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ABSTRACT

The UCLA gravimeter recording obtained after the 1964
Alaska earthquake, has been subjected to various, recently
developed data processing techniques. In particular, the
maximum entropy methéd (MEM) of spectral estimatiocn and
filter design was utilised.

Prediction filters were used to extend the original
tidal gravimeter recording, so as to avoid information loss
caused by tapering the record prior to filtering. Tinme
adaptive prediction error filters were then used to locate
noise bursts, or 'glitches?, which are present in the
filtered record. The record was then deglitched using two
methods, one a predictive approach, and the other involving a
division of the record by a weighted envelope function.

Power spectra using the classical periodogram approach,
as well as MEM, vwere calculated for the filtered records,
both before and after deglitching.

This analysis resulted in new values for the splitting
parameter~'ﬁ?',-and the centre fregquency, for various freé
oscillation modes. A dramatic increase in the signal to noise
ratio was also cbserved after the filtered records were

deglitched. The presence of core mode oscillations was also
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investigated, but no evidence for these undertones was fcund.
Instead, numerous peaks attributed to either instrument
non-linearities, or barometric pressure effects, ware found

in the frequency range 0.12 to 1.20 cycles per hour.
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1. PUEPQOSE

This research project was undertaken in order to
investigate earth free oscillation data utilising relatively
new techniques in time series analysis. The investigation
focused on thetwell known UCLA gravimeter data obtained by
Dr. L. Slichter after the Alaska earthquake of March 27, 1964
(Slichter 1967b). Maximum entropy techniques wmere used for

two purposes in this study:

1. To compute power spectra of fundamental sphercidal
ocscillaticn modes, and to use the improved
resoluticn features of the maximum entropy methecd to

study the associated spectral splitting.

2. To design filter operators necessary to identify and
predict sections of the record which were made

untenable by noise glitches.,

The deglitching cf the data set was an important step in
reducing the noise power of this recocrd, so that the presence

and detectabiltiy of core undertones could be investigated.



2. DATA DESCRIPTION

The data used in this study originated from UCLA
gravimeter #4, one of two Lacoste-Romberg tidal gravimeters
that were in operation in Los Angeles at the time of the 1964
Alaska earthquake. This seismic event is the largest to be
extensively recorded with long-period instruments, and is the
primary source for much of the present -information on normal
nodes, ,The data has a sampling rate of 1,12 of an hour and
extends for 18.5 days. Free osciliation information is
superimposed on high amplitude earth tide data,  and, in the
unprocessed fornm, thé normal mode data is not observable when
the record is plotted (Figqure #1).

The data set was recorded on a Lacoste-Romberg tidal
gravimeter, which in simple terms, is a mass on the end of a
spring-supported beam. A photo-electric cell detects motions
in the mass,:relays the information to a servomechanism, -
which in turn raises or lowers the upper end of the spring by
means of a screw. The angular position of the screw is
recorded digitally ‘in units of 0.1 microgals. Lacoste-Rcmberg
gravimeters -generally have drift rates of between 1 and 20
microgals per day. The noise power for this data set
increases 28 db. from 0.4 cycles per hour to 0.0 cycles per
hour (Figure #2). -

The first step in the daté Frocessing was to eliminate
the ‘tidal frequencies from the record using a filtering
schene, However, since the fres oscillation information

starts at the beginning of the tidal record, any frequency



Original unprocessed gravimeter data
recorded at Los 2Angeles during the 1964
Alaska earthquake. The record consists of
5320 points with a sampling rate of 1/12th cf

an hour.
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Unsmcothed periodogram power spectrum of
the unprocessed gravimeter data. The Nygquist
frequency is at 6.0 <cycles per hour. The
location of scme of the fundamental
spheroidal oscillation modes 1is 1indicated.
Also shcun are the basic diurnal and

semi-diurnal tides.
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domain filtering method will result in tapering of the front
and tail end of ‘the data set. It is particularly important
not to taper the record in this manner, as high amplitude
normal mode information at the onset of the record, will be
lost, To circumvent this problem, a scheme based on
predictive filtering was used (Ulrych et al. 1973).‘

Another problem with the data becomes immediately
evident when low-pass tidal filtering is accomplished. The
filtered record is contaminated by noise bursts or glitches
which are caused by digitization errors and aftershock
features (Wiggins and Miller 1972). To eliminate these
unvanted noise features, a method of data prediction was used

to fill in reasonable data values (Ulrych and Clayfon 1975) .

3, FREF OSCILLATIONS

Free oscillations have their theoretical beginning with
Lamb (1882), who first considered the prcblem of normal modes
of a uniform sphere. Love (13911) then extended the
development to include a self-gravitating uniform sphere.
Benioff et al. (1954) first reported earth free oscillations
after cbserving a normal mode with a pericd of 57 minutes. In
1961 various groups=reported observing a number of normal
modes excited‘hy the Chilean earthquake of 1960 (Alsop et
al. 1961; Benioff et al. 1961; Bogert 1961; and Ness et
al. 1961). Theoretical interest increased greatly at this
point, ‘and the mathematical theory for a heterogeneous earth

model was developed, allowing a comparison between



experimental and thecretical results. Inversion-sqhemes were
developed, which when utilised, yielded velocity-depth models
for the earth, which in turn enabled separation of Lamé's
parameters as a ‘function of depth (Press 1968; Haddon and
Builen 1967 ; Backus and Gilbert 1967; and Dziewonski and
Gilbert 1973).

There are two fundamental types of free oscillations of

a sphere:
1. Spheroidal: radial displacements always exist.

2. Toroidal: displacements are entirely tangeantial.

Spherical 'geometry can be broken down into three
components, latitude(©), longitude(¥), and radius(r).
Slichter {1967a) gives the displacements for these three

components for toroidal modes as:

- ™
2. Oy =V, (r,q,m) cos(©) B, (sin®)

X Qexpl-iw{t¥nw—1¥})
et arting !
3 Up = =V, (r,0,m) QPm(sine)
Al LT
X exp(-iuy{t?mu&*if})



For spheroidal modes the displacment components areg

1. Us = U;(r,4,n) B (sine)

X exp(-ia@{timu%‘lf})

2. Ug = W,(r,4,m) @g;’"’(sine) .

X exp(-ia%{timu%—tf})_

_ i -t DM es
3. U)o = W,(r,4,m) (cose )~ Pe {sing)

X 0 -3 t¥muw,—1
_5753;?_( iwg(t¥nu—17})

spherical surface harmonic of degree t/' and order

ctmt (m=0,1,20.01).

For the radial functions Vy+0,,and B , 'n' denotes the
overtone number, where the fundamental overtone is 'n=0?,

Spheroidal free oscillations are represented by the

m™m

symbols ,S, and toroidal oscillations are represented by

ﬂT21 The ~ ,S, mode is entirely a radial motion of the
ea:th, expanding and contracting much as if a balloon were
being inflated and deflated periodically. Another spheroidal
mode, oSg » 1s nicknamed the football mode and represents a
change of shape of the earth from prolate to oblate and back
again. Nodal points do exist and ‘it is possible some modes
will not be observed when the recording station-is located at
one-of these points of minimum amplitude. Some free

m

oscillation modes are not possible for the earth. .S, is a



10

rigid body oscillation and is not observable. LT~ is a

]
rigid body translaticn about the polar axis and has not yet
been observed, and for the mode n?z all the displacements

are equal to zero.,

4. SPECIRAL SPLIITING

After the records from the 1960 Chilean earthquake vwere
examined, splitting of some of the fundamental sphercidal
modes was observed. An analogous phenomenon in nuclear
physics ‘is the Zeeman effect where atomic spectral lines show.
splitting in the presence of a magnetic field. Rotation and
ellipticity of the earth were believed to be two possible
causes for this behaviour. Suitable theory was developed and
it was found that rotation would cause the splitting of the
central peak into 2/ +1 peaks, and ellipticity would cause a
splitting into 2 +1 peaksf,0n1y~spheroidal modes have been
6bserved-to'show splitting, as torsional modes attenuate too
quickly, resulting in-dissipative broadening of the spectral
lines, The following formulation taken from Alterman et
al.  (1974) predicts splitting effects to first order in

ellipticity and second order. in rctation.

Wy = (1 +,+ m/é¢+ mzb’z)

e = (D)2 +BE
B = C(p)

oo D@2+ e

W, = split peak frequency
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m = number of the split peak

AN = angular frequency of the earth's rotation
W, = eigenfrequency of S or T

€ = effect of earth's ellipticity

A,B,C,D,E = constants

The centre frequency of a group of split peaks will
differ by 'A' from the fregquency of an unsplit peak. Alsc,
because of the effect of fmz', splitting will be asymmetric
around the central peak {(n=0). For lower order modes, the
rotation effect is much greater than the ellipticity effect,
so that the first order splitting effect in ellipticity is of
the same magnitude as the second order splitting effect in
rotation. For the higher corder modes, this‘eguivalencevdoes
not hold. ‘Lateral heterogeneities can also give ‘rise to
splitting or widening of spectral lines, but the effects
cannot be well predicted or quantized.

