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ABSTRACT

Interest 1n the vertical fault problem for electro-
magnetic fields has been recently revived by the papers of
I. d'Erceville and G. Kunetz (1962) and D. Rankin (1962).
In the derivation of his equations Rankin used d'Erceville's
theory which contains some fallacious assumptioné. These-
have been pointed out by J.T. Weaver (1962) and also in this
thesis,

This thesis follows the lines of mathematical
attack first employed by d'Erceville and Kunetz, and 1ater
developed by Weaver, in apblying the theory of integral
transforms to the partial differentlial equations satisfied by
land and sea conductors. The problem of both a vertical
fault and also a sloping fault, i.e. O {x ¢ 90° where KX is

the angle of dip of the fault are considered.

The results 1n the general case are 1lnconclusive,
no solution has been found and no solutlon 1s suggested.
The case of X = 90° has proved to be equally indeterminate,
but a solution has'been suggested, which, although it has
not been proved rigourously, does not appear to violate any
physlcal principles and also seems to represent the fileld

equations on the surface of the land and the sea.
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INTRODUCTION

Interest in the vertical fault discontinuity problem
has been recently stimulated by the papers of I. d!'Erceville
and G. Kunetz (1962) and D. Rankin (1962). The present work
is an extension of a paper by J.T. Weaver (1963) who was
looking for a theoretical explanation of an anomalously high
vertical magnetic component of geomagnetic micrdpulsations
found at a land-sea contact. In 1961 D.A. Christoffel,

J.A. Jacobs and J.A. Shand published a paper comparing the-
ratios of the vertical to the horizontal components of the
magnetic flelds at Victoria, B.C., which can be considered

to be situated at a land-sea contact at the edge of the
Pacific, and Ralston, which is in the Southern part of the
plains of Alberta and thus is removed from a land-sea con-
tact. The results showed that there was a definite vertical
anomaly in the magnitude of the geomagnetic amplitudes in

the micropulsation range (0.001 cps to 3.0 cps) at a land-
seé‘contact. This contradicts an assumption used by

d'Erceville in his theoretical treatment of the problem.

- In this thesis thelinitial electromagnetic field
is assumed to be vertically incident. Even though this
approximation is not exact, it is found (see Appendix 1)
that 1t 1s equivalent to the céndition that the displacement
curfent is negligible in Maxwell's equations, i.e. that
lv| > | we| . As a result, the angle that the plane of



incidence makes with the discontinulty is arbitrary and hence
it has been assumed to be at right angles to the discontinulty.
" This permits simplifying assumptions to be made and the

préblem becomes two dimensional.

The difficulties arising from variations of con-
ductivity with depth have been circumvented by assuming that
the conductivity does not vary for depths less than 200 km.
and that the electromagnetic field has been "completely"
attenuated at that depth, i.e. for theoretical purposes a
depth of 200 km. can be regarded as the depth to infinity.
Neither land nor sea have been assumed to be perfect con-
ductors (although both may be considered so when compared

with air).
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INDUCTION EQUATIONS

For the general case the coordinate axes O (X, Y, Z)
- have been'chosen with the X-axls along the discontinulty
Junc‘cion of land, sea and air, the Y a:(cis along the sea-~-ailr
‘cbﬁtact, and the Z axis along the land-sea contact. In the
case of a vertical discontinuity ( o = 90°), the axes are

rectangular and are.renamed 0 (x, ¥y, 2Z). Thus 0X and Ox

are identical as are OY and Oy (see Figure 1).

>, X

Sea

sea,
\th’ land rmmediom |

} =

FIGURE 1 Co-ordinate systems at a land-sea-air contact.

It is assumed that the incident electromagnetlc

field is a wave of the form

—
—
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where:

F*A = the constant, finite amplitude of the magnetic
field

‘<z= the wave number in air _
i.e. Ky= NA//TGJ where Mo and &, are
the permeablility and permittivity in air

¢t°= the unit vector in the direction of pro-
pagation

and W = the frequency

Upon striking the land-sea conductor the magnetic
field is "split up" into two parts, the reflected and trans-
mitted fields. Both these flelds are assumed to vary as

follows . tV
S tw
He = Heppre

H, = H, (43 ¢

Hence in the atmosphere the field is given by
: . — s k N > b
LQ(T - Kahng'Y
HH +H. =¢ (_ H., € +Hv<g)>9]

A simlilar set of equations holds for the electric

field, assuming

AN
—t —  Ulwb-k; ne T

EL= °@
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It is possible to simplify Maxwell's equations in

a homogeneous, 1sotropic medium.

(a) Vxﬁ=f+§ (b)) WnE =-28 (1)
(a) w-H =0 () ©-E= ple (2)

If the flelds are varylng in a purely periodic manner then
for the two dimensional case, equatlon 2(b) is found to be

automatically equal to zero, i.e.
V-E=0 (3)

The proof of this is given 1n Appendix A3.

Within the conductors it is necessary to consider

the ratio , Which 1s found to be much greater than

\oe
unity.' Table I glves the value of this ratio for land and

sea respectively:

Table I
Medium - Conductivity, Dielectric Frequency T
T constant, e - w \ we '
mho/m - - Farad/m cps
sea 4 80x10~10 3 ~10%10

1and 10-5-10"®  3x10-10_4x10-10 3 ~ 10+H



6.

Hence it is possible 1in both cases to assume that displace-

ment currents may be neglected in the conductors, i.e. that

—_— =3

vxH=]=TE W)
in both land and sea. However there 1s no Jjustification in
ignoring the displacement current in an uncharged atmosphere.
Such a Justification 1s only possible after a solution of
the electric and magnetic field has been obtained. Further
if we treat the fields as purely electrostatic or magneto-
static then there is no Justification for using Maxwell!s
equations to find the remaining field. Thus assuming
§7x73-= O (for a magnetostatic field), we cannot use

X7x'§f = = %%? . to find the electric field. This point

has been dealt with more fully in Dr. A. Nishida's Ph.D.

Thesis (1962). Hence in the neutral atmosphere-

—r

() wrH =22 () YVrE=-2E (5)

Therefore using equations (1) - (4) it is possible
to express the magnetic and electric fields as diffusion

equations for the case when & = 90°, 1i.e.

Vz€= (L/‘A-G'U\)E amd vz—q-.-i,/,;rwﬁ

If we substitute Y= peTw (6)

then the equations to be solved in each conductor are

VIE = tnE (7(a))



and e . |
! 2

ViH = H (7(0))

In the atmosphere the equations to be solved can be derived

in a similar manner and are
() VE-pew®  ana (b) VH=-mew™H (8)

Because of the two dimensional nature of the model all field

vectors are independent of x and we can find two solutions of
equations (7), one for E -polarization and another for

H ~polarization. In both cases the polarized fileld vectors

are directed along the x-axis. Hence for F{—polarization

Ex= O E:{ = L é_‘jx and E ot o

T o< 5%_3.12“2";% =90° (9)

and for [ -polarization

L S E o N |
szo Hﬂ = £ 2B« and H’é“ = a_g'- o = 20° (10)
pR e whp- 53
These two cases are completely 1ndependent of each other and

the solution of the diffusion equations will be obtained for

each case separately.

