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Abstract

A method for the estimation of impedance or pseudo-velocity
sections from the information contained in CMP stacked sections,
the corresponding stacking velocities and sonic and density logs
(when available) is presented. The method relies on a linear
programming approach for the reconstruction of full-band
reflectivities, and utilizes linearized relations between the
multiple free reflectivity functions and average or point-wise
impedance or velocity values. The reconstruction procedure
reguires the solution of an underdetermined set of equations and
hence a minimum structure condition is imposed on the desired
sclution. This condition guaranties the unigqueness of the
obtained solution in the sense that it is the solution that
features the least amount of impedance variations as a function
of travel-time (or depth). Since the presented inversion yields
minimum structure solutions, it is argued that features which
appear on the obtained result are strictly demanded by the data

and are not artifacts of the inversion scheme.

A number of physical assumptions are reguired by the

presented inversion. These are summarized below in point form:

(1) The earth reflectivity function is non-white and can be

reasonably represented by a sparse spike train.
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(2) The observed CMP stacked section 1is a reasonable
representation of the multiple-free normal-ray section with

reasonably correct relative amplitude relations.

(3) The residual wavelet on the stacked section is to a
good approximation a zero-phase wavelet with a relatively flat

spectrum.

(4) The -estimated stacking velocities can be inverted to
yield an acceptable representation of the averages of the true

earth velocity model.

Since in a realistic environment some of the above
assumptions may be violated, all the corresponding relations in
the presented 1inversion scheme include appropriate uncertainty
terms. That is, all the information components considered in the
inversion are satisfied only to within some ©prespecified error

bounds.

A number of ©possibilities for speeding up the inversion
scheme are described. It is shown that wutilizing the expected
trace-to-trace coherency of seismic reflection data yields

considerable reduction in computational efforts.

Finally, a number of steps reguired for a successful
completion of the 1inversion are described. In particular, the
problems of preinversion data scaling and the correction of the

residual wavelet's phase are discussed in some detail.
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CHAPTER I: INTRODUCTION

The following work 1s dedicated to the problem of
seismogram inversion (that is, the construction of impedance or
velocity sections from the information contained in reflection
seismograms). The results of this inversion should enhance the
interpretability of the data and supply additional information
which may be subsequently wused for the inference of petro-
physical parameters. The problem, which is complex and exhibits
a high degree of non-uniqueness, has been tackled in three
stages each of which reflects the level of naivety prevailing at
the corresponding time of development. After a long period of
struggle a complete set of algorithms which presents a working
solution to the impedance inversion problem has been developed.
An outline of the solution presented in this work is given

below.



1.1 STAGE I: EARLY DEVELOPMENTS

At the early stages of this work, the problem of the
acoustic impedance 1inversion of reflection seismograms was not
treated directly. Rather, I have concentrated my efforts on the
construction of full-band reflectivity functions £from <the
available band-limited information. I started by assuming a
model in which the reflection seismograms consist of the
convolution of a band-limited zero-phase (flat-spectrum) wavelet
with a sparse spike earth response function. To the product of
this convolution we have allowed the addition of a certain level
of random noise. Then the problem under consideration was the
recoverability of the full~-band reflectivity series from the
available band-limited signal. Chapter II shows that via the use
of the Linear Programming (LP) scheme, and the minimization of
the L1 norm of the desired reflectivity model, a goed
representation of a sparse spike series can be recovered from a

relatively small portion of its spectrum.

A latter work by Scheuer (1981) and Oldenburg et al. (1983)
has pointed out that for data 1in which the multiples were
removed from the measured seismograms prior to LP reconstruction
of the full-band reflectivity function, direct integration of

the recovered reflectivity will yield a reasonable



representation of the true earth relative impedance function.

Although stacked sections (the 1input to the following
inversion scheme) do not generally represent the ideal primary-
only section reguired here, processing chains which contain
operations like stack with primary stacking velocities, gap-
deconvolution and fregquency-wave numbér filters will largely
suppress multiple effects. Energy contained 1in the remaining
multiples can then be treated as noise and be further suppressed
by the internal mechanism of the algorithm as was described in
Oldenburg et al. 1983, The reader who is still skeptical as to
the applicability of the primaries-only model to real seilsmic
data is reminded that the generation of a stacked section 1in
which primary events and all their corresponding multiples are
present is equally as hard as the generation of a multiple-free
section. Conseguently, the starting point of the inversion
procedure to be described in this work is no worse than that
underlying wave;equation approaches to the impedance inversion

problem.

Scheuer (1981), and Oldenburg et al. (1983) have also
presented a different approach to the reconstruction of the
full-band reflectivity function. This approach uses the Auto-
Regressive model and extrapolates the available frequency
information toward the missing low and high freguencies by means
of a prediction operator. Most importantly, they have

incorporated velocity constraints into the deconvolution problem



and thereby created the basis of what will be later referred to
as geological deconvolution. In Chapter 1III I describe the
essentials of this later addition. I should add that my

contribution to this portion of the work was rather minor.

1.2 STAGE II1: EXTERNAL CONSTRAINTS 1IN THE RECONSTRUCTION OF

FULL-BAND REFLECTIVITIES

At the early stages of this work, it was believed that
given the ideal data, an 1inversion procedure 1involving the
integration and exponentiation of the full-band reflectivity
function reconstructed from the information <contained 1in the
seismogram alone should yield a reasonable estimate of the
corresponding impedance function. Although this operation seemed
to be successful in a fairly large number of cases (particularly
on short time windows featuring a relatively small number of
sharp impédance contrasts), there are a considerable number of
geological-physical ‘models in which satisfactory impedance
reconstuction requires additional information. For example, the
incorporation of information contained in the velocity and
density logs acguired at a well site in the vicinity of the line
of interest 1is 1likely to yield a significant reduction in the
allowed solution space. Hence, the solution obtained from the

combined information set is considerably more reliable,



Since well-logs are not always available and since it is
not always possible to establish a clear tie between the well-
log information and the observed stacked section, we had to look
for additional information sources which will routinely be at
our disposal. The most natural source of information concerning
gross velocity structure is stored in the set of velocities qsed
in the stacking process. In Chapter IV we present a scheme
through which a 1linearized relation between the stacking
velocities and the constructed full-band reflectivities 1is
established. Using this relation, the deconvolution/impedance
inversion process 1is better constrained; that 1is, we have
further limited the solution space and thereby decreased the

non-unigueness associated with the problem.

It 1is important to note that using the stacking velocities
and the CMP stacked seismograms simultaneously, the inversion
scheme proposed here is wutilizing both the dynamic and the
kinematic properties of the recorded data. The additional
information supplied from the well-logs 1is used to further
decrease the allowed solution space and thereby 1increase the

solution's reliability.



1.3 STAGE III: PRACTICAL IMPLEMENTATION OF THE INVERSION

Academically speaking the combined approcach presented in
Chapters II, III and IV, constitutes a reasonable solution to
the problem we set forth to solve. However, a number of
practical considerations had to be addressed 1in order to
transform this work into an economically viable and
geophysically reliable production algorithm. The efforts in this

stage are directed toward the following aspects:
A. Speeding up the linear-programming algorithm,

B. Scaling the observed stacked section so that the
incorporation of the three information sets intc the inversion

will yield physically meaningful results, and

C. Correcting the phase of the residual (interpreter's)
wavelet sc that the 1input seismograms will constitute a
reasonable approximation to the earth reflectivity function

convolved with a zero-phase wavelet.

Chapter v describes procedures for improving the
computational efficiency of the 1linear programming algorithm,
Chapter VI discusses the pre-inversion scaling of stacked
sections and Chapter VII describes a partial solution to the

problem of phase correction. In the appendices of Chapter VII,



we take the reader through the concept of the constant phase
shift model and present a number of methods for the estimation
of the desired phase shift angle. However, the essential
contribution of Chapter VII is the automatic phase correction in

which we use a simple scheme to effect the desired correction.

An interesting secondary outcome of the phase correction
study is presented in Appendix VII-B. There, we describe the
inversion of phase shifts associated with post-critical
reflections to obtain both velocity and density information.
This method was tried for the determination of the density and
velocity of the uppermost layer of sediments in a deep water

environment and was found to yield reasonable results.

Finally the conclusion of this work contains a description
of the steps required for the completion of acoustic impedance
inversion, together with some recommendations which may ease
some of the initial pains that will afflict the reader who 1is

interested in trying his hand in the subject.



CHAPTER 2: RECONSTRUCTION OF A SPARSE SPIKE TRAIN FROM A PORTION

OF ITS SPECTRUM AND APPLICATION TO HIGH RESOLUTION DECONVOLUTION

2.1 INTRODUCTION

In seismology and other branches of applied science, it is often
necessary to estimate a function from a portion'of its Fourier
transform, either because 1its complete transform cannot be
measured or because sections of the transform are unreliable.
Fourier transformation of an incomplete spectrum is an
underdetermined 1linear 1inverse problem. Therefore it admits an
infinite number of solutions (Backus and Gilbert, 1967, p. 251).
1f, however, the form of the unknown function can be restricted
on physical grounds, it may be possible to determine the most
physically acceptable solution by minimizing an appropriate
norm. If a solution consisting of iscolated spikes is required,
minimization of the L,-norm is most appropriate. Accordingly, a
linear programming method has been developed to reconstruct a
"sparse spike train" from a portion of its spectrum by

minimizing the L ,-norm.

With the assumption that the earth response is a set of
delta-functions of unknown amplitude and delay, one immediate
field of application of the method is high-resolution seilsmic
deconvolution. It 1s commonly observed that the signal-to-noise
(S§/N) ratio 1is wvery poor in certain portions of a seismic

spectrum, and inclusion of these highly contaminated spectral



data in the calculation of the response function can produce
gross errors. If the unreliable data are rejected, the inverse
Fourier transformation 1is underdetermined and therefore has no
unigue solution. Indeed, if the reliable (albeit noisy) spectral
data constitute the totality of the available information, a
highly resolved estimate of the response function is necessarily
associated with large uncertainties (Oldenburg, 1976, 1981).
However, by enforcing the physical requirement that the earth
response should consist of isclated spikes, i.e., by introducing
additional 1information, the linear programming method described
here is able to construct a response function estimate which is
both acceptably accurate and well resclved. The efficacy of the
method is demonstrated in single-trace examples with 10 percent
random noise, and the quality of our results surpasses that

attainable using conventional least-squares technigques.

Linear programming has been applied previously to seismic
deconveolution (Claerbout and Muir, 1973; Taylor et al. 1979),
but its potential was not fully exploited in the time-domain
formulation adopted. The most significant differences in the
present approach relate to the treatment of errors. First, by
formulating the problem in the freguency domain, it is possible
to identify (and then to discard) the spectral data which are
most seriously contaminated; no such "winnowing" of data is
possible in the time domain. Second, there 1is no attempt to
minimize the misfit errors; the response function with minimum
L,-norm is always sought in our formulation because minimization

of this norm favors solutions with as few nonzero wvalues as
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possible, 1i.e., with isolated spikes. The data are satisfied to
an accuracy compatible with the perceived noise level. What
degree of accuracy is "compatible" 1is governed by the
propagation of random noise: this is considered in some detail

in appendices 2-A, 2-B and 2-C.

2.2 RECONSTRUCTION OF A SPARSE SPIKE TRAIN FROM A PORTION OF ITS

SPECTRUM

The unknown time series a(t) may be visualized as a

generalized Dirac comb, i.e.,

where t, = nAt, for some time increment At. The coefficients
fa :n =0, N - 1} are the spike amplitudes; thus a, = 0 when

there is no spike at time t,.

Denoting the Fourier transform of the time series a(t) by

A{w), it follows from egquation (2.1) that

N-i
Alw) = 1/N T a,expl-iwt ).
mz=0

Hence,



1

N-1

Re{Aj} = 1/N Z a cos(wjt, ),
Tn=C
(2.2)
N-t )
Im{Aaj} = - 1/N Z a sin(wjt,),

n0

where wj = 2jn/(NAt) with 3 =0, 1, 2,..., N/2.

The defininé relations (2.2) for the spectrum of a(t)
constitute a set of linear constraints on the unknowns
{a,tn = 0, N - 1}. If the spectrum were known exactly for all
(N/2 + 1) distinct frequencies, the time series could be
recovered perfectly by straightforward inverse Fourier
transformation. When there are gaps in the spectrum, however,
the 1inverse problem 1s underdetermined and admits an infinite
number of solutions, corresponding to time series of greatly
different appearance. If the time series is assumed to be a
sparse spike train, by no means are all of these possible
mathematical solutions physically acceptable, and it 1is
desirable to introduce a criterion which discriminates against
those solutions of inappropriate form. The criterion most

suitable in this connection is the minimization of the L,-norm

|lal]|, of the time series a(t) where
N-i
I1alls = Z]lanl- (2.3)
Mm=0

Linear programming may now be invoked to find the



12

coefficients {a} which satisfy the reliable spectral data and
for which ~|]é]|, is minimum. The minimization of ||a|]|, will
favor solutions which are zero except at a small number of
isolated times, and it will therefore tend to produce sparse
spike trains, as desired. Furthermore, the nuhber of nonzero
values in the linear programming output never exceeds the number
of constraints; in other words, the number of constraints is an

upper limit on the number of spikes in the solution.

The Simplex algorithm is written for nonnegative unknowns
only, whereas both positive and negativé spikes are usually
equally acceptable physically. This difficulty 1is overcome by
expressing each spike amplitude as the difference between two

positive guantities, i.e.,

b, - G., D = 0,N - 2.

o
|

(2.4)

where b > 0 and ¢ > 0 for all n =0, N - 1, The guantity
actually minimized is the sum
N-d
s =Z [b +c ].
%1%
The minimum 1is attained when at least one of b and ¢ 1is zero
at each value of n; hence

|a|=[b "CI:lb +c,n'=O,N-‘|.
n w n

v v



2.3 EXAMPLES WITH NOISE-FREE DATA

The recoverj of spikes from an incomplete spectrum may be
visualized as deconvolution of a noise-free seismogram when the
wavelet is known. Without loss of generality, therefore, the
efficacy of +the technigque for (specialized) inverse Fourier

transformation will be established by means of seismic examples.

The assumption that a seismogram x°(t) is a convolution of
a source wavelet w(t) with an earth response function a(t) 1is
widely used in applied seismology. In the freguency domain, this

convolution may be expressed as a product, whence
AMw) = 2%(w)/W(w), (2.5)

where upper case symbols denote Fourier-transformed guantities.

2.3.1 EXAMPLE 1

The input time series in Figure 2-1c represents the
convolution of the Ricker wavelet in Figure 2-1a with the spike
train in Figure 2-1b., Our aim here is to show that the spike

series can be reconstructed from a small portion of its spectrum
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without significant 1loss of resolution. In implementing the
technique described in Section 2.2, only those deconvolved
spectral data 'A(w)‘ corresponding to freguencies between the
arrows in Figure.2-1deere included in the computations which
produced the times series showh in Figure 2-1e. Thus 20 percent

of the spectrum sufficed for a perfect reconstruction of the

generating spike sequence.

2.3.2 EXAMPLE 2

The seismogram in Figure 2-2c is the result of convolution
of the wavelet in Figure 2-2a with the response function in
FPigure 2-2b. As in example 1, only the deconvolved data
associated with frequencies between the arrows in Figure 2-2d
entered into the calculations; both high and low freguencies
have been discarded in this case. The output 1in Figure 2-2e
exhibits a close resemblance to the original spike train in
Figure 2-2b, although some of the spikes are split in two. This
phenomenon 1is a manifestation of nonunigueness arising from the
neglect of some of the frequencies. The degree of splitting
provides a gqualitative indication of the resolving power of the
method; a split spike indicates that resolution is plus or minus

one time unit at best.
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(a) A tapered Ricker wavelet. (b) Generating spike series. (c)
Normalized input trace, obtained by convolving the wavelet 1in
(a) with the series in (b). (d) Normalized amplitude spectrum of
the seismogram’ in (c). (e) Normalized response function
recovered using only the data corresponding to the frequencies
between the arrows in (d).
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2.4 SELECTION OF DATA IN THE FREQUENCY DOMAIN IN THE PRESENCE OF

NOISE

Let e(t) denote the noise in an observed seismogram x(t),

x(t) = x°(t) + e(t),

where x°(t) represents the noise-free seismogram as before. If
the wavelet is known, the noisy seismogram may be deconvolved in
the frequency domain by dividing by the wavelet spectrum -W(w).

The resulting estimate A'(w) of the spectrum A(w) is given by ~

A'(w) = X% (w)/W(w) + E{w) /W(w),

(2.6)

where upper -caée letters denote Fourier transformed guantities
as before. It may be observed that .a conventional inverse
Fourier transform of A'(w) will not produce an acceptable
estimate of a(t) if at some freguencies |E/W| is appreciable, in

comparison with |X°/W]|.

To wunderstand the influence of errors better, it is
instructive to review the generél characteristics of the
component spectra which shape the spectrum of a seismogram. The

amplitude spectrum of a typical wavelet falls off rapidly at
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high freguency, whereas the spectrum qf a spike series does not
decay with frequency. The spectrum of a noise-free seismogram is
the product of the wavelet and response spectra [per egquation
(2.5)] and it therefore deca&s with frequency like the wavelet
spectrum. Consequently, if a seismogram is éontaminated with
pseudo-white noise, the S/N ratio 1is very poor at high
frequencies because the noise power is almost independent of
frequency. For the same reason, the reliable data are associated

with frequencies at which the wavelet carries significant power.

If a(t) is estimated wusing only those deconvolved data
corresponding to freguencies from a certain band, it will not be
reconstructed perfectly unless some independent information is
introduced. Some resolving power must be sacrificed if, for
example, the unreliable data are replaced by zeros or if a
penalty function is introduced to discriminate against the noisy
data. What distinguishes our approach 1s that we make no a
priori assumptions about the unreliable spectral data. Instead
we wuse only the reliable data, 1in combination with the
additional knowledge that the desired output consists of

isolated spikes.

Whether or not the signal power at a certain freguency is
significant must be assessed in relation to the noise power at
that freguency. If the noise is pseudo-white, it 1is reasonable
to introduce a cutoff and to regard a datum as "reliable™ if it
exceeds the cutoff, and "unreliable"” otherwise. The choice of

cutoff 1is governed by the perceived noise level; however, there



are no uneguivocal gquantitative rules, and two different
procedures have been devised.

1
'

2.4.1 EMPIRICAL CUTOFF

An appropriaﬁe ‘choice of cutoff can usually be made after
inspection of the amplitude spectrum of the seismogram or on the
basis of prior knowledge of the level of noise to be expected.
It is convenient to express the cutocff K as a fraction of max
{|Z(w)|}; only the deconvolved data at those frequencies for

which |X(w)|> K figure in the subsequent computations.

2.4.2 STATISTICAL CUTOFF

It 1is possible to develop a cutoff criterion based on the
statistical properties of random noise. Following Jenkins and
Watts (1969, p. 231), it is assumed that the noise in the time
domain is a realization of a random process characterized by the
random variables {Zm: n = 0, N - 1}, each having mean zero and
variance o2, If it |is possible to isolate a portion of the
spectrum of the seismogram (e.g., the high-frequency section)
which is due to noise alone, then (as shown in Appendix 2-A) the

mean observed power at these frequencies constitutes an estimate
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0> of o¢?. Considered as a random variable, o? is distributed as
a chi-squared variable, so confidence limits can be assigned

using, for example, Figure 2-3-10 of Jenkins and Watts (1969).

Although the noise power is estimated from the spectrum of the
observed seismogram X(w) in the manner just described, it is the
deconvolved spectrum X/W or A' which is used in the selection of
frequencies because‘the reliability of the real and imaginary
parts of A', not X, governs-ﬁhe accuracy of the data equations
(2.6). The real and imaginary parts of A' are -scrutinized
independently, since there 1is no guarantee that both are
reliable at a particular frequency, i.e. |Re{X/W}| may be 1large
when |Im{X/W}| is .small, or vice versa. The same cutoff is
applied to both real and imaginary parts, so it is without loss
of generality that ‘the real part 1is considered 1in the

development below. From equation (2.6) it follows that

Re?2{A'} = Re?{X°/W} + 2Re{X°/W}Re{E/W}

+ Re?{E/W}. (2.7)

understanding that this equation applies at all frequencies.
AN

1f Re{E/W} is visualized as the realization o¢f a random

variable, say Q, then e[Q] is zero, and by eguation (2-B-2),
e[Ql? = o2/(2|W|2), (2.8)

where e(x) is the expected value of x.
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Combining equations (2.7) and (2.8),

e[Re?{A'}] = Re2{X°/W} + 02/(2|W|2).

Thus the relative magnitudes of Re?{A'} and e[Q2?] provide a
measure of the reliability of Ref{A'}. Introducing the free

parameter a, the cutoff Kj, at frequency wj is defined by

Kj = 2aze[Q3] = a?0?/|Wj|?

(2.9)

and the real'part is considered reliable at that frequency

provided Re?{Aj} > Kj.

The choice of e is guided by the probability distribution

of Q%; specifically, from Appendix 2-B,
Pr{Q?*>Kj} = erfc(a). (2.10)

In view of the uncertainty in the estimate o2, Kj cannot be
calculated precisely using eqguation (2.8). Conseguently, the
probability that pure noise will exceed the cutoff at a
particular value of a can be determined only approximately from

equation (2.10).
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2.5 FORMULATION OF THE INVERSE PROBLEM IN THE PRESENCE OF NOISE

Although thér disturbing 1influence of the noise will be
greatly reduced by winnowing the most erroneous spectral data,
as described above, the femaining (reliable) data are not noise-
free. It is therefore inappropriate to solve the data equations
exactly. Two ways to take the errors into account are discussed

here, using inequality and equality constraints, respectively.

2.5.1 INEQUALITY CONSTRAINTS

In the ineqguality formulation, the  linear programming
algorithm is reqguired to fit the noisy data only to within
certain 1limits and, recalling -equations (2.2) and (2.4), the

constraints are written in the following form:

-t
+Re{A}} + ej> + 1/N;Eo(bw - c,Jeos{wity),
(2.11)

MmO

-\
+Im{a%} + €5 > + 1/N'E(b, - c,)sin(wit ),

where e¢j is the assigned uncertainty at frequency wj. These
uncertainties do not appear in the objective function; the L,-

norm of the response function alone is to be minimized.
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If the uncertainties are increased, there 1is a greater
likelihood that the true spectral value lies within the
prescribed limits. The greater the freedom allowed, the greatef
the probability that the algorithm will find a feasible sclution
with fewer spikes (i.e.with smaller L,-norm) than thevtrug
response function. This feature can be exploited to determine
the most prominent spikes. An increase in the uncertainties also
reduces the computational labor and hence, the cost. Conversely,
the cost increases as the uncertainties are decreased, and there
is a tendency for more and more spikes to .appear. There is no
fail-safe way to distinguish true spikes from spurious spikes, -
but physically untenable response functions can result when the
uncertainties are too small. This will be discussed further

later.

Just as there is more than one way to choose a cutoff, so
too is there .some flexibility in the choice of uncertainties;

two possibilities are described below.

(1) Empirical uncertainties. - The uncertainty may be chosen to.
be some small fraction of the cutoff K (defined under "Empirical
cutoff"” in the previous section). The most straightforward

approach is then to assign the same uncertainty to all the data.

(2) Statistical uncertainties. - The choice of uncertainties may
be guided by consideration of the statistical character of the
noise. Specifically, it is appropriate in view of equation (2.6)

to define the uncertainties in terms of the standard deviation
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of Q, where Q is a random variable representing either Re{E/W}
or Im{E/W} as before. Using equation (2-B-2), the defining

relation is
ej = g | varloj] = 0.7071 go/|W5|,

where f 1is a free parameter. Note that the uncertainties are
frequency dependent in this instance. If the noise is normal or
near-normal, the familiar Gaussian confidence limits serve to

guide the choice of j.

2.5.2 EQUALITY CONSTRAINTS

In the process of solving for the response function with
minimum Ly-norm, the linear programming algorithm also
indirectly determines an estimate of the noise. In the
inequality formulation this mathematical noise is bounded at
each frequency,.but_its over-all statistical character 1is very
weakly constrained. For example, there is no guarantee that the
mean of the noise removed by the algorithm is acceptably close
to its\sxpected value of zero, nor that its power 1s compatible
with the perceived noise power. In order to control the removal
of the noise more <closely, the error can be introduced
explicitly into each eguation as an additional unknown, say 7j.
Recalling equations (2.6) and (2.2) the resulting equality

constraints can be written in the form:
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5 el
Re{A\‘j‘} = Re{nj/Wjl + I/Nm?;;ébw- cw)cos(gjt ),

and , (2.12)

N~ -
Im{Aj} = Im{nj/Wj} - V1/N Z(b,, -c.,)sin(wjt,).

mz2go

In solving these equations, the algorithm 1is required to
minimize the L,-norm of thé response function as before, and in
so doing to determine that statistically consistent set {nj}
most favorable to the minimization. The most obvious statistical
restriction on the noise is that it have mean zero. In addition,
it is possible to devise a constraint on its  L,-norm.
Specifically, the expected value of the qguantity S is

prescribed, with S defined by
M .
S= (/M) L (|u_|+]v_]|), (2.13)
= m™m

where u = Re{Ej(m)} and » = Im{Ej(m)}, with J(m) the index of
the mth acceptable freguency, there being M such freqguencies in

all. A formula for €[S] is derived in Appendix 2-C:

e[s] = 20/| 7.

Since S 1is an average of M quantities, 1its variance
decreases as M increases, i.e., as the number of reliable data

increases. Thus the 1lower the cutoff, the more likely is S to
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assume its expected value. In this sense, the noise compensation
using equality constraints improve as more and more data are
included 1in the computations; this 1is in contrast to the
inequality formulation where the noise = compensation | is

unaffected by the number of acceptable data.

The use of equality constraints does introduce considerably
more variables 1into the linear programming problem, an extra
four at each acceptable frequency in fact. However, the number
of .constraints is reduced by a factor of approximately two with
respect to the corresponding problem with inequalities, .and 1in
general the computer costs are little more than those incurred

using inegualities.

2.6 EXAMPLES WITH NOISY DATA

The examples studied earlier will now be reworked 1in the
presence of Gaussian random noise. Three variants of our linear
programming approach are tested below. Two of ‘the variants,
denoted by 1Ie and Is, employ inequality constraints but differ
in their choices of cutoff and uncertainties: Variant Ie adopts
the empirical criteria and the empirical uncertainties, while
variant 1Is makes use of the statistical criteria and
uncerﬁainties. The third variant, denoted Es, employs

statistical cutoff and equality constraints.
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Whereas both location and relative amplitude of the spikes
are uSually féithfully reproduced when the data are perfectly
accurate, the presence of errors in the data often  renders it
impossible to discriminate between the effect of a single spike
at time t, with amplitude c, say, -and two spikeé at times t,, and
L with amplitudes d . and ¢ - 4, respectively. The ‘trace
obtained by convolving the wavelet with the double spike will
differ from that obtained using the single spike by an amount
which is everywhere negligible in comparison to the noise in the
seismogram. As noted earlier with the noise-free data, the
insufficiency of reliable data is also a contributing factor to
this "splitting". If splitting 1is taken 1into account, the
amplitude recovery is often better than it appears at first
glance because the amplitude of a 'split spike should be regarded
as the sum of the amplitudes of its components. At relatively
high noise levels the entire amplitude of a spike may be
assigﬁed to an adjacent time, i.e., the spike in the output is
shifted by one time ‘interval with respect to the location of the

corresponding spike in the true response function.

2.6.1 EXAMPLE 3

The time series in Figure 2-3a was obtained by the addition
of 10 percent random noise to the synthetic seismogram in

Figure 2-1c. As in the previous example, the similarity of the
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amplitude spectra in Figures 2-3b and 2-1d testify to the

reliability of the data in the freguency band of the wavelet.

Variant Ie (inequality constraints with empirical cutoff
and uncertainties): Setting cutoff K to 0.2 {|Z(w)|} max and
uncertainty e to 0.015 {|X(w)|} max, the spike train depicted'in
Figure 2-3c was returned. This solution exhibits a highly
satisfactory degree of agreement with Figure .2-1b. The most
significant effect of the errors has been to alter the

separation of the third and fourth spikes.

Variant Is (inegquality constraints with statistical cutoff
and uncertainties): The spikes series depicted in Figure 2-348
was computed using the parameter values a = 3 and g = 3. 'There
is good correspondence with the gene;ating spike series (Figure
2-1b), although a small spurious spike has appeared .at time 7
and tﬁe spike at time 25 has been shifted by one time unit. Some

of the spikes have been split, especially that at time 42.

Variant Es (equality constraints with statistical cutoff):
The estimate of a(t) obtained using the equality constraint
formulation with a = 0.2 1is shown in Figure 2-3e; there is very
good agreement with Figure 2-1b. A small a [and hence, by
equation (2.9), a low cutoff] was adopted 1in order to
demonstrate the superiorvnoise tolerance of this formulation;
notwithstanding the considerably 1lower cutoff, the output in

Figure 2-3e is free of spurious spikes, in contrast to Figure 2-
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3d.

