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ABSTRACT

The plane-wave decomposition of the vertical displaéement
component of the spherical-wave field corresponding to a
compressional point source 1is solved as a set of inverse
problems. The solution utilizes the power and stability of the
Backus & Gilbert (smallest and flattest) model-construction
techniques, and achieves computational efficiency through ﬁhe
use of analytical solutions of the integrals which are involved.
The theory and algorithms developed in this work allow stable
and efficient reconstruction of the spherical-wave field from a
relatively sparse set of their plane-wave components. However,
the algorithms do not formally conserve the correct amplitudes

of the seismograms.

Comparison of the algorithms with direct integration of the
Hankel transform shows very 1little or no advantage for the
transformation from the time-distance (t-x) domain to the
- delay time - angle of emergence (7-7) domain if the seismograms
are equi-sampled spatially. However, for cases where the
observed seismograms are not equally spaced and for the
transfprmation 7-y to t-x, the proposed schemes are superior to

the direct integration of the Hankel transform.
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Applicability of the algorithms to reflection seismology is
demonstrated via the solution to the problem of trace
interpolation and that of separation of converted S modes from
other modes presented in common-source gathers. In both cases
the application of the algorithms to a set of synthetic

reflection seismograms yields satisfactory results.
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1. INTRODUCTION TO THE PLANE-WAVE

DECOMPOSITION PROBLEM

1.1 Expansion of a Spherical-Wave Field in Terms
of Plane and Cylindrical Waves: Basic Development

For many years the study of wave fields produced by spherical
waves travelling in simple earth models has been facilitated by
analysis of thé plane waves representing the original spherical
. waves. Indeed, for a medium consisting of homogeneous layers,
reflection, refraction and>mode conversion at layer interfaces
is simpler to 1investigate wusing plane rather than spherical
waves. For example, the method of computing synthetic
seismograms due to Fuchs and Muller (1971) is based on solving
the wave-propagation problem for plane waves and then
superihposing the plane-wave solutions to obtain the spherical-

wave field (i.e. the synthetic seismograms).

The representation of a scalar, time-harmonic, spherical
wave field (SWF) as a superposition of plane waves is well
documented in the seismié and eléctromagnetic literature; see
for examble, Stratton (1941), Bath (1968), Goodman (1968), Born
and Wolf (1980), and Aki and Richards (1980). Lucid treatments
of the general theory are given by Brekhovskikh (1960), and

Devaney and Sherman (1973), and some insightful applications are



presented by Asby and Wolf (1971), Muller (1971), and Treitel et
al. (1982).

Following Aki and Richards (1980; ch.6) we introduce the
Weyl plane-wave and the Sommerfeld cylindrical-wave expansions
of a SWF. An outline of the mathematical steps necessary for

obtaining such representations follows.

Consider the problem of a point source at X=0 radiating
compressional waves in a homogeneous, 1isotropic and unbounded
medium., Given that the source exhibits time dependence of the
form expl[-iwt] (w 1is an arbitrary angular frequency),
compressional-wave propagation may be described by the (scalar)

displacement potential ¢, which satisfies
9%2¢/3%t - VF2V2¢ = 4nVP2§(x)expl-iwt] : (1-1)

where V° represents the P-wave velocity of the medium. The

space-time solution to (1-1) is

¢(x,t) = [1/Rlexp[iw(R/V®- t)] (1-2)
with,
% = xi + yﬁ + zk
R = Vx2+y2+z2

Equation (1-1) may also be solved using Fourier transform

methods, in which case the wavenumber-time solution reads as

o(k,t) = [47V°2/(k2V*2-w2) Jexp(-iwt] (1-3)



with
K o= kel + kg3 o+ k ko,
k = VRIFRITRZ

The relation between ¢(%,t) and ¢(k,t) 1is given by the

triple inverse Fourier transform

p(%,t) = [1/Rlexpliw(R/VP- t)]

-

= [1/2n2Jexpl-iwt1fTf[1/(k?-w?/v"2) Jexpl ik- % ]ak (1-4)

Equation (1-24) represents a spherical wave ¢(X,t)
iravellihg with a constant velocity V°® as a superposition of an
infinite number of homogeneoﬁs plane waves, each of which
propagates with a velocity w/k (see Figqures 1.ta and 1.1b).
Because O<w/k<=, these plane waves do not all travel with the
Qelocity Vv’ of the medium and hence, equation (1-4) does not
represent a true mode expansion of a spherical wave in terms of
plane waves. In order to obtain plane waves prépagating with the
same velocity V°%, oﬁe of the integrals in (1-4) 1is evaluated.
The wusual choice 1is the k; integral, which 1is solved by
extending k; to the complex plane and then applying residue
theory (Aki and Richards, 1980, p. 195-197; Devaney and Sherman,

1873, p. 770-775). The integration yields

plw,x) = [1[R]exp[in/VP]
= [1/27) fTU1/ik, lexplik, zlexplik, x+ikyy]dk,dk, (1-5)

-0



where

ko= i/wz/V“Z-kf-Kz

and the sign of k; is chosen positive for z>0 and negative for
z<0 (notice that we have eliminated the terms exp{-iwt] and

explicitly stated the w dependence in the argument of ¢).

A‘oll x

FIGURE 1.1ta

Propagating spherical wave front 1in a medium ofvconstaht
velocity V°. For convenience we have shown only the x-z
plane.

Expression (1-5) 1is known as the Weyl integral and it
represents a spherical wave as a ;uperposition of plane waves
travelling with constant velocity V® (see Figure 1.2). For k,
real, i.e. kf+k;Sw2/VP2, the plane waves are homogeneous and

propagate along the direction specified by the wavenumber vector



A '_\ n n N .
k=kx 1+ky J+ky k. However, for k, 1imaginary, these waves are
inhomogeneous and travel along directions specified by k,§+k,§

with an exponential amplitude attenuation in the z direction.
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FIGURE 1.1b

Propagating plane waves. The integrand in equation (1-4)
represents plane waves travelling away from and toward the
point %=0 (source location). For a given angular frequency
w, each plane wave has an arbitrary velocity W=w/k:, where
ki=|k;|. Thus, for ke<ks the plane wave represented by the
wavenumber vector_ k, travels slower than the plane wave
characterized by k, .

Transformation of (1-5) to cylindrical coordinates gives

the Sommerfeld integral, which reads as

¢(w,r,z) = [1/VrZ+z%]expliw(V/rZ+22)/V"]
= Fl1/ik, lexplik, 2]k, Jo (k. r)dk. (1-6)

with



r = /xZ+y? (1-7a)

k.= VKkI+k? = wsin(y)/vP (1-7b)

ky= #+Vw?/V?2-k .2 = rwcos(y)/V*® ‘ (1-7¢)
and

v denotes the polar angle of the wavenumber vector k
(Figure 1.3), and

Jo is the zero-order Bessel function of the first kind.

‘o X
Y
vP 4
IR
/
-
e AU pest AL = vP
- _é( ko kb v
— (k|=|k|| )
' X

FIGURE 1.2

Mode expansion in terms of plane waves. In this case the
plane waves travel with the medium velocity V°. The
restriction on the sign of k, requires that the plane waves
propagate away from the point O. Thus, the homogeneous plane
waves shown in this figure have positive. vertical
wavenumbers k, .

The Sommerfeld integral represents a spherical wave as a
superposition of cylindrical waves given by k.Jo(k.r)explik,z].
These waves are also weighted by the term 1/ik, and they have

the same vertical propagation factor (namely expl[ik,z]) as the



plane waves.

FIGURE 1.3

Definition
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(b)

of the wavenumber components. We will be

concerned only with the x-z plane and z>0.

So far we have dealt with an impulsive point source at x=0.

-For cases

in which the point source has a time dependence F(t)

with a spectrum F(w), equation (1-6) is modified to

6(w,r,z) = [fF(w)[1/ik, Jexplik, z]k. Jo (k. r)dk. (1-8)

Up to
homogeneous
homogeneous

observation

this point we have considered an unbounded
space. For a medium consisting of a sequence of
layers, the total displacement potential at an

point P located at some depth z is given by the



contribution from the direct and reflected potentials (recall
that these potentials propagate as spherical wave fronts; see
Figure 1.4). In this case, then, the corresponding plane waves
(in wview of 1-5) or cylindrical waves (in view of 1-6) are
weighted by plane-wave reflection and transmission coefficients.
Additionally, within the i% layer each plane (or «cylindrical)

wave is characterized by the vertical wavenumber

ke = VOI/VPZ - kZ = wcos(~f)/V' (1-9a)
for P waves.

By similar arguments the wavenumber for a S wave,

Ky: = VwZ/Vi % - kZ = wcos(y:)/Vi (1-9b)

may be found. The horizontal wavenumber is k.= wsin(y%)/V%, and

a superscript letter denotes the wave mode.

The displacement potential at P(r,z) is then obtained from
(see Figure 1.4)°

¢ = ¢%+g'+g? (1-10)
where each potential is expressed as (cf. equation 1-8)
¢°(w,r,z)= ?F(w)[1/ik;]exp[ik;,z] ke Jo (k. r)dk, (1-11a)
o

¢'(w,r,z)= ?F(w)A[1/ikPl ]exp[ik';,1h\+ik§,1(h1-2)]
k.Jolk, r)dk, (1-11b)
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FIGURE 1.4

Displacement potential at the observation point P(r,z) as a
superposition of plane waves. (a) The displacement potential
at P is given by ¢°+¢'+¢?. (b) A given emergent plane wave
with ray parameter p=sin(v%)/V{. This ray parameter defines
a family of reflected and transmitted plane waves, so that
in (c¢) the direct plane wave contributes to ¢°, in (d) the
plane wave affected by the reflection coefficient A
contributes to the potential ¢', and in (e) the plane wave
affected by the transmission coefficients B and D and the
reflection coefficient C contributes to ¢2.

