AN AUTOMATED SAMPLE LINE FOR
THE PREPARATION OF 0'8/0'¢ ISOTOPE ANALYSES

FROM WATER SAMPLES
by

PETER WHAITE
B.Eng. (Electrical)

The University of New South Wales, 1973

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department
of

Geophysics and Astronomy

We accept this thesis as conforming to

the required standard.

The University of British Columbia

© September, 1982

In presenting this thesis in partial fulfilment of the
requirements for an advanced degfee at the University

of British Columbia, I agree that the Library shall make
it freely available for reference and study. I further
agree that permission for extensive copying of this thesis
for SCholarly purposes may be granted by the head of my
department or by his or her representatives. It is
understood that copying or publication of this thesis

for financial gain shall not be allowed without my written

permission.

Department of _ (CEopPursics & QSHZGN:)‘M&’

The University of British Columbia
1956 Main Mall

Vancouver, Canada

V6T 1Y3:

pate ('H C)C,thf}t'\il VYR

DE-6 (3/81)

i
Abstract

An automated sample preparation line has been developed to
equilibrate water samples for determination of their oxygen
isotope ratio. Preliminary estimates put the repeatability of
the sample preparation methods at approximately 0.04°/oo, a
figure that 'compares very favourably with the present state of

the art.
A noteworthy feature of our sample iine, is that
température control is unnecessary during sample equilibration.
Errors arising from non-constant temperature conditions are

prevented by simultaneously saving all of the equilibrated gas

samples in separate reservoirs when the equilibration reaction
is complete.

Several other 1innovations 1in sample rack design are also
described. These are: a circular rack geometry; an improved,
inexpensive, magnetic stirrer design to agitate water samples; a
Peltier cooling device to trap water vapour; and the use of
standard Pyrex test tubes as equilibration flasks.

The preparation line 1is highly modular. Up to sixteen
racks, each capable of preparing sixteen samples, can be
included_in the system. Racks may be removed, repaired or
modified, and replaced, without disturbing the operation of any
other racks in the system. The current configuration 1is a
minimum system with only one rack.

The programming concepts used to control operation of the
system are new to this application, and hence are a significant
contribution. A multi-tasking executive allocates resources
amongst the racks on a priority basis. By wusing linked 1list

structures, the operating system maximises resource and

iti
processor utilisation, but does not compromise flexibiiity and
modularity. The 6perator_can submit any rack for preparation at
any time, and»the system could, with sixteen racks, prepare a
full load of 256 samples in a day. |
A simple handshaking interface has been provided to control
the release of samples for analysis. This should make it
possible to connect the sample line +to any mass spectrometer
capable of the automated analysis of carbon dioxide. The user
controls sample line operation by commands entered on a teletype
keyboard. The command language is deliberately unstructured, and
users can type ih "natural” English sentences if they wish. Aall
system operations and user sentences are printed on the teletype
to provide a permanent record for later scrutiny.
Finally a manual command repertoire has been provided. It
allows the operator compiete control over any rack. @ All
solenoids, registers, and control lines, can be manipulated on

an individual basis from the teletype keyboard.

CHAPTER 1I.

CHAPTER 11,

2.1

Abstract

TABLE OF CONTENTS

Table of Contentsiieiiienrinnertcecsnnnnnns .
List Of FiQUIES tuveeveecsnsvossosssossnssosanssnscsasanns
List Of Programs ...ieeeescsesessscsacencnsosscsncnanes
List of Tables tivieiieeieriestocessassssosnsoanansass
List of EQUAtIONS t.ivireveivrnessosensosessnssocsnsoas
Acknowledgementseeececceossocscosnsscssosssssacnss

INTRODUCTION ® & & 0 8 2 5 0 0 B S 0 B S 0B B0

“ o o 0

® 6 6 0 & 0 4 5 5 8 8 0 ¢ O 0B SO B SO L SO L LS P P O0 O LS E SN e

Contributions 0f this ThesSisS ..viveesssocsosrocoscssos

The Measurement of the Oxygen Isotope Ratio in Water
Terms used in Isotope ANAlYSiS (veeeerceesoencas
Preparaton of Water Samplescciieevecosecnss

1.

o1
2
3
4
.5
.6

— e -
I\)NNNI\)N

Probl
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5

Analysis of Samples ® & & & 0 8 5 0 5 0 S S 8 s e a0

Collection of Data ® & & ® & & & 0 & " 6 » S P e s S e s e e
Data Reduction Methods ...eeveeeeeecocroncoeeons
Precision Oof AnalysSisS .iuiieeeenneeesncscsnsncnns

roblems in Sample Preparationc..... .
The Température Sensitivity of Equilibration .

Sample Fractionation During Pump Down

Equilibration Time ..iiiviirernrnnaens

Contamination and MiXing ..ecececeeees
Water AJSOrpPtion ..ie.eeecencenceonoson

Issues in AUtOMALION .t .iieeeeseeeososancnoses

1.4.1
1.4.2

Advantages of Automationc0000..
The Disadvantages.of Automation

Organisation .uveieeeeeeeeeeeeeenoennnnnnnass

2.1.1
.2
3
.4
5

SE ST ST SENESENNY SN SR
WO WA —

NN NN A
* L]
. .

Innovations in Rack Construction
Sample Preparation - Sample Racks
The Mass Spectrometer Lineecee..
General Services - The Main Line
INterconnNecCtionNsS .uveeeeeocesnnss

Sample RaAcCks ...viereiiinrtnocnnennnnnnns

Rack OVErVIeWeiieveresasnccnnanns
Rack Organisation ...eieecececevenoses
The Temperature .Problemceveeeee
Using Sample ReSErVOIrS ...eeeeeeseess
Re-equilibration in the Reservoirs ...

INNOVATIONS 1IN THE MECHANICAL DESIGN

" 68 088 080 00

ii
iv
ix

X
x1i

xii

xiii

e o s 0

L)

The Sample Flask Assembly ...ciceveveecees
The Reservoirs - Construction and Volume .
Sample AQitation .t..eseeeesosensascssaossoscnnnnes
The Magnetic Stirrersiieeeeecescoccosenooses

LI Y A

o o o @

e s s 00 0 o

e * 00 s 0

.
.

s o 0 8 0 0
.
.

e o o o

27

27
27
27
29
29
30

32
32
33
34
35

38
40
42
43

2.3 The Main LiINE .tuivieeieenseooseesnoeeossssosossassssnnses
2.3.1 The Main Line Manifold (ievieiinrenrenonccsannas
2.3.2 The Vacuum PUMD ..ccteeeecoeossocacsssocnsonansos
2.3.3 Pressure GAUQEeS .c.ceeerssssscsnconnsne s et e
2.3.4 The CO,; SUPPLY ttiteeerceeoosssoosonncsssnsssssns

2.4 The
2 4.
2.4.

Mass Spectrometer LiNE ...eeeescesssesessnsascsans
1The Gas Lines & & & & 5 5 0 & 8 & O P B S PO * e PO eSS E s S
2 A Peltier Cooled Vapour Trap «eoceeeceseceocenons

CHAPTER III. HARDWARE ORGANIZATION AND OPERATION

3.1 System Organization ...eeeeeeescscsesenss

S
.1. System BUSQS ® 0 0 060 00 0 0000000080000 00
[
1
i

System Memory Map .cseeeonossonoans
Modularity et ete ettt eanan

3.2 The Microprocessor (TM9980)veveeeens
3.3 Random Access Memory e i ieeeaea ceenn
3.4 EPROM MEMOLY +oveeessossonnnssnsossssssnsns
3.5 The System I/0 POrt ..veeeeesnecnocnnsens
3.6 The User I/O POIt tiveeeeeeeosncsoasnoons
3.7 The Serial Communication Port

3.8 Bus Expansion Interfaceceeeenccenns

e
1
2 System Modules cececctasaressanas ceses
3
4

® 06 0 0 s 0 0 e 0 0 0 0

e o 5 0 6 0 0 0 0 0 0 0

® 5 86 0 0 0 0 0 0 0 5

8 5 ¢ 5 00 0 0 0 00

3.9 The Analogue-to-Digital Converterceeeeeeess e

3.10 The CMOS EXDANSiONn BUS «ueervnsennnsenneennnnens ceees

3.10.1 Bus Interrupts ..ieeeeereanens ceeee

3.11 The Sample Rack Hardware e e .

.11.1 Rack Hardware Organisation
1.2 Rack Register Addressingeee..
1.3 The Rack Status Register
1.4 The Rack Control Register
1.5 The Solenoid Driver Registers

Master Control Boardeceececess
.1 Master Control FUNCLiONS ..veeveee

CHAPTER IV, THE OPERATING SYSTEM .,...¢teeeeee

4.1 SYSTEMOVERVIEW ® 8 & & 5 & 5 0 0 0 B PP B s e s

4.2 TMS9980 Software Techniques ...cieesvsees
4.2.1 Workspace Pointer (WP)ceveus

(3R ® s 0 8 00 0 0 0
LY e ® 0o 0 00 0 0 0
e 8 s 00 008 00 LY
¢ & 0 0 0 0 8 0 00 0 ¢
® ® 0 8 0 ¢ 00 008 00
® * 0 0 00 00 00 .

® 5 o0 000000 00

® o 86 6 086 00 0 08 s 0

4.2.2 The Program Counter (PC) ...t iivenrooncennsnsns
4.2.3 The Status Register (ST) ...cieiiecrnosonsssnnns
4.2.4 The Program State Vector (PSV)eeeeenneeeeeas

45
45
46
47
48

48
48
49
52
52
52
54
55
56
56
58
59
60
60
61
61
61

62
63

63
63
65
66
68
68

69
69

72
72

73
73
74
74
75

4.2.5 Context Switching

The Task Control Block (TCB)

------- o s 08 00 8

Linked LiStS tuiieeecrceressseocsocnsosososensnos
4.4,1 The Headpointer ...cicieveeecescsccaossosasans
4.4.2 The Forward POINtereeseceencecncncnss
4.4.3 Advantages of List Structures ...
4.4.4 List Operations

emory Managementcc000eececcnns
5.
5

The Free List (Q.FRE) . ceeen
.2 Allocating and De-allocating Memory

M e & ® o ¥ & 0 0 b
4.5.1 The Free List (Q.FRE) ..ceeceeeennce
4.

Tasks L 2N I ® & & & & & 5 0 @
Resident Task List (Q.TSK)

® 8 0 006 00 0 0 e s o s 800008 0

Accessing
4,6.1 The

e 5 2 5 8 0 00 08 00

tion of Tasks ceeeseenen
The Execution Queue (Q.XEC)
Dispatching or Allocation
De-allocation

xec

o o s 0 ® 8 5 0065 0000800 080

e
7 ceeseesens
.7 ceeeseeneone
7

E
4.
4
4

u
o1
.2
.3 ce s e et ne e e s st aenn e
Starting the System (STARTUP) .
4.8.1 Startup Procedure

4.8

»
L A A I R R B I A N A N

S % 0 6 8 6 5 0 9 00 080000800

4.9 Introducing New Tasks (RELINQ)
4,10 Inactivating Tasks for a Given Time
4,10.1 The Timer Queue (Q.TMR) ...
4.10.2 Setting the Alarm (WAIT)
4.10.3 The System Clock (SRVCLK)cvvveennnns
4.10.4 The Clock Update Task (TSKCUD) ...ivveave
Conditions . ch e e s e
The Error Queue (Q. ERR) ces
Getting on the Queue (WAIT. ERR)
Getting Off the Error Queue .

4.11 BError
401101
4.11.2
4.11.3

DR Y .

4,12 Resource Management cees e
4.12.1 Semaphores and the.Critical Section
4.12.2 Semaphore-Structure - the Semaphore Table

(SEMTAB) s e ve v nneeesnnanssnnnnens
.12.3 Reserving a Resource (RESERV)
4.12.4 Releasing a Resource (RELESE) .
4.12.5 Using RESERV and RELESE

® 6 8 6 0 2 8 06 0 0 0 8 ¢ 0 0808080060000

Waiting for Interrupts (WAIT.INT)

Servicing Interrupts

® ® 5 5 6 8 45 0 s PP B 0L LB E e s 0

Servicing CMOS Bus Interrupts (SRVBUS)

5 a0 00 00

Using the Analogue-to-Digital Converter
Changing Rack Registers P
4.17.1 The Rack Refresh Table (RCKTAB)
4.17.2 The LED Table (LEDTAB)
4.17.3 Refreshing the Racks (SRVDSP)

s 0 5 0 8500 00

. . e .

e s 000 00
® s 00 0 0
® o8 00 00
e o 0 00 00
e s 00 0
® o 0 08 0 00
o e 000 00

e ® e

e o e o

e e o o
* .

e e e o
)

vi

vit

4.18 FiniShing TaSkS (FINISH) -oo.o'loons.ooo.o..looocono..11'7

CHAPTER V. THE OPERATOR INTERFACE .cccesevoocooocnnsssseseesllB
5.1ADefinition UlI...0..".'...C..........O...C......'.'Q118
5.2 Ideas ..l‘.l.’.....'..l...'.......I....."..'..l..l....‘119
5.3 PracticalitiesI“.....l.l.I...l........Il..‘l.".l.119
5.4 Designing the Interfaceeiieeeeeeeeeenensansseceessl?0

5.4.1 Choosing Input and Output Deviceseeeeceeee..120

5.4.2 Developing a "Natural" Command Language122

5.4.3 Software Tools .'Q..-...0.....".;.'..'. ..I...l.126

5.5 The Manual and Command TasKksS .uveeeeeeeeseessoosceseansesl28B

CHAPTER VI. AUTOMATED SAMPLE PROCESSING METHODS131

6.1 The Rack Processing Task e, ceeea 131
6.1.1 Sample Preparation ...iceieeeeceeeoseecssscacancens 132
6.1.2 EQUILlibration ...ieieieeneeeeeeeeeeesooeesnnaseadal32
6.1.3 Sample Storage T IC K
6.1.4 Sample ANalySiS .tuteeeeereecrsesseoossocsnnonnans 134

6.2 The Pumping Algorithmc0000.. B, eesess135

6.3 Rack Errors .e.eeee.. st e s e e s et it et ee e ne e ceanae 136

CHAPTER VII. PRELIMINARY TESTS AND RESULTS .v¢eeeccocaasa ..138

7.1 Precision of Sample Preparationceeeee... ceeesesssa 138
7.1.1 Methods and Resultsveveecenn cee st eseean s ...138
7.1.2 Discussion of Results ces e eeeens ceeeesa139

7.2 Errors from Cross Contaminationo.. s e eressenenesldl

7.2.1 Methods and ReSULLS tvveeeeeeeeeeecnenecnnsanenssldl
7.2.2 Discussion Of RESULLS v vvveneeeesrosonosnansoessld3

APPENDIX I. CIRCIUT DESCRIPTION AND OPERATION chereenn 144

A1.1 The TMS9980 MiCroproCeSSOreeeeeess e n e creesa 144
Al.1.1 Microprocessor OperatiOn .t..eeeeeeeeeeeeeseesessldd

A1.2 Operation of the Analogue-to-Digital Converter146

A1.3 The CMOS BuS Interface ...ceeieceeeceeeeeecennnneeesessld8
~A1.3.1 CMOS BUS LINES .iviuceossoonoeeessessocesasasessl 48
A1.3.2 Level TransSlation t.uoeeeeeeeeeeeeeecoensnnasesaslB0
A1.3.3 Ready Handshaking ...ueeeeeerececeseoecancnnneeslbl
A1.3.4 Interrupt Line Debounce Circuitcveeveeeeso.153

A1.4 The Rack Interfaceiiiiiiiererernersceneenenssslbb
A1.4.1 The Rack Select Logic and Control Lines155

viii

A1.,4.2 Rack Status Register and Interrupt Generation ..156
A1.4.3 Rack Write Operations .ueeeeecececoseesossceasesssi58

A1.5 The Master Control BoOArdeseecescososasonccsscsssesslBdl

APPENDIX II. PROGRAM LISTING OF THE SAMPLE LINE OPERATING SYSTEM

oo.o-uoolooo.co.o-o-ooool-ooon.oooo-ocuo.oolotouo.-.000000-162

APPENDIX III. REFERENCES CONSULTED IN THIS THESIS164

NN NN —
* o e o

S

e WN=2BWN-OOTEWN O Ot W N — —

—_—

PN BB LWWWWWWN

—_

.2
.3
Al.4
A1.,5
Al1.6
At1.7
A1.8
A1.9

> >

LIST OF FIGURES

DEL Error Due to a Mismatch in Tubing Conductance ..
Mechanical Organisation of the Sample Line 31
The Sample Preparation Unitiieieeeeeceeencesoceses 36
The Sample Flask Assemblyceeiereeeneceeennnnnss
Reservoir Construction - ¥

Schematic Diagram showing Construction of the

X

e 19

. 40

Magnetic

tirrers LA B B I 2 A B B I A IR DN DN R I AT R R R DN RN RN TR B Y B I I I JEE I T T Y S TR T RN R Y 44
Peltier Cooled Vapour Trap Assembly ceesesiescesesesees 51

System Organisation ...iieeececeneennenes
Rack Register & Hardware Organisation .
Rack Register Addressingeeeeeeees
The Rack Status Registereceeee.s
The Rack CONtrol RegiStereeeeeeeesss
The Master Control and Status Registers
Context Switch using BLWP Instruction ..
A Simple List Structureceveeesones

Dispatching a Task for Executioneveeeeveeeeeass 90 °
An Example o0f Deadlock ..iviivinnreneeeneneeneenenns ...109
Results from Identical Gas SamPlesSeeeevenesensassl30
Results from Identical Water Samples ceresiaen . 140
Results of the Cross Contamination Testv.eveeee..143
Typical WRITE and READ cycle ceeernssan crsareenan 145
Simplified Schematic of ADC cetereernaen ve. 147

READY Handshaking Circuit e e e s e s ansenessenan 151 -
Handshaking Signals .t.eueeeeeeeeeeoeoeeeeaenensonnsns . 152
Bus Interrupt Line Debouncing ettt e e et 154
Rack Select LOGIC tivueeureeeeneeeoeonenseesasnssssesslBh
Rack Status and Interrupt Logic ..ceveveeenn s s .. 157
Rack Write LOQIC tivevevenrennennn e ee e ceeeen i....158
.160

.

6 6 5 8 8 0 0000000 53

B Y
P -1
B - Y,
P 1
A
N 4
P - 1.

Sample Request Interrupt Logicovee... ceeseens

LIST OF PROGRAMS

78
85
85
92
95
96
98

4.1 Pascal structure of a task control blockveveenennen
4.2 TCBGET - creates a TCB/workspace StructuUre
4.3 DISOLV - dissolves the TCB/workspace structure
4.3 RELINGQuishing the CPU B
4.4 Procedure to place TCB On timMEr QUEUE .+eeeeeeononsocsos
4.5 System clock service routine (SRVCLK) .v.veeeeeennnannn
4.6 The clock update task (TSKCUD) teveeeeeeneenesnanononas
4.6 Waiting for errors (WAIT.ERR) ..vuiveveeeoeeenesennanesallO
4.7 Using semaphore primitives to protect a Critical

SECELION titineeioennseocacsasasosasssosssosnsssnnsnnssssl03
4.8 Semaphore structure (SEMTAB)eeeeeeeeoconcnsnseassssl0B
4.8a Reserving resources (RESERV)iviveereeesoencesesnsssl06
4.9 Releasing resources (RELESE) ...vvevececnnssensoeneseesallB
4.10 Waiting for Interrupts (WAIT.INT) ...vereoerncncnnaeaslll

4.11 CMOS Bus interrupt service routine (SRVBUS)1
4.12 Getting ADC values (ADCGET & SRVADC) .uveervesenceanasl
1

4.13 Finishing Tasks (FINISH)

12
13
15

3.1

LIST OF TABLES:

System Memory Map LS B B I I I I RN TN Y S I A I I I I I O I O I I R A I A S)

55

LIST OF EQUATIONS

1.1 Definition of the DEL fUNCEION st vereeensenosonsonsceses

1.
1.
1
1

flnal Coz ® & & 8 6 0 2 5 0 s s 0 s e 8 s ® & 5 9 5 0 0 0 8 0 9 0 00 0 0 0 0 0 0
4 Temperature sensitivity of equilibration
5 Batch distillation fractionation ...e.eeeeeescses

.6 DEL error as a function of residual air pressure
.7 -DEL error due to mismatch in tubing conductance .

.2 The equilibration reaction ..viereeeeeenoesscoscnsoasnses
1.3 Relationship between DEL values of initial water

‘and

¢ o e
* o 0 0
¢ e 00

o o s 0

4
5

6
14
16
17
17

xi1 -

Xiit

Acknowledgements

The successful completion of large projeﬁt such as this
would not have been possible without the ,support and
encouragement of many people. |

Primarily, I must thank my superviser, R.D. Russell. His
acceptance of my «credentials, and his immediate offer of
financial support, after I arrived unannounced, unknown, and
unexpected, cannot be forgotten.

The early influences of R.D. Russell, W.F. Slawson,
T.K. Ahern, and R.D. Meldrum were very important. The need for a
sample preparation line was perceived after separate visits by
R.D. Russell énd T.K. Ahern to Dansgaard's laboratory in
Denmark. The technique of wusing sample reservoirs arose from
discussion of Dansgaard's apparatus by members of the above
group. This, and many of their other ideas, were given to me
during the initial stages of the project.

Support from the technical staff at the Department of
Geophysics and Astronomy was essential as the design of the
sample rack reached 1it's construction stages. In particular
K.D. Schreiber and W. Seip gave me the substantial benefit of
their accumulated experiences, and pounded many of my
impractical designs into something workable.

For the final stages the formation of the Geophysical
Instrumentation Group has produced a very conducive and exciting
laboratory environment. I am particularly grateful to B.B. Narod
and J. Bennest for the discussions with them that 1led to the
development of a new design in magnét stirrers to agitate the
watér samples. |

The U.B.C. Computing Centre has provided continuing, and

xiv’
reliable support. "The maintenance of an HDLC link to our mini-
computers, and the provision ‘of extensive file and editing
facilities, have both made my task considerably eaéier.

Both G.K.C. Clarke and R.D. Russell were responsible for
reading this thesis. I suspect thatAmy wfiting would have been
impossible to read without their-many comments, suggestioné, énd
revisions. |

During. the project, finéncial assistance was received in
the form of teaching and research assistantships, and of a
U.B.C. Graduate Fellowship. The entire project was funded by
NSERC operating and strategic-grants (A720 and G852) given to
R.D. Russell. Again, my appreciation for his considerable

financial support.

Mostly, my thanks to Petra for her personal suppbrt in a

new country.

CHAPTER I. INTRODUCTION

1.1 CONTRIBUTIONS OF THIS THESIS

An automated sample preparation 1line has long been
recognised as essential to oxygen isotope analysis. Dansgaard
had established such a facility in Denmark by 1975, and recently
VG Micromass have realised the commercial possiblities by
'introducing their model MM5020 CO,/H,0 equilibration system
(Micromass, 1978). The Micromass sample line is a more up-to-
date version of Dansgaard's. It features a constant temperature
air bath to maintain an even equilibration temperature, an
adjustable lateral oscillating motion for mixing the water
samples, and a remotely situated "mimic" diagram which may be
employed to operate the system. This thesis describes a sample
line incorporating new solutions to the problems of CO,/H,0
eqﬁilibration. -

Traditionally, equilibrated CO,/H,0 samples are maintained
at a constant temperqture whilst awaiting analysis. The extreme
temperature sensitivity of the equilibration reaction puts
severe constraints on thebtemperature regulator, and requires
the use of extremely. stable controllers. In our system
equilibrated CO; from every sample is simultaneously isolated in
a bank of reservoirs. The temperature stability becomes
unimportant provided that all samples experience the same
temperature history . .

Sample fractionation during evacuation of the air space

Sec 1.1

2
above the water sample is évoided if every sample is pumped
equally. - Instead of pumping through rate-determining
capillaries, - the sample line uses circular symmetry to achieve
the same effect. The problems of capillary mounting, cleaning,
and slow pump down are thus avoided.

The sample preparation system is highly modular. The basic
unit 1is the rack which may, at any time, be connected or
disconnected from the system, without interfering with other
racks. Modularity facilitates repair and modification of racks
with a minimum of disturbance, and allows the system to be
extended at will.

Writing the software to run the sample preparation line has
been the most satisfying aspect of this project. I have viewed
the mass spectrometer as a resource, and the sample racks as
users in a multi-user environment. By designing an operating
system from this perspective it is possible to queue racks for
preparation and analysis at any time, irrespective of the status
of other racks in the system,. To my knowledge no other
automated line operates in this manner. Usually all racks must
be loaded with samples before any preparation can begin, and the
system is then fully occupied until the last analysis ends.

Operating system techniques in memory management, resource
sharing, and task scheduling have been used extensively. The
resulting list-structured approach allows programs and tasks to
be added, changed and executed with great flexibility and
simplicity. Using some of the more primitive aspects of
artificial intelligence, a readily understandable command

language with an extensive vocabulary has been developed.

Sec 1.1

3 .
Critical areas are provided with software protection against
operator interference, the fack processing algorithm checks
extensively for forseeable problems, and a task can be scheduled
to run periodic system testing procedures. A complete log of
system events is output on teletype and should allow correction
of unforeseeable conditions as well as providing data for future
program development.

An extremely promising contribution is the development of
magnetic stirrers to agitate the samples during equilibration.
These are of a unique design that uses no moving parts. They
can be assembled quickly ffom inexpensive and commonly available
components, and operate at extremely low power levels. It is
believed that such stirrers will be valuable to many people for
a variety of applications.

Other 1less radical contributions deserve to be mentioned.
A cold trap has been constructed that uses Peltier coolers to
remove water vapour from equilibrated gas samples. Cooling is
easily controlled using electrical signals, and the constant
replenishmen£ of 1liquid nitrogen 1is no longer a problem,
Finally, but also'importantly, an optically isolated interface,
coupled with a simple handshaking protocol, minimises the

dependency of the sample line on the mass spectrometer.

1.2 THE MEASUREMENT OF THE OXYGEN ISOTOPE RATIO IN WATER

In addition to the normal mass 16, there are two more
stable isotopes of oxygen. The masses 17 and 18 occur with
abundances of about 0.04% and 0.02% respectively. The variation
of the 0'®/0'® ratio in natural oxygen reflects the physio-

Sec 1.2

4
chemical history of the céllected sample. In particular this
ratio in water and ice samples can be used to trace the origins
of the sample, and in the case of ice samples from deep cores,
can indicate the paleoélimatic conditions that precipitated the
original snow.

Such. data 1is essential.to a workable understanding 6f the
dynamics of large bodies of ice and water. In an era of

expanded northern development this knowledge can only be

beneficial.

1.2.1 Terms used in Isotope Analysis

Because the natural variation of stable isotope ratios is
very small it is convenient to report analyses in terms of the
difference from an agreed international standard. This is the

DEL function (Equation 1.1), The internationally agreed

The DEL value is defined to reflect the small variation in natural isotope ratios.