2.6.2 EXAMPLE 4

The complicated wavelet (Figure 2-2a) employed in this
second example is that used previously by ‘Wiggins (1978). The
synthetic earth response in Figure 2-2b includes eight spikes in
an interval of approximately four-fifths of the length of the
wavelet; in the presence of noise, tﬁeréfore,‘this=example taxes
the resolving power of any deconvolution method. The seismogram
in Pigure 2-4a was constructed by the addition of 10 percent
random noise to the trace in Figure ‘2-2c. The similarity between
the amplitude spectré of the noisy and noise-free seismograms at
low frequencies (Figures 2-4b and .2-2d) justifies our reliance
on the data at those frequencies. The dashed horizontal line in
Figure 2-4b represents a possible cutoff level. Note that the
reliable frequencies in this case do not 1lie 1in a single
continuous band, but are dérived from a number of narrow bands;
this 1illustrates the fact that the.distribution of reliable

frequencies is unimportant.

Variant Ie: The response function obtained with K = 0.2 max
{|2(w) |} and e =-0.01 max {|X(w)|} 1is shown 1in Figure 2-4c.

Except for the small spike at time 10, all the spikes in Figure
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(a) Noisy input trace resulting from the addition of 10 percent
random noise to the trace in Figure 2-1c. (b) Normalized
amplitude spectrum of the trace shown in (a). At low freguencies
this spectrum bears a strong resemblance to that for the noise-
free seismogram (Figure 2-1d). (c) Normalized response function
recovered from the reliable data wusing variant Ie. (d)
Reconstructed response function obtained by application of
variant Is with a = 3 and g = 3. (e) Normalized estimate of the
response function determined with variant Es when a = 0.2.
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2~2b have been located to within one time interval. There 1is
some indication of the spike. at ‘time 10, but this is much
smaller than the spurious spike at time 44. Since the fourth
spike is split, its effective amplitude is in fact very similar

to the amplitude of the third spike.

Variant Is: The spige series éhown in Figure 2-4d was obtained
with a = 2.5 and g = 1. Six of the spikes in Figure 2-2b have
been recovered faithfully. However, the spikes at 17 and 21 have
been replaced by a single large spike spread over times 18 and

18, and a small spurious spike has been introduced at time 47.

Variant  Es: When a = 0.2, the eQuality‘ constraint
formulation returns the response function shown in Figure 2-4e.
Six of the spikes 1in Figure 2-2b have been recovered, and no
spurious spikes have been introduced. The net influence of the
errors has been to mask the presence of two small spikes at

times 10 and 40, as well as causing some splitting.

2.7 PRACTICAL RECOMMENDATIONS

When using the linear programming technique to deconvolve
noisy seismograms, the following points deserve special

consideration.
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(a) Noisy input trace obtained by adding 10 percent random noise
to the trace in Figure 2-2c. (b) Amplitude spectrum of the trace
depicted in Figure 2-4a. The high-energy portions of this
spectrum bear a close resemblance to the corresponding portions
of the noise~free spectrum (Figure 2-2d). (c) Normalized
reconstructed response function furnished by the empirical
variant Ie. (d) Response function estimate computed using
variant Is with e = 2.5 and § = 1. As for (c), there 1is good
agreement with the generating spike series (Figure 2-2b). (e)
Normalized response function recovered using the equality
constraints variant Es, with a =-0.2.
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(1) The computing costs increase if the algorithm is
;equired to sétisfy the data more precisély. The accuracy of
solution is governed by the magnitude of_the uncertainties when
uéing inequalities, or by the prescribed noise: level for
equality constraints. If.the accuracy demanded is inconsistent
with the -actual level of noise in the 'data, the Simplex
algorithm will perform many iterations before it can locate " the
solution Qith minimum L,-norm. If an unjustifably close fit is
demanded, the solution obtained will be characterized by an
unreasonably large number of spikes. At the other extreme, large
‘uncertainties facilitate solution in a small number of
iterations and at a correspondingly lower <cost. However, only
the most prominent spikes will be recovered, and their

amplitudes may be underestimated.

In order to avoid needless computation, it 1is recommended
that 1if possible a statement ©be 1introduced into the linear
programming routine to terminate execution when the objective
function exceeds a certain limit. If the maximum amplitude of
the seismogram is normalized to unity, the upper .limit on the
.Li-norm should constitute a conservative.estimate of the number

of spikes expected.

(2) 1I1dentification of contaminated frequencies is a
valuable aid in the determination of the spiky series, and it is

recommended that a record of the background noise in the study
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area be acquired. In conjunction with some knowledge of the
frequency band of the ‘wavelet, the spectrum of the noise
indicates which fregquencies should be omitted. Furthermore, a
knowledge of the noise guides the choice of uncertainties to be

assigned to the reliable spectral data.

2.8 COMPARISON WITH LEAST-SQUARES TECHNIQUES

In order to compare the 1linear programming method with
conventional techniques, the examples have been repeated using
(1) a2 least-squares frequency domain filter (Berkhout 1977) and

(2) a least-sguares time domain filter (Wood et. al., 13978).

In terms of the notation adopted here, the freguency domain

filter F(w) is defined by

'_w*(w)
Flw) = (2.14)
Wlw)W*{w) + c*

where W* denotes the complex conjugate of W, The "water-level"
parameter ¢ is adjusted according to the level of noise; ¢ is
zero for perfect data and is increased as the level of noise

rises.

The time domain filter f(t) is defined by
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£(t) = w(-t)*w=-"(t)*xw="(-t),

{2.15)

where w-' is the zéro-delay Wiener inverse of w, and where the
argument -t 1is used to denote time reversal..Noise suppression
is échieved in this case by the addition of a constant c¢' to the
main diagonal of the autocorrelation matrix which features 1in
the determination of w-' (Berkhout, 1977). The higher the level

of noise, the larger the value of c¢' adopted.

2.8.1 EXAMPLE 5

To provide a point of reference, the fregquency domain
filter was first applied to the noise-free trace in Figure 2-ic,
‘using the wavelet in Figure 2-1a as before. The output (Figure
2-5a) is an exact replica of the generating spike sequence
(Figure 2-1b, p-15), as expected. When the filter in equation
(2.14) was applied to the noisy seismogram in Figure 2-3a, the
response function shown in Figure 2-5b was obtained. In this
case the most suitable value of c? was found to be 0.01 max
{|W(w)|?}, consistent with the known 10 percent noise level. The
output in Figure 2-5c, on the other hand, resulted when the time
domain filter was applied to the same example with ¢' = 0.1Rg,

where R, denotes the zero lag autocorrelation. Substantial
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delays have been caused by the successive convolutions performed

during filter construction.

Comparing Figures 2-3c, 2-3d4, and 2-3e with Figures 2-5b
and 2-5c¢, it 1is <clear that 'the 1linear programming method
provides a much more highly resolved output than the

conventional least-sguares technigues.

2.8.2 EXAMPLE 6

As for ‘the previous example, the frequency domain fiiter
for the wavelet in Figure 2-2a was first applied to ‘the exact
seismogram in Figure 2-2¢, and the original séike series (Figure
2-2b) was reproduced perfectly (Figure 2-6a). Subsequently, the
same filter was applied to the noisy seismogram in Figure 2-4a;
the most appropriate value of c¢? was found to be 0.02 max
{|W(w) |2}, and the resulting output is presented in Figure 2-6b.
When the time domain filter was applied to the noisy‘trace with

t

¢' = 0.05R,, the response function in Figure 2-6c resulted.

Comparison of Figures 2-4c, 2-4d4, and 2-4e with Figures 2-
6b and 2-6c reveals that the linear programming output 1is much
more highly resolved than the corresponding output obtained

using the conventional filters [equations (2.14) and (2.15)].
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(a) Normalized reconstructed response function obtained by
applying the frequency domain filter (2.14) to the noise-free
seismogram in Figure 2-1c. (b) Normalized response function
recovered from the noisy seismogram in Figure 2-3a using the
frequency domain filter with c¢? = 0.01 maxz {|wW|?}. (c)
Reconstruction of response function resulting from application
of the time domain filter (2.15) to the trace in Figure 2-3a,
with ¢' = 0.1Rq.
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(a) Normalized reconstructed response function obtained by
applying the fregquency domain filter (2.14) to the noise-free
seismogram in Figure 2-2c. (b) Normalized response function
recovered from the noisy seismogram in Figure 4a using the
frequency domain filter with c? = 0.02 max {|wW|2}. (¢)
Reconstruction of response function resulting from application
of the time domain filter (2.15) to the trace in Figure 2-4a,
with ¢' = 0.05R,.
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2.9 CONCLUSIONS

Using a liﬁear programming formulation, we have shown ;hat
it is possible to reconstruct a spiky signal from a small
portion of its Fourier spectrum. The recovered signal bears a
close resemblance to the original spike sequence. The minor
difjerences wvhich can sometimes be observed are manifestations
of the non-unigueness inherent in any underdetermined linear

inverse problem.

To test 1its weffectiveness in the presence of noise, . the
reconstruction method has been applied to the seismic
deconvolution ’probiem when the waveiet is known. The influence
of noise has been suppressed by discarding those spectral data
which are most seriously contaminated and by including only the
remaihing reliable data in the computations. Furthermore, when
solving for the spike amplitudes, the reliable data are not
satisfied exactly but rather to an accuracy consistent with the
perceived level of noise. In synthetic examples with 10 percent

random noise, this method has produced highly resolved

"~ deconvolved traces. In each case the output bears a close

similarity to the generating spike sequence.

Although the effect of random errors in deconvolution has
been considered in some detail, the reconstruction method is
readily adaptable to other types of noise. Large amplitude

sinusoidal noise, for example, would produce a very obvious
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signature in the fréquency domain, thus facilitating recognition

(and subsequent rejection) of unreliable freguencies.

The deconvolution method proposed here is simple to
implement, given. the wide availability of linear programming
routines. Although we have not conducted a serious study of
comparative costs, it 1is to be expected that the linear
programming method will be somewhat more expensive +than most
existing deconvolution technigques. However, any additional
expense is offset by the high gquality of the linear programming
output, consisting as it does of spikes separated by zeros, in
contrést to the broadened peaks and side 1lobes which typify

conventional least-squares deconvolution.
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CHAPTER III: ACOUSTIC IMPEDANCE INVERSION AND WELL-LOG

CONSTRAINTS

3.1 INTRODUCTION

The following 1is a short summary of some of the essential
points brought up by Scheuer (1981) and Oldenburg et al. (1983).
For complete details the reader is referred to the original

papers.

Geological environments which are characterized by a
relatively small number of sharp impedance discontinuities are
likely to produce reflectivity functions -which are well
approximated by sparse spike trains. In such environments, the
full-band reflectivities produced by 1linear programming (LP)
deconvolution constitute a good representation of the true earth
reflectivity function and can be subsequently used for the
calculation of the acoustic impedance function. As shown by
Peterson et al. (1955) and Waters (1978, p. 219), the
relationship between the reflectivity function 1r(t) and the

acoustic impedance t(t) is approximately:
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r(t)=1/2 d[1ln £(t)]1/dt (3.1)

This approximation is acceptable for reflection coefficients

smaller than 0.3, in which case we may write:
h
t(t)= £(0) exp [2 f r(u) du] (3.2)
o]
or after taking the logarithm of (3.2):
p{t)= 1n [E(t)/8(0)] = 2 f r(u) du (3.3)
o

From egquation (3.3) we see that seismogram inversion can be
readily achieved if full-band, multiple-free seismograms are
available. The remainder of this work: is dedicated to the
development of tools which will allow reliable reconstruction of
full-band reflectivity sections from the observed band-limited

stacked sections.

We start by stating that the straight forward technique
presented in chapter II is not sufficient to ensure successful
inversion. Although a fairly  large number of geological
environments conform with the sparse reflectivity assumption, an
even larger number will contain at least a number of time
windows in which this assumption 1is violated. Consider for
example a geological environment containing a number of
transition =zones characterized by a slowly changing impedance

function. Such transition zones give rise to a densely populated
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reflectivity éeries which cannot be described as sparse.
Consequently, the reflectivities obtained by the LP
deconvolution .are not  expected to - constitute a good
representation of the true earth reflectivity and hence their
conversion to log relative impedance (Equation 3.2) will not
yield meaningful results. To overcome this problem and increase
the ;eliability of the obtained impedance section it is
neéessary to introduce additional information into the inversion

process.

The target of this chapter and Chapter IV is the generation
of a éomplete set of linear reiations combining information from
the stacked section, the sonic well-log and the .stacking
velocities. This set is subsequently solved to yield a full-band
reflectivity function which is consistent with all the aQailable

information.

3.2 EXTERNAL CONSTRAINTS IN IMPEDANCE INVERSION .

External information about the reflectivity can be
introduced into the inversion if the corresponding knowledge can

be expressed in the linear form:

N
a. =Z A, - (3.4)
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For each such constraint, a and all the A 's must be known,
The possibility that a 1is not known exactly can be handled by
specifying only 1its bounds, to within the desired uncertainty.

That is,

N
a.- 6 < Z A, :r: £a.+ (3.5)

The full set of equations contains a number of Fourier
transform inequalities (as per egation 2.11) plus external

constraints of the form specified in equation (3.5) above.

3.3 POINT VELOCITY CONSTRAINTS-WELL LOG INFORMATION

When well-log information 1is available, its cautious
incorporation into ‘the inversion is highly desirable. In this
section we develop the set of relations required for ‘this
operation. For the purpose of the following development we model
the digitized reflectivity function as a Dirac comb, we write:

N~—i
ri(t)=Z rmlé(t-nA) (3.6)
m=0Q
where, § symbolizes the Dirac delta function,
and A the sampling interval,

Substituting equation (3.6) into (3.3), exchanging the order of
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summation and integration, and integrating the result term by

term, we get:

a(t)= 2'F r,, H(t-nA) (3.7)

msz0
with H denoting the Heaviside step function.

Equation (3.7) states that the logarithm of the relative
impedance at time 't' is equal to ‘twice the sum of the
reflection <coefficients in the time window zero tb '"t' seconds.
This egquation allows constraints to be applied to the .
constfucted refiectivity if the density and velocity are known

for specific two-way travel times.

In general, we assume that both r(t) and 7(t) are not known

accurately; hence, a constraint at a given time 't' is of the

form:
N-{
n{t)=~8n(t) £ 2 Z r H(t-na)
m=g9 "V
(3.8)
CoNA
and n(t)+én(t) 2 2 L r H(t-na)
. i m=Q

with én(t) being the estimated error.

One can also assume a density power law, such as:
p(t)= constant [v(t)] (3.9)

with v(t) being the velocity versus two-way travel time profile.
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Invoking this assumption equation (3.7) becomes:

n(t)= 1n [v(t)/v(0)]= [2/(1+a)] 'L ¢ H{t-na)  (3.10)

"mag
3.4 DISCUSSION

The importance of external constraints in the
reconstruction of full-band reflectivity functions cannot be
overemphasized. In a normal seismic experiment the acquired data
is Chéracterized by a relatively narrow frequenéy band and hence
the construction of full-band reflectivity functions 1is a
strongly underdetermined inverse problem; Conseguently, the
technigque -presented 1in chapter 1I will attain an .acceptable
solution only if the true earth reflectivity function is well
approximated by a sparse spike series. The incorporation of the
velocity constraints into the inversion reduces the allowed
solution space and relaxes the strictness of the conditions
previously imposed on the sparseness of the constructed
reflectivity function. For example, the problem. of a
reflectivity function which 1includes a number of trahsition
zones in an otherwise sparse reflectivity backgrognd can now be
tackled with very encouraging results. Furthermore, the
inversion of ©properly scaled stacked seismograms supported by
the corresponding well-log information can be translated
directly into physically meaningful impedance or pseudo-velocity

functions, thereby supplying valueable information for



guantitative interpretation of the observed data.

47



48

CHAPTER IV: RMS VELOCITIES AND RECOVERY OF THE ACOUSTIC

IMPEDANCE

4,1 INTRODUCTION

The paper by Oldenburg, Scheuer, and Levy (1983) (hereafter
referred tc as OSL) investigated the problem of recovering the
acoustic impedance from normal incidence reflection seismograms.
That work began by using the simple convolutional model for a

reflection seismogram
x(t)=r(t)*w(t) (4.1)

where x(t) is the seismogram, r(t) is the reflectivity function,
w(it) is the source wavelet, and the symbol * denotes - the
convolution operation. If v(t) is an inverse filter which shapes
w(t) "as well as possible" into a Dirac delta function, then the

best estimates for r(t) are the unigue averages
<r(t)>=r(t)*a(t) (4.2)

where a(t)=w(t)*v(t) is called the averaging function. Note that
a(t) 1is bandlimited because w(t) is, and hence <r(t)> is, at
best, a band-limited representation of the reflectivity
function. The conseqQuences of integrating <r(t)>, or using its

discretized form in the standard acoustic impedance recursion
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formula, was shown to yield a band-limited representation of the

true impedance. More precisely, it was shown that only averages
<p(t)> = qg(t)*a(t) (4.3)

could be recovered. In eguation (4.3), n{(t)=1ln(§(t)/£(0)) where
£(t) is the acoustic impedance at time t, and a(t) is the samé
band-limited averaging function that was obtained in
déconvolving the 1initial seismogram. The 1loss of the low
frequencies makes a geological interpretation of <gn(t)> very
difficult.

‘The solution offered by OSL was to abandon the appraisal
technigque which yields unique averages of the acoustic impedance
and 1instead, .attempt to construct a broadband reflectivity
function which reproduced the seismic data. The basic difficulty
with such an approach 1is the inherent 'nonunigueness in the
solution. There exists an infinity of acceptable models and
these can differ greatly from one another. This nonunigueness
can be conquered only if model space is restricted sufficiently
so that the only acceptable models are like the true earth and
differ from each other in ét most small scale features. In OSL,
model space was restricted by first introducing the layered

earth so that the reflectivity function was represented as

r(t) = Z
R

r, 8(t-r,) (4.4)

In egquation (4.4) r_ is the reflection coefficient at the base
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of the k'th layer, and 7, is the two-way travel time to that
layer.: '

Clearly r(t) as represented by egquation (4.4) has the
potential for being broadband since a delta function has energy.
at all frequencies. Moreover, anvacoustic impedance having a
minimum of structural detail can be found by constructing an
r(t) in the form'of equation (4.4) which has the fewest number

of layers. This led to the development of ‘two solutions. “The

first was a linear programming (LP) algorithm which minimized

¢ = [ |dn(t)/dt| dt ='2E |r
(4.5)

The LP computations were carried out in the frequency domain
using the method of Levy and Fullagar (1981). That algorithm
constructs a broadband reflectivity whose spectrum agrees with
the measured spectrum within the energy band of the wavelet, and
has a spectrum consistent with that of equation (4.4) outside
the band. The seéond solution modelled the Fourier transform of
the reflectivity function as an autoregressive (AR) process and
predicted wunmeasured portions of the reflectivity spectrum from
the spectral values within the band of the wavelet.

It was found that the nonunigueness could be further
controlled by introducing additional constraints into the

construction algorithms., The LP solution was particularly
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amenable to such modification. OSL were able to use the unigue
averages of the reflectivity function to constrain the polarity
of the reflection coefficients and also to weight the objéctive
function so that ,sizeable reflection coefficients would not
appear at those times where the unigue .averages indicated they
should not. ULastly, and importantly, they -also showed how
impedance constraints could be incorporated directly into the
solution. In extendinézthe autoregressive approach, Walker and
Ulrych (1983) showed how the original AR formulation could be
modified so that it also could include impedance constraints.
Thus, impedance information from a nearby well, an estimate of a
basement impedance, or a recognized marker 2zone with known
impedance could be input directly into the LP or AR algorithms.
1t would seem that such constraints would so restrict model
space that the only nonunigueness would be relegated to
ambiguity of fine scale structure. OSL showed that tﬁis often
appears to be the case when the earth is adequately modelled by
a set of homogeneous layers. However, there are numerous
instances when a layered earth 1is not Jjustified because the
impedance changes slowly and continuously:  with depth. Such
tfansition zones or 'ramps' <can cause problems with the

construction procedures because
r(t) = 1/2 d/dt [ 1In{t(t)/§(0)}]

can be arbitrarily small if df(t)/dt is sufficiently small. Slow

changes in. the impedance therefore produce very small
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reflections and hence such changes are essentially annihilators
for the reflection seismic problem; that is, they are functions
which produce no observable data. Large components of such
annihilators can be added tc any acceptable reflectivity
function without degrading substantially the misfit to the data.
Clearly, more information is required to control this form of
nonunigueness. A major purpose of this chapter is to show how
extra information derived from RMS (stacking)lvelocities can be
incorporated directly into the LP and AR algorithms.

There are two ways in which RMS velocities can be included
in the construction algorithms. The first, and simplest, would
be to compute a minimum structure velocity function from the RMS
velocities and then Vincorporate approximate impedance
constraints directly by setting the density equal to wunity and
prescribing §(t)=v(t) as point constraints in the construction
algorithms. This method has the wpotential for producing good
results but it brings to 1light a problem of fundamental
importance. The RMS velocities are averages of the interval
velocity v(t), but knowledge of only a few inaccurate RMS
velocities does not permit one ‘to place pointwise bounds on
Q(t). Mathematically, v(t) can have any value at a particular
time, but physically, it 1is «constrained within the limits
imposed by the available geological lithologies. In principle
therefore, it is not possible to estimate errors for v(t) and
hence 1t 1is generally poor practice to incorporate impedance
constraints inferred directly from a constructed model.

An alternative method 1is possible. Its basis 1is the



53

realization that the RMS velocities are averages of the interval
velocity and therefore the only unique information available is
encompassed in the averages <v(t)>. Our goal will be to
investigate these averages and show how information contained in
them can be used to produce constraints for the LP and AR
construction algorithms.

The development of the solution to our objective is divided
into threelsections.-We begin by inverting RMS velocities to
recover information about the interval velocity. Algorithms for
computing flattest L, (absolute value) and L, (least squares)
norm = models will be presented. Both of these algorithms are
stable when applied to noisy data and both can incorporate known
constraints on the velocity. The next stage involves use of the
linear appraisal methods of Backus and Gilbert (1970) to
summarize our information about the interval velocity. This
anaiYsis guantifies the 1loss of resolving power at increased
time along the record and also illustrates the importance of
data errors. The final section <shows how to include the
information contained in the RMS velocities 1into the acoustic
impedance construction algorithms. This is done by first
constructing an acceptéble interval velocity model and then
using linear appraisal to obtain unique averages of v?(t) or
v(t). The desired constraints, in the form of linear
combinations of the reflection <coefficients, can be computed

directly with that information.
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4.2 : INVERSION OF RMS VELOCITIES: MODEL CONSTRUCTION

In this section we shall show how to construct an interval
velocity model from a given set of RMS velocities. This problem
has been addressed in a large number of publications over the
last three decades [c.f. Dix (1955) , Taner and Koehler (1969),
Taner et al. (1970), Levin (1871), Schneider (1971, Everett
(1974), Krey .(1976), and Hubral and Krey (1980)], but our
approach will be somewhat different. In particular we shall show
how observational errors and point velocity constraints .can - be
incorborated directly .into the construction of an interval
velocity. Also, ve ‘present two construction 'algorithms: one
produces a continuous velocity structure, and the other
generates a .layered earth with transition zones. The flexibility
afforded by these algorithms allows one to generate many
different "types of velocity structures which fit the
observations. The interpreter can therefore choose that
algorithm (and adjustable parameters) which develops an interval
velocity structure coinciding with the desired type of
geoiogical stratification.

Our methods incorporate errors from the outset and
consequently it 1is important to understand their sources and
magnitudes. An excellent description of the possible sources of
error associated with the estimation of stacking velocity is
given in Hubral and Krey (1980). There are two principal types
of errors: those which result in biased stacking velocity

estimates, for example, signal bandwidth (Stone, 1974) and



55

spread-length:bias (Al-Chalabi, 1974);land those which result in
random. errors (such as 'statics, event interference, etc). In
most of the following work we shall .assume that the total
observational 1inaccuracy of each datum can be represented by a
Gaussian random variable with zero mean. However, ‘in the linear
programming construction, biased errors are included in a
natural way.

We begin Dby casting the problem in an appropriate
framework, that of 1linear inverse‘theory. The basic eguation

relating the RMS velocity V(t) to the interval velocity v(t) is

-
Vi(t)= 1/t [ vi(u)du (4.6)

Q

When the RMS velocities are known only at discrete times t;,

j=1,N, the apppropriate -equations are

t.
= V= L2 =
vj._vz(tj)- 1/;${ vi(t)dt j=1,N

(4.7)

The objective of a construction algorithm is to find a model
vtt) which satisfies the N equations (4.7) to a degree
consistent with the assumed statistical errors on v . This is
easily accomplished by minimizing some norm of the model while
using eguations (4.7) as constraints. A variety of useable norms
~are available but our selection is motivated by a desire to
construct a model that has a minimum of structural detail. The

two norms used here are
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om
o, = S w(t)|m(t)|at (4.8)
o
. Tm :
and ¢, = [ w(t)m?(t)dt (4.9)
where - m(t)=dv?(t)/dt (4.10)

In these equations t. is the maximum record time, and w(t) is>a
posiéive weighting function which we shall later adjust to suit
our needs. Both ¢, and ¢, involve the gradient of v2(t) and
hence minimizing either of these will -produce a cons£ructed
velocity model with few oscillations.

To begin the construction we first integrate equation (4.7)

by parts and use (4.10) to obtain

vi -v2(0)= g 1/ti(tj-t)H(t$-t)m(t)dt

(4.11)

where H(t) is ‘the Heaviside step function. Another datum

eguation can be found by integrating (4.10) to get

ton
vz(th)-v2(0)= f m(t)H(tk-t)dt
<]

(4,12)
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Eguation (4.12) is important if some a priori knowledge about
the velocity at time t, 1is available. It will permit us to
construct interval velocities subject to point constraints.

A constructed velocity model can be obtained by minimizing
either ¢, or ¢, subject to using equations (4.11) and/or (4.12)
as constraints. The velocity obtained by minimizing ¢, will be
referred . to as the flattest L,; norm model, while the model
obtained by minimizing ¢, will be called the flattest model.

A velocity structure which will be used as a common example
throughout this investigation is shown in Fig. 4-1a. The
corresponding RMS velocities, computed from equation (4.6), and
the reflection seismogram, bandlimited to 10-35 Hz, are shown in
fig; 4-1b and 4-ic, TrTespectively. Seventeen RMS data were
selected at times coinciding with large reflection -events; the
times and velocities are given in Table 4-1 and indicated by
arrows in Fig. 4-1c.

To begin the constructions we shall compute the flattest
model. This 1is accomplished by using a standard spectral
expansion technique. Since the method is well known, it will not
bé outlined here. However, a reader who is unfamiliar with the
approach is referred to Parker (1977)  for details and to
Oldenburg and  Samson (1978) or OSL (1981) for typical
applications,

The flattest model which reproduces the accurate RMS data
is shown in Fig. 4-2a. The true velocity is superposed upon the

constructed model and it is apparent that the flattest model is
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Figure 4-1

The true velocity structure is shown in (a). The RMS velocities
corresponding to the velocity 1in (a) are shown in (b). The
arrows indicate those RMS velocities that will be wused 1in the
inversion. For both (a) and (b) the scales on the right are in
kft/sec. The reflection seismogram, bandlimited to 10-35 Hz. is
shown in (c).
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a gooa approximation to the true model.

The flattest model norm expression for ¢, (eguation 4.9)
includes a weighting function w(t). That such a2 function might
be useful arises from the following observation. The flattest
model is that one whose gradient (squared) 'is as small as
possible. Yet stacking velocitiés can be obtained only when
there 1is a significant reflection, and that is at times
corresponding * to large gradients 1in impedance. This physical
information can be incorporated by designing a weighting
function which 1is small (significantly less than unity) near
times t corresponding to stacking velocity data, and wunity at
other times. The weighting function wused here 1is a sum of

Gaussians. We have chosen

w(t) = max{1 - Z é‘exp[—7(t—t )27 w3}

(4.13)

where the <coefficients ¢ control the amplitude of the
weighting, +y controls its width, and w is a parameter which
prevents the weighting from getting too small. In practical
épplications reasonable estimates of ¢ and vy may be inferred
directly from the velocity analysis diagram. For the current
example, the effects 'of admitting a Gaussian weighting with
c = 0.9 and v = 1000 are shown in Fig. 4-2c. The resultant
velocity structure 1is more 'blocky' than that given in Fig. 4-
2a, and is very similar to the Dix result. This is expected. As

c approaches 1.0 and for sufficiently small w and
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sufficiently large i large gradients will be permitted only at
the RMS times L. These are the same times at which the
velocities can change with the Dix formulation.

Lastly, the -effeéts of incorporating six velocity
constraints (see Table 4-1 for mégnitudes and times) are shown
in Fig. 4-2d. No Gaussian weighting was applied in this example.

The previous example shows that the flattest model
construction can produce -good results ‘when +the data are
accurate. Real _data however, are always inaccurate, and if an
algorithm is to be useful it must be stable in the presence of
noise.” The standard Dix formula fails 1in this regard when

applied directly to noisy data. The analytic inverse to -eguation

(4.6) 1is

v(t) = V(t) {1 + 2eV' (t)/v(t)}

(4.14)

.

and the Dix formula is merely a discretized version of (4.14).
Instability arises because errors in V(t) are greatly amplified
when estimating V'(t). Moreover, the inségbilites worsen with
increased record time because of the linear dependence on t in
the right hand side of (4.14).

To illustrate the effects of errors we shall invert RMS
data obtained by adding Gaussian random noise to the true data

in Table 4-1. The inaccurate data and their standard deviations
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Figure 4-2

The flattest model obtained from inverting seventeen accurate
RMS velocities is shown in (a). That model, as well as all
others in this fiqure, are superposed on the true velocity
structure. The model generated from the Dix formula is shown in
(b). The wvelocity 1in (c) was obtained by using the flattest
model formulation but weighting. the norm so that large gradients
could appear at those times corresponding to RMS velocity data.
The flattest model constructed from the RMS data and six
additional point velocity constraints is shown in (4).



