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ABSTRACT 

During the last decade, archaeologists have widely accepted the use of geophysical 

exploration techniques, including magnetic, resistivity and electromagnetic methods, for 

pre-excavation site assessment. Although researchers were quick to recognize the potential 

of seismic techniques to provide cross-sectional images of the subsurface, early feasibil-

ity studies concluded that seismic methods were inappropriate due to restricted resolv-

ing power and the relatively small-scale nature of archaeological features. Unfortunately, 

this self-fulfilling prophesy endures and has largely discouraged subsequent a t tempts to 

exploit seismic methods for archaeological reconnaissance. Meanwhile, however, seismic 

technology has been revolutionized in connection with engineering, groundwater and envi-

ronmental applications. Attention to detail in developing both instrumentation and da ta 

acquisition techniques has yielded a many-fold improvement in seismic resolving power. In 

light of these advances, this dissertation re-examines the potential of reflection seismology 

for archaeological remote sensing. 

It is not the objective of this dissertation to deliver an unequivocal pronouncement 

on the ultimate utility of reflection seismology for the investigation of archaeological sites. 

Rather , the goal has been to establish a sound theoretical foundation for objective evalua-

tion of the method's potential and future development. In particular, a thorough theoret-

ical analysis of seismic detection and resolution yields practical performance and identifies 

frequency response characteristics associated with optimum resolution. Findings have 

guided subsequent adaptat ion, development and integration of seismic instrumentation, 

resulting in a prototype system for high-resolution seismic imaging of the shallow subsur-

face. 

Finally, to assess system performance and the suitability of optimum offset data ac-

quisition techniques, a full-scale subsurface model has been constructed, allowing direct 
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comparison between experimental soundings and known subsurface structure. Results 

demonstrate the potential of reflection seismology to resolve near-surface features on the 

scale of archaeological interest. Moreover, despite conventional wisdom that the ground-

penetrat ing radar method possesses vastly superior resolving power, acquisition of coinci­

dent radar soundings demonstrates that the two techniques provide comparable resolution. 
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Chapter 1 
INTRODUCTION 

The ground to the west of Wor Barrow was examined to ascertain if any trace of habitations could 
be found, but nothing of any kind could be seen upon the surface. The pick was then used to hammer 
on the surface, and by this means, the Angle Ditch was discovered. 

Gen. A. Pitt-Rivers, 1895 

Archaeological science encompasses a broad scope of interdisciplinary collaboration be­

tween archaeologists and their colleagues in the natural sciences. Techniques from physics, 

"chemistry, biology and the geosciences have a prominent role in each phase of the archaeo­

logical process, including the reconnaissance of sites, their excavation and the subsequent 

ajialysis of recovered materials (Tite, 1972; Aitken, 1976; Butzer, 1982; Rapp and GifFord, 

1985; Aitken, 1990, Tite, 1991). The present dissertation involves the branch of archae­

ological science devoted to use of remote sensing for archaeological site reconnaissance 

and, in particular, the adaptation of geophysical prospecting for detection and mapping of 

subsurface archaeological features (Weymouth, 1986; ScoUax et al., 1990; Clark, 1990). 

Archaeologists have long realized the potential of aerial photography to reveal the 

presence of pat terned surface features that are either too large scale or too subtle to 

b e recognized at ground level. Even where archaeological features axe known to exist, 

a n aerial perspective can expose unforeseen associations between individual features and, 

consequently, alter their interpretation. While relief features like earthworks and roads are 

archaeological remains in their own right, other features, including soil and crop marks, are 

more often a sturface expression of buried remains. In these instances, anomalous soil mois­

tu re levels associated with subsurface structures are manifest visually as soil discolorations 

or related abnormalities in the matur i ty and vitality of overlying vegetation. 

From its beginnings in First World War aviation, archaeological remote sensing has 

evolved from largely secondary examination of extant air photos to planned aerial recon­

naissance using a variety of specialized sensors. Concurrently, with greater access to an 

aerial perspective, mapping of known archaeological sites has joined the search for pre­

viously undiscovered features as a primary objective of archaeological remote sensing. It 
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2 — Chapter 1: INTRODUCTION 

was toward this aim, that investigation of complementary ground based sensing techniques 

began by the early 1950s. In contrast with air photo analysis, which relies entirely on vi­

sual indication of buried remains, geophysical surveys are capable of detecting a variety 

of subsurface material contrasts that have little or no visible expression. Consequently, in 

addition to ground truthing of aerial reconnaissance, geophysical prospecting can substan­

tially extend the base of remotely sensed information available to the archaeologist. 

In view of budgetary restrictions on archaeological excavation and necessity for non­

invasive, time-efficient cultural resource management, geophysical reconnaissance is valu­

able not only for directing the focus of limited excavation but also for extrapolating re-

stdting information within both intrasite and intersite contexts. Geophysical methods 

also have obvious application where archaeological excavation is obstructed by modern 

pavement and buildings or prohibited by protective legislation. In light of this potential, 

archaeologists have largely acknowledged the value of remotely sensed information and 

over the past two decades geophysical sensing techniques have been widely employed for 

pre-excavation assessment and mapping of diverse archaeological sites. As in other ap-

phcations, the complementary nature of geophysical methods has proved crucial with the 

most appropriate technique remaining site dependent. 

Successful adaptat ion of resistivity and magnetic techniques by the late 1950s prompted 

subsequent investigation of other geophysical methods. By the mid 1970s, the full com­

plement of geophysical exploration methods had undergone adaptation and evaluation for 

archaeological application. Among these, seismic techniques received early attention owing 

to their potential to yield cross sectional profiles of the subsurface and, consequently, to 

reveal the form and stratigraphic position of buried remains. However, despite the mixed 

findings of reported experiments (Linehan, 1956; Carson, 1962; Linington, 1963; MASCA, 

1969) it was generally concluded by the early 1970s that land-based seismic methods were 

of limited value due to restricted resolution and the comparatively small scale natvire of 

archaeological remains (Tite, 1972; Aitken, 1974). 

It is difficult to assess the basis upon which the seminal works by Tite (1972) and 
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Aitken (1974) dismiss the potential of seismology. While Aitken (1974) makes no refer­

ence to the published literature, Tite (1972) refers to publications by Carson (1962) and 

Linington (1963). The frequently cited work by Carson (1962) describes a hammer seismic 

refraction survey conducted in conjunction with a resistivity survey at Harper's Ferry in 

West Virginia to detect and map the precise location of historic building foundation re­

mains. Although no da ta are presented, departures from linear transit-time vs. distance 

diagrams were identified and (apparently qualitatively) at tr ibuted to either anticlinal or 

synclinal subsurface structm-es. Despite a significant correlation between predicted feature 

locations and subsequently excavated archaeological remains, it was noted that the average 

depth indicated by seismic soundings was appreciably greater than the ruins. As a result, it 

was concluded that transit-t ime anomalies were attributable to bedrock topography rather 

than archaeological remains within the overburden. The subsequent review of archaeolog­

ical remote sensing by Linington (1963) observed, without reference, that "at present only 

sufficient experimental work has been done to show that a feasible method of surveying 

is possible". It appears that neither Carson nor Linington were aware of the eaxlier work 

of Linehan (1956) who reported a very successful programme of shallow seismic refraction 

measurements in connection with archaeological excavations beneath St. Peter 's Basilica 

in Rome. Refi-action surveys revealed a variety of buried architectural remains including 

the walls and rooms of a lower basilica, tombs and a buried circus adjacent to the present 

basilica of Michelangelo. Again, however, there are no representative data presented. In 

view of these varied findings, one must assimie that the negative conclusions reached by 

Tite (1972) and Aitken (1974) are based to some measure on other, perhaps unpublished, 

field trials. 

Subsequent applications of acoustic techniques in connection with marine archaeology 

(McGehee et al., 1969; MASCA, 1972; Meissner and Stiimpel, 1979) have been decidedly 

successful and there have been significant a t tempts to adapt these higher frequency "acous­

tic" techniques for use on land (Hesse, 1969; Dolphin et al., 1977; Ozawa and Matsuda, 

1979). Dolphin et al. (1977), for example, describe the successful appUcation of a 4 kHz 
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acoustic sounder for detection and mapping of previously unknown passages and chambers 

within ancient Egyptian monuments at Giza and Luxor. Similarly, Ozawa and Matsuda 

(1979) report promising trials of a prototype seismic-acoustic apparatus comprising four 

microphone transducers surroiuiding a small weight-drop elastic source. Experiments con­

firmed the presence of a stone coffin within an ancient Japanese tomb. In view of the 

relatively complicated, special purpose instrumentation employed in the forgoing studies, 

it is perhaps not surprising that these experiments have not been reproduced elsewhere. 

In any case, despite these very promising developments, the ill-fated reputation of seis­

mic prospection has endured (Weymouth, 1986; ScoUar et al., 1990) and largely discour­

aged subsequent archaeological use. Meanwhile, seismic reflection technology has been 

revolutionized in connection with engineering and groundwater geophysics (Dobecki and 

Romig, 1986). Attention to detail in developing both instrumentation and da ta acquisition 

techniques has yielded a many-fold improvement in seismic resolving power tha t suggests 

renewed archaeological interest. 

In Ught of recent advances, this dissertation reassesses the potential of seismic reflec­

tion techniques for subsurface archaeological imaging. However, in contrast with previous 

studies, devoted to empirical field evaluations of existing technology, this dissertation em­

phasizes the establishment of a sound theoretical foundation for subsequent research and 

development. 

A thorough analysis of theoretical aspects of seismic detection and resolution is pre­

sented in Chapter 2. In particular, completely novel detection criteria are developed in 

connection with a t reatment of isotropic scattering from a spherical archaeolological deposit 

embedded within a uniform host matrix. Modelling maJies use of a scattering cross-section 

developed by Ying and Truell (1956). On establishing detectability, a subsequent analysis 

of vertical resolution involves a synthesis of well-known criteria and their dependence on 

established properties of band-limited frequency signals. In connection with this develop­

ment, the author supplies demonstrations (Appendices C-L), some novel and improved, 

of fundamental wavelet properties. Finally analysis of spatial resolution reviews the clas-
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sical optics treatment of half-period Presnel zones on an infinite horizontal reflector and 

illustrates the connection between these results and a generalized seismic response for a 

finite horizontal reflector of developed by Trorey (1970). Two spatial resolution criteria 

are subsequently identified in connection with the interference of edge diffractions from 

a infinite-length, finite-width strip reflector. The seismic response of the strip is derived 

on the basis of Trorey's (1970) half-plane solution. A direct and significant connection is 

established between the standard Fresnel zone criterion and Rayleigh's temporal resolution 

limit. 

The theoretical analysis of seismic detection and resolution has critical impUcations for 

the design and integration of appropriate instnimentation. Findings have guided subse­

quent development of a prototype system for high resolution archaeological application and 

Chapter 3 is devoted to description of this system and its constituent components. The 

seismic data acquisition system is modelled as a cascade of non-interacting, time-invariant 

linear systems and the general response characteristics of each system component are 

developed and illustrated with various degrees of original contribution. These analyses 

have guided design and construction of a special purpose high-frequency energy source 

and in-line analog pre-emphasis filter electronics. Together with a commercially available 

detector possessing unique high-frequency response characteristics, these components ef­

fectively compensate for the low-pass, dispersive characteristics of the substirface to yield 

seismic soundings that possess a broad-band smoothly varying frequency spectrum and, 

consequently, enhanced resolving power. 

Chapter 4 examines a simple but effective data acquisition strategy in connection with 

full-scale subsurface model experiments conducted to assess system performance. Acquisi­

tion of coincident ground penetrating radar profiles demonstrates that despite conventional 

wisdom, the reflection seismic method is capable of comparable resolution. It is emphasized 

that the two methods yield complementary information. 

Finally, two chapter-length appendices (Appendices A and B) present detailed theo­

retical analyses of two previously unexplored matters of pivotal significance in connection 
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with smaU-scale, near-surface seismic exploration. 

Recognizing that seismic targets of archaeological interest are commonly isolated, dis­

continuous inhomogeneities embedded within an otherwise homogeneous host medium, 

ordinary velocity analysis techniques based on the moveout characteristics of reflection 

events from semi-continuous geological interfaces are largely inappropriate. Consequently, 

in Appendix A, a novel method is developed for estimating seismic velocities from diffrac­

tion events associated with the scattering of elastic waves from subsurface discontinuities. 

Appendix B re-addresses the controversial subject of spatial filtering for high-resolution, 

near-surface seismic applications. As demonstrated in Chapters 2 and 3, a key to acquiring 

high-resolution seismic data is optimum exploitation of dynamic range through real-time 

attenuation of source-generated noise. Despite uninformed consensus that spatial array fil­

ters can be profitably employed for this purpose, standard array response analysis indicates 

that these techniques are not well suited for near-siuface, high frequency applications Uke 

archaeology. Noting that the foregoing conclusion presupposes plane-wavefront geometry, 

Appendix B examines the validity and limitations of the plane-wave approximation in an­

ticipation that the viability of spatial filtering might be misprized by neglecting wavefront 

curvature in near source applications like archaeology. Although the foregoing studies have 

considerable implications for archaeological application, they are presented in Appendices 

A and B as previously published for a wider audience (Cross and Knoll, 1991: Cross, 

1992) and, consequently, do not possess an archaeological focus. Essential findings of these 

analyses have been incorporated within the main body of the dissertation. 



Chapter 2 
SEISMIC DETECTION AND RESOLUTION 

Seismic techniques are powerful in geophysical exploration but do not lend themselves to the smaller 
and more detailed scale required for archaeology. 

M. J. Aitken, 1974 

2.1 Introduction; 

Since seismic methods were deemed unsuitable for archaeological application owing 

to insvifficient resolving power, it is fitting that re-evaluation should commence with a 

review of the fundamental principles of seismic detection and resolution. As an objective, 

we shall seek to establish whether certain types of archaeological features reside within 

detection and resolution limits of seismic exploration. In particular, there are two distinct 

classes of archaeological features amenable to remote detection and mapping by geophysical 

methods: localized inhomogeneities embedded within a relatively uniform host soil and 

semi-continuous stratigraphic horizons. The first class embraces architectural remains 

including fotmdations, pavement, walls, roads, fortifications, etc. and subsoil structures 

on a similar scale including earthworks, barrows, graves, storage pits, hearths, furrows 

and localized deposits like middens and refuse. Archaeological features of the second kind 

include both natural geologic interfaces and stratigraphic horizons of cultural origin. 

Although the first class of features implies an approximate scale of interest, it is im­

portant to appreciate that the effective "scale" of an archaeological feature involves a 

significant trade-ofF between its gross dimensions and the degree of contrast between its 

material properties and those of the host medium. For example, since architectural remains 

are constructed from a variety of building materials, having material properties in marked 

contrsist with those of the host soil, these featvires have an effective scale decidedly larger 

than soil features of similar dimension but having material properties only subtlely dissim­

ilar to those of svuTounding sediments. This is only a general rule of thumb, however, and 

in pra<:tice the relative influence of gross dimension and material contrast depend substan­

tially upon the geophysical technique employed. For instance, while it is not imcommon 
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for burned soil features to yield magnetic anomalies many times larger than architectural 

remains comprised by relatively unweathered btiilding stone, the latter will almost invari­

ably produce a stronger seismic response than a corresponding subsoil structure having 

similar dimensions. Archaeological features of the second kind are also characterized by 

an enormous range of material contrasts; from subtle gradations in sediment colour, or 

particle size distribution, to sharp variation in soil organic matter arising from agricul­

tural activity, to geologic unconformities between weathered bedrock and tmconsolidated 

overbxirden. 

More significantly, the two classes of ajchaeological features yield seismic responses of 

distinctly different character. While semi-continuous, often flat-lying, stratigraphic hori­

zons act predominantly as reflectors of incident seismic energy, localized inhomogeneities, 

Uke architectural remains, partially reflect and partially scatter or diffract incident seis­

mic energy. In particular, where the dimensions of the inhomogeneity are significantly 

less than the wavelength of incident waves, the mechanism of interaction is principally 

diffraction. Consequently, the character of seismic records acquired over archaeological 

features of the first kind can be considerably different than seismic data a<;qtiired to eluci­

date shallow stratigraphy or, more typically to map large scale geologic structure. In the 

following analysis of seismic detection and resolution, we shall find that separate criteria 

are associated with the two classes of archaeological featiires. 

2.2 Detection: 

In the context of remote sensing, detection is defined oa the ability to recognize signzil 

in the presence of noise. In the case of reflection seismology, the signal is elastic wave 

energy reflected or scattered from targets of interest. Ideally, if the fraction of incident 

energy reradiated from the target and received by the detector exceeds electrical and am­

bient seismic noise, the signal is said to be detectable. In other words the signal to noise 

ratio must exceed imity. Factors influencing the detectabiHty of a given target include its 

dimensions, geometry, range and the contrast between its material properties and those 
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of the host medium. More significantly, detection depends on the wavelength of incident 

energy. In particular, for wavelengths significantly greater than the average target di­

mension, the ratio of scattered to incident wave energy and, consequently, detection are 

proportional to the inverse fourth power of wavelength. Scattering of this nature, termed 

Rayleigh scattering, typifies the seismic response of localized inhomogeneities at the limit 

of detect ability. 

A simple expression for the detection limit, appropriate for archaeological features of 

the first kind having dimensions significantly less than a wavelength, can be developed in 

the following manner. Consider a spherical wave Ui*̂  (r, t) = {ur,u^, u^} of the form 

u a r , t ) = u ? ( t ) * 5 ( t - ^ ) 

u^ (r, t) = ug (t) *s(i- ^ ) (2.1a) 

û (r,t) = u°(t)*^(t-^) 

radiating from a concentrated source region surrounding the coordinate origin within a ho­

mogeneous, isotropic, linearly elastic halfspace. Here, uj , u§ and u^ denote, respectively, 

radial, latitudinal and longitudinal time-dependent displacement waveforms at reference 

range ro including the source region, r > ro represents an arbitrary range, * the con­

volution operation and 6 (t) denotes the Dirac delta function, having defining properties 

^( t) = 0; t ^ 0 and Jf^ ^( t )dt = 1. Radial and tangential components of the wavefield 

are characterized by phase velocities OQ = [(KQ + 2//o)//^o]^'^ and ^Q — [/^o//'o]^''^, respec­

tively, where po represents density and X,o and //Q are Lame's elastic constants for the 

host medium. For sake of simplicity, we take u^ = u" = 0 and consider a purely radial or 

dilatational wavefield, having sinusoidal displacement of form 

u?W = U ? ( f ) . i n ( 2 r f t ) H ( . ) , (2.1b) 

where f is frequency and 
0, t < 0; 

H ( t ) = . { 1/2, t = 0; 
1, t > 0 
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is the Heaviside step function. Finally, on substituting previous expression in equation 2.1 

and assuming that sufficient time has elapsed for the seismic disturbance to extend over 

the region of interest (i.e. H [t — (r/ao)] = 1), we obtain the steady-state radial wavefield 

where Â o = ao/f is the effective wavelength. Since at any instant, the energy per unit 

volume possessed by a seismic disturbance having such a form is half kinetic and haJf 

potential, the corresponding energy density as a function of range is 

- 5ui° aui° 2Poao^TT2/'ro\ 2 . / . _ \ 2 
cos^ T — ( r - a o t ) (2.2) 

where pQ is the density of the host medium. The associated intensity or mean energy per 

imit area transported normal to the wavefront per vmit time follows as the product of 

phase velocity and energy density, averaged over a period. Using the result 

- j cos2(^-27rft)dt = ^ , 

where T = 1/f denotes the period and <f> represents an arbitrary phase angle, we obtain 

I„(r) = 2 . ^ £ | | 5 ! u , . ( ^ y . (2,3) 

Finjilly, since intensity is equivalent to average power transported per unit area, mean 

source power can be obtained by mvdtiplying the intensity at arbitrary range by the surface 

area of the corresponding wavefront 

Po = 47rr2 lo (r) = STT̂  ̂ ^ ^ ^ U,^. (2.4) 

Peak source power follows as 2Po. 

Let us now consider the interaction between this incident wavefield and a localized 

inhomogeneity at range rg from the source region. Interaction is commonly quantified by 

computing the scattering cross-section for the inhomogeneity, defined as the ratio of mean 

energy scattered per unit time, to the mean energy per unit area transported per imit 
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time by the incident wavefront. In other words, the scattering cross-section is the ratio of 

scattered power to incident intensity. Consequently, for the incident wavefield considered 

above, the average power scattered by a localized inhomogeneity having cross-section Xs 

is 

T,=xMr) = 2.'^XsV.'(^fy. (2.5) 

Although conceptually simple, evaluation of an appropriate scattering cross-section is com­

plicated and a number of simplifying assumptions are ordinarily required. In particular, 

it is normally assumed that the dimensions of the inhomogeneity are small compared with 

range r, allowing the incident wavefront to be treated as locally planar over the region of 

interaction. In addition, the scattering mediiun is normally assumed to be homogeneous 

and isotropic. An exceptionally thorough treatment was presented by Ying and Truell 

(1956). 

On prescribing the wavefield incident on a spherical inclusion, series solutions for 

Navier's equation in spherical coordinates are written in terms of Helmholtz potentials 

for both the scattered wave and the wavefield existing within the inclusion. Series coeflB.-

cients are determined for an elastic inclusion by applying boundary conditions requiring 

continuity of net stresses and displacements across the svirface of the spherical inclusion. 

For the case of Rayleigh scattering, where the inclusion radius g is small compared with 

wavelength, the series solutions converge rapidly and may be truncated to give as close an 

approximation as desired. A gener£d expression for the scattering cross-section follows from 

the scattered displacement field. For a plane dilatational wave incident on an isotropically 

elastic inclusion, the appropriate scattering cross-section is given by 

(9' 
Xs = (2.6) 

with 

e = 64iT^ 370^ 
• |2 

9 1 L(37i2-4)M-f-4 
- 1 . l [ l + 2V]x[M_>] 

-t- 40 [2 -h 370^] X 
M - 1 

2(37o2-h2)M-t-(97o2-4) 
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referred to as the reflectivity feictor, where 70 = ^aa/^Po — ^QIPQ ^^^ 7l = ^ai/^0t = 

ai/0i axe ratios of dilatational to rotational velocities in the host meditun and inclusion, 

respectively, 7^ = Ayj,/A^ = ^i/;So is the ratio of rotational wave velocities in the two 

media and M = fii/fio = (pi/po)i0i//^o)^ is the corresponding ratio of shear moduli. Note 

dependence on the inverse fourth power of incident wavelength characteristic of Rayleigh 

scattering. 

Substitution of the foregoing result in equation (2.5) yields 

Pi = 2n' 
^ao 

U?g) (2.7) 

for the mean power scattered by the elastic inclusion. Further, supposing isotropic scat­

tering, the intensity as a function of range R from the center of the inclusion is obtained 

by dividing the mean radiated power by the surface area of the scattered wavefront. The 

result is 

Consequently, scattered power received by an onini-directional detector at range Rj from 

the scattering center and having effective capture area Q is 

P , = C I : ( R ) = f ^ C . U ? ( ^ ) ^ (2.9) 

Recalling that detection requires a signal to noise ratio exceeding unity, a criterion defining 

the detection limit follows as 

where Pn denotes the ambient noise power. 

Having defined an ideal detection limit by the previous inequality, it must be noted 

that a more severe limitation may be imposed by the dynamic range of the detector and 

recording instnunentation. Dynamic range is defined as the ratio of maximum to minimtun 

signal levels that are simultaneously detectable. If two signals are simultaneously incident 

on the detector with a power ratio exceeding the dynamic range, the more powerful signal 
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will effectively saturate the receiving system preventing detection of the less powerful 

signal. In particular, in the case of small scale archaeological applications, the primary 

energy source is in relatively close proximity to the detector. Assimiing that the direct 

arrival from source to receiver constitutes the maximirai signal level Pmax = Po = Cd lo (r), 

a more stringent detection criterion requires that the ratio of direct to scattered power 

received at the detector must not exceed the dynamic range of the recording system. Prom 

equations (2.3) and (2.9), we obtain the equivalent mathematical expression 

h-±^{j±.)\i (211) 

where rj denotes the range from source to detector and A = Pmax/Pmin = Po/Pmin repre­

sents dynamic range. Here, Pmin represents the minimum detectable signal level. Notice 

that, like the scattering cross-section given by equation (2.6), this detection criterion is 

proportional to the inverse fourth power of incident wavelength. 
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Figure 2.1. System power level diagrajns comparing conditions for detection criteria given by 
equations (2.12) and (2.13). (a) For ?„ < Pmin detection is limited by dynamic range, (b) For 
Pn > Pmin detection is limited by signal to noise ratio. 
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Equations (2.10) and (2.11) may be solved for respective limiting inclusion radii, yielding 

Qn = 
2A«„ £_ ffi^lY 

Tl/6 

^(PQO^O CdU? \ to J 

and 

^A = 
47rA4^ mT 

(2.12) 

(2.13) 

Referring to Figure 2.1, if Po/Pn < A or Pn > Pmim the nunimum detectable inclusion 

radius is ^n- If> however, Po/Pn > A or Pn < Pminj ^^^ minimum detectable scattering 

radius is Q/^ (> ^n)- Finally, if Pn = Pmim equation (2.12) reduces to equation (2.13), 

yielding a Umiting radius Q = Q/i^ = Qn- To examine the dependence of these detection 

Umits on controlling parameters, we adopt the following nominal velocities and associated 

mechanical properties for the two media as a reference model: 

ao = 350.0 ms"^ a i = 2500.0 ms"^ 

fio = 100.0 ms-i /3i = 1250.0 ms"! 

/9o = 1340.9 kg m"^ 

70 = 3.5 

(To = 0.456 

pi = 2192.0 kgm-^. 

71 = 2.0 

<7i = 0.333 

The influence of a given parameter is appraised by varying its value over a prescribed range 

while holding remaining parameters constant at their respective nominal values. 

Throughout the following analysis, density values are assigned on the basis of the 

simple empirical relation 

/) = 310.0 a^/* (2.14) 

proposed by Gsirdner et al. (1974). Although this relation is not especially well suited for 

unconsolidated granular media, it yields densities that are not unreasonable for a broad 

range of earth materials and, consequently, is convenient for phenomenological modelling. 

Values for Poisson's ratio follow from the corresponding dilatational to rotational velocity 

ratio according to the well known relation 

" .//?)'-2" l / y - 2 \ 1 (g 
Hi^y 

(2.15) 
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or, inversely. 

l = ocJp = 2 ( 1 - ^ ) 
1/2 

(2.16) 
l - 2 < 7 

Assuming Pn = Pmim a dynamic range of 24 decibels (8-bit analogue-to-digital conversion) 

and a nominal frequency of 400.0 Hz, the relationship between detection limit and source-

receiver offset rd is displayed in Figure 2.2 with total one-way transit range R T = rg -H Rd 

(see Figiure 2.3) as a parameter. 

0.4 

^ 0.3 w 
a> 

I 0.2 

^ 0.1 

0.0 
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F 
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T=' 

• 

>o.c 

0.0 
1 "~~' 

- R T = 5 . 0 -

- R T = 1 . 0 -

0.2 0.6 
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1.0 

Figure 2.2. Predicted relatioa between detection limit Q/^ = g„ and source-detector offset ra with 
total one-way tremsit range RT = r, -Hid as a parameter. 

Referring to Figure 2.3, note that for a source-detector pair deployed on a constant-z 

plane and separated by offset r j , all possible inclusions for which total range from source 

to detector via scattering is a constant R T lie on an ellipsoid having major axis Rx and 

eccentricity rj /Rx- As predicted by equation (2.13), all curves approaxrh infinity as the dis­

tance separating source and receiver vanishes. Practically speaking, this result illustrates 

that a detector deployed coincident with the source will be saturated by an instantjineous 

direct arrival having infinite strength so that the minimum detectable signal level and, 

consequently, the detection Hmit are eJso effectively infinite. Otherwise, theoretical results 

displayed in Figure 2.2 indicate that for r j exceeding about 10.0 cm, the detection limit 
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ranges from less than 35.0 cm for R T = 20.0 m to less than 5.0 cm for R T = 1.0 m. Con­

sequently, since archaeological targets are ordinarily located within a metre or two of the 

svirface, the foregoing findings suggest that the scale of archaeological interest can reside 

well within the detection limit of seismic exploration. The influence of other controlling 

parameters, including incident wavelength and the contrast between material properties of 

the inclusion and host medium reinforce this conclusion. 

Source Detector 

Inclusion 

Figure 2.3. Configuration of source, detector and scatterer. All targets or scatterers for which 
total one-way transit range RT = r, -{- RJ is constant lie on an ellipsoid having major axis Rx &n<l 
eccentricity rj/Rx-

Figure 2.4, for example, charts the relation between the detection limit and incident wave­

length, asstmiing r j = 0.25 m. As indicated by equation (2.13), nainimtun detectable ra­

dius increases non-linearly with increasing wavelength. Moreover, it is evident that this 

dependence is more pronounced as total range increases. In partictdar, for A ô = 0.875 m, 

corresponding to a nominal frequency of 400 Hz and host velocity ao = 350.0 ms~^, the 

Hmiting detection radius varies from approximately 2.0 to 7.0 cm. In addition, for a total 

one-way range of R T = 3.0 m, the detection limit varies from a radius of approximately 

4.0 cm for an incident wavelength of Â o = 35.0 cm at f=l kHz, to roughly 17.5 cm for 
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Figure 2.4. Predicted relation between detection limit Q^ — f„ and incident wavelength A with 
total one-way transit range RT = r. + Rd as a parameter. 

Aao = 3.5 m at f=100 Hz. In comparison, for a total transit range of R j = 0.5 m, the 

detection limit never exceeds about 5.0 cm. These results indicate that, given a signifi­

cant material contrast, seismic soundings are capable of detecting inhomogeneities having 

dimensions on the scale of archaeological interest; even where this scale is considerably 

smaller than the incident wavelength. For instance, in the case Rx = 3.0 m the ratio of 

minimum detectable radius to incident wavelength varies from approximately ^/A^^ =0.11 

for f=l kHz to ^/Aoo = 0.05 for f=100 Hz. As expected, for Rx = 0.5 m, the corresponding 

values are yet smaller, ranging from ^/Aaj = 0.04 for f=lkHz to ff/Aao = 0.02 for f=100 

Hz. 
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Figures 2.5 and 2.6 display minimum detectable radius as functions of material property 

contrasts between the inclusion and host medium. Specifically, these curves reflect the 

influence of velocity contrasts between the two media as incorporated in the reflectivity 

factor ^. In Figiu-e 2.5, we fix inclusion velocities at the nominal veilues given above and 

examine the influence of variable host velocities. In Figure 2.6, on the other hand, we 

hold the nominal velocities of the host medium constant and analyze the effect of variable 

inclusion velocities. In all cases, results are depicted for the same suite of total one-way 

transit ranges as in Figure 2.2. Specifically, in Figxure 2.5, host velocities are varied while 

maintaining the ratio of rotational to dilatational wave velocities constant at ao/^o =3.5 

(solid ctirve) and ao//3o =4.0 (dashed curve) corresponding, respectively, to Poisson's ratios 

of (To =0.456 and ao =0.467 for tmconsolidated sediments. Concurrently, as host velocity 

ao increases from 100 to 1000 ms~^, the associated density po is computed using equation 

(2.14). Recall that Poisson's ratio is defined as the ratio of strain parallel to an applied 

normal stress to the associated strain perpendicular to the applied stress and is related to 

Lame's elastic constants by the formula 

Assuming that Lame's constants are positive valued, Poisson's ratio ranges from or =0.5 

to a =0.0 as the modulus of rigidity fx varies from zero to infinity. In practice, geological 

materials are characterized by Poisson's ratios ranging from the Umiting value of (T = 0.5 for 

sediments in fluid suspension to approximately a = 0.2 for extremely rigid, imweathered 

rocks. As depicted in Figure 2.5 for a maximum range of R T =3.0 m and <7o = 0.456, 

the detection limit increases from a radius of approximately 2.0 cm for a dilatational 

velocity of 100.0 ms~^ to roughly 22.0 cm, corresponding to a velocity of 1000.0 ms~^. 

Furthermore, comparison of foregoing results with those for (To = 0.467 indicates that the 

predicted detection limit is reduced in all cases as Poisson's ratio increases; that is, as the 

rigidity contrast between the inclusion and host meditun increases. Although enhanced 

detectability accompanying a decrease in host velocities is due, in large measvire. 
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to an associated increase in the reflectivity factor, it is important to appreciate that the 

velocity of the host medium also controls the incident wavelength according to the relation 

A = ao/f. Consequently, since the detection limit diminishes with decreasing wavelength, 

as illustrated in Figure 2.4, a lower host velocity yields improved detectabiUty. 

Figure 2.6 displays results for the reverse scenario. Here, on fixing velocities for the 

host medium, the dilatational inclusion velocity is varied from 1500.0 to 5000.0 ms~^ while 

maintaining constant velocity ratios of ai/^i =2.0 and ai//3i =1.75. Corresponding Pois-

son's ratios are, respectively, <7i = 0.333 for masonry or severely weathered building stone 

and <7i = 0.258 for relatively unweathered materials. For a maximimi one-way transit 

range of 3.0 m and <7i = 0.333, the minimum detectable radius decreases from a maximum 

of approximately 8.5 cm for a i = 1500.0 ms~^ to just over 5.0 cm for ai = 5000.0ms~^. 

As before, enhanced detectabiUty is associated with a greater rigidity contrast and, conse­

quently, the lesser Poisson's ratio of <ri = 0.258. 
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Figure 2.7. Dilatational-rotational wave velocity ratios a/0 and 0/a as functions of P<»Bson's 
ratio. Note that rgidity increases with decreasing Poisson's ratio. 

Note that since the relation between ao/^Q and Poisson's ratio is nonlinear as depicted 

in Figure 2.7, a percent-equivalent perturbation from the nominal velocity ratio yields a 
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larger change in Poisson's ratio for the inclusion than for the host medium. Despite this 

effect, however, the corresponding influence on the predicted detection limit is compsira-

ble, suggesting that relative velocity contrast may be a more useful parameter than the 

corresponding contrast in Poisson's ratio. 
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Figure 2.8. Predicted relation between detection limit Q^ — Qa and inclusion velocity ai with total 
one-way tremsit range as a parameter. Note that the inclusion velocity spans a range including the 
host velocity. 

Finally, in Figure 2.8, the inclusion velocity spans a range bracketing the nominal host 

velocity ag = 350.0 ms~^ and is assigned the same Poisson's ratio ai = aa = .456. With 

this assumption, it follows from equation (2.6) that as the inclusion velocity approaches 

that of the host meditim, the reflectivity factor approaches zero. Consequently, as predicted 

by equations (2.12) and (2.13), the detection limit becomes infinite since, effectively, the 

inclusion no longer exists. Archaeologically, while Figures 2.5 and 2.6 model the case of a 

relatively dense, rigid inclusion within an unconsoUdated host soil. Figure 2.8 simulates a 

sediment filled void, where the fill is either less or more compacted than the surroimding 

soil. Although the latter targets axe relatively diffictilt to detect, results depicted in Figure 
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2.8 indicate that even in the case of small material contrasts, subsurface soil features of 

archaeological interest can be detected by seismic soundings. In particular, for dilatational 

velocity contrasts exceeding ±200 ms~^, the predicted detection limit never exceeds 20.0 

cm. For the case of an unfilled spherical cavity, the appropriate scattering cross-section 

takes a somewhat different form as given by Ying and Truell (1956). 

In summation, the foregoing analysis of seismic detection reveals that, despite the 

relatively small scale nature of archaeological remains, these features are ordinarily within 

the detection Umit of seismic exploration. In particular, archaeological features of the 

first kind are typically rigid, high velocity inhomogeneities buried at shallow depth within 

a low velocity unconsolidated soil and, fortuitously, these are optimum conditions for 

seismic detection. Specifically, low host velocities (ao = Aa^f) ensure that incident seismic 

waves are relatively short-wavelength (Figure 2.4) while sharply contrasting mechanical 

properties guarantee that a large proportion of incident energy will be scattered or reflected 

(Figures 2.5 and 2.6). As a result, seismic soundings axe often capable of sensing subsurface 

archaeological features having dimensions significantly less than the wavelength of incident 

energy. 

Recalling that the effective scale of an archaeologicEd feature involves a trade-off' be­

tween gross dimensions and material contrast, it is emphasized that for an inclusion of 

arbitrary radius, equivalent detection criteria could be formulated in terms of restrictions 

on the degree of material property contrast required. Moreover, as the wavelength of inci­

dent radiation becomes comparable to or less than the average target dimension, detection 

becomes progressively independent of wavelength and the seismic response is gradually 

dominated by reflection rather than scattering. This situation arises for archaeological 

features of the first kind having dimensions significantly larger than a wavelength and 

for archaeological features of the second kind in general. Since, in the latter case, the 

target's dimensions are effectively infinite, the detection limit is necessarily formulated as 

a restriction on the etssociated material property contrast. Assuming a dilatational wave 

normally incident on a plane horizontal interface, em appropriate detection criterion could 
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be developed by substituting a power reflection coefficient 

2 

^'-2^HZo + z J -2^'1,1 + Zi/Zo; 

in pla^e of the scattering cross-section Xs in equation (2.5). Here, (t represents an effective 

capture area for the reflector (e.g. area of first half-period FVesnel zone §2.3.2), ZQ = poao 

and Zi = piai denote acoustic impedances for media on either side of the interface and 

the factor of two accoimts for the fact that reflected power is restricted to the incidence 

side of the interface. Resulting expressions equivalent to equations (2.10) and (2.11) could, 

subsequently, be solved for limiting reflection coeflBcients necessary for detection of the 

interface. Rirther development of these criteria, however, is beyond our present scope. 

Instead, before turning our attention to resolving power, let's briefly consider a number of 

simplifying assumptions at the foimdation of the foregoing treatment of seismic detection. 

First, although the soiurce and receiver are typically deployed on the surface of a het­

erogeneous, anisotropic and anelastic ground, oiu: simpUfied model assumes that the source 

receiver pair are embedded within a homogeneous, isotropic, linearly elastic whole space. 

Practically speaking, although near siuface sediments are often horizontally homogeneous, 

these deposits are ordinarily characterized by a significant vertical velocity gradient as a 

consequence of depth dependent compaction and consolidation. As a result, ray paths are 

curved, rather than straight, and associated wavefronts are, consequently non-spherical. 

In addition while weak anisotropy may, or may not, be present, unconsolidated sediments 

are typically associated with relatively severe frequency dependent attenuation that pro­

gressively reduces detection capacity as target range increases. 

Secondly, while a point source of ptuely dilatational, radially isotropic waves is a rea­

sonable assumption in the case of an explosive energy sotirce deployed at depth, surface 

impact sources, like a hammer blow or weight-drop, yield a significant rotational dis­

placement component and a distinctly directional radiation pattern. Useful theoretical 

treatments of this problem have been given by Miller and Pursey (1954), Mooney (1976) 

and Kahler and Meissner (1983). Miller and Pursey (1954) derived far-field expressions 
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for the displacement fields radiated by a circular disc of finite radius vibrating normal to 

the free surface of a semi-infinite solid. 
Unit Normal Force 

0.5 I 0.5 

Cro=0.456 

-90 

Unit Normal Force 

0.5 I 0.5 
90̂  

<To=0.333 

Figure 2.9. Theoretical radiation patterns arising for a circular disc of finite radius vibrating nor­
mal to the free surface of a semi-infinite solid, having Poisson's ratio (a) ao = -456 and O-Q = .333. 
Both radial (Q) &nd tangential (D) displatcement components are normalized with respect to maxi­
mum tangential displacement. Radieil displacement components axe exaggerated by (a) 7.5 and (b) 
2.5 times for display. 