DEL values are usually reported as parts per thousand (per mil) relative to an
internationally agreed standard water, V-SMOW.

6(x/8)=1000(RX/RS =1) per mil (°/co) .. (1.1)
where: Rx Nnie/nis of the unknown sample.

Rs nie/nis of the agreed standard.

Nie ..., number of 0'®' atoms.

Nis number of 0'°® atoms.

Equation 1.1 Definition of the DEL function.

standard is Vienna-Standard Mean Ocean Water (V-SMOW) but in
practice comparisons take place with a 1local standard and

results are corrected to agree with V-SMOW.
The natural range of DEL values in water is typically from

-50°/50 in arctic regions to +20°/,, in ocean water at the

equator.

1.2.2 Preparaton of Water Samples

The direct analysis of 0'%/0'% in water is impractical due
to the polar nature of the molecule. The charged molecules tend
to "stick" to surfaces within the mass spectrometer and
contaminate subsequent samples. Also, the hydrogen atoms
introduce so ~many mass combinations that the mass spectrum
becomes very difficult to interpret.

Instead, the method now generally in use is that described
by Epstein & Mayeda (1953) and proceeds in four basic steps.

1. Air 1is removed from the equilibration vessels.

2. Carbon dioxide is admitted.

3. The water samples are equilibrated with CO, at a defined

temperatﬁre.

4. The equilibrated CO, is withdrawn for measurement.
With the original technigue, the water was frozen to =-78°C
before the air was removed. This avoided water 1loss and
isdtopic fractionation of the samplés. Thawing, freezing, and
pumping were repeated to eliminate the possible contaminating
effe;ts of gases dissolved within the water.‘

Roether (1970) described and tested a sample 1line which
eliminated all the time consuming, and labdur intensive freezing
steps. Using capillaries and controlled shaking he firmly
established the feasibility of modern automated lines.

Sample preparation relies on the chemical reaction of
carbon dioxide with water to transfer oxygen atoms from the
liquid to the gas. Mills and Urey (1939,1940) have studied this
reaction in detail and point out that it depends on the pH of

the solution (equation 1.2).

6

The first reaction 1in equation 1.2 is known as hydration and

'Tﬁe exaﬁt équilibrétion reacfiaﬁ depénés upon t;e pH of tBe.59lg;iop.
COz + H:0 == H:CO» [(1.2a)
is the hydration reaction and occurs if the pH of the solution is less than 8.
COz + OH™ = HCO3 .ottt e e (1.2b)

is a bimolecular reaction that predominates as the pH rises above 10.

Equation 1.2 The equilibration reaction.

proceeds with a relaxation time of approximately 1 minﬁte. The
alternative bimolecular reaction 1is about one hundred times
slower so the advantage of forcing hydration 1is obvious.
Usually this is not necessary as most natural water is slightly
acidic.

The DEL value of the final equilibrated CO, will depend on.
the 1isotopic ratio of the carbon dioxide, of the water, and on

the relative amounts of water and carbon dioxide. Equation 1.3

is simply derived from a consideration of mass balance. When

The fina) DEL value is a result of the initial del values of both CO:. and H:0, as

wall as the relative amounts of each. A mass balance gives the following
relationship.

6(w/sw) = (p+a)/p 6(c/sc) - a/p 6(ce/sc) per mil

where: 6{(w/sw) .. DEL of the sample relative to standard H:0.
6(c/sc) .. DEL of CO: equilibrated with the sampie relative to
CO: equilibrated with the standard.

6(co/sc) . DEL of unequilibrated CO: relative to CO: equilibrated
with the standard.

P number of oxygen atoms in the water divided by the
- number of oxygen atoms in the CO..
a .. the separation factor of CO: and H:0 in equilibrium,

Experimentally measured at 1.046 at 25°C.

Equation 1.3 Relationship between DEL values of initial
water and final CO,.

the same CO, is used both as a standard and to equilibrate the
water samples, the last term of the above expression drops out.

Sec 1.2.2

7
It should be noted that in such a case the standard water is a
virtual standard, and that later correction is made its isotopic
composition.

The problems and errors introduced during this stage of the
analysis will be discussed later. They inélude the possibility
of sample fractionation, contaminating effects from residual
gases, "memory" effects from adsorbed water, the sensitivity of
the separation factor to temperature, and the transport of

carbon dioxide into a dissolved state in the sample.

1.2.3 Analysis of Samples

After sample equilibration DEL values may be calculated by
measuring the relatgve abundances of ©0O'® and 0'® in the
equilibrated gas. The ratio will be almost 1identical to half
that exhibited by the abundances of CO, of mass 44 and 46. It
can be measured directly in a mass spectrometer.

The mass spectrometer is usually of the McKinney-Nier type
(Nier,1947; Nier et.al,1947; McKinney et.al,1950). It features
a dual-sided inlet system to facilitate rapid comparison of
equilibrated CO, against a working reference, a dual collector
assembly which allows the mass 44 and mass 46 ion beams to be
measured simultaneously, and compensation of the smailer ion
current with a portion of the larger one.

The isotope facility at UBC uées a mass spectrometer of the
McKinney-Nier type originally constructed by Kollar and Russell
(Kollar,1960) for the precise measurement of the heavier lead
isotope ratios. Consequently it has higher resolving power and
dispersion than 1is usual in the mass 44 to 46 range and allows

the elimination of the mass 45 corrections (Craig, 1957). Since

Sec 1.2.3

8
its conversion as an oxygen machine Ahern and Russell have made
extensive modifications with a view towards completely autoﬁated
analysis (Ahern, 1972; Russell & Ahern, 1974; Ahern, 1980). As
well as completely reworking the collector, the source, and the
.~ measuring system, the original Interdata control algorithm
(Russell, Blenkinsop et. al., 1971) has been continually
modified, and several hardware additions made to effect
increased computer control.

Random fluctuations within the mass spectrometer and its
measuring system contribute signifiant wuncertainty to the
measurement of an isotopic ratio. Much of this uncertainty can
be eliminated by alternately admitting gas to the mass
spectrometer from unknown and reference gas reservoirs. This
generates a series of unknown sample isotope ratios interleaved
with a similiar series from a known reference. By interpolating
between the data points an average difference in ratio can be
derived, and from this a DEL value of the sample relative to the
standard.

To avoid systematic errors the gases must flow from the
inlet line to the source 1in the mass spectrometer under
identical conditions. Such conditions are met by having the
inlet. line equalise the mass 44 peak signals of both gases
before analysis begins. The 1inlet 1line on our system was
originally designed and constructed by Ahern (1980). It
features a servo controller wusing two mercury columns to
equalise the two peak signals and a rather cleverly designed
microprocessor to control wvalve sequencing. This latter

apparatus is capable of admitting and queuing a new sample even

Sec 1.2.3

9
though analysis of another may be taking place. .A time-sharing
arrangement such as this helps optimise sample throughput.

Unfortunately the original configuration of the inlet 1line
proved incapable of automated operation, mainly due to the
susceptibility of the controller to electrical interference, and
to the presence of many small leaks throughout the plumbing.
The 1inlet. line 1is of crucial importance to this thesis so, in
co-operation with R.D. Russell, I rebuilt it in a modular, and
therefore more serviceable, fashion. Reliable operation was
attained by systematically removing the leaks and by installing

decoupling circuitry in the electronics.

1.2.4 Collection of Dsta

Amplifiers in the collector of the mass spectrometer
produce two voltages proportional to the intensities of the mass
44 and mass 46 ion beams. After some conditioning in an
analogue «circuit, the voltages are measured and digitised by a
ratioing digital voltmeter. The digital values produced (known
as PHI values) can be related to the isotopic ratio using
equations described by Russell & Ahern (19745. An Interdata
mini-computer collects about four samples a second from the
digital ratio meter, and filters these to produce an average PHI
value every eleven seconds.

By examining standard deviations of individual PHI wvalues,
and the difference between consecutive ones, an experienced
operator can usually judge the quality of data quite well. An
analysis would be terminated when enough good data had been
collected. To do the same in an automated situation is a much
more difficult proposition, mainly because human judgement is

Sec 1.2.4

10
somewhat intuitive. Consideration must be given to the problem
else data collected from the system may be either useless or
redundant.

Ahern (1980) attempted this with a simple algorithm. He
calculatedl DEL values on-line using linear interploation of the
.PHI values. The error of the measurement could be estimated by
dividing the standard deviation by the square root of the number
of DEL values used in its calculation. Analysis was terminated
when the error fell below a certain preset limit (0.04°/,,).

The validity of estimating the measurement error in this

way 1s undisputed but the precision of the-analysis is another
matter. Like most physical signals the production of DEL values
will be a Markoff process (Feller,1968). The DEL cannot be
truthfully considered as a random variable so estimates of the

mean and error do not accurately reflect the sample being

analysed. In other words, there is a significant component of ...

low frequency noise throughout the system, and DEL values
derived during a sample analysis can only be considered
independent when separated by an 1impractically 1long time.
Overall improvement in the precision'of the analysis can only be
improved when the low frequency noise is reduced.

A case can still be made for improving measurement
precision. There are often instances when the presence of a
random step, spike or glitch makes it unlikely that an algorithm
based on simple statistical measures will take an optimum course
of action. The removal of bad data is essentially a problem of
pattern recognition, and is is still best handled by the human

mind.

11'

I have therefore taken the attitude that automated analyses

can still benefit from human judgement. The machine has been
configured for what it is good at; collecting the data. The
same quantity of data is collected from every sample, good or
bad. If data is consistently bad then fundamental problems
exist within the mass spectrometer and must be corrécted before
routine analyses can proceed. The human talent for pattern
recognition has been left with the user. Data reduction takes
place off-line in an interactive environment that enables the

user to judge, accept, and reject individual data points.

1.2.5 Data Reduction Methods

Several different methods have been used in this laboratory
to derive DEL values from the two PHI series output by the
measuring system. Samples analysed for the Polar Continental
Shelf Project (Russell & Koerner, 1969) were reduced by fitting
a Tchebychev polynomial to the data values. Two similiar. curves
differing by a multiplicative factor were constructed through
'the two series. From the curves and the average PHI value of
the standard (PHISTD) a DEL value can be calculated from the
equations discussed by Russell & Ahern (1974).

Later Ahern (1975) used a method employing cubic splines to
fit data points in the two series. Two smooth curves were
produced, but were not constrained £o be related 1in any way.
PHIDIFF was obtained by calculating the average difference
between them, and an estimate of measurement error was made from
the standard deviation of PHIDIFF. The linear interpolation
carried out on-line (Ahern 1980) works in a similar fashion to
the cubic splines, but the data points are connected by staight

Sec 1.2.5

12
line segments instead of smooth curves. Ahern quotes negligible
error from the approximation.

The methods used by myself are not unsimiliar to Russell's
Tchebychev polynomial. Two parallel, but straight,lines are
fitted to the PHI values ﬁsing the method of least squares. A
constant difference exists between the two lines and this, along
with the average PHI value of the standard, is used to calculate
the measurement DEL. Likewise the error is estimated from the
deviation of the data points from the straight line. Correction
of the DEL values to agree with the international SMOW standard
is included in the data reduction package. Each rack analysed
contains several known standards amongst the unknowns, (usually
four standards and twelve unknowns). Data reduction takes place
by the rack so the average measured value of the standards can
be used to correct for SMOW. In addition their standard
deviation gives the user an 1indication of the precision of
analyses for that rack.

The program used to reduce the data is menu driven and self
-explanatory. It allows the user to see results and graphically
examine the raw data. Suspect points may be flagged as such,
and will be ignored in subsequent regressions. The process can
be repeated until the operator is satisfied with the quality and
validity of the analyses. When ready the results are presented
in a printable form to a high quality Zerox printer. The
printer output is of publishable gquality, and can be sent

directly to the owner of the samples.

13

1.2.6 Precision of Analysis

The error of the final DEL value can be attributed to both
preparation and‘analysis of the sample. In particular the
precision or repeatability of the sample preparation stage by
current state-of-the-art sample lines should be met or. bettered
by this reséarch. |

The Micromass MM602 serves as an appropriate benchmark for
stable isotope mass spectrometers. Recent promotional
literature from Micromass defines the internal reproducibilty of
the machine as calculated from a series of twelve alternate
measurements of isotopic ratio from sample and standard gas.
For a CO, analysis it was better than 0.017°/,, at the two sigma
level. Our own machine fares somewhat poorly by comparison.
After running 22 isotopically identical CO, samples on his newly
constructed inlet line, Ahern (1980) reported a precision of
0.03°/40 at the one sigma level. Rough tests by myself indicate
an even worse figure; probably around 0.15°/,,. Until the
instabilities causing these poér results are located and
remedied it will be impossible to test the sample preparation
line to a better precision.

Large errors are contributed du:ihg the sample preparation
stage. Ahern (1975) has estimated that the manual methods
previously employed in this 1laboratory were responsible for
approximately +0.08°/,, of the final error. Roether (1970) on
the other hand concluded that his line had a reproducibility of
better than $0.03°/,, even though he eliminated all the freezing
and thawing steps. It is rather surprising, therefore, to find

that Micromass will only guarantee a precision of #0.1°/,, for

Sec 1.2.6

14
their currently available MM5020 equilibration system
(Micromass, 1978). This may be due to Microﬁass's choice of a
constant temperature air bath in which to equilibrate the
samples. Roether used a less convenient water bath, but because
of its higher specific heat stabie tembefature control would
“have been much easier.

The sample line developed through this thesis also
"immerses" the samples in air. It should certainly be capable
of a 20.1°/,, reproducibility, but ultimately be able to better

a mass spectrometer precision of +0.03°/,,.

1.3 PROBLEMS IN SAMPLE PREPARATION

1.3.1 The Temperature Sensitivity of Equilibration

During the equilibration reaction, atoms of oxygen move
freely between the CO, and water molecules. Because it requires
more energy to move the heavier O0'® molecules they tend to
"gravitate" to the lowest energy state of the complete reaction.
The final isotopic ratio of the CO, will therefore differ from
that of the water as the reaction nears completion. It is then

convenient to define a separation factor (e) as the 1isotopic

ratio of the CO, divided by the isotopic ratio of the water when
the exchange is in equilibrium

As might be expected temperature affects the amount of
energy available to move the O0'® molecules, and varies the
separation factor. Such behaviour 1is precisely what makes
stable 1isotope analysis valuable, but unless the sample
preparation temperature is well controlled it is also a major

Sec 1.3.1

15

source of error. An outline of the sensitivity of the reaction

Consider a closed system with water and CO: in chemical and isotopic equilibrium.
A change in temperature will alter the separation factor (a) and the measured DEL

value of the equilibrated CO:. Differentiating equation 1.3 with respect to
temperature gives:

96/9T = (1/TI(B3a/ATI(6+1000) -\ttt e e e e (1.4a)
where: a‘......:. the separation factor.
[« J the measured DEL value of the equilibrated CO:.

and the isotopic ratio of the water s assumed constant.

Staschewski (1964) has derived an empirical relafionship describing the variation
of a with temperature.

%

a = 0.9779 exp(18.989/T) (1.4b)

where: T is the temperature in °K.

Differentiating (1.4b) and substituting to (1.4a) yields the temperature
sensitivity.)

36/dT = -18.989 (1000 + 6)/T% oo, e (1.4c)

For the normal range of DEL values, and for small temperature varijations, 1.4c can
be approximated at 25°C as:

A6 = O. 21 AT e (1.4d)
where: A6 the change in De)tof the equilibrated CO: (per mil).
AT ... the change in temperature (°C).

Equation 1.4 Temperature sensitivity of equilibration.

to temperature is given in equations 1.4.

If a permissible wvariation in the DEL value of a rack of
samples is *0.03°/,, then equation 1.4d places a limit of
$0.12°C on the effective temperature difference between samples.
This limit must apply not only in a spatial sense, but also for
the time taken to complete the analysis of every sample on the
rack. Such stability 1is relatively easy to attain in a water
bath but is much more difficult in air.

If 1t were possible to analyse all samples simultaneously
the severe restriction on time stability could be avoided. As

long as the spatial variation is within limits, the: DEL values

Sec 1.3.1

16
of all samples will change 1identically and no error will be
introduced. Our sample line wuses reservoirs to store the

equilibrated gas samples simultaneously, with the same effect.

1.3.2 Sample Fractionation During Pump Down

Craig et.al. (1953) give the following relationship for an equilibf;um batch
distillation of water.

1IN(1+6)-1n(1+60) = (a-1) 1n(f)

where: f ..., is the fraction of water remaining.
6o DEL value of water at f=1.
6 DEL value of water after f-1 has evaporated.
at ... separation factor of water vapour.
Using the approximation that 1In(1+A)=A when A is small, then 1.5a can be

approximated as:

... (1.5b)
‘where: {=1-¢* ... Experimentally determined as -9.1 per mil at 25°C.
Am ... mass of water sample lost to evaporation.
m oL original mass of the water sample.
AS change in DEL value of the water.

Equation 1.5 Batch distillation fractionation.

Before CO, can be admitted to the sample flasks, most of
the air must be removed by pumping. It is awkward to freeze the
samples on an automated line, so water constantly evaporates as
the pressure drops. The resulting isotopic fractionation shifts
the DEL values of the samples and becomes a potential source of
errof.

Using equations for Rayleigh distillation (equations 1.5) a
change in the> DEL value of a sample can be conveniently
e#pressed as a funﬁtion of the residual air pressure (equations
1.6). The tolerance of an-analysis to residual air is, however,
hard to determine. Roether (1970) has allowed that pressures of
a few hundred microns of‘merCUry are tolerable when samples were
equilibrated wi;h CO, at a pressure of 400 torr. His preferred

Sec 1.3.2

17
lower level of 20-50uHg was to facilitate rapid transfer of the
gas from the sample flasks, by freezing CO, at the gas sample
tube. '

Since this technique isl not used on automated lines thel
higher ievelvis probably guite adequate. At an equilibration
pressure of one atmosphere (760 torr), residual air preésures

should therefore be less than 1 torr.

Consider a container from which a mixture of air and water vapour is being pumped
at F(t) titres/second. Assuming that the partial pressure of the water vapour (Pw)

is held constant by evaporation from a mass, m, of liguid water, then the ideal
gas laws show that:

am/dt = (Pw.W.F(t))/(62.36 T) grams/sec oo .. (1.6a)
and that:
dP/dt = ~(P-Pw).F(t)/V tOrr/SEC (1.6b)

Eliminating F(t), integrating, and then substituting into equation 1.5b yields an

expression for the change in DEL value of the water that is independent of the
flow rate.

46 = (& V.W.Pw)/(62.36m.T) In{Pr/(Pa-Pw)} per mil (1.6c)
where: ¢*..... ... 1-¢* = -9.1% per mil.

Voo, gas volume in litres.

W oo molecular weight = 18gms for water.

Pw partial pressure of water at T°C (23.75 torr @ 298°K)

m o mass of ligquid water (grams)

T .. temperature in °K.

Pr final residual air pressure (torr).

Pa initial pressure above the sample- usually 760 torr.

Equation 1.6 DEL error as a function of residual air
. pressure.

The actual sample fractionation in reaching this and lower
pressures 1is insignificant. With a 10cc water sample and a 60cc
air space, the change in DEL value (at a temperature of 25°C) is
0.008°/40, 0.011°/4,, and 0.014°/,, for residual pressures of 1,
0.1, and 0.01 torr respectively (equation 1.6c).

A more serious problem is the lack of symmetry in pump
geometry from sample to sample. Conventionally samples are
arranged on their rack in a straight line, and are evacuated

Sec 1.3.2

18

through tubing from one end. The sample nearest the pump can

If samples are pumped down by a vacuum pump ofwHYEH‘éépaciY&?mfﬁFSGaﬁ“¥GBEng of

uniform cross section, then the volumetric flow rate is well represented by:
FUU) = FL.PUt) oot e e (1.7a)
where: F constant that depends upon the geometry of the tubing.
P(t) time varying pressure above the sample.

substituting (1.7a) in equation (1.6b), then integrating gives the time taken to
reach a residual air pressure, Pr.

t = V/(F.Pw) Tn{(Pw+Pr)(Pa-Pw)/(Pa.Pr)}t nuoon. (1.7b)

where: All variables were defined in equations 1.6.

Consider two samples pumping at unequal rates, F. & F:, where F, > F:. Let the
times taken to reach the same residual air pressure be t. & t: respectively. Under
these conditions, equation 1.6a places an upper bound on the additional mass lost
from sample 1.

Am = W.F..Pw.(Pw+Pr)/(62.36 T) (t:-t1) grams (1.7¢)

Substituting appropriate values from 1.7b & 1.7c into equation 1.5b places an
upper limit on the final difference in DEL values between the samples as a
function of the ratio of the flow rates.

AS = C.(Pw+Pr).ln((Pw+Pr)(Pa—Pw)/(Pa.Pr)).(Fi/Fz-i) per mit(1.7d)

where: F: conductance of the tubing through which sample 1 is
being pumped.
F: tubing conductance for sample 2:
and C = ¢“V.W/(62.36m.T)

Note that this estimate of the upper bound converges to the true change as the
residual air pressure drops. M

Equation 1.7 DEL error -due to mismatch in tubing
conductance.

then have an effective tubing conductance well over an order of
magnitude greater than those at the far end. By considering the
simple configuration outlined in equations 1.7 the difference in
DEL values of two samples, due to a mismatch of tubing
conductances, can be expressed as a function of residual air
pressure. Figure 1.1 presents equation 1.7d graphically, for
the conditions ﬁsed previously.

1f the mass spectrometer is capable of a 0.03°/,, precision
then sample error due to puhp—down fractionation should be less
than 0.01%/060 to 'be considered negligible. The tubing

Sec 1.3.2

19

conductances of every sample must then be matched within a

.10
és oY "D
N A
< ;ﬁﬁ
o \§
2\— B &990
o 8>
Q '6‘)0
e
c - $
@ L
o
® |
;.03b 7 |'
= |
©
001 B -]
i [l 1 1 A
1 5 10 15 20 25
ratio of flow conductances
Figure 1.1 DEL Error Due to a Mismatch in Tubing
Conductance

tactor of 2 to 3 depending on the final residual air pressure.
In the conventional 1linear rack such a match is possible
only when the side arms to the samples are made much more
restrictive than the'connecting line. Because the volume of the
'connecting line must be kept low to give adequaté CO, pressure
at the mass spectrometer, the only choice is to pump the samples
through small bore capillary tubing. These are easily matched
within 20%, and make sample fractionation errors insignificant.
Capillaries do have some practical disadvantages. The fine
bore increases the possibility of blockage, and necessitates
their frequent removal for cleaning. This increases the system

maintenance cost, decreases throughput, and presents some tricky

‘Sec 173.2

. ' : ' 20
problems of mechanical design. 1If rack geometry is restructured
around a circularly symmetric form the use of capillaries can be
avoided. Samples can be pumped equally from a central point and
conductances are easily kept within 20%, using standard tubing
whilst maintaining a low pump-line volume. If necessary the
pump rate of éll samples may be controlled using a single

adjustable leakibetween the pump and the rack.

1.3.3 Equilibration Time

The most time-consuming step of the sample preparation 1is
that taken for completion of the equilibration reaction.
Minimising the equilibration time will decrease the rack
turnaround time. Dependiﬁé on the particular system
configuration this either allows more samples to be run during a
working day, or decreases the number of racks required to
optimally utilise the mass spectrometer.

Three factors influence the equilibration time. The first
has been previously discussed (section 1.2.2) and is the rate at
which the equilibration reaction proceeds. At a pH of less than
8 the hydration reaction has a time constant of approximately 66
seconds. As only the dissolved CO, can react with the water
sample, the gas in the equilibration flask must be exchanged
several times before equilibration of all the CO, is complete.
Therefore, the total reaction rate depends on the rate at which
CO, transfers across the water surface, and the ratio of the
volume of CO, dissolved in the water sample to the total volume
of CO,. The volume of CO, in the water is the product of the
volumetric solubility‘(0.98 cc of CO, per cc of H,0 at STP) and

the sample volume.

21

The determining factor is the rate af which dissolved CO,
can be transferred from the surface into the bulk water sample.
Roether (1970) has investigated eqguilibration time as a function
of shaking frequency on‘a rack of samples. He notes that this
remains rather high at 1low frequencies, but that it drops
rapidly when the water sample begins to resonate within its
container, and shows no furthur decrease after this.

Samples are most commonly agitated vby shaking or
oscillating the complete rack. Not onlyl is this mechanically
complex, but the need for flexible vacuum couplings must cast
doubt on the ultimate teliability.

Another contribution of this thesis is the first wuse of
magnetic stirrers. These generate no heat, are silenf and
vibration free. Teflon encased stirrer bars, placed 1in the
samples before connection to the rack, generate a vortex that

constantly replenishes the surface layer with a complete lack of

sample splash;'

1.3.4 Contamination and Mixing

When CO, is transferred into a reservoir, sample container
or into the mass spéctrbmeter inlet line, any remnant gas will
mix with it, and alter the DEL value. The error introduced is a
function of the difference in DEL values, and of the ratio of
the gas pressures. The calculations for conceivable situations
in this system, though straightforward, are tedious, and are not
reproduced here. 1Instead it can be stated that using a simple
rotary vacuum pump to reduce pressures to 0.01 torr completely

removes contamination as a source of error.

22

The same argument applies to cross mixing of water samples
during pumpdown. Even if allowed to mingle freely, the quantity
of water in gaseous form provides insignificant contamination of
the remaining 1liquid. No special precautions need be taken to

prevent back mixing between water samples.

1.3.5 Water Adsorption

The least understood source of error is due to water
adsorption on the internal surfaces of the sample preparation
line. 1In developing his concept of adsorption, Langmuir (1918)
had the following explanation for the phenomena.

"The atoms forming the surface of a solid are held
to the underlying atoms by forces similiar to those
acting between atoms inside the solid. From Bragg's
work on crystal structure, and from many other
considerations we know that these forces are of the
type wusually <classed as chemical. 1In the surface
layer, because of the asymmetry of the conditions,
the arrangement of atoms must always be slightly
different from that in the interior. These atoms
will be unsaturated chemically and thus are
surrounded by an intense field of force."

The polar water molecule will be strongly attracted by the
surface forces of the solid. Even at pressures as low as 20uHg,
experimental measurements show the presence of a monolayer of
water molecules on glass surfaces (Frank,1929). It is
convenient to consider the adsorbed water as a solid, with a
correspondingly low vapour pressure.

Unfortunately it is still possible for the adsorbed water
to re-equilibrate with CO, passed over the surface. Ahern
(1975) found it necessary to prevent water vapour entering his
preparation line during the transfer of the equilibrated CO,
from above the sample. When this was not done, the DEL value of

that sample was unreliable. Roether (1970) has alsc noted such

Sec 1.3.5

23
an effect and gquotes 1its magnitude as 0.05+0.05% of the
difference in DEL value from the previous sample. He attributed
this to water adsorbed on the manifold and stopcock sidearms of
his apparatus; and to its re-equilibration with the next sample
at a different temperature (approximately 3.5°C higher).

