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ABSTRACT

Techniques for forward modeling and inversion of head wave traveltimes within the

framework of one and two dimensional earth models are well developed. The first portion

of this thesis extends these methods to encompass three dimensional layered models. Each

critically refracting horizon of the model is approximated by a plane interface with arbitrary

strike and dip. An advantage of this simple representation is that rapid computation of head

wave traveltimes for arbitrary source-receiver geometries can be achieved with a minimum

of ray tracing. Inversion methods are then developed for estimating the parameters defining

single-layer and multilayer earth models. For the single-layer model, an algebraic solution

to the inverse problem exists if refraction traveltimes are observed along two independent

line profiles. For multilayer models and/or nonproffle recording geometries, the inversion is

formulated as a constrained parameter optimization problem and solved via linear program

ming. Inclusion of constraints, in the form of inequality relations satisfied by the model

parameters, often governs the ability of the algorithm to converge to a realistic solution.

The procedure is tested with traveltimes recorded on broadside profiles in a deep crustal

seismic experiment.

The second part of this thesis provides specific improvements to various two dimen

sional refraction traveltime inversion techniques. The generalized reciprocal method (GRM)

is reformulated on the basis of an earth model characterized by vertical, rather than nor

mal, layer thicknesses. This allows point values of interface depth to be inferred from the

observed traveltimes. A novel interpretation method (critical offset refraction profiling) is

described that yields point values of interface depth, interface dip, and refractor velocity. A

smooth depth profile of the refracting horizon is then constructed using techniques of linear

inverse theory. Finally, an automated version of the classical wavefront method for inter

preting refraction traveltimes is developed. Recorded arrival times are downward continued

through a near surface heterogeneous velocity structure with a finite-difference propagation

algorithm. The locus of a refracting horizon is then obtained by applying a simple imaging

condition involving the reciprocal time (the source-to-source traveltime). The method is
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tested, apparently successfully, on a shallow refraction dataset recorded at an archeological

site.

The final portion of this thesis develops an iterative tomographic inversion procedure

for reconstructing a two dimensional P-wave velocity field from measured first arrival times.

Two key features of this technique are (i) use of a finite-difference algorithm for rapid and ac

curate forward modeling of traveltimes, and (ii) incorporation of constraint information into

the inversion to restrict the nonuniqueness inherent in large scale, nonlinear tomographic

inverse problems. Analysis of a simulated vertical seismic profile (VSP) plus crosswell exper

iment indicates that the inversion algorithm can accurately reconstruct a smoothly varying

interwell velocity field. Inclusion of constraints, in the form of horizontal and vertical first-

difference regularization, allows the solution of a traveltime tomography problem that is

otherwise severely underdetermined.
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CHAPTER 1

INTRODUCTION

The traveltimes of head waves propagating in layered earth models have been studied

extensively since the inception of applied seismology in the 1920’s. The earliest English

language publications that examine this topic appear to be the classic works by Barton

(1929) and Heiland (1929). These authors derive head wave traveltinie formulae appropriate

for a simple model consisting of a layer overlying a haifspace. The two media have uniform

- P-wave velocities and are separated by a plane interface. If the critically refracting interface

is horizontal, then head wave traveltime is a linear function of source-receiver offset distance

X:

T(X) = mX + b. (1.1)

The slope m and intercept b are independent of the recording geometry and are easily

determined from the known earth model parameters. Numerous investigators, beginning

with Barton (1929), have extended this eicpression to multilayered one dimensional models.

If the subsurface interface is clipping, then the same general mathematical formula ap

plies. However, the slope and intercept are no longer invariant. Rather, the intercept

depends on the horizontal coordinates of the source (xs, ys) and the slope depends on the

azimuth angle I’ of the receiver relative to the source. Barton (1929) and Heiland (1929)

examine the case where an inline array of receivers is oriented normal to the strike direction

of the refracting horizon. Hence, the azimuth angle EI is restricted to two values (say, = 0

and ‘I’ = ir) that collectively refer to the updip and downdip directions. Surface-to-surface

head wave traveltime is

T(X,,x) = m(l’)X + b(x). (1.2)

In this two dimensional situation, the plane of the head wave raypath is vertical. Barton

(1929) and Heiland (1929) derive closed form mathematical expressions for the slope and
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intercept in terms of the parameters defining the single-layer earth model. Thus, equation

(1.2) is easily evaluated for this case.

Head wave traveltime analysis is extended to multilayered two dimensional models with

plane, dipping interfaces by Ewing et al. (1939), Dooley (1952), Adachi (1954), Mota

(1954), Ocola (1972), Johnson (1976), and Diebold and Stoffa (1981). The linear traveltime

expression (1.2) also applies in this situation. Once again, the recording profile must be

oriented perpendicular to the common strike direction of the subsurface refracting horizons.

If this condition is not maintained, then the raypath is not confined to a single vertical plane,

and a full three dimensional treatment of the problem is necessary. For the multilayered case,

the slope and intercept in (1.2) cannot be simply expressed in terms of the specified earth

model parameters. Rather, each depends implicitly on the model parameters through a set of

raypath orientation angles. It is possible to determine these angles via repeated application

of Snell’s law of refraction, starting at the critically refracting horizon and working upward

to the surface. Hence, equation (1.2) can be evaluated numerically.

Methods for inverting observed head wave arrival times to obtain the earth model pa

rameters are also discussed by the above authors. The techniques assume that traveltimes

are recorded by inline forward and reverse spreads, or by a split spread. If the P-wave ve

locity of the uppermost layer is known, then the measured slope of a particular traveltime

branch can be used to infer the angle of incidence of the head wave at the surface. Repeated

application of Snell’s law of refraction from the surface downward determines the raypath

orientation angle within the layer immediately above the critically refracting interface. The

dip and velocity of the critical refractor are then obtained from raypath orientation angles

calculated for forward and reverse propagating head waves. The method assumes that all

velocities and dip angles overlying the target horizon haye been previously determined. Fi

nally, interface depths below the source locations are calculated from the measured intercept

times.

An alternative two dimensional inversion method exploits the variation of intercept time

b(x) with source position. Cunningham (1974) demonstrates that head wave arrival times

observed on two inline spreads with the same source-receiver azimuth ‘P can be analyzed to
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yield refractor dip, depth, and velocity. Although the slopes of the two traveltime curves are

the same, the intercept times associated with the different source locations provide sufficient

independent information for a solution. The method has practical utility in marine seismic

exploration, where refracted arrivals are recorded on single-ended (i.e., unreversed) spreads.

Cunningham (1974) examines simple models consisting of one and two layers overlying a

halfspace. However, it is possible to demonstrate the validity of the method for general

multilayered models. The fact that both forward and reverse arrivals are not required for a

successful two dimensional inversion is not widely appreciated, even by specialists in seismic

-refraction exploration (e.g., Lankston, 1990; Palmer, 1991).

The purpose of Chapters 2, 3, and 4 of this thesis is to extend forward modeling and

inversion of head wave arrival times to three dimensional layered models. This class of

earth models is characterized by uniform velocity layers bounded by plane interfaces pos

sessing arbitrary dip and strike. The linear traveltime expression remains valid in this three

dimensional situation:

T(X,,xs,ys) = m(P)X + b(xs,ys,’). (1.3)

The source-receiver azimuth angle is not restricted to two values, but may range throughout

the interval 0 <2ir. Note that the slope in equation (1.3) depends only on the recording

azimuth pr• In general, the intercept depends on both the source location and the azimuth

angle to the receiver. However, for the simple model consisting of a single layer overlying a

halfspace, the dependence on ‘P vanishes.

Chapter 2 presents a rigorous derivation of equation (1.3) for the single-layer earth model.

Closed form mathematical expressions are obtained for the slope and intercept in terms of

the specified model parameters. Also, equations for critical and crossover distances are

derived. All of these expressions are generalizations of more- familiar formulae that apply

to one and two dimensional models, and are quite useful for forward modeling purposes.

Unlike the analogous situation for seismic reflection, there is very little published information

on the traveltimes of critically refracted waves in this basic three dimensional model. Dix
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(1935), using geometric arguments, demonstrates that head wave isochrons (i.e., loci of fixed

arrival time at the surface) are conic sections. A similar result is obtained by Dunkin and

Levin (1971) although their analysis is limited to a particular areal recording configuration.

Chapter 2 provides a derivation of the same result, using a completely different methodology

from that in Dix (1935). No restrictions are placed on the recording geometry.

The simple ‘layer over a halfspace’ earth model is defined by five parameters: two P-wave

velocities, two interface orientation angles, and a depth to the interface below a reference

point. If the overburden velocity vi is known, then only four model parameters need to be

determined by inverting the observed head wave arrival times. Heiland (1940, p. 525-527)

describes an inversion method that utilizes traveltimes measured by four line profiles ema

nating from a single source location. Russell et al. (1982) require three proffles. However,

Chapter 2 demonstrates that traveltimes recorded by only two proffles are sufficient to deter

mine the attitude, velocity, and depth of the refractor. Two independent line profiles provide

four measured data (two slopes and two intercepts) that allow an algebraic solution for the

four unknown model parameters. Inversion methods that are not based on conventional

line proffle recording geometries are also possible. For example, Chapter 2 indicates that all

five model parameters can be obtained by analysis of the geometric properties of head wave

isochrons. This result suggests interesting possibilities for determining overburden velocity

v from the refraction data alone.

In Chapter 3, the derivation of the linear traveltime formula (1.3) is extended to multi

layered earth models. A substantial simplification in the mathematical proof is obtained by

using a novel three dimensional form of Snell’s law of refraction. A previous proof given by

Diebold (1987) is very cumbersome, and may actually be incorrect because it yields an ex

pression that does not generalize to arbitrary source-receiver geometries properly. As in the

two dimensional multilayered case, the slope and intercept in (1.3) depend on the orientation

angles of the raypath within each layer. However, two angles are now necessary to describe

the orientation of a raypath segment in three dimensional space. Chapter 3 describes a rapid

computational procedure for obtaining these angles by applying Snell’s law repeatedly from
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the critically refracting horizon upward to the surface. Hence, the traveltime equation (1.3)

is readily evaluated.

Finally, inversion of head wave traveltimes for three dimensional planar structure is ad

dressed in Chapter 4. Single layer and multiple layer algorithms are developed for data

acquisition geometries where sources and receivers are located on the surface. The inver

sion is posed as a constrained parameter optimization problem. An initial estimate of the

earth model parameters is iteratively refined until an acceptable match is obtained between

observed and predicted arrival times. Similar parametric inversion schemes have been re

cently applied to three dimensional reflection traveltimes by Chiu et al. (1986), Lin (1989),

and Phadke and Kanasewich (1990). Chiu and Stewart (1987) invert combined VSP and

surface-to--surface reflection traveltimes. Kanasewich and Chiu (1985) invert combined re

flection and refraction arrivals. They use the iterative ray-bending approach of Chander

(1977a) to calculate the traveltime derivatives needed for the inversion. The computational

procedure developed in Chapter 3 is not iterative. Hence, it provides a rapid alternative

to ray-bending or ray-shooting methods for obtaining the necessary head wave traveltime

derivatives.

A novel feature of the inversion algorithms discussed in Chapter 4 is the introduction

of constraint information via inequality relations that are imposed on the model parame

ters. Often, a priori geological or geophysical data are available to guide and constrain an

inversion. For example, many shallow seismic refraction projects are undertaken in conjuc

tion with a drilling program. Interface depth and layer velocity data may be obtained from

borehole logs. Constraints are particularly useful for the inversion of head wave traveltimes,

because the problem can be very ill-conditioned and admit numerous solutions. Application

of the constrained inversion algorithm to a crustal seismic refraction dataset from northern

Alberta indicates that it can be a useful tool for analysis of broadside recorded traveltimes.

Currently, there is a lack of techniques for the effective analysis of such data.

Following the analysis of three dimensional earth models in Chapters 2, 3, and 4, the

central portion of this thesis (Chapters 5, 6, and 7) develops specific improvements to various

two dimensional refraction traveltime inversion methods. By restricting consideration to two
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dimensional models, examination of geological realities like undulating interfaces and/or

variable velocity media becomes mathematically tractable.

Chapter 5 demonstrates that point estimates of interface depth and dip can be inferred

from the observed refraction traveltimes. Two interpretation procedures are used for the

discussion. The Generalized Reciprocal Method (GRM) is a technique for delineating an

undulating subsurface interface from refracted arrivals recorded on inline forward and reverse

spreads. It was developed by Palmer (1980, 1981) as an extension of the conventional

reciprocal method (Hawkins, 1961) of refraction traveltime interpretation. Although the

GRM has been successfully applied to the problem of mapping undulating horizons, the

mathematical formulation of the method is based on a two dimensional earth model with

plane interfaces. Hence, the improved head wave traveltime formula derived in Chapter 3

can be applied to GRM analysis. A useful traveltime expression is obtained by specializing

the general equation to a two dimensional situation. As demonstrated in Chapter 5, all of

the common GRM analysis tools can be derived from this novel 2D traveltime formula in

a straightforward manner. Moreover, these new expressions allow point depth estimates of

the refracting interface to be calculated from the measured traveltimes. A refractor depth

profile can then be obtained by interpolation. In contrast, the current GRM depth estimation

procedure involves the laborious task of constructing an envelope to a set of circular arcs

(Hatherly, 1980).

A traveltime inversion technique that explicitly incorporates nonplane refracting hori

zons into the model should yield more accurate results. Thus, Chapter 5 also proposes

a head wave traveltime interpretation method tentatively named critical offset refraction

profiling. This inversion technique accommodates undulations in both the surface and the

refracting interface, as well as horizontal variations in the velocity of the refracting layer.

Analysis reveals that a mathematically exact solution for the earth model parameters exists:

point values of interface depth, interface dip, and refractor velocity can all be obtained from

the observed traveltimes. Hence, as with the modified GRM developed in the same chapter,

a continuous depth profile of the interface can be constructed by interpolation. The dip
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estimates obtained from critical offset refraction profiling provide additional constraints on

the interpolant.

A detailed description of a method for calculating a smooth refractor depth profile from

a set of point estimates of depth and dip is presented in Chapter 6. Determination of the

interface depth proffle is treated as an interpolation problem. Hence, the technique differs

significantly from traditional methods of depth proffle computation via envelope construction

(Thornburgh, 1930; Dix, 1941; Tarrant, 1956; Hales, 1958; Hawkins, 1961; Hatherly, 1980;

Palmer, 1980, 1990, 1991). Linear inverse theory provides the mathematical framework for

solving this problem. The smoothest (i.e., minimum curvature) interpolant is the natural

model to adopt in this situation because refraction traveltime inversion methods assume,

either explicitly or implicitly, that local interface curvature is negligible. Thus, the final

model for the refracting horizon is consistent with prior assumptions used for inferring its

depth and/or dip. Posing the problem as an interpolation issue also has several specific

advantages regarding treatment of the data: (i) additional depth and dip values arising

from a variety of geological, geophysical, or engineering techniques are readily incorporated

into the model construction, (ii) variable weighting of all data is easily achieved, and (iii)

an adjustable misfit to error contaminated data is possible.

Recent advances in seismic refraction interpretation involve constructing a subsurface

image directly from the observed first break waveforms (Clayton and McMechan, 1981; Hill,

1987). Chapter 7 describes an alternative imaging procedure that works only with the picked

arrival times. The technique is an automated implementation of the classical Wavefront

Method for interpreting refraction traveltimes (Thornburgh, 1930; Hagedoorn, 1959; Rock

well, 1967). Modern finite-difference propagation algorithms are used to downward continue

recorded refraction arrival times through a near-surface heterogeneous velocity structure.

Two such subsurface traveltime fields need to be reconstructed from the arrivals recorded

on a forward and reverse geophone spread. The locus of a shallow refracting horizon is then

defined by a simple imaging condition involving the reciprocal time (the traveltime between

source positions at either end of the spread). Refractor velocity is estimated in a subsequent

step by calculating the directional derivative of the reconstructed subsurface wavefronts
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along the imaged interface. The principal limitation of the technique arises from imprecise

knowledge of the overburden velocity distribution. This velocity information must be ob

tained from uphole times, direct arrivals, shallow refractions, and borehole data. Analysis

of synthetic data examples indicates that the technique can accurately image both syncinal

and antidinal structures. The method is also tested, apparently successfully, on a shallow

refraction dataset acquired at an archeological site in western Crete.

Recently, tomographic techniques have been applied to the shallow seismic refraction

problem (Hampson and Russell, 1984; De Amorim et al., 1987; Olsen, 1989; Scales et al.,

1990). Traveltime tomography is a general and versatile method of velocity analysis. The

final portion of this thesis (Chapter 8) presents an iterative tomographic inversion procedure

for reconstructing a two dimensional velocity field from measured first arrival times. Two key

features of this technique are (i) use of a finite-difference algorithm for rapid and accurate

forward modeling of traveltimes, and (ii) incorporation of constraint information into the

inversion in order to restrict the nonuniqueness inherent in large scale, nonlinear tomographic

inverse problems.