)

e)



¢2((a),r,2)= J‘F(w)BCDexp[ ikzl1h1+ik;,22h2+ik§’1 (h]‘Z)]
(=]

[1/ik5 1k, J0(k, r)dk, . (1-11¢)

The vertical wavenumbers ki, and k}, are given by (1-9a)
and, because the compressional source is located 1in the first
layer, k;=k;,. A and C are plane-wave reflection coefficients,
while B and D are plane-wave transmission coefficients. They
depend on the elastic properties of the medium and on the ray

parameter p (recall that p=wk.=wsin(y{)/V}).

From (1-10) and (1-11) the function defined by

V(w,k,;2z) = Flw)explik}  z] + F(w)Aexp[ikQ,h,+ik;,(h,—z)]

+ F(w)BCDexplik] h,+ikf{ ,2h,+ik! ,(h,;~2z)] (1-12)

will be understood as the spectrum of the plane waves defined by
ke =wsin(y%)/V%. For a given angular frequency w,-V(w,kr;z).giyes
both the plane-wave contribution from the boundaries between
layers, and the vertical phase delay that the (homogeneous)
plane waves acquired in each layer. 1If k;i is 1imaginary, an
inhomogeneous plane wave will propagate horizontally in the i®

layer, and the contribution from the bottom interface to this

layer will have an exponential attenuating term.

Therefore, with reference to Figure 1.4, equation (1-12)
gives the response from a direct plane wave (first term .in the

left hand side), from a plane wave reflected from the first



boundary (second term) and from a plane wave reflected from the
second boundary (third term). Notice that these plane waves form
part of a system of plane waves sharing the same horizontal
wavenumber., In this context, then, V(w,k.:z) is viewed as the
spectrum of a plane-wave seismogram equivalently defined by k.,

p or v5.

Some additional insight into the plane-wave nature of
(1-12) may be seen in the time domain. Before inverse-Fourier
transforming this equation, 1t 1s convenient to make the

substitution (see 1-9a)
kK}: = wcos(+f ) /VF i=1,2
Then, we may rewrite (1-12) as

V(w,7Yh;2) = F(w)exp[iwicos(7ﬂ)/vﬁ]
+ F(w)rexpliw{h,cos(y%)/Vi+(h,-z)cos(y%)/Vi}]
+ F(w)BCDexpliw{h,cos(7%)/Vh + 2h2cos(72)/vg

+ (hy-2z)cos(~%)/Vil]. (1-13)

- Notice that we have now used 7% to characterize V(w,k.;z).

For homogeneous plane waves (i.e. for 7y’ real), inverse

Fourier transform of (1-13) gives
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V(t,y5:;2) = F(t - zcos(~5)/V5)
+ A F(t - {h,cos(7%)/Vi+(h,-2z)cos (%) /V}})
+ BCD F(t - {h,cos(~%)/Vi+2h,cos(y%)/V5

For a given earth model, this egquation demonstrates thaﬁ the
plane wave seismogram V(t,v%;z) is given by the source function
F(t) appearing at delay times dependent on the cosines of the
angles of propagation of plane waves within each layer. Further,
this source function 1is weighted by plane-wave reflection and
transmission coefficients. Thus, the <{(homogeneous) plane-wave
response for the direct potential ¢°(t,r;£)ﬂcorresponding to the

angle 9 is
g°(t,yh:2) = F(t-ty) = F(t - zcos(4%)/V)) (1-15a)

Similarly; the plane-wave response for the displacement

¢'(t,r;z) is given by

g'(t,y%:2) = AF(t-t,) = AF(t - {h,cos(~})/V]}

+ (h,-z)cos(7%)/V}). (1-15b)

Notice that we have used "plane-wave response" to describe those
time functions whose spectra constitute complex weights for

plane or cylindrical waves (see equations 1-11).

If the observation point P(r,z) is at the surface z=0, the

plane-wave response for the direct potential 1is simply the



13
source function with no delay time, i.e.

g°(t,y5:2z) = F(t)

for all angles 7%.

Summarizing and generalizing the results, for a sequence of
homogeneous 1layers with a compressional source F(t)'placed at
(r=0,2=0), observation point P(r,z>0) and given  angular
frequency w, the representation of the total displacement
potential at P in terms of a ‘superposition of cylindrical

waves 1is given by (see 1-10 to 1-13)
olw,r,2) = [V(w,k, ;2)[1/iK% Ik, Jo(k r)dk, . (i-16)
o

where V(w, k. ;2) is the generalization rof (1-13) and it
represents the spectra of plane-wave seismograms, each of which
may be characterized by either the horizontal wavenumber k., the
ray parameter p, or the emergent angle v% . These parameters are.
related by :

ke = wsin(y%)/V} = wp

The inverse Fourier transform of V(w,k.;z) gives plane-wave
seismograms characterized by either p or y5 (but not by k.).
Because kinematically these time-domain plane-wave seismograms
constitute delayed versions of the source function F(t) (see 1-
14 and 1-15), the time argument of V will be denoted by the

delay time 7. Schematically, then,



V(w,y;2) ——3 INVERSE | o V(7,v;:2)
V(w,ks;2) ——| FOURIER

V(w,p;2) —TRANSFORM (—— V(r,p;2z)

(for notational convenience we have replaced 75 by 7).

The representation of the compressional displacement at the
point P(r,z) in terms of <cylindrical waves is obtained by
applying the gradient operator to (1-16). In particular, the

vertical displacement S(w,r,z) is given by

 Slw,r,z) = 3/3z{¢(w,r,z)}
= Fa/0z(V(w, k. ;2)} [1/ik3 Ik, Jo (k. r)dk, (1-17)
o

In equation (1-13) it is seen that the z-dependence of
V(w,k¢;2z) 1is given only by the terms exp[tiwzcos(y7)/V]] =

expl+ik z]. Hence (1-17) gives
) © 4
S(w,r,z) = [Ulw,ke;2) 1K} J01/iK, Ik Jo (k. r)dk, (1-18)
(o]
and because of the signs in the argument of explikiz],
U(w,kc;2z) and V(w,k.;z) may differ only in the sign associated

to each of their terms. If the observation point is located at

the surface z=0, equation (1-18) becomes

S(w,r) = [U(w, k. )Jo(k.r)k, dk, - (1-19)
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Plane-wave decomposition (PWD) is understood as the problem
of computing the plane-wave seismograms U(w,k.) from the
spherical-wave observations S{(w,r). Muller (1971) recognized
equation (1-19) as a zero-order Hankel transform and

consequently, presented>its formal inversion as
U(w,k,) = [S(w,r)Je(k,r)rdr (1-20)
(o]

providing the basic formulation for PWD.

1.2 On Plane-Wave Decomposition of Digital Data

The introduction of slant stacking (Schultz and Claerbout, 1978)
and plane-wave decomposition (Treitel et al. 1982) into the
realm of reflection seismology has revealed a large number of
possible applications in exploration seismology. In a recent
publication, Treitel et al.,-(1982) have shown the relationships
between slant stacking and plane-wave decomposition. They
pointed out that although equation (1-20) is restricted to the
vertical component of compressional waves recorded over
laterally homogeneous media, this formalism seems to provide ~ an
acceptable approximation of a larger class of earth models, in

particular those consisting of dipping layers.

The general procedure followed to perform the plane-wave

decomposition of spherical-wave seismograms resulting from a
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common-source gather is illustrated in Table I. The application
of PWD 1in real seismic work requires the discretization of

equation (1-20). The form suggested by Treitel et al. (1982) is,
Ulw,k,) = ArZS(w,r; )Jo (k. r;)r; (1-21)

In this form, eguation (1-21) may be applied to a set of
seismograms S(w,r;) found at evenly spaced intervals Ar=r,, -r;.
In this case, the integration increment Ar is factored out of
the summation and introduced later as a form of global scaling.
When unevén seismogram spacing is encountered, we observe that
the formal wuse of equation (1-21) with variable Ar; causes
deterioration of the decomposition due to inappropriate
weighting of certain terms ip the summation. In this case it
might be better to evaluate (1-20) wusing an appropriate
numerical integration scheme (e.g. interpolating S(w,r;) and

then using 1-21).

An alternative approach to plane-wave decomposition of
‘discretely sampled data . has been proposed by
Henry et al. (1980). In this approach, PWD is considered as a
- linear 1inverse problem and a smallest model for U(w,k.) is
constructed. Henry et al.'s solution is efficient and is applied
directly to the forward transformation from time-offset domain
to the delay time - angle of emergence domain (i.e. from t-x to
r—-v; because we are concerned with one dimensional earth models,
we make no distinction between the space variables x and r). The

same approach may be used for the inverse transformation



TABLE I

BASIC STEPS FOR PWD OF A COMMON-SOURCE GATHER

COMMON-SOURCE GATHER

Input of N seismic traces S(t,r;).

FORWARD FOURIER TRANSFORM
Temporal Fourier transformation
of each trace in the
common-source gather.

Calculation of S(w,r;).

PLANE~-WAVE DECOMPOSITION
At each angular frequency w,
computation of U(w, k)
(or equivalently of U(w,?))

|for M different angles of emergence.