‘Up ‘to the present, only conventional power spsctral
techniques ‘have -been used in the study of free oscillaticn
splitting. MEM seems to be ‘a logical choice in studying these
effects'beéause of the higher resolution and optimally smooth
nature of the MEM power spectrum. Bolt and Currie - (1975) and
Ulrych and'Biéhop (1975) have -shown the improvement in
frequency :resolution when using MEM. Bolt and Currie (1975)
studied the torsional eigenfrequencies recorded ‘at Trieste
after the "1960-Chilean earthquake,~and'reported an increase

in precision.and nunber of peaks detected.
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5. CORE UNDERTONES

Cne of the aims of this projeét was to lcok once again
for core mode-oscillations in the frequency range‘0.0 to 1.0
cycles per hour. Slichter (1961) reported a spectral peak at
.698 cycles per hour in the record of the 1960 Chile event.
He aléo predicted that this particular mode should show
spectral splitting peaks at .741 and .659 cycles per hour,.
The 1964 Alaska earthquake yielded no such peaks, and it is
now generally believed that the peak reported in 1961 was not
valid. It has been shown (Crcssley, perscnal communicaticn
1976) that the period of the Slichter mode is very model
dependent, and  the correlation between Slichter's oﬁservation
and predicted periods-is very liow.

Spheroidal ‘undertones can only exist in - a sub-adiahatic
core, as any radial particle motion is possible only when the
medium is gravitationally stable. Rotational coupling between
torsional and spheroidal modes restricts the theoretical
range of the undertone periods to between 0 and:-12 hours. At
longer periods, starting at about 72 hours, Rossby waves can
theoretically exist {Crossley 1975).

‘The most interesting of core undertones is the Slichter
mode, which is a translational motion of the so0lid inner core
driving a return motion in the fluid outer core.: Jackson and
Slichter (1974) believe they could detect such a motion if it
produced ‘a signal of 0.08 microgals on a Lacoste-Romberg
gravimeter -at the South Pole., This signal amplitude

corresponds to a core motion of 6 centimeters with an inner-
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outer core ‘density contrast of 0.3 g/cm—3, This ‘minimunm

detectable signal would be correspondingly larger for

stations at other locations on the earth. The observation of

a core undertone such-as the Slichter mode would be extremely

useful ‘in accurately determining the density contrast between

the inner and outer ‘core.:

At -this-time it is unknown whether core undertones do

exist, and whether they are cobservable phenomena. This lack

of knowledge is due to three factors:

1.

2.

3.

The: level of excitation of core modes is believed to

be quite low (Smith 1974).

Undertones are non-degenerate with respect to the
azimuthal order number 'm'., The number of undertones
is therefore '2n+1!' greater than the corresponding
overtones, making identification of individual modes

difficult (Crossley 1975). .

It is possible that many of the undertones will have
periods packed around an upper 1limit of 12 hours.
This limit is based upon calculations done by
Crossley (1975) who used a formulated computing
scheme'to:arrive at this result. This 12 hour period
corresponds to that of the semi-diurnal - -tide, and so
power  from this tidal peak will tend to obscure. the

spectral record.



1. CLASSICAL SPECTRAL ESTIMATION

Orthodox methods of spectral estimation often make
unrealistic assumpticns about the extension of the sampled
process beyond the windowed region. The maximum entropy
method of spectral estimation was developed specifically to
obviate this restrictive supposition. The two 'classical’

methods of obtaining a pdwer spectrum are outlined below.

A, Pericdogram
A function-f(t) can be expanded in a Fourier series if

f£(t) is piecewise continuous in the interval -T/2 < %t < T/2

14

and is periodic with period I . Then f(t) can be expressed as

a sum of sine and cosine functions.

.S )
£(t) = 1/2a,+ 7 (a,cosw,t + b, sinuwht)
=)

7

2
a, = 2/T f(t) cosy,t 4t n=0,1,2,..
'T/A
- 72
b, = 2/.TS £(t) sinw,t dt  n=1,2,3...
“Ta

a, = D.C. level

The amplitude spectrum for the process f(t) is given as
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IF,1 = VaZ + B3

Due to its conditicns of existence, the periocdogram methed
assumes a periodic extension of the data beyond the sampled

region,

Weiner (1930) first showed the relationship between the
autocorrelation function in the time domain and the power
spectrum in the frequency domain., The first step in obtaining
a power spectrum using this method is to obtain a suitable
estimate of the autocorrelation funtion R(t), where R(t) = 0
for |t| > N. This is equivalent to saying that an infinite
non-zero autocorrelation funtion»R(t) is multiplied by 'some
ﬂeightingvfunction.ﬁ(t) where #H({t) = 0 for |ty > N. The
product R (L)W (%) is then ‘transformed to the:frequency domain.
' The estimated spectrum is therefore the convoluticn of the
Fourier transform of the weighting function with the true
spectrum, -Considerable work has been put intc trying to
design the best possible weiéhting function and its
transform;"There are two difficulties involved in the design,
the first being the tradeoff that exists between resolution
and variance in the frequency domain, and the second being
- the ‘requirement that: the spectruﬁ be nonfnegative. As
Burg (1975) points out, although window theory has a certain
neatness to it, it.is an artifice imposed by the assumption

that R(t) = 0 for |t] > N. .
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"If one were not blinded by the nmathematical
elegance of the conventional approach, making
unfounded assumptions as to the value of unmeasured
data, and changing data values that one knows would
be totally unacceptable from a common sense, and
hopefully a scientific point of viewn?i,

2, MAXIMUM ENTROPY METHOD

A. Information and Entropy

Burg's rational in developing the theory of the maximum
entropy method (MEM), waé, that since there is an-infinite
set of non-negative power spectra that correspond to a given
autocorrelation function, the best speétrum would be the one
that corresponds to the most random time series. .The concept
of maximum entropy spectral analysis is' based upon
theoretical developments made in statistical mechanics and
information theory. One of the great advantages of the MNENM
technique, is its ability to resolve closely spaced spectral
lines in a much better manner than conventional methcds.

- From a statistical viewpoint, MEM can be shown to
correspond to-a situation with the most random behaviour.
Following Ulrych and Bishop (1975) it can be seen that if
there are 'M' different things 'm; ' which could possibly

occut, all with probabilities *p;*, then if all the 'p 's’

1 J., P. Burg, Maximum Entropy Spectral Analysis, Ph.D. .
Thesis, Stanford Oniversity 1975.




are the same, then no information about the system has been
gained. If one of the 'p,'s?' is different, then some
information about the process has been aguired. 2
relationship between information and probability can be

expressed as

I =k log(1/B;)

k = 1 when log is base 2.

1f the occurrences are summed over a long period T then

Trorae = K(P,T 10g(1/B,) + P,T 10g(1/B;) +...)

The average entropy given by Shannon (1948) is

B = I;opa /T

M
k;i P;log(P;) I11-1
1

=
If all the *P ' but one are equal tc zero, and this
exception is equal to one, then H = 0, Again, all knowledge
about the process is available, and there is no uncertainty
in the system. If H is greater than zero, a measure of
uncertainty is available., The entropy rate or entropy .per

unit sample is defined as

h o= lin Hy(N+1)
NDQ

17
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and can be shown to be proportional to

In
5 1n P(f) af II-2
A

P(f) = power spectrum

£,= Nyquist frequency

B. Maximum Entropy Scluticn

To solve the maximum entropy variational problem, the
following argument is taken fronm Burg (1975) .
- The function P({f) that maximizes eguation II-2 must be
obtained so that the constraint equations
N
R{n) = 5 P(f) exp(i2nmfnat) 4df (-¥ £ n £ N) II-3
TN
are satisfied. R(n) 'is the autocorrelation function. Another
condition is the Fourier transform relationship between the

autocorrelation and the power spectrum.

P {f) = 1/2ﬁ,;§ R{n) exp(-i2m fnAa t) II-4
oo
The -constraint equation II-3 will be satisfied if the R{(mn) in
equatioh II-3 are eqqivalent to the BR{(n) in equation II-4. To
solve this- problem, lagrangian multipliers can be used, but
what follows is a simpler derivation,.

Substituting II-4 into II-2 gives



N 0
h o SX 1n[ 1/21, Z R{n) exp(-i2y7 fnao t) ] df II1-5
N MNz=0

Maximizing II-5 with respect to R(n) results in

h & 1/2f, 5§: P-1(f) exp(-i27fsa t) df = 0

for |s} > N . I1I-6

where P—1(f) is the inverse of the power spectrum P{f).

Expanding P—1 (f) in terms of a Fourier series gives
{

o~
P-1(f) = 2> Nexp(-i27 fna t)
N2
LB(E) = 1/5 Agexp(-i27 fsat) I1I-7
g:-N .

I1I-7 is the same equation that would result from the

variational solution, where the A's are the Lagrangian

19

multipliers. From II-6 it can be seen that A,=0 for jn] > N.

The next task is to express the A 's in a suitable form. Two

methods are presented, one an analytical integration schenme,

and the other a z-transform argqument.

C. Apalytical Integration

Substituting equation II-7 into egquation II-3 gives

b exp(i27 £n4 t) df = R{n) (-§ <. n < N)
\ Srexp (127 fsat) 11-8
. TeAN Se-w - . R .