Finite-difference traveltime computation (Vidale, 1988) provides a useful alternative to

conventional raytracing in tomography. All first arrival wave types (direct and refracted

arrivals, head waves, diffractions) are handled with relative ease. Curved raypaths, needed

for subsequent updating of the velocity model, are generated by following the steepest descent

direction through a computed traveltime field from each receiver back to the source. Since

arrival times are computed throughout a gridded two dimensional velocity field, very general

recording geometries are easily accommodated. The main limitation of the method is that it

is restricted to first arrivals. Hence, the algorithm developed in Chapter 8 cannot be applied

to reflection tomography.

Constraint information may arise from known values of the subsurface velocity (e.g.,

from outcrops or well logs) or the imposition of reasonable geological characteristics, like

smoothness, on the constructed velocity model. In either case, the data equations are aug

mented with additional linear constraint equations and a least squares solution of the entire
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system is obtained. In Chapter 8, the constrained inversion algorithm is applied to a sim

ulated double-well VSP plus crosswell experiment. The results indicate that the algorithm

can accurately reconstruct a smoothly varying interwell velocity field. Inclusion of constraint

information, in the form of horizontal and vertical first-difference regularization, allows the

solution of a traveltime tomography problem that is otherwise severely underdetermined

(243 data and 10000 unknowns). For this example, no obvious improvement is obtained by

the addition of borehole velocity constraints.
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CHAPTER 2

HEAD WAVE TRAVELTIMES IN A THREE DIMENSIONAL

SINGLE-LAYER EARTH

2.1 Introduction

Many refraction seismologists believe that a minimum of two reversed profiles, preferen

tiafly oriented at right angles to each other, are necessary to determine the attitude, velocity,

and depth of a plane subsurface refractor (e.g., Heiland, 1940, p. 525-527). Russell et al.

(1982) demonstrate that traveltimes recorded along three unreversed spreads can be

lyzed to yield this same information. They state that similiar measurements made by only

two such profiles cannot define the three dimensional attitude of the dipping horizon. This

statement, however, is incorrect. Russell et al. (1982) do not fully utilize the information

contained in the intercept times of the traveltime curves. One purpose of this chapter is

to demonstrate that, in many cases, two refraction proffles are sufficient to define the three

dimensional attitude, true velocity, and depth of a plane refractor. Generally speaking, the

main condition required is that the two lines provide independent traveltime information

about the subsurface.

2.2 Earth model and recording geometry

The earth model consists of a single layer with P-wave speed v overlying a halfspace with

P-wave speed V2. The plane interface separating the two media possesses, in general, a three

dimensional dipping attitude. Let the zy plane of a right handed, rectangular coordinate

system be coincident with the free surface of the layer; depth z is measured positive in the

downward direction. If r = xi + yj + zk is the position vector of an arbitrary point on the

subsurface interface, then the equation defining this dipping plane is

rn = d. (2.1)
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d is the perpendicular distance from the coordinate origin 0 to the plane and n is a unit

vector pointing from 0 along the normal to the plane. Figure 2.1 illustrates that n is

conveniently described in terms of polar and azimuthal angles q and 0:

= (sinc cos0)i+(sinçt sin0)j-1-(cosq)k. (2.2)

ç (0 < ir/2) is the dip angle of the interface and 0 (0 9 < 2ir) defines the upc]ip

direction. If the +z and +y axes are taken to point toward geographic north and east,

respectively, then the strike angle of the interface is 6? + ir/2 (modulo 2ir).

y

0 x

n

z

Fig. 2.1. Earth model and coordinate reference frame.
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Figure 2.2a is a plan view of the surface recording geometry. The position vectors of the

source S and receiver R are given by

= Xsi + ysj, rfl Xfl1 + YRJ• (2.3a,b)

The azimuth angle of the receiver relative to the source is a (0 a < 2ir). Azimuth is

measured positive in the clockwise sense from geographic north. If the horizontal offset

between source and receiver is denoted by X (X 0), then the receiver coordinates can be

expressed in terms of the source coordinates as follows:

XR = as+Xcosa, YR = Ys+XSina. (2.4a, b)

Proffle recording geometry is defined by the condition that the azimuth angle a remains

fixed for a set of receivers that record energy from a single source.

a) b)
x x

R

0 0

x

S

y y

Fig. 2.2. (a) Plan view of surface recording geometry. S and R denote a point source and

a point receiver, respectively. (b) Spatial relationship of the two sources S1 and 52.
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2.3 Traveltime derivation

Consider the critically refracted raypath from surface source S to surface receiver R

(Figure 2.3). This raypath is confined to a single plane referred to herein as the raypath

plane. In general, the raypath plane is not a vertical plane (parallel to the z axis). Only in

the particular case where the profile line is oriented directly updlip or downdip is the raypath

plane vertical. The traveltime of a head wave propagating along the critical raypath from

source to receiver can be worked out from simple geometric considerations. It is

T = - + (dS+dR)
cosi

V2 Vi
(L Lcrit). (2.5)

£ is the source-receiver range measured parallel to the refracting interface and d and dR

are perpendicular distances from S and R to this interface. The critical refraction angle i

is given by the usual expression: sin i = vi/v2. Of course, the head wave exists only for

ranges exceeding the critical range given by

Lcrit = (d + dR) tan i.

R

(2.6)

Fig. 2.3. Head wave raypath. The plane of this diagram is perpendicular to the refracting

interface and thus is not necessarily vertical.

S
L

ds

dR

P Q
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The head wave traveltime formula is more useful to the geophysicist if it is expressed

in terms of the horizontal offset X. A simple analytical derivation of the desired relation is

given in this section. An advantage of this method is that it does not require visualization

of the three dimensional geometry of the problem. Starting with the general equation for

the dipping plane, it is easy to demonstrate that the perpendicular distances from S and R

to this plane are given by d = d — rs n and dR d —
rj . n, respectively. Hence

dR = ds+(rs—rR).n.

Substituting from equations (2.2), (2.3), and (2.4) and reducing yield

= ds—Xsinq5cos(a—6).

Now define an angle 6 (—Tr/2 < S < ir/2) as follows: sinS sin q5 cos(a — 8). Then, the

above expression becomes

dR = ds—X sinS. (2.7)

It is stressed that the angle S is not the apparent dip of the refracting interface along the

profile line azimuth a. Apparent dip -y is related to true dip çt’ via the following equation:

tan = tanq5 cos(a—O). (2.8)

Obviously, S ‘y. The difference between S and y arises from the fact that the former is

measured in the raypath plane, whereas apparent dip is measured in a vertical plane. For

small values of true dip, S -y.

The range £ is equal to the distance FQ in Figure 2.3. Hence
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L2
=

= (rS+dSn)—(rR+dRn) 2

= (rS_rR)+(dS_dR)n2

= Irs—rI?I2+2(dS—dR)(rS—rR)n+(ds—dR)2

=

= x2 — x2 s.

Thus

L = X cos8. (2.9)

Equations (2.7) and (2.9) are the desired expressions. It is evident that these formulae

could have been derived by purely geometrical reasoning based on the raypath diagram

of Figure 2.3. However, the relationship of the angle S to the proffle line azimuth and the

orientation angles of the refracting plane would not have been easy to ascertain. Substituting

expressions (2.7) and (2.9) into equation (2.5) and reducing yield an expression for the head

wave traveltime:

T = sin(icS) +
2dscosi

(XXcrit). (2.10)

An expression for the critical offset distance X is obtained by similiar manipulations.

Evaluating equations (2.7) and (2.9) at the critical distance and then substituting into (2.6)

gives
slnic /

= 2d, . . 2.11
cos(z

—

6)

The crossover distance is defined as the particular source-receiver offset at which direct wave

and head wave arrival times are identical. Setting T in (2.10) equal to X/vi and solving for

X yields
cos z

X035 = 2d .
. (2.12)

1 — sin(z — 8)



Fig. 2.4. Normalized apparent refractor velocity Va/V2. Each curve refers to a specific value

of the interface dip angle . The P-wave velocity ratio is vl/v2 = 3/5.

16

Finally, the traveltime formula (2.10) indicates that refracted arrivals propagate along the

receiver spread with an apparent velocity Va given by

V1 Sifl 2

Va . • V2. (2.13)
sin(i — 8) sin(z — 8)

The variation of apparent velocity with profile azimuth is depicted in Figure 2.4 for the

specific case where vl/v2 = 3/5.

Equations (2.10) through (2.13) indicate that the three dimensional refraction formulae

are straightforward generalizations of those appropriate for the 2D problem: the angle S

replaces the true clip S in the relevant expressions. It is emphasized again that S is not the

apparent dip of the subsurface interface along the profile line. However, for a gently dipping

refractor, the practical difference between the two is small.

3.0

2.5

>

>t5

1.0

0.5
0 100 200 300

a—S (deg)
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2.4 Traveltime inversion

Traveltimes recorded by a set of refraction proffles can be inverted to recover the 3D

attitude, true velocity, and depth of the refractor. Let the measured slope and intercept

time of the th such traveltime curve be m and r, respectively. From equation (2.10), these

are related to the assumed earth model parameters via

sin(i — S) 2d. cos
m = = , (2.14a,b)

vi Vi

with:

sinSj = sinqScos(aj—9), (2.14c)

ds d — sin q (zs cos 8 + ys sin 8). (2.14d)

(zs, y.g) are the position coordinates of source i and a: is the azimuth angle of proffle line

i. The perpendicular depth to the interface below source i is designated

How many refraction lines are required in order to successfully invert for the earth model

parameters? Assuming that the overburden velocity vi is known (perhaps from borehole

data or traveltime analysis of the direct arrivals), then the earth model is defined by the

four parameters (v2, q, 9, d). Intuition suggests that two refraction profiles will yield the four

data (two slopes and two intercepts) required to solve the problem unambiguously. Indeed,

if the line index i is set equal to 1 and then 2, the system (2.14) above becomes a set of 8

equations in 8 unknowns. Since the equations are nonlinear in the unknowns, a definitive

statement on the existence and uniqueness of a solution cannot be made. However, it can

be demonstrated by algebraic techniques that, in many cases, two refraction proffles are

sufficient to solve the problem.

The method proposed by Russell et al. (1982) requires three lines to obtain the re

fractor velocity, attitude, and depth. They utilize the slopes of the three traveltime curves

(mi, m2, m3) and one intercept time (ri) as measured data in the inversion. For the case

where the index i runs from 1 to 3, system (2.14) represents 12 equations in 10 unknowns;
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hence, it would seem that redundant information exists. Although redundant data are al

ways valuable in any practical inversion scheme, the theoretical minimum set of conditions

under which the inversion is possible are of interest here.

In the following analysis, only two refraction profiles are employed. First, define the

angles P1 and 112:

sin’(mlvl), sin’(m2vl). (2.15a,b)

Next, the position of source 2 is expressed in terms of the coordinates of source 1:

Xs2 = xs, + H cos/3, ys2 = ys1 + H sin /3. (2.16a,b)

/3 (0 /3 < 2ir) is the azimuth of source 2 relative to source 1 (measured positive in the

clockwise sense from geographic north) and H is the horizontal distance between the two

source locations (see Figure 2.2b). Using these expressions, the angles 81, 8 and the depths

ci, ds,, cl2 can be quickly eliminated from the system (2.14). A reduced system is obtained

consisting of three nonlinear equations in the three unknown angles i, 4, and 0:

sin(i
— 111) = sin 4 cos(ai — 8), (2.17a)

sin(i
—

112) = sin 4 cos(a2 — 8), (2.17b)

vl(T1 — T2) = 2H cos i sin cos(/3 — 0). (2.17c)

24.1 Special cases

Three particular cases of the above system are examined before a more general solution

technique is described in the next section.

1) Coincident sources. If the two sources occupy the same position (H = 0), then equation

(2.17c) above reduces to 0 = 0 (coincident source locations imply identical intercept times).
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The two remaining equations contain three unknowns and cannot have a unique solution.

Hence, two refraction proffles emanating from the same source location supply insufficient

independent information for a successful inversion. The split recording spread is a particular

example of coincident-source refraction profiles (Johnson, 1976).

2) Parallel profiles. If the azimuths of both refraction lines are the same (cr1 = cr2), then

equations (2.17a) and (2.17b) above are not independent (identical azimuths imply identical

slopes of the traveltime curves and thus pi = pa). Hence, the parallel profile recording

configuration is not adequate to solve the problem either.

3) Anti-parallel profiles. Suppose that line 2 is recorded in a direction opposite to that of

line 1 (cr2 = cr1 ± jr). Then equations (2.17a) and (2.17b) can be solved immediately for the

critical refraction angle:
= 1U1 + P2 (2.18)

The refractor velocity is obtained via V2 = v1/ sin c. This procedure for calculating V2 is

identical to that used with the classical reversed spread in the two dimensional situation.

It is clear that it is generally valid for anti-parallel proffles (colinear or otherwise) recorded

over a three dimensional dipping interface.

With the critical angle i determined, the system (2.17) can be solved for the remaining

unknowns. The azimuth of line 1 is designated by a. Straightforward, but tedious, algebraic

manipulation then yields

tanO —

— (r —7-2) cosa + H(mi —m2) cos/3
(219)

— (Ti — T2) sin a + H(mi — m2) sin/3

sin 4’ = F J(i. —

7-2)2 + 2(ri — T2) H (ml — m2) cos(a — /3) + H2(mi — m2)2, (2.20)

where the multiplicative factor F is given by

F
.

. (2.21)
2H cos i sin(a — /3)
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A minor ambiguity associated with selecting the proper branch of the inverse tangent func

tion in equation (2.19) is easily resolved by ensuring that the angle 8 satisfies the original

system (2.17). After 0 and çb are determined, one of the equation pairs (2.14b,d) can be

solved to yield the distance d from the reference point 0 to theinterface.

The solution for the two orientation angles given by equations (2.19) and (2.20) contains

an important indeterminacy when the azimuth angle /3 of source 2 equals a or a ± ir. In this

case, the recording geometry consists of two colinear, anti-parallel proffies. The identity of

reciprocal times recorded at the two inline shot positions (i.e., mlH+Ti m2H-Hr2)implies

that each equation reduces to 0/0. Hence, two colinear anti-parallel proffles are inadequate

for defining three dimensional refractor attitude. The reversed spread is a typical example

of this configuration. As long as there exists some perpendicular offset distance between

the two lines recorded in opposite directions, the inverse problem is well posed, at least in a

theoretical sense. The latter data acquisition geometry is a fairly common arrangement for

many land and marine seismic surveys.

Arbitrary line azimuths

A combination of algebraic and algorithmic techniques yields a solution of the system

(2.17) for the case of arbitrary proffle line azimuths al and a. The special situations treated

in the previous section are excluded. Eliminating 8 and çS results in a quadratic equation in

tan i:

A tan2i+ B tani + C = 0. (2.22)

The coefficients A, B, and C depend upon measured quantities and recording geometry as

follows:
A V1T1T2 f

= 2H
sina —

B = — cos sin(a2
—

3) + cos 1’2 sin(ai
—

/3), (2.23b)

C sin sin(a2
—

/3) — sin2 sin(ai
—

/3) + A. (2.23c)
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In the case of anti-parallel proffles the constant A vanishes and tan i is obtained by

solving a linear equation. It is easy to verify that the expression for the critical angle i

given by the previous equation (2.18) is reproduced. In general, solution of equation (2.22)

is via the quadratic formula:

tan
—B + sgn(B) — 4AG

(2.24)
2A

where the sign of the radical has been chosen to yield an indeterminacy for A = 0. Ap

plication of L’Hopital’s rule then indicates that (2.18) is recovered as A —* 0. After i

is determined, simply back substitute sequentially into the expressions for the remaining

unknowns. This is done numerically rather than symbolically since the formulae rapidly

become unwieldly. Hence

tan9 =
— H cosi sin(ic — p.i) cos/3 — [vl(T1 — r2)/2] C05a1

(225)
H cosi sin(i — i”) sin3 — [vl(r1 — ‘r2)/2] sinai

An analogous (and completely equivalent) formula involving 2 and a2 could be used. Again,

care must be exercised to ensure that the angle 8 obtained by inverting (2.25) satisfies the

original system of equations. Any one of the expressions (2.17a,b,c) can then be solved for

the true dip angle q5. Finally, depth d is determined as previously described.

2.5 Traveltime isochrons

Heretofore, the analysis is concerned with an inversion method for critically refracted

traveltime data observed on two line profiles. An alternate approach to interpreting three

dimensional refraction data entails recording arrival times on an areal grid of receivers. The

measured data are posted and contoured on a map display of the receiver array. Charac

teristic patterns observed in the contoured data are used to qualitatively infer subsurface

structural style. If the traveltime data are sufficiently precise, a quantitative estimate of

various structural or stratigraphic parameters (dip and strike angles, locations of faults or
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edges, magnitude and sense of fault throw, refractor velocity, etc.) is possible (Dunkin and

Levin, 1971; Palmer, 1986, p. 246-249).

