ALAN MELVILL COODE
 B.A.Sc., University of British Columbia, 1962

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
in the Institute of

EARTH SCIENCES

We accept this thesis as conforming to the required standards

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying, or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of PHYSICS (INSTTUTE OF EARTH SCIENCES).
The University of British Columbia, Vancouver 8, Canada.
Date $i^{S T}$ APRIL 1963

ABSTRACT

Interest in the vertical fault problem for electromagnetic fields has been recently revived by the papers of I. d'Erceville and G. Kunetz (1962) and D. Rankin (1962). In the derivation of his equations Rankin used d'Erceville's theory which contains some fallacious assumptions. These have been pointed out by J.T. Weaver (1962) and also in this thesis.

This thesis follows the lines of mathematical attack first employed by d'Erceville and Kunetz, and later developed by Weaver, in applying the theory of integral transforms to the partial differential equations satisfied by land and sea conductors. The problem of both a vertical fault and also a sloping fault, i.e. $0<\alpha<90^{\circ}$ where α is the angle of dip of the fault are considered.

The results in the general case are inconclusive, no solution has been found and no solution is suggested. The case of $\alpha=90^{\circ}$ has proved to be equally indeterminate, but a solution has been suggested, which, although it has not been proved rigourously, does not appear to violate any physical principles and also seems to represent the field equations on the surface of the land and the sea.

ACKNOWLEDGEMENTS

I wish to acknowledge, with gratitude, the help, guidance and infinite patience given to me by Dr. T. Watanabe in the development of this thesis. I also should like to thank Professor J.A. Jacobs, for making it possible for me to work in the Institute, Dr's. A. Nishida and S.P. Srivastava, for their interest and time spent in discussion, and lastly Dr. J.T. Weaver for reviewing this work and offering several helpful suggestions. The work in this thesis has been supported by the National Research Council.

TABLE OF CONTENTS

I INTRODUCTION 1
II INDUCTION EQUATIONS 3
III PHYSICAL INTERPRETATIONS 13
IV BOUNDARY CONDITIONS 19
V BOUNDARY CONDITIONS FOR $\quad \alpha=90^{\circ}$ 24
VI SOLUTION OF THE EQUATIONS FOR $\propto=90^{\circ}$ 28
H-polarization 28
E-polarization 30
VII PRACTICAL IMPLICATIONS 41
VIII CONCLUSIONS 52
APPENDIX AI SNELL'S LAW APPLIED TO A NONCONDUCTOR- CONDUCTOR BOUNDARY 54
APPENDIX A2 FRESNEL EQUATIONS 56
APPENDIX A3 PROOF OF DIV $\widehat{\mathrm{E}}=0$ 58
APPENDIX A4 VALUES OF Ψ and Ψ For $G(y)$ 59
APPENDIX A5 SOLUTION OF THE EQUATIONS IN THE GENERAL CASE 60

LIST OF FIGURES

I Co-ordinate systems at a land-sea-air contact. 3
II Diagram showing the transformation from one co-ordinate system to another. 8
III Magnetic field generated from an electricfield in a right angled conductor.15
IV Magnetic fields generated from electric fieldsin two right angled conductors; $j_{1}>j_{3}$ so thatthe vertical magnetic field, H_{z}, at the dis-continuity is directed upwards.15
V Incident, transmitted and reflected rays at a boundary. 20
VI General field vector in nonrectangular co-ordinates. 21
VII Vertical magnetic anomaly, after J.T. Weaver. 40
VIII Magnetogram records, adapted from U. Schmucker. 42
IX Map of Southern California. 43X Schematic cross-section at the sea coast forán oversimplified conductivity cliff.45
XI Velocity depth curve (shear waves) under theCanadian Shield (Model CANSD) and under theocean (Model 8099), after J. Brune and J. Dorman. 45
XII(a) Idealized plot of skin depth vs. period for
two conductivities. 47
(b) Probable variation of H_{z} with period. 47

INTRODUCTION

Interest in the vertical fault discontinuity problem has been recently stimulated by the papers of I. d'Erceville and G. Kunetz (1962) and D. Rankin (1962). The present work is an extension of a paper by J.T. Weaver (1963) who was looking for a theoretical explanation of an anomalously high vertical magnetic component of geomagnetic micropulsations found at a land-sea contact. In 1961 D.A. Christoffel, J.A. Jacobs and J.A. Shand published a paper comparing the ratios of the vertical to the horizontal components of the magnetic fields at Victoria, B.C., which can be considered to be situated at a land-sea contact at the edge of the Pacific, and Ralston, which is in the Southern part of the plains of Alberta and thus is removed from a land-sea contact. The results showed that there was a definite vertical anomaly in the magnitude of the geomagnetic amplitudes in the micropulsation range (0.001 cps to 3.0 cps) at a landsea contact. This contradicts an assumption used by d'Erceville in his theoretical treatment of the problem.

In this thesis the initial electromagnetic field is assumed to be vertically incident. Even though this approximation is not exact, it is found (see Appendix l) that it is equivalent to the condition that the displacement current is negligible in Maxwell's equations, i.e. that $|\sigma| \gg|\omega \in|$. As a result, the angle that the plane of
incidence makes with the discontinuity is arbitrary and hence it has been assumed to be at right angles to the discontinuity. This permits simplifying assumptions to be made and the problem becomes two dimensional.

The difficulties arising from variations of conductivity with depth have been circumvented by assuming that the conductivity does not vary for depths less than 200 km . and that the electromagnetic field has been "completely" attenuated at that depth, i.e. for theoretical purposes a depth of 200 km . can be regarded as the depth to infinity. Neither land nor sea have been assumed to be perfect conductors (although both may be considered so when compared with air).

INDUCTION EQUATIONS

For the general case the coordinate axes $0(X, Y, Z)$ have been chosen with the X -axis along the discontinuity junction of land, sea and air, the Y axis along the sea-air contact, and the Z axis along the land-sea contact. In the case of a vertical discontinuity $\left(\alpha=90^{\circ}\right)$, the axes are rectangular and are renamed $O(x, y, z)$. Thus $O X$ and $O x$ are identical as are $O Y$ and $O y$ (see Figure 1).

FIGURE 1 Co-ordinate systems at a land-sea-air contact:

It is assumed that the incident electromagnetic
field is a wave of the form

$$
\vec{H}_{L}=\vec{H}_{0} e^{i\left(\omega t-k_{2} \hat{n}_{0} \cdot \vec{r}\right)}
$$

where:

$$
\begin{aligned}
H_{0}= & \text { the constant, finite amplitude of the magnetic } \\
& \text { field }
\end{aligned}
$$

$$
k_{2}=\text { the wave number in air }
$$

i.e. $k_{2}=\omega \sqrt{\mu_{0} \epsilon_{0}} \quad$ where μ_{0} and ϵ_{0} are
the permeability and permittivity in air

$$
\begin{aligned}
\hat{n}_{0}= & \text { the unit vector in the direction of pro- } \\
& \text { pagation }
\end{aligned}
$$

and

$$
\omega=\text { the frequency }
$$

Upon striking the land-sea conductor the magnetic field is "split up" into two parts, the reflected and transmitted fields. Both these fields are assumed to vary as follows

$$
\begin{aligned}
& \vec{H}_{t}=\vec{H}_{t}(y, z) e^{i \omega t} \\
& \vec{H}_{r}=\vec{H}_{r}(y, z) e^{i \omega t}
\end{aligned}
$$

Hence in the atmosphere the field is given by

$$
\vec{H}=\vec{H}_{i}+\vec{H}_{r}=e^{i \omega t}\left[\vec{H}_{0} e^{-i k_{2} \hat{r}_{0} \cdot \vec{r}}+\vec{H}_{r}(y, z)\right]
$$

A similar set of equations holds for the electric
field, assuming

$$
\vec{E}_{i}=\vec{E}_{0} e^{i\left(\omega t-k_{2} \hat{n}_{0} \cdot \vec{r}\right)}
$$

It is possible to simplify Maxwell's equations in a homogeneous, isotropic medium.
(a) $\nabla \times \vec{H}=\vec{j}+\frac{\partial \vec{D}}{\partial t}$
(b) $\quad \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
(a) $\nabla \cdot \hat{H}=0$
(b) $\nabla \cdot \vec{E}=\rho / \epsilon$

If the fields are varying in a purely periodic manner then for the two dimensional case, equation $2(b)$ is found to be automatically equal to zero, i.e.

$$
\begin{equation*}
\nabla \cdot \vec{E}=0 \tag{3}
\end{equation*}
$$

The proof of this is given in Appendix A3.

Within the conductors it is necessary to consider the ratio $\left|\frac{\sigma}{\omega \epsilon}\right|$, which is found to be much greater than unity. Table I gives the value of this ratio for land and sea respectively:

Table I

MediumConductivity, σ mho/m Dielectric constant, ϵ Farad $/ \mathrm{m}$	Frequency cps	$\left\|\frac{\sigma}{\omega \epsilon}\right\|$		
sea	4	80×10^{-10}	3	$\sim 10^{+10}$
land	$10^{-5}-10^{-6}$	$3 \times 10^{-10}-4 \times 10^{-10}$	3	$\sim 10^{+4}$

Hence it is possible in both cases to assume that displacement currents may be neglected in the conductors, i.e. that

$$
\begin{equation*}
\nabla \times \vec{H}=\vec{j}=\sigma \vec{E} \tag{4}
\end{equation*}
$$

in both land and sea. However there is no justification in ignoring the displacement current in an uncharged atmosphere. Such a justification is only possible after a solution of the electric and magnetic field has been obtained. Further if we treat the fields as purely electrostatic or magnetostatic then there is no justification for using Maxwell's equations to find the remaining field. Thus assuming $\nabla \times \vec{H}=0 \quad$ (for a magnetostatic field), we cannot use $\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$. to find the electric field. This point has been dealt with more fully in Dr. A. Nishida's Ph.D. Thesis (1962). Hence in the neutral atmosphere
(a) $\boxtimes \times \hat{H}=\frac{\partial \vec{B}}{\partial t}$
(b) $\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$

Therefore using equations (1) - (4) it is possible to express the magnetic and electric fields as diffusion equations for the case when $\alpha=90^{\circ}$, i.e.

$$
\nabla^{2} \vec{E}=i \mu \sigma \omega \vec{E} \quad \text { and } \quad \nabla^{2} \vec{H}=i \mu \sigma \omega \vec{H}
$$

$$
\begin{equation*}
\text { If we substitute } \quad 7^{2}=\mu \sigma \omega \tag{6}
\end{equation*}
$$

then the equations to be solved in each conductor are

$$
\begin{equation*}
\nabla^{2} \vec{E}=i \eta \vec{E} \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{2} \vec{H}=i \eta^{2} \vec{H} . \tag{b}
\end{equation*}
$$

In the atmosphere the equations to be solved can be derived in a similar manner and are
(a) $\nabla^{2} \vec{E}=-\mu \in \omega^{2} \vec{E}$
and (b) $\quad \nabla^{2} \vec{H}=-\mu \in \omega^{2} \vec{H}$

Because of the two dimensional nature of the model all field vectors are independent of x and we can find two solutions of equations (7), one for E-polarization and another for H-polarization. In both cases the polarized field vectors are directed along the x-axis. Hence for H-polarization

$$
\begin{equation*}
E_{x}=0 \quad E_{y}=\frac{1}{\sigma} \frac{\partial H_{x}}{\partial z} \quad \text { and } \quad E_{z}=-\frac{1}{\sigma} \frac{\partial H_{x}}{\partial y} \quad \alpha=90^{\circ} \tag{9}
\end{equation*}
$$

and for E-polarization

$$
\begin{equation*}
H_{x}=0 \quad H_{y}=\frac{i}{\mu \omega} \frac{\partial E_{x}}{\partial z} \quad \text { and } \quad H_{z}=\frac{-i}{\omega \mu} \frac{\partial E_{x}}{\partial y} \quad \alpha=90^{\circ} \tag{10}
\end{equation*}
$$

These two cases are completely independent of each other and the solution of the diffusion equations will be obtained for each case separately.