Letting 2z = exp(~i27 £fAa t) which is the normal z-transform

eguivalence it can be shown that
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- dz

i

-i21At exp{-i2ni £ A t) 4f

-i2mpt z df

and 4df = -dz/i21At z.
Equation II-8 can now be written as

1/2m ia t§ z—“-l/ﬁ 7\525 dz = R (n) I1-9
$=-N
This integration curve is counterclockwise around the unit
circle in the ccmplex z plane., From II-7 and the principle of

polynomial factorization it is possible to say that

¥ #
SZNASZS-—- [ByAatT Y [1 + a,2 +...¢+ awz"ﬁ [1+a z71 +,,.¢ a”z-”}
- N N
s *
= [p,at]? s,_Z;asz s%as z—S II-10

P, > 0

Substituting II-10 into II-9 results in an expression for

R(n)..
R{(n) = Pu‘% Lz -1 dz -N<n <N
21i ) 7 a,2® Fagz5 II-11
=0 %=0
X . . .
Since R {n) = -S P (f) z=" and if II-11 is summed over a, So
ﬂ“
that
N VNoox
ZZé:R(n—r) = Py %ivzkz—“‘liéiaa dz
0 2mi j > a 2° 7 agzs

$=0 5=0
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it is possible to write

Nn=0 3 s4 -5

_ 2ni P a, z g;as 4
= Pp § z*=1 ds >0 '

2ri > a z° I1-12

N
Knowing that 2> a, 2° is analytic for z < 1, and for r > 1,

S:0

z%=1 is analytic for z < 1, it is evident that

§[z"’~-l/§ aszs] dz = 0 forr 2 1
5=0

and also that

1 I1-13

v

N
pd d:R(n—r) =0 for r

=0

Now that the case for r 2 1 has been solved all that

need be done is obtain a solution for the r = 0 case. Since

[1/27i] §[f(z)/z] dz = £(0)
it can be shown that

1/2rri§ (éaszs)-t/z dz = £(0)

N
where f£{z) = (;2 ast)'l. a,has been already defined as

*1*, so that £(0) = 1., Therefore II-12 becomes
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* _ ‘ _ :
Za, R(n-r) = ¢, forr =0 II-14
Taking the complex conjugates of II-13 and II-14 we get

N
& B(-1) a,= B, =0 1I-15

v
-

N
R {n- = 0 I1-16
éz (n-1) a, r

An expression for the power P(f) can alsoc be written by

substituting II-10 into II-7 to give
N N
P(f) = Byat/5a 2 Sazs I1-17
5=0 S=p
which can be rewritten in the familiar form

N
P(f) = P,/ (2f, 11 +Z Y exp(-i27 £s A t) |?3) I1-18
5=0

D e . i - s s e s

An alternative method to obtain equations II-15 and
II-16 is through a z-transform approach. Substituting II-14

and II-10 into II-6 gives

N 3]
P At/ > a, 285 a z-5
s=0o §zo

= (1/2£f,) > R(r) 2~ II-19
M0

N o+
Multiplying by Za,z-™ gives
=0
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M N, T)n
P,,/s%asz =m‘zoa,‘z— gi(r) z

N + <>
=5 a,z""J R{(n-1) z™N
N0 N I\:w .
[
=A=‘@[§oa:\R (n-r) ) z=" 11-20

3 A

When s = 0 then

N4
Py = a,R(n-T) | II-21
M=o

and when s > 0, powers of z do not match so that

a:R(n-r) _ v 1I1-22

o

o
]
3Nz

Taking the complex conjugates of II-21 and II-22, equations
II-15 and II-16 are again obtained. Writing II-15 and II-16

in matrix form gives

-1 R(0) R(MH .. . R(N) I 111 1 Egl

I B(1) R(0) . . R(N-T) | ba,t 1 0]

o . T e | ] « 1 I1-23
e . . | e LR

| R(N) R(N-1) .  R(0) i I ayl 1 01

which is the equation for obtaining the N-th point
prediction filter. From II-18 it can be seen that tc obtain a
spectral estimate P(f), all that is required is a prediction
error filter and the error power c¢f prediction. These twc

values are given by equation II-23.
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E. Heuristic Sclution

From Ulrych et al. (1973) a heuristic solution to the
maximum entropy problem can bte replicated. If there exists a
time series- x{t) which has a Fourier transform X(w),
there is some filter i{t) that whitens x(t). The maximally
white time series that corresponds to a particular power
spectrum has already been shown to be the one.that exhibits
maximum entropy. If the transfer function of 1i(t) is

I{w), then |X(w) I(w)}| equals a constant 'k?'. Also
X (w) 12 = k2/|1I(w) |2

is a power estimate. Any stochastic,non-deterministic,
stationary time series can be represented as a moving-average

process.

: R
x(t) = b, e
(£) = Zb, e, g
bo> O
bo2 + b,2 + bg2 +...<0

e, = a white nocise series.,

Therefore x{t) is the convolution of some filter or
wavelet b{t) with a white noise series e(t). b(t)—? is
the filter that whitens x(t). In othef words,

if a{(t) * b(t) = S(t), then x(t) * a(t) = e(t). a(t) is

a deconvolution or spiking filter and can be determined fron



25

R a=1 ’ II-24
R is an N by N autocorrelaticn matrix

a = @y Ay seeedy is the prediction error filter

-
il

(1,0,0,...0)

The prediction filter Y (t) = 5\t) - a{t) so II-24 can ke

written as

R b’ = Py
. X = 1'-al '-aa'...-aq\
PN= (PN,O'O"QQ.O)

V-l

P, = L+ 7 I ¥iy= error power of prediction.
i)

From the power estimate
X (w) 12 = k2/|I(w) |2
it can be seen that

N
P(f) = Py /11 +2 Yexp(-i2 Mfk) |2

which is equivalent to eguation II-28.

From the above discussion, thé fundamental difference
between MEM and conventional power spectral-.analysis can be
seen, HMaximum entropy spectral analysis gives the spectrum of
a model that fits or approximates a fit to the process, a

sample of which is represented by‘ihe data. Conventional
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fourier transform methods, on the other hand, obtain the

spectrum of the sanple.

3. LEVINSCN BECURSION

—

Burg developed a solution to equation II-23 based upon
the Levinson rechrsion algorithm. The solution is also
consistent with the concept of maximum entropy. The accuracy
of Burg's method is greater that that of the normal Levinson
method, and it is also executed ahout>1/3 faster. The
development is shown below.

4 prediction filter‘is run over the data set in both the
forward and reverse directions, and the power output from
this operation is minimized. The filter is not run off the
ends of the data, and so no assuamptions about the
continuation of the data outside the sampling interval are
‘made., This is the major feature that is related to pmaximizing
the entropy of the process.

For the two point filter { 1,)’), the power output from
running the filter over the data is

n-l

Py = 1/2(8=1) {3 (X, +tYx.)2 +

é'(‘xi*‘“w)z}

The value of Pg can be shown to be a minimum when

N~) N
¥ =27 (x;xi4)/ 7 (x;)2 1I-25
=y ;

=1
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For the two point case, equation II-23 is written as

I R(0O) ~R(H | -1 11 1|
| P =
I R(1) R(0) -] I Yl i

¥ is obtained from equation II-25. The first autocorrelation

N
value ‘R(0) is estimated by R(0) 1/N Zi (x )2, and sc
ée

R(1) .can be calculated from R(1)

- Y{R(0)), and P4 can
be obtained from P&= R{O) (1 -¥2).
- For ‘the three point filter (1, Y, Lj the power output
after running the filter over the data is
N-3
P; = (1/2(N-2)) ,;Z{ (X *Xi G +X B ) 2

XX 0 X3 85) 2

When Y, is 'set equal to Y(1 +¥,;), where Y is the filter
coefficient obtained for the two-point case, then the value
of Y,that minimizes P, can be obtained. The filter

{ 1, ¥(1 +Y3) 4+ 3} will also be nminimum phase. Equation II-23

for the three point case is wuritten as
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| R(0) R(1) R(2) 1 1 1] I 0|
{ B(M RO RM-1 1 Yl+%1 Y1 =
| B(2) R(1 R(O) | 1 0| 11

0 2% R NIPY | Psl

0+l 01 =10

NIV, PU S I 10

O;= R(2) + R(VY
%= = L/By
B,= Byl 1 - Y%,2)

The advantage of this recursive method is that only one
variable, in this case Y, has to be adjusted so as to
obtain the minimum pcwer output. The recursion is continued
until the desired filter length is obtained. The values for
the prediction filter { 1,5},Ka...q.51,) and the error power
of prediction-P,, are then plugged into equation II-18 tg¢
obtain an estimate of the power P{f). As Lacoss(197i) and
Burg (1972) pointed out, the power estimate P(f) is actually a
spectral density estimate., If a more reliable estimate of the
spectrum (in terms of relative peak amplitudes) is required,

the maximumventropy estimate should be integrated.