Velocity Standard deviation

Accurate 5.104 —
rms 5.556 —
‘velocities 6.067

6.540
6.798
7.405
8.041
8.742
9.034
9.397
9.736
9.977
10.711
11.544
12.306
12.385
12.568

Inaccurate S5.126 - .08
‘ms 5.521 .08
velocities 6.061 .10

6.547 .10
7.012 .10
7.483 .10
7.879 13
8.655 13
9.096 .15
9.675 .15
9.621 15
9915 .15
10.791 A7
11.449 ‘ 18
12,324 .20
12.583 .20
12.429 .20

Point-wise 6.647 .01
velocity 12.828 .0!
constraints 11.236 .01

20.278 .01
13.029 .01
16.815 .01

TABLE 4-1

The first portion of the table contains the seventeen
accurate RMS velocities and their times (depicted by
arrows in Fig 4-1b) corresponding to the example used in
this chapter. The second portion of the table contains
the seventeen inaccurate RMS wvelocities and their
standard deviations. The last portion contains the
values, standard deviations, and times of the six
pointwise velocity constraints used in the inversions.
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are also given in Table 4-1.

The results from inverting with the Dix formula are shown
in Fig. 4-3a. Clearly, relatively small data errors have caused
significant deterioration in the constructed velocity. 1In
particular, the Dix model displays structural detail near t=1.0
seconds which is purely an artifact of the additive noise.

I1f an algorithm is to be robust, it must not be required to
fit inaccurate data exactly. The algorithm should produce
predicted responses V?, which are acceptably close, but not
exactly equal to, the observations Yf. We shall assume that the
errors on the RMS velocities are independent and Gaussian with
zero mean, and that the standard deviation of the jth datum is

o: . Then

40

x? = I {(vf—vf) /o }2 (4.15)
40

denotes the chi-squared misfit between the observations and the
predicted RMS velocities. In construction, we should attempt to
generate a model which has a x? value that is neither too big
nor too small. The expected value of x? is approximately N if N
is.greater than -about 5. A model that generates a x® much l;;s
than N reproduces the observations too well and it will display
features that are merely artifacts of the noise . Alternativeiy,
a model that generates a x? much-greaterbthan N has fit the data
too poorly and hence information about the interval velocity
which is contained in the data will have been discarded. Figs.

4-3b and 4-3e illustrate this effectively. The constructed
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models have x?2 'va;ues of 36, 17, 11 and 1. Since N=17, the
preferred model based upon a x? criterion 1is that -shown in
Fig. 4-3c. That velocity is a smooth representation of the true
velocity and a comparison with the constructed model in 4Fig, 4~
2b gives some insight about the loss of information due to data
errors. -

We shall now turn to the construction of the L,-norm
flattest model. Our goal is to minimize the norm given in
equation (4.8) subject to data constraints in eguation (4.11)
and (4.12). We do this by first introducing a partition
{0=E,,E2,;..En=t,\} and parameterizing m(t) such that it is a
constant m; on the i'th partition-element. Equations (4.11) and

(4.12) can then be written as - , -

' -m
Vz(:j)-vz(O) = 'Eu agm; - (4.16)
1
where a£j=1/tj {Jf (tj-t) H(tj-t) at
"
and vi(ti) = v3(0)= Z bLSmL . (4.17)
=i
whgre bq'=_j H(ﬁj-t)'dt
~ tia

The discretized form of the objective function is
¢y = I w;|m;] (4.18)
(4

where w; 1s a weight for the i'th partition element. As 1in the
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Figure 4-3

Seventeen inaccurate RMS data are inverted. The results from the
Dix formula are shown in (a). Profiles in (b) - (e) represent
flattest model velocity constructions whose x? misfit values are
respectively 36, 17, 11, and 1. The true velocity structure is
superposed upon all curves.
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flattest model construction, these weights can be altered to

produce different models. Here, however, we shall set

This choice normali#es the changes in d(v?#(t))/dt corresponding
to each time interval.

The minimization of -egquation (4.18) subject to the
constraints in (4.16) ;nd (4.17) is easily carried out wusing
linear programming techniques. Estimated errors in the data are
readily incorporated by writing the constraints as inegualities.

1f there are N data constraints, the linear programming
solution will return at most N nonzero values of m ,'meaniﬁg
that +the constructed velocity model will - have at most - N
partitions with nonzero gradients. Also by parameterizing more
finely about the .RMS times, ti, we ensure that the 'model
construction can put in large gradients of v?(t) at those times.
It is expected therefore, that the L, norm flattest model will
produce good estimates of the true velocity structure when the
earth is layered. A

The 1L, -nérm flattest model obtained by 1inverting the
accurate RMS data is shown in Fig. 4-4a. It is noted that this
model 1is similar to 1its L; counterpart in being generally a
smooth version of the true velocity. However, it has also
correctly achieved the 1large gradients expected near the RMS
data times. The constructed model obtained by incorporating the

accurate point velocity constraints is shown in Fig. 4-4b.
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The stability of this algorithm in the presence of noise is
illustrated in TPigs. 4-4c and 4-4d4. In Fig. 4-4c we have shown
the model constructed from the inaccura&e RMS data of Table 4-~1.
This result is clearly superior to that of the Dix construction
on the same data, shown in Fig. 4-3a. Our results are further
improved by adding inaccurate point velocity constraints; see

Fig. 4-4d.
4.3 : LINEAR APPRAISAL

The construction methods provide ways to obtain a minimum
structure velocity which will reproduce the observations. Yet
there .are infinitely many acceptable models and it is important
to determine what unique-information about the interval veiocity
can be found directly from the data. Such an appraisal analysis
is carried out by wusing the methods of Backus and Gilbert
(]970). Again, their work is well known and only the barest
details will be presented here. The reader is referred to Backus
and Gilbert (1970) for a theoretical basis, and to Parker (1977)
of Oldenburg and Sampson (1979) for additional exposition and’
examples. - 1

Given eguations of the type

tm

e} = [ v3(t) G;(t)dt

J

(see equation (4.7)), then unique averages of the form
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Figure 4-4

The Li-norm flattest model obtained by inverting seventeen
accurate RMS velocities 1is shown in (a). The addition of six
accurate point velocity constraints is shown in (b). Analogous
results with inaccurate data are shown 1in (c¢) and (&)
respectively. '
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Lom
<v2(ty)> = [ vi(t)A(t,t,)dt
°

(4.19)

can be generated by finding a set of N coefficients {aj} such
that the kernel functions, 'Gj(t)' can be .shaped into an
averaging function centered on t,. That is, we want to find {aj}

so that the averaging function

A(t,to) = aj(to)Gi(t) (4.20)
3 i

is, in some sense, like a Dirac delta function centered on t,.

The variance of <vi(ty)> is

N .
2(ty) = Z a? o2 4.21
€ o 1:‘ i ,& ( )
where o is the standard deviation of each datum»gj. The

guadratic form to be minimized to obtain the optimal {aj} is

Tt
¢(to) = COSO'IO (A(t,to - 6(t‘t°)7 dt"'Sine'fz anUj
4
Cm :
+ A(1= f A(t,t,)dt) (4.22)
< .

In equation (4.22), 6 (6 £ 6 < w/2) is the tradeoff parameter
used to sacrifice resolution in <v?(ty)> for gain in statistical
accuracy, and A 1is a Lagrange multiplier for the unimodular
constraint. Estimates of <v2(t,)> and its standard error «e(ty)

are available for any value of §. In practical applications
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where the data are inaccurate, the value of 6 should always be
greater than =zero; that 1is, some resolution should always be
sacrificed. - |

"We shall restrict our attention- to the inaccurate data
given in Table 4-1. The tradeoff diagram for those data are
shown in Fig. 4-5. The loss of resolving power with increasing
record time is clearly displafed. In fact, for ¢t<0.5 averages
having standard deviation less than 0.5 km/sec and having
resolution widths equél to the difference between two adjacent -
RMS times are available. This corresponds to the greatest
resolving power possible. For t 2 1.5 and e < 0.5, the best
resolution is 0.45 seconds even though adjacent RMS times are
.12 seconds. In Fig. 4-6a we have plotted tradeoff curves for
to=0.55 ‘seconds and te=1.25 seconds. Selected averaging
functions are shown in Figs. 4-6b and 6c. Those 1in Fig. 4-6b
correspond to 6=0 and those in Fig. 4-6c each have a width of
0.45 seconds. This servés to illustréte. how the averaging
functions spread out as resolution is sacrificed in order to

gain statistical reliability.
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Figure 4-5

Trade-off diagram for RMS velocity inversion. The standard
deviation of the average value 1is plotted as the ordinate.
Contour values are in seconds and they represent a width of the
averaging function evaluated by computing 1.0/A(ty,to). No
widths exist for t, > 1.78 seconds since this exceeds the
maximum time for an RMS datum. Conseguently, all of the kernel
functions are zero beyond t=1.78 and so 1is the averaging

function.
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Trade-off curves for t,=0.55 seconds and t,=1.25 seconds are
shown in (a). Maximum resolution averaging functions for these
two times are shown 1in (b). Averaging functions which have a
width of 0.45 seconds are shown in (c).
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4.4 : DERIVATION OF THE IMPEDANCE CONSTRAINTS

The LP or AR broadband reflectivity construction algorithms

can incorporate constraints of the form

vig Bigre = j&t 57& . (4.23)
where r; are the unknowﬁ reflectivity coefficients in a time
window (t,,t;), f:k are a set of constants for the k'th
constraint,-vk is the constraint value, and 67, 1is an estimated
error,

Our goal is to use the RMS velocities V(t;), j=1,...N and
their estimated errors to find constraints .in the form of
-eguation (4.23)..'We shall accomplish this by first choosing a
time t, in the interval (t,,tz)Aand'theq-computing the Backus-

Gilbert localized avérages
L S '
<vi(ty)> = [ v3(t)A(t,to)dt “(4.24)
. -] .

Equation (4.24) will then be manipulated so that it has the form
of equation (4.23). The desired set of constraints to be input
into the construction algorithms is obtained by carrying this
procedure out for a number of times t, within the interval
(ty,t2).

We Dbegin with the 1linearized form of the acoustic

impedance,
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: {
£(0) exp{2-f r(u)du]

£(t) =
-}
(4.25)
and define
t
n(t) = In{&(t)/E(0)} = 2-f r(u) du
0
(4.26)

T
In order to proceed further, we need to determine the
relationship between velocity and impedance. This specification
depends upon the assumptions made concerning the density and
usually one of two choices 1is selected. Either the density
variations are .assumed to be unimportant, in which case {(t) is

set equal to v(t) .and hence

v(t) = v(0) expln(t)]

(4.27)

or the density is assumed to 'depend upon .a power of the

vglocity.'That is,
plt) =C.v™(t) _ . (4.28)

where C is a constant. The value of a is often chosen to be near

0.25. If equation (4.28) is assumed then

v(t) = v{(0) explpn(t)]
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(4.29)

where p=1/(f+a). Clearly (4.27) is a special form of (4.29) and
so we shall keep  the generalith afforded vby the  power law
representation and 1let p=1 when density variations are to be
.-neglected.

By squaring equation (4.29), and substituting into (4.24)

we get

4
<v3(to)> = [ v23(0) expl2pn(t)] Aa(t,to)dt LN
0

(4.30)

where &.,, is the error in <v2(ty)> arising from observational
uncertainties. After expanding the exponential and using the

unimodularity of the averaging function ‘this may be written as

o
F n(e)-A(t,to) 8t = 1/2p{ <v23(ty)>/v2(0) - 1 =

[~]

E (Zp)h/k! f'ﬁk(t) A(t,to) at}l = §.,/2pv?(0)
=2 -]

(4.31)
The intergral on the left can be written as

i +
I n(t) A(t,te)-dAt = I, + [ n(t) Alt,to) . dt + I,
o ¢,
(4.32)

where
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t,
S n(e) - Aa(t,t,) ét
0

(B
]

and

J (). a(t,ty) 4t
t

I,

2

By substituting eguation (4.26) into (4.32) and interchanging

the order of integration we get

£ ¢
FTn(e) A(t,to) @t = I, + I, + I, + 2 fr(u) B(u,to) du

° )

(4.33)

where

*2
13 = Tl(t1)‘f A(t,to);dt
g,

and

2

t
E(U,tc) = f A(t,to)'dt
W
Equation (4.33) can now be written as

t
fzr(u)-ﬁ(u,to) du = -1/2 {I, + I, + I} +
t, v e
1/8p {<v3 (£0)>/v3(0)= 1 - (20)°L,} ¢ g5 /apv2 (0)
z2

(4.34)

where
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B
L = 1/k! [ n(t) a(t,ty) 4t

° (4.35)

A discretized version of the integral on the left hand side
of eguation (4.34) is of the form required for the constraint.
The only difficulty that remains is to evaluate the right hand
side of that eguation. There are some special circumstances in
which this evalﬁation is easily carried out. If the averaging
function is confined to the region (t,,t,), and if 7n(t) is small
enough so that terms L, can be neglected for k>2, then the right

hand side of equation (4.34) reduces to

-(1/2p) nlt,) + 1/4p {<vi(t,)>/v2(0) - 1} & §,,/4p v3(0)
(4.36)

This gquantity is determined if the impedance at t, is known.
Unfortunately, these conditions rarely occur in practice.
Usually, the averaging function cannot be completely confined to
the region (t,,t,). Also, the impedance is often observed to
vary by a factor of 2 or more in realistic data sections. This
means that n 1is greater than ln 2, and hence the power series
representation requires more than just the linear term; that is,
the integrals L cannot be neglected.

The basic difficulty then is that an evaluation of the
right hand side of equation (4.34) requires knowledge of n(t),
or equivalently the model for which we are attempting to solve,

Our choices are to reformulate the problem and solve the fully



78

nonlinear problem or to attempt to find a good estimate of the
right -‘hand side through some othér means. We shali adopt the
latter choice and accomplish our objective by using the RMS
-velocities and interval velocity constraints to construct a best
estimate, v .(t), of the true earth velocity v(t). The previous
section of this paper showed that the constructed models can
reasonably be expected to emulate the broad scale features of.
v(t) but will exhibit few, if any, of the rapid changes of
velocity that are so important to the final geological
interpretation. Nevertheless, such a v _(t) will suffice here
since the constraints in (4.34) involve only integrals of n(t).
In the following examples we have elected to use the
flattest model with a weighting function of wunity. As a ‘type
example, we shall invert the bandlimited seismogram in Fig. 4-1
and attempt to recover the velocity structure in the ‘time window
(0.4,1.4) seconds. The results of applying an unconstrained LP
algorithm to the seismogram within the window of interest are
shown in PFig 4-7a. The failure of the construction is
dramatically illustrated by superposing the true velocity on the
LpP solution. It should be pointed out that this example was
contrived to make the LP solution fail; nevertheless, the chosen
velocity -strﬁgkure does not seem unrealistic and we can
appreciate that similar failures of the LP or AR algorithms may
occur in practice. )
Information from the seventeen accurate RMS velocities in
Table 4-1 was added in the following manner., First we generated

high resolution averaging functions (6=0) and obtained the
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corresponding values of <v2(t,)> at twelve equally spaced values
of t, in the inverval (0.4, 1.4). The flattest model (Fig. 4-2a)
was constructed, and the constraints of eguation (4.34) were
calculated. The LP‘solution was computed and the velocity was
recovered by using the standard recursion formula. That velocity
is shown in Fig_4-7b. The excellent agreement with the true
'velocity illustrates the importance of including information
from RMS velocities. The correspondence between the interval
velocity recovered from the LP 'construction and the flattest
model from which constraints were generated is shown in Fig. 4-

Te.

We have shown how an appraisal analysis which generates
linear averages of <v?(t)> can be used to provide constraints
'for the construction algorithms. This average has the form of
équation (4.18) and it is unique in that any model v2?(t) which
reproduces the RMS data will have the same average when its
inner product is taken with the averaging'functioh A(t). There
is, however, another possiblity for computing an .average.

Equation (4.10) can be written as

e;= f Rj(t)-v(‘t) dt j=1,...N

(4.37)

where Ri(t)=G;(t)v (t) are modified kernel functions and v (t)
is a constructed velocity function. Using equation (4.37), it is
possible to obtain Backus-Gilbert averages of the velocity

rather than velocity sguared. That is,
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Figure 4-7

The true velocity structure, and the recovered interval velocity
when no RMS ' constraints were used, are shown 1in (a). The
inversion was carried out only on the time window (0.4-1.4)
seconds. Shown in (b) is the recovered 1interval velocity when
RMS constraints using averages <v?(t,)> were incorporated into
the inversion. The recovered velocity in the time window (0.4-
1.4) seconds is inserted into the flattest model obtained by
inverting the RMS data alone. The entire profile (0.0-2.0)
seconds is then superposed upon the true velocity structure. The
correspondence between the flattest model and the LP
reconstruction is shown in (c) where these two functions have
been superposed. The results 1in (d) and (e) are analagous to
those in (b) and (c) except that averages <v(t,)> were used to
generate constraints for the linear programming algorithm.
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tom
<v(te)> = [ v(t) A(t,to) dt
: 0
(4.38)

where the averaging function A(t) is now a linear combination of
the kernels‘Rj(t). The interpretation .of the uniqueness of
<v(to)> 1is that all models which are linearly close to v_(t)
will have the same average <v(ty)>. If v, (t) is a good estimate
for the gross earth velocity, this additional restriction should
prove beneficial.

Manipulating (4.38) in the §éme manner as used to generate

equation (4.34) produces

%
ﬁzr(u)'ﬁ(ufto)-du-=“—142 {I,+ 1, +1I,;} +
]

p°L} & 8¢y /2pv(0)

(4.39)

oo
Z

1/2p {<v(to)>/v(0) = 1 +°
hz2

where &,y is the error of <v(ty)>. Again, the discretized form.
of the left hand side yields the desired constraint. A
comparison of equation (4.39) with (4.34) illustrates another
advantage of the nonlinear form oﬁwthe Backus-Gilbert averages.
——The integrals L in the infinite summation in (4.39) are no
longer premultiplied by 2 as ﬁhey;were in -equation (4.34). Thus
fewer terms need be taken, and computatioﬁs are thereby reduced.
The results of using constraints based upon averages <v{(t)>

are shown 1in Fig. 4-7d. The reconstructed velocity has been

superposed upon the true velocity and agreement between the two
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functions 1is good. We also note that for this example there
appears to be little difference in'théAresults from using <v(t)>
rather than <v?(t)>. We do not know whether this is a general
statement but it appears to be so in the examples that we have
done. Because of the advantages already stated, the remainder of
the paper will use only averages <v(t)> to generate the
constraints.

The example in Fig. 4-7 shows that high quality constraints
can be generated from RMS velocities which are accurate. Yet
such precise data are never available in ‘practice and it is
important to investigate the effects of data inaccuracies.
Realistic consﬁraints must be written as

TS EagT oSt sy 440
where 61i is an error estimate for 7j- An examination of (4.39)
shows that observationél errors increase GZj in two ways. First,
the averages «<v(ty)> (or <vi(ty,)>) are inaccurate because of
statistical errors in the data. The standard deviation of
<v(to)> is given by eguation (4.21) and this must be
incorporated as an error in the right hand side of (4.39).
Secondly, the evaluation of the integrals I,, I, or L} requires
that a good representation of the.low frequency components of
v(t) be present 1in the constructed velocity v, (t). Yet from
Section 4.2, it is expected that similarities between v.(t) and
v(t) will be degraded as the errors increase. The errors in

evaluating the integrals, incurred by using v.(t) rather than

c
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the true v(ﬁ), should also be included in the 67j in equation
(4.40). For the work done here we shall assume that this
contribution to the error can be ignored'and we will concentrate
upén the statistical errors arising from the Backus-Gilbert
appraisal.

At each time t,, many averages <v(t,)>, their standard
deviations, e(ty), and their associaﬁed averaging functions,
A(t,ty), are available. The question arises as to which average
provides -the most useful constraint. Choosing an average with a
large standard deviation can make 673 so large that the
cohstraint becomes impotent. Alternatively forming averages
which are very accurate may reguire the sacrifice of so much
resolution that information contained in the RMS data has been
needlessly lost.

Ié is doubtful that a strateqgy exists which will work
optimélly in all cases, but the following attack is reasonable.
Of primary concern is the error on ﬁhe constraint., To keep this
sufficiently small we require that <v(t,)> have a relative error
no greater than a percent. If no average exists with this error,
then the average having two times the minimum standard deviation
(é = 7/2) is selected. The results in Figs. 4-8b and 8c show the
recovered interval velocities when a = 25% and 5%. They are not
greatly different and hence the value of a does not appear to be
too critical.

The recovered velocities in Figs. 4-8b and 8c are greatly
improved over those in Fig. 4-7a where no RMS constraints were

used, but as expected, the agreement between the true and
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Figure 4-8

The flattest interval velocity model obtained by - inverting the
inaccurate RMS constraints in Table 4-1 is shown in (a). It is
superposed upon the true velocity. Figures (b) - (c)
respectively show the interval velocity recovered from the LP
solution when averages <v(t,)> have a relative error of a = 25%
and 5%. Figure (d) shows the flattest model when the RMS errors
in Table 4-1 are trebled. The LP construction, using these
erroneocus data and a=25%, is shown in (8e).
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recovered veloéities is not as good as when the data were
accurate.” To see how the degradation increases with increased
errors on the RMS data we have redone the calculations after
trebling the errors in Table 4-1. The results are shown in Figs.
4-8d .and 8e. - They .are somewhat disappointing; major
discrepancies between the true and reconstructed velocities are
apparent, particularly in the interval 1.0 - 1.4 seconds.

It appears that the strategy outlined so far can work well
vhen the data are reasonably accurate. However, the usefulness
of the RMS data diminishes rapidly if the errors become too
large. When large errors are to be contended with, it is best to
alter slightly the above approach. We propose the following
steps.

We first <construct a best estimate for ‘the interval.
velocity by inverting RMS velocities along with point velocity
constraints if they .are available. Next we form a high
resolution-averaging function for én arbitrary time -‘t, in the
same manner as before. However, 1instead of using <v(tgy)>
,calculated-ffom equation (4.38), we compute

Cm
<v (to)> = g‘ ve (t) A(t,ty) dt-
where v, (t) is the constructed interval velocity model, 1In
addition, we assign a relative error of » percent to <v,_(t)>
where v depends upon how closely we wish the final constructed
model to look like v.(t). In effect, this approach forces the

final velocity obtained from the LP solution to look 1like the
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constructed mddel,

It must be understood that the results obtained from this
method are less certain than those obtained from the initial
strategy. There will be other models which satisfy the RMS
velocities and the reflection seismogram constraints, but we are
restricting our best guess to be that one which iooks most like
v.(t). This means that if v_ (t) is a good approximation to v(t),
our final velocity étructure should be close to the true earth
velocity, but if v.(t) is greatly wrong, then our results will
be in error.

In Fig. 4-9 we show the results of using averages <v.(t)>
to develop the LP constraints. The LP velocity recovered after
assigning an error of » = 5% is shown in Fig. 4-9b. The result
is considerably better than that shown in Fig. 4-8e which began
with the same erroneous RMS data.

It is obvious that the current strategy will- work better as
v.(t) becomes closer to the true v(t). Improved results should
theréfore be expected if point velocity constraints are included
in the inversion. The degree of improvement is shown in Figs. 4-
9c¢ and 9d where six interval velocity constraints (see Table 4-1
fdr locations and values) were included in'thé construction of
v (t). The agreement between the true and recovered interval
velocities in Fig. 4-94 is excellent.

It is perhaps too much to expect that six velocity
constraints might be known. More commonly, only the velocity at
a large reflector (perhaps coinciding with a major unconformity)

might be available. With this in mind the analysis was redone



87

.
-
.
S
3
. 8
3

-
-4+
=
.

+
3

t (sec)

Figure 4-9

The flattest model obtained by inverting the inaccurate RMS data
in Table 1 1is shown in (a). That velocity is used to form
averages <v(t)> which are arbitrarily assigned an error of vp=5%
and then used as constraints in the LP solution. The results are
shown in (b). The effects of adding six inaccurate point
velocity constraints into the construction of the interval
velocity 1is shown 1in (c) and (d). The flattest model interval
velocity has been reproduced in (c) and the velocity recovered
from the LP construction is shown in (d). Fiqures (e) and (f)
are the same as (c) and (d) except that only one velocity
constraint “(at t=1.4 seconds) has been used in the interval
velocity construction.
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after using oniy the single velocity constraint at 1.4 seconds.'
The constructed velocity v,(t) is shown in Fig. 4-9e and the
interval velocity obtained from the LP algorithm is shpwn in
Fig. 4-9f. The agreement between the two velocities is very

good.

4.5 SUMMARY

The primary goal of this chapter has been to incorporate
information from stacking velocities.directly into the LP or AR
construction algorithms. To accomplish-;his we considéred tvwo
separate 1inverse problems. In the first problem, RMS velécities
as well as point velocity constraints were inverted to find a
low fregquency interval velocity. bur philosqphy has been to
construct only velocities having a minimum of structure and we
have achieved this 3oal by minimizing the }gradient of the
squared velocity in a 1-norm or 2-norm sense, Some flexibility
has been introduced by including a weighting factor in the norm
to be minimized. The rationale for the weighting was that
stacking velocities ;;;_ obtained only at those times
corresponding to significant reflections and hence the
constructed model should be allowed to have large gradients at
those times. Both the L,-norm flattest model, and the L.,-norm

flattest model with a Gaussian weighting, will generate models

of this type. It is difficult to say which norm and which
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weighting wili produce the best results. Most likely there are
data sets and particular geologic environments in which either
algorithm will be superior to the other. For the work carried
out here we have used only the L,-norm flattest model without
any weighting and have found i£ to perform satisfactoriiy.

The important improvement of our construction algorithms
over the Dix formula is one of stability. The Dix formula is a
discretized version of the analytic inverse, and is inherently
unstable. Oscillations in the recovered velocity will always
appear when the data ére inaccurate because of the need to find
the time derivative of the RMS velocity. Alternatively, the
algorithms presented here fit :ﬁe observations oﬁly to within a
degree justified by their error. Consequently, small scale
.structural detail that may be an artifact of the noise is
generally not included in our models. Also our methods admit the
direct incorporation of point velocity constraints into the
inversion. This has no counterpart in the Dix formula.

In the second inverse problem, we use the RMS velocities to
extract unique information about the average value of the
velocity or its sguare. The éxpression for these averages is
‘manipulated into a form +that can be handled by the LP and AR
algorithms.

.The methods developed in the paper seem to work well when
the RMS velocities are reasonably accurate. However, if ‘the
observational uncertainties become too large, the error 1in the
constraint value may increase to the point where the constraint

is ineffective. Attempts to reduce the errors by increasing the
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width of thé averaging function may not be productive if too
much resolution must be lost to achieve the desiréd‘accuracy. In
such circumstances an alternate strategy must be developed. We
have proposed that the constraints supplied to the LP or AR
algorithms be generated using ‘high resolution  averaging
functions. However, the lafge calculated uncertainties in the
associated constraint values shouid be ignored, and new
artificially .small errors assigned. By doing this we are
presuming that the calculated smooth version of the interval
velocity 1is ‘'closer' +to the true velocity than the errors and
the nonunigueness would technically indicate.

In addition to the RMS data, any available. bounds on
velocities at specific times should be incorporated into the
inversion. The norm to be minimized and the weighting ‘function
should be chosen by their ability to produce the right 'type' of.
velocity function for the particular geclogical environment.
When an entire section is to be inverted it may be advisable to
invert stacking velocities from many traces across the section,
smooth the output, and ﬁse these results as a best guess for the
low frequency velocity structure. The recovery of the acoustic
impedance may then continue after forming averages of the
interval velocity over reasonable resolution widths. These
averages can be assigned errors in accordance with the
confidence that the interpreter has in his constructed low
frequency velocity. The computations to obtain the numerical
value of the constraint and the éppropriate linear combination

of the reflection coefficients can proceed exactly as before.



91

The LP or AR algorithms can then be used to construct a best
estimate of the full band reflectivity and substitution of those
results into the standard recursion formula Produce5~a best
estimate. of the impedance.

It is now seen that the recovery of the acoustic impedance
from the band limited seismograms involves four linear inverse
problems. The first 1is appraisal deconvolution ‘to determine
unigue .averages of the reflectivity function. The inclusion of
information from stacking velocities reguires the construction
of a low fregquency interval velocity which is consistent with
estimated RMS velocities and point velocify constraints, .and it
also reguires a Backus-Gilbert appraisal to obtain unigue
averages of the velocity. The Fourier transform.of the .averages
of the .reflecﬁivity function, the consﬁraints- from the RMS
velocities, and any additional impedance constraints are then
used in a final construction élgori:hm to produce an acoustic
impedance which is consistent with all available geological and

geophysical information.
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CHAPTER V: MULTI-TRACE SIMPLEX ALGORITHM IN SEISMIC DATA

ANALYSIS

5.1 INTRODUCTION

Advantages associated with the use of lineaf prbgramming in the
solution of certain geophysical problems have been pointed out
in a number of recent publications. Applications of the method
to signal analysis, wavelet deconvolution, amplitude spectrum
estimation, and acoustic impedance inversion have been described
in Claerbout and Muir (1973), Taylor et al. (1979), Levy .and
Fullagar (1981), Deeming and Taylor (1981), 0Oldenburg et al.
(1983), Levy et -al. (1982), and Oldenburg et al. (198%).
However, despite its utility and robust performance when applied
to these problems, the method is still not widely used. To a
large degree this 1is probably attributable to the large
computational effort usually reguired in the solution of linear
programming problems.

