This conclusion is at variance with 

that of Stacey (1985), whose model shows that most of the power lost from the barotropic 

tide is being fed into the internal tide. A consistent interpretation of these results is that 

most of the power lost from the barotropic tide initially goes into the internal tide, but 

that 50-70% of it is rapidly dissipated through turbulence within a couple of kilometers of 

the sill. 

The low frequency component of the velocity signals from the cyclesonde data is also 

presented (Chapter 4), with a brief analysis . The monthly averaged residual velocity 

profiles are also found to be fairly repeatable from month to month at a particular station, 

but different from station to station. These profiles could be useful in validating general 

circulation models. 
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1. Introduction 

1.1 Historical Background 

The first oceanographic measurements in Knight Inlet were made by G.L. Pickard in 

a series of surveys of B.C. inlets by the Institute of Oceanography at U.B.C. starting in 

1949. The results are described in Pickard (1956, 1961). The first of these two papers is 

mainly a description of the geometries of B.C. inlets, whereas the second is a thorough 

account of their water characteristics ( salinity, temperature, oxygen and turbidity ) and 

changes thereof. He also carried out the first current measurements in Knight Inlet using 

current drag and Ekman current meters (Pickard and Rodgers 1959). Since then U.B.C. 

personnel returned every year except 1960-62 up to 1974 as part of their survey of the 

water characteristics of B.C. fjords. Pickard (1975) gives an account of the long term 

variations of the deep water properties in Knight Inlet as well as elsewhere, using these 

data. 

Current measurements were not, however, routinely done. Before the arrival of in­

ternally recording current meters in the 1960s, any kind of direct current measurement 

required an enormous amount of effort, since the ship had to anchor. Since such measure­

ments could be done for at most a few days, the effects of variations in wind stress and the 

lunar cycle could not be isolated from the "mean" circulation, so there was little point in 

any greater effort. For example, it was easier to measure the river discharge by inferring 

it from the heat budget of the inlet (based upon temperature and salinity measurements), 

than by direct measurement (Pickard and Trites 1957). 

Knight Inlet is distinguished by being a long, regular inlet with a large fresh water 

input at the head, and a shallow sill. The interaction of the sill with the high summer 

stratification produces large internal waves, both of short period (a few minutes) and of 

tidal period (the "internal tide"). The short period internal waves were the subject of 

more recent extensive investigation by Farmer and Smith (1978, 1980a, 1980b). They used 

a large selection of modern instruments, including a string of Aanderaa current meters 

fitted with conductivity cells and fast response thermistors, three orthogonally mounted 
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precision mechanical current meters, an electromagnetic current meter and an acoustic 

current meter. In addition they took CTD surveys of the inlet, and used acoustic sounding 

techniques to generate images of the hydraulic jumps that occur in the vicinity of the sill. 

This was the first measurement of currents in Knight Inlet since Pickard and Rodgers' 

comparatively primitive attempt in July 1956. 

In the last seven years a considerable amount of work has been done on Knight Inlet. A 

recent review of fjords by Farmer and Freeland (1983) is an excellent reference, as are the 

proceedings of the NATO conference on Fjord Oceanography, edited by Freeland, Farmer 

and Levings (1980). Both of these publications contain many references to Knight Inlet, 

both as an object of study in its own right, and as an example illustrating the mechanisms 

under discussion. Knight Inlet has very energetic processes occurring at the sill which 

generate large internal waves and tides, and for that reason is a popular site to investigate 

such phenomena. It has also become a testing ground for several different theories of 

fjord circulation; such comparisons are more easily made using data from a single fjord. 

The energy-transfer processes occurring between the tide, the resulting internal tides and 

the tidal-mean circulation play an important role in generating the mixing that is an 

essential element in determining the net fluxes of matter in fjords. It is the adequate 

parameterisation of mixing that remains the major deficiency in any modelling attempt to 

make quantitative predictions of the fluxes and resulting distribution of substances that 

are introduced into an estuary. This study therefore seeks to investigate the governing 

processes in a particular type of estuary, namely a deep, strongly stratified fjord. 
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1.2 Physical Oceanography of Knight Inlet 

J.2.1 Physical Description of the Inlet and Freshwater Input 

Knight Inlet is generally regarded as the most spectacular fjord in the SW sector of 

the province, towered over by snow-capped peaks as high as 3300 m. It is roughly 100 km 

long, measured from the head to the first subsidiary inlet, with an average width of 2.5 km. 

Knight Inlet is the third longest of the B.C. mainland inlets. Figure 1 shows a plan view 

and longitudinal depth profile. The sill is clearly visible 75 km from the head, where the 

depth falls to 60 m. The sill is in the middle of a long straight reach, while the rest of the 

inlet from the head to the bend between Tomakstum Island and Adeane Point is sinuous. 

The sides of the inlet are quite steep, with typical slopes of 30° towards the mouth and 

60° towards the head. The average mid-channel depth is 400 m, and the greatest depth is 

550 m. In comparison Jervis Inlet, the deepest on the B.C. coast, has an average depth of 

500 m and a greatest depth of 725 m. 

Most of the freshwater enters at the head, with a mean annual discharge of 400 m 3 /s. 

There are usually two peaks in the year, one in June of about 800m3/s due to snowmelt, 

and a lesser one in November due to rain. Pickard (1961) calls the summer peak "stored 

runoff," and the winter peak "direct runoff." The typical winter runoff is 50 m 3/a. Knight 

has the seventh largest freshwater discharge of all B.C, inlets, with Portland Inlet having 

the largest with an annual mean of 990 m 3/a. For this reason, a two-layer density structure 

is a good description of the inlet for most of the year. In fact, two two-layer estuary models 

have selected Knight as an archetype (Long 1975, Pearson and Winter 1975). 

The mean (non-tidal) circulation is a consequence of the fresh-water discharge at the 

head. It forms a low salinity surface layer which flows seaward, gaining volume by the 

entrainment of saline water from below and gaining in speed. There is also a deepening of 

the brackish layer towards the mouth. An up-inlet flow at depth must compensate for the 

entrainment. The wind also has a large effect on the non-tidal circulation, but its speed 

and direction are unpredictable (varying on a time scale of a few days). When comparing 

circulation models with real data, the wind is often assumed to have a zero mean effect if 
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Figure 1 Plan view and longitudinal depth profile of Knight Inlet. 
(After Blackford 1984.) 
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averaged over a sufficiently long period. 

1.2.2 Salinity 

According to Pickard's (1961) classification of B.C. fjords, Knight is a type A l inlet, 

with a low (less than 2 %o) surface salinity at the head, and a high (around 20 %o) surface 

salinity at the mouth. A type A l inlet means one with a large runoff, in most cases from 

glaciers or snowfields. In the winter, however,- the surface salinity and temperature are 

nearly constant along the inlet, because of the low runoff at that time. In terms of the 

vertical salinity profile, Knight has a type 1(a) profile at the head, and a type 1(b) profile 

elsewhere. This classification means that Knight Inlet has a homogeneous surface layer 

with a distinct halocline, which is sharper at the head of the inlet than elsewhere. The 

depth of the halocline increases from around 5 m at the head to around 15 m at the mouth. 

In the range of values of temperature and salinity found in Knight Inlet, salinity has a 

much greater effect on density than temperature. In fact, density profiles take on more or 

less the same shape as salinity profiles. 

Below the halocline, the salinity increases monotonically to the bottom. The salinity at 

20 m is typically 29.8 %o, at 50 m it is about 30.7 % 0 , and at 100 m it is 31.0 %o. This deep 

water value lies between typical values of 28 to 30 %o for southern mainland inlets, and 

of 32 to 34 %o for northern inlets. Pickard (1961) suggests that this northwards increase 

in deepwater salinity is associated with the directness or otherwise of the connection with 

the Pacific (as the source of the most saline water). 

1.2.3 Temperature 

In the summer, temperature profiles in the "shallow zone" (the upper 20 m or so) are 

a mirror image about a vertical axis of the salinity profile because the water in the shallow 

zone is a result of mixing of the warmer fresh surface water with the cold saline deep water. 

Figure 2 shows an excellent example of a straight T-S curve arising from the mixing of two 

water types. Typical summer figures are 14° C at the surface and 8° C in the underlying 

water. 
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Figure 2 T-S curve near the sill. (From Pickard 1961.) 

Below the thermocline associated with the halocline, the temperature profiles often 

show maxima or minima at intermediate depths. A temperature minimum at about 50 

to 100 m in depth is present in Knight Inlet, and is a general feature of B.C. inlets (most 

noticable in Bute Inlet). The temperature decreases from a summer value of roughly 9° C 

at 20 m to a minimum of 8° C at 50 m, and then gradually rises again to a bottom value of 

8.5° C. This temperature minimum has been attributed to winter cooling and wind mixing 

of the upper part of the water column, followed in spring and summer by a warming of 

the surface. The higher density stratification in spring and summer tends to inhibit wind 

mixing and thus serves to preserve the effects of the distributed heat loss that occurred in 

winter. 
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1.2.4 Time Variations in Temperature and Salinity 

The most noticeable signal in temperature and salinity time series is the internal tide. 

It is caused by the barotropic tide forcing stratified water to flow over the sill leading 

to a vertical oscillation at tidal period of the isopycnals and isohalines by as much as 

50 m peak-to-peak in the straight section of the inlet. Equivalently there are temperature 

deviations of 0.05° C and salinity deviations of 0.4 %o at depths of 50-150 m. The signal 

is modulated on the spring/neaps cycle. 

An annual signal is also present at most depths. The variability decreases with increas­

ing depth. The only available data to show this annual signal well are a set of 23 cruises 

over the period 1972-74 (Pickard 1975). Both temperature and salinity below 100 m show 

a maximum around December, with peak-to-peak values of 0.5° C and 0.6 %o respectively. 

Pickard describes the signal in Knight to be "sinusoidal", as opposed to "peaked" or "saw 

tooth" as found elsewhere. The amount of dissolved oxygen also shows an annual sinusoidal 

variation of lml/l peak-to peak, with a maximum around March. The dissolved oxygen 

in Knight Inlet ranges from 3 to 5 m/// below 100 m, with higher values above 100 m. It 

is nowhere anoxic. Pickard suggests that these annual variations are caused by longitu­

dinal advection, rather than vertical advection, diffusion etc, and that this longitudinal 

advection occurs during a late winter replacement of the deep water. The annual variation 

of river runoff and air temperature have a direct effect on the salinity and temperature 

of the surface waters. In the winter the halocline and associated pycnocline are almost 

non-existent (see Figure 3). In the spring, they are evident at the head of the inlet, but 

not at the mouth. 

As for longer term variations (i.e. over several years), certain trends are evident. The 

temperature at 100 m rose by about 1° C from 1951 to 1964 and then fell by about 1.2° C 

to 1974, whereas the changes at 300 and 500 m were of the order of 0.8° C. Pickard 

suggests that this trend is associated with a rise in the average winter air temperature of 

about 2° C from 1952 to 1963 and a fall by the same amount to 1973. Because vertical 

heat exchange with the surface is very small below 100 m, he attributes the change to 
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Temperature in °C Salinity in p.p.t. Buoyancy Period (minutes) 

Figure 3 Representative temperature, salinity and buoyancy profiles. 
Su = summer, W = winter, Sp = spring. Note the change of scale at 50 m. 
(From Farmer and Freeland 1983.) 

longitudinal advection due to the mean estuarine circulation. The fact that any water 

flowing up-inlet at depth has to surmount the sill at 60 m means that heat exchange with 

the surface is possible. 
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1.2.5 Early Current Measurements 

As was stated earlier, the first current measurements in the 1950s (Pickard and Rodgers 

1959) were rather crude, and not much more was done until 1976 in connection with the 

work by Farmer et al. on internal waves at the sill. 

Generally, the currents can be described as an oscillating component at tidal period 

superimposed on a mean flow. It might seem that the oscillating component is due to 

tidal forcing from the ocean (and is independent of river runoff), and the mean flow is 

due to gravitational circulation (and is independent of tidal forcing). However, when 

interpreting these two components of the currents, one must bear in mind that when both 

forcing terms are present, the system may not respond with a sum of the responses to 

each individual forcing term, because the equations describing fluid flow are non-linear. 

Therefore the observed mean circulation would not necessarily be the same in the absence 

of tidal forcing. 

Pickard and Rodgers describe the currents at two stations, taken every half hour for 

three days in July 1956. Over the sill, the currents were up to 150 cm/sec at the surface, 

and 50 c m / s e c at 70 m. The oscillatory component was in the same phase from surface to 

bottom. With no wind, the mean current profile was the classic two-layer system, with 

outflow in the upper half and inflow below. With an up-inlet wind, the mean profile was 

3-layer, with up-inlet flow in the upper 10 m and the bottom 20 m. At a deeper station 

(350 m) between the sill and the first bend, speeds up to 25 cm/sec were still observed at 

depths as great as 300 m. The oscillatory component of the current was not constant in 

phase with respect to depth. The mean profile was a 3- or 4-layer flow, depending on the 

wind direction (amongst other things). Had more data been available to them, however, 

they would have seen a great deal of variability in such 25 hour means. They found that 

the mean circulation was sufficiently strong at the deep station to overcome the oscillatory 

component at the surface and wipe out any up-inlet flow there, but that this was not the 

case at the sill. 
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1.2.6 The Interaction of the Barotropic Tide With The Sill 

The basic mechanism of flow interaction with the sill in Knight Inlet was first deter­

mined in August 1977 by Farmer and Smith (1978, 1980a, 1980b). Figure 4 shows the 

detailed bathymetry around the sill. Strong currents during, say, an ebb tide, produce su­

percritical conditions over the sill, with a return to subcritical flow behind the sill because 

of the presence of an internal hydraulic jump or a large amplitude lee wave. As the tide 

slackens, the disturbance moves slowly back over the sill and travels upstream, evolving as 

an internal surge or bore. The precise response depends upon two things: the stratification 

and'the strength of the tidal current. 

Figure 4 Detailed bathymetry around the sill. Depth contours are shown in metres. 
(From Farmer and Freeland 1983.) 

For a given energy level, conservation of mass and momentum implies that a two-layer 

flow has two possible modes, one as a supercritical flow and the other as a subcritical flow. 

In supercritical flow, the Froude number (which is defined as the ratio of the flow speed in 

the upper layer to the internal phase speed) exceeds unity, whereas in subcritical flow it 

is less than unity. The fluid velocity is greater and the upper layer thickness is less in the 

supercritical mode. The situation is complicated somewhat in the continuously stratified 

case by the existence of an infinite set of internal wave phase speeds corresponding to the 

internal modes, and these give rise to an infinite set of Froude numbers for a given flow. 

The Froude numbers increase with increasing mode number, so that it is possible, for 
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example, for a flow to be subcritical with respect to the first mode, but supercritical with 

respect to the second mode. A change in flow conditions from supercritical to subcritical 

is called a hydraulic jump. These jumps can be initiated by the presence of topography 

(e.g. at the sill) or a sudden widening of the channel. 

Farmer and Smith's observations were made with profiling current meters and CTDs, 

with moored current meters and thermistor chains, with recording pressure (tide) gauges, 

and with high frequency (100-200 kHz) echo soundings. Ship location was determined 

using microwave positioning equipment. The echo sounder was used to obtain acoustic 

images of the structure of the flow over the sill and the resulting surges and intrusions, by 

making traverses of the sill with the ship. The acoustic signal would be reflected not only 

by the bottom, but also by biological organisms and density changes (microstructure), so 

that details of the flow could be traced. In addition, a variety of fast response current 

meters were used, which sampled at a high rate and gave useful information about the 

vertical component of the velocity. 

In their first paper Farmer and Smith (1978) describe the results of the pilot study 

to determine the scales necessary to plan a more detailed experiment. This experiment 

included CTD measurements along the channel with some time series observations (using 

CTD and profiling current meters etc) at a station 6 km up-inlet of the sill. This distance 

is equivalent to a few tidal excursions, so the chaotic motions at the sill have had time 

to organise themselves into propagating internal waves in the upper layer. They observed 

amplitudes in excess of 10 m (based on the excursions of the isohalines) and periods of 

the order of 10 minutes. As the strongly stratified part of the water column was only 

15-20 m deep, it became evident that non-linear effects were important. They interpreted 

the data using a model of non-linear (because of finite-amplitude effects) internal waves in 

a strongly sheared flow, and examined conditions leading to shear flow instability. They 

found that the calculated phase speeds of the waves were consistent with the observed 

phase speeds, and that the wave properties were strongly influenced by the shear. 
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In the other two papers Farmer and Smith (1980a,b) discuss acoustic images of the flow 

over the sill, and classify the wide variety of responses according to the Froude numbers 

for each of the internal modes. In mid-winter even the smallest tides will produce flows 

supercritical with respect to all internal modes, while in mid-summer most flows will be 

subcritical with respect to the first mode but may be supercritical with respect to the 

second. 

Figure 5 shows schematically some of the phenomena that they found, including lee 

waves, hydraulic jumps, blocking, boundary layer separation and the spread and collapse of 

turbulent mixing layers shed from the sill crest. Blocking occurs when there is insufficient 

kinetic energy in the flow to raise the denser deeper fluid over the crest. Flow separation 

occurs when the boundary layer, in which the tangential velocity drops from its value in the 

interior of the fluid to zero on the fjord bed, becomes detatched from the bottom. The high 

shear across the boundary layer leads to instabilities and turbulence. The development of 

a large lee wave behind the sill tends to inhibit boundary layer seperation. 

1.2.7 Tides 

The tides in Knight Inlet are principally semi-diurnal, with the Af2 constituent of the 

surface elevation oscillation increasing in amplitude from 1.527 m at the mouth to 1.582 m 

at the head. The total range is 3-5 m. For a pure barotropic standing wave the phase 

would be constant along the inlet, and the currents in quadrature. In fact, there is a 

difference of 1 or 2° because of friction and other energy sinks. The external Rossby 

radius is of the order of 2000 km, which is much wider than the inlet, so rotation can be 

ignored for the barotropic tide. The standing wave can be thought of as a superposition 

of two Kelvin waves (practically plane waves) of equal amplitude propagating in opposite 

directions, one being the incident wave and the other being its reflection from the head. 

Jamart and Winter (1980) made a finite element computation of the barotropic tide in 

Knight Inlet. They ignored the Coriolis term and had a simple linear dissipation term, but 

their results fairly well approximated the observed tidal flow, with complex flows in the 

area of the sill. They tuned their dissipation parameter so that the model produced the 
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(A) . Schematic diagram of a mode 1 lee wave response to tidally forced flow over a sill. Upstream of the sill there is blocking (b) of the 
deep flow and separation (s) of the boundary layer beneath the trough of the lee wave downstream of the sill. A s the tidal current slackens the lee 

waves are released successively to form a nonlinear wavetrain that travels over the sill Crest and back along the fjord. 

(B) . Schematic representation of tlow that is subcritical with respect to mode 1, but critical with respect to mode 2. In the early stages of 
ine tidal How the boundary layer separates from the sill crest, but subsequently separation is suppressed as mode 2 lee waves evolve. The upstream 
flow is modified by a small mode 1 internal wave that travels up-inlet away from the sill. The growing lee wave or jump eventually collapses to 

spread out as an undular bore as the flow slackens. A small wave (c) travels downstream. A l l of these features have been observed in . 
Knight Inlet, B .C . 

(C) . Sketch of tidal mixing over a longer sill leading to collapse of water o f intermediate density. The mixed water spreads outwards as an 
undular bore between the two layers from which it was formed. A small disturbance (c) travels in the downstream direction. 



same phase difference between the mouth and the head as was calculated by Freeland and 

Farmer (1980) from tide gauge data. The tidal excursion inside the inlet is of the order of 

1 or 2 km. 

As was previously mentioned, the internal tide is most easily seen as an oscillation 

in the depth of isopycnal surfaces at tidal period. A typical phase speed of 0.8 m/s for 

the first M<2 internal mode for summer stratification (this concept arises from a linear, 

flat-bottomed model with a separable solution) gives rise to a wavelength of 36 km and an 

internal Rossby radius of 7 km. 

The internal tide is generated by the passage of barotropic tidal flow over topography, 

such as a sill. The effect of sills in generating internal tides was first shown by Zeilon (1912, 

1934), as referenced in LeBlond and Mysak (1978). Halpern (1971a,b) identified groups 

of higher frequency waves as well as a semi-diurnal internal tide generated by tidal flow 

over a bank. Baines (1982) discusses the generation of internal tides by the continental 

rise in the ocean, and Blackford (1978) presents a non-linear model of the generation of 

the internal tide by tidal flow over a sill in a channel. When there is flow over topography 

a vertical component of velocity is required for the fluid to surmount the obstacle. This 

vertical component of velocity oscillates at that frequency, and acts as a forcing function 

to generate internal waves at tidal frequency. With the highly energetic and turbulent 

processes that occur at the sill in Knight Inlet, such vertical components of velocity are 

bound to be chaotic, at least on the downstream side of the sill, causing both a wide 

spectrum of modes and an irregular waveform to be generated. However, as the internal 

tide propagates away from the energetic region of generation into the "far field", the higher 

modes will dissipate due to their large vertical shear, and the waveform will become more 

regular. Another way of looking at the generation mechanism is that as the deep flow is 

blocked, the more dense fluid will tend to rise up the sill with the flow, but then fall again 

as the tidal current eases. This behaviour is depicted in Figure 5a to the left of the sill. 

This oscillation of isopycnals at tidal period at depths below the sill crest will generate an 

internal tide. 
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1.3 A i m of this Thesis 

The main question that will be addressed in this thesis is how much of the internal tide, 

which is supposedly generated at the sill and propagates away from it in both directions, 

is reflected when it hits the first bend up-inlet of the sill, and how much is transmitted. 

In an analysis of four current meter records, Farmer and Freeland (1983) concluded that 

the amplitude of the outgoing internal tide at Tomakstum Island (see Figure l)was 0.93 

times that of the incoming wave. Because they only had measurements at two depths they 

were forced to assume that only one internal mode was present (see later discussion in 

Section 3.4). Farmer and Freeland assumed that this mode was the first. Later, Freeland 

(1984) modified the calculation to assume that this mode was the second, and obtained an 

amplitude ratio of 0.70. 

However, their conclusion that the internal tide undergoes substantial reflection at the 

bend is in direct conflict with a result obtained by Blackford (1984). He modified his non­

linear generation model to include a variable amount of reflection at a specified distance 

from the sill, and compared the resulting waveform of the internal tide with an observed 

waveform based upon the depth of the 30.5 %o isohaline which was obtained from a 24 

hour series of CTD observations at two stations. He found much poorer agreement by 

using a high reflection coefficient than by using no reflection, which suggests that very 

little reflection occurs at the bend. 

Another piece of evidence in favour of a low reflection coefficient at the bend comes 

from a numerical simulation of internal tide generation in sill fjords by M0rk and Gjevik 

(1982). Their model was two-layered and depth integrated, and simulated a barotropic 

Kelvin wave in the open ocean propagating along the coast past the mouth of the fjord. 