4. AUTCREGRESSIVE MOLELS AND HEM

One of the critical factors in determining the maximum

entropy spectrum is deciding upon which length filter



29

operator should be used in the spectral estimate calculation.
Too high an order leads to instability fairly quickly,
whereas too low -an order gives a poorly resolved estimate. In
some cases prior’kncwledge of the spectrum (through
conventional methods) can be very useful in picking a filter
order. Due to the work of VandenBos (1971), who showed the
equivalence of autoregressive tinme serieé modelling and the
principle ‘of ‘MEM, the large quantity of literature on
autoregressive modelling can be applied to the filter length
estimation problem. In particular the works-of

Akaike (1969,1970) and Gersch({1970) -are worth-noting. The

autoregressive model for an crder M, is written
M
X, = .Z'OHX{-L" a; | | I1I-26
[

and it can be seen that the present valuye x(t) of the time -
series is being prcduced from the known past values

Xy oKX greoeXpye Ay is an additive white noise series called
the innovation and has zero mean and a variance of (,2. If
the z~transform of II-26 is taken; the result can be written

as
X{z) - X(2) [Kz +A22 +...t ,gmz"‘j = A(z)
and therefore

1X(2)12 = (A(2) 1271 1 =A2Z =d,22 =eeu= o212 II-27
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Equation II-27 can be rewritten as

M
PW%R=2m3/‘1'Z‘
A, a:[

jexp(~i27Tfj) 12

which is ‘equivalent to II-18, the expression for the maximun
entropy spectrum, With the equivalence of autoregressive
modelling and MEH-shown,-the final prediction error criterion
oflAkaiké’can»be used to help determine the filter order. The
FPE is defined as the mean square prediction error.

FPE = E [ (%, - X, ) ]2 11-28

n
%, = estimated prediction of x,

The FPE can be shown to be (Ulrych and Bishop 1975)

FPE, = {N + (M-1)/N - (H+1)} SZ

M is the order of filter

S3 is the mininun residual sum of squares

N
= {Z_(Xt- 0(' X‘t,," U(QX{_Q-QQQ- &Mxt_M)ZJZ
M1

In many cases the FPE criterion gives an excellent idea cf
the filter length, but for the data being studied in this
project, it was found not to be as useful. In numerous
examples a guess of the optimum crder was made, in some cases
after several test runs were performed. M was never taken to
be greater than Ny/2 where N 1is the length of the data

set.
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5. TIME ADAPTIVE MEN

As well as handling stationary time series, maximun
entropy can be expandéd into the realm of non-stationarity in
space and time. The use of time-adaptive MEM was considered
here as a possible means of identification of the noise
bursts in the data. These glitches can be thought of as
reverberant peaks superimposed on a non-stationary time
series. Time adaptive MEMN is a deconvolution scheme that
designs a prediction error filter in order ‘to locate areas of
unpredictability. ‘Seismic arrivals in reflection records, and
the noise glitches imn this data set, can both be  thought of
as regions of unpredictability. The deconvqlved record should
show spikes corresponding to the location of the glitches,
and after this identification has been made, the noise
regions can be removed by some predictive method.

Normal time adaptive schemes are handled by time gates,

and two possible approaches can be used.

1. The autocorrelation lags for each gate can be
calculated, the prediction error filters can be
determined from these lags using the Levinson
recursion algorithm, and the filters can then be

applied to the data.

2. The ‘Burg approach can be used to calculate the
prediction error operators in the time gates, and

the filter can be applied to the data..
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Burg (1971) ‘has developed an alternative to the time
gating approach, where the prediction error ccefficients are
continuously updated as the filter is run across the data.
This eliminates the problem of picking time gates to cover
only stationary data segments.

A brief description of the processing scheme follcws. .
The parameters discussed are described in the comment section
of the program listed in APPENDIX 1. A variable NWARH
controls -the length of a warmup segment of data. A prediction
error operator is calculated on this 'stationary' data
segment in the sane manner as for the normal Burg technigue
where the filter length is set equal to 'LCN + 1' points.,
This filter is' then rumn over the first *NWARM' points to find
the prediction error of the *NWARM + 1' point.

The ‘filter is now recomputed using only the 'LCN' pcints
of the segment from *'NWARM - LCN 41! to *NWARM + 1'. The
prediction error for the 'NWARM + 2' point is then found. The
process is-continﬁed=until the end of the data segment is
reached, If the  parameter 'IFLGAP' is greater than 1, then
only every 'IFLGAP' point is used in the calculation of the
filter and the determination of the prediction errors. After
the prediction error trace for every 'IFLGAP? pdint has Leen
calculated, intermediate prediction error values-are
computed. There is also a parameter 'NZC' which controls the
number of reflection coefficients set tO»zéro. This has the
effect of creating a filter that predicts further than unit

distance, while still maintaining minimum phase requirements.
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- As discussed earlier, the optimum prediction error
filter is the one with the minimhm output power as it is run
over the data. For the time adaptive case, the minimunm
average squared power ‘must be set by the constant updating of
the filter coefficients. A recursive scheme as outlined for
the stationary MEM is: utilised to obtain the ©N+1- pcint
filter from the N point filter. Only one parameter C) is
adjusted to minimize the average squared
error.}-Cé‘corresponGS'to a reflection coefficient in an

ideally layered medium. Burg(1972) has shown that the average

power is
. N
By = (1/(2M)} Z [F; (k) + C;B, (k) ]2
IR '

+ [C;Fj (k) + B/ (k) ]2

which is-the: sum of the squared forward and backward

prediction errors. The value of C} which minimizes the

power P& is given as
N-) N
c, = =2 F. (k) B. (k F. (k)2 + B (k)2 C <1
i ?«»‘a” a‘”’f__:,{a“ + Bo(k)2] IC |

which is the '‘negative avérage cross-power of the forward and
backward prediction error, divided by the averaged
auto-powers of the forward -and backward prediction errors. To
handle nonstationarity the cross-powers and ‘auto-powers are

weighted so that the statistics close to the point predicted
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will be more important than statistics further away.
The weighting is exponential and is both time and srace

variable

Weight (k,m) = exp(-k AT/, - m/% )
%= relaxation time (seconds)

7% = relaxation distance (traces)

The relaxation time is 1/e the decay time. Since there is a
tradeoff between speedy'adaption and accurate computation

of C) , the use of MEM is particulary advantageous in that
it allows calculation of coefficients on short data segments.
A -Fortran 1V listing of the program is included in Appendix

#1.
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III. DATA ANALYSIS PROCEDURES

As discussed in Chapter II, two major problems exist
with the time series under investigation. One is the fact
that the onset of the free oscillation-information'in this
data corresponds to the beginning of the record. The seccnd
difficuity is the presence of high amplitude noise glitches
which cccur in the filtered records. Both of these problems

can be overcome by use of prediction filters designed with

the Burg algorithm.

1. NECESSIIY OF TAPERING

In order  to 'accomplish frequency. domain filtering, it is
essenfial that the data set be zero mean and tapered in sone
manner before transfcrmaticn to the frequency domain.
Othervwise unnecessary noise power due to step discontinuities
in the data will be added to the spectrum.

If a data set is not zero mean and tapered, it can be
broken down into two parts, one being the signal information,
and the other being a D.C.. conmponent. This D.C. signal is in
effect a step function which represents unwanted information. .

The Fourier transform of a step function

u(t) = 1/2 + 172 sgn{t)
is £ lu)] = 7w + Viw
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Therefore a step function will addla D.C. component, as vwell
as a frequency dependent component that is higher at low
frequencies., Therefore the necessity of removing the mean and
tapering the data set before transforming to the frequency

domain, is clear.

2. BPREDICTION

Since the free cscillation information stafts at the
onset of the record, any tapering’will:remove'desired
information. To eliminate this problem the data set wasr.
predicted forward and' backwards in time so that necesséry
information was preserved. The 500 point prediction filter
was designed using the Burg maximum entropy algorithm. The
original 5320 points were predicted up to 8092 points, which
represents ‘an extenéion of the data 1386 points both forward
and backwards. This record was then tapered with a 5% cosine

bell taper (Figure #3).

Two filtered data sets were obtained from~the predicted
original data. One was a high pass filtered record with a
cutoff frequency of 0.66 cycles per hour. This record was
used to study the fundamental free oscillation modes and the
associated spectral splitting. The seCOnd.data set was a ‘band
pass filtered record with cutoffs of 0.12 and 1.20 cycles per

hour. This band passed‘data was used for the investigation of



Predicted gravimeter data extended
forward and _backuard in time,  Prediction
filter length was 500 points and 1386 points
were added in each direction. The positiocn of

the original record is indicated,

37
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the core undertones.

39

Both filtering operations were performed -in the

‘ frequency domain by a smoothed boxcar multiplication

operator. The sequence of filter design is as follows:

1. The boxcar function with the desired cutoffs is

constructed in the fregquency domain.

2. . This:'boxcar is then transformed to
and the time function is truncated

some desired length.

the time domain

and tapered to

3. This truncated time function is retransformed back

to the frequency domain, resulting
boxcar. The amount of smoothing in
domain depends upon the amount the

been truncated in the time domain.

in a smocthed

the frequency

time function has

The -longer the

time domain function, the sharper the cutoff in the

frequency domain.

