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ABSTRACT 

Interest In the v e r t i c a l f a u l t problem f o r e l e c t r o 

magnetic f i e l d s has been recently revived by the papers of 

I. d ' E r c e v i l l e and G. Kunetz (1962) and D. Rankin ( 1 9 6 2 ) . 

In the derivation of h i s equations Rankin used d ' E r c e v i l l e 1 s 

theory which contains some f a l l a c i o u s assumptions. These 

have been pointed out by J.T. Weaver (1962) and also i n t h i s 

t h e s i s . 

This thesis follows the l i n e s of mathematical 

attack f i r s t employed by d ' E r c e v i l l e and Kunetz, and l a t e r 

developed by Weaver, i n applying the theory of i n t e g r a l 

transforms to the p a r t i a l d i f f e r e n t i a l equations s a t i s f i e d by 

land and sea conductors. The problem of both a v e r t i c a l 

f a u l t and also a sloping f a u l t , i . e . 0 <(u ( 90° where PC i s 

the angle of dip of the f a u l t are considered. 

The r e s u l t s i n the general case are Inconclusive, 

no solution has been found and no solution i s suggested. 

The case of ̂  = 90° has proved to be equally indeterminate, 

but a solution has been suggested, which, although i t has 

not been proved rigourously, does not appear to vi o l a t e any 

physical p r i n c i p l e s and also seems to represent the f i e l d 

equations on the surface of the land and the sea. 
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1. 

INTRODUCTION 

Interest i n the v e r t i c a l f a u l t d i s c o n t i n u i t y problem 

has been recently stimulated by the papers of I. d ' E r c e v i l l e 

and G. Kunetz (1962) and D. Rankin (1962). The present work 

i s an extension of a paper by J.T. Weaver (1963) who was 

looking f o r a t h e o r e t i c a l explanation of an anomalously high 

v e r t i c a l magnetic component of geomagnetic micropulsations 

found at a land-sea contact. In 1961 D.A. C h r i s t o f f e l , 

J.A. Jacobs and J.A. Shand published a paper comparing the 

r a t i o s of the v e r t i c a l to the horizontal components of the 

magnetic f i e l d s at V i c t o r i a , B.C., which can be considered 

to be situated at a land-sea contact at the edge of the 

P a c i f i c , and Ralston, which i s i n the Southern part of the 

pl a i n s of Alberta and thus i s removed from a land-sea con

t a c t . The r e s u l t s showed that there was a d e f i n i t e v e r t i c a l 

anomaly i n the magnitude of the geomagnetic amplitudes i n 

the micropulsation range (0.001 cps to 3.0 cps) at a land-

sea contact. This contradicts an assumption used by 

d ' E r c e v i l l e i n h i s t h e o r e t i c a l treatment of the problem. 

In t h i s thesis the i n i t i a l electromagnetic f i e l d 

i s assumed to be v e r t i c a l l y incident. Even though t h i s 

approximation i s not exact, i t i s found (see Appendix 1) 

that i t i s equivalent to the condition that the displacement 

current i s n e g l i g i b l e i n Maxwell's equations, i . e . that 

Î H » I coe/ . As a re s u l t , the angle that the plane of 
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incidence makes with the d i s c o n t i n u i t y i s a r b i t r a r y and hence 

i t has been assumed to be at r i g h t angles to the d i s c o n t i n u i t y . 

This permits simplifying assumptions to be made and the 

problem becomes two dimensional. 

The d i f f i c u l t i e s a r i s i n g from variat i o n s of con

d u c t i v i t y with depth have been circumvented by assuming that 

the conductivity does not vary f o r depths l e s s than 200 km. 

and that the electromagnetic f i e l d has been "completely" 

attenuated at that depth, i . e . f o r t h e o r e t i c a l purposes a 

depth of 200 km. can be regarded as the depth to i n f i n i t y . 

Neither land nor sea have been assumed to be perfect con

ductors (although both may be considered so when compared 

with a i r ) . 
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INDUCTION EQUATIONS 

For the general case the coordinate axes 0 (X, Y, z) 

have been chosen with the X-axis along the di s c o n t i n u i t y 

junction of land, sea and a i r , the Y axis along the sea-air 

contact, and the z axis along the land-sea contact. In the 

case of a v e r t i c a l d i s c o n t i n u i t y ( &< = 9 0 ° ) , the axes are 

rectangular and are-renamed 0 (x, y, z ) . Thus GX and Ox 

are i d e n t i c a l as are 0Y and Oy (see Figure 1 ) . 

FIGURE 1 Co-ordinate systems at a land-sea-air contact. 

It i s assumed that the incident electromagnetic 

f i e l d i s a wave of the form 

H L = H o e 
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where: 

H a = the constant, f i n i t e amplitude of the magnetic 

f i e l d 

ka= the wave number i n a i r 

i . e . l<i - ^W/^o^o' where and & 0 are 
the permeability and p e r m i t t i v i t y i n a i r 

A 

h-e= the unit vector i n the d i r e c t i o n of pro

pagation 

and CO = the frequency 

Upon s t r i k i n g the land-sea conductor the magnetic 

f i e l d i s " s p l i t up" into two parts, the r e f l e c t e d and trans

mitted f i e l d s . Both these f i e l d s are assumed to vary as 

follows 

L tut 

Hence i n the atmosphere the f i e l d i s given by 

TT= TTL + hT. = elofc"[ H. e ^ + i t - ^ t f ] 

A si m i l a r set of equations holds f o r the e l e c t r i c 

f i e l d , assuming 
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I t i s possible to simplify Maxwell's equations i n 

a homogeneous, i s o t r o p i c medium. 

(a) V % hT= i + (b) V x t = - | 5 (1) 

(a) ^7»H = 0 (b) V-E = (2) 

I f the f i e l d s are varying i n a purely periodic manner then 

f o r the two dimensional case, equation 2(b) i s found to be 

automatically equal to zero, i . e . 

(3) 

The proof of t h i s i s given i n Appendix A3. 

the r a t i o 

Within the conductors i t i s necessary to consider 
J L L 

, which i s found to be much greater than 
unity. Table I gives the value of t h i s r a t i o f o r land and 

sea respectively: 

Table I 

Medium Conductivity; 

mho/m 

sea 

land 10~5-10-6 

D i e l e c t r i c 
c o n s t a n t ^ 
Parad/m 

Frequency 

cps 

80xl0- 1 0 3 

3xl0~ 1 0-4xl0- 1 0 3 

1 0 + i o 

10+* 
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Hence i t i s p o s s i b l e i n both cases' to assume t h a t d i s p l a c e 

ment c u r r e n t s may be n e g l e c t e d i n the conductors, i . e . t h a t 

i n both l a n d and sea. However there i s no J u s t i f i c a t i o n i n 

i g n o r i n g the displacement c u r r e n t i n an uncharged atmosphere. 

Such a j u s t i f i c a t i o n i s o n l y p o s s i b l e a f t e r a s o l u t i o n of 

the e l e c t r i c and magnetic f i e l d has been o b t a i n e d . F u r t h e r 

i f we t r e a t the f i e l d s as p u r e l y e l e c t r o s t a t i c or magneto-

s t a t i c then t h e r e i s no j u s t i f i c a t i o n f o r u s i n g Maxwell's 

equations to f i n d the remaining f i e l d . Thus assuming 

y * H = o ( f o r a magnetostatic f i e l d ) , we cannot use 

7̂x H~ - - . to f i n d the e l e c t r i c f i e l d . T h i s p o i n t 

has been d e a l t with more f u l l y i n Dr.. A. N i s h i d a ' s Ph.D. 

T h e s i s ( 1 9 6 2 ) . Hence i n the n e u t r a l atmosphere 

(a) V * H " = } f ( b ) \ 7 ^ = - | ! ( 5 ) 

T h e r e f o r e u s i n g equations (1) - (4) i t i s p o s s i b l e 

to express the magnetic and e l e c t r i c f i e l d s as d i f f u s i o n 

equations f o r the case when Cx. = 9 0 ° , i . e . 

