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A B S T R A C T 

Nonlinear signal matching is a generalization of cross correlation in that a discrete 

lag between signals is replaced with a variable lag function or 'matching function', 

m(x). Two methods are reviewed which attempt to solve for m(i), namely the dynamic 

programming approach and the inverse theory approach. Both methods suffer from 

pitfalls and require the input of prior constraints to ensure convergence to the correct 

solution. The goal of this work has been to develop a method that can handle simple or 

complex matching problems and can succeed without any prior knowledge constraints. 

The multiple dynamic matching method is the result. It uses a significance threshold to 

extract a set of ridge points from a similarity matrix and applies dynamic programming 

to obtain a set of matched sections. These significant matched sections or 'subpaths' are 

then combined into a set of complete matching functions and a 'mean local confidence' 

norm is evaluated to determine the best overall match. 

It is argued through a model of change between signals, that given that the correct 

matching function is known, the presence of large amplitude changes between signals 

can cause the correct matching function to appear suboptimal under similarity norms. 

Multiple dynamic matching, because it generates suboptimal solutions as well, does 

not overlook the correct matching function. Typically the top three interpretations as 

ranked by mean local confidence will contain the expert's choice for the correct matching 

function. 

The use of median filters to preprocess the data and enhance well log features 

for matching has been investigated. A new 'median decomposition' is discussed as 

well, and in the context of a scale - space point of view to filtering, it is argued that 

median scale space is the proper choice for blocky waveforms. Finally, the connection 

between multiple dynamic matching and pattern recognition is explored, and matching 
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iteratively through scale is proposed as a means of further generalizing the multiple 

dynamic matching method, making efficient high resolution matching possible. 



iv 

T A B L E O F C O N T E N T S 

A B S T R A C T ii 

L I S T O F T A B L E S vi 

L I S T O F F I G U R E S vii 

A C K N O W L E D G M E N T S ix 

C H A P T E R I 
I N T R O D U C T I O N . 1 

1.1 Correlation and Matching Functions 1 
1.2 Waveform Change and the Matching Problem 3 
1.3 Dynamic Waveform Matching 4 
1.4 The Inverse Approach to Signal Correlation 8 
1.5 Multiple Dynamic Matching 11 
1.6 The Well Log Matching Problem 13 

C H A P T E R II 
P R O C E S S I N G S O N I C W E L L L O G D A T A W I T H M E D I A N F I L T E R S . . . . 16 

2.1 Introduction to Median Filtering 16 
2.2 Median Filtering Applied to Well Logs 18 
2.3 Compound Median Filtering 19 
2.4 Median Decomposition 23 
2.5 The 'Bloetrum' 24 
2.6 Median Scale Space 27 
2.7 Automatic Event Detection 29 
2.8 Processing Sonic Well Logs For Matching 31 

C H A P T E R III 
M U L T I P L E D Y N A M I C M A T C H I N G 38 

3.1 Introduction 38 
3.2 The Similarity Matrix 38 

3.2.1 The Semblance Functional 39 
3.2.2 Smoothness and Sampling 41 

3.3 Local Confidence 44 
3.4 Ridge Points 47 
3.5 Subpath Determination (Dynamic Matching) 48 
3.6 The Function Network (Multiple Dynamic Matching) 52 
3.7 Ranking the Functions 54 

3.7.1 Mean Local Confidence 54 
3.7.2 Simplicity 57 
3.7.3 Sufficient Diversity 57 

3.8 Applying the Matching Function 60 



V 

3.9 Computing Time 62 
3.10 Sources of Error 63 
3.11 Multiple Dynamic Matching and Pattern Recognition 65 
3.12 Automatic Stratigraphic Correlation 66 

C H A P T E R IV 
C O N C L U S I O N S 69 

4.1 Improvements 69 
4.2 Parameter Estimation 70 
4.3 Speculations on the Future and Related Ideas 72 

4.3.1 Extending Well Log Matching to 3D 72 
4.3.2 Seismic Signal Matching 73 

4.4 Summary 74 

Bibliography 75 
Appendix 78 



vi 

L I S T O F T A B L E S 

1. F ive classes of geologic change and digital reponse change 12 

2. Standard errors for different niters 20 



vii 

LIST OF FIGURES 

1.1 Global and local path constraints 5 

1.2 Matching of envelopes of local earthquake data 6 

1.3 Inverse theory solutions to a matching problem 10 

1.4 Examples of matching functions for four classes of structural change . . 14 

2.1 Simple examples of median filtering 16 

2.2 Sonic log convergence to root for an N — 12 median filter 19 

2.3 Comparison of median, compound median and Walsh filtering 21 

2.4 Original log and its median components 24 

2.5 Residual components and original reconstructed. 25 

2.6 The Bloetrum 26 

2.7 Paths of zero crossings through scale 28 

2.8 Automatic event detection 30 

2.9 Trend removal using frequency low-cut 32 

2.10 Trend removal using median low-cut 35 

2.11 Median low-pass and frequancy low-pass 35 

2.12 Preprocessing steps 36 

2.13 Five logs after preprocessing steps 37 

3.1 Computation of the similarity matrix 39 

3.2 Logs 1 and 2 after preprocessing (example m2/i 41 

3.3 2D power spectra of similarity matrices 42 

3.4 Local confidence illustration 45 

3.5 Ridge points in similarity matrix for m 2 / i 48 

3.6 Local path constraint 49 



viii 

3.7 Subpaths from ridge points 50 

3.8 The function network from subpaths 52 

3.9 Top ten functions after M L C 54 

3.10 Application of best three functions to test log 55 

3.11 Top ten functions after SIMP 57 

3.12 Top three functions after M L C and S I M P 58 

3.13 Top three functions applied after sufficient diversity 60 

3.14 Local confidence vs. x 64 

3.15 Automatic correlation of five logs 67 

4.1 Areal distribution of the five logs 72 



IX 

ACKNOWLEDGEMENTS 

The problem of nonlinear signal correlation and the dynamic programming approach 

to solve it was first communicated to me by Toshifumi Matsuoka and I am very thankful 

to him for that. Throughout this work Ken Whittall has made countless fruitful sugges

tions and has helped to keep my goal in perspective. Thanks Ken. M y supervisor Dr. 

Tad Ulrych has been a great source of inspiration and has enabled me to laugh at myself 

when things seemed impossible. Thanks to him for his special brand of encouragement. 

I would also like to thank the entire department of Geophysics and Astronomy and all 

my friends there. 

Special thanks also to my parents for supporting my education. 



1 

Chapter 1 

I N T R O D U C T I O N 

1.1 Correlation and M a t c h i n g Functions 

The general problem of correlating two or more signals occurs in many fields of 

study. Examples of correlation problems come from geology (stratigraphic correlation), 

geophysics (seismic signal correlation), and speech processing (word recognition). Any 

time that sequences of data have been recorded in an experiment and a connection 

between signals is suspected, a correlation problem exists. Obtaining optimum signal 

alignment requires determining the samples of the measured response which correlate 

or match in two or more sequences of data. Conventionally this has been solved using 

a correlation or similarity functional where the signals or portions of the signals are 

lagged relative to one another. The unnormalized cross correlation or similarity between 

a reference signal r(x) ; x — 0,X and a test signal t(x) ; x = 0, Y may be written as 

S { = / r(x)t{x + £)dz, (1.1) 
Jo 

where is the global similarity at lag £, (and the limits of integration may be changed 

to a window (Xi,X2) for a local similarity measure). Finding the optimum lag simply 
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involves computing over a range of £'s and determining the maximum. However, 

some data such as well log and seismic data may undergo variable moveout so that a 

continuously varying lag is necessary to recover optimum signal alignment. Thus the 

lag £ is replaced with a continuous lag function or 'matching function', m(x). The 

generalized similarity functional may now be written as 

where m(x) determines the shift, stretches and compressions of the test signal. 

One may want to determine the 'matching function' for a variety of reasons. The 

connection of equivalent events may be wanted for an automatic interpretation (for 

apply the matching function to align the data before additional processing. Another 

application of matching functions is to assign a waveform or portion of it to one of 

several classes as defined by their expected waveforms. Here one is looking for the 

simplest matching function to determine, for example, whether a seismic signal is due 

to an earthquake or nuclear blast. The application explored in this project is that of 

connecting structurally equivalent portions of digital sonic well logs. A l l applications of 

matching functions require an accurate and reliable method of determining the function 

itself, and if objectivity is required so that no a priori knowledge is included in the 

solution, the problem is particularily difficult. 

o 
(1.2) 

example connecting equivalent time horizons in well logs), or one may want to actually 
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1.2 Waveform Change and the Matching Problem 

A simple mathematical model of change between waveforms is helpful to further 

explain the problem of correlation or matching. The change between a reference signal 

r(x) and a test signal t(x) may be modelled as due to a structural change m(x) and an 

amplitude distortion a(x), so that: 

r(x) = t[m(x)\ + a(x). (1.3) 

It is desired to solve for m(x) and a(x) and thereby quantify completely the change 

between signals. The trouble is that a(x) can only be determined once m(x) is known, 

and as m(x) cannot be separated from the test signal, its determination is a nonlinear 

problem. Also, the matching function may be simple or complex, smooth or discon

tinuous, and there is another complication as. well. For most matching problems the 

amplitude distortion a(x) is small so that nearly identical matching is possible if only 

m(x) is recovered. However, the presence of |a(x)| >> 0 for any x can cause the result 

of applying the correct matching function to appear suboptimal, so that any method 

that solves for m(x) by maximizing the coherence between r(x) and <[m(x)] would be 

mislead, determining an incorrect structural change. In these severe cases it would be 

beneficial to generate suboptimal solutions as well. 