Figure #4 is the high pass filtered predicted record and

Figure #5 is the band passed predicted record. The nocise

- glitches are ‘immediately evident in both data sets, and can

be seen - to have very high amplitudes in relaticn to the

signal. A comparison should be made between

Figure #4 and

Figure #6, which is the high pass filtered not predicted
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EEQQSE 4,
High pass filtered predicted record. The
filter cutoff is at 0.66 cycles per hour. The
noise glitches are immediately evident, and

have a well defined character.
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Band pass filtered predicted record. The
filter cutoffs are at 0.12 and 1.20 <cycles
per hour. Glitches are observable, but not as

well defined as for the high passed record.
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plenee f FIGURE 5 .. 70 ygals



FIGURE 6.

High pass filtered unpredicted original
record. The tapering, which is necessary to
accomplish the filtering, is immediately
evident ét the onset of +the record, where
there is a 1large reduction in the signal

amplitude.

44
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Alaska record. This is the record that wculd result from.
tapering and filtering the ‘tidal record before predicticn
forward and backward in time. The difference in the.
information available at the beginning ¢cf the record is
obvious, and much better signal tc noise ratiocs would be

expected in the powvwer spectrun.

4. DEGLITICHING

As seen on-becth Fiqures #4 and #5, high amplitude
glitches are present in the filtered records. These glitches
contribute a significant amount c¢f noise in ‘the frequency

range 0.0 to 2.0 cycles per hour (Wiggins and Miller 13972)..

A. Identification:

- The first step in elimination of these glitches is
identification. For this record visual identification can
isolate most - of the noise areas at least for the  high-passed
record {Figure #4). For the band passed record, the glitches
do not have the same well defined character and-are harder to
spot, particularly in the earlier part of the record. To aid
in this identificaticn,- it was thought that it‘would be
useful 'to run the time-adaptive MEM routine over the filtered
records to see-if regions of unpredictabiliiy‘ﬁere loccated.
As mentioned in Chapter II, the glitches should show up as
areas of relatively large prediction error.

After experimenting with the length of the filter
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oparator, and the time relaxation factor (ZTAG), respective
values cof 100 and 5.0 were chosen. There is no hard and fast
rule for determining these -values, although Burg(1972) does
make some ‘recommendations for ZTAU. Figures #7 and #8 show.
the prediction’error traces for the high passed and. band
passed records. The first 100 points of each record represent
a warm-up ‘period where the filter coefficients are set to
some initial value. Areas B and C on Figure #7 -are alsc warm-
up sections, as the long length of this record reguired its
division into three segments, As hoped for, the glitches show.

up very well in both examples.

B. Prediction Into Gaps

In order to remove these glitches from the records, a
prediction scheme based on one demonstrated by Ulrych and
Clayton (1975) was used. It involves the calculation of
prediction ‘filter coefficients using the Burg algorithm.
However instead of designing the filter on data only in ocne
segment, this gap prediction method creates a filter frcm
segments of data that are not connected. An averaging éffect

is thus achieved.

Prediction filter designed using these segments

g2p gap




Time adaptive.prediction error trace of
higﬁ pass filtered predicted data. .Glitches
show up as areas of  unpredictability. The
time ' relaxation factor, ZTAU, eguais 5.0 and
the filter length equals 100 points. Areas A,
B, and C are filter warmup sectiomns, where no

prediction occurs, .

us8
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v S — >

Time adaptive prediction error trace of
band pass filtered predicted data. The time
relaxation factor, 2TAU, equals 5.0 and the

filter length equals 100 points.,
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Once the filter has been designed, it is run over the
data such that the prediction is done into the gap frcm both
sides. The predictions are then tapered with a ramp function
and combined in a final result. In Figure #9, a harmcnic
signal (0.05 and 0.06 Hz.) with 20% noise is shown by the
solid line. The dashed line shows the prediction of the
middle 120 ‘points of data using omnly information from the
first and last 40 points of data. The result is gquite good
and' studies by Ulrych and Clayton (1975) have shown that .the
improvement ‘in the spectral resolution is excellent. .

'\ The results for deglitching both the high: passed and
band passed data sets can be seen in Figures #10 and #11. The
prediction error traces for these deglitched records are
shown in Figures #12 and #13. There is a remarkable
improvement in the records, and this can be seen visually in

both the deglitchéd and prediction error traces.

C. Deglitching By Envelope
An alternative method for deglitching was sugéested by
Wiggins (personal communication), and this technigue was
applied to the first 3000 points of the high ‘passed record.
Dividing the data by the sgquare of its envelope was
thought of as-a possible means.of removing the high
amplitudes of the noise bursts, even though the frequency

content would not be altered. A modification of this scheme

was applied, in that a function E' was created where



Test case of the gap predictiocn routine.
3~ mixed = bharnmonic of 0.05 Hz. and
0.06 Hz. with 20% added noise. The solid line
represents the original data, and the dotted
line represents the predicted data. The first
40 and 1last 40 points were used to predict
tﬂe middle 120 pcints, The filter length was

chosen to be 35.
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Deglitched high pass and band pass

filtered predicted record. Glitches were .

identified, then predicted out using a filter

operator determined from the Burg algorithm,

55



56

Hl i"fl‘i'll“ J‘tl{mH H hﬁ}‘ (%%MWW&M%NWMM»WW

A A AR AW IAA Ao AR A A A AN A AL U e AN A AN A WA A

1 12 hrs i ' ‘
— { FIGURE 10 100 ygals



57

112 hrs o .
y l FIGURE 11 70 ygals




Prediction error  traces of both
deglitched high passed and  band passed
predicted - records. . The areas of
unprédictability have been largely eliminated

by the deglitching process.
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E' = E/W.L.
E = envelope of the process

H.L. = some predetermined water level parameter.

In this case, the water level was not constant but' was
weighted exponentially at the beginning of the record so as
to correspond’ to the high signal amplitude in this section of
the data. If-any data fell above the water level, the.
function E' was set equal to E/W.L. If-any data value fell
below the water level, the function E' was set equal to

1.0, 1i.e.

B

E' = E/%.L. if E' > 1.0-

The record ‘was then divided by (E'j2 and the reduction in

glitch amplitude was very successful (Figure #14). There is

also a moticeable drop in the noise content in the frequency

domain (see Chapter 1IV).

5. PONER SPECTRAL ANALYSIS

A, Peridogram and MEM Spectra

In the calculation of power spectra for this prcject,
both conventional and MEM spectra were used, In all cases,

the periocdograms were were not smoothed. The periodogram was



Deglitched high passed predicted record.
Deglitching was accomplished by dividing the
record by ‘the square of its envelope. The
amplitudes of the glitches have been greatly
reduced, but the frequency content of the

glitches is still evident.
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extremely useful in helping to determine the optimum order of
the prediction error filter needed in the calculaticn of the
MEM spectra, as it gave prior knouledge'of the result. In
almost all cases, the MEM spectra for each free oscillation
mode were calculated several times using different filtei
orders and data lengths. In most cases the FPE ‘gave no

realistic indication of the filter order to be used.

B. Complex Demodulation

In.the analysis of the spectra of individual free
oscillation modes, a technique known as complex demodulation
Was used., This method involves a shifting of the frequency of
interest down to 'w= 0', then low pass filtering the data,
and finally resampling the data at a coarser-interval; This
method is particularly useful when calculating MEM spectra,
as fewer points are used in the calculation of the filter

coefficients, Two sources of error are thus eliminated:

1. Roundoff errors leading to inaccuracies particularly

with harmonic ternms.
2. oOrder 'of magnitude differences between the power of
different frequency components which results in

numerical instabilities (Ulrych and Bishop 1975).

The technique of complex demodulation is expressed



65

schematically below.
Suppose a time series x(t) is comprised of ‘two frequency

bands, and it is necessary that peak 'A!' be isoclated.

0 8
MM A\
~w ~ wp-wp wzo Wa Wg +w

The complex time series C(t) = (x(t),1i0) ‘is multiplied by
the factor exp(-iw,nat), where wy,is the angular frequency
of peak- *A' --and At is the sampling interval. This

multiplication shifts -peak 'A' to w=0, and the negative

peak 'A' to W= -2W,.
B 8
/P\A\
T ‘aw;‘ w=0 w

The data can then be low pass filtered sc as to only retain

the frequency band around w= 0,

A

N

-w , w0 s

Resampling in the time domain can now be performed with no

aliasing, and a stable MEM spectrum can be calculated for the
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freguéncy compcnent cf interest.

This above operation can be expressed mathematically.
Childers and Pao (1972) show that if a time series consists

of a set of transient harmonics

£(t) = [e~ " TVZ sin we(t-T).]

e—¢t7)Y¢ = transient decay factor

then nultiplying f(t) by the demodulation factor e=(Wo €t
gives '
N ' . .
f(t) = { e¢ 73/ /21 [etWolt-T) - e~Wo ( €73 je— (wsty

i

et N/ts2i [e (WoT o o= (3Wotg Con] .
This new series- f(t)  has a 2 w,frequency component which
can be filtered out to leave

~J

f (t) ‘= (e-(":T )/‘V /21) | {e— L'U)aT}
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1. EREF QOSCILLATICN MODE EREQUENCIES

The deglitched and undeglitched high pass filtered data
sets were used in the examination of free oscililation
multiplets and the associated splitting parameters.
Periodogram and MEM spectra wefe calculated using various
data lengths .and filter orders.