Ob?iously there are too many factors to attempt an
analytical appraisal of the memory effect. If Roether's figures
are an indication, it 1is not a serious problem. Even in the
unlikely possibility of a difference in DEL of 50°/,, between
- consecutive samples the error introduced is at most 0.05°%/,,.
Extrapolations to other systems are, however, difficuit to make.
Traditionally accepted techniques scrupulously avoid the
presence of water and water vapour throughout the sample line.
This is not the case for this sample line, nor for Dansgaard's,
and the possibility that memory effects could introduce
significant erfor is an uneasy one to live with.

If necessary, a better compromise is to flush common areas
with dry air between analyses. This could prove effective in
removing the adsorbed film, but could délay the. rate at which
samples can be released to the mass speéfrometer and reduce

throughput.

1.4 ISSUES IN AUTOMATION

The mechanical, repetitive nature of automation might
alienate the human viewpoint, but it does allow a significant
increase in the accuracy of routine oxygen isotope analyses. 1In
this instance it also replaces an increasingly uninteresting
chore, and frees personnel for the interpretive aspects more

Sec 1.4

24
_suited to their abilities. Despite its advantages, automation
brings 1its own problems, and requires a careful examination of
the application. This section outlines both the possibilities,

and the inherent difficulties.

1.4.1 Advantages of Automation

Slight alterations in the absolute isotopic ratio of a
sample are inevitable by the time the ratio 1is measured.
Comparison with a known standard that has been subjected to
identical processes, allows these small changes to be measured
and corrected. Automation has the advantage that it imposes a
rigid repeatibility to the whole process. The confidence that
measured changes in the standards are a true measure of those
ocurring in unknown samples must be significantly greater.

The development of microprocessor technology has made it
possible to implement time-sharing systems in specialised
situations. Executing a complex sequence of instructions in
microseconds allows the microprocessor to perform a large number
of Jjobs simultaneously. By providing a sufficient number of
sample holders it becomes possible to admit samples to a mass
spectrometer on a continuous, twenty-four hour basis.

The skill required of human personel to perform manual
analyses is not insignificant. Operators must be trained in
laboratory techniques, and have experience aﬁd knowledge of mass
spectrometry. It has proven difficult to find and retain staff
for what is essentially a monotonous job. Automating sample
preparation allows the laboratory techniques to be de-
emphasised, so that the scientific challenges can receive

greater attention.

Sec 1.4.1

25

A well designed automated system can be built to exhibit
intelligence and adéptability. It can be designed to run self
check procedures on 1its wvital organs; thus to document, and
possibly rectify, problems that would otherwise go ﬁnnoticed.
The flexibility possible with a microprocessor-controlled system
enables strategies to be developed, implemented and tested in
response to the changing needs and criteria of the analytic

procedures.

1.4.2 The Disadvantages of Automation

The replacement of manual methods by automated ones is a
course fraught with difficulty and misunderstanding. The
constant and loose references to intelligent systems are more
indicative of wishful thinking than anything real. Engineering
problems created when interfacing to an often unpredicatable
world necessitate a re-appraisal and evaluation of design
tradeoffs and techniques.

Any automated system will be partially blind. The designer
must baiance the advantages of increased sight against the cost
and overheads require to obtain and analyse the extra
information. Inevitably, the probability of occurrence of some
problems is not large enough to warrant the provision of a
sensor to detect it. Should such a problem occur the
assumptions upon wich the system is based become invalid but the
system will continue to operate.

No matter how superficially clever a system appears on the
surface it is never capable of intuitive, and usually incapable

of adaptive, decisions. Automation cannot wusually deal with

Sec 1.4.2

26
problems that the programmer has not contemplated, but list
structured languages J(eg LISP) can support programs of
surprising adaptability. These are designed in such a way that
program and data are indistinguishable. It 1is possible to
generate and execute new programs in response to the changing
state of the system.

Automated systems can be extremely uncommunicative. Unless
provision is made to indestructibly record relevant system
operations, faults become very difficult to diagnose, and even
to repeat. A system that is too verbose is just as bad.

A grey area that is difficult to define and implement is
the provision of operator intervention. On one hand it is
tempting to give the operator absolute overriding priority and a
large degree of manipulative power. On the other hand, parts of
the system that the operator is not properly concerned with
should be protected from inadvertent manipulations,

There 1is, finally, the issue of understandability. Unless
any operator finds it easy to understand and use the system,
then its introduction will simply result in the replacement of a
trained laboratory technician, with a trained computer
technician. Again the most promising approaches to these
problems are found 1in the field of artificial intelligence.
Program/structures have been developed that can interpret
natural English sentences, infer the intended meaning, act upon

it, and reply...... in English (Winogrand,1972).

27

CHAPTER II. INNOVATIONS IN THE MECHANICAL DESIGN

2.1 ORGANISATION

2.1.1 Innovations in Rack Construction

This chapter presents an overall description of the
mechanical design‘of the sample preparation line but emphasises
those aspects that make our equipment unique. Specifically
there " are three major innovations: the use of equilibrated gas
reservoirs, a circular rack geometry, and implementation of a
new design in magnetic stirrers.

The mechanical organisation can be clarified by delineating
three functional areas. These are associated with sample
preparation, the mass spectrometer, and general services. The
system takes form by interconnecting hardware associated with

each of the areas.

2.1.2 Sample Preparation - Sample Racks

Each sample to be equilibrated in the system requires a
dedicated, unshared collection of mechanical hardware termed the
sample unit (see figure 2.2). 1In this system its parts are the
sample flask assembly where the -equilibration reaction takes
place, a small reservoir to store the equilibrated gas until it
can be used during analysis, and two interconnecting solenoids
that isolate the abbve containers from.each other and from the

rest of the system,

28

In the final analysis DEL values. are calculated by
comparing isotopic raties obtained from known standards and from
unknown samples. The results thus obtained will be valid only
if both standard and unknown samples have wundergone identical
processes. To keep conditions between the individual sample
units as similiar as possible it becomes necessary to group them
together as one unit in some physically manageable
configuration.‘ Historically such a unit is known as the sample
rack (figure 2.1).

Choosing the number of samples on each rack involves a
trade off between conflicting demands. The number finally
decided upon was sixteen, the length of the microprocessor word.
This choice simplifies design of both hardware and software.
Sixteen samples a day represents a doubling of the manual
analysis rate previously possible in this laboratory (Ahern
1980) and gives our research real wvalue. The cost of
constructing a rack for sixteen samples is relatively
inexpensive, -and the physical size is small enough to make it
possible to remove the rack for repair and modification.

The microprocessor architecture supports a system with
between one and sixteen racks, and the operating system design
can schedule a mass spectrometer of adequate stability to
analyse all the racks each day. Allowing for downtime,
weekends, and holidays, our laboratory would have the capability
of producing about 4000 analyses each month, a figure -entirely

adequate for any forseeable needs.

29

2.1.3 The Mass Spectrometer Line

Although, after equilibration, the CO, has a DEL value
related to the water sample, it 1is not yet suitable for
admittance to the mass spectrometer. The gas must be "cleaned",
mainly of water vapour, before it enters the high vacuum of the
measufing system. Traditionally a vapour trap is used to cool
the CO, below the liquification temperature of any condensable
contaminates present in the gas. The most convenient (and least
expensive) scheme is to pass the CO, through such a trap as it
enters the masé spectrometer inlet line'.

The vapour trap, and the manifold that enables the samples
to pass from the racks to the inlet 1line can be regarded as
logically and physically grouped. This collection of hardware

that is responsible for transporting the equilibrated gas to the

mass spectrometer is termed the mass spectrometer line

2.1.4 General Services - The Main Line

Common operations are performed on both the sample racks

and the mass spectrometer line. Typically these are the
evacuation of gases, the admittance of CO,, and associated
pressure testing. There 1is little point in duplicating these

expensive services for the mass spectrometer line and each rack,
especially as such services are infrequently used. Under
software control a common facility can be efficiently shared by
the whole system with little or no loss of throughput.

The hardware necessary to provide such services 1is termed

' There 1is no point 1in removing water vapour before the
equilibrated CO, is stored in the reservoirs. (see section
2.2.5)

Sec 2.1.4

30
the main line .. It consists of a vacuum pump, a CO, cylinder
(and regulator), pressure gauges, and a distribution manifold.
The pump, and the CO,, are connected or isolated from the
manifold wusing electrically operated valves. .The pressure

gauges are permanently connected.

2.1.5 Interconnections

Having defined three basic components it remains to connect
them together in a manner that not only allows the system to
function, but also provides the ability to add and remove racks
without interference. Such a scheme is shown in figure 2.1.

Each rack 1is connected to the mainline and the mass
spectrometer line by a corresponding solenoid driven valve
(V.MNL and V.MSL respectively). A swagelock tubing connector is
installed between these solenoids and the rack body. Provided
the two valves are closed the rack may be be disconnected
without affecting the rest of the system. The closure of the
two solenoids is forced by driving them, via an electrical
connector, from within the rack. 1In order to turn a wrench on
the swagelock fitting, the solenoid connector must first be
removed.

There 1is no direct connection between the main and mass
spectrometer lines. The later must be evacuated by pumping it
through a rack. However since both the rack and the mass
spectrometer line must be at vacuum before a sample is
transferred from its holding reservoir to the mass spectrometer,
then such a connection has little disadvantage. It is possible
that the need for a direct route will arise 1if more advanced
testing procedures are introduced, or if it becomes necessary to

Sec 2.1.5

31

periodically <clean the vapour trap. In such a case the extra

sample rack.

to .other racks

F%
v.msl , 4
v.mnl
fan sample
preparation
unit.
air {see fig22)
duct

)/
zero pressure /('

reference chamber main line "‘0““0“?

vref

@ mass spectrometer
line manifold \

. i ‘bg Ivco2 lv.lek

piezo- thermocouple _

electric pressure

pressure gauge

gauge .

' ; . peltier vapour

pressure adjust&%l: - v.vac ter
regulator -

co2 vacuum pump inlet line

Figure 2.1 Mechanical Organisation of the Sample Line

plumbing is not difficult to add.

Sec 2.1.5

32

Separately connecting the rack to both the main and mass
spectrometer lines 1is necessary for two reasons.» Firstly, it
allows a reasonable degree of parallelism. One rack can send a
sample to the mass spectrometer while another simultaneously
uses the mainline. For a minor increase in cost and complexity
the system 1is more efficiently utilised. The second reason is
more important. In order to pump gas rapidly the mainline
manifold must be of considerable diameter and volume. If
separate connections were not made the sample gas would have to
expand into both the main line and mass spectrometer lines. The
large volume would then reduce sample pressure to an unusable
value.

Finally it is interesting to note the equivalence of this
interconnection system with that of the parallel bus structure
in microprocessor architecture. Both enable units to be added
to ,and deleted from, the bus independently of the operation of
others. It is the employhent of parallel structures in any form

that makes modular systems workable and convenient.

2.2 THE SAMPLE RACKS

2.2.1 Rack Overview

Three major decisions have been taken that give the present
sample racks a unique design. They have brought advantages, but
also new problems. |

The choice of a symmetric geometry that could assure equal

pumpdown, and hence fractionation of the water samples, is

Sec 2.2.1

33
responsible for the circular configuration that finally evolved.
Although convenient for the above reason, and also for a certain
compactness, there are problems of machining and access.

The decision to wuse. sample reservoirs, rather than
sensitive stable temperature controllers, has eased the
restrictions of temperatufe constancy. Disadvantages arise from
the extra space, and cost, incurred by the reservoirs and their
associated solenoids. In common with previous preparation
systems the samples (and reservoirs) must be kept at equal
temperature. A rack must be designed to accommodate an area
where such a condition is met.

Finally, the use of magnetic stirrers in place of a rack
shaking mechanism probably allowed more freedom with the shape,
size and mass of the rack than could otherwise have been
possible but the actual stirring mechanism, though elegant and
simple, was not arrived at easily.

Satisfying these demands required a good deal of compromise
and interaction so the following sections are more descriptive
than deductive. An overall picture of the rack organisation is
first presented to identify the relationship of the various
components before they are discussed. No detailed mechanical

description is given as it was felt irrelevant to this thesis.

2.2.2 Rack Organisation

The arfangement and interconnection of the various
components within the rack is best understood by referring to

figure 2.1, For reasons disclosed earlier, sixteen sample

34
flasks are distributed circularly around a central point'. Each
sample flask is connected to a stainless steel reservoir wusing
tubing and a solenoid valve (V.SMP). Likewise every reservoir
is isolated from the common central point by another solenoid
(V.RéV). From the central distributor a line leads out of the
rack to a swagelock tubing connector. This links the rack to
two solenoids which can connect the central distributer to the
main and mass spectrometer lines (see section 2.1.5).

All the sample flasks and reservoirs are physically located
in a duct through which a fan circulates air (in an attempt to
maintain equal temperature over all samples). The air duct is
formed by a circular wall, and a top and bottom rim. Four clear
plexiglass doors clip around the extreme perimeter of the two
rims to complete the enclosure, but still allow convenient
access to the sample flasks. The doors are held and separated
by four small sections of aluminum plate. These provide
corridors through which the various services enter and leave.
They are also a convenient place to mount electric connectors
and indicator lamps. The empty section of air duct behind them

can just accommodate a small fan.

2.2.3 The Temperature Problem

The precision of a sample preparation line depends largely
upon the repeatability of the CO,/H,0 equilibration conditions.

In particular the temperature between samples must not differ by

' EBach sample position in the rack has been labelled with a
hexadecimal digit (0-9, A-F), for computing convenience.

Sec 2.2.3

35
any significant amount’'.

The restrictions on temperature stability are worsened by
the traditional approach to automated sample preparation and
analysis. Usually the CO, and water remain in equilibrium until
the gas can be admitted to the mass spectrometer. Several hours
may elapse between the analysis of the first and last samples,
and temperature conditions must be constant during this fime.

By 1including several known standards throughout the rack
the constancy condition: could possibly be relaxed. However
accurate interpolation between the standards is uncertain for
conditions of random temperature fluctuation and non-constant
analysis time. A stable and sensitive temperature controller is

still needed.

2.2.4 Using Sample Reservoirs

Constant temperature during analysis is not necessary if
all the eguilibrated CO, samples are simultaneously 1isolated
from the water in the sample tubes and stored pending analysis.

Provided that the temperature difference between any two samples

is always within prescribed 1limits, all samples will vari
identically. The DEL values of the equilibrated gas above the
unknown samples and the known standards to which they are
compared change equally, cancelling the temperature instability.
Such a scheme is easily implemented by providing reservoirs
in which to store the equilibrated gas (see figure 2.2). By
opening the V.RSV and V.SMP solenoids, air in the reservoir and
above the water sample is removed. Carbon dioxide gas can then
' Section 1.3.1, equation 1.4d, prescribes a temperature

difference of +0.05°C for an equilibration reproductibility of

36

be admitted to the tube and remains there while a magnetic

sample preparation

m‘m‘ a4 1‘#‘ tube

////holder
v.smp (i) sample
@ tube

;ﬁrrer : water

: . : ar l
v.rsvii) samp'e

- @
to central 4

distribution [_—
monifotljdf k‘/ l_—
sample

reservoir
stirrer
motor
Figure 2.2 The Sample Preparation Unit

stirrer mixes the water. When egquilibration .is complete the
reservoir 1is evacuated then isolated. The CO, gas is stored by
opening V.SMP until the gas pressure between the sample tube and
the reservoir equalises. The gas can femain in the reservoir,
unaffected by the prescénce of the waterAsample,‘until it is

analysed.

2.2.5 Re-equilibration in the Reservoirs

Even though the V.SMP solenoid effectively isolates the CO,
gas from the sample, some water is inevitably transferred in the
form of wvapour. Because pfessures have been allowed to
stabilise then the partial pressurevof the water will be close
to 1its saturated vapour pressure at that temperature.
Adsorption isotherms on silver and glass surfaces indicate that

Sec 2.2.5

37
under such conditions films form up to 100 molecules thick
(McHaffie & Lehner, 1925). The first few layers mask the effect
of surface forces, so the film behaves very like thé bulk
liquia. If the reservoir is at a different temperature from the
sample then re-equilibration of the stored Co, occurs,
introducing an error into the measured DEL value.

An estimate of the effect can be made using equations 1.3
and 1.4b, and by evaluating , from typical pressures and
volumes', If the separation factor for bulk ligquid is also
representative for the adsorbed film then an error of 0.01%/4¢
results when the temperature difference between sample and
reservoir is 0.9°C.

Such a large difference 1is unlikely to exist but
precautions have been taken in the mechanical layout to minimise
the possibility. Firstly, both samples and reservoirs are
located 1in close pfoximity in case a spatial temperature
difference 1is significant. Secondly, potential heat sources
have been located as far as possible from the reservoirs. The
most likely sources are the V.RSV solenoids. These will remain
on until the inlet line accepts a sample. The time is both long
and variable so the temperature rise becomes significant and
unpredictable. The solenbids are therefore located towards the
center of the rack and are separated from the reservoirs by at
least 10 inches of 1/4 inch stainless steel tubing. Any heat

transfer should be negligible. Placing these solenoids close to

' p will be the partial pressure of water vapour divided by that
of the CO, in the sample. When the sample tube and the
reservoir are of equal volumes. Typically these will be 24 and
740 respectively, giving a value for p of 0.0032.

Sec 2.2.5

38
the center also minimises the volume of the common distributor
point, helping conserve sample gas, and decreasing pump down

time.

2.2.6 The Sample Flask Assembly

_ The sample flask assembly consists of two components.
There must be a flask, of tube, which contains the water sample
while it is equilibrating, and a tube holder that both supports
and connects the tube into the rack.

The tube holder should be designed to make rapid mounting
of the tube a simple operation. The tube must be capable of
holding a vacuum indefinitely, and be transparent. This enables
the operator to check sample volume, monitor the magnetic
stirrers, and watch for sample splash during pumpdown. The
volume of the assembly must be large enough to deliver the
required amount of gas at the mass spectrometer. The maximum
size will be 1limited by what is available, what fits in the
allocated space, and to a lesser extent the ratio of the number
of CO, and water molecules. If this is too large then the
appropriate correction factors may be uncertain (see equation
1.3). Most iines use flask volumes from 50 to 100 cc. Finally
it 1is important to point out that commercially available
fittings wusually result in significant cost savings, even when
they require modification.

The sample assembly used is shown in figure 2.3. The
sample tube 1is simply a one inch diameter pyrex test tube,
approximately six inches in length. These have the advantages
of transparency, strength under vacuum, and chemical inertness.
The rounded bottom makes it possible to stir sample volumes as

Sec 2.2.6

39

small as 2.0 cc effectively. The cost 1is so 1low that tubes

top plate & chule iﬂCfl\es ;
mounting flange 0 1 2
welds
- 27
{ (-———B . Cajon Ultra—torr®
fitting (SS-16-UT-A-20)
L“—.

o-ring seal

UL

knurled comprassion
ring.

staintess steel
tubingg —— =

Pyrex test tube
1inch diameter.

V/ 6inch tength.
. L
L_J . -

*>—]

Figure 2.3 The Sample Flask Assembly

could be discarded after use.

A modified Cajon Ultra-Torr fitting forms the tube holder.
The test tube is connected by inserting it into the body of the
fitting. A vacuum tight connection is made when a hand
tightened knurled ring clamps an O-ring around the outside of
the tube. 1In our experience these fittings have never leaked,
even when used on the high vacuum of the mass spectrometer.

The open end of the Ultra-Torr fitting is sealed by welding
a stainless steel plate across it,. A length of 1/4 inch
stainless steel tubing, welded into a hole bored in the side of
the fitting, allows gas to enter and leave the assembly. The
plate élso doubles as a mounting bracket that suspends the tube

assembly from the top rim of the rack chassis.

40

The total volume of the sample flask assembly has been
measured at approximately 65cc. The pressure within the tube
should not exceed that of the atmosphere surrounding it.
Positive pressures will force the test tube from the Ultra-Torr
fitting, and increase the possibility of the glass tesf fube
exploding.

As it stands the assembly 1is quite adeqguate but some
changes could be made in future versions. For a start, it has
been found that minuature stirrer bars are available and work
extremely well. The neck of the sample tube could therefore be
much narrower, possibly around 3/8 of an inch. Smaller Ultra-
Torr fittings could be used. The whole assembly would be
cheaper, lighter, and more compact. The tubes could be standard
laboratory flasks, or hand blown if necessary. They would be
much squatter enabling the height of the sample racks to be
decreased significantly. Lastly the use of Nalgene as a flask
material would be wofth investigating. The high surface tension
of the polymer makes it harder for water droplets to adhere to
the tube walls. These can result in significant DEL errors if
they equilibrate at a different temperature to the rest of the

sample, as has been previously discussed.

2.2.7 The Reservoirs - Construction and Volume

The reservoir construction shown in figure 2.4 is simple
and straightforward. Because no commercial item of the required
shape and volume could be found it was necessary to machine
parts from suitable stainless steel stock, and to have them
welded together. This proved advantageous. It 1led to the
design of a self supporting configuration that fitted neatly

Sec 2.2.7

41

into the rack's air duct.

scalet inches
C T

0 1

o 4

stainless steel
174" stainless steel pipe. 1.25" dia.

tubing. schedule 40.

welds

welds r T

end caps - machined from
1/8" stainless steel plate.

Figure 2.4 Reservoir Construction

The capacity of the reservoir was choosen to maximise the
sample pressure at the mass spectrometer. The optimum value
derived from a consideration of the Boyle gas law is not a
critical one. Large changes in the volume of the reservoir make
little difference in the end pressure of the gas at the mass
spectrometer 1inlet line. For the regions of interest little
would have been gained if the volume of the reservoir éxceeded
that of the sample. Consequently reservoir capacity was set at
65cc.

Assuming that samples are equilibrated with CO, at
atmospheric pressure, and that the volume of the inlet line does
not exceed 50cc, approximatel& 25 metres of 1/4 inch o.d.'
stainless steel tubing can be used to connect the racks to the

mass spectrometer before the sample becomes unusable (a pressure

Sec 2.2.7

42
below 5cm of Hg). The use of 1/8 inch tubing, and separated
pumping manifolds could increase this beyond any forseeable

shortfall, but is not likely to be necessary.

2.2.8 Sample Agitation

To minimise the completion time of the reaction continuous
agitation of the water samples is necessary during equilibration
(section 1.3.3). Traditionally samples have beén mixed by
oscillating the sample rack as a single unit. Usually a system
using eccentric cams and an electric motor is employed
(Roether,1970) but recently Micromass (1978) have used solenoids
to shake the rack from side to side.

Any shaking system has fundamental drawbacks. For
automated operation a flexible vacuum connection must be used;
this may fail. Continuous vibration, 1in any form, severely
tests the durability of all componenté, whether mechanical or
electronic. An intensive maintenance program is mandatory for
reliable operation. There are other problems. Noise can create
an irritating work environment for the operator, and the
mechanical complexities can be a major project for the designer.
Optimising the shaking motion 1is no trivial task. Both
frequency and amplitude must be adjusted to maximise the
reaction rate without splashing any water onto the sides of the
sample tube.

Magnetic stirrers seem to suffer none of these
disadvantages. They are guiet, vibration free, and mechanically
simple. Even at low spin rates the vortex generated by teflon-

‘encased stirrer bars in the sample séems particularly efficient.
A drop of ink placed on the surface is completely mixed within

Sec 2.2.8

43

twenty seconds. Sample splash 1is non-existent no matter how

rapidly the stirrer rotates.

2.2.9 The Magnetic Stirrers

The stirring system relies_on a rotating magnetic field to
couple with small teflon encased magnets in the sample tubes.
Usually the field is generated by rotating a strong magnet with
a small electric motor. However the size and expense of
commercially available wunits was unacceptable, the cost of
assembling stirrers of similiar design would be prohibitive, and
there were fears that differences in the efficiencies of the
motors could generate uncontrollable temperature gradients
between samples.

Instead of electric motors a source of compact and non-
expensive water turbine stirrers was located. It was felt that
temperature gradients would not be a problem with these devices
becadse of the rapid flow of water-fhgéugh them. In practice
other problems developed. Firstly the plumbing necessary to
supply an adequate flow rate was cumbersome, and volume of water
used was high enough to require a recirculating pump. More
seriously, pPVC turbine bearings in the stirrers proved
unreliable and incapable of sustained operation, When the rack
was loaded with identical samples significant deviations in DEL
could be attributed to the differing spin rates of the faltering
stirrers. It became obvious that a more reliable éystem was
absolutely necessary, and that the stirrers should spin in
synchrony.

After discussion with others in our group two alternatives
arose. One was to <couple the stirrers with a toothed belt

Sec 2.2.9

44
drive. The other 1involved construction of a synchronous
electric motor. The second approach proved both feasible and
simple. After some encouraging experiments the final design
shown 1in figure 2.5 was adopted. Each motor on the rack is
assembled from readily available parts.

A large steel washer forms the base, steel bolts and nuts
the pole pieces, and reed relay coils the field windings.
Machining is limited to four holes drilled in the base washer.

Assembly is completed within minutes.

5/16" steel reed relay "x 5/16" steel
nuts. \ bolts.
')
. LU
scale:inches
0 1 275" steel ;
P_ng washer. elevation
Figure 2.5 Schematic Diagram showing Construction of
the Magnetic Stirrers

The 'secret' of the stirrers is not the construction of the

motor but the manner in which the magnetic fields are produced.

The coils on opposite pairs of poles are wired to generate a
field between them. The field may be reversed by reversing the
direction of current with a simple solid state switch. By
utilising two such switches it 1is possible to generate a

sequence that rotates the magnetic field 1in eight separate

Sec 2.2.9

45
steps. The circuitry needed to generate the drive sequence
required only three integrated circuit packages, four
transistors, several resistors and capacitors. Two solenoid
driver packages and the tranéistors are used to switch the coil
éurrents, a four-bit Johnson counter generates the corréct
switch sequence, and spare parts of tﬁe drive chips are used as
an oscillator to clock the Johnson counter.

Finally the low energy consumption of the agitation system
is one of its most striking aspects. Whereas the previous
scheme needed a 120 watt motor to pump an'adequate supply of
water, the present power requirement 1is about twc orders of
magnitude lower. No problems can arise from differential

heating in the field windings.

2.3 THE MAIN LINE

2.3.1 The Main Line Manifold

The manifold allows the racks to be connected to the vacuum
pump and the CO, cylinder. It should be of sufficient diameter
to allow rapid pump down, and capable of sustaining vacuums
below the 10 millitorr level.

Compared to the high vacuum systems needed 1in the mass
spectrometer these specifications were easily met using standard
one inch copper pipe and fittings. Entirely adequate joins were
made with 1lead/tin solder. The tubing was easily machined.to
take a variety of fittings and the geometry of the manifold
could be <changed in the 1lab without a special trip to the
welding shop.

Sec 2.3.1

46

Some doubts might be raised when considéring the rather
reactive nature of the copper but such a possibility is unlikely
to cause problems. Carbon dioxide is only in contact with the
manifold on its way to the sample tubes, and then only for one
minute. In any case the gas is dry and unlikely to react. Even
if it does, any shift in its DEL should affect both standards
and samples equally and contribute no error to the final

results.