It induced a barotropic standing wave in the fjord, which in turn generated baroclinic 

waves at the sill. They found that with the parameters used, a 90° bend in the fjord had 

negligible effect on the propagation of the internal tide, in the sense that the baroclinic 

interface displacements as a function of time at two points on either side of the bend were 

the same as if the fjord was straight. 
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This thesis seeks to resolve the conflict between Freeland and Farmer on the one hand 

and Blackford and M0rk and Gjevik on the other. In order to do so, a theoretical study 

of the propagation of a Kelvin wave around two types of bend in a channel of rectangular 

cross-section was carried out. The method of solution was essentially numerical. It is 

described in Chapter 2. In addition, cyclesonde current meter and CTD data from Knight 

Inlet were analysed. It was attempted to express the vertical profiles of the phase and 

amplitude of the Af2 constituent of longitudinal velocity and density oscillations as a 

superposition of the first few internal modes, both up- and down-inlet propagating. In this 

way an estimate of the reflection coefficient at the bend for each mode was made. This 

analysis is described in Chapter 3. 

The energetics of Knight Inlet are also discussed in Chapter 3. Freeland and Farmer 

(1980) estimated the power lost from the barotropic tide in the straight section from 

Montagu Point (near Protection Point) to the first bend (which includes the sill), and in 

the sinuous section from the first bend to the head. These estimates were based upon the 

phase of the surface elevation. They found that the power los3 in the section containing 

the sill was approximately 20 times that in the sinuous section. They concluded that this 

high loss was due to the generation of internal waves and tide and hydraulic jumps at the 

sill. The power loss from the barotropic tide in the sill section was of the order of 7-9 MW. 

Stacey (1985) developed a simple model to predict the amplitude of the internal modes 

generated by the sill (see Section 3.11). He found that the total power, summed over the 

first ten internal modes, radiated by the sill plotted monthly for 18 months followed the 

total power loss from the barotropic tide as calculated from the phase of the surface 

elevation very closely. This result implies that most of the energy being removed from 

the barotropic tide is being fed into the internal tide, and that therefore the internal tide, 

rather than high frequency internal waves or turbulence at the sill, is the most energetic 

response resulting from the interaction of the tides with the sill. 

Any energy in the internal tide that does not radiate out into the open ocean must be 
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dissipated by bottom and side friction or through turbulence to cause mixing. Freeland 

and Farmer (1983), using CTD data, calculated that the divergence of the total energy 

flux of the mean circulation (i.e. the rate of work being fed into the mean circulation) was 

much greater in the straight section than in the sinuous section. The total energy flux of 

the mean circulation consists of both potential and kinetic energy flux, although the former 

is an order of magnitude greater than the latter. The mean circulation is driven by the 

buoyancy input from river runoff, but turbulent mixing causes the potential energy of the 

mean state to increase. The energy flux divergence in the straight reach was about 2% of 

the barotropic tidal energy loss. This result is consistent with the idea of a multistep energy 

transfer (tidal energy loss converted to internal motions which lose energy to turbulence 

which mixes the water column) where efficiency could not be expected to be high. 

1.3.1 Summary 

This thesis will describe an attempt to resolve the conflict between the results of Free-

land (1984) and those of Blackford (1984). The former indicate a significant reflection of 

the internal tide at the first bend in Knight Inlet, whereas the latter indicate a negligible 

reflection. The question will be approached both theoretically in Chapter 2 and exper­

imentally, using cyclesonde current meter and CTD data from Knight Inlet, in Chapter 

3. The energetics of Knight Inlet will also be discussed in Chapter 3. In Chapter 4 the 

low-frequency component of the velocity signals from the cyclesondes will be presented, 

with a brief analysis. 
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2. The propagation of a Kelvin wave around a bend in a channel 

2.1 Introduction 

The problem of the reflection of a Kelvin wave from the end of a channel was first 

solved by Taylor (1920). He found that it was not possible for a pair of Kelvin waves 

propagating in opposite directions to satisfy the condition of zero flow normal to the end 

wall, and that a whole spectrum of Poincare waves had to be involved in the reflection 

process. The problem was re-examined by Hendershott and Speranza (1971) and Brown 

(1973). In this thesis Taylor's method was used to investigate the behaviour of a Kelvin 

wave incident upon a bend in a channel. 

Previous models of Kelvin waves propagating around bends have not included an op­

posite wall; they have been bends in straight coastlines. Buchwald (1968) considered a 

right-angled bend, and Packham and Williams (1968) solved the problem for a bend of 

general angle. Because there was no opposite wall, a reflected Kelvin wave was not pos­

sible, and any energy not transmitted as a Kelvin wave had to be radiated as cylindrical 

Poincare waves from the corner. They found that there was complete transmission in the 

case of sub-inertial frequency Kelvin waves, since the Poincare' waves are evanescent. In 

the case of super-inertial frequency Kelvin waves, Packham and Williams found that there 

was complete transmission only for wedge angles 2 * + 1 , where n = 1,2,3,... (see Figure 34). 

Buchwald (1971) also considered the problem of a Kelvin wave propagating along a 

straight coastline past the mouth of a narrow channel. A Kelvin wave propagating into 

the channel was generated, as well as cylindrical Poincare waves in the semi-infinite ocean 

provided that the frequency was super-inertial. He found that the amplitude of the Kelvin 

wave generated in the channel was proportional to the ratio of the channel width to the 

wavelength in the channel. 

In this chapter, then, solutions of the linearised long wave equations in a flat-bottomed 

channel of rectangular cross-section are presented for the case of a Kelvin wave incident 

upon a bend. 
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2.2 Governing Equations 

The linearised long wave equations, for a harmonic time dependence e , w t, separated 

into vertical and horizontal dependences, are 

iuU- fV = -Px, (2.1) 

iuV + fU = -Py, (2.2) 

ghn(Ux + %) = -iuP. (2.3) 

(LeBlond and Mysak, 1978, equations 10.34-10.38) 

(U, V) and P are the horizontal dependences of velocity and specific pressure (pres­

sure/density) respectively, and hn is the equivalent depth as derived from a vertical modes 

calculation. In the case of the barotropic tide, hn is the depth of the channel. 

Equations 2.1 and 2.2 can be solved for U and V in terms of P: 

,~ iuj ( d . d \ = , 

-Ti iw / 3 . 3 \ s . 

where 

T = - . (2.6) 

The equation of continuity (equation 2.3) then yields the wave equation in P: 

(V 2 + ~k?)P =0, (2.7) 

where 

# ^ feiLz£l. (2.8) 

At a boundary, the requirement that there be no normal velocity is expressed by the 

condition 

where n denotes the outward normal to the boundary, and s the direction along the 

boundary. 
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2.3 Special Solutions in a Straight Channel 

The channel width is taken to be 2L, and the length scale L is used to make the space 

co-ordinates non-dimensional. The co-ordinate system shown in Figure 6 is adopted, where 

Region 1 is the channel under consideration, with a width of 2 units. The problem then 

becomes 

(V2 + k2)P = 0, ( 2 . 1 0 ) 

with 

(s- < T^)'-° l l I = 0'2' (2-n) 

where 

*2 = ^JLL\ ( 2 . 1 2 ) 
gK 

Note that k2 is a non-dimensional parameter. 
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jtt f Transmitted 

/ ' / / / / / / ' / / \,f2,-2^>y' * * * * * * f *'* 

Figure 6 Schematic diagram of the "rectangular bend". 
The co-ordinate system used in describing solutions in a straight channel is shown. 

The solution for a Kelvin wave propagating in the direction of increasing y is 

P = e x p { ( r [ x - l ] - i y ) - 7 r i = f } , ( 2 . 1 3 ) 
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tta(h.-iTh)p"°- (2-14) 

where U, V and P are proportional to U, V and P. The corresponding expressions for the 

mth Poincare mode are 

P =e-k™» (costmx - ^ ^ s i n * m x ^ , (2.16) 

/ T 2 l . 2 _ *2 \ 

U =e-fc"" ( m
f
 m j sinimx, (2.17) 

V = « " * - » ^(r2 - l)A:mcos<mz - ^ s i n < m i ) , (2.18) 

for m = 1,2,3,..., where 

and 

km = Wt2m ~ (2.20) 

In this thesis it is assumed that all the Poincare modes are evanescent, i.e. k2 < 

(|)2 = 2.4674, and that the frequencies are super-inertial, i.e. r = £• < 1. Equations 

2.12 and 2.20 show that all sub-inertial frequency Poincare waves (e.g. diurnal tides) are 

evanescent, whereas super-inertial frequency Poincare waves (e.g. semi-diurnal tides) will 

only propagate if the channel is wide enough or the phase speed y/ghn is small enough. 

Kelvin waves propagate at all frequencies. 

The corresponding expressions for Kelvin waves propagating in the opposite direction 

can be obtained be replacing k by —k in 2.13-2.15, or for Poincare waves decaying in the 

opposite direction by replacing km by — km in 2.16-2.18. For reference, expressions for 

the non-dimensional wavelength of the incident Kelvin wave A, and the non-dimensional 

Rossby radius Rn, are 

A = 2ir^—r , (2.21) 

Rn = (2.22) 
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The appropriate length scale to convert these to dimensional quantities is L, the half-width 

of the channel. 

2.4 Method of Solution in a "Rectangular Bend" 

The domain of interest is a right-angled bend in a channel, where the width of the 

channel is two units before the bend, and a different width after the bend (see Figure 6). 

The domain is split up into three regions: two straight channels (Regions 1 and 3) and a 

rectangle (Region 2). The solution in Regions 1 and 3 are expressed as a sum of a Kelvin 

wave propagating away from the boundary with Region 2, and a truncated infinite series 

of evanescent Poincare modes, which decay away from the same boundary. These waves 

all have unknown complex coefficients that must be determined. In addition, the solution 

in Region 1 has a further component, namely an incident Kelvin wave of unit amplitude 

and zero phase. 

The solution in Region 2 is expressed as a sum of Kelvin waves propagating in the 

positive and negative y-direction, the corresponding Poincare modes, and Kelvin waves 

propagating in the positive and negative z-direction, along with the corresponding Poincare 

modes. Hence, if the Poincare modes are truncated after M terms, then 6(M+ 1) complex 

coefficients are required to describe the solution everywhere. 

All the basis functions satisfy the wave equation, and they satisfy the boundary condi­

tion of zero normal velocity everywhere along the boundaries except on the left-hand and 

lower boundaries of Region 2. The vanishing of normal velocity along these two boundaries 

remains to be imposed, as do the matching of pressure and velocity along the other two 

boundaries of Region 2. In fact, it is only necessary for the pressure and normal velocity 

to be matched across the other two boundaries, since if these two properties match then 

all other properties, including tangential velocity, must also match. Suppose that the pres­

sure matches on either side of a boundary. Then the tangential component of the pressure 

gradient ^ must match. Yet if the normal velocity (§£ — 1 T § 7 ) matches, then |£ also 

matches. Hence V? matches, and so therefore does the tangential velocity (^£ + tV|£). 
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Also (V 2 + k 2 ) P — 0 on both sides of the boundary, which implies after differentiation 

that (V 2 + k2) VP = 0, (V 2 + k2) V2P = 0,..., etc on both sides. Given that P and VP 

match, it follows by induction that V2P, V3P, V4P,..., etc, also match. 

The matching process was split up into two stages, which reduced the problem from 

the inversion of a (complex) matrix of order 6 (M + 1) to the inversion of three matrices 

of order 2(M + 1). If the second channel is the same width as the first, then two of these 

three matrices are the same, and there are then only two different matrices to invert. 

2.4.1 First Stage 

The first stage is the matching of normal velocity. The problem of a rectangular basin 

enclosed on three sides (zero normal velocity) with a prescribed normal velocity along the 

remaining open boundary is considered. The solution inside the rectangle can be expressed 

as a sum of a Kelvin wave propagating away from the open boundary as if in a channel, 

and its associated M Poincar£ waves decaying away from the open boundary, along with 

a Kelvin wave propagating towards the open boundary and its associated Poincare modes. 

The solution requires 2(M -I- 1) complex coefficients to be determined. The boundary 

conditions of zero normal velocity along the two side walls are automatically satisfied by 

the choice of basis functions, but the zero normal velocity along the fourth boundary, and 

the prescribed normal velocity along the open boundary must be forced by a suitable choice 

of coefficients. 

The (complex) coefficients were calculated using a least squares method, minimising the 

sum of squares of the moduli of the difference between the normal velocities corresponding 

to the "fitted" superposition of basis functions and the required normal velocity. The 

sum of squares was calculated by dividing each boundary into N — 1 intervals, and then 

evaluating the basis functions and required normal velocities at iV points distributed evenly 

along each of the two boundaries. The value of N was chosen to be sufficiently large (> 2M) 

that aliasing of the Poincare modes did not occur. Hence the 2(M + 1) unknowns were 

calculated by a least sum of squares at 2N locations. 
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It is interesting here to compare this problem with that considered by Pnueli and 

Pekeris (1967), where they calculated the normal modes in a fully enclosed rectangular 

basin. The least squares analysis in both problems gives rise to a matrix equation of the 

form Ax = b, where A is a 2(M + 1) x 2(M + 1) complex matrix, 6 is a 2(M + 1) complex 

vector, and x is the 2(M + 1) vector of complex coefficients that is to be determined, b is 

a linear transformation of the prescribed normal velocity along the open boundary of the 

rectangle, and would be zero for a fully enclosed rectangle. Hence, the relation that Pnueli 

and Peckeris calculated between k2 and r arises from the vanishing of the determinant of 

A. For a given k2, r is an eigenvalue of A. However, in this thesis, k2 and T are regarded 

as given, and the prescribed normal velocity is non-zero. If r happens to be the eigenvalue 

of A for the particular value of A:2, then this method breaks down. The solution inside 

the rectangle would not be uniquely defined for a prescribed normal velocity; the addition 

of any superposition of normal modes of the corresponding closed basin would also be a 

solution. 

It should be noted that the problem of a rectangular basin with prescribed normal 

velocity along any number of its sides is only a small extension to this problem. Because 

of the linearity of the equations, the solution for prescribed normal velocity along many 

sides is equal to the sum of the solutions for prescribed normal velocity along each side in 

turn. 

The first stage, then, consists in applying this procedure 2Af+3 times with the following 

prescribed normal velocities to Region 2: 

(i) The normal velocity corresponding to an incident Kelvin wave of unit amplitude 

and zero phase in Region 1. 

(ii) The normal velocity corresponding to a reflected Kelvin wave of unit amplitude 

and zero phase in Region 1. 

(iii) The normal velocity corresponding to each of M evanescent Poincare modes, each 

of unit amplitude and zero phase, in Region 1. 
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(iv) The normal velocity corresponding to a transmitted Kelvin wave of unit amplitude 

and zero phase in Region 3. 

(v) The normal velocity corresponding to each of M Poincare modes, each of unit 

amplitude and zero phase, in Region 3. 

Note that if Region 2 is square, then (iv) and (v) are identical to (ii) and (iii). This is 

the reduction of work that was referred to earlier. 

2.4.2 Second Stage 

The second stage is the matching of pressure. For each of the 2M + 3 types of wave 

in the straight channels, the first stage of the calculation returns the pressure field inside 

Region 2 such that the normal velocity matches. For each of the 2M + 3 types of wave 

of unit amplitude and phase, the difference between the pressure in Region 2 and that in 

Regions 1 and 3 is calculated along their two common boundaries. If the wave exists in 

Region 1, then the pressure in Region 3 is taken to be zero, and vice-versa. 

The aim of the second stage is to find a combination of the 2M + 3 types of wave in 

the straight channels that makes the sum of these "pressure anomalies" equal to zero. The 

amplitude and phase of the incident Kelvin wave are arbitrarily set to unit and zero, leaving 

2(M + 1) complex coefficients to be calculated. This calculation is also done by a least 

sum of squares method, minimising the sum of squares of the modulus of the "pressure 

anomalies* at 2N locations. This procedure gives rise to a matrix equation of the same 

order as in the first stage, of the form Ay = 6. Here y is the vector of complex coefficients 

and 6 is a linear transformation of the incident Kelvin wave. If there were no incident 

wave then 6 would be zero, implying that y = 0 (the trivial solution). If the incident wave 

contained some decaying Poincare modes, then 6 would be changed. 

Loosely speaking, the first stage of the calculation describes how a rectangle responds 

to various forcing terms, and the second stage describes how the rectangle and the two 

straight channels are connected. This method is an adaptation of the collocation method. 

However, in the collocation method boundary conditions are applied at the same number 
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of points as there are unknown coefficients. In this method at least twice as many points 

are used, and the conditions are applied in a least squares sense. 

2.5 Results for the Rectangular Bend 

The following results were obtained using 15 Poincare modes ( M =15), and doing a 

least squares fit at 100 points along each boundary (N = 100). The success of each run 

was judged by the extent to which the pressure and velocity fields were continuous across 

the boundaries, and the extent to which the sum of the reflected and transmitted energy 

fluxes equaled the incident flux. The continuity of velocity can be evaluated by looking at 

the plot of current ellipses in Figures 10, 12 and 16: for points on the common boundary 

between two regions two ellipses are plotted according to the solution in each region. The 

two ellipses should be indistinguishable. 

When the two channels were of equal width, the relative energy fluxes were calculated 

by simply squaring the absolute value of the coefficient of the relevant wave in the solution, 

be it the incident, reflected or transmitted wave. The reflected R, and transmitted T fluxes 

were expressed as a percentage of the incident flux. There should be no energy loss, since 

there is no dissipation in the model. The Poincare' modes transmit no energy, since they 

are evanescent. 

There are three free parameters in the problem, namely T, the period of the oscillation, 

k, which is proportional to the ratio of the channel width to the Rossby radius, and 6, the 

ratio of the second channel width to the first. Hence, the width of the second channel is 

2b units in the model. In the approach used, two of these parameters were kept constant, 

and the third was varied. The standard values used to start each parameter search were 

r = 0.803, 

fc2 = 7.02 x 10 - 3 , 

6= 1. 

These were chosen to represent the first internal mode of the M2 constituent of the internal 



tide in Knight Inlet. The following parameters were used to arrive at these values: 

u =1.40518 x 10~4 rad/'sec, 

f =1.12887 x 10 - 4 rad/sec (at latitude 50.7° N), 

L =1 km, 

cn = \/ghn =100 cm/sec. 

2.5.1 Parameter Search 1: r = 0.803, 6 = 1, variable k2 

Figure 7 shows a plot of the reflection coefficient R against k2 for constant r and 6. k 

is remarkably small (< 10%) until just before the cutoff wavenumber at which Poincare 

waves start to propagate, where there is a pronounced peak. For small k2 (< 0.2), R is 

roughly linear in k2, and the curve approaches the line R = 54.4 A2 % as k2 —* 0 (see the 

blowup in Figure 8). As a check on the computation, R and 100% — T are generally in 

excellent agreement, except near the peak. 

Figure 7 R vs k2 for constant r = 0.803. 6 = 1. 
The value of k2 for which the first Poincare mode starts to propagate is marked with an 
arrow. Circles = R, triangles = 100% — T . 
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Figure 8 Blowup of Figure 7 for small A:2. 
The straight line is R — 54.4 A;2 %, which is the least squares fit for k2 < 0.05. 

The default values for Knight Inlet lie well within the linear part of the relationship. 

Figures 9 and 10 show the pressure and velocity fields for these values of the parameters. 

Note that because of the assumed etwt time dependency, waves propagate in the direction 

of decreasing phase (Arg P). Velocity matching is not perfect, and there is a singularity 

in the velocity at the inside corner (see discussion in Section 2.6). The current ellipses in 

this and all figures showing velocity fields are scaled so that they are as large as possible 

without having to be plotted on top of each other. 

Figures 11 and 12 show the pressure and velocity fields for A;2 = 2.25. This value lies in 

the peak of the curve of Z vs A;2. Note the presence of amphidromes where the magnitude 

of the pressure oscillation is zero, and hence its phase is ambiguous. Non-zero normal 

velocity is visible in two of the ellipses, whereas the singularity at the inside corner has 

decreased. This latter phenomenon could be due to the decreased Rossby radius which 

causes an increased cross-channel decay of Kelvin waves, although the reflected wave is 
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Figure 9 Pressure field for k? = 7.02 x I O - 3 , T = 0.803, 6 = 1. 
Solid lines = \P\ contours, dashed lines = Arg P contours. 
A = 44.7, Rn = 8.8, Z = 0.38 %, 100% - T = 0.38 %. 
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Figure 10 Velocity field corresponding to Figure 9. 
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Figure 11 P r e s s u r e f i e l d f o r k2 = 2 . 2 5 , r = 0 . 8 0 3 , 6 = 1 . S o l i d l i n e s = \P\ c o n t o u r s , 
d a s h e d l i n e s = Arg P c o n t o u r s . A = 2 . 5 , Rn = 0 . 4 9 , Z = 2 4 . 4 8 % , 1 0 0 % - T = 2 4 . 2 2 % . 
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Figure 12 V e l o c i t y field c o r r e s p o n d i n g t o Figure 11. 
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F i g u r e 13 Z vs r for constant k2 = 7.02 x 1 0 - 3 . 6 = 1 . 
Circles = Z, triangles = 100% - 7 . 

The curve is Z = j^fr which is the least squares fit to a function of that form, 

also of considerable magnitude. 

2.5.2 Parameter Search 2: k2 = 7.02 x 1 0 ~ 3 , 6 = 1 , variable r 

Figure 13 shows a plot of Z vs r for constant k2 and 6. A dependency was 

observed, with the constant of proportionality being 0 .135. This result, combined with the 

constant of proportionality from the linear portion of the relationship between Z and k2 

leads to the empirical relationship 
19 3 A: 2 

Z = '_ t 2 % for small k2 ( < 0.2). (2.23) 

This is equivalent to 

je = 1 9 . 3 — ( 2 . 2 4 ) 

or 

je = 1 . 9 6 r 2 % , (2.25) 

where r is the ratio of the channel width to the wavelength of the incident wave. 



2.5.3 Parameter Search 3: k2 = 7.02 x 10 - 3 , r = 0.803, variable b 

Figure 14 shows the relationship between R and b. As expected, the amount of energy 

transmitted through the second channel decreases to zero as the width of the second channel 

decreases to zero. There is, however, a large discrepancy between R and 100% — 7 , 

indicating that the solution is not reliable for 6 < 1. This breakdown is confirmed by 

Figures 15 and 16, where it can be seen that the velocity fields do not match. 

Figure 14 vs fe for constant r = 0.803 and k2 = 7.02 x 10~3. 
Circles = R, triangles = 100% - 7 . 

The energy fluxes can not be simply calculated from the square of the magnitude 

of the relevant coefficient in the solution expansion, because the channels are no longer 

of the same width. The pressure and velocity fields both have a cross-channel structure 

proportional to txlRn, and so the energy flux will depend on the channel width as 

fb (es'Rn)2 dx = Rn sinh (2.26) 
J-b Rn 

Hence, the square of the magnitude of the coefficient of the transmitted wave was multiplied 

by a factor of ^ ^ ^ J R " ' ) D e ^ o r e plotting to make it compatible with the fluxes obtained 
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20° 15° 10° 5° 

Figure 15 Pressure field for k2 = 7.02 x 10 - 3 , r = 0.803, 6 = 0.3. 
Solid lines = \P\ contours, dashed lines = Arg P contours. 
A = 44.7, Rn = 8.8, Z = 35.72%, 100% - T = 22.89%. 