Attempts to increase the efficiency of linear programming‘
"are described in Deeming and Taylor (1981) and Oldenburg et al.
(1983). The former -elected to use the conjugate sub-gradients
method, which is shown to have computational advantages over the
standard Simplex method when the problem solved exceeds a
certain size. The latter introduced 'polarity constraints' and
objective function weighting to both reduce the size of the

problem, and to force a shorter solution search. Although the
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computational.éffort was decreased significantly, the preimposed
conditions on the $olution could result in distortion.or bias in
certain cases, such as for small amplitude events in near
proxiﬁity to large amplitude reflections.

We present here an alternative approach based on certain
manipﬁlations of the Simplex method, which when applied to
seismic sections exhibiting a reasonable trace-to-trace
correlation, 'will result in significantly shorter processing

time.
5.2 SIMPLEX ALGORITHM (BACRGROUND)

In the begining of this section we give an intuitive description
of the Simplex algorithm. A short mathematical presentation will
.follow. As the reader will note, our description .includes only
the‘ information we feel is necessary for the understanding of
the proposed manipulations; for more details the reader is

referred to Gass (1964), and Claerbout and Muir (1973).

A general linear programming problem is of the form:

minimize (or maximize) ¢T.X

subject to:

A-Z 2D
" (or A.X £ b )
and 1. 20

where € is an (Nx1) vector of objective function coefficients,
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=

is an (Nx1) vector of unknowns,

is the (Mx1) vector containing the RHS,

» ol

is the (MxN) matrix of constraints,

I is the (NxN) identity matrix,

ol

is an (Nx1) vector whose elements are zeros,

M and N, are the number of constraints and variables,

respectively.

We will use a simple two variable example to define and

describe certain necessary terms by geometrical means. Consider

the problem;

maximize c,X,; + C,X,
subject to:
811Xy *+ a;2%5 £ b,

az;1Xy *+ a,;2X; S b,

X, 2 0

Geometrically this problem is expressed as:

570

ay X+ a3 X3=by

3y X+ 3;3%,=b,

-~
—
—~—
-

4////' ¢y X+ €3 Xp= constant

XZ‘-'O

2

FIGURE 5.1

—
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TERMINOLOGY

(a) The hatched area is called the solution solid;
all possible solutions to the pfoblem-are contained in this
space. (note, in 2-space this is an area, in 3-space this 1is a
volume, etc.) |

(b) The solution solid 1is bounded by N+M constraint
_ eéuations; A-X = b, and'I-i~= 0. (note, in 2-space these are
lines, 1in 3-space they are planes, efc.)'The points where N.of
these equations intersect are ca}led 'extreme feasible ppints'.
It is‘ easy to seeithat\each of these intersections deﬁines a
vector with at most M non-zero elements. In Figure ©5-1, the
extreme feasible points are marked by the numbers 1, 2, 3, and
4, | _

(c)'Thé objective function is.represented:by the family of
lines cfxf + C,X, = constant. This function specifies 'a unique
solution to the problem provided it is not 'parallel' to any of

the constraints.

A basic theorem of 1linear programming states ﬁhat the
optimal -'solution to.a linear programming problem is an extreme
feasible point ( Gass, 1964, pg.46-53) (i.e. in Figure 5-1 the
solution will be one of\zhe points 1, 2, 3, or 4). The Simplex
algorithm is based on this theorem. The algorithm starts by
finding an extreme feasible point (usually xj=0; j=1..N, for
example, point 1 in Figure 5-1 above), and then hops from one
extreme feasible point to another in a way that will ensure a

continuous improvement in the value of the objective function.
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. When no further improvement 1is possible, the current extreme

feasible point is the desired optimal solution.

Since the number of extreme feasible points searched in the
process of finding the solution determines the run time and
execution cost, we wish to minimize this number. To achieve this
goal one may take any of the following routes:

(a) using a gradient method (Claerbout and Muir, 1973),
one may seek at each step the direction of search' which will
yield the best possible improvement in the objective function.
Thus the_number of steps necessary to achieve the desired
extremum is hopefully decreased. Unfortunately, there is no
guarantee that the ‘total number of steps will be decreased, and
in any event the amount of :calculation required at each step of
‘the gradient method is large enough to add doubt to the
profitability of this operation.

(b) Assume that some 'a priori' knowledge of the sought
sclution is given. It is then possible to reduce the number of
Simplex steps reguired in the solution of a linear programming
problem using the following options:

(1) modifying the desired objective function in sucﬁ a
way that the Simplex algorithm will choose a 'short' path toward
the solution. In the deconvolution problem this modification
involves the assumption that the processed seismic trace
contains information concerning reflector positions and relative
ampiitudes which is approximately true for at least the major

reflections. This type of modification is described in detail in



97

Oldenburg et al. (1983), and Scheuer (1981).

. {2) starting the Simplex search at an extreme feasible
point which is 'close' to the sought solution. For example,
consider the problem outlined in Figure 5-1. Assume that ‘the
solution we seek is extreme feasible point (3). A Simplex search
starting either at point (2), or (4), will reach the solution ih
a smaller number of steps than a search initialized at (1). In
the processing of stacked seismic sections we generaily do "not
expect the reflectivities to change drastically across adjacent
traces; that is, we expect the solution of the. ith trace to
define an extreme feasible point which 1is ‘'close' to thé
solution of the ith+1 trace. By starting the Simplex search at
this point we will avoid the cost associated with the operations
nécessary ‘to move from an arbitrary starting point to ‘the
"vicinity' of the so;uﬁion.

The meaning of the terms 'close' and 'wvicinity' 1in the
context of this work can be understood through the example shown

in Pigure 2 below:
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In this.figufe, '"extreme feasible point' (7) is algorithmically
closer to 'extreme feasibleA peint (5) than is point (2),
although point (2) 1is closer to (5) in a Euclidian sense.
Keeping thié in mind, we use the term 'closer' in the rest of
this work as meaning Buclidian closer, but with the hope that it

also translates into meaning algorithmically closer.
5.3 BASIC FORMULATION OF THE ALGORITHM

Consider the problem; -
minimize H(x) = ¢ X, subject to
x;20 Ax2Db , (i=1...N)
vhere-A is an (MxN) matrix. We can convert the inequalities into
equalities by introducing slack variables y (y; 2 0 , i=1...M).

[

iA | 1 -]l= VX' =D
Lo

i .

where V is an (M x N+M) matrix. Denoting the jth column of V by

% we have

NeM -

j:L:.x.j ' Vj = b

Now, assume that we already know an extreme feasible point, for

example, x'° :

6] 3= .
xi X; i=1,..M,
= 0 i>M
(Recall that an extreme feasible point is characterized by at

most M non-zero variables). We then write:
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M

Zx'° . v, = b _ (5.1)

(=1 ¢ 1Y
The corresponding value of the objective function is:

M
Hy = Zx!°. c; (5.2)
L=t + '

Assuming that the vectors ¥ , i =1..M are linearly independent,
they form a basis of the M space. If the MxM matrix B is
constructed using V; , i=1...M as its columns then we may write:

vy =<£Fq- v; for SLARPRES bt (5.3)
where 8§ = B~V
Define

hy = ésis-ci' - ¢ | (5.4)
We now wish to establish whether replacing any of the variables
corresponding to the current basis with some other variable, for
example, xL, 'will yield farther reduction 1in the objective
function wvalue. Subtracting 'p' times equation (5.3) from
eéuation (5.1), with j=k, we obtain:

':é’(x:-'° - P Sk)V, +*pT o= b -(5.5)
where p is an argitrary non~negative constant to be determined,

and M < k £ N+M. Our new solution is then X'' (with potentially

M+1 non-zero values):

x{'=x/°-ps;y , i T...M
. xL‘~='p
The resulting value of the objective function would be:

M
(1] -

By choosing p = xi° /sy, (1s1sM), we set the value of the
lth element of X'' to zero, thereby introducing x;‘ into the set
of active variables and excluding x;' from this set. The new

values of the basis variables will be:
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x!' = x3°% /spy , i=1
To ensure the non-negativity of the current solution, the wvalue
of p must be:
p = m%n (x%° / s;); for all i with s;; 2 0 (5.8)

Since we wish H, to be smaller than H,, the variable introduced
into the basis must have its corresponding value of h, > 0, as
seen from equation (5.6). In general, this wvariable is
associated with the largest hj, although this does not
necessarily ensure the best improvement in H, since the
corresponding p may be small. Once the decision is made as to
which variable leaves the basis, 'and which (x;') enters, the new
set of variables is calculated via equation (5.7), and the hﬂ
values necessary for the next decision using equation (5.4).
This process can then be continued until the optimal solution is
reached. M

It is important to understand that in determining X'° -and
x'', we have actually solved M equations with y unknowns of the
form ; B°-i{°53, and B‘-i;‘ég,respectively. The vectors x;° and
are Jjust truncated versions of the complete solutions Xx'°
and X'' from which the zero elements have been excluded. The
.columns of B° and B! are the coluﬁn vectors of V appropriate for
the non-zero elements x/° and X' respectively. At each ensuing
iteration, the choice of the new basis determines a new Bi , and
the values of iii (and thus %'‘) can then be computed.

We call the attention of the reader to the fact that the

vectors X'* constitute extreme feasible points. Thus the
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correspondencef. between the  geometrical and algorithmic
descriptions is clear.

Although each Simplex iteration necessitates a solution of
the system B.% = b, this solution does not take the full number
of steps'usually required. Staﬁdard Simplex Toutines find it
computationally more .expedient to store B-'-A, and B-'-b, and
upaate these at each iteration (Gass, 1964, pg.96-113). Because
A contains B, B-'. A will always contain the unit matrix I. As
this needs not be stored in matrix form, it is possible to store
B-' in 1its place. We will use this information for ‘the
definition of a -starting extreme feasible point in the next

section.

5.4 SOLVING MULTIPLE RELATED PROBLEMS

Consider a set of problems of the form;

minimize ¢= c X,
L

i Subject to

A %, = b, , x;{2 0 for all i and j ;

with the condition that X, is 'close' to X;. A technique for an

efficient solution to this type of a problem was oproposed in
Gass, 1964, pg.143-144., The gist of it was that the starting
extreme feasible point not be choégg_arbitrarily, but rather 1is
chosen using some a priori information about the solution form.
In the following, we apply this technique (multi-trace Simplex)
with some modifications.

We distinguish the following cases:

(a) a; and c; are invariant for all i.
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(b) A} aniji,are invariant for all i.
(c) A; is invariant for all i.

(d) All of A&;, by, and c; change with i, but x;., is

expected to be similar to X;.

Case (a)
Suppose that we have already solved the first problem;
min ¢, X,, subject to A, X, = b,, 7 %,{2 0, for all j, by
the Simplex method. At this point we also possesé ‘the inverse
basis B, '. The vector ;Ztg B1"f52, when properly ordered in
X,, defines.én extreme feasible point. We then use this point
which hopefully is 'close' to the desired solution X,, to start
the hew Simplex search. When X, is attained, we also have the
new inverse basis B,-' which together with b, defines the
starﬁing extreme feasible point X3 to be used in the solution of

the third problem. We continue in this fashion until the desired

number of problems is solved.

Case (b)
In this case the solution X, is already an extreme feasible
point for the next problem. Utilizing -equation (5.4) the values
of'hj can be uédated using X, and c,, and the Simplex search is
restarted. The process continues similarly for X,, etc. An
alternative approach to the oné outlined above is to work on the
dual problem, (Gass 1964, pg.83-95) wusing the ' sequence of

operations described in case (a).

Case (c)

Given the solution X,, B,, and B," ', we proceed as in case (a)



103

to find X, (an:extreme feaéible point pertaining to the second
problem). Using X,, and €,, we utilize equation (5.4) to update
" hy, and proceed with the Simplex search starting ‘at X5 _The
process 1is repeated until the desired number of problems is

solved.

Case (d)

In this case we use a combination of the cases outlined above.
However, the crux of the approach is heavy objective function
weighting used in a first pass' on each problem.

Given the solution X,, we weight the objective function ¢,
in such a way that the non-zero elements in X, will be in nearly
the same locations as those of X,. We then utilize equation
(5.4) to update.hj.with the desired objective fuhction €2 (as
outlined .in <case (b)), and restart'the‘algorithm'at extreme
feasible point ¥,. Once X, ‘is obtained-we use it to weight the
‘initial objective function for X3, then proceed in this manner

until the desired number of problems is solved.

5.5 APPLICATION TO SEISMIC DATA

Given a stacked section, our objective 1is to recover a
spiky reflectivity section corresponding to the given data. The
details of how a full-band reflectivity section 1is determined

from the band-limited 1input section using linear programming
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(LP) is described in chapters 2, 3 and 4 and in Levy and
Fullagar (1981), Oldenburg et al. (1983), Scheuer (1981), and
Oldenburg et al (1984). Conséquently, we will give only the
barest details. | |
The problem to be solved is of the form:
minimize ¢7. X, subject to,
A-X 2Db,and x;2 0 ~ for all i.

The matrix A may consist of three distinct blocks:

IFT

‘RMS C

The bleoeck IFT represents the constraints associated with the
inverse Fourier transform, and it is assumed to be invariant for
a given set of data. The blocks WLC and RMS C are associated
with well-log constraints and RMS velocity constraints,
respectively. These blocks may or may not be present in the
problem. Furthermore, when present, they may be changing across
the section. (i.e. A may then be changing across the section;
case (d) of the previous section).

We startv by asserting that for reasonable quality seisgic

data the assumption that the ith+1 trace is similar to the 1ith
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trace holds ﬁrue except for sections corresponding to very
complex geology. Furthermore, since the same energy source is
used in the expefiment, it can be expected that after the
appropriate balancing (processing) is used the signal energy is
concentrated in a given freguency band which is independent of
trace index.

If we avoid the use of objective function weighting and
polarity <constraints, we encounter a problem corresponding to
the one outlined in case (a). If we desire objeétive function
weighting, the problem we confront is the one outlined in case
(c). Imposing polarity constraints involves problems similar to
the types described in cases (b) and (d). Other combinations of
problem characteristics are possible, but for practical purposes

we restrict our attention to those outlined above.

5.6 EXAMPLE

For the purpose of assessing the performance of the
algorithm we have used the set of real data shown in Figure 5-3.
Before applying the algorithm we have phase-corrected and
deconvolved the data using a minimum entropy approach.
Additionally, to improve the signal to noise ratio we have used
3-trace principal component analysis (Oldenburg et al (1983)).
The results are shown in Figure 5-4. We then applied the LP
algorithm to the data of Figure 5-4 using the following modes:

a) objective function weighting, no polarity constraints.



[4Y] m oy v o~ o oo o - N

...................................................................................................
HHHHH P HHHH P HHPHH BT HBHH HHH R R HHR P H R EH R H

M E A= T0a M= =51
AN RNEYS=———VES) E=
——— e o m———
N R B R =
NI N\ V1 e
AAT AV _——
AT ]

A

f\/)\\l\;

MEA) «Jg»\)\l,u.\\}lu

‘< - ,/\ -
N ==
N Y A N
VTN, S G, T, N\
%. % «{(({((. SV ST s
W ¥ A
N L«Engunnu«% N ]
\ \‘l((l\l\l\.“l\l\.l\.l\./\/\/\ N,
=\ A = A=
/ R T\ g N
——— W«,
22\ ﬁ P

...................................................................................................
...................................................................................................




DECONVOLVED AND PHRASE CORRECTED




108

b) polarity constraints, no objective function weighting.
c) no polafity»constraints, no objective function weighting

d) polarity constraints and objective function weighting

Modes (a) to.(d) were executed twice,once with the multi-
trace Simplex approach, and again with -the trace-by-trace
Simplex approach. For reasons of run efficiency and memory
requirements, the data were processed in short windows of 64
samples each. The CPU run times (Vax 11/780) are given in Table
5.1. In most cases the multi-trace Simplex approach proves to be
more efficient than the trace-by-trace approach, with the
exception being .mode (c). For this mode numerical checks showed
that although the 1last solution seems to be 'close' to the
current one, ‘the Simplex search may lead to it in a round-about
path. This 1s not wunexpected, =since 1in +this case both the
starting solution .and the objective fuhcﬁion are updated from
the previous, so that our supposition that geometric 'closeness'
equals algorithmic ‘'closeness' breaks down. It should be noted
however, that for a linear programming run executed in mode (c),
the CPU run time is reduced (for this set of data) by a factor
of four. )

Finally, in order to compare processing results, we present
in Figure 5-5 the reflectivity obtained via the multi-trace
Simplex (mode (c)), and that associated with the trace-by-trace
Simplex (mode (d)), shown in Figure 5-6. These results generally
agree quite well, except in some small amplitude events. This
should be expected, éince the objective function weighting tends

to discriminate against those events.
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For compléteness we attach the pseudo-impedance section
correéponding fo-the reflectivity of Figure 5-5. This section is
shown 1in Figure 5-7 1in 1line plot, and in Figure 5-8 in grey
shades plot. The impedance produced ties well with a velocity
log obtained in a nearby well (not shown here). The improvement
of the section in Figure 5-8 over that of Figure 5-3 1is quite

clear and does not require elaboration.
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Table 5.1

MW | MP | NFAST | CPU (sec.)
1 1 d 'f89.7
L 1 1232.7
0 0 0 2976.4
0 0 1 713.4
1 0 0 1398.4
1 0 1 1358.1
0 1 0 1305.8
0 i 1 1175.0
Note: MP..... 0 no polarity constraints used
..+..1 polarity constraints used
MW..... 0 no objective function weighting
«e...1 Objective function weighting used

NFAST..0 trace by trace Simplex used

..1 multi-trace Simplex used

Data contains: 100 traces, one second long each, sampling

interval 0.004 sec, frequency band 12-40 Hz.
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5.7 SUMMARY

‘A number of options which yield an increase in the
efficiency of the 1linear programming method were discussed.
These methods do not require that certain features of the model
be predetermined or selectively weighted, as is the case with
previous techniqgues (Oldenburg et al. 1983, and Scheuer, 1981).
The result is that now the linear programming method can be used
to process reflection seismic data in a variety of different
modes, all in reasonable execution time. Comparison of the
results of the processing (Figures 5-8) to the input data

(Figure 5-3) demonstrates the efficacy of the method.
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CHAPTER VI::PRE-INVERSION SCALING OF REFLECTION SEISMOGRAMS

6.1 INTRODUCTION

As'described in the previous chapters, approaches to the
estimation of acoustic impedance from reflection seismograms
involve construction of a full-band reflectivity section from
the input bandlimited section. Some of these approaches also
-advocate the direct 1incorporation of well-log and stacking
velocity information into the estimation process. An impediment
to these methods £for both the conversion of the fﬁll-band
reflectivity to impedance,»as well as the incorporation of the
velocity information, is the lack of true amplitude information
in the stacked séction..Due-to difficulties in data acquisition
and subsequent processing, the final stacked section will
generally require scaling prior toA the impedance inversion
process.

To understand the importance of correct scaling, let us

assume that the estimated reflection series T

3 , =1,...N, is a

scaled version of the true reflection series r

o j=1,...N; that

is:

a-r; for all j (6.1)

| D

with a being a real constant, and {f being the jth reflection

coefficient.



The impedance, §y = Pi Vi v is  calculated from the
estimated reflection series using the linearized approximation

(see Oldenburg et al, 1984):

3=t
§;= So exp (222 1. ] (6.2)
d=t :
= %o exp [2.2a°Z r; ]
(£
It is clear that incorrect values of the acoustic impedance <are
obtained if a 1is much larger or much :smaller than 1.

Furthermore, in this case, ‘the set of external constraints

'applied to the reflectivity construction will be incapable-ofv

supplying true physical meaning. Hence, the ' inconsistency

between the information contained in the seismograms and that

supplied by the external constraints will annihilate the

advantage to be gained by inversion of the combined data set.

To avoid this 1inconsistency, we propose a ﬁethod for the
estimation of the scale factor a using the observed seismograms,
and their associated stacking velocities and well-log impedances

when available.
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6.2 METHOD

6.2.1 GENERAL

For the purpose of scaling we recognize two types of
information routinely -available to processors of seismic data.
The first type can be obtained directly from the bandlimited
Stacked section and we consider it as the relative information.
The second set of information is available from well-logs or
from Stacking velocities and it is termed here as the absolute
information. The proposed scaling algorithm makes use of a
linear relationship (true for reflection coefficients smaller
than 0.3), which allows direct ;compafison ‘between those two
information sets and hence the estimation of the scaling factor
a.

Although we will be considering only the case of a time
independent scaling factor (as reflected by egquation (6.1)), our
method can be applied to cases of a timé dependent scaling
function by applying the analysis to a number of successive time

windows and then interpolating the results.

N\
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6.2.2 THE CONSTRUCTION OF SPIKY REFLECTIVITY FUNCTION - RELATIVE

INFORMATION

‘The proposed method of scale factor evaluation is based on
recently introduced algorithms which use the information
contained in band-limited seismograms to predict the missing
portions of the frequency band. These algorithms include a
linear programming approach (Taylor et .al. 1979; Levy and
Fullagar 1981; Scheuer 1981; and Oldenburg et al. 1983), an
autoregressive technigue (Scheuer,1981; Oldenburg et al. 1983;
and Walker and Ulrych 1983), and a non-linear reflectivity
estimation (Bilgeri and Carlini, 1981). For the benefit of ‘the
interested reader, we ‘have 1included 1in Appendix 6-A a short

description of the autoregressive deconvolution scheme.

The final result in all these schemes is a 'spiky', full
band reflectivity series, '?J, j=1,...N. In the following, we
assume that the predicted 1low freguencies obtained via the
;pplication of these deconvolution algorithms, followed by
integration and exponentiation of the resultant reflectivities
(as in equation (6.2)), will yield reasonable estimates of the
trend of the impedance function in .at least some time windows.
Since _the reflectivity functions ?j to be integrated are scaled

by some arbitrary real factor yet to be determined, these

functions constitute our scaled, or relative information.
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6.2.3 WELL-LOGS OR STACKING VELOCITIES - ABSOLUTE INFORMATION

OQur absolute information 1is obtained from either the
inversion of stacking velocities to give interval velocities, or

directly from well~log aata.

1. Absolute Information from Well-Log Data

When both velocity and density logs are available, we can
diréctly'calculate'the.acoustic impedance as a function of time.
1f the density-log is not available we assume a density-velocity
power law (that is, p=A-vP(t)), and estimate the acoustic
impedance using the relationship:

Lep

¢(t) = A-v " (t). (6.3)

Note that substituting A=1, and p=0 in the above density power
law amounts ‘to the constant density approximation, while A=0.23
and p=0.25 is the usual power law as suggested in Anstey, 1977

(p.88).
2. Absolute information from Stacking-Velocities

When only stacking velocities are available, the inversion

algorithms described in Oldenburg et al. (1984) give acceptable

—

representations (VJ, j=1,...N) of the true interval velocity

(v}, j=1,...N). Again, using the density power law given above,

we convert v (t) to estimated impedance. A detailed description
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of the stacking to interval velocity inversion schemes wused in

this work was given in Chapter 1IV.

6.2.4 COMPARISON OF THE ABSOLUTE AND THE RELATIVE INFORMATION.

The estimation 6f the scaling factor a is effected by
comparison of the absolute and felative information at selected
time windows. To allow this comparison, we rewrité the
approximate relation between reflectivity and impedance given in

equation (6.2), thereby introduging the pseudco-impedance, n:
.ln(Sj/So) = F-=:252ur- j'>>1
= 0 j =1 (6.4)
Assuming .a time independeﬁt scaling function, we substitute

equation (6.1) into (6.4) to get our relative pseudo-impedance

estimates from the constructed full-band reflectivities:

=0 j =1 (6.5)

Our estimate of the absolute pseudo-impedance from well-log

data will be:
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(a) density iog available
= lnfgj /%0)

3

or (using equation 6.3): | (6.6)

(b) density log unavailable

N (1+p).1n(vz /%)

Similarly, from interval velocities inverted from stacking
velocities, our estimate of the absolute pseudo-impedance is:

o= ('1+p)-ln(\(; /v5) - (6.7)

Since the pseudo-impedance iiis linear with respect to the scale

factor a@, comparison of 7

i and 7 (j=1,...N) will yield the

j,r
desired scaling factor .a.
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6.2.5 CONSIDERATIONS PERTAINING TO THE USE OF STACKING
VELOCITIES FOR SCALING.

As the reader may have 'alreadf realized, the velocity
inversion .algorithms described in Chapter IV are strictly
applicable to a one dimensional earth. Conéequently, when
steeply dipping events are evident on the stacked -section, the
proposed algorithm is not 1likely to yield reasonable results
unless some correction is applied to Nthe stacking velocities
prior to inversion (see for‘ éxample, Resmarky 1977).
Furthermore, since the interval velocity profile obtained £from
the inversion of the stacking velocities is at best .an average
of the true velocity curve, a point by point cdmparison.of 7 and
7 is undesirable. Instead, box-car averages over a number (N/M)
of windows (each M samples long), are used to get a series of

estimates of the scale factor:

(m
.i=(i-|)n¢| 'ni ,
a; = Cis=1,N/M (6.8)

Lem

_ 7 .

A*=)Mes J
The final estimate of the scale factor for the seismogram is
obtained from the median of the series { “L}' so as to avoid

incorporation of statistical outliers in this estimate.
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6.2.6 CONSIDERATIONS PERTAINING TO LOCALI ZED SPIKING

DECONVOLUTION FAILURES.

The approach summarized in eguations (6.5), (6.6), (6.7)
and (6.8) suffers from the dependence of values of 7 at any
given time on the correctness of preceding values at smaller

times, that is:

L .
= . - -+ .
nJ 2 ;Z;.‘ r nJ__| 21'.J .

Since slow changes in earth impedance as a function of depth
will not produce a clear manifestation in the recorded
reflection data, they'may not appear in the pseudo-impedances 7
obtained via summation of the reflectivities from either linear
programming or auto-regressive spiking deconvolution. However,
the shape of +the pseudo-impedance curve in some given time
windows may still be correct. Thus,Ato reduce the effects of the
dependency of 7 on previous values, only the relative changes in

pseudo-impedance in each window are considered. That is:
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M - ~
Sth—l)Mcq n.\- n(i“')M
a =
I _
j:(‘i-nﬂﬂ(nj- An(i—l)-ﬂ ) | (6.9)

Furthermore, due to the nature of both ‘the LP and the AR
deconvolution algorithms (both search for minimum structure
solutions), it is expected that better shape-wise esﬁimates of 7
will be obtained at regions of rapid impedance changes.
Therefore, a values from windows corresponding to this type of
impedance zone may be weighted more heavily in the final median
calculation. The detection of this type of impedance zone and
the assignment of the appropriate weights is based on the degree
of correlation exhibited by 7 and 7 in the -given time window.
This correlation factor is estimated from the dot product of

these two functions.
6.3 SYNTHETIC EXAMPLES

6.3.1 LAYERED EARTH MODEL WITH WELL DEFINED LAYER BOUNDARIES.

The reflectivity function (Figure 6-1a) corresponding to
the true velocity model of Figure 6-1d has been calculated under

the assumption of constant density. After band-limiting this
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reflectivity function (10-50Hz), adding 5% random mnoise, and
scaling the résult by a factor of 100, we obtained the synthetic
data ' shown in Figure 6-1b. Using this synthetic as an input to
the linear programmming (LP) deconvolution routine, the
resultant full band reflectivity T is constructed and plotted in
Figure 6-1c. T constitutes our relative information.

Using the true velocity model of Figure 6-1d, we have
estimated the RMS velocity curve shown in Figﬁre 6-1e. Five
selected points of the latter (marked on Figure 6-1le), together
with @ point constraint of 12 Kfeet/sec at 1.8 sec (assumed to
be available from well-log information) were .used in the Backus-
Gilbert flattest-model inversion (Oldenburg et al. 1983), to
yield the estimated interval velocity, our .absolute information
(Figure 6-1£).

Using eguations (6.5), .and (6.7), we obtain pseudo-
impedances 7 and 7, shown in Figqure 6-2b and 2c, respectively.
We then applied -eguation (6.8) with N=512 and M=128, to get a
series of four estimates of the scale factor a. These are listed
in Table 6-1 for ‘the corresponding time windows.

As seen from Figure 6-2, both 7 and % resemble the true
péeudo?impedance' (Figure +#6-2a) quite well. Hence, as expected,
the final estimated value of 122 for the scale factor is in good

agreement with the true value of 100.
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‘Table 6-1:

" Scale factor evaluation
for example in Fig. 2
and 3.

N=512, M=128

True scale factor=100

X

1l a
X
‘ 1 71
2 148
3 122
4 105

- Median = 122.

Mean = 112,

To complete the process, we have rescaled the input
seismoéram (Figure 6-1b) by a=1/122, and performed the acoustic
impedance inversion (LP), using'the synthetic seismogram and a
set of stacking velocity constraints (Oldenburg et”;i. f984).

The final result overlayed on the true impedance curve is shown

in Figure 6-3.