For the case of H -polarization the equation to

be solved for z20 is

BZH,:_ }LH,‘ | :.H
e 5 T T X= 90" (1)
43 IO
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and for [ -polarization the equation 1s

Bj_g‘x +BLEJ£ .

= ¢ LE)’-. D(:qce 12
24* 33* l 22

So far no mention has been made of the diffusion
equation when 90°> & > 0°, For the cases of E- and
H -polarization they may be obtained from equations (11)
and (12) using the equations of transformation for the two
coordinate Systems 0 (X, Y, 2) and © (x, y, 2) viz,

-~

x:x X:x
%=Y+Zw>o< (13) or \,Jzta—%c,ct'ocF (14)
3= Lsinx Z = gemec |
See Figure I1I.
o) 4
.. <i\ i E>3’Y
\\ ;7r
z \\;
e R ---«\‘\
\\
%Y = AN

FIGURE II Dlagram showing the transformation from one

co-ordinate system to another.



Therefore
> . 2,
dx 2X

2 2

2 Y
3 - —etxd PR
and 5_:5— M*av*m_“az

and hence . ¥ 57_ 3.7_
2z . e = -2 L 2 Z_

Therefore equations (11) and (12) may be written

XF _2emudF 4+ ¥F . Lhtswmix F (26)

where F is equal to either Ex or H:-..

The value of the transmitted magnetic fleld across
z=0 can be expressed as a function of tg only, say GO&),
and time, t , for H-polarization and the value of the trans-
mitted electric field can be expressed as another function of
4 for E -polarization, say C%} and time, t .  Hence

assuming solutions of equations (8) to be of the form
rLwk

H:c = H (4,3 @

and +uwt

Ex

B
m
o~

oS
&
&
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we can express the component F%z; in air (omitting the term
+iwt
e as before) as

Hx' _ e"L(vv\t3+h%)

The condition which must be satisfied for a solution of (8)

1s therefore

Mz-rh?‘:/*e w?

(17)
i.e. \f1=/~l/"“5“'°-"""‘Z for wh}/ue > m|
(18)
and n = ',jmz—/tké“? for WJMmE < fm
The general expression for the reflected wave can be
expfeSsed by
400 - o N
v -+ N
He= | At e """ dm (19)
-0

where M 1is given by (18).

“stmoe Hi = Hoe-‘»(wa-ﬁ-m'z\

where the subscript 2 refers to ailr, at z=0 for M -polar-
izatlon the tangential component of the magnetic field is

continuous across the land-sea conductor i.e.

where Ft is the unit vector normal to the surface.



11.

For H -polarization
Hh +H‘f= Ht

' + 00 )
Hoe ™8+ [ Atme™™idm = Gty
° + tha ’Lm"%
e f A(M)Q 3dwm = Gy(‘a)"’Hoz

- or . onm %=o,

Applying a Fourier transform, we can express the function

A(w) as a function of m , viz.

+ 00 —LM;la -LM\-&
A(m)=ElTrf_m(G-(LA)_‘-—}°e )Q Cé,\a,

Since
j+w etcx&x - 21 8Co)
- 00

where S(é) is the Dirac delta function,
, + 0 _LM&&A (__( S(
A(m)=$rf_“ GIUQ)Q /‘g = Ho Slmem,) (21)

+or +% -im L(=rmay +na3)
or |"fz=;g.rfAMe»(Mﬁ+ﬂ7a)£wG](7)e 7&»7 - Hee 4 ?

Hence knowing the function <§(QQ‘by solving equations (11)

and (12) it 1s possible to express the magnetic and electric
field in the air. A similar function defined by Bl(m) can

be obtained for E -polarization. The proof follows similar

lines, and 1t can easily be shown that

| B(m>= ;‘Tr f—m [C(u(\) - Eoéonge-»mzd% (22)



1z2.

where C(kﬁ) is the value of the transmitted electric field,

which corresponds to G(tb\, on z=0. Hence

+ Limy + N2
EJC? B(W'De b& 16 ™ ’ (23)

)
is the electric field in the atmosphere (z<O0).

For H—-polarization, the electric fleld in the

atmosphere 1s given by:

= F4 | - _;_ éijx =
Famo Byef e g 3 er

and for E-polarization, the magnetic fleld in the atmo-
sphére 1s given by:

. 2E. |
/ﬁ --—10 ‘and H-'b

- BC:L =T (25)
1 Fi

Equations (9), (10), (24) and (25) may be general-

"H, =0 Hj=

ized for the case of 0X N 90° by applylng equations (15).
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PHYSICAL INTERPRETATIONS

When an electromagnetic wave meets a change in con-
ductivity (e.g. at an alr-sea contact) the incident wave 1s
propagated through the new conducting medium with a velocity

of 2w where and are the permeabllity and con-
4/*0_ M T P ¥
ductlivity of the medium.

Using Maxwell's equations the magnetic and electric

flelds can be expressed'in the following manner:
\Ve l—l (ow/»-r' wﬁG)H
—
and \v E (uw/a;q- -w?—/\e) e

However N'f » W<€ 50 that these equations can be approximated
by equations (7). The effect of this on any physical inter-
pretation is to heavily damp the electromagnetic wave in the
conductive medium and to pefmit the current density to take
a finite time to builld up, which results in the diffusion

phenomenon described by equations (7).

The description of the electric and magnetic
fields associated with the current densities can be found

from the vector potential

Tl t
R [iaD e
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Since Bh:/v\ H- VY x A

%[,

and VXT-T =(r+;, we)E N E, = -

if the gradilent of the scalar potential of the electrostatic
| 2 A
2t
"wedge" of sea, or to simplify it, take the case when the

field i1s small compared with . Hence if We take a
angle &= 90° then it can be seen that for vertical pro-
pagation a current.system is set up, decaying exponentially
with depth (z). This current system radiates waves in all
directions, both in the y-direction and in the negative
z-direction (reflected ray). The radiation in the y-direction
is not part of the reflected ray but 1s referred.to as a
diffraction term. The direction of the magnetic field is
gliven in Figﬁre III, assuming that the electric field in
the conductoriis directed along the x-axis. It will be
noticed that in this caée (it.e. E -polarization), the
magnetic fleld at the vertical boundary has become vertical.
For the case of F{—polarization the corresponding electric
field becomes vertical. The problem now arilses of what
happens when two conductors are pléced side by side. If
the angle X 1is st11l assumed to be 30° then the magnetic
field for each.conductor, separated as in Figure IV, 1is
generated 1n the same manner as before but now there is a
mupual 1ndﬁction fleld near y=0, which tends to oppose the
éiiéting electric field in both conducting media. Upon

Joining the two conductors on the plane y=0 then there is an
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Hreflected
o e — y
3/ — < < —
s
l l © o o 0 6 06 0 0 0 O ©° Z
- ° j, =0, E, ,out of the paper
o o]
diffracted l .
J/ 0
o]
FIGURE III  Magnetic field generated from an electric
field in a right angled conductor.
HT3 Hrl
; —_— —_— — > >
N Hy
@ ® ® ® ® © @ l/ r ® ® ® ® ®
re = ) - - .
jg=ozEy ® j, = E, E into the
® b | i
l_ paper
e - | &
® o Hzl
. lH ' ,
medium 3 ® Z3 medium |
FIGURE 1V Magnetic fields generated from electric fields

in two right angled conductors;4,> &3 so that
the vertical magnetic field,Fﬁz , at the dis-

continuity 1is directed upwards.
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electric field discontinuity between Es and E| and hence
there 1s a diffusion of electric fileld in the y-direction,
in the same manner as the transmltted electric fileld
diffuses, until the value of the electric field reaches a

common value on y=0.