INVERSE FOURIER TRANSFORM
(with respect to w)
From U(w,k.), computation of M

plane-wave seimograms U(w, 7).,
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(i.e. from the 7-vy domain to the t-x domain).

Since for some applications PWD may serve as a filtering
operation, our objective 1is to modify Henry et al.'s solution
and produce a more flexible and stable algorithm which will
perform both the forward (t-x to 7-7) and the 1inverse (7-7 to
t-x) transformations. Rather than use the inne; product given by
Henry et al., we introduce an explicit weighting function into

(1-19)
S(w,r) = FlU(w,k)Q™ 11030 (ke r)k, Jak, ,
for the forward transformation, and into (1-20)
Ulw,ke) = JIS(w,r)Q 11030 (kor)r]dr

for the inverse transformation. This is an example of a 1linear
qﬁelling (Backus, 1970), and allows the use of the usual

definition of the inner product of two functions. With this, in
addition to find the smallest model solutions for U(w,k.)Q-' and
for S(w,r)Q-', we find the flattest model solutions. Finally,
the solutions of the forward and inverse transformations are
found subject to the x? criterion (see Appendix A), so that

observational errors are accounted for.

The algorithms are applied to the problems of separating

converted S modes from other modes in a common-source gather,
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and of trace interpolation. In the first problem we will follow
Tatham et al. (1983), and transform the common-source gather
(t-x domain) to the plane-wave domain (r-y domain). For reasons
which will be outlined 1later, certain converted modes will
occupy a distinct portion of the plane-wave domain. Inverse
transformation of only this portion back to t-x space will yield
the common-source géther (CSG) representation of the S modes
present in the chosen r-y zone. The second problem is solved by
utilizing the algorithms to construct additional seismograms at

offsets not represented in the original CSG.

It 1is 1important to emphasize that although the use of
(1-19) and (1-20) are restricted to the recorded compressional
waves at the surface z=0, we realize that kinemétically these
equations are still satisfactory for obtaining the plane-wave
signature of recbrded S waves. The reason for this is
understandable from the discussioﬁ developing (1-12). In the
case of S plane waves, V(w,kr;z) has vertical propagation terms
of the form exp[iwzcos(vﬁ)/V§j and hence, the delay times are:
still governed by cosine functions. In Chapter 3 we will return

to this matter.



20

2. BACKUS AND GILBERT FORMULATION OF THE PROBLEM

2.1 Forward Transform (t-x to 7-7):
Construction of the Plane-Wave Components
of Spherical-Wave Seismograms

To apply the Backus-Gilbert (B-G) theory tc the problem of
plane-wave decompositon, we use eguation (1-19) at specified

offset r; and angular frequency w, that is
w
S{w,r; ) = fU(w,k )Jo(k,r; Yk, dk, (2-1)
o

We can now solve (2-1) for U(w,k.) as a set of inverse problems

each of which corresponds to a given angular frequency w.

In order to expedite the following presentation we
introducé the terminology and notations to be used throughouﬁ
the remainder of this work:

(a) S(w,r;), the temporal Fourier-transformed elements of the
spherical-wave seismograms, at a given angular frequency w
and offset r;; are termed 'observatiocns' and are denoted by
e?.

(b) U(w,k¢), the temporal Fourier transform (FT) of the
plane-wave seismograms at a given angular frequency w, 1is
termed the 'model' and 1is denoted by m; m is a continuous

function of the horizontal wave number k...
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(c) Jo(ker; )k, the zero-order Bessel functions multiplied by
the horizontal wave number, are termed 'kernels' and are
denoted by G;. They are continuous functions of the
horizontal wave number k..

(d) The inner product of the functions £(k) and g(k) is

: (¢ 8]
denoted by <f,g> ( i.e., <f,g> = ff(k)g(k)dk ).
o

In the following two sections we will outline the B-G
solution to problems of the form of equation (2-1) to 'show how
smallest and flattest models can be computed. Further treatment
of the procedure is found in Parker (1977), and Oldenburg and

Samson (18979).

2.1.1 Smallest model construction (forward transform)

Consider the problem,

e? = <G;,m> i=1,...,N (2-2)
where N is the number of observations.
Assume that the given observations are contaminated by errors
{6e;} with zero mean and estimated standard deviation o;, 1i.e.
e9 = e}+de;, e; being the true data. Therefore the equation to

be solved is,

eltde; = <G; ,m>
which upon division by o; becomes,

€% = [erzbe; )/o; = <G:/0o; ,m>
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€% = <G;,m> (2-3)

€Y% are our new observations with associated errors of unit

variance, and G; are the new scaled kernels.

Given N observations €? and the functional form (2-3), we
would like to obtain a continuous model m. This problem is
always wunderdetermined and admits infinitely many solutions but
a specific model is obtained by minimizing some norm of the
-model and using the data egquations as constraints. The smallest
model corresponds to the requirement that the L, norm of the
constructed model will be smaller than that of any other
permissible solution (i.e. all those satisfying (2-3)). Given
this requirement, the solution to (2-3) can be expressed as a
linear combination of the kernels, that 1is (Oldenburg and
Samson, 1979),

(8

m = ;Ea;'G; (2-4)
The coefficients a; are obtained by substituting (2-4) into
(2-3), changing the order of summation and integration and
solving the system,
§° = ra (2-5a)
that is,
a = I-18° (2-5b)
where

d is the vector of kernel coefficients,

€% is the vector of observations, and
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r-' is the 1inverse of the (NxN) inner product matrix T

defined by,

R.='<G;,G5> (2-6)

J

The formal solution given in equations (2-4) to (2-6)
cannot yield a physical solution if the kernels G; are not
square integrable. The current problem of PWD is an example of
this occurrence. A way to circumvent this is to use the quelling
operation (Backus,1970) which 1is essentially a mapping of the
kernels into a Hilbert space. The method we use 1is named
"quelliné by multiplication" (Backus,1970) in which we look for.
a weighting function Q such that G = G;Q is in L,(0,») for all

i. Once such a Q is specified we rewrite (2-3) as,
€% = <G;0,m/Q> = <G!,m*> (2-7)

and continue to find the smallest model m* as outlined in
equations (2-4) to (2-6). Subseguently we T"unweight" m* and

obtain the desired model. The final solution is then given by,

m =_£Q;Q2G; (2-8)

An important consideration in the choice of the function Q
is the ease with which the -evaluation of the 1inner product
I;= <G;,G/> can proceed. The efficiency of the. construction
a;gorithm increases greatly 1if an analytical expression

representing the elements of the inner product matrix-is found.

Also, the weighting function Q should 1lead to an efficient
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construction of the 1inverse transform (i.e. from 7-y to t-x).
Indeed, since many inverse solutions are required (one for each
frequency), numerical efficiency 1is gained if Q is chosen so
that only a single matrix spectral decomposition is required. If
this objective can be achieved, the introduction of the x?
criterion (Appendix A) for noisy data does ‘not decrease the

algorithm's efficiency.

Our solution to the smellest-model forward construction
involves the weighting function Q = k, %%K,%5(k_b), where K, is
a modified Bessel function of zero order, and b is an arbitrary
positive real number Qhose role is demonstrated in Appendix B.
With the above choice of Qeighting the <construction proceeds

with the following identifications,

m* = m/Q = Kk, %Ko %5(k,b)U(w,k,) (2-9a)
and

G.. = G.0 = k, O'SKOO‘S(krb)Jo(krr: )/a'. (2-9b)

Hence, from equation (2-8) the frequency ‘representation of the

plane-wave seismograms is given by,

Ulw, k) = Zla;/0; 1Ko (ke b)Jo(k, 1y ) (2-10)

where N is the number of seismograms 1in the common-source

gather.
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The evaluation of the inner product <G;Q,G;0> is described
in Appendix C, whereas determination of the coefficients a; to

obtain proper x? value is discussed in Appendix A.

2.1.2 Flattest model construction (forward transform)

Consider the problem outlined 1in the previous section,
i.e. given N observations corresponding to N functional
relations €9 = <G;,m>, find a model m which satisfies these
relations. In this section, we search for the model which
exhibits the least amount of -change with regpect to the
independent variable. The construction of this type of model

(commonly referred to as the flattest model) is achieved by the

minimization of the norm ||m”

|, with m” being the derivative of
the model. In the problem of PWD, the flattest model requires
that the Fourier transform of the PWS exhibits the least amount
of variation with respect to k, at each angqular frequency w, and .
hence it may yield better lateral continuity in terms of both

amplitude and time delay.

In order to construct the flattest model we integrate the

r.h.s. of equation (2-3) by parts to obtain,

o0
€% = H;m| - <H;,m"> (2-11)
(o]
where,

H.(k,) = [G:(u)du
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[+ ]
Presuming we can evaluate the term H;m| we substract it from the

left hand side to get,

gt = -<H; ,m"> (2-12)

Using the technique outlined in section 2.1.1 above we
proceed to find the smallest m” model. If the new kernels H;, are
not square 1integrable, we introduce a weighting function Q and
then solve &t = <-H;Q,m”/Q> to obtain m”. The solution to this
problem is given by (cf. eguation 2-8),

m’ = jiB;QZH; (2-13a)
where the §; are obtained from,
B = r-18t (2-13b)

and,

<H;Q,H3Q> (2-13C)

=3
1]

Taking the indefinite integral of eqguation (2-13a) we obtain,

m(k,) = -£6; [0? (W), (u)du + C (2-14)

Two important considerations should be emphasized at this
point:

(a) the construction of the flattest model necessitates the

additional knowledge of a (boundary) value of m, from which

the constant C is found.
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(b) the choice of the weighting function Q is now burdened by

the additional evaluation of the indefinite integral ?ﬁ;Qz.