The values for the 'splitting parameter 131 yere
calculated using the first order splitting approximation

given by Backus and Gilbert (1961), where

wm= W, + mﬁﬁ\
Ww= split peak frequency
Wo= centre peak freguency .

m = splitting order numker

IO\
]

‘splitting parameter

N.= rotation rate of the earth

The following sections detail the measured freguency values

- and calculated splitting parameters for the fundamental
sphercidal modes 9%\, oS3 9 oSyr oSs,'and oS, » .Comparisons are
also made betweern the-spectra for undeglitched, deglitched,
undemodulated, and unenhanced data sets. -Remarks-are alsc

made about the effect of varying the filter order for
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calculation of MEM spectra, and the higher resolutiocn
capabiiity of MEN spectra as ccmpared to pericdogram spectra.
In all cases, the power spectra shown were calculated from
the complex demodulated data sets.

A. o _s. Eggg

2

The periodogram spectra for the undeglitched and
deglitched records are shown in Figure -15a and Figure 15b.
The noise levels are indicated, and the decrease in noise
power was calculated to be S db. For the undeglitched
spectrum (Pigure 15a)-it is only possible to identify the #1
peaks, -whereas the deglitched spectrun {(Figure 15b) shows the
+1 peaks ‘as well as the +2 peak.

Figure 15c-is the periodogram power of the unenhanced
(not predicted) high pass filtered record (Figure 1). This
spectrum shows-lower signal tc noise levels than 15a, as a
result of information loss at the beginning of the record.
The advantage of predictive filtering in the analysis of the
record can be seen.

Figure 154 is shown just as a check of the complex
demodulation~techniqhe.-For é-periodogram there should be no
difference between ihe spectrum calculated for the
demodulated data and the one calculated for the undemodulated
data., If Figures 15a and 154 are compared, this equivalence
can be seen, Figures 15e¢-and 15f show MEM spectra for the

deglitched record with orders of 63 and 150 respectively. The
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greater detail in 15f is the result of choosing a higher
- filter order. A possible -2 peak has alsc been identified on
this plot. Figures 15e¢ and 15f show .considerably less noise,
and better resolved peaks than Figure 15g, which is the MEM
spectrun (order=110) for the undéglitched data set.
Interestingly enough, the MEN spectra, Figure 15h
{(order=45), and Figuie'1Si (order=55), for the first 1200
points of the record, seem to show both the $1 and :2 peaks,
whereas the corresponding periodogram (Figure' 153j) shows only
the +1 peaks. 'This is a good example of the increased
resolution capability of ‘the MEM spéctral estimation method.
For the -osa-mode, the 'm=0' peak cannot be observed, as it
corresponds to-a nodal point located at Los Angeles., -
Therefore, the +1, and %2 peaks are all that will be observed
in this record. The frequency of the '0' peak is calculated
as the average of the &1 peaks. Table 1 details the
frequéncies observed for the _S pode.

o7

TABLE #1

Periodogram 5320 -Points Undeglitched 13a
frea. fcy/br) 22

01,114 £ .00
-1 1.097 ¢ .001 432 ¢+ ,007




Periodogram 5320 Bgcints
freg. (cyzbr) -
+2 1.159 ¢+ .002
+1 1.129 + .001
0:1.114 ¢+ .001
-1 1.099 #

MEM order=63 5320 Points
freg. {cy/hr) -

+2 1.158 ¢+ .002
+1 1.130 ¢ .001
0 1.115 ¢ .001
-1 1.099 ¢ .001

MEM order=150 5320 Points
- freg. {cy/hr)

+2 1.157 2,002
+1 1,130 ¢ .001

0 1.115 ¢ .001
-1 1.099 + .001

MEM order=110 5320 Points
fregqg. (cyzbhr)
+2 1.159 + .001
+1 1,130 ¢+ .001
0 1.114 ¢ .001
-1 1.098 &+ .001

MEM order=45 1200 Points
freg. {cy/hr)

+1 1,129 ¢ .002
0 1.115 ¢ .001
-1 1,100 ¢ .001
-2 1.073 ¢ .,002

]

W
W
o
[FITS
.

&
S
oy

.384 & .007

.360 £ .007

.384 & ,007

Deglitched

15f£

5 .

.504 ¢+ .008
«360 %+ .007

.384 & .007
<492 ¢+ .008

.528 ¢+ .005
«360 ¢ .007

.408 ¢ .007

Indeglitched

15h

&

«588 ¢+ .008
336 £t .011

.007
- 008

.
W
<]
o

i+ M

70
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MEM order=55

1200 Points Undeglitched 153
freg. (cy/hr) - Pz
+#2 1.162 ¢+ .002 : “.564 ¢ .008
0:-1.117 ¢+ .001 :
-1 1.100 & .001 .360 ¢+ ,007
-2 1,078 & .002 L4ul ¢+ ,008
Periodogram  1200-Pecints - Undeglitched 133
freg. (cy/hr) ' . 8 '
+1 1.131 &+ .001 ' .384 &+ .007
0 1.115 ¢ .001
-1 1.099 + .002 - .384 ¢ .01
Average Values frop MEM spectra
freg. {cyzhrl) g_ ,
+2 1.160 '+ .003 .540 1+ .035
+1 1.131 ¢+ .002 - «374 + .046
-1 1.099 &+ .001 .379 ¢+ .020

.003 .480 + .032

Average é? overall = ,439 ¢+ .081

The errors given for the average values are standard
deviations.

Gilbert and Backus{1965) gave a value of 5.116 cycles
per hour for the fieguency cf -the -Osa mode, -and a value of
0.397 for the splitting parameter. Derr- (1969) gave values of
i.114 cycles ‘per hour and 0.397. These compare tc the average
values of 1.115 cycles per hour and 0.439 obtained in this
project. However, the values for ' 41 that were calculated
forceach'peék:were nct constant. As Higgins and Miller (1972)
noted, there appears-to be a dependence:of the splitting'

parameter '4 ' on the splitting order number 'm'. The latter

¢
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authors gave values for v 41 of 0,408, 0.410, and 0.522 for
the -1, +1, and +2 peaks, which compare reasonably well to

the values of 0.379, 0.374, and 0.540 obtained here.

B. S_ mode

O F 3y ===

The periodogram power spectra. for the undeglitched and
deglitched high passed records are shown in Figures 16a and
16b. As observed for the- oS3 mode, there is -a very
noticeable reduction in the noise content for the deglitched
record, Figure 16c is the MEM spectrum  {order=130) for the
undeglitched data set, and should be compared to Figures 164,
16e, and 16f, which are the MEM spectra .for the corresponding
deglitched data (orders 70, 130, and 150). The effect of
varying the length of the calculated prediction operator can
be seen ‘in these 1a$t three figqures, where the spectral
resolution increases as the order of the filter increases.
However, going - to too high an crder will result in an
unstable spectrum. This is starting to happen with the 150
point MEM spectrum, as the noise is beginning to take on a
very spiky appearance.

Deglitching the record by dividing by the square of the
envelope is demonstrated in the next two figures, 16g and
16h, Fiqure 16g shows the periodogram power of 3000 points of
undeglitched data, and 16h shows the periodogram power fcr

the ‘deglitched 3000 point segment, There is a noticeable

reduction in the noise content using this method of remocving



the glitches, but it is not as effective as the predictive

method of deglitching.
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By far, ‘the best spectrum of the 453 mode. is displayed

in Figure 16f;, which shows the splitting of the major peak

into +1, +2, and a possible -3 peak. Table #2 details some of

the observed frequency multiplets.

TABLE #2
Periodogram 5320 -Boints Deglitched 16b
freg. (cyshr) £
+2 1.703 ¢+ .001 .204 + .005
+1 1,695 ¢ .001 .216 % .007
0 1.686 ¢+ .001 :
-1 1.680 ¢+ .001 <144 ¢+ ,007
*

MEM order=130 5320 Points Deglitched 16¢

freg. (fcy/kr) 4
+2 1,704 ¢+ .001 ' +216 t .005
+1 1.694 ¢ .001 .192 + .007
0-1.685 + .001
MEM order=70 5320 Ecints Deglitched 164
freg. A{cy/hr) 2
+2 1.705 & .001 +228 + .005
0 1.687 + .001
-1 1.682 + .001 .096 & .007

-2 1.669 ¢+ .001 «204 ¢ .005



MEM order=130 5320 Points Deglitched 16e

fregq. cyzhr) B
+2 1.704 % .001 . 4216 ¢ .005
+1 1.693 &+ .001 .168 + .007
01.686 & .001
-1 1.680 ¢ .001 L144 ¢ 007
-2 1.670 ¢ .001 .192 ¢ .005
-3 1.665 ¢ .001 © .168 + 004
MEM order=150- 5320 Points Deglitched 156f
freg. {cy/hr) 2
+2 1,704 &+ .001 .216 ¢ .005
+1 1.694 + .001 .192 ¢+ .007
0 1.686 + .001 -
-1 1.681 ¢ .001 +120 + .007
-2 1.671 ¢+ .00 .180 + .005
-3 1.665 ¢+ .001 .168 + .004
Periodogranm 5320 Points - Undeglitched 16g
freg. {cy/hr) | _B_
+2 1.705 + .001 ' .228 ¢+ .005
+1 1.694 + .001 .168 + .007
0 1.687 ¢ .001 '
-1 1.682 ¢+ .001 - .096 + .007
-2 1.673 ¢+ .001 .156 + .005
-3 1.667 + .002 .152 + 006
Average Values from MEM spectra
freg. {cy/hr) L
+2 1.704 & .001 2220 %4007
+1 1.693 + .001 - +168 + .033
0 1.686 + .001
-1 1.681 ¢ ,001 .126 + .024
-2 1.669 ¢+ .002 .201 ¢+ .020
-3 1.665 + ,001 .168 ¢ ,009

Average g overall = ,177 + .040

Gilbert ‘and Backus(1965) gave a value of 1.688 cycles

per hour for the frequency of OS3 and a value of .1839 for
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the splitting parameter. Derr (1969) gave values of 1.687
cycles per hour and .187. These compare with the average
values of 1.686 and .177 obtained in this project. A
dependence of ' /A on 'm' is again observed.