The difference in current density gives rise to an
anomalous vertical component of the magnetic field, F*%
There are three cases to consider:
| 1) -I;7>z: when FI? is downwards at the discon-
tinulty Junction.
' - - :
2) {a= 4§ 1in which case the two media are identical
(and therefore there is no conductivity discontinuilty).
3) —13<<§l when IZ% is upwards (see Figure IV).
Rather than'try to compute the diffusion of the electric
field from first principles, a reasonable guess 1s made.
In much the same way as the electric fileld 1s attenuated
with depth, for E -polarization, the diffusion of the
electric field can be considered to be "attenuated" by the

same terms. Hence the value of the electric filelds in

media 1 and 3 may be given by:

E5='E"'u<|_@9‘°3>+ %(’a)_e?ﬁ) $wW€0 , 2=0 (26)

-—-h.—L

_ o Py
o (L= e+ %?})&' ¥€Q, 3=0 (27)
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P )

where %(1) is8 the value of the electric field on y=0, Efw
N P

1s the value of €, at y=+%, E,  1is the value of E3 at

=—oc0 and /5 =,J/u.wri in media 1 and 3. It is thus

: 2
‘related to the skin depth [ — — .
P T

The same idea may be applied to the case of H -
polarization and a similar diffusion of f4$ found to exist

in the form

Hg = H.. (‘"‘eﬁﬂ) + ‘k"ﬁeh% , 94¢0, =0 (28)
[ SR L o~ s
H. \:.o(‘ ¢ >+ %(@QM) 4720, 3=0 (29)

The rather arbitrary cholce of EE and k{ on z=0
may seem unjustified at this stage but it will be found that
a function of this type is needed later in this thesls, even

if it represents a crude approximation to the true case.

Summarizing, for the case of F{ -polarization
three fields exist: H,, Ey and E,o . The fields Hy and
EW appeaf to be continuous functions with continuous first
derivatives each approaching constant and known values at
o but the value of E’J appears to have a distribution

with a maximum (cusp) value at y=0 énd tending to zero at

T oo
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When considering the case of a wedge there is also
a transmitted term to be added to the diffusion of an
electric fleld which flows across the land-sea contact.
As the éngle ™ approaches zero 1t is found that there 1is
less and less diffusion because of the difference in électric
field intensities in the two medié and more propagation of
current as a simple transmitted and reflected ray problem.
Hence in the limiting case of horizontal layers (L. Cagniard
(1953), A.T. Price (1962)) there is only a problem of trans-
mission and reflection with no diffusion due to a difference

in electric field intensity.
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BOUNDARY CONDITIONS
A solution of Maxwell's equations 1s glven by the

Fresnel equations at y=1 o for'the alr-land, alr-sea

‘contacts. If 1t 1s assumed that the initial wave is of

the form: — = (et - k..?w-?) R, o =
E.=E.e ° HL"“‘*’ Rex Ei
L«J/'-z.
then the transmitted and reflected waves will be of the
form:
e == (wt- kA t—_f{ _ k1 x—-{»
E L~=’ |€ ) e~ w/u.', !
and .
—n = i(wt- k;ﬁz'F = l?a- /h\ AE
For £ -polarization E-n = C, Eo and E,- C, Eo

U
J— .. L e
For H-polarization |, = Gl\ e and H,= Ga H.

where C,,(,, Q, and Gz are known constants for the air-
sea, air-land boundary (see Appendix 2). Hence the magnetic
and electric field can be calculated at y=2®0 for both

H -polarization and E -polarization.

At any boundary,

X ('é’l +'§\,.) - Q,‘ _ée .and hx(ﬁi.'f' Hv3=gxﬁb (30)



A
i =
IRN: E,
b A
EL hz
é° fa) . medivm 2
el gg o rmediom 1
A
ny

FIGURE V Incident, fransmitted and reflected rays at

a boundary.

For |H -polarization these equations give:

-+ ‘\::‘Y (‘23) = Ht (tﬁ)

H.oe
b _

- Where F4e(%p 1s the magnetic field inside the conductor.

Let us call this function on z=0 G"s(‘a) in land, G,(%)in

sea and (30@ in general. A similar case exists for

E -polarization,
_m% e N -
i - N2 —
E.e + EY("A) = Eg(la)

Let the transmitted electric field on z=0 in land be called

Cg(tg) and in sea C,(«a,‘) and C(L.&), in general.

In the previous section an intelligent guess was
made of the values of G.(«a\ s G;LL@, C,(ta), and CSC«“) but no use

will be made of this until it is necessary;
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At the land-sea contact for H -polarization the
tangential component of the electric field 1s continuous,

i.e. E'Z is continuous.

FIGURE VI General field vector in nonrectangular

‘co-ordinates,

and -L 2)F43

For E?—polarization the tangential component of the magnetic

field 1s continuous and a similar set of equations results.
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Hence the boundary conditions requlred to solve

Maxwell's equations are, for H—polarization:

H(1) The transmitted magnetic field , G¢9=the magnetic
field in the air on the boundary plane Z = O,~® <Y<+‘o¢

H(11) H,=Hy=9(Zdon Y=o.
H(11i1i) Etangential is continuous, i.e.
2, on Y=o0

Y
H(iv) H,,Hs, BH.)__i—_ls) dH, and _a_\js all tend to
. 'azo Y X%

N

)
zero as 2 —& -+

H(v) H,=G, H,,Y:-HO and 'H3= GaHoﬂe-w)which are
' all known, constant and finite. '

Ej?r E'—polarizavtion the boundary conditions are:

E(1) The transmitted electric field C(ﬁ})-'-:the electric
field in the air on Z=0, —< Yy < +®.

g(11) E3=E,=4(2) on Y=0

E(1i1) %?Es-.- ?__E, on Yz o
E(1 E, E;.0E,0 &3 JE, and 2Es all tend t
(1v) 19 &3 .3__'2‘,5__25) %—\3 an B\P a end to

zero as 2 —en (& =#0),

E(v) E=GE,, Y+ and Eas= C3 Eo, Y= -eo,which are

all known, constant and finite.
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It will be noted that in the case X=90° Y= 4
and Z=’z and the boundary conditions still hold true.
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' BOUNDARY CONDITIONS FOR & =90°

The boundary conditions for the general case have

.~ already been enumerated. These conditions will now be

adapted to the case X =90°, In addition the boundary con-

ditions across the land-sea and air contact will be glven so

that the values of GO&) and C(\z) can be computed knowing

the form of the electric and magnetic fields in the air and

in the land-sea conductors and equating them on the

boundary z=0.