In the solution to the forward-transform flattest-model

construction we make the following identifications:

(a) G;= k., Jo(ker;)/0; .

(b) The new kernels -H;= -k J,;(k.r;)/[o:r;] (see Appendix D).

(c) Limiting r; to be greater than zero, we have H;ml=0. On

the other hand, assuming a band limited source function, k,»«

implies infinitely-attenuated inhomogeneous waves. Hence we

consider H;mT =0 (see Appendix D), which means that the new

observations €t are the same és g?.

(d) The weighting function Q we have chosen 1is K,%5(k,b)

where K, 1is a modified Bessel functionvof first order and b

is an arbitréry positive real number. (see Appendix B). We

notice that because k,=wsin(vy)/V, a different weighting

function Q is used for each aﬁgular frequency w.

(e) The constant of integration C is equal to zero (see

Appendix D).

Following ‘the development in Appendix D, the plane-wave

seismograms at a given angular frequency are therefore given by,

Ulw, ke ) = ',;‘:/3- beH; =
T[6: /o, r; 1{bk,Jy (k. r; )Ko(k,b) + r,k Jo(k.r;)K,(k,b)}
/lr2+b?) (2-15)




28

2.2 Inverse Transform (r7~y to t-x):
Reconstruction of the Spherical- Wave Field
from its Plane-Wave Components

The inverse problem to be solved is expressed 1in equation
(1-20). kr has been replaced by r as the independent variable,
and the model and observations have tradéd places so that the
former now represents the temporal FT of the spherical-wave
seismograms S(w,r) whereas the latter consists of the FT of the
plane-wave seismograms U(w,k.). Indeed, there is no difference
between constructing plane-wave and spherical-wave seismograms
from each other in the way formulated in the previous section,
However, because we have formulated the problem in terms of the
horizontal wavenuhber ke ‘rather than 1in terms of the ray
parameter p, the inner product matrix  for the "~ inverse
transformation explicitly depends on the angular frequency (see
Appendix E). To see this and compare the form of the inner
product matrices for the forward énd inverse transformations,
'iet us consider the following integrals

rf, = ?G;(k,r;)Gj(krrj)Qz(k,b)dk, (2-16a)
and

I

5 = J6,(k,r)8; (k;r)Q? (br)dr. (2-16b)

vy

F; is an element of the 1inner product matrix for the
forward transformation while F; is an element for the inverse
transformation. In terms of the ray parameter p, (2-16a) and

(2-16b) read as
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V o«
r; =c;G;(wpr;)Gj(wqu)Qz(wpb)dwp (2-173a)
and
T a
i, = G, (wp; r)G; (wp;r)Q*(br)dr. (2-17b)
o]
These 1integrals have the same form. If in (2-17a) we set
b=r. =positive constant, and in (2-17b) b=wp,, Qith p.=positive

constant we find

rf.

A

= ?%;(wpr;)GJ(wprJ)Qz(wprc)dwp (2-18a)
o .
and

1

I, = 1/w §G; (wp; )G, (wp;r)Q?(wp, r)dwr. (2-18b)
Therefore, integration of (2-18a) with respect to wp and (2-18b)
with respect to wr will give matrices I'" and I'* which can have
multiplicative factors dependent on w. In both transformations,
spectral decomposition of a single inner product matrix is done

only once.

For the inverse transformation the definition of b=wp. in
the argument of Q means that, as in the forward problem, a
different weighting function is used at each angular frequency

w.
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2.2.1 Smallest model construction (inverse transform)

The procedure here is parallel to that outlined in the section

dealing with the corresponding forward transform. Identifying,
G; = rJo(rkr; )/0; ’ Q = r'°'5Ko°‘s(rb)

and using eguation (2-8), the smallest model for the spherical-

wave seismograms at a given w is,

S(w,r) = Zla; /0; JKo(rb)Je (rks; ) (2-19)

with b = wsin(c)/V

where M is the number of plane-wave seismograms.

2.2.2 Flattest model construction (inverse transform)

The development here 1is similar to that of the corresponding
forward transform. At the stage of the solution of the smallest
model m”°, the substitution b = wsin(c)/V is made (Appendix E).
" Assuming S(w,r==)=0, the integration constant C in equation

(2-14) is zero. Hence the frequency representation of the

vertical component of the spherical-wave seismograms 1is given

by,



S(w,r) = Z[; /0, ke {brd, (ker)Ko(rb)
+ k,.rdo(k;r)K,(rb)}/[k2+b?]}

b = wsin(c)/V

where M is the number of plane-wave seismograms.

31

(2-20)
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3. EXAMPLES

3.1 Introductory Comments

In the forward transform our goal 1is to obtain plane-wave
seismograms U(r,y) from spherical-wave seimograms S(t,x). To
achieve this, we follow the steps illustrated in Table I of
section 1.2 (p. 17). Conversely, in the inverse transformv our
objective is to compute the vertical-displacement spherical-wave
seismograms S{(t,x) from plane-wave seismograms U(r,y). To
achieve this we still follow those steps given in Table I though
keeping in mind that the input data-are plane-wave seismograms
U(r,y). We refer to formation of the plane-wave or spherical-
wave seismograms via the discrete form of eguation (1-20) or
equation (1-19) as the Hankel transform, and construction

involving the B-G inversion as the smallest or flattest model.

In the -examples to follow we will obtain plane-wave
seismograms for values of the angle of emergence vy between 0°
and 90° (that is to say O<k,<w/V). Similarly, the reconstruction
of spherical-wave seismograms will include plane waves within
that range only. Our motivation for doing so is based on the
following:

(a) We do not consider surface waves in our synthetic

seismograms.
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(b) We consider the receivers to be placed sufficiently far
away (i.e. many wavelenghts) from the reflecting interfaces,
so that inhomogeneous waves arriving at the surface z=0 are
significantly attenuated (recall that inhomogeneous plane
waves have exponential attenuation).

(c) The interpretation of the signéture of inhomogeneous
plane waves is not as straightforward as that of homogeneous

plane waves (see 1-12).

Finally, it seems that there is not general agreement on how
much contribution the inhomogeneous plane waves contribute to

the SWF (Carter, 1975).

The inverse transform constructions obtained by ~the B-G
variants employ kg~ as the independent variable and hence, for
equi-angularly spaced plane-wave seismograms, the considered
observations are not evenly Spaced. On the other hand, upon
change of variable from k, to v in eguation (1-19), the Hankel
inverse yields a relation for whiéh equally spaced angular

observations are considered,

For the Backus and Gilbert model constructions the examples
shown have standard deviation values o; defined as percentages
of the maximum amplitude spectral value in the input spherical-
wave seismograms (forward transformation) or in the input plane-

wave seismograms (inverse transformation).

Lastly, the phases appearing in the synthetic Seismograms

are marked by a series of letters denoting the modes in which a
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particular arrival travelled through the different layers. For
example, the sequence PSSP corresponds to a ray which left the
source and travelled through the first 1layer as a P wave,
converted to S mode at the first interface and then,travelled
both down and up in the second layer as an S mode; finally, it
was transmitted back into the first layer as a P wave, the mode

recorded by the receiver.

3.2 Separation of Converted S Modes

The separation of converted S modes from other modes 1in common
mid-point gathers acquired in a marine environment has been
discussed in recent publications by Ryu (1982), and rTatham et
al. (1983). 1In both papers this separation is achieved by using
the relatively higher moveout (compared to primary P arrivals)
associated with the converted S modes. In this section we will
follow the method discussed by Tatham.et al. (1983) and will use
the construction algorithms presented previously to sepafate the.

converted S modes from other modes in common-source gathers.

For the purpose of this example we have used the
reflectivity method (Fuchs and Muller, 1971) to generate a set
of synthetic seismograms. These seismograms correspond to the
model shown in Figure 3.1 with geophone offsets ranging from
100 m to 4000 m at 100 m intervals, time sampling interval 8 ms,
and compressional-source function represented by a Ricker

wavelet with a centre frequency at 16 Hz. For simplicity we have
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limited our attention to synthetic seismograms which include

primaries, head waves and converted modes.

MODEL USED FOR GENERARTING
THE SYNTHETIC SEISMOGRAMS
BY THE REFLECTIVITY METHOD

HORIZONTAL RANGE (METERS)

SOURCE . 1000. 1500. 2000. 2500. 3000. 3500.
Vp,=1500 M/S V; = B66 M/S o
200. M
il
Vp,=2500 M/S Ve =1443 M/S —
400.
Vp,=6500 M/S Vi3=3753 M/S . lesoo. 3
m
_|
(HALF SPACE) lsoo.
o
w

FIGURE 3.1

Homogeneous layer model displaying the geophone layout used
to generate the synthetic seismograms (geophone spacing is
100m). Density was assumed constant throughout the model,

whereas high velocity contrasts were used to enhance mode
conversion,
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Figure 3.2a shows those phases arriving at vertical-component
receivers as P waves, whereas Figure 3.2b displays those phases
arriving as S modes. Trace normalization was used to clearly
show individual phases. The true amplitude seismograms
corresponding to Figure 3.2a were added to those of Figure 3.2b
and the result, which represents our field observations, is

plotted in Figure 3.3.