When the radius of the disk Qi is small compared to observation range r, radial and 

tangential displacement components as a function of azimuthal angle 6 are, respectively, 

U,(^) ^ z V i i co.g W - 2fe) ^ . , . ( . - , / . . ) (2.18) 
4vpQa^ r Fo (sm^) ' 

and 

where 

Ve (0) = 
= ^«oTo 4 sin2g(l-7gsin^^)^/ '^ ^^^ ̂ ^_^^^^^ 

4irpQ/3^ r Fo (70 sin ^) ' 

Fo in) = (27' - 7o')' - V in' - if (v' - ilf-

(2.19) 
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Variable notation, including 70 = OCQ/PQ, is as previously defined. Radiation patterns 

for host media having Poisson's ratios of O-Q = 0.456 (ao/y^o = 3.5) and OQ = 0.333 

{aaf^o = 2.0) are displayed in Figure 2.9. It is important to distinguish between these 

radiation patterns and wavefront geometry. Although the latter is approximately hemi­

spherical for a localized source at the svirface, energy density is tmevenly distributed over 

this wavefront. Energy density transported in a given direction is proportional to the 

squared length of a vector from the origin to the surfzice of the radiation pattern in the 

given direction. In all cases, the radiation pattern is strongly directional. In particular, the 

radial or dilatational component has a nearly circular pattern, having maximimi amplitude 

in the direction of applied force and decreasing gradually to zero parallel to the free surfEice. 

In contrast, the corresponding tangential or rotational displacement component has zero 

ampUtude both parallel and perpendicular to the applied force, and maxima at approxi­

mately 35 degrees from vertical that can be many times greater than the corresponding 

radial maxima. Having said this, however, we note that the ratio of maximum radial 

displacement to maximum tangential displacement increases as Poisson's ratio decreases. 

That is, as the medivmi becomes more rigid. In addition, while the dilatational radiation 

pattern retains a similar geometry, the major lobes of the tangential radiation pattern 

become narrower and minor inner side lobes develop with peak amplitude at roughly 25 

degrees from vertical. 

Scattering is also directional. Although the simplified model employed above assumes 

that energy capttnred by the inclusion upon interaxition with the incident wavefront is 

isotropically reradiated, in practice, the scattered wavefield can be strongly directional as 

demonstrated by KnopofF (1959); Aki and Richards (1980) and Wu and Aki (1985). For 

example, KnopofF (1959) treated the case of a plane compressional wave incident upon an 

infinitely dense, infinitely rigid spherical inclusion within an elastic wholespace. Asstuning 

an incltision radius small compared with wavelength, KnopofF obtained the following far-
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field expressions for radial and tangential components of the scattered displacement field: 

U R ( ^ ) = ^ ^ ^ ^ | c o s ^ e ^ ^ ' ^ ( » - ^ / - ) , (2.20) 
1 + 27o K 

U.W=T^74l=i»«^'''"-'"«- (2-21) 
Radiation patterns are illustrated in Figvu-e 2.10 for a Poisson's ratio of (TQ = 0.456. 

Incidence Direction 

0° Phase Shift 
180° Phase Shift 

Figure 2.10. Theoretical radiation patterns (Q radieil, D tangential) arising for elastic scatter­
ing from an infinitely dense, infinitely rigid spherical inclusion embedded within a homogeneous 
isotropic whole space. Ck>mputation assumes inclusion radius small compeured with wavelength of 
incident compressional pleine wave. Radial displacements are exaggerated by a factor of 7.5. 

Note that while both radiation patterns are doubly circular, the maximum amplitude of 

the tangential component is more than ten times that for the radial or compressional 

component. In addition, while the scattered compressional wavefield has maxima parallel 

and nulls broadside to the direction of incidence, the radiation pattern for the tangen­

tial component is rotated by 90 degrees. Consequently, since sotu'ce and detector can be 

nearly coincident for small-scale archaeological apphcations, scattered compressional waves 
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received at the detector carry more energy than predicted for isotropic scattering. In gen­

eral, the directional characteristics of source radiation and scattering cause the detection 

limit to be significantly influenced by the geometry of the soimding configuration. In the 

case of stuface impact sources, the foregoing findings suggest that optimtun detectability 

is achieved by a coincident source-detector positioned vertically over the target. 

A third complication of our detectability model arises due to free surface and coupling 

effects at the detector. While our model incorporates an all-inclusive constant Q, giving an 

effective surface area for the receiver, in practice, the detector's response is both frequency 

dependent and directional. Three principal factors influence the receiver's response: the 

geophone's intrinsic frequency response, ground coupling response chara<:teristics and free 

surface effects. In particular, the effective response of a planted velocity-type detector 

can be adequately modeled by two damped springs in series; one representing the internal 

workings of the receiver and the other representing the elastic coupling of the detector to 

the ground. The response of each component is that of a damped harmonic oscillator char­

acterized by a resonant frequency and corresponding damping coefficient. Consequently, in 

response to a periodic seismic distturbance, the detector's maximvmi output voltage varies 

considerably with the frequency of groimd motion. 

The detector's response is also directional. Geophones are ordinarily designed to re­

spond only to grotmd motion parallel to a chosen axis of sensitivityf. Here, we are primarily 

concerned with vertical component detectors, having their axis of sensitivity oriented nor­

mal to the surface of deployment. In addition, because of the strong contrast between the 

elastic properties of the subsurface and air, the cheiracteristics of a seismic disturbance in­

cident on the surface can be severely altered. In effect, the vector displacement field must 

satisfy free surface boundeiry conditions, requiring displacements and associated tractions 

to vanish at the surface. As for the case of an internal discontinuity within the subsur­

face, solution of the appropriate field equations yields a set of coefficients characterizing 

t Resonances due to motion non-parallel to the axis of sensitivity, referred to as parasitics, are designed 
to reside at frequencies outside the signal band 
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ampUtude and phase of reflected, transmitted and converted modes relative to the inci­

dent wavefield as a function of incidence angle (Aki and Richards, 1980). For instance, on 

interaction with the free surface, an obliquely incident, plane dilatational wave is partly 

reflected and partly converted into a vertically polarized rotational wave as illustrated in 

Figure 2.11. 

Free Surface 

Figure 2.11. Geometry for free-surface reflection. Bold arrows indicate sense of particle displace­
ment. ^ denotes the angle of reflection for the converted S-V wave. 

Consequently, at the instant of detection, net particle displacement is the sum of three 

components: the incident dilatational wave, a reflected dilatational wave and a vertically 

polarized rotational wave. Assuming an incident wave of unit amplitude, the net vertical 

displacement as sensed by a detector on the surface has peak amplitude 

2cosd (27^^sin25 - 1 ) 
uz (9) = (2.22) 

(1 - 27^2sjjj2^)2 ^ 4^-3gjj^2g COS ^ (1 - 7^2sijj2^) V 2 ' 

where 6 denotes the angle of incidence measured with respect to vertical and 70 = ao/A) 

as before. Figure 2.12 illustrates the directionality of the free surface effect for a range of 

Poisson's ratio. In particular, for <TO = 0.5 or 7^^ = ^o/«o = 0.0, equation (2.22) reduces 

to 

lim U2(^) = -2cos^ , (2.23) 
70-+OO 

where negative polarity arises on defining vertical displaxiement positive-downward. Con­

sequently, for normal incidence {6 = 0), maocimimi vertical displacement of the free-surface 
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is Uz (0) = —2. Equation (2.23) is often a reasonable approximation for unconsolidated 

sediments. 

90̂  90^ 

cro=0.00 
cro=0.25 
cro=o.50 

Figure 2.12. Directivity patterns for a plane dilatational wave incident at a vertical component 
detector deployed on a traction free surface for Poisson's ratios of (TQ = 0.5 (solid curve), CTQ = 0.25 
(dotted curve) and (To = 0.0 (dashed curve). 

Finally, although our treatment of seismic detection assumes sinusoidal, monodbx>-

matic incident radiation, in practice, the typical source waveform is impulsive and conse­

quently broadband. In other words, instead of a pure sinusoid of infinite duration, seismic 

sovu:ces produce a transient disturbance, like that displayed in Figure 2.13a, comprised by 

a spectrum of sinusoids having a range of frequencies and contributing various fractions of 

the total energy. If w(t) denotes the transient source pulse or wavelet, the corresponding 

frequency spectnmi is given by 

|W (f)| = [» {W (f )}2 + 3 {W (f)}2] ^/^ 

= [W(f)W*(f)]^/^ 

where 

(2.24) 

W 
/

+00 
w(t)e- ' 

•00 

-i2xft dt (2.25) 

is the complex Fourier transform of the wavelet, 3J {W (f)} and 9= {W (f)} are, respectively, 

real and imaginary parts of W (f) and * denotes the corresponding complex conjugate. In 

particular, |W (f )| is the amplitude spectrvuu, giving amplitude as a function of frequency 
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for the constituent sinusoidal components. An associated phase spectrum 

'^{w(f)}-
0 (f) = tan ••[ »{W(f )} 

= tan 
1 r /w(f)-w-(f)\i ^2-2^) 

[ Vw(f)+w*(f);j 
charEicterizes relative phase shifts between components. Figures 2.13b and 2.13c depict 

amplitude and phase spectra corresponding to the wavelet in Figure 2.13a. Note that the 

amplitude spectnun displays a peak frequency of approximately fp = 400 Hz and that the 

corresponding tmwrapped phase spectrmn is very neaxly linear. The corresponding energy 

density, or power spectrum is simply the square of the ampHtude spectnun 

e (f) = |W (f)p = W (f) W* (f). (2.27) 

It follows from foregoing analysis, that the tiltimate detection hmit for a broadband im­

pulse corresponds to the spectral component having optimum balance between frequency 

and energy density. In practice, spectral analysis is often unnecessary and it is sufficient 

to estimate the wavelet's detecting power by measuring its dominant frequency character­

istics. Two principal measures are illustrated in Figure 2.13a. The dominant frequency fj 

is given by the reciprocal of the dominant period or the time difference between extrema 

of the wavelet's primary side lobes (Widess, 1973). In contrast, the wavelet's central fre­

quency fi: is the reciprocal of twice the time separation between the main lobe's two zero 

crossings, dubbed by Koefoed (1981) as the central period. Either of these parameters 

may be used to estimate the gross detection limit of a broadband wavelet. Moreover, the 

reader should note that these estimates axe often a better characterizations of the wavelet's 

overall spectral composition than the corresponding peak frequency fp. Perhaps the most 

indicative measure of the wavelet's gross spectral content is its mean frequency or spectral 

centroid given by 

fm = j^*^ f IW (f)| df / y ^ IW (f)| df, (2.28) 

which, in discrete approximation, yields an approximate value of fm « 500 Hz for the 

spectrum displayed in Figure 2.13b. 
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Figure 2.13. (a) Broadband seismic wavelet, characterized by dominant frequency fj = 1/Td 
and central frequency ^ = 1/Tc, where dominant period Td and central period Tc are measured 
as indicated, (b) Corresponding amplitude (solid curve) and power (dashed curve) spectra, (c) 
Corresponding phase spectrum before (solid curve) and after (dashed curve) unwrapping. 
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In conclusion, although it is important to be cognizant of complicating factors that 

render the detection limit directional and frequency dependent, these effects should not 

detract from our primary finding: that archaeological remains are ordinarily detectable by 

seismic exploration. In fact, it is evident that for certain plausible sounding configurations, 

these effects enhance detectability. Moreover, it must be appreciated that the foregoing 

theoretical results for source radiation, scattering and free-stirface reflection are also based 

on simplifying assumptions and approximations. In paxtictdar, equations (2.18)-(2.23) are 

all foimded on far-field, plane-wave approximations. In other words, these results assume 

that the region of interest is sufficiently remote from the source region to assimie, first, 

that near-field contributions to the seismic distiurbance axe negUgible and, secondly, that 

wavefronts have insignificant local curvatiure. 

Aki and Richards (1980) demonstrate that in addition to so-called far-field terms, de­

scribing the spherical divergence of dilatational and rotational waves from a point source 

within a homogeneous, isotropic wholespace, the elastodynamic Green's function includes 

a third term having amplitude proportional to the inverse third power of radius and, 

consequently, which dominates near-field characteristics of the seismic disturbance. Ac­

cording to Richards (1990), the near-field term has negligible effect at a given range r 

from the source if, and only if, the the time between dilatational and rotational arrivals 

tgip = r( l /^o — l/<*o) is significantly greater than the source duration. For instance, if 

ao=350.0 ms~^, /9o=100.0 ms~^ and the dominant frequency of the sovirce wavelet is 

fD=400 Hz, near-field effects are negligible only for r » O!o/5o/[fd (<*o — ^o)] = 0.35 m. A 

plane-wave assumption, on the other hand, acknowledges that far from the source region, 

the portion of a wavefront in the vicinity of an arbitrary point becomes approximately 

planax. The validity of the approximation depends on the wavefront's radius of curva-

tm-e and the dimensions of the region of interest. For example, since Rayleigh scattering 

involves wavefronts incident on inhomogeneities having radii small compared with wave­

length, a plane-wave approximation is adequate at ranges comparable to or exceeding the 

wavelength. Although the validity of far-field, plane-wave approximations is naturally in 

question for shallow, small-scale archaeological applications, a complete and rigorous anal-
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ysis of limitations and restrictions is beyond the scope of the present study. Consquently, 

we shall adopt these approximations as working assumptions unless otherwise stated. In 

particular, theoretical modelhng of the wavefield generated by a spherically symmetric, 

explosive source, in Chapter 3, and a comparitive analysis of array filter responses for 

plane and spherical waves, in Appendix B, suggest that these assumptions are practically 

valid. 

Now, having established the detectability of archaeological remains, let us consider the 

resolution of individual features. 

2.3 Resolution; 

Detection as treated in the foregoing section should be viewed strictly as a prerequisite 

for resolution. In other words, detection of a given feature does not even so much as ensure 

that its existence will be established, let alone its location and geometry. While detection 

amounts simply to data acquisition, successful and unambiguous interpretation of these 

data requires resolution. For instance, recall that all spherical inclusions having a particular 

cross-section and residing at arbitrary positions on the ellipsoidal surface in Figure 2.3 

yield identical responses at the detector. More significantly, it follows that two identical 

inclusions at arbitrary positions on the ellipsoid yield a combined response at the detector 

that is indistinguishable from a single inclusion having twice the scattering cross-section. 

This simple example illustrates the non-uniqueness inherent in geophysical observations. 

Of course, the insightful reader will correctly surmise that this ambiguity can be reduced 

in large part by repositioning the source and receiver and redetecting the inclusions. In 

fact, for most configurations, repetition of this procedure could establish that two distinct 

inclusions exist. If, however, the two axe separated by less than some critical distance, 

their composite response remains indistinguishable from that due to a single inclusion. 

This critical separation is a measure of the resolving power of the data acquisition system. 

Consequently, resolution is defined as the ability to discriminate between signals arising 

from separate but closely spaced targets and is treated in two dimensions: time and space. 

2.3.1 Temporal Resolution: 

Temporal resolution refers to the minimtim difference between arrival times at the de-
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tector for which partially overlapping signals from separate targets may be distinguished. 

In practice, this amoimts to a limitation on the difference between associated transit 

ranges. This concept is illustrated in Figure 2.14, where we display synthetically mod­

elled seismic responses arising for a wedge of xmiform material having elastic impedance 

Zi = piai botmded, above and below, by media having dissimilar impedances ZQ = poao 

and Z2 = PQCtQ, respectivelyf. Two specific cases are considered; ZQ < < Zi « Z2 (Figure 

2.14b) and ZQ « Zi » Z2 (Figure 2.14c). 
Earth Model 

(a) 

Z o « Z i « Z TR=0.43Td 

2-OTd Td Tt=o.5Td 0.0 

Two-way Reflectivity Interval 

Zo« Z i » z TR=0.43Td 

2.0Tci Td Tt=o.5Td 0.0 

Two-way Reflectivity Interval 

Figure 2.14. (a) Earth model for assessing temporal resolution. Zi = piai represents the acoustic 
impedance of the ith layer, with pi and aj denoting density and velocity, respectively. Correspond­
ing reflectivity series and associated synthetic seismic responses for an (b) even polarity reflectivity 
(Zo « Zi « Zj) (c) odd polarity reflectivity (ZQ « Zi » Zj) (ZQ = Zj). Responses are dis­
played as functions of two-way transit interval (in units of dominant period Tj) separating reflec­
tivity impulses. Rayleigh Tt = 0.5Td and Ricker TR = 0.43Td criteria for temporal resolution are 
indicated. (After Kallweit and Wood. 1982) 

t Analogous with the impedance of an electrical circuit, relating applied electric potential (voltage) to 
induced current, elastic wave impedance is an intrinsic property of a medium relating applied mechanical 
potential (stress) to induced pMticle velocity (see Aki and Richards (1980), §5.2.2; Lipson and Lipson (1969), 
§2.5.2) 
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Synthetic seismograms are computed assuming a coincident source-detector pair deployed 

on the surface and incrementally shifted by some fixed interval until the model structure 

has been traversed. At each acquisition point, a pre-specified, discretely sampled source 

wavelet wx is convolved with a time-sampled sequence of coefficients 

r _ ZT - ZT+At _ 1 - Zx+At/ZT 2̂ 29^ 
Zx + Zx+At 1 + Zx-HAt/Zx 

giving normal-incidence reflectivity as a function of equivalent two-way transit time verti­

cally beneath the transducer position. Here, Zx = PTO^T Ĵ̂ d Zx+At = PT+Ato^x+At denote 

effective elastic impedances at discrete two-way times of T and T-FAt, respectively. The 

corresponding synthetic seismogram follows from the the so-called convolutional model 

according to the relation 
+00 

sx = wx * rx = ^ Wr rx-r , (2.30) 
r=—oo 

where * is shorthand notation for the convolution operation. In effect, convolution replaces 

each discrete reflectivity value rx by an appropriately scaled version of the wavelet series 

Wx as illustrated in Figure 2.15. 
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Figure 2.15. The convolutional model. A horizontally layered earth model (ZQ < Zi > ZJ < Z3) 
gives rise to reflectivity series r(t). Subsequent convolution with wavelet series w(t) yields the 
synthetic seismogram s (t) = w (t) * r (t). 
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Synthetic seismograms in Figxire 2.14 are superimposed on the corresponding reflec­

tivity series. Since, in each case, the assumed earth model involves simple unconformi­

ties between slabs of uniform media having sharply contrasting impedances, associated 

reflectivities consist of a pair of isolated spikes of approximately imit amplitude which 

gradually converge as the wedge thins. Moreover, the reflectivity has even polarity for 

Zo « Zi « Z2 (Figture 2.14b) and odd polarity for ZQ « Zi » Z2 (Figure 2.14c). 

To model the soiurce pulse, we have adopted the Ricker wavelet (Ricker, 1953a; Hosken, 

1988) given by 

w (t) = (1 - 12fJ t2) exp (-6fJ t2) (2.31) 

and having associated amplitude spectnmi 

'-«i=(^)(a^-[-Tg)i-
where fj = l / T j is the dominant frequency as defined in the previous section and is 

related to corresponding central and peak frequencies by fj = 2y/lj3{c and fj = ir/y/dip, 

respectively. A time shifted Ricker wavelet w(t — TQ), together with associated amplitude 

and phase spectra are illustrated in Figure 2.16 for a dominant frequency of fj = 630 Hz 

and time shift TQ — 2.5 ms. Notice that in accordance with the shifting theorem of the 

Fourier transform (Bracewell, 1986), the time shift TQ = 2.5ms is equivalent to a Unear 

phase shift of ©0 = —27rfro = — .0057rf radians. 

Despite theoretical shortcomings discussed by Hosken (1988), much of the existing 

Uterature on seismic resolution is fotmded on the pioneering work of Norman Ricker (1953a, 

1953b) and utiUzes his wavelet for modeUing and analysis. Comparison of Figure 2.16 

with Figure 2.13 indicates that, although strictly acausal, a time-shifted or, eqmvalently, a 

hnearly phase-shifted Ricker wavelet closely resembles the typical source pulse acquired in 

connection with full-scale model experiments described in Chapter 4. Consequently, since 

our aim is to model the gross characteristics of recorded seismograms, Ricker's wavelet 
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Figure 2.16. (a) Pseudo-causal Ricker wavelet w (t — TQ), where w (t) is defined by equation (2.31) 
and To = 2.5 ms. Corresponding (b) 2uiiplitude (solid curve) and power (dashed curve) spectra (c) 
phase spectrum before (solid curve) and after (dashed curve) phase unwrapping. 
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is well sviited despite its theoretical flaws. Useful alternatives are the Berlage wavelet 

(Aldridge, 1990) and the Rayleigh pulse (Rubral and Tygel, 1989). 

Now, having described the computation of synthetic seismograms, let's consider the 

implications of Figure 2.14 for establishing seismic resolution criteria. Evidently, where the 

wedge is sufficiently thick, reflected pulses from upper and lower interfaces are detected 

as isolated events. As thickness decreases, however, the two wavelets merge, yielding a 

composite response produced by interference of the two distiurbances at the detector. When 

the range between upper and lower interfaces reaches some critical limit, it is no longer 

possible to discern distinct contributions or features of the wavelet complex associated with 

constituent wavelets. In other words, separate arrivals and, consequently, the associated 

reflectors are no longer resolved. Three principal criteria have been estabUshed to quantify 

the corresponding resolution limit. 

First, in connection with analysis of diffraction spectra and optical resolution, Lord 

Rayleigh arbitrarily defined the resolving limit of a rectangular aperture as the separation 

between two point sources of light, such that the main lobe of the diffraction pattern or 

image wavelet due to one source falls exactly on the first minimtun of the other (Jenkins 

and White, 1957). Equivalently, in the context of seismic resolution, Rayleigh's criterion 

requires that the range separating two reflectors exceed one quarter the dominant wave­

length Ad = aTd of the incident wavelet. This equivalence is confirmed by differentiating 

equation (2.20), for the Ricker wavelet, with respect to time and solving for finite non-zero 

roots (Appendix C). The associated temporal parameter Tt = 0.5Td is commonly referred 

to as the tuning thickness (Kallweit and Wood, 1982). Notice that a factor of two arises 

between the equivalent spatial and temporal resolution Umits in connection with two-way 

vs. one-way transit time. 

Ricker (1954) defined the resolution of his wavelet as the range separating two reflectors, 

having the same polarity, for which the composite waveform as depicted in Figtire 2.14b 

is chjiracterized by zero ctirvatvure at its central maximum. Thus, writing the wavelet 
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complex as 

s(t) = w( t + r ) + w ( t - r ) , (2.33) 

Ricker's resolution criterion reqmres that 

^ « ( * ) = ^ ^ ( t + O + ^ w ( t - r ) = 0 (2.34) 

with the corresponding temporal resolution limit following as T R = 2r where r satisfies the 

previous relation with t=0. However, since w (t) as defined by equation (2.31) represents 

an even, symmetrical wavelet, we have w ( + r ) = w (—r). Therefore, 

and, consequently, equation (2.34) is satisfied by r satisfying 

^ W ( T ) = 0 . (2.36) 

In other words, for even symmetrical wavelets, Ricker's temporal resolution limit T R is 

equivalent to the separation between inflection points on the wavelet's central lobe (Ap­

pendix D). In particular, for the Ricker wavelet, T R « 0.43 Tj or about 86 percent of the 

corresponding timing thickness Tt = 0.5 T j . Consequently, according to Ricker's resolu­

tion criterion, two targets will be resolved if their ranges differ by more than about Ad/4.65 

compared with Ad/4.0 under Rayleigh's criterion. 

A third criterion for the temporal resolution limit was developed in connection with 

the response of a uniform, isolated layer embedded within a homogeneous halfspace as 

depicted in Figure 2.14c. Widess (1973) observed that as the associated time interval 

separating equal amplitude, opposite polarity reflectivity impulses diminishes to less than 

about 0.25 Td, the structvire of the composite waveform appears to become very nearly 

stable and approximates the derivative of the incident wavelet; not a surprising resiilt, 

recognizing that the reflectivity sequence approaches that of a discrete differentiation filter 
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(ie. [...,0,0,-1,1,0,0,...]). On this basis, Widess's resolution criterion holds that an isolated 

layer embedded within a homogeneous halfspace is resolvable if its botmding interfaces 

have ranges differing by more than A<i/8.0. 
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Figure 2.17. (a) Resolution curves for dominant frequencies of 250, 500 and 1000 Hz. Apparent 
peak-to-peak reflectivity interval for even (solid curve) and odd (dashed curve) polarities as a 
function of the true reflectivity interval, (b) Associated detection curves. Maximum amplitude of 
the wavelet complex (relative to maximum wavelet amplitude) as a function of the true reflectivity 
interval for equal (solid curve) and opposite (dashed curve) polarities. Tt and TR denote Rayleigh 
and Ricker resolution criteria. Curves are normalized with respect to maximum wavelet amplitude. 
(After Kallweit and Wood. 1982) 
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An excellent comparative analysis of the foregoing criteria was reported by Kallweit 

and Wood (1982) and, although their findings confirm the significance of Rayleigh and 

Ricker criteria in connection with both even and odd polarity reflectivities, a physical basis 

for Widess's resolution limit could not be substantiated. In fact, despite its popularity 

and widespread application, resolution curves in Figure 2.17a suggest that there is no 

special significance, whatever, associated with the Widess criterion. Instead, the resolution 

curves indicate that apparent temporal thickness, as indicated by the associated composite 

waveform, yields a good approximation to true time separation between reflectivity ptilses 

tmtil the the Rayleigh resolution limit is reached. Here, the resolution curves intersect the 

diagonal associated with one-to-one correspondence between between apparent and true 

reflectivity intervals. Below the Rayleigh limit, apparent time separation falls oif rapidly 

in the case of an even polarity reflectivity, reaching zero when true separation is equal to 

Ricker's resolution limit. For an odd polarity reflectivity, on the other hand, the apparent 

temporal thickness rapidly converges on Ricker's resolution limit as true separation goes to 

zero. Consequently, in both contexts, the effective resolution limit lies somewhere between 

Ad/4.0 and Ad/4.65 and, thus, we shall unify the two criteria referring to the range between 

them as the Rayleigh-Ricker resolution criterion. 

Let's examine the implications of this approximate resolution criterion for archaeolog­

ical applications. In general, the Rayleigh-Ricker criterion implies that resolving power 

is inversely related to dominant wavelength Ad = ao/fd Siad, therefore, depends directly 

on the wavelet's dominant frequency fd and inversely on host velocity ao- Consequently, 

that unconsolidated sediments and soils are often characterized by dilatational velocities 

less than the £ux)ustic velocity of air, suggests the near-surface nature of the archaeological 

features is especially well suited for achieving extended resolution. In particular, Figvu:e 

2.18 displays the Rayleigh-Ricker resolution criterion as a function of host velocity with 

the wavelet's dominant frequency as a parameter. It is observed that imder favorable con-
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ditions, archaeological features separated by less than 10 cm can be resolved by seismic 

exploration and that for a dominant frequency as low as 250 Hz and host velocity as high 

as 1000 ms~^ targets separated by less than a metre may still be resolved. Having drawn 

these conclusions, it must also be appreciated that near-surface, unconsolidated sediments 

are also characterized by significant attenuation of high frequencies and, consequently, that 

a dominant frequency of 1 kHz is currently an optimistic figure. 
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Figure 2.18. Rayleigh-Ricker resolution criterion (shaded region) for temporal seismic resolution 
for dominant frequencies of 250, 500 and 1000 Hz as a function of the interval velocity ao. The 
Rayleigh-Ricker criterion corresponds to the range between Rayleigh Ad/4.0 (solid curve) and Ricker 
Ad/4.66 (dashed curve) criteria. 

Moreover, in certain circvraistances the thickness of an unresolved "thin-bed" can be as­

certained by calibrated amplitude analysis of the composite waveform. In respect of such 

considerations, detection ctirves in Figure 2.17b display the variation of maximum com­

posite ampUtude as a function of the true time separation between reflectivity impulses of 

even and odd polarity. Here, extrema occur in connection with Rayleigh's resolution limit, 

further indicating its special significance. Specifically, in the context of an even polarity 

reflectivity, maximum composite amplitude decreases from unity at infinite separation to a 

minimum at Rayleigh's limit, equal to the difference between main-lobe and primary side-
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lobe magnitudes and then, subsequently, increases non-linearly to twice maximimi wavelet 

amplitude as the true temporal thickness approaches zero. Concurrently, the corresponding 

curve for an odd polarity reflectivity varies from xmity at infinite separation to a maximmn, 

equal to the sum of main-lobe and primary side-lobe magnitudes, at Rayleigh's limit and 

then, subsequently, decreases non-linearly to zero at zero temporal thickness. Although 

of great interest in connection with seismic stratigraphy (Widess, 1973; Meckel and Nath, 

1977; Neidell and Poggiagliohni, 1977; De Voogd and den Rooijen, 1983; Knapp, 1990), 

further details regarding amplitude analysis of unresolved layers is beyond the scope of our 

present discussion. 

Instead, having established that seismic resolution, like detection, is intimately related 

to wavelet length or duration, let's examine the relationship between the wavelet's temporal 

or spatial properties and its spectral charax:teristics. In particular, the scaling property 

of the Fourier transform (Bracewell, 1986), holds that wavelet contraction in the the time 

domain is equivalent to spectral expansion in the frequency domain. Recalling that the 

Fourier spectrum W (f) associated with an arbitrary wavelet w (t) is defined by equation 

(2.25) 

/

+00 

w(t)e-»2'^*dt, 
•oo 

consider a related wavelet w'(t) = w(ct), where c represents an arbitrary positive-valued 

real constant. The corresponding Fourier spectnun follows as 

/

+CX) 

w'(t)e-'2'rf*dt 

Zo • (2-37) 
w(ct)e-'2'rfMt 

r—oo 

Substituting t' = ct and, thus, dt = dt ' /c yields 
r+oo 

= / : 

1 /»-i-oo 

W'(f) = - / w(t')e-»2'^(f/<=)*dt' (2.38) 
^ J—00 

and, therefore, it follows from equation (2.25) that 

W'(f) = i w ( f / c ) . (3.39) 

Consequently, if c < 1.0, we note that w'( t ) is a contracted version of w(t ) and the asso­

ciated Fourier spectrum W' (f) is a correspondingly expanded and smtably scaled version 
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Figure 2.19. Normalized time domain sampling functions and associated low-pass frequency 
spectra having terminal frequencies of (a) 250 (b) 500 and (c) 1000 Hz. 
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of W(f). For c > 1.0, the situation is reversed. For example, consider a wavelet having a 

Fourier spectrum equivalent to the transfer function of an ideal low-pass filter 

W(f) = n ( ^ ) , (2,40) 

where 

is a rectangular function having unit height and base and fu denotes the terminal frequency 

of the pass-band. The associated wavelet is given by the following inverse Fourier transform 

W(f)e'2'^*df= / e'^'rftdf 

__ 1 /'gi2Tfut _ g-i2irfut\ 

i27rt V / , (2.42) 

= j ^ [ 2 i s i n ( 2 7 r f , t ) ] 

w(t) = ^ ^ ^ i ^ = 2f„Sa(27rf„t) 
Trt 

where Sa(^) = sin7r{/7r^ is the well known sampling or sine function. Figure 2.19 depicts 

normalized sine fimctions arising for fu =100, 500 and 1000 Hz. Evidently, in a<;cordance 

with the scaling theorem, spectral expansion is associated with a corresponding temporal 

contraction of the sampUng function. It follows that perfect resolution is associated with 

infinite spectral expansion or, stated mathematically, limf„_>oo "w (t) = ^( t ) , where S(t) is 

an infinitely narrow pidse centered on t=0 and possessing imit area 
r+oo /•+00 

/

+ 0 0 i«+00 

^ ( t ) d t = / ^( t)e- '2 ' f tdt = l . 
•00 7 - 0 0 In connection with seismic wavelets and resolution, it is pertinent to question whether 

the temporal contraction is a consequence of increased spectral breadth or, perhaps, prin­

cipally due to the accompanying incorporation of higher frequencies. In this regard, it is 

useful to consider a more general band-limited Fourier spectrum having form 

W (f) = n ^ ^ ^ *[S{{- im) +6{f + f^)], (2.43) 

where 6 (^) is the Dirac delta function, fm = (fi -|- fu)/2 defines the spectnun's midfrequency 

in terms of upper and lower terminal frequencies fu and fi, respectively, and Af = fu — fi is 
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the corresponding spectral bandwidth. Applying the convolution theorem of the Fourier 

transform (Appendix E), the time domain waveform associated with equation (2.43) follows 

as 

or, equivalently, 

w( t ) = 2'^''^^^^^^^ cos{2irf„t), (2.44) 
TT t 

- • / .x_oi r sin(27rfttt) s i n ( 2 7 r ^ . 

This result is known as the sine wavelet and is, effectively, the impulse response of 

an ideal band-pass filter. Recalling the double angle formula sin 2^ = 2sin ( cos ̂ , observe 

that for fi = 0, equations (2.44) and (2.45) reduce to the sampling function described 

above. In addition, the central frequency of the sine wavelet is fc = fm for fm > Af and 

f̂  = Af/4 for fm < Af. The associated dominant frequency fa depends on both midfre-

quency fm and bandwidth Af and is more difficult to specify. In Figure 2.20, we illustrate 

the coupled influences of midfrequency and bandwidth on the character of the associated 

wavelet. Comparing Figures 2.20a and 2.20b reveals that shifting the spectral band to 

higher frequencies yields a wavelet having a substantially shorter dominant period and, 

consequently, on the basis of Rayleigh-Ricker resolution criterion, one that should posses 

significantly more resolving power. An accompanying increase in relative side-lobe energy, 

however, can be imdesirable. Koefoed (1981) recognized that in addition to the breadth of 

a wavelet's central lobe, its resolving power depends on two additional factors: the side-lobe 

ratio, defined by Schoenberger (1974) as the ratio of principal side-lobe amplitude to main 

lobe amplitude, and side tail oscillation amplitude, referring to the relative amplitude of 

wavelet oscillations beyond the principal side lobes. Koefoed established that while higher 

frequencies are required to achieve a shorter dominant period, retention of low frequency 

content is essential for reducing the side-lobe ratio and suppressing side tail oscillations. 

Consequently, in addition to greater high frequency content, improved resolution requires 

extended bandwidth as illustrated in Figure 2.20c. Here, we attain the required contraction 
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Figure 2.20. Normalized sine wavelets and eissociated band-limited amplitude spectra (a) 0.1-500 
Hz, (b) 500-1000 Hz and (c) 0.1-1000 Hz. Corresponding phase spectra are zero-valued. 
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of the wavelet while retaining its spiky character. These findings are in accordance with 

a generalized meastue of wavelet resolving power proposed by Widess (1982) and defined 

for a real-valued wavelet w (t) by 

Rw = ^ , (2.46) 

where 

/

+0O 

w^ (t) dt (2.47) 
•00 

defines total wavelet energy and w^ax denotes the maximum absolute amplitude of the 

wavelet. Evidently, R^ talces on a maximiun value of unity for an infinitely narrow impidse 

of amplitude w^ax = "v/E^ and decreases as wavelet breadth and the magnitude of side lobe 

oscillations increase, accounting for a larger proportion of total wavelet energy. 

Specific spectral characteristics leading to optimvrai resolving power can be assessed 

by introducing a related analytical measure of wavelet length or dviration. Consequently, 

wavelet length Lw is defined as the square root of the second moment of the wavelet's 

energy density about an arbitrary reference time to, normalized by total wavelet energy. 

That is, 
1 /«+00 

Lw'(to) = r ^ / w2 (t) (t - to)2 dt (2.48) 

(Lathi, 1965; Shoenberger, 1974; Berkhout, 1984). In particular, on extremalizing L^ (to) 

with respect to to (Appendix F), we find that "second moment length" is minimized for 

1 /"'•°° 
to = to = —- / t w^ (t) dt. (2.49) 

Ew J-OO 

In other words, wavelet length defined by equation (2.48) is minimized when measured 

relative to the wavelet's "centre" or, more precisely, the first moment of wavelet energy 

density about zero. This resxilt is not surprising given prominent analogies, for instance, in 

connection with statistics, where an arbitrary probability density function has minimum 

variance measured about the mean. Although, in prax;tice, physically realizable wavelets 

are strictly causal signals with definite onset time, suggesting that to > 0, our present aim 
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is to assess the resolving power of seismic measurements using relatively simple analytical 

wavelet models which may or may not be causal. In particular, Ricker and sine wavelets 

are symmetric about t=0, consequently acausal and, since their first moment of energy 

density about t=0 is zero, have minimum second moment length Lw (0). 

To ascertain specific spectral properties or characteristics associated with minimum 

wavelet length and, consequently, optimvim seismic resolution, we consider the frequency 

domain equivalent of equation (2.48). Using the power theorem of the Fourier transform 

(Bracewell, 1986) 

/

+ 0 0 A+OO 

X (t) y* (t) dt = / X (f) Y* (f) df, (2.50) 
•OO J—OQ 

where X(f) and Y(f) denote Fotirier transforms of arbitrary functions x( t ) and y( t ) , 

respectively, we make the particular substitution 
x( t ) = y( t ) = ( t - t o ) w ( t ) , (2.51) 

yielding (Appendix G) 

(2.53) 

where |W(f)| and 0 ( f ) denote amplitude and phase spectra associated with an arbitrary 

wavelet function w (t) as defined by equations (2.24) and (2.26) and where, by Parseval's 

theorem, 

/

+ 0 0 /•+0O 

w 2 ( t ) d t = / |W(f)|^df. (2.54) 
•OO J—oo 

The foregoing expression reveals that wavelet length and, consequently, the wavelet's 

resolving power depend principally on the rate of change of its spectral characteristics. In 

particular, since the wavelet's amplitude spectrum must be non-vanishing and bandlim-

ited, the first term in the integral's Eirgument indicates that minimum length and, thus, 

optimum resolution is associated with a smoothly varying amplitude spectrum. Specifi­

cally, Berkhout (1984) has demonstrated that a b£indlimited, zero phase wavelet possessing 
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some predesignated total energy has minimum second moment length Lw (0) if its ampli­

tude spectrum has the form 

W (f) = n ( i ^ ) cos ( ^ ^ ^ ^ ) , (2.55) 

where, as before, fm = (fi + fu)/2 and Af = fu — fi are, respectively, noidfrequency and 

bandwidth and 11 (() is defined by equation (2.41). Using convolution and shifting theorems 

of the Fourier transform (Bracewell, 1986), the corresponding optimum wavelet follows as 

cos (TT Aft) rn 4Af w(t) = —-
IT 

COS (27rfn,t). (2.56) 
. l - ( 2 A f t ) 2 

In Figure 2.21, we display optimtun bandlimited spectra and associated wavelets for 

comparison with equivalent sine wavelets in Figvire 2.20. In accordance with theoreti­

cal findings, sine wavelets, owing to their abruptly varying amplitude spectra, are evi­

dently "longer" than corresponding optimimi wavelets. Consequently, in addition to ex­

tended bandwidth, enhanced seismic resolution requires that the amplitude spectrum vary 

smoothly within the signal band, gradually approaching zero at the bandlimits. 