I f we s u b s t i t u t e rj*= f ^ q - t o (6) 

then the equations to be s o l v e d i n each conductor are 

- ^ { 7 ( a ) ) 
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and ^ 
^ " H - u ^ H . ( 7 ( D )) 

In the atmosphere the equations to be solved can be derived 

i n a sim i l a r manner and are 

(a) \7'2E" = 7^eco^E' and (b) ^ H ^ A ^ H (8) 

Because of the two dimensional nature of the model a l l f i e l d 

vectors are independent of x and we can f i n d two solutions of 

equations (7), one f o r E"-polarization and another f o r 

H - p o l a r i z a t i o n . In both cases the polarized f i e l d vectors 

are directed along the x-axis. Hence f o r H - p o l a r i z a t i o n 

and f o r ET-polarization 

These two cases are completely independent of each other and 

the solution of the d i f f u s i o n equations w i l l be obtained f o r 

each case separately. 

For the case of H - p o l a r i z a t i o n the equation to 

be solved f o r z>0 i s 

• — _ h r u ^ = ^ o 6 ( i i) 
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and for ET -polarization the equation i s 

(12) 

So f a r no mention has been made of the d i f f u s i o n 

e q u a t i o n when 9 0 ° > > 0 ° « F o r the cases of £ - and 

H - p o l a r i z a t i o n they may be ob t a i n e d from e q u a t i o n s (11) 

and (12) u s i n g the equations of t r a n s f o r m a t i o n f o r the two 

co o r d i n a t e systems 0 (X, Y, Z) and G (x, y, z) v i z . 

^ =• y + 2 

See F i g u r e I I . 

( 1 3 ) or V = ^ "* \ cĉ tr&c (14) 

FIGURE I I Diagram showing the t r a n s f o r m a t i o n from one 

c o - o r d i n a t e system t o another. 
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Therefore 

and 

(15) 

and hence 

Therefore equations (11) and (12) may be written 

(16) 

where F i s equal to ei t h e r E=x or Hat. 

The value of the transmitted magnetic f i e l d across 

z=0 can be expressed as a function of only, say ^ | 6 p , 

and time, "t , f o r H-polarization and the value of the trans

mitted e l e c t r i c f i e l d can be expressed as another function of 

^ f o r E - p o l a r i z a t i o n , say Ci<£ and time, "b . Hence 

assuming solutions of equations ( 8 ) to be of the form 

and ir\u2& 
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we can express the component i n a i r (omitting the term 

2 as before) as 

The condition which must be s a t i s f i e d f o r a solution of (8) 

i s therefore 

(17) 

i.e. n = J / A f r ^ - m*-' f o r 

and n = LjrY^-jxe^1' f o r w ĵ TT"1 < I M l 
(18) 

The general expression f o r the r e f l e c t e d wave can be 

expressed by 

J-00 
(19) 

where "h, i s given by (18). 

Since H 

where the subscript 2 refers to air, at z=0 for H -polar
ization the tangential component of the magnetic field is 
continuous across the land-sea conductor i.e. 

(20) 

where h. is the unit vector normal to the surface. 
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or ; o n 7j -° 

For H - p o l a r i z a t i o n 

Applying a Fourier transform, we can express the function 

AC*™) as a function of , v i z . 

—PO 

Since 
+ 00 v 

where i s the Dirac delta function, 

Aim) s^£7 )̂e~^^ " H° ̂ (VVV4-̂  (21) 

v/ — oo 

Hence knowing the function by solving equations (11) 

and (12) i t i s possible to express the magnetic and e l e c t r i c 

f i e l d i n the a i r . A similar function defined by St^) can 

be obtained f o r E - p o l a r i z a t i o n . The proof follows s i m i l a r 

l i n e s , and i t can e a s i l y be shown that 

00 (22) 
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where C(^}ls the value of the transmitted e l e c t r i c f i e l d , 

which corresponds to GjC^)> on z=0. Hence 

B ^ e * ( 2 3 ) 

i s the e l e c t r i c f i e l d i n the atmosphere ( z < 0 ) . 

For H - p o l a r i z a t i o n , the e l e c t r i c f i e l d i n the 
atmosphere i s given by: 

Ex = o EL - 1 IH* ̂  c = i ihf^ oc.r 

and f o r EE" - p o l a r i z a t i o n , the magnetic f i e l d i n the atmo

sphere i s given by: 

H x - S Hw«i-i^ x and Ha* I l l ^ E * (25) 

Equations ( 9 ) , ( 1 0 ) , (24) and (25) may be general

ized f o r the case of 0 < 90° by applying equations ( 1 5 ) . 

(24) 
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PHYSICAL INTERPRETATIONS 

When an e l e c t r o m a g n e t i c wave meets a change i n con

d u c t i v i t y (e.g. at an a i r - s e a c o n t a c t ) the i n c i d e n t wave i s 

propagated through the new co n d u c t i n g medium wit h a v e l o c i t y 

of ^2=J£_ where ^JL and T* are the p e r m e a b i l i t y and con

d u c t i v i t y of the medium. 

Us i n g Maxwell's equations the magnetic and e l e c t r i c 

f i e l d s can be expressed i n the f o l l o w i n g manner: 

V ^ a H = ( I > ^ - G ) H 

and V * " E T S (.1 wyl^cr - u i * ^ e ) £ " 

However so t h a t these equations can be approximated 

by equations (7). The e f f e c t of t h i s on any p h y s i c a l i n t e r 

p r e t a t i o n i s to h e a v i l y damp the e l e c t r o m a g n e t i c wave i n the 

conductive medium and to permit the c u r r e n t d e n s i t y to take 

a f i n i t e time to b u i l d up, which r e s u l t s i n the d i f f u s i o n 

phenomenon d e s c r i b e d by equations (7). 

The d e s c r i p t i o n of the e l e c t r i c and magnetic 

f i e l d s a s s o c i a t e d w i t h the c u r r e n t d e n s i t i e s can be found 

from the v e c t o r p o t e n t i a l 
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Since 

and V * H afjr + l ^ E 

i f the gradient of the scalar p o t e n t i a l of the e l e c t r o s t a t i c 

f i e l d i s small compared with -^-^ . Hence i f we take a 

"wedge" of sea, or to simplify i t , take the case when the 

angle tx? = 90° then i t can be seen that f o r v e r t i c a l pro

pagation a current system i s set up, decaying exponentially 

with depth (z). This current system radiates waves i n a l l 

directi o n s , both i n the y - d i r e c t i o n and i n the negative 

z-direction ( r e f l e c t e d ray). The rad i a t i o n i n the y - d i r e c t i o n 

i s not part of the r e f l e c t e d ray but i s referred.to as a 

d i f f r a c t i o n term. The d i r e c t i o n of the magnetic f i e l d i s 

given i n Figure I I I , assuming that the e l e c t r i c f i e l d i n 

the conductor i s directed along the x-axis. I t w i l l be 

noticed that i n t h i s case ( i . e . £T - p o l a r i z a t i o n ) , the 

magnetic f i e l d at the v e r t i c a l boundary has become v e r t i c a l . 

For the case of H - p o l a r i z a t i o n the corresponding e l e c t r i c 

f i e l d becomes v e r t i c a l . The problem now arises of what 

happens when two conductors are placed side by side. If 

the angle °C i s s t i l l assumed to be 90° then the magnetic 

f i e l d f o r each.conductor, separated as i n Figure IV, i s 

generated i n the same manner as before but now there i s a 

mutual induction f i e l d near y=0, which tends to oppose the 

ex i s t i n g e l e c t r i c f i e l d i n both conducting media. Upon 

joi n i n g the two conductors on the plane y=0 then there i s an 
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\ I 
H diffracted | | 

H reflected 

j , = O J E , , out of the paper 

o o o o o o o o o o o 
0 

o 
0 

0 

o 

FIGURE III Magnetic f i e l d generated from an e l e c t r i c 

f i e l d i n a right angled conductor. 