Our model corresponds to land data and hence it includes a
number of converted modes which would not appear in the marine
case. In separating these modes from the others in a CSG, we
distinguish two groups. In the first, we include all converted S'
phases which arrive at the receivers as P waves. This group
includes those phases described in Ryu (1982), and Tatham et
al. (1983) plus some other phases which may be separable on the
basis of their moveout (i.e. phases exhibiting a large moveout
will be mapped into the pért of thg plane-wave domain associated
with large emergence angles and vice versa; see Figure 3.4). The
second groﬁp includes converted modes which arrive at the
receivers as S modes. These phases are separable in the plane-
wave domain if the decomposition is carried out with a surface-
layer velocity V: corresponding to the compressional modes. This
separation is possible because the phases included in this group.
arrive at the surface with a true ray parameter sin(y5)/V} which
is mapped into sin(y)/Vf. Therefore we have sin(y)=Visin(ys)/V3,
which suggests that converted S modes of the second group will
be mapped to emergence angles which are considerably larger than

their true emergence angles. In order to aid the identification
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FIGURE 3.2b
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Synthetic seismograms (normalized by trace) corresponding to
the modes which 1left the source as P waves and arrived at

the receivers as S waves. Three reflected phases are
on this figure; head waves have not been labelled.

marked
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PP+PS SEISMOGRAMS
(GLOBAL NORMALIZATION)

TRACE NUMBER
1 5 10 15 20 25 30 35 40

r
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FIGURE 3.3

Synthetic vertical component seismograms (with true relative
amplitudes) corresponding to the model shown in Figure 3.1
with a point source of compressional waves. The temporal
Fourier transforms of these seismograms represent the input
data to PWD.
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Large and small moveout signals. At first approximation, the
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PWD response from a given spherical-wave signal is governed

by those paths given by geometrical optics. This is a good
approximation for k.r>>1 (i.e. for high frequencies and/or

large offsets; Aki and Richards, 1980, ch.6). In (a) close

receivers contribute to form plane-wave signal at small
angles of emergence whereas far receivers do it for large
emergence angles. Notice the differences in density of
angular information for small and large offsets. In (b) the
spherical-wave signal from a deep interface has small
moveout throughout the receivers and hence, its plane-wave
signal will be observed at small angles of emergence.
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of the observed modes in the plane-wave domain, we display in
Figure 3.5 the theoretical trajectories of the modes which are

expected for the given model.

To start this example, we show the Hankel plane-wave
seismograms in Figure 3.6. The converted S modes PPSS, PSSP,
PSSS and PS are seen quite clearly in the area 0.2s<r<1.0s and
32%<y<88°, This zone 1is plotted again in Figure 3.7 for the
cases of a) Hankel construction, b) smallest model construction,
and c) flattest model construction. In cases b) and ¢) we have
carried out the' construction using aq=10%, 053 =20%, 05=15%,
0,=12%, 0,=8% , and o;= 5% for the rest of the seismograms (the
first values were set relatively high to reduce the diffraction
effect associated with the high amplitudes at traces 1-11,
twv0.5 s of Figure 3.3). Additionally the constant b in both
Ko(bk,.) and K,(bk, ) was set to 5. Comparison of the three panels
in Figure 3.7 shows slight differences in event continuity and
cdnsistency in the zone of interest. These are attributed to the
incorporation of the standard deviations and the weighting
functions in the B-G variants. However, the general features in

all the constructed models are quite similar.

To effect the mode separation and compare the results in a
domain in which most of us are somewhat more comfortable, we
have applied the 1inverse transforms to the data sets shown in
Figure 3.7. The reconstructed converted S modes obtained by the
application of the 1inverse Hankel transform to the data of

Figure 3.7a are shown in Figure 3.8, whereas those reconstructed
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PREDICTED TIMES FOR PWD COMPONENTS

ANGLE OF EMERGENCE (DEGREES)
2. 10. 20. 30. 40. 50. 60. 70. 80. 90.0.0
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1
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1
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PSSS Sal ; ,il‘i':‘ 11 1.0

(23s) Iwil

FIGURE 3.5

Theoretical trajectories in the plane-wave domain of the
modes appearing in Figure 3.3 and identified in Figures 3.2a
and 3.2b. These times were computed by the delay time
expressions, as those presented in equations (1-15), for the
different wave-mode combinations. The vertical axis
represents the delay time 7.
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PWS HANKEL TRANSFORM

ANGLE OF EMERGENCE (DEGREES).
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13.8
.0
FIGURE 3.6

Plane-wave seismograms (normalized by trace) corresponding
to the data of Figure 3.3. The decomposition was performed
-using -+the forward Hankel algorithm. The concentration of
converted S energy in a distinct portion of the r7-y domain
is clearly visible.
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Portion of the plane-wave seismograms containing converted S
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and (c) the forward flattest-model algorithm. The
seismograms are normalized by trace.



45

via the smallest model (with the data of Figure 3.7b) and the
flattest model (with the data of Figure 3.7c) are shown in
Figures 3.9 and 3.10, respectively (both reconstructions had
0;=2% for all 1i's and c=1). Although all the construction
schemes were applied to exactly the same portion of the plane-
wave domain, some significant differences in reconstruction
quality are observed (compare the converted S modes of
Figures 3.8 to 3.10 to those of Figures 3.2a and 3.2b). The.
converted S modes obtained via the Hankel forward followed by
Hankel inverse, exhibit a rather poor signal at 1large offsets.
However both B-G reconstructed t-x seismograms present
reasonable results, except for a strong diffraction . at near
offset and small times which is related to the truncation of the

transformed zones in the .plane-wave domain.,

'We attribute the difference in reconstruction quality of
Figures 3.8 to 3.10 to the follo&ing factors: a) the relative
attenuation of higher frequencies by the weighting functions
Ko (bwsin(vy)/V) and K,(bwsin(v)/v).may reduce aliasing effects; -
b) the ability of the B-G variants to . incorporate noise.
considerations into the reconstruction adds numerical stability;
and c¢) poor angular sampling coupled with a bad choice of.
integration rule prevents reliable t-x reconstruction using the
Hankel inverse. To further 1illustrate these points we have
reconstructed the t-x seismograms via the flattest model with
the data of Figure 3.7a as input (i.e. Hankel transform forward
and flattest model inverse). The result is shown in Figure 3.11.

Again the improvement over the Hankel forward - Hankel inverse
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reconstruction was performed wusing +the inverse Hankel
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(Figure 3.8) 1is significant; the reconstruction differs only
slightly from that of the flattest forward-flattest 1inverse
(Figure 3.10), the clearest difference being evident for the

event PPSS.

In order to familiarize the reader with the effects of
applying different standard deviation weights, we have
reconstructed the converted S-mode t-x seismograms via the
smallest model with the data of Figure 3.7b as input, setting.
0;=10% for all 1i's. The result 1is shown 1in Figure 3.12.
Comparison of this result with that of Figure 3.9 (the models of
these figures differ only in the standard deviation values used
in the smallest inverse) reveals that these changes in o; did
not affect significantly the reconstruction. However, a detailed
comparison of wavelet definition in events PS and PSSS
(particularly at large offsets) shows a loss of frequency band-
width for the case represented by Figure 3.12. This loss is due
mainly to two factors: a) the inversion at any given freguency .
with a 1large o; Qalue results in a model which is constructed
with a smaller number of basis functions; and b) for the
muitiple set of problems to be solved in PWD, our choice of o;.
as a percentage of the maximum value of the amplitude spectrum

of the i'th trace, may cause further spectral discrepancies.

To clarify the latter point, suppose that the maximum
amplitude spectral value in each of the 'given seismograms is
located at the same frequency, say fo,. Observational errors at

other frequencies are relatively larger than the errors at f,.
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Converted S-mode t-x seismograms (normalized by trace)
corresponding to the data shown in Fiqure 3.7a. The
reconstruction was performed using the inverse flattest-

model algorithm. Compare this result to the one shown in
Fiqure 3.8.
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This causes the expected x? values for the models corresponding
to these frequencies to be reached with a smaller number of
basis functions (smaller with respect to the number of
observations). In particular, at those frequencies with 1low
energy (in comparison to the largest amplitude spectral peak),
models are constructed with only a few basisvfunctions and this
may result in an even largerA amplitude discrepancy
(i.e. narrower band). Further description of problems associated
with standard deviation weights for the plane-wave decompésition

problem is given in Appendix B.

3.3 White Noise and Construction Quality

For this part of the presentation we have added a uniformly
distributed random noise series to each of the seismograms shown
in Figure 3.3. These noise series are limited to the closed

nAY

region [-0.5X7" ,+0.5%7*¥ ], where X[ is the maximum absolute
value of the i'th seismogram. The noisy seismograms (normalized

by trace) are shown in Figqure 3.13.

We have reconstructed the t-x representation of the
converted S modes using the B-G variants smallest (forward)-
smallest(inverse), and flattest(forward)-flattest(inverse), with
the same o;, b and ¢ values as in the - previous section. These
results are shown in Figures 3.14 and 3.15 respectively. The
reconstructions closely resemble those of Figure§ 3.9 and 3.10

for which no additive noise was present. However there is a
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addition of random noise series to the seismograms shown in .

Figure 3.3.
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Converted S-mode t-x seismograms obtained by (i) PWD of
Figure 3.13 wusing the forward smallest-model algorithm, and
(ii) reconstruction of the t-x seismograms using the inverse
smallest-model algorithm. The seismograms are normalized by
trace.
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Converted S-mode t-x seismograms obtained by (i) PWD of
Figure 3.13 using the forward flattest-model algorithm, and
(i1) reconstruction of the t-x seismograms using the inverse
flattest-model algorithm. The seismograms are normalized by
trace.
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minor deterioration of the event PPSS at medium and 1long
offsets, whereas events PSSS, PSSP and PS have been reproduced
quite faithfully. We mention that the reconstructed t-x
converted S-mode selsmograms corresponding to the
Hankel(forward)-Hankel(inverse) algorithms are very similar to
those .reconstructed sei§mograms using the Hankel(forward)-

Hankel(inverse) algorithms for the case of no additive noise.