The second term of equation (2.53) vanishes completely for phase spectra Go = 0 (f)+ 

27rfto associated with a constant phase wavelet or its time-shifted equivalent, where the 

linear component 27rfto is associated with selection of reference time to accompanying an 

eqviivalent static time-shift. Consequently, since constant and linear phase wavelets are 

effectively varismts on a zero-phase equivalent having identical amplitude spectnun, it 

follows that minimum second-moment length is fundamentally associated with zero phase 

wavelets (Shoenberger, 1974; Berkhout, 1984). While a linear phase-shift is equivalent 

to static time-shift without distortion, a frequency-independent pheise-shift alters wavelet 

character without net translation as depicted in Figure 2.22. In this regard, it is readily 

demonstrated (Appendix H) that the second moment length of a wavelet w (t) is equivalent 

to the second moment length of the wavelet's envelope |w(t ) | and, consequently, since the 

wavelet envelope is imaltered by application of a frequency-independent phase-shift 



Chapter 2: DETECTION AND RESOLUTION— 49 

0,0 \-h—r 

0.0 L 

0.0 t 
0.0 1.0 

Frequency (kHz) 
-6.0 0.0 6.0 

Time (ms) 

Figure 2.21. Normalized optimum wavelets and associated band-limited amplitude spectra (a) 
0-500 Hz, (b) 500-1000 Hz and (c) 0-1000 Hz. Corresponding phase spectra are zero-valued. 
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(Appendix I), it follows that wavelet length is also invariant under constant phase-shiftf. 

On comparing zero-phase optimum wavelets in Figure 2.21 with constant phase-shifted 

equivalents in Figure 2.22, it is intmtively evident that, despite length invariance, zero-

phase wavelets possess superior resolving power. Consequently, although wavelet length is a 

useful indicator of resolving capacity and faciUtates analysis of relevant spectral properties, 

it shotild not be viewed as a measure of resolving power. Rather, since the maximmn 

amplitude w^ax of the zero-phase wavelet exceeds that of all other wavelets possessing 

the same amplitude spectrum and, therefore, total energy E^ (Appendix J) , its resolving 

power Rw as predicted by equation (2.46) is also a maximvmi. Having said this, however, it 

is important to re-emphasize that physically realizable seismic wavelets are strictly causal 

and, consequently, non-zero phase (Robinson and Trietel, 1980). In view of this fact, 

Berkhout (1973, 1984) has demonstrated that among the class of causal wavelets possessing 

a specified amplitude spectnun, second moment length L^ (0) is minimum for the wavelet 

having "minimum phase" (Appendix K). In other words, the minimtun length wavelet 

possesses maximtun partial energy at any arbitrary time 0 < r < oo, where partial energy 

is defined for a real-valued wavelet w (t) by 

E p ( r ) = / w2(t)dt . (2.57) 
J—oo 

For this reason, the term minimum delay is often used in place of minimum phase. 

In conclusion, optimum temporal resolution is associated with a wavelet possessing 

minimvmi delay phase characteristics in addition to a smoothly varying, broadband am-

pHtude spectnma. Fortimately, common seismic soxirces, including explosives and impaxit 

devices, produce minimtun delay disturbances by nature and, thus, a minimum phase 

assumption is ordinarily well fotmded. 

t As discussed in Appendix H, an exception to wavelet length invariance under constant phase-shift 
arises for wavelets possessing non-zero d.c. spectral content (|W (0)| ^ 0). Applying a frequency-independent 
phase-shift to a finite length wavelet possessing non-zero area yields a wavelet having infinite second-moment 
length. 
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Figure 2.22. Normalized optimum wavelets after application of a frequency-independent phase 
shift of T/4 radians. Associated band-limited amplitude spectra (a) 0-500 Hz, (b) 500-1000 Hz and 
(c) 0-1000 Hz are identical to those in Figure 2.21. 
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Finally, for salce of physical intuition, it is useful to calibrate the analytical measure 

of wavelet dviration Lw (t) in connection with a wavelet of unambiguous length and in 

comparison with more practical measures, including dominant T j and central Tc periods. 

Consider, for instance, a unit amplitude rectangular wavelet 

w(t ) = n ( ^ ^ ) , (2.58) 

with 
f 0, ICI > 1/2; 

n(e) = { 1/2, iei = i/2;, 
11, lei < 1/2 

centered on t=0 and having known length L. Equation (2.47) yields 
1 r rL/2-e ,L/2 ^ 

Lw^(0) = TT- lim < 2 / t^ dt + / t^ dt ^, (2.59) 
tiy, e—0 1̂  JQ JL/2-e J 

where 
f ^L/2-e ,L/2 ^ 

Ew = lim ^ 2 / dt + / dt > 
«-̂ o [ Jo JL/2-C J (2.60) 

= lim {L - e} = L. 
€-+0 

Consequently, we obtain 

Lw' (0) = 3 ^ Jim {2(L/2) ' - e [(L/2)2 - 3e(L/2) + e ]̂ } (2.61) 

and, therefore, 

Lw (0) = -j= « 0.29 L, (2.62) 

indicating that the analytical length estimate must be scaled by a factor of l/-\/l2 » 0.29 

to yield the true length of a rectangular pulse. In comparison, we demonstrate in Appendix 

L that the Ricker wavelet is characterized by a second moment length Lw (0) w 0.31 Tj or, 

equivalently, Lw (0) « 0.27 Tc, supporting the validity of the forgoing calibration. Note 

that the foregoing result is perfectly consistent with the analogy between second moment 

length and the standard deviation of a statistical distribution. Just as approximately 

87 percent of the area under a Gaussian curve falls within one and one-half standard 

deviations of the mean, true wavelet length is very nearly three times the second moment 

length about the wavelet's center to, as given by equation (2.49). 
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2.3.2 Spatial Resolution: 

Spatial resolution may be characterized using the concept of Fresnel zones to quantify 

the focus of seismic soimdings. Consider a source of monochromatic spherical waves located 

a normal distance ro above a horizontal diffuse reflecting interface of infinite extent as 

illustrated in Figure 2.23. Accoimting for two-way transit, half-period PVesnel zones are 

successive annular regions on the planar reflector from which reflected energy returns 

within half cycle intervals. Referring to Figure 2.23, we consider rings of radii Ri , R2, ..., 

Rn such that corresponding ranges n , r j , ..., T\^ are successively longer by a quarter of a 

wavelength. That is. 

kA 
rk = ro + - ^ • (2.63) 

Sou rce—Detector 

Figure 2.23. F^esnel zone geometry for a coincident source of monochromatic waves positioned a 
normal-incidence range ro above an infinite plane, horizontal reflector, rk and Rk denote, respec­
tively, the range to outer boundary of the kth zone and the projection of this range on the reflector. 
By deflnition, rk — rk-i = A/4, where A denotes the wavelength of the incident wave, rjc and Rk 
are, respectively, the mean range to the kth zone and its component in the plane of the reflector. 

We also have that 

p 2 _ ^2 ^2 xvjj — rjj — TQ. (2.64) 
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Now, on squaring equation (2.63) and substituting for r^ in equation (2.64), we obtain 

Tl/2 

(2.65) •>•[(¥) ^ 2 

for the radius of the kth ring in terms of normal range ro and wavelength A. The area of 

the kth Fresnel zone follows as 

A = ir (Rj - Rk-i) 

Since, successive zones are, on average, A/2 further from the coincident source-detector, 

the net contribution at the detector due to a given Fresnel zone is phase shifted by 180 

degrees relative to contributions from adjacent zones. Since a phase shift of 180 degrees is 

equivalent to reversing the polarity of the arrival, the resultant amplitude detected at the 

receiver due to the first n Fresnel zones may be written as 

A = Ai - A2 + As - A4 + ... + (-1)""^ An, (2.67) 

where A^ represents the net reflection amplitude from the kth zone. Following the devel­

opment of Jenkins and White (1957), we note that three controlling factors determine the 

magnitudes of successive terms in the foregoing series. First, equation (2.66) indicates that 

zonal area ^ increases gradually with k, yielding a larger net contribution from successive 

zones. Secondly, as average range r^ from source-detector to the kth zone increases with k, 

spherical divergence causes a reduction in the corresponding reflection amplitude. Finally, 

in accordance with the Huygens-IVesnel principle, the net reflection amplitude from a given 

zone depends on the average angle of incidence/reflection-difFraction ^^ as embodied in a 

so-called inclination or obliquity factor 

fo(Ck) = l + cos^k (2.68) 

(Jenkins and White, 1957; Bom and Wolf, 1975). It follows that increasing obliquity 

associated with successive zones tends to lessen the corresponding contribution to the 

resviltant amplitude at the detector. 
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As a result, we have the following proportionality 

rk 
(2.69) 

rk = 

Average range to the kth zone, or the annulus between rings having radii Rk-i and Rk, 

follows from equation (2.63) and the mean value theorem for integrals as 

ir„ + m^^l . (2.70) 

Comparing the foregoing result with equation (2.66), we find that the ratio of zonal area 

to average zonal range is a constant 

A], _ .IT 

rk 2 

independent of k. Consequently, the proportionality (2.69) becomes 

(2.71) 

AkOcA|fo(?k)» (2.72) 

indicating that the relative amplitude contribution Ak, due to the kth Presnel zone de­

pends solely upon the obliquity factor equation (2.68) and, thus, on the average angle of 

incidence/reflection ^j^. Recognizing that the rate of change in ^^ increases with increasing 

Rk, we regroup the terms in equation (2.67) as 

A = ^ . ( ^ - A . + ^ ) + ( ^ - A . + f ) + . . . + ^ (2.73) 

or 

^ = * - - T - ( T - ^ » + T ) - ( T - - » + T ) - - ¥ + * - (2.74) 

Noting that each term in equation (2.67) exceeds the arithmetic mean of its neighboring 

terms, it follows that terms in parentheses are negative valued and, consequently, we may 
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form the inequality 

( T + T ) > * > ( ^ ' - T - ¥ + 4 ^'•''^ 
Now, assuming that ro > > A, Ai is very nearly equal to A2 and the previous inequality 

reduces to 

Further postulation that An-i and An are approximately equal yields 

and, finally, on letting n approach infinity we have limn_+oo An = 0 and, thus, 

AI 
A « — . (2.78) 

In other words, resultant amplitude detected by a coincident source-receiver pair, situated 

above an infinite horizontal reflector, is approximately half that contributed by the first 

Fresnel zone. Consequently, the diameter of the first half-period Eresnel zone 

xx2 \ l / 2 
Di = f-^ + 2roAJ (2.79) 

(see equation (2.65)) is routinely adopted as a meJisinre of spatial resolution. In fact, 

since ro » A is ordinarily a reasonable assumption in connection with large-scale seismic 

exploration, the second order term in A is commonly neglected, yielding the approximation 

Di «(2roA)^/2 (2.80) 

(Sheriff, 1985; Lindsey, 1989). Although the condition ro » A is often invalid for neax-

surface archaeological applications, the first Fresnel zone diameter given by equation (2.79) 

remains a useful measiure of spatial resolution. Indeed, departures fix>m approximations 

A2 « Ai and An-i « An leading from equation (2.75) to equation (2.77) are offsetting 

so that the approximation A » Ai/2 remains valid. Fresnel zone concepts may also be 
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extended to complexly stratified media and arbitrary source-detector geometries by con­

sidering the FIresnel volume or "physical ray", enveloping all possible Fresnel zones along 

the associated ray-path (Hubral, et.al., 1993; Cerveny and Scares, 1992). 

Having adopted equation (2.79) as our spatial resolution criterion, let's examine its 

practical significance. Despite its development in connection vdth an infinite reflector, the 

Fresnel zone criterion is principally employed to assess the capacity for resolving finite 

or discontinuous features. It is commonly conjectxured that the Fresnel zone criterion 

quantifies the focus of seismic imaging by characterizing the eiFective cross-sectional area 

of seismic illiunination as a function of wavelength and range from the soiirce. It is evident 

from foregoing development, however, that equation (2.78) is only valid for a reflector 

having infinite extent and that any discontinuity of the reflector or departvire from its 

planar nature will disturb the convergence of equation (2.67), yielding a deviation from the 

response predicted by equation (2.78). As we shall demonstrate, the difference is directly 

associated with diffraxition from the discontinuity. Consequently, the seismic response 

measured above an arbitrary refiector of finite extent is not insensitive to portions of 

the reflector or, indeed, other reflectors outside the first FVesnel zone. An approximate 

analytical expression for this response has been developed by Trorey (1970) on the basis 

of the integral theorem of Kirchoff. 

Kirchoff's theorem embodies the fundamental principle of the Huygens-Fresnel princi­

ple, by expressing the solution of the homogeneous wave equation 

at an arbitrary point p within the wavefield in terms of its solution and associated partial 

derivatives over an arbitrary surface S sxurounding p. The result is 

where r denotes the distemce from j? to an arbitrary element of 5 , n is the associated 
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outward normal and square brackets denote evaluation of the corresponding function on 

S at retarded time t — r / a , where r / a is the time required for a specified disturbance 

originating at an arbitrary position on the surface 5 to reach p (Jeans, 1948; Bom and 

Wolf, 1975). Consequently, in analogy with Huygens principle, each elemental area on 

S may be viewed as a point source of secondary radiation incident at p. Subsequent 

superposition of these secondary disturbances, in accordance with equation (2.82), yields 

the resultant field at p. 

Prescribing an appropriate geometry for the surface S, Trorey (1970) has formulated 

an approximate form of Kirchoff's solution for a finite plane reflector illtuninated by a 

point source coincident with the detector at p. The solution is developed in the Laplace 

transform domain beginning with the equivalent relations 

and 

where 

/

+00 

V>(t)e-«*dt (2.85) 
•oo 

defines the Laplace transform of <p (t). In addition, we have made use of the shift theorem 

of the Laplace transform (Kaplan, 1981) 

£ [v? (t - - ) ] = e-«'/« C [^ (t)] = e - " / " <p (s) (2.86) 

and the particular transform 

= s ^ ( s ) - v ' o , (2.84) l̂̂ « 
with initieJ condition tpQ = 0. Assuming a homogeneous, isotropic acoustic meditmi having 

velocity a, the wavefield (fis on a finite horizontal surface S due to a point source at p ' , 
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the image of p with respect to S, and satisfying equation (2.83) is 

g-sr/or 
(^5(s) = 7ew(s) (2-88) 

where TZ denotes the associated reflection coeflBcient and w (s) = £ [w (t)] represents the 

Laplace transform of the source wavelet. Substituting the foregoing result in equation 

(2.84) yields 

^,W = 17*Wj^e- ' /« ( i + ̂ ) d5, (2.89) 

where ro denotes the normal distance from the coincident source-detector to the underlying 

reflector. Finally, reducing equation (2.89) to an integral about the boundary of S, as 

depicted in Figtire 2.24, Trorey obtained the following solution for the seismic response 

measured by coincident source-detector positioned above a finite plane reflector bounded 

by an arbitrary curve 

^(s ) = ^ w ( s ) e - W « _ H ^ * ( 3 ) ^ l _ _ a < , , (2.90) 

where r {9) represents range to the boundary of S and integration is performed such that 

a point q traverses the boundary of S in clockwise sense. Notice that we have dropped the 

subscript p to simplify notation. In what follows, (̂  (s) denotes the Laplace transform of 

the resultant seismic response. 

Figure 2.24. Geometry for evaluation of equations (2.89) and (2.90) for the total seismic response 
of an arbitrarily shaped plane reflecting interface S as detected by a coincident source-detector pair 
at the origin (adapted from Trorey (1970)). 
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As Trorey (1970) recognized, the first term of the foregoing solution gives the simple 

reflection response for an infinite plane reflector at depth ro- More interestingly, the second 

term may be viewed as a correction term accoimting for diffraction from the reflector's 

boundary. In particular, note that if the reflector is actually infinite in extent, r (^) also 

becomes infinite, causing the diffraction term to vanish. Alternatively, if source-detector 

are not positioned over the reflector, the reflection term vanishes and the diffraction term 

is phase-shifted by 180 degrees. Let's examine the connection between these findings and 

the earlier discussion of Fresnel zones. 

First it must be emphasized that while the concept of Presnel zones applies to a 

monochromatic incident wavefield, the forgoing development based on Kirchoff's theo­

rem, admits a generalized source wavelet w ( t ) . Consequently, in exploring the connection 

between the two models, it is assumed that w (s) represents the Laplace transform of a 

monochromatic waveform. Having said this, consider the total response predicted by equa­

tion (2.90) for a plane circular reflector centered a vertical distance ro beneath a coincident 

source-detector pair and having radius Rĵ  as depicted in Figure 2.25. Since the bound­

ing curve is circular and, consequently, at constant range r {9) = rk = yJxQ + R^, equation 

(2.90) reduces as follows 

= ; ^ w (s) e-2sro/a - £ 2 ^ w (s) e-'^''^l°' _ _ w ^ s ; e ". - _ ^ w ^ s ; e - . (3.91) 

£ 0 \ ^_2s(r , - ro) /a ; ^ W (3 )6 -2^ ' ° /^ 
2ro 

It is easily observed from this result tha t limr^_+ro 'f'p (s) ~ 0. In other words, as the reflector 

shrinks to a point, its response vanishes (i.e. a "point diffractor" is a purely theoretical 

convenience). More interestingly, the response of the kth Fresnel zone follows as 

<^k(s) = ^ w ( s ) e - 2 - o / a 
2 / \ 2 

i 0 _ y g - 2 s ( r k - i - r o ) / a _ / £ o \ ^-2s (rk-ro)/a 

Jk-lJ Vrk/ 
(2.92) 
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P (x,y,z) 

Figiire 2.25. Specialized geometry (puticular case of Figure 2.24) for evaluation of equations 
(2.89) and (2.90) in connection with a plane circular reflector, having radius Rk, centered a vertical 
range ro beneath the coincident source-detector. 

In particular, letting k = 1, we obtain 

or, on recalling from equation (2.68) that ri = ro + A/4, 

,,W = ̂ *We-W.L(_^)^ 

^-28(ri-ro)/a (2.93) 

, -8A/2« (2.94) 
JO+ A/4^ 

Now, recalling the shift theorem of the Laplace transform defined by equation (2.86), we 

recognize that the factor exp (—sA/2a) represents a half-period time lag between diffracted 

and reflected waveforms or, equivalently, a 180 degree phase shift and, thus, a change of 

sign. Consequently, the previous restJt may be rewritten as 

21 
.̂W = ^*We- / .N , (_£<L_) ' (2.95) 

+ A/4 

and on assuming ro > > A in accordzince with the earUer treatment of IVesnel zones, the 
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term in brackets gives 2, yielding 

< ^ i ( s ) « - w ( s ) e - 2 W « (2.96) 

or, referring to equation (2.90), approximately twice the response of an infinite plane re­

flector, in agreement with equation (2.78). In contrast, however, the foregoing treatment 

provides a more general characterization of the seismic response and, in paxtictilar, reveals 

the very significant contribution of diffracted energy. Specifically, for a plane, circular re­

flector having diameter equivalent to that of the first half-period Fresnel zone, the foregoing 

analysis demonstrates that the diffraction term accounts for approximately half the total 

response. As the reflector's radius increases to that of the second Fresnel zone, the diffrac­

tion term changes sign and roughly cancels the reflection term, yielding the comparatively 

negligible response 

2 / \ 21 
'^2(s) = ^ w ( s ) e - 2 - o / « 

Vro + A / 2 ; Vro + A /4 ; 
(2.97) 

as predicted by equation (2.92). Further increase in the reflector's radius is accompanied 

by a growing resultant response, reaching a maximum that is only slightly less than that 

given by equation (2.96) at a radius equal to that of the third half-period Fresnel zone. 

Subsequently, as the radius of the circular reflector approaches the fourth Fresnel zone 

radius, the resultant response is again diminished reaching a minimtun that is marginally 

larger than that given by equation (2.97). For reflectors having larger radii, the progression 

continues converging, as anticipated, to 

^oo(s) = ^w(s)e-2^^ ' ' /« (2.98) 
2ro 

for an infinite reflector. Note that while this convergence is perfectly consistent with 

equation (2.67), the present analysis emphasizes the modulating influence of the diffraction 

response. To facihtate a complete characterization of the seismic response, we transform 

equation (2.91) to the time domain. 
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Application of the shift theorem, given by equation (2.86), together with convolution 

theorem 

/

-l-oo r /•+0O 

e~'* / w ( r ) r (t - r ) d r dt = £ [w (t)] C [r (t)], (2.99) 
•00 \.J—oo J 

for the Lapleice transform (Kaplan, 1981) yields 

-«=-«-{^K'-v)-ft)'<*-v)]}- (̂ •̂ ») 
illustrating that the resulting seismic response involves convolution of the wavelet with two 

time-shifted delta functions. Consequently, although foregoing analysis predicts that the 

response due to the first Flresnel zone is approximately twice that for an infinite reflector, 

this finding must be qualified by noting that it is valid only for t > 2r i /a . In other words, 

on writing the monochromatic waveform as 

y (r - a t ) 

with Wo denoting waveform ampHtude at tmit distance from the source and 

H[r] 

(2.101) 

r 0, r < 0; 
= { 1/2, r = 0; 

11, r > 0 
the Heaviside step function, it is evident that if the soturce is activated at t = 0, no re­

sponse is detected until onset of the reflected arrival after two-way transit time t = 2 ro/a. 

Moreover, the reflected wave alone constitutes the resultant seismic response for a sub­

sequent interval ^t, = 2(ri — ro)/a prior to arrival of the diffracted wave, at t = ri/a. 

For t > r i / a , reflected and diffracted wavelets interfere constructively to yield a resultant 

response nearly twice that due to reflection alone. Consequently, in a strict sense, the re­

sultant response predicted by equation (2.91) should be viewed as a steady-state response 

established only for t > rjc/a. 

Unlike the observation of optical phenomenon, where steady-state responses are mea-

siu-ed, the time lag ^t, = 2 (rjj — ro)/a is critical in connection with seismic imaging, es­

pecially in view of the transient nature of broadband seismic wavelets (Knapp, 1991). 
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Obviously, if the time lag exceeds wavelet duration, or length, there will be no interference 

whatever between reflected and diffracted wavelets. For time lags comparable to wavelet 

length, on the other hand, the resultant seismic response is a wavelet complex as examined 

previously in connection with temporal resolution. Consequently, spatial seismic resolu­

tion depends on the nature of interference between reflected and diffracted wavelets at the 

detector and, thus, on wavelet length as well as the reflector's dimensions and geometry. 

In particular, as the range from a coincident source-detector to the boundary of a plane 

circular reflector approaches that corresponding to the wavelet's first half-dominant-period 

Fresnel zone, the time lag between reflected and diffracted arrivals approaches Rayleigh's 

limit Tt = 0.5 Td. Thus, a connection is established between the Presnel zone criterion 

for spatial resolution and the Rayleigh-Ricker criterion for temporal resolution. While 

wavelet complexes associated with reflectors having larger radii are resolved, reflectors 

having lesser radii yield reflection responses that are indistinguishable from the associ­

ated diffraction event. In particular, as the reflector's radius shrinks to zero, the time lag 

separating reflected and diffracted arrivals decreases until the reflected wavelet is exa<;tly 

canceled by a polarity reversed equivalent due to diffraction from the reflector's vanishing 

circular boundary. It should also be appreciated that as the coincident source-detector is 

offset from the center of a circular reflector of finite radius, the diffraction response is no 

longer impulsive since the range r (0) in equation (2.90) is no longer a constant. 

The foregoing findings are illustrated in connection with the response derived by TVorey 

(1970) for an infinite half-plane as depicted in Figure 2.26. Observing that 

r {9) = [Ax2 tan2 6 + (Ax^ 4- rg)] ̂ ^\ (2.102) 

the corresponding response follows from equation (2.90) and (2.99) as 

V?(x,t) = w ( t ) * « ( x , t ) = / w ( r ) f t ( x , t - r ) d T , (2.103) 
J—CO 
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p (x,y,2) is%'y • 

Figure 2.26. Geometry for evaluation of equation (2.90) for the total seismic response of an 
infinite half-plane as detected by a coincident source-detector pair at the origin (adapted from 
TVorey (1970)). Note that ro = Az is assumed constant. 

where 

ft(x,t) 

with 

\2ro [ ' \ aj 7ra2 t( t2 + r 2 - r 2 ) ( t 2 - r 2 ) i / 2 j j ' V 

H[r] 
_ r O , r < 0 ; 

11, r > 0 

and 

2Ax 
a 

2 . ,.2NV2 

T = 
2(Ax2-Hr2 ) 

a 

Ax = X — XQ. 

(2.105) 

(2.106) 

(2.107) 

Note that while the delta function in the first term is impulsive for t = to = 2ro/a, cor­

responding to arrival of the reflected wavelet, the diffraction term is characterized by an 

inverse-root singularity for t = r which too becomes impulsive as r approaches to- For 

modelling purposes, equation (2.103) is evaluated numerically as a discrete convolution 
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and, since a practical sampling interval may not provide adequate chaxeicterization of the 

continuous diffraction operator 

D( t ) = (2.108) 
t ( t2 + r 2 - r 2 ) ( t 2 - T 2 ) ^ / 2 ' 

especially for t « r , we require an accvu-ate yet discrete representation. Using a technique 

described by Dalton and Yedlin (1990), we define the discrete diffraction operator via the 

midpoint rule as 
-. i.T+At/2 

d (T) = dT = — / D( t )d t , (2.109) 
At yT-At/2 

where At denotes the temporal sampling interval. Integration yields 

dx = 
2Atr Tx sin 

where 

Now, writing 

with 

W(r2-r2)fl 
.1 M - c ( T + At, 

[ r (At/2 + T - c) . —rsin 

—Tsin 

At/2 + T 

At/2) 

— rs in -1 r^ + c (T + At/2) 

+ 2 K sin 

r^2 r 2 - c ( A t / 2 - T ) 
r (At /2 - T - c) r s m 

T (At/2 + T + c) 

At /2 - T j 
1 M + c ( A t / 2 - T ) ] 1 

.r(At/2-T + c)Jj ' 
(2.110) 

c = (r + r , ) ^ / 2 ( r - r x ) ^ / ^ 

'' = AtLu. (̂t-to)dt = - n ( -^) , (2.111) 

^^^ 11, i e i < i / 2 ' 

as the discrete representation of the time-shifted Dirac delta function, we obtain the fol­

lowing discrete form of equation (2.103) 

0 0 

VX,T = WT * ftx,T = J 3 ^'" ^X,T-r, (2.112) 

r=!-oo 
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where 

^X.T 
(Atn 

~ I 2ro H[X-xo]^T 
4r2 

fi^H[T-r]dT]}. 
ira 

(2.113) 

Multiplication by At invokes normalization for an arbitrary sampling interval. While 

evaluation of the reflection term is straight forward, the diffraction operator defined by 

equation (2.110) is valid only for T > r + At /2 due to the step discontinviity at T = r . For 

r < T < r + At/2 , we substitute At /2 = (T - r ) + e for At /2 in equation (2.110), where e 

represents a vanishingly small positive constant. The corresponding result is subsequently 

scaled by At /At . 

^ ^ 
t 

i^ 

Figure 2.27. Seismic (reflection-diffraction) response for an infinite half-plane, (a) Reflector's 
cross-section, indicated by bold line, together with associated diffraction operators antisymmetric 
about the reflector's edge, (b) After convolution with a pseudo-causal Ricker wavelet. 
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The combined response predicted by equation (2.112) is illustrated in Figure 2.27 before 

and after convolution with a discretely sampled Ricker wavelet w (t — 1.25 Tj ) , defined by 

equation (2.31). Note, in particular, that for T = r equation (2.109) reduces to 

A

i'T+At/2 

T 

yielding 

1 /.T+At/2 
d(T) = dT = ;^y^ D(t)dt, (2-114) 

dT = 
- 1 

2 A t r | r , | ( r 2 - r 2 ) 

—rsm 

| 2 | r , | s i n - l 

•1^ 
At/2 + T. — rs in 

r 2 + c ( T + At /2) l 

+ r sin - 1 

- c ( T - | - A t / 2 ) 
(At/2 + T - c ) , 

r2 + cT ^ . . 
+ r s m 

- 2 | r x | s i n 

Ir(T-Hc) 

r(At/2-|-T + c)J 

•[f] 
r̂  - cT ] 1 

(2-115) 

where, as before, 

c = (r + r , ) V 2 ( r - r x ) i / 2 . 

Now, letting At —» 0, we have TX —* 0, c —• r , r = to and, consequently, 

1 
lim dx = ^ . , ..— (TTT) = 

At-o 2Atr3rx 
IT 

2At t^r. 
(2.116) 

o'x 

On substituting the foregoing result in equation (2.112) and recognizing that 4 r | / a2 = tg, 

we obtain 

<fX,T = WT 
fAtTJ 

(Atn 

4r^x 
.2 

_1_ 
At 

- - — I I At 2AtJj' 

UAttgrxjJ/ 
(2.117) 

thus, revealing that the diffraction response measured by a source-detector pair positioned 

directly above the edge of an infinite half-plane is an impulse of opposite polarity and half 

the amplitude of the associated reflection response. As we shall demonstrate, the polarity 

reversal or 180 degree phase shift is constant from one side of the discontinuity to the 

other. In other words, our Kirchhoff-based diffraction model predicts that the diffraction 

response of an infinite half-plane is perfectly anti-symmetric about the edge. While this 

is an adequate approximation for present purposes, exact solutions (Dalton and Yedlin, 
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1989) reveal a slight asymmetry with stronger amplitudes detected over the reflector. It 

should also be emphasized that while the foregoing development asstmies a coincident 

source-detector, a study by Trorey (1977) concluded that the influence of nonzero offset 

is practically negligible, suggesting that the response depends principally on the source-

detector midpoint. 

x=0 

Xn"'" h 

— X Q - — H 

1 © 

1 0 
1 ® 

k 

Figure 2.28. Derivation of infinite strip reflector as the sum of two infinite half-planes less an 
infinite plane reflector. The two infinite half-planes have edges at x = x^ and x = XQ and extend 
in positive and negative directions, respectively. 

We axe now prepared to illustrate the PVesnel zone criterion for spatial resolution in 

connection with the response of an infinite reflecting strip having finite width and strike 

normal to the line of survey. As illustrated in Figure 2.28, the associated response follows 

from foregoing development as the net response of two infinite half-planes less that of an 

infinite plane reflector. The combined response of two overlapping half-planes extending 

in opposite directions and having edges at x^ and XQ" follows from equations (2.112) and 

(2.113) as 

<fiX,T = WT * {ftx,T + ^ X , T } ' (2.118) 

where superscripts - and -|- indicate that ftx.T is evaluated for parameter values XQ = x^ 

and Xo = x j , respectively. Consequently, recalling the response of an infinite plane reflector 
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given by equation (2.98) and using equation (2,110), we obtain 

f _ . AtTJ 1 

= WT*{^[(H[X-XO-]+H[X+-X]-I)5T 

-^("^"«['^-^']^-^^^«[T-^"'J^)l} 

(2.119) 

where, as above, superscripts - and + indicate evaluation of the associated function for 

respective parameter values XQ = x^ and xo = XQ. The result is illustrated in Figure 2.29. 

?^ '\ 

.3 

I 

Figure 2.29. Seismic (reflection-diffraction) response for an infinite strip reflector striking in and 
out of the page, (a) Reflector's cross-section, indicated by bold line, together with associated 
diffraction operators anti-symmetric about the strip's edges, (b) After convolution with a pseudo-
causal Kicker wavelet. 
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Figiire 2.30. Seismic (reflection-diffraction) response for infinite strip reflector's having widths 
Sx = 2Di, Di, Di/2, Di/4, Di/8 and Di/16, where Di denotes diameter of the flrst half-dominant-
period Fresnel zone. For the case illustrated, Di = LlAj. 
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Responses predicted by the previous expression for infinite strip reflectors having 

widths ^x = 2Di, Di, Di /2 , Di/4, Di /8andDi/16 are displayed in Figure 2.30, where Di 

is the diameter of the corresponding first half-dominant-period Fresnel zone. The nature 

of these synthetic responses is consistent with the foregoing analysis of circvilar reflectors. 

Reflecting strips having widths comparable to or exceeding the diameter of the first FVesnel 

zone yield responses that are approximate images of the reflector's cross-section. Despite 

smearing due to the superposition of edge diffractions associated with terminations of the 

reflection response, the relector's flat-lying geometry and approximate width are easily in­

ferred from the restdting image. In other words, the reflector is resolved. In contrast, as the 

reflector's width becomes less than the Fresnel zone diameter, the two mirror-image edge 

diffractions coalesce to produce a composite diffraction event that eventually cancels the 

associated reflection response. As illustrated by Figiire 2.30, seismic images of reflectors 

having widths less than about heJf the Fresnel zone diameter no longer reveal the reflector's 

geometry. The associated event is indistinguishable from a so-called point diffraction and 

remains vmaltered with further reduction of the reflector's width. Continued reduction of 

the reflector's width only reduces the event's amplitude until it is no longer detectable and, 

finally, vanishes as the reflector's width approaches zero. Consequently, while Fresnel zone 

diameter may be viewed as a conservative estimate of spatial resolution, a limiting crite­

rion is established by examining the interference of edge diffractions beyond the margins of 

the reflector. As illustrated in Figure 2.31, a coincident soxurce-detector pair at arbitrary 

position X registers the onset of edge diffractions from x = x^ and x = x^ at times 

r - ( x ) = ^ [ ( x - X o - f + r S ] ' ^ ' (2.120) 

and 

r+ (x ) = ^ [ ( x - x + f - h r § ] ' ^ (2.121) 

respectively. In particular, we consider the the time lag 6td(x) = | r~(x) — r '^(x) | for 

offsets |x — XQ I and |x — xjl large compared with reflector depth ro. 
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Figtire 2.31. Diagrammatic illustration of FYesnel zone Si^ > Tt and limiting tftj > Tt criteria 
for spatial resolution. Both criteria are extensions of Rayleigh's temporal resolution criterion, 
requiring that the time lag separating two identical wavelets must exceed the tuning thickness 
Tt = Td/2 = Ad/2a. The IVesnel zone criterion considers the time lag ^t, (x) between reflected 
and diffracted arrivals. The limitmg criterion examines the time lag 6ii (x) separating diffracted 
arrivals from the reflector's two edges. 
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Under the foregoing condition, we have 

^ (x) « - F - 0̂ h 

2 
r + ( x ) « - |x -x+ | 

and, consequently, the critical time lag 

2 
a5 = i [ | x - X o - | - | x - x + | ] 

= f ( 4 - ô") . C2'122| 

= Lx 
a 

where 6x = (x j — XQ ) represents the reflector's width. As illustrated in Figure 2.31, this 

asymptotic time lag is a maximum and thus, according to Rayleigh's criterion 6t^ > Tt, 

separate edge diffractions are resolved for ^x > Ad/4. 

The FVesnel zone criterion is also illustrated in Figure 2.31. Recall that according to 

the latter, the reflector is resolved if, and only if, the time lag separating reflected and 

diffracted arrivals registered by a coincident soiurce-detector situated above the reflector's 

midpoint is equal to or exceeds Rayleigh's criterion Tt = Td/2 = Ad/2a. In other words, 

for a coincident source-detector positioned above the reflector, we consider the time lags 

6t~ (x) = T~ (x) - To 

2 F/ -N2 21^/2 (2.123) 
= - [ ( x - x o ) +4\ -ro 

and 
a + ( x ) = r + ( x ) - r o 

= - [(X-X+) +vl\ -TO 

where TQ = 2ro/a. As illustrated in Figiu:e 2.31, ^t~(x) and ^t^(x) form an envelope 

function 

{ St- (x), x^ < X < Xn,; 
St*, x = Xm; , 

^t+ (x), Xn, < X < x j 
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where Xm = (x^ + XQ')/2 represents the reflector's midpoint and, thus, 

St: = St-(xr^) = 6t+(xm) = ^ \ ( ^ ) +4 - ro}. (2.125) 

denotes the critical time lag associated with the Ftesnel zone criterion. Specifically, 

Rayleigh's criterion St^ > Tt leads to the associated restriction 

4 

and, consequently, reflected and diffracted arrivals are resolved for Sx>Di. 

Practically speaking, the limiting criterion Sx > Ad/4 represents an upper Umit on spa­

tial resolution and is often an overestimate, especially for deeper targets in higher velocity 

media at lower frequencies. True spatial resolution lies somewhere between ^x* = Ad/4 

and the Fresnel zone diameter ^x* = Di = y(Ad/2)2 + 2roAd and depends on the nature 

of the target. In particular, for a finite width refiecting strip as illustrated in Figure 2.30, 

the transition from detection to resolution is perhaps most easily identified by observing 

the convergence of the observed response toward a point diffraction pattern, suggesting 

resolution approaching the limiting criterion Sx* = Ad/4. Figure 2.32, on the other hand, 

portrays the converse scenario where two infinite half-planes are separated by an interval 

corresponding to the respective reflector width in the previous Figure. Here, spatial reso­

lution is effectively a question of reflector continuity, suggesting that the Fresnel criterion 

^x'̂  = Di is more natural estimate of the resolution Umit. 

Consequently, as in the case of temporal resolution, we shall adopt a hybrid resolution 

criterion stipulating that the spatial resolution limit resides within the range boimded by 

the Presnel zone diameter Di = y/{\^/2)'^ -f 2roAd and the limiting criterion Ad/4. Figure 

2.33 summarizes the foregoing criterion for spatial resolution of archaeological targets. 



76— Chapter 2: DETECTION AND RESOLUTION 

Sx =2Di 
I I I I I I I I M I t I I t M 

Sx =Di/2 
I ( I I I M I I t I I It I I M I I 

Sx =Di/4 
I M I I I I I I M I I I I I I I I 

I I I I I I I M I I I I I I I I I I I I 

Figure 2.32. Seismic (reflection-diffraction) response for two infinite half-planes separated by 
6x = 2Di, Di, Di/2, Di/4, Di/8 and Di/16, where Di denotes diameter of the first half-dominant-
period Fresnel zone. For the case illustrated, Di = LlAj. 
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Figure 2.33. Hybrid spatial resolution criterion as a function of dominant wavelength A<i = Ofo/fa 
with normal-incidence range as a parameter. For a given range ro, the resolution limit lies between 
the associated Fresnel zone diameter Sx* = Di (solid curve) and the limiting criterion ^x* = Xi/4 
(dashed curve). 