H r3 H ri 

medium 3 9 

% H Z r 

\ 1 1 

i - J 
H 

H Z 3 

® ® ® ® <g> 

medium I 

E into the 
paper 

FIGURE IV Magnetic f i e l d s generated from e l e c t r i c f i e l d s 

i n two right angled conductors; > ̂  so that 

the v e r t i c a l magnetic f i e l d , Ĥ. , at the d i s 

continuity i s directed upwards. 
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e l e c t r i c f i e l d d i s c o n t i n u i t y between Eg and E| and hence 

there i s a d i f f u s i o n of e l e c t r i c f i e l d i n the y-d i r e c t i o n , 

i n the same manner as the transmitted e l e c t r i c f i e l d 

d i f f uses, u n t i l the value of the e l e c t r i c f i e l d reaches a 

common value on y=0. 

The difference i n current density gives r i s e to an 

anomalous v e r t i c a l component of the magnetic f i e l d , \r\^ . 

There are three cases to consider: 

1) ^-3 ^ \i when i s downwards at the discon

t i n u i t y junction. 

2) | 4

 B [ i i n which case the two media are i d e n t i c a l 

(and therefore there i s no conductivity discontinuity) 

3) j. i " N \ i when i s upwards (see Figure IV). 

Rather than t r y to compute the d i f f u s i o n of the e l e c t r i c 

f i e l d from f i r s t p r i n c i p l e s , a reasonable guess i s made. 

In much the same way as the e l e c t r i c f i e l d i s attenuated 

with depth, f o r E - p o l a r i z a t i o n , the d i f f u s i o n of the 

e l e c t r i c f i e l d can be considered to be "attenuated" by the 

same terms. Hence the value of the e l e c t r i c f i e l d s i n 

media 1 and 3 may be given by: 

tt - r.. ( I - e * » > + ^ e?>\ ^ « 0 , r o (26) 

f, - (. - e-«). t £ * ^ o « o , 3 . 0 (2 7> 



where 1^1^) i s the value of the e l e c t r i c f i e l d on y=0, E*i0 

i s the value of E, at y= +• «> > £ 3 o i s the value of E 3 at 

y= - oo and &> = J u.uoa~ I i n media 1 and 3. I t i s thus 

related to the skin depth / . 

The same idea may be applied to the case of H -

p o l a r i z a t i o n and a si m i l a r d i f f u s i o n of H*. found to e x i s t 

i n the form 

K - f t 0 -e *») + f ^ e M ; ŝ< o, v . 0 ( 2 8 ) 

rT - -e^ + ^ ^ > vj >o, -j s o ( 2 9 ) 

The rather a r b i t r a r y choice of E and H o n z = 0 

may seem u n j u s t i f i e d at t h i s stage but i t w i l l be found that 

a function of t h i s type i s needed l a t e r i n t h i s thesis, even 

i f i t represents a crude approximation to the true case. 

Summarizing, f o r the case of ^ - p o l a r i z a t i o n 

three f i e l d s e x i s t : W^, and . The f i e l d s Hx and 

appear to be continuous functions with continuous f i r s t 

d erivatives each approaching constant and known values at 

±°o but the value of appears to have a d i s t r i b u t i o n 

with a maximum (cusp) value at y=0 and tending to zero at 
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When considering the case of a wedge there i s also 

a transmitted term to be added to the d i f f u s i o n of an 

e l e c t r i c f i e l d which flows across the land-sea contact. 

As the angle 0<. approaches zero i t i s found that there i s 

less and l e s s d i f f u s i o n because of the difference i n e l e c t r i c 

f i e l d i n t e n s i t i e s i n the two media and more propagation of 

current as a simple transmitted and r e f l e c t e d ray problem. 

Hence i n the l i m i t i n g case of horizontal layers (L. Cagniard 

(1953), A.T. Price (1962)) there i s only a problem of trans

mission and r e f l e c t i o n with no d i f f u s i o n due to a difference 

i n e l e c t r i c f i e l d i n t e n s i t y . 
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BOUNDARY CONDITIONS 

A s o l u t i o n of Maxwell's equations i s g i v e n by the 

P r e s n e l equations at y= ± oo f o r the a i r - l a n d , a i r - s e a 

c o n t a c t s . I f i t i s assumed t h a t the i n i t i a l wave i s of 

the form: ^ -±- - ) I I £ v p. 

then the t r a n s m i t t e d and r e f l e c t e d waves w i l l be of the 

form: 

and ' _^ 

u - r - z J IQJL+X. 

F o r E" - p o l a r i z a t i o n £ , = C , E o a n d P C 2 E o 

F o r M - p o l a r i z a t i o n H , — £), H « and 

where Ct>Cz, (q, and <^ja are known c o n s t a n t s f o r the a i r -

sea, a i r - l a n d boundary (see Appendix 2 ) . Hence the magnetic 

and e l e c t r i c f i e l d can be c a l c u l a t e d at y=±«o f o r both 

H - p o l a r i z a t i o n and E T - p o l a r i z a t i o n . 

At any boundary, 

^ ( f L + f r ) = ^ E b and K x C H t t Hv}*h)JTt. (30) 
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FIGURE V I n c i d e n t , t r a n s m i t t e d and r e f l e c t e d rays at 

a boundary. 

F o r H - p o l a r i z a t i o n these equations g i v e : 

where Hfct^) i s the magnetic f i e l d i n s i d e the conductor. 

L e t us c a l l t h i s f u n c t i o n on z= 0 ^ - j t ^ i n l a n d , (^iCt^jin 

sea and £|'6^ i n g e n e r a l . A s i m i l a r case e x i s t s f o r 

E - p o l a r i z a t i o n , 

L e t the t r a n s m i t t e d e l e c t r i c f i e l d on z= 0 In l a n d be c a l l e d 

and In sea C , a n d C(i^), i n g e n e r a l . 

In the p r e v i o u s s e c t i o n an i n t e l l i g e n t guess was 

made of the v a l u e s of G,t^ ,(=>3t^, C^h and C5C^) but no use 
w i l l be made of t h i s u n t i l i t i s necessary. 
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At the land-sea c o n t a c t f o r H - p o l a r i z a t i o n the 

t a n g e n t i a l component of the e l e c t r i c f i e l d i s continuous, 

i . e . Ei£ i s continuous. 

FIGURE VI General f i e l d v e c t o r i n n o n r e c t a n g u l a r 

c o - o r d i n a t e s . 

Er? «(Cw!7>tC0<) E y 

and 

so t h a t E , - J - O b * - LH-^.11H* S_1 i H 
Y 

T h e r e f o r e E" 2 = - CJHx^C & b H x 

and J - 3 H g , _ X 

F o r E - p o l a r i z a t i o n the t a n g e n t i a l component of the magnetic 

f i e l d i s continuous and a s i m i l a r set of equations r e s u l t s . 
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Hence the boundary c o n d i t i o n s required to solve 
Maxwell's equations are, for (-(-polarization: 

H(i) The transmitted magnetic field, ̂»̂=the magnetic 
field in the air on the boundary plane 2?= o,-a><\ 

H(li) H = H3~<^Z)on V=0. 

H(iii) Etangential i s continuous, i.e. 
J_lb3= J . < L b i on v = o 

H(iv) HnHsi iti' ̂ Jds, 3H, and "b H 3 all tend to zero as Z — * > - + » o ~ 

H(v) H,.= Ho, V*+«o and Ĥ - ̂M0)V«-°̂ which are all known, constant and finite. 
F o r E"-polarization the boundary conditions are: 

E(i) The transmitted electric field CCT)55the electric 
field in the air o n Z = 0 ( - o o < ^ < + o o . 

E(ii) E3= E.s^Z) on Y = £ 
E(iii) = ̂  E' on V - o 
E(iv) E*|4 E3.,dEi ^Si and LEa all tend to 

zero as Z —* M ( <* o ) . 
E(v) E i - ^ E o , V'-*»-foo and E 3 = £ 3 E O J V- -oê  which are 

all known, constant and finite. 
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It w i l l be noted that i n the case (X= 9 0 ° Y-

and 2=^. and the boundary conditions s t i l l hold true. 
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BOUNDARY CONDITIONS PGR 0<= 90° 

The boundary c o n d i t i o n s f o r the g e n e r a l case have 

a l r e a d y been enumerated. These c o n d i t i o n s w i l l now be 

adapted t o the case <X =90° . In a d d i t i o n the boundary con

d i t i o n s a c r o s s the land-sea and a i r c o n t a c t w i l l be g i v e n so 

that the v a l u e s of G\0g and Ci^) can be computed knowing 

the form of the e l e c t r i c and magnetic f i e l d s I n the a i r and 

i n the land^-sea conductors and eq u a t i n g them on the 

boundary z=0. 