For F{—polarization:

H(1)

H(ii)

CH(i11)

H(iv)

H(v)

The transmitted magnetic field equals the total
magnetic field in the air which has the value

GL‘@ on the boundary plane 3=0, —0< Yy <+ ™.

H|= H3= %CB) on Lz =0 .

The tangential component of the electric fileld

is continuous, i.e.

) atj, and %ij3 all tend
[}

3
to zero as z tends to iéfinity.
-B3
H, = G, H, ¢ il for y equal to + o and

' -3
Hs = 63 H, € P23 for y equal to -« , where
the values of G;, and G3 are known, constant and

finite.



H(vi)
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The reflected wave in air is propagated upwards,-

in the negative direction.

H(Vii) The tangential components of the electric field

are continuous across the land-sea and air
contact, i.e.

By =By 37> 320

=

‘AszE‘z(z ,  4<o, p=°

For E -polarization:

E(1)

E(il)

E(111)

E(iv)

E(v)

The transmitted electric field equals the total
electric field in the ailr which has the value

(Oa) on the boundary plane ':bz.o y =0 g<+ 0.

EEg::Eﬂ':aéCep on  y=p.

The tangential components of the magnetic field

are equal on the land-sea interface, i.e.

Q§¥»=.Q§5 ' on %{é'o‘
2y 24

E, Ea, %_5) %ﬁa) 33_51 and § E3 all tend

.
to zero as z tends to infinity. %
, -B1% :
E, = C E.e for y equal to + o and

~fs
Egzcg E°Q’F% for y equal to — 00 , where

the values of C, and Cj3 are known, constant and

finite.
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E(vi) The reflected wave in the air is propagated

upwards, in the negative direction.

E(vii) The tangential components of the magnetic field
are continuous across the land-sea and air

contact, - i.e.
Ha" :- H%z) ‘a,)O y %-’—O
Hy,s = Hye's  9<9 320
The coﬁtinuity of the vertical components of the magnetic

field is ensured by the condition of continuity of the

electric field for E -polarization.

It is on the question of the correct boundary con-
ditions that most of the earliér work has been in error.
I. d'Erceville and G. Kunetz say that to solve the case of
E —{)olar’iza‘cion one must assume that at the surface Ex is
not dependent on LB, which amounts to assuming that the
vvertical-component of the magnetic field is zero on the
surface. The fallacy of this assumption has already been
pointed out in the "Introduction" to thils thesis. D. Rankin,
followlng the above authors assumes that, for the case of
‘Fﬁl-polarization, the vertical compohent of the electric

field is zero oh the_surface. From this he concludes that
dH« _ o
o dy
If this were so then the function Gy would be equal to a

constant, which is incorrect. Hence Rankin's assumption
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that the vérticallcomponent of the electric field is zero on
the surface z=0 is incorrect. J.T. Weaver has also made the
same incorrect assumption in stating that on z=0, }%==O for

H -polarization and olH'g =0 for E-polarization.
dy
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SOLUTION OF THE EQUATIONS FOR X = 90°

H -polarization

When X = 90° the co-ordinate system is rectangular
and the differential equation to be solved is thus simpli-

fied, Equation (11), viz.

é_ﬁji + éiiﬁx = 1.71 F4u,

e T Tg (50)

has to be satisfied with boundary condifions along y=0 and
z=0. Because of the simplified differential equation it is
possible to use a Fourier sine transform (see Appendix A5
for the general case). A Fourier cosine transform could
also be used but 1t would be necessary to establish the
boundary conditions in a slightly more complicated manner.
The Fourier sine transform,bwith its inverse, can be

expressed as follows

o = [F fowwxs simgx dx (51
and D) =A/EIMLW;) g'vwﬁx A%

Application of the Fourier sine transform to the differential
equation gives the followlng results:

LESRFhas
Ay® |
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and
VT 57_ +F _ where F”-_-,L.?‘, , (53)

 If we now let Helyod= G(y) 1t can be seen that there is
only one unknown function whereas for the general case there

are two (see Appendix A5).

The solution of this differential equation can be

expressed as folloWs°

H = F/ E(@ ~hy +¢s(@]sms@A§ (5L4(a))

H,= f/ [kie® 4+ Vsl ]simezds  (su(0))

where

=4®m-Y© | K =47 -Yslo (55)

VRS AF Z mGC? | - 6)

and T8 = WRHUOD+ VT Pa9+a0/c) — W, (0)  (57)
' \)|T3 + \7367
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E -polarization

Similar solutions exist for the case of E -polar-
ization. No proof will be given but the results will be
stated%

) | .
g = B LMt Biplsigyds  gro  (saay)
£, . [Tt o Ds () sims 3 d
32 (3] [ke @+ [ Smg3de yso (s8(n))
with Z)s'= %‘_7%) — J,:(0) (60)
and %—%) = v, @,(o)-g-\)s @3(03-&—@'/(0\-@5(0) (61)
| N+ V3

Having obtalned the basic formulae for the magnetic
and electric fields, explicit expressions for QA(%), q)g(j)
@lc%) and %ng) will be obtained.

The first approximation is that q/ and @ are
equal to one constant for y3» 0 and to another for yg O.
This is too simple an assumption, and leads to false physical
results (i.e. a step-function for the magnetic and electric
fields for z=0). The next estimate would be to apply the
function noted in the physical interpretation with the

values
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E.Bo= Cs E.
E\e = C‘ EG
’.vl'—-‘?,o = Ga H.

and §‘_"lo = G‘l Ho.

The values of the Y 's and J_Z 's can then be calculated com-
pletely as follows. | Heaviside's operator formula for

-exponentials 1is

__‘5 EQQ}J - e&.x .
Fo 28 5 En+ 0 (61)

Applying this to GCL&B and CO}) and noting that

’ NS - (62)

|- £, g®

~

then W, (v, Yaly), q_j,(‘a) and \Psctg) become

2 - P~ 6 |
W'“@"A/%%‘KH“’* (a(0=H €T3 (63(a))

(A proof of this is glven in Appendix A4),

Similarly

b= 5 S H. 4 (g0 -H J“g} (63(0))

D, (y) ;A/% %{E.o + (f> - E)ehs ;_7.31 (64(a))
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by =2 i_*;[anJr(Mov-Eso)éM-\%’-E] (64(b))

' The question of the validity of Heaviside's method
may be ralsed but the results can be verified by substituting
equations (63(a), (b)) and (64(a), (b)) into equations (11)

(12)

For the casge y=0

Y l0) = J—;\,z\’_Hw)v (&)= Hioae Vﬁ] (65(a))
l_[/‘ 3Co) = 3 5-7_ EE!Q)QO + ('é(o) - Eud,zo} it:;s] (65(b))
b i s
and - W, 4(0) =J$§§Q(@<® = Hiezeo) (66(a))
IROENE (_E_;'»s) (£~ B (66(»))

- Substituting (63(a)) into equation (54(a)) and
‘Z_Lettingw-ww the b'oundary condition H(v) for «=90° is
satisfiled, i.e.

e 2 B 5H-Gsinagds = H.Ge™™

H’.’!:. H°Gs Q-?S'OD E|; Eacfe-Pﬂb and E3 = Eocse—’gsgb

also

:This shows that the suggested solution is, at least, well
behaved at the limits y->iw.
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‘The unknown function g(e> may be found by equating the
tangential components of the electric field at (0,0,0).