Fresnel zone diameter is displayed as a function of dominant wavelength with target range 

ro as a parameter. The limiting criterion Sx* = Ad/4 is, of course, independent of reflector 

range. The minimum dominant wavelength considered Ad = ao/fd = 10.0 cm corresponds 

to end-member values fd = 1000 Hz and ao = 100 ms~^ examined in Figure 2.17. The 

Fresnel zone criterion has a corresponding minimum value of approximately 25 cm at a 

target range of 25.0 cm, increasing to roughly 50 cm at a range of 1.5 m. The lower limit 

of spatial resolution degrades rapidly as dominant wavelength increases, reaching 1.0 m 

at just under Ad = 30 cm for ro = 1.5 m and approximately Ad = 1.25 m for ro = 25.0 cm. 

Although comparison of Figmres 2.17 and 2.33 reveals that spatial resolution is significantly 

more restrictive than temporal resolution, the near-surfa<:e nature of archaeological targets 

is also favorable for achieving high spatial resolution. In addition to a relatively short 

dominant wavelength due to reasons discussed in connection with Figure 2.17, the shallow 
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nature of archaeological features ensures a relatively "focused" FVesnel zone. As a result, 

we conclude that the seismic methods are indeed capable of resolution, both temporal and 

spatial, on the scale of archaeological interest. 

2.4 Concluding Remarks: 

Beyond intrinsic detection and resolution limits associated with data acquisition and 

recording, a variety of computer-based procedures have been devised for post-acquisition 

resolution enhancement. In particular, deconvolution (Yilmaa, 1987; Ziolkowski, 1984) 

seeks to improve temporal resolution by inverting the convolution operation represented 

by equation (2.30) to yield the corresponding reflectivity series with perfect resolution. 

In practice, this goal is approximately attained by modifying characteristics of the soturce 

wavelet. Specifically, in accordance with foregoing findings, deconvolution enhances tem­

poral resolution by balancing or whitening the wavelet's amplitude spectrum and zeroing 

its phase. In view of the imifying connection between spatial and temporal resolution cri­

teria, it is cleeu: that deconvolution also provides for concomitant enhancement of spatial 

resolution. In addition, a second category of data processing techniques, known collec­

tively as migration methods (Yilmaz, 1987; Claerbout, 1985), correct seismic images for 

distortions caused by structural complexities and discontinuities. In particular, migration 

collapses diffraction events like those illustrated in Figures 2.27 and 2.28, associated with 

edges of the reflecting strip. By redistributing diffracted energy at its source, migration 

alleviates the blurring or smearing influence of diffraction to yield a sharper image of sub­

surface structure. In terms of the Fresnel zone criterion for spatial resolution, migration 

may be viewed as a de-propagation or reverse extrapolation of the wavefield sampled by 

detectors at the surface to an arbitrary reference plane beneath the sxirfeice. As a result, 

migration reduces the effective sounding range to a given reflector and, consequently, the 

effective Rresnel zone diameter. 

While it is important to recognize the potential for post-acquisition enhancement, it 
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must be emphasized that once a seismic soimding has been recorded, its ultimate resolv­

ing power is restricted. Although resolution can be improved to some extent by post-

ax:quisition computer processing methods, their advantage remains limited by the band­

width of the original signal. Consequently, the present study is restricted to assessing the 

intrinsic detection and resolving capacity of the acquisition system and procedures. In par­

ticular, the foregoing theoretical analysis has guided design and subsequent development 

of a prototype system for detection and imaging of subsurface archaeological remains. The 

following two chapters describe, respectively, the system and a full-scale model experiment 

conducted to assess its performance. 



Chapter 3 
INSTRUMENTATION AND SYSTEM DESIGN 

In spHe of their importance in geological exploration, seismic techniques,... , have proved to be of 
limited value for the location of the small-scale features of interest in archaeology and are therefore 
not considered further. 

M. S. Tite, 1972 

3.1 Introduction; 

As specifications of an integral system axe ultimately restricted by the weakest com­

ponent, generating a broad-band source pulse is only a first step toward acquiring high-

resolution seismic data. Wavelet characteristics are subsequently modified diuing trans­

mission, detection and recording. While effects of transmission through the substirface 

are beyond our control, the influence of detection and recording instrumentation can be 

tailored to suit oiu: needs. In practice, a fundamental obstacle to preserving bandwidth is 

the dynamic range of the recording device. Dynamic range refers to the ratio of largest to 

smallest signals that can be registered simultaneously and is related in practice to the num­

ber of bits comprising the seismograph's digital output. Since the relative contributions of 

individual frequencies comprising a seismic disturbance can differ dramatically, insufficient 

dynamic range may result in the loss of discrete frequency components carrying significant 

information but comprising a relatively small fraction of incident energy. For example, 

if a narrow band of frequency components are stronger than any other component by a 

relative amovmt exceeding the dynamic range, the recorded waveform will be composed 

entirely of frequencies within that band. Consequently, in addition to degrading resolution 

by restricting the effective bandwidth, the resulting seismogram is tmlikely to be a faithful 

representation of the actual disturbance. To avoid these effects, the spectral composition 

of the signal must be balanced prior to recording. 

While coupling of source energy to the subsurface yields a wavelet that is invariably 

deficient of high frequencies, further spectral imbalances arise from two principal sources. 

First, for practical purposes, the frequency response of the subsurface is effectively that of a 

low-pass filter. A combination of frequency selective absorption mechanisms attenuate high 

-80-
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frequency energy and together with associated dispersion cause a progressive broadening 

of the wavelet with increasing propagation distance. Secondly, in addition to the primary 

compressional wave, the som-ce generates other modes including Rayleigh siurface waves 

that are predominantly lower frequency and higher amplitude. Although this energy, 

commonly known as ground-roll, propagates at only a fraction of compressional wave 

speed, its direct path from source to receiver is shorter than the corresponding reflection 

ray-path leading to interference and corruption of the reflected wavelet at the detector. 

To coimteract the foregoing effects, the acqtiisition system must discriminate against 

low frequencies that are dominated by interfering grovmd-roU and reinforce high frequencies 

attenuated by the subsurface. While these aims are furthered to some extent by employing 

a soiurce that yields a relatively large proportion of high frequency energy and a detector 

having a high-pass frequency response, spectral balancing is ax:hieved primarily by utilizing 

special purpose analog filters to selectively attenuate and enhance appropriate portions of 

the frequency spectnmi. Since the ultimate resolving power of seismic signals is limited 

by the bandwidth of original recordings, so called pre-emphasis filtering is performed in 

"real time", prior to recording, in order to take maximimi advantage of available dynamic 

range. 

Previous studies have addressed the foregoing considerations but have resulted largely 

in "one of a kind" systems that eire either too costly or require too much technical expertise 

to be used widely (Dolphin et al., 1977; Ozawa and Matsuda, 1979). Our goal has been 

to remain relatively less complicated and use commercially available components wherever 

possible so that the resulting technology is accessible, cost-effective and easy to use. 

3.2 System Description; 

The foregoing design philosophy has guided development of a simple but effective 

system for a,cquiring high-resolution seisDMC images of near-surface structure. A block 

diagram of the resulting system is depicted in Figure 3.1. 
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Inertial Trigger 

i 
Energy Source 

t 
Detector 

1 
Earth RIter 

^ 

Pre-emphasis 
Filter 

Seismograph 

t 
Data Storage 

Device 

Figure 3.1. Seismic system block diagram, identifying and illustrating the configuration of sub­
system components. 

In general, a system may be defined as a functionally related set of distinct sub­

systems interconnected in specific configuration (Lathi, 1965; Oppenheim and Willsky, 

1983). At any instant a given input to the system yields a certain output determined 

by the characteristic response of individual sub-systems and their mutual interaction. For 

practical purposes, we shall treat constituent sub-systems identified in Figure 3.1 as causal, 

non-interacting, time-invariant linear systems. 

Causality embodies the physical notion that a system cannot anticipate future inputs 

and, consequently, the instantaneous output of a causal system depends only on current 

and past inputs. 

The assumption of non-interaction recognizes the practical potential of one system to 

significantly influence the response of another interconnected system, and holds that this 

interaction is negligible. 

Time-invariance requires that for a given input, the system's output is invariable, 

independent of time. Using the notation 

x ( t ) - . y ( t ) (3.1) 

to denote system transformation of input signal x (t) to output signal y (t), time-invariance 

implies 

x ( t - r ) - > y ( t - r ) , (3.2) 
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where r represents an arbitrary constant time shift. 

Finally, lineaxity implies that if a weighted svaa. of several distinct signals comprises 

the system input, its output is simply the superposition of outputs arising in response to 

constituent inputs separately. For instance, if xi (t) and X2 (t) denote two separate system 

inputs yielding output signals yj (t) and y2 (t), that is 

x i ( t ) - ^ y i ( t ) 

X2(t)-^y2(t) , (3.3) 

linearity requires 

[wiXI (t) + W2X2(t)] -^ [wiyi (t) + W2y2(t)], (3.4) 

where wi and W2 represent arbitrary weighting constants. In effect, linearity embodies two 

separate properties characterizing linear systems: the scaling property 

wixi{i)-* twiyi(t) 

102 X2 (t) -* W2 y2 (t), (3,5) 

and the additive property 

[xi(t) + X 2 ( t ) ] ^ [ y i ( t ) + y2(t)]. (3.6) 

In principle, the behaviour of a linear time-invariant system may be described by a 

ordinary linear differential equation having constant coefficients. Specifically, consider the 

nth order linear differential equation 

c „ ^ y ( t ) + c ^ _ i ^ y ( t ) + ... + c i ^ y ( t ) + c o y ( t ) = x ( t ) (3.7) 

with constant coefficients co, c j , . . . , Cn_i, Cn. Utilizing the derivative property of the Fourier 

transform (Bracewell, 1986), we obtain the corresponding frequency domain relation 

\ ( f ) = X(f), (3.8) (i27rfj Cn + (i27rf) c„_i + ... + i27rfci + CQ 

where X(f) and Y(f) represent Fourier spectra associated system input x(t) and output 

y (t) signals, respectively. 
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Equivalently, we may write 

Y(f) = S(f)X(f), (3.9) 

where the complex polynomial 

S(f) = CO + i27rf ci + ... + A27rf) ° Cn-i + (i2irf) "cn (3.10) 

is referred to as the system transfer function. Consequently, the Fourier spectrum of the 

system output Y (f) is given by the product of the input spectrum X (f) and the system 

transfer function S (f) or, on adopting polar notation, 

Y(f) = |Y(f)|e^®''^^) = |S(f)| |X(f)|e'[®'(^>+®»(*)5; (3.11) 

the product of corresponding amplitude spectra and the svun of associated phase spectra. 

Finally on applying the convolution theorem of the Fovirier transform to equation 3.9, we 

obtain the equivalent time domain relation 

y( t ) = s ( t ) * x ( t ) , (3.12) 

where 

/

+00 

S(f)e'2'ftdf, (3.13) 
•00 

referred to as the system impulse response, is the output generated by the system in 

response to an impulsive input x( t ) = ^(t) . Here ^( t ) denotes the Dirac delta function, 

having defining properties 

g(i) = 0; t ^ O 

and 

^ ( t )d t = l . 

It follows from foregoing analysis that if two sub-systems are cascaded in series so that 

the output of the first system [si (t) • x (t)] serves as input to the second system, the net 

system output will be y (t) = S2 (t) * [si (t) * x (t)] or, in general, for n sub-systems in series 

configuration 

y (t) = [sn (t) * Sn_l (t) • ... * S2 (t) * si (t)] * X (t). (3.14) 
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Here, we have appealed to the associative property of convolution a * (b * c) = (a • b) • c. 

The equivalent frequency domain relation is 

Y (f) = [Sn (f) Sn-1 (f)... S2 (f) Si (f) ] X (f) (3.15) 

or 

Y(f) = S(f)X(f) , (3.16) 

where 

S (f) = Sn (f) Sn_l (f) ... S2 (f) Si (f) (3.17) 

represents the net system transfer function or "frequency response". 

Similarly, using the distributive property of convolution (b * a)-|-(c * a)=(b -f- c) * a, the 

net output for n sub-systems in psirallel configuration is 

y (t) = K (t) + sn-i (t) + ... + S2 (t) + SI (t)] * X (t) (3.18) 

or, equivalently, 

Y (f) = [S„ (f) + Sn_i (f) + ... + S2 (f) + Si (f) ] X (f), (3.19) 

implying the net system transfer function 

S (f) = S„ (f) + Sn-i (f) + ... + S2 (f) + Si (f) (3.20) 

Neglecting inertial trigger and data storage components, the system depicted in Figure 

3 comprises five hnear time-invariant sub-systems cascaded in series configuration and, 

consequently, a net system response given by 

E(f) = Ss(f)Se(f)Sd(f)Sf(f)Sr(f) 

= [|S. (f )| |Se (f)| |Sd (f)| ISf (f)| IS, (f)|] e' fQ- (')+«• W+Q- W+®' m+®' (f)l' ^̂ '̂ ^̂  

where subscripts s, e, d, f and r signify source, earth filter, detector, pre-emphasis filter 

and recorder sub-systems, respectively. In accordance with the foregoing expression, we 

have sought to tichieve optimum resolving power by selecting instrtunentation having com­

plementary frequency characteristics which, in connection with the low-pass earth filter 
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response, yield a smoothly varying, broad-band, minimum phase wavelet. The following 

sections describe sub-system components and give a general characterization of associated 

amplitude and phase spectra, 

3.2.1 Energy Source 

Until recently, seismic exploration of the shallow subsurface relied entirely upon surface 

impact sovirces; in particular, the venerable sledge hammer. Although adequate for acquir­

ing first break refraction data, impact soxirces axe not well suited for reflection sounding, 

where the emphasis is on discrimination and resolution of interfering arrivals. Elastic wave 

energy radiated by a surface impact source is partitioned between body and surface waves 

in accordance with coupling characteristics and the mechanical properties of the subsurface. 

Miller and Pursey (1955) examined the radiation field of a circular disk vibrating normally 

to the free-surface of a homogeneous, isotropic, linearly elastic half-space. For a Poissson's 

ratio a = 0.25 {a/P = -s/S), theory predicts the following distribution: 7% dilatational; 

26% rotational; 67% surface. Despite a modest increase and subsequent reduction in the 

fraction of energy imparted to dilatational waves as Poisson's ratio increases to (7=0.333 

and beyond (Mooney, 1976), the majority of energy continues to be propagated by surface 

waves, regardless of the medium's rigidity. Consequently, since ground-roll interference 

constitutes a principal obstacle to achieving a balanced spectrum, surface impact sources 

generate an intolerably high proportion of surface wave energy for high-resolution reflec­

tion applications. Rather, we require an energy soturce that produces as large a proportion 

of dilatational energy as possible. Toward this end, we tmn our attention to explosive 

energy sources that, ideally, generate a purely dilatational wavefield, propagating radially 

outward from the soiurce region. 

Experimental observations (O'Brien, 1969) suggest that the seismic disturbance gen­

erated by an explosive source is consistent with a so-called "equivalent radiator" model 

(Sharpe, 1942; Blake, 1952). Ignoring nonlinear processes occurring in the immediate 

vicinity of the explosion, the source region is treated as a spherical cavity having radius 
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equivalent to the range at which tensile stresses associated with the explosive disturbance 

become less than the tensile strength of the host medium. In other words, the radius of the 

equivalent radiator R is defined such that the theory of linear elasticity is valid for r > R. 

An explosive disturbaonce is modelled by specifying a time-dependent cavity pressure p( t ) 

and seeking the corresponding solution of the elastodynamic wave equation which satisfies 

the boundary condition that stress within the host meditmi reduces to applied cavity pres­

sure on the radiator's surface. Assuming an infinite medium, resulting particle motion is 

everywhere radial and irrotational. 

In particular, on specifying a purely impulsive forcing 

p( t) = 5(t) , (3.22) 

where 8{i) denotes the Dirac delta function, and invoking the radiation condition, the 

resulting particle displacement has the form 

Si (r, t) = ^Jj^^ ( f ) {cos N (t - r ) -f ,̂ o] + ^ sin [u;o (t - r ) ]} e'^^ (*"'•) 

(3.23) 

where H (t) is the Heaviside step function, r = (r — R) /Q ; is a parameter (transit time to ob­

servation range r), 7 = /?/Q;, oro = (2/?/R)7, UQ = (2/9/R)\/l —7^ and ^0 = tan~^ (aro/wo) 

is a constant phase shift (Gurvich, 1965; Aldridge, 1993). Note that in immediate prox­

imity to the source cavity (r « R/27), the second term in brackets is dominant and a 

so-called "neax-field" approximation to the true particle displacement is obtained by ignor­

ing the contribution of the first term. Conversely, at large distances from the source region 

(r > > R/27), the second term is practically insignificant and may be ignored, leading to 

a "far-field" approximation. For present purposes, it is appropriate to retain the general 

expression. 

The corresponding spectrum or transfer function is 

^^ '̂̂ '̂ -̂i27r {pa) ( r ) [(f-Pi)(f- P2) 
, - i2Tfr e-'^'^"', (3.24) 
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where 

Zi = 
•a 

i27rr 

and 

^^=^W^^'^'A' P2=;^[-vr^+i7]. 
Normalized radiator impulse responses and associated amplitude and phase spectra have 

been computed and are displayed in Figures 3.2 and 3.3 for a fixed cavity radius of R=0.1 m, 

velocity ratio 7=.417 (cr=0.395) and observation ranges r=R=0.1 m and r=0.5 m (the latter 

value being representative of acquisition geometries employed for model studies described in 

the following chapter). Near-field and Far-field responses axe also displayed for comparison. 

Results indicate that for R/r = 0.1/0.5 = 0.2, the radiator's impulse response is effectively 

"far-field". Even at the equivalent cavity radius R/r = 0.1/0.1 = 1.0, the response shows 

substantial contributions from both neax-field and far-field components. Compared with 

the neax-field response in Figure 3.3, the far-field response is characterized by a relative 

reduction in spectral content below the peak frequency and an attendant enhancement of 

higher frequencies. Peak frequency and bandwidth are not strongly influenced by the ratio 

of cavity radius to observation range (R/r). 
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Equivalent cavity radius is a more critical factor as illustrated in Figinre 3.4. Here, 

normalized spectra are displayed for cavity radii of R=0.05, 0.1, 0.2 and 0.5 m with the 

ratio of cavity radius to observation range fixed at R/r=0.2 and 7 = 0.417 (<T=0.395). It 

is evident that spectral centroid decreases with increasing cavity radius and, consequently, 

since effective cavity radius increases in proportion to the cube root of charge weight 

(O'Brien, 1957; Gurvich, 1965), smaller charges produce source disturbances that are 

relatively rich in high frequencies. Moreover, as the velocity ratio 7 = fi/a. decreases 

(increasing Poisson's ratio - decreasing rigidity), corresponding amphtude spectra become 

narrower and peak at lower frequency. This behaviour is illustrated in Figure 3.5 for 

7 = (5/a=0.333, 0.417, 0.500 and 0.587 ( (T=0.438, 0.395, 0.333 and 0.242). Thus, broad­

band, high frequency source wavelets are generally associated with smaller charges in 

relatively rigid media. 

To model the particle displacement field radiated by an explosive sovurce, we must 

further specify a time-dependent forcing function p(r=R,t) , describing the outwaxd nor­

mal pressure applied to the interior surface of the spherical cavity. The resulting particle 

displacement field is obtained by convolving this forcing function with the radiator's im­

pulse response or, alternatively, by multiplying the radiator's transfer fimction Si (r, f) in 

equation 3.24 by the Fourier transform of the forcing function 

/

+00 _ 

p(t)e->2»ftdt, 
00 

to jrield 
Ss (f) = P (f) * Si (f). (3.25) 

For example, consider the simple forcing function 

p ( t ) = p o H ( t ) e - ' ' S (3.26) 

having Fourier spectrum 

P(f)= P° 
/e-|-i27rf 
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Figure 3.6 displays applied pressure functions of this form, corresponding particle displace­

ment waveforms 
Ss(t) = p( t )*Si ( t ) 

= r"p(f)S(f)ei2-ftdf ^^'^^^ 
J—oo 

and associated velocity waveforms for po = 1 and a range of decay constants: K = 5 0 0 . 0 , 

1000.0 and 2500.0. An obvious shortcoming of this forcing function is its instantaneous 

onset which leads to a discontinuous and,, consequently, "non-physical" particle velocity 

waveform. 

Sharp(1942) suggested the more realistic forcing function 

p ( t ) = po ( e - ^ ^ - e - " * ) , (3,29) 

having both finite rise-time and duration. The associated Fourier spectmm is ^ven by 

ff___K r? \ _ / 1 1 \ 1 * ^̂ -̂ "̂  
-PO [\^K2+4^2f2 „2^.4^2f2j '^''* VK2+4^2f2 + r,2^.4^2f2jj 

Figure 3.7 displays forcing functions of this type for po = 1 and the same decay constants 

«=500.0, 1000.0 and 2500.0 used in Figure 3.6. Corresponding rise-time constants are 

rj = ZK= 1500.0, 3000.0 and 7500.0. Note that, in this case, associated particle velocity 

waveforms are well-behaved, continuous functions. 

Moreover, on interpreting Zi as a zero, and Pi and P2 as poles of equation (3.24) for 

a complex valued frequency, and observing that all three are located in the upper half 

of the complex frequency plane, it follows that the spherical radiator impvdse response is 

causal and minimum phase. Consequently, since prescribed cavity pressure functions given 

by equations (3.27) and (3.29) are also minimvun delay (O'Brien, 1963), resulting particle 

displacement waveforms axe also minimum phase and, thus, possess optimtim resolution 

properties as discussed in Chapter 2 (Appendix 2.9). 

Finally, recalling that the foregoing development assumes an explosive source within 

a uniform whole-space, it is important to consider the influence of a stress-free surface 

boimdary. The presence of a free siuface leads to generation of Rayleigh surfsice waves or 
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"ground-roll" which, as previously discussed, constitute a major source of low-frequency, 

large amplitude interference. Empirical observation reported by Dobrin (1951) suggest 

that the amplitude of Rayleigh waves generated by an explosive source within near-surface, 

unconsolidated media varies with shot depth according to the relation 

where constants ci, ki, C2, k2 and z* are site dependent. Dobrin (1951) attributed this 

behaviour to more efficient transmission of energy into the subsurface with increasing con­

solidation within a critical depth z*. Beyond z* the degree of consolidation ceases to be 

depth dependent and amplitude falls off exponentially with increasing depth as predicted 

by theory for a homogeneous elastic medium. Assuming that effective consolidation and, 

consequently, the critical depth z* scale inversely with charge weight, this conclusion ap­

pears to be consistent with Sharp's (1944) observation that increased charge weight may 

produce a higher ratio of reflected energy to ground-roll interference. Moreover, Mooney 

(1977) reported similar findings for Rayleigh waves generated by a surface impact, con­

cluding that Rayleigh wave amplitude decreases as the inverse square-root of Poisson's 

ratio. 

A wide variety of source devices have been developed for high resolution seismology 

(Miller et al., 1986; 1992). Each device has advantages and drawbacks. For reasons 

discussed above, we require a subsurface explosive source, having moderate energy yield 

to ensure a high-frequency compressional disturbance accounting for as large a proportion 

of total wave energy as possible. Taking account of additional factors including cost, 

repeatability, energy focus and destructive potential, we have modelled our source after 

a design introduced by PuUan and Max:Aulay (1987). This simple apparatus, assembled 

from standard pipe and fittings at modest cost, allows detonation of a standard firearm 

cartridge at a set depth beneath the svirface. The original design, intended for shallow 

geological mapping, has been scaled down to utilize a .22 calibre cartridge in place of a 

12 gauge load. The resvilting source device is illustrated in Figure 3.8. A cartridge is 
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loaded into the approximately 10 cm long barrel assembly and subsequently attached to 

the extension tube and handle via a Swagelok Quick-Connector® to facilitate rapid re­

loading. The cartridge is detonated by inserting a specially machined firing rod at the 

breech of the extension tube and dropping from several centimeters onto the cartridge, 

seated within the barrel assembly. Nearly instantaneous recoil closes a built-in inertial 

switch to activate the recorder. 

Figure 3.8. Special purpose .22 cal. energy source constructed from standard pipe and fittings, 
(a) Barrel assembly with Quick-Connector®attachment to extension tube, (b) Extension tube and 
handle assembly, showing firing rod in place at breech. 

Although intuition suggests that projectile impact should enhance the coupling of ex­

plosive energy into the subsurface, experimentation with a variety of .22 calibre loads, 

including slugs and shot, indicates that there is no practical advantage. In fact, there is 

some evidence that the delay between detonation and impact may cause a minor degrada­

tion of high-frequency signal content. Consequently, To minimize soil disturbance and for 

sake of safety, we use blank loads manufactvued for powder actuated tools. These loads are 

commercially available in a range of energy levels extending well beyond that of ordinary 

firearm cartridges and are subject to less restrictive transportation safety guidelines. 

In comparison with the sledge hammer and striking plate, conunonly used to gener­

ate elastic wave energy, the .22 calibre source is highly repeatable, better focussed and 
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yields a predominantly higher frequency disturbance as illustrated by comparing represen­

tative wavelets in Figure 3.9. The wavelets depicted in Figure 3.9 are typical direct-arrival 

wavelets recorded at an optimum offest of 0.3 m in connection with full-scale model exper­

iments as described in the following chapter. 

1.2 

1 

0.8 

0) 0.6 

B 0.4 

"I" 0.2 
< 0 

-0.2 

-0.4 

-0.6 

f\, i\ 
T\T 
1 

r J 

% ' 

f\ 
1 

\ 
\ 

\ 
i 

' 

1 1 ) 1 1 1 

— - — 12 lb. Sledge 

22 cal. Source 

k 

'x 
• * • m 

1 

- -

Time (ms) 

Figiire 3.9. Representative source wavelets as generated by a 12 lb. sledge hammer impact at the 
surface and the .22 cal. source discharged at approximately 0.1 m below surface. 

Associated ampUtude and phase spectra are displayed in Figure 3.10. In addition to a sig­

nificantly higher dominant frequency, the .22 cal. source wavelet possesses a substantially 

broader bandwidth. The slower rise-time and longer dominant period of the hammer gen­

erated wavelet restilts in a relative phase shift of approximately 180 degrees between the 

two wavelets as confirmed by corresponding phase spectra in Figure 3.10. Phase spectra 

are approximately linear at higher frequencies with a slope of roughly 27rr=3.57r rad/ms, 

corresponding to an arrival time of approximately r= l ,75 ms. 

Finally, while Figures 3.8 and 3.9 facilitate a useful comparison of soiurce characteristics, 

it must be appreciated that these results necessarily incorporate substuface transmission 

effects, and the response charzicteristics of detection and recording instrumentation as 

described in subsequent sections. 
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Figure 3.10. Representative (a) amplitude and (b) phase spectra associated with corresponding 
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3.2.2 Earth Filter 

We have already noted that on propagating through the subsurface, high-frequency 

components of a broad-band seismic pulse are preferentially attenuated, yielding a pro­

gressively broader wavelet having proportionately lower resolving power. Although we are 

unable to control the filter characteristics of the subsurface, it is useful to develop a gen­

eral characterization of its frequency response so that the response of remaining system 

components may be tailored to compensate and, consequently, ensure that the recorded 
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wavelet possesses a balanced spectnun and, thus, optimum resolving power. 

Consider a broad-band seismic disttirbance propagating radially outward from a spher­

ical sovirce region, having radius ro, within a homogeneous isotropic mediiun. Beyond the 

source region r > ro, such a disturbance may be described mathematically as 

u ( r , t ) = ( ^ ) u o ( r , t ) , (3.31) 

where the factor (ro/r) accounts for spherical divergence and 

r-l-oo 

/

-too 
U(r,f)ei2'rf*df 

•oo 

describes the wavelet at arbitrary range and time as a superposition of monochromatic 

waves weighted by the Fourier spectrum 

U(r,f) = Uo(ro,f)Se(r,f). (3.32) 

Here, 

/

-foo 
u(ro,t)e->2'ftdt (3.33) 

•oo 

denotes the Fotuier spectrum of the initial seismic disturbance as measiired at reference 

range r = ro and Se (r, f) represents the range and frequency dependent transfer function 

of the earth propagation filter. Recalling the shifting theorem of the Fourier transform, 

g(x)-*G(k) 

g ( x - x ) - ^ G ( k ) e - ' 2 ' k x ' 

it follows that 

and, consequently, equation (3.32) becomes 

U (r, f) = Uo (ro, f) e''^'^^ ('"'o). (3.35) 

Moreover, the propagation "constant" k is, in general, a complex frequency-dependent 

quantity 

k(f) = k ' ( f ) - ik" ( f ) (3.36) 
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and, thus, equation (3.34) has the general form 

Se(r,f)=e->2'tk'(f)-ik"(f)](r-ro) 

(3.37) 
^ g-2Tk"(f) (r-ro) g-i2x k'(f) (r-ro) 

Substituting the foregoing result in equation (3.35) yields 

U(r,f) = |Uo(ro,f)|e»®('^«'>*)Se(r,f) 

= |Uo (ro,f)| e-'^^"(') ( - - ) e' ^ ^-'>-^'""'^'^ ^'-'4 ' ^^'^^^ 

where |Uo(ro,f)| and e*®v'o>f) are, respectively, the amplitude and phase spectra of the 

wavelet at r = ro- Equation (3.38) reveals that the factor e"^'*' (O('-fo)^ incorporating 

the imaginary pait of the complex propagation constant, produces a frequency dependent 

attenuation while the factor e~'^*''(^)vi-'o)^ incorporating the real-valued component of 

the propagation constant introduces a frequency dependent pheise-shift or distortion of the 

wavelet. Defining a corresponding attenuation function 

a(f) = 27rk"(f) (a39) 

and writing the associated phase-shift in terms of a frequency dependent phase vdodty 

v(f) = f/k'(f), we obtain 

|U, (r. , t ) | e - m ('-'•) e' l^ M-^-n'-Vio] _ ( 3 ^ j 

Finally, it follows that the transfer function of the earth filter may be written in polar form 

as 

Se(r,f) = |Se(r,f)|e>®-('•*), (3u41| 

where corresponding amplitude and phase spectra are, respectively, 

|Se(r,f)| = e-*W ('-'«) (3,42) 

and 

0e(r , f ) = - 2 7 r f ^ i ; ^ . (3.43) 
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In the case of a linearly elastic medium, the propagation constant is, in fact, a real-

valued frequency independent quantity so that k (f) = k', a(f) = 0, |Se (r, f)| = 1, v (f) = VQ 

and 0e(r,f) = —27rf (r — ro)/vo. That is, the earth filter is an all-pass linear phase-shift 

filter and, consequently, propagates the wavelet without attenuation or distortion. This 

conclusion is reinforced by examining the corresponding time-domain impulse response 

given by the inverse Fourier transform 

/

+O0 
|Se(r,f)|e^®'^''^)e^2Tft^ (344) 

•00 

In particular, 

/

+ 0 0 

g-i2«-f(r-ro)/vogi2Tft^f 
•00 

= 5 [t - (r - ro)/vo]. 

The result is a Dirac delta function time-shifted by the transit time r = (r — ro)/vo. In 

accordance with the convolution theorem of the Fourier transform (Bracewell, 1985), equa­

tion (3.32) may be cast as the equivalent time-domain convolution 

uo (r, t) = uo (ro, t) * Se (r, t) (3.45) 

and, consequently, from equation (3.31) 

u ( r , t ) = ( ^ ) [uo(ro,t)*Se(r,t)]. (3.46) 

Thus, since Se (r, t) = ^ (r) for a linear elastic medium, u (r, t) is simply the original wavelet 

Uo (ro, t) shifted by the appropriate transit time r = (r — TQ)/VQ. 

Although linear elasticity is a common assumption for modelling seismic wave prop­

agation, all geological materials are anelastic to some degree. In particular, soils and 

unconsolidated sediments are often characterized by non-linear stress-strain relations and 

exhibit pronounced hysteresis (Ivanova, et al., 1970; Mitchell, 1993). Empirical findings 

of both field and laboratory studies of seismic attenuation indicate that the attenuation 

rate a(f) is approximately proportional to frequency for a wide range of geological media, 

including unconsolidated sediments (Parkhomenko, 1967; Hamilton, 1972; Hatherly, 1986; 
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Badri and Mooney 1987). Thus, within the seismic frequency band, we have approximately 

a(f) = a o f = ^ , (3.47) 

where ao = 7r/(Qovo) is the linear attenuation coefficient and 

_ /„. Trf TT _ 

a(f)v(f) aovo 

is a dimensionless intrinsic parameter termed the quality factor. Consequently, assum­

ing "constant-Q" Q(f) = Qo, the earth propagation filter Se(r,f) = |Se(r,f)|e^®«(''^) has 

amplitude and phase spectra 

|Se(r,f)|=e-'"'*(^-^'') (3.48) 

and 

0e(r , f ) = - 2 7 r f ^ ^ ^ ^ , (3.49) 
Vo 

respectively. 

Let's begin our analysis of the foregoing result by considering a number of special cases. 

First, for Q = oo, we have a(f) = 0 and the transfer function Se (r»f) reduces to that for 

a perfectly elastic medium. As previously described, the corresponding impulse response 

or propagation operator is a delta function, shifted by transit time r = (r — ro)/vo. As 

expected, the propagation operator is also a delta function ^(0) for r = ro, independent of 

the the quality factor Q. This follows from our definition of the reference range TQ. Finally, 

when the seismic disturbance has propagated an infinite distance from the source region 

r — ro = oo, |Se (oo,f)| = 0, meaning the wavelet has been completely attenuated. In this 

regard, it follows from equation (3.48) that the pulse is attenuated to 1/e of its initial 

amplitude at r = ro when r = rg = l/(aof) + ro. The parameter Tg is the so-called skin 

depth which, from equation (3.41) has the general, frequency dependent form 

r8(f) = ^ + r o . (3.50) 

Returning to the case of constant-Q, Figure 3.11 displays amplitude and phase spectra 

computed in accordance with equations (3.48) and (3.49) for Qo=10, 25 and 50, VQ=500 

m/s and r — ro=1.0 m. Corresponding impulse responses obtained by FFT implementation 

of equation (3.44) are depicted in Figure 3.12. 
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Figure 3.11. (a) Amplitude spectra for constant-Q earth filter for Qo=10, 25 and 50, r — TO=1.0 
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As expected, the propagation operators are progressively lower-frequency, lesser amplitude 

approximations to the corresponding time-shifted delta function obtained for a linearly 

elastic (Qo=oo) medium. It follows from equation (3.48) that increasing propagation range 

r — To has the same effect as decreasing the quality factor Qo. 
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This is illustrated in Figure 3.13, where we display impulse responses for r=0.5,1.0,1.5 and 

2.0 m (ro=0) with Qo=25 and vo=500 m/s. An unacceptable feature of the propagation 

operators in Figxires 3.12 and 3.13 is the presence, in all cases, of non-zero amplitudes at 

times preceding the transit time T = (r — ro)/vo. In other words, these impulse responses 

are acausal and, consequently, non-physical. 

Elaborating on the work of Kalinin, et al. (1967) and Azimi, et al. (1968), Aki and 

Richards (1980) demonstrate that the requirement of causality implies that attenuation 

must be accompanied by attendant velocity dispersion. In other words, an attenuating 

medium, having attenuation rate a;(f), must also be charaxiterized by a frequency dependent 

phase velocity, satisfying the relation 

v(f) = 
jL__^n{a(f)r-' 

where VQO = lim v (f) and 
£ — • 0 0 

Voo 27rf 
(3.51) 

/

-t-oo 
a(f)[isgn(f)]e^2'^f*df (3.52) 

•00 

is the Hilbert transform of the attenuation rate, with 

sgn(f) = « 
r - 1 , f<0; 

0, f = 0;. 
[ 1 , f > 0 

Moreover, since the amplitude and phase spectra of a causal minimum delay function 

/

+0O 
|G(f)|e'r(f)e'2'^f'df 

•00 

are related by the equation 

r(f) = w{ln|G(f)|}, 

it follows from equation (3.51) that the propagation operator p(r,t) given by equation 

(3.44) is minimum delay relative to arrival time r = (r — ro)/voo. 

Returning to our development of a constant-Q earth filter, it follows from foregoing 

causality considerations that we must replace equation (3.49) by the more general, nonlin­

ear phase spectrtun given by equation (3.43), incorporating a frequency dependent phase 
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velocity v(f) and which, together with the amplitude spectrtun in equation (3.48), satisfies 

the causality condition given by equation (3.51). Unfortunately, an exa^t dispersion rela­

tion fulfilling this requirement does not exist. Consequently, given convincing evidence for 

constant-Q attenuation and the necessity for attendant velocity dispersion, in accordance 

with the causality condition, one of two approaches may be taJcen. First, we may insist 

upon constant-Q attenuation and deduce an associated dispersion relation which approx­

imately satisfies equation (3.51) (e.g. Stride, 1970; Kjartansson, 1979) or, alternatively, 

we may relax the constant-Q asstunption, seeking an approximately linear attenuation 

rate a(f) and corresponding dispersion relation v(f) which exactly satisfy the causality 

condition. Here we shall take the latter approach, adopting the quasi-linear attenuation 

law 

a(f) = j ^ (3.53) 

proposed by Azimi et al. (1968), where the parameter a i is adjusted so that the attenu­

ation rate is effectively linear within the frequency band of seismic investigation. That is, 

aif « 1 for f=0-l kHz. The corresponding Hilbert transform is 

and, consequently, from equation (3.51) we obtain the corresponding dispersion relation 

The frequency dependent attenuation rate a(f) and corresponding phase velocity v(f) 

axe displayed in Figure 3.14 for Q=10, 25 and 50, Voo=500 m/s, a i = OAir x 10~* and 

r —ro=1.0 m. The corresponding eaxth filter Se(r,f) = |Se(r,f)|e'®*^''^) has amplitude 

and phase spectra 
|Se(f)| = e-*W ('-'») 

and 

e . ( r , f ) = 2 . f ( i Z ^ 

^ ^ (3-57) 
2 i r f ( r - ro ) 

V o o ' ^ 7 r 2 ( l - a 2 f 2 ) ^ ' ' U i f ) J 
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as displayed in Figure 3.15. Comparison of these spectra with Figure 3.11 confirms that 

the amplitude spectra are effectively identical within the seismic frequency band and re­

veals only minor non-linearity in phase spectra. Corresponding propagation operators are 

depicted in Figure 3.16. 
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As in Figure 3.12, resulting impulse responses possess a progressively lower dominant 

frequency and lesser amplitude as Q increases. However, in contrast with the impulse 

responses computed for a non-dispersive medium, those in Figure 3.16 are causal. 
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Similar results are obtained on increasing the propagation range as illustrated in Figure 

3.17 for r - ro=0.5, 1.0, 1.5 and 2.0 m (ro = 0) for Qo=25 and Voo=500 m/s. Finally, an 

increasingly significant time delay is observed between the transit time t = (r — ro)/voo 

and the onset of the propagation operator. Although this delay is apparently consistent 

with increased velocity dispersion at lower Q values and greater range, implications for a 

minimtim delay wavelet are vmcertain. The time lag appears to be related to selection of 

the parameter a i . 