The determination of the matching function is thus a complicated issue. The prob

lem is nonlinear, the solution may be arbitrarily nonlinear, and amplitude distortions 

may cause the correct solution to appear suboptimal. One method that has been suc

cessful in the solution of nonlinear problems is that of dynamic programming (Bellman 

and Dreyfus 1962). However, only recently has dynamic programming been applied to 
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matching problems in speech processing (Rabiner, Rosenberg, and Levinson 1978, M y 

ers and Rabiner 1981), stratigraphic correlation (Gordon and Reyment 1979, Smith and 

Waterman 1980, Clark 1985) and seismology (Liu and Fu 1982). Dynamic program

ming was reviewed as a tool for geophysical data processing by Anderson and Gaby 

(1983). They discuss the method of dynamic waveform matching and its geophysical 

applications, and discuss some of the difficulties of the method with certain matching 

problems such as well to well correlation. 

Another method which is totally distinct from dynamic matching is the inverse 

approach to signal correlation (Martinson, Menke and Stoffa 1982). Both methods of 

waveform matching and their pitfalls will be reviewed in the next two sections, followed 

by an introduction to multiple dynamic matching and the well log matching problem in 

particular. 

1.3 D y n a m i c W a v e f o r m M a t c h i n g 

Nonlinear matching shifts and warps (stretches and compresses) one of the signal 

axes (time or depth) until the corresponding features of the two waveforms are aligned. 

The optimum shift and warping of the signal axis, the matching function, may be 

determined by dynamic programming. The following is a brief review of this approach 

to waveform matching based largely on a paper by Anderson and Gaby (1983). 

Since it is desired to find the shift and warping that will minimize the difference 

between a reference waveform ; i — l,n and a test waveform tj ; j — l , m , a 

difference or distance measure may be computed between pairs of points to form a 

dissimilarity matrix, d ^ : 
T i TO 

i=l j = l 
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Then the path through aV, which minimizes 

n 

0 = (1-5) 
t=l 

is defined as the optimum path and its coordinates i,p[i) determine the shift and warp

ing of the test waveform axis for optimum waveform alignment. The matching problem 

is therefore viewed as a pathfinding problem through the matrix dij. Dynamic program

ming can efficiently determine the optimum path whenever the dynamic programming 

principle applies: 

Whenever the path from a starting point S to an intermediate point I does not 

influence the optimum choice of paths for travelling from S to a goal point G, then the 

minimum distance from S to G is the sum of the minimum distance from S to I and the 

minimum distance from I to G. (Anderson and Gaby (1983)). 

Dynamic programming is efficient because it assumes that the optimum local path 

is part of the optimum global path. In other words, only a small portion of dij local to 

the present path point needs to be computed to determine the next path point. 

To minimize equation (1.5) with dynamic programming several things must be spec

ified: 

a) endpoint constraints - where the path may begin and end. 

b) local continuity constraints - constraints on the path from one point to the next. 

c) global path constraints - limitations on where the path can wander in (i,j) space. 

A graphical representation of contraints a and c is shown in Figure 1.1a. In most 

applications of dynamic waveform matching, the starting and end points are fixed, 

equivalent to knowing and constraining the correlation of points near the beginning 
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j(k) - i(k)+R 

F i g u r e 1.1 (a) Endpoint and global path constraints, (b) type Hd local path constraint, 
(from Anderson and Gaby (1983)). E n d points (1,1) and (N,M) correspond to already 
interpreted matches between signals, and the sloped lines beginning from them are the 
result of the local path constraint in (b) (pathfinding may proceed from right to left 
or from left to right). Potential path points are commonly weighted as in (b), further 
restricting the simplicity of the path. 

and end of the test and reference waveforms. Local constraints on the next possible 

path point can take the form of bounds on proximity, slope, or slope weighting, wherein 

a potential path point dij may be weighted proportional to the resulting deviation 

of the local slope from one. The commonly used type Hd local path constraint is 

shown in Figure 1.1b. The path constraints are equivalent to restricting the overall 

simplicity of the function, and along with the dynamic programming principle, make 

dynamic waveform matching an efficient method for solving for the matching function. 

However, dynamic matching often fails to recover the correct match when waveforms 
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TIME (s) 

F i g u r e 1.2 The matching of envelopes of local earthquake data using equations (1.4) 
and (1.5), and the path constraints of Figure 1. (From Anderson and Gaby (1983)). 
Dashed lines indicate matches. Notice the poor correlation of major events. The local 
path constraints and measure of difference are too restrictive to recover the correct 
match. 

show high variability in moveout and signature. This is because sections of waveforms 

which have no events of significant magnitude will produce an unclear match and poorly 

defined minima in dij, and this can mislead a pathfinding algorithm that looks ahead 

only locally. Also, pronounced moveouts or disappearances of significant events can 

require the pathfinding algorithm to look farther ahead than the prescribed local path 

constraint. Figure 1.2 shows the result of applying dynamic waveform matching using 

equations (1.4) and (1-5), and the path constraints of Figures 1.1a and 1.1b to match 

the envelopes of local earthquake data. Notice the poor correlation of primary and 

secondary events. This is due to an inadequate measure of dissimilarity (or similarity) 

and local path constraints which are too restrictive. The problems with the dynamic 

matching approach have been overcome by using more than one metric to compare the 
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signals (Liu and Fu 1982), and by the inclusion of user supplied constraints (Gordon 

and Reyment 1979, Clarke 1985), where the user may constrain the path to include 

points representing already interpreted matches (the correlation of 'marker' events for 

instance). Obviously any method that requires user interpretation is not objective or 

amenable to the processing of large volumes of data. What is needed is a method that 

is not susceptible to being mislead by insignificant or unclear matches, can handle large 

and variable moveout, and can succeed without any user supplied interpretation. 

1.4 The Inverse Approach to Signal Correlation 

The inverse theory approach to signal correlation avoids some of the pitfalls of 

the dynamic programming approach and can yield stable solutions to relatively simple 

matching problems. Martinson, Menke and Stoffa (1982) suppose that a reference signal 

r(t) is related to its distorted version d(x) through the matching function x(t). Thus 

r(t) — d'[x(t)]. They then parameterize x(t) as the sum of a linear trend and a truncated 

Fourier series: 
n - 1 

x(t) — a0t + ^ ai sin(t7rt/r) (1-6) 
t=i 

where T is the length of r[t). 

It is desired to maximize the coherence between r(t) and d[x(t)] which is given as: 

c = Io' r(t)d[x(t))dt 

fiT*{t)dtfZ'd*\z(t))dt 

When the coherence is maximized the gradient of C with respect to the parameterization 



coefficients ai is zero: 

— = V C = 0. (1.8) 
oai 

A complicated expression for the partial deivatives may be derived from (1.7). The 

numerical values for the coefficients are then found by starting wi th an init ial guess for 

the solution a° and iterating to improve the coherence by a small amount A O . Using 

Taylor's theorem A C is expanded as: 

dC dC dC , % A C - - — A a 0 + — A a ! + - + ——Aa„ = V C • A a . (1.9) 

This equation and n — 1 other constraint equations which come from requiring that the 

increment A a always be in the direction given by V C give a system of equations which 

when solved yield the change to the coefficients A a . Iteration stops when O ceases to 

increase. 

The method is applied to O 1 8 profiles from two ocean dril l cores to determine 

differential sedimentation rates. A s with all nonlinear inverse methods, convergence 

to the correct solution is strongly dependent on the init ial guess or starting function. 

Mart inson et al. obtain different results given a hand picked starting function and a 

simple linear starting function (see Figure 1.3). 

Two points should be made wi th regard to the inverse method of signal correlation. 

First , since global coherency is maximized and perturbations exist over the entire length 

of the matching function, local weaknesses in similarity do not greatly affect the final 

result and the method is more stable than dynamic matching. Secondly however, in 

difficult problems where the correct matching function is quite nonlinear, the inverse 

approach has difficulty in converging to the correct solution without a user supplied 



F i g u r e 1.3 Matching function determination with the inverse approach to signal corre
lation applied to O 1 8 data from two ocean drill cores. Solutions using (a) a hand-picked 
starting function (triangles) and (b) a linear starting function. (From Martinson et al. 
(1982)). Notice the sensitivity of the final solution to the starting function. 

starting function. Therefore, as with dynamic waveform matching, the inverse approach 

when applied to the most general class of matching problems, lacks objectivity and is 

not suitable for automatic data matching. 

1.5 M u l t i p l e D y n a m i c M a t c h i n g 

A n approach to overcoming the problems of the previous two methods just discussed 

may now be clarified. Difficult matching problems could be reliably solved with the 

inverse approach if a starting function that is simple or complex as necessary could be 

determined automatically. Similarity, if local low confidence problems of the dynamic 

matching method in the presence of insignificant or unclear matches could be overcome, 

and local path constraints relaxed to allow for more complex matching functions, it too 

would satisfy the criteria of objectivity and reliability. The presence of large amplitude 
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distortions (|a(x)| > > 0) between signals which may cause the correct matching function 

to appear suboptimal could also be handled by either method if more than one starting 

function was used in the inverse approach, and if additional suboptimal solutions were 

found with a reliable dynamic matching algorithm. 

The previous two methods differ essentially in their definitions of optimality. The 

inverse theory approach maximizes a coherency functional over the full length of the 

signals and so uses 'global' optimality. Dynamic waveform matching minimizes the 

immediate difference between points or windows of points in the signals, and so uses 

'local' optimality. It can be said that local optimality gives efficiency while global 

optimality gives stability. Combining the benefits of both methods would likely give 

superior results. Experiments with both matching schemes (Leaney 1985, 1986) have 

indicated the following features for a more robust waveform matching method: 

1. To avoid insignificant and unclear matches, associate a significance threshold with 

local optimality to extract sections of the matching function where confidence is 

high, and use linear approximations where confidence is low. 