For the case of H-polarization the equation to be solved for $z \geqslant 0$ is

$$
\begin{equation*}
\frac{\partial^{2} H_{x}}{\partial z^{2}}+\frac{\partial^{2} H_{x}}{\partial y^{2}}=i \eta^{2} H_{x} \quad \alpha=90^{\circ} \tag{11}
\end{equation*}
$$

and for E-polarization the equation is

$$
\begin{equation*}
\frac{\partial^{2} E_{x}}{\partial y^{2}}+\frac{\partial^{2} E_{x}}{\partial z^{2}}=i \eta^{2} E_{x} \quad \alpha=90^{\circ} \tag{12}
\end{equation*}
$$

So far no mention has been made of the diffusion equation when $90^{\circ}>\alpha>0^{\circ}$. For the cases of E_{-}and H-polarization they may be obtained from equations (11) and (12) using the equations of transformation for the two coordinate systems $O(X, Y, Z)$ and $O(x, y, z)$ viz.

$$
\left.\left.\begin{array}{l}
x=X \tag{14}\\
y=Y+Z \cos \alpha \\
z=Z \sin \alpha
\end{array}\right\} \quad \text { (13) or } \quad \begin{array}{l}
X=x \\
\\
\\
Z=y-z \cot \alpha \\
Z \operatorname{cosec} \alpha
\end{array}\right\}
$$

See Figure II。

FIGURE II Diagram showing the transformation from one co-ordinate system to another.

Therefore

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial x} & =\frac{\partial}{\partial x}, \\
\frac{\partial}{\partial y} & =\frac{\partial}{\partial y} \tag{15}\\
\text { and } \quad \frac{\partial}{\partial z} & =-\cot \alpha \frac{\partial}{\partial y}+\operatorname{cosec} \alpha \frac{\partial}{\partial Z}
\end{array}\right\}
$$

and hence

$$
\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\operatorname{cosec}^{2} \alpha\left(\frac{\partial^{2}}{\partial Y^{2}}-2 \cos \alpha \frac{\partial^{2}}{\partial Y^{2} Z}+\frac{\partial^{2}}{\partial Z^{2}}\right)
$$

Therefore equations (11) and (12) may be written

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial Y^{2}}-2 \cos \times \frac{\partial^{2} F}{\partial Y \partial Z}+\frac{\partial^{2} F}{\partial Z^{2}}=i \eta^{2} \sin ^{2} \alpha F \tag{16}
\end{equation*}
$$

where F is equal to either E_{x} or H_{x}.

The value of the transmitted magnetic field across $z=0$ can be expressed as a function of y only, say $G(y)$, and time, t, for H-polarization and the value of the transmuted electric field can be expressed as another function of y for E-polarization, say $C(y)$ and time, t. Hence assuming solutions of equations (8) to be of the form

$$
H_{x}=H(y, z) e^{+i \omega t}
$$

and

$$
E_{x}=E(y, z) e^{+i \omega t}
$$

we can express the component H_{x} in air (omitting the term $e^{+i \omega t}$ as before) as

$$
\begin{equation*}
H_{x}=e^{i(m y+n z)} \tag{8}
\end{equation*}
$$

The condition which must be satisfied for a solution of is therefore

$$
\begin{equation*}
m^{2}+n^{2}=\mu \in \omega^{2} \tag{17}
\end{equation*}
$$

1.e. $n=\sqrt{\mu \epsilon \omega^{2}-m^{2}} \quad$ for $\left.\omega \sqrt{\mu \epsilon}>|m|\right\}$

The general expression for the reflected wave can be expressed by

$$
\begin{equation*}
H_{x}=\int_{-\infty}^{+\infty} A(m) e^{i(m y+n z)} d m \tag{19}
\end{equation*}
$$

where n is given by (18).
since $H_{i}=H_{0} e^{-i\left(m_{2} y+n_{2} z\right)}$
where the subscript 2 refers to air, at $z=0$ for H-polarization the tangential component of the magnetic field is continuous across the land-sea conductor ie.

$$
\begin{equation*}
\hat{n} \times\left(\vec{H}_{i}+\vec{H}_{r}\right)=\hat{n} \times \vec{H}_{t} \tag{20}
\end{equation*}
$$

where \hat{h} is the unit vector normal to the surface.

For H-polarization

$$
\begin{aligned}
& \vec{H}_{i}+\vec{H}_{r}=\vec{H}_{t} \\
& H_{0} e^{-i m_{2} y}+\int_{-\infty}^{+\infty} A(m) e^{i m y} d m=G(y) \\
& \therefore \int_{-\infty}^{+\infty} A(m) e^{i m y} d m=G(y)-H_{0} e^{-i m z y}
\end{aligned}
$$

Applying a Fourier transform, we can express the function $A(m)$ as a function of $m, v i z$.

$$
A(m)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left(G(y)-H_{0} e^{-i m_{2} y}\right) e^{-i m y} d y
$$

Since

$$
\int_{-\infty}^{+\infty} e^{i c x} d x=2 \pi \delta(c)
$$

where $\delta(c)$ is the Dirac delta function,

$$
\begin{align*}
& A(m)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} G(y) e^{-i m y} d y-H_{0} \delta\left(m+m_{2}\right) \tag{21}\\
& \text { or } H_{x}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d m e^{i(m y+n z)} \int_{-\infty}^{+\infty} G(\eta) e^{-i m \eta} \eta \eta-H_{0} e^{i\left(-m_{2} y+n_{2} z\right)}
\end{align*}
$$

Hence knowing the function $G(y)$ by solving equations (11) and (12) it is possible to express the magnetic and electric field in the air. A similar function defined by $B(m)$ can be obtained for E-polarization. The proof follows similar lines, and it can easily be shown that

$$
\begin{equation*}
B(m)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\left[C(y)-E_{0} e^{-i m_{2} y}\right] e^{-i m y} d y \tag{22}
\end{equation*}
$$

where $C(y)$ is the value of the transmitted electric field, which corresponds to $G(y)$, on $z=0$. Hence

$$
\begin{equation*}
E_{x}=\int_{-\infty}^{+\infty} B(m) e^{i(m y+n z)} d m \tag{23}
\end{equation*}
$$

is the electric field in the atmosphere ($z<0$).

For H-polarization, the electric field in the atmosphere is given by:

$$
E_{x}=0 \quad E_{y}=\frac{1}{i \omega \in} \frac{\partial H_{x}}{\partial z} \text { and } E_{z}=\frac{i}{\omega \epsilon} \frac{\partial H_{x}}{\partial y}, \alpha=\frac{\pi}{2} \text { (24) }
$$

and for E-polarization, the magnetic field in the atmosphere is given by:

$$
H_{x}=0 \quad H_{y}=\frac{i}{\mu \omega} \frac{\partial E}{\partial z} \quad \text { and } \quad H_{z}=\frac{-i}{\mu \omega} \frac{\partial E_{x}}{\partial y}, \alpha=\frac{\pi}{2}(25)
$$

Equations (9), (10), (24) and (25) may be generalized for the case of $0<\alpha \leqslant 90^{\circ}$ by applying equations (15).

PHYSICAL INTERPRETATIONS

When an electromagnetic wave meets a change in conductivity (egg. at an air-sea contact) the incident wave is propagated through the new conducting medium with a velocity of $\sqrt{\frac{2 \omega}{\mu \sigma}}$ where μ and σ are the permeability and conductivity of the medium.

Using Maxwell's equations the magnetic and electric fields can be expressed in the following manner:
and

$$
\begin{aligned}
& \nabla^{2} \vec{H}=\left(i \omega \mu \sigma-\omega^{2} \mu \epsilon\right) \vec{H} \\
& \nabla^{2} \vec{E}=\left(i \omega \mu \sigma-\omega^{2} \mu \epsilon\right) \vec{E}
\end{aligned}
$$

However $|\sigma| \gg \omega \in$ so that these equations can be approximated by equations (7). The effect of this on any physical interpretation is to heavily damp the electromagnetic wave in the conductive medium and to permit the current density to take a finite time to build up, which results in the diffusion phenomenon described by equations (7).

The description of the electric and magnetic fields associated with the current densities can be found from the vector potential

$$
\vec{A}=\frac{\mu}{4 \pi} \int \frac{\vec{j}(y, t)}{r} d \tau
$$

since $\quad \vec{B}=\mu \vec{H}=\nabla \times \vec{A}$
and $\nabla \times \vec{H}=(\sigma+i \omega \epsilon) E \quad, \quad E=-\frac{\partial \vec{A}}{\partial t}$
if the gradient of the scalar potential of the electrostatic field is small compared with $\frac{\partial \vec{A}}{\partial t}$. Hence if we take a "wedge" of sea, or to simplify it, take the case when the angle $\alpha=90^{\circ}$ then it can be seen that for vertical propagation a current system is set up, decaying exponentially with depth (z). This current system radiates waves in all directions, both in the y-direction and in the negative z-direction (reflected ray). The radiation in the y-direction is not part of the reflected ray but is referred to as a diffraction term. The direction of the magnetic field is given in Figure III, assuming that the electric field in the conductor is directed along the x-axis. It will be noticed that in this case (i.e. E-polarization), the magnetic field at the vertical boundary has become vertical. For the case of H-polarization the corresponding electric field becomes vertical. The problem now arises of what happens when two conductors are placed side by side. If the angle \propto is still assumed to be 90° then the magnetic field for each. conductor, separated as in Figure IV, is generated in the same manner as before but now there is a mutual induction field near $y=0$, which tends to oppose the existing electric field in both conducting media. Upon joining the two conductors on the plane $y=0$ then there is an

FIGURE III Magnetic field generated from an electric field in a right angled conductor.

FIGURE IV Magnetic fields generated from electric fields in two right angled conductors; $j_{1}>j_{3}$ so that the vertical magnetic field, H_{z}, at the discontinuity is directed upwards.
electric field discontinuity between \vec{E}_{3} and \vec{E}_{1} and hence there is a diffusion of electric field in the y-direction, in the same manner as the transmitted electric field diffuses, until the value of the electric field reaches a common value on $\mathrm{y}=0$.

The difference in current density gives rise to an anomalous vertical component of the magnetic field, \vec{H}_{z}. There are three cases to consider:

1) $\vec{j}_{3}>\vec{j}_{1}$ when \vec{H}_{z} is downwards at the discontinuity junction.
2) $\vec{j}_{3}=\vec{j}_{1} \quad$ in which case the two media are identical (and therefore there is no conductivity discontinuity).
3) $\vec{f}_{3}<\vec{j}_{1}$ when \vec{H}_{z} is upwards (see Figure IV).

Rather than try to compute the diffusion of the electric field from first principles, a reasonable guess is made. In much the same way as the electric field is attenuated with depth, for E-polarization, the diffusion of the electric field can be considered to be "attenuated" by the same terms. Hence the value of the electric fields in media 1 and 3 may be given by:

$$
\begin{aligned}
& \vec{E}_{3}=\vec{E}_{10}\left(1-e^{p, y y}\right)+\overrightarrow{f(z)} e^{p_{y} y}, y \leqslant 0, z=0 \quad(26) \\
& \left.\vec{E}_{1}=\vec{E}_{10}\left(1-e^{-p y}\right)+f^{(z)}\right) e^{-1, y}, y \leqslant 0, z=0 \quad(27)
\end{aligned}
$$

where $\overrightarrow{f(z)}$ is the value of the electric field on $y=0, \overrightarrow{E_{10}}$ is the value of $\overrightarrow{E_{1}}$ at $y=+\infty, \vec{E}_{30}$ is the value of E_{3} at $y=-\infty$ and $\beta=\sqrt{\mu \omega \sigma i} \quad$ in media l and 3 . It is thus
related to the skin depth $\sqrt{\frac{2}{\mu \omega \sigma}}$.