Figure 16 Velocity field corresponding to Figure 15. 
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by squaring the magnitudes of the coefficients of the incident and reflected waves. For 

large values of Rn (0(1) or larger), this factor is approximately equal to b. 

2.6 Discussion of the Solution Near the Inside Corner 

Pnueli and Pekeris (1968) showed that near a corner of angular opening (fi < 1), the 

solution is singular, and the pressure is approximated by the expression 

P—* ^(T cos fiO — ism fid) + constant as r —> 0, (2.27) 

where (r, 9) are polar coordinates whose origin is at the apex of the corner. Thus velocities 

are 0(r'*""1), and are clearly singular in the present case where fi = |. 

The basis functions chosen for our solution are incapable of producing such a singular­

ity, since a Fourier series representation of r~* does not converge. This difficulty manifests 

itself in the fact that it is impossible to match velocities in the region of the inside corner. 

The corner itself is the only point in the whole domain that is in each of the three regions, 

and hence there are three expressions for the velocity there. In Region 1 a condition of zero 

flow in the x-direction has been imposed, and in Region 3 a condition of zero y-direction 

flow has been imposed. The velocity in Region 2 has been constrained to match these 

velocities, at least in a least squares sense. The only way in which all these conditions can 

be consistent is if there is zero velocity at the inside corner. However, this constraint does 

not admit solutions of the form given by equation 2.27. 

Figure 10 demonstrates the problem well. At the inside corner three current ellipses 

are plotted. The two calculated from the expressions for the solution in Regions 1 and 

3 are simply straight lines parallel to the local boundary, whereas the third in Region 2 

has its axis aligned at a 45° angle between them, as a consequence of the least squares 

matching. This observation might indicate that the solution shown in Figure 10 is actu­

ally approaching the correct solution in a bend with a slightly smoothed inside corner. 

Unfortunately, there is the added deficiency of the failure of the current ellipses to match 

perfectly close to the inside corner. As one looks further away from the inside corner the 

matching improves, and becomes satisfactory after about ^ of the channel width. 
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All that can really be said is that the solution is inadequate in the region of the inside 

corner. Hopefully, however, the details of the flow near the inside corner do not affect the 

general character of the solution, so that the solutions presented here for the rectangular 

bend give reasonable approximations to the amount of energy reflected and transmitted. 

Because of this problem at the inside corner, a bend without a sharp discontinuity in 

the direction of the boundary was considered: the so-called "annular bend." As will be 

seen later, the results from the annular bend study are in general agreement with those 

from the rectangular bend, giving support to the idea that the results for the rectangular 

bend are in some sense close to the "true" solutions. 

2.7 Method of Solution in an "Annular Bend" 

Figure 17shows the geometry of the annular bend. Again, the domain was split up into 

three regions, namely two straight channels and a sector of an annulus. This type of bend 

has two advantages over the rectangular bend . First, it is of variable angle <j>, and, second, 

it has no obtuse angles in the boundary. It has the slight disadvantage of requiring that 

the two channels be of equal width. The previous free parameter of the second channel 

width has been replaced by two new free parameters: the angle of the bend <f>, and the 

sharpness of the inside corner as measured by the inner radius of the annulus, r 0 . 

The solution in Regions 1 and 3 was represented in the same way as in the rectangular 

bend, but in Region 2 it was expressed as a superposition of "radial" Kelvin and Poincare 

modes. If the solution P(r, 6) is separated into 

P(r,9) = R(r)&(9), (2.28) 

then the wave equation becomes 

e" = -i/2e (2.29) 

and 

R" + -R' + (-^r + k 2 ) R = 0. (2.30) 

i/2 is the separation constant. The solution to the 9 problem is 

0 = e±iv0. (2.31) 
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Figure 17 Schematic diagram of the "annular bend". 

The boundary conditions of zero normal flow at the inner and outer radii of the annulus 

become 
TU 

at r = r0, r 0 + 2. (2.32) Ur = R' + —R = 0 TU 

r 
Equations 2.30 and 2.32 form an eigenvalue problem, whose eigenfunctions form a complete 

set. The corresponding expression for the velocity component parallel to the channel is 

Vg = —R + irR'. 
r 

(2.33) 

Equation 2.30 is Bessel's equation. For radial Kelvin waves, the eigenvalue v is real, and 

the solution would be 

R(r) = AJv{kr) + BYu(kr), (2.34) 

where Jv and Yu are Bessel functions of order v, and A and B are undetermined complex 

coefficients. The boundary conditions at r = r0, r 0 + 2 would determine these coefficients. 
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However, for evanescent radial Poincare modes, u is nearly imaginary (it is a com­

plex number whose phase is close to 90° or 270° — see Section 2.8), and the solution of 

equation 2.30 would be in terms of Bessel functions of complex order. Because of the dif­

ficulty of computing such functions it was instead decided to solve the eigenvalue problem 

numerically. 

A fourth order Runge-Kutta scheme was used with iterative refinement of the eigen­

value to satisfy the boundary condition at the endpoint of the integration (a "shooting" 

technique). This scheme was also used for the radial Kelvin waves, since no extra computer 

programming was required. The scheme was tested on an annulus with a very large inner 

radius compared to the width, and it was indeed found that the eigenvalues approached 

those of Kelvin waves and Poincare modes in a straight channel (see Section 2.8). 

The solution in the annulus was therefore expressed as a superposition of two radial 

Kelvin waves propagating in opposite directions around the annulus, and the two corre­

sponding truncated sets of Poincare modes, decaying in opposite directions. Again, the 

method of solution for the problem of an incident Kelvin wave of unit amplitude and zero 

phase was to solve for the 4(M + 1) complex coefficients in two stages. Each stage involved 

inverting a square complex matrix of order 2(M 4- 1). 

The first stage is the matching of normal velocities across the boundaries between 

Regions 1 and 2, and between Regions 2 and 3, by the method of least squares at N 

locations along each boundary. For each of the 2M + 3 types of wave in the straight 

channels, the corresponding normal velocity was prescribed at the appropriate boundary 

of the annulus (zero on the opposite boundary), and the response of the annulus was 

calculated. The second stage is the matching of pressure, again by a least squares fit of 

the pressure anomalies for each of the 2M + 3 straight channel waves, to make the total 

pressure anomaly vanish. 
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2.6 Discussion of the Results of the Eigenvalue Problem in the Annulus 

The eigenvalues i/, for the radial Kelvin and Poincare modes were found to be of the 

same order of magnitude as those in a straight channel of the same width. A value must 

be assigned to the radius when converting from polar coordinates to cartesian coordinates; 

this value was taken to be the average radius of the annulus (r0 + 1). As the radius of 

the annulus tended to infinity, the eigenvalues tended to the eigenvalues in a straight 

channel, as expected. 

The eigenvalues for Kelvin waves in a straight channel are real, and for evanescent 

Poincare modes are imaginary. In both cases, the eigenvalues corresponding to waves 

propagating (or decaying) in the opposite direction are the negative of the original eigen­

values. However, in a bend, when there is rotation, a "splitting" occurs. As / is increased 

from zero, or as r 0 is decreased from infinity, the eigenvalue for a Kelvin wave propagating 

around a bend to the left increases slowly above its original value. The eigenvalue for a 

Kelvin wave propagating around a bend to the right decreases slowly below its original 

value. For sharp bends (ro = 0.1 say), this discrepancy between the eigenvalues for bends 

of opposite senses is large. This effect can be intuitively understood in terms of the differ­

ence in path lengths for a Kelvin wave bound tightly to the right-hand side of the channel. 

Such a wave propagating around a bend to the right will have a larger angular velocity 

than a wave propagating around a bend to the left for a given linear phase speed because 

of the shorter path length. Hence its angular wavenumber will be smaller. 

The eigenvalues for Kelvin waves do, however, remain real. The cross-channel pressure 

distribution also stays real, and the along-channel velocity component is still imaginary 

(see equation 2 .15) . However, a small, real cross-channel velocity component is introduced. 

This quantity is small at first, but increases as ro decreases. The eigenvalues for the 

evanescent Poincare modes are no longer imaginary, but a small real part is introduced as 

the sharpness of the bend is increased. It can be shown that the eigenvalue for a Poincare 

mode decaying around a bend to the right is the negative of the complex conjugate of the 

eigenvalue for one decaying around a bend to the left. This small real part to the eigenvalues 
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is equivalent to a long wavelength oscillation which is quickly damped out by the presence 

of the imaginary part. The real part always has a sign such that the oscillation propagates 

around the bend in an anticyclonic direction (clockwise in the northern hemisphere). 

2.9 Results for the Annular Bend 

The following results were obtained using 10 Poincare modes ( M = 10), and doing a 

least squares fit at 20 points along each boundary (N = 20). It was found that it was 

not necessary to use such a high value for M as was used in the rectangular bend analysis 

(where M = 15) since energy conservation could be achieved with a lower number of 

Poincare modes. Also N was reduced to the lowest number such that aliasing of the cross-

channel structure of the highest Poincare mode would not occur. These steps were taken 

to reduce computing costs. Again the approach was to vary one of the parameters while 

keeping the other three constant. The standard values were the same as in the rectangular 

bend, with the addition of ro = 0.5 and <f> = +90° (a right-angled bend to the left). 

2.9.1 Parameter Search 1: r = 0.803, <f> = +90° , r 0 = 0.5, variabie k2 

Figure 18 shows a plot of the reflection coefficient R against k2 for a right-angled bend 

to the left with constant r and r 0 . The shape of the curve is very similar to that in Figure 7, 

with a pronounced rise just before the cutoff. Again, the relationship is roughly linear for 

small k2 (k2 < 0.025), and the curve approaches the line R = 5.34 k2 % as k2 —• 0. There 

is an order of magnitude difference in R between Figure 18 and Figure 7; this difference 

can be attributed to the difference in sharpnesses of the two types of bend (see Subsection 

2.9.5). 

In all of the cases comprising Figure 18 the current ellipses were observed to match very 

well, and no normal velocity component was observed at the boundaries. For example, 

in Figures 21 and 23, which correspond to Figures 10 and 12, the current ellipses match 

very well along the common boundaries between regions. The pattern of amphidromes 

in Figure 11 is different from that in Figure 22 because of the difference in reflection 

coefficients. Agreement between R and 100% — T was very good. 
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Figure 18 Z vs k2 for constant r = 0.803. r 0 = 0.5, $ = +90°. 
The value of k2 for which the first Poincare mode starts to propagate is shown by the 
right-hand border. Solid line = Z, dashed line = 100% — T . 

Figure 19 Blowup of Figure 18 for small &2. 
The straight line is Z = 5.34 A;2 %, which is the least squares fit for A:2 < 0.025. 
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Figure 21 Velocity field 
corresponding to ^ r e m 
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Figure 22 Pressure field for k2 = 2.25, T = 0.803, r0 = 0.5, <f> = +90° . 
Solid lines = \P\ contours, dashed lines = Arg P contours. 
A = 2.5, Rn = 0.49, je = 0.394%, 100% - 7 = 0.408%. 

Figure 23 Velocity field corresponding to Figure 22. 
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2.9.2 Parameter Search 2: r = 0.803, r0 = 0.5, various k2, variable <p 

Figure 24 shows the effect of varying the bend angle <f>. Two statements can be made. 

The first is that there are certain angles for which there is zero reflection. The second is 

that there is no significant difference in reflection coefficient for a bend of a given angle to 

the left and a bend of the same angle to the right; i.e. Figure 24 would be symmetrical 

about the £-axis <f> = 0. Results for negative <f> are not actually plotted because they are 

the mirror image of the values plotted. However, the results for negative <f> would follow 

the R curve for positive <j> as closely as the 100% — T curve does. 

Figure 24 R vs <p for various values of k2. r = 0.803, r 0 = 0.5. 
Solid lines = R, dashed lines = 100% - T . 

The effect of increasing k2 is to compress the peaks laterally (i.e. make the zeros closer 

together), and to make them higher. The case k2 = 2.467 was also calculated, but was not 

included in Figure 24 because it would have gone off scale. It can be seen in Figure 32 on 

different axes. Examination of Figure 24 reveals why there is a dip in Figure 18 at around 

k2 = 0.75. Figure 18 is a plot of R against k2 for constant <f> = 90°, and Figure 24 shows 

that the dip at k2 » 0.75-1.00 is due to the passing of the first zero reflection over the 

value 4> = 90°. Figures 25-28 illustrate the fact that a bend of 30° to the left and a bend 
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of 30° to the right have similar but not identical solutions, yet the captions show that 

they have the same reflection coefficient (36%). Energy is preserved, and the pressure and 

velocities match. 

The value used for ft2 is 2.467, which is just before the cutoff value at which the 

first mode Poincare wave propagates. This value was chosen to give a large J2. In fact, 

the e-folding length for the decay of the Poincar6 mode is 50L (i.e. 25 times the channel 

width), and the solution is dominated by this mode (its amplitude is an order of magnitude 

higher than the Kelvin waves). This is the reason for the characteristic change in phase 

of the pressure in mid-channel by 180°, and the maximum in velocities in mid-channel in 

Figures 25-28 (see equations 2.16 and 2.17 with very small A:2). There is no along-channel 

phase propagation because the Poincare mode is evanescent. The Poincare mode does not 

contribute any energy fiux, but it does dominate the solution near the bend (within, say, 

1001 of the bend). 

The generation of a large amplitude Poincar£ mode seems to be associated with the 

occurrence of high reflection coefficients for the Kelvin wave and occurs when the Poincare 

mode has a large decay scale (almost propagating). It is interesting to note that Brown 

(1973) found a similar result in his study of the reflection of a Kelvin wave from the end 

of a channel (the Taylor problem). He allowed the first Poincare mode to propagate, so 

that any energy not reflected as a Kelvin wave was reflected as a Poincare wave. He found 

that just above the critical frequency at which the first Poincare mode starts to propagate 

(i.e. k2 just above (f )2), this mode becomes the principal energy-reflection mechanism. 

The Poincare mode rapidly asserts itself as the dominant reflection mechanism. 

It therefore seems likely that soon after the first PoincarS mode starts to propagate it 

will rapidly become a dominant energy radiation mechanism in the bend too, although in 

which direction is open to speculation. The amplitude of the Poincare mode has already 

been seen to become very large for k2 just less than (f )2, although as long as the mode is 

evanescent it cannot contribute to the energy flux budget. However, as A:2 increases above 
i 
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Figure 25 Pressure field for k2 = 2.467, r = 0.803, r 0 = 0.5, <j> = +30°. 
Solid lines = \P\ contours, dashed lines = Arg P contours. 
A = 2.4, Rn = 0.47, £ = 35.93%, 100% - T = 36.00%. 

o o o o o 

Incident wave 

Figure 26 Velocity field corresponding to Figure 25. The curved line at the inside 
corner is a result of several short ellipses running into each other. 
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Figure 27 Pressure field for k2 = 2.467, r = 0.803, r 0 = 0.5, <f> = - 3 0 ° . 
Solid lines = \P\ contours, dashed lines = Arg P contours. 
A = 2.4, Rn = 0.47, R = 35.88 %, 100% - T = 36.42 %. 

Figure 28 Velocity field corresponding to Figure 27. 
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(f )2, it is only necessary for the magnitude of that mode to remain large for the energy 

flux to increase rapidly, since the group velocity cg will increase rapidly anyway. Brown 

showed that if k2 = ( § ) 2 (1 + 5), then cg = 0[6$). 

2.9.3 Parameter Search 3: k2 = 7.02 x I O - 3 , r 0 = 0.5, <f> = 90°, variable T 

Figure 29 shows the effect of varying r with a constant, small k2 in a right-angled 

bend. Just as in the rectangular bend (Figure 13 ), there is good agreement with a curve 

of the form at least for r < 1. The constant of proportionality is 1.33 x 10 - 3 for the 

case ro = 0.5. This is equivalent to 

Z = 0.191 r2%, (2.35) 

where again r is the ratio of the channel width to the wavelength of the incident Kelvin 

wave. This result can be compared to 1.96 r 2 % (equation 2.25) for the rectangular bend. 

0.2 0.8 1.0 0 .4 0.6 
T 

Figure 29 Z vs r for constant k2 = 7.02 x I O - 3 and (p = +90° . r 0 = 0.5. 
Circles = Z, triangles = 100% - T . 
The curve is Z = 1 - 3 3 ^ 3 — %, which is the least squares fit to a function of that form. 

The method of solution breaks down for r > 1 (sub-inertial frequencies). For these 
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values of r, k2 was taken to be —7.02 x 10 - 3 . This choice preserves the wavelength of the 

Kelvin waves and the Rossby radius. Poincare waves can never propagate at sub-inertial 

frequencies. There was found to be a large discrepancy between Z and 100% — 7 . Also, 

inspection of the current ellipses revealed that velocity matching was bad. 

Figures 30 and 31 show the solution in the case T = 0, which corresponds to no rotation. 

The Rossby radius is infinite, and there is therefore no cross-channel decay of the Kelvin 

wave. The Kelvin wave becomes a regular gravity wave. There is very little variation in the 

amplitude of P in the whole domain; the solution is more or less a plane wave propagating 

directly around the bend with no reflection. 

The current ellipses are almost linear, which is associated with the fact that the 

Poincare modes are of very small amplitude and short decay scale (an e-folding length 

of 0.6£). Kelvin waves have no cross-channel velocity in straight channels, and very little 

cross-channel velocity in annular bends. On the other hand, odd Poincare modes have a 

maximum in the cross-channel velocity at the centre of the channel, which gives rise to 

round current ellipses there. The presence of large, slowly decaying Poincare modes seems 

to be associated with large reflection coefficients for the Kelvin wave, which therefore 

correlates with round current ellipses. 

2.9.4 Parameter Search 4: r0 = 0.5, various k2, various r, variabie <j> 

Figure 32 shows plots of Z against bend angle <f> for various values of k2 and r. For 

small k2 (Figure 32a), larger values of T lead to larger values of Z for all angles. The 

system is in the j—^ regime. However, for large k2 (Figure 32c), larger values of r lead to 

smaller values of Z. For intermediate values of k2 (Figure 32b), the curves seem to start 

off in the regime for small angles (say <p < 40°), but move into the large A;2 regime 

for larger angles. 

Figure 32c is in keeping with the results of Packham and Williams (1968). Their 

Figure 1 is presented in Figure 34 on reversed axes to conform with Figure 32c. They 

investigated the propagation of a Kelvin wave around a wedge of variable angle. In their 
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Figure 30 P r e s s u r e f i e l d f o r k2 = 7 . 0 2 x I O - 3 , r = 0 , r 0 = 0 . 5 , <j> = + 9 0 ° . 
S o l i d l i n e s = \P\ c o n t o u r s , d a s h e d l i n e s = Arg P c o n t o u r s . 
A = 7 5 . 0 , Rn = o o , Z = 0 . 1 4 1 %, 100% - T — 0 . 1 4 4 % . 

Figure 31 V e l o c i t y field c o r r e s p o n d i n g t o Figure 30. 
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Figure 32 Jl vs <f> for various values of k2 and r. ro 

50 
= 0.5. 



case no reflected Kelvin wave was possible. Energy that was not transmitted as an ongoing 

Kelvin wave was radiated as cylindrical Poincar£ waves (see Figure 33). These Poincare 

waves could propagate because the frequency was super-inertial, and there was no channel. 

They also found angles at which there was complete transmission, and that larger 

values of r gave lower values for Jl. Their problem gives no meaning to A:2, since there is no 

natural length scale with which to non-dimensionalise the incident wavelength. However, 

large k2 ( as in Figure 32c) in the annular bend would be expected to correspond most 

closely with their problem, since then the Poincare modes are almost propagating, and 

they do have propagating Poincar6 modes. 

The observation that the peaks in Figures 32 and 24 were compressed as A;2 increased 

led to the idea of plotting the first angle of complete transmission <f>0, against the incident 

wavelength A. The result is shown in Figure 35, which includes results from various values 

of A;2 and r. A remarkable linear relationship was found. This result means that the width 

of the "lobes" in the Jl-<f> plots is directly proportional to the incident wavelength. This 

result is also found in diffraction theory in other fields such as optics and electromagnet ism 

(e.g. Hecht and Zajac 1974 Chapter 10). It suggests that perhaps a better way to represent 

the data would be to scale the ĉ -axes with A, since then the angles of complete transmission 

would lie at the same position. Then only the amplitudes and shapes of the diffraction 

patterns would vary; some secondary lobes are bigger than the primary lobe. 

This relationship between the width of the lobe and A is also consistent with the linear 

relationship between Jl and A - 2 for large A and fixed <f>. The relationship between Jl and 

<t> is almost quadratic for small <f> (i.e. Jl oc <f>2, see, for example Figure 32a), so scaling 

<f> with A is almost equivalent to scaling Jl with A 3 . This means that plots of Jl against 

X4> for various values of A:2 and r will be approximately the same for small \<j>. After the 

initial portion of the curve, the plots will diverge according to their different peak values. 
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Cylindrical 

Figure 33 Bend in a straight coastline studied by Packham and Williams (1968). 

o o 

Figure 34 100% - 7 vs <f> for Packham and Williams' bend. 
(After Packham and Williams 1968.) 

52 



w ~ l I I I I I I 

0 1 2 3 4 5 6 7 
X 

Figure 35 Angle of first zero reflection vs A for r 0 = 0.5. 
The straight line is the least squares fit. 

2.9.5 Parameter Search 5: r = 0.803, various k2, various r0, variabie <f> 

So far all the results for the annular bend have been for a fixed sharpness, ro = 0.5. 

Figure 36 shows the effect of varying this inside radius for medium and large values of 

k2. In both cases increasing the sharpness (decreasing ro) gives rise to higher reflection 

coefficients. Not only are the peak values of the lobes increased but the constant of 

proportionality between the width of the lobe <f>Q and the incident wavelength A is increased. 

For very sharp bends (ro = 0.1) there is a significant discrepancy between R and 

100% — T and the velocities fail to match precisely. Also there are large velocities in the 

region of the inside bend, especially for small A;3. In effect, all the problems encountered 

with the rectangular bend start to show. 

Figures 37 and 38 show the solution in a gradual bend. The parameters are the same 

as in Figures 25 and 26 except for the inside radius, which has been increased from 0.5 

to 2.0. This change has caused the reflection coefficient to drop from 36% to 0.7%. The 
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Figure 38 Z vs <f> for various values of r 0 and k2. r = 0.803. 
Solid lines = Z, dashed lines = 100% - T. 
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Figure 37 Pressure field for Jfc2 = 2.467, T = 0.803, r 0 = 2.0, <f> = +30°. 
Solid lines = \P\ contours, dashed lines = Arg P contours. 
A = 2.4, R„, = 0.47, Z = 0.733%, 100% - 7 = 0.738%. 