C. mode

o§¥

The periodogram power spectra for the undeglitched and
deglitched high passed record are shown. in Figures 17a and
17b. Splitting can be observed in both, and although
identification of the number of the split peaks is difficult,
a fairly good explanation of the peaks has been made. Figure
17c is the periodogram spectrum of the unenhanced data, and
if this is compared with Fiqure 17a, the advantage of
extending the data set before tapering can be seen.

Figures 174 and 17¢ are MEM spectra of the ‘undeglitched
{order=130) and :the deglitched (order=150) records.
Deglitching by dividing by the square of the envelope of the’
record is illustrated in Figures 17f and 17g, where 17f is
the periodogram power cf 3000 points of undeglitched data,
and 179 is the power of the'co:responding deglitched data.
There is however, very little difference between these two
spectra, indicating that this method of removing the noise
glitches is frequency dependent. Table #3 gives values for

some. of the observed frequency splits. .



Periodogram 5320 PRoints Deglitched 17b

freg. (cysbhr) -
+4 2,359 ¢ ,002 ©.186 % .005
+2 2.343 + .002 - .180 + .008
+1 2.335 ¢+ .001 .168 + ..007
0 2.328 &+ .001
-1 2.321 + .001 .168 + .007
+

MEM order=130 5320 pPoints OUndeglitched 174

freg. (cyshz) _B_
+4 2.359 ¢+ .001 .186 ¢+ .003
+2 2,341 2 .001 .156 + .005
+1 2.335 + .001 .168 + .007
0 2.328 ¢+ .001 :
-1 2.321 £ .001 +168 + .007

MEM order=150 5320 Points Deglitched 17e

freg. (cyshr) 8
+4 2.359 & .001 .186 £ .003
+2 2.34%1 £ .00 «156 ¢+ .005
+1 2.333 & 001 «120 -+ .007

0 2.328 & .001

-1 2.321 £ .001 .168 £ 007
Average Values from MEM spectra

freg. fcy/hr) L
+4 2,359 &+ .001 - +186 £ .003
+2 2,347 + ,001 .156 + .005
+1 2.334 + ,001 «144 = .034
-1 2.321 £ .001 .168 £+ .007
Average 4 overall = .161 ¢ 0,021, .

The value for the S, centre frequehcy given by .

o >
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FIGURE 17
a. Periodogranm 5320 points Uhdeglitched
b. Pe:iodogram © 5320 points Deglitched
c., Periodogranm 5320 points Unenhanced

d. - MEM order=130 5320 points Undeglitched
e, MEM order=150 5320 points Deglitched
f. Periocdogranm 3000 points Undeglitched

g. Periodogranm 3000 points Deglitched
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Gilbert and Backus (1965) is 2.335 cycles per hour and Derrc
{1969) gave a value cf 2.327 cycles per hour. Derr also gave
a value of '.103 for the splitting parameter which is smaller

than the value of .161 obtained here.

5 Dode

D. 8,
The periodogram power spectra for the undeglitched and

deglitched high passed data are .shown in Figures 18a and 18b.
There is a noticeable improvement in the-signallto ncise
ratio, but identification of individual peaks remains a
difficult matter. In all the spectra observed, two major
symmetrical~splits sere observed, and it is believed that
these are blended +1, +2, +3 and -1, -2, and -3 spectral
lines, which are nct properly resolved. Therefore, for the
oS mode, only the *m=0' frequency was determined, and it
was taken as ‘the midpoint of the twc major peaks on each
spectrum examined.

Figure 18c is the MEM (order=130) spectrum of the
undeglitched 'data set and Figure 18d .shows the corresponding
MEM (crder=130) spectrum for the deglitched data. The noise
reduction due to deglitching is evident - in the MEMN spectra as
weli as the periodograms. Figure 18e is the periodogram power
for a 760 point undeglitched data segment. The observed

frequencies for the o5y mode are listed in Table #4.
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freg. (cyshr)
0-3.028 ¢+ .002

Periodogran 5320 Pgcints Undeglitched 18a

0 3.027 # .002

MEM order=130 5320 points Undeglitched 18¢

freg. {cyzhr)

MEM order=130 5320 Points Deglitched 18d
freg., {cysbhr)
0 3.028 + .002
Periodogram 160 Points Undeglitched 18e
freg. {cy/hr)

0 3.028 ¢+ .002

Average Values from MEM spectra
freg. (cyshr)

0 3.029 ¢ .002

This average value for the centre frequency of the
oSy mode compares with that of 3.034 cycles per hour given

by Gilbert and Backus (1965) and 3.927 cycles per hour given

by Derr (1969).
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FIGURE 18 |
a. Periodcgran 5320 points Undeglitched
b. Periodogran 5320 points Deglitched
C. HMEM order=130 5320 pcints Undeglitched
d. MEH.order=130,-5320'points Deglitched

e. Periodogran 760 pcints Undeglitched
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Figures '19a and 19b show the periodcgram power spectra
of the undeglitched and deglitched high passed data. The
noise reduction due to removing the glitches is not as
noticeable -as for other free oscillation modes. There is some
evidence for ‘splitting in the deglitched spectrum, but. the
splitting number cannot be determined. Figures 19¢c and 194
are MEM power spectra for the undeglitched (order=110) and
deglitched (order=55) records. ‘The high resolution capability
of MEM is illustrated in Figqures 19e and 19f. The first is a
plot of the periodogram power of a 760 point undeglitched
data segment, and the second is an MEM - (order=10) spectrun
for the same -data segment. The increased resolution is quite
obvious. Table #5 gives the observed values for

the S, center freguency.

320 Points Undeglitched

foud
ho
I

0 3.739 + .004

Periodogram 5320 Points Deglitched 19b
freg. {cy/hr) '

0 3.739 + .004
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MEM order=110 5320 Points Undeglitched 193¢
freg. (cyszhr)

03,740 ¢ .001

MEM order=55 5
freq. fcyshr)

0 3.740 £ .001

320 Points Deglitched 194

Periodogram 160 Points Undeglitched 13¢-
freg, {cys/bhr) |

0 3.738 ¢+ .003

MES order=10 760 Points Undeglitched  13f
freg. (cyshr) -

0-3.743 ¢ .001

rom MEM spectra

This average value compares with the value of 3.749
cycles per hour given by Gilbert and Backus (1965) and 3.735

cycles per hour given by Derr (1969).

2. CORE UNDERTONES

A further goal of this thesis was to see if the
deglitching of the band passed Alaska record could result in
the ‘identification of any free oscillation's of the earth's
inner core. The period range studied was restricted to
between 0.833 and 8.333 hours. 8.333 hour§ was chosen as the

lower cutoff period, as it was felt that the cverpowering
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presence of the diurnal and the semidiurral tides would
contaminate the record at longer periods. .

The predicted interpolated record was bandpassed and
conventional, unsmoothed periodogram power spectra were
calculated both before and after removing the glitches.
Figures 20 and 21 show the spectra for the undeglitched and
deglitched records respectively. The location of the

S mnode is marked at the upper end of the frequency scale.
Removing the noise bursts in the time domain resulted in an
amazing reduction in the noise power in the freguency domain
especially, at the lower frequencies. There are noticeable
peaks in both spectra, but they become. 'much more -obvious in
the spectrum of the deglitched record. The periods of these
unexpected peaks  are exact integer multiples of~the.hasic
lunar and solar tide, and extend up to about 0.65 cycles per
hour.

An initial reaction was that these peaks were some tidal
overtone effect, such as shallcw water tides found in
harbours and basins, However, it is Qery-doubtful that these
high order ocean tides effects will be detected by a land
based gravimeter. Because of the high-amplitudes of these
peaks relative to: 0Sg it is even more unlikely that they
represent-core undertone oscillations._The most reasonable
explanation is that they are due to either instrument non-
linearities, ‘or barometric pressure effects, such as those
reported by Warburton et al. (1975).

The noise power for the undeglitched spectrum goes from



Periocdogram power spectra of both
undeglitched (Figure 20) and deglitched
(Figure 21) band pass filtered predicted
record.  ‘The filter cutoffs are at 0.12 and
1.20 cycles per hour, The locations of the

oS3 free - oscillation mode and the

ter-diurnal tide (M3) are marked.
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40.0 x 106 at '.125 Hz. to 5 x 106 at .725 Hz. The noise power
for the deglitcﬁed spectrum goes from 12 x 106 at .125 Hz. to
2 x 106 at .725 Hz. This drop in noise power is 5.2 db. at

. 125 Hz. and 4.0 db, at .725 Hz..
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A tidal gravimeter recording from 'the 1964 Alaska

earthquake was subjected to various data processing

techniques in an attempt to improve the guality of -the

record. An effort was also made to try and locate core

undertone oscillations. The findings of this project can be

summparized as follows:

1.