F o r H - p o l a r i z a t i o n : 

H ( i ) The t r a n s m i t t e d magnetic f i e l d e q u a l s the t o t a l 

magnetic f i e l d i n the a i r which has the value 

on the boundary plane ^ — 0 , — o0<u^<+oo. 

H ( i i ) H, ^ H3= o n 1 • 

H ( i i i ) The t a n g e n t i a l component of the e l e c t r i c f i e l d 

i s continuous, I.e. 

- L l b s * _L £H 
^ 3 a ^ ^7 b% 

i on ^s-o. 

H ( i v ) H ( > H 3 ; 3H|, 3 f c l s • J i j , and ^ t ) 3 a l l tend 

to zero as z tends t o i n f i n i t y . 

H(v) H , = - <̂ )» H o ^ f o r y equal t o -f oe and 

H 3 - ^3 Ho £ f o r y equal to - 00 , where 

the v a l u e s of C-j, and <£5 are known, constant and 

f i n i t e . 
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H(vl) The r e f l e c t e d wave i n a i r i s propagated upwards, 

i n the negative d i r e c t i o n . 

H ( v i i ) The tangential components of the e l e c t r i c f i e l d 

are continuous across the land-sea and a i r 

contact, i . e . 

For E T-polarization: 

E ( i ) The transmitted e l e c t r i c f i e l d equals the t o t a l 

e l e c t r i c f i e l d i n the a i r which has the value 

Ct^> on the boundary plane -̂ =- O ̂  — oo <<^< + oo. 

E ( i i ) E S = E > ^ C ^ on 

E ( i i i ) The tangential components of the magnetic f i e l d 

are equal on the land-sea interface, i . e . 

$£•1 - 3 _ E J on u. s e> . 

E ( i v ) Eo E3J <L§3> <LE/ and 3__E5 all tend 
^ ^ ^ 3 U 

to zero as z tends to i n f i n i t y . 0 

E(v) E(
 = C, E0 f o r y equal to -t- <*> and 

3 - ̂ -3 c- ° ̂  f o r y equal to - co , where 

the values of C, and C 3 are known, constant and 

f i n i t e . 
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E ( v i ) The r e f l e c t e d wave i n the a i r i s propagated 

upwards, i n the n e g a t i v e d i r e c t i o n . 

E ( v i i ) The t a n g e n t i a l components of the magnetic f i e l d 

are continuous a c r o s s the l a n d - s e a and a i r 

c o n t a c t , i . e . 

The c o n t i n u i t y of the v e r t i c a l components of the magnetic 

f i e l d i s ensured by the c o n d i t i o n of c o n t i n u i t y of the 

e l e c t r i c f i e l d f o r E T - p o l a r i z a t i o n . 

I t i s on the q u e s t i o n of the c o r r e c t boundary con

d i t i o n s t h a t most of the e a r l i e r work has been i n e r r o r . 

I. d ' E r c e v i l l e and G. Kunetz say t h a t to s o l v e the case of 

E - p o l a r i z a t i o n one must assume t h a t at the s u r f a c e i s 

not dependent on i ^ , which amounts to assuming t h a t the 

v e r t i c a l component of the magnetic f i e l d i s zero on the 

s u r f a c e . The f a l l a c y of t h i s assumption has, a l r e a d y been 

p o i n t e d out i n the " I n t r o d u c t i o n " to t h i s t h e s i s . D. Rankin, 

f o l l o w i n g the above authors assumes t h a t , f o r the case of 

H - p o l a r i z a t i o n , the v e r t i c a l component of the e l e c t r i c 

f i e l d i s zero on the s u r f a c e . Prom t h i s he concludes t h a t 

I f t h i s were so then the f u n c t i o n would be equal to a 

constant, which i s i n c o r r e c t . Hence Rankin's assumption 
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t h a t the v e r t i c a l component of the e l e c t r i c f i e l d i s zero on 

the s u r f a c e z=0 i s i n c o r r e c t . J.T. Weaver has a l s o made the 

same i n c o r r e c t assumption i n s t a t i n g t h a t on z=0, ^ = O f o r 

H - p o l a r i z a t i o n and g((-f̂  _ r> f o r E" - p o l a r i z a t i o n . 
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SOLUTION OF THE EQUATIONS FOR <X = 90° 

H - p o l a r i z a t i o n 

When c>< = 90° the co-ordinate system i s rectangular 

and the d i f f e r e n t i a l equation to be solved i s thus simpli

f i e d . Equation ( 1 1 ) , v i z . 

has to be s a t i s f i e d with boundary conditions along y=0 and 

z=0. Because of the s i m p l i f i e d d i f f e r e n t i a l equation i t i s 

possible to use a Fourier sine transform (see Appendix A5 

f o r the general case). A Fourier cosine transform could 

also be used but i t would be necessary to e s t a b l i s h the 

boundary conditions i n a s l i g h t l y more complicated manner. 

The Fourier sine transform, with i t s inverse, can be 

expressed as follows 

Application of the Fourier sine transform to the d i f f e r e n t i a l 

equation gives the following r e s u l t s : 

and 



29. 

and 

^ a ^ l + where f'*1*}*'- ( 5 3 ) 

I f we now l e t H* t fy6) = £?(^) i t can be seen that there i s 

only one unknown function whereas f o r the general case there 

are two (see Appendix A 5 ) . 

The solution of t h i s d i f f e r e n t i a l equation can be 

expressed as follows: 

H 3=r fJCKi^ + V s ^ ^ K ^ ( 5 4(b)) 

where 

^ = ffi - * Co-) } K ( = ̂  6a) ( 5 5 ) 

^ | cl̂ hQ( 
$ * z ( 5 6 ) 

and -J^) = y, ̂ ^ 1=0 t N>3 T> +<T3^/Co) - ^ 1̂ 1°) ( 5 7 ) 
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E - p o l a r i z a t i o n 

Similar solutions ex i s t f o r the case of £ -polar

i z a t i o n . No proof w i l l be given but the r e s u l t s w i l l be 

stated: 

ML L̂ e'̂  + M ^ ^ > V o ( 5 8 ( a ) ) 

3 '- $ I [K* «** + & (3>1 , "i<» (58(b)) 

where V * a ^ SjJ ^ ( 5 9 ) 

w i t h K)3 = - ( 6 o ) 

a n d ^) * ^, isM+yfa-VsL*) (6l) 

Having obtained the basic formulae f o r the magnetic 

and e l e c t r i c f i e l d s , e x p l i c i t expressions f o r ^ I C Q - ) > ^ ^ C ^ " ) 

and jf-jt-fc) w i l l be obtained. 

The f i r s t approximation i s that ^ a n d ^ a r e 

equal to one constant f o r y^O and to another f o r y ^ 0. 

This i s too simple an assumption, and leads to f a l s e physical 

r e s u l t s ( i . e . a step-function f o r the magnetic and e l e c t r i c 

f i e l d s f o r z=0). The next estimate- would be to apply the 

function noted i n the physical i n t e r p r e t a t i o n with the 

values 



31. 

and 

E,« = C E . 

M 3 o = G 3 Ho 

H,o 

The v a l u e s of the L|̂  's and <J • s can then be c a l c u l a t e d com

p l e t e l y as f o l l o w s . H e a v i s i d e ' s o p e r a t o r formula f o r 

e x p o n e n t i a l s i s 

(61) 

A p p l y i n g t h i s t o and Ct^ and n o t i n g t h a t 

! = at 

then ^ / t ^ , ^ ^ , ^ ,(^) and <f30^ become 

(62) 

(A proof of t h i s i s g i v e n i n Appendix A4). 

(63(a)) 

S i m i l a r l y 

(63(b)) 

(64(a)) 



£W (64(b)) 

The question of the v a l i d i t y of Heaviside's method 

may be raised but the r e s u l t s can be v e r i f i e d by substituting 

equations ( 6 3(a),(b)) and (64(a),(b)) into equations ( 1 1 ) 

( 1 2 ) . 