The foregoing analysis quantifies the well known low-pass, nonlinear phase frequency 

response of the earth filter. We have already observed that seismic sovirces generate 

wavelets that are relatively deficient of high-frequencies and it is evident that propagation 

through the subsurface only accentuates this spectral imbalance. Although the frequency 

response of the earth filter is beyond control, knowledge of its charax:teristics are impor­

tant in the design of detectors, real-time filters and post-acquisition data enhancement 

techniques to compensate for the attenuation of high frequencies and concomitant pulse 

distortion, resulting from velocity dispersion. 

3.2.3 Detector 

In addition to converting ground motion into a representative electrical signal, the 

detector can have a significant role in shaping the frequency chaxa<:teristics the resulting 

waveform. A wide range of detectors are commercially available and a useful guide is 

that by Lepper (1981). For most applications, seismic detectors are velocity sensitive 

devices known as geophones. In particular, modem geophones are typically of the moving-

coil electromagnetic variety as depicted in Figure 3.18. The schematic diagram gives 

a simplified, cross-sectional view of principal component parts of a vertical-component 

detector. The geophone housing incorporates a permanent magnet in the form of a vertical 

cylinder. A central south magnetic pole is separated from an annular north magnetic pole 

by a cylindrical slot. A sensing coil, consisting of n turns of low-resistivity wire arovmd a 

cylindrical former, is suspended within the slot by means of light leaf springs. 
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Figure 3.18. Schematic diagram of moving-coil electromagnetic geophone. 

The geophone is normally coupled to the subsurface via a spike to ensure firm connection. 

As a result, while the geophone case and enclosed magnet move in unison ground motion 

caused by an incident seismic disturbance, the the suspended sensing coil remains effec­

tively in place in accordance with Newton's laws of motion. Consequently, relative motion 

between the coil and the static magnetic field produces an output voltage between the ter­

minals of the coil in accordance with Faraday's induction law. Coil suspension is designed 

to eliminate relative motion between the inertial element and magnet in response to hori­

zontal ground motion, thereby ensuring that the vertical-component detector is effectively 

insensitive to motion perpendicular to its axis of sensitivity. 

As developed by Dennison (1953) and Pieuchot (1984), the frequency response of an 

ideal (self-inductance Lc ^ 0) moving-coil geophone is 

Sd(f) = (3.58) 
f2-i2hfof-fo2' 

where fo denotes the natural frequency, h represents the effective damping factor and 

SG = Dem/(1 + R ^ / R L ) is the geophone's intrinsic sensitivity, with Dem denoting the trans­

duction coefficient. Re the coil resistance and RL the external load resistance. In effect, the 

frequency response is that of a damped harmonic oscillator. Figure 3.19 displays theoret-
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ical amplitude and phase spectra as functions of frequency, normalized by the geophone's 

natural frequency 

where kc is an effective elastic constant for the coil suspension mechanism and MQ is the 

mass of the coil. In particular. Figure 3.19a charts relative geophone output for constant 

velocity excitation. Note that the high frequency response of a moving-coil electromagnetic 

geophone is approximately flat and, consequently, proportional to ground velocity. In 

practice, effective bandwidth is limited by the presence of parasitic resonances, generated 

by horizontal ground motion, at approximately ten times the geophone's natural frequency. 

These effects axe nicely illustrated in frequency response curves measured by Lepper (1981) 

for a selection of commercially available geophones. 

Returning to the ideal geophone response, spectra in Figure 3.19 are parameterized by 

the effective damping factor 

as a fraction of critical damping, where R = Re + RL denotes total circuit resistance, 

including sensing coil resistance Re and external load resistance R L , Dm represents the 

mechanical or open-circuit damping coefficient and Dem = 27rBnr is the electromagnetic 

damping or transduction coefficient, with B representing the magnetic flux density and n 

the number of turns of radius r on the coil. In practice, effective damping is controlled by 

placing a shunt resistance Rs across the geophone terminals and, thus, in parallel with the 

external load resistance R L . The effective load resistance becomes 

R'L = 
1 1 ^ - ^ 

RL "̂  RsJ 
1 + (3.61) 

L(RT + RA) RS 

R S ( R T + R A ) 

RS + ( R T + R A ) 

where R T and RA denote transmission line and amplifier resistances, respectively. As 

illustrated in Figure 3.19, an effective damping factor of h=0.6-0.7 provides an optimally 
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flat response and a relatively fast roll-off of approximately 12 dB/octave below the natural 

frequency. Consequently, the geophone may be employed, effectively, as a high-pass filter 

to attenuate large amplitude, low frequency ground-roll and enhance higher frequencies 

which, as we have seen, are deficient in the source spectrum and further attenuated by 

the earth filter. Moving-coil geophones having natural frequencies as high as 100 Hz are 

commercially available. Finally, the non-linearity of phase spectra depicted in Figure 3.19b 

suggests that the conversion of grovmd motion into an electrical signal is accompanied by 

significant distortion of the seismic wavelet. Despite a more nearly linear phase with 

increased damping, corresponding impulse responses (Dennison, 1953) indicate that 70% 

critical damping yields a favotirable tradeoff between bandwidth and pulse distortion. 

I 
S> 

o o 
I 

ACCELEROMETER 

MOVING COIL 

6db/oct. 

12db/oct. 

100 Hz 
Frequency 

Figure 3.20. Frequency response curve of accelerometer compared with moving-coil geophcme 
responses (fo=10 and 28 Hz, h=0.7). (After Hall and Kanemorl. 1986) 

An alternative receiver for high resolution appUcations is the accelerometer, which is 

typic£illy comprised by an internal mass resting on a sensing element of piezoelectric ce­

ramic. In response to grotind acceleration catised by an incident seismic distm-bance, the 

internal mass exerts a modulated presstire (force per unit area) on the active element, 

deforming the piezoelectric ceramic which, as a result, produces a measurable electrical 
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potential. The amplitude of the resulting output voltage is in direct proportion to ap­

plied pressure and, consequently, to ground acceleration. The accelerometer's frequency 

response, to constant velocity excitation, is compared with that of a moving-coil electro­

magnetic geophone in Figure 3.20. It is observed that the accelerometer exhibits a gain 

of approximately 6 dB/octave in sensitivity as frequency increases toward a natural fre­

quency of typically 2-5 kHz. Consequently, although accelerometers do not attenuate lower 

frequencies as effectively as the velocity geophone, they do provide a significant relative 

enhancement of higher frequencies that axe critical to achieving improved resolution. A 

drawback is that accelerometers are typically low output, high impedance devices and 

require additional instrmnentation to amplify the output and match the recorders input 

impedance. 

Our prototype system employs an OYO Eddy-Seis® detector, having response char­

acteristics between those of a velocity geophone and an accelerometer. As illustrated in 

Figure 3.22, the Eddy-Seis detector is constructed in much the same fashion as moving-

coil electromagnetic geophone. The moving coil, however, is replaced by an electrically 

conductive sleeve and the sensing coil is fixed, along with the magnet, to the geophone 

case. 

Fixed Sensor Coil 
Spring - suspended 
Inertial Sleeve 

Ground Surface 

Coupling Spike 

Figure 3.21. Schematic diagram of the OYO Eddy-Seis detector. 

Consequently, groiind motion caused by an incident seismic disturbance results in relative 
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motion between the conductive sleeve and the static magnetic field, producing eddy cur­

rents within the conductive sleeve. These eddy currents generate a secondary magnetic 

field that, in turn, induces current flow within the sensing coil. Hall and Kanemori (1986) 

demonstrate that this unique design results in a constant-velocity frequency response hav­

ing form 

Sd(f) = 

where 

-SEf2 

f2-hi2h(f)fof-fo2. 
i27rf 

H-i(f/fa)J 
(3.62) 

denotes the detector's natural frequency, with ks representing an effective elastic constant 

for the sleeve suspension mechanism, Ms the mass of the conductive sleeve and 

defines a transition frequency, with Rg and Ls denoting, respectively, the effective resis­

tance and inductance of the conductive sleeve. Modelling the conductive sleeve as an n-turn 

coil of radius r, the detector's intrinsic sensitivity is SE = LmDem/R-Sj with Dem = 27rBnr 

denoting the effective electromagnetic damping or transduction coefficient and Lni the 

mutual inductance between the sleeve and the sensor coil. Finally, 

defines a frequency dependent complex-valued damping factor, where Dm and Dgm de­

note mechanical and electromagnetic damping coefficients, respectively. In practice, the 

frequency dependence is weak and to good approximation 

In view of this approximation. Hall and Kanemori (1986) observed that the first term of 

equation (3.62) is, apart from the sensitivity constant, the frequency response of a moving 

coil geophone (equation (3.58)). The second term is identified as the frequency response 

of a high-pass filter, having comer frequency (-3dB) f̂ . The resulting Eddy-Seis frequency 

response is illustrated in Figure 3.22 as a function of relative frequency with approximate 
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damping fax;tor h as a parameter. Comparison with moving coil geophone responses in 

Figure 3.19 reveals that in addition to faster roll-off characteristics below the natural fre­

quency, the Eddy-Seis detector is substantially more responsive to high-frequency ground 

m.otion. 

Figure 3.23. fVequency response of Eddy-Seis compared with moving-coil geophone responses 
(fo=10 and 28 Hz, h=0.7). (After Hall and Kanemori, 1986) 

Specifically, BS illustrated in Figvire 3.23 for a fixedf damping factor of h=0.7, the Eddy-

Seis delivers an accelerometer like gain of 6 dB/octave from a natural frequency of fp = 17 

Hz to a transition frequency of f̂  = 450 Hz, beyond which the response is flat to at least 2 

kHz (OYO Corporation, personal communication). Concurrently, the Eddy-Seis provides 

enhanced attenuation of 18 dB/octave below the nattural frequency. Finally, although the 

Eddy-Seis sensitivity is significantly lower ( S E « (0.01 — 0.1) S Q ) than a typical moving-

coil geophone, it does not pose the impedance matching problem associated with a true 

accelerometer. In fact, given the close proximity of source and receiver for small scale 

appUcations, a moderately lower output voltage can be advantageous. 

t In contrast with the moving-coil geophone, the effective damping factor for the Eddy-Seis detector is 
insensitive to the external load resistance (i.e. equations (3.60) and (3.65)) and, consequently, cannot be 
adjusted after assembly. 
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3.2.4 F i l te r and Switching Uni t 

Although the high-pass response of the seismic detector serves tis a first line of defense 

against low-frequency source-generated noise, technical limitations restrict their natiu-al 

frequency and roll-off characteristics. Enhanced flexibility is achieved by incorporating 

a high-pass filter section between the detector and seismic recorder. As the objective 

of in-line filtering is to further enhance or emphasize high-frequency signal content prior 

to recording, the process is commonly referred to as pre-emphasis filtering. All modem 

engineering seismographs provide some facility for pre-emphasis filtering and flexibility is 

in direct relation to cost. To remain cost effective, the prototype system described here 

employs a relatively modest seismograph having only a 40 Hz, fixed frequency pre-emphasis 

filter. To provide enhanced flexibility, a special purpose filter unit has been designed and 

constructed locally. 

The core of the unit is a high-pass Bessel filter, having selectable corner frequencies 

from 50-500 Hz and passband roll-off of 10-13 dB/octave. The Bessel filter is realized 

via the general piupose voltage-controlled voltage-source (VCVS) active filter network 

depicted in Figure 3.24. 

H 

Figure 3.24. VCVS high-pass active filter network. 
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The frequency response of this circuit is (Hilbum and Johnson, 1980) 

where 

RC 

and 

^W = 2.f»-f2S-b' f̂ -") 

( 3 - K ) 
a = 

VRC/ 

Consequently, the filter's response characteristics are controlled by selecting the gain K 

and time constant r = RC. The rajige of realizable response characteristics is represented 

by three principal filter types; Chebyshev, Butterworth and Bessel. 

As illustrated in Figure 2.25, the Chebyshev filter most closely approximates the am­

plitude response of an ideal high-pass filter. Unfortimately, the corresponding phase char­

acteristics and, consequently, time-domain performance are relatively poor. While the 

ideal low-pass filter is zero-phase, the Chebyshev filter possesses a non-zero and, more­

over, strongly non-lineax phase spectrum. As a result, individual frequency components 

comprising a signal entirely within the Chebyshev's pass-band experience variable time-

delays, resulting in distortion of the time-domain wavelet. In contrast, the Bessel filter 

possesses an optimally linear phase spectrum at the expense of a more gradual transition 

from pass-band to reject-band. In other-words, the Bessel filter most closely approxi­

mates a constant phase-shift or constant time-delay filter and, thus, provides optimum 

time-domain performance. Finally, the Butterworth filter offers a tradeoff between time-

domain and frequency-domain performance. In particular, the Butterworth filter possesses 

an optimally flat pass-band and phase characteristics between those of the Chebyshev and 

Bessel filters. 

For present application, time-domain cheuracteristics are of paramount importance and, 

consequently, the Bessel filter was selected to avoid potential timing errors associated with 
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wavelet distortion. Steeper transition from passband to stopband is achieved by cascading 

an additional 2-pole VCVS network with the principal filter. The theoretical frequency re­

sponse of the resulting foiurth-order Bessel filter is compared with corresponding Chebyshev 

and Butterworth response characteristics in Figxure 2.26. The roll-off rate for the Bessel 

filter increases from about 10 dB/octave for a 2-pole filter to approximately 13 dB/octave 

for the 4-pole filter. Figure 3.27 displays actual calibration curves for 2-pole Bessel filters 

with comer frequencies (-3 dB) of 175, 225 and 250 Hz. As calibration meastu:ements were 

made after passage through the analog input stage of the seismic recorder, the amplitude 

response ciures are band-Umited by the recorder's high-frequency roll-off characteristics. 

The recorder's frequency response is also depicted with the filter section out. 
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Figure 3.27. Calibrated amplitude response curves for 2-pole active Bessel filter after passage 
through ES-1225 analog input section. Response curves eu-e depicted for corner frequencies 175, 
225 and 250 Hz. The amplitude response of the ES-1225 is depicted with filter section out. 

The effect of pre-emphasis filtering is illustrated in Figures 2.28 and 2.29. Here we 

compare the imfiltered .22 cal. source wavelet and associated spectra from Figures 3.9 

and 3.10 with the corresponding wavelet and spectra after pre-emphasis filtering at 250 

Hz (2-pole Bessel). Note that pre-emphasis filtering has resulted in a significantly higher 

dominant frequency and, consequently, improved resolving power. The filtered source 
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wavelet in Figure 2.28 is representative of wavelets recorded in connection with the full-

scale model experiment described in the following chapter. 
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Figure 3.28. Effect of pre-emphasis filtering on recorded source wavelet generated by the .22 cal. 
source device. Representative wavelets before and after application of a 250 Hz, 2-poIe, high-pass 
Bessel filter. 

Finally, the filter unit also comprises a 12-pole rotary switch allowing the filtered signal 

to be diverted to a preselected recorder channel. By recording data from successive traverse 

positions on consecutive channels, we assemble 12-trace segments in the recorder's memory 

that are later joined by computer to produce a seismic profile of the substuface. 

3.2.5 Seismic Recorder 

On selecting a seismic recorder for high resolution applications, the most critical spec­

ifications are frequency response, sampling frequency and dynamic range. The current 

system is assembled arotmd a Geometries ES-1225 12-channel digital seismograph hav­

ing flexible gain control, interactive CRT display and signal enhancement capability. The 

eflfective frequency response S, (f) is displayed in Figure 3.27. Although a bandwidth of 

roughly 5 Hz - 1 kHz and samphng frequency to 40 kHz are more than sufficient, the 

available dynamic range is only adequate. 

Dynamic range is dictated by the nvunber of bits comprising the binary output of 



126— Chapters: SYSTEM DESIGN 

1 

0.8 
0) 

B 0.6 

a 
E 0.4 

0.2 

/ • 

/ 

1 
/ 

TI 
1 i 
/ 1 

\ 

\ 
\ \ \ 

\ 

\ 
\ > 

s 

• " • ^ Pre-Rltered 

F 
ost-
iltered 

^ « % 
• • f c _ ^ 

(a) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

Frequency (kHz) 

C3> 

•D 

0) 

180 
0 

-180 

-360 
-540 
-720 
-900 

-1080 
-1260 

-1440 

-1620 

-1800 
-1980 

\ 
> 

v̂  ^^ %> 
• ^ 

^ • ^ 
- * % * ^ 

^ 

1 1 1 1 

•ifc 

~ " ~ Pre-Filtered 

Filtered 

' ' * ' , " - ^ 
^ ^ * - * . 

* * ^ 

(b) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Frequency (kHz) 

Figure 3.29. Effect of pre-emphasis filtering on (a) amplitude and (b) phase spectra associated 
with corresponding source wavelets in Figure 3.28. 



Chapters: SYSTEM DESIGN — 127 

the analog to digital (A/D) converter and is simply the ratio of largest to smallest digital 

numbers that can be represented. Since the ES-1225 uses an 8-bit A/D converter, dy­

namic range cannot exceed 48 dB. A new generation of engineering seismographs typically 

offers dynamic range from 72-96 dB and we expect substitution of such an instrument 

to yield a ready improvement in overall system performance. Currently, however, our 

aim is to demonstrate that sufficient resolving power can be achieved with only a modest 

seismograph. 

3.3 Summary and Conclusion: 

Figure 3.30. Prototype data acquisition system. 

The resulting prototype system is depicted in Figure 3.30. Its net frequency response 

or transfer function is given by equation 3.21 

I](f) = Ss(f)Se(f)Sd(f)Sf(f)Sr(f), . 

where approximate or generalized transfer functions for individual system components 

Ss(f), Se(f), Sd(f) and Sf(f) are given by equations (3.25), (3.56-7), (3.62) and (3.67) and 

illustrated in Figures 3.3, 3.15, 3.22 and 3.25, respectively. In addition, the effective transfer 

function of the seismic recorder Sr(f) is depicted in Figure 3.27. As their interpretation 
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is more intuitive, corresponding amplitude responses are summarized in Figure 3,31. In 

short, despite frequency characteristics that are vastly superior to those of surface-impact 

devices, the .22 cal source spectrum (Figure 3.31a) remains deficient of high-frequency 

content. Subsequent transmission through near-s\uface soils and sediments results in fur­

ther attenuation of high-frequencies (Figure 3.31b) and associated dispersion, producing 

an ever broader wavelet possessing proportionately lower resolving power. In contrast, 

the frequency response of the detector (Figure 3,31c) is inherently high-pass and, conse­

quently, counteracts the earth filter by attenuating frequencies below its natural frequency 

and enhancing higher frequencies. Introduction of a high-pass pre-emphasis filter (Figiure 

3.31d) reinforces low-frequency attenuation by the detector and provides significantly more 

flexibility to yield a balanced wavelet spectrtun and, consequently extended bandwidth. 

Of course, bandwidth is ultimately limited by the recorder's dynamic range. To the extent 

that the wavelet possesses frequency characteristics matching those of the recorder (Figure 

3.31e), we have achieved om: objective. 
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Figure 3.32. Improved resolving power. Comparison between unfiltered wavelet generated by 12 
lb. sledge hammer and .22 cal. wavelet with 250 Hz pre-emphasis filtering. 

Figures 3.32 and 3.33 provide a practical indication of oiir success in achieving extended 

resolving power. Here we compare the wavelet generated by a 12 poimd sledge 
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hanuner with that obtained using the special purpose soiu-ce device described in section 

3.2.1 with 250 Hz pre-emphasis filtering. The wavelets possess dominant frequencies of 

approximately 250 Hz and 550 Hz, respectively with a corresponding three-fold increase in 

bandwidth. In a qualitative sense, this comparison illustrates the potential for improved 

resolution of archaeological features. Having said this, it must be emphasized that extended 

resolving power is not a matter of instrumentation alone. Judicious design and selection 

of acquisition parameters is crucial for realization of potential resolving power. In the 

following chapter data acquisition techniques are discussed in connection with a full-scale 

model experiment conducted to assess the practical utility of the prototype system. 



Chapter 4 
DATA ACQUISITION AND MODEL EXPERIMENTS 

For summaries of most geophysical methods (for surveying of archaeological sites) see Aitken (1974) 
or Tite (1972). 

J. W. Weymouth, 1985 

4.1 Introduction: 

To assess the practical limitations of the prototype system described above, a full-scale 

substirface model has been constructed. By comparing experimental seismic profiles with 

the known model geometry, we obtain a practical appraisal of system performance and 

useful insight into the seismic expression of a certain class of archaeological remains. A 

photograph and plan diagram of the model are presented in Figmre 6. 

; / f-" ••„ . < 
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Figure 4.1. (a) Photograph of full-scale 8ubsurfeu;e model, (b) Plzin diagram indicating dimensions 
of the model facility. Shallow (1 m base) and deep (2 m base) model blocks are, respectively, 0.4 
m and 0.6 m wide. 

A stepped trench, roughly 3.0 m wide, was excavated to depths of approximately 1.0 

and 2.0 m below the ground surface. Each level extends roughly 2.0 m along the axis of the 

the trench. In order to reduce any effect of the trench itself on subsequent experiments, 

the walls slope upward from the base of each level at approximately 45**, resulting in 

-132-
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overall dimensions of about 7 x 7m^ at the surface. After preparing the void, forms were 

constructed and concrete poured to produce the simple model pictured in Figure 4.1a. 

The dimensions of the model were chosen to approximate those of common architectural 

remains such as walls and foundations. Upper and lower blocks are both approximately 

2.0 m long and 1.0 m high and have width of 0.4 m and 0.6 m respectively. After precise 

mapping in reference to a permanent datum, the void was back-filled with homogeneous 

sand. 

4.2 Optimum Offset Data Acquisition: 

There are two principal approaches to the acqviisition of high-resolution near-surface 

seismic reflection data; small-scale, multichannel common-depth-point (CDP) techniques 

(Knapp and Steeples, 1986; Steeples and Miller, 1988) and the single channel optimum 

offset technique (Hunter at al., 1984; Hunter and Pullan, 1989). Both methods rely on 

preliminary walk-away noise tests to identify a range of source-receiver offsets over which 

the reflection from a given target interface is received with minimum interference from 

source generated noise. 

The walk-away test may be conducted in either multi-channel or single channel mode. 

In single channel mode, the source device is activated repeatedly at some fixed position and 

the source-detector offset is extended by an incremental distance with each shot. Resulting 

data are displayed as a two dimensional function of time and offset as illustrated in Figure 

4.2a for simple case of a layer over a half-space. In connection with multi-channel data 

acquisition, this result is ordinarily referred to as a common shot gather. Associated first-

order ray-paths are depicted in Figure 4.2b. Corresponding transit-time distance relations 

are (e.g. Telford, et al., 1990) 

1. Direct Ground Wave: 

ti(x) = -f (4.1) 
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2. Reflected Wave: 

'̂ «=[(â O) 
2 l l / 2 

(4.2) 

or 

t2(x) = ^ + t g , 
as 

where to = 2z/ai denotes the normal incidence transit time. 

iiililif - mam/ 
• mm 

Cr \t\ca» B^n^**" 

^0 
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Offset (X) 

Figure 4.2. Walk-away noise test, (a) Time-distance diagram or common source gather acquired 
in connection with the simple model subsurface in (b). (b) Characteristic first-order ray-paths 
within a layer over a half-space for OQ < ai . Associated event are identified in (a). 
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3. Critically Refracted Wave: 

t3(x) = — + t i , 
a i 

where 

ti = 
2z 

OiQOii 
\oi{ - agj 

(4.3) 

(4.4) 

denotes the associated intercept time. 

In addition, we define the critical distance 

Xc = 2z tan^c = 
2za:o 

where 6^ = sin~^ {OCQIOLQ) represents the critical angle of incidence. 

(4-5) 

E 

Offset (X) 

Figure 4.3. Time-distance diagram illustrating the definition of optimum windows as offset ranges 
over which the reflection is observed as an isolated event. Open regions identify optimum win­
dows while cross-hatched regions indicate interference zones. 6 denotes the effective wavelet durar 
tion, Xc represents the critical distance and x_ and x+ represent boundjiry parameters defined by 
t2 (x_) = ta (x_) -V 6 and t2 (x+) = ti (x+) + 6, respectively. 

Note that the critically refracted arrival does not exist for x < Xc and, consequently, in "the 

absence of ground-roll, the reflection is observed as an isolated event at offsets within the 

critical distance as illustrated in Figure 4.3. This offset range 0 < x < Xc is the optimum 
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window identified by Hunter et al. (1984). In fact, Htmter et al. extended the window be­

yond the critical distance, noting that reflection amplitude commonly peaks at the critical 

distance and, consequently, dominates the so-called interference wavelet in near proximity 

to the critical distance. In practice, dispersive surface wave or ground-roll travels radially 

outwaxd from the shot-point at speeds of approximately O.l-O.Ccvo a^d, consequently, re­

sides within the optimum window as illustrated in Figure 4.2. Although, this interference 

poses a potential restriction on utilization of this near-soiorce optimum window, in many 

cases, this limitation can be overcome by careful selection of instrumentation and real-time 

pre-emphasis filtering. 

As illustrated in Figure 4.3, a second optimiun window exists at offsets sufficiently 

beyond the critical distance to avoid interference between reflected and critically refracted 

arrivals and within an upper bound associated with the onset of interference between the 

reflected and direct wave arrivals. Observe that as offset x becomes large compared with 

target range z, the reflection transit-time t2 (x) approaches that of the direct arrival tj (x). 

To quantify the resulting optimum window, we must specify an additional parameter; the 

effective pulse duration S. It follows that the lower boundary of the optimum window is 

the offset for which the difference between reflected and critically refracted transit-times 

is equal to the effective pulse duration (ie. t2 (x) — ta (x) > S). From equations (4.3) and 

(4.4), we obtain 

X_ — Xc + 7 o 2\ 1 ' ^^s^(-'^-^'T}- (-) 
Similarly, the upper bound is that offset for which the transit-time difference between 

reflected and direct arrivals equals the effective pulse dmration (ie. t2 (x) — ti (x) > 6). 

Equations (4.2) and (4.3) yield 

The significance of limiting parameters x_ and x+ is illustrated in Figure 4.3, where in 

addition to transit-time-distance relations ti (x), t2 (x) and ta (x), we display i\ (x) -f S 

and ta (x) + <J, representing the temporal extent of direct and critically refracted wavelets, 
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respectively. The optimum window is simply the range of offsets over which the reflection 

event t2 (x) does not reside within bounded regions ta < t < ta + 5 and/or t i < t < t i + 5. 

Note that, in general, effective pulse dviration is a transit-time and, consequently, offset de­

pendent parameter due to progressive attenuation and dispersion discussed in the previous 

chapter. It follows from equations (4.5)-(4.6) and Figtire 4.3 that the extent of the actual 

optimum window will be correspondingly reduced. We shall return to the influence of 

various model parameters on optimum window characteristics however, first, let us discviss 

the practical implementation of optimum window data acquisition techniques. 

While the optimum window CDP method seeks to deploy an array of detectors sub­

stantially within one of the previously defined optimum windows, the optimmn offset 

technique identifies a particularly favorable offset within the window for deployment of 

a single detector. In either case, having established the optimtun source-receiver offset, 

this configuration is fixed ajid redeployed at successive intervals along a survey transect to 

acquire a continuous seismic image of the subsurface. 

For present application, we have avoided multichannel recording techniques in favour 

of a single source-receiver pair in optimum-offset configuration to simplify data acquisi­

tion and facilitate intuitive assessment \mprocessed profiles. Compared with the optimvmi 

offset technique, CDP profiling is conceptually comphcated and requires substantial post-

acquisition processing, including sorting, velocity analysis, normal-moveout (NMO) cor­

rection and subsequent stacking, to yield an interpretable result. Furthermore, despite 

the great advantage of multiple geophone arrays for spatial filtering of ground-roll in large 

scale seismic exploration, an exhaustive analysis presented in Appendix B demonstrates 

that these techniques are of little practical use in small-scale, high-frequency applications 

including archaeological exploration. In addition, the nature of certain archaeological tar­

gets is not well suited for imaging by CDP techniques. In particvilar, the CDP method 

was developed in connection with petroletmx industry exploration and mapping of semi-

continuous geo-structiural boundaries and relies entirely on velocity estimates derived from 

moveout characteristics of associated reflection events. Consequently, while CDP tech-

file:///mprocessed
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niques may be advantageous for delineating archaeological stratigraphy, they are not espe­

cially well suited for imaging discontinuous archaeological features, including foundations, 

walls, roads, etc., where the primary signal is scattered rather than reflected energy. In fact 

in the absence of well defined stratigraphic reflectors, alternative approaches to velocity 

estimation are critical. To this end, a diffraction-based approach to seismic velocity analy­

sis is developed in Appendix A. In short, the remaining benefit of multi-channel CDP data 

acquisition, namely, improved signal-to-noise ratio, is in most instances not worth the more 

cumbersome acquisition logistics and time-consimiing post-acquisition data processing. In 

fact, at the expense of high-frequency content, signal-to-noise ratio caix be improved in 

optimiun offset mode by stacking several single-fold shot gathers at each soiirce-receiver 

location. Such a trade-off may be necessary for detection of deeply buried targets. 

1.0 

Offset (m) 

Figure 4.4. Walk-away noise test conducted Etlong the axis of the shallow model block, depicting 
"best-fit" lines to direct and critically refracted {urrivals. Associated velocity estimates ao=150 
m/s and ai=2000 m/s follow as corresponding reciprocal slopes. Dots indicate predicted reflection 
transit-times using the foregoing velocities and known target range z=0.5 m. 
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4.3 Preliminary Model Experiments; 

Figure 4.4 displays a walk-away noise test acquired along the axis of the shallow model 

block with an offset interval of 0.2 m and pre-emphasis filtering at 275 Hz. Offset dependent 

gains were applied to yield a roughly constant average amplitude. Despite effects due to 

the block's finite dimensions, these data display the characteristic arrivals illustrated in 

Figure 4.2. "Best-fit" lines to direct and critically refracted arrivals yield corresponding 

velocity estimates of approximately ao=150 m/s and CKI=2000 m/s, respectively, for the 

sand fill and concrete model. These values axe consistent with empirical data tabulated by 

Molotova and Yassil'ev (1960) and Press (1966)t. Corresponding reflection transit-times 

computed for a target at z=0.5 m are also indicated. Although there is good agreement 

between predicted transit times and observed arrivals, identification of the reflection event 

would have been difficult, at best, without apriori knowledge of subsvirface structure. In 

this regard, it must be appreciated that a useful walk-away test was acquired only as a 

result of apriori information. In addition, it is noted that the observed cross-over distance 

*̂ = 2zf^i±^)'^' (4.8) 
\Oii — ao ' ' 

and refraction intercept time (equation (4.4)) lead to substantial underestimation of tar­

get depth. This disagreement is probably attributable to systematic error in picking the 

critically refracted phase. Cerveny and Ravindra (1971) demonstrate that the critically 

refracted (head wave) wavelet is phase shifted by -90° relative to the source signature. 

In view of this relative pha^e-lead and the existence of a minor precursor to the effective 

direct arrival onset, the refraction event could be "picked" later as indicated in Figure 

4.4, giving an identical velocity but implying a target depth in nearer agreement with the 

known value. 

Figure 4.5 displays optimum window systematics as a fvmction of refractive index 

tto/ai> target range z and wavelet duration S. In each case, the corresponding model 

parameter is varied over a plausible range while holding the remaining parameters fixed at 

t For discussion of "sub-acoustic" compressional wave velocities in multiphase media see Lester (1947) 
and Patterson (1956). 
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Figure 4.5. Optimum window diagrams illustrating dependent boundary puameters Xc, x_ and 
x^ as functions of independent model parameters (a) Refractive index (ao/ai) with ao = 150 m/s, 
5=3.5 ms, z=0.5 m; (b) Refractive index (ao/ai) with oi = 2000 m/s, 5=3.5 ms, z=0.5 m; (c) 
Impulse duration (5) with OQ = 150 m/s, ai = 2000 m/s, z=0.5 m; (d) . Target range (z) with 
ao = 150 m/s, ai = 2000 m/s, 5=3.5 ms. Deished lines indicate reference model values. 
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reference values aQ=150 m/s, Qri=2000 m/s, z=0.5 m and 6=3.5 ms. It is observed that 

only a narrow near-source optimiun window (0 < x < Xc « 8 cm) exists for the reference 

model. In practice, the minimum source-detector offset was restricted by recorder satu­

ration to 0.2 m and on the basis of the walk-away test in Figure 4.3, an optimum offset 

of 0.3 m was selected. Since this offset lies beyond the predicted critical distance it fol­

lows that the event identified as a reflection from the model is actually an interference 

wavelet, including critically refracted or head-wave energy as well. Associated error in 

picking the "reflection" onset and, consequently, depth determinations are certainly well 

within experimental error stemming from data acquisition. Before tviming our attention 

to resiilting optimum offset profiles acquired over the model, let us retvim presently to the 

optimum window systematics presented in Figure 4.5. It is observed that useful optimum 

windows would have existed under a number of plausible conditions, including increased 

target range, either an increase or decrease in refractive index ajid, of course, reduced pulse 

duration. Calculations of this nature will be critical for the plaiming and design of futvire 

field experiments, particularly in cases where targets are localized discontinuous features, 

preventing acquisition of useful walk-away noise tests. In particular, it should be appreci­

ated that the walk-away test in Figure 4.4 was only possible due to a-priori knowledge of 

model geometry. 

Preliminary optimum offset seismic soundings have been conducted along orthogonal 

traverses of the shallow model block as denoted A-A' and B-B' in Figure 4.1. Resulting 

data profiles and corresponding idealized cross-sections are depicted in Figures 4.6 and 

4.7. The data are in raw form. The source-receiver configvuation is indicated in Figure 

4.6a with particular values of optimum offset (XQ) and midpoint interval (Ax) denoted in 

Figures 4.6a and 4.7a. The continuous event at roughly 2.0 msec on both data sections 

is the direct arrival from soiurce to receiver. Local variability in the onset of this event 

is attributed to acquisition error, including uncertainties in source-detector locations and 

local velocity variations. For example, the obvious "pull-up" around x=1.0 m in Figure 

4.7b is attributed to near-stuface compaction and consolidation of fill surrounding the 
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Xtf=30cm 
AX=10cm 

0.0 1.0 2.0 
Distance (m) 

Figure 4.6. (a) Idealized model cross-section along transect A-A' and (b) corresponding optimum 
offset seismic profile. Arrows indicate approximate locations of model block edges. Xo and Ax 
denote optimum source-receiver offset and spatial sampling interval, respectively. 
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Figure 4.7. (a) Idealized model cross-section along transect B-B' and (b) corresponding optimum 
offset seismic profile. Arrow indicates approximate location of model block edge. Xo and Ax denote 
optimum source-receiver ofiset and spatial saunpling interval, respectively. 
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shot-point used for acquisition of walk-away noise tests described in the previous section. 

Similarly, the gradual increase in onset time observed with increasing distance in Figure 

4.6b, is associated with a corresponding increase in effective fill velocity toward the the 

center of the model, A simple "first-order" static correction could be accomplished by 

aligning the direct arrival onset across the data section. 

Dipping arrivals at the margins of Figure 4.6b are attributed to reflections from the 

sloping walls of the void and, in this regard, it is noted that the model void does not slope 

upward at 45° as indicated in Figure 4.6a but, rather, more gradually and with slight 

convex curvature as indicated by the photograph in Figure 4.1a. Moreover, the apparent 

dip of these events is expected to be an less than their true dip due to up-dip migration 

of corresponding reflection points. 

The localized event at approximately 5.5-6.0 msec and extending from roughly 1.4 to 

2.3 m is consistent with reflection from the upper surface of the model, suggesting a fill 

velocity of approximately ao=175 m/s, only somewhat higher than the estimate obtained 

from direct arrival times in Figure 4.5. Associated diffraction events are evident at the 

edges of the model block as indicated by arrows at the top of Figure 4.6b. As discussed in 

Appendix A, an independent estimate of the fill velocity can be derived from their moveout 

characteristics. The procedure, illustrated in Figure 4.8, yields an estimate of ao=215 m/s. 

While this result is not inconsistent with estimate of ao = 150 m/s determined from direct 

arrivals in Figure 4.4 it also consistent with expected depth-dependent compaction and 

consolidation of the fill. Using equation 2.79 with z=0.5 m, fj ~350 Hz and ao ~ 200 

m/s, we obtain Ri = Di/2 ~ 0.4 m for the effective Fresnel zone radius and, consequently, 

according to spatial resolution criteria developed in Chapter 2, the 0.4 m wide model 

is only marginally resolvable. In particular, it is useful to compare Figure 4.6b with 

theoretically predicted responses in Figure 2.30. As for the case 6x = Di /2 in Figure 2.30, 

the rectangular geometry of the model is suggested but not clearly established by the 

optimum offset profile in Figure 4.6b. In other words, reflections from the model are not 

obviously discernible from associated edge diffractions. 
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Figure 4.8. Diffraction-based velocity estimation. The velocity estimate follows from the transit 
time (t=7.7 ms) and local slope (dx/dt=145 m/s) of the diffraction hyperbola at a specified ofiset 
(x=0.6 m) from the event's apex. 

In contrast, the optimum offset profile acquired along the axis of the model in Figure 

4.7b, exhibits a strong continuous (recall that no static corrections have been made) reflec­

tion event from the upper stirface of the model, arriving at between 5.5 and 6.0 msec and 

extending from the onset of the traverse to the model's edge at approximately 1.2 m, as 

illustrated in Figtire 4.7a and indicated by the arrow at the top of Figure 4.7b. As in the 

previous case, this reflection event blends into an evident edge diffraction which coalesces 

with a second diffraction associated with the step structure in the void floor at approxi­

mately 1.5 m. Anomalous amplitudes in the vicinity of 1.5 m and 9.0 ms appeeir to be the 

result of constructive interference between these diffraction events and a sub-horizontal 

event, extending across the profile at approximately 9-10 ms. Although the origin of this 
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event remains uncertain, its continuity independent of subsurface structure suggests that 

it may be attributable to a strongly attenuated surface wave or ground-roll arrival. 

4.4 Conclusions: 

Although foregoing results were acquired under rather ideal conditions, these prelimi­

nary soundings demonstrate that with judicious selection of instrumentation and acquisi­

tion parameters, the seismic reflection method is capable of resolving power on the scale 

of archaeological interest. 

For sake of comparison, coincident ground-penetrating radar (GPR) profiles were ac­

quired along transects A-A' and B-B', using a Pulse-Ekko IV 100 MHz radar. Acquisition 

parameters were identical with the exception of a transmitter-receiver anterma separation 

of 0.4 m compared with an optimtun offset of Xo=0.3 in for seismic soundings. In addition, 

profile B-B' was extended an additional 0.5 m. Resulting GPR profiles are displayed in 

Figure 4.9. Note that the time scale is in nanoseconds (ns) compared with miliseconds 

(ms) in Figures 4.4b and 4.7b. Although acquisition errors are less significant, as indicated 

by the greater continuity of events, resolution of subsurface structure is evidently poorer 

than that provided by coincident seismic profiles. In fact, despite general opinion that 

ground-penetrating radar possesses vastly superior resolving power, the foregoing outcome 

might well have been predicted on the basis of resolution criteria developed in Chapter 2. 