2.3.2 The Vacuum Pump

Previous calculations showed that residual pressures of 10
millitorr wéuld cause no significant errors, - even when the
residual gas was entirely CO,. Such conditions are well within
the capabilities of any double-stage rotary vacuum pump.

More importantly, the pump must be capable of passing
rather large amounts of water vapour and air without
contamination of the pump 0il. Generally the 1larger the pump
chambers are and the more oil there is, the less a problem
contaminants become. A ballast valve is valuable as it allows
air to purge the pump éhambers, and to strip the water molecules
from the oil.

For the above reasons an old model Welch pump was pressed
into service. Although bulky by modern standards it was known
to be trouble free, and could handle the water vapour.

Finding a solenoid to 1isolate the vacuum pump from the
manifold presented some problems. There are many kinds which
can édequétely seal a one inch diameter pipe; there are few that

open or <close against a pressure of over one atmosphere. This

Sec 2.3.2

47
reguires a plunger-type solenoid to pull'with a force of over
five kilograms, go a butterfly or door type mechanism is usually
used, possibly pneumétically driven.

Instead of resorting to such expensive complications a
rather simplér. method was implemeﬁted. This wused an air
admittance valve (Edwards model SVA-25) connected in the reverse
of the wusual manner. High pressures in the manifold push the
plunger against its seating, helping to maintain a good seal.
The solenoid that operates the plunger is totally incapable of
operating against pressures above two or three psi so it is
necessary to bypass the large solenoid with another that has a
smaller orifice. This can operate against pressures of over 100
psi, and will evacuate the manifold until the large plunger can

open. In practice this occurs after approximately five seconds.

2.3.3 Pressure Gauges

Two gauges have been provided on the system to monitor
evacuation of the racks and admiftancé of CO,.

The lower range gauge is a standérd thermocouple type. It
gives reliable readings from 5 to 500 millitorr and is useful
for evaluating the removal of reéidual gas from the racks, and
for detecting small leaks.

The higher range measures ébsolute pressures from 5 to 1500
torr. | This can monitor pump down of the water samples, and
admittance of CO, to the sample tubes. Because reliable
absolute gauges of this range are extremely expensive, a
piezoelectric gauge pressure transducer was used. The entire
transducer, normally at atmospheric pressure, has been placed in
an o-ring sealed chamber that can be evacuated under computer

Sec 2.3.3

48
control. The pressure port connects to the vacuum manifold to
measure absolute pressure against the zero reference.

The readings from both gauges are visible to the operator
on two meters, and are available to the controlling

microprocessor through two analogue-to-digital converter

channels.

2.3.4 The CO, Supply

Carbon dioxide is piped directly from the same cylinder
that supplies the reference side of the mass spectrometer inlet
line.

A standard regulator is used to maintain a small positive
pressure in the distribution line (approximétely 5 psig).
Admittance to the manifold is via a small solenoid (Skinner type

B2DX70).

2.4 THE MASS SPECTROMETER LINE

2.4.1 The Gas Lines

The mass spectrometer line transports gas samples from the
racks to the inlet 1line. There are three main components; a
manifold that connects all racks to a peltier cooled vapour
trap, the trap itself, and 1its connection to the mass
spectrometer inlet line. The volume throughout has been kept as
low as possible to conserve sample gas.

Gas flows to the inlet line along approximately 1.5 metres
of small bore stainless steel tubing (1.6mm i.d.). Evacuation

times would be excessively long if it were not for the 1low

Sec 2.4.1

49
volume of this section, and the dryness of the gas passing
through it. Much higher residual pressures can be tolerated
before contamination and re-equilibration errors become at all
noticeable.

More éare is required with the manifold preceding the
vapour trap. Its tubiné must be large enough to pump away
adsorbed water during the time between analyses, but must be
small enough to conserve sample gas volume. The current
configuration uses about one metre of stainless steel tube, with
an inside diameter of 0.32 millimetres (1/8"), to connect the
rack and the trap.The mass spectrometer line is pumped for ten
minutes between samples, and there is no 1indication of error

from water adsorbed on its surfaces.

2.4.2 A Peltier Cooled Vapour Trap

The removal of condensible contaminants from vacuum systems
is an o0ld problem, and many methods have evolved to meet it.
Unfortunately, available commercial traps lacked 1in several
aspects, and it proved necessary to design something more
suitable. There were three important criteria to meet: a small
internal wvolume, reliable unattended operation, and the ability
to freeze away water vapour without liquefying any of the CO,.

The basic trap is machined from a small stainless steel
block (Figure 2.6). A blind, 3/8" diameter, hole forms the
internal cavity. This has been tapped and sealed with two Cajon
Ultra-Torr o-ring fittings. These minimise thermal conduction
between the trap and the rest of the 1line by allowing
connections to be made with 1/4" diameter glass tubing. The top
Cajon fitting has been bored through so the 1inlet tube can

Sec 2.4.2

protrude into the bottom of the cavity.

50

This forces the gas to

Figure 2.6

N

‘va

brass heatsinks
{water cooled)

Peltier Cooled Vapour Trap Assembly

L

"l Cajon o-ring

_Titting /

Rk
?& : outlet port -
%@ (Qlosi tube)

tra

p] \)
(staiptess steel) \/

tHermo—electric
cooling modules

inlet port
(glass tube)

2

pour P

flow in a thin layer over the cold stainless steel surface on

its way to the exit port. Not only does the gas cool faster,

but small ice particles should fall to the bottom of the trap

and remain there.

Four thermo-electric cooling modules (Melcor, CP 1.4-71-

Sec 2.4.2

51
06L) refrigerate the block. The modules are an extremely rugged
and compact array of thermocouple junctions that operate through
a phenomenon known as the Peltier effect. Electric power,
dissipated 1in the junctions, pumps heat from one face of the
module to the other.

The cold faces of four cooling modules are cemented to the
stainless steel block with a heat-sink compound. This assembly
is then sandwiched between two large brass heatsinks, and the
air space inside 1is packed with a foam insulation. Tap water
flows through holes bored in the heatsinks to keep them and the
outer faces of the modules at approximately 10°C. The modules
are wired in series so they may be driven from the 24 volt
solenoid power supply. Power consumption is around 100 watts.

The surface temperature of the stainless steel block has
been measured at a constant -25°C, even when wet gas is passing
through the trap. There 1is absclutely no indication of water
arriving at the mass spectrometer, nor do there appear to be any
"memory" effects associated with water adsorbed byvthe trap and

the manifold.

52

CHAPTER III. HARDWARE ORGANIZATION AND OPERATION

3.1 SYSTEM ORGANIZATION

Although there is nothing particularly innovative in the
design of the electronics hardware, 1its construction was
necessary to implement the ideas described in this thesis. This
chapter presents the overall organisation of the microprocessor
controller (figure 3.1) and gives a non-technical description of
its component parts. Others who seek a more detailed technical
explanation may find it in Appendix I.

I found it convenient to use a pre-assembled microprocessor
system know as the University Kit board. Although originally
intended for university level tutorials in microprocessor design
the board adapts easily to other tasks, and comes with an

impressive array of hardware devices and software tools.

3.1.1 System Buses

It is evident from figure 3.1 that the various parts or
moaules of the system communicate with each other electrically
using a parallel bus. The bus may be divided into three
separate parts.

1) The unbuffered TTL level bus on the University Kit board.
This bus 1is adequate when communicating with all on-board
parts but must be buffered if the system is expanded.

2) The TTL level expansion bus on the expansion board is used to

interface TTL level devices that the University Kit does not

Sec 3.1.1

53

provide (such as the analogue to digital converter (ADC) and

//—,\\\ piezo-electric intérrugt control lines
zi_-_: sound disk.
Y
system Jser micro- UNIBUG
iro port iro port processor rom
200mS intrpt. TMS9980A
L1mS intrpt. } ﬂ
— — ﬂ TTL_BUS
expansion eprom ram o tt
linterface | & 1. - intertace
k= E
A 2 3
g
£
TTL EXPANSION BUS
. 0P PCC%
\V4

cmos bus eproms adc pressule. deuges
interface 283 AN
channell 0 thermo
A
A i
piezo
e s
T line CMOS BUS.
- inlet line
controller
L Ry y
masiteli
contro
-——— V. VQC
rack 0 board. |+ viek
———» v.ref
. = V.C02
up to sixteen racks | c.pel
Figure 3.1 System Organisation

extra EPROM).

3) CMOS level expansion bus that

is used to

communicate

3.1

54
"noisy" devices. These are primarily any modules associated
with solenoid drivers which tend to créate lérge surges and
spikes in any signal lines within reasonable proximity. CMOS
circuitry is less suscéptible to this interference because it
is capable of operating at a higher voltage level (12 volts
as opposed to 5 volts). The usual penalty in speed of such
CMOS devices 1is wunimportant here, as are the concurrent

advantages of low power.

.2 System Modules

The hardware may be broken down into the following

important parts.

1)

2)

3)

4)

5)

6)

The microprocessor (TMS 9980A) - a 16 bit machine with a 2

MHz clock.

Random Access Memory (RAM) - up to 1K bytes for program

variables.
Read Only Memory (ROM) - The UNIBUG monitor and EPROM for

user programs.,

Input/Output Ports. a)
System I/0 port - controls the keyboard, display, visual
and acoustic indicators. |

b) User I1/0 port - 1is a 16 bit programmable I/0O port that
doubles as an interrupt interface.

c) Asynchronous Communications Controller - suitable for

operating a teletype.

Bus interface - to buffer and expand the system from the
onboard bus. .
A sixteen channel, interrupt driven, analogue-to-digital

Sec 3.1.2

55
converter.

7) CMOS bus interface and expansion - level tranélation,
handshaking and interrupts.

8) Master control board - handles sample preparation functions
used by all racks. This included communication with the.
inlet controller, the vacuum pump, the pressure reference,
the peltier vapour trap, and the carbon dioxide cylinder.

9) Rack control boards - control all LEDs and solenoids:; sense

door switches and the relay power supply for each rack.

3.1.3 System Memory Map
 With the exception of the three I/0 ports all the system

modules can be considered as part of memory. The memory map of

the current system is shown in Table 3.1, but because the
hardware has been provided with addressiﬁg switches it is
possible to relocate the racks, the master control board, and
the analogue to digital converter. This would allow the

addition of another EPROM.

Physical Device Memory Address
RAM 0000 to O7FF
EPROM. 1 0800 to OFFF
EPROM. 2 1000 to 17FF
EPROM. 3 1800 to 1FFF
RACKS 2000 to 20FF
MASTER 2100 to 21FF
ADC 2200 to 2203
unused 2204 to 2FFF
unused 3000 to 3FFF

Table 3.1 System Memory Map

The master control board uses two words (status and control

Sec 3.1.3

56
registers) but these are selected with only the two least
significant bits of the CMOS address bus. Thus the master
control board inefficiently occupies all of the memory shown in
table 3.1. Such reduﬁdancy is not uncommon in microprocessor
design. Usually savings in the decoding circuitry are great

when not all of the memory space is needed.

3.1.4 Modularity

It is important to design the complete sample line
preparation system with a large expansion capability. It should
be possible to construct new racks as they are needed and to
connect them into the system without making any mechanical,
hardware or software changes. This need is fulfilled by using a
‘buffered, parallel I1/0 bus on which the racks may be placed, and

by using switches to set up the address of each rack.

3.2 THE MICROPROCESSOR (TM9980)

The University Board is built around the Texas Instruments
T™M9980A miéroprocessor. Its instruction set is compatible with
the TI 990/9900 fémily of microcomputers and processors but
there were several features that made 1its choice very

attractive.

1) A 16 bit central processing unit. The ability of any
microprocessor to operate directly 6n a 16 bit word enhances
software capability two ways.

a) Any address in the range from 0 to 65,535 can be

referenced directly. When processor operations are

Sec 3.2

2)

3)

57
limited to an 8 bit word the corresponding range 1is
usually 256 bytes. References to subroutines, or I/0 are
often furthur away, so there is constant shuffling of high
and low bytes between EPROM and registers

b) Arithmetic and logical operations on 16 bit word involve
several steps with an 8 bit processor; These are
accomplished with one instruction 1in this machine, and
this allows convenient manipulation of blocks of sixteen
samples. To limit samples to blocks of eight was not
practical.

An 8 bit, multiplexed data bus. Operations on 16 bit words
usually require a 16 bit data bus if optimal speed is to be
attained. By sacrificing speed it is possible to reduce the
bus size and to gain in terms of hardware cost and
complekity. In the TM9980, memory contents are read and
written in two cycles, one 8 bit byte at a time. The
instruction <cycle takes approximafely twice as 1long to
execute but this is of no conseguence in oxygen isotope
sample preparation. However with bus interfaces to be
provided on sixteen racks the savings in wiring and
components are considerable.

Workspace Pointer. Usually machine operations take place in

an internal register set. This processor contains no
internal work registers but uses a pointer to define a block
of RAM that is equivalent. The context 1in which the CPU
works 1is therefore easily changed by changing workspace
pointers. This has allowed the design of a simple, vyet

elegant way of scheduling tasks (see Chapter 4).

Sec 3.2

58
Additionally the chip has the following features which make life
considerably easier for the hardware designer and programmer.

1) Six prioritised interrupts simplify detection and service in

both a hardware and a software sense.

2) An addfessable memory of 16 kilobytes is more than adequate
for most needs.

3) An addressable single bit I/0 interface, separate from memory

mapped I/0 allows times, teletypes, keyboards, displays,
LEDs, and interrupts to be easily referenced, tested, and
changed. This 1is especially true given that the interfaces
to all these devices already exist on the University Kit
board.
On the whole a powerful instruction set, six different
addressing modes, and the extensive on-board interfacing have

made application of this board particularly easy and clean.

3.3 RANDOM ACCESS MEMORY

RAM 1s wused to store data (both input and output), and
temporary and immediate results of program execution. The
University Kit board has provision for 1028 bytes (512 words) of
RAM which 1is quite adequatev to system needs. RAM has the
disadvantage that a power failure will destroy any information
stored within it, but battery backup could be provided if

required.

Sec 3.3

59

3.4 EPROM MEMORY

All program is stored within eraseable/programmable read
only memory. This is provided using three INTEL2716 chips with
a capacity of 1024 words each. One chip is on the University
Kit board.and two more have been added to the TTL expansion bus.
An extra INTEL2716 could be added if furthur decoding circuitry
was designed, and if the addresses of the ADC, the CMOS bus, and
the master board were changed.

EPROM's are erased by removing them from their sockets and
placing them under strong ultra violet light for about thirty
minutes. They are re-programmed in this laboratory using a Pro
Log Programmer and a Model 74 Interdata computer. Mach{ne code
is generated from a cross assembler on the university supported
Amdahl computer, and is transferred across an HDLC link to the
model 74 in our laboratory. I am muéh indebted to R.D. Russell
for his work in implementing the link. Without it my‘task would
have been extremely laborious. The cross assembler was written
in the GASS language for the Department of Electrical
Engineering. However, it was deficient in several respects and
I had to rewrite extensive sections of the code to remove some
annoying bugs and implement several convenient enhancements. A
separate subroutine was needed to produce a suitable object file

for transfer to the Model 74 minicomputer.

Sec 3.4

60
3.5 THE SYSTEM I/0 PORT

As with all University Kit board components a more
comprehensive description will be found in the Users Guide
(Texas Instruments, 1979). The system I/0 port is based around

a programmable systems interface (TMS9901), and interfaces to

the CPU through the communications register unit (CRU). The

system I/0 port controls the following system parts.

1) The display timer which generates a periodic interrupt every
1 ms.

2) The alphameric keyboard can be used to input UNIBUG commands.
3) The ten digit, seven segment LED display on which UNIBUG ROM
can translate all ASCII characters to seven segment codes.

4) A piezoelectric sound disc which flexes whenever a voltage is

applied to it. Pulsing the SPKDRV line of the system 1I/0

port generates a tone of the pulse frequency.
The sample line operating system uses the 1 ms timer to refresh
rack registers and to control the sound disc. UNIBUG uses the

timer to sense the keyboard and to drive the display.

3.6 THE USER I/0 PORT

This operates in an identical manner to the system I/0 port, but
maintains a different CRU address. There are two important

functions dedicated to the user I/0 port in the current system.

1) Its internal timer is set to generate an interrupt every 200
ms. This periodic signal keeps track of real time.

Sec 3.6

61
2) All interrupts are input to the system through the user 1/0
port (see sections 4.13, 4.14, & 4.15 for a description of

interrupt operations).

3.7 THE SERIAL COMMUNICATION PORT

This port consists of an asynchronous communications
controller (TMS9902), and various drivers capable of RS-232-C or
20mA current loop operation. 1In the present configuration the
on—board. options have been wired to drive a 20 mA teletype

current loop.

3.8 BUS EXPANSION INTERFACE

All address, data and control lines are available at the
bus expansion interface. For a comprehensive tabulation of
pinouts and characteristics, refer to the Users Guide (Texas

Instruments, 13879).

3.9 THE ANALOGUE-TO-DIGITAL CONVERTER

The analogue-to-digital converter is based wupon the-
INTERSIL ICL8052/ICL1704-12 pair (Intersil,1981) and features a
10 volt input range with 12 bits of accuracy, plus polarity and
overrange indication (actually equivalent to a 13 bit binary
number). An on-chip reference voltage and clock simplify design
and conserQe board space. Auto-zeroing compensates for any
internal amplifier offset drifts. Any one of sixteen single-
ended inputs can be selected through an INTEL 1IH6116

Sec 3.9

62
multiplexer.

The programmer initiates a conversion cycle by writing the
channel number of the 1input to be measured to the ADC memory
address. When, after approximately 20mS, the conversion is
complete, an ADC interrupt will be generated. This causes the
microprocessor to temporarily abandén its current task, and to
begin execution of an interrupt service routine. The service
routine must read the conversion from the output buffers of the
ADC and store it in some specified location. The ADC circuit
has been designed to reset the interrupt line and to
reinitialise the converter during the read cycle, thus allowing

the interrupted task to be resumed once the data are stored.

3.10 THE CMOS EXPANSION BUS

A parallel bus structure enables the microprocessor to
communicate with a master control center (for the vacuum pump,
CO, cyclinder etc.) and up to sixteen racks. However the racks
will be spatially separated in an electrically noisy
environment. Induced voltages can unpredictably appear on the
the bus lines and result in unforeseen processing errors. In
such a situation CMOS logic, operating on a 12 volt supply has
at least five times the noise immunity of equivalent TTL
circuitry so its choice is obvious. The inherent slowness of
the CMOS devices 1s not a disadvantage in the current
application. The bus 1is accessed very infrequently, and a

simple handshaking scheme compensates for any bus delays.

63

3.10.1 Bus Interrupts

A simple interrupt strategyAhas been used for the CMOS bus.
When any device attached to the bus requests processor service
it lowers the CMOS bus interrupt request line. The wuser must
provide software to 1identify the source of the request, reset
the interrupt flag, and execute an appropriate service routine.
Given the extreme improbability of simultaneous interrupts
pricrity encoding schemes are completely unwarranted.

Most interrupts will be generated from microvswitches
mounted in the racks. As with most mechanical switches these
bounce when changing position and take a long time to settle.
It is possible for the microprocessor to poll the switch
position between bounces, and to miss the interrupting rack.
Some form of switch debouncing must be incorporated to prevent
this possibility. There are various software solutions to the
- problem but these tend to occupy the processor whilst waiting
for the bounce to subside. Instead I have used a circuit
incorporating a retriggerable monostable. It prevents bus
interrupts from reaching the microprocessor unless the switch
has been steady for 10 ms. As the bounce period is nearer 1 ms,
the interrupt request will be delayed until 10 ms after the

switch settles.

3.11 THE SAMPLE RACK HARDWARE

3.11.1 Rack Hardware Organisation

The rack hardware 1is organised into functional modules
operating in parallel from the CMOS bus. Physically the modules

Sec 3.11.1

64

are wired on printed circuit cards that plug into edge
cmos expansion bus o o
N S » to other racks.
[} 4
. 5, control
A\ W, address (6,7,8,9)]
rd 0]
N {reg 0 7] rackO?lraqk
L status register select logic
.]
reg1?|
_ control register
rack control board
U | «
;——- reg2? .
12922} Loservoir
_ solenoid register
[
1 & 3 %
ol § 2] 2] =l @
3 S 2 3 2| %
_____,reg3?
; sample
G solenoid register
] Y to expansion siots L4
on rack chassis
Figure 3.2 Rack Register & Hardware Organisation
connectors on a circular chassis. The CMOS bus is brought into

the rack on ribbon cable and is wired across the

edge connector.

The

back

Sec

of

each

circular chassis mounts in the center of

3.11.1

65
the rack on five push-fit connectors. These provide the
necessary electrical connections to the solenoids, the physical
chassis mounting, and allow the chassis to be easily removed for
repair énd modification. Of the six card positions, three are
- currently wused, so there is ample room for expansion. The bus
ofganisation is shown in figure 3.2.

Rack registers are selected with the aid of four signals
produced by the rack select 1logic on the rack control board
(figure 3.2). The signals become active only when the rack
field of the address bus (figure 3.3) equals the rack number as
set by switches mounted on the rack control board. The four
logic 1lines determine the nature of the cycle (read or write)
and the byte to be accessed (high or 1low). The rack select
logfc also handles the generation of interrupts and the bus read
handshaking protocol.

The other two boards drive the sample and reservoir
solenoids, and are electrically identical. Their address is set
using board-mounted switches. This flexibility is handy for
setup and servicing but care must be taken not to duplicate

register addresses.

3.11.2 Rack Register Addressing

The memory address word of the sample line system has been
divided into fields to facilitate software readability and
hardware decoding. For the racks, an address has four fields.
The first specifies the memory block in which the racks are
located, the second specifies the page within that block, the
third 1is the rack number, and the fourth is the register number

(see figure 3.3).

Sec 3.11.2

66

A page of 256 bytes is capable of supporting sixteen racks,

TJL T ‘ JLT jY J

block page rack register
B-F B-7
Figure 3.3 Rack Register Addressing

with eight regis£ers for each rack. At the current level only
féur of these are assigned, the rest being reserved for future
hardware expansions (figure 3.2).

It should be noted that the hardware does not support both
read and write from the same register. It was felt that more
advantages would be gained by having an 1image of the rack
register in RAM, from which the rack register is continually
refreshed (see section 4.17.3). This allows the rack state to
be restofed even 1if it should be.removed totally from the bus
and power supply. It also saves on hardware, and mates well

with the sample line operating system.

3.11.3 The Rack Status Register

When read, the rack status register provides information
about the status of the addressed rack. The flags of the status
word are shown in figure 3.4. The four 1least significant
bits monitor . micro-switches sensing- the position of the four

doors that enclose the samples. The fifth 1is true when the

Sec 3.11.3

67

solenoid power supply (+24 volt) is present and false otherwise.

LO BYTE
8 9 10 1" 12 13 1% 15

HRIREREREREREE

24Jcng ZL&on l

smpcng door.a
dorcng doorb
door.c
3 | door.d
Figure 3.4 The Rack Status Register

This allows the processor to sense whether a rack is active or
present on the system. |

If any of the three most éignificant bits (Bits 8,9,10) are
set, then a bus interrupt will be generated. These flag the
origin of the bus interrupt to the service routine executed by
the central processor, and are automatically reset after the
status register has been read.

Note however, that these bits are set whenever there is a
change in state since the previous reset. For example, 1if a
door was open the DORCNG 1line will be set when the door is
closed. }Reading the status word resets this line, but it will
be set again when a door is opened.

vThe SMPCNG 1s inactive 1in the current system, and is
provided in case future system expansion incorporates sample

switches and interface logic on another board. Operating in a

Sec 3.11.3

68
similar manner to the doors it should be set whenever a sample

tube is inserted or removed from a holder.

3.11.4 The Rack Control Register

HI BYTE

led.2 - led.6
led3 led.7

LO BYTE .
8 9 10 7 12 13 14 15
T ®
v.msl
v.mnl
Figure 3.5 The Rack Control Register

Setting appropriate bits in the rack control register
operates the solenoid, and lights the front panel light emitting
diode shown in figure 3.5, Unassigned bits are slated for
future rack functions that give more control over the fans and

the stirrers. Temperature controllers are another possibility.

3.11.5 The Solenoid Driver Registers

Setting a bit in a solenocid driver register operates the
corresponding solenoid, and opens a valve. The number of the

Sec 3.11.5

69
solenoid specified by manual operations corresponds to the
numbering on the rack, but is reversed from the bit numbering
system (bit #0 is solenoid #15 and vice versa). This made
software for manual operations‘much simpler to design, and is
transparent to the operator using manual control from the sample

line operating system.

3.12 THE MASTER CONTROL BOARD

3.12.1 Master Control Functions

The system's master control board operates and senses all
equipment that 1is shared amongst the racks. Previously the
shared facilities have been divided into two functional areas:
the mass spectrometer line€é, and the mainline.

Functions associated with the mainline all require the
operation of solenoids to provide a particular shared ;ervice.
The solenoids connect the main line to the vacuum pump (V.VAC),
the CO, cylinder (V.CO2), the slow pump rate line (V.LEK), and
the pressure gauge reference chamber (V.REF) .

The only device physically present on the mass spectrometer
line 1is the Peltier cooler, and a control line (C.PEL) is
provided to power this on and off. However communication with
the mass spectrometef‘s inlet 1line <controller should be
logically included. This is effected by coupling four TTL level
signals from the inlet 1line controller to the CMOS master
control board via optical isolators (Hewlett Packard Type
6N136).

Three of the lines provide information about the state of

Sec 3.12.1

70

the sample line to the inlet line controller. The first flags

Loevre
8 9 10 1 12 13 wl 15
I |
sample request c.req
interrupt flag,
status |
HI BYTE
AREs
|
c.rdy
c.nom
control C.Glﬂ
LO BYTE
8 sl 10 11 12 1B % 15
[1] I T4
c.pel (v.ref
viek vco2
v.vac
Figure 3.6 The Master Control and Status Registers

the availability of the sample line (C.ALN-autoline), the second

indicates no more samples to analyse (C.NOM), and the

Sec

third 1is

3.12.1

71
set to indicate that a sample 1is present in the mass
spectrometer line and ready for analysis (C.RDY).

The fourth line is a flag from the inlet line requesting a
sample (C.REQ). The inlet controller will set this line when it
needs a new Sample, and will reset it when told a sample is
ready (C.RDY is set). The master board generates a CMOS bus
interrupt when the sample request line is raised, and will be
reset when the master status register is read.

Two registers are more than édequate for all the common
system functions. The bit designations for these, the master
status, and master control register, are shown in figure 3.6.
On board 1light emitting diodes give a visual indication of the

state of all master board lines.