128

1

Figure 6-1

(a) The reflectivity series corresponding to the velocity model
of Figure 6-1d. (b) The series in (a) after the application of a
10-50 hz. bandpass filter and the addition of random noise. (c)
The series in (b) after LP deconvolution. (d) The true velocity
model. (e) RMS velocity corresponding to the velocity model in
(d). (f) The estimated interval velocity obtained from the five
RMS picks marked on (e) via the Backus~Gilbert inversion.
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Figure 6-2

(a) The true pseudo-impedance function. (b) The pseudo-impedance
function calculated from the constructed LP reflectivity. (c)

The pseudo-impedance function calculated from the constructed
interval velocity model.
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Figure 6-3

The reconstructed acoustic impedance function obtained via
constrained 1inversion. The seismogram in Figure 6-1b was scaled
by a factor of 1/122 and the result together with the set of
stacking velocities (marked on Figure 6-1e) was used in the
inversion. The true velocity model is overlaid on the figure.
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6.3.2 LAYERED EARTH MODEL WITH SLOWLY VARYING IMPEDANCE ZONES.

| As was ' discussed previously, both the ﬁP and Aﬁ
deconvolution algorithms minimize an objective function which
implies minimum earth structure. Conseguently, it can be
expected that the relatively small reflection coefficients
(reiétive amplitude is defined by frequency band-width ahd error
allowance used ‘'in the deconvolution) will not be manifeétea in
the estimated reflectivity function T. Due to these omissions,
conversion of T into pseudo-impedance 7§ may yield results which
are substantially different (in a global sense) from those given
by the true earth model. However, in ﬁime windows which do not
include large ramp-like impedance components,.thé representation
given }by 7 may still be,shape-wise acceptable. When this is the
case, the scaling algorithm summarized by egquations (6.5),
(6.6), (6.7) and (6.9) 1is still expected to yield reasonable

results.

To demonstrate the viability of the proposed scaling scheme
invan environment which contains ramp-like impedance components,
we have constructed the true velocity profile shown in Figure 6-
4d. The associated true reflectivity, and RMS veldcity curve are
'shown in figures 6-4a and 4e, respectively. We band-pass (10-
50Hz) the reflectivity of Figure 6-4a, add 5% random noise, and
scale it by a factor of 100 to obtain the synthetic seismogram

(Figure 6-4b) to be used in this example.
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Figure 6-4

Same as Figure 6-1. This time, a ramp-like component is added to
the velocity model between 0.5 and 0.7 seconds. (a) The
reflectivity series corresponding to the velocity model of
Figure 6-4d. (b) The series in (a) after the application of a
10-50 hz. bandpass filter and the addition of random noise. (c)
The series in (b) after LP deconvolution. (d) The true velocity
model. (e) RMS velocity corresponding to the velocity model in
(d). (f) The estimated interval velocity obtained from the five
RMS picks marked on {(e) via the Backus-Gilbert inversion.
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Applicatién of the linear programming deconvolution to the
data of Figure 6-4b, yields the full-band reflectivity estimate
T (Figure 6-4c), while the inversion of the RMS velocities (pick
positions for inversion purposes are marked in Figure 6-4e)
gives the estimated interval velocity profile of Figure 6-4f,
Using equations (6.5) and (6.7) we converted the data in figures
6-4d4, 4c, and 4f into pseudo-impedance and the results are shown
in Figure 6-5a , 5b, and S5c, respectively. Inspection of Figure
6-5 reveals good shape—wisevagreement between the true péeudo-
impedance and the one estimated from T for windows 1, 3, and 4.
However, the correlation exhibited in the second window
(corresponding to the ramp-like impedance structure) is quite
poor. Using equations (6.8) and (6.9) on the data of Figures 6-
5b and 5c with ﬁ=512 .and M=128, we obtain ‘the series of
estimated scale factors a which is summarized .in Table 6-2. The
‘median of the series calcuiated by'equation (6.8) is 61, while
that corresponding to egquation (6.9) 1is 97. Obviously, the
latter estimate is}_good and suggests that a scaling algorithm
based on eguations (6.5), (6.6) (or (6.7)), and (6.9) can
produce acceptable resulfs-even when the LP deconvolution scheme
faiIS'at some isolated time windows. It is that set of equations

“which will be used throughout the remainder of this work.


http://will.be

Table 6-2:

Scale factor evaluation
for example in Fig. 6-5.
N=512, M=128

100

True scale factor

b

X

1 {a(from eq.6.6) |a(from eg.6.7)
X X

1 72. 72.

2 23. -4,

3 44, 129.

4 61. g87.

 Mean (from eqg. 6.9)

Median (from eg. 6.8) 61.

Mean (from eq. 6.8) 50.

Median (from eg. 6.9) = 97.

73.

134



138

Again we éomplete the process by running the LP acoustic
impedance inversion algorithm on the data of Figure 6-4b scaled
by 1/97 with a set of constraints obtained from the inverted
interval velocity (éhown in Fiqure 6-4f). The result, overlayed

on the true velocity function is shown in Figure 6-6.

6.4 REAL DATA EXAMPLES

In the following examples we demonstrate the application of the
above scaling 'method to <cases where: (a) only well-log
information is ;vailable and (b) only -stacking velocities are
available. Our 1input stacked 'sections (sampled :at -4Ms), have
been subjected to a normal (pre-stack) processing sequence which
included predictive deconvolution for short period multiple
suppression. Subsegquently (post-stack), we have whitened the
spectral band (10-40Hz) and corrected the phase of the
interpreter's wavelet so that the residual wavelet is presumed
zero-phase. These final sections constitute the input to our

scaling algorithm.

6.4.1 SCALING DATA USING WELL-LOG INFORMATION

Given the stacked section shown 1in Figure 6-7 and the
velocity log corresponding to a well in the vicinity of trace 70

(Figure 6-8), we 'wish to prescale our data for subseguent
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Figure 6-5

(a) The true pseudo-impedance function. (b) The pseudo-impedance
function calculated from the reconstructed LP reflectivity. (c¢)

The pseudo-impedance function calculated from the constructed
interval velocity model.
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Figure 6-6

The velocity function obtained from the constrained inversion
superimposed on the true velocity model. Input consists of the
scaled seismogram (Figure 6-4b) and five stacking velocity
estimates (marked on Figure 6-4e).
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Figure 6-7

Input seismograms'after post stack spectral whitening and phase
correction.
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WELL LOG VELOCITIES

Figure 6-8

Sonic log from a well at the vicinity of trace 70.
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impedance inversion processing.

The first étep required in our scaling scheme 1is ‘the
spiking deconvolution of the input ‘data set. Figure 6-9
represents the output of.the linear programming deconvolution
applied to-our input. This wide-band reflectivity is assumed to
be a reasonable represeqtation of the local primary reflectivity
function, and upon integration it yields the calculated pseudo-
impedance sectﬁoh shown in Figure 6-10. Inspection of the latter
result shows +that the low fregquency trend exhibited by the
velocity 1log has been reproduced faithfully. Consequently,
direct comparison of the calculated pseudo;iébedance to the
well-log pseudo-impedance is 1likely to produce the desired
scaling factor. We have compared these quantities for the near-
well traces (#'s 60 to 80) and the resultant_scaling factor was

found to .be 1.3.

As a last step in our process we have rescaled the original
data, interpolated a number of Qelocities with their associated
confidence bounds along a number of constraint horizons (marked
on Figure 6-10), and executed the acoustic impedance inversion
"pfocedure using the scaled data and the .afore méntioned
constraints., Figure 6-11 represents the final butpui.of the—
impedance inversion scheme. In this figure we have overlayed the
pseudo-velocities (grey shades) over the wide ‘band constrained
reflectivity section (this reflectivity section is consistent

with the observed well-lbg information).

Our final results are in a form suitable for normal
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Figure 6-9

The data of Figure 6-7 after application of linear programming
deconvolution.
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Figure 6-10

The pseudo-impedance section obtained via the integration of the
data in Figure 6-9. These data were used in conjunction with the
sonic log for the estimation of a scaling factor.
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interp;etation work., Furthermore, with appropriate caution (as
indicated by the constraint's confidence bounds supplied to the
inversion), they may also be used for inference of some petro-
physical parameters like -porosity, fluid saturation and
overpressure (Angeleri‘and Carpi, 1982, Bilgeri and Ademeno,
1982). These parameters are measurable at the well'site, and may
be extfapolated away from this site by comparing pseudo-velocity
values along a given formation to those observed on the near

well traces.

6.4.2 SCALING DATA USING STACKING VELOCITY INFORMATION

When well-log information is not available, and the observed
local geology 1is appropriate (that 1is, no steeply dipping
structures are present), it is possible to wuse the stacking

velocities for scaling purposes.

Given the data of Figure 6-12, and the corresponding set of
stacking velocities we start our scaling scheme by inverting the
stacking velocity -set via the Backus-Gilbert methodology. The
result of this inversion, that is the smooth representation of
the interval velocities (Figure 6-13), is converted to a pseudo-
impedance section.

Next, we have applied the linear programming deconvolution
to the data of Figure 6-12 and converted the output wide-band
reflectivities to a pseudo-impedance section. Direct comparison

of these two information sets yields a scaling factor of .008.
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Input stacked section.
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Figure 6-13

Interval velocity section obtained by the inversion of a set of
stacking velocity profiles corresponding to the data in
Figure 6-12. These interval velocities were used in conjunction
with the unconstrained pseudo-velocities in the calculation of
the required scaling factor.
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Lastly, Qe have rescaled the original data, and executed
the acoustic <impedance inversion procedure using stacking
velocity constraints (Oldenburg et al 1984). The obtained
pseudo-velocities' overlayed on the <constrained wide-band
reflectivities are shown in Figure 6-14. Again, the final output
of our inversion appears to ©produce high quality results in
which the obtained reflectivities are consistent with the
observed stacking velocitieé; Interpretation of these results is
in our opinion easier than that of the original section, while a
higher degree of confidence can be placed on these results since

a larger information set has been used in its construction.
6.5 CONCLUSION

We have presented a scaling method designed as a
preparatory Step to the acoustic impedance inversion of
reflecgibn seismograms. This method, which 1is applicable to
cases where either well~log or stacking velocities are
available, is shown to vield good results on data collected in a
nﬁmber of exéloration areas. Nevertheless, in areas where the
local impedance -functions do not contain a number of sharp
impedance discontinuities the proposed scheme may fail to yield
acceptable results.

The design of our algorithm is limited to those inversion
techniques which are capable of yielding a first order

approximation to the low frequencies generally missing in normal
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The result of a constrained inversion (wi
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seismic work. The use of these algorithms, supplemented by well-
log information and stacking velocities, opens the door to
powerful data processing techniques which utilize a larger
information base to obtain both more reliable reflectivities, as

well as the associated pseudo-velocity section.
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CHAPTER VII: PRE-INVERSION CORRECTION OF WAVELET RESIDUAL PHASE

7.1 INTRODUCTION

The goal of most standard processing sequences_ié to produce a
CDP stacked section in which each trace can be considered to be the
earth's reflectivity function convolved with a zero phase vavelet.
>During the processing sequence every effort is made to eliminate the
effecté of the source signature and multiples, and to correct for
_instrument recording response, transmission losses, and attenuation.
The deconvolution procedures . normally used to correct. for these
effects make a number of assumptions éoncerﬁing‘the phase properties
of the effects themselves. When these aésumptions are violated, as
they often are, the deconveolved output may not exhibit the desired
zero-phase interpreter's wavelet and a further phase correction will

be reguired.

Phase distortions arise for 'a variety of reaéons. We will give
some of the causes here and in doing so, we shall distinguish
between effects which operate directly on the source signature (for
example, dispersion or processing filters), and those which arise
due to our limited resoclution and thereby cause 'apparent' phase
shifts (e.g. interfering events like ghosts or short peg-leg

multiples).

The effects of dispersion, attenuation, and supercritical
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reflection on a given soufﬁe signature have been extensively
discussed in the seismological literature over the past 50 years.
Examples of the phenomenae for simple models are given in Robinson
(1979, 1980a and 1980b) where the .modelling and removal of
attenuation related dispersion via thé Fourier scaling theorem is
described. The effects of supercritical reflections have been
studied by Arons and Yennie (1954). They isolated a set of water
bottom reflections and showed how the phase ©f the wavelet 1is
altered for post-critical refleétions. The phenomenon of
supercritical reflection is discussed in detail by Aki and Richards

(1980).

Phase distortions are also incurred through the application of
deconvolution filters. Most reaéefs are familiar with these effects
and hence we will only touch upon the matter 1lightly. 'The
calculation of deconvolution filters is based upon a number of
assumptions which are, at times, inconsistent with the conducted
field experiment. In the case of an explosive source, it is
generally assumed that both the corresponding source signature and
the propagation effects are minimum phase {(Futterman, 1962; Knopoff,
1964; Sherwood and Trorey, 1965; and Wuenschel, 1965). Due to
recording and processing effects, the above assumption is only
partly met, and hence the application of minimum phase deconvolution

to field data may introduce an undesired phase distortion.

A numerical problem of great importance also arises because of
the band-limited nature of the recorded seismogram. . Even if the

excitation source is truly minimum phase, the <calculation of the
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phase spectrum from the observed amplitude -spectrum requires
information from pqrtions of the sbectrum which are not available to
the processor. 1In convéntional . minimum phase \deconvolution
algorithms, the aoné\ﬁroblem manifests itself in the form of an ill
conditioned autocorrelation matrix whose condition number can be
improved by the addition of a "white-noise" constant to its diagonal
terms, As expected, the magnitude of ﬁhe "white noise” parameter 1is
an important factor in Ehe. calculation of +the desired inverse
operator, but it's value can also significantly alter the phase of

the residual wavelet.

hhen a Vibroseis source is considered, there are complexities
involving the interaction ¢of the vibrator hydraulics, the baseplate,
and the earth's surface. The total effect of this interaction is to
introduce an unknown .phase distortion onto the observed Klauder
wavelet (Frazer, 1983). Furthermore, the conventional processing
route which employs minimum phase deconvolution followed by phase
correction (Ristow and Jurczyk, 1975), suffers from ﬁhe same
numerical problem discussed previously (see for example Gibson and

Larner, 1983).

Finally, given the freguency band limitations imposed by field
and processing .procedures, we may also encounter 'apparent' phase
distortions which are caused by event interference. This type of
distortion 1is extremely troublesome since it may give rise to rapid
phase variations across the observed data. For example, let us-
consider the case of a stack of thin beds with laterally changing

thicknesses. If the two-way travel time of the wave through any of
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these thin beds is shorter than the time duration of the source
signathre, arrivals from horizons which are deeper than this stack
of thin beds will feature a characteristic signature which may
differ substantially from that associated with the shallower events.
Furthermore, since the thicknesses of the beds are also changing
laterally, the associated 'apparent' phase distortions may create

severe interpretation dificulties.

The complications inherent in estimating the phase distortion
introduced by the many effects mentioned above mean that the phase
of the final interpreter's wavelet is not well determined even when
the most careful processing has been carried out. This presents
major difficulties for further interpretation and post-stack
processing technigues. For example, linear programming spiking
deconvolution (Levy and PFullagar, 198!) and acoustic impedance
inversion (Oldenburg ‘et al., 1983, and Oldenburg et al., 1984)

reguire that the interpreter's wavelet is zero phase.

The goal of this work is to show how the residual phase of a
seismic wavelet may be estimated directly from the data and how the
data may then be phasé adfusted. We assume at the outset that all of
the phase distortions mentioned previously' can be modelled by a
wavelet whose phase is altered by a frequency independent constant
(for further details see .Appendix 7-A). This 1is certainly the
correct assumption for modelling supercritical reflections but it is
only approximately true for other effects 1like dispersion which
arises from constant Q attenuation (Futterman, 1965; Robinson,

1980(a)). Nevertheless, Levy et al. (1983) have used the constant
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phase-shift :convoldtional model and " the Karhunen-Loeve
transformation in order to effect phase correction of isolated
events ekhibiting  frequenéy dependent phase distortions (see
Appendix 7-B). The results of their approgch were very encouraging
so long as the analysed freguency band-width of the ssignals did not
exceed about two and a half octaves. This gives us added confidence
that we can apply they'constant phase shift model to the work

presented here.

In this work we will also adopt the convolutional model for the
seismic signals. The residual phase of the seismic wavelet will be
estiméted by first rotating each seismic signal wusing a frequency
independent phase shift. 'This rotation will be carried out for a
number of phases between -7/2 and 7/2. The varimax norm‘of the phase
rotated‘signals is méasured, and the trace which -exhibits the
highest norm value 1is chosen as the désired phase corrected
representation. The varimax norm thhé lies at the heart of our
computational procedure and the justification for using this norm is

presented in the next section.
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7.2 METHOD AND EXPLANATORY EXAMPLES

The goal 6f this section is to develop a method whereby the
phase of the residual wavelet can be determined directly £from the
data. The algorithm to be developed here is based on a model in
which the seismogram s(t) is represented by the convolution of a
reflectivity function r(t) with a possibly phase shifted zero-phase

wavelet w(e,t), that is,
s{t) = r(t) * w(e,t) (7.1)

‘This is the same model used by Levy and Oldenburg (1981) in their
approach for <carrying out a .deconvolution in the presence of phase
shifted signals (see Appendix 7-A). In equation (7.1), w(e,t) |is

related to the zero-phase wavelet w(t) by
wle,t) = cose w(t) +~siné}{[w(t)] (7.2)

where}{[ ] denotes the Hilbert transform.

The form of equations (7.1) and (7.2) is, as we have already
discussed in the introduction, a reasonable mathematical model for
many of the effects observed on real signals. Let us consider the
set of phase shifted replications w(e,t) shown in Figure 7-1., Our
first goal 1is to find a norm, which when it accepts w(e,t) as its

argument, has an extremum when e=0. That is, the norm is extremized
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when it operates on a zero phase wavelet.
The Varimax norm has precisely the properties that we look for.

The varimax of the time series {s;} (i=1,N) is defined by
V(s) = —=-mIo- (7.3)

This norm was used by Wiggins (1978) to indicate 'spikiness' and it
served as the core of his minimum entropy deconvolution algorithm.
The maximum value of the varimax for any time series is 'unity and
this occurs when ({s:} is a single spike at some arbitrary time
sample. On the other hand, the varimax attains a minimum when the

series consists of equal amplitude -elements at each time sample.

Since a zero-phase wavelet contains the majority of its energy
in a relatively narrow time duration (i.e. its major lobe), it 1is
expected that V(w(0,t)) is larger than'v(h(e,t)) for e#0. Indeed, a
plot of the varimax as a function of e for a Klauder wavelet
(Fig. 7-1b) verifies our -expectations. We note that V(e) 1is
maximized when ¢=0, as desired, and that the varimax curve looks
very much 1like a sinusoid. We also nofe that the period of this
sinusoid is 180° and that V(e) is élso maximized when e=w. This
curve 1indicates a fundamental ambiguity which is evident directly
ffom equation (7.3); the varimax of a time serieé and of its
polarity reversed counterpart are equal. This ambiguity in polarity
is something that may have to be corrected at a later stage, after

the phase correction has been completed.
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Figure 7-1

In panel (a) a Klauder wavelet has been phase rotated in steps of
45°. The varimax of the rotated wavelets, plotted as a function of
phase shift are given in (b). Application of the automatic phase
correction algorithm to each of the traces in (a) is shown in (c).
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The gQal'of an automatic phase correction (APC) algorithm is
first to estimate the residual phase of each trace and then to
perform the desired rotation to =zero-phase. To effect this

correction, our algorithm operates in the following series of steps:

I. Egquations (7.2) and (7.3) are used to compute the varimax
V(e) of the analysed signal for rotation angles ¢ ranging from +90°

to =-90°,.

II. V(e) 1is inspected to identify the angle e which yields

man(

the highest value of the varimax.

II1. The observed signal is rotated by €mes £O Obtain the phase

corrected signal.

IV. For multitrace data the results are inspected and possible

corrections for polarities are made.

The results of the application of our algorithm to the set of

wavelets shown in Figure 7-1a, are given in Figure 7-ic.

To demonstrate the effects of the band 1limitation wupon the

varimax norm measurement we define a quantity S which measures the
™~

standout of the varimax peak above the varimax low for the signal

being analysed:
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Using this definition we calculate S for a set of sinc
functions bandliﬁited by a trapezoidal filter with  corner
fregquencies £,, f,, £,, and f,. Typical variations of S are seen in
Table 7-1. We notice that the standout is particularly affected by
the low frequency cutoff. This is an important observation and it
has meant that in doing the varimax calculations on complicated
seismic signals we have made considerable effort to keep (f,,f;) as
low as possible. In those cases where the low freguency cutoff of
the seismic signal has been too high, we have first extended the
seismic spectrum toward lower frequencies by using the
autoregressive approach of Oldenburg et al., (1983) and Ulrych and
‘Walker, (1983) ; see Appendix 6-A. We shall discuss this in further
detail 1later when we consider more complicated signals which have a
small varimax standout.

'To‘gain some idea about the applica?ility of our constént phase
médel to & more realistic situation, we will consider the wavelet
represented by the Z transform (1.1-2)2x(1.7-2)'?, Fifteen different
wavelets, ranging successively from minimum to maximum phase
(delay), have been generated by transferring one zero at a time from
the outside to the inside of the unit circle. These wavelets and the
corresponding varimax curve are shown in figures 7-2a and 7-2b,
respectively. We see that the varimax is maximized for the second
wavelet and. that this wavelet is a reasonable approximation to a

symmetric, that is zero phase wavelet. The estimated phase angle
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(£ ,f« )Rz
30-35 40-45 50-55 60-65
(£ ,f; )Hz
1-5 44 53 60 65
5-10 6 15 23 31
10-15 .004 .8 4 10
TABLE 7-1

The wvarimax standout for the bandlimited sinc function is
plotted as a function of (f,,f,), the low frequency taper
and (f;,f,), the high frequency taper. The numbers shown
in the table are the varimax peak standouts defined by the
equation given in the text.
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adjustments reéuired to rotate each trace to zero phase are shown in
Fig. 7-2c¢ and the rotated traces are displayed in Fig. 7-2d. It
seems, at least for the simple case presented above, that the
constant phase~shift approximaﬁion did a reasonable Jjob in
converting various delay wavelets into an approximate zero-phase
representation.

The previous two examples show that the varimax norm can be
used to select the'zerO'phaée wavelet when the reflectivity function
consists of a single spike. The next question to be investigated is
whether the approach will give good results when the reflectivity
function is more complicated. We know at the outset that for any
given source signal, a reflectivi;y function can be devised to make
the method fail. Consider the example offered in Fig. 7-3a. There a
zero phase wavelet has been convolved with a dipole reflectivity
function to produce-a seismogram which looks very much 1like a 90°
phase-shifted wavelet. Application of the varimax norm indicates
that this trace should be shifted by 90° to make it zero phase and
this phase rotation produces the phase corrected trace shown in
Figure 7-3b. The method can therefore fail and it 1is important to
remember this. 'This single counter example also shows that no
mathematics can be developed to prove that our method of wusing the
varimax norm  will :.élwayé produce the correct phase shift.
Nevertheless, a single dipole is not a geologically realistic
reflectivity function. Geologic reflectivities are much more complex
and will often consist of a number of well separated major
reflectors in addition to a large number of dipole reflectors having

variable distance between the up and’;down spikes. The cumulative



162

[=)
~
n

(a) ®):

——.

Varimax

il —l
40 0.2!

18

Apliiniia

I

5
3

5

(c)
i

Phase

N
wn
T
Phase corrected wavelets

<SS

L

—'

ime

Wavelet »

Figure 7-2

Fifteen wavelets having different delay are shown .in (a). The
.varimax of the wavelets in (a) are shown in (b). The phase shifts
required to rotate each of the wavelets in (a) so that the varimax
is maximized 1is shown in (c). Panel (d) shows the results of
applying the phase shifts given in (c).
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effect of the different dipoles would be to control the level of the
varimax norm and one would hope that the isolated reflectors would
have enough inflﬁenceion'the varimax that they determine the proper
phase shiff. ' |
To test the reliability of our phase estimation method in a
realistic environment we apply the technigue to reflectivity
functions obtained from well logs. Eight velocity logs used for this
test are shown in Fig. 7-4a. The reflectivitieslcorrésponding.to
these logs are shown in Fig. 7-4b. Each reflectivity 1is then
bandpassed and used as input for the APC algorithm. The phase
correction returned by the APC algorithm is tabulated in Table 7-2

as a function of the bandpass parameters.

Since the reflectivity function input into the APC program .is
the true reflectivity convolved with a zero phase waQelet, it would
be hoped that the algorithm would have returned a zero value for the
phase rotation for all tests. However, rotations of up to 30° do not
greatly alter the shape of a wavelet and therefore we shall consider
that the algorithm has produced a successful result 1if
-30° < ¢ < 30°. Having adopted this as a criterion of success we can
examine Table 7-2 mofe closely. We notice specifically that for
fized (f,,£,), the results in Table 7-2a are generally superior to
those in Table 7-2b. This suggests that our phase correction
algorithm 1is heavily dependent on the ratio of the main energy lobe
to the side lobes exhibited by the residual wavelet. Thus every
effort should be made to maximize this ratio by maintaining the
lower freguency components and appropriately shaping the wavelet's

amplitude spectrum to avoid excessive side lobes ringing.
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time

Figure 7-3

Trace (a) is a bandpassed dipole reflectivity. It resembles a 90°
wavelet., Application of the  automatic phase correction algorithm
produces the rotated trace (b).
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(£,,£,) = (5,10)Hz

(a)
(f’é:“) 30-35 | 40-45 | 50-55 | 60-65
well # .

a 27 | o -27 | 18
b 54 -63 72 | =72
< 45 =27 27 -9
d -27 18 0 -18
e 63 18 27 9
£ -36 -63 36 18
g 9 9 -27 | -36
h -18 -9 0 -9

(£1,£2) = (10,15)Hz

(b)
(£3,£4)

ety g Bz [30-35 |40-45 | 50-55| 60-65
a 90 ~54 45 36
b 81 72 81 54
c -81 45 72 -36
d -90 45 -18 -18
. 81 9 45 9
£ -81 63 -72 -9
" 27 9 -36 9
h 90 0 27 54

TABLE 7-2

The automatic phase correction algorithm is aplied to each
of the reflectivities shown in Figq. 7-4. The
reflectivities are first bandpassed with a linear taper
extending (f,,f,) on the low frequency side and (f,,f,) on
the high freguency side. The numbers shown in the table
are the phase rotations in degrees reguired to maximize

the varimax after the bandpassing.
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Now .lefi us consider a specific column (f,,£f,) = (40,45) Hz in
Table 7-2a. We notice that the APC algorithm has 'provided a
successful result for 6 of the 8 logs; only reflectivities from logs
(b) and (f) would have been adjﬁsted incorrectly. We feel that this
is a good success ratio for the APC program. There are some
differences in the adjacent columns but the differences are not
extreme, except when (f,,f,) is reduced to (30,35), a value which is
too low and produces too many failures. Such differences with the
change in the high frequency filter pafameters are expected because
of the geclogic tuning of the signal. That s, whether a
reflectivity dipole ;ooks like a single 90° wavelet or two zero
phase wavelets depends upon the separation between the reflectors

and the bandpass parameters.

We are Qery encouraged by +these results. The algorithm has
proven reliable in the majority of cases providing that low
frequencies have been used in the process. We also realize that the
success ratio can be increased by using the APC algorithm only in
certain types of geologic structures. wé know, for instance, that
the APC algorithm will fail (generally) if the reflectivity function
is Gaussian. In such cases the algorithm has an equal probability of
returning a phase shift between -90° and 90°. Returning to Fig. 7-4
we see that log- b has a reflectivity function which resembles a
Gaussian distribution; this may account for the failure of the APC
algorithm to operate upon that reflectivity. We would expect the APC
algorithm to work well when the reflectivity is non-Gaussian. This

is confirmed by the results in Table 7-2a.
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The imporiance of the low frequency information in applying the
varimax criterion has been clearly indicated 1in the preceding
examplesi It often happens, however, that the field data are missing
information below 10 or 15 Hz. In such cases better results can be
expected by first extending the seismic spectrum into the low
frequency region by using'auto;egressive (AR) techniques and then
applying the APC algorithm. To use the AR approach we follow the
work initially 'proposed by Oldenburg et al. (1983) and modified by
Walker and Ulrych (1983). The low and high frequency cutoffs of the
seismic ‘spectrum are first estimated from the data and the spectrum
is modelled as an AR process of order p. The TYule-Walker .algorithm
is wused to evaluate the AR filter coefficients and the constructed

filter is then used to predict the missing low fregquency values.

The benefits of using the AR frequency extension are shown in
the next -example. We have taken the reflectivities in Fig. 7-4 and
bandpassed them with the trapezoid filter. The 1low fregquency
parameters for the trapezoid were always (f,,f,) = (10,15) Hz but
the high frequency values (f,,f,) were variable. After each
bandpassing we used the frequency band (f,,f,;) to generate the
‘spectral values at freguencies smaller than f,. The results from the
APC algorithm when information 5-10 Hz was used and when information
1-5 Hz was used are shown in Table 7-3, We see that the success

ratio is very good, expecially for Table 7-3b.