Assuming a dominant frequency of fd=100 MHz and a typical velocity of uo=0.05 m/ns, 

we obtain a dominant wavelength of Aj = î o/fd «0.5 m compared with Aj = ao/fd '^O.SS 

m for seismic soundings with ao = 200 m/s and fj »i600 Hz. For z=0.5 m, associated 

Eresnel zone diameters are approximately Di=.75 and Di=0.6, respectively. Although 

corresponding resolution limits degrade significantly in both cases with range-dependent 

attenuation and dispersion, it is evident that seismic soundings in Figures 4.6b and 4.7b 

possess substantially greater resolution than coincident GPR profiles in Figure 4.9. 
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Figure 4.9. Ground-penetrating radar profiles acquired along transects A-A' and B-B' in Figure 
4.1b. Compue with idealized cross-sections and corresponding optimum offset seismic profiles in 
Figures 4.6 and 4.7. Arrows indicate approximate locations of model edges. 



Chapter 5 
SUMMARY AND DISCUSSION 

'Tis a lesson you should heed, 
Try again; 

If at first you don't succeed, 
Try again; 

Then your courage should appear, 
For if you will persevere 
You will conquer, never fear, 
Try again. 

William Edward Hickson 

By the mid 1970s, seismic techniques, particularly the reflection method, had been 

deemed unsuitable for archaeological prospection due to their insufficient resolving power. 

Unfortunately, this self-fulfilling prophesy has largely dissuaded subsequent attempts to 

harness the significant potential of these techniques. This thesis constitutes a re-evaluation 

of the seismic methods for archaeological application in Ught of significant technological 

advances in connection with the adaptation of these techniques for near-surface environ­

mental and groundwater monitoring. 

Rather than a purely heuristic approach to the assessing the potential of seismic reflec­

tion techniques for archaeological application, the study began with a theoretical analysis 

of seismic detection and resolution. Detection was defined as the ability to recognize signal 

in the presence of ambient seismic noise and is a prerequisite for the resolution of subsur­

face targets. Practical detection limits were derived in Chapter 2 for a certain class of 

archaeological targets, encompassing discontinuous features of finite dimension. A simple 

theoretical model predicts that this class of archaeological features is detectable, given only 

modest dynamic range, for a wide range of plausible material contrasts between the target 

and host soil. Criteria were also developed for quantifying the resolving power of seismic 

soundings. That is, the capacity of seismic sounding to distinguish signals arising from 

separate targets or, more interestingly, the form and dimensions of a given target. These 

criteria are based on characteristics of the seismic wavelet which is, effectively, the impulse 

response of the data acquisition system. The connection between wavelet properties and 

corresponding frequency response was investigated to reveal system characteristics that are 

-148-
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critical for attaining enhanced resolution. Although wavelet phase is an important conad-

eration and high-frequency response is essential, enhanced resolving power is principally 

achieved by extending system bandwidth. 

This finding, together with a commitment to cost-efficient, accessible technology, has 

guided subsequent design and development of a simple but effective system for detection 

and resolution of subsurfax« archaeological remains. A linear systems theory description 

was given in Chapter 3, demonstrating that net system response is given by the product of 

subsystem amplitude spectra and the sum of associated phase spectra. Simple theoretical 

expressions were derived to characterize the response of component subsystems. This 

analysis has guided proctirement and design of complementary instrumentation to yield 

a balanced frequency spectrum and, consequently, a high-resolution impulse response. In 

particular, source, detector and in-line pre-emphasis filter components were tailored to 

compensate for the intrinsically low-pass nature of the subsurface. 

To assess the practical performance of the resulting system, preUminary soundings 

have been acquired along traverses of a full-scale subsurface model, having dimensions 

representative of common archaeological remains. These experiments were described in 

Chapter 4, together with a discussion of optimmn offset data acquisition techniques to en­

sure the recording of target reflections with minimum interference from source-generated 

noise. Compared with the multi-channel CDP method, optimiun offset data acqmsition is 

conceptually intuitive and requires little or no post-acquisition data processing to yield an 

interpretable result. Preliminary optimmn-offset profiles presented in Chapter 4 demon­

strate, albeit under rather ideal conditions, that the seismic refiection method is, indeed, 

capable of resolving power on the scale of archaeological interest. In fact, it must be em­

phasized that these preliminary seismic profiles are raw sotmdings, and that application 

of standard enhancement processing techniques, including deconvolution and migration, 

should yield fvuther extension of the system's resolving power. 

At the risk of detracting from the very promising results presented in Chapter 4, it 

should be stated that a subsequent extension of profile B-B', along the model axis, has 
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failed to resolve the deeper model structure. In contrast with optimum offset profiles pre­

sented in Chapter 4 which were ax:quired under dry svmimer conditions, however, these 

subsequent sotmdings were acquired during winter under near-satiu-ation conditions. A 

two-fold decrease in dominant wavelet frequency and corresponding degradation of resolv­

ing power testifies to the critical influence of subsmface conditions. Moreover, limited 

field experiments, in connection with ongoing archaeological excavations in Greece (Ap­

pendix M), gave promising but inconclusive results and revealed three potential obstacles 

to practical implementation of the technique. First, where near-svurface soils are hard-

packed and/or heterogeneous, source coupling and, consequently, resulting wavelet charac­

teristics vary substantially. Secondly, where archaeological remains are extremely shallow 

(< 0.3 — 0.5 m), there may be no useful optimum window and, in particular, the direct 

arrival constitutes a major source of interference, masking short-range reflections. Finally, 

despite high-frequency pre-emphasis filtering, grovmd-roU can remain a significant source 

of interference. 

Improved acquisition procedures are planned and major system modifications have al­

ready been implemented to address these concerns. In particular, while source coupling 

may be improved, imder certain conditions, by detonating the existing source device in 

prepared, water-filled auger holes, we also plan to investigate the potential of an amplitude 

modulated, swept-frequency vibratory source. It is anticipated that such a source would be 

less affected by lateral variations in near-surface soil conditions, resulting in significantly 

more consistent wavelet characteristics. Moreover, with real-time correlation processing, 

swept-frequency source techniques could yield significantly enhanced resolution. To pro­

vide for enhanced suppression of source-generated noise, including both ground-roll and 

direct wave arrivals, parallel input circuitry has been incorporated to implement geophone 

differencing (Knapp, 1986). In short, this technique attenuates horizontally propagating 

energy by exploiting its simultaneous arrival at two detectors deployed eqtiidistant from 

the source but at slightly different depths. The output signal is simply the differential 

output of the two geophones and, since horizontally propagating energy is in-phase at 
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the two detectors, it is approximately cancelled. The vertical separation between the two 

detectors is adjusted so that quasi-vertically incident reflection energy is approximately 

180° out of phase and, consequently, enhanced by differencing. An alternative approach 

to attenuating surface waves is polarization filtering, wherein ground-roll energy is iden­

tified and subsequently attenuated on the basis of its characteristic particle displacement 

polarization. The Omni-Phone® polarization filter unit developed by the Terra Linda 

Group (Gassaway, et al., 1989) comprises a three-component Eddy-Seis detector system 

coupled with associated A-D conversion and digital electronics for real-time polarization 

filtering. Further model experiments are planned to assess the practical utility of these 

methods. As concerns possible exploitation of multiple detector arrays for attenuation 

of source-generated noise (Rayleigh waves in particular), theoretical analysis presented in 

Appendix B confirms that these techniques have little practical advantage for small-scale, 

neax-surface applications. Similarly, it is concluded that multichaimel data acquisition 

methods and the associated potential for a minor improvement in signal-to-noise ratio do 

not justify the significant investment in post-acquisition CDP processing to yield inter-

pretable seismic sections. Moreover, depending on the scale of features investigated, it is 

not altogether clear that reflection-based velocity analysis, a key step in CDP processing, 

is practical. Consequently, for such applications, the single-fold optimtim offset technique 

is recommended, together with a combination of CMP and diffraction-based velocity in­

formation OS described in Appendix A, 

Finally, In connection with the traditional role of geophysical prospection in archaeol­

ogy, that is, pre-excavation detection and mapping of potential archaeological featxires, it is 

anticipated that seismic soundings, like ground penetrating radar, will be employed primar­

ily as a secondary technique to provide a cross-sectional view of targets already identified 

by mapping techniques, including magnetic, resistivity and electromagnetic conductivity 

measurements. As previously discussed, successful seismic imaging of these targets in­

volves a critical trade-off between the gross dimensions of the archaeological deposit and 

the degree of contrast between its material properties and those of the surrounding host 
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matrix. In particular, enhanced reflectivity is associated with significant contrasts in den­

sity and, more importantly, seismic velocity. In general, rock structures, including wall and 

foundation remains, pavement, burial chambers and hearths are better suited for seismic 

imaging than soil features, including storage pits, simple burials and post molds. Having 

said this, it is expected that larger-scale soil features, like buried house floors, would be 

effectively dehneated by seismic soundings. In addition, because the dominant wavelength 

of the seismic pulse depends inversely on the velocity of the host matrix, higher resolution 

is expected in relatively uncompacted, vmconsolidated soils. As a reference to practical 

application, representative velocity data for a wide range of rocks and unconsolidated sed­

iments are tabulated in Appendix N. These data may used in conjimction with detection 

and resolution criteria developed in Chapter 2 to assess the capacity of seimic soundings 

to image specific archaeological features. 

Finally, in addition to imaging of localized archaeological features, it is also anticipated 

that seismic techniques, together with ground penetrating radar, can have a significant role 

in the delineation of archaeological stratigraphy, from small-scale investigation of midden 

deposits to large-scale regional paleo-geomorphic surveys. 

In conclusion, on the basis of findings presented herein, there can be little question of 

a promising role for the seismic reflection method in archaeological remote sensing. While 

there is admittedly much developmental and experimental work remaining, I am confident 

that this dissertation establishes a solid foundation for futiare research. 
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Appendix A 
DIFFRACTION BASED VELOCITY ESTIMATES FROM 

OPTIMUM OFFSET SEISMIC DATA 

A.l Introduction; 

The Terrain Geophysics Section of the Geological Survey of Canada pioneered and 

since the early 1980s have popularized the optimum offset technique for high resolution 

shallow seismic profiling (Hunter et al., 1984; Hunter and Pullan, 1989). The method relies 

on prelimineiry expanding offset noise tests to identify a range of source-receiver offsets over 

which the reflection from a given target interface is received with minimvun interference 

from source generated noise. An optimvun offset, selected from within this rajige, is then 

used to acquire single fold sotmdings along profile. 

Compared with smtably scaled CDP techniques (Knapp and Steeples, 1986; Steeples 

and Miller, 1988), optimvun offset profiling is conceptually less complicated and has the 

advantage of requiring little, if any, post acquisition data processing to yield an inter-

pretable result. In part, however, this advantage is sacrificed by the need to collect and 

analyze supplemental multifold data to determine a velocity function for depth conversion. 

To reduce the need for these additional data, we propose to make greater use of move-

out information supplied by diffrax:tion events to derive supplemental velocity estimates 

directly from common offset data. In addition, since these estimates reqviire only a pencil 

and ruler, they represent a convenient source of velocity information in the field. 

Diffraction based velocity analysis is familiar to prax;titioners of ground penetrating 

radax (GPR) where data are acquired almost entirely in common offset mode. Here we 

characterize the relationship between a simple method used there and another, more robust 

technique that leads naturally to a meaningful interval velocity function. Finally, while 

source and receiver components of GPR systems are often effectively coincident and seldom 

separated by more than a metre, this is not the case for optimum offset seismic acquisition. 

Consequently, we examine the effect of non-zero offset on transit time within a constant 
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velocity medium and evaluate the corresponding influence on apparent velocity. 

Previous studies (Dinstel, 1971; Lamer et al., 1983; Tsai, 1984) have examined the 

appearance of scattered energy in a variety of acquisition and display formats, but have 

focused principally on CMP gathers and the suppression of these events by stadcing and 

velocity filtering. We are concerned, instead, with diffractions in the conmion offset domain 

and the velocity implied by transit time moveout as a fixed spread traverses the scatterer. 

A.2 Point Diffractions on Common Offset Records; 

Consider a point diffractor within a homogeneous, isotropic halfspace as depicted in 

Figure A.l, 

(XsR,0,0) 
(XR,0,0) 

Figure A . l . Point scatterer model and reference coordinate system. Xs, XM and XR denote 
source, midpoint and receiver positions along the x-axis. YQ and ZQ are, respectively, the y and z 
coordinates of a point diffractor residing in the yz-plane. XSR denotes the position of a coincident 
source-receiver pair. 0 and a are, respectively, takeoff and azimuthal angles for the ray joining 
(XSR,0,0) and (0, Y D , Z D ) . 

A rectangular coordinate system is chosen so that scattered energy detected by an optimmn 

offset survey along the x-axis has minimum arrival time when the spread midpoint is at 
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the origin. With the spread so positioned, a line segment joining the scatterer and the 

midpoint is normal to profile and, consequently, minimiim length. Note that this implies 

a scatterer residing in the yz-plane. 

For source at (Xs,0,0), receiver at ( X R , 0 , 0 ) and point diffractor at ( 0 , Y D , Z D ) , the 

appropriate transit time expression is 

t = i [(Xŝ  + r2)V2 + (XK2 + ^2)1/2] , (A.1) 

where V is a constant velocity and r = (YD^ + ZQ^)^ '^ is the distance from the origin to 

the scatterer. Expressing source and receiver positions in terms of spread midpoint, X M , 

and optimtun offset. Ax = X R — X S , as 

Xs = XM - Ax/2 
(A.2) 

X R = XM + Ax/2 

we obtain the equivalent relation 

For the time being, we shall consider the case of coincident source-receiver. Setting 

Ax = 0 in equation (A.3) and squaring both sides yields for zero offset transit time 

*' = to' + ^ , (A.4) 

where to = 2r/V is the minimum arrival time for scattered energy detected by a coincident 

source-receiver. Although we have dropped the subscript on XM to simplify notation, we 

remind the reader that this variable specifies midpoint position along profile and shotdd 

not be confused with optimum offset, Ax. Having said this, however, note the obvious 

similarity between equation (A.4) and the CMP transit time relation for reflection from 

a dipping planar interface (Levin, 1971). In the latter case transit time is measured as a 

function of offset about a constant midpoint rather than as a function of midpoint location 

for a common offset. Both events are hyperbolic. 
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A.3 Velocity Estimates from Diffractions; 

The diffraction pattern resulting for an arbitrary point scatterer is illustrated in Figure 

A.2a. 

As for the case of reflections, a reasonable estimate of the constant velocity, V, can be 

obtained by exploiting the linearity of equation (A.4) in X^ vs. t^ space. 

(0,0,0) 

(O.O.to) (0,0,to2) 

(0,0.t'2) -

(0,0,0) (X2,0,0) 
t 

(0,0,t2) -

Figure A.2. Model transit time curves, (a) Solid curve relates transit time and midpoint position 
for both a uniform medium and for straight rays in a stratified medium having an equivalent average 
velocity. Dashed curve describes true transit time-midpoint relation for a stratified medium. Dotted 
curve represents transit time-midpoint relation implied by equation (A.5) (b) Selected portion of 
corresponding curves in coordinates X^ vs. t^. 

As depicted in Figture A.2b, the diffraction hyperbola maps to a line having intercept to^ 

and slope 4/V^. Rather than determine the arrival time of scattered energy at numerous 

midpoint locations and perform the required linear regression, practitioners of ground 

penetrating radar have commonly piu-sued a more direct approach (Ulriksen, 1987; Daniels, 

1989). Having identified the apex of a diffraction event (0,to) together with any additional 

point (X, t) (FigTure A.2a), velocity is derived directly from equation (A.4) as 

In effect, this amounts to specifying the intercept (0, to^) £ind a second point (X^, t^) on 

the line described by equation (A.4) and is, ideally, equivalent to the corresponding two-
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point slope estimate (Figure A.2b). It follows that, in practice, velocity estimates obtained 

from equation (A.5) are particularly sensitive to measiirement error associated with arrival 

times. 

Implicit differentiation of equation (A.4) with respect to the midpoint variable, X, 

gives 

V^ = « ^ = ^ ^ . (A.6) 
t dt tpxcosa 

where dt/dX = 2pxCosa is the slope of a local tangent to the diffreiction event at (X,t). The 

reader shovdd recognize that px is the equivalent Snell parameter with a = tan~^(YD/X) 

denoting the azimuthal angle as depicted in Figure A.l. As Gonzalez-Serrano and Claer-

bout (1984) have demonstrated for the case of reflection events on CMP gathers, equation 

(A.6) suggests an alternative approach for estimating velocity directly from the constant 

offset record. In this approaxrh, the interpreter must supply a local slope estimate but need 

not specify the minimum arrival time, to, required by equation (A.5). Although the errors 

in these measurements are comparable, equation (A.6) is less prone to propagating transit 

time imcertainties. Also, by incorporating the local slope of the scattering event, equation 

(A.6), if only by eye, involves a sort of ciurve fitting to the entire event. Consequently, in 

addition to yielding velocity directly from the constant offset profile, we expect equation 

(A.6) to provide a relatively robust estimate. 

Now, having set out the basic concepts assuming a imiform medium, let us examine 

the more interesting situation where velocity is vertic£illy variable. It is in this context 

that we shall discover the connection between the two direct velocity estimates described 

above. Consider a point scatterer within a stack of horizontal isovelocity layers having 

thickness z^ and velocity v^ as depicted in Figure A.3. Let us assume, for the moment, 

that scattered energy has taken the path of least distance from source to scatterer and back 

to the coincident receiver. Under this straight ray assumption, transit time is predicted 

exactly by equation (A.4) upon replaxiing the uniform velocity, V, by the appropriate 
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average velocity 
1 " 2 ^ 

To To 
(A.7) 

k = l " k= l 

where T\ = 2zi£/v]j is the two-way vertical transit time within the kth layer and 

^o = ±r. = 2±'X (A.8) 
k = l k=l * 

Here, TQ is the two-way transit time for an in-plane scatterer located vertically beneath 

the coincident source-receiver and should be distinguished from to, the minimum two-way 

transit time for an arbitrary scatterer. The two are equivalent only for a diffractor within 

the plane of siirvey (cosa = 1) as depicted in Figure A.3. 

(0,0,0) 

(0,0,ZD) 

(X,0,0) 
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Figure A.3. Stratified earth model depicting both true euid straight two-way ray paths join­
ing a coincident source-receiver at (X,0,0) with an in-plane diffractor at (0,0,ZD). Vk, Zk and 
tfk (k = 1,2,3 n) denote velocity, thickness and ray angle respectively for the kth layer. 

Now, if vjf and z\ are chosen so that V* = V, the corresponding diffraction event and its 

mapping m vs. t^ are the same as for the case of uniform velocity in Figure A.2. This 

is not surprising since equation (A.4) was derived under the same straight ray assumption. 

In short, aJl that we have said regarding the case of uniform velocity holds for stratified 

velocity assuming that scattered energy takes the path of least distance. Most importantly, 

the velocity predicted by equations (A.5) and (A.6) remains constant for all values of X. 
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In practice, scattered energy reaching the receiver has actually taken the path of least 

time in accordance with Fermat's principle. Compared with the straight ray case, the path 

of least time reduces transit through lower velocity layers while increasing the distance 

traveled at higher velocities as suggested in Figure A.3. Consequently, as the designation 

indicates, transit time via the least time path is always less than or equal that by the 

corresponding straight ray path. In particvdar, least time and least disteince paths are 

equivalent only for an in-plane scatterer located vertically beneath the coincident soiurce-

receiver. Otherwise, as X increases, the ax:tual two-way transit time is progressively less 

than that predicted asstuning straight ray geometry. This effect is illustrated in Figxire A.2a 

for an in-plane scatterer. The actual two-way transit time is denoted by t' for comparison 

with the corresponding least distance arrival time, t, for the same arbitrary midpoint 

location. 

As for the case of reflection from a plane horizontal interface (Dix, 1955), the true 

diffraction event is nonlinear in X^ vs. t^ (Figure A.2b), indicating that equation (A.4) is, 

strictly speaking, inappropriate for stratified media. Despite this limitation, it follows from 

Dix's small spread analysis that for X small compared to depth, ZD = Yl\i=i k̂» equation 

(A.4) yields a suflBciently accvirate prediction of transit time when the imiform velocity, V, 

is replaced by the root-mean-square (rms) velocity 

Vrni»' = ; ^ y ; v k V (A.9) 

It can be demonstrated (Taner and Koehler (1969)) that equation (A.4), with V = Vrms> 

is a two term truncation of the Taylor series expansion for t2(X) about the point X=0. A 

third term, in X*, is always negative, excepting the limiting case where vi = V2 =,. . . , = Vn 

or, equivalently, Vtms = V» = V. This implies uniform velocity and all higher order terms 

beyond X^ are zero. 

In light of the foregoing discussion, let us now examine the nature of velocity estimates 

obtained from equations (A.5) and (A.6) for sm in-plane scatterer where the v^ are not 

all equal. Although the ax:tual event is known to be nonlinear in X^ vs. t^, the estimate 
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obtained by equation (A.5) assumes that it is linear. In other words, the resulting velocity 

estimate implies the hyperbola through (X, t') depicted in Figtire A.2a. Consequently, it 

is the slope of the corresponding line joining points (0,to^) and (X^,t' ) in Figtire A.2b 

that defines the velocity given by equation (A.5). Referring to the same figures, we can 

charax:terize the resvilting estimate as follows. First, the velocity obtained is clearly depen­

dent upon the variable X and increases as |X|. Secondly, it is obvious that this estimate 

will always exceed the average velocity defined by equation (A.7). Lastly, as we shall dis­

cover shortly, the estimate given by equation (A.5) can never exceed the generalized rms 

velocity, Vrins(Px)» tliat is defined for the case Px = 0 by equation (A.9). Although these 

observations provide a comparative context, we have yet to describe the meaning of the 

velocity furnished by equation (A.5). In fact, there is not much physical significance that 

can be attached to the estimate. The only description we can give is to say that it amounts 

to a very crude stacking velocity. If we assume that a stacking velocity, Vg, is defined by 

least squares fitting equation (A.4) to the observed event with V = Vg (Al-Chalabi, 1973), 

we have 

Vs2 = 4 m 
i=l ^ i=l / J / L i=i i=i i=i J 

(A.IO) 

where m is the number of (X,t) pairs defining the estimate. Note that given just two points, 

(0,to) and (X,t'), equation (A.IO) reduces directly to equation (A.5). Unfortimately, as 

for the c£ise of imifonn velocity, there is little statistical significance associated with a 

two-point estimate. 

Equation (A.6), on the other hand, yields a velocity estimate that is directly related 

to physical parameters. Returning to Figure A.3, we observe that the midpoint variable, 

X, can be expressed in terms of discrete layer parameters as 

n n 

X = 2 ^ Xk = —r- 2 ^ Vktksm^k, (A.l l ) 
k=i k=i 

where tjt = i\lcos9\ = i\l{\ — VT^'^^Y is two-way transit time measured along the ray 

path within the kth layer, xĵ  = (vktjt/2)sindk is the horizontal component of the ray path 
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in the kth layer and 0\^ is the angle between the ray and vertical. For the particular case 

of an in-plane scatterer, cosa = 1. Recalling that Snell's law requires the ray parame­

ter, px = sin^k/vjf, to be independent of layering, we can bring this constant outside the 

summation in equation (A. 11) to yield 

X = — - — 2 ^ vk^k. (A.12) 
k=i 

Finally, using equation (A.12) and recognizing that t = $3k_i tjc, we can rewrite equation 

(A.6) as 

V^ = X; vk̂ tk / X^tk = VLs(Px). (A.13) 
k = l ' k=l 

We discover, as a result, that the velocity yielded by equation (A.6) is, the same generalized 

root-mean-square velocity presented by Shah and Levin (1973). Moreover, as alluded to 

above, equation (A.13) reduces to Dix's rms velocity defined by equation (A.9) for the 

case Px = 0. In addition to proving that Vjn,g(px) never decreases as X increases. Shah 

and Levin demonstrated that the generalized rms velocity is boimded, as expected, by the 

smallest and largest Vk in the section. The first of these conclusions follows from equation 

(A.6) and is tantamoimt to observing that the local slope of the event in X^ vs. t^ is always 

decreasing (Figure A.2a). 

Following the lead of Gonzalez-Serrano and Claerbout (1984) and Claerbout (1985), 

we realize that by incorporating the ray parameter, equation (A.6) also leads naturally to 

interval velocities from two or more in-plane diffractions. In practice, we choose a tangent 

line having slope dt/dX = 2p and subsequently determine, for each event, the respective 

point of tangency (X, t(X)), where X is measured relative to the respective apex. Now, 

treating the vertical interval between two in-plane scatterers as an effective imit having 

interval velocity Vi, it follows from equation (A.12) that 

Xi - Xi_i = -
••k=l k=l 

(A.14) 
2 

Consequently, recognizing that the two-way transit time through the interval, ti, must 

ax:count exzictly for the difference in total transit time. 
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i i -1 

t(Xi) - t(Xi_i) = X]*k - E*k = *i> (A-15) 
k = l k=l 

we find that the interval velocity can be obtained directly as 

Alternatively, upon establishing the tangent point for each event, we could have proceeded 

by evaluating equation (A.6) for the associated rms velocities. Then, with these in hand, 

the interval velocity follows from a straight forward re-expression of the previous equation 

^.2. ^ _ Vxms,i^(p)t(Xi) - V,n.s.i-l'(p)t(Xi-l) 

^' ^^^ t(xo-t(Xi_i) • ^^'^^^ 

This expression reveals that Vi is, in particular, the rms interval velocity. Equation (A. 17) 

is simply a generalization of the interval velocity due to Dix (1955) in the same sense that 

equations (A.13) and (A.9) are related (Nowroozi, 1989). The significance of rms interval 

velocities, compared with other varieties, has been discussed by Al-Chalabi (1974) and 

Hubral and Krey (1980). In short, although we view the interval as practically homo­

geneous, it generally includes some degree of velocity heterogeneity. We anticipate that 

intervals botuided by diffraction events are more likely to possess significant heterogeneity 

than those established on the basis of major reflection events. In fact, since reflection 

events are direct manifestations of velocity contrasts, we suggest that accompanying re­

flection information should aid in assessing the extent of velocity heterogeneity within an 

interval defined by diffractions. If heterogeneity is insignificant within the interval, its 

thickness is given by 

A.4 Limitation for Out of Plane Diffractions; 

To this point, our treatment of a horizontally layered section has focussed on scatterers 

residing in the plane of survey. We now emphasize that apart from our discussion of 
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interval velocities, the foregoing analysis holds quite generally for an arbitrary scatterer. 

The velocity yielded by equation (A.6) is an estimate of the rms velocity described by 

equation (A. 13) independent of the scatterer's location. Unfortvmately, the estimate is of 

Uttle use in the absence of associated depth control. As regards interval velocities, recall 

that the diffraction pattern for an arbitrary scatterer has local slope dt /dX = 2pxCosa. 

Unlike the special case for in-plane diffraction events where cosa = 1, energy radiated 

from arbitrary scatterers via the same ray parameter cannot, in general, be identified on 

the basis of a unique local slope. Strictly speaJking, even though the factor cosa has less 

infiuence as px increases, the graphical method described above is appropriate only for in 

plane diffractions. Thus, in order to associate diffraction based velocity estimates with a 

corresponding depth or stratigraphic unit, we mvist either assume that scatterers reside 

in plane or determine their true locations. For this reason, an obvious means of deriving 

the location of a scatterer from its expression on two or more profiles is described below. 

Although the result is only approximate for stratified media, we shall discover that the 

error is related to velocity heterogeneity. First we return to the case of imiform velocity. 

Consider, once again, a point diffra^tor within a constant velocity mediiun as depicted 

in Figure A.l. Recall that our reference coordinate system was chosen such that the 

scatterer resides in the yz-plane. We foimd, on assuming coincident soiu:ce-receiver, that 

the observed diffraction pattern is described exactly by equation (A.4). Consequently, the 

velocity predicted by equations (A.5) and (A.6), is independent of the scatterer's location. 

Having emphasized this, let us examine the significance of the constant to in equation 

(A.4). 

For a given event, to = 2r/V is the minimiun arrival time for scattered energy de­

tected by a coincident source-receiver. Recall that for a point scatterer at ( 0 , Y D , Z D ) , 

r = (YD^ + ZD^)^ '^ is the length of a line segment joining the scatterer and the origin. 

It is importsoit to appreciate that the diffraction event observed for this scatterer is not 

imique. The very same diffraction pattern would result for any scattering source located 

at (0,y,z) satisfying y^ -f- z^ = r^ = YD^ + ZD^. That is, for any scatterer residing on a 
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semicircle of radius r from the origin in the yz-plane. It follows that upon identifying 

events having a common source on two or more optimum offset profiles, the scattering 

source may be located identically. Profiles need not be parallel but this aids in identifying 

common events since their apexes must occur at the same traverse position. 

(0,0,0) (O.YD.O) (0 ,Y,0) 

(0,0,ZD) • 

Figure A.4. Location of point scatterer in uniform medium from two optimum offset profiles 
parallel to the x-axis at y=0 and y=Y. Scatterer's position (O.YD.ZD) is indicated by intersection 
of circular wavefronts having radii ry=o and ry=Y- Dashed curves are a qualitative suggestion of 
uncertainty. 

The strategy is illustrated in Figure A.4 for a profile acquired along the x-aods (y=0) and 

a second parallel profile at y=Y. Assuming common diffraction events have been identified 

on both records and velocity estimates subsequently obtained, arcs of radii ry=o = V'to,o/2 

and Ty—Y = Vto,Y/2 are constructed from respective centers, y=0 and y=Y. The scatterer 

is located at the intersection of the resulting arcs. 

Prior to examining the analogous scenario for a true stratified media, it is again useful 

to consider the hypothetical case of straight rays in a uniform medium having the effective 

average velocity. Under this assumption equation (A.4) continues to describe the resulting 

diffraction pattern if only we replace the constant velocity, V, by the average velocity 

defined by equation (A.7). Using average velocity estimates from events observed for y=0 

and y=Y, we could proceed as described above. Intersection of the residting arcs would 
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once again imply the scatterer's location as illustrated in Figvu-e A.5. 

(0,0,0) 

{0.0,ZD) • 

(O.YD.O) (O.Y.O) 

Figure A.5. Location of point scatterer in stratified medium assuming straight rays. Intersection 
of circular wavefronts based on average velocity estimates coincides with that of "str:ught ray 
wavefronts" at the scatterer's location. 

We have also depicted what we shall call "straight ray wavefronts" for to,o and to,Y' These 

are just the loci of endpoints for straight rays that leave a given source at arbitrary take-off 

angles and are extended at the appropriate layer velocities for half the corresponding apex 

time. We observe that the intersection of these so called wavefronts said, consequently, 

the scatterer's true location coincides with that of the experimentally determined arcs. 

In other words, H the straight ray assvraiption were valid, our simple strategy would also 

properly locate scatterers within stratified media. 

We turn now to the actual situation for a horizontally layered section. Plecall that the 

observed diffraction event is really a record of transit time for scattered energy that takes 

the path of least time to and from the scatterer as a function of X. Here, equation (A.4) 

approximately describes the actual event on replacing the constant velocity, V, by Dix's rms 

velocity or what amoimts to equation (A.13) evaluated for p^ = 0. In practice, however, 

equation (A.6) yields the generalized rms velocity for some non-zero Snell parameter. 

Consequently, for the purpose of locating the scatterer's location in the yz-plane, this 



174— AvTtndix A: DIFFRACTION-BASED VELOCITY ANALYSIS 

estimate should be obtained for X as small as possible since V JIJ18 (px) increases with X. 

Practically speaking, however, caution is advised since local slope estimates are obviously 

subject to greater error as X decreases. Having issued this warning, let us suppose for the 

time being that we are able to estimate the appropriate rms velocities at X=0 for the pair 

of diffraction events considered in the foregoing examples. Arcs having the appropriate 

radii are subsequently constructed as illustrated in Figure A.6. 

(0,0,0) 

( 0 , 0 , Z D ) • 

(0,YD.O) (Q,Y.0) 

- f 

Figure A.6. Approximate location of scatterer in stratified medium respecting Snell's law. In­
tersection of circular wavefronts based on rms velocity estimates fails to coincide with that of true 
wavefronts at the scatterer's location. 

We have also displayed the true wavefronts for to,o and to.y. Like the hypothetical 

straight ray wavefronts in Figure A.5 intersection of these wavefronts marks the actual 

location of the scatterer. But, in contrast with the previous examples, intersection of 

the experimentally derived arcs only approximately locates the scatterer. To provide a 

sense of scale, the model peurameters resulting in Figures A.5 and A.6 are as follows: 

Y D = 60.0 m, ZD = 50.0 m, zi = 10.0 m, vi = 750.0 m/s,Z2 = 20.0 m,V2 = 1500.0 m/s , 

Z3 = ZD — (zi + Z2) = 20.0 m, V3 = 2500.0 m/s . The predicted location is Y D = 65.1 m, 

Z D = 62.1m. 

The error is related to the difference between rms and average velocities. A measure 
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of this difference can be expressed as 

n n n / o >> 
Zi ( V - V k V j ) V-^ Zk Y ^ Zj y ^ Zj {Vj' - VkVjJ 

' ' a" „ ^Y^ Zi 

i=l •' 

where the Snell parameter, px, is, in general, different for profiles at y=0 and y=Y. Recall­

ing that rms velocity always exceeds the corresponding average velocity, we recognize that 

this quantity must be strictly positive. In other words, neglecting other sources of error, 

the predicted depth for a given scatterer will always exceed the true value. Moreover, 

the sign of the corresponding error in YD depends on the relative magnitude of rysso and 

ry=Y- In particular, for ry=o = ry=Y, the error is zero. Although, in practice, a quantita­

tive assessment of these errors will be difficult at best, there is an important qualitative 

relationship between the accuracy that can be expected and the velocity structiire of the 

subsurface. For px = 0, equation (A.19) can be re-expressed as 

Al-Chalabi (1974) used the term heterogeneity factor to describe this quantity, g(0), 

since it characterizes the velocity heterogeneity of the subsurface. Where stratification 

is characterized by sparse but large velocity contrasts, the heterogeneity fa<;tor and more 

generally equation (A.19) will have large values. Consequently, we find that the uncer­

tainty in our method for locating a scatterer is directly related to velocity heterogene­

ity. In particular, for the model parameters cited above, the heterogeneity factor has 

a value of g(0)=0.2133. For comparison, the same model with weaker velocity strati­

fication (vi = 750.0 m/s , V2 = 1000.0 m/s, V3 = 1250.0 m/s) has a heterogeneity fsictor of 

g(0)=0.0360. In this case, the location procedure yields Y D = 61.3 m, ZD = 52.7 m. The 

improvement suggests that in many situations, particidarly where diffractions have their 

origin within unconsolidated overburden, the procedure described here can yield an accu­

rate location and consequently reliable depth control for the associated velocity estimate. 
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Before proceeding, we return briefly to the assvmiption that velocity estimates could 

be obtained, using equation (A.6) at X=0- As cautioned above, this cannot be achieved in 

practice and, consequently, the scatterers predicted location is subject to additional error. 

One means of reducing this added error is to obtain two or more velocity estimates for a 

given event at acceptable values of X and perform an appropriate extrapolation for the 

corresponding Vrins(Px=o)- We shall return to this issue in following sections. 

A.5 Effect of Non - Zero Offset; 

The foregoing discussion and analysis of velocities from diffractions has assumed that 

source and receiver are coincident. Although one might expect that this £issumption is 

warranted in interpreting ground penetrating radar data, that it is also appropriate for 

shallow seismic data is less evident. Let us now examine the effect of non-zero optimum 

offset on measured transit time as a function of midpoint position and the resvdting influ­

ence on velocity estimates yielded by equation (A.6). Referring again to Figure 1, consider 

a point scatterer within a imiform velocity medivun at a distance r = ( Y D + ZD )^'^ from 

the origin. Recall that equation (A.3) describes the two-way transit time at midpoint 

location XM = (XR + Xs)/2 as measured by a source-receiver pair located respectively at 

(Xs, 0,0) and ( X R , 0,0) and separated by an optimum offset Ax = X R — Xs- As this offset 

approaches zero, the transit time approaches that given by equation (A.4) and it is from 

this relation that equations (A.5) and (A.6) derive. 

In Figure A.7a, we present a set of characteristic curves that specify the difference 

between zero offset and non-zero offset transit times, At, as a function of Xji/r for Ax/r 

ranging from 0.1 to 50.0. Notice that the transit time difference is normalized by the normal 

incidence transit time to = 2r/V and that the vertical axis is displayed in logarithmic 

format. These cm-ves are symmetric about Xj^/r = 0 and quantify the so called Cheop's 

pyramid effect described by Claerbout (1985). The effect is especially evident for large 

values of Ax/r where relatively stable plateaus near XU/T = 0 reflect the severely truncated 

apexes of the corresponding diffraction event for | X M / A X | < 1/2. In absolute terms, we 
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observe that the deviation between zero offset and non-zero oflEset transit times at X M / I = 0 

ranges from approximately 0.1 % of normal incidence time for Ax/r = 0.1 to nearly fifty 

times normal incidence time for Ax/r = 50.0. For Ax/r < 5.0, however, this error decreases 

rapidly as Xjn/r increases. 
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Figure A.7. Effect of non-zero optimum offset for uniform media, (a) Normalized transit time er­
ror At = (t(Ax ?̂  0) - t(Ax = 0))/to(Ax = 0). (b) Corresponding normalized velocity error AV = 
(Vet. - Vtrue)/Vtrue (bold curves display criteria related to expected error limits). Transit time and 
velocity errors are displayed versus midpoint position scaled by distance from origin to scatterer. 
Curves are depicted for various ratios of offset to distance. 

Of course, these departures from the hyperbolic nattue of scattering events also influence 

velocity estimates predicted by equation (A.6) since this expression involves the local slope 

of the diffraction pattern. This influence is characterized by the corresponding curves 

displayed in Figure A.7b. Here the deviation of the predicted velocity from the true value, 

AV, is charted as a function of XM/r for the same range of Ax/r. In this case the deviation 

is normalized by the true velocity. Not siuT)risingly, the gross character of these curves 

resembles those for the corresponding transit time disparities but, in general, the relative 
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error in predicted velocities is somewhat less and decreases more rapidly as Ax/ r increases. 

FVom a practical perspective, these characteristic curves indicate that the error introduced 

by non-zero optimum offset is not prohibitively large except where Ax/r is very large. 

Otherwise, so long as we apply equation (A.6) at a reasonable distance from the apex of 

a diffraction event, the resulting error is quite acceptable. As a rule of thiunb, estimates 

should not be made for |X/Ax| < 1/2 and preferably for |X/Ax| > 2, Respecting this 

constraint, the error in predicted velocities resulting from non-zero optimum offset never 

exceeds 1.0%. An intermediate condition (X/Ax| > 1 also limits error to 1.0% except 

over the range 0.25 < Ax/r < 5.0 where maximum error approaches 5.0 %. Unfortunately, 

this is precisely the range most frequently encotmtered in shallow seismology. Curves 

illustrating these criteria axe displayed in Figure A.7b. 