The same idea may be applied to the case of H polarization and a similar diffusion of H_{x} found to exist in the form

$$
\begin{align*}
& \vec{H}_{3}=\vec{H}_{30}\left(1-e^{\beta, y}\right)+\overrightarrow{g(z)} e^{\beta_{3} y}, y \leqslant 0, z=0 \tag{28}\\
& \vec{H}_{1}=\vec{H}_{10}\left(1-e^{-\beta, y}\right)+\overrightarrow{g(z)} e^{-\beta_{1} y}, \quad y \geqslant 0, z=0 \tag{29}
\end{align*}
$$

The rather arbitrary choice of \vec{E} and \vec{H} on $z=0$ may seem unjustified at this stage but it will be found that a function of this type is needed later in this thesis, even if it represents a crude approximation to the true case.

Summarizing, for the case of H-polarization three fields exist: H_{x}, E_{y} and E_{z}. The fields H_{x} and E_{y} appear to be continuous functions with continuous first derivatives each approaching constant and known values at $\pm \infty$ but the value of E_{z} appears to have a distribution with a maximum (cusp) value at $\mathrm{y}=0$ and tending to zero at $\pm \infty$.

When considering the case of a wedge there is also a transmitted term to be added to the diffusion of an electric field which flows across the land-sea contact. As the angle α approaches zero it is found that there is less and less diffusion because of the difference in electric field intensities in the two media and more propagation of current as a simple transmitted and reflected ray problem. Hence in the limiting case of horizontal layers (L. Cagniard (1953), A.T. Price (1962)) there is only a problem of transmission and reflection with no diffusion due to a difference in electric field intensity.

BOUNDARY CONDITIONS

A solution of Maxwell's equations is given by the

 Fresnel equations at $y= \pm \infty$ for the air-land, air-sea contacts. If it is assumed that the initial wave is of the form: $\quad \vec{E}_{i}=\vec{E}_{0} e^{i\left(\omega t-k_{2} \hat{r}_{0} \cdot \vec{r}\right)} \quad H_{i}=\frac{k_{2}}{\omega \mu_{2}} \hat{h}_{0} \times \vec{E}_{i}$ then the transmitted and reflected waves will be of the form:$$
\stackrel{\rightharpoonup}{E}_{t}=\vec{E}_{1} e^{i\left(\omega t-k_{1} \hat{n}_{1} \cdot \vec{r}\right)}, \quad \vec{H}_{t}=\frac{k_{1}}{\omega \mu_{i}} \hat{n}_{1} \times \vec{E}_{t}
$$

and

$$
\vec{E}_{r}=\vec{E}_{2} e^{i\left(\omega t-k_{2} \hat{n}_{2} \cdot \vec{r}\right)}, \vec{H}_{r}=\frac{k_{2}}{\omega \mu_{2}} \hat{n}_{2} \times \vec{E}_{r}
$$

For \bar{E}-polarization $\vec{E}_{1}=C_{1} \vec{E}_{0}$ and $\vec{E}_{2}=C_{2} \vec{E}_{0}$

For H-polarization $\vec{H}_{1}=G_{1} \vec{H}_{0}$ and $\vec{H}_{2}=G_{2} \vec{H}_{0}$
where C_{1}, C_{2}, G_{1} and G_{2} are known constants for the airsea, air-land boundary (see Appendix 2). Hence the magnetic and electric field can be calculated at $y= \pm \infty$ for both H-polarization and E-polarization.

> At any boundary,

$$
\begin{equation*}
\hat{n} \times\left(\vec{E}_{L}+\vec{E}_{r}\right)=\hat{n} \times \vec{E}_{t} \text { and } n_{x}\left(\vec{H}_{i}+\vec{H}_{r}\right)=\hat{h}_{x} \vec{H}_{t} \tag{30}
\end{equation*}
$$

FIGURE V Incident, transmitted and reflected rays at a boundary.

For H-polarization these equations give:

$$
\vec{H}_{0} e^{-i m_{2} y}+\vec{H}_{r}(y)=H_{t}(y)
$$

where $\hat{H}_{t}(y)$ is the magnetic field inside the conductor. Let us call this function on $z=0 \quad G_{3}(y)$ in land, $G_{1}(y)$ in sea and $G(y)$ in general. A similar case exists for E -polarization,

$$
\vec{E}_{0} e^{-i m_{2} y}+\vec{E}_{r}(y)=\vec{E}_{t}(y)
$$

Let the transmitted electric field on $z=0$ in land be called $C_{3}(y)$ and in sea $C_{1}(y)$ and $C(y)$, in general.

In the previous section an intelligent guess was made of the values of $G_{1}(y), G_{3}(y), C_{1}(y)$, and $C_{3}(y)$ but no use will be made of this until it is necessary.

At the land-sea contact for H-polarization the tangential component of the electric field is continuous, ie. E_{Z} is continuous.

FIGURE VI General field vector in nonrectangular co-ordinates.
$E_{Z}=(\operatorname{cosec} \alpha) E_{z}$
and

$$
\vec{E}=\frac{1}{\sigma} \nabla \times \vec{H}
$$

so that $E_{z}=\frac{1}{\sigma}\left(\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right)=-\frac{1}{\sigma} \frac{\partial H_{x}}{\partial y}=-\frac{1}{\sigma} \frac{\partial H_{x}}{\partial Y}$
Therefore $E_{z}=-\frac{\operatorname{cosec} \alpha}{\sigma} \frac{\partial H_{x}}{\partial Y}$
and $\quad \frac{1}{\sigma_{3}} \frac{\partial H_{3}}{\partial Y}=\frac{1}{\sigma_{1}} \frac{\partial H_{1}}{\partial Y}$
For E-polarization the tangential component of the magnetic field is continuous and a similar set of equations results.

Hence the boundary conditions required to solve Maxwell's equations are, for H-polarization:
$H(i) \quad$ The transmitted magnetic field, $G(y)=$ the magnetic field in the air on the boundary plane $Z=0,-\infty<Y<+\infty$

H(1i) $\quad H_{1}=H_{3}=g(Z)$ on $\quad Y=0$.
H(iii) Etangential is continuous, i.e.
$\frac{1}{\sigma_{3}} \frac{\partial H_{3}}{\partial Y}=\frac{1}{\sigma_{1}} \frac{\partial H_{1}}{\partial Y} \quad$ on,$Y=0$
H(iv) $H_{1} H_{3}, \frac{\partial H_{1}}{\partial Z}, \frac{\partial H_{3}}{\partial Z}, \frac{\partial H_{1}}{\partial Y}$ and $\frac{\partial H_{3}}{\partial Y}$ all tend to zero as $\mathbb{Z} \rightarrow+\infty$.

H(v) $H_{1}=G_{1} H_{0}, Y=+\infty$ and $H_{3}=G_{3} H_{0}, Y=-\infty$, which are all known, constant and finite.

For E-polarization the boundary conditions are:
$E(1) \quad$ The transmitted electric field $C(Y)=$ the electric field in the air on $Z=0,-\infty<y<+\infty$.

E(ii) $\quad E_{3}=E_{1}=f(Z)$ on $Y=0$
E (iii) $\frac{\partial E_{3}}{\partial Y}=\frac{\partial E_{1}}{\partial Y}$ on $Y=0$
E(iv) $E_{1}, E_{3}: \frac{\partial E_{1}}{\partial Z}, \frac{\partial E_{3}}{\partial Z}, \frac{\partial E_{1}}{\partial Y}$ and $\frac{\partial E_{3}}{\partial Y}$ all tend to zero as $Z \rightarrow \infty(\alpha \neq 0)$.
$E(v) \quad E_{1}=C_{1} E_{0}, Y \rightarrow+\infty$ and $E_{3}=C_{3} E_{0}, Y=-\infty$, which are all known, constant and finite.
23.

It will be noted that in the case $\alpha=90^{\circ} \quad Y=y$ and $Z=z$ and the boundary conditions still hold true.

BOUNDARY CONDITIONS FOR $\alpha=90^{\circ}$

The boundary conditions for the general case have already been enumerated. These conditions will now be adapted to the case $\alpha=90^{\circ}$. In addition the boundary conditions across the land-sea and air contact will be given so that the values of $G(y)$ and $C(y)$ can be computed knowing the form of the electric and magnetic fields in the air and in the land-sea conductors and equating them on the boundary $\mathrm{z}=0$.

For H-polarization:
$H(1)$ The transmitted magnetic field equals the total magnetic field in the air which has the value $G(y)$ on the boundary plane $z=0,-\infty<y<+\infty$.

$$
\text { H(ii) } \quad H_{1}=H_{3}=g(z) \text { on } y=0 \text {. }
$$

$\mathrm{H}(\mathrm{iii})$ The tangential component of the electric field is continuous, ie.

$$
\frac{1}{\sigma_{3}} \frac{\partial H_{3}}{\partial y}=\frac{1}{\sigma_{1}} \frac{\partial H_{1}}{\partial y} \quad \text { on } \quad y=0
$$

$$
\begin{aligned}
& H(i v) \quad H_{1}, H_{3}, \frac{\partial H_{1}}{\partial z}, \frac{\partial H_{3}}{\partial z}, \frac{\partial H_{1}}{\partial y} \text { and } \frac{\partial H_{3}}{\partial y} \text { all tend } \\
& \text { to zero as } z \text { tends to infinity. }
\end{aligned}
$$ to zero as z tends to infinity.

$$
\begin{aligned}
H(v) & H_{1}
\end{aligned}=G_{1} H_{0} e^{-\beta_{1} z} \text { for } y \text { equal to }+\infty \text { and } ~\left\{\begin{array}{l}
H_{3}
\end{array}=G_{3} H_{0} e^{-\beta_{3} z} \text { for } y \text { equal to }-\infty\right. \text {, where }
$$ the values of G_{1} and G_{3} are known, constant and finite.

H(vi) The reflected wave in air is propagated upwards, in the negative direction.

H(vii) The tangential components of the electric field are continuous across the land-sea and air contact, ie.

$$
\begin{aligned}
& E_{y_{1}}=E_{y_{2}}, \quad y>0, z=0 \\
& E_{y_{3}}=E_{y_{2}}, \quad y<0, z=0
\end{aligned}
$$

For E-polarization:
$E(i)$ The transmitted electric field equals the total electric field in the air which has the value $C(y)$ on the boundary plane $z=0,-\infty<y<+\infty$.

E(ii) $\quad E_{3}=E_{1}=f(z)$ on $y=0$.
E(iii) The tangential components of the magnetic field are equal on the land-sea interface, ie.

$$
\frac{\partial E_{3}}{\partial y}=\frac{\partial E_{1}}{\partial y} \quad \text { on } \quad y=0 .
$$

E(iv) $E_{1,} E_{3}, \frac{\partial E_{1}}{\partial z}, \frac{\partial E_{3}}{\partial z}, \frac{\partial E_{1}}{\partial y_{1}}$ and $\frac{\partial E_{3}}{\partial y}$ all tend
to zero as z tends to infinity.
E (v) $\quad E_{1}=C_{1} E_{0} e^{-\beta_{1} z}$ for y equal to $+\infty$ and $E_{3}=C_{3} E_{0} e^{-\beta_{3} z}$ for y equal to $-\infty$, where the values of C_{1} and C_{3} are known, constant and finite.

$$
\begin{aligned}
& \text { E(vi) The reflected wave in the air is propagated } \\
& \text { upwards, in the negative direction. } \\
& \text { E(vii) The tangential components of the magnetic field } \\
& \text { are continuous across the land-sea and air } \\
& \text { contact, i.e. } \\
& H_{y 1}=H_{y_{2}}, \quad y>0, z=0 \\
& H_{y_{3}}=H_{y z}, \quad y<0, z=0
\end{aligned}
$$

The continuity of the vertical components of the magnetic field is ensured by the condition of continuity of the electric field for E-polarization.