For the case y=0 

and ^ ^ o ) = ^ t ^ ) ( ^ ^ - H o j 3 o ) 

( 6 5(a)) 

( 6 5(b)) 

( 6 6(a)) 

( 6 6(b)) 

Substituting ( 6 3(a)) into equation ( 5 4(a)) and 

l e t t i n g <y*<p the boundary condition l -U^ f o r c* = 9 0 o i s 

s a t i s f i e d , i . e . 

also 

This shows that the suggested solution i s , at l e a s t , well 

behaved at the l i m i t s I^-*±PO. 
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The unknown function may be found by equating the 

tangential components of the e l e c t r i c f i e l d at ( 0 , 0 , 0 ) . 

i . e . i — ' = -L &Bz on 

3 ^U^pT^ < 67<*» 

Simi l a r l y , 

(67(b)) 

Hence the functions ^ , ( ^ ) ? > a n d a r e 

a l l known and may be computed. 

Values of the e l e c t r i c and magnetic f i e l d may now 

be found by d i r e c t substitution and when one l e t s g-*0 (from 

the p o s i t i v e side) the i n t e g r a l should be equal to ^ C ^ ) f o r 

H - p o l a r i z a t i o n and Cc<£) f o r E - p o l a r i z a t i o n i f the 

a n a l y t i c a l procedures employed are s e l f consistent. Unfor

tunately, even i n the case of t h i s r e l a t i v e l y simple estimate, 

the evaluation of the i n t e g r a l i s extremely complex (due to 

the presence of branch points) and can only be evaluated by 

numerical means. 
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To ensure that Qi^ and Ci^) are the correct 

functions on the surface z=0, i t i s necessary to equate the 

magnetic and e l e c t r i c f i e l d s i n the conducting media to the 

magnetic and e l e c t r i c f i e l d s i n the a i r using the boundary 

conditions H ( i ) , (vi) and ( v i i ) f o r the magnetic f i e l d and 

boundary conditions E ( i ) , (vi) and ( v i i ) f o r the e l e c t r i c 

f i e l d . 

Applying condition H(v l i ) f o r H - p o l a r i z a t i o n i t 

i s found that: 

on z=0 (68) 

The value of I-l, i s given by equation (54(a)), as z tends 

to zero from the pos i t i v e side, and the value of H 2 i s 

given i n part by equation (21-), as z tends to zero from the 

negative side. Therefore: 

y (69) 

- e 

The order of d i f f e r e n t i a t i o n and integration i s i n t e r 

changeable on the right hand side and so i s the order of 

taking the l i m i t and integration. Hence, assuming normal 

incidence: 
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J — so 

where t i i = JyU-e <*>*' , from equation (1?)* and the value of 

i s given by the estimate. Having obtained the value of 

the right hand side of the equation, to prove that the 

estimated value of i s correct, the value of the l e f t 

hand side must be computed and proved to be equal to the 

right hand side. 

= |f[S,(H,.(.-e^)]^^a^ ( 7 0 ) 

which, as ^ tends to i n f i n i t y , gives the boundary condition 

H(v) upon integration but otherwise, i s an i n t e g r a l with a 

branch point. If the i n t e g r a l I i s given by 
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then I = I , + ^ 

where J x = J f j~ W ^ *H ^ ? 

and I • * f * ° P ^ " " ^ H a ^ » f *" 3fa ̂  ~ H.>rP> / f » «Tht* 

This i n t e g r a l can be subdivided into three more int e g r a l s , 

i . e . l e t I a s I * + I k + I* . 

where 
• H t 0 ̂ , H ^ e^' ^ i ^ ( 7 1 ( a ) ) 

and (71(c)) 

These Integrals possess complex branch-points making t h e i r 

mathematical evaluation extremely complicated. I t i s 

suggested that these equations can be better solved on a 

computer and the r e s u l t s plotted on a graph. i f the r e s u l t s 

plotted from the right hand side of the equation f a l l on the 

curve derived from the l e f t hand side then i t may be assumed 

that the estimate s a t i s f i e s a l l boundary conditions and 

d i f f e r e n t i a l equations. 



37. 

The equations f o r E" -p o l a r i z a t i o n , which are 

si m i l a r to H -p o l a r i z a t i o n , are 

^ m M X - * A o ) € M = ~ e ~ ^ J ( 7 ? ) 

and I ~ I s + I u. 

where I 4 i s given by 

2 )e"^"] siyy^eL^ , ^ >• O (73) 

and 

. x Jo L (N, + S ^ J 

X. Sj" £^«S^£j^dlsj (74) 

Again J 4 = + I e + 

where 

I . = A f ^ E o - ^ E a o ) * ^ ^ (74(a)) 

T ^ ^ ""U<«> - ^(v.-fo ^ | L i ^ i g (74(b)) 
4> (>$,+ «; 1 
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The numerical integration of each of these equations may

be obtained, by seperating the functions into r e a l and 

imaginary parts and evaluating each i n t e g r a l on a computer. 

The v e r t i c a l magnetic f i e l d can be found, f o r the 
case of E - p o l a r i z a t i o n , from equation (10) to be 

Therefore: 

x e ^ ^ z j ^ d f s - } ^>,o (75) 

A s i m i l a r equation e x i s t s f o r y$ 0 . 

I f the estimate C*-0^ i s correct then 

H V ^ P ' ^ - O ^ j _ (76) 
^ >x o 

a n d H ^ ^ p . a ^ - ^ e ^ 

It w i l l be noticed that the v e r t i c a l magnetic f i e l d i s i n 

dependent of the frequency at y=0. Is proportional to 

the square root of the frequency and so i s ( ̂ Lo) — Ef, 0 ) 3 

and hence the only frequency dependent term i s exp (-^p,ift) . 

This r e s u l t was obtained, assuming that 
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on z = 0 , where B i s constant, by J.T. Weaver ( 1 9 6 3 ) and also 

by T. Watanabe i n a derivation of equations f o r magneto

t e l l u r i c modeling (private communication). J.T. Weaver has 

calculated the r a t i o of the v e r t i c a l to horizontal magnetic 

f i e l d over the land-sea contact and h i s graphs are shown i n 

Figure VII. 
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3-0 

20 15 10 5 
Distance -y (km) from coast 

30T — — 

Distance +y (km) from coast. 

FIGURE VII V e r t i c a l magnetic anomaly, a f t e r J.T. Weaver. 
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PRACTICAL IMPLICATIONS 

The v e r t i c a l anomaly found i n the Praser River 

Delta has already been mentioned. This anomaly, i t i s 

thought, i s due to r e l a t i v e l y close-surface conductivity 

variations and the emphasis, i f placed anywhere, must l i e 

on periods i n the range 0<T^:50 seconds. Longer periods 

occur l e s s frequently and are l e s s accurately plotted. 

Further the theory so f a r expounded of l a t e r a l skin-depth 

could not be interpreted f o r depths of over 5 km. i n the 

sea at an absolute maximum and therefore longer periods 

would be of no i n t e r e s t here. 

Geomagnetic bays, with a period of about 1 hour 

(36OO seconds) have been recorded by U. Schmucker on 

magnetograms i n C a l i f o r n i a . Stations were set up on a l i n e 

perpendicular to the sea coast f o r a distance of just under 

300 km. at San Francisco and La J o l l a . Readings were also 

taken on the San Clemente Islands f o r the La J o l l a traverse 

(see Figure IX). A study of the v e r t i c a l component of the 

magnetic f i e l d s f o r well behaved bays, i . e . the e l e c t r i c 

f i e l d vector p a r a l l e l s the coast, showed that at the sea 

coast there was a pronounced disturbance but the further 

inland the records were taken the smaller the magnitude of 

the disturbance u n t i l at a distance of 100 km. or l e s s the 

disturbance disappeared (see magnetogram records Figure V I I I ) . 