Finally, computational analysis indicates that inflation of velocity estimates resulting 

for non-zero optimum offset increases with velocity heterogeneity. In other words, Figure 

A.7b should be viewed as characterizing the limiting condition for g(0)=0.0. Let us return, 

for example, to the situation considered in connection with Figinres A.4, A.5 and A.6. 

If we assume that vi = V2 = V3 and an optimum offset of A..0 m, Figure A.7b predicts 

that the velocity estimate yielded by equation (A.6) incorporates a maximum error of 

AV/V « 0.05 due to offset. In comparison, the velocity model used to generate Figures 

A.and 6 (vi = 750.0 m/s, V2 = 1500.0 m/s, V3 = 2500.0 m/s) has a heterogeneity factor of 

g(0)=0.2133 and yields a computed error of AVrnig/Vrnw(px=o) ^ 0.085. In turn, the 

more weakly stratified model (vi = 750.0 m/s , V2 = 1000.0 m/s, V3 = 1250.0 m/s) , having a 

heterogeneity factor of g(0)=0.0360, results in an intermediate error of AVrin8/Vrins(Px=o) 

« 0.065. We qualify these findings by stating that for all cases examined, the influence of 

velocity heterogeneity diminishes rapidly as XU/T increases. In particular, for the cases 

cited above, the departure of observed error from that predicted by Figure A.7b becomes 

practically negligible by X M / I = 2.0. Bearing this in mind, we re-emphasize that the effect 

of non-zero offset is not the only consideration restricting velocity estimates near X=0. As 

alluded to earher, elevated imcertainty in the measurement of local event slope, dt/dX, in 
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the region about X=0 imposes an additional limitation. 

A.6 Concluding Discussion; 

In closing, we present a purely demonstrative example to illustrate the mechanics of 

the method. Figure A.8 is a portion of an optimum offset section (BB-900) acquired by 

the Geological Survey of Canada on the Fraser River delta, British Coliunbia (Pullaix et 

al., 1989). The format is the same as for Figure A.2a with the origin located directly over 

the apex of the analyzed scattering event at approximately 67.5 ms. The optimiun oSiset 

was 24.0 m and the trace interval is 3.0 m. 
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Figure A.8. Portion of optimum oflset profile acquired on the lYaser River delta, British Columbia. 
Tangents to the diffraction pattern at circled points have slopes (dt/dx)i, (dt/dx)3 and (dt/dx)3. 

Local tangents to the diffretction pattern zire estabUshed at distances of Xi = 45.0 m, 
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X2 = 60.0 m and X3 = 75.0 m from the origin. These tangents have measured slopes of 

(dt/dx)i = 0.595 ms/m, (dt/dx)2 = 0.673 ms/m and (dt/dx)3 = 0.733 ms/m. The respec­

tive two-way transit times axe t i = 81.9 ms, t2 = 91.1ms and ta = 100.8 ms. Using these 

values, equation (A.6) yields corresponding rms velocities of approximately Vi = 1922 m/s, 

V2 = 1979 m/s and V3 = 2015 m/s . That these estimates increase with distance from the 

origin is consistent with ovir analysis of stratified media and, consequently, we view these 

estimates as generalized rms velocities defined by equation (A.13). Moreover, as we have 

only marginally violated the restriction |X/Ax| > 2 and there is no seismic evidence for 

strong velocity heterogeneity, these estimates should be accurate to within about 1 % of the 

true rms velocities. Of coiirse, the presence of imcertainties in the measured values cited 

above produces additional error. In the present case we estimate that this additional error 

is less than 5 % but may approach 10 %, depending on the quality of data. An accompany­

ing depth scale supplied by Pullan et al. and based on a series of borehole velocity surveys, 

places the apex of the diffraction event at about 53.0 m and implies an average velocity of 

approximately 1570 m/s to this depth. To furnish a comparison with oxu: findings, we per­

form a simple extrapolation to project the velocity at X=0 from our estimates at X=45.0, 

60.0 and 75.0 metres. Neglecting measurement errors, least squares linear extrapolation 

yields an estimate of 1786 m/s. Assuming an in-plane scatterer (px = 0 for X = 0), the dif­

ference between this estimate and the average velocity determined by Pullan et al. implies 

a heterogeneity faxitor of approximately g(0)=0.29. However, since there is no apparent 

evidence for significant velocity heterogeneity, this value suggests that either the average 

velocity or the rms velocity is in error. 

Nimierous sources of error exist. For example, the average velocity structvire used by 

Pvdlem et al. to generate the accompanying depth scale ignores the existence of lateral 

velocity variations and this suggests the utility of diffraction based estimates for local 

velocity control. Inconsistent velocities can also arise from diffractions occurring out of 

plane but, ordinarily, these events imply a velocity and, thus, a heterogeneity factor that is 

too low rather than high. In addition, modelling indicates that linear extrapolations yield 
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results that are almost invariably too high. We have found that the consistency between 

predicted rms and average velocities can be improved in many cases by a more sophisticated 

extrapolation. These approaches can also backfire, however, primarily due to the effect 

of non-zero optimum offset. Finally, it is conceivable that the observed discrepancy arises 

purely from imcertainties in transit time and local slope meastirements. 

In addition to illustrating the method we have described for diffraction based velocity 

estimation, the foregoing example also suggests limitations on the interpretation of velocity 

estimates derived from a single diffraction. More substantial conclusions and improved 

confidence can be obtained by analyzing axlditional scattering events or multiple profiles. 



Appendix B 

ARRAY RESPONSES FOR PLANE AND 
SPHERICAL INCIDENCE 

B.l. Introduction; 

The filtering properties of receiver arrays are well tmderstood and typically character­

ized assuming plane wave incidence over the length of the array (e.g., Parr and Mayne 

(1955); Holzman (1963); Dobrin (1976). As the scale of seismic application decreases, 

however, it is useful to review the basis of this assumption and assess both its theoret­

ical and practical limitations. To this end, the apparent surface wavefield arising for a 

monochromatic spherical wave is compared with that predicted for plane wave incidence. 

Corresponding apparent wavenumber distributions faciHtate an initial assessment of the 

plane wave approximation. Subsequently, we examine the infiuence of systematic devi­

ations between these apparent wavefields on the output of a line array of equispaced, 

imiformly effective receivers. 

Viewed as a spatial filter, the array's response is completely determined by the number 

of elements, their relative weighting and spatial distribution. The relative attenuation of 

plane and spherically incident waves depends on the spectral composition of associated 

apparent waveforms within the aperture of the axray. Alternatively, array attenuation 

properties can be related to time dependent variability of these apparent waveforms and, 

consequently, it is also useful to characterize the array's time domain response. In addi­

tion to the distribution and weighting of individual elements, the time domain impvdse 

response incorporates wavefront geometry and spatial amplitude dependence. As a restdt, 

distinct responses arise in connection with plane and spherical incidence. Examination of 

array filters in both spatial and temporal contexts reveals that the actual attenuation of a 

spherical wave can deviate appreciably from that predicted assuming plane incidence. 

Although the following analysis is illustrated on a scale reflecting archeieological appli­

cation, the findings are of a general natvire and may be appropriately scaled as necessary. 

-182-
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B.2 Apparent Wavefields: 

Consider a monochromatic spherical wave of the form 

V's(x,y,z,t) = — ^ H 
47rr 

t - - ] cos[27rk(r-vt)] (B.l) 

emanating from an image source located at XgjysjZg within a homogeneous, isotropic 

halfspace having velocity v. Here, Uo = 47ruo^ denotes the stirface displacement of a 

point sovirce having initial outward radial displax:ement UQ, k is the linear wavenumber, 

r = [(x - Xg)̂  + (y - ys)^ + (z - Zg)^]^/^ is the distance from the source to an arbitrary 

location x, y, z and 
f 0, r < 0; 

H [ r ] = { 1/2, r = 0; 

U, r>0 
is the Heaviside step function. Spatial coordinates are specified in relation to a rectangular 

coordinate system having its origin at the surface and z increasing with depth as illvistrated 

in Figiire B.l. 

(Xm.ym.O) 

Figure B.l. Rectangular coordinate system for analysis of plane and spherical wavefronts emanat­
ing from an image source at Xa,yi,z,. Propagation vector n is normal to plane wavefronts incident 
on the surface at Xn,,ym and has direction angles a,0,y. 
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Neglecting free surface interaction and given that sufficient time has elapsed for incident 

energy to extend over the region of interest, we take H [t — r/v] = 1, obtaining 

V's (x, y) = 7 - ^ cos [(f>s (x, y)] (B.2) 

for the instantaneous apparent wavefield detected by omnidirectional sensors on the surface 

(z=0). The associated phase function is 

^s(x,y) = 27rk( r -v t ) , (B.3) 

where r = [(x — Xs)̂  + (y — ys)^ + Zg^]^'^. Neglecting the minor influence of spherical di­

vergence, the local apparent waveniunber in the x-direction follows from equation (B.3) 

as 

£.,(x.y) = ^ ^ ^ = ^(x -x . ) . (B.4) 

A similar expression arises for the local apparent waveniunber in the y-direction 

The dissociated plane wave system incident at some point Xm, ym on the surface is ^vea 

by 

rcos^ 
V'p(x,y,z,t) = - ^ H 

47r r cos 6 
t - cos {27rk [/(x - Xg) + m(y - yg) + n(z - Zg) - vt]}, 

(B.6| 

where 

/ = cosa = (n • Ux)/|n| = (xm - X8)/|n| 

m = cos/? = (n • Uy)/|n| = (ym - y 8 ) / | n | 

n = C0S7 = (n • Uz)/|n| = -Zs/ |n | 

are direction cosines for the propagation direction vector n joining the soturce with the 

point of incidence as depicted in Figure 1 with Ux, Uy and Ug denoting vmit vectors in the 

positive X, y and z directions. Note that as a local approximation to the spherical wave, 

we take plane wave amplitude and onset to depend on normal distance from the source 
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TCOS0 = (r • n) / |n | , where 9 is the angle between the propagation direction vector and a 

position vector r, locating an arbitrary point x, y, z. This amplitude dependence is a 

logical modification to the conventional definition of plane waves, providing a reasonable 

approximation to the effect of spherical divergence in the vicinity of incidence while re­

taining plane wave geometry. Where it is necessary to differentiate between this form and 

the conventional constant amplitude plane wave, the former is referred to as a modified 

plane wave. 

Assuming, again, that sufficient time has elapsed to set H [t — r cos 6/v] = 1, the ia-

stantaneous apparent surface wavefield in the vicinity of incidence is 

^p (̂ ' ̂ ^ ^ i^^Le "^^ f̂ p ̂ ""^ ŷ '̂ ^^'^^ 

where 

^p (x, y) = 27rk [/(x - Xg) + m(y - yg) - nzg - vt] (B.8) 

is the associated phase function. Ignoring the minor influence of gradual amplitude vaxiar 

tion, the corresponding apparent local wavenumber distributions are 

tp ,x( . ,y) = - L ^ ^ = k c o , a (B.9) 

and 

K,y (x.y) = ^ ^ ^ ^ = kcos;9. (B.10) 

As an example, Figiure B.2 displays apparent surface wavefields computed using equa­

tions (B.2) and (B.7) for spherical and plane waves incident at a point x^ = 1.7 m, yin= 0.0 

m on the surface. Here, the source is located beneath the origin at Xg = 0.0 m, yg = 0.0 m, 

Zg = 2.0 m and the incident wavenumber is k=2.0 m~^, implying a wavelength of 0.5 m. 

A measure of the difference between apparent wavefields for plane and spherical incidence 

is obtained by comparing the corresponding apparent waveniunber distributions defined 

by equations (B.4), (B.5), (B.9) and (B.10). Local apparent wavenumbers arising for the 

spherically incident wave are depicted in Figure B.3 and exhibit significant departures from 

the constant values of kp,, « 1.3 m~^ and kp,y = 0.0 m~^ for plane wave incidence. In the 
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(UJ)A 

(LU)A 

Figure B.2. (a) Apparent surface wavefields arising for a monochromatic spherical wave having its 
image source at depth z. = 2.0 m beneath the origin, (b) Associated apparent wavefield assuming 
modified plane incidence at Xn, = 1.7m,yn, = 0.0 m as indicated by solid circles. Incident waves 
have A = 0.5 m. 
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Figure B.3. Local apparent wavenumber distributions in the (a) x-direction and (b) y-direction 
associated with the apparent surfacewavefield in Fi^re 2a. Corresponding apparent wavenumbers 
for plane incidence are respectively kp,x « 1.3 and kp,y = 0.0 m~^. Incident waves have k = 1/A = 
2.0 m-^ 
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following section, a connection is made between the nature of these deviations and the 

attenuation properties of spatial arrays. 

B.3 Spatial Array Filters: 

In general, the spatial impulse response of a two dimensional receiver array can be 

described as 
1 ^ 

where N is the nimiber of elements, Xj, yj axe the coordinates of the jth element, Wj is an 

associated weighting coefficient and 6 (x, y) is the two dimensional Dirax; delta ftmction. 

The weighting coefficient incorporates fax t̂ors including the sensitivity, directionality, cou­

pling and electrical connection of the jth receiver. If coordinates Xm, ym specify the array 

midpoint, its instantaneous output is s(xni,ym)5 where 

s (x, y) = a (x, y) * * V (x, y). (B.12) 

Here, xj){x^y) represents the instantaneous surface wavefield as described by equations 

(B.2) and (B.7) and ** denotes two dimensional convolution. Alternatively, the filtering 

process can be described as 

S (k^, ky) = A (kx, ky) * (kx, ky ) (B.13) 

where A(kx,ky) is the array's transfer ftmction defined by 

/

+ 0 0 /«+00 

/ a(x,y)e-^2'(l'«''+''yy)dxdy (B.14) 

and ^(kx,ky) is the wavenumber domain representation of ^ ( x , y ) given by its two di­

mensional Fourier transform with respect to spatial variables x and y. The array output 

s(xm>ym) is obtained from the inverse Fourier transform 

/ S (kx, ky) ̂ ^^ i^'^+^^y) dkx dky. (B.15) 
•OO J—oo 

For sake of illustration, further treatment assvmies a line array deployed along the x-axis, 

having an odd number of equispaced elements and unit weighting. 
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On invoking the foregoing conditions, the array's spatial impvdse response can be writ­

ten as 

(N-l ) /2 

^W = 4 E Mx-JAx), (B.16) 
j = - ( N - l ) / 2 

where Ax is a constant, denoting the distance between adjacent receivers. The associated 

transfer function is 

A(kx) = |A(kO|e 
N 

(N- l ) /2 

j = - ( N - l ) / 2 

,-i25rkxjAx (B.17) 

where 

IA(kx)| = ^ 
sin (NTrkx Ax) 
sin (Trkx Ax) 

and 
± n27r, sin (NTrkxAx)/sin (irkxAx) > 0; 
± n27r, sin (NTrkxAx)/sin (TrkxAx) < 0 e(..)={:^ 

are, respectively, the corresponding ampHtude and phase spectra depicted in Figure B.4 

for the case N=7. 
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Figure B.4. (a) Amplitude and (b) phase spectra for a linear receiver array having seven equispaced 
and unifornJy effective elements. The ordinate is apparent wavenumber scaled by the detector 
interval Ax. Dashed spectrum indicates attenuation on a decibel scale truncated at -40.0 dB. The 
phase angle is measured in radians. 
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Note that the arbitrary constant ±n27r allows some latitude in displaying an acceptable 

phase spectnun. In addition to being an odd function, as required, the spectrum in Figure 

B.4 is physically plausible as we shall find in a later section. It is also important to note that 

the receiver interval imposes a Nyquist wavenumber of ICN = 1/(2Ax) so that ICNAX = 0.5. 

Wavenmnbers exceeding ICN are spatially aliased in the process of filtering. 

B.4 Attenuat ion of Apparent Waveforms; 

It is evident from the foregoing analysis that the relative attenuation of plane and 

spherically incident waves depends on the apparent wavenumber compositions of the re­

spective surface wavefields. Consider, for example, apparent waveforms arising along the 

X-axis in Figure B.2. These waveforms axe depicted in Figure B.5 together with a cross-

section through the earth model illustrating plane and spherical wavefront systems. 

Figure B.5. Apparent waveforms arising along the x-axis in Figures 2a (solid) and 2b (dashed) 
with crossectioD through the associated earth model depicting plane (dashed) and spherical (solid) 
wavefront systems for incidence at x=1.7 m. Reflected wave&onts emanate from an image source 
at z=2.0 m associated with a point source at the origin and ideal reflection from a plane horizontal 
interface at z=1.0 m. 
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It can be seen from this diagram that, despite gradual amplitude variation, modified plane 

wave incidence yields a spatial waveform having a practically constant apparent wavelength 

V x = - ^ (B.18) 
^ cos a 

consistent with equation (B.9), where A = 1/k is the wavelength of the incident wave. In 

contrast, spherical incidence yields a spatial waveform having variable apparent wavelength 

r /7 \ 2 i l / 2 

V ( X ) = A [ I + ( ^ ) ] (B.19) 
as predicted by equation (B.4) for Xg = 0. Consequently, a finite length array deployed 

along the x-axis with midpoint at Xm samples a spatial waveform comprised by a continu­

ous band of apparent wavenumbers rather than the single, imique wavenumber implied by 

plane incidence. Notice that on setting x = Xm, equation (B.19) reduces to equation (B.18) 

and, thus, there is exact agreement between the corresponding spatial waveforms at the 

point of incidence as illustrated by Figure B.5. Relative attenuation of plane and spheri­

cally incident waves depends on the nature of the departure of As,x (x) from Ap,x = Aĝx (xm) 

over the apertvire of the array. If the departure is insignificant, it is appropriate to assume 

plane wave incidence and the corresponding attenuation may be read directly from the 

array's amplitude spectrum for Ap,x- If, however, local apparent wavenumbers predicted 

by equation (B.19) differ significantly from Ap,x, relative attenuation depends on the dis­

tribution of Aĝx (x) about Ap,x as well as the array's response characteristics. 

Figure B.5 illustrates that A8,x (x) is less than Ap,x for x > Xm and exceeds Ap̂ x for 

X < Xm. It is also evident that the difference |A8̂ x(xm — e) — Ap,x| is greater than |A8,x(xm + ^) 

—Ap.xl where e is a positive constant and Xm ± e > 0. These observations are extended in 

Figure B.6 by computing the average apparent wavenumber, kĝ x (xm)) over a range of fixed 

length windows as a function of the midpoint Xm. The mean value theorem for integrals 

yields 

kg,x (xm, y) = ;77 / k8,x (x, y) dx, (B.20) 

where S = [(N — 1) Ax]/2 is half the apertvire length of an equispaced linear array having 

N elements separated by an interval Ax. Substituting equation (B.4) with Xg = 0 and 
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evaluating, yields the following expression for average apparent wavenumber along the 

X-axis 

'̂ s.x (p^m) — 26 [ ( -^^) -0 -^^) ]• (B 21) 

Finally, on expanding the square roots in the previous expression and retaining terms to 

second order in 6, we obtain the approximate relation 

kg,x (.Xm j ^ kg|X (Xjn) 
kXm^^ 

2(Xni2+Zs2)3/2 [ X^^ + Z,^ \ 
Xm (B.22) 

Although, strictly spealcing, this approximation is only valid for 6 « (xm^ + Zg^)^'^, it 

provides useful insight on the relation between local and average apparent wavenimibers. 

As expected, lim^-^o kg,x (xm) = kg,x (xm)- More significantly, since the second term in 

equation (B.22) is positive valued, the magnitude of the average wavenumber impinging 

on a finite length array is always less than that predicted for plane incidence. 
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Figure B.6. (a) Comparison between local apparent wavenumber kp,x = ks,x (xm) at the array 
midpoint and average apparent wavenumber ka,x (xm) for the solid waveform displayed in Fig­
ure 5. Averages are computed for a range of half aperture values 6 = 0.0-1.5 m. Note that 
kp,x = â,x (xm) = ki,x (xm) with 6 = 0.0 m. (b) Difference between local and average apparent 
wavenumbers as a function of array midpoint location. 
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This conclusion is illustrated in Figure B.6 where the average apparent waventunber com­

puted using equation (B.21) is displayed, together with the local plane-wave value {6 = 0), 

as fimctions of Xm for fixed window lengths between 0.5 axxd 3.0 m. We observe that 

the difference ks,x (xm) — ^,x (xm)> displayed in Figure B.6, is in all cases positive. The 

approximate expression (B.22) yields nearly indistinguishable results for 6 < 1.0 m. 

Given the nominally low pass nature of receiver arrays, the foregoing conclusion sug­

gests that the actual attenuation of spherical waves is less than that predicted assimung 

plane incidence. As demonstrated in the previous section and illustrated in Figure B.4, 

however, the amplitude spectra of spatial filters are generally multi-lobed. Consequently, 

although the envelope of these lobes decreases monotonically as the wavenumber ap­

proaches Nyquist, the attenuation can be high pass in nature over a limited band. Strictly 

speaking, the array output at an arbitrary midpoint Xm depends on the full wavenumber 

spectrum comprising the waveform within the array's aperture. But, having issued these 

qualifications, a useful empirical connection can be made between the average apparent 

wavenumber given by equation (B.21) and the corresponding attenuation. 

In Figure B.7 we display filtered waveforms resulting on application of the spatial filter 

characterized in Figure B.4 to apparent waveforms arising at the surface for modified plane 

and spherical waves in Figure B.5. Results are also depicted for a conventional plane wave 

and array lengths are consistent with those in Figure B.6. For the case 6 = 0.25 m, the 

plane wave assiunption is evidently adequate as there is no appreciable difference between 

filtered waveforms. As array length increases, results for modified and conventional plane 

waves remain approximately concordant but significant deviations arise between these and 

the filtered waveform for spherical incidence. In particular, in the immediate vicinity of 

the origin, the attenuation of spherical waves can be severe in comparison with that pre­

dicted for plane incidence. Moreover, adjacent to this near source region, a zone develops 

wherein the attenuation of spherical waves is appreciably less than that predicted for plane 

incidence. Note that the presence of this region and its extent is directly related to the 

difference between kg,x (xm) and kg.̂  (xm) as charted in Figure B.6. Where the difference 
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between the average apparent wavenxunber and the corresponding value assiuned for plane 

incidence is large, the attenuation predicted assuming plane waves is too high. Beyond 

this region, ks,x (Xm) approaches kg.x (xm) asymptotically, resulting in increased correlation 

between the filtered waveforms. 
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Figure B.7. Filtered apparent waveforms assuming conventional plane (dotted), modified plane 
(dashed) and spherical (solid) incidence. Unfiltered waveforms Me depicted in Figure 5 for an 
array midpoint located at Xm = 1.7 m. Note that the apparent waveform arising for spherical 
wave incidence (solid) in Figure 5 remains independent of array midpoint while plane incidence 
waveform (dashed) varies locally. The filter's amplitude and phase spectra are displayed in Figure 
4 and 6 = 6Ax/2 ranges from 0.0 to 1.5 m. Shading highlights the expanding region associated 
with attenuation levels consistently overestimated assuming plane incidence. 

In addition, although attenuation generally increases as kĝ x (xm) approaches k for large 

Xm, spatial aliasing becomes dominant for Ax ss Ag.x (xm). While this effect is especially 

evident for 6 = 1.5 m in Figiu-e B.7, spatial aliasing occturs for S > 0.75 m. In particu­

lar, for S = 1.0 m, Ax « 0.333 so that the effective Nyquist wavenmnber is kN = 1.5 m~^ 

Consequently, according to Figure B.6 (^ = 0), plane waves are subject to spatial aliasing 

for Xm beyond about 2.25 m. Thus, for plane incidence at, say, Xm = 3 . 0 m , an appax-
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ent wavenimiber of kg,x (3.0) « 1.66m~^ is aliased as approximately 1.34 m~^. Of cotirse, 

spherical waves are also subject to spatial aliasing but, as suggested by the positive val­

ued difference between ks,x and kĝ x, the onset of aliasing occurs for Xm greater than that 

predicted for plane incidence and thereby, in general, has lesser effect at a given Xm- For 

example, with 6 = 1.0 m, aliasing occurs for spherical waves beyond approximately 2.4 m 

compared with 2.25 m cited above for plane waves. 

In the following section the foregoing conclusions axe substantiated by transforming 

the spatial array response to corresponding time domain representations for plane and 

spherical incidence. 

B.5 Time Domain Array Filters: 

The output of an array as a function of time can be written as the convolution 

s( t) = a( t ) * V(t) , (B.23) 

where a (t) is the local time domain impulse response of the array and ^ (t) is the time 

dependent wave fimction detected at the array midpoint. The equivalent frequency domain 

operation is 

S(f) = A( f )^ ( f ) , (B.24) 

where 

/

+00 

a ( t ) e - " ' ^*d t (B.25) 
•00 

is the array's transfer function and ^ (f) is the frequency domain representation of the 

wave function tj) (t). The array output is obtained by the inverse Fourier transform 

/

+00 

S(f)e'2'^^*df. (B.26) 
•00 

In particular, the time domziin equivalent of equation (B.16) can be written as 

(N-l)/2 

^(*) = N S a(j)^(t-tj), (B.27) 
J=-(N-l)/2 
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where N is the number of receiver elements and a (j) is an amplitude coeflBcient specifying 

the amplitude of the incident wave as detected by the jth receiver measured relative to 

amplitude at the array midpoint Xm. Similarly, tj is the effective time shift of the j th 

detector relative to transit time measured at the array midpoint and is associated with the 

offset jAx from the midpoint in equation (B.16). 

Asstuning plame incidence, the fixed interval Ax is related to a corresponding fixed 

time interval Atp via a constant apparent horizontal phase velocity Vp̂ x = f/kp,x? where 

f = kv is the frequency of incident waves. Substituting equation (B.9) with :^ = 0 yields 

Xm 

and, thus. 

Consequently, tj = jAtp in equation (B.27), yielding a time domain impulse response for 

plane incidence that has a form resembling the corresponding spatial response except for 

the relative amplitude coefiicient a (j). In fact, for a conventional plane wave, the relative 

amplitude coefficient is unity for all j . For spherical waves, on the other hand, the apparent 

velocity along the x-axis Vg,x = f/kg.x is not a constant but depends on x as 

,„W = l O ; l ^ . (B.30) 

As a result, the time increment associated with the fixed interval Ax depends on j and, 

thus, the time interval Atg (j) corresponding to a given offset j Ax is given by 

Atg(j) = i / . . / . . , . . dx 
I-Xm+JAX 

= i { [(x„ + jAx)» + z.']'" - [x„» + z.']'"} 

For spherical incidence, then, tj = Atg (j), yielding a time domain impulse response having 

a fundamentally different form than its spatial analogue. 
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On incorporating the appropriate relative amplitude coefficients for modified plane and 

spherical waves, 
Xjn "T Zg 

^ Xm^ + XmJ Ax + Zs^ ' 

and 

a8(j) = 
x„ .2+zs2 lV2 

(B.33) 
.(Xm+jAx)2+Z82 

respectively, the resvilting array transfer functions for modified plane and spherical inci­

dence are 
(N-l)/2 

Ap(f) = ^ E «pa)e-^'''^^*- (B.34) 
j=-(N-l)/2 

and 
(N-l)/2 

AB(f) = ^ E «a(J)e->2^^*-«). (B.35) 
j=-(N-l)/2 

The difference between these transfer functions is directly related to the departure of A,,, 

from Ap,x within the aperture of the array and, consequently, to the observed deviation 

between ks,x (xm) aiid kĝ x (xm) as discussed in the previotis section. Amplitude and phase 

spectra computed from the foregoing transfer functions for N=7, 5 = 1.0 m and Xm = 0.0, 

1.0, 2.0, 3.0, 5.0 and 15.0 m are displayed in Figiure B.8. Spectra are also depicted for 

conventional plane wave incidence as given by equation (B.34) with a (j) = 1. It is evident 

from these spectra that the filtered apparent waveforms depicted in Figure B.7 for ^ = 1.0 m 

reflect chjmges in the array's relative ampUtude and phase response for plane and spherical 

incidence as a function of Xm. Note that for Xm = 0.0 m, plane incidence implies an infinite 

horizontal phase velocity so that Atp = 0.0. Consequently, the amplitude spectra for plane 

incidence have imit amplitude over all frequencies, whereeis the corresponding spectrum for 

spherical incidence is less than unity at d.c. and decreases with frequency over the range 

depicted in Figure B.8. In particular for k = 2.0 m~^ and v = 300.0 m/s , f = B.O.Os"^ 

indicating a relative attenuation of approximately 7 dB. Spectra for Xm = 1.0 m are of 

special interest as this midpoint value resides within the zone identified in the previous 

section with attenuation levels that are overestimated imder a plane incidence assumption. 
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Figure B.8. Amplitude and phase spectra for time domain array responses, assuming conventional 
plane (dotted), modified plane (dashed) and spherical (solid) incidence. A constant wave speed of 
300.0 m/s is assumed, implying an incident wave frequency of 600 Hz. Spectra are computed with 
6 = 1.0 m for array midpoint location of Xm = 0.0,1.0,2.0, 3.0, 5.0 and 15.0 m. Amplitude spectra 
are displayed on a decibel scale arbitrarily truncated at -40.0 dB. Phase angles are measured in 
radisois. 
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Figure B.8 substantiates this finding and indicates that the spherical wave is attenuated 

by approximately 12 dB, compared with 24 dB and 26 dB for modified and conventional 

plane waves respectively. At Xm = 2.0 and 3.0 m, the spectra for spherical wave geome­

try progressively approach those predicted for plane incidence. Moreover, the amplitude 

spectra continue to corroborate the sense of relative attenuation observed in Figure B.7. 

Spectra are also displayed for Xni=5.0 m and 15.0 m to illustrate the continued convergence 

of associated array responses as the distance between the image sovirce and array midpoint 

becomes large compared with the array's aperture width. It is evident from Figiu:e B.8 

that the array's modified plane wave response is intermediate between those for spherical 

and conventional plane waves. More interestingly, it is apparent that the spherical wave 

response converges more rapidly toward the modified plane wave response than either of 

these approach the response for a conventional plane wave. This observation is best il­

lustrated by displaying the corresponding complex trajisfer functions in polar format as 

in Figure B.9. By nature, the imaginary part of the transfer function for conventional 

plane waves is identically zero and, consequently, corresponding phasor diagrams reside on 

the real axis. Concurrently, the real component takes on the frequency dependent value 

sin (N7rfAtp)/N sin (xfAtp). As this quantity changes sign, the corresponding phasor di­

agram passes through the origin and the associated phase spectrum in Figure B.8 jxunps 

by —TT radians. In fact, theoretically, these phase discontinuities can take on an arbitrary 

value 7r ± n27r radians but a constant decrement of TT radians is both physically plausible 

and consistent with phasor diagrams for modified plane and spherical waves. Note that 

the phase spectra displayed in Figure B.8 for modified plane and spherical waves have been 

corrected for meaningless wraps of 27r radians introduced computationally as the respective 

phasor diagrams cross the negative valued real axis. Convergence of the complex array 

response for spherical incidence to that for modified plane waves reflects the significajit 

influence of relative amplitude variation over the array's aperture. Despite the insight 

gained by treating the receiver array as a time domain filter, we should not lose sight of 

the fact that the array is physically deployed in the spatial domain and affects a discrete 
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Figure B.9. Polar diagrams characterizing the complex transfer functions associated with the 
corresponding amplitude and phase spectra in Figure 8 for conventional plane (dotted), modified 
plane (dashed) and spherical (solid) incidence. Real and imaginary components of a complex 
transfer function A (f) are denoted by Re {A (f)} and Im {A (f)} respectively. 

sampling of the spatial wavefield while responding continuously in time. Consequently, 

while an appropriate Nyqmst wavenimiber is associated with the spatial interval separating 

adjacent elements of the array, the time domain analogue is not a Nyquist frequency in 

the usual sense. Only, subsequently, on digitizing the array's analog output, does the 

possibility of temporal aliasing and, thus, a Nyquist frequency arise. Having made this 

distinction, however, it is useful to consider the time domain analogue of the Nyquist 

wavenumber associated with the spatial filter. We shall refer to this parameter as the 

pseudo-Nyquist frequency. 

For plane incidence, a pseudo-Nyquist frequency fu is associated with the Nyquist 

wavenmnber by 

fN.p (xm) = kN Vp,x (xn.) = ^ {x^J + z^^f^, (B.36) 
i-m 
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where Vp,x(xni) is the apparent plane wave velocity relating the constant spatial inter­

val Ax, separating adjacent detectors, with a constant temporal interval Atp. Using 

IcN = 1.5 m~^ from the previous section, effective pseudo-Nyquist frequencies for S — 1.0 m 

at Xm = 0.0, 1.0, 2.0 and 3.0 m are respectively oo, 1000, 640 and 540 s~^. Consequently, 

aliasing occurs only for the case Xm = 3.0 m where the incident wave frequency f = 600 s~* 

aliases at approximately 480 s"-'. More specifically, equation (B.36) confirms that the onset 

of aliasing occurs at approximately Xm = 2.25 m. 

For spherical incidence, the effective time interval between successive array elements 

is non-constant and, consequently, it is impossible to define a imique pseudo-Nyquist fre­

quency. Instead, in analogy with the average apparent wavenumber considered in the 

previous section, we introduce an average pseudo-Nyquist frequency 

f N,s (Xm) = kN Vs,x (x™) = ^ I [(Xnx + Sf -^ Z.^f'^ - \{x^ - Sf + Z.^f" 

where 
rXm-H* 1 r^ia+o 

V8,x(xin) = 2 ^ y _ V8.x(x)dx 

is the average apparent velocity as depicted in Figure B.IO. 

(B.37) 
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Figure B.IO. Average apparent velocity for plane (dashed) and spherical (solid) incidence. Aver­
ages are depicted for half apertures of J = 0.5,1.0 and 1.5 m. Note that the plane incidence value 
is equivalent to the average apparent sphericad wave velocity for 6 = 0.0 m. All curves approach 
infinity as x^ approaches S and are arbitrarily truncated at 5.0 km/s for purpose of illustration. 
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Computational comparison of equations (B.3B. and (B.37) suggests that, in general, the 

onset of aliasing occiu^ at a higher frequency than predicted for plane incidence. This 

is illustrated in Figure B.IO, where it is observed that Vĝ xCxm) always exceeds Vp^x(xm)' 

The average pseudo-Nyquist frequencies associated with these average apparent velocities 

are obtained by a constant scaling with the appropriate Nyquist wavenumber. Average 

appeirent velocities are displayed to facilitate a consistent comparison over a range of array 

apertures. Note that for —5 < Xm < ^ the argiunent of the logarithm in equation (B.37) 

is negative, causing the average pseudo-Nyquist frequency to be undefined. Physically, 

this result reflects inclusion of x=0, where limx-*o Vĝ x (x) = oo, within the apertiu-e of the 

array so that the average pseudo-Nyquist frequency over this region must also be infinite. 

B.6 Concluding Discussion; 

The foregoing analysis identifies theoretical limitations on the plane wave assumption 

normally invoked on characterizing the attenuation properties of receiver arrays. While 

the array's spatial response is uniquely defined by the nimaber of elements, their rela­

tive weighting and spatial distribution, equivalent time domain representations necessarily 

incorporate the geometry and spatial amplitude dependence of incident wavefronts. Conse­

quently, as demonstrated above, distinct time domain impulse responses arise in connection 

with plane £ind spherical incidence. Moreover, we find that this distinction is manifest spa­

tially as a systematic difference between the spectral compositions of associated waveforms 

within the array's apertiu-e. Although both perspectives reveal that attenuation predicted 

assuming plane incidence can deviate appreciably from that experienced by a spherical 

wave, the practical significance of these deviations is difficult to appraise. 

Newman and Mahoney (1973) examined the influence of random implementation er­

rors on the nominal response of uniform, linear tapered and optimally weighted line arrays. 

Practical uncertainty and error in the effectiveness, position and coupling of individual ar­

ray elements was modeled by introducing random perturbations of 10 percent standard de-
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viation about their nominal spatial distribution and weighting. While resulting deviations 

from the nominal response were found to be insignificant within the passband, perturba­

tions had an appreciable effect beyond the first notch in the amplitude response, imposing 

a practical limitation on the rejection capabilities of the array. Newman and Mahoney also 

acknowledged errors in design assumptions, including the simplifying assumption of plane 

wave incidence, and suggested that such errors could be treated as equivalent implementa­

tion errors. For example, the response of a uniform line array to spherically incident waves 

can be simulated, while retaining the plane wave assvunption, by redistributing individual 

elements on the appropriate arc of radius in the x-z plane and assigning variable weighting 

coefiicients to account for spherical divergence. Alternatively, by determining the magni­

tude of required perturbations, we can assess the relative significance of deviations from 

the plane wave assumption compared with typical implementation errors. 

o 
• • • • 

(0 
• • • • 

> 

Q 
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> 
*^ 
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Figure B.ll. Relative deviation of amplitude coefficient a, (j), and effective time lag At, (j) from 
(a) conventional plane wave values: A = (a. (j) - 1), O = [(At, (j)/JAtp) - 1] and (b) modified 
plane wave values: D = [(a, (j)/ap (j)) - 1], Q = [(At, (j)/jAtp) - 1]. Solid curves connect discrete 
values for a seven element array deployed with midpoints at 0.0, 1.0 2.0 and 3.0 m. The image 
source is located x=0.0 m, z=2.0 m. 

In Figure B.lla, the relative deviations of amplitude coefficient, as(j) and the effective 

time shift Atg (j) from the respective values of unity and j Atp for conventional plane wave 
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incidence are displayed as a function of element position for array midpoints of 0.0,1.0, 2.0 

and 3.0 m. Two important observations are made. First, the maximum effective errors are 

significantly larger than the 10 percent perturbations asstuned by Newman and Mahoney 

for typical implementation errors, indicating that for small scale, near source applications 

implementation errors have a relatively minor influence compared with departiu:es from 

design assiunptions. Secondly, while implementation errors become dominant with increas­

ing distance from the source, it is interesting to note that effective time lag errors diminish 

rapidly compared with relative amplitude deviations. In other words, although spherical 

wavefronts may be reasonably approximated as locally plane at a given range from the 

soiirce, spherical divergence can remain a significant factor. Note that this observation 

and the comparatively minor deviation between relative amplitude coefficients ag (j) and 

ap(j), illustrated in Figure B. l lb , are consistent with the relatively rapid convergence of 

time domain array responses for spherical and modified plane waves in the previous sec­

tion. It is emphasized, however, that despite a significant reduction in relative ampUtude 

deviation, relative time lag errors are identical in Figures B. l la and B. l lb , reflecting a 

fundamental limitation of any plane wavefront approximation. 

The foregoing observations can be generalized for an arbitrary midpoint offset, image 

source depth emd aperture width in terms of two non-negative, dimensionless parameters 

<^A = ^/xm and (Xg = Zg/xm. Defining relative amplitude deviations as 

Cap = as (j) - 1 (B.38) 

and 

,„„ = MJhlfpa) (B.39) 
"p (j) 

for plane and modified plsine wave approximations, respectively, the relative time lag de­

viation by 

and assuming a three element array, so that maximiun deviations occur for j = ±(N — l) /2 , 

we obtain the corresponding non-dimensionalized expressions for maximum relative devi-
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ation 

^op — (r 
l + <r,2 

± 2<TA + (7^2 + f^^2 ) 

1/2 
(B.41) 

Cam — 
(l±a^ + a,'')il + (7^'')-'/^ 

(l±2<7A+(rA2+<T,2)l/2 
- 1 (B.42) 

ct = 
±<7A 

(l±2aA+<TA2+^Y/2 
- (1 + ^z') - 1 (B.43) 

(l+<7,2)-l/2 

In fact, geometrical analysis indicates that except for ias when j < 0 and 1 < (TA < { 1+ 

2(l + (r ,2)i /2[i_<,,( i + a , V / ' ] } 

, the foregoing expressions are valid for arbitrary N 

as illustrated below. 