For a fixed traveltime T, the head wave wavefront occupies a three dimensional spatial

locus consisting of a frustum of a cone. The intersection of this locus with the recording

plane z = 0 is defined to be a traveltime isochron. A closed form expression for a head

wave traveltime isochron in polar coordinates is easily obtained by solving equation (2.10)

for offset X as a function of the azimuthal angle a:

vi(T — r)
X(a) = . . , (2.26)

sin{i — 6(a)]

where T is the intercept time (r = 2d cos i/vi) and 8(a) sin1 [sin ç cos(cr — 9)].

Straightforward algebraic manipulation reduces this expression to a quadratic form in the

distance X:

X2 1—
(Sin )22

—9) — 2X
v1 (T — r) COS

cos(a —9)
—

v (T — r)
2

=

slnic sin i sinic

(2.27)

The mathematical structure of this expression is identical to that of equation (A2) in Ap

pendix A. Hence, a locus of fixed head wave arrival time T is a conic section (either an

ellipse or a hyperbola) with principal axes parallel to the dip and strike directions of the

refracting interface. Furthermore, the parameters defining the geometry of the curve can

be determined by equating coefficients in (2.27) and (A5). Solving for the eccentricity e,

semimajor axis a, and the origin-to-center distance l yields

— sin q — vi(T — r) sin i cos — vi(T — r) cos i sin qS
e — , a —

. 2 .2 — • 2 .2
sin z sin z — sin sin z — sin

(2.28a, b, c)

These three expressions are consistent with equivalent formulae derived in an entirely dif

ferent manner by Dix (1935). Two distinct cases must now be examined.
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Case 1: > q1. If the critical angle exceeds the interface dip angle, then the eccentricity

of the conic section is less than one (e < 1). Hence, traveltime isochrons are effipses that

encompass the source position. However, the shotpoint is not located at a center or a focus

of any effipse. Rather, the center is displaced in the updip direction by the distance I, and

the nearest focus is displaced downdip by the amount a e
— 4. For a horizontal interface,

the above expressions reduce to e = 0, a = v2(T — r) and l = 0. In this simple situation,

head wave traveltime isochrons are concentric circles (centered at the source position) with

radii that increase linearly with T — T.

Case 2: i < . In this situation, the eccentricity exceeds one (e > 1) and isochrons are

hyperbolae. This case may arise where there is a strong velocity contrast between overburden

and refractor, together with a large dip on the intervening interface. Head wave traveltimes

actually decrease with offset distance in a wedge of azimuths centered about the updip

direction (i.e., T — r < 0 for c bounded by ± cos1(1/e)).

Elliptic and hyperbolic isochrons for head wave traveltime are illustrated in Figure 2.5.

These contours are associated with actual head wave arrivals only if the source-receiver

offset exceeds the critical distance given by equation (2.11). The curve defined by Xt(a)

delimits the precritical offset zone, within which no head waves are observed. Expression

(2.11) easily reduces to

[i
— (sin 1) 2

cos2(cz
—

8)] — 2Xcrit [—2ds tan2 i sin 4’ cos(cr
—

8)] — [2d tan c]
2

=
cos z

(2.29)

Hence, the limit of the precritical offset zone is also a conic section. By correspondence with

equation (A4), the parameters defining this conic are

sin 4’ 2d sin i, cos cos 4’ —2d5 sin2 i sin 4’
e = , a = 2 • 2 , = 2 • 2

cos i cos z — sin 4’ cos i — sin 4’
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Fig. 2.5. Head wave traveltime isochrons. In each panel, the isochrons (contour interval =

25 ms) are represented by solid curves, the critical offset distance by a dotted curve, and

the crossover distance by a dashed curve. The source (asterisk) is located at the origin, and

the straight line indicates the outcrop locus of the refractor. (a) Earth model: vi = 1500

m/s, v2 3000 m/s, q. = 15°, 0 = 45°, l = 100 m. Isochron eccentricity = 0.518. (b) Earth

model: v = 1500 m/s, v2 = 5796 m/s, = 30°, 0 = 45°, h = 100 m. Isochron eccentricity

= 1.932.

0
(m)
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Fig. 2.5. (c) Earth model: v1 = 1500 m/s, v2 = 1655 m/s, g = 300, 6 = 450, h = 100 m.

Isochron eccentricity = 0.552.

If < ir/2
—

i, the eccentricity is less than one and the curve defined by (2.11) is an ellipse

surrounding the source; its center is shifted by an amount l in the downdlip direction.

However, if the interface dip angle exceeds the complement of the critical angle (4> r/2—i),

then the critical offset curve is a hyperbola. This occurs, for example, in a high dip, low

velocity contrast environment where rays critically refracted downdip never return to the

surface.

The limit of the precritical offset zone is displayed in Figure 2.5 as a dotted curve.

Fictitious arrival times within this curve are obtained by extrapolating or phantoming real

traveltimes. Figure 2.5a illustrates elliptic traveltime isochrons ( > 4) and an elliptic

critical distance curve (i + 4 < ir/2). In Figure 2.5b, the isochrons are hyperbolic (i < 4)

and the critical offset is still elliptic. Finally, in Figure 2.5c, the traveltime contours are

—400 0
easting
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elliptic (ia> q) and the critical distance curve is hyperbolic (i + q> Tr/2). The remaining

case (hyperbolic isochrons and hyperbolic critical offset) is not illustrated. The crossover

distanceX03(a), computed from equation (2.12), is depicted by a dashed curve in each

panel. Since expression (2.12) cannot be put into the form of equation (A4), this curve is

not a conic section.

2.6 Inversion of traveltime isochrons

If the geometric parameters of a traveltime isochron can be determined from head wave

arrival times observed on an areal recording array, then it is possible to invert for the earth

model parameters. The principle axes of an effiptic or hyperbolic isocliron are parallel to the

dip and strike directions of the subsurface refracting horizon. Hence, the azimuth angle &

can be found. Furthermore, solving equations (2.28) for sini, sin, and vijT — r in terms

of e, a, and yield

1 1a2e2 — 12 /a2e2 —

sini =

—

2
—

sin
=

2
(2.30a,b)

vilT—ri = /(i —e2)(a2e2—l). (2.30c)

For an ellipse, these expressions are all well defined because e < 1, a > l, and ae > l.

However, the relations remain valid for a hyperbola where e> 1, a < l1, and ae < lI; the

argument of each square root is still positive.

Equations (2.30a,b) indicate that the critical and dip angles can be determined from

the geometric parameters of an observed traveltime isochron. If the overburden velocity

vl is known from ancillary data, then(2.30c) can be solved for the intercept time r. The

normal depth to the refractor below the shotpoint is then calculated via d = v1T/2 cos i.

However, an alternative approach considers the intercept time to be a measured quantity.

The basic traveltime equation (2.10) indicates that intercept time is invariant with respect

to recording profile azimuth c. Thus, a value for T can be obtained by linearly extrapolating
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to zero offset the arrival times observed along any radial profile emanating from the source.

Equation (2.30c) is then a single equation in the unknown layer velocity v1. Solving for v1

gives

__________________

—e2)(a2e2—l)
Vj

= eIT—rI
. (2.31)

Hence, the overburden velocity can be calculated from the refraction data alone! With v1

determined, the refractor velocity is obtained via v2 = vi! sin i. Interestingly, the above

solution method requires the critically refracting interface to have nonzero dip. Otherwise,

the eccentricity e and origin-to-center distance 4 vanish, and formula (2.30c) becomes inde

terminate. Overburden velocity v must then be obtained from independent measurements.

Practical issues related to fitting a conic section to a finite set of spatially sampled

arrival times are not addressed here in any detail. Rather, the intention is to demonstrate

the existence of a mathematical solution to the specified inverse problem. In principle,

the situation is simffiar to fitting a straight line segment to a set of error contaminated

traveltimes observed along a line profile. However, there are obvious practical differences.

Since a conic curve is nonlinear in its defining parameters, an iterative fitting procedure may

be necessary. Finally, it may be possible to fit several conics with different isochron times

T to the measured data. Statistically robust estimates of the earth model parameters can

then be obtained by using some form of averaging.

2.7 Conclusion

Although the earth model examined in this chapter is quite simple, there are undoubt

edly many situations where it constitutes an adequate representation of geophysical reality.

Also, the model is very useful as a pedagogical tool. Analysis of head wave propagation

within the model yields closed form mathematical expressions for traveltime, critical and

crossover distances, intercept time, and apparent refractor velocity. These expressions are

generalizations of more familiar formulae that apply in one and two dimensional situations,

and are valuable for forward modeling purposes.
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Algebraic solutions of the traveltime inverse problem for the same earth model are also

derived. There are numerous practical recording geometries where the analysis of critically

refracted arrival times recorded on only two unreversed spreads can yield the three dimen

sionai attitude, true velocity, and depth of a plane subsurface horizon. The well known

method for determining refractor velocity in a 2D situation (measurement of apparent ve

locities on colinear forward and reverse profiles) applies directly to the more complicated

3D model. However, it is not necessary that the proffles be colinear; anti-parallel profiles

are sufficient. This knowledge can be quite useful for the interpretation of apparent velocity

- data obtained from a 3D dipping interface. Extension of these methods to include multilay

ered earth models will be valuable for defining the minimum requirements for a successful

inversion of three dimensional refraction traveltime data.

Finally, study of head wave arrivals recorded in an unconventional data acquisition geom

etry (i.e., an areal receiver array) reveals an interesting possibility for estimating overburden

velocity from the refraction data alone. At present, this is primarily a theoretical result, but

it does provide some justification for the numerical inversion results obtained in Chapter 4.
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CHAPTER 3

HEAD WAVE TRAVELTIMES IN A THREE DIMENSIONAL

MULTILAYERED EARTH

3.1 Introduction

There is a notable paucity of papers on the subject of head wave propagation in three

dimensional, multilayered earth models. Chander (1977b) examines a model consisting of

uniform velocity layers separated by plane interfaces with arbitrary strike and dip, and de

scribes a method for calculating head wave traveltimes between specified source and receiver

positions on a horizontal surface. If an array of receivers is colinear with the source, the head

wave arrival time curve is a straight line. Hence, if two points on this line are established,

then arrival times at all offsets can be determined simply by drawing the connecting straight

line. Chander (1977b) locates the two initial points via raytracing techniques.

Chander’s work is purely numerical and does not provide much insight into the depen

dence of head wave traveltime on the parameters that define the earth model. Moreover, it

is restricted to conventional data acquisition geometries. Buried sources and/or receivers as

well as nonproffle recording geometries require a more general treatment. Diebold’s (1987)

recent work constitutes the seminal contribution on this topic. He also considers a three

dimensional multilayered earth, but derives traveltime formulae for reflected and critically

refracted waves. These formulae are logical extensions of familiar traveltime expressions

that are appropriate for one and two dimensional layered models. Thus, they offer the

possibility for extending several known traveltime inversion techniques to accommodate 3D

planar structure. Unfortunately, Diebold’s derivations are very ambiguous. Furthermore, his

generalization to arbitrary source-receiver geometries yields an incorrect traveltime formula.

Finally, he does not present a numerical technique for actually computing the traveltimes.

These deficiencies are addressed in this chapter. Nevertheless, Diebold (1987) should be

credited with an original contribution to traveltime analysis for this particular class of earth

models.
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This chapter provides a rigorous derivation of the three dimensional head wave traveltime

formula. A related expression for the traveltime of a reflected wave propagating in the same

earth model is obtained as a byproduct of the analysis. The mathematical proofs of the

formulae are simplified by using a novel form of Snell’s law of refraction and reflection.

Various generalizations of the basic traveltirne equation extend its applicability to arbitrary

3D recording geometries and/or mode-converted waves. Finally, a rapid numerical method

for computing the arrival times of critical refractions is presented, and is illustrated with

simulated examples from shallow refraction exploration and vertical seismic profiling (VSP).

3.2 Earth model

Consider an earth model consisting of a set of homogeneous and isotropic layers bounded

by plane interfaces. In general, each interface may possess a three dimensional dipping

attitude. The interface of the model is illustrated in Figure 3.1. 0 is the origin of.

a right-handed, rectangular Cartesian coordinate system with orthonormal basis triad ijk.

The xy plane is defined to be the horizontal plane and the depth coordinate z increases in

the downward direction. The locus of plane interface i satisfies the equation

r•n = dj, (3.1)

where n is a unit vector normal to the interface and dj is the perpendicular distance from

0 to the interface. Figure 3.1 indicates that n is conveniently described by two interface

orientation angles:

n; = (sin çfj cos 8)i + (sin çt.j sin 9)j + (cos g5)k.

çj (0 <q <ir/2) is the dip angle and O (0 <O <2r) is the azimuth angle of the interface.

If the +x and +y axes are taken to point toward geographic north and east, respectively,

then the interface strike angle is 8 + r/2 (modulo 2ir). Although these angular coordinates
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y

0

Fig. 3.1. Orientation of the i’ interface of a multilayered earth model.

are descriptive, a certain compactness in notation is achieved by specifying n2 in terms of

its Cartesian components:

n = nj,i + ni,,i +

x

ni

z

vi +1

with n + m, + = 1. This convention is followed in the sequel.
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Solving equation (3.1) for z as a function of z and y yields the vertical depth of interface

zQc, y) z(O, 0)
—

—

y [3], (3.2)
Th:,z

where z(O, 0) d/nj, is the vertical depth of the th interface below the coordinate origin.

The surface (not necessarily horizontal) is interface 1, and subsequent interfaces are

numbered sequentially in the downward direction. Interface i overlies layer i. The vertical

thickness of layer i is defined to be h(z,y) zj+1(x,y) — zj(x,y). Thus

h(x,y) = h(0,O) + [Th

— hh+ij
— (3.3)

‘i,z i+1,z fl,z i+1,z

where h(0, 0) z+i(O, 0) — z(O, 0) is the vertical thickness of the layer beneath the

coordinate origin 0.

Finally, the seismic wave propagation speed assigned to layer i is given by v. This may

be either the compressional wave speed cx or the shear wave speed f3. This fiexibffity allows

the resulting traveltime equations to apply either to P, S, or mode-converted waves.

3.3 Raypath geometry

Initially, the analysis is restricted to the case where both the source and receiver are

located on the surface. Generalization to an arbitrary data acquisition geometry is straight

forward and is given in a later section. The horizontal coordinates of the point source S and

point receiver R are (as, Ys) and (R vi?), respectively. Their vertical coordinates are easily

obtained from equation (3.2): z = zl(zs,ys) and ZR = zl(XR,YR).

In order to facffitate computation of the traveltime, the total head wave raypath is

divided into three major portions: the downgoing, critically refracted, and upgoing paths.

In Figure 3.2, these correspond to raypath segments SF, PQ, and QR, respectively. The

propagation time along each portion is calculated, and then all three are summed to obtain

the surface-to-surface head wave traveltime.
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Fig. 3.2. Schematic representation of the raypath of a wave critically refracted on interface

k of a multilayered earth model. S and R denote a surface source and receiver, respectively.

In the 3D situation, the raypath is not confined to a plane.

Within each layer, the raypath is a straight line segment. On the downward portion

of the raypath, the propagation direction within layer i of the wave critically refracted at

subsurface interface k is described by the unit vector pj:

Pik = Pik,z + PiJc,.i +

S

R

.

. .
.

P
0

Similarly, the upward propagation direction within layer i of the wave critically refracted
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from interface k is specified by another unit vector qj:

qk = q,zi + qtk,ij + q:,zk.

The complete head wave raypath is described by the set of unit vectors Pik and q (i =

1,2, . . . , k — 1) together with a critically refracted propagation direction pjj, = qkk

At interface i in the overburden, the wave is refracted in accordance with Snell’s law.

The situation for the downgoing wave as it encounters the i’’ interface from above is depicted

in Figure 3.3a. The plane of this diagram is the plane of incidence defined by the incident

propagation direction Pi—1,k and the interface normal n. Snell’s law of refraction consists

of the following two conditions:

(i) the unit propagation vector of the transmitted ray (pjk) is contained in the plane of

incidence,

(ii) sin Pjvj_1 = sin v/v, where and v are positive acute angles measured from the in

terface normal to the incident and transmitted propagation directions Pi—1,k and Pik,

respectively.