2. Quantify final optimality over the entire function with a 'global' norm. 

3. To avoid missing the correct solution due to |a(x)| >> 0, find suboptimal solutions 

as well as the optimal solution. 

The multiple dynamic matching method contains these features, and when applied 

to the problem of digital well log correlation which is known to be a difficult matching 

problem (Robinson 1978, Gordon and Reyment 1979, Schwarzacher 1982, Anderson and 

Gaby 1983), has produced good results. The method itself will be explained in detail in 

Chapter 3, but prior to that, a discussion of some of the peculiarities of matching well 

logs is needed. 
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1.6 The Well Log Matching Problem 

The problem of matching digital well logs poses problems not encountered with 

other data sets. Well logs are generally separated by kilometers or tens of kilometers 

and structural geology can change appreciably in that distance, meaning that m(i) 

can be considerably nonlinear. As well, the signature within a given formation may 

change due to differences in porosity, density, matrix composition, fluid content etc., 

so that amplitude distortions a(x) are large. The difference between two well logs 

may be expected to show any one of, or combination of five classes of digital response 

change. The following table summarizes the geologic changes and the corresponding 

digital response changes. 

geologic change digital response change 

1. dipping or faulting shift 

2. thinning/thickening compression/stretching 

3. pinchout disappearance 

4. faulting/fold ing repetition/in verted repetition 

5. compositional change signature change 

Table 1. Summary of geologic and digital response changes between two well logs. 

The matching function m(i) determines the first four geologic changes, that is, the 

structural change between wells, while compositional changes internal to a formation or 

amplitude distortions a(x), may only be estimated given the correct matching function. 
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Figure 1.4 shows examples of matching functions corresponding to the four classes of 

structural change. Conventional cross correlation can handle only class 1 structural 

change while nonlinear matching methods can handle classes 1 - 3 of structural change. 

Class 4 structural changes are much more difficult to recover, but it will be seen that a 

simple modification to multiple dynamic matching would allow for the recovery of this 

class of structural change. 

Another problem is associated with well logs. Since they are generally not smooth 

signals in that they cannot be accurately represented by a linear combination of contin

uous functions, conventional filtering techniques cannot be applied with an expectation 

of undistorted waveform features. Signal matching problems usually require some pre

processing of the data, and since well logs are commonly signals composed of blocks 

and spikes, an alternative filtering technique that can remove short impulses without 

smearing block edges is needed. Median filtering has been.found appropriate for the 

filtering of sonic well logs. The data used in this project are five offshore sonic well 

logs with a sampling interval of 3 meters with each value being the weighted average of 

10 readings spaced .3 meters apart. The next chapter deals with the theory of median 

filtering and its application to sonic well logs. 
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F i g u r e 1.4 Examples of matching functions for four classes of structural change and 
their analogous geological situations summarized in Table 1. The reference signal is 
along the x axis and the test signal is along the y axis, (l) Shift (recoverable by conven
tional cross correlation), (2) compression or stretching, (3) appearance or disappearance, 
(4) inverted repetition and repetition. Nonlinear matching methods can recover classes 
1 - 3 of structural change. Multiple dynamic matching can also handle class 4 structural 
change. 
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Chapter 2 

PROCESSING SONIC WELL LOG DATA 

WITH MEDIAN FILTERS 

2.1 Introduction to Median Filtering 

Median filters operate by replacing the value at the middle of a sequence of numbers 

with the middle value of the sequence after sorting. The median of a sequence of numbers 

may be defined mathematically as that value that is a minimal 'distance' from all other 

values (Claerbout and M u i r , 1973). That is, the median value minimizes the sum of the 

absolute differences between it and the other points of the sequence and so operates as 

an ' L i ' estimate of the expected value of the sequence. This is known to be a better 

estimate than the mean when the sequence contains wildly erratic values. The median 

operator M is also data dependent and is a nonlinear operator as it does not conform 

to the definition of linearity: F ( a x + b) — oF(x) + - f i b ) . For example take x = (1,2,3) 

and b = (2, 3,4),and a = 2. Then (M(ax + b) =• 8] / [aM(x) + M ( b ) = 7j and so 

the median operator is nonlinear. These are properties that define the median, but 

of particular interest is the median as a filter, moving or sliding along a sequence of 

numbers. 
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Figure 2.1 (a) Three point median filter applied to a binary signal (from Stewart 
(1986)), (b) convergence of a binary signal to its N = 1 root (from Fitch, Coyle and 
Gallagher (1984)). 

The operation of sort - replace - slide is presented in Figure 2.1a for a three point 

median filter length applied to a binary signal. Notice the spike rejection and 'block pass' 

result. Generally any impulse that is less than N+l points long where 2JV + 1 is the filter 

length, will be rejected. However, on complex waveforms where sequence values change 

at each point, the ideal transfer 'behavior' of passing blocks greater than N in length 

is not seen. In real data examples the same length filter must be applied successively 

and even then the ideal transfer behavior is not observed. Gallagher and Wise (1981) 

have performed a theoretical analysis of the properties of median filters. They derive 

necessary and sufficient conditions for a signal to be invariant under successive median 

filtering. These conditions state that the signal must be locally monotone to pass 

through a median filter unchanged. A signal that is invariant under further median 

filtering is called a root signal, and it is shown that a root signal may contain only 
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'constant neighborhoods' and 'edges'. These two possible structures of root signals are 

denned for a median filter of length 2N + 1 as: 

1) A constant neighborhood is at least TV + 1 identically valued points such that the 

constant neighborhood and the edge together are monotone. 

2) A n edge is a monotone region between two constant neighborhoods of different value 

and the connecting monotonic region cannot contain any constant neighborhood. 

Two other important characteristics are noted here. For a root signal to contain both 

regions of increase and decrease, the points of increase and decrease must be separated 

by a constant neighborhood (at least TV + 1 points of constant value). Also, a signal 

of length T will converge to its root signal in at most (T — 2)/2 successive filterings. 

Figure 2.1b shows the convergence of a binary signal to its root for a median filter of 

length 3. 

2.2 M e d i a n F i l t e r i n g A p p l i e d to W e l l L o g s 

The block and edge pass property of median filtering is a desired property for the 

filtering of sonic well logs. Well logs are composed of blocks and impulses, and it 

is sometimes desired to remove the impulses while preserving the blocks and edges. 

Bednar (1983) has investigated the editing of acoustic impedance data with a Markov 

algorithm, running means and median filters and concluded that median filters produced 

superior results. Figure 2.2 shows the convergence of a portion of a sonic well log to 

its root signal for a median filter length of 25. The root signal contains only constant 

neighborhoods or blocks of greater than 12 samples, and edges or monotonic regions 

between them. It is noted that an edge may be as little as one sample long. The 

degree to which median filtering does not preserve perfect steps in the original data, 
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F i g u r e 2.2 Convergence of a portion of a sonic well log for a median filter of length 25. 
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and produce only blocks, is dependent on the distribution of values near an edge. Evans 

(1982) points out that nearby spikes may be drawn into a step (making it a series of 

steps), or, if values are widely distributed near the step, the corner may be rounded. 

Median filtering when applied to sonic logs may not preserve block edges ideally due to 

the erratic nature of the data, but it is superior to other filtering techniques. 

2.3 Compound Median Filtering 

Median filtering for the removal of short impulses and the preservation of blocks 

and edges can be seen in Figure 2.2. Notice however the creation of multiple steps and 

rounded corners on some blocks. A s mentioned previously, Evans (1982) attributes these 

artifacts to the distribution of values near the steps. It would seem that the removal of 

erratic values before the application of a median filter would help to reduce the multiple 

steps and rounded corners. A n innovation to median filtering not found in the literature 

is employed here to remove these artifacts and is called 'compound median filtering'. 

Compound median filtering operates by removing all impulses of length < N before 

application of a 2N + 1 length median filter. This is accomplished by median filtering 

the input signal with a filter of length (2n + 1) to its n = 1 root signal, then filtering 

this result to its n = 2 root signal and so on until n — N. 

Gallagher and Wise (1981) state that the root of a signal depends on the median 

filter window length. For example, the root for a window of length 5 is always a root for 

a window of length 3, but the root for a window of length 3 is not necessarily a root for a 

length 5 window. Compound median filtering uses this fact and would only apply a filter 

of length 5 to the root signal of a length 3 filter. The result is a different root signal for 

the same length filter, and since any impulse of length < JV has been removed, multiple 
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step and rounded corner artifacts should be reduced. Figure 2.3 shows the same original 

log portion as in Figure 2.2, the root signal for an N — 12 median filter and the root 

signal for the corresponding compound median filter. Also shown is the Walsh low-pass 

version of the original log. The use of Walsh transforms in the representation of well 

log data has been explored by Lanning and Johnson (1983). Walsh transforms map the 

data onto an orthogonal set of square wave functions. Each function is described by its 

'zero crossings per second' or 'zps' (also called 'sequency'), and reconstruction to any 

minimum block length is then possible by zeroing energy in sequencies corresponding 

to blocks below a desired length and inverse Walsh transforming. The Walsh low-pass 

version in Figure 2.3 has blocks of length N, the same as the median and compound 

median filtered logs. 

By computing the root mean squared difference or standard error between each of 

the filtering results in Figure 2.3 and the original log, the best representation of the 

original log at the given block length may be determined. The table below shows the 

standard error (SE) for each result. 