0 
0 

o 0 o 0 

o o o o o 0 0 0 ° n Q u O 
O 0 0 0 o o o o O u

Q o ^ 

0 7 

0 
0 

Incident wave 

Figure 38 Velocity field corresponding to Figure 37. 
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solution is no longer dominated by Poincare modes. It is remarkable that bends to the 

left and bends to the right of the same angle (e.g. Figures 25-28) have similar solutions 

and identical reflection coefficients, whereas changing the inside radius and leaving the 

angle alone (e.g. Figures 37 and 38) has a major impact upon the solution and reflection 

coefficient. 

2 . 1 0 Conclusion 

It was found that the method of solution did not work in a bend with an obtuse 

discontinuity in the direction of the boundary (i.e. the rectangular bend) because there is 

a singularity in the velocity field there. The method worked well in a bend with smooth 

sides (i.e. the annular bend). The bend acts as a "diffraction grating." For certain 

bend angles there is total transmission, and between these angles there are "lobes" of 

high reflection. These lobes form a diffraction pattern which spreads out as the incident 

wavelength increases. The width of the lobes is proportional to the wavelength, as in other 

types of waves in optics, electromagnetism etc. The constant of proportionality depends 

on the sharpness of the bend. 

It was found that bends to the left give rise to the same reflection coefficient as bends 

to the right of the same angle, irrespective of the degree to which the incident Kelvin 

wave is trapped against one wall (as measured by the Rossby radius). For bends of fixed 

angle the reflection coefficient was found to be proportional to r 2 for small r, where r is 

the ratio of the channel width to the incident wavelength. (This result is similar to that 

of Buchwald (1971) for a Kelvin wave propagating past the mouth of a narrow channel 

(see Section 2.1).) The constant of proportionality increases as the bend becomes sharper. 

Just below the critical frequency at which PoincarS mode propagation becomes possible, 

this mode starts to dominate the solution, although while this mode is still evanescent it 

cannot contribute to the energy flux budget. This is consistent with Brown's (1973) result 

just above the critical frequency in a closed channel. 

The method of solution breaks down inexplicably for sub-inertial frequency waves. The 
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method also breaks down as the inside radius of the annular bend tends to zero, because 

of the singularity in the velocity field near corners whose angular opening is greater than 

180°, as shown by Pnueli and Pekeris (1967). To solve the problem correctly in a geometry 

that has such a corner, the form of the solution must be capable of expressing a singularity. 

The reflection coefficient of the internal tide in Knight Inlet at the 90° bend was found 

to be very small. It would be much less than 1% even for modes of order 4 or 5. However, 

the results of this chapter are equally applicable to a bend in any channel, and to barotropic 

tides. 
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3 . Observations of the Internal Tide in Knight Inlet 

3 . 1 Intro dnction 

In this Chapter data taken from Knight Inlet in the summers of 1981 and 1983 will be 

used to try to determine how much of the internal tide propagating up-inlet from the sill is 

reflected by the first bend, and how much is transmitted. The first few theoretical normal 

modes for a flat-bottomed ocean (calculated using measured IV^-profiles) are fitted to the 

vertical profiles of amplitude and phase of the Af2 constituent of longitudinal velocity and 

density oscillations. In this way the amplitude and phase of the first few normal modes 

can be estimated at each station, for waves propagating both up-inlet and down-inlet. The 

results of this analysis at the station just before the bend should, in theory, give a reflection 

coefficient for each mode. 

Sections 3.2-3.3 describe the data and give the results of the harmonic analysis. The 

amplitude and phase of each constituent are included for completeness, although only those 

of the M 2 constituent will be used in the subsequent analysis. Sections 3.4-3.7 give the 

theory of normal modes and normal mode fitting, including the treatment of the barotropic 

mode. Section 3.8 describes how the amplitude af the various modes can be converted into 

energy flux estimates for each mode. The actual normal modes used in the fitting are 

presented in Section 3.9, and a discussion of how they differ from Farmer and Smith's 

(1980) modes given in Section 3.10. Finally, the results of the fitting are presented in 

Section 3.11. In Section 3.12 the energetics of Knight Inlet are discussed, with reference 

to the work of Stacey (1985) and Freeland and Farmer (1980). The Chapter is concluded 

in Section 3.13. 
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3.2 Description of the Data 

In an attempt to study the internal tide in Knight Inlet, four cyclesonde current meters 

were deployed in the summers of 1981 and 1983. In total they produced 11 time series: 

three 12-day records from 30th July - 11th Aug 1981 (Julian days 211 - 223), four 32-day 

records from 20th July - 21st Aug 1983 (Julian days 201 - 233) and four 26-day records 

from 1st Sept - 27th Sept 1983 (Julian days 244-270). 

The positions of the stations are shown in Figure 1. In 1981 the instruments were 

located at Protection Point (towards the mouth of Knight Inlet), Lull Bay (2 km seaward 

of the sill), and at Tomakstum Island (8 km seaward of the first big bend). In July 1983 

an additional instrument was deployed off Adeane Point (3 Arm landward of the bend). All 

these stations were in mid-channel. However, in September 1983 the mooring at Lull Bay 

was replaced by a second mooring at Tomakstum Island. The two moorings at Tomaks­

tum Island were placed on either side of the channel, each approximately 500 m from the 

centreline of the channel. The locations of these two stations are shown in Figure 39. 

Figure 39 Detailed map of the first bend in Knight Inlet. 

The cyclesondes are automatic-profiling current meters (Van Leer et al., 1974). Built 

into the body of the instrument is an inflatable bladder and a helium tank. The valve to 

inflate and deflate the bladder with helium is under electronic control. When the bladder is 

inflated the instrument has a positive buoyancy of about 500 g, whereas when it is deflated 
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it has a similar negative buoyancy. Ballast can be added to or removed from the instrument 

before each deployment to compensate for an operating environment of different density 

from its previous deployment. The cyclesonde moves up and down a plastic coated steel 

wire, which passes through a block in the body of the instrument, under its own buoyancy. 

The wire is attached to a railway wheel at the bottom, and is kept tight by a subsurface 

buoy at a depth of approximately 10 m. The vertical travel of the instrument is constrained 

by two bumpers, the upper one at around 12— 17 m, depending on the state of the tide, and 

the lower one at no more than 200 m for these deployments. Sometimes the instrument did 

not reach the upper bumper if the pycnocline was relatively deep, because of insufficient 

buoyancy. 

The current is measured by two Savonius rotors which provide independent information 

on the speed of the water relative to the instrument. In addition there is an internal 

compass, and temperature, conductivity, pressure and pitch sensors. Salinity and density 

can be calculated from the conductivity and temperature data. In 1981 the profiles were 

set to commence every l£ hours at Tomakstum Island and Protection Point, and every 1 

hour at Lull Bay. The sampling interval, that is the interval over which revolutions of the 

rotors are counted and data recorded on cassette tape, was set to be 1 minute. However, 

in 1983 the profiles were set to occur every 3 hours at all stations, and a variable sampling 

rate was used. In the variable rate mode, the data were recorded every minute for one hour 

during the profile, and every 5 minutes for the next 2 hours while the instrument was sitting 

against the top or bottom bumper. This mode is more efficient on tape usage than the 

fixed rate mode by not wasting tape when not profiling. Each profile took approximately 

30-45 minutes, depending on the depth of the bottom bumper and on the weight of helium 

remaining in the tank. 

The data were transferred back in the laboratory from cassette tape to computer tape, 

so that the processing could be done on the mainframe computer. After the data had 

been converted into physical units they were edited on the terminal. Suspect features 

such as spikes in the conductivity record (which could be caused by organisms swimming 
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in the conductivity cell) or in the heading (which could be caused by a faulty reading 

from the compass) were listed and looked at, with the option of replacing the values with 

interpolated values based on previous and succeeding points. 

The average water speed past the instrument over the one-minute period was calculated 

from the number of revolutions of the rotors over that period. If the two rotors did not 

differ by more than 3 cm/s the average of the two was used, otherwise the higher value was 

used on the assumption that the other rotor had become stuck for some time. The vertical 

component of the velocity due to rising or falling of the instrument was calculated from 

the rate of change of depth (given by the pressure sensor), and the square of this vertical 

component was subtracted from the square of the speed of water past the intrument. The 

absolute vertical component of velocity of the water was assumed to be small enough to be 

ignored, since according to theory the vertical component of velocity for the internal tide 

is at most ^ times the horizontal component (see Figures 75-76). Average values for the 

northwards and eastwards components of the horizontal velocity for that minute were then 

calculated by assuming that the heading varied linearly with time from the beginning of 

the interval to the end. These velocities were vector-averaged over intervals of a little less 

than the standard depth interval (10 or 15 m) and then interpolated to standard depths. 

TaWe 1 lists the standard depths for each station. 

Table 1 
Standard depths at each station 
station bottom 

depth (m) 
shallowest 
standard 
depth (m) 

standard 
depth 

interval (m) 

deepest 
standard 
depth (m) 

Protection Point 180 20 15 155 
Lull Bay 164 25 10 125 
Tomakstum Island 340 20 15 170 
Adeane Point 530 20 15 170 

These standard depths were chosen so that the profiles usually reached the upper and 

lower depths. The principal axes of the velocities at each standard depth were then cal­

culated, and their average orientation over the water column used to resolve the velocities 
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into along-channel (longitudinal) and cross-channel (transverse) components. In practice, 

the principal axes at Protection Point, Lull Bay and Tomakstum Island were all within 5° 

of true east, and those at Adeane Point were all within 5° of true north. Figures 40 and 41 

show the longitudinal and transverse components of the velocity at Tom-N in September 

1983 at the standard depths. The dominant signal is the Af2 tide , with a period of 12.42 

hours. The signal is modulated at a fortnightly frequency. This springs to neaps cycle can 

be thought of as a beating of the M 2 signal with the 5 2 signal which has a period of 12.00 

hours. 
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Figure 40 Longitudinal velocity vs time at Tom-N. September 1983. 
Positive is up-inlet (eastwards). 

267 271 

The density was calculated from the conductivity and temperature data, assuming 
i 
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Figure 41 Transverse velocity vs time at Tom-N. September 1983. 
Positive is northwards. 

that both sensors provided intantaneous readings. This assumption is satisfactory for the 

temperature, where the thermistor was well ventilated, but not so good for the conduc­

tivity, because the conductivity cell did not flush well at low water speeds. However, the 

velocities in Knight Inlet are large enough that the cell should be sufficiently well flushed. 

In coastal waters such as these, salinity rather than temperature dominates density varia­

tions. Figure 42 shows the isopycnals in the time-depth plane at Tom-N in September 1983. 

Again the signal is dominated by an oscillation at period with a very large amplitude 

(sometimes a 50 m peak-to-peak isopycnal displacement). Large amplitude oscillations in 

isopycnal depth at tidal period like these are charateristic of an internal tide. Figure 43 

shows the same data in a different form — it shows the density as a function of time at 
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each standard depth. The average density at each depth is given on the right-hand side 

of the plot. There is a small offset in the conductivity values due to calibration drift, so 

these average density values can not be compared between records. 

The cyclesondes also give information on surface elevation variations due to the tide 

in 1983, because for over two hours out of every six they were resting against the bottom 

bumper. The bottom bumper is a fixed distance from the bottom, so that any variations in 

the depth of the instrument as calculated from pressure sensor data are due to variations in 

surface elevation. The pressure sensor is 2 m from the block, so that the depth data must 

be corrected for the pitch of the instrument, which varies by as much as ±10°. Figure 44 

shows the depth of the bottom bumper as a function of time at Tom-N in September 1983. 

The dots are data points from the pressure sensor, and the solid line is the reconstructed 

signal after a harmonic analysis was done on the data (see Section 3.3.3). 

In addition to the cyclesonde density information from 20 m or below, CTD data were 

also available for this study. CTD casts were done at each station at each deployment 

and retrieval of the cyclesondes. Unfortunately the timing of these casts was somewhat 

sporadic due to the limitations of ship time. What the CTDs gain in terms of depth 

coverage the cyclesondes make up for in temporal coverage. 

3.3 Harmonic Analysis of the Data 

Harmonic analysis was done on the longitudinal velocity and density data at the stan­

dard depths, and on the surface elevation data. Nine constituents were included in the 

analysis, as listed in TaWe 2. 

These components were chosen to be the smallest set that could be reasonably be ex­

pected to describe the data. With short records only a few constituents should be included 

in the analysis. Foreman's (1977, Tables 1-3) guidelines on which constituents should be 

included for a given record length were followed. In practice the number of constituents 

included was not found to affect the phase and amplitude of the M2 constituent, and this 

component is the one of primary interest in this study because it contains the most energy. 
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Fignre 43 Density at the standard depths vs time at Tom-N. September 1983. 
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Table 2 
Tidal constituents used in the harmonic analysis 

tidal Darwin period 
harmonic name (hours) 

Shallow water constituents 
M4 

MK3 

6.21 
8.18 

Semi-diurnal 
Principal solar s2 12.00 
Principal lunar M2 12.42 
Longer lunar elliptic N2 12.66 (Not in 1981) 
Diurnal 
Soli-lunar declinational Kx 23.93 
Main lunar Ox 25.82 
Long period 
Luni-solar fortnightly MSf 354.4 (Not in 1981) 
Mean Z0 CO 

(Not in 1981) 

The basic criterion was whether the M2 signal could be separated from the 52 signal. 

The Rayleigh criterion requires the record length to be greater than the reciprocal of the 

difference of their frequencies. In other words, the record must be at least as long as the 

period of the beat frequency (14.76 days — the MSf tide). This was certainly true in 

1983, and almost true in 1981. The N2 constituent could not be included in the analysis 

of the 1981 data because the frequency is too close to that of the M2 constituent. It was 

found that between 60% and 80% of the total variance of the longitudinal velocity signal 

was at the M2 frequency, and that the amplitude of the M2 constituent was always at least 

twice that of the S2 constituent, which was the next largest. 

Two shallow water constituents were included in the analysis. These constituents arise 

from the non-linear terms in the hydrodynamic equations, and are products of the interac­

tions between the main constituents. Only two shallow water constituents were included 

because the sampling interval was 3 hr3 in 1983, and constituents whose periods are shorter 

than twice that value cannot be resolved without aliasing (the Nyquist criterion). M 4 arises 

from the interaction of M2 with itself, and MK$ from the interaction of M2 with K\. 
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3.3.1 Harmonic Analysis of Velocity Data 

Figures 45-68 show the results of the harmonic analysis of the longitudinal velocity at 

the various standard depths at each station. The Greenwich phase and nodally corrected 

amplitudes of the various constituents at each depth are plotted in the complex plane. If 

<f> is the Greenwich phase and r is the nodally corrected amplitude at a particular depth, 

then these values are plotted at the point (r, <f>) in polar coordinates. The Greenwich phase 

is the phase relative to the passage of the sun or the moon (depending on the constituent 

under consideration) over the Greenwich meridian, and is therefore a standard reference 

for the three different time periods. The nodally corrected amplitude is corrected for long 

period modulations in the tide-generating force due to other astronomical cycles. This 

nodal correction is an attempt to standardise the amplitude of the response of the inlet in 

a situation where the amplitude of the tide-generating force at a particular frequency is 

not the same for the two years 1981 and 1983. However, this small correction makes the 

implicit assumption that the amplitude of the response of the inlet at that frequency is 

linear in the amplitude of the tide-generating force. 

Figures 45-68 show the loci of these (r, <f>) points at the standard depths (10 m in­

tervals for Lull Bay, 15 m for the others). The point corresponding to the shallowest 

standard depth (25 m for Lull Bay, 20 m for the others) is marked by a larger symbol. 

The constituents are arranged in decreasing order as in Tabie 2, except that the complex 

amplitudes (i.e. amplitudes and phases) of the MK3 constituent are not given because 

they were always small (< 2cm/s). The corresponding plots for the MSf constituent 

appear later in Chapter 4 (Figures 107-110). The scale factors used in the figures were 

allowed to vary so that the loci could be distinguished from each other, although each of 

the four figures for a particular constituent were plotted on the same scale for comparison. 

These loci have strikingly similar shapes for the three time periods at a given station, 

whereas different stations have quite different loci. The repeatability of the loci at any 

given station provides motivation to understand why they have their characteristic shapes, 

and shows that they are not simply random patterns. Even the shapes of the loci for the 
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Figure 45 L o c i of M j c o m p l e x a m p l i t u d e s of veloci ty at P r o t e c t i o n P o i n t . 

o J u l y 1983, A S e p t e m b e r 1983, * J u l y 1981. 

T h e shallowest s t a n d a r d d e p t h is m a r k e d b y a larger s y m b o l . 
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Figure 47 Loci of M 4 complex amplitudes of velocity at Tomakstum Island, 
o July 1983, A Tom-S September 1983, * Tom-N September 1983, o July 1981. 
The shallowest standard depth is marked by a larger symbol. 
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Figure 48 Loci of M 4 complex amplitudes of velocity at Adeane Point, 
o July 1983, A September 1983. 
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Figure 49 Loci of S 2 complex amplitudes of velocity at Protection Point. 
o July 1983, A September 1983, * July 1981. 
The shallowest standard depth is marked by a larger symbol. 
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Figure 50 Loci of 5 2 complex amplitudes of velocity at Lull Bay. 
o July 1983, A July 1981. 
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Figure 51 Loci of 5 2 complex amplitudes of velocity at Tomakstum Island, 
o July 1983, A Tom-S September 1983, * Tom-N September 1983, o July 1981. 
The shallowest standard depth is marked by a larger symbol. 
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Figure 52 Loci of S 2 complex amplitudes of velocity at Adeane Point, 
o July 1983, A September 1983. 
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Figure 53 Loci of M 2 complex amplitudes of velocity and density at Protection Point. 
o July 1983, A September 1983, * July 1981. 
The shallowest standard depth is marked by a larger symbol. 
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Figure 54 Loci of M 2 complex amplitudes of velocity and density at Lull Bay. 
o July 1983, A July 1981. 
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Figure 55 Loci of Mi complex amplitudes of velocity and density at Tomakstum Island, 
o July 1983, A Tom-S September 1983, * Tom-N September 1983, o July 1981. 
The shallowest standard depth is marked by a larger symbol. 
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Figure 56 Loci of M<z complex amplitudes of velocity and density at Adeane Point, 
o July 1983, A September 1983. 
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Figure 57 Loci of N2 complex amplitudes of velocity at Protection Point, 
o July 1983, A September 1983. 
The shallowest standard depth is marked by a larger symbol. 
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Figure 58 Locus of N2 complex amplitudes of velocity at Lull Bay. o July 1983. 
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Figure 59 Loci of complex amplitudes of velocity at Tomakstum Island, 
o July 1983, A Tom-S September 1983, * Tom-N September 1983. 
The shallowest standard depth is marked by a larger symbol. 
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Figure 60 Loci of _/V2 complex amplitudes of velocity at Adeane Point, 
o July 1983, A September 1983. 
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Figure 61 Loci of K\ complex amplitudes of velocity at Protection Point. 
o July 1983, A September 1983, * July 1981. 
The shallowest standard depth is marked by a larger symbol. 

Figure 62 Loci of Kx complex amplitudes of velocity at Lull Bay. 
o July 1983, A July 1981. 
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Figure 63 Loci of Kt complex amplitudes of velocity at Tomakstum Island, 
o July 1983, A Tom-S September 1983, * Tom-N September 1983, o July 1981. 
The shallowest standard depth is marked by a larger symbol. 
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Figure 64 Loci of K\ complex amplitudes of velocity at Adeane Point, 
o July 1983, A September 1983. 
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Figure 65 Loci of Ot complex amplitudes of velocity at Protection Point. 
o July 1983, A September 1983, * July 1981. 
The shallowest standard depth is marked by a larger symbol. 
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Figure 66 Loci of Oi complex amplitudes of velocity at Lull Bay. 
o July 1983, A July 1981. 
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Figure 6 7 Loci of Oi complex amplitudes of velocity at Tomakstum Island, 
o July 1983, A Tom-S September 1983, * Tom-N September 1983, o July 1981. 
The shallowest standard depth is marked by a larger symbol. 
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Figure 6 8 Loci of 0\ complex amplitudes of velocity at Adeane Point, 
o July 1983, A September 1983. 
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M 4 constituent are repeatable from month to month, especially at Protection Point and 

Lull Bay. The amplitude of this shallow water constituent is as large as that of the diurnal 

constituents at Tomakstum Island and Adeane Point, or that of the 7V2 constituent at all 

stations. The next larger group consists of the diurnal constituents at Protection Point 

and Lull Bay, and the 52 constituent. However, the M 2 constituent is by far the largest 

of all. 

The loci at a particular station for a particular constituent are also quite similar in 

shape to the loci at the same station for a different constituent, as long as the two con­

stituents are in the same band (i.e. diurnal or semi-diurnal). For example, the loci in 

Figures 51, 55 and 59 all have similar shapes, as do those in Figures 62 and 66, and in 

Figures 61 and 65. This property indicates that the inlet is far from resonance at these 

frequencies, because the transfer function is almost the same at two very close frequencies. 

3.3.2 Harmonic Analysis of Density Data 

The oscillations of density values also give valuable information on the internal tide, 

so Figures 53-56 also show the loci of the M 2 constituent of density oscillations as the 

depth varies. An example of the original data that were used in this analysis was shown 

in Figure 43. The small offset in density values will not affect this analysis because only 

the Af2 constituent of the density signal is of interest. Later, the vertical gradient of the 

average density values will be used, but this is also unaffected by the offset. 

The foregoing comments on the repeatability of the loci of the Af2 constituent of the 

longitudinal velocities apply equally well to those of density. The density oscillations are 

caused by oscillations in the vertical component of velocity W j SO 3- harmonic analysis of 

density variations gives information on the phase and magnitude of the w-oscillation, as 

will be discussed quantitatively in Section 3.5. 
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3.3.3 Harmonic Analysis of Surface Elevations 

The third variable for which continuous data exist is surface elevation. It gives in­

formation on the barotropic component of the tide, since the baroclinic modes have very 

little influence on the surface elevation. Figure 69 shows the phase and magnitude, in the 

complex plane, of the M 2 constituent of the surface elevation oscillation for each record. 

Again, Greenwich phases and nodally corrected amplitudes are used. Only a small sector 

of the complex plane is plotted because the surface elevation phases and amplitudes are 

almost constant throughout the inlet. The surface of the inlet rises and falls almost in 

unison because the wavelength of the Kelvin wave associated with the barotropic tide is 

so large (A = TsfqR » 2500 Arm when H = 300 m and T = 12.42 hours). In fact, the time 

series of surface elevations (as in Figure 44) from the different stations are nearly identi­

cal. The barotropic tide is a standing wave, because it is a superposition of an incoming 

wave and a reflected wave, with complete reflection occurring at the head. In a straight, 

flat-bottomed channel with rectangular cross-section, the shape of the surface would be a 

cosine curve whose peak would occur at the head of the inlet and whose first zero-crossing 

(or node) would occur at a distance of A/4 from the head. Knight Inlet is much shorter 

than A/4, so no node occurrs. However, the amplitude of the oscillation at 50 Arm should 

be 99.2% of the amplitude at the head, and the amplitude at 100 A;m should be 96.7% 

of that at the head, assuming that H = 300 m. The difference between them, 2.5%, is 

consistent with the drop in amplitude from » 1.54 m at Adeane Point and Tomakstum 

Island to « 1.51 m at Lull Bay and Protection Point (a drop of 1.9%). 