Sec 3.12.1

72

CHAPTER IV. THE OPERATING SYSTEM -

4.1 SYSTEM OVERVIEW

The system software must be designed to execute a variable
number of asynchronous tasks. Because it 1is possible to
represent a number of different tasks by the same procedure
(program) wusing different data, a task in becomes synonymous
with a (program, data) pair. The tasks are considered
asynchonous as there is/usually no way of predicting when the
system will be asked to execute them. The following lists
several examples of tasks.

1. Process the samples on rack (i) where i=0,1,2,3..0r 15,
2. Manﬁally control rack (i) where i=0,1,2,3..0r 15.
3. Periodic pressure testing.
4. Accept, decode and execute user system commands.
5. Update clocks.
Execution obviously should proceed as rapidly and as
economically as possible but it must be remembered that tasks
are likely to be competing for the following resources:
1. The central processing unit (CPU).
2. Random access memory (RAM).
3. Various external devices, including:
a) The teletype and its associated routines.
b) The main vacuum line, the vacuum pump, pressure gauges
and CO, cylinder.

c) The inlet line, and the peltier cooler.

Sec 4.1

73

d) The analogue-to-digital converter.
It becomes necessary to design an operating system to oversee
the allocation of these and other resources, and to develop a
general structure upon which the operating system can

effectively work.

4.2 TMS9980 SOFTWARE TECHNIQUES

To understand the sample 1line operating system it 1is
necessary to have some knowledge of the methods used by the
microprocessor to execute its instructions. The TMS9980
microprocessor is well suited to task-oriented, list-structured
approaches, mainly due to its'workspace/context switch concept.

To explain these 1ideas some basic terminology must be

introduced.

4.2.1 Workspace Pointer (WP)

Historically the first computers performed all arithmetic
and logical operations in an internal register known as an

accumulator . Because most of the programming effort usually

went into fetching and storing accumulator results, multiple

accumulators were developed. As programming concepts developed

it became necessary to break tasks ihto modules or subroutines,
and to enable the processor to jump between them. This context
switch usually meant that all the multiple registers had to be
saved in a known place,; then replaced with new values for the
new context. Despite the presence of special instructions
(e.g. STM in INTERDATA computers) to lessen programming effort,

a large amount of processor time and bookkeeping was still spent

Sec 4.,2.1

74
keeping track of the registers and performing the switch.
Texas Instruments has avoided this problem by retaining one

internal register called a workspace pointer that is loaded with

the address of a block of sixteen contiguous words in RAM. The
block then behaves as if it were 16 general purpose registers,
but the real advantage is that changing register sets <can be

effected simply by changing the workspace pointer.

4.2.2 The Program Counter (PC)

Any processing unit works by repeating the following basic
algorithm.
1. Fetch the instruction at the address in the program
counter,
2. Increment the program counter to give the address of the
next instruction.
3. Execute the fetched instruction.

The program counter is an internal register that contains the

address of the next instruction to be executed.

4.2.3 The Status Register (ST)

The status register 1is another internal register which
contains status or flag bits set_aé a result of arithmetic and
logical operations. These bits can be tested by conditional
jump and branch instructions so the value of the status register
determines the future course of program flow.

The status register also contains four bits that comprise

the interrupt mask. The 1interrupt mask determines which

external interrupt 1lines will be allowed to pre-empt an

executing task.

75

4.2.4 The Program State Vector (PSV)

The program state vector is simply all the information that
describes the <current state of an executing program. If a
program 1is interrupted then restoring the PSV will allow
execution to proceed from where it left off. Obviously for the
TMS9980 the PSV consists of:

a) The workspace pointer so the general purpose registers may

be found.

b) The program counter so the next instrucion may be found.

c) The status register so that future conditional jumps and

interrupts have the correct information.

4,2,.5 Context Switching

I will consider a context switch as a re-allocation of the
processor to another task (a program/workspace pair). It 1is
assumed that the original task will resume execution at some
later time, so the program state vector must be saved and later

restored. There are two basic kinds of context switches:

a) The CPU is voluntarily relinquished by the current task.
The two instructions that cause a voluntary contekt switch
are:

i) The BLWP instruction (Branch and Load Workspace

Pointer).

ii) The XOP instruction (external operation).

b) The CPU is pre-empted by an external interrupt. This can

be explained by pointing out that the basic processing
algorithm shown in section 1.2.2 is somewhat more complicated
in practice. For the TM9980 three external lines are read
after each -instruction 1is executed. If their binary value

Sec 4.2.5

76
exceeds that of the interrupt mask (see section 4.2.3), then
the CPU will be forced to execute in a new context. The
context is selected by using the binary value of the three
external interrupt lines as an index to load a new workspace
pointer and program counter from a dedicated table in low
memofy.

The main difference between a relinquished and a pre-empted
task 1is that the program state is known when relinguishing so
only a partial PSV need be saved to resume execution. Pre-
émptions on the other hand are determined by external signals so
the state of the machine can rarely be predicfed, and the
complete PSV must be saved. However the architecture of the
TMS9980 requires such a small PSV (WP, PC and ST) that there is
little real point in distinguishing between the two types.

All context switches wuse the same - basic mechanism
(Figure 4.1). The PSV 1is saved when the workspace pointer,
program counter and status register are copied 1into registers
13, 14, and 15 of the new workspace. The switch is completed
when the workspace pointer and the proéram counter are loaded
with their new wvalues from the vector épecifing them. All
context switches use this vector to define the new workspace
pointer and program counter. The vector is just two consecutive
memory words specifying the new values of the workspace pointer
and the program counter. For the BLWP instruction these may
start at any address, but the XOP's and interrupt service
routines require them in fixed, and reserved, locations.

Returning from a context switch is simply achieved using

the RTWP (return workspace pointer) instruction. It moves

Sec 4.2.5

77

registers 13, 14 and 15 from the <current workspace 1into the

T T ' memmﬁﬁ
A old
workspace
old
context
CPU
registers old
program
‘/f
WP BLWP @ONEW
next instruction
pe WP & PC loaded L
with new values .
2. from the vector
ST EW.
NEW | new WP context
new PG o vector
Old WP, PC,& ST new
1. copied'into ri3, workspace
r14,& r15 of new
workspace.
13
0.
r15 new
context
new
program
4
Figure 4.1 Context Switch using BLWP Instruction

workspace pointer, - program counter and status register

respectively.

4,3 THE TASK CONTROL BLOCK (TCB)

If the execution of tasks in the system is to be under
control of the operating system, then information to effect this

control must bé maintained somewhere in RAM. Because task

Sec 4.3

78
workspaces require blocks of 16 contiguous words it is

convenient to assign a similiar sized block for task control.

TYPE
tcb=

RECORD
pfre:@tcb;
pxec:@tcb;
ptmr:@tcb;
psem:@tchb;
ptsk:@tcb;
perr:@tcb;
wsp:@workspace;
rsc:PACKED ARRAY [0..15] OF boolean;
abt:boolean;
nme:integer;
alm:integer;
pry:integer;
wp:@workspace;
pc:@instruction;
st:register;

END;

Notes:

1. The symbol @ designates the Pascal pointer type and
can be read as "points to".

2. The types workspace, instruction, and register are
not standard Pascal types. However they do give a true
indication of the type of information, and could be
defined.

Program 4.1 Pascal structure of a task control block

The task control block can be represented by the Pascal

structure in pfogram 4.1 and contains the following information:
1. List pointers which enable TCBs to be linked together.
2. The address of the task's workspace.
3. Resource flags which show the resources currently
reserved by the task.
4. A flag which an executing task may reference to decide if
a deferred abort has been set.

5. The name (or rather the number) assigned to the task.

Sec 4.3

79
The name identifies the task uniquely in the system.
6. The time that the task has to remain in an inactivated
state. This value is set whenever the task is placed on the
timer queue (see section 4.10). It 1is decremented each
second, until zero. The waiting task is then reactivated.
7. The priority currently assigned to the task. This Vis a
signed integer number.
8. The program state vector (PSV) 1is stored in three
contiguous locations in the TCB (WP, PC and ST).
There is at present only oné spare word in the TCB but more
judicious use of the list pointers could free up another three.
The task control block can be thought of as the basic building

block of the control system structure.

4.4 LINKED LISTS

The most convenient and flexible way of joining TCBs
together to build the system structure is to use linked lists.
Because of the confusion between a linkéd list and the far more
common stack structures a brief description of linked list

processes is presented here.

4.4.1 The Headpointer

Also called the list base the headpointer holds the address
of the first TCB on a list. Usually a headpointer 1is defined
for each 1list 1in the system and an empty list is flagged by a

zero value,

80

4.4.2 The Forward Pointer

The forward pointer is within the TCB at a known position.
It holds the address of the next TCB on the list. If the
address 1is zero then it is the last TCB on the list. A simple

forward linked list is shown in figure 4.2..

headpointer 7CB1 .
..//_—“*1
Altcbl) | Altcb2)

.\\—___———-"0

forward
link
pointer
task control
blocks
Figure 4.2 A Simple List Structure

4.4.3 Advantages of List Structures

List structures allow a far greater flexibility and
simplicity than the stack structures commonly employed.
Operating systems generally benefit from their introduction for
many reasons.

1. There is no wholesale movement of memory contents. List

structures are changed by replacing the link pointers.

2. Insertions and deletions are simply performed in a linked

list by changing the values of the forward pointers 1in the

appropriate TCBs. Stack operations would require wholesale
- movement of the stack conténts to make .room for new

insertions, or to close the gap left by a deletion.

3. Searching a 1list for a TCB with a given keyword is

Sec 4.4.3

81
relatively simple.
4, By using multiplé forward pointers it is easy to place
one TCB on several lists at once. This is impossible on a
stack without making multiple copies.
5. Finally a 1list 1is an inherently powerful structure,
capable of great variety and form. Incorporating head
pointers into the TCB allows the construction of sub-lists,
branches, frees, and even potentially dangerous loops. List
processing languages, such as LISP, are the "workhorses" of

the artificial intelligence community.

4.4.4 List Operations

There is a basic set of list operations that are frequently
necessary. They are presented here 1in terms of a‘call to a
Pascal procedure, and a short explanation of their operation.
For a detailed wunderstanding it is best to refer to the list

subroutines in Appendix II.

1. POPL(LIST,NEW,EMPTY): This routine removes the first TCB
from the 1list that the headpointér "LIST" marks. It returns a
pointer "NEW" that is the address of the popped TCB. In the
event that the list was empty the boolean flag "EMPTY" is set to
true (otherwise false) and "NEW" is unchanged. This routine

mimicks the usual stack popping operation.

2. PUSHL(LIST,NEW): PUSHL puts a NEW TCB on the front of LIST.
It is the complementary operation to POPL but must always

succeed.

82
3. DELETE(LIST,NEW,KEY,KEYWORD,NOTFOUND): The action of DELETE
is similiar to POPL except that it searches through the 1list
until the KEYWORD is found. KEY specifies the position of the
keyword in the TCB and NOTFOUND is set true if the keyword isn't

found (possibly because the list is empty).

4, INSERT(LIST,NEW,KEY): INSERT behaves in a similiar fashion
to PUSHL, only the NEW TCB is inserted before the first TCB it
finds with a keyword at KEY less than its own. This is handy
when inserting tasks of egqual priority 1into a queue as it
ensures that the later arrivals are gqueued égggg the earlier
ones. It 1is also important to note that this routine assumes
the keyword is already present in the new TCB. The new TCB is
inserted at the end of the list if all other TCBs have larger

'keywords.

5. FIND(LIST,NEW}KEY,KEYWORD,NOTFOUND): Searches the LIST for a
KEYWORD at KEY, and returns the pointer to its TCB in NEW if
found. NOTFOUND is set true and the value of NEW is unchanged
if the search fails. The list structure is 1left unchanged so

this routine is handy when testing for the existence of tasks.

All system operations so far devised can be performed using
these five 1list operations. Others that could possibly be of
value would be the ability to add and remove TCBs from the end

of lists, thus simulating first in, first out stacks.

The other important point regarding list operations is that

they should be indivisible. This term means that interrupts
must not be allowed to pre-empt these routines while they are in

Sec 4.4.4

83
the process of changing 1list structures. Indivisibility is
simply achieved by loading the interrupt mask with a zero (LIMI
0 instruction). Interrupts are thus prevented until a RTWP
instruction is execuéed. This point applies to aﬁy part of the

system that is actually manipulating the system structures.

4,5 MEMORY MANAGEMENT

Microprocessor systems consist of two very different types
of memory with different properties. The first is read only
memory (ROM) and while it is not possible for the microprocessor
to alter ROM contents erasable/programmable types have been
developed and given the acronym EPROM. Usually an ultra-violet
lamp is required to do the erasing, and special high current
drivers for the re-programming. The EPROM is convenient for
progréms and constants.

The other form of meﬁof§-is known, confusingly, as random
access memory (RAM) and it can of course be read and written.
For any system, all data that is to be changed must reside in
RAM and this includes'tésk control blocks, workspaces, flags,
semaphores and counters.

Consider now that a system has the potential to execute a
large number of tasks. It is extremely unlikely that all these
tasks will be in the system at once, especially those that only
have a short duration (such as printing é message). A given
amount of RAM can therefore support a larger task load if means
are devised to dynamically allocate and de-allocate blocks of

memory.

Sec 4.5

84

4.5.1 The Free List (Q.FRE)

This is simply a linked list of blocks of RAM that are
available for wuse. One of the main problems of memory

management is the process of fragmentation . If processes take

as much RAM as they require, and if they require different
amounts, there are always odd bits and pieces left over which
are 1impossible to |use. As time increases the number of the
fragments increases until the memory management system becomes
unusable. The simplest way to avoid this problem is td
determine the largest block that the system needs and to give
this to every task. There is undoubtedly some lack of economy
with the approach but the wastage is not serious. Fortunately
our system wuses very similiar sized blocks for all its
processes.

1. Workspaces : are 16 words long by necessity. Clearly no

overlap of workspaces can be allowed in a dynamic situation.

2. Task Control Blocks : with all pointers, flags, names

etc. considered a TCB requires 15 words of RAM. This could

be reduced to 12.

3. Conversational Buffers : used to store "sentences" from

the teletype for furthur processing. At two characters per
word, thirty-two <characters can be held in a sixteen word
buffer. This size has proven very éonvenient, and in any
case buffers are returned to the free list relatively

rapidly.

The free list is therefore initialised with forty-two blocks of

RAM each one 16 words long. This is enough to satisfy the

Sec 4.5.1

‘85
requirements for sixteen rack tasks (32), two conversational

buffers (2) and four other tasks (8).

PROCEDURE tcbget (VAR new:@tcb;none:boolean);
VAR newwp:@workspace;
BEGIN
popl(gfre,new,none);
IF NOT none
THEN BEGIN
popl(gfre,newwp,none);
IF NOT none
THEN new@.wsSp:=newwp
ELSE pushl(qgfre,new)
END
END

Program 4.2 TCBGET - createé a TCB/workspace structure

4.5.2 Allocating and De-allocating Memory

With the construction of a free list of equal sized blocks
of RAM memory management 1is an extremely straight-forward
procedure. When a block is required it is simply POPLed from
the free 1list, and likewise returned by wusing: - the PUSHL
operation, There 1s no point in maintaining any kind of order
in the free list and this therefore represents the optimal
strategy.

Because new tasks commonly require both a TCB and a
workspace a procedure has been defined to obtain these. It «can
be found under the name TCBGET in the operating system listing
(Appendix II1) and its operation is described by the Pascal
procedure in program 4.2,

Likewise decomposing task structures is a relatively common
operation and the procedure DISOLV, that does this, is listed in
program 4.3.

Sec 4.5.2

4,6 ACCESSING TASKS

86.

PROCEDURE disolv(VAR taskname:integer;notfound:boolean);
BEGIN
delete(gtsk,o0ld,taskname,notfound);
IF NOT notfound
THEN BEGIN
IF racktask(taskname,racknum)
THEN BEGIN
ledtab(racknum):=0;
rcktab(racknum) :=0
END
pushl(gfre,o0ld);
pushl(gfre,o0ld@.wsp)
END
END

Notes:

1. "Racktask" is a convenient procedure that tests the
task name to see if it was using a rack. The racknumber
is returned when this is true.

2. "Ledtab" and "racktab" are system tables responsible
for refreshing the contents of rack registers. Clearing

these deactivates the appropriate rack (see section
4.17)

Program 4.3 DISOLV - dissolves the TCB/workspace
structure

Although most system operations involve moving TCBs betw

various 1linked 1lists it sometimes happens that it is necess

to find a TCB when its position in the system structure is

known. Examples of this encountered so far are:

1.

Checking for the -existence of a new task name bef

generating it. Allowing two TCBs into the system with

same name would be fatal.

2.

een

ary

‘not

ore

the

Check for the existence of a task whose purpose conflicts

with a new one. The prime example of this is that tasks

both manual and automatic control of the same rack

interact with completely unforeseen results.

Sec

for

can

4.6

87
3. Aborting tasks is a tricky business. Unless a task is in
some known condition (such as an error condition) aborts
should only be performed by the task itself. This is made
possible by setting a flag/in the TCB which the task can test
tﬁ. conditionally execute a self destruct procedure (called a
defefred abort). Resource de-allocation and shutdown is then
performed in an orderly manner. By testing for existence of

the task before setting the flag the possibility of an

operator error is minimised.

4.6.1 The Resident Task List (Q.TSK)

Instead of performing an extensive search of all 1lists,
gueues and pointers in the system it is much simpler to retain
all tasks currently active on a special linked 1list, known as

the resident task list .

A task has its TCB PUSHLed here when first introduced into
the system, and then DELETEd when finished. 1In between time a
given task name is easily.found by using the FIND operation.
Not only is the existence of the task verified but parameters in

its TCB are easily tested, altered, set or changed.

4.7 EXECUTION OF TASKS>

The primary function of any operating system must be to
execute tasks in a logical fashion. It is reasonable to expect
that some tasks will also have a greater priority for the CPU
than others. Structures and routines must be devised to account

for this.

Sec 4.7

88

4.7.1 The Execution Queue (Q.XEC)

The simplest way of execﬁting tasks logically is to define
a linked list of task control blocks that are priority ordered.
When the CPU becomes available the highest priority task can be
removed from the queue and executed. Our system varies the
scheme slightly. Rather than having the first task on the
execution queue as the highest priority task waiting for the

processor, it is actually the task currently executing . When

it no longer requires the CPU (of its own volition or if it is
pre-empted) then it is either POPLed from the queue or has a
higher ©priority task INSERTed before it. Operation always
continues with the execution of the first task on the queue.
There is the question of what to do when the execution
queue Dbecomes empty. Usually the processor is sent into a loop
or an idle state that can be interrupted in some fashion.
Because our system is driven by user commands from teletype it
makes sense to execute a tight loop that monitors the keyboard
for operator input. Such a program could easily be a part of
the operating system, but a neater solution is to place the loop
within a low priority task. The task is forever checking the
teletype or decoding commands so it never really finishes, and
the operating system never has to contend with an empty
execution queue. This task is called the command task (TSKCMD)
and it is necessarily the lowest priority task in the system. A

task of lower priority might never execute.

4,7.2 Dispatching or Allocation

The execution queue ensures that the highest priority task
will be allocated the CPU at the first possible opportunity.

Sec 4.7.2

89
However routines must be devised to actually dispatch the task
to the processor. This is simply achieved by remembering that a
task is éxecuted when its program state vector is loaded into
the appropriate internal registers. As already mentioned, the
only practical way of doing this is to use the RTWP instruction.
Dispatéhing is, therefore, a simple procedure which moves the
PSV from the first TCB on the execution queue (proceduré'PSVGET)
and into registers 13, 14 and 15 of the supervisor workspace.
These steps are followed by the RTWP instruction. Figure 4.3

should clarify the operations.

execution queue ~ currently active task
1 o— | - other task of lower
priority waiting to
execute.
psv
new WP
new PC
new ST
CPU
o 1- superviser workspace registers
WP
PC
ri3 /
ri RTWP instruction ST
r1s loads CPU regs
with new context.
Figure 4.3 Dispatching a Task for Execution

4,7.3 De-allocation

The operating system routines are used by relinguishing
tasks calling them from the BLWP instruction, or in response to

external interrupts pre-empting the currently active task. In

Sec 4.7.3

90
either case the PSV of task is saved in registers 13, 14 and 15
of the supervisor workspace. If the task is to be correctly
dispatched at some later point then the PSV must be moved from
the sﬁpervisor'workspace to the first TCB on the execution queue
before any changes are made in the queue. A procedure PSVSAV
has been written to do this. In some cases no new tasks may be
inserted into the execution queue so there 1is no point in
wasting time and memory saving the PSV. As long as the three
last registers of the supervisor workspace are not altered, task

execution is simply resumed using only the RTWP instruction.

4.8 STARTING THE SYSTEM (STARTUP)

Before any system can function correctly there are
inevitably a whole series of devices, flags, pointers, counters,
etc. that must be initialised. Upon entry the operating system
performs the following sequence of initialisations which can be
sought in greater detail in the program 1listing and in the
instruction manual for the microprocessor (Texas Instruments,

1979).

4.8.1 Startup Procedure

1. Initialise a periodic 200 ms timer in the user I/0 port,
set up the interrupt vector, and enable itg interrupt
capability.

2. In a similiar fashion, initialise a 1ms timer in the
system I1/0 part.

3. Initialise the XOP vectors (see instruction manual).

4. Initialise the analogue/digital converter hardware, permit

Sec 4.8.1

91
interrupts, and set its interrupt vector.
5. Initialise and allow interrupts from the CMOS expansion
bus (from racks and inlet line).
6. Create the free list.
7. Clear all lists and queue headpointers.
8. Initialise semaphores.
9. Clear rack and LED refresh tables.
10. Initialise workspace for display timer interrupt service
routine.
11. Initiate ASCII clock and set current prompt or prefix
character.
12. Initiate the clock update task and place it on the clock
interrupt wait pointer.
13. Initialise the command task.
14, PUSHL the command and clock update tasks to the resident
task list.
15. INSERT the command task on the execution gueue.

16, Dispatch to the first task on the execution queue.

After this sequence is completed the command task will be
executed and will start scanning the teletype input port for a
character. Interrupts will arrive from the clock timer every
200 ms and the clock ubdate task will consequently be queued and
executed every second. Every 1.0 ms the service routine for the
display timer interrupt will clear rack registers thus making
sure that all solenoids and control lines are off or inactive 16
ms after the STARTUP procedure is entered.

In the present implementation the sample 1line operating
system (SLOS) 1is entered using the J command from the UNIBUG

Sec 4.8.1

92
monitor (Texas Instruments, 1978). The monitor 1itself is
entered whenever power is applied to the microprocessor board,
or when the board mounted 1load switch 1is c¢losed. A more
satisfactory proceaure would be to enter SLOS directly on power
up but this would require changing the load vector in the UNIBUG
program. Various hardware approaches could possibly be used but
all of these involve making physical changes to the printed
wiring on the microprocessor assembly. These modifications will

be made when time permits.

4.9 INTRODUCING NEW TASKS (RELINQ)

After start up, the processor is occupied with updating the
time-of-day clock and scanning the teletype port for input
commands. At some stage the command task will receive a user
command, that to be executed must result in the generation and
introduction of a new task into the system. 1In order to do this

the command task must relinquish control of the CPU once it has

composed and initialised a TCB and workspace. A'system routine
RELINQ 1is provided expressly for this purpose, but is in fact
useful for introducing any task, whether new or just previously
inactive, back into the execution queue. The RELINQ operation
is shown in Program 4.3. It simply saves the PSV of the
relinguishing task, 1inserts the TCB of the new task into the
execution queue (and the- resident task 1list 1if not already
there), and then dispatches the highest priority task to the
CPU. There is the added complication that two tasks with the
same name (but using different TCBs) must not be allowed to co-
exist. If this condition exists the name of the new task is

Sec 4.9

93

incremented until it is unique. This proved convenient,

PROCEDURE reling(VAR new:@tcb);
CONSTANT the-universe-dies=false;
VAR
same:@tcb;
notfound:boolean:
BEGIN
1limi(0);
IF new=NIL THEN systemerror;
REPEAT
BEGIN
find(gxec,same,name,new@.name,notfound);
IF notfound OR same=new
THEN BEGIN
psvsav;
insert(gxec,new,priority);
psvget;
rtwp
END
new@.name:nw@.name+1
END
UNTIL the-universe-dies
END

Notes:

1. "Systemerror" is a diagnostic routine in the event
of system error.

2. Control leaves this procedure when either
"systemerror" or "rtwp" is executed.

3, The procedure could repeat indefinitely if no unique
new name is ever found (i.e. until the universe dies).

Program 4.3 RELINGQuishing the CPU

especially when 1logging rack interrupts, but could prove
troublesome if the task name 1is incremented too far (highly

improbable).

4,10 INACTIVATING TASKS FOR A GIVEN TIME

It is frequently the case in a real time system that a task
activates something external (i.e. in the real world) and then
must wait for a certain time until it can proceed. In our case

Sec 4.10

94
common examples involve waiting for gas flow rates to stabilise
during transfer stages, or,,fbr pressures to stabilise during
pump down or leak testing.

As the CPU can do nothing for the task except 1loop
continuously, it 1s wasteful to use this valuable resource in
such a manner. Instead it makes a good deal more sense to
inactivate the waiting task until it is ready to execute again.
Inv the meantime the .processor can proceed with other tasks

(usually the command task).

4.10.1 The Timer Queue (Q.TMR)

Structuring the operating system around linked lists allows
the programmer to create as many special purpose queues as the
system requires. Consequently it is easy to define a queue on
which tasks are placed until a certain time period has elapsed.

The timer gueue can be updated at a convenient unit of time

(every second) and TCBs can be deleted from it and replaced on
the execution queue when their time has elapsed. As usual it is
convenient and straightforward to order tasks in terms of their

priority.

4.10.2 Setting the Alarm (WAIT)

Tasks that wish to wait for a given period of time execute
a BLWP to the supervisér/operating system routine WAIT, with
register zero of the workspace set to the time period in
seconds. The WAIT routine transfers the period to its
appropriate place 1in the task control block after POPLing the
block from the execution queue. The waiting TCB is INSERTed

into the timer queué, and the next highest priority task on the

Sec 4.10.2

95
execution queue is allocated the CPU. The procedure 1is simple

and straightforward. It is shown in Program 4.4.

PROCEDURE wait (VAR time:integer);
VAR temp:@tcb;empty:boolean;
BEGIN

1imi(0);
psvsav;
popl (gxec, temp,empty);
IF empty THEN systemerror;
temp@.alarm:=time;
insert(gtmr,temp,priority);
psvget;
rtwp
END)

Program 4.4 Procedure to place TCB on timer queue

4.10.3 The System Clock (SRVCLK)

The University Kit board has two interface devices, both of
which have internal, programmable timers. The timers generate a
periodic interrupt which pre-empts current program execution.
In particular the user I/0 port is initialised to generate an
interrupt every 200 " ms. This interrupt causes entry to the
service routine SRVCLK, which in turn executes the following
actions (Program 4.5).

1. Resets and re-enables the clock interrupt.

2, Decrements a tic counter. This is set to a value of five
during the start up procedure and therefore reaches =zero
after one second has elapsed.