It is on the question of the correct boundary conditions that most of the earlier work has been in error. I. d'Erceville and G. Kunetz say that to solve the case of E-polarization one must assume that at the surface E_{x} is not dependent on y, which amounts to assuming that the vertical component of the magnetic field is zero on the surface. The fallacy of this assumption has already been pointed out in the "Introduction" to this thesis. D. Rankin, following the above authors assumes that, for the case of H-polarization, the vertical component of the electric field is zero on the surface. From this he concludes that

$$
\frac{d H x}{d y}=0
$$

If this were so then the function $G(y)$ would be equal to a constant, which is incorrect. Hence Rankin's assumption
that the vertical component of the electric field is zero on the surface $z=0$ is incorrect. J.T. Weaver has also made the same incorrect assumption in stating that on $z=0, j_{z}=0$ for H-polarization and $\frac{d H_{y}}{d y}=0$ for E-polarization.

SOLUTION OF THE EQUATIONS FOR $\alpha=90^{\circ}$

H-polarization
When $\alpha=90^{\circ}$ the co-ordinate system is rectangular and the differential equation to be solved is thus simplified. Equation (ll), viz.

$$
\begin{equation*}
\frac{\partial^{2} H_{x}}{\partial y^{2}}+\frac{\partial^{2} H_{x}}{\partial z^{2}}=i \eta^{2} H_{x} \tag{50}
\end{equation*}
$$

has to be satisfied with boundary conditions along $\mathrm{y}=0$ and $z=0$. Because of the simplified differential equation it is possible to use a Fourier sine transform (see Appendix A5 for the general case). A Fourier cosine transform could also be used but it would be necessary to establish the boundary conditions in a slightly more complicated manner. The Fourier sine transform, with its inverse, can be expressed as follows
and

$$
\left.\begin{array}{l}
\overline{\varphi(x)}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \varphi(x) \sin \xi x d x \tag{51}\\
\varphi(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \overline{\varphi(x)} \sin \xi x d \xi
\end{array}\right\}
$$

Application of the Fourier sine transform to the differential equation gives the following results:

$$
\begin{equation*}
\frac{d^{2} \bar{H}_{x}}{d y^{2}}=v^{2} \bar{H}_{x}-\sum \sqrt{\frac{2}{\pi}} H_{x}(y, 0) \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu^{2}=\Sigma^{2}+\beta^{2} \quad \text { where } \beta^{2}=i \eta^{2} \tag{53}
\end{equation*}
$$

If we now let $H_{x}(y, 0)=G(y)$ it can be seen that there is only one unknown function whereas for the general case there are two (see Appendix A5).

The solution of this differential equation can be expressed as follows:

$$
\begin{aligned}
& H_{1}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left[K_{4} e^{-v_{1} y}+\psi_{1}(y)\right] \sin \xi z d \xi \\
& H_{3}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left[K_{1} e^{\nu_{3} y}+\psi_{3}(y)\right] \sin \xi z d \xi
\end{aligned}
$$

where

$$
\begin{align*}
K_{4} & =g(\xi)-\psi_{1}(0), \quad K_{1}=g\left(\xi_{1}\right)-\psi_{3}(0) \tag{55}\\
\psi_{1,3}(y) & =\sqrt{\frac{2}{\pi}} \frac{\sum^{2}}{v_{1,3}^{2}} \sum_{n=0}^{\infty} \frac{1}{v_{1,3}^{2 n}} \frac{d^{2 n} G(y)}{d y^{2 n}} \tag{56}\\
\text { and } \quad \overline{g(\xi)} & =\frac{\nu_{1} \sigma_{3} \psi_{1}(0)+v_{3} \sigma_{1} \psi_{3}(0)+\sigma_{3} \psi_{1}^{\prime}(0)-\sigma_{1} \psi_{3}^{\prime}(0)}{\nu_{1} \sigma_{3}+\nu_{3} \sigma_{1}} \tag{57}
\end{align*}
$$

E-polarization

Similar solutions exist for the case of E-polarization. No proof will be given but the results will be stated:

$$
\begin{align*}
& E_{1}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left[K_{2} e^{-\nu_{1} y}+\Psi_{1}(y)\right] \sin \xi z d \xi, y \geqslant 0 \tag{a}\\
& E_{3}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left[K_{3} e^{\nu_{3} y}+\Phi_{3}(y)\right] \sin \xi z d \xi, y \leqslant 0 \tag{b}
\end{align*}
$$

where $\Psi_{1,3}(y)=\sqrt{\frac{2}{\pi}} \sum_{V_{1,3}^{2}} \sum_{n=0}^{\infty} \frac{1}{v_{1,3}^{2 n}} \frac{d^{2 n} C(y)}{d y^{2 n}}$
with $K_{2,3}=f(\xi)-\Psi_{1,3}(0)$
and

$$
\begin{equation*}
f(\xi)=\frac{V_{1} \Psi_{1}(0)+V_{3} \Psi_{3}(0)+\Psi_{1}^{\prime}(0)-\Psi_{3}(0)}{V_{1}+V_{3}} \tag{60}
\end{equation*}
$$

Having obtained the basic formulae for the magnetic and electric fields, explicit expressions for $\psi_{1}(y), \Psi_{3}(y)$ $\Psi_{1}(y)$ and $\Psi_{3}(y)$ will be obtained.

The first approximation is that ψ and Ψ are equal to one constant for $\mathrm{y} \geqslant 0$ and to another for $\mathrm{y} \leqslant 0$. This is too simple an assumption, and leads to false physical results (i.e. a step-function for the magnetic and electric fields for $z=0$). The next estimate would be to apply the function noted in the physical interpretation with the values

$$
\begin{aligned}
E_{30} & =C_{3} E_{0} \\
E_{10} & =C_{1} E_{0} \\
H_{30} & =G_{3} H_{0} \\
\text { and } H_{10} & =G_{1} H_{0}
\end{aligned}
$$

The values of the ψ 's and Ψ 's can then be calculated completely as follows. Heaviside's operator formula for exponentials is

$$
\begin{equation*}
\frac{1}{F(D)}\left[e^{a x}\right]=\frac{e^{a x}}{F(a)}, F(a) \neq 0 \tag{61}
\end{equation*}
$$

Applying this to $G(y)$ and $C(y)$ and noting that

$$
\begin{equation*}
\frac{1}{1-\frac{\beta^{2}}{\nu^{2}}}=\frac{\nu^{2}}{\xi^{2}} \tag{62}
\end{equation*}
$$

then $\psi_{1}(y), \psi_{3}(y), \Psi_{1}(y)$ and $\Psi_{3}(y)$ become

$$
\begin{equation*}
\Psi_{1}(y)=\sqrt{\frac{2}{\pi}} \frac{\varepsilon_{1}}{v_{1}^{2}}\left[H_{10}+\left(g(0)-H_{10}\right) e^{-\beta_{1} y} \frac{v_{1}^{2}}{\xi_{1}^{2}}\right] \tag{a}
\end{equation*}
$$

(A proof of this is given in Appendix A4).
Similarly

$$
\begin{align*}
& \Psi_{3}(y)=\sqrt{\frac{2}{\pi}} \frac{\xi}{V_{3}^{2}}\left[H_{30}+\left(g(0)-H_{30}\right) e^{\beta_{3} y} \frac{V_{3}^{2}}{\xi^{2}}\right] \tag{b}\\
& \Psi_{1}(y)=\sqrt{\frac{2}{\pi}} \frac{\xi}{v_{1}^{2}}\left[E_{10}+\left(f(0)-E_{10}\right) e^{-\beta_{1} y} \frac{v_{1}^{2}}{\xi^{2}}\right] \tag{a}
\end{align*}
$$

32.

$$
\begin{equation*}
\Psi_{3}(y)=\sqrt{\frac{2}{\pi}} \frac{\xi}{v_{3}^{2}}\left[E_{30}+\left(f(0)-E_{30}\right) e^{\beta_{3} y} \frac{v_{3}^{2}}{\bar{\xi}^{2}}\right] \tag{b}
\end{equation*}
$$

The question of the validity of Heaviside's method may be raised but the results can be verified by substituting equations (63(a),(b)) and (64(a), (b)) into equations (11) (12).

For the case $y=0$

$$
\begin{align*}
\Psi_{1,3}(0) & =\sqrt{\frac{2}{\pi}} \sum_{\nu_{1,3}^{2}}\left[H_{1,90}+\left(g(0)-H_{10,30}\right) \frac{\nu_{1,2}^{2}}{\xi^{2}}\right] \tag{a}\\
\Psi_{1,3}(0) & =\sqrt{\frac{2}{\pi}} \frac{\xi_{1}^{2}}{V_{1,3}^{2}}\left[E_{10,30}+\left(f(0)-E_{10,30}\right) \frac{V_{1,3}^{2}}{\xi^{2}}\right] \tag{b}\\
\text { and } \Psi_{1,3}^{\prime}(0) & =\sqrt{\frac{2}{\pi} \frac{\left(\beta_{1,3}\right)}{\xi}}\left(g(0)-H_{10,30}\right) \tag{a}\\
\Psi_{1,3}^{\prime}(0) & =\sqrt{\frac{2}{\pi} \frac{\left(\mp \beta_{1,3}\right)}{\xi}}\left(f(0)-E_{10,30}\right) \tag{b}
\end{align*}
$$

Substituting (63(a)) into equation (54(a)) and letting $y \rightarrow \infty$ the boundary condition $H(v)$ for $\alpha=90^{\circ}$ is satisfied, ie.

$$
\begin{aligned}
& H_{1}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sqrt{\frac{2}{\pi}} \frac{\xi}{v_{1}^{2}} H_{0} G_{1} \sin \xi z d \xi=H_{0} G_{1} e^{-\beta_{1} z} \\
& H_{3}=H_{0} G_{3} e^{-\beta_{3} z}, \quad E_{1}=E_{0} C_{1} e^{-\beta_{1} z} \text { and } E_{3}=E_{0} C_{3} e^{-\beta_{3} z}
\end{aligned}
$$

This shows that the suggested solution is, at least, well behaved at the limits $y \rightarrow \pm \infty$.

The unknown function $g(0)$ may be found by equating the tangential components of the electric field at ($0,0,0$) .
i.e. $\quad \frac{1}{\sigma_{1}} \frac{\partial H_{1}}{\partial y}=\frac{1}{\sigma_{3}} \frac{\partial H_{3}}{\partial y} \quad$ on $z=0$

$$
-\sigma_{3} \beta_{1}\left(g(0)-G_{1} H_{0}\right)=\sigma_{1} \beta_{3}\left(g(0)-G_{3} H_{0}\right)
$$

$$
\begin{equation*}
g(0)=\frac{\left(G_{1} \sigma_{3} \beta_{1}+G_{3} \sigma_{1} \beta_{3}\right) H_{0}}{\sigma_{3} \beta_{1}+\sigma_{1} \beta_{3}} \tag{a}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
f(0)=\frac{\left(C_{1} \beta_{1}+C_{3} \beta_{3}\right) E_{0}}{\beta_{1}+\beta_{3}} \tag{b}
\end{equation*}
$$

Hence the functions $\Psi_{1}(y), \psi_{3}(y), \Psi_{1}(y)$ and $\Psi_{3}(y)$ are all known and may be computed.

Values of the electric and magnetic field may now be found by direct substitution and when one lets $z \rightarrow 0$ (from the positive side) the integral should be equal to $G(y)$ for H-polarization and $C(y)$ for E-polarization if the analytical procedures employed are self consistent. Unfortunately, even in the case of this relatively simple estimate, the evaluation of the integral is extremely complex (due to the presence of branch points) and can only be evaluated by numerical means.