However, the change in phase by 2-3° from Protection Point to Tomakstum Island 

cannot be explained by this simple frictionless model, because the model predicts a constant 

phase along the channel with 180° jumps at nodes. This change in phase is caused by energy 

dissipation due to transfer of energy to the internal tide and due to friction. Freeland and 

Farmer (1980) concluded that about 95% of the energy dissipation rate of the barotropic 

tide in Knight Inlet could be accounted for by internal wave and hydraulic jump generation, 

and that the remaining 5% is lost to bottom and side friction. They obtained phase 
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differences of around 1.5° between Tomakstum Island and Protection Point (see Freeland 

and Farmer 1980 Figure 7a) using 29-day blocks of data, compared to the cyclesonde value 

of 2-3°. 

The bottom bumpers at Tomakstum Island and Adeane Point were much further from 

the bottom than at the other two stations, so that the drag assosciated with oscillating 

baroclinic currents at M-i frequency could pull them down. This effect could change the 

calculated amplitude and phase of the surface elevation. However, the currents at depth 

and therefore the associated drag are not likely to be large. 
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3.4 Normal Modes — Theory 

In a flat-bottomed ocean with vertical side-walls the solutions to the linearised (i.e. in-

finitesimally small disturbances from the mean state) equations of motion can be separated 

into a vertical dependency and a horizontal dependency. A harmonic time dependency of 

e~tu>t is assumed, so that waves propagate in the direction of increasing phase. This sign 

convention was chosen so as to be consistent with the harmonic analysis program of Fore­

man (1979), and with LeBlond and Mysak (1978). The opposite sign convention was used 

in Chapter 2 so as to be consistent with Taylor (1920), Packham and Williams (1968), 

Buchwald (1968), Brown (1972) and Pnueli and Pekeris (1968). With the Boussinesq 

approximation, the horizontal equations are: 

twU fc - 2t1 x VH = V P , (3.1) 

V . U / l = - ^ - P , (3.2) 

and the vertical equation is 

cPz ghn 

with the bottom boundary condition 

cPZ N * - U J 2 „ N 

+ 7 Z = 0, (3.3) 

Z{0) = 0, (3.4) 

and the surface boundary condition 

dZ Z 
— - — = 0 at z = H. (3.5) dz hn 

(LeBlond and Mysak equations 10.39-10.42) 

The horizontal velocity is given by 

ufc(x, y, *) = -hn ^(*) U f c(z, y), (3.6) 

the vertical velocity by 

and the pressure by 

w(x,y,*) = yZ(z)P(z,y), (3.7) 

dZ 

p(x, y, z) = -p0hn —(z) P(x, y), (3.8) 
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where 

20 = (0,0,/), (3.9) 

and 
9 dp0 

Po dz 
(3.10) 

Equations 3.3-3.5 form an eigenvalue problem which determines the vertical structure 

of the solution. The eigenvalue problem has an infinite set of solutions (eigenfunctions 

or verticcd modes) Zn(z) and corresponding eigenvalues hn (or equivalent depths). The 

gravest mode is the barotropic mode, and is called mode 0 because the vertical structure 

of the horizontal velocity does not have a zero crossing. In this mode the second term of 

equation 3.3 becomes negligible because hn is so large, so equation 3.3 becomes Z" = 0. 

The solution to this problem is ZQ(Z) = z with = H. The vertical strucure of w is 

linear with w = 0 at the bottom, and the vertical structure of tih is a constant function. 

The equivalent depth ho is equal to the total depth H. The reason for the name equivalent 

depth is that it is the depth of water hn that would give the same phase speed for the 

barotropic mode as for a higher mode n in water of depth H. It will be seen later that 

the phase speed of Kelvin waves for mode n is \/ghn. For the barotropic mode, this is the 

familiar expression for gravity waves in shallow water. 

If the eigenvalues of the higher modes are arranged in order of decreasing size , then 

the nth mode has n zero crossings in the u-eigenfunction. The first term of the boundary 

condition 3.5 can be discarded for the higher modes, although it is of paramount importance 

for mode 0. 

Density perturbations p'(x, y, z, t) are related to w perturbations by 

(3.11) 

(LeBlond and Mysak equation 8.2) 

Therefore 

p'(x, y,z) = 

(3.12) 
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The procedure for calculating the vertical structure of the normal modes is therefore as 

follows: 

(i) Calculate a "mean" density profile po(z) from either several CTD casts, or a cy-

clesonde record. 

(ii) Calculate the iV2-profile (Brunt-Vaisala frequency squared) using definition 3.10. 

(iii) Solve the eigenvalue problem given by equations 3.3-3.5 to give a series of eigen­

values hn and eigenfunctions Zn(z). 

(iv) Calculate the u-eigenfunctions using equation 3.6 and the p-eigenfunctions using 

equation 3.12 for each mode. The former is proportional to the vertical gradient of Z(z), 

and the latter is proportional to N2(z) times Z(z). 

Any small oscillation of a fluid in a flat-bottomed ocean can then be expressed as a 

superposition of these modes. The coefficients of each mode will be complex, because an 

e~twt time dependancy has been assumed. 

The horizontal problem consists of equations 3.1-3.2 along with boundary conditions 

of zero normal flow at the coast and matching conditions at open boundaries. A special 

solution in a straight channel is the Kelvin wave. In fact, this is the way the barotropic 

and internal tides in Knight Inlet propagate, because this solution is the only propagating 

wave that can exist in such a narrow channel. The effect of the evanescent Poincare modes 

generated at the bend is negligible, because the e-folding length scale of the first cross-

channel mode is approximately 600 m, and shorter for the higher modes. The expressions 

for P and U f c = (U, V) for the Kelvin wave solution are: 

U(x, y) = U0 e(*"*-'3)/ C" (3.13) 

V(x,y) = 0 (3.14) 

?(x,y) = U0cne(iux-f»Ve" (3.15) 

where cn = >/ghni and x and y are the longitudinal and transverse co-ordinates respec­

tively. UQ is an arbitrary scaling constant. The Kelvin wave decays exponentially away 
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from the wall to the right of the direction of propagation with a decay scale given by 

= cn/f (the Rossby radius). 

Upon substitution into equations 3.6 and 3.12 one obtains: 

u(x, y, z) = -U0 hn ^-(z) <.(•«*-/»>/«» (3.16) 
dz 

v(z,y,z)=0 (3.17) 

p'(z,y,z) = - V ^ ^ N ^ Z W e ^ * - ™ ^ , (3.18) 
9 

where u h = (u,v). 

The use of theoretical modes for a flat-bottomed ocean in an inlet where the bottom 

is not flat must be justified. In a flat-bottomed ocean the normal modes approach is 

equivalent to the ray-tracing approach, with rays being reflected from the surface and 

the bottom. The upward propagating rays interfere with the downward propagating rays. 

However, when the bottom is not flat, it is necessary for the rays to be steeper than 

the bottom slope if the normal mode approach is to be retained, otherwise the rays will 

be reflected about the horizontal rather than the vertical (see LeBlond and Mysak 1978 

p55). The ray slope is given by the ratio y/N2 — u2 : y/w2 — f2. Taking a typical value 

of logl0N2 = —5.5 at the bottom (see Figures 71-74 in Section 3.9), the slope of the 

rays near the bottom at Af2 frequency can be calculated to be approximately 1 in 21. 

Hence the bottom slope must be less than this value for the normal mode approach to 

be used. Figure 1 shows that on average, apart from irregularities in the topography, the 

longitudinal bottom slope does not exceed 100 m in lOfcm (1 in 100) except on the flanks 

of the sill. Therefore the rays will usually be reflected about the vertical, as required by 

normal mode theory. 

In addition, as the waves propagate along the inlet, it is necessary for the length scale 

over which the depth varies » 40 km if H = 400 m) to be greater than the wavelength 

of those waves if a WKB approximation is to be valid. Typical wavelengths for the internal 

tide are around 36 km for the first mode and 20 km for the second mode, so this criterion 

is in fact barely met. 
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3.5 Modal Decomposition 

The observed profiles of the M 2 amplitude and phase of longitudinal current and 

density will be decomposed into a superposition of normal modes. Moreover,a distinction 

between waves propagating up-inlet and waves propagating down-inlet is also desirable, so 

that the reflection coefficient at the bend for each mode can be estimated. To make this 

distinction, the phase relationship between density oscillations and longitudinal velocity 

oscillations will be exploited. It can be seen from equations 3.16 and 3.18 that these two 

quantities are in phase. However, for a wave propagating in the negative x-direction, the 

corresponding expressions can be obtained by replacing c„ by —cn. Thus the expression for 

density oscillations changes sign, which is equivalent to a 180° phase change. This phase 

relationship can be used to resolve the waves going up-inlet from those going down-inlet. 

Another way of resolving the direction of the waves is to make use of the cross channel 

decay of Kelvin waves, since higher amplitude oscillations will occur to the right of the 

direction of propagation of a single Kelvin wave in thenorthern hemisphere. This method 

can be used without a density record — velocity data from two stations across the channel 

and a few CTD casts are sufficient. 

In fact, this was the method used by Freeland (1984) in his analysis of current meter 

records from Knight Inlet. He had a total of four current meters at Tom-N and Tom-S 

at depths of 75 m and 300 m. Unfortunately, with current meters at only two depths, 

he was forced to assume that there was only one significant internal mode besides the 

barotropic mode. Farmer and Freeland (1983) assumed that this mode was the first mode, 

whereas Freeland (1984) modified the analysis by assuming that the dominant mode was 

the second. 

When only the barotropic mode is present, the locus of the complex amplitude (i.e. 

amplitude and phase) of the longitudinal velocity as the depth varies is a single point in 

the complex plane. However, when a single internal mode (the nth mode) is also present, 

,this locus becomes a straight line. This line passes through the point corresponding to 
i 
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the barotropic tide, because the additional velocity component due to the internal mode is 

zero at depths where the u-eigenfunction has a zero crossing. The point corresponding to 

the barotropic tide should be the same for both stations, because the cross-channel decay 

of the barotropic tide is very small (since the external Rossby radius Ro is very large, 

about 2000 Am), and it is assumed that the barotropic current is laterally homogeneous 

(i.e. negligible topographic effects, and negligible inertial and centrifugal forces associated 

with the bend). Therefore, the loci at the two stations should intersect at this point in the 

complex plane. 

If a£ p and <̂ JJP are the non-dimensional magnitude and phase of the up-inlet internal 

wave, a £ o u m and ^ £ o u m are the corresponding values for the down-inlet internal wave, and 

Ubt and 4>bt are the velocity and phase of the barotropic component, then the complex 

amplitude of the longitudinal velocity at the northern station is given by: 

uu + « p « - ' / « " + • ' « ' + aJ°-» e + ' ' / c « + ' " * - ° " B ) un(z) (3.19) 

whereas that at the southern station is: 

uue*" + (a^e +* // c" + ,'^P + a f w n e - ^ / c « + « ^ o w n ) U n ( 2 ) > (3.20) 

where 5 is the distance of the two stations from the centre of the channel (assumed to be 

equidistant from the centre), and 

tt„(2) = UQ hn —(z) (3.21) 

is the dimensional u-eigenvalue. U0 is fixed by some normalisation criterion, such as 

max un(z) = 1 m/sec. 

The two expressions in brackets in equations 3.19-3.20 will not in general be the same 

complex number. The fact that they have a different phase means that the slopes of the 

two loci in the complex plane are different. The quotient of the two numbers in brackets 

can be determined by plotting the four complex amplitudes in the complex plane; the 

angle between the two lines joining the 75 m-points to the 300 m-points gives the phase 
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of the quotient, and the ratio of the length of these two lines gives the magnitude of the 

quotient. The reflection coefficient <p = an
ov"l/an

v can be determined from this complex 

quotient (see Freeland 1984 equation 3). 

Freeland (1984) obtained a value of <p = 0.70 ± 0.07 using the second mode, whereas 

Freeland and Farmer (1983) had obtained a value of tp = 0.93 using the first mode. These 

vales of <p correspond to energy reflection coefficients of JZ = 49% and Z = 86% respectively 

after squaring. 

However, the fact that the loci o'f the complex amplitudes of longitudinal velocity are 

not straight lines (e.g. see Figure 55) conflicts with their assumption of a single dominant 

mode, and puts their values for the reflection coefficient into doubt. One argument in 

support of their assumption is that the calculated phase and magnitude of the barotropic 

current agrees very well with the theoretical values based on the phase and magnitude of 

the surface elevation. However, this agreement could be coincidental. 

Looking at the loci of the longitudinal velocity at Tom-S and Tom-N in Figure 55, it 

might be tempting to deduce that the internal tide must be propagating predominantly 

up-inlet because the magnitude of the oscillation is always greater on the south side than 

on the north side, just as it would be for a single Kelvin wave propagating up a straight 

inlet. However, this argument is not valid, because it is possible to construct a counterex­

ample where a single second mode internal tide propagating down-inlet combines with the 

barotropic tide to produce stronger currents on the south side than on the north side. 

Consider a barotropic tidal current of phase 0° and magnitude 10 cm/a at Tomakstum 

Island. On top of this current superimpose a second mode velocity profile that decreases 

monotonically from a magnitude of 6 cm/s (for example) at 20 m to Zcm/s at 120 m (see 

Figure 76 for an illustration of a u-eigenfunction of this form), with a phase of 180°. 

This internal wave is propagating down-inlet, so that its magnitude might be 6.6 cm/s (at 

20 m) and 3.3 cm/s (at 120 m) at Tom-N, and 5.4 cm/a (at 20 m) and 2.7 cm/a (at 120 m) 

at Tom-S. However, the internal mode currents are 180° out of phase with the barotropic 
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currents, so the net currents are ZAcmJ3 (at 20m) and 6.7cm/s (at 120m) at Tom-N, 

and 4.6 cm/s (at 20 m) and 7.3 cm/s (at 120 m) at Tom-S. The currents are now stronger 

at Tom-S than at Tom-N, even though the internal wave is propagating down-inlet! 

Moreover, the larger currents at Tom-S might be solely due to the inertia of the water 

as it flows from the bend on an ebb tide, and have nothing to do with the cross-channel 

decay of Kelvin waves at all. However, the tidal excursion is only of the order of 1 or 2 km, 

and Tomakstum Island is about 6 km from the bend, so hopefully it is justifiable to ignore 

this effect. 

3.6 Normal Mode Fitting — Theory 

It is assumed that the longitudinal velocity and density oscillations at a particular 

station can be represented by a superposition of normal modes as follows: 

n(y,z) = un(z) ( a - ' e - ^ - W + o f " e+*"/c"+'*'0,°n) (3.22) 
n=0 

/>'(y>z) = £ « P e - y I I C n + i K * - 4°wn
 e+^fe"+i*d"n) (3.23) 

n=0 

where y is the cross-channel co-ordinate (y — 0 at mid-channel, y = +500 m at Tom-N 

and y = —500 m at Tom-S), and pn(z) is the dimensional p-eigenfunction for the nth mode 

defined by 

Pn(z) = U 0 ^ N2(z) Zn{z). (3.24) 

u n(z) is the dimensional u-eigenfunction, previously defined in equation 3.21. The dimen­

sions of pn(z) are those of density, and the dimensions of u„(z) are those of velocity. The 

minus sign in equation 3.23 arises because equation 3.18 must be modified for down-inlet 

propagating waves (i.e. waves propagating in the negative x-direction) by replacing cn by 

— c n , as was stated earlier. 

For stations in the centre of the channel (that is, all stations except Tom-N and Tom-S), 

y must be set to 0, and 3.22 and 3.23 reduce to 

* ( * ) = £ u « ( * ) ( A » " + Ad™n) ( 3 - 2 5 ) 
n=0 
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p'{z) = £ pn(z) (A? - A f - » ) , (3.26) 
n-0 

where 

An" = < p e^"' (3.27) 

and 

A n
o w n = of"" 1 e1'*-""" (3.28) 

are the complex amplitudes of the up- and down-inlet propagating waves. 

3.6.1 Least Squares Fitting at a Single Station in Mid-Channel 

The statistical model can be formally defined by 

uobl(z) = J2un(z)(KP+<OV,n) + «"(*) (3.29) 
n=0 

Po6.(*) = X > ( * ) ( A : ' - A f " ) + «"(*). (3.30) 
fi=0 

The e's are error terms, and uoba(z) and (2) are the complex amplitudes of longitudinal 

velocity and density oscillations from a harmonic analysis of the data. In practice the 

infinite series must be truncated after a finite number of terms N; this was usually two or 

three (see Section 3.10). 

In the case of a station in mid-channel, the least squares fit can be done independently 

for each of the following four quantities: 

(i) dt(uobl) to yield B(AS P + A d ™ n ) 

(ii) 3(uo6.) to yield 3(AJ* + A n ° w n ) 

(iii) &(pobt) to yield X(An* - A ^ w n ) 

(iv) 9f(/>o6.) to yield 3(A« P - A d ™ n ) . 

This decomposition is possible because the un's and p n ' s are all real. It can be seen that 

a fit of the u-eigenfunctions to the observed u-profiles yields (AJ|P + AjJ0""1), whereas a fit 

of the p-eigenfunctions to the observed p-profiles yields (AJJP — A f f w n ) . The sum of these 

two complex numbers then gives 2A£ P , and the difference gives 2An

own. 
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3.6.2 Least Squares Fitting at Two Stations on Opposite Sides of the Channel 

However, when simultaneous data are available from both sides of the channel, as 

at Tomakstum Island in September 1983, the four fits described above cannot be done 

independently if the information on the cross-channel decay of Kelvin waves is to be used. 

The statistical model is now 

+ s"(y,z) (3.31) 

+ ep{ytz). (3.32) 

+ eu{+s,z) (3.33) 

+ ep(+s,z). (3.34) 

+ eu(-s,z) (3.35) 

+ e"(-s,z). (3.36) 

These equations can then be solved simultaneously by least squares, using information 

from both stations, to give estimates for A " p and A £ o u m . The advantage of using both 

stations simultaneously is that there is twice the amount of data to fit to, and information 

on the cross-channel decay of Kelvin waves is used as well as information on the phase of 

p-oscillations relative to u-oscillations. 

i 

i 
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n = 0 

N 

Pot.(y,z) = £ M * ) ( K p r - s f / e n - A2~* e

+ " / e « ) 
n = 0 

At Tom-S, y = +s, and these two equations become 

N 

n = 0 

N 

Pob,(+S,z) = Pn{z) ( A y « - ' / 8 - - A f » « + " / « " ) 
n = 0 

At Tom-N, y = —a, giving 

N 

nobt(-s,z) = X>„(z) (A«Pe+^/«- + A f " " e - ' / e » ) 

n = 0 

N 

PoU-s,z) = J2 P M IA~ - Airn'-",en) 



3.7 The Estimation of the Barotropic Component 

The component of the u- and /7-oscillations due to the barotropic tide can be estimated 

from a harmonic analysis of the surface elevation data and a knowledge of the geometry 

of the inlet. As previously described, the surface tide in an inlet is classically described as 

a standing wave, where the whole surface of the inlet rises and falls together. A standing 

wave can be thought of as a superposition of an incident wave and a reflected wave of equal 

magnitude. At the head, the longitudinal velocity due to the incident wave is precisely 

180° out of phase with the longitudinal velocity due to the reflected wave. In this way the 

longitudinal velocity cancels out there as required. 

As Figure 69 shows, the surface elevation phases are indeed roughly constant along 

Knight Inlet. This observation implies a standing wave pair, in which the amplitude of the 

up-inlet wave equals that of the down-inlet wave at each station i.e.: 

alp = a do«7n- (3.37) 

It will be seen later in Section 3.10 that only about 1% (= 1 MW - r 700 MW) of the up-

inlet or down-inlet barotropic energy flux is lost through friction and non-linear processes 

in the straight section, so that this assumption (3.37) can be justified a posteriori. The 

phase of the barotropic component of the longitudinal velocity will lead the phase of the 

surface elevation by 90°. Therefore, if the phase of the surface elevation is taken to be 

33° (see Figure 69), then that of velocity will be 303° (= <f>bt in equations 3.19-3.20). In 

addition, the magnitude of the barotropic component of the velocity uu can be estimated 

from the magnitude r]o of the surface elevation oscillation, the cross-sectional area Sof the 

inlet at a particular section, and the surface area A of the inlet landward of that section. 

The magnitude of the barotropic velocity will be given by 

»H = (3.38) 

where u is the frequency of the Af 2 tide. 

Then 

0"O(A*P + K " " 1 ) = «««••*', (3.39) 
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where it is assumed that the normalisation constant U0 is such that UQ(Z) = lm/sec for 

all z. 

There is one more piece of information that enables the unique determination of A" p 

and A o o t o n at any particular section in the inlet, namely the barotropic phase speed c0. 

Temporarily assuming this to be a constant, the phase of the u-oscillation due to the up-

inlet wave will be given by ($> P+ ̂ f) at the head, where d is the distance from the section 

of interest to the head, and <f>QP is the phase of the up-inlet wave at that section. Similarly, 

the phase of the u-oscillation due to the down-inlet wave will be (<f>*own - f-) at the head. 

These two quantities must be 180° out of phase there, so 

Equation 3.39 now becomes 

-up , d ( J _ Adoxon ^ 
<Po + — = <Po rir. 

Co CQ 

= 2tfU0 sin eW+-»/«o-/a]. 

(3.40) 

Therefore, 

« P _ „**.n = ^ c o s e c (M 
a 0 = a 0 

4>QP = Ht - — + ~, 
du> 

and 
c0 

.down _ i ,duj ir 
9o -<Pbt + -• 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

In the case of Co varying slowly along the length of the inlet, as occurs in reality, — 

must be replaced by a WKB approximation to the phase difference between the section of 

interest and the head of the inlet 

*head 

A0 
- J C 

dx. (3.45) 
Section co{x) 

Since c2(x) = gH(x), this amounts to calculating the average value of H~% between the 

section of interest and the head of the inlet. This calculation was done by taking the depths 
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from the chart, which are given every kilometer or so, and calculating average values of 

f f ~ 5 between the four stations and the head. 

Tabie 3 gives the calculated values of A ^ between each station and the head. They 

range from 7.3° at Adeane Point to 13.2° at Protection Point. Tabie 3 also gives values 

of A and 5, as estimated from the chart. Assuming that rj 0 = 1.52 m, equations 3.42-3.44 

were used to calculate a"p (which = aQ

u>u,n), ^ " p and <f>^own. 