If one assumes that the theory as previously described i s 
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Aug. 3 0 . I 9 6 0 

H 

Magnetogram records, adapted from 

U. Schmucker. 



FIGURE IX Map of Southern C a l i f o r n i a . 
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c o r r e c t one i s l e d t o the c o n c l u s i o n t h a t there i s a l a t e r a l 

d i f f u s i o n c u r r e n t a r i s i n g from l a t e r a l inhomogeneities i n 

the c o n d u c t i v i t y . I f t h i s i s the case then crude order of 

magnitude e s t i m a t i o n s may be c a r r i e d out to f i n d the approx

imate dimensions of t h i s c o n d u c t i v i t y anomaly. 

I f ju. = 1.257 x 1 0 - 6 henry/m., uD = 3600 cps, and 

^ = 100 km. where ^ i s taken as the l a t e r a l dimension of 

the d i f f u s i o n , the c o n d u c t i v i t y , , can be determined from 

the r e l a t i o n 

oi cr" 

i s found to be of the order of IO"-1 mho/m. 

S.P. S r i v a s t a v a ' s Ph.D. t h e s i s (1962) c o n t a i n e d a 

study of the subsurface c o n d u c t i v i t y of the pl a n e s of 

A l b e r t a u s i n g the p r i n c i p l e s of m a g n e t o t e l l u r i c s as expounded 

by L. Cagniard ( 1 9 5 3 ) . S r i v a s t a v a concluded t h a t f o r h i s 

survey the d i s t r i b u t i o n of the c o n d u c t i v i t y with depth c o u l d 

be summarized as f o l l o w s : 

0 to 5 km.., 1 0 - 1 mho/m. 

5 to 90 km., 10"^ mho/m. 

90 to 150 km., 1 0 " 1 mho/m. 

T. R i k i t a k e (1951) c o n s i d e r e d a two l a y e r model, 

cor r e s p o n d i n g to S r i v a s t a v a ' s second and t h i r d l a y e r s , but 

he p l a c e d h i s depth of co n t a c t c l o s e r t o 400 km. than t o 

100 km. 
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FIGURE XI Ve l o c i t y depth curve (shear waves) under the 

Canadian Shield (Model CANSD) and under the 

ocean (Model 8099), a f t e r J . Brune and J. Dorman. 
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The i n i t i a l value of 1 0 _ 1 mho/m., rang i n g from a 

depth of 0 to 5 km., i s not t h i c k enough to a p p r e c i a b l y 

i n f l u e n c e the o v e r a l l e f f e c t i v e c o n d u c t i v i t y f o r the f i r s t 

90 km. The r e f o r e to a f i r s t approximation, the c o n d u c t i v i t y 

at a depth of 90 km. or more i s much l a r g e r than the con

d u c t i v i t y above, i . e . 

^ = . _ J 
cr— t O OO 
^gok-v. 

I f t h i s s t r a t i f i c a t i o n of c o n d u c t i v i t y i s extended t o the 

P a c i f i c Coast and va l u e s o f the c o n d u c t i v i t i e s and depths 

there are compared wi t h S r i v a s t a v a ' s a s t r i k i n g s i m i l a r i t y 

i s found to e x i s t . Two p o i n t s must be emphasized: 

(1) The h e i g h t of the su r f a c e o f the E a r t h above the con

d u c t i n g l a y e r ( I O - 1 mho/m.) would be of the order of 

100 km. and hence the anomalous v e r t i c a l f i e l d would 

f l a t t e n c o n s i d e r a b l y , I.e. the value of the s k i n -

depth would be of the or d e r of 75 km. r a t h e r than 

100 km. (The a l t e r n a t i v e t o r a i s i n g the depth would 

be to lower the c o n d u c t i v i t y c o n t r a s t . ) 

(2) The v e r t i c a l anomaly would a r i s e , i n the f i r s t approx

imation, from a " c l i f f " i n the c o n d u c t i v i t y at depth; 

where the value of cr at 200 km. would be I O - 1 mho/m. 

under the l a n d and of the order of 1 0 " ^ mho/m. under 

the sea. 
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One i s l e d to the c o n c l u s i o n t h a t the v a r i a t i o n of 

c o n d u c t i v i t y with depth might be as i l l u s t r a t e d i n F i g u r e X. 

I t would seem l o g i c a l to t r y and check t h i s r e s u l t w i t h o t h e r 

i n f o r m a t i o n about the E a r t h ' s mantle and c r u s t d e r i v e d from 

seismic sources. L. Sykes e t a l . (1962) have proposed a 

v e l o c i t y depth curve f o r the mantle under the sea, and have 

suggested t h a t there i s a low v e l o c i t y l a y e r between the 

depths of 60 and 215 km. J . Brune and J . Dorman (1963) 
have suggested a v e l o c i t y depth curve f o r the mantle and 

c r u s t under the Canadian S h i e l d . T h e i r r e s u l t s show t h a t 

there i s a low v e l o c i t y l a y e r between the depths of 115 and 

315 km,. Hence the low v e l o c i t y l a y e r must go from deep to 

shallower depths as i t passes from under the C o n t i n e n t s to 

under the Ocean, i n s t e a d of p a s s i n g from shallow to deeper 

depths as might be expected from a simple study of s k i n 

depths and c o n d u c t i v i t y . Hence i t must be concluded t h a t 

e i t h e r the shape of the low v e l o c i t y l a y e r and the "isoconds", 

or l i n e s of equal c o n d u c t i v i t y , are independent of each 

ot h e r or t h a t the l a y e r s and the isoconds are r e l a t e d and 

the p i c t u r e of the c o n d u c t i v i t y d i s t r i b u t i o n i s o v e r s i m p l i 

f i e d . I t would seem l o g i c a l t o assume t h a t the l a t t e r con

c l u s i o n i s c o r r e c t but the p o s s i b i l i t y of the former, cannot 

be completely r u l e d out. Assuming t h a t the low v e l o c i t y 

l a y e r and the isoconds p a r a l l e l each o t h e r the morphology of 

the v e r t i c a l magnetic anomaly f o r v a r i o u s p e r i o d s may be 

found from the.diagrammatic graphs of depth vs. p e r i o d and 
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v e r t i c a l f i e l d vs. p e r i o d (see F i g u r e s X l l ( a ) and ( b ) ) . I t 

w i l l be n o t i c e d t h a t there are f i v e r e g i o n s on the graphs, 

which correspond to ( 1 ) no v e r t i c a l f i e l d , ( 2 ) growth of the 

f i e l d , ( 3 ) f i e l d magnitude reaches a maximum and s t a r t s to 

d e c l i n e , ( 4 ) decay of the f i e l d and ( 5 ) no f i e l d . These 

f i v e r e g i o n s would correspond to ( 1 ) m i c r o p u l s a t i o n s , 

( 2 ) l o n g p e r i o d m i c r o p u l s a t i o n s , ( 3 ) and ( 4 ) geomagnetic 

bays and ( 5 ) storms. The depth ^ p l o t t e d i n the f i r s t 

graph, F i g u r e X I I ( a ) , i s the s k i n depth and hence i s a 

f u n c t i o n of c o n d u c t i v i t y . The two curves ^, and ^ are 

p l o t s f o r two d i f f e r e n t p l a n e s of i n f i n i t e depth and constant 

c o n d u c t i v i t y . By i n t e r p o l a t i o n , i t i s p o s s i b l e to o b t a i n 

an i d e a of the shape of the v e r t i c a l magnetic anomaly as i t 

v a r i e s w i t h p e r i o d f o r a g i v e n c o n d u c t i v i t y step f u n c t i o n . 

T h i s might be a f i r s t approximation t o the j u n c t i o n of the 

v e l o c i t y depth curve as i t passes under the sea c o a s t . 

Assuming t h a t the depth to the bottom of the l a y e r under the 

l a n d i s I), ( 3 1 5 km.) and under the sea i s I b z ( 2 1 5 km.), 

the second graph i s obtained, F i g u r e X l l ( b ) . 

The i n t e r p r e t a t i o n of the l a t e r a l s k i n depth 

becomes somewhat clouded i f t h i s p i c t u r e of the c o n d u c t i v i t y 

d i s t r i b u t i o n i s assumed to be c o r r e c t . However, although 

one may not be able t o make good e s t i m a t e s of the conduct

i v i t y at 1 0 0 and 2 0 0 km. under the l a n d and the sea, the 

b a s i c concept should not be d i s c a r d e d . I n f o r m a t i o n can be 

obtained from the a t t e n u a t i o n of the v e r t i c a l component, but 
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the exact theory must be reworked f o r t h i s s p e c i a l case. 