Filter type S E 

median 191.1 

compound median 174.8 

Walsh low-pass 215.7 

T a b l e 2. Standard error between the original log and median, compound median and 
Walsh low-pass versions of the original. 
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F i g u r e 2.3 (a) Original data (same as in Figure 2.2), (b) root signal for an N = 12 
median filter, (c) the root signal for the corresponding compound median filter, and (d) 
the Walsh low-pass version of (a) with equivalent shortest block length as in (b) and (c). 
The compound median result of (c) best represents the signal at the given minimum 
block length. 
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This indicates that compound median filtering is the superior technique for extract

ing the blocky portion of a signal. 

The improved result of compound median filtering over conventional median filtering 

brings the behavior of a compound median filter close to the 'ideal transfer behavior' 

attributed to median filters and mentioned earlier. A practical application of compound 

median filtering will be discussed in section 2.7. 

2.4 Median Decomposition 

The following is a new and original nonlinear signal decomposition which is founded 

on the innovation of compound median filtering discussed in section 2.3. 

The effect of the compounding process is to successively remove impulses of length 

n = 1 ,2 , . . . N. Impulses of length 2 for example are only removed after those of length 

1 have been removed. Since compound filtering removes impulses of a fixed length, the 

difference between present and past root signals will be a signal containing impulses 

of only one length. The signal may thus be decomposed into its constituent 'residual 

component' signals, each containing impulses of one duration. 

If vo{J))3 — \,m represents the original sonic log, and /„(•) represents the operation 

of a median filter of length 2n + 1, then the 'residual component' with only impulses of 

length n is: 

an(j) = vn-i[j) - vn(j) where f B ( j ) = / n K - i ( j ) ) . (2.1,2.2) 

When this is done for n — 1,7V, the signal has been decomposed into a root signal and 
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a set of TV residual components an(j), and the original signal may be reconstructed as: 

TV 

vo(j) = vN{j) + J2an{J)- (2-3) 

It is noted that this is not a linear decomposition since an(j) is an arbitrary and unknown 

function. 

Figure 2.4 shows each compound median root or 'median component' for N — 43 and 

Figure 2.5 shows the residual components an(j) and the original signal reconstructed 

from equation 2.3. It should be mentioned that the reconstruction is exact and does 

not suffer from round off error as no multiplications or divisions are inolved in the 

computation of the median or residual components. 

2.5 The 'Bloctrum' 

Just as there is a frequency spectrum showing energy at different sine wave periods, 

so may the energy or amplitude at different impulse or block lengths be computed from a 

median decomposition. The amplitude An of all impulses of length n may be computed 

as: 
m 

A „ = J ] |o n(j)| for n = l , 2 , . . . J V . (2.4) 

Since compound median filtering decomposes the signal into impulses or blocks, am

plitude as a function of block length may be called a 'bloctrum'. The bloctrum of a 

trend-removed log is shown in Figure 2.6. 

The bloctrum provides quantitative insight into the block distribution within the 

signal and may be employed as a quality measure in matching. For example, after 
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Figure 2.5 The residual components a n ( j ) corresponding to the median components 
in Figure 2.4, and the original signal reconstructed from equation (2.3). 
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F i g u r e 2.6 The bloctrum corresponding to the median decomposition of the original 
log in Figure 2.4 but with N = 98. Amplitudes have been normalized by the length of 
the signal. 

matching, the block distribution within the logs should be similar, so a coherency mea

sure between bloctrums should be higher for a better match. Also, the bloctrum may 

be used to reconstruct the signal with only blocks of significant energy. A threshold 

may be applied to the bloctrum or to each residual component individually so that only 

those residual components with significant amplitude would be used in a reconstruction. 

The signal may also be reconstructed exactly from fewer than N median components 

since some components have no contribution to the signal. 
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2.6 Median Scale Space 

The operation of median filtering extracts signal from noise where the division be

tween the two is at an exact impulse duration or block length. A longer median filter 

length passes longer blocks, and this may equivalently be seen as reducing resolution 

and producing a broader scale view of the log. The log may thus be viewed through 

scale by changing the length of the median filter. 

The idea of scale in the areas of computer vision and pattern recognition has re

ceived a fair amount of attention in recent years. The goal is to quantitatively describe 

waveforms in one and two dimensions through a set of useful descriptive primitives. The 

local extrema of the signal and its derivatives are useful descriptive primitives, but the 

problem of scale consistently emerges as a source of difficulty. The location of edges for 

example, will vary in number and position, depending on the value of the signal at two 

or more points and the extent of the neighborhood around the point of measurement, 

so that a different description is obtained for different scales. What scale is the best to 

describe any particular waveform? 

Witkin (1985) has come up with a multiscale approach to signal description. The 

idea is quite simple. He chooses as his parameter of scale the standard deviation (a) of 

a Gaussian convolved with the signal. As o is decreased continuously, beginning at a 

coarser scale, existing extrema move along the signal axis and new extrema occasionally 

appear at singular points. When the zero crossings are found along the signal axis at 

a number of intervals of scale, lines may be drawn in the (x,a) plane or 'scale space' 

to follow this primitive descriptor through scale. A s scale is coarsened, zero crossings 

disappear in pairs as local extrema disappear. Figure 2.7 shows the paths of zero 

crossings in scale space for an image intensity profile. Notice that the traces of zero 

crossings form arched lines at broader scales, due to the smearing affect of the Gaussian 
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F i g u r e 2.7 The paths of zero crossings through scale space. The scale parameter <r 
increases upwards. Notice the arches in the lines at broader scales due to the smearing 
effect of the Gaussian operator, (from Witkin (1984)) Compare with the paths of block 
edges through 'median scale space' in Figure 2.4. 

operator. If this operator was convolved with a sonic log, the smearing would be more 

pronounced due to the abrupt jumps in the signal. A n edge in the original signal would 

be shown at an incorrect location at a broad scale in ( i , a) space. A better parameter 

of scale in the case of blocky waveforms would be the compound median filter length. 

The paths of edges in 'median scale space' should remain straight, owing to the step 

preservation property, and should disappear rapidly over scale as the median window 

length is increased. Figure 2.4 shows a trend - removed sonic log through median scale 

space. The edges disappear at the the same x coordinate as scale is coarsened, indicating 

that their location has been preserved through scale. The superiority of median scale 

space for the description of sonic logs is clear and adds support for the use of median 

filters on these signals. More will be said later on the connection between a scale space 
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point of view and pattern recognition, and in particular, matching through median scale 

space will be discussed. 

2.7 Automatic Event Detection 

The result of preserving sharp block edges provided by compound median filtering 

may be exploited in the form of an automatic event detector. Events may be defined 

as abrupt excursions from the preceeding trend, and since this also defines a block 

in a well log, block edges are events to be detected. The event detection algorithm 

proceeds as follows. After compound median filtering has been applied to the log, a 

differencing procedure may be applied to generate a psuedo-reflectivity sequence, with 

events indicated where magnitudes are large. Since some block edges may exist over 

more than one point, locations which show adjacent values of the same sign are merged 

to the location of the largest value. This merging procedure is done over the entire 

psuedo-reflectivity sequence so that all values become either zeros or singular spikes. A 

simple thresholding may then be applied to extract only the largest events. 

The decision of the length of compound median filter to use is somewhat arbitrary. 

It must be as short as possible while still eliminating thin bed 'noise'. A filter with 

N — 12 was found suitable for the logs used in this project. Figure 2.8 shows a trend-

removed log before and after compound median filtering, its psuedo-reflectivity, and the 

location of major events after merging and applying a threshold of 200 m/s . 



F i g u r e 2.8 (a) original, (b) N = 12 compound median root signal, (c) the psuedo-
reflectivity and (d) the major events after merging and applying a threshold of 200.0. 
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2.8 Processing Sonic Logs For Matching 

The goal of preprocessing the sonic data in this project is to enhance features for 

matching. In the case of well logs the most obvious matchable features are the block 

edges or steps. To enhance features for matching, two operations must be performed 

on the data. 

First, the velocity or background gradient which varies from well to well must be 

removed as it can induce a d.c. bias to any similarity measure computed between 

portions of the logs. It was found that conventional high pass frequency domain filtering 

(actually the time domain analog) was unsatisfactory for trend removal. This is because 

narrow high amplitude blocks require low frequencies for their representation, and the 

removal of low frequencies induces sidelobes adjacent to these blocks (see Figure 2.9). 

To truely estimate the background trend, the trend upon which blocks sit, narrower high 

amplitude blocks should not be included. Median filtering can be used to estimate the 

background trend without 'feeling' blocks of a specified length (< TV), so the removal 

of a sufficiently long median filter output solves the problem of sidelobes. To obtain 

an estimate of the velocity gradient or trend that does not include the high amplitude 

blocks, a 105 point median filter is applied to the logs. This is then removed from the 

logs to accomplish the high-pass operation. Figure 2.10 shows the filtering step and the 

removal of the background trend from a sonic log. 

The second preprocessing operation performed on the sonic logs is low-pass filtering. 

Block edges are commonly imbedded in thin bed 'noise' and this can produce a greater 

uncertainty in any coefficient of similarity that is computed between portions of the 

signals, hindering the matching of block edges. Thus, a low pass operation is needed. 

Figure 2.11 shows the application of a 29 point median filter and an equivalent length 
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F i g u r e 2.9 (a) original sonic log, (b) 105 point tapered mean of (a), (c) trend-removed 
log by subtracting (b) from (a). Notice the negative sidelobes induced adjacent to the 
large amplitude block located at 1020 - 1030 samples. 
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running mean applied an equal number of times. Both results remove the 'thin bed 

noise' but notice the preservation of edges in the median filter result. 

The processing of the sonic logs before matching thus involves two steps. First 

the removal of a 105 point median filter output from the original data, and then the 

application of a 29 point median filter for the low pass operation. The result is data 

with blocks greater than or equal to approximately 15 samples or 45 metres in length. 

Figure 2.12 shows the preprocessing steps one sonic log and Figure 2.13 shows all five 

logs used for matching after pre-processing. 