Although our algorithm seems to yield reasonably reliable
results, it is recommended that, whenever possible, a test trial on.

a well-log synthetic reflectivity should be made prior to the
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(£1,£2) = (5,10)Hz

30-35 | 40-45| 50-55| 60-65
(5~10)Hz
a -27 -9 -18 -18
b 81 72 -18 -18
¢ 18 -81 18 -9
d 45 9 -18 -27
e -63 -36 45 -9
£ -9 9 -36 9
8 o | 9 72 54
h 54 9 9 J 9

(£1,£2) = (1,5)Hz

: =1730-35 | 40-45| S0-55 | 60-65
(5-10)Hz
a -18 | -18 | -s4 9
b 63 -18 -9 -9
e 18 -90 9 -9
d 36 9 -9 -18
e | 0 =27 27 -9
, £ g -9 o | -27 9
g |0 9 63 36
h i 36 -9 0 0
1
TABLE 7-3

The automatic phase correction algorithm is aplied to each
of the reflectivities shown in Fig. 7-4. The
reflectivitiess are first bandpassed with a linear taper
extending (10,15)Hz -on the low frequency side and (f,,f,)
on the high-frequency:side. Using the AR algorithm we have
extended the frequency information band (15,f;)Hz into the
low freguency portion of the spectrum and then bandpassed
the result as indicated by the corner frequencies (f,,f;)
and (fs,f4). The numbers shown in the table are the phase
rotations-required to maximize the varimax after the

bandpassings
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application of the algorithm to a given set of data. This test
should establish the reliability of the phase correction ‘operation
for the given zone of interest. Additionally, if the correction
angle estimated from the well-log synthetic differs largely from 0°,
iF may be.prudent4to follow the APC algorithm run by the application
of a single phase correction to the whole section so that the final

result will conform with the well-log information.

Before we proceed to some practical considerations and real
data cases, we would l;ke'to present one more idea. If we consider
the example summarized in Fiqure 7-2 as representative of a large
number of cases, it seems that our algorithm opens the door for an
additional approach to signature deconvolution. The target of
signature deconvolution schemes is to recover a bandlimited zero
phase 'representation of the reflectivity function. Let the

seismogram be
s(t) = r(t) * w(t) (7.4)

where r(t) is the true reflectivity and w(t) ‘is a seismic wavelet.

Taking the Fourier transform of (7.4) leads to
S(w) = Rlw) W(w)

In most cases the amplitude spectrum |W(w)| of the wavelet can be
reliably determined but its phase spectrum ¢(w) cannot. The work in
Fig. 7-2 however shows that the effects of ¢(w) can approximately be

compensated for by applying a freguency independent constant phase
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adjustment. That 1is, for any of the mixed delay wavelet, there

exists a phase shift ¢ such that
F'{ W(w) explig(w)] explzie] } (7.5)

is aproximately a zero phase signal. 53;’ denotes the inverse
Fourier transform). In -eguation (7.5) the + sign is taken for
positive freguencies and the - sign for negative frequencies. We now
suggest that signature deconvolution can be carried out using two
successive independent operations. In the first step we whiten the
reflectivity spectrum by dividing the spectrum of the seismogram by
the amplitude spectrum of the estimated wavelet. We then attempt to
nullify the effects of the wavelet's phase spectrum using the

operator explie]. Our final result will be

S(w) explzie]

------------- = R(w) expli(¢(w)ze) )y R (W)
|W(w) |

The inverse Fourier transform of this function will yield a
reflectivity series representing (approximately) the convolution of

the true reflectivity series with a zero-phase residual wavelet.

To demonstrate this deconvolution approach we ﬁse the following
example. The mixed delay wavelet of Figure 7-5b is coénvolved with
the reflectivity function of Figure 7-5a to yiéld the input
seismogram shown in Figure 7-5d. Dividing the ‘spectrum of the input
seismogram by the amplitude spectrum of the wavelet (weighted by a

5% water level parameter) and inverse Fourier transforming the
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result, yields ‘the trace wof TFigure 7-5e. Application of the
phase-correction algorithm to the latter gave the final deconvolved
output which is shown in Figure 7-5f. Comparison of this result with
the band-limited reflectivity function (Figure 7-5c) shows thaﬁ this
deconveolution réute can yield the desired solution. Considering the
difficulties so often associated with the estimation of the
wavelet's phaSe spectrum it seems that the proposed deconvolution

route coffers an attractive alternative to conveptional methods.

7.3 REAL DATA EXAMPLES

In applying the phase correction procedure to real data sets we
want to enhance the ability for the algorithm to produce correct
results. We outline below a number of steps which are designed to

increase the success ratio of the proposed algorithm.

I. If low frequency information is missing, the spectrum of the
data should be extended into the range (5-10 Hz) wusing the AR

prediction scheme.

II. To avoid end effects, the data should be tapered prior to

the application of the APC algorithm;

III. To avoid inconsistent phase rotations which may arise due
to large 1lateral variability of the processed data, the algerithm
should determine the appropriate phase correction via the analysis

of successive groups of seismograms. The number of traces in each
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The work summarized by Figure 7-2 suggests that =zero phase
deconvolution followed by a phase correction may provide an
alternate way of carrying out signature deconvolution. The true
reflectivity function 1is shown in (a) and a mixed delay wavelet is
given in (b). The bandpassed reflectivity function is shown in (¢).
The seismogram in (d) has wundergone zero phase deconvolution by
dividing its spectrum by the spectrum of the wavelet 1in (b). The
result of this deconvolution 1is shown in (e). Application of the
. phase correction algorithm yields the final result in (f); it may be
compared directly with the bandpassed reflectivity in (c).



analysed group:depends on the variability éxhibifed by the data. As
a rule, the number of traces in an analysed group should not be
smaller than ten or twenty. If it 1is felt that the lateral
variability of the estimated phases 1is too large, then the APC
algo;ithm should be rerun using a larger number of seismograms in

each group.

iv. The estimated phase corrections should be smoothly
interpolated so that each trace can be assigned a phase shift. 1In
addition, it may be necessary to correct for the polarity to

conserve trace-to-trace true polarity relations.

V. To avoid smoothing effects due to source signature time
dependency, the analysed time window for +the phase correction
algorithm should be centered around the =zone of interest. It 1is

—

important to remember that the phase correction which is suitable
for a given time window may perform poorly outside this wiAdow. Our
experience suggests .that the analysed time window should not be
shorter than about 500 milliseconds nor longer than about 1.0

second.

VI. When well-log information is available, the algorithm
should be applied to the band-limited synthetic reflectivity
function to determine the phase angle e . If e, differs largely
from 0°, the output from the phase correction algorithm should be

further rotated by —€ .4y degrees,

ViI. The algorithm should not be applied to time sections in

which the geologic reflectivity is approximatgly Gaussian.
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Having spécified these practical considerations we shall now
turn ﬁo the real data examples. As with many other processing
'téchniques, the goal of our newly developed algorithm is to improve
the interpretability of the given seismic section. To sho# that‘this
goal can be achieved we will recover the logarithm of the relative
impedance function (Oldenburg et al. 1983) of a CMP stacked section
both before‘ and after phase correction. The success of the APC
algorithm will be shown by comparing the recovered relative
impedance functions to a velocity 1log measured at a well site

slightly off the processed line.

The data of Figure 7-6a constitute the output of a conventional
processing sequence. We have further applied a post-stack'zero-phasg
deconvolution to yield the results in Figure 7?6b. Those data were
" input 1into the APC algorithm to produce the results shown in Figure
7-6c. The unconstrained (no external well-log or stacking velocity
constraints applied) linear programming acoustic impedance inversion
4algorithm was applied to the data in figures 7-6b and 7-6c and the
results for twenty consecutive traces near the well are shown in
Figure 7-7. The Iimpedance traces to the right of the well-log
correspond to the phase corrected data (e~80°) while those those to
the left correspond to the uncorrected data. Obviously, the
application of the phase correction algorithm to this data resulted
in a fairly good match between the well-log and the recovered
relative impedance functions. Furthermbre, comparison of the faulted
zone (traces 50 to 70, between 1.6 to 2.0 seconds) in figures 7-6a,
b, and c, shows a better fault definition on the phase corrected

output. To complete this example we show in Figure 7-8 the result of



176

T

’4))

(<

H1u0 TUNIIJITHO

e e iinfseifi s rsndrsfimmn
AN

4mmu,hmm»}mmm{mmm{mnmolmumo]mmm{mmm{mmmlnmnm

Figure 7-6a

CMP seismograms representing the

output of a standard processing
sequence.
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The data of Fig. 7-6a after zero-phase deconvolution.
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Application of the,APC algorithm to the data. shown in Fig. 7-6b
produced the phase-corrected data shown in this figure.
groups of 10 traces were analysed for the whole data
Phase corrections were close to 90°.

Successive
set and all
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the wunconstrained linear programming algorithm applied to the
complete data set of Figure 7-6c. We have overlayed the recovered
reflectivity on the grey shaded relative impedance functions. The
consistent behaviour of these functions after the application of the

phase correction is very noticeable.

7.4 CONCLUDING COMMENTS

In this chapter we have put forth a method for estimating the
residual phase of the seismic wavelet. The combined use of the
varimax norm and the concept of a constant phase rotation permits us
to estimate ‘this phase directly from the.data. The method is not
guaranteed to work in every instance but work done with acquired
velocity 1logs shows that the method should work in the majority of
cases. Moreovef, modifications such as extending the frequency band
of the Spectrum using autoregressive techniques, selecting
particular geologic environments in which to. use the algorithm, and
applying the algorithm to groups of seismic traces, will increase
the ;hances for success. Qur work with this algorithm to date has
been very promising, and we now apply the APC algorithm on a routine
basis to convéntionally processed data. In a great may cases, we
find that the interpretability of the section 1is improved and vwe
also find better agreement with well logs when the inversion is

carried out on phase corrected data.
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The relative acoustic impedance shown on the left has been obtained
by inverting twenty seismograms near trace $#70 in Figure 7-6a. These
results do not compare favourably with the velocity log plotted in
the center of the diagram. The relative acoustic impedance obtained
by inverting the phase corrected data in Figure 7-6c is shown on the
right side of this figure.
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Figure 7-8

The linear programming reflectivities obtained from the phase'
corrected data in Figure 7-6c are shown in this figure. They are
overlaid with the grey shade of the relative acoustic impedance.
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CHAPTER VIII: SUMMARY

It is the irony of the subject of this work that at 1its
conclusion I still have to say that all the preceding material may
not be sufficient for practical implementation of +the inversion
scheme. 1Indeed, a number of steps are reguired if bandlimited
seismic data are to be successfully inverted to yield a full band
acoustic impedance. Each 1is important and failure of any step can
result in a degraded end product. In the following I will>outline in
step wise form some :considerations. and operations which when
followed will -enhance the 1likelihood of success for the complete

inversion,

STEP 1: Preinversion Processing

The processing seguence applied to ' seismic data prio; to
impedance inversion will have important effects on the outcome of
the inversion. Of particular importance are those processes which
affect the relative amplitudes of the reflectors, the effective
bandwidth of the seismograﬁ, and the phase of the residual source

signal.

It 1is generally impossible to obtain true amplitude sections
without 'a priori' knowledge of the subsurface gedlogy. Since this

information 1is not usually available, one should do his best using
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programmeé gain control with the hope that subsegquent incorporation
of well-log information and stacking velocity information into the
inversion will overcome any amplitude discrepancies present in the
data. It 1is recommended that AGC with short window lengths not be

applied to the data.

In many cases, lateral energy balancing of the data is
required. A module which normalizes trace amplitudes should be
applied to produce a balanced section, that is, one  in which the
energy .or the sum of the absolute values of each of the seismograms
is no;malized'to a given constant, If this 1is not done and the
section 1is unbalanced then it is 1likely that the constructed
impedance section will display an apparent decrease in lateral

continuity.

The input to the acoustic impedance inversion algorithms is
assumed to be a bandlimited representation of the true reflectivity.
Therefore +Toutine processes like spiking deconvolution and
gap-deconvolution which are applied to the data in order to whiten
the trace spectrum and eliminate short to medium period multiples
are reguired prior to impedance inversion runs. Some caution is
recommended when gap-deconvolution is applied to the data because
this process may introduce a phase shift into the seismogram. In
Chapter VII we showed how this phase shift may be recovered and how

" to apply the corresponding correction to the seismic section,

It 1is important to remember that the goal of preinversion
processing is a stacked section in which: (a) multiples are largely

attenuated, (b) the effects of the wavelet within the frequency
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information band have been removed to our best ability, and (c¢)
relative amplitude relations are approximately correct. That is, the
observed seismograms are a reasonable band-limited representation of

the primary reflectivity function.

STEP 2: Section Polarity Correction

In some instances there is doubt about the true polarity of the
seismic section. Such ambiguity may be the result of field
procedures or due to subseguent processing (for .-example minimum
phase‘ deconvolution followed by phase correction applied to
Vibroseis data). If this is the case, determination of the «correct
polarity 1is an essential step which should precede the impedance
inversion. Polarity determination can be accomplished to a certain
extent using the results of an unconstrained impedance inversion

run., We distinguish the following cases:
A. Well log information is available

(1) When there is correlation between some reflectors on the
stacked section and corresponding events on the well-log
synthetic reflectivity, then direct comparison of these

events may be used to determine the correct polarity.

(ii) 1f direct correlation 1is not available (that is, the
synthetic well-log reflectivity does not match the
near-well stacked seismograms), an unconstrained impedance

inversion should be executed. The polarity of the section
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may be estimated from the general behavior of the
pseudo-impedance log (i.e. general rise within some given
time windows which match (correct polarity) or mirror
image (reverse polarity) the well-log impedance). Due to
tﬁe nature of the inversion algorithms (the sclutions are
minimum structure representations of subsurface geology),
AREAS OF sharp changes in impedance on the well-log are
more likely to be correctly reconstructed. These areas are

preferable for the purpose of polarity determination.

B. Well log information is not available

In this case ‘the 1information contained 1in the stacking
velocities should be wused. Stacking wvelocities are picked and
inverted using the Dix formula or one of the velocity inversion
algorithms outlined in Chapter IV. The constructed velocity profile
is used in conjunction with the pseudo-impedance log estimated by an
unconstrained impedance inversion of the data. The polarity is
estimated by comparing the general behavior of the two profiles

within chosen time windows.

The user is cautioned that an interpreter's wavelet which
contains a large residual phase may severely inhibit the success of

the methods discussed here.
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STEP 3: Section Phase Correction

The inversion algorithms proposed in this work, assume that the
interpreter's wavelet, (or residual wavelet) is zero-phase. In many
cases this assumption 1is invalid and a correction to the wavelet

phase is reguired.

For this correction, we adopt the constant phase shift model in
which we approximate the vresidual phase of the wavelet by a
frequency independent phase shift. This correction consists of
converting the observed seismogram x(t) into an .analytical signal
x(t), and then multiplying x(t) by the factor explie] with e being
the correction phase angle. The phase corrected trace 1is recovered
by taking the real part of this final quantity (See Chapter VII).
Our experience shows that (with appropriate choice of <€) this
operation satisfactorily corrects the phase and that the subseguent

impedance inversion yields markedly better results.

The determination of the 'correct' shift angle should be based
on the results of the wunconstrained impedance 1inversion and
information contained in either the well-log or 1in the stacking

velocities, in the manner described below:

~
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A, Well log information is available

(1). When well-log impedance or velocity 1is available, efforts
should be concentrated-on a window which contains a large impedance
discontinuity (both ﬁhe AR and LP algorithms are best suited for the
detection of this type of impedance structure). Successive rotation
of the near-well stackea traces by a number of shift angles (say =
-90°, -60°, -30°, +30°, and +60°) followed by impedance inversion
will yield a set of pseudo-impedance curves. These are then compared
to the well-log impedance, and the trace which produces the best
match is used to determine the correction angle. It is important to
realize that polarity uncertainty may still exist after the
application of this analysis, but this uncertainty can be resolved
by inspecting the set of pseudo-impedance profiles produced by an

unconstrained inversion run.

(I1). 1If no distinct impedance discontinuity 1is present on the
given well-log, the operation described in (i) above is performed on
some arbitrary data window. This time, however, the choice of the
correction is based on the comparison of the\general behavior of the
pséudo-impedance profiles and the well-log impedance in the chosen
window. Experience has shown that the results of the analysis for
this type of information are less reliable and must be applied with

caution.



188

B. No well-log information is available

In this case the results of the unconstrained impedance
inversion algorithms applied to the phase corrected traces are
compared to the velocity curve obtained from the Dix formula or from
the inversion_ of stacking velocities using algorithms outlined in
Chapter 1IV. Again however, these results are not completely reliable

and the technigue must be applied with caution.

C. Automatic Phase Correction

The procedure outlined in Chapter VII has proved successful in
a large number .of examples. However, it iS“quite conceivable that
this scheme will fail in some geological environments. Conseguently,
it is always recommended to compare the results of an unconstrained
inversion run on the phase corrected section to the available
well-log and stacking velocity information. 1If any doubt as to
correctness of the applied phase remains, it is recommended to use

the uncorrected data in the ensuing inversion.
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STEP 4: .Improving Signal to Noise Ratio

When the guality of the stacked section 1is 1low, impedance
inversion algorithms which operate directly on these data are not
likely to produce reliable results. In such cases poor gquality
output might be eipected even when the inversion 1is done by
incorporating external information from well-logs and stacking
velocities. An improvement in the signal to noise ratio in the
observed stacked section can.add'significantly to the final qﬁality
of results. Trace mixing is the simplest scheme for signal to noise
ratio improvement. However, mixing'fesulfs in a loss of lateral

resclution which may obscure some features of interest.

An alternate approach is based on principal component analysis
as woutlined in Appendix 7-B. Here we search for ‘the most
correlatablé (similar) component .in .a set of 'n' successive traces
(generally n = 3 is .sufficient). This method deteriorates to a
straight stack if the sigﬁals are uncorrelated but it will achieve a
somewhat better signal to noise ratio, accompanied by a somewhat

smaller loss of lateral resolution, otherwise.
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The basic assumption made in the inversion algorithms described

here is that the section to be inverted consists of a bandlimited

representation of the reflectivity function. The LP algorithm

attempts to construct a full band reflectivity whose spectrum
consistent with the data within +the information band. It
therefore important that the width of +this frequency band

reliably determined.

In determining the reliable frequency band one should use

following guide-lines:

is
is

be

the

(a) The results of the impedance inversion algorithms are more

certain and exhibit higher resolution when the algorithms use a

"wider frequency .bandwidth.

(b} Earth attenuation causes a severe loss of energy at

the

higher frequencies with the result that the amount of energy

that returns to the receivers at these frequencies for 'large'

arrival -times 1is small. If this energy 1is <comparable in

magnitude to that of the background noise, the information

contained in these fregquencies is not reliable and should not

be used in the inversion.

The actual determination of the endpoints of the reliable

frequency band (FLO, FHI) 1is based upon inspection of a set of

amplitude spectra corresponding to afbitrarily selected traces

from

across the section. The processor should note the band of



191

frequencies at’which relatively high energy is concentrated.and the
level of noise at those freguencies which are outside the freguency
band of the source. The upper limit of the reliable frequency band
is the highest freguency of this band at which energy is about twice
the noise level, The lower limit can be computed likewise, but one
is cautioned not to set the lower limit less than about 8 Hz because

the reliability of the phase below this frequency is rather poor.

STEP 6: Unconstrained Inversion

In the absence of any additional information, the inversion
algorithm <can operate on the information included in the stacked
section alone. In this case, the reflectivity obtained from the
algorithms represents a good deconvolution of the stacked section,
ahd.can.be safely used as such. However, the pseudo-impedance
section obtained from this inversion carries at best relative
information (as it represents only the logarithm of the ratio of the
impedance at time 't' to that at the top of the section). This
information may be correct if the geology of the area does not
contain many regions where the impedance is a slowly changing
function of depth. Generally, however, this impedance estimate has a
lower reliability than that produced from a constrained impedance
inversion run. Moreover, because the information awvailable 1is not
sufficient for proper scaling of the stacked section, subsequent
conversion of the pseudo-impedance into impedance or pseudo-velocity
is nbt likely to produce physically meaningful information

concerning formation characteristics.
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STEP 7: Scaling The Data

When constraints are used, it is important that the data are
properly scaled. The primary reason 1is that both point velocity
constraints and sfacking velocity constraints require that the sum
of the reflection coefficients obtained in the inversion will attain
some desired value to within a determined error. In order for the
sum to be physically meaningful it is necessary that +the data are
properly scaled. The magnitude of the reflection coefficients
obtained from the unconstrained inversion run provide an immediate
indication about the necessity to scale the data. For instance,
reflection coefficients larger than wunity are not physically
reasonable. Similarly, reflection coefficients of magnitude 0.5 in
an area where the reflection coefficient should be in the order of
0.05 1indicate that the data should be rescaled. To avoid -such
instances we re;ommend that considerable effort be spent in scaling

the data prior to an inversion run.

The procedures suggested here are gquite subjective and are
largely dependent on the geological intuition possessed by the

processor. We distinguish two .cases:

A. Well-log information is available

The simplest and most straight forward method is to compare the
size of the reflection coefficients obtained from the unconstrained
inversion to those observed 1in the well-log reflectivity. The
scaling factor obtained from this comparison is that number which

will scale the constructed reflectivity so that its reflection
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coefficients are comparable to those of the well-log reflectivity.
The user is reminded to use the same frequency information band in
the unconstrained run as he will when he runs the constrained

version.

Once an approximate scaling factor has been determined, it 1is
recommended that the constrained. inversion algorithm be run on small
sets of scaled data. One should now inspect the computed impedance
or velocity estimates to verify that these estimates are
geclogically reasconable. If they are not, further adjustment of the
sqale_should.be made on the basis of this inspection. 1If the
processor is satisfied, the whole section may be scaled and the

constrained run can be submitted.-

B. Automatic scaling

The technigue outlined in Chapter VI has proved successful in a
number of cases. However, Tesidual phase and severe relative
amplitude discrepancies may cause its failure. It 1is then
recommended that this scheme be-used only when the 1log relative
impedance from an unconstrained run exhibits a reasonable match with
the well-log or the velocity profile obtained from the inversion of

the stacking velocities.
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Step 8: Well-log Constraints

Point velocity constraints can be used in the 1inversion when
wvell-log informafion is aQailable and é reasonable tie 1is
established between this information and either the observed stacked
section or the reflectivity output from an unconstrained 1inversion.
The format of the constraints includes the time of the constraint,
the estimated velocity and a corresponding estimate of the

uncertainty in the velocity.

Step 9: Stacking Velocity Constraints

Stackiﬁg velocities are always available for wuse 1in
constraining the impedance inversion, but their applicability to
this 1inversion may decrease considerably in regions of complex
geology. If it 1is possible to wutilize them, their information
‘supplies additionél controls on the low-freguency trends in the

recovered impedance.

To derive information from the stacking velocities we assume
that to good approximation they are in fact RMS velocities. Thus,
from the stacking velocities we can get averages of the velocity

over selected time windows.

Velocity analysis, continuous velocity analysis maps, or
constant velocity stacks can all be used for selecting stacking
velocities., However, the picking of stacking velocities with the
corresponding times and the associated uncertainty values 1is most

easily performed on a contour velocity analysis plot. One should
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select as many reasonable stacking velocities as possible,
particularly in those time windows where the stacked section

indicates major structural changes.

Velocity constraints (if available) should be used along with
the stacking velocities in the veiocity inversion. The final
constructed model then incorporates all of the available velocity
information. The velocity inversion algorithms (described in Chapter
1V) offer important advantages in both stability and approach over
other one dimensional schemes. Out of all possible velocity models
which fit the data, these algorithms -seek that solution which
exhibits the smallest amount of change as a function of time
(depth). This results generally in .a smooth version of the true
structure. The correctness of the low frequency features ‘in this
model is - further ensured by the addition .of point velocity

constraints (from well-log information) when available.

Stability is achieved by not reguiring that the solution fit
the data exactly, but rather allowing it to misfit in accordance

with the supplied errors.

The RMS inversion followed by an appropriate interpolation
generates an interval velocity profile at each CDP location which is
a smooth estimate of the true velocity profile. In using this
velocity model to constrain the impedance inversion, we must
remember that it is similar to the true velocity only'in terms of

averages over certain time windows. This prescribes the form of the
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constraint utilized by the impedance algorithm. The average value of
the impedance change across a specified time window is constrained
‘to be that calculated from the input interval velocity, to within a

given misfit (see Chapter 1IV),.

One 1s cautioned again that the reliability of the constructed
interval velocity curves depends on the‘ guality of the wvelocity
énalysis maps and the deviation of the 1local geology'from the
horizontally layered earth model (which is assumed in the conversion
from stacking to interval velocity profiles). In areas where steeply
dipping events are present, the estimated velocity curves may

exhibit prohibitively lafge~errors.

Step 10: Principal Component Analysis and Low

Freguencies Mixing.

In - order to increase the reliability and enhance the
presentation of the results, we recommend that principal component
analysis will be applied to the final reflectivity section produced
by the 1inversion. This operation (which has been described
pfeviously) should be applied to the reflectivity section prior to
plotting. Its application will increase considerably the signal to
noise ratio of the reflectivity section and result in only a small

loss of lateral resolution.

Due to the inherent non-uniqueness in the acoustic impedance
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inversion problem, it 1is necessary to mix the predicted low
frequencies, that is, to average those freguencies generated by - the
inversion algorithm which are smallér than 'FLO' (the lower limit of
the information bané). This mixing operates on the premise that the
very low frequencies (say 0-1.5 Hz) should exhibit only a very small
change across the section and hence the information about the
reflectivity contained in those freguencies is averaged over a large
number of traces. Conversely, for frequencies close to 'FLO' only
the information contained in a small number of successive traces is
mixed. This permits lateral variability to occur. Between these two

extremes, the number of traces used in the mixing decreases .rapidly

by a rule which behaves approximately as the inverse frequency

(1/£).

STEP 11: Conversion of Full-band Reflectivity to Pseudo-Velocity or

Pseudo-Impedance

The output of the acouétic impedance inversion algorithms is a
set of 'full-band' reflectivity functions which satisfy all
constraints imposed during the inversion, to within the prespecified
errors. That 1s, the reflectivity function has a spectrum which
matcﬁes the spectrum of the input seismograms within the information
band, and it also satisfies well-log velocity constraints and
stacking velocity constraints if they were imposed. Conversion of
the full band reflectivities into velocity or impedance is carried
out by exponentiating the partial sums of the reflectivities and

then multiplying them by the starting velocity at each CDP location.
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STEP 12: Displaying Impedance Sections

Pfesentation . of impedance sections depends largely on the type
of information desired. When the goal of the interpreter 1is to
delineate geological formations with the associated relative
impedance information, a simple line plot seems to offer a wuseful
presentation. This typé of 'presentation is particularly advantageous
since the interpreter's eye will tend to follow impedance
discontinuities and not be affected adversely by small ‘trace to

trace impedance variations.

.I1f the interpreter wishes to assign a velocity or impedance
value to the formation of interest, color or grey shades constitute
a better form of presentation. When such a presentation is desired,
the choice of the number of color levels and their actual values 1is
of paramount importance. A poor choice of these parameters may cause
a significant decrease in ‘the observed resolution of the presented
impedance. It is recommended that the number o¢f color 1levels be
chosen such that. the interpreter can recogniie easily any transition
from one velécity/impedance level to another. Choosing too many
color levels allows subtle transitions from one color 1level to
énother, thereby obscuring small targets of economic importance.
Furthermore, although it may seem desirable to assign an arbitrary
velocity/impedance value to each color 1level so that the total
number of colors will cover the vrange of the expected velocity
values in a linear (equi-spaced) fashion, this coloring scheme is
strongly not recommended. This scheme will cause a severe 1loss in

resolution (reduction 1in the number of active color levels) in any
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geological environment which includes a small number of very low and
very high impedénce formations embedded ‘in a set of formations
characterized by medium impedance values. A better choice of levels
is one which assigns values to color levels so that each color .level
represents about the same number of picture cells (a picture cell is
a portion of the impedance pictufe defined by the time and the space
sampling in£ervals). This approach ensures that .all the available
colors - will be active in the coloring prbcess and thereby yield a
better apparent reslution than that offered by the 1linear <coloring

scheme’,

Finally, the results of an .inversion fun executed with the full
set of steps discussed previously is presented in the folded data
set marked as Line C. These data have been acquired in Alberta and
feature a number of exploration targets in the time window 0.5 to
0.7 seconds. The processed result presented here depicts the
full-band reflectivity functions overléyed by the pseudo-velocities
c¢alculated from these reflectivities wusing the assumption of
;onstant density. Details which are not easily deciphered from the
stacked section are clearly observed on the final inversion result.
In particular, lateral variations in formation velocity are clearly
visible even though only nine grey shade levels representing
velocity 1in kilometers/seconds are displayed. Comparison of the
calculated pseudo-velocities with sonic 1log information (not

available during the inversion process) revealed excellent
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agreement.

Past experience with the process described in this work has
shown that careful utilization of the presented algorithms generally

yields highly reliable results.
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APPENDIX 2-A: MEAN NOISE POWER AND THE VARIANCE OF A RANDOM NOISE

PROCESS

This appendix justifies the use of the mean noise power as an
estimate of the variance of the random noise process in the time
domain, using the treatment of Jenkins and Watts (1969), p. 230-232)

as a starting point.

L op

Let the observed noise power at frequency wj be regarded as a

realization of the random variable Cj defined by

Cj = u? + »2,

{(2.A-1)

where pgj and vj are random variables representing the real and

imaginary parts of the noise in the frequency domain, i.e.,

N={ .
_ uj 1/N Z 2 cos({wjt,),
m=0 n

and

(2.2-2)

N-ti
1/N Z Z sin(wjt,),

Mo

vj
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The random noise process Z is assumed to be normal with mean zero

and variance o?; hence,

Var{u] = 02/2 = Var[»] = V, for example.