I t i s p e r t i n e n t , at t h i s p o i n t , t o quote J . Dorman, M. Ewing 

and J . O l i v e r ( i 9 6 0 ) , who suggested a s t r u c t u r e f o r the upper 

mantle of the P a c i f i c B a s i n from s u r f a c e wave d i s p e r s i o n : 

...Rayleigh waves i n d i c a t e t h a t the low v e l o c i t y 

r e g i o n of the upper mantle extends upwards to much 

shallower depth beneath the oceans than beneath 

the c o n t i n e n t s . R a y l e i g h wave d i s p e r s i o n data f o r 

the paths on the P a c i f i c b a s i n are i n t e r p r e t e d t o 

i n d i c a t e t h a t shear v e l o c i t y below the M (Moho) 

decreases to about 4.3 km/sec at depths of about 

60 km and t h a t shear v e l o c i t i e s are somewhat lower 

than i n the s u b - c o n t i n e n t a l mantle down to about 

400 km. 

The g r e a t e s t need i s f o r r e a d i n g s of the magnetic f i e l d 

c o v e r i n g the whole spectrum of p e r i o d s , from 1 second to 

24 hours, f o r d i s t a n c e s of 0 to 1000 km. from the coast on 

the s u r f a c e of the sea. 

C o r r o b o r a t i v e evidence of F i g u r e XII(b) can be 

seen from the magnetogram r e c o r d s of U. Schmucker. 

V e r t i c a l magnetic anomalies a r i s e from m i c r o p u l s a t i o n s 

because of the land-sea c o n t a c t . U n f o r t u n a t e l y these 

cannot be seen from Schmucker's r e c o r d s . There i s an 

anomaly i n the v e r t i c a l component of geomagnetic bays, i n 

d i c a t i n g the presence of some s o r t of step ( i t i s more 
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probably a sloping contact) i n the conductivity, but no 

v e r t i c a l component anomaly i s found i n storms, i n d i c a t i n g 

that the conductivity Is l a t e r a l l y homogeneous at greater 

depths. 
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CONCLUSIONS 

The val u e s of Qt and (obta i n e d from Appendix I I ) 

show t h a t Q, — 2 and and hence t h a t to a f i r s t approx

i m a t i o n the r e s u l t Q, = <$3 =» A , a constant, as used by J.T. 

Weaver (1963), i s v a l i d . An improvement would be to w r i t e 

the f u n c t i o n (q C y ) = ^1 ^ > 0 

= ^3 ^ < 0 

but t h i s would be p h y s i c a l l y u n r e a l i s t i c . Hence the 

estimate of G which seems to be p h y s i c a l l y sound, has 

been suggested to gi v e the s o l u t i o n a d d i t i o n a l accuracy even 

though i t has not been checked mathe m a t i c a l l y . 

I t i s found t h a t 

C * - 4 = - 7 and C5 0 < —-L=, 
i\ err V^ri 

and hence ; Cz =* ^ 1 I O 

Thus the term C 3 i s dominant. T h i s f a c t i s important i n 

the computation of Ct^) . 

Graphs of the v e r t i c a l magnetic f i e l d a r i s i n g i n 

the case of E " - p o l a r i z a t i o n have been c a l c u l a t e d by J.T. 

Weaver f o r the approximations c i t e d above and these have 

been i n c l u d e d here with h i s very k i n d consent (see F i g u r e 

V I I I ) . The graphs have been c a l c u l a t e d f o r = 0 . 0 1 cps. 

and co = l cps. and are based on Weaver's e q u a t i o n assuming 
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constant values across the disco n t i n u i t y as opposed to a 

varying value of (T(i^). 

The theory of l a t e r a l skin depths has been tenta

t i v e l y applied to two cases, f i r s t l y to the v e r t i c a l mag

netic anomaly a r i s i n g from the Fraser Delta experiment and 

secondly to the magnetogram records c o l l e c t e d by U. Schmucker. 

Although there seems to be some doubt as to whether the 

theory may be f r e e l y applied i n the l a t t e r case, one can 

conclude that there i s some sort of l a t e r a l conductivity i n 

homogeneity. I t s exact shape and form i s not clear, but 

two models have been proposed, the f i r s t being a simple con

d u c t i v i t y " c l i f f " and the second r e l y i n g on information 

obtained by seismologists on the low v e l o c i t y layer. 
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APPENDIX A l 

S n e l l ' s Law a p p l i e d to a Nonconductor-conductor Boundary 

C o u p l e . * 

C o u p l e - * vMtwe. 

A c c o r d i n g to S n e l l ' s Law 

l<, s i n 9, = k t "sin e 0 

or (cx.+'u^O s i o a , = (<*i S i n G - o 

However, n o t i n g t h a t , f o r a i r 

c< 2 = coJjZ^? 

and, f o r a conductor <*, = ^, = ^J!^2^ 

we can express©, as a f u n c t i o n of <*,, pi, and 9 4 

Hence ^ n 

- s i n G, - I W J / ^ T pfc— T - i - r r -

A l ( i ) 

A l ( i i ) 

A l ( i i i ) 

A l ( i v ) 

The c o n d i t i o n , f o r which the displacement c u r r e n t i s n e g l i g i b l e 

i s M»|i-w4 and t h i s i s s a t i s f i e d on the l a n d - a i r and s e a - a i r 

boundary. Using t h i s c o n d i t i o n i n A l ( i v ) s i n l 6 | i s g i v e n by 

L J ^ A l ( v ) 

assuming 

Since the e x p r e s s i o n f o r sin 2"©, i s the product of two 
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factors, i t s vanishing can equally well be the resu l t of sit - i^S,,— O 

•l.e.Q^O. Hence the condition that ̂ L»|-has the same e f f e c t 

as assuming that the wave i s propagated almost v e r t i c a l l y and 

that only horizontal components of the e l e c t r i c and magnetic 

f i e l d s e x i s t . 

As soon as the wave passes into the conducting medium, the 

free charges, l y i n g at random throughout the volume, migrate 

to the boundaries and set up an e l e c t r i c f i e l d , which i s normal 

to the surfaces, E N . This f i e l d opposes any v e r t i c a l 

component of the f i e l d i n the conductor, i . e . E N = E , . 

P h y s i c a l l y i t i s possible to see t h i s as follows: 

= C> h e g a h > / £ 

c K a f - g e S 

A t7 K 

H 1 1 h H — I I- -f 1—| h V " 
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APPENDIX A2 

F r e s n e l E q u a t i o n s 

I f we assume an i n i t i a l wave to be of the form 

E - L = E o e , HL-Ĵ  n a * E l A 2 ( i ) 

The t r a n s m i t t e d and r e f l e c t e d waves w i l l be of the form 

E t - E , e H t - & - v U E t A 2 ( i i ) 

and 

E ^ E - e > ^ A 2 ( i i i ) 

The o n l y unknown f u n c t i o n s are C", and Cz f o r E - p o l a r i z a t i o n 

and Cq, and 6 j a f o r H - p o l a r i z a t i o n where C^,CX) G, and <S t are d e f i n e d 

and T T , = I^JT. , H a = < q a H . 

at the boundary 

^ ( E . + r ^ ^ ^ a n < a P i ^ + T T ^ . H " , A 2 ( i v ) 

E ' - p o l a r i z a t i o n 

F o r 1 c - p o l a r i z a t i o n n.» E 0 = O 

t h e r e f o r e E"0 ET ? E , 
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and co Go E a - ôs©,. E 2» Or> ©^E, 

from e q u a t i o n A 2 ( i v ) . Noting that 

we f i n d 

^ - .^r. k ^ 6 ' , , • • E f t 

and hence the value of C, and may be obtained. I t w i l l be 

noticed that k, i s complexjbut l<j.is r e a l . 

and 

^ p o l a r i z a t i o n 

For H-polarization |-( 0 =.Q 

and i n t h i s case H« * ̂* " ^ \ ~ • fiT*. = 

Noting that: E o = ^" » E", = -J±^>< £, *T t 
k, 

and E i » £-*-*TT0 

i t i s found that 

cos e 0TTL - oose i ri* one , M. **<t M e+H^K 
from equation A 2 ( i v ) , and hence solving f o r H , and Hjwe f i n d , 

U Z./.^ k,* ^ 0 6 0 r TT 

and L_| = A*^'V
 c o s ^ o - A , kjtf- kl *\^G0 T^j~ 

and hence the value of and £j^can be obtained. 
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APPENDIX A 3 

Proof of div ~E=0 

(1) In the case of E-polarization the e l e c t r i c f i e l d has 

only one non-zero component, and so, 

which i s zero because E x i s independent of ac . 