Unfortunately, for the purposes of processing sonic logs for matching, compound 

median filtering was found unsuitable, perhaps because it is too discriminating. It seems 

that a smoother transition between blocks (constant neighborhoods) makes matching 

easier. If some smoothing after compound median filtering was performed the result 

might be suitable for matching, but this possibility was not explored in the interest of 

keeping the preprocessing as simple as possible. 
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F i g u r e 2.10 (a) original sonic log, (b) 105 point median filter of (a), (c) trend - removed 
log (a minus b). No negative sidelobes are seen adjacent to high amplitude blocks. 
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F i g u r e 2.11 (a) The trend-removed sonic log of Figure 2.10c, (b) 29 point running 
mean filter applied the same number of times (3) as was the 29 point median filter in 
(c) for convergence to the root signal. Notice the preservation of block edges in the 
median filter result. 
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F i g u r e 2.12 The preprocessing steps applied to one sonic log. A 105 point median 
filter output is subtracted from the original and then a 29 point median filter is applied 
to the trend removed log. The log now has blocks of length greater than 14 samples in 
duration. 
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F i g u r e 2 . 1 3 The five logs after trend removal and median low-pass preprocessing. The 
background trend has been removed with a 105 point median filter and low-pass median 
filtering has been applied with a filter of length 29. The logs now have blocks of length 
greater than 14 samples. 
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Chapter 3 

MULTIPLE DYNAMIC MATCHING 

3.1 Introduction 

The foundation of multiple dynamic matching is in dynamic waveform matching, 

reviewed in section 1.3. It has as its basis a matrix known as a dissimilarity or similarity 

matrix depending on whether the functional values that make up the matrix are to be 

locally minimum or maximum for optimality. The matrix used in multiple dynamic 

matching is a similarity matrix although this is not necessary for the method to succeed. 

A s with dynamic waveform matching, multiple dynamic matching or ' M D M ' views the 

correlation problem as a pathfinding problem through the similarity matrix, but rather 

than finding only one path, many possible paths are found. The connection to the inverse 

approach to signal correlation (section 1.4) is that path optimality will be decided using 

global norms. In the sections that follow the details of M D M will be explained, beginning 

with the fundamentals of the similarity matrix. 

3.2 The Similarity Matrix 

Since it is desired to maximize the similarity between the reference signal r(x) ; x — 

\,X and the test signal t(x) ; x = l,Y everywhere along their extent, the signals may 

be partitioned and a local similarity measure evaluated between windows of each signal, 
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where the relative lag between windows is given an upper bound IL. This bound on 

the relative lag is a measure of the greatest structural difference expected between the 

two signals and corresponds to the bandwidth of the similarity matrix Sij, computed 

as: 
L m — l 

Sij — £ Y2i s ( r » A i,t(i + l )4i>^) 

L n-l 

Sij = Y 2 s(rU+i)^x,tjAx,K), (3.1) 
1=0 j = l 

where the sampling increment between functional values is A x , n — (X — K)/Ax + 1 and 

m = (Y — K)/Ax+ 1 are the number of points in the x and y directions respectively, s 

is the particular similarity functional and K is the window length over which similarity 

is computed. A s indicated in equaton (3.1), functional values are computed for (x, y) 

pairs corresponding to the locations of the first point in each of the windows of the 

reference and test signals respectively, and computation proceeds up the diagonals of 

the matrix for each relative lag /. This is done to make computation of the matrix most 

efficient, as advantage can be taken of operations already done. Figure 3.1 illustrates 

the computation of the similarity matrix Sij. 

3.2.1 The Semblance Functional 

The similarity functional used for the computation of Sij in this project is semblance. 

The semblance functional for two signals r(x) and t(x) at windows i and j and for a 

window length K is: 

8 = SlUK+fc-i+'i+fc-i)' . ( 3 . 2 )  

2 " Sfc=i(ri+fc-i + tj+k-i) 
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F i g u r e 3.1 Computation of the similarity matrix. The half bandwidth is L, the sim
ilarity window length is K, the matrix sampling increment is A x , and computation 
proceeds up the diagonals to take advantage of operations already done. 

Semblance is a measure of the output/input energy ratio and is related to energy 

normalized cross correlation and summation or stacking. Neidell and Taner (1971) con

clude from tests on multichannel seismic data that semblance has greater discriminating 

power in the case of ambiguously coherent events. Semblance has the range (0, l) and 

not (—1, l) as does cross correlation, and so has no built in phase or anticorrelation dis

crimination ability. In fact this is desired since in the case of matching sonic logs there 

is no utility in considering anticorrelations. Semblance is also related to the F-statistic 
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(Douze and Laster 1979). Although their experiments were performed on synthetic ex

amples, their work indicates that larger semblance values indicate greater confidence in 

there being coherent energy between signals. 

3.2.2 Smoothness and Sampling 

Since the matching problem will be solved by pathfinding through the similarity 

matrix, it must be sufficiently smooth to avoid errors. It is still desired to sample the 

matrix (every A x ) to reduce its size and the cost of the algorithm, but this must not 

be done at the expense of accuracy. The question then becomes what is the largest A x 

that can be used to provide greatest efficiency while still retaining acceptable accuracy. 

The answer depends on the low pass median filter length. 

Median filtering leaves blocks of greater than N in length (for a filter of length 

2N + 1), so from sampling theory each block must be sampled at least once to avoid 

aliasing. This puts an upper bound on the matrix sampling increment A x , and means 

that A x < N. Now that A x can be fixed, the matrix must be computed such that it 

is sufficiently smooth. It turns out that the smoothness of the similarity matrix can 

be controlled by the window length K of the semblance functional. The exact transfer 

function of the semblance functional is difficult to quantify, but as it is known to behave 

similarily to a stack or mean, it can be said that longer windows produce smoother 

matrices. 

In an attempt to establish the best value of K given A x and N, a 2D Fourier anal

ysis has been done for similarity matrices computed using different semblance window 

lengths. It may be conjectured that below some value of K, noise of significant energy 

might appear in the matrix, making it unreliable for pathfinding. The data from which 

the matrices were computed for the 2D analysis are logs 1 and 2 after preprocessing 
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F i g u r e 3.2 Logs 1 and 2 after preprocessing. These two logs will be used in an example 
of multiple dynamic matching which will be referred to as m 2 / i . 

(see Figure 2.12). These logs will also be used as an example to illustrate the multi

ple dynamic matching method and will be referred to as example m 2 / i , with log 2 as 

the reference log. Figure 3.2 shows logs 1 and 2 after the preprocessing steps of trend 

removal and low-pass median filtering (N — 14). Figure 3.3 shows similarity matrices 

computed for example m 2 / i with A x =10 and K — 20,60,100 and their corresponding 

2D power spectra. Notice that significant energy remains below the Nyquist frequency 

for all examples so this cannot be used to determine the best semblance window length. 

The 'character' of the matrices is different however. It is known that shorter windows 

allow for the matching of finer scale features. Given the shortest block length in the 

sonic logs (N), one might want the semblance window to be of approximately the same 

length. However, too short a window leads to an unreliable estimate of similarity (Douze 
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F i g u r e S.3 The similarity matrices (left) and 2D power spectra (right) for (a) K = 20, 
(b) K = 60, and (c) K — 100. A l l matrices show energy dropping to a very low value 
well below the Nyquist frequency, so this can not be used as a criterion for choosing 
the best value for K. (The spatial Nyquist frequency is expressed in terms of cycles per 
sample and so equals 0.5) The similarity matrix in (b) shows the best character relative 
to a priori knowledge. 
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and Laster 1979), so longer window lengths are needed for reliable similarity estimates. 

It is also known that trends in similarity should appear at roughly 45 degrees in the 

matrix, and should be clearly defined. The matrices of Figure 3.3 may now be viewed 

in a different light. For K — 20, contours of similarity follow block edges closely, with 

higher values where blocks of similar amplitude coincide. This matrix does not conform 

to the expected 'good character' matrix and would clearly be unreliable for the extrac

tion of trends in similarity. The K — 60 matrix shows the good character of well defined 

trends in similarity at roughly 45 degrees. The K — 100 matrix also shows coherent 

trends, but since it is desired to keep K as small as possible while still preserving the 

coherence of similarity trends, K — 60 is a better choice. The selection of K is thus 

somewhat arbitrary. Given that A x w 2/3 N to satisfy the block sampling criterion, 

K « 6 A x has been found appropriate to ensure the smoothness and character of the 

similarity matrix. 

3.3 Local Confidence 

The semblance coefficient between windows of points in the logs will be large (close 

to 1) when portions of the logs have similar amplitude and shape. In the similarity 

matrix semblance coefficients are located side by side, defining a surface, and different 

structures on this surface correspond to different situations of matching. For example, 

if amplitudes are roughly constant over a portion of the logs and events are small, any 

coefficient of similarity will not change appreciably between any two windows of these 

'quiet' portions of the logs. The result is a flat region or plateau in the similarity matrix 

and a poorly defined match. Low confidence should therefore be placed in matches 

between portions of the logs with events of insignificant magnitude. Conversely the 

concept of high local confidence may be explained by the following illustration. 
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Imagine windows of each log 'sitting' on blocks of large and similar amplitude. A s 

one window remains stationary and the other is slid forward over the other log, it passes 

over the block edge and the amplitude drops rapidly. Similarity values drop also due 

to the sudden large difference in amplitudes between the windows. This will occur if 

the stationary and sliding windows are interchanged, so that a peak will appear in the 

similarity matrix in both x and y directions at some coordinates (x, y) corresponding 

to the vicinity of the two block edges. If the windows are slid at constant increments 

A x along both logs (following a diagonal in the matrix), the peaks will flatten where 

a match becomes unclear, and will sharpen where a significant match can be seen. 