3. If the tic counter 1is =still positive then an RTWP
instruction is executed, continuing the pre-empted program.
Otherwise the following actions are performed.

4., Check the interrupt pointer for the clock (INT.CLK). If

Sec 4.10.3

96
this is zero (or empty) then the clock update task is- busy,
and no action can be taken, so the RTWP sequence is executed.
5. If however the clock update task is ready then the pointer
will be non-zero. The TCB is inserted in the execute qﬁeue,
the pointer is zeroed (flagging that the update task 1is
busy), and the highest priority task is dispatched to the
CPU.

The highest priority task is usually the clock update task
itself, and so will execute as soon as the clock interrupt has

been serviced.

PROCEDURE srvclk
VAR intdk:@tcb;ticctr:integer;
BEGIN
1limi(0);
resetclockinterrupt;
ticctr:=ticctr-1;
IF ticctr.0
THEN rtwp;
ELSE
IF intclk=NIL
THEN rtwp
ELSE BEGIN
psvsav;gxec
insert(gxec,intclk,priority);
intclk:=NIL; :
psvget;
rtwp
END
END

Program 4.5 System clock service routine (SRVCLK)

4.10.4 The Clock Update Task (TSKCUD)

Primarily designed for updating and removing tasks from the
timer queue, it actually performs two related but important

functions.

Sec 4.10.4

97
1. All messages output on the teletype are prefixed by the
time since system startup. This time is stored internally in
the form of ASCII <characters for the hours, minutes and
seconds (the format is HHMM:SS) suitable for direct output to
the teletype. The clock update performs an ASCII increment
of its value. | |

2. The tic counter must also be updated, but this is simply

a matter of subtracting five from its value. Using the tic
counter in this fashion has two advantages. It allows clock
interrupts to continue even though the clock update is
executing, and it insures that clock 1interrupts cannot be
"missed" if, say, the clock update task happened to be pre-
empted for a rather long time. This 1is why the service
routine for the interrupts is able to RTWP if the update task
is not ready (INT.CLK is zero). The main function though is
for the clock update task to work its way through the timer
gueue decrementing the alarm times of each TCB it finds. When
such a decrement results in a zero value the TCB is DELETEd from
the timer queue (and the error queue if there as well - see
section 4.11.). The clock update task, then RELINQuishes, but
because of its high priority continues processing the timer
queue., In this way tasks are returned for execution once their
time period has expired.

As mentioned before the clock update task alters the
structure of the system when it deletes TCBs from the timer (and
error) gqueues, then inserts them to the execution queue.
Nothing else must be allowed to alter structure during this time

so all interrupts are masked out to prevent the possibility (See

Sec 4.10.4

98
Program 4.6). When the clock update task has finished it waits
for the next «clock interrupt on the clock wait pointer (see

section 4.13).

PROCEDURE tskcud
VAR curr,new,intdk:@tcb;
ticctr,beeper:integer;
empty,notfound:boolean;
BEGIN
increment ascii clock;
ticctrs:=ticctr+5;
curr:=gtmr;
WHILE curr=NIL DO
BEGIN
curr@.alm:=curr@.alm-1;
IF curr@.alm.0
THEN BEGIN
popl(curr,new,empty);
delete(gerr,new,name,new@.name,notfound)
IF NOT notfound THEN beeper:=beeper-1;
reling(new)

END
curr:=curr@., tmr
END
waitint(intclk);

END
Notes:
1. "Increment ascii clock” is a tedious procedure with
effect suggested.
2. "Beeper" controls the rate of the audible alarm
beep. Re-executing a task in an error condition
requires resetting this, :
3. "Waitint" sits the task on the interrupt pointer

specified.

Program 4.6 The clock update task (TSKCUD)

4.11 ERROR CONDITIONS

To function correctly a real time processing system such as
ours requires a prescribed set of conditions in the real world.

Although it is possible to design a task to behave'intelligently

Sec 4.11

99
when conditions vary such an undertaking usually requires a good
knowledge of the most probable faﬁlts and errors. Because such
experience 1is lacking at an early stage of development, and
because it is 1impossible for the processor to correct all
errors, then tasks finding it 1impossible to proceed must be
inactivated under the following criteria.

1. Facilities must be provided to notify the operator that
the error has occurred. Information must be presented to
identify the error.

2. The operator must be able to decide the fate of such a
task. Should the task be aborted or is it possible to effect
some recovery action?

3. Some conditions are temporary. An example of this is
that evacuating the sample reservoirs fails on a pressure
test. This may be due to the presence of a small droplet of
water so the evacuation would have been successful if it was
tried again (or a number of times). It therefore seems
reasonable to provide a time out procedure whereby the task
initiates 1its own recovery action if the operator does not

respond within a given period.

4.11.1 The Error Queue (Q.ERR)

As usual it 1is simplest to define a priority-ordered,
linked list of TCBs for tasks that are unable to proceed because
external conditions are not correct. The task itself must
"discover" the cbndition and is responsible for placing itself

on the queue.

100

4.11.2 Getting on the Queue (WAIT.ERR)

When a task needs to wait for operator intervention it
executes a BLWP to WAIT.ERR (Program 4.6). The following steps

are executed,

1. Increase the beeper rate (If not on, the audible alarm will
sound) .

2. Insert the calling task into the error gqueue.

3. If a time out period is specified (non-zero) then insert the
calling task into the timer queue as well.

4, Dispatch to the highest priority task on the execution

gueue.

Note that this routine does not generate any messages
regarding the nature of the error; it was found more
practical to let the «calling task do this. ©Nor does the
routine releases any resources it has held; this can be
useful when a resource, such as the vacuum pump, is found to
be at fault. Not releasing the resource will prevent other

tasks from using it.

4.11.3 Getting Off the Error Queue

There are three different ways of getting off the error
gueue and two of them are initiated by operator commands to

the command task (see chapter 5).

1. In the event that the operator feels that there is no simple
way -of correcting the error (the rack has to be dismantled, say)
then the operator 1issues an ABORT command for the appropriate
task number. This will DELETE the task from the error queue,

Sec 4.11.3

101

the timer queue (if there), will deallocate any resources held,

PROCEDURE waiterr (VAR time:integer);
VAR temp:@tcb;empty:boolean;
BEGIN

limi(0);
psvsav;
popl (gxec, temp,empty);
IF empty THEN systemerror;
beeper:=beeper+1;
pushl(gerr, temp);
IF time=0
THEN BEGIN
temp@.alm:=time;
insert(gtmr,temp,priority)
END
psvget;
rtwp
END

Program 4.6 Waiting for errors (WAIT.ERR)

and will return the TCB and workspace to the free list.

2. If however the fault was simply corrected (e.g. opening
that forgotten wvalve on the carbon dioxide <c¢ylinder) then
issuing the RECOVER command (and RETRY, REDO, or RESTART) will
DELETE the task from the error and timer queues, and re-insert
it into the execution Queue. When the task finally resumes
execution it will do so with the first instruction after the
call to WAIT.ERR. It is up to the task itself to take
appropriate recovery action.

3. When the operator fails to respond within the time out

period the clock update task initiates the actions in (2) above.

Sec 4.11.3

102

4.12 RESOURCE MANAGEMENT

Any system inevitably shares its resources amongst the
various tasks. So far the system has been designed to
allocate two of these: the central processing unit and blocks
of random access memory. There are however a number of
external resources which must not be used simultaneously.

1. The teletype and its associated routines can only be used by
one task at a time. Even if it was possible to re-enter the
teletype XOPs, messages would be confusingly mixed together.

2. The main vacuum line is used for evacuation, transfer of

CO,, and for pressure measurement. Obviously competing tasks
should not be allowed to change any of these conditions.

3. The mass spectrometer line to the 1inlet <controller must

likewise be dedicated to one task at a time if sample mixing and
contamination are to be avoided. The peltier cooler and the
inlet line controller can be grouped in with this resource.

4. The analogue/digital converter should not be re—initialised

until it has delivered a requested result.

4,12.1 Semaphores and the Critical Section

It 1is wusual to term the area of a task that updates or

uses common resources as the c¢ritical section (CS), (Shaw,

1974, pg 59) and many different schemes have evolved to
provide the protection needed. The most general and easily
implemented approach, first developed by Dijkstra (1965,

1968), wuses two semaphore primitives to ensure mutual

exclusion of the «critical section. If S is a semaphore

Sec 4.12.1

103
variable then the following two operations are defined:

1. V(S) : this simply increases S by 1 in a single indivisible

action (i.e. no interrupts).

2. P(S) : decrements S by 1 unless S=0 in which case the task

proceeds no furthur until it can (ie until a V(S) is executed by

another task).

It is possible to protect an indefinite number of <critical

sections using the code in program 4.7.

PROCEDURE system
VAR mutex:integer;
BEGIN

mutex:=1;

PROCEDURE task;
BEGIN

P(mutex);
criticalsectionij
V(mutex);

END {taski}

o o

END {system}

Program 4.7 Using semaphore primitives to protect a Critical
Section

The 1initial value of the semaphore variable is actuaily
a meaéure of the number of units of the resource that are
available. Although all resources in our system should be
initialised to one, an 1important exception could be the
solenoid power supply. With a bank of solenoids consuming
approximately 4 A, then a power supply capable of supplying

Sec 4.,12.1

20 A could be protected from over

104

use by initialising a

semaphore to 5. The primitive P(S) is used every time a bank

of solenoids is activated; and V(S)

after they are de-

activated. This 1is an example of the "producer-consumer

problem” that Dijkstra's semaphores were designed to solve.

The primitives V(S) and P(S) have been implemented for the

sample line operating system as the

procedures RELESE and

RESERV respectively, but before describing these routines

there is the ever present issue of structure to solve.

4.12,2 Semaphore Structure - the Semaphore Table (SEMTAB)

Dijkstra's semaphore primitives are conceptually simple

(and elegant) but implementing them requires the following

information.

1. A place to store the value of the semaphore, or the number

of available resource units.

2. The primitive P(S) requires that the

calling task wait until

the wvalue of S is positive. It is easiest to define a list of

TCBs that are waiting to use the semaphore's resource. In that

case a place is needed for the semaphore

wait list head pointer.

3. It 1is also extremely convenient
resources currently held by a task. For

the task's TCB is allocated for resource

to keep tabs on the
this reason a word in

flags . When a flag is

set its corresponding resource is in use

by the task.

A semaphore is conviently thought of as a pair of words,

the first the number of resource units available, and the

second the address of the first TCB on its wait list. all

the semaphores are grouped together in a semaphore table and

Sec 4.12.2

105
the position of a semaphore in a table corresponds to a bit
in the TCB word assigned to resource flags. In this way
semaphores can be referred to by name when writing Assembly
language programs, yet can also be inserted and deleted from
the semaphore table at will. The appropriate bit flag is
easily calculated from the semaphore CALCBIT (see the
operating system 1listing 1in Appendix 1II). The Pascal

structure for the semaphore table is in Program 4.8.

TYPE
semaphores=
RECORD
units:integer;
waitlist:integer;
END;
CONSTANT
semmax=4; {in current implementation}
VAR
semtab:ARRAY[1..semmax JOF semaphore;

Program 4.8 Semaphore structure (SEMTAB)

4.12.3 Reserving a Resource (RESERV)

This routine is entered by a task wishing unimpeded use
. of the named resource (passed as an argument - the address of
a semaphore). The following steps are executed. (Program
4.9)
1. The number of resource units is decremented.
2. If the result of (1) is positive or zero, then no other
tasks are using the resource so it is permissible to proceed.
The appropriate resource flag 1is set in the tasks TCB and
execution continues with an RTWP instruction.
3. If however step (1) generates a negative number of units

Sec 4.,12.3

106
then the resource is unavilable. After saving the PSV for the
calling task its TCB is POPLed from the execution queue then
INSERTed .into the sémaphore wait queue. The first task on the
execution queue is then dispatched to the CPU 1in the wusual

manner.

It may be useful to note here that this scheme differs
slightly from Dijkstra's in that the number of resource units
can be negative. However this makes no real difference to
semaphore operation and 1is sometimes useful when examining-
the state of the wait lists. The magnitude of a negative
semaphore indicates the number of tasks waiting to use that

resource.

4.12.4 Releasing a Resource (RELESE)

When a task has finished using a resource it should be
released for wuse by other taéks using a BLWP G@RELESE
insruction. The procedure is eguivalent to the P(S)
primitive except that it checks to see if any tasks are
waiting to use that resource. If they are, it POPLs the
highest priority one from the semaphore wait queue and
INSERTs it into the execution gueue. The highest ©priority
task then begins executing. The equivalent Pascal procedure

in Program 4.9 should be self explanatory.

4.12.5 Using RESERV and RELESE

Reserving and releasing resources is usually a matter of
calling RESERV, using the resource, ‘then calling RELESE when
finished (with the appropriate semaphore address of course).
However when several resources are held by two or more tasks

. Sec 4.12.5

107

concurrently it is possible to arrive at a circular wait

PROCEDURE reserv(VAR sa:@semaphore);
VAR
empty:boolean;
temp:@tcb;
snum:integer;
BEGIN
1limi(0);
sa@.units:=sa@.units-1;
IF sa@.units.0
THEN BEGIN
psvsav;
popl (gxec,temp,empty);
IF empty THEN systemerror;
insert(sa@.waitlist,temp,priority);
psvget;
rtwp
END
ELSE BEGIN
calcbit(sa,snum);
gxec@.rsc{snum]:=true;
rtwp
END
END

Program 4.8a Reserving resources (RESERV)

‘condition known affectionately as deadlock . A simple case
of this for two tasks is>shown in figure 4.3 where task A
holds the main line and requires the teletype, while task B
holds the teletype but cannot release it until it gets the
main line. Clearly this condition is impossible to exit,
hence the name deadlock.
Not only is deadlock disastrous, but it is also common.

Many methods have evolved to detect and prevent it (Shaw,
1978, Chapter 8) but the most pertinent in our case is for
the programmer to order resource calls so that the condition
never occurs. In the example shown in figure 4.3 deadlock

would be prevented 1if both tasks always asked for the

Sec 4.12.5

108

mainline first. Similarly if a critical section requires

PROCEDURE relese (VAR sa:@semaphore);
VAR ‘
temp:@tcb;
empty:boolean;
snum: integer
BEGIN
1imi(0);
calcbit(sa,snum);
gxec@.rsc[snum]:=false; ' {reset resource flag}
sa@.units:=sa@.units+1;
IF sa@.units.0
THEN BEGIN
popl(sa@.waitlist,temp,empty);
IF empty THEN systemerror;
temp.rsc{snum]:=true; {set resource flag}
psvsav;
insert(gxec, temp,priority)
psvget;
rtwp
END
ELSE rtwp
END

Program 4.9 Releasing resources (RELESE)

several resources at once then deadlock 1is avoided by
requesting resources in the sample line system in the
following order.

The mass spectrometer line. (S.MSL)

The main line. (S.MNL)

The teletype. (S.TTY)

The analogue/digital converter. (S.ADC)

Importantly they must be RELESEd in the reverse order.

Sec 4.12.5

109

4,13 WAITING FOR INTERRUPTS (WAIT.INT)

TASK A - TASK 8

1

- = - - task inactive i

l task octive !
RESERV \
main line 1

]

]

i
open vacuum :
pump valve)

}

|

!
WA',T . exacute task B ——un RESERV .
10 minutes teletype

]
i
|
, RESERV
) main line
i
¥
. RESERV ~—10 minutes later......... — '
teletype !
|
i 1
Task A is blocked Task B is blocked
until task B until task A
RELESEs the RELESEs - the
teletype. main lihe.
Figure 4.4 An Example of Deadlock

Devices in the real world are usually very slow to
respond to the CﬁU. In some cases interrupts are completely
asynchronous and no prediction can be made about their
arrival. To avoid wunnecessary use of the CPU under these
conditions it is necessary to define pointers on 'which task
TCBs can be placed while waiting for an interrupt from a
particular source. The procedure in program 4,10 is
basically very straightforward. The calling task is removed

from the execution queue, is placed on the interrupt pointer

Sec 4.13

10

specified, and the next highest priority task is executed.
At present interrupt pointers exist for three soufces:
the inlet controller (INT.INL), analogue-to-digital converter

(INT.ADC) and the clock timer (INT.CLK).

PROCEDURE waitint (VAR intptr:@tcb);
VAR
temp:@tch;
empty:boolean;
BEGIN
1limi(0);
psvsav;
popl{(gxec,temp,empty);
IF empty THEN systemerror;
intptr:=temp;
psvget;
rtwp
END

Program 4.10 Waiting for Interrupts (WAIT.INT)

Removing TCBs from the interrupt pointers 1is actually a
function of the appropriate interrupt service routine (ISR)
but in general once the source of the interrupt is determined
its pointer is checked for the presence of a waiting task
(the pointer is non-zero). If a task is waiting then it is
inserted in the execution gqueue and the highest priority task

is dispatched to the CPU.

4.14 SERVICING INTERRUPTS

The TMSS9980 has six levels or priorities of interrupts
of which four are immediately accessible to the user. Each
level has a dedicated vector in RAM in which is specified the

workspace and execution address of the interrupt service

Sec 4.14

111
routine. An interrupt effectively causes a BLWP to be
executed from this vector after the current 1instruction is
completed. It also forces execution of the first instruction .
in the ISR enabling the_interrupt mask to be set, and hence
preveﬂting pre-emption of the routine. The table is shown in
more detail in the RAM definition section éf the operating
listing (Appendix II), and in the Unibug Users Manual (Texas

Instruments, 1978).

4,15 SERVICING CMOS BUS INTERRUPTS (SRVBUS)

Interrupts arriving from the CMOS bus can have one of
two sources.
1. A sample request from the inlet line controller.
2. As a result of a change in the state of a door switch or

relay power supply on a rack.

The routine first tests for the inlet 1line controller
interrupt. If this was the source then it will queue the
task waiting on 1its wait pointér (INT.INL). When this
pointer is empty nothing else is done and the pre-empted task
regains the CPU after an RTWP instruction is executed.

If the inlet line was not the interrupt source each of
the sixteen rack status words are tested in turn. The first
rack found with its interrupt flag set will queue a task that
logs the event on the teletype (TSKLOG). This task generates
a message indicating the rack number and its status word then
FINISHes (see Appendix 1II). after inserting the log task
into the execution queue the wusual dispatch procedure 1is

Sec 4.15

112
executed.

Note that this scheme 1is not the best way to handle
sequential interrupts because of the return as soon as one
rack has been found causing the condition. Sequential
interrupts are of such low probability however that there is

no real advantage in designing for them.

PROCEDURE srvbus
VAR
rnum:0..15;
new:@tcb;
BEGIN
1limi(0);
" IF interrupt(master)
THEN BEGIN
psvsav;
insert(gxec,intinl,priority);
psvget;
rtwp
. END
ELSE
FOR rnum:=0 TO 15 DO
IN
IF interrupt(rack[rnum])
THEN BEGIN
createlogtask(new,rnum);
psvsav;
insert (gxec,newpriority);
psvget;
rtwp
END
rtwp
END

Program 4.11 CMOS Bus interrupt service routine (SRVBUS)

4.16 USING THE ANALOGUE-TO-DIGITAL CONVERTER

This is most conveniently accessed by executing the
instruction BL @ADCGET (see Appendix II for argument
specifications). This routine RESERVs the teletype,

Sec 4.16

113
initialises its channel number (from 0 to 15), waits for an
ADC interrupt, reads the ADC value from the output latches
(resetting the interrupt at the same time) and stores it in
the workspace of the waiting task. When the waiting task
resumes execution if'RELESEs the ADC for other users. Both
the ADCGET and the interrupt service routine are listed in
Program 4.12,

One furthur point is that the value initially extracted
from the ADC contains two flags indicating polarity and
overflow (Intersil, 1981). ADCGET tests these and alters the
value to give a correct 2's complement integer, and flags an

overflow if it occurred.

4.17 CHANGING RACK REGISTERS

The rack hardware registers have been designed to
resemble part of memory, and it is quite feasible to set them
by writing a word to the appropriate address. However in the
interests of hardware simplicity it is not possible to read
from these registers and many convenient machine operations
will therefore function incorrectly (SOC, SZB, shifts and
arithmetic operations). As well, it is possible to lose the
contents of these registers in the evént of a power failure
on a rack and it was therefore felt that an advantage could
be gained by holding an image of the rack registers somevwhere
in RAM. Realising that the image could be altered far more
conveniently than the registers themselves, a structure and a
process were devised to continually refresh the rack
registers from RAM.

Sec 4.17

114

4.17.1 The Rack Refresh Table (RCKTAB)

PROCEDURE adcget (VAR channel:0..15;
value :integer;
overflo:boolean)

BEGIN
devadc:=channel {set channel number}
reserv(sadc);
waitint(intadc);
relese(sadc);

correct(value) {correct sign and test for overflow}
END

PROCEDURE srvadc

BEGIN
1limi(0);
IF intadc=NIL THEN systemerror
value:=devadc; {get adc value}

~ psvsav;
insert(gxec,intadc,priority);
intadc:=NIL;
psvget;
rtwp

END

Program 4.12 Getting ADC values '(ADCGET & SRVADC)

The rack refresh table is a block of sixteen words in
RAM, Each word holds the address of (or "points to ") an
image of the rack registers. I have termed this the rack

state vector (RSV) . If a table entry 1is zero then the

corresponding rack is inactive. The RSV can be conveniently
held in the workspace of the task using the rack. The
pointer to the RSV is initialised by the task when it first

executes, and is cleared as it FINISHes,

4,17.2 The LED Table (LEDTAB)

Eight LEDs are provided in a conspicuous location on the
rack front panel and these can be set by writing ones to the
appropriate bits of the rack control word. As well a

Sec 4.17.2

115
facility to flash LEbs at the samé rate at which the audible
alarm beeps has been provided by setting bits. in the
appropriate entry of the LED table. This is a block of 16
bytes (8 bits each) of RAM, one byte being dedicated to each

rack.

4.17.3 Refreshing the Racks (SRVDSP)

Every 1 ms the display timer pre-empts the currently
executing task and executes its service routine. The display
service routine conveniently handles a number of Jjobs and
operates in a sense that 1is independent of the operating
system. It has its own dedicated workspace, has no TCB, and
alters none of the system structure, but performs the
following jobs.

1. Sounds the audible alarm at the rate determined by "beeper".
2. Flashes the LEDs marked in the LED table, at a rate
dependent on "beeper". Note however that LEDs can always be
made to flash even if thé audible alarm is silent.

3. Refreshes one rack every 1 ms from the contents of the rack
state vector. If the rack table entry is zero it clears the
rack register.

4. Besides the rack registers, the master control word is

refreshed every 1t ms from its corresponding RAM image, as well.

The scheme has proven extremely convenient because of
the ease it allows for altering rack registers. The other
approach would be to write routines specifically for this
pupose, but by the time code and argument lists are

considered such routines would not only be uneconomical in

Sec 4.17.3

116

terms of EPROM space, but also for their awkwardness.

PROCEDURE finish
VAR
fin,new:@tcb;
rnum:0.,.15;
empty,nameunknown:booclean:
BEGIN
1imi(0);
popl (gxec,fin,empty);
IF empty THEN systemerror;
disov(qgtsk,fin,name, fin@.name,nameunknown);
rnum:=0 IF nameunknown THEN systemerror;
WHILE anyflagset(fin@.rsc) DO
BEGIN
IF fin@.rsc[rnum]
THEN BEGIN
semtab[rnum.units:=semtabl[rnum].units+1;
IF semtab[rnum].units.0
THEN BEGIN
popl (semtab{rnum].waitlist,new,empty);
IF empty THEN systemerror;
new@.rsc{rnum]:=true;
insert(gxec,new,priority);
END
rnum:=rnum+1
END
psvget;
rtwp
END

Notes: .
1. "Anyflagset" 1s a boolean function. It returns a
value of true if it finds any true flags in the packed
array in the argument list.

Program 4.13 Finishing Tasks (FINISH)

Detailed operation of SRVDSP is best understood by referring
to the listing of the operating system (Appendix II). It is
a straightforﬁard application of various flags to pulse the
piezo-electric transducer, and continuously incremented

indexes to enter the rack and LED tables.

Sec 4.17.3

117
4.18 FINISHING TASKS (FINISH)

When a task has finished it must be able to inform the
operating system of the fact. Its resources <can then be
deallocated, its TCB and workspace returned to the free list,
and the CPU assigned to the next pending task. These
operations are all accomplished by execufing a BLWP G@FINISH

instruction (Program 4.13).

118

CHAPTER V, THE OPERATOR INTERFACE

5.1 A DEFINITION

Our sample preparation line has been pfesented as an almost
self-contained system, capable of operating in an unattended
mode, with a minimum of human 1intervention. Under normal
conditions this is true, but there are many instances where the
human operator must play a more significant role.

There are, for example, testing procedures that can be
introduced at the operator's discretion, and it is sometimes
necessary to abort tasks, either because they have been
introduced inadvertently, or because they are no longer needed.
Overriding manual contrél ié vital, and may allow the operator
to avoid a recurrent error by manually stepping through the
troublesome procedure. In such cases it is useful to provide a
number of entry points to the preparation algorithm, and to
allow the operator the power of continuing processing at any one
of them. . Manual overrides also permit new procedures to be
tested and refined before committing them to unattended
operation.

The sample line therefore requires a sophisticated channel
of communication between its controller and the human operator.
Unfortunately, both participants speak different languages, and
it 1is necessary to bridge the gap with both hardware devices;

and software protocols. This is the operator interface.

Sec 5.1

119
5.2 IDEAS

There is much conjecture as to the form of any operator
interface, but it is hard not to be impressed with the ideas in
Xerox's Star Information System (Smith, Irby, et. al.,1982). A
very useful ‘interface could be constructed if the Xerox
procedures were adapted for our system. For example, manual
control of a rack would be through manipulation of its schematic
diagram as displayed on a graphics terminal. Solenoids could be
selected by positioning a cursor over the appropriate solenoid
in the schematic, and could be operated by pressing a button on

the cursor positioning device (commonly called "the mouse").

-

Such a scenario enjoys the directness and readibility of
customised "mimic" panels, but in the flexibility of a software

environment. It is hard to settle for anything less.

5.3 PRACTICALITIES

The operator interface suggested above requires expensive
~hardware devices, and would need many programmer-months to bring
on-line. There is also a definite need for similiar interfaces
on the inlet line, the mass spectrometer, and even the measuring
system. Such duplication is not only expensive, but is likely
to be intimidating from the operator's point of view. Instead,
a centralised interface is required, and a more generalised set
of software tools must be written to run it. At the hardware
level a compatible set of interfaces and protocols must be
defined to link all components of the complete» oxygen 1isotope

analysis system. Such an undertaking requires a complete re-

Sec 5.3

120
appraisal and re-organisation of the system, and 1is obviously
well beyond the scope of this thesis. | |

In any case, the sample preparation line has been designed
with an eye towards its use 1in other 1laboratories, and with
other mass spectrometers. To aid in these ends, communication
with the host system has been kept deliberately simple. Under
such conditions, the operator interface must be part and parcel
of the sample line itself, and cannot reiy on the existence of
another machine.