- A _ 1 2H
i.e. - — == _5_3 on 7b=°

o) =
3¢ Gzé~+“’-|-’=a (67(2))
Simllarly,
-  + C
heo= (Gpr 3"3)5 (67(b))

ﬁl"'FS

 Hence the functions Wy, Yalsd, ¥, (wy and LP,A((@ are

all known and may be computed.

Values of the electric and magnetic field may now
be found by direct substitution and when one 1lets 3—><>(from
the positive side) the integral should be equal to (3(19 for
H -polarization and Ceyy for E -polarization if the
analytical procedures employed are self consistent. Unfor¥
tunately, even in the éase of this relatively simple esftimate, -
the evaluation of the integral is extremely complex (due to
the presence of branch points) and can only be evaluated by

numerlcal means.
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| To ensure that GO’(\) and C("D) are the correct
functions on the surface.z=0, 1t 1s necessary to equate the
-magnetic and electric fields in the conducting media to the
magnetic and electric fields in the alr using the bouhdary
conditions H(i), (vi) and (vii) for the magnetic field and
boundary conditions E(i1), (vi) and (vii) for the electric
field.

Applying condition_H(vii) for H -polarization it
‘18 found that:

) on 2z=0 ' (68)
The value of H, 1is given by equation (54(a)), as z tends

to gzero from the positive side, and the value of F42 is

given in part by equation (21.), as z tends to zero from the

negative side. Therefore:
B R 5 (B [Tk rhw)snsidgh \
-&;_{tﬁe%(zﬁrfg“"éu%*m@{ LWG.(r?’e’Wyd'? _‘_' } (69).
I:Gs (7)_€Lm7d7] _ Ho[e-'u(mq -h,n,)_ e_;_(m,_j—mz’g\b}')

The order of differentiation and integration 1s inter-
changeable on the right hand side and so is the order of
taking the 1limit and integration. Hence, assuming normal

incidence:
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‘ | | L -t ' —iru+n )
R.H.S.="lim L ["’th (CML‘-‘a +€ z%)--k- fh(hﬂ)AM R

3—»0- W€

AL Gope "+ [ G e'“”’“'ﬂﬂ

= -2mH, __J fh(m)z um{jaupe " Tdn,

e | 2Twe
+f°@(?€mwd7}

where h,_:,J/,.T»'&_‘ , from equation (17), and the value‘mq._f G(«»I}
is given by the estimate. Having obtained ‘the value va |
the right hand side of the equation, to prove that the
estimated value of(3(35 is correct, the value of the left
‘hand side must be computed and proved to'be equal to the

" right hand side.

L.H.S.= dir L a%(ﬁ_’: f{g‘.e*"%; W, Ug)]‘s.;,w gl-%cls\)} ._

3—(:0 +

Let I("a ) = J_'f Y_-*-Pfo‘)e '-f‘M(—ﬁ)]Swz"SOlq

= _.J [5 H,,(l— '%>J su»zi—sdﬁ . (70)

which, as.% tends to infinity, gives the boundary condition
H(v) upon integration but otherwise, is an integral with a

branch point. If the integral I is given by

I- ﬁ-: f:ﬁku S fop) sy dg
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then L= L,+1,
| © o
where IZ=J§£ q.(g) € %stiqu%'

.z I”Eva-o*\W Hag/ivs +3(4 &) ~H o pY/5+ 7(4 ‘H='5(“’3‘F5/4ﬂ
2= ), '

NV TV,

and

g€ Psmgzds (M

This integral can be subdivided into three more 1ntegrals,

~i.e. let Izz»Iaﬁ'IL+ I¢

"Where

Ie=

2 (e H AT Ha) e sl g3 dn (71(a))
g (\)Wg + \73G-7 VV3 .

] .Ql l V
I.= %‘f (42 =HY(I-ED € freavds 1))

TN+ V1) g

and o= 2 (‘3(°)'H3°>(‘73 Ba)w € '%“’“Sﬁ dzl | (71(c))
° (v, Q«»mﬁgﬁ -

These 1ntegrais ﬁossess complex branch-points making their
mathematical evaluation extremely complicated.v It is
suggested that these equations can be better solved on a
computer and the‘results plotted on a graph. If the results
plotted from the right hand side of the equation fall on the
curve derived from the left hand side then 1t‘may be assumed
that thé estimate satisfies all boundary conditions and
differential equations. - |
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The equations for E -polarization, which are

similar to H ~-polarization, are

T, J“Hcp(o)e +QM\]5M%&% J%f Eo(1-€ Nsngy ds (72)

and I=Is+I4

where I4 is given by -

> -, ‘
B[ Uame™ ] suagds » 4o (73)
and :
Iq_ = _2. SwE\,S Eco +\).E3°)/\7,V3 +(€(°)'—E'° \,I"F‘)/ﬁz +(H°)'E3PX\73- ?A/ﬁﬂ
L T Jo (9 + N3
vy
xge S\Mﬁibo(ﬁ | (74)

'Again I4 = Id + Ie +I{:

where

I, - 2 [3aEs 9 Es) & sisq ds (T4(a))
o (Vi+7V3) VY3
2 (4> -Ew Vit g, T
I -2 (Nky%q Yv=g) ¥t ﬁaﬁ (700))
and Ie= f(,({ébl;a);“)wa Fs\Q 15\»5{‘31% - (T4(c))
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The numerical integration of each of these equations may
be‘obtained by seperating the functions into real and

imaginary parts and evaluating each integral on a computer.

The vertical magnetic field can be found, for the

case of £ -polarization, from equation (10) to be

b ¥
Therefore: _ v
H, = iz goﬁ(\hEoW-Ex‘VOﬁs H4-Eo)(v-p)/5* + (€(°3‘ES<§(\’3‘?3V§1]
¥ por )L (N, +Va)
Ny
xﬁv,@ &mqbag) Yo (75)

A similar equation exists for y< 0.

If the estimate C:UQ) is correct then

. —P1%
Hy, = o (49 -Ele) € iy o (76)

nd sk ps (ko) -Fe) e

It will be noticed that the vertical magnetic field is in-
dependent of the frequency at y=0.’ Fn is proportional to
the square root of the frequency and so is (é(o)—-'E\o )s
and hence the only frequency dependent term is QxP(“ﬁﬁﬁ) .

This result was obtained, assuming that

0 - B3 - -l wB

—‘:5 25 (77)
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on z=0, where B is constant, by J.T. Weaver (1963) and also
by T. Watanabe in a derivation of equations for magneto-
telluric modeling (private communication). . J.T. Weaver has.
calculated the ratio of the vertical to horizontal magnetic
field over the land;sea contact and his graphs are shown in

Figure VII.
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FIGURE VII Vertical mégnetic anomaly, after J.T. Weaver,
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"PRACTICAL IMPLICATIONS

The vertical anomaly found in the Fraser River
'Delta has already been mentioned. This anomaly, it is
thought, 1s due to relatively close-surface conductivity
variations and the emphasis, 1f placed anywhere, must lie
on periods in the rahge O0< Tg50 seconds. = Longer periods
occur less frequently and are less accurately plotted.
Further the theory so . far expoundéd of lateral skin-depth
could not be interpreted for depths of over 5 km., in the
sea at an absolute maxiﬁum and therefore longer perilods

would be of no interest here.