The oceurance of repeated significant matches appears in the similarity matrix as a well 

defined trend or ridge. Local confidence in a match is therefore related to the magnitude 

of local similarity S, at a point on the matching function ( i , m(x), that is to S I i m(z)> 

and to the quality of the ridge in the direction of m(x). To quantify the quality of a 

ridge, the second derivative may be computed perpendicular to the direction of m(x) 

as it measures the downward curvature. The local confidence (LC) norm is now defined 

as: 

L C = - 5 x , m ( x ) S " m ( l ) l (3.3) 

Figure 3.4 shows portions of the logs of example m 2 / i and the corresponding similarity 

matrix. Where event amplitudes are large coherent trends in similarity are seen, and 

where events are smaller trends are less well defined. Each well defined ridge represents 

a region where matching confidence is high, and may be viewed as a portion of the 

matching function, m(x). Notice that ridges can run roughly parallel to one another, 

indicating more than one possible significant match for any one event on a log. This is 

due to the periodicity in the blocks of the logs. 
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The best overall matching function will be the function for which local confidence 

remains high throughout its length. This is easily expressed in terms of the mean local 

confidence ( M L C ) norm: 

! p 

P=o 

where P is the length of the matching function. This is a global norm as it assesses the 

optimality of the entire matching function. More will be said on the computation of 

M L C in section 3.5.1. 

3.4 Ridge Points 

Since nothing is known a priori about the optimum m(x), scanning Sij along all 

possible paths to find the maximum M L C is impractical. To handle this problem, points 

are located for which the local confidence is known to be large. The magnitude of Sij 

may be constrained to be large by requiring that it exceeds a significance threshold. 

The negative of the second derivative may be constrained to be large by locating only 

points which are peaks perpendicular to m(x). Nothing is known a priori about the 

local direction of m(x), but it can be assumed to be in one of four directions defined 

by the eight points surrounding a central point. A simple test is then implemented 

to ensure that the point appears as a peak in three out of four directions. These two 

criteria make the location of local confidence maxima or 'ridge points' efficient, as the 

matrix Sij is simply scanned to find the points for which the above criteria are satisfied. 

The following summarizes the test for ridge points. 
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F i g u r e 3.4 Portions of the preprocessed logs and the similarity matrix with contours 
of similarity labelled so that 1 is low and 3 is high. Notice that where event amplitudes 
are large, at the beginning of the traces, trends in the similarity matrix are well defined. 
Toward the end of the traces where events are smaller, trends in similarity are less 
coherent. 
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1. Sij > .65 (significance threshold). 

2. 3 of the following are true 

(a) Stj > Sij^i and Sij > Sij + i 

(b) Si,3 > s i - i , j a n d si,j > Si+l,j 

(c) Sij > 5 j _ i j _ ! and Sij > Si+ij+i 

(d) Sij > S i _ i i J + i and Sij > Si+ij-i 

These criteria allow the ridge points to be located adjacent to one another along the 

top of coherent and significant trends in the similarity matrix. Figure 3.5 shows the 

similarity matrix for example m2/\ with one contour at 0.5 and ridge points as x's. 

3.5 Subpath Determination (Dynamic Matching) 

Establishing a set of potential pieces of the correct matching function requires joining 

the ridge points into 'subfunctions' or 'subpaths'. This is done with a simple dynamic 

programming scheme. 

A ridge point is defined to be a member of a subpath if (l) it is within a prescribed 

distance D from the previous ridge point and (2) the slope of the segment that joins 

them is non-negative. The subpaths are thus constrained to be non-decreasing. Figure 

3.6 shows the local path constraint used for subpath finding. The algorithm to determine 

the set of subpaths proceeds as follows. 

The ridge points are sorted by their distance from the origin, and subpath finding 

begins with the ridge point nearest the origin. If the distance d from the last ridge point 

in the subpath to the next nearest ridge point exceeds D, that is if d > D, then the 

subpath is terminated. When the first subpath is terminated, all ridge points belonging 
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Figure 3.5 Location of ridge points as x's with one contour at 0.5. 
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F i g u r e 3.6 The local path constraint used in dynamic matching to connect ridge points 
into subpaths. Ridge points 1 and 2 are legal choices, ridge point 3 is not. 

to it are removed from the set of 'possible subpath points', and the next ridge point 

nearest the origin begins a new subpath. The procedure is repeated and all subpaths 

have been found when the set of possible subpath points is empty. Also, if a subpath is 

less than a prescribed length L it is deemed insignificant and is removed from the set of 

subpaths. This puts a minimum significant length on the subpaths as prescribed by the 

definition of local confidence discussed in section 3.3. Figure 3.7 shows the ridge points 

of Figure 3.5 connected into subpaths with D — 3.5 and L = 4.2. These parameter 

values were established from trial and error and may be converted to well log samples 

for generality by multiplication by A x . More will be said on the determination of these 

parameters in Chapter 4. 
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F i g u r e 3.7 The connection of ridge points into subpaths with dynamic matching. Ridge 
points were connected using D = 3.5 and L = 4.2. 
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3.6 The Function Network (Multiple Dynamic Matching) 

The set of subpaths found by dynamic matching must now be combined into a 

set of complete matching functions or 'function network'. Since confidence in a match 

is low between subpaths, linear approximations are made to join the subpaths into 

complete functions. To determine which subpaths to join, only those which when joined 

preserve a non-decreasing function are considered. Joining a subpath with its nearest 

non-decreasing neighbor may be too restrictive, so the nearest two subpaths are included 

as possible. The algorithm to build complete functions from subpaths is nontrivial when 

two choices are allowed at the end of every subpath. 

The approach taken to build the function network is to view each subpath as a state 

and allow two possible transitions from each state. A transition network is established 

in this manner, where in the case of subpaths, the two next nearest subpaths are the 

transitions allowed from each subpath. The subpath nearest the origin starts the func

tion building process. A new function is added for each branch from a subpath, and 

has attributed to it, all the subpaths of the function built up to that branch. Paths are 

terminated with a subpath that has no possible next subpaths. To ensure that all paths 

have been found, all subpaths are tested for their membership in a complete path, and 

any subpath that is not part of a complete path becomes the starting subpath for a 

new set of paths. A n estimate of the total number of paths is discussed in section 3.9. 

Figure 3.8 shows the function network for the set of subpaths shown in Figure 3.7. 
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F i g u r e 3.8 The function network found from the subpaths in Figure 3.7. Each subpath 
may branch to the next two nearest subpaths. There are a total of 180 functions. 
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3.7 R a n k i n g the F u n c t i o n s 

The set of possible matching functions found from multiple dynamic matching must 

now be ranked to determine the optimum matching function. 

3.7.1 M e a n L o c a l C o n f i d e n c e 

It was argued in section 3.3 that significant trends in correlation appear as well 

defined ridges in the similarity matrix. The concept of local confidence was developed 

to measure the quality of the local matches, and now that a set of complete functions 

has been found, the mean local confidence ( M L C ) norm may be computed to measure 

the quality of each entire matching function. Equation (3.4) is restated here. 

1 P 

M L C = - — E S x , m ( x ) 5 " m ( a ; ) x . 

p = 0 

It requires computing Sx<Tn(x) and — S'x m(x)± along each function m(x) which must be 

stepped along at a fixed increment to avoid biasing. Since this will generally lead to 

coordinates not on a lattice point of the matrix, interpolation is necessary. Simple 

distance-weighted bilinear interpolation is employed to compute Sx<m(xy and — S"m^±. 

The M L C norm thus requires interpolation of values at the coordinates (x, ra(x))1, (x — 

1/2 

A x , m ( x — A x ) + Ay) 1 , and (x + A x , m(x + A x ) — A y ) , where ( A x + A y ) = 1. A 

three point finite difference is then used to compute the second derivative part of local 

confidence as: 

— Sxtm(x)x ~ Sx-Ax,m(x-Az) + Ay ~ 2 - SXTn(x-) + Sx + Ax,m(x-|- A x ) - A y (^-5) 
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A l l matching functions are now ranked by their M L C ' s to determine the best func

tions. Figure 3.9 shows the top ten functions based on M L C and the top ranking function 

as a thickened line. Figure 3.10 shows the results of applying the top three matching 

functions to the test log. Due to the relatively high amplitude distortion a(x) between 

well logs, additional constraints are helpful to determine the interpreter's optimal m(x). 

3.7.2 Simplicity 

Other properties beside the mean local confidence are important in determining 

the optimum matching function. The goal in most problems is to find the simplest 

solution. In the case of matching well logs the simplest structural change that will 

produce optimal matching is a reasonable requirement. 

A measure of simplicity which is easy to compute is the ratio of linear path length to 

total path length. The linear path length may be easily approximated by the distance 

from the first to last points in the matching function. The simplicity (SIMP) norm for 

the kth matching function with ridge points j = 1, M is: 

S I M P = K * M - si) + ( " ' t ( x L ) - ^ K ) ) ] ( 3 6 ) 

The top 10 functions as ranked by M L C are then ranked by SIMP. The ten matching 

functions after this ranking are shown Figure 3.11, and the top three are shown applied 

to the test log in Figure 3.12. 
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F i g u r e 3.9 The top ten functions based on M L C with the top ranking function thick

ened. 



F i g u r e 3.10 The results of applying the top 3 matching functions to the test 
r=reference, t=test, l,2,3=matching function ranking. 
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Figure 3.11 The top ten functions after ranking by M L C and SIMP. The top ranking 
function is shown thickened. Compare with Figure 3.9. 
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Figure 3.12 The top three functions after M L C and SIMP ranking applied to the test 
log. Compare with figure 3.10. 
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3.7.3. Sufficient Diversity 

Supplying alternative interpretations requires that they be sufficiently different from 

one another if they are to provide useful information. Two of the matching functions in 

the top three are usually so similar that another more diverse interpretation is desired. 