(2) In the case of H - p o l a r i z a t i o n the e l e c t r i c f i e l d has two 

non-vanishing components E / and which are connected with 

H a t as follows 

(These equations are derived from Maxwell's Equations) 

But V ~ F = 4-
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APPENDIX A4 

Values of i|> and Q f u n c t i o n s f o r GiC^ 

then r e p l a c i n g H| by the value of C^) 

I f jr^'tj <̂  | * the s e r i e s i s convergent and the summation can 

simply expressed. I f i t i s d i v e r g e n t ( i . e . | ^ j - | > | ) then 

no s o l u t i o n can be found. 

Now ^ ^ u > ^ , ^ u £ioJ 2 + ° y ^ i ^7 & 

e" 1 

so t h a t P = j ^ ^y^,3- * T h e r e f o r e f o r a l l ^ ^ o the s e r i e s i 

convergent and 

t h e r e f o r e ' 

s i m i l a r l y 



60. 

APPENDIX A5 

S o l u t i o n of the Equ a t i o n s In Ge n e r a l : H - p o l a r i z a t i o n 

A s o l u t i o n of the g e n e r a l case, when o<<^<900 w i l l 

o n l y be t e n t a t i v e l y suggested and l e f t In g e n e r a l terms, 

whereas the case f o r K=90° has been worked out i n reasonable 

d e t a i l and c o n c l u s i o n s can be drawn from t h i s case about the 

type of f i e l d found i n the g e n e r a l case. 

&C=90°, because i n a d d i t i o n t o the second d i f f e r e n t i a l s w i t h 

r e s p e c t to the V and the 2 c o - o r d i n a t e s i t has a c r o s s - p r o d u c t 

term. T h i s l e a d s t o d i f f i c u l t i e s i n the s o l u t i o n of the 

p a r t i a l d i f f e r e n t i a l e q u a t i o n . I f the L a p l a c e t r a n s f o r m 

i s used then two unknown f u n c t i o n s r e s u l t , which both need to 

be c a l c u l a t e d . 

i s d e f i n e d as the L a p l a c e t r a n s f o r m w i t h i t s Inverse, then 

a p p l y i n g i t t o the g e n e r a l e q u a t i o n (16), f o r H - o o l a r i z a t i o n , 

i t i s found t h a t 

The g e n e r a l equations d i f f e r s from the case of 

I f 

17 
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as- 2 n ^cy A 5 ( i i ) 

T h i s equation i s an o r d i n a r y d i f f e r e n t i a l e q u a t i o n i n V , 

and, p l a c i n g 

we f i n d _ Z ^ o o ^ f i x - H ^ ' H * = OCV) 

A s o l u t i o n of t h i s e q u a t i o n would be 

H* - k* e + k, a +V/t̂  A 5(iv) 

where = Sj" and C, = ^ ^»J L l y * - - ^ 1 ' A5(v) 

S e t t i n g ^ j s a ^ l s we get, 

Hence, when 1^ , 6) s J , Assuming t h a t VC1^ i s f i n i t e at 

T= + 0 0 , the boundary c o n d i t i o n H(v) can be a p p l i e d t o show 

t h a t kz = 0 . The c o n d i t i o n <R*£>| i s S"i< JlJfî tf̂  * s o t h a t 

^ tends to a minimum value (zero) as tends to zero, and 

2j~ tends to a maximum value ( i n f i n i t y ) as tends to 90° . 

When ^ has a value o u t s i d e t h i s l i m i t , i . e . . ^ * ^ | | z sin^ then 

2ccs<*. 

the problem becomes much more com p l i c a t e d . There w i l l be two 

c h o i c e s depending upon the f u n c t i o n k\C^) . E i t h e r Kt « k2 =*0 
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or neither K, nor k* are zero, the condition as V tends to 

i n f i n i t y being s a t i s f i e d by the subtraction of two i n f i n i t i e s 

to produce a f i n i t e number. An i n t e l l e g e n t guess might be 

that both }Cj and ka are zero but i t can only be a guess. 

A theory w i l l be developed assuming that at least i s 

zero inside the domain ^ < J- • and a tentative approach 

to the problem w i l l be given. V C Y ) w i l l always be given by: 

which Is the p a r t i c u l a r i n t e g r a l of the d i f f e r e n t i a l 

equation, assuming that OC^can be expressed as a Fourier series 

and that there are no s i n g u l a r i t i e s . 

The values of k| and , can be computed by 
applying boundary conditions H ( i i ) 

- i^-v, to) |<3 = ^ -v^o> A 5 ( v l ) 

and applying H ( i i i ) 

^ V̂.co) (£,-*,) -wi- Vi^XgitV^-riV^^gaV;1^ A 5 ( v l l ) 

It i s apparent that the i n t e g r a l d i f f e r e n t i a l 

equation has been expressed as a function of U(ŝ ) . ĈV̂) , 

i n turn, Is a function of the magnetic f i e l d on the surface 

2 i » 0 . But the value onZ=-0 cannot be placed In the function 

OCV) u n t i l the p a r t i a l derivative dM* has been computed. 

Hence, although i s only a function of V and has been 

calculated along 2 = 0 , two seperate uncalculated functions 

appear inUC$. The function can be defined by the 
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following conditions: 

<scv>- ^ 5 H o , y - - oo 

and Liv-n -L - L l** , JL ^ 

and l a s t l y U m 3 - Uv* $ t ^ ~ % t<>,P) 

The function ^jj"^^'^ l s n o - f c nearly so easy to 

define; i t appears that i t can only be calculated a f t e r the 

values of H, and r-^have been computed, which indicates that 

a second alternative solution of the p a r t i a l d i f f e r e n t i a l 

equation i s necessary before a complete solution of t h i s 

case, using t h i s method, can be found. 

E *-polarization 

The relevant equation i s 

which can be "solved" i n the same way as the p a r t i a l d i f f e r e n t i a l 

equation f o r H-polarization using the Laplace transform and 

inversion. 

The p a r t i a l d i f f e r e n t i a l s can be converted to ordinary 

d i f f e r e n t i a l s to obtain the equation 
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where NJ*» af-pVnfc a n < i 

The s o l u t i o n of t h i s d i f f e r e n t i a l e q u a t i o n i s the same 

as b e f o r e , i . e . 

A5(ix) 

A5(x) 

^ , = Sj i^rpc-L and =• " S ^ — 

Once again a p p l y i n g c o n d i t i o n E(v) makes i f S J i s 

i n the c o r r e c t domain. The e v a l u a t i o n o f K4 and iCj i s 

ob t a i n e d t y a p p l y i n g the boundary c o n d i t i o n s E ( i i ) and 

then E ( i i i ) . 

k | - ^ p and ^ * ! ^ 7 % ) - S 5 (o) 
A p p l i c a t i o n of E ( i i l ) g i v e s the' value of |(^) as 

^ ^ + 6", 

when " S , * ^ . 

Once more the s o l u t i o n of the i n t e g r a l , d i f f e r e n t i a l 

e q u a t i o n i s dependent on the-value of £lV^ and wJ=*| . The 

value (or f u n c t i o n ) r e p r e s e n t e d by C(Y) may be expressed 

by a s e r i e s of l i m i t i n g c o n d i t i o n s i n the same way as GCd , 
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i . e . CCV)=C,Eo , V - + » 

and 

However the problem of defining the value of ^£^2M 

s t i l l remains e s s e n t i a l l y unsolvable unless a subsiduary * 

solution i s added. 
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