Geomagnetic bays, with a period of about 1 hour
.k3600'seconds) have been recorded by U. Schmucker on
magnetograms in California. Stations were set.up on a line
'perpendicular to the sea coast for a distance of Jjust under
300_km. at San Francisco and La Jolla, Readlings were also
taken on the San Clemehte Islands for the La Jolla traverse
(see Figure IX). A study of the vértical'component of the
magnetic flelds for well behaved bays, i.e. the electric
field vector parallels the coast, showed that at the sea
coast there was a pronounced dlsturbance but the further
inland the records were taken the smaller the magnitude of
the disturbance until at a distance of 100 km. or less the
‘disturbance disappeared (see magnetogram records Figure VIII).

If one assumes that the theory as previously described is
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correct one is led to the conclusion that there is a lateral
diffusion current arising from lateral‘inhomogeneities.in

the conductivity. If this is the case then crude order of
magnitude estimations may be carried out to find the approx-

imate dimensions of this conductivity anomaly.

_If/y.=_1.257 x 10-6 henry/m., ) = 3600 cps, and
5 = 100 km. where % 1s taken as the lateral dimension of
‘the diffusion, the cqnductivity, U , can be determined from

the relation

oy

T is found to be of the order of 10~% mho/m.

S.P. Srivastava's Ph.D. thesis (1962) contalned a
study of the subsurface conductivity of the planes of
Alberta using the principles of magnetbtellurics as éxpounded
by L. Cagniard (1953). Srivastava concluded that fdr his
v'survey the distribution of the conductivity with depth could
be summarized as follows:
0 to 5 km., 10"t mho/m.
5 to 90 km.,  10~% mho/m.
90 to 150 km., 10~1 mho/m.

T. Rikitake (1951) considered a two layer model,
corresponding to Srivastava's second and third layers, but
he placed his depth of contact closer to 400 km. than to
100 Jm. -
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FIGURE XI Velocity depth curve (shear waves) under the
Canadian Shield (Model CANSD) and under the

ocean (Model 8099), after J. Brune and J. Dorman.
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The initial value of 10‘_l mho/m., ranging from a
depth of 0 to 5 km., 1s not thick enough to éppreciably
influence the overall effective conductivity for the first
90 km., Therefore to a first approximation, the conductivity
at a depth of 90 km. or more is much larger than the con-

ductivity above, i.e.

q;ekm = I
(o]
v;o o {1 o000

If this stratification of conductivity is extended to the
Pacifio Coast and values of the conductivities and depths
there are compared with Srivastéva?e a Striking similarity
is found to exist. Two points muet be emphasized:

(1) The height of the surface of the Earth above the con-

” .ductihg layer (lO‘llmho/m.) would be of the order of
100 km. and hence the anomalous vertical field would
flatten considerably, i.e. the value of the skin-
depth would be of the order of 75 km. rather than
100 km. (The alternative to raising the depth would
be to lower the conductivity contrast.)

(2) The vertical anomaly would arise, in the first approx-
imation, from a "cliff"‘in the conductivity at depth;
where the value of G- at 200 km. would be 10-1 mho/m.
under the land and of the order of 10"4 mho/m. under

the sea.
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One‘is led to the conclusion that the variation of
conductivity with depth might be as illustrated in Figure X.
It would seem logical to try and check this result with other
' infofmation aboutvthe Earth's mantle and érust derived from

;seismic soﬁrces._"L. Sykés et al. (1962) have proposed a
vvelocity depth curve for the mantle under the sea, and have
.-suggésted that there is a low velocity layer between the
depthsvof 60 and 215 km. J. Bruﬁe.and J. Dorman (1963)
_have suggesfed a velocity depth curve for the mantle and
crust under the Canadian Shieldﬁ Their results show that
there 1s a low velocity layer between the depths of il5 and
315 km. Hence the low velocity layer must go from deep to
shallower depths as it passes from under the Continents to
-ﬁnder the Ocean, instead of passing from shallow to deeper
depths as might be expected from a simple study of skin
depths and conductivity. Hence it must be concluded that
elther thevshabe of thé'low velocity layer and the "isoconds",
or 1ines'of equal conductivity, are independent of each
other or that the layers and the isoconds are related and
the picture of the conductivity distribution is oversimpli-
fied. It would seem logical to éssume that the latfter con-
clusion is correct but the possibility of the‘former,cannot
be.completely ruled out. Assuming that the low velocity
layer and the isoconds parallél'each other the morphology of
the vertical mégnetic anomaly for various periods may be

“found from the,diégrammatié graphs of depth vs. period and
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vertical field vs. period (see Figﬁres XIi(a) and (b)). It
will be noticed that there are five regions on the graphs,
‘which correspond to (1) no vertical field, (2) growth of the
field, (3) field magnitude reaches a maximum and starts to
decline, (4) decay of the field and (5) no field. These
five regions would correspond to (1) micropulsations,

(2) long period micropulsations, (3) and (4) geomagnetic
‘bays and (5) storms. The depth 3 plotted in the first
graph, Figure XII(a), is the skin depth and hence is a
:fﬁnction of conductivity. The two curves B and zz are
plots for two different planes of infinite depth and constant
cohductivity. By interpolation, it is possible to obtain
an idea of the shape of the vertical magnetic anomaly as it
varies with period for a given conductivity step function.
This might be a first approximation to the Junction of the
velocity depth curve as it passes under the sea coast.
‘Assuming that the depth to the bottom»of the layer under the
land is D, (315 km.) and under the sea is D, (215 km.),

the second graph is obtalned, Figure XII(b).

The interpretation of the lateral skin depth
becomes somewhat clouded if this picture of the conductivity
distfibution 1s assumed to be correct. However, although
one may not be able to make good estimates of the conduct-
ivity at 100 and 200 km. under the land and the sea, the
basic concept should not be discarded. Information can be

obtained from the attenuation of the vertical component, but
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the exact theory must be reworked for this special case.
It 1s pertinent, at this point, to quote J. Dorman, M. Ewing
and J. Oliver (1960), who suggested a structure for the upper
mantle of the Pacific Basin from surface wave dispersion:
.}.Rayleigh waves indicate that the low velocity
region of the upper mantle extends upwards to much
shallower depth beneath the oceans than beneath
the continents. Rayleilgh wave dispersion data for
the paths on the Pacific basin are linterpreted to
indicate fhat shear velocity below the M (Moho)
decreases to about 4.3 km/sec at depths of about
60 km and that shear velocities are somewhat lower
than in the sub-continental mantle down to about
400 km.
The greatest need is for readings of the magnetic field
covering the whole spectrum of periods, from 1 second to
24_houré, for distances of O to 1000 km. from the coast on

the surface of the sea,.