Our experience to date shows that white noise does not
severely deteriorate theiperformance of -the algorithms presented
in this work 1in regions where the angular data are reasonably
dense, for example, atAlong offsets for shallow horizontally

layered earth models.

3.4 Angular Sampling and Trace Interpolation

Thisllsection is divided into two parts. In the first, we deal
with the problem whicﬁ arises when. information concerhing a
shallow =zone of interest is recorded by an evenly spaced
geophone array. The second section concerns the problem of trace
'interpolation; i.e. a number of gaps exist in a set of othérwise
evenly spaced seismograms; we will use the algorithms developed

here in order to fill these gaps.
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3.4.1 Shallow zone of interest

Geophone arrays consiétihg of evenly épaced receivers with
spacing large as compared to the depth of the first layer of
interest (horizontally layered earth model), will tend to have
poor information density in the portion of the plane-wave domain
corresponding to small angles of incidence (see Figure 3.4). On
the other hand, a fairly 1large spacing will still yield the
desired information density when our interest is confined to the
pqrtion of the plane-wave domain cor:esponding to large angles.
Consequently, an array of closely spaced geophones at the near
offsets, followed by widely spaced geophones at the far offsets
could satisfy our information density requirements, at least

kinematically.

In Figure 3.16 we show a set of seismograms (normalized by
trace) corresponding to the model of Figure 3.1. The first
-twenty traces are evenly spaced with a geophone separation of
50 m, whereas the remaining forty are.100 m apart. The plane-
wave components of this setv(normalized by trace) are shown in
Figqures 3.17 and 3.18 for the smallest and flattest models
" respectively. As 1is expected, both constructed models show
continuity for that part of the PPPP event which was buried
inside the diffraction event of Figure 3.6 (this diffraction was
caused by the relatively large amplitudes in the t-x domain,
traces’ 1 to 11 between 0.3s and 0.8s. Such large amplitudes at
the end of t-x events give significant contribution of energy at

all angles of emergence). Also, the PP phase shows more
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t-x seismograms (normalized by trace) corresponding to the
model of Figure 3.1 . Receiver spacing is 50m for traces 1-
20 and 100m for traces 21-50, Various phases are
identified.
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FIGURE 3.18

Plane-wave seismograms (normalized by trace) corresponding
to the data shown in Figure 3.16. The decomposition was
performed wusing the forward flattest-model algorithm. The
results are very similar to Figure 3,17,
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prominently at the smaller angles of emergence.

In regards to the converted S modes, the PS-phase signature
is expected to have better continuity at smaller angles of
emergence but because of the normalization used, Figure 3.17
does not show such an improvement (the PP phase dominates the
amplitudes). The remaining converted S modes are not expected. to
improve since their spherical-wave signature appears at large

offsets (see Figure 3.16).
3.4.2 Trace interpolation

The problem of trace interpolation viewed in the context of.
plane-wave decomposition is heavily dependent on the information
density in the angular domain. Assuming that a certain portion
of the plane-wave domain is well sampled, using. our algorithms
with a reasonable b value (to increase linear dependence of the
kernels), we should be able to interpolate seismogréms between
geophone locations for the phases which belong to such a
portion. The converted S modes - for the model of Figure 3.1

afford a reasonable example of this operation.

For the purpose of this example we have eliminated traces
6,12,18,24,36 and 37 from the set of seismograms of Figure 3.3
and plotted the result (normalized by trace) in Figure 3.19. We
constructed the t-x converted S-mode seismograms using the B-G
variants smallest(forward) - smallest(inverse) and

flattest (forward) - flattest(inverse). The results (normalized



62

by trace) are shown in Figures 3.20 and 3.21, respectively. Both
construction schemes succeed in the interpolation of the modes
PSSS, PSSP and PS. However both do rather poorly with respect to
the mode PPSS. This is because the mode PPSS has 1its angular
signature in the badly sampled zone corresponding to small

angles of emergence. The small 1loss of frequency band-width
observed in the results obtained 1is due to the respective

weighting function (for details please refer to Appendix B).
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FIGURE 3.20

Converted S-mode t-x seismograms obtained by (i) PWD of
Figure 3.19 using the forward smallest-model algorithm, and
(ii) reconstruction of the t-x seismograms using the inverse
smallest-model algorithm. The seismograms are normalized by
trace.
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Converted S-mode t-x seismograms obtained by (i) PWD of
Figure 3.19 wusing the forward smallest-model algorithm, and
(i1i1) reconstruction of the t-x seismograms using the inverse
flattest-model algorithm. The seismograms are normalized by
trace.
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4, COMPUTATIONAL CONSIDERATIONS

The CPU times (on an Amdahl 470 V/8 computer) for the PWD

algorithms are presented in Table II below. The seismograms used

to generate this table were digitized at 8 ms and were limited

to the band .5-25 Hz (the number of frequency samples in this

band is eguivalent to those contained in the band 10-50 Hz on
data with 4 ms sampling interval). Furthermore, all calculations

(with the exception of Bessel function computations) were made

in double precision.

TABLE II
TIME INPUT OUTPUT CPU TIMES
SAMPLES TRACES TRACES HANKEL SMALLEST| FLATTEST
128 40 45 2.416s . 3.556s 5.342s
256 40 45 4.768s 6.770s 10.192s
512 . 40 45 9.349s 12,965s 19.909s

The following points are emphasized:

(i) Most of the processing time is elapsed in Bessel function

computations.

approximations with errors of 0(10-%) given in Abramowitz and

Stegun

(1970).

increased by:

approximations

For

Efficiency

(a)

these,

decreasing

we have

these
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used

computations

accuracy

polynomial

can

of

be

the

which will reduce processing times, though it
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may yield some degradation of the output, and (b) wusing the
derivative relation between J, and J, 1in flattest model
calculations.

From the summation represented by equation (2-10) for the
smallest or that of equation (2-15) for the flattest model,
it ié deduced that increasing the number of input or output
traces causes a linear increase in the number of Bessel
function computations. Similarly, an increase in the number
of time or frequency samples results in a linear increase in
the number of Bessel function computations.

(ii) The CPU time for the singular value decomposition (SVD)
of the 1inner product matrix I' behaves like the cube of the
number of input traces. Hence, depending on the ratio between
the number of time and frequency samples to the number of
input traces, a significant percentage of the total run time
may be spent in SVD. However, when processing a large number

of CSG's with fixed geometry and standard deviation

estimates, SVD is executed once. In this case, the total. .

smallest-model CPU time is comparable to that of the Hankel
algorithm.

(iii) The memory requirements of the B-G algorithms include
one array of size NPTSXNTRACE and two of size NTRACExNTRACE,
where NTRACE is the number of either input or output traces
whichevef is larger, and NPTS is the number of samples per
trace. In contrast, the Hankel algorithm needs only one array

of size NPTSxNTRACE.
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(iv) The CPU run times and memory reguirements corresponding
to the 1inverse transform algorithms are equivalent to those

of the forward transform.
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5. SUMMARY

Efficient algorithms for the decomposition of a spherical-
wave field into its plane-wave components have been presented.
Also, it has been shown that these aigorithms allow the
reconstruction of the spherical-wave field from a relatively
sparse sample of 1its plane-wave components. The practical .
viability of the proposed algorithms has been demonstrated using
the problem of separation of converted S modes from other modes
in a common-source gather, and the problem of trace

interpolation. The following points should be noted:

(1) The plane-wave seismograms are obtained by using the
Backus & Gilbert construction techniques, subjected to
the requirement of weighted smallest or flattest
model.

(ii) The construction schemes alldw the handling of errors
in the data and hence, permit a certain control on the
model structure provided by the basis functions.
Caution should be exercised in assigning the standard
deviation values to unnormalized observations.

(iii) The proposed algorithms are not limited to evenly
spaced data and consequently, allow the design of an
appropriate geophone array which should.produce a more

faithful representation of the plane-wave components.



(iv)

(v)

(vi)

(vii)

Numerical stability is gained by proper use of the b
value appearing in the arguments of the weighting
functions. Large b values decrease the degree of
linear independence of the kernels and seem to be
appropriate for the problem of trace interpolation.
Dynamic aspects (e.gg true amplitudes) of the forward
and inverse contructed models are not formally handled
by the algorithms as developed.

For a given angle of emergence y, homogeneous plane
waves corresponding +to high freguencies ﬁay be
significantly attenuatecd by the weighting function Q.
This function then, is viewed as a potential aliasing
suppressor.

For a given angular frequency w, large wavenumber
components are severely attenuated by the weighting

function Q. Indeed, depending on the b value chosen,
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inhomogeneous waves associated with wavenumbers larger

than a certain value are practically excluded from the

decomposition. This effect is analogous to formulating -

PWD as an 1inverse problem with finite 1limits of

integration.
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APPENDIX A

x? Value .and Observational Errors

in Model Construction

When solving problems which are associated with inaccurate:
observations, it 1is wundesirable to <construct models which
reproduce these data exactly. In this <case, it 1is common to
require the calculated observations to fit the data in a manner
consistent with the observational errors. In this appendix, we
outline the steps reguired in the conétruction of models with
calculated observations which are related to the observed data

by an expected x? value of approximately N.