Finally, it must be pointed out that the task oriented
nature of the sample 1line operating system allows different
operator interfaces to be used in different situations. The one
described in the following paragraphs is universally useful for
a stand-alone system, but may be replaced if, for example, the

users would rather handle the human end from another machine.

5.4 DESIGNING THE INTERFACE

5.4.1 Choosing Input and Qutput Devices

An operator interface relies heavily upon the devices that
transfer information between the human and the machine. Those
employing visual graphics probably result in the clearest and
friendliest communication, but as pointed out earlier, other
considerations do not make this currently practical.

A viable alternative 1is the antique, but still useful,
teletype. The familiar layout of 1its standard typewriter
keyboard should prove unintimidating to most operators,.and the
flexibility to interpret keystrokes in software allows the

Sec 5.4.1

121
programmer to write natural—feeliﬁg command languages.
Furthermore, every teletype is equipped with a print head that
can be made to serve a dual purpose. By echoing keystrokes on
the printer, a degree of feedback is provided that can only
enhance the confidence of the operator in his ability to control
the system. With suitable sbftware, errors in a command
sentence can be seen and corrected before submitting it to the
system. The other purposé is to type messages originating from
the system. These might be in immediate response to some input,
or could be reports issued some time later, marking progress or
errors during processing.

The necessity of a permanent printed record cannot be
overemphasised. During unattended operation, error, test, and
progress reports can be printed and available for later
examination. When combined with the echoed keyboard input, such
a record provides valuable data, not only for the detection and
correction of errors, but to guide future system development.

A more modern, video type, display could be used to control
the sample line but it would be necessary to provide a printer
for permanent records. On the whole, a teletype 1is the least
expensive of the available options, and 1is the easiest to-
implement. Its choice was made easier, in this case, by the
availability of one 1in our laboratory, of the existence of a
suitable interface on the microprocessor board, and of the
ability to access input and output routines already resident
within the UNIBUG monitor program.

In addition to the teletype, two other forms of output are

implemented to attract the operators attention. Eight light

Sec 5.4.1

122
emitting diodes are mounted on the front panel of the prototypé
rack. These can be programmed to 1light, or flash, in any
sequence, and give an instant visual indication of the rack
status. Similarly a small piezo;electric sound disk is mounted
on the processor board, and has been utilised as a 500Hz audible
alarm. Whenever errors requiring operator attention occur, the
alarm "beeps" until the operator responds. The rate at which
the alarm beeps increases with the number of outstanding errors,

and gives an impression of urgency as they build up.

5.4.2 Developing a "Natural" Command Language

When faced with the task of providing wunskilled operator
communication through a typewriter keyboard there are two basic
approaches.

The first is commonly known as a menu—-driven command mode,

and it has the advantage of being self-documenting. The user is
presented with a list~of numbered choices (the menu) aha, after
reading through it, can select one of them by entering its
number on the keyboard. However, the method becomes cumbersome
when a slow output device,.sdch as a teletype; must be used to
display .the menu. This is especially true of systems requiring
large, and complicated, menus.

The second approach is therefore more practical for our
purposes. It requires the programmer to define a command
language using a set of command words (the vocabulary), and a
set of rules for combining them (a grammar). System operations
can then be initiated by entering command sentences at the
keyboard.

Unfortunately the scheme is not self-documenting, and the

Sec 5.4.2

123
programmer must provide clear documentation manuals that will
enable a naive user to quickly learn the language. This will be
a less formidable task for operator and programmer alike if the
command language appears natural or if, for most of wus, it is
similiar to written English.

A good deal of work has been doné on front-end natural
language processors. The most sophisticated programs operate in
several stages beginning with the input of a sentence from the
operator. After some preprocessing the sentence is broken up
into words and then submitted to a parser. The parser uses
grammatical rules to break the sentence into its structural
units (e.g. subject, verb, object), which are then wused as
templates 1in &he next stage to construct subroutines related to
the meaning of the sentence. Finally, the subroutines are
executed to perform the intended actions. Such programming
primarily takes place within the arena of artificial
intelligence, but has increasing applicability for data bases,
electronic offices, and teaching systems. The mést striking
example must be Terry Winograd's SHRDLU program (Winograd,1972).
It maintains dialogue with a simulated robot, moving objects
around in the simulated environment of its "blocks world".

Such programs are far too complex, and 1lengthy, to be
realised on a small microprocessor, but they did grow from
simpler things. 1In particular an earlier program named ELIZA
(Weizenbaum, 1965), gives an amazing impression of intelligence
for something that 1is totally idiotic. ELIZA relies on a
pattern matcher to recognise certain cleverly choosen keywords.

The keywords trigger a simple response, vaguely related to the

Sec 5.4.2

124
context the keyword was used in, but mainly based on the rather
cynical notion that conversations can be kept up by just
appearing interested (by "uhuh" at appropriate moments, for
example) .

The use of a pattern matcher 1s a valuable technigue,
especially in an environment where nearly all senteﬁces are
commands to the system. Here it is most usual for a simple word
in the system to carry all of the meaning, and its recognition
by the matcher is often a sufficient condition to execute it.
For example, 1if the keywords "START", "BEGIN", and "PROCESS",
all initiate sample processing then inputing the following
sentences will cause the correct action in each case.

START

PROCESS THE SAMPLES

PLEASE BEGIN PROCESSING THE SAMPLES
Of course it is easy to fool the system with negatives such as
"DO NOT START", but allowing for such wilful errors is of little
real value when it seems reasonable to expect co-operation from
the operator.

By giving the pattern matcher a table of keywords we can
increase the vocabulary of the command language. The matcher
trys each keyword in turn, stopping at the first that matches.
Some care must be taken with the table to avoid ambiquities in
the language. For example, suppose that "TEST" is added to the
above commands, and that it initiates some system test routines.
Then the sentence "START THE SYSTEM TEST" can takevtwo meanings
because of the presence of "START" (begin processing samples, or

begin testing). This 1is easily resolved by specifying the

Sec 5.4.2

125

keyword table in the following order.

PROCESS

TEST

BEGIN

START
Matching of "TEST" will then succeed before "START" .or "BEGIN"
and the sentence takes on its intended meaning.

It 1is understandably tedious entering a complete sentence
when a single word or even a letter will suffice, and there is a
general tendency for the user to eventually favour abbreviated
forms of input. Fortunately it is easy to modify the matching
routine to recognise abbreviations, and even extensions of
keywords. Consider a table that contains the following keywords

in the order shown.

ABORT

TEST

START

STOP
Then the words "T"; "TE", "TES", and even “TESTING“.will all
match with "TEST"; whereas "S", "ST", and "STA" likewise match
to "START". However "STO" 1is the minimum abbreviation for
"STOP" because the routine will attempt a match of "START"
first.

A case above that 1is potentially troublesome 1is the
confusion between "A" used as a determiner, and as an
abbreviation for "ABORT". The sentence "RUN A SYSTEM TEST"
could attempt an abort procedure. Placing "ABORT" after "TEST"
ip the keyword table solves the problem in this particular

instance.

Sec 5.4.2

126

In summary a rather simple pattern matching scheme proves
capable of quite "clever" processing. Apart from the advantage
of a non-structured command syntax, the programmer can, through"
extensive wuse of "look wup" - tables, make drastic changes and
additions to processor commands without altering the decoding

setup.

5.4.3 Software Tools

Two important subroutines are necessary. The first is code
that can obtain the sentence from the teletype and store it in
an accessible location. This is really no problem mainly,
because of the 1list structured approach used in designing the
operating system. On receipt of the first character from the
teletype, a buffer 1is removed from the free list. Additional
characters are stored in this buffer wuntil the end of the
sentence is flagged by a RETURN character (or when the buffer is
filled). The buffer is returned to the free list after command
processing is completed or, optionally, when a CANCEL character
is input (CNTRL X). CANCEL allows the operator to abort a
command if he makes a mistake typing it in, and is also handy
for ddcumenting the printed record. Because the standard size
of bloéks on the free list is thirty-two bytes,. this 1is the
maximum number of characters in a sentence (including spaces).
It has proven more than adequate for present needs.
Additionally it is possible to alter the contents of the buffer
before the sentence is released for furthur processing but such
a -line editor has .not been implemented. A listing of the

subroutine may be found in Appendix II under the name STRGET.

Sec 5.4.3

127
The second subroutine 1is the pattern matcher discussed
earlier. It requires two input parameters; the location of a
keyword table, and the location of the sentence to be searched
for the keywords. A word has been defined as a string of-
characters preceded by a space, and ended with any one of a set
of wvalid terminators (space, comma, left bracket, or return).
Some examples are underlined below.

TEST RACK (1) VAC, $2%

Two exit points are provided for the subroutine. The first
is used when none of the keywords in the table can be found in
the sentence. Usual responses to such an exit are to search
another table, or to print an error message. The other
eventuality is a successful match. When this is the case the
other exit point is used, with the index of the matching table
entry being returned 1in one of the workspace registers. The
index may be used to access data in tables with a one-to-one
correspondence to the keyword table. Common examples are tables
of subroutine addresses, data, data types, or argument types.
For added flexibility the routine also returns the location of
the matching word in the sentence. This allows other tables to
search for keywords in the rest of the sentence, and permits the
programmer to build ordering into the command syntax. Such a
feature has proven wuseful during the manual mode when it is
often necessary to perform several operations at once. For more
detail the subroutine MATCH should be examined 1in the program

listing of Appendix II.

128

5.5 THE MANUAL AND COMMAND TASKS

As can be seen from the above, the operator interface falls
naturally into two separate and distinct categories. It can
therefore be represented by two tasks running under the control
of the sample line operating system. These are the command task
and the manual task.

The command task uses operator input from the teletype to

alter the structure of the operating system gueues,
Manipulative examples include Ehé power to abort, and hence
delete, tasks from the system; and the ability to move tasks
from the error queue, back into the execution queue. The most
powerful commands result in the formation of a new task, to
which the command task relinguishes control. Examples of this
include tasks to perform sample preparation, equilibration, and
analysis; pressure testing; and manual rack control.

This last example results in the introduction of the manual

task to the execution queue. It allows the operator to

manipulate all solenoids and control lines necessary to the
operation of an individual rack. These include shared
facilities from the mass spectrometer and main 1lines, so some
protection must be provided to prevent the operator
inadvertently affecting their use by other racks. The manual
task therefore RESERVes both the main and mass spectrometer
lines for its exclusive use before requesting operator input.

It will not release these resources until issued the "STOP"
command, and will prevent other tasks from accessing thém during
the interim. This feature may prove inconvenient on a multi-
rack system, but presents no problems on the current single rack

Sec 5.5

129
confiquration. In any case, as repeatedly pointed out, the task
oriented nature of the sample line operating system permits the
the operator interface tasks to be modified and replaced at
will, |

Both manual and command tasks operate in a similiar manner.
They continuously interrogate the teletype keyboérd until a
sentence has accumulated. The sentence is searched for keywords
from tables peculiar to each task, with further operation
depending on the keywords found. For those readers requiring a
more detailed understanding, it is best to consult the program
listing 1in Appendix 1II, wunder the programs labeled TSKCMD &
TSKMAN,

Despite the similarity of their operation there 1is a
fundamental difference between the two tasks. The command task
is introduced to the system during the initialisation phase. It

never finishes, but always remains in the background as the

lowest priority task in the system. The manual task, in common

with all tasks introduced from the command mode, is transient.

It is created, used, then destroyed, as needed.

All tasks, except the manual and command tasks, execute
very rapidly before removing themselves from the execution queue
to wait on the timer or resource queues. In fact their total
utilisation of the central processor 1is so minimal that the
operator never notices their presence and always appears to be
talking to either the manual or command task. To avoid operafor

confusion the «current task is identified by an input prefix.

This is a single character output on the teletype printer

whenever the current task expects input. If the character is a

Sec 5.5

130

"#" then input is being requested by the command task; and if it
is a ":" the manual task is in control.

The commands available from the wuser interface are

currently being compiled, and will be available from this

laboratory in the form of an operating manual for the mass

spectrometer.

Sec 5.5

131

CHAPTER VI. AUTOMATED SAMPLE PROCESSING METHODS

6.1 THE RACK PROCESSING TASK

Oﬁly one more component need be described to complete a
working sample preparation syétem. This is the task that runs
the rack, and processes the samples. The rack task was probably
the easiest part of the system to implement, but only because of
the extensive groundwork that prepared the way for its
introduction. 1In particular, the bookkeeping overheads, and the
convoluted flow of logic that is often a characteristic of
complicated control programs, are missing because of the
supervisory nature of the sample line operating system. The
capacity of the operating system to oversee task requests for
resources, the ability of its routines to inactivate tasks for
periods ranging froh seconds to hours, and the proQision of an
orderly method that traps tasks faced with real-world
obstructions, are just some of the areas where extensive
simplification of the rack task has resulted.

There 1s no point in presenting the detail of the rack
processing algorithm, but a brief description of each of its
stages is given in the following sections. These paragraphs
will concentrate upon the more unusual aspects of the task, and
the reader is refered to the program 1listing 1in Appendix 1II,

under the label TSKRCK, for the exact sequences.

Sec 6.1

132

6.1.1 Sample Preparation

Samples are prepared by pumping away the air above the
water in the sample tubes, and replacing it with carbon dioxide.
It is important to note that pumping must continue until gases
dissolved within the water have been removed. This is evidenced
by vigbrous boiling when the tube is first evacuated, and of a
continual decrease in activity over the next ten minutes.

There was originally some concern that problems could arise
from droplets of water splashed onto the tube walls during this
phase, but the rapidly spinning stirrer bars tend to break up
the larger bubbles, and minimise splash. It has also been
observed that 1large droplets Iadhering the walls do evaporate
and, presumedly recondense on the sample surface, as would be
expected from their higher vapour pressure. In any case, the
test tube will be approximately wuniform in temperature(and
errors resulting from equilibration in the droplets should be
negligible.

The final point of note is the pressure of carbon dioxide
in the sample tubes. It was choosen to be slightly above
atmospheric to minimise possible fractionation and contamination
resulting from small leaks to the outside air. For the same
reason carbon dioxide is left in the adjacent sample reservoirs
until the equilibration reaction is complete. 1In this case the
presence of dry CO, should help strip water vapour from the

reservoir walls before the equlibrated gas is stored.

6.1.2 Equilibration

After completing the sample preparation stage, the rack
task enters an 1idle state, and remains there wuntil the

Sec 6.1.2

133
equilibration reaction has completed. During equilibfation it
is 1important that the magnetic stirrers operate continuousiy if
efficient mixing of the gas and the water 1is to occur. The
reaction proceeds exponentially towards completion, with a time
constant dependent upon several factors, including the ratio
between the number of molecules of carbon dioxide and of water
in the sample tube. A typical time constant is thirty minutes,
but the total equilibration time depends upon the initial DEL
difference between the water and the CO,, and the maximum
permissible error in the DEL of the final equilibrated gas.
Currently we only analyse one rack per day, and the
equilibration time of fourteen hours has been chosen to fit into
this schedule.

The time constant mentioned above also applies to small
changes in temperature, and it is necessary to keep the samples
at equal temperatures for about the 1last two hours of
equilibration. A small fan circulates air rapidly around the
rim of the rack in an attempt to meeet this condition as simply

as possible.

6.1.3 Sample Storage

When equilibration is complete the reservoirs are evacuated
and closed off. The connecting valve between them and the
sample tubes is opened until the pressure between the two
containers equalises. Closing the connecting valve isolates the
gas in the reservoir from any further exchange with the water
sample. It can remain there, its isotopic value stable, until

required for analysis.

134

6.1.4 Sample Analysis

The analysis of samples is the most complicated section of
the processing algorithm. A rack with samples ready to analyse
reserves the mass spectrometer line (thus preventing other
racks from releasing samples), starts up the Peltier-cooled
vapour trap, and signals the mass spectrbmeter ‘interface that
samples are ready. Having completed this 1initialisation
sequence, the rack task waits for a sample request from the mass
spectrometer. When it receives one, the common area of the rack
and the mass spectrometer line are evacuated, then sealed. The
reservoir solenoid on the first rack position is opened, and
equilibrated sample gas flows down the mass spectrometer 1line
manifold, through the Peltier vapour trap where any water vapour
1s removed, and onto the line connecting the trap to the mass
spectrometer's inlet line. At the same time a signal is sent to.
the mass spectrometer indicating that the sample is ready.

The rack task then waits until it receives a request from
the mass spectrometer for another sample. The reservoir that is
currently open is sealed off, and the procedure repeats with the
next sample in the rack. The sequence continues until every
sample on the rack has been released. The rack task finishes by
releasing the mass spectrometer line, so that other rack tasks
can submit their samples for analysis.

Note that sample gas is conserved wherever possible, so
that gas remains in the reservoir after the first analysis. On
the present system there is enough left for two more analyses,
so, 1f time permits repeats can be performed to increase the

accuracy of the result.

135
6.2 THE PUMPING ALGORITHM

The most frequent operation during rack processing is the
bevacuation of gases from various sections of the system. This
is also the area most likely to cause serious problems, either
from leaks, pump failure, or solenoid malfunction. A special
subroutine was written to take account of the peculiarities of
the vacuum pump. It has been designed to check the pressure in
such a manner as to detect small leaks, and to use a special
error exit if certain criteria are not met.

Before calling the pump routine, the user 1is responsible
for opening all valves leading to the area to be evacuated. The
routine must be provided with the location of a special table of
pumping parameters, and an address to which the program will
branch in case of error.

The first table entry is the type of pressure gauge on
which all pressure measurements will be performed (piééo;“
electric or thermocouple). The second is a time (in seconds)
for which the vacuum pump will be connected to the main
manifold. At the end of this timé, the pressure will be
measured, and compared with the third table entry. Any gross
leaks will fail the first test, and the subroutine will be able
to report a pump-down failure. However, small leaks will not be
noticed due to the small orifice in the valves through which
rack sections are pumped. The leaks are detected by waiting
after pump down for the period specified in the fourth table
entry. This 1is chosen to allow pressure throughout the
evacuated section to equalise, and increase in the case of a

leak. At the end of this time, pressure is again measured and

Sec 6.2

136
compared with the fifth and last table entry. Failure is marked
by a pressure greater than that specified.

The pumping algorithm is specified in Appendix II, and can

be found under the name PUMP in the rack task.

6.3 RACK ERRORS

Most errors that occur are detected by the pump routine
described above. When this is the case the rack task issues an
error message, then places itself on the operating system error
Queue., Retrys, from the error gueue, usually take place at the
beginning of the stage in which the error occurred (preparation,
equilibration, storage, or analysis). Retrys are either
initiated by the operatbr, or 1if operator attention is not
forthcoming, are automatic after a specified time has elapsed.
Sometimes conditions are such that another attempt will succeed
without operator intervention. An example of this could be a
small drop of water left in one of the reservoirs. Several
attempts at pumping may be required before the droplet
evaporates,

However some errors are extremely unlikely to disappear.
and must be fectified before rack processing can proceed. An
example 1s the lack of carbon dioxide pressure when attempting
to backfill the water sample tubes; In this case the rack task
will remain on the error queue indefinitely, and the operator
must respond before the task can proceed.

The doors surrounding the samples in the rack are necessary
during the last stages of equilibration, so the rack task |is
prevented from proceeding until they are all in place. Though

Sec 6.3

137
this ensures that the rack is set up correctly, there is no easy
way to prevent their removal later on. In fact, it 1is not
necessarily advantageous to do so. Sometimes the operator may
wish to make repairs "on the run", and these can often be done
without adveréely affecting sample equilibration. There could
be conditions where small errors are preferable to the loss 'of.
the whole rack, a day of time, or irreplaceable samples. Door
openings, and closures, are therefore not considered as errors;
but. they are reported by the operating system. When such an
event generates a CMOS bus interrupt, the operating system tests
the rack refresh table to see if the interrupting rack is
currently in wuse. If it is, status words showing the state of
the rack doors are printed on the teletype; but if it 1is not

then the event is ignored (see TSKLOG in APPENDIX II).

Sec 6.3

138

CHAPTER VII. PRELIMINARY TESTS AND RESULTS

7.1 PRECISION OF SAMPLE PREPARATION

7.1.1 Methods and Results

The precision of sample preparation is conveniently
estimated by preparing equilibrated CO, samples from a rack
loaded with identical water samples, and then measuring the DEL
of the CO, samples on the mass spectrometer. The standara
deviation of the DELs gives an estimate of the combined error
from sample preparation and measurement.

The following test was run to evaluate errors arising from
the measurement stage. Using the manual control facilities, the
sixteen sample reservoirs were evacuated, then filled with tank
carbon dioxide. The gas in the reservoirs was analysed in the
normal manner by evoking tﬁe ANALYSE command from the samplé_
line teletype. The results of one such test (run $025) using
this method are shown in figure 7.1.

To obtain the overall precision of analyses performed on
the system, water samples were prepared and analysed in the
usual manner. The sixteen sample tubes were loaded with samples
pipetted from a well mixed beaker of tapwater. The results from
two such runs (#020a'and #022) are shown in figure 7.2.

All the results have been plotted as the residuals left
after subtracting out the mean DEL value obtained from that run.
A linear regression has been used to relate the measured DEL to

Sec 7.1.1

139

rack position, and the line of best fit is plotted amongst the

03 A ‘ run 029

A ~~_A . b
0-001231.557‘A9 d f

Adel (%%0)

.03l slope=-0.036 A

.

Figure 7.1 Results from Identical Gas Samples

data points.

7.1.2 Discussion of Results

Turning our attention to the results of the measurement
evaluation experiment (figure 7.1) a strong linear trend is
immediately apparént. The residual DEL value 1is therefore
strongly correlated to either rack position, elapsed time, or
the number of samples analysed. The first 'possibility is
unlikely given the fact that no equilibration_was involved in
the test. It would be even more remarkable if ‘time dependent
effects, such as the presence of small leaks in every reservoir,
manifested themselves 1in such a fashion. The last possibility
is the most likely, and the prime suspect is a slow constant
fractionation of the standard gas as it is depleted from its
reservoir on the inlet line. If such is the case then the

observed trend can only be explained if lighter molecules are

Sec 7.1.2

140

being removed in preference to the heavier ones. Such behaviour

run 020q
0.3F

. [-AA, 4

2 PA A — A,

_-g 0.0 g __1 2 3 & % = 9 a b ¢ d
<

_ TA T AL

\
i A
-03F slope = -0.019 A
] A
03 run022

A del (%o)

(&)
(o)

i
L)

>
&~

>
o
18

-03f slope = -0.023

Figure 7.2 Results from Identical Water Samples

1s possible if the CO, flows through a molecular leak at the
inlet line to the mass spectrometer. This leak is suspected as
a source of instability in the mass spectrometer analyses for
other reasons, and it will shortly be replaced with a more

stable glass one. The results in figure 7.2 show a similiar

Sec 7.1.2

141
treﬁd, but the correlation is not as pronounced. These earlier
runs suggest that the problem is unpredictable, and could also
be growing more serious.

In view of the above, a separation of the repeatibility of
sample preparation from that of thé rest of the system |is
somewhat difficult. Some idea can be obtained by femoving the
linear trend from each set of results, then calculating a
standard deviation from each set of residuals. When this is
done the standard deviation is found to be 0.06°/6o, 0.09°/4,,
and 0.10°/,0, for run #025, run #020a, and run $#022 respectively.
These .are probably reasonable estimates of the precision that
will be attainable when the drift problems are remedied. I,
therefore, tentatively place the overall precision of the
measurement at around 0.10°/,,, with about 0.06°/,, of that
being due to errors introduced during analysis. The remaining
0.04°/50 is probably attributable to lack of constancy in
conditions throughout the sample rack and is, when compared with

other systems, a very encouraging figure.

7.2 ERRORS FROM CROSS CONTAMINATION

7.2.1 Methods and Results

A second kind of error results when a sample, released to
the mass spectrometer, has its DEL value altered by residual gas
and adsorbed water left in common connecting 1lines from the
release of the previous sample. To test these effects, the rack
was loaded with a blocks of four tubes containing identical
tapwater samples, alternating with blocks of four empty tubes.

Sec 7.2.1

142

After equilibration, the DEL of the CO; in the tubes containing

e e — 4
R - run024
A’A
2L.0r A
faj:\\\\\\\\
e 237} A
o i . | A \‘ ,
o 0 1 2 34 5 6 718 9 a blc d e ¢
Q — .
| @
S ®
s _ .'\\\\\\\\J.
0.3- LY o
. . A tap water ‘ ~@
. @ dry CO, gas }
0.0-
Figure 7.3 Results of the Cross Contamination Test

water changes by about 24°/,,, and the gas becomes thoroughly
saturated with water vapour; During analysis the dry CO, sample
immediately following the block of wet ones will be subjected to
the maximum effects of contamination from residual gas and
adsorbed water, with the effect tailing off as each new sample
in the dry block lis analysed. Similarly, the wet samples
following the dry block should also show the decreasing effects
of contamination, but only those arising from their mixture with

residual gases.

Sec 7.2.1

143
Analyses obtained from a rack confiqured in such a manner

are shown in figure 7.3.

7.2.2 Discussion of Results

Examining the results shows the expected pattern of high
and low DEL values. .However, the_low DEL values éppear quite
variable, and the trends expected from contamination could ‘be
lost in the M"noise". Still, it is possible to attribute an
absolute maximum error of 0.30°/,, to the effect, or as it is
usually expressed, about one percent of the difference in DEL
between adjacent samples.

There is only one transition from dry to wet samples, but
it 1is better behaved. Here the magnitude of the contamination
error is below10.10°/oo or around 0.3 percent of the difference.

These figures are acceptable for most routine analyses.

144

APPENDIX I. CIRCIUT DESCRIPTION AND OPERATION

Al.1 THE TMS9980 MICROPROCESSOR

Al1.1.1 Microprocessor Operation

A detailed and extensive discussion of the operation of the
TMS9980 microprocessor is beyond the scope of this thesis. In
any case operation is well documented and explained in the
appropriate reference manual (Texas Instruments, 1979). Still,
the basic way in which memory is read and written should be
explained 1if furthur sections of this chapter are to be
comprehensible.

There are five control 1lines that synchronise read and
write operations. These are briefly explained below and by
reference to figure At.1.

03-: This is derived from the clock (phase three) and is used
as a timing reference.

DBIN: When high this 1indicates that the microprocessor is
ready'to receive data on the data>bus. |

MEMEN-: (Memory enable), When low the address bus has a
valid memory address. |

WE-: (Write enable). When low the data bus holds valid ouput
data and can be written to memory.

READY: The ready signal allows extended memory cyles. When
high it indicates to the microprocessor that data can be read
or written during the next clock cycle. The TM9980 enters a

Sec AtT.1.1

145

wait state until this line is high.