Both conditions are contained in the single vector equation

fli )< Pi—i,k = n X Pik (3 4)
Vj_1 V

The vector formed by these cross products points out of the plane of the diagram in Figure

3.3a. In component form, equation (3.4) is
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Fig. 3.3. Noncritical refraction of the raypath at interface i in the overburden. (a) Down-
going raypath. (b) Upgoing raypath. The unit vector n is normal to the interface.

v-1

Pi-1,k a

Interface I

ni
P1k

iflterfa
I

qi-1,k b

v’—1
qik

ni
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1 r 1 ir 1

{fli,P—1,k,z — flizPi_i,k,yj — [fli,yPik,z — fli,zPik,j (3.5a)
v_1 Vi

[ni,zPi_i,k,z — fli,zPi_1,k,z] = [rti,zPilc,z — fli,zPik,zj, (3.5b)
V2_ Vt

ii 1 ir 1
[fli,zPi—1,k, — fli,vPi—1,k,zj — [fli,zPik,i, — flz,Pik,zj. (3.5c)

Vj_1

Similarly, when the upgoing wave encounters interface i from below, Snell’s law in the

form
flj X q—1,k ni x (3 6)

Vj_1 V

holds (see Figure 3.3b). In this case, the angles 1ti and v exceed ir/2 radians. The component

form of expression (3.6) is analogous to equations (3.5).

The three dimensional statement of Snell’s law of refraction given by the above expres

sions is quite different from the form typically used in raytracing applications (Sorrells et al.,

1971; Shah, 1973; Chander, 1977b). However, it can be demonstrated that these expressions

are equivalent to the raytracing formulae (equations (3.27) and (3.28) below). The value of

the current formulation is that it leads to a substantial simplification in the mathematical

proof of the traveltime equations.

3.4 Traveltime derivation

3.4. 1 Downgoing traveltime

An expression for the traveltime increment of the downgoing wave as it traverses layer

i is derived first. Let the position vectors r: and r:+I denote the intersection points of the

downgoing ray with interfaces i and i + 1, respectively. Then rj+1 = r + 13 Pik, where
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4 is the length of the (straight line) raypath segment within layer i. Solving for 4 gives

4 Pk (r+I — rj. In component form, this expression is

4 = pjk,z(Xi+1 — x) + pik,y(yi+1 —
y) + Pjk,z(Zi+1 — z).

The traveltime increment is obtained by dividing the path length segment 4 by the layer

velocity v:

ii Pik,z Pik,y Pik,z
ti = — = ——(xi+i — x) + —(yi+1 — yi) + —(zj+i — z).

vi v vi vi

The vertical (z) coordinates of the intersection points can be expressed in terms of the

horizontal (x, y) coordinates by using the equation for a dipping plane interface. Equation

(3.2) yields
rni,zl F’i,yl

z zj(xj,yj) = zj(O,O)—aji—-—i —yi——--,
LThi,zJ Lfli,zJ

—
rni+1,zl rni+i,y

Zj+1 = zj+1(xj+1,yj+l) = zi+1(OO)—xi+1[ ] Yi+4

Hence

1i,1 f2i,v1 1’i+l,z1 1’i+i,y1
— = h(O, 0) + z —j + —

x+1 [ j — Yi+1 [Th:,z

where h(0, 0) = z+i(0, 0)— z(0, 0) has been used. Substituting this result into the equation

for t and grouping terms yields the required expression for the traveltime increment:

= h(O,O)pk,
+

xi+l {fli+1zPikz fli+1zPikz]
+

Yi+1 {fi+1zPik hui+1Pikz]

Vi Thi+1,z V n’i+l,z Vi

—

[,z1
— fli,Pik,z1 — L [,zPik,y i,yPik,z

vi -I L v
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The total downgoing traveltime is obtained by summing all of the individual traveltime

increments t, i = 1,2,. . . , k — 1:

k—i

___________

Idown =
Vi

+
2i+i [fli+izPikz —7Z’i+i,zPik,z]

+
Yi+i [fl-i+izPik — Thi+iPikz]

i1
‘j+1,z

—

i [flizPikz — i,zPik,z

j +
[flizPikv — fliPikz]

i=I
(Thi,z V2 V fli,z V V

The sum involving aji and Yi-i-1 is now reindexed and combined with the other sum. The

result is
k—i

—
ç

___________

‘down — vi

+
Xk(flk,zPki,k,z — Thk,zPk—i,k,z) + Yicfr’ic,zPk_i,ic,7,— Thk,11Pk—i,k,z)

Vk_iflk,z

—
Xi(Th1,zPik, — fli,zPik,z) + y1(fli,zPiic,y — fli,yPlk,z)

Vim’,2

+ i_

{TiizPi_ikz — i,zPi—i,k,zj — [flizPiJcsz — i,Pik,z]

. ni,z I Vi_i Vi
:=2

+
{flizPi__1k i,yPi—i,k,z] —

{flizPik — i,yPik,z]

i=2
Vj_1 vi
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At interfaces 2,3,. . . , k—i in the overburden, Snell’s law of refraction must apply. Equations

(3.5a,b) then imply that all terms in the summations involving x and Y: vanish! The

downgoing traveltime from (x1,yl) = (xs,ys) to (zk,yk) (xp,yp) reduces to

Ic—i

___________

.Ldown vi

+
XP(Thk,zpk_1,lc,z — flk,zPk—1,k,z) + yP(Thic,zpIc—i,k,y — Thk,yPlc—i,k,z)

Vk_iflkz

— ZS(fli,zpik,z — mi,zpilc,z) + YS(fli,zplk,y — fl1,yplk,z) (37)
Vlfll)Z

3.4.2 Upgoing traveltime

The traveltime along the upward propagating portion of the total raypath is derived by

similar techniques. Snell’s law in the form (3.6) is used at each interface in the overburden.

The result is
k—i
‘ç—

__________

‘up— Ld
i=i

vi

— XQ(flk,zqk.i,k,z — flk,zqk_1,k,z) + yQ(nk,zqk_i,k,y — nk,yqk1,k,z

Vk.lflk,z

+
ZR(Th1,zqik, — ni,zqlk,z) + yR(ni,zqlk,y — n1,qik,z)

(38)
v’n’,z
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3..3 Critically refracted traveltime

The final traveltime increment needed for the derivation corresponds to the critically

refracted segment of the total raypath. Let the position vectors rp and rq refer to the

intersection points of the downgoing and upgoing portions of the raypath with interface k,

respectively. The critically refracted raypath segment is a straight line connecting these two

points (and thus lying entirely within the plane of interface k). Then rq = rp + tk Pick and

hence l = Pick . (r — rp). The propagation time along this path length is

Plck,z Pkk,y Pkk,z
tic = —

=
(x — zp) + (y

—

yp) + (z — zp).

Since points P and Q reside on the same plane interface, equation (3.2) yields

rk,z1
ZQZp = Zk(Q,yQ)-Zk(Zp,yp) = —(q---a)-——j

fk,z k,z

The expression for the critically refracted traveltime increment then reduces to

—

— (xq — Xp)(rLlc,zpkk,z
— k,zPkk,z) + (Y YP)(k,zPkk,y Thk,yPkk,z)

tic —

Vkflk,z

(3.9)

3.4.4 Total traveltime

The total surface-to-surface traveltime of the wave critically refracted on interface k is

obtained by adding the traveltime contributions along the downgoing, critically refracted,

and upgoing raypath portions: Ttotai = Td0 + + Summing expressions (3.7),

(3.8), and (3.9) yields
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k—i

Tk(XS,YS,aR,YR)
— qiie,)

vi
i=i

+
[xi(n1,zq’1z

— n1,q1k,z) + yR(nl,zqik,y — m1,q1k,z)]

Vifli,z

[ ZS(flI,zPik,z — fli,zPik,z) + YS(nl,zpik,y — fliYP1kz)]

vlnl,z

+ F(XP,YP,XQ,YQ).

The quantity F depends on the horizontal coordinates of the two points of critical refraction

and is given by

F(xp,yp,XQ,yQ) =

xpF 1 1
I (k,zPk—1,k,z — Thk,zpk—1,k,z) — (‘k zPkk,z — ThkzPkkz)]

k,z Lvk_1 Vk

Fi 1
+ I (flk,zPk—1,k,y — flk,yPk—1,k,z) — (Thk,zPkk,y — flkPkkz)]

k,z [vk_1 Vk

_

1
I (n,zq_1,,z — nk,zqk_1,k,z)

— — ThkzPkkz)]
k,z [Vk_i Vk

_

1
I (‘k,zqk—1,k, — nk,yqk_1,k,z)

— (k,zPkk,y — flkiPkkz)].
k,z [vk_I

Since the wave is critically refracted at interface k, the propagation direction vectors Pkk

and kk are identicai. Then, requiring Snell’s law to be satisfied at points P and Q results
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in F(xp, yp, XQ, y) = 0. The final formula for the surface-to-surface traveltime of the head

wave becomes
k—i
—
h1(O,O)(p,,

— qik,z)
Tk(xs,ys,XR,yR) =

i=1
$

+
xR(n1,zqik, — nI,zqlk,z) + yR(n.1,zqik,y fll,yqik,z)

Vifli,z

—

ni,zplk,z) + YS(n’i,zpik,y — Thi,yPiIc,z) (3.10)

[ vini,

34.5 Variants of the basic formula

Obviously, if the source or receiver is located at the coordinate origin, then the traveltime

formula (3.10) simplifies considerably. Another simplification arises with a. horizontal surface

(ni, = = 0, n = 1). Expression (3.10) reduces to

Tk(xs,Ys,XR,YR)
=

h(o,o)(Pik
— qik,z)

+
+ yRqik,y)— (ZSP1k,z + YSP1k,y)] (3.11)

This is equivalent to Diebold’s (1987) surface-to-surface traveltime formula.

Conventionally, seismic refraction traveltime is presented as a function of the source-

receiver offset distance. The current expression is easily converted to this form by specifying

the receiver position in terms of an offset distance X (X 0) and an azimuth angle P

(0 < E’ <27r) relative to the source. The receiver coordinates are

XR x+Xcos’I’, YR = ys+Xsin.
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Substituting these expressions into equation (3.10) yields

k—i
I V T ç’ h(0, 0)(Pk,z — qik,z)

1kkXs,yS,,) =

Thi,z(pik,x — qik,z) — 21,z(P1k,z
— qlk,z)

— 2s
ViThi,z

fll,z(pik,y — qlk1y) — Th1,y(Pik,z — qik,z)
— ys

Vifl.1,z

+
cos (n1,zq1, — Th1,zqlk,z) + Sfl (ii,zqiic,y — ni,yqik,z)

(3.12)
Vlfli,z

Note that X is the horizontal distance between source and receiver; the actual distance is

larger since it is measured within the plane of interface 1. It is straightforward to demonstrate

that the true source-receiver distance is L XsJl + tan2 li cos2(— 8), where 4’i and 6

are the dip and azimuth angles of the surface.

Equation (3i2) is an extension of the common ‘slope and intercept’ traveltime formula

for head waves to three dimensional, multilayered earth models. For the particular case of

a model with only two layers and a horizontal surface, it can be shown that this equation

reduces to the closed form expression (2.10) derived in the previous chapter. This serves as

an important check on the correctness of the general formula. However, the proof entails

some cumbersome algebra, and hence is relegated to Appendix B.

Finally, consider the specialization of the general traveltime formula to a two dimensional

earth model. In the model parameterization utilized here, all of the y components of the

interface normal vectors vanish (equivalently, all interface azimuth angles are restricted to

= 0 or = ir). Additionally, the recording profile must be oriented perpendicular to the

strike directions of the subsurface horizons. Hence, I1 = 0 or r also. If this second condition
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is not satisfied, the wave propagation vectors p,j and qjj are not confined to the xz plane

and a full three dimensional treatment is necessary.

Since many previous investigators have assumed a horizontal surface, equation (3.11) is

used as the point of departure for the analysis. Setting s = YR = 0 gives

Tk(XS, XR)
=

hi(O, O)(P:lc:z — qik,z)
+

qik,z XS Plk,zj (3.13)

- where +Pkz = + qk = 1. This expression is compatible with analogous equations

developed by Diebold and Stoffa (1981) and Diebold (1987). If the source is located at the

coordinate origin, then (3.13) is also consistent with earlier two dimensional head wave

traveltime formulae published by Dooley (1952), Adachi (1954), Ocola (1972), and Johnson

(1976). All of these investigators prescribe vertical layer thicknesses, either beneath the

origin or the shotpoint. In contrast, Ewing et al. (1939) and Mota (1954) measure thickness

normal to the basal interface bounding a layer. Hence, their traveltime equations, although

designed to treat an equivalent situation, differ in mathematical detail.

3.5 Generalizations of the traveltime formula

Heretofore, both the source and the receiver have been restricted to the surface. More

versatile formulae are needed to model data acquisition geometries with buried sources

and/or receivers. These situations arise in surface-to-borehole, borehole-to-surface, and

borehole-to-borehole seismic experiments, as well as with placement of sources and/or re

ceivers in underground mines.

3.5.1 Source and receiver on separate interfaces

Let the source S be located on the th interface with 1 < k. The downgoing

traveltime is obtained by summing the layer traveltime increments t, i = j,j + 1,. . . , k — 1.
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Equation (3.7) generalizes to

k—i
h(O,O)pj,

‘down = vi

+
XP(Thlc,zpk_i,k,z — flk,zPk—1,k,z) + Yp(flic,zPk—1,ic,y — ‘k,Pk—i,k,z)

Vklflk,z

—
— Thj,zPjk,z) + YS(Thj,ZPjk,y — Thj,yPjk,z) (3.14)

L vjnj,z

Similarly, if the receiver R is located on the 1 interface (1 1 < k), then the upgoing

traveltime becomes

=

— xq(mk,zqk_i,k,z — Thk,zqk_i,k,z) + YQ(nk,zqk__1,k,y — nk,yqk_1,k,z)

Vk_lflk,z

+
XR(flJ,zqjk,

—

Thj,zqlk,z) + yR(mz,zqzic,y — nz,qzk,z)
(3.15)

vznl,z

The critically refracted traveltime increment is still given by equation (3.9). Summing this

expression together with (3.14) and (3.15) yields the total traveltime:
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h(O,O)pk, h(O,O)q,
Tk(XS,YS,ZS,ZR,YR,ZR) = —

_________

+
x(n1,q11 — nl,,,qlk,z) + yR(nl,zqzk,y — fl,yqlk,z)

vlnl,z

— XS(flj,zpjk,,, Thj,zPjk,z) + YS(flj,zpjlc,y — 7Zj,yPjk,2) (3 16)
vjmi,z

where zs = zj(xS,yS) and ZR = zl(rR,yR). This is the proper expression for head wave

traveltime when source and receiver are located on different interfaces of the model. It

differs significantly from the analogous formula published by Diebold (1987). His expression

is actually a special case of the general equation (3.16); in particular, it is only valid if both the

source and receiver interfaces are horizontal (:j,z flj,y = Thi,,, = l,y = O flj,z = l,z = 1).

The difference between these two formulae is clearly revealed by a detailed examination

of a simple two dimensional earth model in Appendix C. The analysis demonstrates that

equation (3.16) reduces to the known traveltime solution for this situation, whereas Diebold’s

expression yields an erroneous result.

3.5.2 Arbitrary source and receiver locations

A further generalization is obtained by allowing the source and receiver to be located

within designated layers. Assume that the source is located in layer j at a vertical depth

ds below the the immediately overlying interface (the ih). Similarly, let the receiver be

located within layer 1 at a depth dR beneath interface 1. These incremental source and

receiver depths must satisfy 0 d h,(as,ys) and 0 dR hl(XR,yR), respectively.

The previously developed techniques can be used to derive the head wave traveltime for this

situation. Traveltime increments induced by the source layer j on the downward path and

the receiver layer 1 on the upward path must be treated separately, because the wave does

not propagate across the full thickness of each layer. The result of the analysis is
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h(O,O)pk, dspk, h(O,O)q,
Tk(XS,YS,ZS,XR,YR,ZR) = —

_____

—
+

vi vj . vi v

+
XR(nl,zquc,z — fll,zqzk,z) + yR(nz,zqzk,y flt,yqlk,z)

vlnl,z

— XS(flj,zpjk,z — Thj,zPjk,z) + yS(flj,zpjk,y — ‘j,yPjk,z) (317)
vjnj,z

wherezs = zj(xs,ys)+ds and ZR = zz(XR,yR)+dR. Note that the prior expression (3.16) is

recovered in the limit as — 0 and dR —* 0, as expected. As an additional check, examine

the case where the source and receiver approach the basal interfaces of their respective layers

(interfaces j + 1 and 1 + 1). The layer thicknesses h2(0, 0) and h1(O, 0) at the origin can be

rewritten in terms of the thicknesses at the source and receiver positions (h(xs, ys) and

hl(XR,yR)) via expression (3.3). Then, by appealing to Snell’s law at each basal interface,

equation (3.17) is recast as

hi(0, O)Pilc,z [ha(xs, ys) — dsjpk,
Tk(XS,YS,ZS,XR,YR,ZR)

=
.

+
1=2+1

7)3

—
h(O,0)q, — [hz(XR,yR) —

vi vj
izzj+1

+
xRzl,zqzl,k,, — flli,zqZ-f-1,k,z) + YR(fl+1,zql+1,k,y —

vl+lnz+1,z

— X8(flj+1,zpj+1,k,z — j+1,zPj+1,k,z) + YS(flj+I,zpj+1,k,y — Thj+1,yPj+1,k,z)
. (3.18)

vj+lnj+1,z
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Comparing equations (3.18) and (3.16) indicates that the proper form of the traveltirne

expression is obtained in the limit as ds — ha(xs, Ys) and dR —* hl(XR, YR).