To ensure the sufficient diversity of the optimal matching functions, some measure of 

difference between them should be exceeded. A measure of difference between the best 

ten matching functions as ranked by M L C and SIMP would be: 

x 
Dij = \mi{x) ~ mj{x)\ f o r * = ! > 1 0 '. 3=* + 1,10- (3-7) 

Cluster analysis may be done using this dissimilarity matrix to separate similar matching 

functions from sufficiently diverse ones. The top ranking functions from each of the 

clusters may then be taken to form the set of best three sufficiently diverse functions. 

Instead of implementing cluster analysis, the half-matrix of equation 3.4 was com

puted for the top ten functions in example m2/\, and new functions were brought into 

the top three if any two showed Dij < 2.0. The result of implementing this method 

of sufficient diversity is shown in Figure 3.13. The three functions now provide the 

interpreter with more information. 

3.8 Applying the Matching Function 

Once the best functions have been found, a visual check as to the quality of the 

matches is useful. Figures 3.10, 3.12 and 3.13 were produced by applying the top 

three matching functions (after different rankings) to the test log. The application of 

a matching function requires the stretching or compressing (warping) of the log axis as 



F i g u r e 3.13 The best three functions applied to the test log after they are constrain 
to be sufficiently diverse. 
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determined by a segment of the piecewise linear function. If the local slope exceeds 1.0, 

the test log is locally compressed, and if the local slope is less than 1.0, the test log is 

locally stretched. Then the log is resampled to maintain a constant sampling interval. 

The resampling of the log after warping the signal axis requires the inperpolation of log 

values. Interpolation has been done for examples in this project using a simple distance 

- weighted linear scheme. It has been found quite satisfactory given the rather heavy 

filtering of the sonic data, but for higher resolution matching some other (te. cubic 

spline) interpolation may be needed. 

Another method of display, other than applying the matching function, is to connect 

matched locations in each log with a dashed line (see Figure 1.2). Graphically this is 

equivalent to locating a point on the axis of one of the logs and projecting it on to 

the matching function. This point is then projected on to the other signal axis to 

determine the matched location. This mode of display is particularily useful when 

matching structurally equivalent portions of well logs and will be used in section 3.12. 

3.9 Computing Time 

Factors that affect the computing time necessary for a solution are the similarity 

matrix bandwidth b, the matrix sampling increment (Ax) , and the number of subpaths 

(n). The matrix bandwidth 6 is set by the user based on a priori information about 

the complexity of the geology over the separation of the wells. Some practical upper 

bound is easily estimated. The size of the matrix is related directly to the bandwidth 

6 and inversely to the matrix sampling increment A x . Since higher resolution means a 

shorter low-pass median filter length and finer matrix sampling, and since matrix size 

is proportional to ( 6 / A x ) 2 , the cost of the algorithm rises rapidly with resolution. 
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The effects of bandwidth and resolution on computing time are easy to quantify. 

Another cost factor is the total number of matching functions found. This is an im

portant factor of cost since the M L C norm is computed for each function. The total 

number of functions is related to the number of subpaths. The number of subpaths 

in turn is a function of the local path constraints and the underlying similarity of the 

signals being matched. Predicting the number of subpaths is therefore a difficult task. 

Given that the number of subpaths is known however, the total number of functions 

may be roughly estimated. The function building algorithm progresses forward through 

the similarity matrix, combining subpaths with two others at each 'level' of the network. 

A s levels are passed, all subpaths behind the forward most points in the functions are 

eliminated from possible combination. The power to which 2 should be raised is thus 

reduced by the number of subpaths passed at each level. The number of subpaths 

passed at any level is related to the spatial period of the ridges and the bandwidth of 

the matrix. Once the number of ridges r across the matrix is estimated, the number 

of paths for each starting subpath is then estimated by 2 ^ " / r _ ^ e _ 1 ^ where n is the 

number of subpaths and e — 1 is subtracted from the power for the subpaths in the 

ending level. This number is then multiplied by the number of starting subpaths. In 

example m 2 / i .with n = 30, r = 4, and e = 3, the estimate of the total number of paths 

is 128 and the actual number is 135. 

Memory requirements should also be mentioned. The similarity matrix Sij is not 

fully used since only the central band needs to be stored for pathfinding. A more 

efficient use of memory would eliminate the unused 'triangles' above and below the 

central band, making Sij rectangular, but this would require a rotation of the matching 

function before application. This saving in memory has not been implemented in the 

interest of preserving clarity in similarity matrix figures. 
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3.10 Sources of E r r o r 

The error in any matching function may only be thought of relative to the resolution 

or scale of structures left in the logs. A function which is correct at one scale will 

probably not be correct at another scale. The matching of significant events - the block 

edges or steps, is the most important aspect of matching and will be considered first. 

The error in m(x) for any x is at a minimum when local confidence is at a maximum. 

This occurs over subpaths where ridge points have been located. As explained in section 

3.3, ridge points (and subpaths) are found where events of significant magnitude have 

been matched, so the matching of major events is done with minimal error over subpaths. 

The errors in matching over subpaths are due only to the matrix sampling increment. 

Any significant block edge will be matched to within A x , but ± A x / 2 is a better estimate. 

The greatest errors occur where confidence is low. This happens over the linear ap

proximations between subpaths. Over these portions of the function, error in matching 

is not easily quantified in terms of samples. However, a plot of the local confidence 

vs reference depth can indicate where errors are greatest. Figure 3.14 shows match 

m 2 / i ( x ) and L C vs x. 

Another source of error should be mentioned also. The degree to which median 

filtering does not accurately represent the underlying blockiness of the original signal 

can also induce errors in the match. Matching errors of this type and those due to 

low local confidence may be reduced by increasing resolution and matching finer scale 

structures. Using a matching function found from broad scale matching as a constraint 

on finer scale matching can reduce errors and make matching of small scale structures 

possible. 
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F i g u r e 3.14 Local confidence vs. x for the top ranking matching function in figure 
3.12. 

3.11 M u l t i p l e D y n a m i c M a t c h i n g a n d P a t t e r n R e c o g n i t i o n 

Exploring the analogy between multiple dynamic matching or ' M D M ' and pattern 

recognition affords insight into how M D M works. A t a given scale obvious matches of 

major events 'jump out' at the interpreter. He/she scans along the signals thinking 

something like 'this matches with this and that matches with that...' etc. This pattern 

matching process is represented in the similarity matrix by coherent ridge trends where 

each ridge represents a distinct local interpretation. When the interpreter's thought 

becomes 'or that could match with that', this is equivalent to skipping to a new ridge 

in the similarity matrix, and another interpretation is included as possible. M D M 

shows this doubt in interpretation as a branch in the 'interpretation tree' of most likely 

matching functions (see Figure 3.8). A l l the most probable interpretations are found 
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automatically by this process of connecting local interpretations together. Finally the 

M L C and SIMP norms mimic the confidence criteria of the expert and the best match 

is chosen. 

The analogy may be continued through scale as well. Just as the interpreter matches 

'marker' events first and then looks for subtleties, so may M D M be able to 'fine tune' 

a broad scale match in subsequent processing. High resolution matching down to a few 

samples should be possible using a 'scale down' procedure where the m(x) at one scale 

is used as a constraint on the m(x) at the next scale down, effectively restricting the 

bandwidth of Sij and so also the possible change in ra(x). 

3.12 Automatic Stratigraphic Correlation 

The major objective of matching well logs is to ascertain an estimate of the geologic 

change between wells. This means estimating the local dip or structure through the 

correlation of equivalent time horizons or events, and estimating the change in the 

measured response. The local dip or structure is given, as is discussed in section 1.2 

and 1.5, by m(x), while the change in the measured response is given by a(x). Since the 

matching function quantifies the correlation between signals, it may be used to connect 

structurally equivalent depths in two wells. To illustrate this connection, matching 

functions were found between the five sonic well logs in Figure 2.12. The method of 

automatic event detection discussed in section 2.5 was implemented to find the major 

events in sonic log 1. Figure 3.15 shows these major events followed between wells using 

the matching functions for logs 1 and 2, 2 and 3, 3 and 4, 4 and 5. Each of the matching 

functions used was top ranked based on the M L C and SIMP norms, and since event 
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detection was also done automatically, the resulting structural interpretation is totally 

objective. 



F i g u r e 3.15 The automatic correlation of five well logs from four matching functions. 
Major events were found in log 1 and followed across the section. Equal spacing of the 
logs is arbitrary. 
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Chapter 4 

CONCLUSIONS 

4.1 Improvements 

The method of multiple dynamic matching has been shown to be successful in the 

problem of matching trend - removed and median filtered sonic well log data. Never

theless some improvements are needed to increase matching resolution and to further 

generalize the method. A s discussed in section 3.9, the error in the match is greatest 

where linear matches are assumed between subpaths. Reducing the errors in the match

ing function requires higher resolution matching, but as discussed in section 3.9, this 

causes a rapid increase in the cost of the algorithm. One possibility that should allow 

high resolution matching at reasonable efficiency is that of matching through scale. The 

idea is to obtain a broad scale matching function, apply the function to less severely 

filtered versions of the logs and proceed to determine the higher resolution matching 

function. Since the broad scale estimate of the function has been applied to the data, it 

has been mapped to the diagonal of the next higher resolution similarity matrix which 

is now square, and the matrix bandwidth may be reduced dramatically since large scale 

structural changes have been removed. Thus matching at higher resolution may be done 

more efficiently due to the 'smaller' matrix. The matching function at the next resolu

tion may be viewed in terms of its deviations from the diagonal, and once the previous 
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warping of the test signal axis has been accounted for, the deviations may be added 

to the broadest scale function. Resolution in the matching function may be iteratively 

built up by this method, and with the bandwidth of the similarity matrix reduced at 

each iteration, the cost is kept at a minimum. 