Corroborative evidence of Figure XII(b) can be
seen from the magnetogram records of U. Schmucker.
Vertical magnetic anomalies arise from micropulsations
because of the land-sea contact. Unfortunately thesé
cannot be seen from Schmucker's records. There 1is an
anomaly in the vertical component of geomagnetic bays, in-

dicating the presence of some sort of step (it is more
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probably a sloping contact) in the conductivity, but no
vertical component anomaly is found in storms, indicating
~that the conductivity 1is laterally homogeneous at greater

depths.
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CONCLUSIONS

The values of G, and C% (obtained from Appendix II)
show that G, 2 and (g2 and hence that to a first approx-

imation the result G, = G;= A , a constant, as used by J.T.

Weaver (1963), is valid. An improvement would be to write
the function GCu&) = G RA
= Gy 4 <0

but this would be physically unrealistic. Hence the
estimate of G(ﬁL which seems to be physically sound, has
been.suggested to give the solution additional accuracy even

though it has not been checked mathematically.

It is found that

1
d T ,
| 3

and hence C:Ca = %110

C,

and

Cp(__'__
RN

Thus the term C, is dominant. This fact is important in

the computation of Cl%).

Graphs of the vertical magnetic field arising in
the case of E‘-polarizafion have been calculated by J.T.
Weaver for the approximations cited above and these have
been included here with his very kind consent (see Figure
VIII). The graphs have been calculated for W = 0,01 cps.

and w = 1 cps. and are based on Weaver's equation assuming
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constant values across the discontinuity as opposed to a

~varying value of CE%P.

The theory of lateral skin depths has been tenta-
tively applied to two cases, firstly to the Vertical mag-
netic anomaly arising from the Fraser Delta experiment and
éecondly to the magnetogram records collected by U. Schmucker.
Although there seems to be some doubt as to whether the
theory may be freely applied in the latter case, one can
conclude that there is séme sort of lateral conductivity in-

- homogeneity. Its exact shape and form is not clear, but
two models have been proposed, the first being a simple con-
ductivity "cliff" and the second relying on information

obtained by seismologists on the low velocity layer.
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APPENDIX Al

Snell's Law applied to a Nonconduétor—conductor Boundary

| Lot~ ky B ¥) a
E: =E.e Ah, A
' e k, s te
N Cormnpler WA Ve
Ne Rur ber
eo 6, medivm 2.
el . k, s The
complax wave
(a0 1o o] bev v
A ediven |,
n,
According to Snell's Law
I(\ Sih @l - kz <sin 60
. . y S‘|
or (0(.4—\-‘5,) SN @ = (o2 +0 (3") S Al(1)

‘However, noting that,for air

= O
= € z
Xp = @A » P AL(11) .

: o, = = (LIRS
and, for a conductor \ F| /'Ef: Al(111)

we can express©, as a function of ,, %,, F,, and 9, .

Hencé . ‘ : ‘
o Sin @, = Sin S, [w‘Jf‘°é° - ] AL(1v)

wpuer (+ L)
The condition, for which the displacement current is negligible
is(Wﬁ»“wi and this is satisfied on the land-air and sea-air

boundary. Using this condition in Al(iv)sn'8, is given by

‘2 = S|n* wé,L .’\_

sin?e = s, (weat] ~ g ML(v)
assuming/;«.:/«.

Since the expression for sin'§, is the product of two
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factors, its vanishing can'equally well be the result of SIR*©*0
i.e.§x0. Hence the condition thati%?rhas.the same effeét

as assuming that the wave is propagated almost vertically and

that only horilizontal components of the electric and magnetid

fields exist.

Physically it is possible to see this as follows:
As soon as the wave passes into the conducting medium, the
free charges, lying at random throughout the volume, migrate
to the boundaries and set up an electric field, which is normal
to tﬁe surfaces,f;n. This field oppceses any verticai

component of the field in the conductor, i.e. E,l:E%.

D Ey
E. &
N =
&
 — - — — — — — —  3=0 ne gakwe
chavges
E.
By

e T - SRR PP

chairges
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APPENDIX A2

Fresnel Equations

If we assume an initial wave to be of the form

— — L('wt" Ko -\,\.o 'TF) - A —
E.=E.e X HL=.£.-; Ao v EL A2(1)
W
The transmitted and reflected waves will be of the form
e (wb=K, A T) — —
- [= AN .
D/ Lo Jay
and
= et okl R — ke ¢ &
= = X2 h.x
E\r Ezer 5 HY UJ/Ma, ¢ E‘( | A2(1ii)

The only unknown functions are ¢, and C, for E-polarization

and G,and &,for H-polarization where (,Cz, @ and G, are defined

by i = -é'- =
and | T;T= G'T—T; 5 | H?. = GZHO‘

'at the boundary

x (BB =0xEl and ax(Fh4FD-4.0

E-polarization

For E-polarization le

L
\
0

therefore E° + E 2 = E'
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and cos 8o B — cose E. )1/»7, o, E

/"’\kz
from equationA2(iv). Noting that
) ' ‘4'—1
0.= 0, and k o> ®, = Jk* = kTsin'O,
we find
B = zprkieme, - E.
/‘-akv—wee -Q-/M /lk‘-‘("snne
and

'—Eb?- = /V‘llr cos ®, e »n’k. — [¢;3m3e, ——EJSQ

| AN kz.m e° +/k3'/‘{7<‘7'— k:-s:nte‘o
"and hence the value of C; and szay be obtained. It will be

noticed that k, is complexfbut k.is real.

H-polarization

D

For H-polarization 'ﬁ- H =0

L e

and in this case Qe He = ﬁ-‘q= R l'-T; =0

Noting that: E.= '%‘ H - E|= -wkg’c Q‘TQH'
: [}
and —-_Qj_';_z ﬁ'z* o

Ka

it is found that ’
tos © H. — cosO, H?. '/‘N ‘<Z SoplS H and H°+Hz=H,
from equation A2(iv), and hence solving for H and sze find,
H|.___ 2—,/*2.‘<\2"°'>eo -— ‘:("
Mk mee-r-/«.kzﬂ"—-k;s«w S, °
and Hz = /"‘"k‘y oSS, — /A kaKt’-~ k¥ sin?e, —\_T
Aak® cos@. + ke (k> — Kt S 8, °
and hence the value of (3, and (,can be obtained.
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APPENDIX A3

Proof of div _§=O

(1) In the case of K -polarization the electric field has

only one non-zero component, E,c, and so,

div E = 2E~

<

which is zero because E_ is independent of x

(2) In the case of H-polarization the electric field has two
non-vanishing components EJ and E‘?’ which are connected with

H. as follows ‘
B_‘j_x - (Q—+Lw€:> Ey

But OB = g_l_—:_-"y + 2E5

ﬁ\em(love V.?:O
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APPENDIX A4

values of Y and O functions for G(W)

, ——‘_ d':.h H|
e oo =B 1 St i

then replacing H by the value of &, (w

W, o f {H +@bCo) H\.,}C/L %Z ]

If \‘&'..I<l the series is convergent and the summation can be
simply expressed. If it is divergent (i.e. ‘%L\ )‘ ) then
|

no solution can be found.
2 - 4 Tz 7'-4— Wm, ST L
Now é‘ = UO//\\ ST an ~ - % /“l |

= I
so that 8 = —7—' . Therefore for allgL o0 the series is

2n 2 =z
:i?ir’é%% = :?l 2 - \J;
\71 \7| ‘Fl . %

convergent and
)-1 -

Y, (9 =J§ 5 Hot (quo-Ho e’M_\?_z]

similarly | ﬁ
Yatyd f & [ Hat -Hg»)efs’*‘\vz
nP Lo /\F §— {E.o + ({-E e"%‘h \oz]

. 5
SRR [E 5 (Ea (feo-Edefe %_75,]

therefore
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APPENDIX A5

Solution of the Equations in General: F{-polarization

A solution of the general case, when X K< will
only be tentatively suggested and left in general terms,
whereas the case for x=90° has been worked out .in reasonable
detail and conclusions caﬂ be drawn from this case about the

type of field found in the general case.