To ensure that $G(y)$ and $C(y)$ are the correct functions on the surface $z=0$, it is necessary to equate the magnetic and electric fields in the conducting media to the magnetic and electric fields in the air using the boundary conditions $H(i)$, (vi) and (vil) for the magnetic field and boundary conditions $E(1)$, (vi) and (vii) for the electric field.

Applying condition $H(v i 1)$ for H-polarization it is found that:

$$
\begin{equation*}
\frac{1}{\sigma_{1}} \frac{\partial H_{1}}{\partial z}=-\frac{i}{\omega t} \frac{\partial H_{2}}{\partial z}, \quad \text { on } z=0 \tag{68}
\end{equation*}
$$

The value of H_{1} is given by equation (54(a)), as z tends to zero from the positive side, and the value of H_{2} is given in part by equation (21.), as z tends to zero from the negative side. Therefore:

$$
\begin{align*}
& \lim _{z \rightarrow 0+}\left\{\frac{1}{\sigma_{1}} \frac{\partial}{\partial z}\left(\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left[K_{4} e^{-\nu_{1} y}+\psi_{1}(y)\right] \sin \xi z d \xi\right)\right]= \\
& -\lim _{z \rightarrow 0-}\left\{\frac { i } { \omega \epsilon } \frac { \partial } { \partial z } \left(\frac { 1 } { 2 \pi } \int _ { - \infty } ^ { + \infty } d m e ^ { - i (m y + n z) } \left[\int_{0}^{\infty} G_{1}(\eta) e^{i m \eta} d \eta+\right.\right.\right. \tag{69}\\
& \left.\left.\left.\int_{-\infty}^{0} G_{3}(\eta) e^{i m \eta} d \eta\right]-H_{0}\left[e^{-i\left(m_{2} y-n_{2} z\right)}-e^{-i\left(m_{2} y+n_{2} z\right)}\right]\right)\right\}
\end{align*}
$$

The order of differentiation and integration is interchangeable on the right hand side and so is the order of taking the limit and integration. Hence, assuming normal incidence:

$$
\begin{aligned}
\text { R.H.S. }= & -\lim _{z \rightarrow 0-} \frac{i}{\omega \epsilon}\left[-i n_{2} H_{0}\left(e^{i n_{2} z}+e^{-i n_{2} z}\right)-\frac{i}{2 \pi} \int_{-\infty}^{+\infty} n(m) d m e^{-i(m y+n z)}\right. \\
& \left.x\left\{\int_{0}^{\infty} G_{1}(\eta) e^{i m \eta} d \eta+\int_{-\infty}^{0} G_{3}(\eta) e^{i m \eta} d \eta\right\}\right] \\
= & -\frac{2 n_{2} H_{0}}{\omega \epsilon}-\frac{1}{2 \pi \omega \epsilon} \int_{-\infty}^{+\infty} n(m) e^{-i m y} d m\left\{\int_{0}^{\infty} G_{1}(\eta) e^{i m \eta} d \eta\right. \\
& \left.+\int_{-\infty}^{0} G_{3}(\eta) e^{i m \eta} d \eta\right\}
\end{aligned}
$$

where $n_{2}=\sqrt{\mu \in \omega^{2}}$, from equation (17), and the value of $G(\eta)$ is given by the estimate. Having obtained the value of the right hand side of the equation, to prove that the estimated value of $G(y)$ is correct, the value of the left hand side must be computed and proved to be equal to the right hand side.

$$
\text { L.H.S. }=\lim _{z \rightarrow \infty^{+}}\left\{\frac{1}{\sigma_{1}} \frac{\partial}{\partial z}\left(\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left[K_{4} e^{-v_{1} y}+\psi_{1}(y)\right] \sin \varepsilon_{1} z d \xi\right)\right\}
$$

Let.. $I_{1}(y, z)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left[-\psi_{1}(0) e^{-v, y}+\psi_{1}(y)\right] \sin \xi_{1} z d \xi$

$$
\begin{equation*}
=\frac{z}{\pi} \int_{0}^{\infty}\left[\frac{\xi}{v_{1}}\left(H_{10}\left(1-e^{-v_{1} y}\right)\right] \sin \xi z d \xi\right. \tag{70}
\end{equation*}
$$

which, as y tends to infinity, gives the boundary condition $H(v)$ upon integration but otherwise, is an integral with a branch point. If the integral I is given by

$$
I=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left[K_{4} e^{-\lambda_{1} y}+\psi_{1}(y)\right] \sin \xi_{7} z d \xi
$$

then $\quad I=I_{1}+I_{2}$
where

$$
I_{2}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \overline{g(\xi)} e^{-v_{1} y} \sin \xi \xi d \xi
$$

$$
I_{2}=\frac{2}{\pi} \int_{0}^{\infty}\left[\frac{\left.\left(v_{3} \sigma_{3} H_{10}+v_{1} \sigma_{1} H_{3}\right) \nu_{1} v_{3}+\sigma_{3}\left(g(0)-H_{1}\right)\left(v_{1}-\beta_{1}\right) / \xi^{2}+\sigma_{1}\left(g(0)-H_{33}\right)\left(v_{3}-\beta_{3}\right) / \xi_{2}\right]}{v_{1} \sigma_{3}+\sigma_{1} v_{3}}\right]
$$

$$
\begin{equation*}
x\left\{e^{-v_{1} y} \sin \xi z d \xi\right. \tag{71}
\end{equation*}
$$

This integral can be subdivided into three more integrals, ie. let $I_{2}=I_{a}+I_{b}+I_{c}$
where

$$
\begin{align*}
I_{a} & =\frac{2}{\pi} \int_{0}^{\infty} \frac{\sum\left(\nu_{3} \sigma_{3} H_{10}+v_{1} \sigma_{1} H_{30}\right) e^{-\nu_{1} y_{2}} \sin \xi z d \xi}{\left(v_{1} \sigma_{3}+\nu_{3} \sigma_{1}\right) v_{1} v_{3}} \tag{a}\\
I_{b} & =\frac{2}{\pi} \int_{0}^{\infty} \frac{\left(g(0)-H_{10}\right)\left(\nu_{1}-\beta_{1}\right) \sigma_{3} e^{-v_{1} y} \sin \xi z d \xi}{\left(\nu_{1} \sigma_{3}+\sigma_{1} v_{3}\right) \xi} \tag{b}\\
\text { and } I_{c} & =\frac{2}{\pi} \int_{0}^{\infty} \frac{\left(g(0)-H_{30}\right)\left(\nu_{3}-\beta_{3}\right) \sigma_{1}}{\left(\nu_{1} \sigma_{3}+\sigma_{1} v_{3}\right) \xi} e^{-v_{1} y} \sin \xi z d \xi \tag{c}
\end{align*}
$$

These integrals possess complex branch-points making their mathematical evaluation extremely complicated. It is suggested that these equations can be better solved on a computer and the results plotted on a graph. If the results plotted from the right hand side of the equation fall on the curve derived from the left hand side then it may be assumed that the estimate satisfies all boundary conditions and differential equations.

The equations for E-polarization, which are similar to H-polarization, are

$$
\begin{equation*}
I_{3}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left[-\Psi_{1}(0) e^{-\lambda, y}+\Psi_{1}(y)\right] \sin \xi z d \xi=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \xi_{1}\left[E_{10}\left(1-e^{-x y}\right)\right] \sin \xi z d \xi \tag{72}
\end{equation*}
$$

and $\quad I=I_{3}+I_{4}$
where I_{4} is given by

$$
\begin{equation*}
\sqrt{\frac{2}{\pi}} \int_{0}^{\infty}\left[f\left(\xi_{1}\right) e^{-\lambda, y}\right] \sin \xi_{1} z d \xi_{1}, \quad y \geqslant 0 \tag{73}
\end{equation*}
$$

and

$$
\begin{gather*}
I_{4}=\frac{2}{\pi} \int_{0}^{\infty}\left[\frac{\left(\nu_{3} E_{10}+v_{1} E_{30}\right) / v_{1} v_{3}+\left(f(0)-E_{10}\right)\left(v_{1}-\beta_{1}\right) / \xi^{2}+\left(f(0)-E_{30}\right)\left(\nu_{3}-\beta_{3}\right) / \xi^{2}}{\left(\nu_{1}+v_{3}\right)}\right] \\
\quad \times \xi e^{-\nu_{1} y} \sin \xi z d \xi \tag{74}
\end{gather*}
$$

Again $I_{4}=I_{d}+I_{e}+I_{f}$
where

$$
\begin{align*}
I_{d} & =\frac{2}{\pi} \int_{0}^{\infty} \frac{\left(\nu_{3} E_{10}+\nu_{1} E_{30}\right) e^{-\nu_{1} y}}{\left(\nu_{1}+\nu_{3}\right) \nu_{1} \nu_{3}} \sin \xi z d \xi \\
I_{e} & =\frac{2}{\pi} \int_{0}^{\infty} \frac{\left(f(0)-E_{10}\right)\left(\nu_{1}-\beta_{1}\right)}{\left(\nu_{1}+\nu_{3}\right) \xi} e^{-\nu_{1} y} \sin \xi z d \xi \tag{b}\\
\text { and } \quad I_{f} & =\frac{2}{\pi} \int_{0}^{\infty} \frac{\left(f(0)-E_{30}\right)\left(\nu_{3}-\beta_{3}\right) e^{-\nu_{1} y}}{\left(\nu_{1}+\nu_{3}\right) \xi} \sin \xi z d \xi
\end{align*}
$$

The numerical integration of each of these equations may be obtained by seperating the functions into real and imaginary parts and evaluating each integral on a computer.

The vertical magnetic field can be found, for the case of E-polarization, from equation (10) to be

$$
H_{z}=-\frac{i}{\mu} \frac{\partial E_{x}}{\partial y}
$$

Therefore:

$$
\begin{gather*}
\left.H_{z 1}=\frac{i 2}{\mu \omega \pi} \int_{0}^{\infty} \frac{\left.\left(\nu_{3} E_{1}+v_{1} E_{30}\right) / \nu_{1} \nu_{3}+\left(f(0)-E_{10}\right)\left(v_{1}-\beta_{1}\right) / \xi^{2}+\left(f(0)-E_{30}\right)\left(\nu_{3}-\beta_{3}\right) / \xi^{2}\right]}{\left(\nu_{1}+v_{3}\right)}\right] \\
x \xi \nu_{1} e^{-\nu_{1} y} \sin \xi z d \xi, \quad y \geqslant 0 \tag{75}
\end{gather*}
$$

A similar equation exists for $\mathrm{y} \leqslant 0$.

If the estimate $C(y)$ is correct then
and

$$
\left.\begin{array}{l}
H_{z_{1}}=\frac{i}{\omega} \beta_{1}\left(f(0)-E_{10}\right) e^{-\beta_{1} y} \tag{76}\\
H_{z_{3}}=\frac{i}{\mu \omega} \beta_{3}\left(f(0)-E_{30}\right) e^{-\beta_{3} y}
\end{array}\right\} \quad y \geqslant 0
$$

It will be noticed that the vertical magnetic field is independent of the frequency at $y=0 . \quad \beta_{1}$ is proportional to the square root of the frequency and so is ($\left.f(0)-E_{10}\right)$, and hence the only frequency dependent term is $\exp (-\beta, y)$. This result was obtained, assuming that

$$
\begin{equation*}
\frac{\partial E_{1}}{\partial z}=\frac{\partial E_{3}}{\partial z}=-i \omega B \tag{77}
\end{equation*}
$$

on $z=0$, where B is constant, by J.T. Weaver (1963) and also by T. Watanabe in a derivation of equations for magnetotelluric modeling (private communication). J.T. Weaver has calculated the ratio of the vertical to horizontal magnetic field over the land-sea contact and his graphs are shown in Figure VII.
40.

FIGURE VII Vertical magnetic anomaly, after J.T. Weaver.