Table 3 
Estimates of the barotropic tidal currents at each station 

station A<t> A S Uo*7 <t>7 
(°) (km2) (km2) (cm/s) (cm/s) (°) (°) 

Protection Point 13.2 234 0.41 11.9 26.0 20 226 
Lull Bay 11.0 195 0.36 11.4 29.9 22 224 
Tomakstum Island 9.0 156 0.50 6.7 21.4 24 222 
Adeane Point 7.3 130 0.76 3.6 14.2 26 220 

In the case of the barotropic mode, the Rossby radius is so large (w 2000 km) that the 

Kelvin wave has insignificant cross-channel decay, so it is not necessary to consider this at 

Tom-N and Tom-S. 

There is considerable error involved in these estimates, especially in because it 

depends on the reciprocal of 5, and in a"p ( and a*0*"1) because it depends on cosec A<f>. 

The second of these is not too important, because a knowledge of O Q P is only necessary for 

the calculation of the contribution of the barotropic mode to p-oscillations (proportional 

to ( A Q P - A^own) = 2 <ZQ P COS A ^ E
,'I^ , + , R/2I), which is small compared to the contribution 

from other modes. An error in the estimation of the magnitude of this small contribution 

will not affect the results of fitting the internal modes to the residual. Note that the 

phase of this barotropic contribution to p-oscillations can be accurately determined — it 

is [<t>bt + ff/2]. 

However, the first of the two errors, namely that of estimating Ubt, is important because 

the contribution of the barotropic mode to u-oscillations is considerable. All that can be 

done is to make the most careful estimate possible of U M given the existing data on the 
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geometry of Knight Inlet. It is still worth incorporating this information into the fitting 

process, even though it is of poor quality. Note that the phase fot oi the barotropic 

component of u-oscillations can be accurately estimated — it is the phase of the surface 

elevation oscillation minus 

Knowledge of A Q P and A Q 0 " " 1 was incorporated into the fitting procedure by sub­

tracting the n = 0 terms on the right-hand sides of equations 3.29-3.30 (or equations 

3.33-3.36) from the observed complex amplitude profiles on the left-hand sides, and fitting 

the internal modes to the residual. 

3.8 Energy Fluxes 

The energy density E of an internal wave is defined as the mean perturbation energy 

per unit volume: 

E=$p0(u2 + v2 + v,2) + JL_!__ (3. 4 6 ) 

(Gill 6.7.6) 

Assuming a flat-bottomed channel, and using the expressions 3.16-3.18 for a Kelvin wave, 

the following expression is obtained for the vertically and laterally integrated energy density 

E' per unit length of channel for the nth mode: 

E _ P ^ M W F f» ^ + j r + ( 3 4 7 ) 

where W is the channel width and 

F = £ s i n h ( £ - ) (3.48) 

1 (W\2 „ 

The first term inside the integral is the kinetic energy due to longitudinal velocity, the 

second term is the kinetic energy due to vertical velocity, and the third term is the potential 

energy associated with the displacement of isopycnals. The second term is negligible 

compared to the third because u>2 <S N2. It will be seen in the next Section that logioN2 

varies from -1.5 near the surface to -5.5 at depth when N is measured in units of rad/s, 

whereas logiou2 = —7.7 for the Af2 constituent. 
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For internal waves there is an equipartition between the kinetic energy and the po­

tential energy associated with the displacement of isopycnals. This was checked by direct 

calculation of the three terms in equation 3.47 using the numerical solutions of the eigen­

value problem (see Section 3.8). It was found that the first term comprised 50-52% of the 

total, the second comprised around 0.001%, and the third comprised 48-50%. 

A fourth component becomes significant for the barotropic mode, namely the potential 

energy associated with the displacement of the free surface. The energy density of this 

component is given by: 

Ef =l-pQgrjilFW, (3.50) 

where »7o is the amplitude of the surface oscillation. This component is insignificant for 

the internal modes, but for the barotropic mode it becomes equal in magnitude to the 

kinetic energy density. Again there is equipartition of energy between kinetic and potential 

energy, but for the surface wave the potential energy is associated with the free surface 

displacement, whereas for internal modes the potential energy is associated with isopycnal 

displacements. The third term in equation 3.47 drops to around 1-2% of the total for the 

barotropic mode. 

The factor F takes account of the cross-channel decay of Kelvin waves. For large 

Rossby radii compared to the width (e.g. for the surface wave), this factor is practically 

equal to unity. For the first internal mode, which has a Rossby radius of roughly 7 km, 

F « 1.01. Even for the fourth internal mode, which has a Rossby radius of the order of 

1.6 km, this factor is still only 1.28. Even though this factor was incorporated into the 

calculation of the energy flux, it is a minor factor compared to the inaccuracy involved 

in obtaining a value for W. W is the width of a channel of rectangular cross-section that 

would have the same energy flux as Knight Inlet, which has a trapezoidal or U-shaped 

cross-section (see Pickard 1961). 

The energy flux associated with each mode can easily be calculated from the energy 

density E' by multiplying by the group velocity, which in the case of Kelvin waves is equal 
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to the phase velocity cn. The units of E* are J/m, and those of energy flux are J/sec. 

In the case of up-inlet waves a^pU0 was used for U0 in equation 3.47, and in the case of 

down-inlet waves o^otoni7o was used for U0. In this way the non-dimensional amplitudes 

of the various modes were used to calculate the corresponding energy fluxe3. 

3.0 The Calculation of the Normal Modes 

The eigenvalue problem for the normal modes (equations 3.3-3.5) was solved numeri­

cally for observed iV^-profiles. As in Section 2.7, the numerical scheme used was a 4t,l-order 

Runge-Kutta scheme with iterative refinement of the eigenvalue to satisfy the boundary 

condition at the surface (a "shooting" technique). The biggest problem in calculating the 

normal modes was in knowing what to use for the iV^-profile. The linear theory requires 

the use of the vertical gradient of the average density. Here, average means over many 

tidal cycles, but not too many since the average density itself will change over the course of 

a year . A one-month mean would be desirable. Unfortunately, the cyclesondes only have 

a limited profile range, usually 20 m to around 170 m. They can provide good estimates of 

the monthly averaged AT2-profile over that depth range, but lack vital information on the 

upper 20 m. This information is contained in the CTD casts, but they were only taken be­

fore deployment and after retrieval of each cyclesonde, so some aliasing will be introduced 

because of the different phases of the tide. 

A combination JV2-profile was eventually used, taking cyclesonde data wherever avail­

able, and CTD data for the upper 20 m or so. There are two ways of taking averages of the 

various CTD casts: (i) calculate the normal modes using the average of all CTD profiles 

at a particular station, or (ii) calculate the normal modes using single CTD profiles, and 

then take the average of these normal modes. Both methods were used, and compared. 

Figure 70 shows all the density profiles from CTD casts at the Tomakstum Island 

stations (including Tom-N and Tom-S). The dashed profiles were taken at the end of 

September, and a weakening of the fresh surface layer is evident due to a reduction in river 

runoff. The density structure of the inlet is in a transition from summer stratification 
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(with a strong pycnocline) to winter stratification (with no fresh surface layer). Because 

this winter stratification is not typical of the period July-September, all CTD data from 

the end of September will henceforth be ignored. 

Figures 71-74 show log-plots of iV^-profiles at the various stations. In each plot, the 

dashed line is the mean ./V2-profile of all CTD profiles (except the end of September)at 

that station. The solid lines are A/^-profiles calculated from monthly averages of cyclesonde 

density data from 1983. The triangles on these lines indicate the deepest standard depth. 

The cyclesonde 7V2-profiles were linearly extrapolated in log space to the bottom using a 

best straight line fit to the last five standard depths, since none of the CTD casts went 

further than 200 m either. This extrapolation was chosen because the log^N2 profiles 

seemed to be reasonably linear below 60 m. The cyclesonde profiles and the CTD profiles 

agree well. 

Figures 75 and 76 show a set of five normal modes at Tomakstum Island, calculated 

using the average of all CTD data (except the end of September) in the upper 20 m, and 

using the average of all three appropriate records of cyclesonde density data. The modes in 

these figures are normalised so that the maximum value attained by the horizontal velocity 

eigenfunction is 1 m/sec. Most of the structure of these functions is in the upper 20 m, 

which is a pity because that is precisely where there are no cyclesonde data. Some of these 

eigenfunctions look very similar if their shape above 20 m is ignored. 

If there were data from the upper 20 m, then the least squares fitting procedure could 

be replaced by a method which takes the dot product of the observed velocity profiles 

with each of the normal modes to obtain the coefficients of each mode; i.e. exploiting the 

orthogonality property of the normal modes: 

H 

mn (3.51) 

and 

(3.52) 
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Fignre 70 CTD density profiles at Tomakstum Island in 1983. 
Solid lines = July and August, dashed lines = end of September. 
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Figure 71 log^N2 vs depth at Protection Point. 
Dashed line = CTD data, solid lines = cyclesonde data. 

-6.0 -5.0 LOG NXX2 
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Figure 7 2 logioN2 vs depth at Lull Bay. 
Dashed line = CTD data, solid line = cyclesonde data. 

1 .0 
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Figure 73 log10N2 vs depth at Tomakstum Island. 
Dashed line = CTD data, solid lines = cyclesonde data. H = 340 m. 

LOG NXX2 
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Figure 74 log^N2 vs depth at Adeane Point. 
Dashed line = CTD data, solid lines = cyclesonde data. H = 540 m. 
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Figure 75 w-eigenfunctions at Tomakstum Island including upper 20 m. H = 340 m. 
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Figure 76 u-eigenf unctions corresponding to Figure 75. 
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Unfortunately there is no orthogonality condition which uses only the portion of the normal 

mode profiles below 20 m, so a least squares fitting approach must be taken. 

The solid lines in Figures 81-82 show the same set of normal modes as in Figures 75-

76 (using an average iV2-profile from CTD casts in the upper 20 m, and from cyclesonde 

density profiles below 20 m). However, in Figures 77-84 the profiles were plotted below 

20 m (25 m at Lull Bay) only, and the modes were normalised so that each mode had the 

same energy density E' as given by equation 3.47. The /?-eigenfunctions were calculated 

using equation 3.24, and are plotted at the standard depths with straight line segments 

joining them. The two dashed lines for each mode are ± 1 standard deviation from the 

mean of profiles calculated using a single CTD cast above 20 m and a single cyclesonde 

profile below 20 m. Each CTD cast (MCTD of them) was combined with a cyclesonde 

profile ( M c y of them) to produce MCTD x MCY different JV2-profiles. These profiles were 

then used in turn to calculate MCTD* MCY sets of normal modes, which were then averaged 

to give the dashed lines shown in Figures 77-84. The mean phase speeds in m/s are also 

given, along with the ± 1 standard deviation values. In all cases there is good agreement 

between the eigenfunctions calculated using the mean composite JV -̂profiles and the mean 

eigenfunctions calculated using single composite iV2-profiles. In the fitting stage discussed 

later in Section 3.10 it was the former (eigenfunctions calculated using mean composite 

N2-profiles) that were actually used. 

3.10 Comparison with Farmer and Smith's Normal Modes 

Figure 85 is a reproduction of the density profiles and corresponding normal modes 

used by Farmer and Smith (1980a). This CTD cast was taken on August 13, 1977 "a 

few kilometers up-inlet of the sill." Given a bottom depth of 320 m, their location would 

correspond most closely with the Tomakstum Island station. Farmer and Smith argue that 

because their w-eigenfunction has a maximum at around 24 m for mode 1, and at around 

136 m (and 4 m) for mode 2, a large disturbance at depth, such as flow over a sill, might 

be expected to excite mode 2 oscillations in the summer. In the winter the surface fresh 

layer is much weaker, and the mode 1 eigenfunction in the winter looks very similar to the 
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Figure 77 p-eigenfunctions at Protection Point excluding upper 20 m. 
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Figure 78 u-eigenfunctions corresponding to Figure 77. MCTD = 4, MCY = 2. 
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Figure 79 p-eigenfunctions at Lull Bay excluding upper 25 m. 
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Figure 80 u-eigenfunctions corresponding to Figure 79. MCTD = 3, MCY = 1 
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Figure 81 p-eigenfunctions at Tomakstum Island excluding upper 20 m. H = 340 m. 
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mode 2 eigenfuntion in the summer, with a maximum at 127 m. Mode 1 should therefore 

be excited by the sill in winter. 

Figure 85 Farmer and Smith's density profile and w-eigenfunctions. 
Phase speeds: c\ = 98 cm/s, c2 = 41 cm/s, c$ = 33 cm/s. (From Farmer and Smith 1980.) 

Blackford (1984) also proposes the same argument in favour of a predominantly mode 2 

response, based upon the same normal modes. He also cites the zero crossing in the mode 

2 u-eigenfunction at 136 m as an explanation for the 180° phase shift in the baroclinic 

component of the longitudinal velocity between 75 m and 300 m found by Farmer and 

Freeland (1983). A predominantly mode 1 response would not produce this 180° phase 

shift, because the mode 1 u-eigenfunction has a zero crossing at 24 m. (Note that extrema 

in the w-eigenfunctions correspond to zero crossings in the u-eigenfunctions.) 

However, inspection of Figure 76 reveals zero crossings in the u-eigenfunctions at 75 m 

for mode 1, and at 126 m and 4 m for mode 2. This change of the shape would partially 

invalidate the preceding arguments, because the sill crest would now be at the same depth 

as the mode 1 maximum in tu-eigenfunction, and because a mode 1 with a u-eigenfunction 

zero crossing below 75m is capable of producing the 180° phase shift between 75m and 

300m on its own. How can the deepening of the mode 1 zero crossing from Farmer and 
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Smith's 24 m to this value of 75 m be explained? The obvious answer is that the JV2-profile 

taken in 1977 used by Farmer and Smith is different from the one taken in 1983 by the 

cyclesonde. 

In an attempt to understand how the JV2-profile affects the shape of the normal modes, 

two simple models were investigated. The first model consisted of two layers of constant 

JV2 so that the density profile was made up of two linear segments which matched at the 

interface. The upper layer was of thickness h\ with N = Ni, and the lower layer was of 

thickness h2 with N = N2. The second model consisted of a well mixed surface layer of 

constant density (so that N = 0),"overlying the remainder of the water column which had 

a constant N value. There was a density jump of Ap at the interface. In both models an 

asymptotic expansion was used, assuming that the ratio e of the lower layer N value to 

the mean upper layer N value (including any density jump at the interface) was small. 

The details of the theory are presented in Appendices A l and A2. In the first model 

the eigenfunctions could be categorized into so-called a-modes and /?-modes. a can be any 

non-negative integer, and (3 can be any positive integer. /?-modes are due to the lower layer 

stratification, since their O(l) phase speed c° = only depends on JV2/i2. a-modes are 

associated with the upper layer stratification, since their O(l) phase speed c° = ^+i)ir 

only depends on Nihi. The nth mode can be either an a-mode or a /?-mode, since its 

phase speed is the nth element of the ranked series of the two sets of phase speeds. In the 

second model the a-modes are replaced by a single surface mode. The surface mode is 

associated with the density jump at the interface, and to 0(1) has a phase speed of y/g'hi, 

where g' = gAp0/pQ is the reduced gravity. As before, the nth mode could either be one 

of the /?-modes or the surface mode. However, in the summer the first mode is most likely 

to be the surface mode or the a = 0 mode. 

The phase speeds and zero crossing depths of Farmer and Smith's normal modes and 

those shown in Figure 76 can be interpreted in terms of the model profiles described 

in Appendices A l and A2. Farmer and Smith obtained phase speeds of 0.98, 0.41 and 



0.33 m/sec for the first three modes. The fact that 0.98 « 3 x 0.33 is entirely consistent 

with the first and third modes being or = 0 and a = 1 modes respectively, for which the 

0(1) phase speeds are 2*^- and 2 ^ l i . This gives a value of Nxhi = 1.54m/sec. The 

second mode must therefore be the P = 1 mode, which has a 0(1) phase speed of , 

giving N2h2 = 1.29 m/sec. Given a total density drop of Ap = 22 kg/m3 across the upper 

layer (from o~t = 24 below the surface layer to o~t » 2 at the surface), values of hi = 11 m, 

h<2 = 309 m, Ni = 0.14 s - 1 , and N2 = 0.0042 s - 1 can then be deduced for the individual 

parameters. 

The same procedure can then be applied to the normal modes in Figure 76, where 

the phase speeds are 0.80, 0.51 and 0.32 m/sec. It is less obvious this time which modes 

are a-modes, because neither 0.80 = 3 x 0.32 (if the first and third modes were a-modes) 

nor 0.51 = 2 x 0.32 ( if the second and third modes were p-modes). However, assuming 

the first mode to be the a = 0 mode, Nihi = 1.26 m/sec is obtained, and assuming the 

second mode to be the P — 1 mode, N2h2 — 1.60 m/sec is obtained. Again A c t = 22, 

gives hx = 7.5m, h2 = 312.5m, Ni = 0.16a - 1, and N2 = 0.0052s-1. However, if the 

third mode is used to calculate Nihi assuming it to be the a = 1 mode, then Nxhi = 

1.51m/sec, hi = 11m and Ni = 0.14 s - 1 are obtained, which are the same as calculated 

for Farmer and Smith. 

It was therefore hypothesised that the most important difference between Farmer and 

Smith's profile and the Figure 76 profile was in the lower layer stratification. Figures 86-

88 show plots of the phase speeds and zero crossing depths as a function of N2 for the 

first three modes, keeping hx = 11m, h2 = 309 m, and Ni = 0.14 s - 1 constant. The 

vertical dashed lines indicate transitions from a-modes to /3-modes; for example, mode 2 

could either be the a = 1 mode or the P = 1 mode depending on the value of N2. The 

horizontal dashed line indicates the depth of the interface between the two layers. The 

solid curves are solutions to the full non-linear dispersion relation (equation A4), whereas 

the short dashed curves are the 0(1) terms in the asymptotic expansion. (Note that the 

classification of modes into a-modes and /3-modes is not possible without the asymptotic 
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expansion.) The phase speeds and zero crossing depths are marked by circles for Farmer 

and Smith's profile, and by triangles for the Figure 76 profile. 

This simple model explains the main differences between the Farmer and Smith modes 

and the Figure 76 modes well: 

(i) The mode 1 zero crossing is deeper in Figure 76 (75 m) than in the Farmer and 

Smith mode 1 (24 m) because the former has a stronger lower layer stratification (i.e. larger 

JV"2). The zero crossing is pulled down below the interface to a value of z = N £ l when 

"rfc > 1 (see'Figure 116). This also occurs in model 2 when > 1 (see Figure 119). 

Therefore in both models, the criterion for the mode 1 zero crossing to be pulled down below 

the interface is > 1. For Farmer and Smith this ratio is 0.84, whereas in Figure 76 it 

is 1.27. 

(ii) The mode 2 phase speed is smaller for Farmer and Smith because of their weaker 

lower layer stratification. Mode 2 is the f3 = 1 mode, for which the 0(1) phase speed-is 

given by NlJlJ. This argument also applies for model 2. 

(iii) The higher mode 1 phase speed for Farmer and Smith can only be explained by 

a stronger surface layer stratification. This phase speed is given by 2 N i h i for model 1, or 

\/gTh~l for model 2. 

The weaker lower layer statification used by Farmer and Smith can be seen by com­

paring the density gradients at depth from the density profiles. In Farmer and Smith's 

profile, the density changes by 0.55 kg/m3 between 20 m and 170 m (an average N value 

of 0.0059 s - 1 ) , whereas in the profiles in Figure 70 the corresponding density change is 

1.07 kg/m3 (an average N value of 0.0083 a~l). 

These simple models of the stratification help to conceptualise statements like a a mode 

2 eigenfunction for the summer is very similar to a mode 1 eigenfunction for November be­

low the top few meters* (Farmer and Smith 1980a, p240), because with the disappearance 

of the fresh surface layer in the winter, the phase speed of the "surface mode" (model 2), 
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Figure 8 8 Mode 3 phase speed and zero crossing depths vs N2. 

or the a = 0 mode (model 1), drops off to a value that is lower than the phase speed of 

the first "lower layer mode" /? = 1, causing this mode to become mode 1. Hence the j3 — 1 

mode is mode 1 in the winter, yet it is mode 2 in the summer. 

It is obvious from this discussion that small values of N at depth cannot be neglected 

when calculating normal modes, for it is the depth-integrated value N2h2 that is important, 

not N2 itself. N2 may be very small compared to the surface value of N, but it maintains 

this small value over a great depth range, and N2h2 is not small. Therefore when taking 

CTD casts it is preferable to lower the instrument to the bottom rather than assuming 

that the density changes at great depth are so small that it is not worth the time to go 

that far. This error was made in our CTD casts in Knight Inlet, where the instrument 

was never lowered any further than 200 m. To make up for this missing data, a linear 

extrapolation of logioN2 had to be made to the bottom. 

To summarise this section, it has been shown that the differences between the normal 

modes of Farmer and Smith (1980a) and those in Figure 76 can be explained by the 
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differences in the iV2-profile used; specifically Farmer and Smith used a stronger upper 

layer stratification and a weaker deep-water stratification. In the mode fitting that follows, 

the normal modes shown in Figures 77-84 will be used, since they were calculated using 

1983 data. 

3.11 Results of the Normal Mode Fitting 
Having gained some confidence in the correctness of the calculated normal modes, the 

results of fitting them to the observed profiles of complex amplitudes of u- and p-oscillations 

can be discussed. The statistical model described by equations 3.33-3.36 was used at the 

Tomakstum Island stations, and that described by equations 3.29-3.30 at the rem'aining 

stations. In both cases, a pre-programmed least-squares fitting routine was used to yield 

estimates of AJ£P and A ^ o t o n for each of the modes. The pre-programmed subroutine fitted 

real functions to real functions, so the real and imaginary parts of AJJP and Aj[O U 7 n were 

solved for simultaneously as real numbers. The complex amplitude profiles from the month 

of September 1983 were used at each station, because there were data from both sides of 

the channel at Tomakstum Island, and that month was representative of the other months 

at the other stations. However, the July 1983 data was used at Lull Bay because there 

were no data from that station in September 1983. 

Mode 1 strongly resembles mode 2 below 20 m. Except for the fact that mode 1 has a 

zero crossing in the u-eigenfunction at around 75 m and that mode 2 has a zero crossing 

-at around 125m their shapes are very similar. It is therefore very difficult for the fitting 

routine to separate mode 1 from mode 2. Likewise, modes 0 and 1 have a similar p-

eigenfunction shape, although this is not such a problem because the amplitude and phase 

of the barotropic component are fixed by other considerations (see Section 3.6). Tabie 4 

gives the correlations 

r m n = (3.53) yV"* ««.)*} {/„"-"- «8M*} 
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where 

un(z) = un(z) - H _l

2Qm J un(0 dc;, (3.54) 

and r£ , n (defined similarly) between the eigenfunctions at each of the stations. The corre­

lation between the mode 1 and mode 2 u-eigenfunctions is always at least 0.96! 