There is a problem with this approach however. The broad scale match has been ob

tained from filtered versions of the logs that have flat regions (constant neighborhoods). 

Sections of severe stretching and compressing in the matching function when applied to 

a fiat region of the test log, do not affect the quality of the match over these regions. 

Unfortunately, severe slopes in a matching function when applied to a less filtered test 

log will produce pronounced and unreasonable distortions in the signal, making it un

suitable for further matching. Thus the application of a broad scale matching function 

may not be appropriate before higher resolution matching. 

Two possible alternatives may help this situation and allow for iteratively matching 

through scale. The first involves smoothing the broader scale function before appli

cation, reducing the severe slopes and so also any unreasonable distortions in the less 

filtered logs. The second alternative does not apply the broader scale mapping at all, 

but instead, a narrow band of a higher resolution similarity matrix would be computed 

around the already determined broad scale function. The next matching function is 

thus restricted to be close to the broad scale function. This approach complicates the 

computation of Sij but may prove superior to smoothing the matching function before 

its application. It is believed that higher resolution matching is possible with either of 

the approaches discussed above, but they must be tried and assessed based on the usual 

criteria of accuracy and efficiency. 
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4.2 Parameter Estimation 

The method of multiple dynamic matching requires the fixing of the parameters 

N (half the low-pass median filter length), K (the similarity window length), and D 

(the proximity threshold for subpath determination). A rough estimate of K has been 

established (given that A x « 2/ZN) as RS 4N or 6 A x , as this provides a sufficiently 

smooth similarity matrix with the proper character. The median filter length (2AT + 1) 

determines the resolution of the match and is selected by the user (as is the matrix 

bandwidth 6), but the proper choice for D is difficult to establish given the other pa

rameters. The proximity threshold D is the maximum allowable separation of ridge 

points in any subpath, and although a value of 3.5 (or 35 log samples) has worked well 

for the matching examples in this project and tests have indicated that broader scale 

matching using N — 29, A x = 20 K '= 120 and D — 35 have produced similarily good 

results, the value of D in other matching problems will likely have to be altered to suit 

the particular application. The generality of the method thus breaks down if the local 

path constraint (D) cannot be determined automatically in every application. Where 

one subpath becomes two is a crucial question in multiple dynamic matching. The 

method requires enough subpaths to fully explore the space of possible matching func

tions, but not too many to make the solution prohibitively costly. Intuitively it seems 

that there should be a range of values for D for which the number of subpaths should 

remain constant. This kind of testing could be done to establish D for matching. The 

minimum subpath length L has been fixed at 42 log samples and this has also proven 

to be a good value at different scales. But the fixing of D, L and K will necessarily 

depend on the particular application and perhaps most strongly on the bandwidth and 

nature (eg. blocky or continuous) of the input signals. The automatic fixing of these 
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parameters and ultimate generalization of M D M requires experiments with other data 

sets and other matching problems. 

4.3 Speculations on the Future and Related Ideas 

4.3.1 Extending Well Log Matching to 3D 

The structural interpetation of Figure 3.15 shows the logs arbitrarily spaced an 

equal distance appart. In reality they are distributed as shown in Figure 4.1. It is 

evident that only 4 matching functions have been found and that there are still 6 

remaining to be determined since there are a total of 10 possible matches. Figure 

4.1b shows the 'net' of matching combinations possible with this areal distribution of 

five wells. The intersection points indicate locations where more control is possible on 

the structural interpretation. For each major event a surface may be approximated 

allowing errors at the intersection points. In this way an objective three dimensional 

interpretation is possible using only well log information. More complex geologies would 

require more sophisticated fitting schemes, and due to nonuniqueness, more than one 

interpretation should be generated, but each interpretation may be ranked based on 

optimality criteria, thus giving the interpreter an objective basis with which to compare 

his own interpretation. 

Once a three dimensional structural interpretation has been settled upon, by what

ever method, the spatial variation of the measured response, (ie. acoustic velocity), 

may be estimated. The determination of matching functions for a set of well logs can 

therefore automatically estimate the structural and response change in an area. 
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1 1 
F i g u r e 4.1 (a) The areal distribution of wells and the matches corresponding to those 
in Figure 3.14. (b) The matching 'net' possible with the five wells. Intersection points 
indicate where more control is possible for the mapping of structural events over an 
area. 

4.3.2 Seismic S i g n a l M a t c h i n g 

In seismology, the importance of signal correlation was recognized early on, espe

cially for the determination of velocity functions. Indeed, the interpretation of seismic 

sections depends on the spatial correlation of events at different times. The spatial -

temporal correlation function implicitly determined by the interpreter approximates the 

geology, so any artificial intelligence system that attempts to automatically interpret a 

seismic section must first determine the correlation functions between traces. 

The matching of seismic traces is a considerably easier problem than matching well 

logs, owing to the closer proximity of adjacent measurements and the lower frequency 

content of the signals. These factors mean that the matching function is constrained to 

be quite simple. In the context of multiple dynamic matching this means a narrower 

similarity matrix and efficient high resolution matching. The multiple interpretation 
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advantage of M D M could be effectively used in seismic interpretation, since locations 

where a second or third interpretation is probable may be nagged and further investiga

tion focussed on that area, perhaps allowing the computer to continue the interpretation 

with the second best choice. 

Nonlinear signal matching thus provides automatic picking of events across a section. 

A s a bonus, storing adjacent matching functions gives the spatial - temporal correlation 

function, making improved trace interpolation possible. Also, multichannel deconvolu-

tion, dip moveout filtering, and automatic velocity analysis can be approached from a 

new and different point of view. 

4.4 Summary 

The nonlinear signal matching problem has been introduced by contrasting it with 

the simple idea of cross correlation, and the discrete lag in the cross correlation expres

sion was replaced with a continuously varying lag or matching function, m(x). The 

matching problem was further explained by a model of change between waveforms that 

decomposes the problem into a structural change m(x), and an amplitude distortion 

a(x). It was argued that in the presence of large amplitude distortions, the correct 

matching function may appear suboptimal under similarity norms and as large am

plitude distortions are likely to occur in any difficult matching problem, a method is 

needed that can provide suboptimal as well as optimal solutions. 

Two distinct methods for the solution of the nonlinear signal matching problem were 

reviewed, namely the dynamic programming approach and the inverse theory approach. 

It was found that both methods have advantages and pitfalls, and that neither method is 

satisfactory when the goal is to objectively determine optimal and suboptimal solutions. 



75 

Multiple dynamic matching was introduced as a method that overcomes the pitfalls 

of both of the other methods. It is founded on a dynamic programming philosophy 

in that pathfinding through a similarity matrix is done, but with the innovation of a 

significance threshold to extract only the matches where confidence is high. Each of these 

'subpaths' is then joined in combination with others to generate a network of possible 

complete interpretations. The advantage of the inverse approach is that optimality 

is based on global rather than local norms, and this feature has been incorporated 

into M D M in that the objective function to be maximized measures the quality of the 

entire matching function. Due to the large amplitude distortions between well logs the 

correct or interpreter's matching function may be ranked as suboptimal, so a simplicity 

constraint can be invoked to improve the ranking of the 'interpeter's choice'. The results 

of M D M are good for the example explored here, and given the difficulty of the well log 

matching problem, the method should perform well in other simpler matching problems. 

It was also conjectured that higher resolution matching with reduced error would be 

possible by matching through scale, where a broader scale match is used as a constraint 

on finer scale matching. The 'scale space' approach is receiving considerable interest 

in the artificial intelligence fields of computer vision and pattern recognition, and since 

signal matching is essentially a pattern recognition process, matching through scale is 

a promising prospect to improve the results of multiple dynamic matching. In fact the 

idea of scale space was discussed in chapter two, and it was argued that the median 

is a superior parameter of scale than that employed by Witkin (1985), especially when 

looking at blocky waveforms. Median scale space and the new signal decomposition 

presented for the first time in section 2.4, median decomposition may prove to be suitable 

for the description of other intricate waveforms as well. 



Although the subject of median filtering was secondary in the present work, it 

represents, as does multiple dynamic matching, the need for new nonlinear approaches 

to solve difficult problems in signal processing. 
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Appendix 

The pages that follow contain the similarity matrices and ten best matching func

tions after ranking by M L C . The ranking of the chosen function is given in the captions 

of the 'b ' figures for each pair of logs. If the top 10 functions are ranked also by the 

S I M P norm, the chosen interpretation is then ranked as number 1. The chosen functions 

have been used to generate the structural cross section of Figure 3.15. 
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F i g u r e A l . a Similarity matrix for reference = log 3 and test = log 2, and the best 10 
functions after ranking by M L C . The top ranking function is shown as a thickened line. 
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F i g u r e A l . b The top three functions after M L C diversity applied to the test log. The 

number 2 ranking function was chosen. 
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F i g u r e A 2 . a Similarity matrix for reference = log 3 and test = log 4, and the best 
10 percent of functions after ranking by M L C . The top ranking function is shown as a 
thickened line. 
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F i g u r e A2.b The top three functions after M L C applied to the test log. The number 

1 ranking function was chosen. 
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F i g u r e A 3 . a Similarity matrix for reference = log 5 and test = log 4, and the best 
10 percent of functions after ranking by M L C . The top ranking function is shown as a 
thickened line. The matrix bandwidth is much narrower due to the close proximity of 
the wells. 
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F i g u r e A3.b The top three functions after M L C applied to the test log. The number 
2 ranking function was chosen. 