PRACTICAL IMPLICATIONS

The vertical anomaly found in the Fraser River Delta has already been mentioned. This anomaly, it is thought, is due to relatively close-surface conductivity variations and the emphasis, if placed anywhere, must lie on periods in the range $0<T \leqslant 50$ seconds. Longer periods occur less frequently and are less accurately plotted. Further the theory so far expounded of lateral skin-depth could not be interpreted for depths of over 5 km . in the sea at an absolute maximum and therefore longer periods would be of no interest here.

Geomagnetic bays, with a period of about 1 hour (3600 seconds) have been recorded by U. Schmucker on magnetograms in California. Stations were set up on a line perpendicular to the sea coast for a distance of just under 300 km . at San Francisco and La Jolla. Readings were also taken on the San Clemente Islands for the La Jolla traverse (see Figure IX). A study of the vertical component of the magnetic fields for well behaved bays, i.e. the electric field vector parallels the coast, showed that at the sea coast there was a pronounced disturbance but the further inland the records were taken the smaller the magnitude of the disturbance until at a distance of 100 km . or less the disturbance disappeared (see magnetogram records Figure VIII). If one assumes that the theory as previously described is

$$
\begin{array}{lll}
\pi & \pi & \pi \\
D & H & Z
\end{array}
$$

$$
42
$$

FIGURE VIII Magnetogram records, adapted from U. Schmucker.

correct one is led to the conclusion that there is a lateral diffusion current arising from lateral inhomogeneities in the conductivity. If this is the case then crude order of magnitude estimations may be carried out to find the approx1mate dimensions of this conductivity anomaly.

$$
\text { If } \mu=1.257 \times 10^{-6} \text { henry } / \mathrm{m} ., \quad \omega=3600 \mathrm{cps}, \text { and }
$$ $z=100 \mathrm{~km}$. where z is taken as the lateral dimension of the diffusion, the conductivity, σ, $c a n$ be determined from the relation

$$
\frac{7}{\sqrt{2}}=\frac{1}{z}=\sqrt{\frac{1}{2} \mu \omega \sigma}
$$

σ is found to be of the order of $10^{-1} \mathrm{mho} / \mathrm{m}$.
S.P. Srivastava's Ph.D. thesis (1962) contained a study of the subsurface conductivity of the planes of Alberta using the principles of magnetotellurics as expounded by L. Cagniard (1953). Srivastava concluded that for his survey the distribution of the conductivity with depth could be summarized as follows:

0 to $5 \mathrm{~km} ., \quad 10^{-1} \mathrm{mho} / \mathrm{m}$.
5 to $90 \mathrm{~km} ., \quad 10^{-4} \mathrm{mho} / \mathrm{m}$.
90 to $150 \mathrm{~km} ., \quad 10^{-1} \mathrm{mho} / \mathrm{m}$.
T. Rikitake (1951) considered a two layer model, corresponding to Srivastava's second and third layers, but he placed his depth of contact closer to 400 km . than to 100 km .
45.

FIGURE X Schematic cross-section at the sea coast for an oversimplified conductivity cliff.

FIGURE XI Velocity depth curve (shear waves) under the Canadian Shield (Model CANSD) and under the ocean (Model 8099), after J. Brune and J. Dorman.

The initial value of $10^{-1} \mathrm{mho} / \mathrm{m}$., ranging from a depth of 0 to 5 km. , is not thick enough to appreciably influence the overall effective conductivity for the first 90 km . Therefore to a first approximation, the conductivity at a depth of 90 km . or more is much larger than the conductivity above, i.e.

$$
\frac{\sigma_{50 \mathrm{~km}}}{\sigma_{90 \mathrm{~km}}}=\frac{1}{1000}
$$

If this stratification of conductivity is extended to the Pacific Coast and values of the conductivities and depths there are compared with Srivastava's a striking similarity is found to exist. Two points must be emphasized:
(1) The height of the surface of the Earth above the conducting layer ($10^{-1} \mathrm{mho} / \mathrm{m}$.) would be of the order of 100 km . and hence the anomalous vertical field would flatten considerably, i.e. the value of the skindepth would be of the order of 75 km . rather than 100 km . (The alternative to raising the depth would be to lower the conductivity contrast.)
(2) The vertical anomaly would arise, in the first approximation, from a "cliff" in the conductivity at depth; where the value of σ at 200 km . would be $10^{-1} \mathrm{mho} / \mathrm{m}$. under the land and of the order of $10^{-4} \mathrm{mho} / \mathrm{m}$. under the sea.

FIGURE XII(a) Idealized plot of skin depth vs. period for two conductivities.

FIGURE XII(b) Probable variation of H_{Z} with period.

One is led to the conclusion that the variation of conductivity with depth might be as illustrated in Figure X. It would seem logical to try and check this result with other information about the Earth's mantle and crust derived from seismic sources. I. Sykes et al. (1962) have proposed a velocity depth curve for the mantle under the sea, and have suggested that there is a low velocity layer between the depths of 60 and 215 km . J. Brune and J. Dorman (1963) have suggested a velocity depth curve for the mantle and crust under the Canadian Shield. Their results show that there is a low velocity layer between the depths of 115 and 315 km . Hence the low velocity layer must go from deep to shallower depths as it passes from under the Continents to under the Ocean, instead of passing from shallow to deeper depths as might be expected from a simple study of skin depths and conductivity. Hence it must be concluded that either the shape of the low velocity layer and the "isoconds", or lines of equal conductivity, are independent of each other or that the layers and the isoconds are related and the picture of the conductivity distribution is oversimplified. It would seem logical to assume that the latter conclusion is correct but the possibility of the former cannot be completely ruled out. Assuming that the low velocity layer and the isoconds parallel each other the morphology of the vertical magnetic anomaly for various periods may be found from the diagrammatic graphs of depth vs. period and
vertical field vs. period (see Figures XII(a) and (b)). It will be noticed that there are five regions on the graphs, which correspond to (1) no vertical field, (2) growth of the field, (3) field magnitude reaches a maximum and starts to decline, (4) decay of the field and (5) no field. These five regions would correspond to (1) micropulsations, (2) long period micropulsations, (3) and (4) geomagnetic bays and (5) storms. The depth z plotted in the first graph, Figure XII(a), is the skin depth and hence is a function of conductivity. The two curves z_{1} and z_{2} are plots for two different planes of infinite depth and constant conductivity. By interpolation, it is possible to obtain an idea of the shape of the vertical magnetic anomaly as it varies with period for a given conductivity step function. This might be a first approximation to the junction of the velocity depth curve as it passes under the sea coast. Assuming that the depth to the bottom of the layer under the land is D_{1} (315 km .) and under the sea is D_{2} (215 km.), the second graph is obtained, Figure XII(b).

The interpretation of the lateral skin depth becomes somewhat clouded if this picture of the conductivity distribution is assumed to be correct. However, although one may not be able to make good estimates of the conductivity at 100 and 200 km . under the land and the sea, the basic concept should not be discarded. Information can be obtained from the attenuation of the vertical component, but
the exact theory must be reworked for this special case. It is pertinent, at this point, to quote J. Dorman, M. Ewing and J. Oliver (1960), who suggested a structure for the upper mantle of the Pacific Basin from surface wave dispersion: ...Rayleigh waves indicate that the low velocity region of the upper mantle extends upwards to much shallower depth beneath the oceans than beneath the continents. Rayleigh wave dispersion data for the paths on the Pacific basin are interpreted to indicate that shear velocity below the M (Moho) decreases to about $4.3 \mathrm{~km} / \mathrm{sec}$ at depths of about 60 km and that shear velocities are somewhat lower than in the sub-continental mantle down to about 400 km .

The greatest need is for readings of the magnetic field covering the whole spectrum of periods, from 1 second to 24 hours, for distances of 0 to 1000 km . from the coast on the surface of the sea.

Corroborative evidence of Figure XII(b) can be seen from the magnetogram records of U . Schmucker. Vertical magnetic anomalies arise from micropulsations because of the land-sea contact. Unfortunately these cannot be seen from Schmucker's records. There is an anomaly in the vertical component of geomagnetic bays, indicating the presence of some sort of step (it is more
51.
probably a sloping contact) in the conductivity, but no vertical component anomaly is found in storms, indicating that the conductivity is laterally homogeneous at greater depths.

CONCLUSIONS

The values of G_{1} and G_{3} (obtained from Appendix II) show that $G_{1} \simeq 2$ and $G_{3} \simeq 2$ and hence that to a first approximation the result $G_{1}=G_{3}=A$, a constant, as used by J.T. Weaver (1963), is valid. An improvement would be to write the function $\quad G(y)=G_{1} \quad y>0$

$$
=G_{3} \quad y \leqslant 0
$$

but this would be physically unrealistic. Hence the estimate of $G(y)$, which seems to be physically sound, has been suggested to give the solution additional accuracy even though it has not been checked mathematically.

It is found that

$$
C_{1} \propto \frac{1}{\sqrt{\sigma_{1}}} \quad \text { and } \quad C_{3} \propto \frac{1}{\sqrt{\sigma_{3}}}
$$

and hence $\quad C_{1}: C_{3}=1 / 2: 10^{3}$
Thus the term C_{3} is dominant. This fact is important in the computation of $C(y)$.

Graphs of the vertical magnetic field arising in the case of E-polarization have been calculated by J.T. Weaver for the approximations cited above and these have been included here with his very kind consent (see Figure VIII). The graphs have been calculated for $\omega=0.01 \mathrm{cps}$. and $\omega=1 \mathrm{cps}$. and are based on Weaver's equation assuming
constant values across the discontinuity as opposed to a varying value of $C(y)$.

The theory of lateral skin depths has been tentatively applied to two cases, firstly to the vertical magnetic anomaly arising from the Fraser Delta experiment and secondly to the magnetogram records collected by U. Schmucker. Although there seems to be some doubt as to whether the theory may be freely applied in the latter case, one can conclude that there is some sort of lateral conductivity inhomogeneity. Its exact shape and form is not clear, but two models have been proposed, the first being a simple conductivity "cliff" and the second relying on information obtained by seismologists on the low velocity layer.

According to Snell's Law

$$
k_{1} \sin \theta_{1}=k_{2} \sin \theta_{0}
$$

or $\quad\left(\alpha_{1}+i \beta_{1}\right) \sin \theta_{1}=\left(\alpha_{2}+i \beta_{2}\right) \sin \theta_{0}$
However, noting that, for air

$$
\begin{equation*}
\alpha_{2}=\omega \sqrt{\mu_{0} \epsilon_{0}} \quad, \quad \beta_{2}=0 \tag{ii}
\end{equation*}
$$

and, for a conductor $\quad \alpha_{1}=\beta_{1}=\sqrt{\frac{\omega \mu_{1} \sigma_{1}}{2}}$
we can express θ_{1} as a function of $\alpha_{1}, \alpha_{2}, \beta_{1}$, and θ_{0}.
Hence

$$
\begin{equation*}
\sin \theta_{1}=\sin \theta_{0}\left[\omega \sqrt{\mu_{0} \epsilon_{0}} \sqrt{\frac{2}{\omega \mu_{1} \sigma_{1}}} \frac{1}{(1+L)}\right] \tag{iv}
\end{equation*}
$$

The condition, for which the displacement current is negligible is $|\sigma|\rangle \mid i \omega f$ and this is satisfied on the land-air and sea-air boundary. Using this condition in $A\left(\right.$ (iv) $\sin ^{2} \theta$, is given by

$$
\sin ^{2} \theta_{1}=\sin ^{2} \theta_{0}\left[\frac{\omega \epsilon_{0} i}{-\sigma_{1}}\right] \simeq 0
$$

assuming $\mu_{0}=\mu$,

Since the expression for $\sin ^{2} \theta_{1}$ is the product of two
factors, its vanishing can equally well be the result of $\sin ^{2} \theta_{0} \simeq 0$ i.e. $\theta_{0}=0$. Hence the condition that $\left.\frac{\sigma}{\omega \sigma_{0}} \right\rvert\,$ has the same effect as assuming that the wave is propagated almost vertically and that only horizontal components of the electric and magnetic fields exist.