An additional benefit accrues from separating the downward and upward sums in the

traveltime formulae: asymmetric wave propagation paths can be treated. An asymmetric

raypath is defined as one where the mode of dowr&going wave propagation in the ith layer

differs from the mode of upgoing wave propagation across the same layer. Strictly, differ

ent symbols should be used to designate the wave speeds within layer i in the downward

and upward sums (e.g., and v’ for the velocities of the dowugoing and upgoing waves,

respectively). However, this complication is avoided for the time being in order to main

tain notational simplicity. The velocity v appearing in each sum is simply interpreted as

the propagation speed of the the desired mode (P or S) across layer i. Equations (3.17)

and (3.18) then constitute general formulae for point-to-point traveltimes of head waves

propagating in a three dimensional layered earth model.

3.5.3 Arbitrary reference points for layer thickness

Individual layer thicknesses enter the traveltime expressions evaluated at the coordinate

origin 0. An alternate form of the traveltime equation is characterized by layer thicknesses

specified below the source and the receiver. This variant is particularly suitable for the time

term, delay time, and reciprocal time inversion methods. Hence, the previous derivation is

now modified to incorporate layer thicknesses prescribed at arbitrary reference locations;

these points can then be specialized to the source and receiver positions. The resulting

traveltime expression forms the point of departure for a three dimensional extension of the

aforementioned inversion techniques.

The depth of the i interface, referred to an arbitrary location A with horizontal coor

dinates (XA, VA), is given by

ri,y1
zj(x,y) = zj(XA,yA) — (x — xA)[—--—j — (ii — YA)[zj. (3.19)

n:,z ni,z
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Consider the downgoing raypath first. The previous expression for the traveltime incre

ment Lj induced by wave propagation across the th layer is trivially modified to

Pilc,z r 1 Pik,y 1 1 Pik,z
t =

____

— ZA) —
(x XA)j + — YA) — (Yi — YA)j + ——(z+ — z).

vi vi vi

The vertical (z) coordinates of the ray intersection points are now expressed in terms of the

corresponding horizontal coordinates by using equation (3.19):

IThizi Ifliy
zj — z = h(xA,yA) + (x

— X4)Lj + (y —

lil,z n:,z

lmi+1,zl

______

— (x+ — XA) — (y+i — YA) I I’
Lflj+1,zJ Lfli+1,zJ

where h(xA,yA) zj+1(XA,yA) — zzfrA,YA) is the vertical thickness of layer i below the

reference point A. Substituting this expression into the equation for L yields

=

+
(x+i — XA) ‘i+1,zPik,z — fli+1,zPik,z

+
(Yi-i-1 — YA) i+1,zPik,y — i+1,yPk,z

Vi

— (x — XA) i,zPik,z — i,zPik,z — (Vi — VA) i,zPiIc,y i,yPik,z

ni,z vi ni,z vi

The traveltime increments t are now summed over all layers in the overburden. Applying

Snell’s law at each plane interface results in

k—i
s—.,

___________

1down =
Vi

i:=i
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+
(3p — XA)(Thk,zPk_1,k,,

— flk,zPk—i,k,z) + (Yp YA)(’k,zPk—1,k,y — Thk,yPk—i,k,z)

Vk_lflk,z

— (XS — XA)(fll,zPlk,z
— Th1,xPlk,z) — (Ys YA)(Th1,zPlk,c — ThI,zPlk,z) (3.20)

Vi fli ,z

A similiar analysis yields the upgoing traveltime. Layer thicknesses are now referred to

a different arbitrary position B with horizontal coordinates (XB, YB):

k—i
—

___________

LUj,—
vi

— (aQ — XB)(fl,zqki,k,z Thk,zqlc_1,k,z)
—

(yç — YB)(flk,zqk_i,k,y — nk,qk_1,k,z)

Vk..4flk,z

+
(XR — XB)(nl,zqik,z — nl,zqlk,z) + (YR — YB)fr1i,Zq1k,, — fll,yqik,z)

• (3.21)
Vifll,z

Finally, the critically refracted traveltime increment is given by a simple alteration to the

prior equation (3.9):

[(XQ — XB) — (xp — XA)i(fl.k,zPkk — Thk,Pkk,z)
=

Vkflk,z

+
— YB) — (Yp — YA)jfr”ic,zPkk,y — flk,yPklc,z)

Vkflk,z

—
(XA — XB)(Thk,zPkk,z — flk,zPkk,z) + (YA — YB)frk,zPkk, flk,yPkk,z) (3.22)

Vkflk,z
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The total head wave traveltime is now obtained in the usual manner by summing the

contributions along all three raypath portions. Adding equations (3.20), (3.21), and (3.22)

gives
k—i

h(zA,yA)pk, — h:(XB,YB)q:k,z
Tk(XS,YS,XR,YR) =

2=1

+
(XR — XB)(ni,zqik,z — ni,zqlk,z) + (YR — YB)(Thi,zqik,y — fli,yqik,z)

vini,z

(z5
— XA)(fli,zPlk,z — fli,zPik,z) + (Us — YA)(fli,zpik,i, fli,yPlk,z)

vlnl,z

+
(ZB — 2A)(flk,zPkk,z — flk,zPklc,z) + (YB — YA)(flk,zPkk,i, — flk,yPkk,z)

Vkflk,z

+ F(xp — XA, YP — YA, XQ
— B, YQ — YB),

where the function F has been previously defined. Once again, applying Snell’s law at

the critically refracting horizon demonstrates that F vanishes identically. Furthermore, it

is common (but not mandatory) practice to select the reference points A and B to be

coincident with the source S and receiver R, respectively. Thus (ZA, YA) = (xs, Ys) and

(XB, YB) = (XR, YR). With these substitutions, the above expression simplifies dramatically

to
k—i

h(xs,ys)pk, —

Tk(XS,YS,XR,YR)

=

+
(XR — XS)(Thk,zPkk,z — Thk,zpkk,z) + (YR — YS)(flk,zPkk,y — flk,ypkk,z)

. (3.23)
Vkflk,2

The two dimensional form of equation (3.23) has some similarity to an analogous expres

sion published by Ocola (1972), in that individual layer thicknesses are measured vertically
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below the source and receiver. However, it is quite different from Palmer’s (1980) 2D tray

eltime equation, which currently forms the theoretical basis of the generalized reciprocal

method (GRM) of seismic refraction interpretation. Following Ewing et al. (1939), Palmer

measures thickness perpendicular to the base of each layer, and thus arrives at a different

expression. Nevertheless, the GRM can be formulated on the basis of the two dimensional

version of equation (3.23); a distinct advantage is then gained in constructing the refractor

depth proffle (see Chapters 5 and 6).

- 3.5.4 Reflection traveltime

The previous analysis has concentrated on. waves that are critically refracted at the

kth subsurface horizon. However, it is straightforward to demonstrate that the traveltime

formulae also apply to waves that are reflected from interface h of the model. Snell’s law

of reflection for this situation is illustrated in Figure 3.4 and is compactly expressed as

k X Pk—1,k — k X qk—I,k
d — u

Vkl

Note that equation (3.24) allows for a possible mode conversion upon reflection, i.e. v1 is

not necessarily equal to v_1.

For a wave reflected at interface k, points P and Q are coincident; there is no intervening

critically refracted raypath segment. The total traveltime is obtained by simply adding the

downgoing and components. Hence, setting (XQ, yq) = (xp, yp) and summing equations

(3.14) and (3.15) yields
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Fig. 3.4. Reflection of a raypath at interface k of the earth model. If a mode conversion

occurs, then downgoing velocity vLi differs from upgoing velocity v_1.

k—i k—i
\— h(O,O)pj \\

___________

1dow+1up
=

—

________

t1

+
2.R(fl,zqZk, — nz,zqk,z) + yR(1,zqzk,y — nz,yqk,z)

XS(flj,zpjk,z — 17’j,zPjk,z) + YS(flj,zpjk,y — Thj,yPjk,z)

+ G(xp,yp), (3.25)

where the quantity Gfrp, yp) depends on the horizontal coordinates of the reflection point

Pk-1,k qk-1,k

k

and is given by
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G(xp,yp) =

xp 1 1
d (flk,zpk—i,k,z — ‘1c,zPk—i,k,z) (nk,zqk_i,k,z — nk,zqk_1,k,z)

k,z Vk_i k—i

yp 1 1
+ d (flk,zpk—1,k,y — k,yPk—i,k,z)

— u (nk,zqk_i,k,y — nk,yqk_i,k,z)

k,z 13kl

Distinct downgoing and upgoing layer velocities are explicitly incorporated into the above

expressions in order to emphasize the possibility of asymmetric mode-converted raypaths.

The component form of Snell’s law of reflection implies that G(xp, yp) vanishes. Equation

(3.25) is then identical in form to the previous traveltime expression (3.16) that was derived

for head waves!

3.6 Rapid traveltime computation

In order to compute traveltimes via the above formulae, the unit propagation vectors Pik

and qjk overlying the refracting/reflecting interface must be determined. For the reflection

problem, this set of vectors depends on both the offset distance X and the azimuth angle 1J1

of the receiver relative to the source. However, the critical refraction problem is qualitatively

different; the propagation vectors depend only on the azimuth ‘I’. This particular feature

can be exploited to yield a rapid computational procedure for head wave traveltimes.

Since the propagation vectors depend on the recording azimuth, they should be written as

Pk(’P) and qik(), although the explicit dependence on ‘P is often suppressed for notational

convenience. The functional form of this dependence is not known. However, with a minimal

amount of raytracing, it is possible to numerically generate the function ‘P(pjk, q) over the

full range of possible recording azimuths (2z radians). Inversion of this function then yields

the propagation vectors for a prescribed value of the source-receiver azimuth angle. This

technique is discussed in both general and mathematical terms in the following two sections.
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3.6.1 General description

The computational algorithm is based on the close relationship between a critically

reflected and critically refracted raypath. For a given source-receiver azimuth angle, both

raypath types possess the same unit propagation vectors pk(P) and q,j(J!) for i < k.

Consider the following six-step calculation procedure, with reference to the critically re

flected/refracted raypath segments depicted in Figure 3.5:

(i) Select a point P on the critically refracting interface. Since the location of P is arbitrary,

it is convenient to position it beneath the coordinate origin 0.

(ii) Choose a critically refracted propagation direction Pkk through point P. The orientation

of this vector within the plane of interface k is defined by an angle x measured from an

arbitrary reference line.

(iii) Forward raytrace from P along the set of upward unit propagation vectors (i =

k — 1, k — 2,.. . , 2, 1) to establish the position of a receiving point R on the surface.

The departing vector qkl,k is oriented at the critical angle k sin’(vkl/vk) relative

to the interface normal and is contained in the plane defined by Pkk and The

appropriate three dimensional form of Snell’s law is applied at all interfaces intervening

between the refractor and the surface.

(iv) Reverse raytrace from P along the set of downward unit propagation vectors Pik (i =

k — 1, k — 2, . . . ,2,1) to establish the position of a source point S on the surface. The

incidence angle of the arriving vector pk1,k (in the plane defined by Pkk and nk) also

equals the critical angle. A three dimensional ‘backward propagating’ form of Snell’s

law is applied at all refracting interfaces.

(v) Calculate the azimuth angle of R with respect to S.

(vi) Increment angle x by a small amount and repeat steps (ii) through (v). Stop after x

has been incremented by a total of ir radians.
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.

. .

.

Fig. 3.5. Schematic representation of a raypath critically reflected/refracted at point P on
interface k. S and R denote a surface source and receiver, respectively.

Pk--i,k

qk-1,k
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This procedure numerically defines a function = f(x) over an interval {xo, xo + it]. It is

not necessary to perform raytracing to determine the azimuth angle for x E [xo + it, xo + 2ir].

Rather, values are easily generated from the symmetry relation ‘I = f( — it) + it. This

symmetry condition arises from raypath reciprocity: reversing the direction of the critically

refracted propagation vector Pkk merely interchanges the positions of the source and receiver

on the surface.

If the propagation vector Pkk makes one complete rotation on the critically refracting

interface (i.e., x increments by 2ir radians), points R and S make one complete closed circuit

on the surface (i.e.,, ‘I also increments by 2w). This functional dependence is designated

= (x). The inverse function x = g’(’P) can then be used to determine the appropriate

value of x for a specified source-receiver azimuth angle. Finally, unit propagation vectors

Pik and qik corresponding to this value of x are regenerated via points (iii) and (iv) above.

Note that the function = g(x) needs to be calculated only once. All recording azimuths

contained in the data acquisition geometry are treated by this same function. The numerical

method for inverting g(x) is briefly stated in the next section.

3.6.2 Raytracing technique

The pertinent mathematical details of the aforementioned computation procedure are

now described. A distinction must be made between the downgoing and upgoing portions

of the critically reflected raypath. Thus, superscripts ‘d’ and ‘u’ refer to these raypath

segments, respectively.

The Cartesian components of the critically refracted propagation vector Pkk are chosen

to be

Pkk,z = cosXcoscbkcosOk — sinxsin, (3.26a)

= cos x cos sin 0k + sin x cos 6k, (3.26b)

Pkk,z = —
cossinq. (3.26c)
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It is straightforward to verify that Pkk 1 and Pkk = 0. Hence, Pkk is a unit vector

perpendicular to the interface normal k• Its orientation within the plane of interface k is

determined by the angle x If x 0, then Pkk points in the maximum updip direction along

the critically refracting horizon. Increasing the angle x rotates Pkk in a clockwise sense when

viewed from the coordinate origin 0.

Consider the downgoing portion of the raypath first (segment SF). Shah (1973) uses

the following three dimensional form of Snell’s law for the ray refracted at interface i:

d V1 d
Pa —P—i,k + (cos ii — — cos i )n1.

Vj_1 V_

Hence, the transmitted propagation vector is a linear combination of the incident propaga

tion vector and the interface normal vector. Solving for Pi—i,k yields

Pi—1,k = + (cos ,.d — cos vd)n1. (3.27)
Vt Vt

This form gives the incident vector in terms of the transmitted vector and the interface

normal. The cosines of the incidence angles can be obtained by the following four-point

prescription: (i) cos = Pa . n, (ii) sin d v”l — cos2 vd, (iii) sin = (v_1/v)sin .A,

(iv) cos /1 — sin2

Similarly, the upgoing ray (segment FR) at interface i satisfies Snell’s law in the form

ii U U

qi—1,k = —--qik + (cosv ————cos/1 )n, (3.28)
Vt Vt

where the cosines of the incidence angles are evaluated via: (i) cos cia n, (ii) sin i

.,/T— cos2 (iii) sin U = (v_1/v) sin jtL, (iv) cos = —\/1 —

2 yU• Note that a

negative sign is used to calculate cos v since the angle v exceeds 7r/2 radians. Starting

with pj (= kk) given by expression (3.26), equations (3.27) and (3.28) are evaluated

recursively for i = k, k — 1, k — 2,. . . , 3, 2 to generate the unit propagation direction vectors

in all layers overlying the critically refracting interface.
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Intersection points of the critically reflected raypath with the plane interfaces of the

model are easily determined after the propagation directions are known. For the downward

path segment within the i’ layer, these are related via

d dr2 = —

3.29

Hence, r can be calculated if r+1 is already known and the path length l can be found.

Taking the dot product with n: and using r n1 = dj (see equation (3.1)) yields

1d — (r+i . n) — d

— (Pikfli)

Similarly, on the upward propagating raypath segment within the same layer:

r = r1 + (3.30)

with
— (r1.n)

(q . n)

Thus, starting with r = OI+Oj+zk(O, 0)k, equations (3.29) and (3.30) can be evaluated

recursively with i = k — 1, k — 2,. . . , 2, 1 to yield the ray intersection points r and r on

the surface. Finally, the azimuth angle E’ of r (the receiver point) with respect to r (the

source point) is calculated by

= tan1 —

. (3.31)
—

iJ is obviously a function of the reference angle x: ‘I’ = g(). In principle, the inverse

function x = g1() can be determined. In practice, numerical calculation of the com

plete inverse function g1 is unecessary. Rather, inverse interpolation between neighboring
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computed values of ‘I’ is used to locate the particular value corresponding to a specified

source-receiver azimuth angle ‘P. Linear interpolation is adequate, provided that the sam

pling in x is sufficiently fine. The value is then used to regenerate the complete set of

propagation vectors Pik and q needed to evaluate the head wave traveltirne formula.