2.

3.

A ‘time adaptive prediction error trace provides a useful
tocl for identifying and locating ncise bursts in time

series

The method of removing the unwanted noise by predictive

~deglitching, results in an excellent improvement cf the

signal to noise ratio of this data set..

The maximum entropy methqd of spectal estimation gives
some excellent results for the power spectra of various
free oscillaticﬁ modes, Unfortunately, estimation of the
length of the filter operator‘requiged in the spectral
calculation remains a difficultvtask..Prior kncwledge of
the spectrum through a conventional spectral technigque,
is very-useful in aiding in the determination of the

optimum filter crder.



M

In several‘instances,‘the.méximhm entropy methcd of
spectral ‘estimation gave good results for the splitting
of various free oscillation modes., Certainly. more split
peaks were observed using MEM as opposed to the
periodogram approach. The central frequencies for the
oS, ¢ 0537 oSps oS5, and the .S, modes are 1.115, 1.686,
2.328, 3.029, and 3.741 cycles per hour respectively. .

The 'splitting parameters for the ,S;, ,S;, and 5 modes

are .439, .177, and .161.

No evidence for core undertones was discovered during
the analysis of the band pass filtered record. The-
frequency band bélow 0.12 cycles per hour is strongly .
dominated by tidal frequencies, and the band from 0.12
to 0.65 cycles per hour .is dominated by ‘either
instrument non-linearities or barometric pressure

effects.
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APPENDIX 1

Fortran source listing of the time adaptive maximum

entropy deconvolution schene.
|
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SUBROUTINE BAFL({LOUT,CXyIFLGAP,LCNsNHARMyISTRTZTAU,XTAU,NZERO)

------------------ SUBROUTINE BAFL-=-=-==—=——==——=———
THE BURG ADAPTIVE FILTER LADDER: AN ADAPTIVE OR TIME
VARYING FIXED LEAD PREDICTICN ERRCR PROCESSOR
ADJUSTMENT OF EACH REFLECTION COEFFICIENT IS MADE EVERY
JUMP STATE ATTEMPTING TO MINIMIZE THE STAGE OUTPUT POWER
INPUTS
X{LX)=INITIAL DATA
LCN=LAST NON-ZERQ REFLECTION COEFF.
IFLGAP=NUMBER JF GAPS BETWEEN FILTER COEFFICIENTS
SETTING IFLGAP=1 DOES NOT GAP THE SPECTRUM AND TRIES
TO OPERATE ON THE ENTIRE SPECTRUM.
NWARM=CURATION OF STATIONARY CYCLE
ISTRT=START CF STATICNARY GATE
ZTAU=TEMPORAL RELAXATICON FACTOR
COMMON /BLK3/X(1774)
' XTAU=SPATIAL RELAXATICN FACTOR
QUTPUTS

X{LOLT)=FORWARD ERRCR PREDICTION TRACE
C(LCN)=FORWARD STATE VECTOR

B{LCN)=BACKWARD STATE VECTOR

C(LCN)=REFLECTION COEFFo AT EACH STAGE
CX=REFLECTION COEFF, INTEGRATED IN SPACE AND TIME
DEN(LCN) = STAGE AUTCPOWER

NUM(LCN) = STAGE CROSSPQOWER

CALLING BAFL FIRST SETS UP THE LOOPING AND PASSING
ARRAYS FOR THE PARTICULAR PROBLEM AS SPECIFIED BY
LCNEIFLGAP. THEN IT COMPUTES A SHORT(LENGTH=NWARM) ESTIMATE
OF THE REFLECTICON COEFF, SERIES IN ORDER TO START THE
ADAPTION OUT WITH SOME REASONABLE NUMBERS
THEN IT LOADS UP THE CX ARRAY WITH THE INITIAL VALUES
AND PASSES INTO ENTRY *'BAFLGO!
THE USUAL ENTRY IS BAFLGO WHICH FIRST INITIALIZES THE
BACKWARD ARRAY THEN PASSES TO THE MAIN ROUTINE
THE CX SERIES IS UPDATED EVERY IFLGAP DATA POINTS AND IN THE
INTERMECIATE STEPS THE OUTPUT ARE INTERPOLATED OF PROCESSED
AS THOUGH THE RoCe WEZRE STATIONARY
WRITTEN BY JePo BURG

REAL NUM(200),DEN(200)+B(200),F(200),C(200),EM{20C0),

*EP(200C) » CX{LCN,LOUT),A{200) ,

DATA AyBsC/600%00/

FTEST=1.

LCNP1=LCN+1

LCNP2=LCN+2

IFGM1=IFLGAP~-1

LBSP=LOUT~-IFLGAP

NZERP1=NZERC+1

NEND=LCN-NZERP1
- DO 80 K=LBSP,LOUT

80 EP(K) = Q.

s NeYa NN ReNaNalaXaXsaTakaXakeiakake kakaXa kel COPONONOO0000
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Cc BEGIN STATIONARY WARMUP

D0 10 I=1,NWARM
EM{T) = X(I*IFLGAP+ISTRT)
10 EP(I) = X{I*IFLGAP+ISTRT)
C
"DO 11 J=2,LCNP1
DEN(J) = 0.
NUM(J) = 0»
DO 12 I=JsNWARM
"DEN(J) = DEN(JY+EP(IIXREP(I)I+EM(I-J+1I*EMITI-J+1)

12 NUM(J) NUM{J)+EP (I )*EM{I-U+1)
DIV=NWARM=-J+1
NUM{J) = NLM(J)/DIV
DEN(J) = DEN(J)/DIV
ClJ)= -2 *NUMIJ)/DEN(J)
DO 11 I=JyNWARM
EPI=EP(I])
EP(1) = EPI4CLJI*EM(I-J+1)
KS=IFLGAP*LCN+1

11 EM(I-J+1) = EM(I- J+1)+C(J)*EPI
DO 8 J=1,4LCN

DO 8 K=1,4KS
8 CX(JyK) = C(J+1)
' DO 33 J=1,LCN
DEN(J) = DEN(J+1)
33 NUM(J) = NUM(J+1)
(o _ END WARM UP CYCLE
c - SET RELAXATION TIMES

DLX=EXP({~1o/XTAU])
DL=EXP({-1e/ZTAU)

DRX=1e-DLX
DR=1s~DL
c ' .
(-———eme——mmme e ==-USUAL ENTRY--—m——mem———m o —mm s e mm =
ENTRY BAFLCO
c :
c INITIALIZE BACKWARD VECTOR
B{l) = X{KS-IFLGAP)
A{l)=1.

DO 1000 J=2,LCN
BlJ) = X(KS-J*IFLGAP)
A(J) = 0.0
DO 1000 I=2,J
A(I) = A(I)+CX(J,KSI*A(J- I+1)
1000 B{J) = BIJI+ALTI)*X(KS+({I-J+1)*IFLGAP)

C—————mmmm— REGIN MAIN LOCP--=====—em—m————
DO 5000 K= KSyLDUT IFLGAP :
Z=X{K)

DO 1010 J=1,NZERP1

1010 F(J) =12
DO 2000 J=NZERP1,LCN
DEN(J)} = (F(J)**2+B(J)**2)*DR+DEN(J)*DL



2000

3000

6000

70C0

.8000

8050
9000
S050

NUM(J) = F{J)*B(J)*DR+NUM(J)*DL

CIF(FTESTelLEalel) CX(J9K)==2.%NUM(J)/DEN(J)

CX(JsK) = =2o%¥DRXXNUM{J)/DEN(J)+CX{JK)*DLX
FJ#1) = FLJII+CX(JK)*B{J)
X{K) = F{LCNP1)

DC 3000 JR=1,NEND
J=LCN=-JR
BlJ+1)=8(J)+CX(JyK)%F{J)
IFI{NZERO.EQ.O0) GO TQ 5000
DO 4000 JR=1,NZERO
J=NZERP1-JR

B{J+1) = B(J)

B(l)=Z

-------------- END OF MAIN LOQP=====—===c-oe—e

/

NOW GO BACK TO FILL IN THE GAPS
IF(IFLGAP.EQel) GO TO 9050
DO 9000 L=1,IFGM1
KSTART=KS+L
DO 9000 K=KSTART,LCUT,IFLGAP
KC=K-L .
2=X{K)}

DO 6000 J=1,NZERP1

FlJ) = 2

DO 7000 J=NZERP1,LCN

FLJ+1) = FLJI+CX{IL,KCI%B{J)

“X{K) = F(LCNP1)
- DO 8000 JR=1,NEND

J=LCN-JR

B{J+1) = BIJI+CX{J,KCI*F{J)
IF{NZEROsEC.C) GC. TO 9000
DO 8050 JR=1,NZERD
J=NZERFP1-JR

B{J+1) = B(J)

B(1) = 2
FTEST=FTEST+1.
RETURN

END
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