(2.A-3)

Suppose the high-frequency half of the spectrum of the
seismogram X(w) can be regarded as pure noise, and we define the

random variable C by

- '
€= (2/N') Z C3,

=x"

where N' = N/2 and N" = N/4 + 1. The sample mean 72 defined in the
text "statistical cutoff" section under "Selection of data.....” is

a realization of C:

N\
32 = (2/N') I |%5j|2,
="

From equations (2.A-1) and (2.A-3) it may be observed that Cj
is the sum of squares of two normal random variables with variance

V, so Cj/V is distributed as x?,. Hence, recalling eguation (2.A-3),

e[Cj) = €[C] = 2V = o2,

(2.A-4)

Therefore the sample mean of the noise power 1is an unbiased
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estimator of the variance of the random noise process, i.e., % is a
valid estimate of o¢?2.

C tmay be regarded  as near normal on the strength of the central
limit theorem and Gaussian confidence limits assigned with respect

to

var[C) = 8VZ/N' = 20%/N’, (2.2-5)

In the computer program, the (upper) Gaussian 95 percent confidence
limit - is adopted as the estimate of the variance. This conservative
estimate can cause overcompensation for noise, particularly in the
equality constraint formulation, with the result that only the most

prominent spikes are recovered.
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APPENDIX 2-B::THE CHOICE OF STATISTICAL CUTOFF IN LP DECONVOLUTION

The'théory underlying the choice of the statistical cutoff in
the "statistical cutoff" section under "Selection of data..... " in

the text is presented in ‘this appendix.

The real part of the error in the deconvolved data 1s regarded

as a realization of the random variable Q given by

Q = Re{E/W} = [uRe{W} + » Im{W}1l/|W|?Z,

{(2.B-1)

where this eguation 1is understood to apply at each freguency. The
treatment requires only trivial modification if Q 1is regarded as

Im{E/W} instead.

The reliability of data is assessed by comparing Re?{X/W} with
a cutoff K defined in -equation (2.9) in terms of €{Q?] and a
parameter a. Hence, ‘the distribution of Q? is of primary interest
here. Since u and v in equation (2.A-2) are normal random variables
with mean zero, so too is Q; therefore, Q2?/Var[Q] is distributed as

x?,. Hence, uéing equations (2.B-1) and (2.a-3),

e[Q?] = var[Q] = o2/(2|W|2),

(2.B-2)
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which corresponds to equation (2.8).

As a increases, the probability that pdre noise will exceed the

cutoff decreases. More precisely,

Prig®>k} = (1/fZ7) | exp(-x/2)dx/\%
2«
(2.8-3)

= erfc(a).

Thus, if ¢? were known exactly, setting a = 2 would reduce the
probability of the inclusion of a pure noise value to less than

0.005.
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APPENDIX 2-C: NOISE CONSIDERATION IN THE EQUALITY CONSTRAINTS

FORMULATION OF LP DECONVOLUTION

Essential to the -eguality constraints formulation is a

condition to ensure the statistical compatibility
removed in the course of the computations; such a

derived below.

of the noise

condition 1is

The real part of the noise g will be considered, without loss

of generality. Since u 1is a normal random variable, u?/V is

distributed as x%,, with V defined in equation (2.A-3).

lul = Vuz= ¥ Nuz/v,

it follows from Jenkins and Watts (1963, p. 71) that

. pravas—

ellu]] = YV/znfexp(-y/2)dy = o/ V.

Hence,
e[S] = 20/ T?

for the random variable S defined in equation (2.13).

Writing

S (2.Cc-1)
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In the 1linear programming problem, u and » are expressed as

differences between peositive quantities, i.e.,
pm = um - ym and ym = Xm - ym, m =1, ...., M,

where M is the number of acceptable freguencies as before. The

actual constraint imposed on the noise is

M
(1/M)Z. (um + »m + xm + ym) = e[S]) = 20//7.

me|

(2.€C-2)

This condition is consistent with eguation. (2.13), provided

|um| = um + prm .and |»m| = xm + ym.

(2.C-3)

The wvalidity of equations (2.C-3) derives from the fact that
minimization of the Li-norm of a(t) is favored by relatively large
noise values; with reference to equation (2.12), it-is apparent that
thé trivial solution 1is feasible for sufficiently serious noise
‘pollution. Therefore, given the constraint equation (2.C-2), the
noise is most effective in reducing ||a|], when it satisfies

equations (2.C-3).
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APPENDIX S;A: AR SPIKING DECONVOLUTION OF .BAND-LIMITED DATA

The problem of obtaining a sparse spike representation of
band-limited reflection seismograms has been treated recently by a
number of authors .in ‘the geophysical 1literature. ‘The  basic

assumptions underlying this operation are:

(2a) An earth model which consists of a set of physically

distinct layers.

(b) .A sparse reflectivity series, that 1is, reflections are

generally separated by a number of zeros, .and

(c) The Trecorded seismogram is a reasonable band-limited
representation of the earth response function. That is, the source's

phase and amplitude distortions are largely removed.

We express the second assumption by the eguation:

N-1
r(t)= Z r -8(t-na)  (6.A-1)
n=o

where N is the number of samples in the input seismogram,

r, is the reflection coefficient at the nth sample,
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A is thé sampling interval, and
.6(t-nA) represents a Dirac delta function at time nA.
‘The digitél Fourier transform of a sparse reflectivity series r{t)
consists of the sum of a number of sinuscids and is written as:
R(w )= RJ—‘Ewrnexp( i27jn/N) (6.A-2)
with j being the index of w the angular frequency, and

n the time sampling index.

It 1is obvious that each frequency in the series R(wi) contains
contributions from each of the spikes present in the reflectivity
series. Hence, it is expected that under the assumptions specified
previously, a full-band estimate of the reflectivity function r(t)
can be obtained from an incomplete set of R(wj)'s via the use of
app;opriate numerical techniqgues. In this work, we have used the

Linear Programming and the Auto-Regressive technique which will be

described next.

Auto-Regressive Deconvolution

As was showﬁ in equation (6.A-2), the freguency representation
of a sparse-spike series consists of a sum of a number of complex
sinusoids each of which corresponds to a specific non-zero
reflection coefficient. The problem of spectral extension can then
be viewed as an Auto-Regressive process where a complex prediction
filter {gk} is calculated and the available information is

extrapolated by a convolution with this filter. The process is
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simply summarized by the following set of equations.

Let the forward AR prediction be given by:

P
Ry= L ERi- &

and the reverse AR prediction by:

with p being the order (length) of the prediction operator {gk}, and
* denoting the complex conjugate. We seek a prediction filter § such
that the sum of the forward and reverse predictioﬁ errors is
minimized in a least-sguares sense. That is, the filter coefficients

are found through the minimization of:
2 AN £ : 2
e? = 1/(N-p)_::zf>..lRl-ﬁ,ﬁkg}'kl

1/(N+p) T |R*- F g,R% |?

+ +p) . *- T B,R* .
p j:l 3 E:lék J’L

Details of some of the approaches +to ‘the 'solution of this
miﬁimization problem arev given in Burg (1975), Ulrych and Clayton
(i976), Ulrych and Bishop (1978) and Claerbout (1976).

The reader who 1is familiar with the AR process probably
realizes that the order of the prediction filter is qQuite important
to a successful spectral extension process. Since one prediction
coefficient 1is required for the ext;apolation of each sinusoid, the

ideal order of the AR process should be equal to or larger than the
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number of lafers NL in our model. However, for band-limited real
data, where we are given only M<(N+1)/2 freguency observations the
requirement p>NL cannot be met. Hence, in this case, we hope that
'the\pfocess will detect only the larger reflectors in our model,
thereby, reconstructing only the information concerning the major
features of the sought reflectivity model. Our experience to date
with a large number of synthetic as well as real data examples have
proveh the process to be quite successful. However, in cases where
the local geclogy cannot be 'approximated by a relati?ely small
number of reflectors the AR process, -and also the LP will have a

somewhat lower likelihood of success.
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APPENDIX:7-A: THE DECONVOLUTION OF PHASE-SHIFTED WAVELETS

7-A.1 INTRODUCTION

Ih both reflection and refraction seismic studies, it is often
assumed that the earth 1is composed of a number of homogeneous
layers. & ,typicali seismogram from such an earth model can be
approximated by convolving a source wavelet with a set of
reflectivity coefficients. The source energy 1is assumed to be
propagating as a plane wave, and the reflectivity seqQuence 1is
ideally a set of Dirac delta functions located at times
corresponding to primary and multiple reflections.from the layered
earth model. Given that this "convolutional model™ for a seismogram
has some validity, .a standard procedure 1is first to estimate a
-source wavelet and then to remove its effect by déconvolution. The
resultant estimate of the reflectivity sequence is used to interpret
the parameters of the layered earth structure.

A complicating factor to this simplistic approach is introduced
when wide-angle reflections are considered or when the wave-front or
réfiective boundary is curved. Under these conditions, the angle of
incidence for the incoming ray <can be ~supercritical and
inhomogeneous waves will be created on the boundary (Aki and
Richards, 1980, p. 155). The reflectivity coefficient for the layer
becomes complex; consequently, the shape of the emerging wave packet
differs from the impinging one. The amount of distortion depends

upen the ©phase ¢ of the complex reflection coefficient. Following
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Arons and Yenhies (1950) [or Aki and Richards (1980)], the altered

waveform w(e;t) can be written as

w(e;t) =_cos(e)-w(t) + sin(e)-H{w(t)]

where H[ ] denotes the Hilbert transform. Basically, upon
interacting with the boundary, the positive ffequencies in w(t) are
advanced by ¢ and the negative freguencies are retarded by e; it is
this sign effect which is responsible for the Hilbeft transform in
equation (7-A.1).

The importance of .an alteration in the wavefofm can be
appreciated when one attempts to estimate .an -arrival .time for a
wavelet that has been significantly phase shifted. For exémple, if
e = n/2, then w(e;t) = H[{w(t)], and the altered waveform will differ
greatly from w(t). In particular, if w(t) is delta-like, w(e;t) will:
have an -emergent portion of significant amplitude at times preceding
those expected from geometrical ray computations. Estimating ‘the
arrival time to be near the onset of the emergent energy can produce
appreciable error. Choy and Richards (1975) presented whole earth
seismograms for SH waves in which various § arrivals are clearly
phase shifted by approximately =/2; they suggested that errors in
estiméting the arrival time of the phase-shifted wavelets could be
as large as 3 to 5 sec.

" Another area in which waveform alteration can have significant

consequences is in exploration seismology where wide-angle
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reflections ,4nonplanar waves, and dipping layers produce conditions
of supercritical reflection. Attempting to follow an event horizon
by correlating peak (br troughs) on successive traces 1in a récord
section can lead to erroneous results if the character of the
wavelet changes from trace to trace. |

The purpose of this paper is to overcome these difficulties by
introducing a comple# reflectivity function from the outset. The
convolution of this reflectivity function with an <analytic source
wavelet prbduces an analytic seismogram. Once recast as a
convolution problem, linear inverse theory is used to deconvolve the
analytic seismogram to obtain unique averages of the real .and
imaginary parts of a complex reflectivity function. Information
about the amplitude and phase of +the reflectivity function is
recoverable through technigues of model construction or by using a
simplified interpretation based upon the modulus of the deconvolved
output. This 1latter method is not exact, but it works well if the

seismic arrivals are not too close together.

Here we apply the .analytic deconvolution technigque only to
synthetic data, but Ulrych and Walker (1982) use our analytic
formulation and a complex version of minimum entropy deconvolution
(MED) to deconvolve a set of normal incidence seismograms. Their
work presents an important and practical extensiop of the analytic
formulation, since the MED algorithm does not require knowledge of
the wavelet; in fact, an estimate of the source Qavelet can be
obtained by inverting the 'MED filter. 1In those cases where the
source function is not known, such an estimated wavelet is a crucial

first step to carrying out the deconvolution by the methods
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presented here.

7-A.2 THEORY

In many physical problems, a data set x(t) is generated by the
superposition of time-displaced replications of a source wavelet

w(t) that is,
x(t) = r{t)*w(t), (7-A.2)
where * denotes the convolution operator. In seismological problems,

r{(t) 1is called the reflectivity function. For normal incidence

seismograms over a layered earth it can be written .as

M
r(t) =z rja (¢t = 7)), (7-a.3)
N
so that
H
x(t) = Z rjw(t - r;), (7-a.4)
4%

where r are reflection coefficients and 7y are the delay times
related to layer thicknesses and material velocities. When the data
are adeguately represented by equation (7-A.2), the recovery of
r(t), when w(t) is known, is a well-posed linear inverse problem for
which a variety of solutions have been given in the literature. But
there exist cases of practical importance where neither equation

(7-A.2) nor eqguation (7-A.4) is adequate because w(t) has been phase
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shifted upon reflection from a boundary. Consequently, the data
consist of a superposition of wavelets, each phase shifted by an
arbitrary and unknown amount. Any attempt to deconvolve without

allowing for ﬁhese phase - shifts will produce a poor estimate or

r(t).

If w(t) is used to denote the Hilbert't;ansform H{w(t)], then a

wavelet, phase shifted by an amount ¢, can be written as
w(est) = cos e-w(t) + sin e W(t)
=’Re{3(t)«exp[ie]},
where Re denotes the real part and wit) is the .analytic -wavelet

S(t) = wit) - i¥(e)

(Bracewell, 1978, p.268). Allowing .for phase-shifted wavelets,

eqguation (7-A.4) can be rewritten as

ey
G T vleg, o)

.x(t)'fl g

M A .
= Re { I gyexp[igl-w(t - Tj)}r

J:l
(7-A.5)

By introducing the continuous function

‘ M
r(t).explie(t)] = Z ri-expliej]-8(t =

J:\J J)’
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equation>(7-A.S) may be rewritten as

x(t) = Re{r(t) explie(t)] *w(t)}.

(7-a.6)

From eguation (7-A.6) it can be seen that the seismogram x(t) is the
real part of the convolution product of a complex reflectivity

function and the analytic representation of the wavelet.

Although equation (7-5.6) is nearly in the form of eguation
(7-2.2), the real part on the right-hand side prevents us from
applying known deconvolution techniques to recover r(t) and e(t). It
is convenient, therefore, to introduce the analytic signal
x(t) = x(t) - i;(ff. Then, since the bracketed term in equétion

(7-A.6) is .an analytic signal, it follows that

%(t) = r(t) explie(t)] *w(t).

(7-a.7)

This is the desired convolution formula, and evidently standard
procedures can be wused to recover r(t) and e(t) if w(t) is known.
Here we shall treat the deconvolution as a linear inverse problem

and use the formalism developed in Oldenburg (1981).

Let us first define a compléx model m(t) as

m(t) = r(t) explie(t)]. (7-a.8)
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Then equation (7-A.7) can be rewritten as

L(t) = m(e)*w(t) + A(t), -  (7-a.9)

where the analytic noise - n(t) has been included to account for
additive noise n(t) in the measured signal. Sometimes, the power
spectrum of n(t) may be known; or, in the absence of that
information, one can assume that n(t) is uncorrelated Gaussian noise
with an estimafed standard deviation, oo,. The noise statistics of
A(t) are easily computed from n(t), but the result will depend upon
the algorithm used to compute the Hilbert transform. If the digital
Fourier tranform 1is wused, the power spectrum of n(t) will be the

same as that of G(t) when n(t) is unbiased.

The deconvolution of equation (7-A.9) will be <carried -out in
the freguency domain. It is assumed here that all time functions are
periodic with period T. The Fourier transform of any such function
g(t) is given by | .

/-

G(f,) = G, = 1/T [ g(t). exp[-i2mkt/T] at,

k =0,+1, +2, ...,

and the inverse Fourier transform is

g(t) =;§ Gyexp[iZwkt/T]

Se-oR
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Unique information about m(t) will be found by constructing <an
analytic filter 9(t) such that an analytic averaging function

alt) = W(L)*9(t) (7-A.10)

is "as close as possible" to some desired function h(t). Ideally we
want C(t) to contract w(t) .into a reai delta-like function. However,
this is impossible in the anlytic formulation because ﬁk = 0 for
k<0; hence the negative frequencies are lost froh the solution. This
is the price paid so that phase-shifted wavelets can be treated in a
convolution format. The unigue averages of the model are found by

convolving 9¥(t) with the analytic signal. That is,

<am(t)> = R(£)*9(t)

= m(t)*a(t). (7-a.11)
The statistical variance of the averages is given by

Var[<m(t)>] = Var[ﬁ(t)*c(t)],

(7-2.12)

g§e concept of unigue averages is sometimes misunderstood, so
an elaboration is wuseful. Let us first suppose that the data are
accurate. The first eguality in equation (7-A.11) shows tﬁat <m(t)>
is obtained from linear combinations of the data, and the second
eguality shows that any model which identically reproduces the data
will have these same averages. It is in this sense that the averages

are unigue; conseguently, <m(t)> and 2(t) summarize our knowledge
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about all poséible models which might reproduce the data. However,

if the data are inaccurate, the averages must .also be .inaccurate.

This statisical inaccuracy is quantified by the variance in equation
(7-a.12).

The analytic filter can be found by minimizing

'rlz A A
¢ = cos 6-f Ja(t) - h(t)]|3dt

« Tl

+sin95VarL<m(t)>], O<6<7w/2.

(7-a.13)

‘The usual trade-off 'paraméter ¢ has been included in eqguation
(7-a.13), and it controls the trade-off between resolution <and
accuracy of the averages. Following ©Oldenburg (1981), we use

Parseval's theorem and the convolution theorem to rewrite eguation

(7-A.13) .as
20 A A A
¥y = cos G.JE 'TI'TW'&Y‘( - thz

o A A '
: .m2 . 2 -
+ sin @ 'rkz- INkV/h] . (7-a.14)

=0

The lower 1limit on the summation

k =

is k = 0 instead of the usual

- = because the spectral components of analytic functions are

zero  for negative freguencies. The Fourier coefficients of the
desired filter, found by differentiating equation (7-a.14) with

A 3
respect to V; and setting gw/‘aV: = 0, are



226

: A /\;
A cos 6 HyW%

TIQHZCO504+ I%‘?sine,r

v =0, k,< 0, (7-a.15)

wvhere the * denotes the <complex conjugate. In the special case

A A )
h(t) = §(t), a Dirac delta function centered at the origin,

A
cos 6. W*

‘Tzlﬁklz-cos 6 + T|ﬁb|z-sin 6,

<
"

0, , ' k<0, (7-A.16)

Equation (7-A.16) reduces to Gk = l/(T?%k) when 6 = 0; this result
is identical to ‘that obtained when solving 3(t)z=‘3{t)*$(t) by using

the convolution theorem and dividing in the freguency domain.

With ¥(t) computed, the averaging function 3(t) is easily found
from equation (7-A.10). The averages [from equation (7-A.11)] have

the form
<m(t)> = X(£)*$(t) = m(t)*a(t) - im(t)*T(t).
(7-2.17)
It 1is seen that <m(t)> is the sum of two averages of the model. One

of these averages is the inner produce to m(t) with a delta-like

function a(t), and the other average is the inner product of m(t)
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with 3(t). Only in the special case where m(t) 1is purely real or
purely imaginary can the interpretation proceed with the same ease
that it does in ordinary deconvolution algorithms. In general, the

model
m(t) = r(t):cos el(t) + ir(t).-sin e(t)
(7-a.187)"

will have both real and imaginary components; conseguently, the real

and imaginary parts of <m(t)> have the form

Re<m(t)> = Re{%*%} = r(t)-cos e(t)*a(t)
+ r(t)-sin e(t)*3(t),
Imem(t)> = Im{x*%} =‘r(t)~sin'e(t)*a(t)

-r(t)cose(t)*a(t).

(7=-2.19)

The averages in eguation (7%A.19), their statistical error, and
the averaging functions contain the desired information about r(t)
and e(t). The general problem of recovering information about r(t)
and e(t) from equation (7-A.19) will be considered, but first a
simple, insightful example will be presented. We consider a single

complex reflective coefficent located at t = r, so that the model is
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m(t) = r, explie,] &6(t-7,).

From equation (7-A.19) the real and imaginary parts of the averages

become
Re<m(t)> = r,cose,alt-r,) + rysin e,3(t-7,).
Imem(t)> = rysine,alt-r,) = r,cos e,a(t-r,).

Conseqguently, Re<m(t)> will look like a reproduction of a(t), and
the imaginary part will have the form of 3(t) if e, is close to zero
or . Altefnatively, if e, is close to 7/2 (or 37/2), the Re<m(t)>
will resemble 3(t) and the imaginary part will look like a(t). For
intermediate values of €,, the delta function spike in the model
will be seen as a linear combination of a delta-like averaging
functian and its Hilbert +transform. For the current example, we
shall choose e, = n/4. The wavelet and data are shown in Figure
7-A.1, and the results of the deconvolution obtained by using
equation (7-5.16) with 6 = 0 are shown in Figures 7-A.1c-1f.
Clearly, both the real and imaginary wparts of the averages are
linear combinations of a(t) and 3(t). If the data were inaccurate
the deconvolution could not be carried-out at 6 = 0; some sacrifice
in resolution would have to be made in order to achieve statistical
reliability in the averages. This could be effected by using
equation (7-A.16) with a value of 6 greater than zero. Typical
results are shown in Figures 7-A.1g-1j.

Our ultimate goal is to determine the values of the parameters
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Figure 7-A.1

Shown in successive panels are (a) the data obtained by
phase-shifting the wavelet in (b); (c) the real part of the averages
obtained by deconvolving with 8 = 0; ‘(d) the averaging function
a(t); (e) the imaginary part of the averages obtained by
deconvolving with 8 = 0; (f) the Hilbert transform of a(t); (g)-(j)
are the same as the results in (¢) - (f) except that the
deconvolution was carried out with 8 > 0; (k) the modulus of the
averages in (g) and (i); (1) the modulus A(t) of the averaging
function [equation (7-A.20)]; (m) the recovered reflectivity
function; (n) the recovered phase function.
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(ry,ry,e,) from the averages in Figures 7-A.1g-1i (or 1c and 1te).
There are a number of ways to accomplish this. The first method uses
the’ modulus of the averages. For the example of a single reflector,
the modulus of <m(t)> is easily shown to be independent of the phase

e, and egual to

|<m(t)>] = [R(e)*F(t]] = ryfale - 712 + F(t = 7,)7
©o= At - o). |
where , (7-A.20)

ale) =fa(e)? +3(¢)2.

Thus |<m(t)>| is scaled and translated replication of A(t), and the
best wvalues for the scaling factor r, and the time delay 7, are
those which minimize the difference between the left- and right-hand
sides éf equation (7-A.20). The modulus of the averages and A(t) are

. shown in Figures 7-A.1k - 11,

In an alternative method, 7, and r, can be estimated by
recognizing -that A(t) is a delta-like function whose maximum is at
t = 0; the time difference between zero and the location of the
maximum in |<m(t)>| will thus provide an estimate for r,. Moreover,

2(t = 0) = 0, so r, can be recovered directly from
r, = 1/A(0) max|<m(t)>], (7-A.21)

where max indicates the maximum value. The phase ¢, can be estimated
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from the function -

¢(t) = tan-' [Im<m(t)> /Re<m(£)>] = ,
tan-'{[sine(t)a(t-7,)-cos e(t)3(t~7,)] /
[cos e(t)a(t-r,)+ sin e(t)3(t-7,)]}

(7-a.22)
which, at time t = +,, reduces to
¢(t = 7,) = tan-'[sin e(t)/cos e(t)] = e(7,).

(7-a.23)
‘'Thus the phase shift e, can be found by evaluating ¢(t) at percisely
‘the arrival time of the wavelet. The recovered amplitude and phase

are shown in Figures 7-A.1m and 1n.

It 1is clear that if the data were accurate and consisted of a
single phase-shifted‘wavelet_there would be no problem in computing
the arrival time of the pulse, the magnitude of the reflective
coefficient, and the phase shift. 'In - spite of 1its success, we
emphasize that equation (7-A.23) should be used with some caution
because a(t) is large if t is not precisely zero. A small error in

estimating 7, can lead to a large error in e,.

The interpretation of the deconvolution results is less
straight- forward when the data are 1inaccurate or when multiple

reflectors are sufficiently close so that averaging functions from
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different reflective events overlap. These complexities affect the
averages differently so they are treated separately. The effects of

observational errors are considered first.

Let n(t) represent the additive noise on the seismogram, and
T(t) and f(t), respectively, represent the Hilbert transform of the
noise and the analytic noise signal. The averages of the model <can

be written as

am(t)> = £(£)*¥(t) = <m(t)>  + s<m(t)>,

(7-a.24)

where 9(t) is the analytic filter [eguation (7-A.16)] and &<m(t)>
represents the discrepancy between ‘the true average and that

computed from the erroneous data. Since X(t) = %(t) + n(t), it

{JLu-v_

follows that

s<m(t)> = A(L)*Vv(t). (7-A.25)

and thus

& Re<m(t)> = 2n(t)*v(t),

§Imem(t)> = =2H[n(t)*v(t)].

(7-a.26)
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By using Parseval's equation, the convolution theorem for Fourier
transforms, and the assumption that n(t) is stationary, it follows
from equation (7-A.26) that the variance of the averages 1is evenly

divided between the real and imaginary parts, that is,
. 00 A A
Var[Re<m(t)>] = Var{Im<m(t)>] = Tz/%f |NkV§]z.
R=}
(7-a.27)
[(The sum in equation (7-A.27) begins at k=1 instead of k = 0
because the noise is assumed to be unbiased, and hence N, = 0.]
In addition, approximate formulas for the variances of |<m(t)>]|
and ¢(t) can be computed from the Taylor expansion technigue

presented by Jenkins and Watts (19639, p. 76). We have

Var[ |<m) (t)>|]= Var[Re<m(t)>],

(7-a.28)
and
Var[¢(#)]'z Var[Re<m(t)>]/|m(t)|?
(7-a.29)
In deriving equations (7-A.27), (7-A.28), and (7-aA.29), we have used

the fact that for stationary noise Cov[n(t), N(t)] = 0. Further, in

equation (7-A.29), the denominator should .really be
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{E[Re<m(t)>]}? + {E[Im<m(t)>]}? where E denotes the expected value;
these ‘quantitiés, however, are unknown and have been replaced with

their measured values.

A second intérpretive complication arises when the reflective
ﬁorizons are S50 close that there 1is significant overlap of the
averaging functions in the deconvolved output. An attempt to infer
directly from <m(t)> the correct values of the phase shifts, the
arrival times of the wavelets, and the magnitude of the reflective
coefficents may produce poor results if equations (7-A.21) and
(7-A.23) are used alone. In fact, the problem encountered is similar
to that faced 1in interpreting the results from standard
deconvolution technigues. There, eaéh reflective event appears as an
averaging function multiplied by some .amplitude .factor. If
reflective events are so close that the averaging functiohs errlap
significantly, then the location of the maxium of <m(t)> may no
longer coincide with the true arrival time of a wavelet. In the
extreme; two reflective events might appear as a single peaked
functioh in the averages with the time at which the peak occurs

lying between the two true arrival times.

Our problem 1in deconvolving phase-shifted signals is somewhat
worse than 1in the standard deconvolution problem ' because the
averages <m(t)> are complex combinations of delta-like averaging
functions and their Hilbert transforms. Here we present two methods
for recovering r(t) and e(t) from the averages in equation (7-A.17).
The first method 1is one of many possible model construction

techniques; it will yield good results even when the reflective
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events are close together. The second method is based upon the
approximate formulas in (7-A.21) and (7—A,23)} it will work well if
the reflective events are sufficiently separated in time. In fact,
the approximate formulas appear to se guite good and should provide

acceptable results for many practical cases of interest.

Our construction algorithm 1is a parametric least-sguares
solution to obtain a "best guess" for r(t) and e(t), where

r(t). explie(t)] =_% a-exp[iej]-é(t - 7).
_3:\ J

Following the formalism outlined by Oldenburg (1981) closely, we
first determine, from the averages, the number of resolvable spikes
M and their approximate time locations + ,j =1,....M. Then -either
‘the real or imaginary'portién of <m(t)> can be used to find a set of

parameters {rj, aj, B8j}, j =1, ...,M, such that

. ‘N M ~
x3 = ,i_.{it%a(t)“ STt ﬁj-a(t’L' =7;)

-Re<m(t})>}?

(7-a.30)

is minimized. In egquation (7-A.30), aj = rj-cos(ej) and g3 =
rj sin(ej). A best guess of the magnitude of the reflectivity

coefficients and the phase advances is eésily derived from {aj, 8j}.

The second method for finding the parameters {rj, rj, ej} uses

an approximation involving the modulus of the averages. We saw from
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equation (7-A.20) that when the data comprised a single wavelet,
|<m(t)>| = ryA(t - r,), where r, was the reflectivity coefficient.
When the data comprised multiple wavelets, it might be hoped that

[<m(t)>]| = '}_‘ riAlt - 73), (7-a.31)

=1

-

that is, the modulus of the averages would be scaled and displaced
replications. of A(t). From an examination of equation (7-a.19), it
takes little effort to show that equation (7-A.31) cannot be true in
general. Nevertheless, we still expect -egquation (7-A.31) ‘to hold
approximately whenever the reflective events are separated by times
somevhat greater than the width of A(t). In such circumstances the
delay times <+Jj can be -eqguated to the times at which |<m(t)>]
achieves a significant maximum, and the approximate amplitudes and

phases can be determined by
tia 1/ A(0).|<m(rj)>], (7-a.32)
and

€ej ~ tan-' [Im<m(rj)> / Re<m(rj)>].