A comparison with an example presented by Chander (1977b) validates the accuracy of

the calculation. He considers a four layer model defined by the parameters

ci = 0°, = 00, zi(0,0) = 0 m, = 4000 m/s,

= 0.81°, 02 = 225°, z2(0,0) = 50 m, v2 = 4500 m/s,

q53 = 4.04°, 03 = 225°, Z3(0,0) = 150 m, 1)3 = 5000 m/s,

= 11.98°, 04 = 225°, z4(0,0) = 350 m, ‘V4 = 5600 rn/s.

Using the above procedure, unit propagation vectors corresponding to the raypath critically

refracted on interface 4 are determined for a recording azimuth ‘P = 33.69° (the sampling

interval used for x is 0.25°). In particular, the downgoing propagation vector at the source

‘S

P14(33.69) = (0.523126)i + (0.322360)j + (0.788938)k.

Chander (1977b) iteratively solves two coupled nonlinear equations for the raypath takeoff

angles at the source, given the above azimuth angle to the receiver. The orientation of the

takeoff vector P14 can be described by two angles in a manner analogous to the interface

normals (see Figure 3.1):

P14 = (sin cos 714)i + (sin cr4 SLfl y,4)j + (cosa,4)k.

(0° <a14 < 180°) is a polar angle measured from the +z axis and (0° -y, <360°)

is an azimuthal angle measured from the +x axis. Then, the above results yield = 37.91°

and 31.64°, in agreement with Chander’s (1977b) solution for the same two angles.
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3.7 Forward modeling examples

Two examples presented in this section illustrate the utility, as well as some of the

limitations, of the head wave traveltime formulae for forward modeling applications. The

recording geometry in the first example is the common reversed proffle; all sources and

receivers are located on the surface. The second example considers a typical offset VSP

geometry (surface source and downhole receivers).

3.7.1 Profile geometry

Equation (3.12) expresses the head wave traveltime in terms of the horizontal offset

distance between a surface source and a surface receiver. It is written in condensed form as

Tk(xs,ys,X,J!) —
mjJ!)X + bk(as,ys,1), (3.32)

where the definitions of the slope mk(’I!) and intercept bkQes, ys, are obvious. This ex

pression is a three dimensional extension of the slope/intercept formulae that are commonly

used to describe head wave traveltimes. Equation (3.32) is evaluated for a shallow three-layer

model defined by the parameters

qSi 00, 6 = 00, zi(0,O) = 0 m, = 1000 m/s,

= 8°, 62 = 0°, z2(0,0) = 5 m, V2 = 1800 m/s,

63ZZ600, z3(0,0)=12m, v3=3200m/s,

Figure 3.6 displays the head wave arrival times observed by a set of four reversed refraction

profiles. Direct wave traveltimes are also included in each plot. Shots are located at each

end of the recording spreads and the maximum source-receiver offset distance is 50 m. The

profile pairs are all centered on the coordinate origin and are oriented in the N-S, NE-SW,

E-W, and SE-NW directions (panels a through d, respectively).
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The straight line arrival time curves plotted in each panel convey an impression of

a two dimensional earth model. The full three dlimensionality of the subsurface is only

appreciated by comparing traveltime curves recorded along several separate azimuths. Note

that the reciprocal times (the shot-to-shot traveltimes) for forward and reverse arrivals in all

panels agree, as expected. Refraction traveltime curves are extended to zero offset distance,

even though head waves do not exist in the precritical offset zone. Since the traveltime

computation method does not locate the critical offset distance, equation (3.32) is evaluated

over the full offset range covered by the receiver array. If traveltime analysis is concerned

solely with first arrivals, then these calculated nonphysical traveltimes do not pose any

problems, because they are always associated with later arrivals. However, precritical offset

arrivals do have interpretive significance (Ackermann et al., 1986) and thus their inclusion

in the current algorithm may be useful for some studies.

Note that the intercept time in equation (3.32) depends on the recording azimuth angle 1’

(through the propagation vectors Pik and q) in addition to the source coordinates (xs, ys).

This unusual feature appears to be peculiar to three dimensional, multilayered earth models.

Intercept time is obviously independent of proffle azimuth for all one dimensional models.

For two dimensional earth models (recorded normal to strike), the identity of intercept times

observed on split spread proliles is an interpretive rule (Johnson, 1976; Merrick et al., 1978;

Ackermann et al., 1986; Briickl, 1987). Finally, in the case of the simplest three dimensional

model consisting of a single layer overlying a halfspace, the intercept time is also independent

of recording proffle azimuth (see equation (2.10)). Dependence on the azimuth angle ‘ only

arises when multiple layers in three dimensions are analyzed. However, raypath reciprocity

requires that the propagation direction vectors satisfy

Pk(T! + ir) —qzk(1’), qk(P + ir) = Pik(’1’). (3.33)

Substituting these results into the expression for the intercept time yields

ys, + 7r) bk(XS, ys, P). (3.34)
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Hence, the two dimensional interpretive rule also holds for the particular three dimensional

model examined here (uniform velocity layers bounded by plane interfaces). However, it

is not true that that intercept times recorded on all line profiles emanating from the same

shotpoint are identical. For realistic earth models (maximum dip 100) this variation in

intercept time with profile azimuth appears to be minute. In the current example, b3(0, 0, ‘P)

varies by only 0.03% as the azimuth ‘] increases from 00 to 3600.

3.7.2 VSP geometry

The final example examines head wave traveltimes recorded in a simulated VSP ex

periment. The computation procedure described in section 3.6 is readily generalized to a

situation where the source and receiver are located on different interfaces of the model. An

azimuth angle function ‘1 = g() can be calculated for a hypothetical source located on

interface j and a hypothetical receiver located on interface 1. In an offset VSP survey, the

source is located on the surface (j = 1) and a borehole geophone is lowered continuously

down the well. Thus, an azimuth angle function is computed for all interfaces 1, including

the critically refracting horizon (1 = k). These functions are then inverted at the known

source-receiver azimuth angle, and the resulting propagation vectors are used in equation

(3.26) to obtain head wave arrival times at each interface intersection with the well. The

traveltime to a geophone located within a layer is then calculated by linearly interpolating

times computed at the bounding interfaces.

This example considers a four layer earth model defined by the parameters:

= 00, = 00, zi(0,0) = 0 m, = 1800 m/s,

=
30,

= 900, z2(0,0) = 50 m, V2 = 2500 m/s,

=
40, = 2700, z3(0,0) = 120 m, v = 3200 rn/s,

= 00, 04 = 90°, z4(0,0) = 155 m, ‘04 = 3900 rn/s.



65

240

— 220(I)

200

180

240

‘—s 220U)

200

180

240

r- 2201.i)

200

180

0 160

Fig. 3.7. Head wave arrival times recorded in a VSP configuration. Surface source is offset

from the well by 500 m to the north, east, and west in panels (a), (b), and (c), respectively.
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The model is strictly two dimensional; the strike directions of all interfaces are north-south.

However, since sources are deployed at various azimuths around the well, the three dimen

sional formulae are needed to compute accurate arrival times. Figure 3.7 displays head wave

traveltime curves as a function of geophone depth. within a borehole positioned at the co

ordinate origin. Surface sources are offset from the well by 500 m to the north, east, and

west (panels a, b, and c, respectively). For this 2D model, a source offset 500 m to the

south generates traveltimes that are identical to those plotted in panel a. The arrival time

of a given head wave decreases as the geophone is lowered in the well, because the receiver

approaches the critically refracting interface more closely. As the geophone passes through

an interface, the slope of the traveltime curve changes. Expressions for these slopes can be

obtained from equations (3.17) or (3.18) above. Each curve terminates at the depth of the

critical refractor in the well since the associated head wave is not observable below this level.

Note that the critically refracted waves depicted in Figure 3.7 are not necessarily the initial

arrivals. Other waves that are neglected in the modeling procedure (e.g., direct waves) may

actually arrive first over certain ranges of receiver depth.

3.8 Conclusion

The traveltime formulae derived in this chapter are useful for a variety of forward mod

eling applications involving head waves propagating in three dimensional, multilayered earth

models. Obviously, construction of traveltime curves for a trial earth model can assist in the

interpretation of field recorded data. The equations also provide means for evaluating the

importance of three dimensional effects on head wave traveltimes in various seismological

contexts. For example, Merrick et al. (1978) investigate the hidden layer phenomenon using

a 2D earth model. Hunter and Puilan (1990), using a 1D model, compare the sensitivities

of vertical and horizontal receiver arrays for discriminating layer velocities. Many investi

gators are concerned about the possibility that head waves might constitute first arrivals in

crosswell transmission tomography experiments. All of these studies can benefit from a full

three dimensional analysis.
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Several straightforward extensions of the results described in this chapter can enhance

the utility of the formulae for forward modeling purposes. Inclusion of multiple reflections

within the overburden of the critically refracting interface does not pose any special problems

(note that multiple raypath segments along the critical horizon are not allowed; see erven±

and Ravindra, 1971, p. 210). Also, well known tools of asymptotic ray theory can be applied

to calculate the particle displacement amplitude and waveform of a head wave in this three

dimensional situation. Care must be exercised in treating shear wave propagation, because

SV and SR modes are not globally decoupled in 3D. Richards et al. (1991) examine some of

these phenomena and propose a particular computing procedure. Interestingly, they claim

(but do not prove!) that Diebold’s (1987) traveltime formula is, in general, correct. Thus,

their results should be treated with caution.

Finally, since head wave traveltime can be expressed by a simple mathematical for

mula, inverse methods designed to recover the earth model parameters from measured data

are facilitated. Chapter 4 describes an inversion procedure that exploits the rapid forward

modeling capability developed above. Other head wave traveltime inversion procedures are

probably possible. In particular, the ‘slope and intercept’ equation (3.32) may allow the ex

tension of the two dimensional methods of Dooley (1952), Adachi (1954), and Johnson (1976)

to three dimensional models. Although considerable effort has been devoted to discovering

this generalization, success has not yet been achieved.
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CHAPTER 4

INVERSION OF HEAD WAVE TRAVELTIMES FOR

THREE DIMENSIONAL PLANAR STRUCTURE

4.1 Introduction

Numerous investigators have studied the inversion of reflection traveltimes for three

dimensional subsurface structure (Hubral, 1976; Gjøystal and Ursin, 1981; Chiu et aL, 1986;

Chiu and Stewart, 1987; Lin, 1989; Phadke and Kanasewich, 1990). However, the analogous

situation for refraction traveltime data has not been thoroughly examined. Kanasewich and

Chiu (198) present a method for jointly inverting reflection and refraction traveltimes to

recover 3D structure. Forward calculation of traveltimes is achieved with the iterative ray

bending method of Chander (1977a).

This chapter describes an algorithm for inverting head wave arrival times for three di

mensional planar structure. The earth model is characterized by a stack of uniform velocity

layers bounded by plane, dipping interfaces. The inversion method is iterative; an initial

estimate of the model parameters is refined until an acceptable match is obtained between

observed and predicted traveltimes. Rapid forward modeling of both traveltimes and tray

eltime derivatives is achieved with the numerical technique developed in Chapter 3. A novel

feature of the inversion procedure is the inclusion of constraint information in the form of in

equality relations satisfied by the model parameters. Often, a priori geological or geophysical

information is available to guide and constrain a traveltime inversion. This is particularly

useful for the inversion of head wave arrival times because the problem can be very ifi-posed

and admit numerous solutions.

After a discussion of the mathematical basis of the inversion technique, the algorithm

is tested on both synthetic and field acquired traveltime data. Inversion of refraction data

acquired in the Peace River Arch region of northern Alberta indicates that the algorithm

can be a valuable tool for the analysis of traveltimes recorded in a broadside configuration.
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4.2 Inversion mathematics

4.2.1 General theory

Let the observed arrival times for the experiment be organized into an M-dimensional

column vector t0. The earth model is characterized by a finite set of scalar parameters

m, j = 1,2,. .. , N. These are organized into an N-dimensional column vector m. Predicted

head wave traveltimes generated by this model are designated by the M-dimensional vector

td(m). Then, a first order Taylor series expansion of the observed data about the particular

model m yields the expression

A(m’) zm”’ = t(m), (4.1)

where zt(m’) t0,3 — t,,.d(m) is the data discrepancy vector, m1 mt1 — m’ is

the parameter update vector, and the elements of the M x N sensitivity matrix A(m?z) are

given by

[A(m’)J = 2 (4.2)
23 8m

In these and subsequent expressions, the superscript n denotes the iteration index.

In many crustal seismic reflection and refraction experiments, the system (4.1) is overde

termined, underconstrained, and inconsistent. A popular solution technique for m’1 is

the damped least squares method (Braile, 1973; Kanasewich and Chiu, 1985; Chiu et al.,

1986; Chin and Stewart, 1987; Phadke and Kanasewich, 1990). The updated parameter

vector is then obtained via m’1 = m’ + Zmfl+l. Iterations continue until an acceptable

fit to the observed traveltime data is achieved. This strategy is termed ‘creeping’ (Scales

et at, 1990) because the final solution is obtained by the addition of (possibly many) small

perturbations to an initial guess.

An alternative approach is used in this study to obtain the improved model parameter

vector. Substituting the definition of the parameter update vector into (4.1) and rearranging
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terms gives

At(m) + A(mTh)mTh. (4.3)

The right hand side of this expression consists of known quantities. Hence, equation (4.3)

can be solved directly for the new model parameter vector m’1. Scales et al. (1990) refer

to this technique as ‘jumping’ because, in the absence of additional constraints, the size of

the model change between iterations m — JJ is not restricted to be small. Since the

inversion is formulated in terms of the model itself, rather than a model perturbation, the

jumping strategy facilitates the incorporation of constraint information into the algorithm.

Constraints are mathematically expressed in the form of inequality relations satisfied by the

model parameter vector:

m_ < m1 m, (4.4a)

where the vectors m_ and m+ are lower and upper bounds on the model, respectively. These

bounds arise from a priori geological or geophysical knowledge (or assumptions) about the

earth model. For example, the model parameters in this study are strictly nonegative. Thus,

if the lower bound is set equal to 0, negative values are excluded on each iteration of the

inversion procedure. This is required for meaningful forward modeling of traveltimes. The

inequality bounds in (4.4a) can also be used to severely restrict (or even eliminate) the

variation of a certain parameter on succesive iterations of the inversion. In this situation,

upper and lower bounds are narrowly established about an accurately known (or preferred)

value for the particular parameter.

The inversion algorithm is also stabilized by limiting the size of the model change between

iterations. Hence, if Sm is a vector of upper bounds on the parameter increments, the

updated parameter vector must satisfy the additional inequality constraints

m — Sm < m < m + Sm. (4.4b)

These constraints fulfill the same regularizing role as the damping parameter in a damped

least squares solution of the original equation (4.1). If a reasonably good initial estimate



71

m0 for the model is available, and if II Sm II is sufficiently small, then the constraints (4.4b)

assure that the algorithm iterates toward a solution in the neighborhood of m0, rather than

jumping to a remote region of model space.

The observed traveltimes on the right hand side of the linearized data equation (4.3)

are contaminated with random picking errors. Hence, an exact solution may not exist. A

robust solution to this inconsistent system can be obtained by minimizing the l norm of

the misfit. Linear programming provides a convenient solution method because the model

parameters are intrinsically non-negative and are constrained by inequalities (4.4a,b). In

order to pose the problem in the context of linear programming, an M-dimensional residual

vector r is introduced into equation (4.3) as follows:

A(m) m’1 + r = zt(m) + A(mTh)m. (4.4c)

The elements of r constitute additional unknown variables that must be solved for. The

problem now consists of determining the model parameter vector m1 and the residual

vector r that simultaneously satisfy the inequality constraints (4.4a,b), the equality con

straints (4.4c), and that minimize the 1 norm of the residual

r = (4.4d)

A standard linear programming routine is used here to solve the constrained optimization

problem specified by equations (4.4a,b,c,d). After an improved model parameter vector

m’ is obtained, the lj norm of the misfit between observed and predicted traveltimes

tob3 — t,.d(m’’) is computed. Iterations cease when the misfit reaches some acceptable

level, or exhibits negligable change on successive iterations. The elements of the residual

vector r play no further role after equations (4.4) are solved, and are discarded. However,

the 11 norm of the residual (4.4d) is monitored on each iteration in order to assess how

closely the linearized data equations have been fit.
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Finally, the flexibility of the inversion algorithm is enhanced by including variable weight

ing of both the traveltime data and the model parameters. Equation (4.3) is modified to

[wd A(m) W1] [w m1] = Wd t(m’) + [wd A(m’) wi’] [w mj,

where Wd and W are data and parameter weighting matrices, respectively. Currently, these

are restricted to be diagonal matrices. Thus, premultiplication of the sensitivity matrix by

Wd corresponds to row weighting and postmultiplication by W’ corresponds to column

weighting.