Table 4 
Correlations between the modes below 20 m at each station 

Mode 1 
u-eigenfunctions 

2 3 4 Mode 1 
p-eigenfunctions 

2 3 4 

Protection Point 
0 0.881 0.772 -0.080 -0.734 0 0.979 0.112 -0.937 -0.501 
1 1.000 0.975 0.338 -0.451 1 1.000 0.312 -0.873 -0.596 
2 1.000 0.537 -0.268 2 1.000 0.141 -0.476 
3 1.000 0.625 3 1.000 0.549 

Lull Bay 
0 0.859 0.810 0.456 -0.346 0 0.996 0.816 -0.918 -0.945 
1 1.000 0.986 0.715 -0.124 1 1.000 0.862 -0.886 -0.943 
2 1.000 0.822 0.039 2 1.000 -0.542 -0.760 
3 1.000 0.596 3 1.000 0.930 

Tomakstum Island 
0 0.816 0.690 -0.801 -0.742 0 0.995 0.766 -0.993 0.082 
1 1.000 0.978 -0.508 -0.934 1 1.000 0.833 -0.998 -0.020 
2 1.000 -0.318 -0.892 2 1.000 -0.828 -0.574 
3 1.000 0.620 3 1.000 0.022 

Adeane Point 
0 0.598 0.452 -0.682 -0.478 0 0.993 0.230 -0.970 0.313 
1 1.000 0.964 -0.881 -0.968 1 1.000 0.343 -0.992 0.200 
2 1.000 -0.729 -0.966 2 1.000 -0.460 -0.846 
3 1.000 0.832 3 1.000 -0.074 

As was shown in Section 3.5.1, the fitting of u-eigenfunctions to observed profiles for 

mid-channel stations yields the sum (An

p + An

own), whereas the fitting of p-eigenfunctions 

yields the difference (AJJP—A^0""1). If both mode 1 and mode 2 were included in the fit, the 

coefficients (A* p + An

ov"1) of the u-eigenfunctions would be expected to be very large and 

differing by 180° in phase, so that the mode 1 and mode 2 u-eigenfunctions would almost 

cancel each other out (analogous to including two constituents in a harmonic analysis that 

are too close together in frequency). If the p-eigenfunction fit yields reasonably small 

values for (An

p - An

own), then this leads to very large magnitudes for A ^ p and An

OXBn, 
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with A £ P « A * 

This was, in fact, observed to happen whenever both mode 1 and mode 2 were included 

in the fit, even at Tomakstum Island where information on the cross-channel structure 

could be incorporated. Tables 5-7 show the results of a series of fits at each station. The 

different fits arise by excluding various combinations of mode3 from the analysis by deleting 

those modes from the set of basis functions to be fitted to the observations. A blank entry in 

any table means that the corresponding mode was excluded from the set of basis functions, 

so that its amplitude can be taken to be zero. Tabie 5 gives the amplitudes a£ p and a^0""1, 

and TaWe 6 gives the phases <f>lP and <f>A^Dn of the fitted waves. The normalisation constant 

U0 for each eigenfunction was such that the a n values are amplitudes of the dimensional 

eigenfunctions given in Figures 77-84. The energy density E' of equation 3.47 is the same 

for each mode in those figures. Tabie 7 gives the energy fluxes in Megawatts as calculated 

using equation 3.47, integrating over the whole water column (note: Flux = E'cn). It 

should be noted that the fluxes are only the Af2 component of the total flux of the internal 

tide, and that there will be a small but significant 5 2 component. 

What are considered to be the most accurate and consistent estimates from the various 

fits are italicised in Tables 5-7. The values in italics were then averaged to give best 

estimates of the values in each mode at the various stations. These best estimates are 

given in the last column of the tables. 

The rows in Tabie 71abelled "Residual sum sqs" contain estimates of the residual errors. 

They are the sum of squares of the residuals divided by the number of equations minus the 

number of unknowns, i.e. they are the mean squared distance of the observed points in the 

complex plane from the fitted points. It was necessary to assign an equivalency between 

"velocity distances" and "density distances", which is the same as assigning a weight to 

u-observations relative to p-observations. This equivalency was chosen so that 20 cm/s of 

"velocity distance" is the same as 0.4kgm~3 of "density distance". This equivalency was 

used in Figures 53-56. 
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The inclusion of more basis functions in the fit leads to a smaller residual sum of 

squares, but also increases the possibility of meaningless results because of degenerate 

basis functions. Thus there is a trade-off between goodness-of-fit and robustness in the 

derived coefficients. The approach used was to find the smallest set of modes that was 

sufficient to give an acceptable fit to the data. 
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Table 5 
Results of the Biting — non-dimensional amplitudes a„p and af^"1 

Fit # 1 2 3 4 5 6 7* Best estimate 

Protection Point 
Up-inlet mode 0 26.04 26.04 26.04 26.04 26.04 26.04 26.0 

1 5.05 - - — - - ? 
2 5.42 - 7.95 8.04 - - 8.6 
3 1.47 - 1.64 4.56 - - 4.6 
4 - - 0.94 - — — ? 

Down-inlet mode 0 26.04 26.04 26.04 26.04 26.04 26.04 20.6 
1 19.17 20.01 - - — — ? 
2 6.40 7.25 13.43 9.59 8.81 13.57 9.6 
3 6.59 6.09 9.13 3.84 3.91 10.65 3.8 
4 - - 5.98 - - 7.82 ? 

Lull Bay 
Up-inlet mode 0 29.90 29.90 29.90 29.90 29.90 29.90 29.9 

1 27.11 - - — — — ? 
2 10.93 - 10.10 6.91 - - 6.9 
3 7.66 - 13.56 S.9S — — 3.9 
4 - — 6.22 - — — ? 

Down-inlet mode 0 29.90 29.90 29.90 29.90 29.90 29.90 29.9 
1 21.64 9.05 - - — — ? 
2 6.41 12.02 9.71 9.04 10.39 16.09 9.6 
3 14.54 2.59 5.12 6.26 4.58 15.69 6.3 
4 - - 3.68 - - 9.82 ? 

Tomakstum Island 
Up-inlet mode 0 21.41 21.41 21.41 21.41 21.41 21.41 21.41 21.4 

1 27.82 7.94 - - - - - 7.9 
2 0.46 10.54 6.43 9.33 9.08 6.96 6.98 8.8 
3 7.21 5.91 7.16 7.33 7.90 8.46 8.37 7.7 
4 - - 4.61 - - 4.73 4.52 4.6 

Down-inlet mode 0 21.41 21.41 21.41 21.41 21.41 21.41 21.41 21.4 
1 29.30 - - - — — — 0 
2 7.80 - 3.67 2.09 - - - 0 
3 4.32 - 1.37 1.84 - - — 0 
4 - - 4.82 -• - - - 0 

Adeane Point 
Up-inlet mode 0 14.16 14.16 14.16 14.16 14.16 14.16 14.16 14.2 

1 8.30 1.41 - - - - - 1.4 
2 6.26 S.99 3.59 3.55 S.41 8.21 1.04 2.9 
3 2.90 2.25 2.23 2.10 1.98 2.05 1.95 2.0 
4 - - 1.61 - - 0.87 0.00 0.4 

Down-inlet mode 0 14.16 14.16 14.16 14.16 14.16 14.16 14.16 14.2 
1 11.50 - - - - - — 0 
2 5.07 — 0.18 0.77 — - — 0 
3 2.94 - 0.50 0.38 - - - 0 
4 — - 0.58 - - — - 0 

* Phase differences fixed. 
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Table 6 
Results of the Siting — phases <p%p and (pf?""1 in degrees 

Fit# 1 2 3 4 5 6 7* Best estimate 

Protection Point 
Up-inlet mode 0 20 20 20 20 20 20 20 

1 169 - - - - — ? 
2 254 - 211 198 - - 198 
3 216 - 342 315 — — 315 
4 - - 238 - - — ? 

Down-inlet mode 0 226 226 226 226 226 226 226 
1 320 332 - - - - ? 
2 122 178 328 334 311 317 334 
3 344 349 120 102 124 139 102 
4 - - 317 - - 327 ? 

Lull Bay 
Up-inlet mode 0 22 22 22 22 22 22 22 

1 350 - - — — - ? 
2 186 - 337 320 - - 320 
3 351 - 179 171 - - 171 
4 - - 359 - - -

Down-inlet mode 0 224 224 224 224 224 224 224 
1 156 83 - - - - ? 
2 303 203 170 180 179 163 180 
3 166 155 234 183 230 302 183 
4 - - 141 - - 139 ? 

Tomakstnm Island 
Up-inlet mode 0 24 24 24 24 24 24 24 24 

1 306 192 - - - - - 192 
2 299 320 287 297 302 294 298 303 
3 0 55 17 43 42 31 32 40 
4 - - 140 - 147 144 145 

Down-inlet mode 0 222 222 222 222 222 222 222 222 
1 332 
2 151 - 71 7 - - — 
3 357 - 292 133 - - — 
4 - - 102 - - - -

Adeane Point 
Up-inlet mode 0 26 26 26 26 26 26 26 26 

1 332 . 20 - - - - - 20 
2 175 186 176 193 183 178 Ill 164 
3 331 328 307 311 316 307 306 314 
4 - - 96 - - 53 53 

Down-inlet mode 0 220 220 220 220 220 220 220 220 
1 316 
2 129 - 70 95 - - -
3 313 - 318 25 — - -
4 - - 286 - - - -

* Phase differences fixed. 
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Table 7 
Results of the Sitting — energy fluxes in MW 

F i t # 1 2 3 4 5 6 7* Best estimate 

Protection Point 
Up-inlet mode 0 610.3 610.3 610.3 610.3 610.3 610.3 610 

1 0.181 - - - - - ? 
2 0.143 - 0.310 0.317 - - 0.32 
3 0.007 - 0.009 0.070 - - 0.07 
4 - - 0.002 - — — ? 

Down-inlet mode 0 610.3 610.3 610.3 610.3 610.3 610.3 610 
1 2.655 2.893 - - - - ? 
2 0.200 0.258 0.884 0.451 0.380 0.902 0.45 
3 0.146 0.125 0.281 0.050 0.051 0.381 0.05 
4 - - 0.096 - - 0.167 ? 

Residual sum sqs. 0.112 4.134 1.384 2.435 8.305 5.366 
Lull Bay 

Up-inlet mode 0 667.9 667.9 667.9 667.9 667.9 667.9 668 
1 5.412 - - - - - ? 
2 0.489 - 0.440 0.206 - - 0.21 
3 0.175 - 0.551 0.046 - - 0.05 
4 - - 0.096 - — - ? 

Down-inlet mode 0 667.9 667.9 667.9 667.9 667.9 667.9 668 
1 3.449 0.603 — — — — ? 
2 0.178 0.623 0.396 0.352 0.466 1.117 0.35 
3 0.633 0.020 0.078 0.117 0.063 0.738 0.12 
4 - - 0.034 - - 0.239 7 

Residual sum sqs. 0.512 5.101 0.700 1.125 5.272 3.748 
Tomakstum Island 

Up-inlet mode 0 682.7 682.7 677.6 677.6 677.6 677.6 677.6 680 
1 8.062 0.656 - - - - - 0.66 
2 0.001 0.748 0.278 0.355 0.554 0.325 0.327 0.49 
3 0.231 0.155 0.227 0.238 0.276 0.317 0.310 0.26 
4 - - 0.075 - • - 0.079 0.072 0.08 

Down-inlet mode 0 682.7 682.7 677.6 677.6 677.6 677.6 677.6 680 
1 8.938 - - - - - — 0 
2 0.410 - 0.090 0.029 - - — 0 
3 0.083 - 0.008 0.015 - — — 0 
4 - - 0.082 - - - - 0 

Residual sum sqs. 1.091 4.665 2.137 3.681 4.867 3.255 3.256 
Adeane Point 

Up-inlet mode 0 568.0 568.0 565.1 565.1 565.1 565.1 565.1 566 
1 1.182 0.034 - - - - - 0.03 
2 0.459 0.187 0.151 0.147 0.136 0.121 0.013 0.11 
3 0.064 0.039 0.038 0.033 0.030 0.032 0.029 0.03 
4 - - 0.016 - - 0.004 0.000 0.00 

Down-inlet mode 0 568.0 568.0 565.1 565.1 565.1 565.1 565.1 566 
1 2.268 — - - - - — 0 
2 0.301 - 0.001 0.007 - - - 0 
3 0.066 - 0.002 0.001 - - - 0 
4 - - 0.002 - - - - 0 

Residual sum sqs. 0.065 0.193 0.087 0.147 0.214 0.176 0.183 
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3.11.1 Results of the Fitting at Stations Up-inlet of the Sill 

The first column in each table refers to Fit #1, where the first three internal modes 

in both directions were included. As expected, mode 1 has a very large amplitude both 

up-inlet and down-inlet, and the up-inlet wave is often in phase with the down-inlet wave. 

This is a symptom of degenerate basis functions. It was therefore necessary to remove 

either mode 1 or mode 2 from the fit, or to introduce more information in the form of 

phase speeds in order to resolve them. 

In an attempt to exploit the difference in phase speeds between the two modes, the 

least squares fit was done simultaneously at Tomakstum Island and Adeane Point, and 

the phase difference of the up-inlet wave between the two stations was constrained to be 

duj/5n, where d = 11.2 km is the distance between the two stations and l/Sn is the average 

inverse phase speed of the nth mode over the two stations (a crude WKB approximation). 

For 5i = 83cm/s this phase difference is 108°, whereas for c"3 = 50cm/s it is 188°. The 

same procedure could not be applied to the down-inlet waves, because it is not known a 

priori how much of the up-inlet wave is reflected by the bend which is half-way between 

the two stations, so some of the down-inlet wave at Tomakstum Island could be a reflection 

from the bend and some could have propagated around the bend from Adeane Point. It 

is not even clear how the phases of the up-inlet waves are affected by passage around the 

bend unless the results of Chapter 2 are accepted. Despite this objection, the procedure 

was attempted on the up-inlet waves using a sophisticated least-squares fitting routine 

with non-linear constraints. Unfortunately, this additional information was insufficient to 

resolve the two modes, and similar results to Fit #1 were obtained. 

Following these two failures, it was decided to exclude mode 1 from the fit in order 

to try to remove the degeneracy between modes 1 and 2. This step can be justified by 

assuming that mode 1 is mostly a surface phenomenon due to the fresh upper layer, and it 

does not manifest itself a great deal below 20 m. To illustrate this point, Figure 76 shows 

that if the surface peak in the mode 1 u-eigenfunction takes a value of 1 m/sec, then the 

function has dropped to 10 cm/s at 20 m. However, if the surface peak in the mode 2 
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Figure 89 Results of Fit #6 at Tomakstum Island. 
Dashed lines = observed, solid lines = fitted, (ci. Figure 55.) 
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Figure 90 Results of Fit #6 at Adeane Point, (c.f. Figure 56.) 
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u-eigenfunction has the same amplitude, then the function has only dropped to 60 cm/s 

at 20 m. In other words, currents at the surface are 10 times the currents at 20 m for 

mode 1, whereas they are only twice as big for mode 2. If the total surface current is to 

be kept to a reasonable value, say < 1 m/sec (Pickard and Rogers 1959), then the mode 

1 currents at 20 m and below must be small. Farmer and Smith also argue in favour of 

mode 2 dominating mode 1, as does Blackford. However, their arguments are based on the 

shapes of the eigenfunctions in 1977, which have been shown to be different in 1983. This 

assumption of mode 1 having a negligible manifestation below 20 m is compatible with the 

existence of a significant mode 1 energy flux, which would be mostly in the upper layer. 

The results obtained by excluding mode 1 from a bi-directional fit are much improved 

over the full bi-directional fit. The amplitudes of the various waves are more reasonable, 

and the energy fluxes are in the correct direction — for example, there are no longer 

greater down-inlet fluxes than up-inlet fluxes as there were in Fit #1. These results are 

given under columns #3 and #4. Fit #3 includes modes 2, 3 and 4, whereas Fit #4 only 

includes modes 2 and 3. They show that there is indeed a much greater up-inlet flux at 

Tomakstum Island than down-inlet flux, which is consistent with the very low reflection 

coefficients found in Chapter 2. 

To obtain more accurate estimates of the up-inlet energy fluxes at Tomakstum Island 

and Adeane Point, the down-inlet waves were specifically excluded from the fit (as in Fits 

#2, #5, #6 and #7), now that the reflection coefficient at the bend can be taken to be 

small. In Fit #2 modes 1, 2 and 3 were included, in Fit #5 modes 2 and 3 were included, 

and in Fit #6 modes 2, 3 and 4 were included. The fits were acceptable in all three cases. 

In Fit #2 modes 1 and 2 were successfully resolved by their different /-"-eigenfunctions. This 

was not possible in the bi-directional fit because the density information was being used 

to resolve the direction of propagation. Fit #2 gives supporting evidence for a dominantly 

mode 2 response, since the amplitude of the mode 2 up-inlet wave is greater than the mode 

1 up-inlet wave. Figures 89 and 90 show that it is possible to obtain adequate fits using 

only up-inlet propagating modes 2, 3 and 4. The fit is only marginally worse when mode 
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Fig-are 91 Results of Fit #4 at Lull Bay. 
Dashed lines = observed, solid lines = fitted, (cf. Figure 54.) 
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Figure 92 Results of Fit #4 at Protection Point, (cf. Figure 53.) 
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4 is dropped. In Fit #7 the phase difference constraint described earlier was also imposed 

without much loss of goodness-of-fit. These four fits show that the data are compatible 

with the idea of zero reflection from the bend. 

3.11.2 Results of the Fitting at Stations Down-inlet of the Sill 

Figure 93 Results of Fit # 6 at Protection Point. 
Dashed lines = observed, solid lines = fitted, (cf. Figure 53.) 

Again, Fit #1 gives unacceptable results, with unreasonably large coefficients (although 

the fits are good). The exclusion of mode 1, as in Fits #3 and #4, removes the degener­

acy while still maintaining an acceptable goodness-of-fit, as shown in Figures 91 and 92. 

However, unlike at Tomakstum Island and Adeane Point, the results of Fits #3 and #4 

do not justify the exclusion of waves propagating towards the sill, since the amplitudes of 
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the up-inlet waves are comparable to those of the down-inlet waves. The results of the 

uni-directional fits at Protection Point and Lull Bay are given under columns #2, #5 and 

#6, but are not considered to be useful. The residual sums of squares in TaWe 7 show that 

the fits are worse for the uni-directional fits than for the bi-directional fits. Figure 93 is an 

example of an unacceptable fit arising from the exclusion of up-inlet waves at Protection 

Point. 

These results indicate a second source of internal tide seaward of Protection Point. 

Indeed, when the longitudinal depth profile of the inlet is studied, a secondary sill can 

be seen. Its slightly gentler bottom slope can be compensated by its stronger barotropic 

velocities in terms of its internal tide generating potential. 

3.12 Comparison of Fluxes with Stacey's Model 

Stacey (1984, 1985) developed a simple linear model of internal tide generation by 

the sill of an inlet to estimate the energy flux in each mode. The model was proposed 

by Stigebrandt (1976, 1980) with a linear density profile, but Stacey modified it for the 

case of arbitrary stratification. The sill is modeled by a vertical wall, and the bottom is 

assumed to be flat on either side of it, although not necessarily at the same depth on both 

sides. The velocity field in the vicinity of the sill is expressed as a sum of normal modes, 

and the crux of the model is to make the horizontal velocity at the sill vanish below sill 

depth, and equal to a constant barotropic value above sill depth. He obtained the formula 

where en is the energy flux away from the sill in the nth mode, 

d is the depth of the sill crest, 

Uu is the barotropic tidal velocity amplitude over the sill, 

and H is the depth of water next to the sill. 

The calculation of the normal modes Zn is done for the deep water on the side of the 

sill towards which the energy flux is required. A similar model was applied by Buckley 

(1980) to Alberni Inlet. 
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Applying Stacey's formula to the normal modes at Lull Bay (Figure 80) for the Aij 

constituent, the following flux estimates were obtained for the first three internal modes: 

1.89, 1.48, and 0.02 MW. The data from Lull Bay were used because that station is the 

closest to the sill. These values are therefore estimates of the down-inlet flux from the sill. 

The flux estimates from this simple model are very sensitive to the shapes of the 

modes, because they are proportional to the square of the value of the w-eigenfunction 

at sill depth. However, the mode fitting procedure is also very sensitive to the modal 

shapes, so it seems that any technique for estimating energy fluxes will be sensitive to the 

modal shapes. The only way to escape the decomposition of the internal tidal flux into 

normal modes is by direct calculation of the total flux from velocity and density data. An 

expression for the local energy flux can be extracted from the 3-D energy conservation 

equation. Unfortunately, this direct flux calculation was not possible with the cyclesonde 

data because of the problem of the missing upper 20 m. 

The above values for the down-inlet fluxes associated with the first three internal 

modes obtained from Stacey's model can be compared with the values 0.35 and 0.12 MW 

for the second and third modes at Lull Bay obtained from the modal fitting. The up-inlet 

fluxes obtained at Tomakstum Island for the first three internal modes were 0.66, 0.49 

and 0.26 MW. It seems reasonable to assume that the sill will radiate similar amounts of 

energy in each direction in each mode. With this assumption, the modal fitting indicates 

that the sill radiates about 1 A M W in each direction in the first three internal modes at 

M-2, frequency. Only about 0.2 MW makes it around the bend to Adeane Point. This result 

at the sill compares to 3.4 MW in each direction from Stacey's model. As mentioned in 

Section 1.3, Stacey plotted his estimates of the total flux being radiated away from the sill 

at Mi frequency against time from November 1976 to May 1978. The fluxes from the first 

10 modes were summed, as well as the contributions from up- and down-inlet propagating 

waves. He found that it agreed very well with estimates of the power withdrawn from the 

barotropic tide between Protection Point and Tomakstum Island based on the difference in 

the phase of the surface elevation oscillation at those two stations. This estimate was also 
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plotted against time for the same period. The two curves followed the same seasonal cycle, 

with a maximum around July. The values from July to September were 7-9 MW. Because 

the two curves agreed so well, he concluded that most of the power being withdrawn from 

the M-i barotropic tide at the sill was being fed into a progressive internal tide, and that 

the other processes occurring at the sill, such as hydraulic jumps, turbulence and high 

frequency internal wave generation, were relatively unenergetic. 

If this were the case, however, and the results of this thesis referring to the reflection 

coefficient at bends are correct, then one would expect that half of the energy lost from 

the barotropic tide (i.e. the half that propagates up-inlet) would be dissipated in the 

sinuous section of the inlet, and the other half would be dissipated in the straight section 

or propagate out to sea. This is not consistent with the results of Freeland and Farmer 

(1980), who found that much more energy went into the mean circulation (i.e. much more 

mixing of the water column occurred) in the straight section containing the sill than in the 

sinuous section. One alternative possibility is that Stacey's model does not contain enough 

dynamics of internal tide generation mechanisms, and that his predicted amplitudes are 

too high. If about 40% (= 2.8 MW -f 7 MW) of the power being withdrawn from the 

barotropic tide was being fed into a progressive internal tide, then only 1.4 MW would 

have to be dissipated via the internal tide in the sinuous section, 1.4 MW via the internal 

tide down-inlet of the sill, and 4.2 MW directly at the sill. These values would then be in 

better agreement with Freeland and Farmer. Another possibility is that most of the power 

lost from the barotropic tide initially goes into the internal tide, but about 60% of it is 

rapidly dissipated through turbulence within a couple of kilometers of the sill. 