(7-A.33)

Variances of these guantities can be evaluated by using eguations

(7-a.27), (7-A.28), and (7-A.29).

The approximation (31), (7-A.32), and (7-A.33) must deteriorate when



237

the reflective events are closer together. To 1illustrate this, we
consider an example in which successive sets of data are generated
from a model consisting of tvwo reflective coefficients
(ry =75 = 1.0; e,!= t/4, £2-=vﬂ/2) which are brought closer
together. The distance between the two spikes is decreased from 10
to 1 digitization interval. Although no noise is added to the data,
the inversions are carried out (as in all realistic examples) by
using a nonzero value of 6 in equation (7-A.16). The averaging
functions used for this example are identical in character but
slighﬁly narrower than those in Figures 7-A.1h, 1j, and 11. Here w ,
the full width if A(t) at half its maximum value, is 6 digitization
intervals. The results are given in Table 1a shows {rj, ej, 73}
obtained by minimizing equation (30, and Table 1b gives the model
paramefers estimated from equaﬁions (7-a.31), (7-a4.32), and

(7-4.33).

The delay times, reflectivity amplitudes, and phase advances
from the least-squares analysis are seen to be identical to their
true values until A4r /w & 0.3. At that point there is no longer
any indication in the .averages ‘that two spikes exist. Rather,
[<m(t)>| shows only one peak; hence the least-sguares program

estimates a reflective amplitude of approximately r, +~¢, = 2.0,

The estimates of {rj, ej, 73} obtained- by using eguations
(7-A.31), (7-a.32), and (7-A.33) are reasonably close to the true
values for separations Ar/w >1, and the delay times are still well
de?ermined for even smaller separations. This indicates that the

approximations in equations (7-A.32) and (7-A.33) should perform
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well in practice as long as Ar/w >1.
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Table 7-A.1 :(a) displays the best guess for {r , ¢ , r } obtained
by'minimizing'eQUation (7-A.30). In the true model, the first spike
was held at r, = 10, 7, = 7, + A7, ry =T, = 1.0, €, = 45 degrees,
and e, = 90 .degrées. Calculations were made for
r, = 20, 18, 16, 15, 14, 13, 12, and 11. (b) disélays the estimates
{r , ¢, r} obtained from the .approximate formulas given by

equations (7-A.32) and (7-a.33).

(a)

or I I €, €2 T T2
10 1.00 1.00 45 ‘90 10 20
8 1.00 1.00 45 90 10 18
6 1.00 1.00 45 90 10 16
5 1.00 1.00 45 90 10 15
4 1.00 1.00 45 S0 . 10 . 14
3 1.00 1.00 45 90 10 13
2 1.89 - £8 - 11 -
1 1.93 - 53 —— 10 --
(b)
&r L L2 €, €2 T T2
10 1.06 1.06 41 : 84 10 20
-8 1.06 1.06 41 84 10 18
€ 1.04 1.04 ' 38 g7 10 16
5 1.10 1.10 "33 1.02 10 18
4 1.22 1.10 31 104 - 10 14
3 1.42 1.42 32 103 10 13
2 1.68 --. 68 - 11 -
1 1.86 - © 49 - 10 -
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Thus far we 7have considered very simplistic noise-free examples
involving only one or two reflective coefficents. More realistically
we could expect a number of closely spaced Teflectors and noisy
obsevations. In the next example we deconvolve a inaccurate data set
consisting of five phase-shifted wavelets. The results are shown in
Figure 7-A.2. The wavelet and the true reflectivity and phase
functions are shown in Figures 7-A.2b, 2k, and 21, respectively. The
data, with 5 percent whiteinoise‘added, are shown in Figu;e 7-A.2a.
The averages and averaging functions are shown in Figure 7-A.2c
through 2h. The real averages a(t),and a(t) (Figures 7-A.2c, 2d, and
2f) are used with -equation (7-A.30) to 'generate a best guess
rz(t) and e%(t), shown in Figures 7-A.2i and 2j. The reconstructed

signal

m
x%(t)~='ReL§'r3.exp[i;3] Wit ->t?)]
is compared with the data x(t) in Figure 7-A.2m; their difference,
displayed in Figure 7-A.2n, is a random signal with a :standard

deviation of approximately 5 percent.

Before leaving this example, it is of interest to carry out one
more computation. Suppose it were not known that the wavelets were
phase~shifted. We would proceed by deconvolving the data =x(t) to
recover a real reflectivity function s(t) such that x(t) =
s(t)*w(t). The results of such an analysis are given 1in Figure

7-A.3. The averages <s(t)> in Figure 7-A.3c are easily shown to be
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Figure 7-A.2

In successive panels are shown (a) the data; (b) the wavelet (¢) the
- real part of the averages; (d) the averaging function a(t); (e) the
imaginary averages; (f) the Hilbert transform of a(t); (g) the
modulus of the averages; (h) the modulus A(t) of the averaging
functions; (i) the best guess for the reflectivity function; (j) the
best guess for the phase function (k) the true reflectivity
function; (1) the true phase function; (m) the superposition of the
data x(t) and the data reconstructed from w(t) and ry(t) and e%(t);
(n) the residual between the .data and the reconstructed signal.

{
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<s{t)> = Re<m(t)>

= r(t)cos e(t)*a(t) + r(t) sin e(t)*3(t),
(7-a.34)

where r(t) and e(t) are the true reflectivity and phase functions.
Equation (7-A.34) 1is true in general, and consequently the neglect
of phase-shifted wavelets means that only the real part of a complex
function 1is Trevealed by standard deconvolution algorithms.
Nevertheless, 1if we proceed with the deconvolution, the averages in
Figure 7-A.3c show five well-resolved peaks, and a least-squares fit
to find the amplitudes and posiﬁions of these spikes produces a best
guess for the réflectivity:sequence‘s%(t); that function is shown in

Figure 7-A.3e. The residual
e(t) = x(t) =S (t)*w(t)

is shown in Figure 7-A.3f, and x(t) and the reconstructed signal
s%(t)*w(t) are superposed in Figure 7-A.3h. It 1is somewhat
surprising that the residual is so small. It is alsé discouraging,
for in practice the low-frequency deviations in the residual would
likely be attributed to an imprecise knowledge of the wavelet
(Oldenburg et al, 1981); thus sa(t) would be regarded as an
acceptable reflectivity function. It should also be noticed that the
delay times shown by s%(t) in Figure 7-A.3e are somewhat different
from . the true values shown in Figure 7-A.3g. This suggests that the

first-order effect of neglecting true phase shifts in the wavelet
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may be compensated for by altering the delay times.

as a fiqal example, we show how the effects of phase-shifting a
signal can introduce complications when attempting to correlate a
particuiar peak (or ‘trough) on successive traces. A wavelet taken
from a marine seismic record has been phase retarded and advanced in
units of 40 degrees. The phase-shifted wavelets are shown in Figure
7-A.4., The larger vertical line on the time axis denotes the
position of the main positive peak, and 1its position 1is seen to
change by 10 time wunits as the phase changes from -120 to 120
degreés; a smaller vertical reference time tick has also been
plottea for each'wa§elet.'The second and third columns of wavelets
~are the results after deconvolution. The Re<m(t)> is plotted in the
‘second column; this would be the output from a 'standard
deconvolution which neglects the possibility of phase shifts. We
notice ‘that ‘the character of the outéut waveform changes markedly
from record to record and that there is still a change in the time
position of the positive peak on successive traces. Only in the
third column, where |<m(t)>| has been plotted, does the location of

the positive peak maintain a fixed time throughout all the traces.
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Shown in successive panels are (a) the data; (b) the wavelet; (c)
the averages of the reflectivity function; (d) the averaging
function corresponding to the averages in (c); (e) the best guess
for the reflectivity function; (f) the residual between the data and
s{t)*w(t); (g) the true reflectivity function; (h) the superposition
of the data and the data and the reconstructed signal.
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Wavelets, phase-shifted by amounts ¢, are displayed 1in the first
column., The Re<m(t)> and |<m(t)>| are plotted in the second and
third columns, respectively. The large vertical ticks on the time
axis correspond to the central time of the main positive lobe. The
smaller tick denotes a constant reference time. The small and large
ticks coincide for the third column.
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7-A.3 CONCLUSIONS

When a signal 1is composed of time-displaced, phase-shifted
replications of a source wavelet, the effects of that source wavelet
can be removed by deconvolution. First, the analytic signal.can be
written as a convolution of an analytic source wavelet and a complex
model which contains the reflectivity function r(t) and the phase
function e(t). Linear inverse theory can then be used to recover
averages of the model <m(t)> = <r(t) ex?[ie(t)l >. But these
averages, because they are composed of delta-like functions a(t) and
its Hilbert transform 3(t), are sometimes difficult to interpret. In

seismological‘problems where

exp[iej]'B(t'- tj),

r(t)-explie(t)] = é‘ I
the dgconvolution results are more lucidly presented by displaying
|<m(t)>| which 1is approximately equal to r{t)*a(e) (where
A(t) = [a(£)? + 3(£)?]'/2} 1if the distance between the successive
delay times Ar is greater than the width of A(t). Since A(t) will be
a peaked fﬁnction, the locations of maximum |[<m(t)>| can be used to
infér values for r9, and estimates for the amplitude éoefficients rj
and the phase coefficients ej are then easily recovered. Estimates

of the variance of rj and ej are also available if the statistics of

the observational noise are known.

An alternative method for obtaining r(t) and e(t) is to recover

these functions by using the averages <«m(t)>, and the averaging
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‘functions a(t) and 3(t), to construct a model which fits the data. A
parametric least-sguares approach has been used here to find a best

guess for the parameter set {rj, ej, tj}.

Sometimes it is not known a priori whether the wavelets making
up the signal are phase?shifted. What are the consequences of
deconvolving a phase-shifted signal by assuming a constant wavelet
w(t)? It is shown here that only Re<m(t)> will be retﬁrned and that
the avéraging function will be a(t). A real reflectivity seguence
s(t) can still be found such that s(t)*w(t) 1is' an adequate
representation of the original data. However, the delay times and
reflectivity coefficients of s(t) may be different from those .which
generated the data. It seems that the first- order effect of
altering the phase of the wavelet can be compensated for by altering
‘the delay time of a fixed source wavelet. Moreover, it is speculated
that the effects‘of inaccurate knowledge of the source wavelet might
be indistinguishable from +the effects of phase shifting, and so
similar degradation in the deconvolved output could result either
from poor knowledge of the source wavelet or from deconvolving with
a fixed source-wavelet when the signal is phase-shifted. All of this
serves to illustrate the the nonunigueness inherent in the
deconvolution problem and stresses that some degree of caution will

have to be used when applying the deconvolution to real data.
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APPENDIX 7-B: APPLICATIONS OF ANALYTIC COMMON SIGNAL ANALYSIS IN

EXPLORATION GEOPHYSICS

7-B.1 INTRODUCTION

‘The problem of extracting information from multichannels of
correlated data can be aﬁproached.in,many ways. One very promising
technigue, however, is to represent - the -signals in terms of an
orthogonal basis where the choice of basis functions is determined
from the inner product matrix, that 1s, the covariance of the
signals. The approach appears under various names in the published
literature, for -example: Rarhunen-Loeve (KL) transformation,
principal component analysis, eigenvector analysis, or Hotelling
transformation. Although the mathematical foundation was originally
»deveyoped by Karhunen (1947), and Léeve (1948,1955) to represent
stochéstic signals, the transformation has found numerous
applications in areas of data compression and signal to noise
enhanceﬁent (e.g. Watanabe (1965), ﬁeady and Wintz (1873), Pelat
-(1974), Huang (1975)). This transformation, however, has not been
widely used in seismological problems even though its potential has

been exhibited by Hemon and Mace (1978). In an earlier paper (Ulrych
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et al., 1984).we have reintroduced the KL transformation and showed
how it could be successfully .applied to problems in stacking,
wavelet estimation, residual statics, and velocity.analysis.‘Thé
purpose of the present paper 1is to combine +that work with the
complex reflectivity convolutional model (Le§y and Oldenburg, 1982).
This extended mathematical framéwork will permit us to consider the
above problems while admitting the complicatioﬁ of phase shifts of
the wavelet. In addition to these applications, we shall show how
our formalism can be applied to the problems of attenuation and
dispersion, density and velocity inversion, and ‘'bad-trace'
recognition.

Although the original»wofk covers all the topics mentioned
above, for the purpose of this thesis I will 1limit the discussion to
the problems of dispersion and the .inversion of phase-shift

information associated with supercritical reflections.

7-B.2 MATHEMATICAL BACKGROUND

As pointed out in Ulrych et al. (1984), there are many ways in
which the KL transformation can be derived. The work of Kramer and
Mathews (1956)'15, however, very straightforward and insightful. We
shall first present the essence of their paper and then show its

.extension to complex signals.

From the point of view of data compression, we consider the

problem as follows. Given a set of n real signals g;(t) ({=1,...n),
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we define a transformed set,xi(t) and a transformation (rotation)

matrix A (yet to be defined) such that:

(t) :
x:(t) = T a
S i=1

ngg(t) j=1,...m, m<n (7-B.1)
‘The signals xi(t) form an orthogonal basis, and each signal g (t)

can be expressed (approximately) as:

~ m . .
gi(t) = jf{bi-j x...)(t) i=1,...n (7-B.2)

where Eikt) is the 1ith reconstructed signal, B is .the inverse
transformation 'matrix, .and m is the number of basis functions used

in the truncated expansion.

The objective at this peoint is to reconstruct §é(t) to within a
given error using the smallest possible number of basis signals. If
m=n, then Eé(t)=gé(t), i.e., the original signal is reproduced
exactly. However, this case is of no interest since it regquires n
basis signals 1in order to reconstruct the n original signals. We
restrict our attention to the case where m<n, and require that bthe
transformation matrices A and B be those that minimize the least

sgquares error:

n
¢(m) = Z f (g;(t) 7 g;(t))2dt, : (7-B.3)
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Kramer and mathews (1956) showed that B=A"T, and that the rows of the
transformation matrix A consist of the normalized eigenvectors of T,

defined as:

F&j»= S gu(t) gj(t)dt = (g;JgJ) (7-B.4)
I' is symmetric and positive semidefinite and hence is decomposable.
I'=RAR’ where A=diag(X,, Xz,...A,) with A,2X;2...7, and the columns
of R contain the normalized eigenvectors EL where TIr;=)\;T;. When
A=R", the rotated signals xj(t) form an n-dimensional subspace of a

Hilbert space, and with these basis elements, the truncation error

in equation (7-B.3) is

n : .
¢(m) = DA W (7-B.5)
F— )

Since the eigenvalues are arranged in descending order it follows
that the first basis function can be used to reconstruct more of the
total signal energy than any other basis function. For this reason,
it is <called the first principal component. Similarly, the second
basis function will sometimes be referred to as the second principa;
component, etc.

The first principal component has an important characteristic.
If g;(t) = c;-s(t) where c; are real constants, and s(t) is a given

signal, then the first principal component will be

x,(8) = (2 e)* s(t) (7-B.6)
1
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That 1is, the first principal component will be a scaled yersion of
the signal s(t); and the complete set of input signals gL(t), can be
reconstructed from this basis wvector and an appropriate set of
weights. The remaining basis vectors (xj(t);»j=2,...n), will have
zero eigenvalues and are not needed in the reconstruction.

‘The properties of the'KL transformation enumerated by Kramer
and Mathews(1968) for real signals carry over directly to the case
when complex sﬁgnals are used. For complex signals though, the inner
product matrix is Hermitian and positive semi-definite and hence a
unitary matrix is required for diagonalization. The eigenvalues will
still’ be real, but the eigenvectors are complex. Nevertheless, the
truncation error in eguation (7-B.3) is -still given by equation
(7-B.5). Importantly, if we consider the case where g (t) = ¢ s(t)
where the ¢ are complex constants, then the first principal
component will be

%,
x,(t) = (Z Je,]?) sft) (7-B.7)
1

This latter equation shows that complex signals which differ only be
a complex scale factor can be represented by a single principal
-component. |

As an illustration, we consider the following simple example.
Let g;(t) = s(t) and g,(t) = exp(-ie) s(t). The energy in the signal
is ||s|}?® = (s,s*) and FQ = (gL,gj) where '*' denotes the complex

conjugate. Thus
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_ 1 exp(-ie)
T=lsl®
‘ exp(ie) 1

The eigenvalues of T are A\,=2]||s||? and A,=0, while the wunitary

matrix is

1 exp(-ie)

d
1
S+

exp(ie) 1

The first basis function is x,(t) = U,, g,(t) + Uy, g,(t) = VE-s(t)
where Ui, are the elements of the first column of U.

‘The importance of these results to recorded seismograms is
apparent when phase shifts of a source signal are'cohsidered. 1f
w(t) is the initial wavelet, then a wavelet, phase shifted by an

amount‘e, is given by
wits;e) = cos(e)-w(t) + sin{e) W(t)
where W(t) = H[w(t)] is the Hilbert transform of the initial wavelet

(Aki and Richards, 1980). In such cases, it is expedient to consider

the analytic signal (e.g. Taner et al., 1979; Levy and Oldenburg,
1982)

Wit) = wit) - iW(t)
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for the phase shifted signal can be written as

wit;e) = Re[W(t)exp(ie))

Let us now consider a signal g,(t) = w(t) and another signal

gz (t) = w(t;e). The corresponding analytic signals are

g, (t) = % (t)

g, (t) W(t)exp(ie)

Since these signals are like those considered in the numerical
example, .application of the Comﬁlex . Karhunen-Loeve (CRL)
, transfermation will produce -a first principal component equal to
w(t). Moreover, gquation (7—3.8) shows that the phase rbtation in
the second signal 1is recoverable directly from the eigenvector

associated with the first principal component. That is,
€ = tan_l[lm(021)/RE(Uz1)] (7"’3.8)

.\\

In the following sections of this paper the CKL transformation
will be applied to analytic seismograms. The eigenvectors of the
covariance matrix will be used as complex weights for stacking and
phase estimation purposes while the corresponding eigenvalues will

be used in the construction of a correlation measure. That 1is, the

3
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ratio

m
x(m) = Z A /¢(m) ‘ : (7-B.9)
i= . :

will be used as a measure of correlation between the original set of
signals. x(1)>>1 implies a good correlation, whereas x(1)=0(1)
implies a poor correlation. When x(1) >>1, each of the original
signals may be expressed (to within a small acceptable error) as a
scaled and phase shifted verson of the first principal component.
Consequently, phase-shifts 1in the various signals can be estimated
from the eigenvector associated with A,, and subseguently used for

physical parameters inference.

7-B.3 MODELLING DISPERSION BY A CONSTANT PHASE-SHIFT

The properties outlined above suggest that the CKL algorithm
&an be very useful in investigating those physical phenomena that
introduce phase shifts which, to first order, can be approximated by
a constant. If the applicability of this model can be established,
then estimation of the phases involved can yield useful information

about earth properties.

Following Robinson (1979), we shall'assume a constant Q model

for attenuation,,and model dispersion using the Fourier scaling
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theorem. Our ;aim is to use the CKL method to determine whether an
observed dispersion effects can be approximated by a constant phaée
shift, viz. g(t) = Re[g(t) exp(ie)], where g(t) is a measured
seismogram which has undergone dispersion. If applicability can be
determined, the first eigenvéctor wili be used to estimate the shift
angle ¢ (Eguation 7<B.8)lwhich will rotate the dispersed trace to
its undispersed form.

Given a reference wavelet, the applicability of the constant
phase shift model is determined by completing the following steps:
(1) select a time window which <contains a dispersed pulse; (2)
calculate the envelope of the analytic signal for the dispersed
pulse and reference pulse (initial wavelet), aligning the peaks of
the envelopes so there 1is no time discrepancy; (3) apply the CKL
transformation; (4) evaluate x(1). If x(1) 1is 1large, +then ‘the
dispersed signal is approximately a ‘phase shifted verson of the
original. If x(1)=1 then the constant phase shift assumption is not
valid. k

Figure 7-B.1(a) shows three time delayed Ricker wavelets
(center frequency 25 Hz), dispersed by cumulative Q values of 1000,
60, and 30 respectively. lLarge Q values produce little distortion
ana so the event at 0.5 seconds (Q=1000) is nearly identical to the
source wavelet, and is considered here as the refergnce signal. The
events. at 0.9 seconds (Q=60) and 1.5 seconds (Q=30) have
considerable distortion and will be used in éonjunction with the
reference signal to test the validity of the constant phase shift
approximation. For the event at 0.9 seconds, we find that x(1)=5364,

while analysis of the deeper event yields x(1)=656. These values are
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Figure 7-B.1

(a) Dispersed Ricker wavelets for cumulative Q values of 1000, 60,
and 30 respectively. (b) (1) The wavelet at 0.5 secs, (2) wavelet at
0.9 secs, (3) and (4) first and second principal components of (1)
and (2), and (5) a phase rotated version of (2). Here x(1)=5364. (c)
Same as in (b) but for the wavelet at 1.5 seconds. Here x(1)=656.
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both large and, hence, the corresponding wavelets can be properly

undispersed by applying the appropriate constant phase corrections

as is shown in Figures 7-B.1b and c.

A more realiétic example includes the effects of dispersion and
attenuation. 1In Figure 7-B.2a we have regenerated the synthetic of
Figure 7-B.1a, and included attenuation. In this case, 'the reference
and the distorted signals are different in both their phase and
amplitude spectra. The values of x(1) are still' quite large
(x(1)=195 for the event at 0.9 seconds, and x(1)=91 for that at 1.5
seconds, hence, ‘the constant phase approximation is still
acceptable. This is verified by comparing corrected signals (Fig.
7-B.2(b) and 7-B.2(c)) to the source signal (upper trace in each
panel). Note that no attempt was made to remove the effects of
attenuation, and hence both corrected signals are of longer time
duration than the reference signal.

As expected, ‘the constant phase shift approximation to
attenuation related dispersion deteriorates with decreasing Q, and
increasing travel-time. Furthermore, it will also deteriorate with
increasing fregquency Jbandwidth. However, our experiance to date,
shows that over a bandwidth of about 2-2.5 octaves it seems to yield

a reasonable approximation.
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Figure 7-B.2
Same as Figure 7-B.1. Here however, we have included the effects of

attenuation as well as disperson. The value of x(1) For Fig. 7-B.2b
is 195, while that for Fig. 7-B.2c is 91. : :
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7-B.4 DENSITY: AND VELOCITY ESTIMATION FROM SUPER~-CRITICAL

REFLECTIONS

For a plane wave travelling in a fluid layer overlaying a fluid
half~space, - the eguation which relates phase shift S(#) with the
angle of incidence 6 for a supercritical reflection (Rayleigh, 1945)
is given by:

‘tan?e = p2,/p%; . (tan?6 - v,%2/v,;%2.(1/cos?68)) (7=-B.10)

where ¢ = S(6)/2. Given the velocity v,, the density p,, the angle
of incidence 6, and the angular dependence of the phase shifts S(48),
for a number of observations at different offsets, we solve a set of
equations (linear in 1/p,%* and 1/p,%v,?) in the form of equation
(7-B.10) to obtain the half-space density p, and 1its acoustic
velocity v,. .In this section, we will use the CKRL algorithm to
estimate the phase-shift -"angle of incidence relation S(¢) for a
bottom reflection in a deep water oceanic environment. The
information contained in S(#) will then be inverted to yield both
density and velocity of the uppermost ocean bottom sediments layer.
Velocity profiles from travel-time inversions will then be compared
toe the estimates obtained from the phase information in order to
establish the crgdibility of the estimated phases.

A data set previously analysed by Chapman et al. (1984) was
used for the purpose of density inversion. The data, shown in Figure

7-B.3a, are deep water reflections from Arctic Abyssal Plate
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sediments. In #He analysis of the data we have limited our attention
to the four larger amplitude events in the second group of arrivals
(the water column multiples), seen between times 1.7 sec and 2.5
sec, and offsets 25000 m and 38000 m. These arrivals were chosen
because of their good signal to noise ratio. It was concluded on the
basis of a previous analysis, ané on the times and polarities of
these events, that they corresponded to reflections from a single
interface in the sediments, but with different path combinations
(see Figure 7-B.3b).

The phase shift's angular dependence S(§) was -estimated from
this reflection data: ‘this analysis began by finding a suitable
'reference’', i.e. a far-field signature of a pre-critical (un-phase
shifted) signal, in this case the first bottom bounce on the nearest
coffset trace. The phase differential between the reference and each
of the post-critical signals was ‘then determined using eguation
(7-B.8). These differential phases (summarized in Table 7-B.1)
constiﬁute components of the angular dependence function .S(#8)
required in the sclution of eguation (7-B.10).

An example of phase estimation for the first of the reflection
events 1is shown in Figure 7-B.3c, where the data shown are taken
from a 100 msec window enclosing the event oﬁh interest for .the
different offset traces. Shown are: the referenée signal, 6
post-critical reflections (from offsets 25d00m - 38000m), the
~envelopes of the analytic signals of the 7 waveforms, and finally,
the reference and the 6 post-critical wavelets after phase rotation
‘to the reference.

Using straight' ray travel paths through the water column we
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Figure 7-B.3

(a) Reduced time plot of the data aligned on the water bottom
reflection. In the inset box are the super-critically reflected data
to Dbe analysed. The first event on the first trace of the figure
(outside the box) is taken as the pre-critical reference trace.



263

TIME
(seconds)

0.00
4]

o

S source R receiver

e Sehee

Figure 7-B.3

(b) Travel path for the analysed water bottom reflection event.
(c) A sample window of data used for phase estimation (see text).
Shown are the pre-critical reférence and 6 post-critical
reflections, the envelopes of these 7 wavelets, and finally the 7
wavelets after phase rotation to the reference.
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FIRST MULTIPLES
HORIZON #
x (km) 3 ! 2 ’ :
Rautame Phase Phase Phase Phase
28.20 1.088 0.699 0.431 0.422 0.353
©30.40 1.118 1.109 0.902 1.000 1.130
32.10 1.139 1.136 0.989 1.298 1.330
34.10 1.161 1.373 1.316 1,490 1.466
37.80 1.198 1.483 1.390 1.566 1.503
TABLE 7-B.!

Offset, angle of incidence 6, and phase angle (in radians) for the
four reflections associated with the first multiple (see Figure
7-B.1). All phases are relative to a precritical arrival. The phases
have been halved because the multiple path has two reflections from

the water bottom.
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have estimatea-the angles of 1incidence - for each of ‘thé offsets
present in the analysed data sets (see Table 7-B.1). We then solve
the set of eguations minimizing the square of thé errors
Z (& - €)? where the superscripts ¢ and o stand for 'calculated’
R _

and 'observed' phases respectively. The estimated velocity and
density ratios for the water bottom sediments obtained from each of
the analysed data sets are as given in Table 7-B.2.

These latter results are consistent with velocity profiles
obtained from travel-time inversions (p-r inversion Garmany (13979),
and Dix like 1inversion Oldenburg et al. (1984)) which gave an
average sediments sound speed of about 1700m/sec. Conseguently, the
above example adds credibility to both the CKL phase estimation and

the inversion procedures.

7-B.5: CONCLUSIONS

In this appendix we have introduced the complex Karhunen-Loeve
transformation and briefly reviewed some of its applications.

. The ability of the method to deal with phase shifts and to
extract phase ﬁnformation from groups of wavelets has proven most
instructive in the description and analysis of phenomena involving
phase changes, such as dispersion and super-critical reflection.

Small time shifts are transparant to the method, as it can
approximate them as a small phase shift and hence avoid the problems
which would beset conventional methods.

The scaling properties of the attendant eigenvectors proved
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TABLE IV

FIRST MULTIPLES
HORIZON #

i 2 3 4
density 1.23 1.17 1.00 1.12
ratio
sound 1.17 1.14 1.15 1.16
speed )
ratio
sound 1.81° 1.77 1.78 1.80
speed
(km/s)

TABLE 7-B.2

Density and sound speed ratios (p,/p,, and v,/v,) for the 'second
layer' (see text) determined from inversion of the phases shown in
Table 7-B.1. Using the estimated sound speed ratios and a sound
speed for the 'first layer' of 1.55 km/s, the sound speeds for the
"second layer' were also estimated.



267

useful as a discriminator against uncorrelated seismic traces. This
enables us to isolate such bad traces and omit them from further
processing procedures, thus avoiding unnecessary signal degration.

A useful measure of similarity was obtained from the
eigenvalues ratio x(m). This enabled us to perform a CKL velocity
analysis 'which seems to yield better results under conditions of
stati; scatter than did a corresponding semblance velocity anaysis.

Given the ability of the CKL method to overcome the.problems of
small time shifts, we noted how a wuseful stacking tool could be
developed. We applied the CKL stacking algorithm to several
synthetic CDP gathers, and the result compared favourably with the
section 6btained by the application of the mean stack routine. We
feel-ﬁhat this comparison justify further research of the stacking
properties of the CKL algorithm.

As a corollary to the above points, the estimation of ‘the
seismic wavelet is a natural follow-up. The CKL estimate of the
wavelet provided a sharper and more accurate represéentation of the
input pulse than did the conventional estimate.

In conclusion, we note that the complex Karhunen-Loeve
transformation, an -extension of the 1long known Karhunen-Loeve
tfansformation, has many and diverse applications in the field of
exploration seismology. ‘Further aplications and extensions of the—

work discussed here are presently under investigation.
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