The data weighting matrix can be used to emphasize those particular traveltimes judged

to be more significant for the inversion. The parameter weighting matrix serves to nondi

mensionaiize and normalize the elements of the model parameter vector m1. This is a

practical concern in inversion algorithms where the model is characterized by parameters

with different physical dimensions and/or widely varying numerical magnitudes. The con

ditioning of the sensitivity matrix A(m’) is improved by column scaling by Wi’. Thus,

numerical roundoff error associated with the linear programming solution is reduced. Suit

able units of measure are chosen for the various model parameters; the reciprocals of these

scalars form the diagonal elements of Wi,. The inequality constraints (4.4a,b) on the model

must also be nondimensionalized in the same manner. If the weighted parameter vector

calculated by the inversion algorithm is designated thL+l, then the physical parameters

required for forward modeling of traveltimes are obtained via m’ = W;1 th’’1.

4.2.2 Calculation of sensitivities

A simple 3D earth model consisting of a single layer overlying a halfspace is characterized

by the five-element parameter vector m = [vi,v2,qf,O,hjT,where v and v2 are P-wave

velocities of the two media, and 0 are interface orientation angles, and h is the vertical

depth to the refractor below the coordinate origin (Figure 2.1). A closed form expression for

head wave traveltime in terms of these parameters is given in Chapter 2 (equation (2.10)).

Hence, formulae for the elements of the sensitivity matrix can be derived by straightforward
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partial differentiation. However, a substantial simplification arises by redefining the set

of model parameters as m = [SI, c, b, 8, hJT, where sj = 1/vi is the layer slowness and

= sin(vi/v2) is the critical refraction angle. The traveltime equation is then linear in

the slowness Si. In terms of these new parameters, head wave traveltime is

T = sisin(i —6)X + 2sicosic[hcosc—sinc(xscos6+yssin8)], (4.5)

where S sin1 [sin 4. cos(111
— 6)]. z5 and yg are the horizontal coordinates of the source,

- and X and ‘I’ are the offset and azimuth to the receiver, respectively (Figure 2.2a). Differ

entiating expression (4.5) yields the traveltime sensitivities

= sin(i—8)X + 2cosic[hcos4._sinc5(xscos8+vssin8)],

= sicos(i—S)X
— 2sisinic[hcos4.—sin4.(xscos8+ssin8)],

8T —sicos(i—S)cos4.cos(P—O) . r . . i
— = X

— 2si coszihsmc5 + cos 4.(xs cos9 + y sin 0)i,
84. cosS L J

ÔT —s cos(i — 6)sin4.sin(4’ —6)
— = X + 2si cosz sin q5frssm8 —

cos 8),
88 cosS

ÔT
-

= 2sicoszcosc5.

The i1 row of the M x 5 sensitivity matrix A(m) is obtained by evaluating these relations

with the current model vector mlZ and with the geometric parameters {x5,yg2,Xj, ‘I’}

appropriate for the th recorded traveltime. The number of traveltimes M usually exceeds 5,

and thus the matrix is overdetermined. However, in some situations, the matrix is also rank

deficient. If the refracting horizon is horizontal (4. = 0) then the derivative 8T/88 vanishes,

and the fourth column of the sensitivity matrix is identically zero. This will occur, for
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example, if a one dimensional earth model is used for the initial parameter vector estimate

m0.

Calculation of head wave traveltime sensitivities for a multilayered earth model is more

complicated because a closed form mathematical expression for the arrival time does not

exist. However, Chapter 3 describes a rapid computing procedure for obtaining critically

refracted traveltimes for arbitrary recording geometries. A combination of analytical and

numerical techniques can then be used to calculate the sensitivities. In. this study, sources

and receivers are restricted to the surface. Moreover, the orientation angles of the surface

(4i and 8j) are assumed to be known. Thus, if there are K interfaces in the earth model,

then there are a total of N = 4K —3 model parameters (K layer slownesses, 2K —2 interface

orientation angles, and K — 1 layer thicknesses). These parameters are organized into the

N-dimensional column vector

m = [sl,...,sK, 82,...,K, hl,...,hK_l],

where s1 is a layer slowness, qS is an interface dip angle, 8 is an interface azimuth angle,

and h1 is a vertical layer thickness measured at the origin. The numbering convention for

layers and interfaces is described at the beginning of Chapter 3.

A ‘slope and intercept’ expression for the traveltime of a head wave critically refracted

at interface k (2 k K) is given by equation (3.12). In the current notation, it is

T = m(’P)X + b(x,y,’JI), (4.6a)

where the slope m(P) and intercept time bfrs, ys, II’) are

m(’TF) = s [cos iJ qlk,z + sin ‘I’ qik,y — tan q cos(P
—

0’) ik,z], (4.6b)
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ys, = s h (Pik,z — qik,z) — Si [xs (pik,z — qik,z) + ys (p — qik,y)

— tan c5i (xs cos O + ys sin 6’) (plk,z — qik,z)]. (4.6c)

Note that the slope and intercept simplify if the surface is horizontal (4’, = 0). Equation

-(4.6) is not a ‘closed form’ expression for head wave traveltime because the unit propagation

vectors Pk and characterizing the raypath depend implicitly on both the model m and

the recording azimuth ‘E’. Nevertheless, if m and are specified, then all of the propagation

vectors can be accurately computed.

Many of the elements of the sensitivity matrix A(m) can be determined by analysis.

The traveltime of a head wave formed on interface k does not depend on the parameters s,

4’z, and 6 for 1> k, or on h1 for 1 k. Hence, these traveltime derivatives are identically

zero. Moreover, the sensitivity to layer thickness h1 for 1 < k is derived directly from the

above expression for intercept time: ÔT/0h1 = Si (pi — quz). The remaining sensitivities

must be evaluated by a finite-difference technique. Let dm1 be a model perturbation vector

with zeros in all element positions except the th• Then, the partial derivative of head wave

traveltime with respect to parameter m is approximated by the forward finite-difference

07’ T(m + dm,) — T(m)
(47)

— IIdmiII

Unit propagation vectors are generated for both the perturbed model m + dm, and the

unperturbed model m via the procedure described in Chapter 3. These are then used

in formulae (4.6a,b,c) above to calculate traveltimes for each model. Finally, substituting

these traveltimes into (4.7) yields the required derivative. The size of the model perturbation

dm, is typically about 1% of the value of the associated model parameter. Although a

centered finite-difference scheme would yield greater accuracy, the one-sided approximation
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used here requires less computational effort. Only two traveltime calculations are necessary

for each model parameter, instead of three.

4.3 Synthetic examples

The two examples discussed in this section are representative of a large number of

computational experiments conducted with the inversion algorithm. Both the single-layer

and multiple-layer variants of the algorithm are examined. The first example demonstrates

that the single-layer version is capable of returning the correct solution under a variety of

operating conditions. However, as indicated in the second example, the multilayer version

appears to require fairly restrictive constraints in order to iterate toward the correct model.

4.3.1 Single layer

The earth model used for the first example consists of a single layer overlying a halfspace

and is defined by the parameter values:

vj 1500 m/s, = 2500 m/s, = 50, 9 = 450, h = 100 •

Critically refracted arrival times for two areal recording geometries are generated from equa

tion (2.10). Inversions are performed with both accurate and error contaminated traveltimes.

Figure 4.la is a plan view of a triangular data acquisition geometry. Thirty receivers

are deployed around the perimeter of an equilateral triangle with sides 500 m long. Each

side contains 11 receivers separated by 50 m. All receivers record energy from a source that

is activated sequentially at the three vertices of the triangle. However, some source-receiver

offsets are less than the critical offset distance (equation (2.11)) and thus the receivers do

not detect a head wave arrival. These fictitious times are excluded from the inversions. A

total of M = 73 uniformly weighted traveltimes are used to recover the N = 5 earth model

parameters.
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Fig. 4.1. Plan views of two areal recording arrays. Sources are indicated by asterisks and
receivers by small crosses. (a) Triangular geometry. (b) Swath geometry. The strike and
clip symbol in the upper right corner of each panel refers to a subsurface interface located
100 m below the coordinate origin (large cross).
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Numerical results from a few typical inversion runs are described here. The iterative

inversion procedure is initiated with a one dimensional model given by

vi =l000m/s, v2==2000m/s, q=O°, 8=0°, h=85m.

After eight iterations, an excellent estimate of the true earth model is returned:

v = 1500.21 m/s, v = 2499.98 m/s, = 5°, 8 = 45°, h = 100.02 m.

The initial traveltime misfit of 79.6 ms is reduced to 0.1 ms; iterations are terminated

when the relative change in the misfit is less than 1%. A wide variety of starting models

yields essentially the same final solution, although the number of iterations required for

convergence varies. Also, the inversion is stable when the traveltimes are contaminated with

small random errors. Random numbers drawn from a uniform probability distribution on

±4 ms are added to the accurate times, and the algorithm is initiated with the same starting

model. After five iterations, the following solution is obtained:

vi = 1496.93 m/s, V2 = 2549.46 m/s, = 5.22°, 8 = 51.93°, h = 99.65 m.

Iterations cease when the misfit decreases below 2.3 ms, or one standard deviation of the

noise. Note that the overburden velocity vi has been correctly estimated from the refraction

data alone! This interesting (and unusual) result is consistent with the theoretical analysis

presented in Chapter 2.

These results suggest that the triangular recording array is a useful tool for determining

three dimensional planar structure. This particular geometry combines an adequate distri

bution of offset and azimuth with three reciprocal time pairs. These are favorable attributes

for a successful inversion of refraction arrival times via the time term method (Scheidegger

and Willmore, 1957; Wilhnore and Bancroft, 1960; Berry and West, 1966; Smith et al., 1966;

Reiter, 1970). The triangle was first investigated by Gardner (1939) who demonstrated that
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it yields an exact solution for the delay times at the three vertices. More recently, the trian

gular array has been used for deep crustal seismic exploration in Saskatchewan (Kanasewich

and Chiu, 1985) and British Columbia (Zelt et aL, 1990).

Other recording geometries are considerably less robust in detecting and resolving the

three dimensional dipping structure. Figure 4.lb depicts two parallel line arrays, separated

by 200 m, oriented along the strike direction of the subsurface refractor (Nw-SE). Each

spread contains 11 geophones (receiver interval 50 m) that record head wave arrivals

from a source located at the center of the opposite array. This broadside recording pattern

simulates aspects of the ‘swath geometry’ commonly used for 3D seismic reflection surveys.

Using the same starting model, inversion of the 22 broadside traveltimes yields

vj = 1285.85 m/s, V2 = 2500.37 m/s, çt = 4.96°, 0 = 45.02°, h = 80.00 m.

The initial traveltime misfit of 66.4 ms is reduced to 0 ms in eight iterations. Although

this model generates an exact fit to the data, the overburden velocity v and vertical depth

h are incorrect. A similar effect is observed when the inversion is initiated from numerous

different starting models. This situation illustrates the classical tradeoff between overburden

velocity and refractor depth in seismic refraction interpretation. If additional a priori data

are introduced into the inverse problem, then a correct solution is possible. For example, the

interface depth may be known from a borehole drilled at the coordinate origin. Constraining

the depth to satisfy 99 m < h < 101 m yields the model

= 1490.01 m/s, V2 = 2500.31 m/s, ç = 5.12°, 6 = 45°, h = 99.00 m,

which is substantially correct. Alternately, constraining the overburden velocity with the

inequalities 1450 rn/s <v1 <1550 rn/s yields the erroneous one dimensional model

— 1450 m/s, v2 = 2493.96 m/s, çi5 = 0°, 0 0°, h = 94.25 m.
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Evidently, the broadside geometry illustrated in Figure 4.lb allows many solutions to this

nonlinear traveltime inverse problem. However, if the inline head wave arrivals recorded by

each spread are also included in the inversion (M = 32) then the correct model is recovered

in seven iterations:

= 1499.85 m/s, V2 = 2499.99 m/s, qS = 5°, 6 = 45°, h = 99.98 m.

Head waves recorded along strike provide excellent control on the velocity of the refracting

medium. Equation (2.13) and Figure 2.4 indicate that the measured apparent velocity equals

the true velocity in this situation. As expected, the inversion is degraded when the exact

traveltimes are contaminated with uniformly distributed random errors on ±4 ms. The

model

= 1558.76 m/s, v2 = 2664 m/s, 4 = 4.99°, 6 = 42.72°, h = 106.86 m,

is obtained in seven iterations with a traveltime misfit of 2.4 ms.

4.3.2 Multiple layers

The earth model used for the second example consists of two layers overlying a halfspace

and is defined by the parameter values

v = 1500 m/s, ci = 0°, = 0, = 0 m,

V2 = 2000 m/s, qf2:= 3°, 62 = 180°, Z2 = 40 m,

V3 = 2500 m/s, = 50, 63 = 45°, = 100 m.

As indicated previously, the model parameters qi, Oi, and zi are not allowed to vary in the

inversion. Hence, there are only N = 9 parameters to estimate. Head wave traveltimes for
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each critically refracting horizon are generated by evaluating equation (4.6a). The recording

geometry used is the triangular array displayed in Figure 4.la. Also, precritical offset arrivals

are included in the traveltime dataset (in an actual field experiment, these times could be

estimated by extrapolation or phantoming). Hence, there are a total of M = 174 arrival

times input to the inversion procedure.

If restrictive constraints are imposed on the model parameters, then it is possible to re

cover the correct solution with the multilayer inversion algorithm. For example, constraining

the velocity vl and the depth Z2 to be equal to the true values allows the algorithm to iterate

- to the known solution from a one dimensional starting model. Also, if narrow bounds are

placed on the velocities and depths (±50 rn/s and ±5 m about the true values, respectively)

then the correct solution is obtained from a nearby initial model. However, a relatively

unconstrained inversion invariably yields an erroneous result for this simulated experiment.

It is probable that the- objective function (4.4d), which only measures the misfit in the lin

earized data equations, has many local minima that preclude convergence to the desired

global minimum.

4.4 Field data example

441 Peace River Arch broadside data

Deep seismic refraction data were acquired in the Peace River Arch (PRA) region of

northern Alberta in 1985. In addition to four inline profiles, two broadside profiles were

recorded. Figure 4.2 illustrates the source-receiver geometry for these two proffles. Shot

A4 in the west is recorded by the north-south trending line A, and shot B4 in the north is

recorded by the east-west trending line B. Offset distances range from 249-313 km on line A,

and from 262-344 km on line B. Each receiver array subtends an azimuthal angle of 64°

relative to its source. The first arrivals at the recording sites are interpreted to be waves

that are critically or near-critically refracted at the Moho (Zelt, 1989). Hence, inversion

of the first break traveltimes can provide an estimate of the regional depth and dip of the

Moho beneath the Peace River Arch.
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Fig. 4.2. Broadside recording geometry for the Peace River Arch seismic experiment.
Sources are indicated by asterisks and receivers by small crosses.
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In this example, the broadside arrival times are inverted within the framework of a simple

‘layer over a halfspace’ earth model. No attempt is made to infer a detailed structural picture

of the crust and Moho in the Peace River Arch region. Rather, the intent is to recover a large

scale 3D model that can be subsequently refined by other traveltime interpretation/inversion

methods. Initial estimates of the model parameters are obtained from crustal sections along

lines A and B given by Zelt (1989, p. 103 and 112). These sections were derived by

interpreting the inline refraction data of the PRA experiment via a trial-and-error forward

modeling approach.

There are 83 first break picks from line A and 52 first break picks from line B. Thus,

M = 135 uniformly weighted traveltimes are input to the iterative inversion procedure.

Since the first arrivals recorded at these long offset distances are emergent, the estimated

picking error is relatively large (±50 ms).

442 Static corrections

The effect of variable near surface structure on the head wave arrival times can be reduced

be applying static corrections to the first break picks. Static corrections are commonly

applied to seismic reflection data for this same purpose. However, there is an important

distinction between the corrections for the two types of data. In the refraction case, the

static is designed to remove the refraction delay time influence of the near surface structure,

and then replace it with the delay time contribution of a constant velocity medium. In

the reflection case, the correction pertains to the vertical traveltime through the actual and

replacement media. Statics application is an important preprocessing step for the PRA

broadside data because the subsequent inversion assumes a very simple earth model. In

effect, an attempt is made to ‘make the data fit the model’ more closely. The following

development assumes that near surface velocity information is available. For the PRA

experiment, this is obtained from well log data along the two proffle lines.

An expression for the static correction at each receiver site is derived by approximating

the local near surface velocity structure by a one dimensional stack of layers. The th layer

is bounded from above and below by plane, horizontal interfaces at depths z, and zj,
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respectively. The P-wave velocity of the layer depends linearly on depth z and is given by

v(z) v(O) + a,z. In this situation, the raypath associated with a particular ray parameter

p is a circular arc. The upward propagation time across the layer is

it(p) = -- cosh (_2_) — cosh1 (—_) , (4.8)
a1 pv1 pv

where v v(z) = v.(O) + az and v vj(zj+i) = v(O) + a.jzj+1. Symbols v and v denote

the velocities at the top and bottom of the i layer, respectively. The horizontal distance

accumulated by this wave traversing layer i is

IXj(p) = —-- [‘i
- (pvj)2 - - (PvD2]. (4.9)

If the wave is critically refracted on a horizontal interface at greater depth, then the ray

parameter p equals 1/va, where v is the critical refraction velocity. The angle i(z) that

the raypath makes with the vertical at any depth is then determined by a velocity ratio:

77(z) sin1 [pvi(z)] = sin1[v1(z)/vj. Using this result, equations (4.8) and (4.9) reduce

=
(1 + cos ) n =

[cos — cos (4.lOa, b)
a1 (1 + cos j) sin a

where ?7 = sin(v/v) and = sin1(v/v). 77 and 77 are the incident angles of the

circular raypath segment at the top and bottom of layer i, respectively.