Figures B.12b and B.lSb display e^p (A) and Cam (D)? respectively, for j = (N — l ) /2 

together with the associated relative time lag deviation et (Q) ^ functions of the di-

mensionless parameters <TA and (TJ. The contour interval is 5 percent. Corresponding 

distributions for j = —(N — l ) /2 in Figures B.12a and B.lSa are more complicated due to 

singularities in the relative amplitude coefficients Op (j) and ag (j) defined by equations 

B.32 £ind B.33 respectively. In particular, for an image source at the stuface (<TZ = 0) and 

an apertiu-e width equal to twice the midpoint offset (O-A = 1), the j = —(N — l ) /2 detec­

tor coincides with the source causing the amplitude coefficient for spherical incidence to 

be infinite. The same situation arises for the modified plane wave coefficient, however, in 

this case a similar condition occurs for all <7z satisfying a^ = \/<TA — 1. It is evident from 

equation (B.39) that lim<;,p )̂_>oo c«ni = — 1 and, consequently, this condition corresponds 

to the earn = 100% contoiu- in Figm-e B.13a. Finally, Figure B.14 is a hybrid of Figiures 

B.12a and B.12b, depicting the overall maximum deviation as a function of (TA ojad <7z. 

For the modified plane wave approximation, the relative deviation is always maximtun for 

j = - ( N - l ) /2 . 

To illustrate the systematics of these generalized error distributions, we return to the 

specific example illustrated above (Figure B. l l ) . Fixing z, = 2.0 m and 6 = 1.0 m, array 

midpoint offsets of 1.0, 2.0 and 3.0 m have one to one mappings (aA,o^z) = (1-0, 2.0), 
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Figure B.12. Maximum relative amplitude (A) and time lag (O) deviations from conventional 
plane wave values as functions of dimensionless parameters tr^ = S/xm <̂ d o-, = Zs/xm for (a) 
j = —(N - l)/2 and (b) j = (N - l)/2. Discrete mappings are depicted for z. = 2.0 m, * = 1.0 m 
and Xm =1.0, 2.0 and 3.0 m. Compare predicted errors with Figure 11. 

Figure B.13. Maximum relative amplitude (D) and time lag (Q) deviations &om modified 
plame wave values as functions of dimensionless pairameters tr̂  = S/x^ and a, = Za/x^ for (a) 
j = —(N — l)/2 and (b) j = (N — l)/2. Discrete mappings are depicted for z, = 2.0 m, 6 = 1.0 m 
and Xm =1.0, 2.0 and 3.0 m. C!ompare predicted errors with Figure 11. 
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(0.5, 1.0) and (0.33, O.B.), respectively. As illustrated in Figures B.12-B.14, these points 

define a line having slope z^/S = 2.0 and passing through the origin. Moreover, as the 

midpoint offset increases, its mapping approaches the origin and, in general, this trend is 

accompanied by a reduction in associated relative deviations. In particular. Figure B.14 

indicates that the relative time lag error becomes less than 10 % for <T^ = S/xm < 0.4 or 

Xm > 2.5 m. Concurrently, in agreement with previous observations, the relative amplitude 

deviation diminishes less rapidly falling to 10 % in this case at approximately <7A = 0,1 

or Xm = 10 m. On the other hand, for an arbitrary value of <TA, increasing a^ or, in 

effect, increasing the image source depth generally reduces relative amplitude deviations 

more rapidly than relative time lag deviations. Indeed, as expected for an image source 

at infinite depth, the corresponding line on the Figures B.12-B.14 has infinite slope and, 

consequently resides on the ordinate axis where all relative deviations vanish. 

Figure B.14. Composite of Figures B.12a and B.12b, displaying overall maximum deviations from 
corresponding conventional plane wave values. Note that Figure 13a is the equivsJent distribution 
relative to corresponding modified plane wave values. 

In general, the foregoing error anjJysis reveals that the magnitude of effective im­

plementation errors required to compensate an inappropriate plane wave assvunption are 

primarily controlled by the ratio of reflector depth to aperture width. Moreover, relative 
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amplitude and time lag deviations diminish at rates governed by the previous parameter as 

the array's midpoint offset becomes large compared with both reflector depth and aperture 

width. Finally, as demonstrated by Newman and Mahoney (1973), the response of the uni­

form array is least influenced by implementation errors and, consequently, departures from 

design assumptions, including plane incidence. As a residt, relative errors arising from a 

plane wave approximation are significantly magnified in the case of optimally weighted 

arrays. 

In closing, it is noted that this investigation was partly motivated by suspicion that 

the viability of array filtering for groundroll attenuation in small-scale seismology might 

have been inappropriately dismissed on the basis of a plane wave asstunption. Knapp 

and Steeples (1986) sought to maximize array length subject to attenuating the highest 

signal frequency by less than 3 dB. and although not explicitly stated, subsequent analy­

sis assumed plane incidence, concluding that ^max = 0'125/kniax (^8/2) ~ 0.28/kniax) where 

the argument Zs/2 implies that maximum offset is taken equal to reflector depth. In a 

related discussion, Mayne (1987) confirmed the foregoing result for a two element array 

and noted that for an array having a large nmnber of elements, the correct relation is 

^max ~ 0.48/kmax- FVom Figure B.4, for example, we note that the corresponding relation 

for a seven element array is ^max '^ 0-44/kmax- Although ^max ctin be theoretically underes­

timated assuming plane incidence, frequency domain analysis, using equations (B.34) and 

(B.35) with f = fmax 8Jid Atp evaluated for Xm = 23/2 indicates that the effect is negligible 

for a wide range of plausible field parameters. Consequently, the present study supports 

the validity of a plane wave assumption in this context and reinforces the conclusion that 

array filters are not optimally suited for small scale applications. 



Appendix C 
RICKER WAVELET EXTREMA: THE RAYLEIGH 

RESOLUTION CRITERION 

The Ricker wavelet is defined by 

w (t) = (1 - 12fjt2) e-^^'*'. (2.31) ( C I ) 

Wavelet extrema axe, therefore, associated with the roots of the following equation: 

I-w(t) = -24fJte-« '̂*' - 12fit(l - 12f|t2)e-« '̂*' 

= -12fjt [2 + (1 - 12f3t2)] e-^^'*' (C-2) 

= -12fjt (3 - 12f|t2)e-«^'*' = 0. 

Consequently, extrema occur at t=0 , t = ±oo and 

(3 - i2f3t2) = 0 ( a s ) 

With reference to Figure 2.16, it follows that the Ricker wavelet's main lobe occurs at 

t=0 (for shifted wavelet w (t — TQ) at t = ro), negative side-lobes at t = dbl/2fd (for shifted 

wavelet w(t — TQ) at t = TQ ± l/2fd) and that wavelet amplitude decays asymptotically to 

zero. Rayleigh's resolution criterion requires that the main lobe of one wavelet coincide 

with the side-lobe of the other and, consequently, wavelets mtist be separated by a time 

interval 

Tt = ^ = 0.5Td (0,4) 

known as the tuning thickness, where Td = 1/fd denotes the wavelet's dominant period. 

It follows that associated reflectors must be separated by heilf the corresponding range 

otflTt = Qfo/2fd or ao/4fd = Ad/4.0; in other words, one quarter of the dominant wavelength 

at velocity ao. 
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Appendix D 
RICKER WAVELET INFLECTIONS: THE RICKER 

RESOLUTION CRITERION 

The Ricker wavelet is defined by 

w(t) = (1 - 12fJt2)e-«^'*'. (2.31)(D.l) 

It follows from elementary calculus that the wavelet's inflection points satisfy the assodated 

equation 

^ w ( t ) = 0. (D.2) 

Using the result 

^ w (t) = -12f|t (3 - 12f3t2) e-«f^' (C.2) (D.3) 

from Appendix C, we obtain 

^ w (t) = ^12fi (3 - 12fit2) e-'^'" + (-12fit) [-24f|t - 12f|t (3 - 12fjt2)] e-^^'*' 

= -36fJ (48f^t* - 24fjt2 + 1) e-«*2*' = 0. 

In addition to inflections at t = ±oo, associated with the Ricker wavelet's asymptotic 

amplitude decay, the quartic equation 

48fjt* - 24fjt2 + 1 = 0 (D.4) 

yields four additional roots. On substituting y = v^f j t^ , the foregoing equation reduces 

to the quadratic equation 

y2 - 2\/3y + 1 = 0, 

Having roots 

2 V ^ ± A / ( - 2 > / 3 ) 2 - 4 

y = 2 

= V ^ ± N / 2 
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or yi = 0.318, y2 = 3.146. Consequently, the Ricker wavelet has inflection points at 

t = ± yi 
V^f,2 

1/2 

± 
0.214 

t = ± 
72 

Tl/2 

^Mi? d j 
± 

0.674 

or, in terms of the wavelet's dominant period T j = 1/fa, t w ±0.214 T j and t w ±0.674 T j . 

As expected, the lesser roots t w ±0.214 T j he between the wavelet's center at t=G and 

negative side lobes at t = 0.5 T j and, therefore, are associated with inflections on the 

wavelet's main lobe. Consequently, since Ricker's resolution criterion T R is defined as the 

temporal separation between main lobe inflection points, we have 

TR«0.43Td. (D.5) 

Finally, it follows that associated reflectors must be separated by half the corresponding 

range QOTR or 0.43aoTd/2 = .215Ad = Ad/4.65. 



Appendix E 
THE SINC WAVELET 

A sine wavelet is effectively the impulse response of an ideal band-pass filter, obtained 

by subtracting a low-pass filter 

Wi(f) = n ( ^ | r ) (E.1) 

with terminal frequency fj from a second low-pass filter having a higher terminal fi?equenicy 

fu>fl 

^ " ( ^ ^ = " ( ^ ) (2.40) {E.2} 

as illustrated in Figure E.l . 

'W„(f) 

-fu 0 

0 
+fu 

"W,(f) 

' V". . ^ 

0 

© 
•'W(f) 

4 -^»£ 

+fu 

Figure E.l. Subtracting an ideal low-pass spectrum having terminal frequency f| (b) from a second 
ideal low-pass filter possessing a higher terminal frequency fu (a), yields a frequency spectrum that 
is band-limited between fi and fu (c). 
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Recall that 

''^^^ U, iei<i/2 

describes a rectangular function having unit height and base. Consequently, the sine 

wavelet is characterized by the Fourier spectnim 

w (f) = Wu (f) - w, (f) = n (1~^ - n ( 4 ) • (̂ -3) 

Using the inverse Fourier transforms 

w 

and taking axivantage of the linear properties of the Fotirier transform, we observe that 

the sine wavelet follows as the difference between associated sine functions. That is, 

r+oo 

/

+ 0 0 

W(f)e'2'^'*df 
•00 

= w « ( t ) - w j ( t ) . (2.45) (E.6) 

_ sin(27rfut) sin(27rfit) 

Alternatively, equation (E.3) may be written as the convolution 

W(f) = n ^±^*[^(f-f^) + (̂f + f^)], (E.7) 

where 6 (() is the Dirax: delta function, fm = (fi + fu)/2 defines the spectrum's midfrequency 

in terms of upper and lower terminal frequencies fu and fi, respectively, and Af = fu — fi is 

the corresponding spectral bandwidth. Using the following tabulated Fourier transforms 

(Bracewell, 1986), 
^i2Tftj£^ sin (ffAft) 

r+oo 

/

+O0 

[̂  (f - fm) + ^ (f + fm)] e " ' * df = 2 cos (27rfmt), 
•oo 
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together with the convolution theorem of the Fourier transform 

r+oo 

/

+00 
X(f)*Y(f)e'2'ftdf = x ( t ) y ( t ) , 

•oo 

where 
r+oo 

/

+00 
x ( t ) e - ' 

•oo 

/

+00 
y( t ) 

•00 

-i2xft j ^ 

e-'^'rftdt 
-00 

define two arbitrary Fourier transform pairs, we obtain the following, equivalent expression 

for the sine wavelet 

w (t) = 2 ^^"(^^^*) cos (27r f„,t). (2.44) (E.S) 
Trt 



Appendix F 
MINIMUM SECOND MOMENT WAVELET LENGTH 

Second moment wavelet length, Lw(to), measured relative to reference time to is defined 

for a real-valued wavelet by 

Lw^ (to) = F - / w2 (t) (t - to)2 dt (2.48) (F.l) 

where 
f+oo 

Ew 
' -oo /

+00 

w2(t)dt (2.47) (F.2) 
•oo 

defines total wavelet energy. To determine the particular value of to = to for which Ly,^ (to) 

is minimized, we extremalize equation (A4.1) with respect to to = to. That is we seek to 

satisfying 

- ^ Lw^ (to) = ^ U - / w2 (t) (t - to)2 dt = 0. (F.3) 
oto Cto L^w y-oo J 

Since total wavelet energy given by equation (F.2) is independent of to, the previous 

equation reduces to 

/

+ 0 0 O /i+OO 

^ [w2 ( t ) (t - to)2] dt = - 2 / w2 ( t ) ( t - to) dt = 0 
oo Cto J-oo 

or 

/

+ 0 0 i'+OO 

w 2 ( t ) d t - / w2( t ) td t = 0 
•oo •/—oo 

and, consequently, solving for to, we obtain 

/

+ 0 0 / /•+0O -J A+OO 

w 2 ( t ) t d t / / w2(t)dt = — / w2( t ) td t , (F.4) 
oo / J-oo ^w J-oo 

which we recognize to be the first moment of wavelet energy density about time zero 

normalized by toted wavelet energy. 
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Appendix G 
SECOND MOMENT WAVELET LENGTH 

AND SPECTRAL CHACTERISTICS 

Second moment wavelet length, Lw(to), measured relative to reference time to is defined 

for a real-valued wavelet by 

Lw'(to) = Tf- / w 2 ( t ) ( t - t o ) ' d t (2.48) (G.l) 

where 

/

+ 0 0 

w2(t)dt (2.47) (G.2) 
•oo 

defines total wavelet energy. The frequency domain equivalent of equation (G.l) is obtained 

via the power theorem of the Fourier transform (Bracewell, 1986) 

x ( t ) y * ( t ) d t = / X(f)Y*(f)df, (G.3) 
•00 J—oo 

where 
r+oo 

/

+ 0 0 

x(t)e-2'rf*dt 
'OO 

/ + 0 0 

y(t)e- '2 ' f tdt 
'OO 

define two arbitrary Fourier transform pairs and y* (t) and Y* (f) denote complex conju­

gates of y (t) and Y (f), respectively. Thus to facilitate transformation of the numerator 

in equation (G.l) , we set 

x( t ) = y ( t ) = ( t - t o ) w ( t ) , (G.4) 

yielding 

/

+ 0 0 

( t - t o ) w ( t ) e - ' 2 ' f t d t 

/

+ 0 0 / + 0 0 

(G.5) 
t w (t) e-"*** dt - to / w (t) e-" ' '* dt 

OO y—OO 

Using the derivative theorem of the Fotjrier transform, the first right-hand term of the 
previous relation may be written 

r+oo /

+O0 ; J 

,» 'w(t)e-«dt = _ - W ( f ) 
-OO 
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and, thus, recognizing that the second term is simply to times the Fourier transform of the 

•wavelet w (t), we have 

X(f) = Y(f) = ^ ^ W ( f ) - t o W ( f ) (G.6) 

and 

X* (f) = Y* (f) = - ^ ^ W* (f) - to W* (f). (G.7) 

Consequently, substituting equations (G.4), (G.6) and (G.7) in equation (G.3) yields 

r+oo 

Lw'(to) = i^- / ( t - t o ) 2 w 2 ( t ) 
^w J-oo 

dt 
00 
+00 

(f) Ew 7-00 W^ k 
(G.8) 

where 

|W(f)p = W(f)W*(f), 

df 
W(f) = | w ( f ) | w n f ) 

and, by Parseval's Theorem, 

/

+00 ^+0O 

w 2 ( t ) d t = / |W(f)|2df 
•oo J—oo 

(G.9) 

Finally, on substituting the polar form of the Fourier spectnmi 

W(f) = |W(f)|e'®(f), (G.IO) 

we have 

5^W(f) = 

df 
W*(f) = 

^|w(f)n-i|w(f)ii0(f) 

| | W ( f ) | - i | W ( f ) | | 0 ( f ) 

.ie(f) 

.-ie(f) 
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and, consequently, equation (G.8) becomes 

+ ^(-2i)|w(f)p^e(f)+t„=|w(f)p}<if 

+ |w(f)p [ (̂ ^ 0 (f))'+4x to I e (f) + 4^n§]} df 

Finally, recognizing that 

^ ^ 0 ( f ) + 27rto^ =C^^ii)) + 4 T t o ^ 0 ( f ) + 47r2t 

(G.ll) 

we obtain the result 

T 2 ('»'=4;^/r{(5i^®i)'+'^^'^r(s®«+Hl df. (G.12) 

or, with 

and 

(^^ 0 (f) + 27r to) = [ ^ ( 0 (f) + 2ir fto) 

jd 
df 

1 d 
0^ 1̂ (̂ )1) = ]wMdf'^('^'' 

the final frequency domain expression 

'"»> = 4;;k /r''^^'^''{[s('°'^''^'))'+ [5(®«+=^'»))') •»• 
(G.13) 



Appendix H 
WAVELET-ENVELOPE LENGTH EQUIVALENCE 

Consider an arbitrary real-valued wavelet w(t) . An associated analytic wavelet w( t ) 

is defined by 

w(t ) = w ( t ) - i w i ( t ) , (H.1) 

where 

w i ( t ) = w { w ( t ) } = w ( t ) * ^ ^ ^ = jr^~W(f)[ isgn(f)]e>2'f tdf (H,2) 

defines the quadrature wavelet wj. (t) given by the Hilbert transform "H {w (t)} of the 

corresponding real-valued wavelet w (t). Note that in the previous expression 

/

+00 
w(t)e-^2'ft, 

•00 

denotes the Fourier transform of the real-valued wavelet w (t), * denotes the convolution 

operation and 

sgn(f) 
f - 1 , f < 0 ; 

= { 0 , f = 0 ; 
l l , f > 0 

is the signum function. 

The real-valued wavelet envelope follows as the modulus of the analytic wavelet 

|w (t) | = [w (t) w * {if I' = [w2 (t) + w i (t)] ' / ^ (H,3) 

where w*(t) denotes the complex conjugate of the analytic wavelet w(t) . Recalling the 

definition of second moment wavelet length measured relative to reference time to (2.48) 

(H.l), we obtain for the wavelet envelope 

1 i.+0O 

L|w|' (to) = = ^ / |w (t)p (t - to)2 dt (H.4) 

where 

/

+00 

|w( t )pd t (H.5) 
•00 

defines total envelope energy. 
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Since, in general, the second moment length of a complex-valued wavelet is 

r+oo 1 f+OO 

Lw'(to) = i ? - / |w( t ) | 2 ( t - to )2d t , 

with 
r+oo 

= / 

00 
+00 

/

+O0 

|w(t)pdt, 
•oo 

we recognize that equations (H.4) and (H.5) define the length of the analytic wavelet w (t) 

as well as its envelope | w(t) | . 

Substituting equation (H.3) in equation (H.5) yields for total envelope energy 

/

+0O f+CX> 

|w ( t ) | 2d t= / W(t)w*(t )dt 
•00 y—00 

[w2(t) + wi(t)]dt ^^^^ 

/

+ 0 0 i»+O0 

w2(t)dt+/ wi(t)dt 
•oo J—oo 

= Ew + Ewj., 

where Ew and Ewj. denote total energies of real and quadrature wavelets, respectively. 

To examine the relative magnitudes of the two component energies we apply Parseval's 

theorem, obtaining 

/

+0O /•+00 

w 2 ( t ) d t = / |W(f)|2df (H.7) 
•00 J—oo 

/

+ 0 0 A+00 

w i ( t ) d t = / |Wx(f)pdf. (H.8) 
•oo J—oo 

Now, from the foregoing definition of the Hilbert Transform (equation (H.2)), it follows 
that 

Wx(f) = W(f)[ isgn(f)] 
= |W(f)|e^®(0[isgn(f)] (H.9), 

= |W (f)| [ - sin e (f) + i cos 0 (f)] sgn (f) 

where |W (f)| and 0 (f) denote the amplitude and phase spectrum of w (t), respectively. 

On mtiltiplying both sides of the foregoing expression by the associated complex conjugate, 

we obtain obtain the squared spectrum 
iWj. (f )|2 = W^ (f) W I (f) = |W (f )p sgn^ (f) 
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and, consequently, 

|Wi ( f ) | = | W ( f ) | [ l - ^ o ( f ) ] , (H.IO) 

where 

^ ' ' ( ^ ) - \ i , f = o 

defines the so-called null function (Bracewell, 1986). In other words, Hilbert transformation 

annihilates the d.c. spectral component of the original wavelet. Consequently, equations 

(H.6)-(H.8) yield 
E|w| = Ew + Ewj. 

2Ew, W(0) = 0; (H.U) 
2Ew- |W(0) |2 , W ( 0 ) ^ 0 

and, thus, provided that the original waveform possesses no d.c. spectral content (i.e. 

W(0) = 0), the envelope possesses precisely twice the total wavelet energy. 

We now consider the second moment of envelope energy density about reference time 

to 

r+oo /'+00 

-{ 

/

+ 0 0 i'+OO 

|w(t)|2(t-to)2dt= / w(t)w*(t)(t-to)2dt 
•00 J—oo 

/

+00 

[w2(t) + w i ( t ) ] ( t - t o ) 2 d t 
y-So y-i-oo (H.12) 

= / w2 (t) (t - to)^ dt -h / w i (t) (t - to)2 dt 
J—oo J—oo 

/

+O0 

wi(t)(t-to)2dt. 
•oo 

From the frequency domain representation of second-moment wavelet length, equation 

(2.59) (see Appendix G), we have 

/

-l-oo 

w^(t)(t-to)^dt 
'00 

=4^ /ri*'*^''{B('"i^«i))'+[i(em+2*)r} -"' 
(H.13) 

It follows by inspection that the second moment of wavelet energy density about time to is 

invariant under application of a frequency-dependent phase-shift that is constant between 
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zeros in the corresponding amplitude spectrum. Consequently, since Hilbert transforma­

tion amoimts, in effect, to applying a frequency-independent phase-shift of | radians, 

the quadrature wavelet wj. (f) must have the same second moment of energy density 

about to as the original wavelet wx(f). There is again, however, an exception. Since 

i sgn (f) = e" 2 '*" ̂ '̂  — ^0 (f), the signum function introduces a phase discontinuity at f=0 

and, consequently, unless nullified by a corresponding zero in the amplitude spectrum 

(|W(0)| = 0), the second moment of energy density about to becomes infinite for the 

quadratiu:e wavelet. Thus, we have 

/7.i(t)(e-to)^at = {^^-^('«). w(o) = o, (,.„) 

Finally, substituting equations (H. l l ) and (H.14) in equation (H.4) for second-moment 

envelope length yields 

L ._ . t „> ,_ /Lw( to ) , W(0) = 0; 

Consequently, provided that the original wavelet possesses no d.c. spectral content (i.e, 

zero-area wavelet), second-moment envelope length is equivalent to wavelet length. 



Appendix I 
ENVELOPE INVARIANCE UNDER FREQUENCY-

INDEPENDENT PHASE-SHIFT 

Consider an arbitrary real-valued wavelet w(t ) . An associated analytic wavelet W(t) 

is defined by 

w(t) = w ( t ) - i w ^ ( t ) , (LI) 

where 

w±(t) = 'W{w(t)} (L2) 

defines the quadrature wavelet wj.(t) given by the Hilbert transform H{} oi the corre­

sponding real-valued wavelet w(t) (see Appendix H). The real-valued wavelet envelope 

follows as the modulus of the analytic wavelet 

|w ( t) | = [w (t) w * {t)f' = [w2 (t) + w i (t)] '^\ (1.3) 

where w * (t) denotes the complex conjugate of the analytic wavelet w( t ) . 

Now, applying an frequency-independent phase-shift 9o to w (t), yields a wavelet 

w (t) = cos 0̂ w (t) + sin 9o wx (t), (1.4) 

represented as a hnear combination of original and quadrature wavelets. The corresponding 

analytic wavelet follows as 

izr(t) = w ( t ) - i « ; i ( t ) , (1.5) 

where 
w±(t) = n{w(t)} 

= cos $0 H {w (t) } + sin ̂ o H {wj. (t) } (1.6) 

= cos SQ WJ. (t) — sin BQ W (t) 
since, in general, W{7i{f (t)}} = —f (t). Consequently, we have 

«r (t) = [cos ̂ 0 w (t) + sin ̂ 0 wj. (t)] - i [cos OQ WJ. (t) - sin 9o w (t)] (L7) 

and, therefore, 

|W(t) |= [« ,2( t ) -Hu, l ( t ) ] ' / '= [ w ^ t ) - H w i ( t ) ] ' / ' = |w( t ) | (1.8) 
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MAXIMUM AMPLITUDE WAVELET 

Consider a siaite of real-valued wavelets Wj (t) possessing a specified amplitude spectrum 

|W (f)| and phase spectra 0i (f). Wavelets and their frequency spectra are related by the 

Fourier transform 
r+oo 

[|W(f)|e^®'(')J e"''*df 
-00 
f+OO / '+00 

/

-t-OO /•+00 

|W (f)| cos [0i (f) -)- 27rf t] df-H i / |W (f)| sin [0i (f) + 2xf t] df 
•00 J—oo 

(J.1) 

In particular, since a real-valued wavelet possesses an even amplitude spectrum ( jW(—f}| 

= |W(f)|), wehave 

/

+O0 

|W (f)| cos [0i (f) -f- 27rf t] df. (J.2) 
•CO 

Consequently, it follows that no wavelet possessing the specified amplitude spectrum }W 

can have amplitude exceeding 

r+oo 

/

•too 

|W(f)|df. (J,3) 
•oo 

Wmax 
' -oo 

Moreover, it is evident that this maximmn amplitude occurs only for a wavelet <x wavelets 

possessing a linear phase spectrum 

e m a x ( f ) = n 7 r - 2 7 r f r , (J.4) 

where n denotes an arbitrary integer value. Finally, however, since a constant phase shift 

of n TT rad affects only the polarity of the wavelet, we are left with the odd phase spectrum 

emax(f) = -27rfr (J,5) 

associated with a zero-phase wavelet, time shifted by t time units. Thtis, maximum ampli­

tude is ultimately associated with the zero-phase wavelet having phase spectnun 0 (f) = 0 

and, consequently, having maximiun amplitude Wmax given by equation (J.3) at t=0 (from 

equation (J.5). 
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Appendix K 
T H E MINIMUM-LENGTH CAUSAL WAVELET 

Second moment wavelet length, measured relative to the onset of a causal source dis­

turbance to = 0 is defined for a real-valued wavelet by 

Lw2(0) = =F- / w2(t) t2dt (2.48) (K.1) 
£̂ W 7-00 -00 

where 
/'+00 

Ew 
/

+00 

w2(t)dt (2.47) (K.2) 
•oo 

defines total wavelet energy. Following the development of Berkhout (1984), we rewrite 

the foregoing expression in discrete form as 
I'w[0] = ^ f ; [ n A t ] 2 w 2 [ n A t ] , (K.3) 

^ n=0 
where 

oo 

Ew = J]w2[nAt]. (K.4) 
n=0 

Let us now expand equation (K.3) explicitly as 

Lw [0] = i ? - {At2 w2 [At] -f- [2At]2 w2 [2At] + [SAt]^ w^ [3At] -f-...} (K.5) 

or, equivalently, as 

L^ [0] = ^ {At2 f ; w 2 [n At] + (2^ - l ) At^ f ; w^ [n At] 

"=^ "=2 , (K.6) 
oo 

-H(32-22)At2 J ] w 2 [ n A t ] + ...} 
n=3 

where, for example, 

At2 ^ w 2 [n At] + (2^ - 1) At2 f ^ w ^ [n At] = At^ ^ w ^ [n At] - At^ f^w^ [n At] 
n=l n=2 n=l n=2 

-|-22At2^w2[nAt] 
n=2 

= At^ w2 [At] + 22At2 f^ w2 [n At] 
n=2 

and we recognize that the first term on the right-side of the foregoing result At^ w^ [At] is 

equivalent to the first term of the series in equation (K.5). 
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Consequently, writing the series in equation (K,6) as 

Y, K - (m - 1)^] At2 Y, w^ [n At] = JAt^ ^ w 2 [n At] + (2^ - l ) At^ ^ ^ w ^ [n At] 
m=l n=m n=l n=2 

+ (32-22)At2^w2[nAt] + ...} 
11=3 

we obtain for second-moment wavelet length, the discrete form 

Lw [0] = ̂  f E W -i^- 1)'] At̂  f; w2 [n At]) 
** \m=l ii=m / 

or, on substituting equation (A9.4) for total wavelet energy, 

l l [0] = f ; [m^ - (m - If] At2 ( f ; w2 [n A t ] / ^ ^' [̂  A*]) • (K-7) 
m=l \ i i=m n=0 / 

Finally, we consider a suite of wavelets possessing a specified amplitude spectrum and, 

consequently, the same total energy Ew We define the minimum-phase or mimmum-delay 

wavelet w (t) as the member of the wavelet suite possessing maximum partial energy at 

any time mAt (m > 0) 

f ; w 2 [ n A t ] > E w ? [ n A t ] , (K.8) 
n=0 n=0 

where the subscript i indicates that the respective inequality holds for each member of the 

wavelet suite Wi (t). It follows that the minimum-phase wavelet must also possess minimum 

tail energy 

f ; w 2 [ n A t ] < f ; w ? [ n A t ] (K.9) 
n=:in nsin 

and, consequently from equation (K.7), that the minimum-phase wavelet is characterized 

by minimmn second-moment length 

U[0]<Lw.[0] . (KIO) 



Appendix L 
SECOND-MOMENT LENGTH OF THE 

RICKER WAVELET 

The second-moment length of an arbitrary wavelet w (t) is defined by 

r-l-oo 

- 0 0 

where 

1 f+OO 

Lw'(to) = i r - / w 2 ( t ) ( t - t o ) 2 d t , (2.48) (L.1) 

f+OO 

' - 00 /

+00 

w2(t)dt (2.47) (L.2) 
•00 

represents total wavelet energy. Re-expressing equation (2.31) for the Bicker wavelet as 

w(t) = ( l - 2 b t 2 ) e - ' ' * ' , (L.3) 

where a = 12f| and b = 6f|, the corresponding second-moment length about the o r i ^ 

follows as 

L2 (0) = ^ / t2 (1 - 2at2 + a^t*) e'^''*' dt 

. , (L-4) 
= 1 / t^ e-̂ ***' dt - 2a / t^ e-2'>*' dt + a^ / t« e-̂ ^**' dt 

Ew 17-00 y-oo 7-00 J 

where 

/

+00 f+OO f+OO 

e-^^' dt - 2a / t2 e-2t* dt -t- a^ / t* e'^^* dt . (L.5) 
•OO y—OO 7 - 0 0 

Now, recalling the normal error integral 

for an arbitrary positive valued constant c, the constituent integrals in equations (L.4) and 

(L.5) axe evaluated as follows. Consider, for example, the integral 

t 2 e - 2 b t ' d t = / t2e-*=»'dt, (L.7) 
•OO J—OO 

where c = 2b. Integration by parts yields 

u = t dv = te"*'*'dt 

du = dt v = -l.e-<^' 
2c 
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r+oo 
r°"t2e-*'dt = - l e - » ' 

-oo 2c 

+ 0 0 

+ 
—00 2cy_oo 

dt 

and, consequently, using equation (L.6) and c = 2b we obtain 

/

+00 

•00 
t̂ e-*^* dt 

1 /7r\ i /2 1 

~ 2c V7/ ~ 4b VibJ 

1/2 

Similarly, for 

we have 

/

+00 A+00 _ 

t^e-2«>*'dt= / t*e-<=*'dt, 
•00 J—00 

(L.8) 

(L.9) 

u = t ' dv = te-*=* dt 

du = 3tMt v = - — e " 
2c 

t* e-'̂ *' dt = - ^ e-<=*' + f / t2 e-^" dt 
2c _^ 2cy_«, 

and, consequently, substitution of (L.8) yields 

ry^-'--h&"-^{B"- (L.IO) 

In similar fashion, we obtain 

r+oo 

[y^-'--B(^r-^{^ (L.11) 

Finally, on substituting (L.6), (L.8), (L.IO) and (L.ll) in equations (L.4) and (L.5), we 

obtain 
T2/nN 1 /7r \ i /2 (I 6a , 15a2\ 

^-(°^ - E ; lib; i i b " i6b^^eip";' 
where 

Noting that a = 2b = 12fj, the preceeding result reduces to 

T2 /nx 7 fl\ 0.972 

or, equivalently, 

I ^ w ( 0 ) « ^ = 0.31Td, 
Id 

where Tj = l/fj represents the dominant period of the wavelet. 

(L.12) 

(L.13) 

(L.14) 

(L.15) 



Appendix M 
FIELD EXPERIMENTS IN GREECE 

Tentative approval was obtained in 1989 for an extensive programme of field experi­

ments in connection with excavations sponsored by the Canadiaji Archaeological Institute 

at Athens (CAIA). Although necessary permits were finally denied with equipment already 

in Greece, we gained access for limited testing at two ancient sites under the supervision 

of Prof. St. Papamarinopoulos of the University of Patras. 

At Stymphalia, in Arcadia, an extensive electrical resistivity survey has revealed much 

of the plan of ancient Stymphalos, a city of the fourth century B.C. buried in lacustrine 

sediments associated with seasonal flooding of LaJce Stymphalos (Papamarinopoulos, et al., 

1988; Williams, 1984). Seismic soimdings were acquired in connection with well defined 

resistivity anomalies to investigate the practical influence of data acquisition parameters, 

including optimum offset, charge size, pre-emphasis filter frequency, stack-fold, etc.. Al­

though results provided valuable insight on the selection of field parameters, soimdings 

gave no conclusive indication of the nature of subsurface remains giving rise to associ­

ated resistivity features. In particular, where archaeological remains were known to be 

extremely shallow (<30 cm), direct wave arrivals constituted a restrictive source of inter­

ference, masking difFracted-reflected arrivals from archaeological targets. 

A second site, Phalasarna, on the northwest coast of Crete was a prosperous maritime 

port by the fourth century B.C.. Archaeologists believe that later, during the first century 

B.C., the Romans destroyed the town and blocked the harbour's entrance as a policing 

measure (Hadjidaki, 1988). Owing to recent tectonic upUft of western Crete, the ancient 

harbour is presently several metres above sea level and inundated by 2-5 metres of sedi­

ment. Soil conditions at Phalasama are significantly different than those encountered at 

Stymphalos, offering a useful perspective on the importance of ground conditions. Com­

pared with sediments at Stymphados, those at Phalasama are poorly sorted and strongly 

consolidated. Consequently, while source-subsurface coupling was immaterial at Stym-
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phaJos, it was a principal concern at Phalasarna, In particular, variations in coupling 

efficiency gave rise to substantial variability in wavelet characteristics, rendering identi­

fication of coherent events difficult at best. Despite these complications, optimvun oflFset 

seismic soundings were successful in confirming the continuity of a harbour wall, exposed 

by limited excavations. In addition, a small-scale seismic refraction survey within the 

harboxir area provided controls on harbour geometry in good agreement with test trench 

stratigraphies reported by Hadjidaki (1988). 

In summary, although restricted access prevented adequate field trials of the seismic 

refiection method, limited experiments yielded promising results and revealed potentied 

obstacles to practical field implementation of the method. The author has recently been 

awarded a NSF-NATO Post-Doctoral Fellowship to conduct an exhaustive progranune of 

field trials in connection with ongoing archaeological investigations at Stymphzilos and 

Phalasarna in 1996. 



Appendix N 
SEISMIC VELOCITY DATA 

Material 

Alluvium 

Clay 

Diluvium 
Embankments and fill 
Loam 
Loess 
Sand 

loose 

loose 
loose 
calcareous 
wet 

Weathered layer 
Glacial 

till 
till 
sand and gravel 
sand and gravel 

River, Bay 
Suboceanic 

Shallow water fine­
grained; off San Diego, 
Calif. 

Velocity in 
Vf 

.5 -2.0 
3.0 -3.5 
1.1 -2.5 

.7 -1.8 
.4 

.8 -1.8 

.3 - .6 

.2 -2.0 

1.0 
1.8 
.8 

.75-1.5 

.3 - .9 

.43-1.04 
1.73 

.38- .50 
1.67 

1.1 -1.8 
over 1.6 
1.46-1.68 

km/sec 
V, 

• • 

.4 

.5 

over.6 
,, 

Remarks* 

/ ; near surface 
/ ; depth 2000 meters 

/ 

/ 
/ 
/ 

/ 

/ ; above water table 
/ ; below water table 

/ 
/ 
/ 

/ ; unsaturated 
/ ; saturated 
/ ; unsaturated 
/ ; saturated 

/ a n d /; see Figure 2 
in situ ultrasonic 

measurement sea 
water 

Figure N. l . 
1966). 

* / = field determination; / = laboratory determination 

Compressional seismic wave velocities in unconsolidated sediments (After Press, 

ly, (kms ) 

Unconsoliduied malerials 
Sand (dry) 
Sand (water saturated) 
Clay 
Glacial till (water saturated) 
Permafrost 

Sedimentary rocks 
Sandstones 

Tertiary sandstone 
Pennant sandstone (Carboniferous) 
Cambrian quartzite 

Limestones 
Cretaceous chalk 
Jurassic oolites and bioclastic 
limestones 
Carboniferous limestone 

Dolomites 
Salt 
Anhydrite 
Gypsum 

0.2-1.0 
1,5-2.0 
l.0-2..'> 
1..5-2.5 
3.5-4.0 

2.0-6.0 
2.0-2.5 
4.0-4.5 
5.5-6.0 
2.0-6.0 
2.0-2.5 

3.0-4.0 
5.0-5.5 
2.5-6.5 
4.5-5.0 
4.5-6.5 
2.0-3.5 

Igneous 1 Metamorphic rocks 
Granite 
Gabbro 
Ultramafic rocks 
Serpcntinite 

Pore fluids 
Air 
Water 
Ice 
Petroleum 

Other materials 
Steel 
Iron 
Aluminium 
Concrete 

5.5-6.0 
6.5-7.0 
7.5-8.5 
5.5-6.5 

0.3 
1.4-1.5 
3.4 
1.3-1.4 

6.1 
5.8 
6,6 
3.6 

Figure N.2. Compressional seismic wave velocities in rocks (After Keary and Brooks, 1991). 
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