3.13 Conclusion 
With the exclusion of mode 1 from the fitting procedure on the grounds that this mode 

has a negligible manifestation in currents and density oscillations below 20 m, it was found 

that the up-inlet energy flux at both stations landward of the sill was much larger than the 

down-inlet flux. When down-inlet waves were excluded from the fit, and mode 1 retained, 

it was still possible to obtain a good fit to the data, and the phase differences between the 
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stations for the various modes were in agreement with the phase speeds of those modes. 

This is consistent with the very low reflection coefficient (< 1%) at the bend predicted 

in Chapter 2. The reduced amplitude of the internal tide up-inlet of the bend (i.e. at 

Adeane Point) must therefore be attributed to dissipation, perhaps through turbulence 

in the presence of the large horizontal velocity shears near the inside corner of the bend 

predicted by Chapter 2, and to scattering of the energy by the very irregular features in 

the vicinity of the bend. Subsequent bends will reduce the amplitude still further, until a 

negligible energy flux reaches the head. 

It was found that the up-inlet flux at the two stations seaward of the sill was the same 

order of magnitude as the down-inlet flux, suggesting the existence of a subsidiary sill 

seaward of these stations. This sill can be seen on longitudinal depth profiles of the inlet. 

Its slightly gentler bottom slope can be compensated by stronger barotropic velocities in 

terms of its internal tide generating potential. There could be some reflection of the up-

inlet waves at Lull Bay by the main sill, and the resulting down-inlet waves would interfere 

(either constructively or destructively) with the down-inlet waves generated by that sill. 

The results of the fitting indicate that only 30-50% of the power being removed from 

the barotropic tide (7-9 MW in 1977) is being fed into the internal tide in the summer, so 

that the remaining energy must be dissipated directly at the main sill. This conclusion is 

at variance with the results of Stacey (1980), whose model shows that most of the power 

is being fed into the internal tide. However, an interpretation that is consistent with 

both results is that most of the power lost from the barotropic tide initially goes into the 

internal tide, but 50-70% of it is rapidly dissipated through turbulence within a couple of 

kilometers of the sill. 
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4. Low Frequency Currents in Knight Inlet 

4.1 Power Spectra of Currents 

Figures 94-97 show the power spectra of longitudinal currents at the four stations in 

July 1983. The spectra for September 1983 are similar and are therefore not included. 

The 1981 time-series were considered to be too short for use in this chapter. 

Figure 94 Power spectra of longitudinal velocity at Protection Point. 
Solid line = 20 m, long dashed line = 80 m, short dashed line = 155 m. 

The energy density is plotted on a log scale because the Afg peak is an order of magni­

tude higher than any other peak. The use of a log scale means that the plot is not energy 

preserving (i.e. the area under the curve between two frequencies does not represent the 
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Figure 9 5 Power spectra of longitudinal velocity at Lull Bay. 
Solid line = 25 m, long dashed line = 65 m, short dashed line = 125 m. 

energy in that band). The mean and trend of the signals were removed before the Fourier 

transform was calculated. The Nyquist frequency is = 0.166 cph, where At is the 

sampling interval (3 hrs). This frequency is just greater than the frequency of the Af4 

constituent. The frequency resolution is y « 1.3 x 10 - 3 cph, where T is the record length 

( « 750 hrs, depending on the record). The power spectra were smoothed with a 3-point 

moving average, so that the values plotted are actually the mean energy in three consec­

utive energy bands. The power spectra were calculated at three depths — the shallowest 

standard depth (solid line), the deepest standard depth (short dashed line), and a middle 

depth (long dashed line). The frequencies of the constituents used in the harmonic analysis 
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Fignre 06 Power spectra of longitudinal velocity at Tomakstum Island. 
Solid line = 20 m, long dashed line = 80 m, short dashed line = 170 m. 

are plotted as ticks on the frequency axis. 

The dominant feature in each plot is the peak at semi-diurnal frequency, with lesser 

peaks at diurnal frequency, quarter-diurnal frequency (M 4), and at low frequency (less than 

0.01 cph). There is also a significant peak at M K $ frequency in most plots. The power 

spectra at low frequencies show peaks at different frequencies at the various stations. 

In an attempt to identify a peak associated with the passage of weather systems and 

corresponding wind shifts, which is generally taken to be at a period of 3-5 days, the mean 

power spectrum at the shallowest depth of all eight records from 1983 was calculated. This 
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Figure 97 Power spectra of longitudinal velocity at Adeane Point. 
Solid line = 20 m, long dashed line = 80 m, short dashed line = 170 m. 

spectrum is shown in Figure 98. The shallowest depth was chosen because it is the one 

most likely to show currents associated with wind stress. A broad peak at a frequency 

of Q.Qllcpk, corresponding to a period of 3.8 days, can indeed be observed, although its 

significance is questionable. 
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Figure 98 Power spectrum of velocity at shallowest depth averaged over all stations. 

4.2 Time Series of Longitudinal Velocities with the Tide Removed 

In order to extract the low-frequency signal from the longitudinal velocity records, the 

tidal component was reconstructed using the amplitudes and phases from the harmonic 

analysis and subtracted from the original signal. The seven constituents at and above 

diurnal frequency were used to recontruct the tidal signal. As a check on the process a 

harmonic analysis was done on the residual. In all cases it was found that there was indeed 

a negligible component (< 1 cm/s) at the frequencies that had been removed. When the 

power spectra of these residuals were calculated, it was found that the tidal peaks had 

been removed and in some cases they appeared as troughs in the power spectra. However, 
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the energy at frequencies between the tidal frequencies was unaffected. This energy was 

also evident in the residual time series, where there was a considerable amount of high-

frequency (periods less than 1 day) noise. It was therefore necessary to smooth the residual 

with a 24 hr (8-point) moving average. The resultant low-pass filtered signals are shown 

in Figures 99-106. The power spectra of these filtered signals were found to be identical 

to the power spectra of the original signals at low frequency. 

The fortnightly oscillation of the MSf tide is plainly evident in the filtered signals, 

especially in September. This oscillation seems to have the same phase at all stations, 

with maximum near surface up-inlet flows being attained on or near Julian days 208, 223, 

252 and 268. A sudden inflow occurs near the surface at Protection Point around day 253. 

The filtered signals are very similar at Tom-N and Tom-S in September, indicating that 

there is little cross-channel variability there. 

4.3 The MSf Tide 

The complex amplitudes of the MSf constituent from a harmonic analysis of the 

longitudinal velocity are shown in Figures 107-110. The same results can be obtained by 

doing a harmonic analysis of the low-pass filtered signals shown in Figures 99-106. The 

loci all show the same general features, with the shallowest depth usually located in the 

first quadrant of the complex plane. The loci at Tomakstum Island and Adeane Point 

are particularly repeatable, with a doubling back of the loci at 110-140 m at Tomakstum 

Island, and a spiral shape at Adeane Point. The irregularity of the low-pass filtered 

signals makes the validity of using harmonic analysis for the MS f constituent questionable. 

However, the repeatability of the loci implies that the results are meaningful and worthy 

of future interpretation. 

Freeland and Fanner (1980) used Fourier analysis to determine the amplitude of the 

MSf velocities at Montagu Point (near Protection Point). They found similar results to 

those presented in Figure 107, with amplitudes of 4.8 cm/s at 15 m, 1.1 cm/s at 100 m 

and 3.1 cm/s at 165 m. These values compare to amplitudes ranging from 0 to 5 cm/s 
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Figure 99 Low-pass filtered longitudinal velocity at Protection Point in July 1983. Posi­
tive is up-inlet. 

Figure 100 Low-pass filtered longitudinal velocity at Lull Bay in July 1983. 

139 



Time (J u l i a n Days) 

Figure 101 Low-pass filtered longitudinal velocity at Tomakstum Island in July 1983. 
Positive is up-inlet. 

206 211 216 221 226 231 236 
7* Time (J u l i a n Days) 

Figure 102 Low-pass filtered longitudinal velocity at Adeane Point in July 1983. 
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Figure 103 Low-pass filtered longitudinal velocity at Protection Point in September 1983. 
Positive is up-inlet. 
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Figure 105 Low-pass filtered longitudinal velocity at Tom-N in September 1983. 
Positive is up-inlet. 
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Figure 107 Complex amplitudes of the MSf component of velocity at Protection Point 
o July 1983, A September 1983. 
The shallowest standard depth is marked by a larger symbol. 

ro 

Figure 108 Complex amplitudes of the MSf component of velocity at Lull Bay. 
o July 1983. 
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Figure 109 Complex amplitudes of the MSf component of velocity at Tomakstum Island, 
o July 1983, A Tom-S September 1983, * Tom-N September 1983. 
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in Figure 107. The surface elevation data were also analysed for the MSf constituent. 

Values ranging from 6 cm to 21cm were found from the eight cyclesonde records from 

1983. Freeland and Farmer obtained a value of 4.1 cm using tide gauge data. If the entire 

surface of the inlet is moving up and down with period 14.7 days, then a barotropic current 

of 0.02-0.06 cm/s (from the cyclesondes) or 0.01 cm/s (from Freeland and Farmers' tide 

gauge) could be expected at Protection Point. Clearly the currents observed are much 

larger than the calculated barotropic current. 

Freeland and Farmer argue that the large baroclinic MSf frequency currents are due 

to variations in the strength of the estuarine circulation. If more energy is available for 

mixing at spring rather than neap tides, then the circulation would be modulated at MSf 

frequency. 

4.4 Residual Velocity Profiles 

Having observed so much variability in the non-tidal longitudinal velocities, the defi­

nition and relevance of the "mean circulation" become questionable. It is certainly not a 

steady circulation. However, in an attempt to calculate mean velocity profiles, the eight 

cyclesonde records from 1983 were averaged over two MSf cycles (= 29.5 days). In July 

the first 29.5 days of data were used, but in September, where the records are only about 

26 days long, a small amount of aliasing must be accepted. The results are shown in 

Figures 111-114. 

The profiles are quite repeatable from month to month, especially at Protection Point 

and Tomakstum Island. At Protection Point the profile has the classical structure of 

outflow at the surface and inflow at depth, with a zero crossing at 75 m (much deeper than 

the pycnocline)! This behaviour is also true at Adeane Point, with a zero crossing at 100 m. 

However at Tomakstum Island the profile takes on a 3-layered structure, with outflow at 

the surface and at depth, and inflow at intermediate depths. The zero crossings are at 

about 50 m and 150 m. Curiously, the profile at Lull Bay shows outflow at all depths. This 

result is not consistent with the idea of lateral homogeneity, since mass must be conserved. 
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Figure 111 Residual longitudinal velocity profiles at Protection Point. 
Solid line = July 1983, dashed line = September 1983. Positive is up-inlet. 
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Figure 112 Residual longitudinal velocity profile at Lull Bay. July 1983 
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Figure 113 Residual longitudinal velocity profiles at Tomakstum Island. 
Solid line = July 1983, long dashed line = Tom-S September 1983, 
short dashed line = Tom-N September 1983. Positive is up-inlet. 
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Figure 114 Residual longitudinal velocity profiles at Adeane Point. 
Solid line = July 1983, dashed line = September 1983 
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A possible explanation is that tidal flows over the sill produce eddies in the vicinity of Lull 

Bay. These non-linear features may have non-zero means, causing lateral inhomogeneity 

in the mean velocity field. 

4.5 Summary 

In this Chapter some interesting data relating to the low frequency component of the 

longitudinal velocity signal, which could be of use in further studies, are presented. Firstly 

the velocity power spectra are calculated at the various stations. In addition to validating 

the choice of constituents used in the harmonic analysis, they show a broad peak at a 

period of 3.8 days at the shallowest depth when averaged over all stations. This peak is 

probably associated with wind driven currents. Secondly the low-pass filtered velocity time 

series are presented, with the fortnightly oscillation of the MSf tide in evidence. There 

is scope for future work in analysing the convergences and divergences at various depths, 

and in interpreting sudden inflows and outflows. Finally, both the complex amplitudes of 

the MSf constituent and the residual velocity profiles (averaged over two MS f cycles) 

show repeatable features from month to month, indicating that they are worthy of further 

investigation. The latter are particularly repeatable, and could be of use in validating 

general circulation models. 

i 
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Appendix A : Simple Models of The Stratification 

A . l Model 1 — Two Layers of Constant N2 

4 

Figure 115 Density and N structure used in Model 1. H = h\ + h2. 

In this model N2 is taken to be constant in both layers, so that the density profile is 

piecewise linear and continuous. Figure 115 shows the density and N structure. Assuming 

that u2 <3C N2 and making the rigid lid approximation, the eigenvalue problem 3.3-3.5 

becomes 
d?Z N2 

with Z = 0 at z = O and H. The solution is 

„ . N2h2 . Nx{H-z) 
Z\ = sin sin — 1 - , 

c c 
. Nihi . N2z 

Z-2 = sin sin , 
c c 

with the following dispersion relation: 

. N ^ N2h2 „ . N2h2 Nihi 
N2 P in cos + A i sin cos = 0. 

(A.1) 

(A.2) 

(A.3) 

(AA) 

Suppose that 

(A5) 

i.e. that the density stratification in the upper layer is much stronger than in the lower 

layer. Note, however, that N2h2 is not necessarily smaller than Nihi. Expanding all 
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variables as an asymptotic expansion in powers of e, 

c = c° + ecx + e V + ... [A.6) 

Zx = Z\ + eZ\ + e2Zl + ... (A.7) 

Z2 = Z2° + eZ\ + £ 2 Z | + . . . . (A.S) 

The dispersion relation becomes 

. Nthi N2h2 . N2h2 Nihi 
e sm cos 4- sin cos = 0. (A.9) 

c c c c 

Now, sin cos is bounded, so to O(l), 

. N2h2 Nihi 

which has solutions 

or 

c° = ^ , 0 = 1,2,3... ("0-modes"), 

c° = N l h \ , a = 0,1,2... ("a-modes"). 
( a + * ) * - ' 

The /?-modes are due to the lower layer stratification, since to 0(1) their phase speed 

depends only on iV 2/i 2. The a-modes are due to the upper layer stratification, since their 

phase speed depends only on Nihi. These a- and /?-modes comprise the infinite set of 

eigenfunctions to the problem, with the nth mode corresponding to the nth largest phase 

speed in the union of the sets 

{ ^ ; ^ X , 2 , 3 . . . } U { ^ - 0 , 1 , 2 . . . } . 

So either the p = 1 mode (if > 2) or the a = 0 mode (if < 2) could be the 

first mode, depending on which has the higher phase speed. The order in which these 

phase speeds arrange themselves into descending order is completely determined by the 

ratio Eahx rauo N l h l -
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A.J.I "a-Modes" or "Upper Layer Modes" 

The first two terms in the asymptotic expansion of c are 

Nyhx 
o = 0,1,2.., 

c = ~ i v ^ c o t t e ( a + ^ V ' 
c 2 = 

( A l l ) 

(-4.12) 

and the 0(1) term of the eigenfunction is 

Z 2
0 = ( - l ) « s i n ( ^ ( a + x ) ^ . ( i 4 . 1 4 ) 

Figure 116 illustrates the structure of these eigenfunctions for various values of jfi^. 

Z°(z) 

a = 0 mode 

Z°(z) 

a = 1 mode 

Figure 116 0(1) eigenfunctions for ot-modes. 
Case 1: ^ ( o r + i) < i, case 2: %±(a + *) = i, case 3: + *) > 

The asymptotic expansion will not converge if the argument of cot in equation A12 is 

close to I-JT; i = 1,2,3..., since then c1 —» oo; i.e. it will not converge if 

^ = JV^_ f o r . = 

tff ( «+A )JT V ' 

This is true precisely when the phase speed of an a-mode is close to the phase speed of an 

/3-mode. Then the ranking of the phase speeds is ambiguous, because it is not clear which 

mode has the higher phase speed. 
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Z°(z) Z°(z) 

3 = 1 mode = 2 mode 

Figure 117 0(1) eigenfunctions for /?-modes. 

The vertical gradient of Z° does not match across the interface to 0(1); the matching 

becomes however better and better as higher order terms of the asymptotic expansion are 

incorporated. There are or-fl extrema in the upper layer in an or-mode, with the remaining 

(n — a — 1) of the nth mode situated in the lower layer. The nth mode can be any one of 

the first n a-modes, or any of the first n /?-modes. For example, the 3 r d mode could be 

the a = 0, a = 1, a = 2, /? = 1, f3 = 2 or P = 3 mode, depending on the value of 

This parameter controls which mode is the nth mode, and hence also how many extrema 

are required in the lower layer to bring the total number up to n. 

A. 1.2 "(3-Modes" or "Lower Layer Modes" 

The first two terms in the asymptotic expansion of c are 

P = 1,2,3... (A.16) 

(A.17) 

and the 0(1) term of the eigenfunction is 

(ii.18) 

Figure 117 shows these eigenfunctions. 
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The asymptotic expansion will not converge if the argument of tan in equation A17 is 

close to (j + %)ir\ j = 0,1,2..., since then c1 —• oo; i.e. it will not converge if 

Hp. = " i k _ f o r i = 0,1,2... . (A.20) 

Again this is true precisely when the phase speed of an or-mode is close to the phase speed 

of a /?-mode. 

There are (3 extrema in the lower layer in an /?-mode, with the remaining (n — /?) of the 

nth mode situated in the upper layer. To find the position of the remaining extrema it is 

necessary to go to 0(e) in Z\, since the positions of the upper layer extrema are ambiguous 

to 0(1). After some algebra, one obtains 

Hence the extrema in the upper layer occur at 

Ni{H-z)0 1 3 5 
N2h7

 _ 2 ' 2 ' 2 ' (A.23) 

A.1.3 Summary 

/?-modes are due to the lower layer stratification, since their 0(1) phase speed c° = 

only depends on N2h2. a-modes are associated with the upper layer stratification, 

since their 0(1) phase speed c° = ^ ^ i j ^ only depends on N\h\. The nth mode can be 

either an a-mode or a /3-mode, since its phase speed is the nth element of the ranked series 

of the two sets of phase speeds. 

/3-modes have /3 zero crossings in their u-eigenfunctions in the lower layer at the fol­

lowing fixed positions: 

l2 - - -h2 2'2'2' ' 2 

The remaining (n — /?) zero crossings occur in the upper layer at 

Ni{H-z)p 1 3 5 2(n-/?)-! 
N2h2 2'2'2 
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a-modes have (a +1) zero crossings in their u-eigenfunctions in the upper layer at the 

following fixed positions: 

hi 
(2a + 1) = 1,3,5,..., (2a + 1). (A.26) 

The remaining (n — a — 1) zero crossings occur in the lower layer at 

N2z 
(2a + 1) = 1,3,5,..., (2 (n - a - 1) - 1). (A 27) 

The order of ranking of the two sets of phase speeds depends solely on the ratio 

A .2 Model 2 — Well mixed surface layer overlying a deep layer of constant N2 

z A 

h 2  

D e n s i t y N 

6 - f u n c t i o n 

Figure 118 Density and N structure used in Model 2. H = hi + h2. 

This profile was used by Baines (1982) in an analysis of internal tide generation by the 

continental slope, and by Stacey (1985) in his study of the internal tide in Knight Inlet. 

See Figure 118 for the density and N strucure. Assuming that w2 <§: AT2 and making the 

rigid lid approximation, as in Model 1, one obtains the solution 

Z 2 = s i n — , (4.29) 
c 

with the following dispersion relation: 

(c2 - ^ O t a n ^ 2 . + N2hlC = o. (A30) 
c 
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where g1 = This is the same dispersion relation as obtained by Stacey (1985, equation 

13). Again, suppose that 

e = J V a i / - 7 « l . (A.31) V 9' 

By analogy with the e defined in equation A5 for Model 1, this e can be thought of as the 

ratio of the lower layer JV-value to the mean upper layer AT-value \J*p^f if the 5-function 

in N2 at the interface were smeared out over the upper layer. Expanding all variables 

as an asymptotic expansion in powers of e, as given by equations A6-A8, the dispersion 

relation becomes 

Noh 
( c a - ^ A i ) t a n - i - i + ecy/g7^ = 0. (A.32) 

c 

It is not necessary to replace the JV2 by s when it occurs with an A 2 , because JV2/i2 is not 

a small quantity. To 0(1) this is 

(c°2 -g'ht)^^- = 0, (A33) 

which has solutions 

c° = yjg'hx (the "surface mode"), 

or 

c° = ^ 2 - , 0 = 1,2,3... ("/3-modes"). 
pic 

The surface mode is associated with the density jump at the interface, and has an 0(1) 

phase speed of \Jg'h\ as expected. The /3-modes are associated with the lower layer 

stratification as in Model 1. The collapse of the infinite series of a-modes associated with 

the surface layer in Model 1 to a single surface mode in this model is analogous to the way 

in which an infinite series of modes in a continuously stratified model collapses to a single 

internal mode in a model with two layers of constant density. 
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A.2.1 The Surface Mode 

The first two terms in the asymptotic expansion of c are 

c° 
c1 = —— cot 

Noh 2 "2 

(it.34) 

(A.35) 

and the O(l) term of the eigenfunction is 

7° - N * z 

*2 = S m ^ 0 ~ -

(A36) 

(A.37) 

This eigenfunction is illustrated in Figure 119 for various values of N ^ a , 

Z°(z) 

Figure 119 0(1) eigenfunctions for the surface mode. 
C a s e l : ^ i < | , case 2: ^ = f , case 3: ^ > f. 

A.2.2 "(3-modes" or "Lower Layer Modes" 

The first two terms in the asymptotic expansion of c are 

c2 = 
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and the 0 ( 1 ) term of the eigenfunction is 

Z\ = 0, (A.40) 

Z% = sin Z-P- (A.41) n 2 

See Figure 117. 

A.2.3 Summary 

The surface mode is associated with the density jump at the interface, and to 0 ( 1 ) has 

a phase speed of v V * i - The 0-modes are associated with the lower layer stratification, 

and to 0 ( 1 ) have phase speeds of N £ 2 . As before, the nth mode could either be one of 

the 0-modes or the surface mode; it will be the nth largest element of the set 

\y/¥hu 0 = 1 , 2 , 3 . . . } . 

However, in the summer the first mode is most likely to be the surface mode. 

The zero crossings in the u-eigenfunction will be at 

2 = < 
2 ' V f l ^ T 2 ' 

*VV f ti jr N,h, ^ * 

for the surface mode, and at 

(3z 1 3 5 2 0 - 1 
, . . . M«> 2'2'2' ' 2 

for the 0-modes. There will be an additional zero crossing at the interface z = h2 for 0-

modes when n > 0 (e.g. the 0 = 2 mode acting as mode 3 ) . This additional zero crossing 

comes from the 0(e) expansion of Z\. 
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