Firstly, ffom equation (2-5a) we have,
rg = &°
Expressing I' in terms of its spectral components and solving for
a we-gét,
@ = ['8° = RA-'RTE° (A-1)
where
R is an (NxN) matrix whose columns are the eigenvectors of T,
A is an (NxN) diagonal matrix whose diagonal consistg of the
eigenvalues of I' arranged in decreasing order, and

RT is the transpose of R.

Misfitting the observations g0 is readily achieved by
winnowing, say, the K smallest eigenvalues with their associated

eigenvectors, that 1is, truncating matrices R, A and R' to size
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(NxM), (MxM) and (MxN) respectively, with  M=N-K. The
coefficients a< constructed from the truncated set of spectral
components are,

& = R,A;'RI8° (A-2)

Using a° we can compute the calculated observations, 1i.e.

<

= la* (A-3)

oll

Secondly, consider the x? value defined by

N _
2 =_§(€f—~?)2 = |]ag]]? (A-2)
with A = 8<-8° and E{x?}= N for N>5.
The length of the wvector A is not changed upon rotation,

(-

‘Therefore we can project € and €° onto the eigenvectors of R,
i.e.
xz = IlRT’é’c - RTgOllZ

or

M2

x? = Z(8: - go)2 (A-5)

t

"

Finally, from (A-3) and (A-2) we write,
¥ = RARTR.A-'RIE°
Premultiplying this equation by RT and writing down the notation

for rotated observations we obtain,‘

A
S = ARTR,AL'E® . (A-6)
A N A
- from which we realize that & = €° for i=1,...,Mand & = 0 for

i=M+t,...,N. Hence (A-5) gives,

Y A
x? = L(&9)?

txmet
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For complex data we use,
N A
x? = LEfEor (A-7)

where * indicates the complex conjugate.

Starting with M=N-1 we form the summation given in equation
(A-7), and keep adding tefms until this summation yields the
clo;est value to N (number of observations). The final 1index M
gives the number of eigenvalues and eigenvectors to be retained
in the.calculation of a<. These coefficents, when used in the
construction, yield a model which.satisfies the observations in

.a manner consistent with observational errors,
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APPENDIX B

Effects of the Weighting Function Q
and Standard Deviation Values

on Model Construction

After introducing the standard deviation values o; and
weighting function Q, our original problem e:=<G;,m> has been

modified to,

€ = <C{;m‘> (B-1)
where,
€ = e;/o;
Gt = G;Q/0;
m* = Q 'm
Q-' = 1/Q
with

0=k %5K, %% (k. b) for the (forward) smallest problem
Q=K, %5 (k, b) for the (forward) flattest problem

and b an arbitrary positive real number.

In this appendix we highlight the effects of Q with a given
" b value, and of o; on the constructed model m=U(w,k,).
1. Effects of Q on the size of m.

The role of the constant b in attenuating large horizontal
wavenumber components 1is portrayed in Figqure B.1. This figure

shows the plots of the modified Bessel functions Ko(r(y)) and
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K,(r(vy)), where the arqument is defined by r(vy)=bwsin(y)/V with
0.1%°<y<90°, w=407rad/s, V=1500 m/s , and b assumes the values 1
and 10. Clear differences on attenuation rate imposed by these
functions are observed, such that the size of the constructed
model will be significantly affected. In what follows we discuss

the smallest model problem, whose weighting function involves

Ko .

' 5.0 [ N I A T S T 20.0

2 :

put 4 <

z. l-_ - z.-

0. 01-1 [ U N T B U I 0.0
0.0 80.0 0.0 80.0
AXIS IN DEGREES AXIS IN DEGREES
(a) (b)
FIGURE B.1
Modified Bessel functions (a) K,, and (b) K, for two

different b wvalues in the argument r(y) (r(y)=bwsin(y)/V,
w=40wrrad/s and V=1500m/s). Large b values severely attenuate
large horizontal wavenumbers and decrease .the . linear
independence of the kernels.

The minimization of ||m*|]| requires that (Backus, 1970),

| 1@~ 'm] | <M (B-2)
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where M is a finite real positive number. The size of m for
large horizontal wavenumbers depends heavily on the rate of
gfowth of OQ-'. Using an asymptotic approximation to K, for large
arguments, Q-' behaves as (k,)%%(bk.)%?%exp(bk,/2). Hence, the
search for models m=U(w,k,) is confined to those whose high.
wavenumbers are strongly attenuated. This model attenuation is

more severe for weighting functions Q with large b values.

Homogeneous plane waves have horizontal wavenumbers
restricted between 0 and w/V (i.e. angles of emergence between.
0° and 90°). For typical exploration seismic work, w/V is
smaller than wunity and hence, with small b values, these wave
components are not severely attenuated by Q-' in the model m. On
the other hand, inhomogeneous waves have wavenumbers between w/V
and « (i.e. complex angles between 90° and 90°-i=: Brekhovskikh,
1960). When k,.>w/V but is "reasonably small", these waves are
still controlled by the data eguation (B-1). However, as k.
becomes larger the inhomogeneous  waves are  increasingly
attenuated by thé requirement specified in (B-2) so that their
amplitudes will decrease exponentially. It 1is clear that the
"transition" wvalue of k., at which constraint (B-2) predominates .
" (B-1) depends on the chosen b wvalue, that is to say
| | kO3 (k,-b)%2%exp(k,.b/2)U(w,k,)|| has to be kept finite as k-

becomes large (k, -+ =),

The preceding discussion applies to the forward flattest
problem as well. In this case, the weighting function Q affects

the derivative of m, or equivalently, the rate of change of the
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contribution of the homogeneous and inhomogeneous plane waves at

a given angular frequency w.

2. Effects of Q on the fnner product matrix T.

The elements of the 1inner product matrix T for the
(forward) smallest and flattest problems are inversely
proportional to [(r?+b%*+r?)?-4r?r?], where r; and r; are the
offsets corresponding to the i'th and Jj'th geophone locations
such that r;<r; for i<j. Consequently, 1in the absence of
normalizaton by the standard deviation estimates, we have
ry>r;,>...>nL, . For b<<ra., the diagonal elements of I' dominate
greatly over the off-diagonal ones. That is to say, the weighted
kernels G;Q are almost orthogonal. In this case, the matrix Fjis
numerically - well behaved .(good condition ‘number; see
Figure B.2). Furthermore, the eigenvalues of T are approximately
egual to its diagonal elements, and its eigenvectors are almost
the unit vectors (specifically, the eigenyecto; matrix R is
approximately equal to the identity matrix I). Therefore; the
i'th 'rotated data é;iéRﬁej and the 1i'th basis function
W3=[1/VX?]§B&QSQ become almost the i'th observed data e; and the

" i'th scaled weighted kernel G;Q/V\, respectively.

An increasing b value will decrease the linear independence
of the weighted kernels G;Q with the effect of making the
diagonal elements of I' less prominent with respect to the off-
diagonal ones. In this case, the i'th rotated data e, and the

i'th basis function ¢, will be formed from a linear combination
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of more than one element of the observed data e; and of the

weighted kernels G;Q respectively.
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o
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2.0 1 1 ] 1 1
-3.0 3.0

LOG,, OF b (SMALLEST MODEL)

FIGURE B.2- ,

i
The condition number of the inner product matrix I' (forward
smallest model) as a function of b, Notice the wide domain
of b values for which I' 1is well behaved.

To 1illustrate the previous comments, we have displayed in
Figure B.3 some of the eigenvectors corresponding to the forward
smallest problem for a set of distances r;=iAr, 1;1,2,...,40,
Ar=100 m, with b=0.1 (Panel (a)) and b=50.0 (Panel (b)). In
Panel (a) we observe that the eigenvectors are practically unit
vectors and hence, each basis function will essentially
correspond to a single, scaled weighted kernel. For example, the

25th basis function shown in Figure B.4a (b=0.1) resembles a
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FIGURE B.3

Some of the eigenvectors corresponding to the inner product

81

matrix of the forward smallest-model algorithm. The

parameter b is set to (a) b=0.10, and (b) b=50.0. By
assigning a constant value o0;=1 for all i's, the inner
product matrix reflects only the geometry of the geophone
array. Notice that the 1large b value has "dispersed" the
structure of the eigenvectors.
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single (zero-order) Bessel function of the first kind with the
attenuation specified by the modified Bessel function Ko(k.b).
On the other hand, in Panel (b) of Figure B.3 we observe that
the large b value has "dispersed" the eigenvector structures. In
this case, then, the 25th basis function (shown in Figure B.4b)
contains contributions from a number of scaled weighted kernels,

specifically from the 12th to the 40th inclusively.

10 HERTZ
0.6E£+02 PR S S S T | 0.1€E+03 ¢+ 1 4} 4t 4 1
)
}
+
|
a T 1 b L
-0.8640%- PRSP S R0 N B 50 -0.1E¢03. e e

(HORIZONTAL AXES IN DEGREES)

FIGURE B.4

The 25th basis function for the forward smallest-model
contruction with (a) b=0.10, and (b) b=50.0. Referring to
the 25th eigenvector displayed in Figure B3, notice that the
25th basis function in (a) 1is practically a single kernel
(namely the 25th), whereas this basis function in (b) is
effectively a linear combination of several kernels.
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3. Effect of o; on the inner product matrix T.