Physically it is possible to see this as follows:
As soon as the wave passes into the conducting medium, the free charges, lying at random throughout the volume, migrate to the boundaries and set up an electric field, which is normal to the surfaces, E_{n}. This field opposes any vertical component of the field in the conductor, ie. $E_{n}=E_{z}$.

APPENDIX AZ

Fresnel Equations

If we assume an initial wave to be of the form

$$
\begin{equation*}
\vec{E}_{i}=\vec{E}_{0} e^{i\left(\omega t-k_{2} \vec{n}_{0} \cdot \vec{r}\right)} \quad, \quad \hat{H}_{i}=\frac{k_{2}}{\omega \mu_{2}} \hat{n}_{0} \times \vec{E}_{i} \tag{i}
\end{equation*}
$$

The transmitted and reflected waves will be of the form

$$
\vec{E}_{t}=\stackrel{\rightharpoonup}{E}_{1} e^{i\left(\omega t-k_{1} \hat{n}_{1} \cdot \vec{r}\right)}, \quad \vec{H}_{t}=\frac{k_{1}}{\omega \mu_{1}} \hat{n}_{1} \times \stackrel{\rightharpoonup}{E}_{t}
$$

A2(ii)
and

$$
\begin{equation*}
\vec{E}_{r}=\vec{E}_{2} e^{i\left(\omega t-k_{2} \hat{F}_{2} \cdot \vec{r}\right)}, \quad \vec{H}_{r}=\frac{k_{2}}{\omega \mu_{2}} \hat{h}_{2} \times \vec{E}_{r} \tag{iii}
\end{equation*}
$$

The only unknown functions are C_{1} and C_{2} for E-polarization and G_{1} and G_{2} for H-polarization where C_{1}, C_{2}, G_{1} and G_{2} are defined by

$$
\vec{E}_{1}=c_{1} \vec{E}_{0}, \quad \vec{E}_{2}=c_{2} \vec{E}_{0}
$$

and $\vec{H}_{1}=G_{1} \vec{H}_{0}, H_{2}=G_{2} \vec{H}_{0}$
at the boundary

$$
\hat{h} \times\left(\vec{E}_{0}+\vec{E}_{2}\right)=\hat{h} \times \vec{E}_{1} \quad \text { and } \hat{h} \times\left(\vec{H}_{0}+\hat{H}_{2}\right)=\hat{\Pi} \times \vec{H}_{1} \quad \text { A2(iv) }
$$

E-polarization

$$
\text { For } E \text {-polarization } \hat{n} \cdot \vec{E}_{0}=0
$$

therefore $\quad E_{0}+E_{2}=E_{1}$
and $\cos \theta_{0} E_{0}-\cos \theta_{2} E_{2}=\frac{\mu_{2} k_{1}}{\mu_{1} k_{2}} \cos \theta_{1} E_{1}$
from equationA2(iv). Noting that

$$
\theta_{0}=\theta_{2} \quad \text { and } \quad k_{1} \cos \theta_{1}=\sqrt{k_{1}^{2}-k_{2}^{2} \sin ^{2} \theta_{0}}
$$

we find

$$
\begin{aligned}
& \overrightarrow{E_{1}}=\frac{2 \mu_{1} k_{2} \cos \theta_{0}}{\mu_{1} k_{2} \cos \theta_{0}+\mu_{2} \sqrt{k_{1}^{2}-k_{2}^{2} \sin ^{2} \theta_{0}}} \begin{array}{l}
E_{0} \\
\vec{E}_{2}=\frac{\mu_{1} k_{2} \cos \theta_{0}-\mu_{2} \sqrt{k_{1}^{2}-k_{2}^{2} \sin ^{2} \theta_{0}}}{\mu_{1} k_{2} \cos \theta_{0}+\mu_{2} \sqrt{k_{1}^{2}-k_{2}^{2} \sin ^{2} \theta_{0}}}
\end{array} . \quad \begin{array}{l}
E_{0}
\end{array},
\end{aligned}
$$

and hence the value of C_{1} and C_{2} may be obtained. It will be noticed that k_{1} is complexput k_{2} is real.

H-polarization

For H-polarization $\hat{\pi} \cdot \hat{H}_{0}=0$
and in this case $\hat{h} \cdot \vec{H}_{0}=\hat{n} \cdot \vec{H}_{1}=\hat{h} \cdot \vec{H}_{2}=0$

Noting that: $E_{0}=-\frac{\omega \mu_{2}}{k_{2}} \hat{h}_{0} \times{\overrightarrow{H_{0}}}_{0} \quad \vec{E}_{1}=\frac{-\omega \mu_{1}}{k_{1}} \hat{h}_{1} \times \overrightarrow{H_{1}}$ and $E_{2}=-\frac{\omega_{2} \mu_{2}}{k_{2}}{\hat{n_{2}}} \vec{H}_{0}$
it is found that
from equation $A 2(i v)$, and hence solving for H_{1} and H_{2} we find,

$$
\begin{aligned}
H_{1} & =\frac{2 \mu_{2} k_{1}^{2} \cos \theta_{0}}{\mu_{2} k_{1}^{2} \cos \theta_{0}+\mu_{1} k_{2} \sqrt{k_{1}^{2}-k_{2}^{2} \sin ^{2} \theta_{0}}} \begin{aligned}
& H_{0} \\
& \text { and } H_{2} \\
& \mu_{2} k_{1}^{2} \cos \theta_{0}^{2} \cos \theta_{0}+\mu_{1} k_{2} \sqrt{k_{1}^{2}-k_{2}^{2} k_{2} \sqrt{k_{1}^{2}-k_{2}^{2} \theta_{0} \sin ^{2} \theta_{0}}} \vec{H}_{0}
\end{aligned}
\end{aligned}
$$

and hence the value of G_{1} and G_{2} can be obtained.

APPENDIX AB

Proof of div $\stackrel{\rightharpoonup}{E}=0$
(1) In the case of E-polarization the electric field has only one non-zero component, E_{x}, and so,

$$
\operatorname{div} \vec{E}=\frac{\partial E_{x}}{\partial x}
$$

which is zero because E_{x} is independent of x.
(2) In the case of H-polarization the electric field has two non-vanishing components E_{y} and E_{z}, which are connected with H_{x} as follows

$$
\begin{aligned}
& \frac{\partial H_{x}}{\partial z}=(\sigma+i \omega \epsilon) E_{y} \\
& -\frac{\partial H_{x}}{\partial y}=(\sigma+i \omega \epsilon) E_{z}
\end{aligned}
$$

(These equations are derived from Maxwell's Equations)
But $\nabla \cdot \vec{E}=\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}$

$$
\text { and, } \frac{1}{(\sigma+i \omega \epsilon)}\left[\frac{\partial}{\partial y}\left(\frac{\partial H}{\partial z}\right)+\frac{\partial}{\partial z}\left(-\frac{\partial H}{\partial y} x\right)\right]=0
$$

therefore $\nabla \cdot \vec{E}=0$

APPENDIX AL

Values of Ψ and Ψ functions for $G(y)$
If $\Psi_{1}(y)=\sqrt{\frac{2}{\pi}} \sum_{i} \sum_{n=0}^{\infty} \frac{1}{\nu_{1}^{2 n+2}} \frac{d^{2 n} H_{1}}{d y^{2 n}}$
then replacing H_{1} by the value of $G_{1}(y)$

$$
\Psi_{1}(y)=\sqrt{\frac{2}{\pi}} \frac{\sum_{2}}{\nu_{1}^{2}}\left[H_{10}+\left(g(0)-H_{10}\right) e^{-\beta, y} \sum_{n=0}^{\infty} \frac{\beta_{1}^{2 n}}{v_{1}^{2 n}}\right]
$$

If $\left|\frac{\beta_{1}^{2}}{\nu_{1}}\right|<1$, the series is convergent and the summation can be simply expressed. If it is divergent (i.e. $\left|\frac{\beta_{1}}{\gamma_{1}}\right|>\mid$) then no solution can be found.

Now $\beta_{1}^{2}=\omega \mu_{1} \sigma_{1} i \quad$ and $\nu_{1}^{2}=\varepsilon^{2}+\omega \mu_{1} \sigma_{1} i$ so that $\frac{\beta_{1}^{2}}{\nu_{1}^{2}}=\frac{1}{1+\xi^{2} / \beta^{2}}$. Therefore for all $\sum \neq 0$ the series is convergent and
therefore

$$
\sum_{n=0}^{\infty} \frac{\beta_{1}^{2 n}}{\nu_{1}^{2 n}}=\frac{\nu_{1}^{2}}{\nu_{1}^{2}-\beta_{1}^{2}}=\frac{\nu_{1}^{2}}{\sum^{2}}
$$

similarly

$$
\psi_{1}(y)=\sqrt{\frac{2}{\pi}} \frac{\sum_{2}^{2}}{\nu_{1}^{2}}\left[H_{10}+\left(g(0)-H_{10}\right) e^{-\beta y} \frac{\nu_{1}^{2}}{\tilde{q}^{2}}\right]
$$

$$
\psi_{3}(y)=\sqrt{\frac{2}{\pi}} \frac{\sum_{\gamma^{2}}}{\nu_{3}}\left[H_{30}+\left(g(0)-H_{30}\right) e^{\beta_{3} y} \frac{\nu_{3}^{2}}{\varepsilon^{2}}\right]
$$

$$
\Psi_{1}(y)=\sqrt{\frac{2}{\pi}} \frac{\sum_{1}^{2}}{\delta_{1}^{2}}\left[E_{10}+\left(f(\alpha)-E_{10}\right) e^{-\beta_{1} y} \frac{\nu_{1}^{2}}{\xi^{2}}\right]
$$

and

$$
\Psi_{3}(y)=\sqrt{\frac{2}{\pi}} \frac{\sum_{1}}{\nu_{3}^{2}}\left[E_{30}+\left(f(0)-E_{30}\right) e^{\beta_{3} y} \frac{\nu_{3}^{2}}{\sum_{1}^{2}}\right]
$$

APPENDIX AS

Solution of the Equations in General: H-polarization

A solution of the general case, when $\alpha \alpha<90^{\circ}$ will only be tentatively suggested and left in general terms, whereas the case for $\alpha=90^{\circ}$ has been worked out in reasonable detail and conclusions can be drawn from this case about the type of field found in the general case.