The general equations differs from the case of

®=90°, because in addition to the second differentials with

‘respect to the Y and the 2 co-ordinates it has a cross-product

- term, This leads to difflculties in the solution of the

partial differential equation. If the Laplace transform
is used then two unknown functions result, which both need to
be calculated.

P4vo
l

1 (= = g T i Aﬁ ‘P("Deﬁ dx A5(1)

-t
1s defined as the Laplace transform with its inverse, then
applying it to the general equation (16), for¥ﬂ-golarization,
it is found that

420x - 2(cos ) <LE><+ &= Lotsine) Hy = amzHMaH,‘ H
FrZ 57 a¥ " 9

or, writing \3"=5|'1' Fz'sh"z"‘ " and H’,‘\ :-'6 (“O,

=)

2:p
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E{:__Hx —ZgoosxfiEX +\7"'ﬁx =2-6°3"-a-§(-'®+'§ Gt Y>+ n
d v Ay 27 22}, _, A5(11)

This equation is an ordinary differential equation in ﬁ) »

and, placing

ULY) = 2emn 23_<=q‘:“ﬁ+g GLY) +[%—E“]Z__o A5 (111)

we find QL_Z_E‘R - 2z dean-(k +Q"px = UCY)

4 ¥*
A solution of this equation would be
— (G+8)Y (6-E) Y
H,‘ = \_<_z e + NI e -\-\/(V) A5(iv)
. ! . ‘ 7 ‘
where Y, = % ¢coon and f. = S\ “'\[ ur;‘—q’- A5(v)

Setting S' :o.+Ll> we get,

S . _ (s afgmana
<\ ¢ [z(ﬁz+mj*' + [2 7 }

Hence, when Rg & | , Assuming that V(Y 1is finite at
[.Y

Y= 400 , the boundary condition H(v) can be applied to show
that K,=0 . The condition Re§s| 1s §z< hisiwmF« , so that
Nl < coox

% tends to a minimum value (zero) as K tends to zero,. and

%‘ tends to a maximum value (infinity) as & tends to 90°.
When € has a value outside this limit, Lee. g% sti'hlx then

Rcos ™
the problem becomes much more complicated. There will be two

choices ldepending upon the functlon k\ (q) . Either K‘ =K =0
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or nelther Kl nor E} are zero, the condition as Y tends .to
infinity being satlisfied by the subtraction of two infinitiles |
to produpe a finipe number, An intellegent guess might be

- that both & and E; are zero but 1t can only be a guess}
A‘theory will be developéd assuming that Eg_at least is

zero inside the ddmain ﬁ}ki Qifﬂi% and a tentative approach

2.¢o>
to the problem will be given \Kﬁ§ will always be given by:

n
\/(Y)— E [zqw’*-— +QL U(_Y)(D
‘( \)r.m
which 1s the particular 1ntegra1 of the differential
equation, assuming that(ijcan be expressed as a Fourier series

and that there are no singularities,

The values of K, and Ka ; can be computed by
applying boundary conditions H(ii)

\_{\ = %Tﬁ>“\/| (o) \_<_3 = 5})7?9 Ve ted A5(vi)

and applying H(iii)

5 = o Vo (6,78 +7 Vo (D (§a+ X)) - v\fgest\/za

A5(vii)
T (&+¥) +T (§,-x)

It 1s appgrent that the integral differential
equation has been expressed as a function of U(Y) . ()(%9,
in turn, 1s a function of the magnetic‘field on'the sﬁrface
Z=0. But the value on 2=0 cannot be placed in the function
OU(Y) until the partial derivative dHx has been computed.
Hence, although UQ§ i1s only a fungiion of Y and has been

calculated along Z2=0 , two seperate uncalculated functions

appear inkbﬁ. The function G(Y) can be defined by the
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following condltions:

G(‘@:G.Hg , V= 1-.00

GLY)=GzHo |, Ya -0

Livn L 26GL

4 Lim L 26D _
- 'H-;en-—o) T3 2 Y Y s+ T 2Y
and lastly Lim GL(Y) = l._nm & (V> % (0,9

The function %‘H,&YZ} ois not nearly so easy to
define; it appears that it can only be calculated after the
values of Fﬂ and ¥43have been computed, Which indicates that
a second alternative solution of the partlial differential
equation is necessary before a complete‘solution of this

case, using this method, can be found.
E?-polarization

The relevant equation is
t T ¢
EY% a\(az Y e
which can be "solved" in the same way as the partial differential
equation for l4-polarization using the Laplace transform and

inversion.

The partial differentials can be converted to ordinary

differentials to obtain the equation
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oEEx - zgcauotoi_%" +\’7"Ex = T( Y) A5(viii)
dv* |

where V™= ‘iz’fg%:”?& and
T(Y) = {2@&360}) +z]'((\’)+ aaii(z . A5 (1ix)

The solutlion of this differentlial equation is the same

as before, i.e.

. . Y
Lé\(‘*g\“’_\_ 3

E = + SV

K A5(x)

where §, = § ¢o>8  an e, = Sin D(,J-T,—Z_::’I‘—’-
and (,‘l’ =1 . A5(xi)
SN = Z ('zq “57{ ]T’(Y) L)

\)'I.V\.
h=p
Once again applying condition E(v) makes K,=0 if ﬁ
in the correct domain, The evaluation of k and Ks is

obtained ty applying the boundary conditions E(ii) and

then E(i1ii).

K=FG -S at K- F@-S, (@

Application of E(i1i) gives the value of‘z{ () as

%"> L S (5,-%) +S3 (9 B3 +%) + 5 (H~S3 ()
B s + &

when =¥z .

Once more the solwtion of the integral, differential

equation is dependent on the ‘value of CW){and %—E"L . The
=0

value (or function) represented by ((V) may, be expressed

by a series of limiting conditions in the same way as GU‘) s
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1.e. (W=CGE. , Y=+

vCUé-’-CgEo, Y=—°0

L 2000 _ Lim 200
Yo(-» Y T>e DY

and L..\m - L—‘l CU() = <°) O)
) cw ‘\’—;24\'03 é

However the problem of defining the value of;%sz
2

still remains essentlally unsolvable unless a subsiduary el

solution 18 added,.
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