AR RRNRRANE
-;—E—;E\N-‘ il /—'
SR S

A0-A12"
-———-« valid memory address _ valid memory address ‘ —————

A13

DBIN / \
‘ l l |
WE-
—
READY |
) data bus read by CPU
DO-D7/ valid data valid data
[---=~"{ ~high byte ~low byte
p———WRITE cycle } | READ cycle ——
Figure Atl.1 Typical WRITE and READ cycle

When the microprocessor wishes to write, it places the low byte
of data on the data bus, and the address on the address . bus.

The valid address is flagged by lowering MEMEN- and valid data
by lowering WE-. The high byte of data is placed on the data
bus after WE- returns high and the address is incremented by

raising A13. WE- returns low when the second byte of output

data becomes valid.

Sec Atl.1.1

146

A read cycle performs 1in an ideﬁtical manner except a
request for input data 1is flagged by raising DBIN, The
interface circuitry is then responsible for placing the data on
the data bus before the second clock pulse arrivés.

I1f an external device is not ready to receive or transmit
data to the data bus it should lower READY before the next clock
pulse 03-, and raise READY when the data is valid. The long
propagation delays through the CMOS bus, have made this
"handshaking" necesséry when reading from registers on the rack

or master control boards.

A1.2 OPERATION OF THE ANALOGUE-TO-DIGITAL CONVERTER

Operation of the ADC may be wunderstood by referring to

figure A1.2. An ADC conversion is initiated when the CPU writes

an analogue channel number to the ADC address. This causes both
ADCEN- (ADC enable) and WRSTB- (write strobe = EXPWE- . EXP03-)
to both become active (low). Consequently the output of Gi1 will
go high, latching the four least significant bits of the data
bus into the multiplexer to select the analogue channel number.
At the same time F1 will clock its D input and raise the R/H-
(run/hold) input on the ICL7104. The conversion then begins and
after a short time STTS (status) goes high to flag a conversion
in progress. In the process it lowers the output of F2, but
because STTS is high the state of USERINT4- remains inactive.
When the conversion is complete STTS goes low, activating
the interrupt, and resetting F1. This places the ADC in a hold

state until the interrupt is serviced.

Sec At1.2

147

At the first opportunity the processor services the

WRTSTB- EXPDBIN- EXPA13

ADCEN-

ﬁ: ﬂ: F: ﬁ:
channel
number
latch

o0

USERINT 4- _ 3 P
W g data bus
| P Y EXPDB@-7
) Q ¢
R f1 f2 sp—¢
Q

D
lo
R/H- STTS CE- LBEN- HBEN-
ICL 7104
Figure A1.2 Simplified Schematic of ADC

interrupt by reading from the ADC address. This causes both
ADCEN- and EXPDBIN- to become active, setting F2 and resetting
the interrupt line through G3. As well the ICL7104 output
buffers are enabled because CE- and LBEN- (low byte enable) will
both be 1low. The lowest byte of the conversion value is thus
placed on the data bus and the processor reads it. The state of
EXPA13 is changed in the second part of the read cycle lowering
HBEN- (high byte enable) and so allowing the rest of the
.conversion value to be read. When the cycle 1is completed the
ADC remains 1in a hold state, the output buffers are disabled,

Sec A1.2

| 148
and the interrupt line is inactive (HIGH). The ADC 1is then
ready for another conversion request.

For an in-depth look at the actual conversion procedure it
is best to refer to the device data sheets (Intersil,1981) but
it could be described as an auto-zero, dual slope technique.

Anéther point to note is that the ADC address is completely
selectable using twelve dual in line rocker switches. It may be

placed anywhere in the range 2000 to 2FFE.

A1.3 THE CMOS BUS INTERFACE

A1.3.1 CMOS Bus Lines

As with any microprocessor bus, the CMOS bus can be grouped
into three different functions. Control lines to and from the
microprocessor supervise its actions, address lines select the
desired device, and. data lines transmit the two way flow of
data. The lines are named and described in the following
paragraphs.

CRACKEN- : (Rack enable) This line becomes active (low) wﬁenever
a rack address is output on the address bus by the micropressor.
Valid rack addressess reside in a block of contiguous memory
from 2X00 to 2XFF. "X" is a hexadecimal digit selectable from
four switches located on the expansion board. 1In this version X
is set to zero.

CMSTREN- : (Master enable) Will become active (low) whenever an
address in the range 2Y00 to 2YFF is accessed. Y is selectable
using another board mounted switch but should never be the same

as X.

Sec A1.3.¢%

149
~CWE-: (write enable) becomes active (low) whenever an valid
output data from the microprocessor is present on the data bus
(CDO- to CD7-).

CBUSIN-: (Bus input) Becomes active (low) to flag a request from
the microprocessor for input from the CMOS bus.

CREADY: This control line is used to inform the processor whén a
device on the CMOS bus has data ready to be read (in response to
a CBUSIN-). Because two read cycles are used, a simple encoding
scheme generates the correct timing on the microprocessor (see
section A1.3.3),

CINT-: (Bus Interrupt Request) A device on the CMOS bus lowers
this line whenever it wishes to interrupt the microprocessor.
Because interrupts are mainly generated from mechanical switches
the 1line 1is debounced before it enters USER INT3- on the User
1/0 port (see section A1.3.4).

CA6 to CA13: (The Address Bus). The eight least significant

address lines are divided into two fields. The most significant
field (CA6 to CAY9) selects the rack while the other (CA10 to
CA12) addresses one of the registers within the rack. The CA13
line is wused to flag the high or low byte of the addressed
register (see figure 3.3).

CDO- to CD7-: (The Data Bus). These eight 1lines form an

inverted image of the microprocessor data bus. They are used to
transmit data values to and from the rack registers.
Additionally, power (+12 volt) is sent to all CMOS devices
through the bus. The high noise immunity and the wultra low
power consumption of the supplied -electronics make this

feasible,

Sec A1.3.1

150

A1.3.2 Level Translation

Logic levels on the CMOS bus are much higher than their TTL
equivalents so level translators must be used to interface the
two. There are three different modes of translation.

The first group of bus lines invoives ‘those signals
originating at the microprocessor and requires translators to
shift the level upwards. The second group is similar except the
direction and shift are reversed. Both these groups of lines

are termed unidirectional and a suitable translator was found to

be manufactufed by RCA (Type CD40109). The quad low-to-high
voltage translator is intended primarily for TTL to CMOS
conversions but it may be wused in the opposite sense by
reversing the appropriate power supply leads. The penalty paid
for this convenience is an extremely long propagation delay in
the reverse mode (up to 1.6sS !!). However for the CMOS bus
there is no real disadvantage given that only two lines require
high to low translation (CINT- and CREADY) and that extra delays
are unimportant to their operation.

Thé third group of bus 1lines requiring translation are

bidirectional. Signals on the data bus (CDO- to CD7-) can

originate at either the processor or a bus device, and the
translator is required to function in both directions. Another
RCA device (CD40115) conveniently fulfilled all the above
requirements. A single chip (24 pin DIP) can translate eight
bidirectional 1lines between CMOS and TTL levels. Propagation
delays are very low in both diréctions (below 30nS) even when
outputs are capacitively loaded by long bus lines.

In fact this device was so much faster than the

Sec A1.3.2

151
unidirectional translators that it could switch direction and
begin transmitting data before CMOS buffers, just read, could be
disabled. Although no short term problems were exberienced when
these two devices attempted to drive in opposite directions,
logic was incorporated onto the data translator to throw it into

a high impedance state whenever the CMOS bus was not being used.

A1.3.3 Ready Handshaking

CREADY
pulldown
resistor
EXPR3-
EXPA13 I _Cm3 _
/ RACKRD- -
»
BUSIN- ™ CBUSIN-_ 4
/ rack 4
select _:
logic Y]
RACKEN- RN CRACKEN- | 2
/ 2
L .
EXPAG - EXPA12 8, \\\\, CA6-CA12 3
> / - an = S aa ra
translator propagation rack selact
+— delays _4} t' delays _* IH delays
Figure A1.3 READY Handshaking Circuit

Long propagation delays through the CMOS bus, bus devices,
and level translators make it impossible to read the devices

without establishing a handshaking protocol. A simple encoding

Sec A1.3.3

162

scheme has been used to generate signals appropriate to the

e ——————_ ©

'O)EXPANSION BOARD END C)READY DECODING
busin- ; rdyref
|
i
' ! ! | 1
expa13: cready : :
| ! !
' | X]]
rdyref : ready 1 1
1

| : X CPU reads CPU reads
D) RACK END ; . high byte low byte
rackrd- : :
! : | bus propagation &
: . , rack select delays.
.) i
caid ! : 1
I [} |
| [} |
i : !
cready, | |
[}
i | |
Figure A1l1.4 Handshaking Signals

operation of this multiplexed bus (figures A1.3 & A1.4).

‘At the expansion board end the BUSIN- 1line goes low
whenever data is requested from a CMOS bus device. A reference
signal, RDYREF, is generated through gate G3 that goes high when
the first byte is requested. After the first byte is read, and
the processor wants the second, the RDYREF line returns low
(figure A1.4a).

Similiar circuitry at the bus device (G4, fiqure A1.3) will
generate an identical signal on the CREADY bus line. When this
signal arrives back at the CMOS bus interface it will be delayed
from RDYREF by the sum 6f level translator delays, bus

propagation delays, and device select delays (figure Al.4b).

Sec A1.3.3

153

Thus all CMOS bus signals are in transition when CREADY and
RDYREF differ, data .lines will not be valid, and the
microprocessor must be suspended until they are. This is done
by driving the microprocessor READY line from an exclusive NOR
gate, G2, that directly compares the two signals. Figure Al.4c
shows the relationship graphically.

The monostable, M1, provides a "time-out" facility if a
non-present bus device is addressed. In such a case the READY
line will go low, the microprocessor will go into coma, and the
lack of bus acknowledgement will hang-up the system. Normally
the system clock (EXP03-) continuously retriggers the monostable
keeping the ouput low. When BUSIN- goes low the triggering is
blocked and the monostable must eventually change state, sending
READY high to wake the processor up. In practice a delay in the
the monostable of ten microseconds allows adeguate time for bus

response without delaying processor operation unnecessarily.

A1.3.4 Interrupt Line Debounce Circuit

It is necessary to prevent switch contact bounce from
influencing the microprocessor during the service of an
interrupt (see section 3.10.1). The most common hardware
approach 1s to use a two pole switch that sets or resets an RS
flip-flop. Whilst a solid, reliable, and fast solution, the
component and connector count is significant, especially when
sample sense switches are contemplated. Where speed of response
is unimportant a more economical solution 1is offered using
software generated delays to defer interrupt service until the
switch has had.time to settle (around 20 ms). However the delay
"ties-up" the processor during the waiting period, and prevents

Sec A1.3.4

154

-other interrupts from functioning. Software schemes that do not

2y
pullup
resistor
_____ (_:_lr_J_T: _ _ctmos bgs_
USERINT 5- m1 v
cmos/ttl level
translator,
/P
@3
Figure A1.5 Bus Interrupt Line Debouncing

do this usually require a significant book-keeping overhead, and
can become guite messy.

Instead a simple circuit has been used that incorporates
the most useful features of both hardware/software debouncers.
A simplified circuit 1is used to demonstate the debouncing
circuitry in figure A1.5. When the switch S1 1is closed it
enables the tristate buffer B1, and lowers CINT-. This blocks
the re-triggering signal to the monostable (M1). After a delay,
USERINT5- will go low, generating an interrupt at the
microprocessor via the system 1/0 port. 1If, at any time, CINT-
goes high again the monostable instantly retriggers, resetting
the delay. By choosing the monostable delay to be significantly
greater than the 1longest time between bounces USERINT5- will

remain high until after the swith has settled.

After observing the operation of the switches used on the

Sec A1.3.4

rack

a suitable time was found to be around 10 ms.

155

This may be

eternity to the microprocessor but it appears instantaneous to a

human.

A1.4 THE RACK INTERFACE

A1.4.1 The Rack Select Logic and Control Lines

N R
rV CA;W CA7 CA8| - Cag
Jv'~ L]

CA6- CA12 y w v
CRACKEN- 1
() () _\g L
!ii'
— o -
CBUSIN- g3 p— RACKRD
ﬂ
L—g
RACKWR-
wE-
c o gl.}
I:": CA13-
CA13 CA13-

Figure A1.6

Rack Select Logic

the

Although rack registers are read and written directly from

CMOS bus, redundant decoding circuitry can be eliminated by

Sec

Al.4.1

156
centralising the rack select logic on one board, and by sending
decoded control signals where needed. |

A simple, straightforward scheme is used (see figure A1.6).
The exclusivé OR gates, CO to C3, compare the configuration of
four switches to the rack number field on the CMOS address bus
(bits 6 to 95. When'the'twoAmatch, the output of G1 will go
low. 1If RACKEN- is also low the rack will be selected by the
output of G2. By gating the output of G2 with CRACKIN- (G3) and
CWE- (G4), rack read (RACKRD-) and rack write (RACKWR-) signals
are produced, and can control the operation of all rack
registers. B1 inverts the byte select line (CA13) to avoid the

necessity of repeating this at each register.

A1.,4.2 Rack Status Register and Interrupt Generation

A simplified version of the rack status logic is shown in
figure A1:§. Assume that the rack is in a quiescent state with
no interrupts pending, and that all previous interrupts have
been reset. The D type flip-flop, F1, will have input and
output equal, the output of the comparator C1 will be 1low, the
outputs of G3 and G4 will be low, and the CINT- bus line will be
high. If the door switch, S1, changes position, then the
comparator inputs become unequal, DORCNG goes high, the tristate
buffer B3 is enabled and the CINT- 1line goes low. After a
debouncing period (see section A1.3.4) USERINT5- on the system
1/0 port will also become low flagging a CMOS bus interrupt..

At the first available opportunity the microprocessor
begins polling all devices attached to the CMOS bus. For the
racks it will read the status register of each rack from 0 to F.

"When the rack generating the interrupt is read the RACKRD- line

Sec At1.4.,2

157

and the output of the register select comparator goes low

status
register figld

L comparator : data bus
CA10-12 | -
N :

- 1 P>
RACKRD g
status
‘ register
CA13 g2 o
—4 EN

2 other interrupts

~ DORCNG] bl p—A]

3 other
doors —~—4 EN
e ﬂ — o p—
s1 ! -1 b2
af1 D
DOOR.D
Figure A1.7 Rack Status and Interrupt Logic

sending G1 high. During the second part of the read cycle CA13
also goes high, enabling .Bl and B2 via G2, and placing the
status register lines on the data bus. When the processor
completes its read cycle the output of G2 returns high, and
clocks the edge-triggered latch, Fi1. The two 1inputs to the
comparator C1 therefore equalise and CINT- returns high,
resetting the interrupt.

In the meantime, having fetched the rack status register,

and having tested it, the microprocessor software has determined

Sec A1.4.2

158

the interrupt source, and takes approprate action.
Other doors use identical circuitry to that shown here for
DOOR.D, sending DORCNG low through G3. In a similar fashion

other interrupts lower the CINT- line through G4.

Al1.4.3 Rack Write Operations

The operation of the write logic is straightforwérd, and a

simplified circuit incorporating all its elements is shown in

figure a1.8,

! control register
field comparator g} data bus
4 *24v
9 control
CA10-12 ' register
RACKWR- ULN2003 o
8 led
g1 N bl h——[>x>* [::Dc
. E{; ' ' +24v
ca13 @ , solenoid

EN l‘q

Figure A1.8 Rack Write Logic

D—W

When the rack and register are addresged the output of Gi
will go high after valid data appears on the data bus. During
the high byte part of the write cycle, CA13 will be high and
will clock data, via G2, onto the output of B1 from the data

bus. During the low byte CA13- will be high and will enable the

Sec A1.4.3

159
latch of B2 via G3.

The solenoid drivers are MOS V-FETS choosen for their power
capabilities and simplicity of interface. A diode protects them
against destructive back emfs during shut off. The LED drive is
parf ‘of a package'designed to drive seven segment LED displays
(Sprague Type ULN2003), and "would probably be suitable for
driving the solenoids as well. This is recommended in future
versions.

Because the CMOS bus is an inverted image of the
microprocessor one, inverters are placed between the latches and
drivers. In the case of the solenoids a gate performs the
function. The spare input is intended to act as a safety
interlock when used in conjunction with sample sense switches.
If a sample tube is not present the switch will hold the gate

input high and prevent the solenoid from functioning.

A1.5 THE MASTER CONTROL. BOARD

The control and status.regiSters are read and written in an
identical manner to their rack counterparts described earlier,
but a cruder, more ambiguous address decoding scheme is used.

The circuitry that generates sample request interrupts uses
master and slave flip—flops to effect the edge-triggered
interrupt, and to prevent the fatal loss of interrupts arriving
during a master status read cycle (figure 51.9). When there
is no read cycle 1in progress, the buffer enable line will be
high, the tristate buffers will be in their high impedance
state, and the gate G2 will be transparent to signals arriving
at its input. A sample request from the inlet line will lower

Sec A1.5

160

ISREQ- 1lighting the LED, and saturating the transistor in the

dote EEE\\\\\\\\\\
' b

bi

At s St & o e e

opticclxlt
iIsolator
B Ann

%x
ISREQ- i

C.REQ

EN

£

buffer enable

0 =
—KR 9 J ° EN
CINT~ '
1 K f_.2
SREQ.INT
for future
0 expansion.
~Figure A1.9 Sample Request Interrupt Logic

optical isolator. An inverter cleans up the isolator signal
causing a sharp rise in the C.REQ line that clocks the output of
the ‘JK flip-flop (F1) high. When G2 is transpareht the output
of F1 sets F2, raising SREQ.INT and resetting Fi1 in preparation
for the next interrupt. The CINT- line is lowered when the
SREQ.INT enables the tristate buffer (B3) via G3.

When the master status register is read the buffer enable
line will be lowered enabling B1 and B2, and placing the sample
request (C.REQ) and interrupt flags (SREQ.INT) on the data bus.
At the end of the read cycle the buffer enable line 1is raised,

disconnecting B1 and B2, and resetting F2. If an interrupt

Sec A1.5

161

arrived during the read cycle then F1 would have been set. Gate

G2 would have prevented F2 from being set and F1 reset, but will

allow the sequence to continue as soon as the buffer enable

signal returns high.

Sec A1.5

APPENDIX ITI.

PROGRAM LISTING OF

THE SAMPLE LINE OPERATING

SYSTEM
yWJOrK da bﬁ XL 0¢u&1 SISTEM

tn @.ai (p‘ea-w\d

MICROFICHE INDEX

Contents

RAM MEMOTY oo e vveencennnenns

Interrupt vectors ...ceeeeoee
XOP veCctors .ivveeveeeennnoans
Interrupt wait pointers ...
System Queue pointers
Semaphore tablec....
Rack refresh table
Dedicated workspaces & TCB
ASCII clock sveeneensnnnas

Equates & Definitions

. -

EPROM MEMOLY «cveeesncsovoscs

Constants ...eeeersvsnnennans
Superviser Entry Points ...
Startup initialisation .
FINISH ...cc0teeeenss s
RELINQ ...c0teeteens oo oo

WAIT ® & 0 & 8 0 & s s 0 000

WAIT.INT ...c00eenn N
WAIT.ERR ...t ereeecanns
RESERV ... vieeennssocona
RELESE ..¢icerenrtencncas
System errors
PSVSAV Lt ittt eosrtenvonnsnns
PSVGET +.iieieeesnccrsoencans
Interrupt service routines
SRVDSP it eeenovocnnnns
SRVADC ..iiietnnancennns .
SRVBUS .. cisrvvencsssans
XOP definitions ...veeveens
List manipulation routines
INSERT cesesens o
DELETE ...¢ce0coesacess -
FINDc... ceesss e
POPL i vieeerennsennsoan
PUSHL ... veinoveosasnsaas
Global Subroutines

TCBGET ...vvevieennnnnnns

ADCGET cies e
DISOLV ...ttt eennnnes
STRGET ..evveevrcencenns
MATCH ... ceiteeennnnns
CALCBIT teveeeeecnnnssas
PUMP ...cceteevencccnncen

. s s 0o 0 0 0
oooooooo LY
. e o 0 0 0 LY
LI S R I I I
e o o LAY

® 6 0 0 00 0 00 0
e 0o s 0 L

ooooo LY
e s s 0
LI S A)
LI ¢ o e

Index

.B1

.B1
.B1
.B1
.C1
.C1
.C1
.C1
.C1
.D1

JF1

LF1
.G1
.G1
L1

to

to

to

to

to
to

to
to

to

to
to

to

E1

E1

16

K1

K2
Jz2

M2
C3

B4

I3
K3

N3

Sec

162

A2

ABORT
Tasks ...
TSKCUD
TSKCMD
TSKMAN
TSKRCK
TSKTST
TSKLOG

S - 1
I o
Y o
S o1
S - 13
e 11
S 1

l............l.ll.'.ll.....-.l..'ll..I6

Cross Reference Table ...cveeeeeveceesscoossnssdb

MICRO FICHE - 7%~
e Svccna,\

Co ”c_c}.zons o
%ookcaﬁc 2.

to
to
to
to
to
to

to

16
D4
N4
H5
D6
Hé6

F7

Sec

163

A2

164

APPENDIX III. REFERENCES CONSULTED IN THIS THESIS

Ahern, T.K. (1975) "An 0'%8/0'® Study of Water Flow in Natural
Snow". M.Sc. Thesis, University of British Columbia, 164pp.

Ahern, T.K. (1980) "The Development of a Completely Automated
Mass Oxygen Isotope Spectrometer". Ph.D. Thesis, University of
British Columbia, 181pp.

Craig, H. (1957) "Isotopic standards for carbon and oxygen, and
correction factors for mass spectrometric analysis of carbon
dioxide". Geochimica et Cosmochimica Acta. Volume 12, ppt133-149.

Craig, H., Gordon, L.I., and Horibe, Y. (1963) "Isotopic
exchange effects 1in the evaporation of water". Journal of
Geophysical Research. Volume 68, number 17, pp5079-5087.

Dijkstra, E.W. (1965) "Co-operating sequential processes".
Mathematics Department, Technological University, Eindhoven, The
Netherlands. :

Dijkstra, E.W. (1968) "Co-operating sequential proéesses". In
F.Genuys (ed.), Programming Languages, Academic Press, New York,
ppé3-112,

Dushman, S. (1962) "Scientific Foundations of Vacuum Technigque".
2nd Edition, John Wiley & Sons, Inc.

Epstein, S. and Mayeda, T. (1953) "Variations of the 0'® Content
of Waters from Natural Sources". Geochimica et Cosmochimica
Acta., volume 4, 213-224,.

Feller, W. (1968) "An Introduction to Probability Theory and its
Applications". Wiley, New York, 2nd Edition.

Frank, H.S. (1929) "Low pressure adsorption on a washed glass
surface". Journal of Physical Chemistry, Volume 33, pp970-976.
Also see Dushman (1962) for a discussion of these and other
results. ’

Intersil (1981) "Data Book 1981". pg 4-118, Intersil, Inc. 10710
N.Tantau Avenue, Cupertino, California, 95014, U.S.A.

Kollar, F. (1960) "The precise intercomparison of lead isotope
ratios". Ph.D. Thesis, University of British Columbia, 107pp.

Langmuir, I. (1918) "The adsorption of gases on plane surfaces
of glass, mica, and platinum". Journal of the American Chemical
Society, Volume 40, pp1361-1402. Also see Dushman (1962) for a
precis and furthur references.

McHaffie, I.R. and Lehner, S. (1925) "The adsorption of water

Sec A3

165

from the gas phase on plane surfaces of glass and platinum",
Journal of the Chemical Society, Volume 127, pp1559-1572.

McKinney, C.R., McCrea, J.M., Epstein, S., Allen, H.D. and Urey,
H.C. (1950) TM"Improvements in mass spectrometers for the
measurement of small differences in isotope abundance ratios".
Review of Scientific Instruments. Volume 21, pp724-730.

Micromass (1978) "Water Isotopic Analysis", Publication
02.254/1, Dec 78 DL/WDU. VG Isotopes Ltd., Ion Path, Road Three,
Winsford, Cheshire, CW7 3BX, England.

Mills, G.A. and Urey, H.C. (1939) "Oxygen exchange between
carbon dioxide, bicarbonate ion, carbonate 1ion, and water".
Journal of the American Chemical Society. Volume 61, pg534.

Mills, G.A. and Urey, H.C. (1940) "The kinetics of isotopic
exchange between carbon dioxide, bicarbonate ion, carbonate ion
and water". Journal of the American Chemical Society. Volume 62,
pp1019-1026.

Nier, A.O. (1940) "A mass spectrometer for routine isotope
abundance measurements". Review of Scientific Instruments.
Volume 11, pp212-216.

Nier, A.O0. (1947) "A mass spectrometer for isotope and gas
analysis" Review of Scientific Instruments. Volume 18, number 6,
pp398-419.

Nier, A.0., Ney, E.P., and Inghram, M.G., (1947) "A null method
for the comparison of two ion currents in a mass spectrometer".
Review of Scientific Instruments. Volume 18, number 5, pp294-
297.

Russell, R.D. and Ahern, T.K. (1974) "Economical mass
spectrometer ion current measurement with a commercial
parametric amplifier". Review of Scientific Instruments. Volume
45, number 11, pp1467-1469.

Russell, R.D., Blenkinsop, J., Meldrum, R.D., and Mitchell D.L.
(1971) "On-line computer assisted mass spectrometry for
geological research". Mass Spectroscopy. Volume 19, number 1,
pp19-36.

Russell, R.D. and Koerner, R. "DEL O'® variations in snow on the
Devon Island ice cap, Northwest Territories, Canada". Volume 16,
number 7, pp1419-1427,

Roether, W. (1970) "Water-CO, exchange set-up for the routine
oxygen-18 assay of natural waters". International Journal of
Applied Radiation and Isotopes. Volume 21, pp379-387.

Shaw, A.C. (1974) "The logical design of operating systems".
Prentice-Hall, Inc., Englewood Cliffs, N.J., U.S.A.

Smith, D.C., Irby, C., Kimball, R., Verplank, B., and Harslem,

Sec A3

166

E. (1982) "Designing the Star user interface". Byte, Volume 7,
number 4, pp242-282. :

Staschewski, D. (1964) "Experimantelle bestimming der 0'8/0'F6
trennfaktoren in den systemen CO,/H,0 und CO,/D,0". Bunsen
Gesellschaft fur Physikalische Chemie. Volume 68, pp454-457.

Texas Instruments (1979) "TM990/180 Microcomputer Users Guide".
Publication #1602004-9701.

Weizenbaum, J. (1965) "ELIZA - A computer program for the Study
of Natural Language Communication between Man and Machine".
Communications of the Association for Computing Machinery,
Volume 9, number 1. Also see Winston (1977), pages 323,333-335,
for an easily read summary.

Winograd, T. (1972) "Understanding Natural Language". Ph.D.
Thesis, Academic Press. Also see Winston (1977), pages 157-166.

Winston, P.H. (1977) "Artificial 1Intelligence", Addison-Wesley
Publishing Company Inc., 444pp.