The general equations differs from the case of $\alpha=90^{\circ}$, because in addition to the second differentials with respect to the Y and the Z coordinates it has a cross-product term. This leads to difficulties in the solution of the partial differential equation. If the Laplace transform is used then two unknown functions result, which both need to be calculated.

$$
\begin{equation*}
\text { If } \varphi(x)=\int_{\Gamma-i \infty}^{\Gamma+i \infty} \frac{1}{2 \pi i} e^{\xi x} d \xi \int_{0}^{\infty} \varphi(x) e^{-\xi x} d x \tag{1}
\end{equation*}
$$

is defined as the Laplace transform with its inverse, then applying it to the general equation (16), forH-polarization, it is found that

$$
\frac{d^{2} \bar{H}_{x}}{d Y^{2}}-2(\cos x) 5 \frac{d \bar{H}_{x}}{d Y}+\left(\xi^{2}-i \eta^{2} \sin ^{2} \alpha\right) \bar{H}_{x}=\left[2 \cos \alpha \frac{\partial H_{x}}{\partial Y}+\frac{\partial H_{x}}{\partial Z}+\xi H_{x}\right]_{z=0}
$$

or, writing $\nu^{2}=\xi^{2}-\beta^{2} \sin ^{2} \alpha$ and $\left.H_{x}\right|_{z=0}=G(Y)$,

$$
\frac{d^{2} H_{x}}{d Y^{2}}-2 \xi \cos \alpha \frac{d H_{x}}{d Y}+v^{2} H_{x}=2 \cos x \frac{\partial G(Y)}{\partial Y}+\xi G(Y)+\left[\frac{\partial H_{x}}{\partial Z}\right]_{Z=0} A 5(i i)
$$

This equation is an ordinary differential equation in Y, and, placing

$$
\begin{equation*}
U(Y)=2 \cos \alpha \frac{\partial G(Y)}{\partial Y}+\xi G(Y)+\left[\frac{\partial H_{x}}{\partial Z}\right]_{2=0} \tag{iii}
\end{equation*}
$$

we find $\frac{d^{2} \bar{H}_{x}}{d Y^{2}}-2 \xi \cos \alpha \frac{d H_{x}}{d Y}+\nu^{2} \bar{H}_{x}=U(Y)$
A solution of this equation would be

$$
\bar{H}_{x}=\underline{K}_{2} e^{\left(\gamma_{1}+\delta_{1}\right) y}+\underline{K}_{1} e^{\left(\gamma_{1}-\delta_{1}\right) y}+V(y) \quad \text { A5(iv) }
$$

where $\gamma_{1}=\xi \cos \alpha \quad$ and $\quad \delta_{1}=\sin \alpha \sqrt{i \eta^{2}-\xi^{2}} \quad$ A5 (v)
Setting $\delta_{1}=a+i b$ we get,

$$
\frac{\delta_{1}}{\sin \alpha}=\frac{\eta_{1}^{2}}{\left[2\left(\xi^{2}+\sqrt{5^{4}+\eta^{4}}\right)\right]^{\frac{1}{2}}}+i\left[\frac{1}{2}\left(\xi^{2}+\sqrt{4^{4}+\eta^{4}}\right)\right]^{\frac{1}{2}}
$$

Hence, when $R_{e} \frac{\delta_{1}}{\gamma_{1}}>1$, Assuming that $V(Y)$ is finite at $Y=+\infty$, the boundary condition $H(v)$ can be applied to show that $\underline{K}_{2}=0$. The condition $R e \frac{\delta_{1}}{\gamma_{1}}>\mid$ is $\sum_{1}^{2}<\frac{\eta^{2} \sin ^{2} \alpha}{2 \cos \alpha}$, so that
ξ tends to a minimum value (zero) as α tends to zero, and \sum_{j} tends to a maximum value (infinity) as α tends to 90°. When ξ has a value outside this limit, i.e. $\xi^{2} \geqslant \frac{\eta^{2} \sin ^{2} \alpha}{2 \cos \alpha}$ then the problem becomes much more complicated. There will be two choices depending upon the function $\underline{K}_{1}\left(\xi_{1}\right)$. Either $\underline{K}_{1}=\underline{K}_{2}=0$
or neither \underline{K}_{1} nor \underline{K}_{2} are zero, the condition as Y tends to infinity being satisfied by the subtraction of two infinities to produce a finite number. An intellegent guess might be that both \underline{K}_{1} and \underline{K}_{2} are zero but it can only be a guess. A theory will be developed assuming that \underline{K}_{2} at least is zero inside the domain $\xi^{2}<\frac{\eta^{2} \sin ^{2} \alpha}{2 \cos \alpha}$ and a tentative approach to the problem will be given. $V(Y)$ will always be given by:

$$
V(Y)=\frac{1}{V_{1}^{2}} \sum_{n=0}^{\infty}\left[-2 \cos \alpha \frac{d}{d Y}+\frac{d^{2}}{d Y^{2}}\right]^{n} U(Y) \frac{(-)^{n}}{V_{1}^{2 n}}
$$

which is the particular integral of the differential equation, assuming that (\mathcal{C}) can be expressed as a Fourier series and that there are no singularities.

The values of \underline{K}_{1} and \underline{K}_{3}, can be computed by applying boundary conditions $H(i i)$

$$
\begin{equation*}
\left.\underline{K}_{1}=\bar{g}\left(\varepsilon_{1}\right)-V_{1}(0) \quad \underline{K}_{3}=\overline{g(\xi}\right)-V_{3}(0) \tag{vi}
\end{equation*}
$$

and applying $H(i i i)$

$$
\begin{equation*}
\overline{g(\Sigma)}=\frac{\sigma_{3} V_{1}(0)\left(\delta_{1}-\gamma_{1}\right)+\sigma_{1} V_{3}(0)\left(\delta_{3}+\gamma_{1}\right)-\sigma_{1} V_{3}^{\prime}(0)+\sigma_{3} V_{1}^{\prime}(0)}{\sigma_{1}\left(\delta_{3}+\gamma_{1}\right)+\sigma_{3}\left(\delta_{1}-\gamma_{1}\right)} \tag{vii}
\end{equation*}
$$

It is apparent that the integral differential equation has been expressed as a function of $U(Y)$. $U(Y)$, in turn, is a function of the magnetic field on the surface $Z=0$. But the value on $Z=0$ cannot be placed in the function $U(Y)$ until the partial derivative $\frac{\partial H_{X}}{\partial Z}$ has been computed. Hence, although $U(Y)$ is only a function of Y and has been calculated along $Z=0$, two seperate uncalculated functions appear in $(X Y)$. The function $G(Y)$ can be defined by the
following conditions:

$$
G(Y)=G_{1} H_{0} \quad, \quad Y=+\infty
$$

$$
G(Y)=G_{3} H_{0} \quad, \quad Y=-\infty
$$

and $\operatorname{Lim}_{Y \rightarrow(-0)} \frac{1}{\sigma_{3}} \frac{\partial G(Y)}{\partial Y}=\operatorname{Lim}_{Y \rightarrow(+0)} \frac{1}{\sigma_{1}} \frac{\partial G(Y)}{\partial Y}$
and lastly $\operatorname{Lim}_{Y \rightarrow(-0)} G(Y)=\operatorname{Lim}_{Y \rightarrow(+0)} G(Y)=g(0,0)$
The function $\left[\frac{\partial H}{\partial 2} x,\left(Y_{2}\right)\right]_{2}=0$ is not nearly so easy to define; it appears that it can only be calculated after the values of H_{1} and H_{3} have been computed, which indicates that a second alternative solution of the partial differential equation is necessary before a complete solution of this case, using this method, can be found.

E-polarization

$$
\begin{aligned}
& \text { The relevant equation is } \\
& \frac{\partial^{2} E_{x}}{\partial Y^{2}}-2 \cos \alpha \frac{\partial^{2} E_{x}}{\partial Y \partial Z}+\frac{\partial^{2} E_{x}}{\partial Z^{2}}=i \eta^{2} \sin ^{2} \alpha E_{x}
\end{aligned}
$$

which can be "solved" in the same way as the partial differential equation for H-polarization using the Laplace transform and inversion.

The partial differentials can be converted to ordinary differentials to obtain the equation

$$
\begin{equation*}
\frac{d^{2} E_{x}}{d Y^{2}}-2 \xi \cos \alpha \frac{d E_{X}}{d Y}+\nu^{2} \bar{E}_{x}=T(Y) \tag{viii}
\end{equation*}
$$

where $V^{2}=\mathcal{S}^{2}-\beta^{2} \sin ^{2} \alpha$ and

$$
\begin{equation*}
T(Y)=\left[2 \cos \alpha \frac{\partial C(Y)}{\partial Y}+\xi C(Y)+\frac{\partial E x}{\partial Z}\right]_{2=0} \tag{ix}
\end{equation*}
$$

The solution of this differential equation is the same as before, ie.

$$
\bar{E}_{x_{1}}=K_{2} e^{\left(\gamma_{1}+\delta_{1}\right) Y}+K_{1} e^{\left(\gamma_{1}-\delta_{1}\right) Y}+S_{1}(Y) \quad \text { A5 (x) }
$$

where $\gamma_{1}=\varepsilon_{1} \cos \alpha$ and $\delta_{1}=\sin \alpha \sqrt{i \eta^{2}-\xi^{2}}$ and $S_{1}(Y)=\frac{1}{V^{2}} \sum_{n=0}^{\infty}\left[-2 \xi \cos \alpha \frac{d}{d Y}+\frac{d^{2}}{d Y^{2}}\right]^{n} T(Y) \frac{(-1)^{n}}{V^{2 n}} \quad$ A5 (xi)
once again applying condition $E(v)$ makes $K_{2}=0$ if \mathcal{F} is in the correct domain. The evaluation of K_{1} and K_{3} is obtained ky applying the boundary conditions $E(i i)$ and then E (iii).

$$
K_{1}=\overline{f(\xi)}-S_{1}(0) \quad \text { and } \quad K_{3}=\overline{f(\xi)}-S_{3}(0)
$$

Application of $E($ iii $)$ gives the value of $f(\xi)$ as

$$
f\left(\varepsilon_{1}\right)=\frac{S_{1}(0)\left(\delta_{1}-\gamma_{1}\right)+S_{3}(0)\left(\delta_{3}+\gamma_{1}\right)+S_{1}^{\prime}(0)-S_{3}^{\prime}(0)}{\delta_{1}+\delta_{3}}
$$

when $\gamma_{1}=\gamma_{3}$.

Once more the solution of the integral, differential equation is dependent on the value of $(())$ and $\left.\frac{\partial E_{X}}{\partial z}\right|_{z=0}$ The value (or function) represented by $(l \mid)$ may be expressed by a series of limiting conditions in the same way as $G(Y)$,
1.e. $\quad C(Y)=C_{1} E_{0}, \quad Y=+\infty$

$$
\begin{aligned}
& C(H)=C_{3} E_{0}, \quad Y=-\infty \\
& \operatorname{Lim}_{Y \rightarrow(-0)} \frac{\partial C(Y)}{\partial Y}=\operatorname{Lim}_{Y \rightarrow(+0)} \frac{\partial C(Y)}{\partial Y}
\end{aligned}
$$

and $\quad \operatorname{Lim}_{Y \rightarrow(-0)} C(Y)=\operatorname{Lim}_{Y \rightarrow(+0)} C(Y)=f(0,0)$
However the problem of defining the value of $\left.\frac{\partial E_{x}}{\partial Z}\right|_{z=0}$
still remains essentially unsolvable unless a subsiduary solution is added.

BIBLIOGRAPHY

Brune, J., and J. Dorman, Bull. Seis. Soc. Am., 53, 167, 1963.
Cagniard, L., Geophysics, 18, 605, 1953
Christoffel, D. A., J. A. Jacobs, and E. J. Jolley, J. K. Kinnear and J. A. Shand, The Fraser Delta Experiment of 1960, Pacific Naval Laboratory Report 61-5, August 1961.
d'Erceville, I., and G. Kunetz, Geophysics, 27, 651, 1962.
Dorman, J., M.Ewing and J. Oliver, Association de Seismologie et de Physique de l'Interieur de la Terre, Resume 166, Helsinki, 1960.

Nishida, A., Ph. D. Thesis, University of B.C., 1962.
Rankin, D.,Geophysics,27, 666, 1962.
Rikitake, T., Bull. Earth. Res. Inst., XXVIII, part II, page 263, 1951.

Srivastava, S. P., Ph. D. Thesis, University of B. C., 1962.
Sykes, L., M. Landisman and Y. Sato, J. Geophys. Res., 67, 5257, 1962.

Weaver, J. T., A Note on the Vertical Fault Problem in Magnetotelluric theory, Pacific Naval Laboratory Technical Memorandum 62-1.

Weaver, J. T., Canadian J. of Phys., 4I, No. 3, 1963.

General References:

Landau, L. D., and E. M. Lifshitz, Electrodynamics of Cantinuous Media, Vol. 8, Pergamon Press, 1960.

Price, A. T., Quart. J. Mech. and App. Math., 3, 385, 1950..
Price, A. T., J. Geophys. Res., 67, 1907, 1962.
Stratton, J. A., Electromagnetic Theory, McGraw-Hill, Inc., 1941.