In section 2. above we have shown that neglecting standard
deviations leads to an inner product matrix T in which
r,,>r,,>...>OL.. This behaviour of the diagonal elements of
[ provides a natural ordering for the basis functions such that
the long-wavelength structure of the model is controlled by the
basis functions associated with the largest eigenvalues, whereas
the fine structure originates from those basis functions
associated. with the smallest eigenvalues. Dividing each element
of T' by o0;0; the relations I'y;>I;;>...>[, do not necessarily
hold. In parﬁicular, for the case of small b value and 1largely
varying standard deviations, we do not expect thét the
eigenvalues of I' arranged in decreasing order will correspond to
its diagonal elements in their original order. The new order
relations will depend on the relationships between the standard
deviations. For example, a very small 02 value could make T,, the
largest diagonal element and conseguently, the first ordered
eigenvalue will essentially correspond to this élement. But the
most important result of this reordering of eigenvalues versus
diagonal elements of I' is the consequent reordering of the basis
functions ;. Hence, 1in the above example, the last weighted
kernel (associated with TI,,) could become the first basis
function and consequently small-wavelength model structure will
stem from y,. This is illustrated in Figure B.5 where we have
plotted on Panel (a) some basis functions for the case o;=1,

whereas on Panel (b) we have displayed the same basis functions

with o0;=10% of the maximum (amplitude) spectral value of the



84

i'th trace of the data presented in Figure 3.

We summarize by stating that in the process of winnowing
basis functions, the standard deviation values will play a major
role in determining the type of information to be included in
the constructed model. Thus application of o: values to a given

PWD problem should be exercised with caution.
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FIGURE B.5

Basis functions 1, 13, 25 and 35 corresponding to
forward smallest-model construction. Standard deviations
set to (a) 1 for all input traces, and (b) percentages
the maximum spectral amplitude of each trace (see text

the
are

of
for

details). Notice that the re-ordering of the basis functions
is such that in (a) the first basis function contributes
with 1long-wavelength model structure, whereas in (b) this

basis function gives short-wavelength structure.
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APPENDIX C

Inner Product'Matrix for the Forward

Smallest Model Construction

The construction of the forward smallest model requires the
evaluation of the elements of the inner product matrix .T.. Using
the kernels from equation (2-9b) we have,

I, = <G:Q,G;0Q>
= [1/0;0;] j%rxo(krb)ao(k,r;>ao(k,rj)dkr (c-1) .
and from Gradshteyn  and Ryzhik, 1980, equaﬁion 6.578.15 we

obtain,

Fy= [1/0,0;1/[(r2+b2+4r2) 2-4r2r2]0s (c-2)
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APPENDIX D

The Forwérd Flattest Model:

Global Development

This appendix describeé the solutions to the set of
problems which are  encountered 1in the construction of the.
flattest-model forward transform. -In particular, the following
problems are undertaken: |
1. Computation of the flattest model kernels H;.

2. Evaluation of the term H;ﬁT .
3. Calculation of the inner product <H;Q,H; 0>
4, Solution to the indefinite integral }ézﬁ;.

5. Evaluation of the integration constant of equation (2-14).

1. Computation of the flattest model kernels H,;.

With the identification,
& = ke dolk 17 )/0;
we evaluate the indefinite integral,
H. = [1/0, 1fk"Jo(k’r; )3k~
' Upon change of variable 7° = k'r; we get,
R, = [1/o, r?1f7"Jo(7")ar”’

and from Gradshteyn and Ryzhik, 1980, equation 5.56.2 we obtain,

H,‘ = [1/0;r,-]'k.—J1(k.—r;) (D-1)
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2. Evaluation of the term H;m| .

Using (D-1) and the asymptotic behaviour of J,(k,r;) for
large argument, the first term of the r.h.s. of equation (2-11)
for k, -+« behaves as,

U(w, ko) %3EL{[1/oir;]kr[2/nkrri]”2}

= Ulw,kpe) lim {2k}h/o;w”zr?h} (D-2)

W, 2

This expression goes to zero provided U(w,k.~®) goes to
zero faster than k.- '? for all frequencies (because the médified
Bessel functions Ky(x) and K,(x) are not defined at x=0 we
exclude‘both w=0 and y=0°). Recalling that k,=wsin(y)/V, and
considering a band-limited source; k,»= represents infinitely-
attenuated inhomogeneous waves. In the present work we set

~H;mT = 0
Then we will be concerned with models U(w,k.) which go to =zero

faster than k.- '? as k. o=,

3. Calculation of the inner product matrix.

With H. as given in (D-1) and Q = K,%%(k.b), the entries of
the inner product matrix I' are given by,
I, = <H;Q,H;0>

= [1/r; r, 0,0, ]j’kfx,(krb)a,(krr, )3, (k. r;)ak,

and from Gradshteyn and Ryzhik, 1980, equation 6.578.15 we have,

I =[1/0,0;1 4b/[(r2+b2+r2)2-4rzr2]"s (D-3)
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Ke
4. Evaluation of the indefinite integral [Q°%H,.

The solution to the indefinite integral appearing in the
l.h.s. of equation (2-15) can be derived from the following
(indefinite) integral given 1in Gradshteyn ahé Ryzhik, 1980,
equation 5.54.1,

fyZP(ay)B?(cy)dy

= {cyZe¢(ay)By_,(cy) - ayZe.,(ay)Bplcyll/[a?-c?] (D-4)

where 2, and Bp are any Bessel function of order p, and a and ¢

are constants. For p=1 we identify,

2, = J,
By, = H,(")
"H,'"’is the first Hankel function of order one. (D-4) now reads
as,
fyd.(ay)H,¢ "V (cy)dy
= {cyd,(ay)Ho "’ (cy) - ayJdolay)H, V' (cy)l/[a?-c?] (D-5)

but from Gradshteyn and Ryzhik, 1980, -equations 8.407.1 and
8.407.2 we have,
Ho " (iby) = -[2/7] iK,(by) (D-6a)
H, "V (iby) = -[2/7] K,(by) + (D-6b)
" Using (D-6) and identifying c=ib, (D-5) transforms to,
-{2/7]1 [fyJ,(ay)K,(by)dy
= {(ib)yJd,(ay)[-2/7 iKo(by)] - ayJo(ay)[-2/7 K,(by)]}
/la?-(ib)?]
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that is to say,
fyJd,(ay)K,(by)dy
= - {byJd,(ay)Ko(by) + ayJo(ay)K,(by)}/[a2+b?] (D-7)
from which after making y=k. and a=r; we obtain the r.h.s. of

equation (2-15).

5. The integration constant of equation (2-14).

We show that with the condition U(w,k,+=)=0 the constant of
integration C 1is equal to zero. From equations (2-14), (D-1)
and (D-7) (with y=k. and a=r; ) we see that,

C = -S[B;/a;r;] [1/(x3+b?) 1{ 1im{bkcJ, (r ke )Ko(bko)) +
{}Ejr;ero(r;kr)K,(bkr)} } + Uw,k,a=) (D-8)

Asymptotic expansions for large arguments of the involved Bessel
functions and the modified Bessel functions read as (Abramowitz
and Stegun, 1970),

Jolr,ke) 7 [2/7r: k- 1%% {cos(r, k) + O(|r;k. |~ ")}

Ji(r. ko) T [2/7r; k. 195 {sin(r; k.) + O(]r;k, |~-")}

Ko(bk. ) = [#/2bk.1%% exp(-bk.){1 + O(|bk.| ")}

K,(bk.) = [=#n/2bk. ]1%% exp(-bk.){1 + O(|bk.|"")}
Therefore, the leading behaviours of the limiting expressions in
- (D-8) are given by,
lim {bk.-[2/7r, k_1°%[n/2bk.]1°°% exp(-bk,.)}

¢ =0

+ lim {r. k,.[2/7r; k_1%5[n/2bk, ]%° exp(-bk.)} = 0 (D-9)

Ke-ac?

that is to say,
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APPENDIX E

Inner Product Matrices for the Inverse Smallest

and Flattest Model Constructions

The computation of the 1inner product matrices for the
inverse smallest and flattest problems parallels that made for
the forward problems. Indeed, by replacing r; by k.; as the
parameter and k¢ by r as the independent variable appeafing in
the formulation of the forward problems, one readily obtains the
inner product matrices for the inverse problems. In particular,
the entries of the I' matrix for the smallest inverse transform

are given by,

Ly(w) = [1/0;0,1/[(k2+b2+k2)? - akZkZ]os (E-1)

After the substitutions k.=wsin(y;)/V and b=wp =wsin(c)/V,
where ¢ 1is a constant such that sin{(c)>0, and V is the surface

P-wave velocity, (E-1) yields

I (@) = V2/w? {[1/0;0;1/[(sin?(y; )+sin?(c)+sin?(v;)? -
4sin?(y; )sin?(y, ) 105},
‘We write
I (w) = VZ/w? T (E-2)
where,
| M= [1/0:0;1/[(sin?(y; )+sin?(c)+sin?(y )? -

4sin?(y;)sin?(y; ) ]0%5
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Since the frequency—depehdent term in (E-2) is factored out of
the inner product matrix, the inverse I'''(w) = w?/V2 I-!' is

calculated with minimal computational effort.

Similarly, the entries of the inner product matrix for the

inverse flattest problem are given by,
nj(w) = [1/0;0;)4b/[(kZ+b2+k2)? - 4l~:}f.k,§]‘-5 (E-3)

Upon the substitutions b=wsin(c)/V and k., =wsin(y; )/V we obtain
from (E-3),
Fu(w) = V5 /w’ I,
where_
3

. = [1/0; 0; 14sin(c)/[(sin?(y; )+sin?(c)+sin?(vy;) -

4sin?(y;)sin?(y; ) 1",