The refraction delay time contribution of the th layer is defined as

Jt —
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Substituting from equations (4.10) yields

= ---ln , (4.11)
a1

where quantities Q and Q are given by

— 1 + cos — 1 + cos
Qi— . I.

sin i exp(cos ) sin exp(cos i)

As a check on the correctness of this result, examine the case where the vertical velocity

gradient of the layer vanishes (a —* 0). In this situation, the raypath becomes a straight

line segment, and the angles m and i both approach the same angle ‘o = sin [v(o)/v].

Application of L’Hopital’s- rule to equation (4.11) then yields

(z+i — z) cos 77o cos
hmzr= =

v(O) v(0)

This is the proper expression for the one-way delay time contribution of a layer with thickness

h and uniform velocity v(0).

The one-way refraction delay time associated with a stack of m horizontal layers is

obtained by summing expression (4.11):

tT
=

=

(4.12)

This formula naturally accommodates any velocity discontinuities at the interfaces (i.e.,

v_1 v2). However, if the velocity function is continuous between all layers (as in the PRA
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example), then Q = Q+i and expression (4.12) simplifies to

= E--1n . (4.13)
a Q+i

The static correction applied to the picked arrival times is designed to remove the one-

way refraction delay time influence of the layered near surface structure, and add the delay

time associated with a uniform replacement medium of equal thickness. If the replacement

velocity is designated Vr, then the static shift is

= —Ir +
(ih)cos. (4.14)

where = sin’ (v,./v). Although this formula has been derived within the context of

upward wave propagation through a set of horizontal layers, it also applies to the downward

propagating portion of the total raypath. Hence, it may be used for the computation of

either a source site static or a receiver site static.

Near-surface velocity information along lines A and B of the PRA experiment are ob

tained from models developed by Zelt (1989, p. 40) from well logs. There are eight wells

along line A and seven wells along line B. At each weilsite, the velocity model is approx

imated by a one dimensional stack of layers with linear velocities, and a static correction

is calculated via formula (4.14). The critical and replacement velocities are assumed to be

8.25 km/s and v,. = 6.6 km/s, respectively. These weilsite static corrections are then

interpolated/extrapolated to the receiver locations on each line using the following proce—

dure. First, a straight line is fitted to the coordinates of all recording stations and weilsites

along a proffle using the York algorithm (York, 1966, 1967, 1969; Williamson, 1968). This

is the proper line fitting technique to use in this situation because both the northing and

easting coordinates are subject to positioning errors. The York algorithm also automatically

returns the coordinates of the perpendicular projections of the points to the fitted straight
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line. Finally, the weilsite statics are linearly interpolated/extrapolated in these projected co

ordinates to the receiver sites. Figure 4.3a displays the computed receiver static corrections

for both lines; squares denote the weilsite statics calculated from expression (4.14). The

magnitudes of the statics are approximately the same on both lines ( 300 ms), although

there is a noticeable increase toward the southern end of line A.

The static corrections calculated with the above procedure apply only to receiver sites.

However, since shot A4 is located at the end of profile line B, a source static is readily

estimated for this shot from the nearest computed receiver correction (—290 ms). A source

static for the isolated shot B4 must be assumed; the value adopted here is —300 ms.

4.4.3. Inversion results

Initial estimates of the model parameters are inferred from the interpreted crustal sec

tions in Zelt (1989, p. 103 and 112). These starting parameter values are

v = 6.5 km/s, vZ = 8.25 km/s, g 2°, 8 = 270°, Ii = 40 km.

The same sections are also used to provide lower and upper bounds on the earth model

parameters:

vj = 6.0 km/s, v = 7.5 km/s, 4 = 0°, 8 = 0°, h = 38 km,

vt = 7.5 km/s, vt = 8.5 km/s, q5 = 15°, 6 = 360°, h = 42 km.

The bounds on the velocities must be transformed to equivalent bounds on the parameters

Sj (slowness) and i (critical angle) that are used by the inversion algorithm. After five

iterations, the following model is returned:

= 6.21 km/s, v2 = 8.50 km/s, = 2.75°, 8 = 299.74°, h = 42 km.
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Fig. 4.3. Receiver static functions for lines A and B of the PRA experiment. Squares refer

to well locations where near surface velocity logs are available. (a) Statics calculated with

v = 8.25 km/s and yr = 6.6 km/s. (b) Statics calculated with v = 8.5 km/s and v1. = 6.2

km/s.
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The initial traveltime misfit of 658 ms is reduced to 172 ms; iterations cease when the relative

change in the misfit is less than 1%. The velocities vi and V2 of this solution differ from

the replacement and critical velocities previously used for calculating the static corrections.

Hence, the statics are recomputed with V7 = 6.2 km/s and v, = 8.5 km/s and applied

again to the picked arrival times. Figure 4.3b ifiustrates this second set of receiver static

corrections. New source statics are assumed to be —210 ms for shot A4 and —250 ms for

shot B4. Then, initiating the inversion algorithm with the same starting model yields

= 6.17 km/s, V2 = 8.50 km/s, S = 300.86°, h = 42 km,

in five iterations with a misfit of 171 ms. Although this model is not significantly different

from the previous one, it is consistent with the assumptions used for calculating statics.

A comparison between the observed arrival times (after static corrections) and the travel-

times predicted by the model produced by the inversion is displayed in Figure 4.4. Evidently,

the simple five parameter earth model provides an adequate explanation for the gross char

acter of the broadside arrival time curves. Smail scale variations in the predicted times

(solid curves) are due strictly to recording geometry irregularities, rather than any subsur

face structural complications. However, a large component of the total traveltime misfit

must be attributed to structure or velocity variations that are not modeled in the inversion

procedure. This misfit is too large to be accounted for by random picking errors alone. For

example, the predicted times are systematically greater than the observed times throughout

the central portion of line B. This suggests that the Moho north of line B is not adequately

represented by a plane interface bounded by uniform velocities.

Vertical depths to the Moho calculated from the inversion results are posted on a plan

view of the PRA recording geometry in Figure 4.5. A depth trend is readily apparent,

although the depth at the southern end of line A is probably too large. A southeastward dip

of the Moho is suggested by interpretations of the inline refraction data on lines A and B,

but not on the other lines of the PRA experiment (Zelt, 1989). Also, the velocities recovered

by the 3D inversion are broadly consistent with those obtained by Zelt (1989). Of course,
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Fig. 4.4. Comparison between predicted traveltimes (solid lines) and observed traveltimes

(triangles) on broadside lines A and B of the PRA experiment.
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Fig. 4.5. Vertical depths (km) to the Moho in the PRA region inferred fom the inversion
results.
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precise agreement cannot be expected. The mean crustal velocity is lower (6.17 km/s vs.

6.6 km/s) and the sub-Moho velocity is higher (8.5 km/s vs. ‘-.. 8.2 km/s). However, Zelt

inferred a P velocity of 8.4 km/s along the northern half of line A and the eastern quarter

of line B.

An independent check on the validity of the 3D inversion is provided by a method

proposed by Zelt (1989). Using a simple two dimensional earth model, each arrival time

recorded along a broadside proffle can be inverted for an estimate of Moho depth beneath

the associated receiver site. A depth proffle for the Moho can then be constructed by

plotting these depth estimates side-by-side. Zelt (1989) accomplished this inversion using

ray tracing techniques. However, as the following derivation demonstrates, a straightforward

mathematical solution to the problem is possible. In the two dimensional situation, head

wave traveltime is

T(X)
sin(i+

+
2h(x) cos ‘p cos

(4.15)

where i = sin1(vl/v2) is the critical angle and h(xs) is the vertical thickness of the

layer at the source location. The interface dip angle ‘p may be positive, zero, or negative.

Substituting h(x) = h(O) + xstan ‘p into this expression yields

T(X)
= sin(i+’p)

+
2h(O) C:: ‘p cos c

+
2 sin’p cos

h(O) is the layer thickness at the coordinate origin. This relation is rewritten as a quadratic

form in cos

Acos2’p + Bcos’p + C = 0. (4.16)
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The three coefficients depend on earth model parameters {vl,v2, h(O)} and measured

data {xs,X,T}:

A = 1 +
4h(o)cosi

[ni + [1 + (i + )jJ
v1T F 2h(O) 1

B = —2 —i— Lsmn z +
x

cos

2
viTi 2x 2c=

—
1+_ cosic.

If values for v, V2, and h(O) are known (or assumed), then these coefficients can be evaluated

numerically. Solution of equation (4.16) for cos is via the quadratic formula:

-B+/B2-4AC
cos(p

= 2A
‘ (4.17)

where the positive root is chosen by analyzing the form of the right hand side as X —* +00.

There is still a two-fold ambiguity in determining the dip angle ço from cos ço. This ambiguity

is easily resolved by ensuring that the traveltime predicted by formula (4.15) agrees with

the known traveltime T. Finally, once the dip angle is determined, the vertical depth to the

refractor at any inline position z can be calculated via h(z) = h(O) + tan p.

Figure 4.6 compares Moho depths calculated via the above method with those inferred

from the parameters recovered by the 3D inversion. Vertical depths beneath the recording

stations on each line are plotted. The coefficients in the quadratic (4.16) are evaluated with

the parameters obtained from the 3D inversion procedure (vi = 6.17 km/s, V2 = 8.50 km/s,

h(0) = 37.6 km for shot A4, and h(0) = 34.8 km for shot B4). Short wavelength variations

in the computed curves are artifacts of the traveltime picking errors, and should be ignored.

There is close agreement in the Moho depth trends calculated by these two completely
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different techniques, especially along line A. The larger departure of the two depth curves

along line B suggests structural complexity north of this line in the Peace River Arch region.

Although the two dimensional inversion method is simple and appears to yield reason

able depth estimates, it requires the assumption of numerical values for the three unknown

model parameters {v, V2, h(O)}. In contrast, the 3D inversion technique yields simultaneous

estimates of all of the relevant earth model parameters. Moreover, since it accomplishes a

joint inversion of all of the error contaminated traveltime data, it is more robust than the

2D method.

4L1neA

O 100 200 300

0 100 200 300

in’ine distance (km)

Fig. 4.6. Comparison of vertical depths to the Moho beneath the receivers of lines A and B
calculated by two different methods. Smooth curves in each panel are depths inferred from
3D inversion results. Jagged curves are obtained from a simple 2D inversion method.

4.5 Conclusion

The inversion of head wave arrival times for three dimensional planar structure is posed

as a constrained, parameter optimization problem. The iterative inversion algorithm de
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scribed here has the abffity to converge to a realistic solution provided that (i) the data ac

quisition geometry is adequate, and (ii) sufficient a priori constraints are available. However,

precise definitions of ‘adequate’ and ‘sufficient’ in this context are not known. Nevertheless,

the inversion procedure provides a useful tool for examining these phenomena. In particular,

the single-layer variant of the algorithm can be used as an aid in designing recording geome

tries for detecting and resolving three dimensional dipping structure. Also, investigation of

both synthetic and field recorded datasets indicates that it can be successfully applied to the

inversion of broadside refraction data. Currently, there is a lack of techniques for effective

interpretation of such data. Although the multiple-layer version of the algorithm exhibits a

greater tendency to converge to an erroneous result, several successful inversions have been

achieved with the inclusion of sufficient constraints. Generalization of these algorithms to

three dimensional recording geometries would be a useful extension. As indicated in Chapter

3, the forward modeling procedure can easily accommodate buried sources and/or receivers.

Moreover, well log information regarding interface depths and layer velocities would provide

the necessary constraint information for the multilayer algorithm.
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CHAPTER 5

POINT DEPTH AND DIP ESTIMATES FROM

REFRACTION TRAVELTIMES

5.1 Introduction

The Generalized Reciprocal Method (GRM) is a technique for delineating an undulating

subsurface interface from refraction traveltime data recorded by inline forward and reverse

proffles. After the refracted arrivals from a particular horizon are identified, simple linear

combinations of the picked times are used to form two analysis functions: (i) the velocity

analysis function, and (ii) the generalized time-depth function. Each is plotted with respect

to receiver position along the profile line. The slope of the velocity analysis function is a

measure of the P-wave velocity of the refracting layer. The generalized time-depth function

is a measure of the depth to the critically refracting interface, expressed in units of time.

Hence, it is analogous to a reflection event on a seismic reflection time section. Conversion

of the time-depth function to actual depth values requires velocity information for both the

overburden and the refracting layer.

The GRM was developed by Palmer (1980, 1981) as an extension of the conventional

reciprocal time method for interpreting refraction arrival times (Hawkins, 1961). Although

it has been successfully applied to the problem of mapping undulating refractors, the math

ematical formulation of the method is based on a two dimensional earth model with plane

interfaces. Palmer adopts a model parameterization originally proposed by Ewing et al.

(1939): the thickness of a layer is measured normal to its basal interface. Moreover, Palmer

(1980, p. 3) claims that an alternative parameterization characterized by vertical layer thick

nesses is “not suitable” for the derivation of the ORM analysis functions. This statement is

incorrect. All of the GRM analysis tools can be rigorously derived from the two dimensional

version of equation (3.23) for head wave traveltime. This development is the subject of the

first portion of this chapter. The use of vertical layer thicknesses results in substantially

simplified derivations. Hence, this reformulation of the theoretical basis of the GRM is quite
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useful for educational purposes. However, a practical benefit related to refractor depth pro

file construction is also realized. The equations developed here allow point depth estimates

of the interface to be calculated from the generalized time-depth function. Computation

of a refractor depth profile then reduces to an interpolation problem (treated in Chapter

6). In contrast, Palmer’s time-depth function yields a circular locus of possible refractor

positions. Depth profile calculation then involves the more complicated task of constructing

an envelope to a set of circular arcs.

As indicated above, the GRM is founded upon a two dimensional earth model with plane

interfaces. A traveltime inversion technique that explicitly incorporates nonpiane refracting

horizons into the model should yield more accurate results. Hence, the second portion of.

this chapter proposes a 2D head wave traveltime interpretation method tentatively named

critical offset refraction profiling. This inversion technique accommodates undulations in

both the refracting interface and the surface, as well as horizontal variations in the velocity

of the refracting layer. Detection and definition of such structural and velocity variations

are subjects of current research (Palmer, 1991). Critical offset refraction profiling yields a

mathematically exact solution to the 2D seismic refraction problem; point values of interface

depth, interface dip, and refractor velocity are obtained. A continuous refractor depth profile

can then constructed by interpolation. The dip estimates provide additional constraints on

the interpolant.

5.2 Specialization to a 2D model

Prior to deriving the GRM analysis functions, the head wave traveltime equation (3.23)

must be specialized to a two dimensional earth model. In the three dimensional model, the

orientation of interface i is described by a dip angle qfj (0 ç& <ir/2) and an azimuth angle

S (0 S < 2ir). Note that the dip angle 4’j is non-negative. In terms of these two angles,

the unit normal to the interface is

n1 = (sin gj cos O)i + (sin çt sin 02)j + (cos (5.la.)
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and the vertical depth of the interface is

z(x, y) = z(O, 0) — tan ç&j (x cos 8 + y sin 8). (5.lb)

The vertical thickness of layer i (bounded from above and below by interfaces i and i + 1,

respectively) is

h(z, y) = h(0, 0) + x (cos O tan ç5j — cos8i tan qi+i) + y(sin Stan 4j — sin Sj.4 tan

(5.lc)

If the earth model is two dimensional, then all interface azimuth angles 6 are restricted

to the two values 0 or ir. In this case, the above equations reduce to

n = (sin çSj cos 8)i + (cos çj)k, (5.2a)

z(x) = z(0) — cos S tan 4j, (5.2b)

h:(z) = h(O) + x(cos9tanq5 — cos tanc5i+1). (5.2c)

Thus, the normal n1 has no y-component, and the depth z;(x) and thickness h1(z) are

independent of the y-coordinate. For subsequent analysis of the two dimensional refraction

problem, it is convenient to repararneterize the earth model in terms of interface dip angles

that may be positive or negative. Hence, let the symbol Oj refer to an interface dip angle

in a two dimensional layered earth. cpj is an acute angle (0 I < 7r/2) measured with

respect to the +x axis; it is considered positive (negative) if the angle opens in the clockwise

(counterclockwise) sense. This angle is related to the 3D interface orientation angles via

= — (cos 9), where the azimuth 8 is restricted to the two values 0 or ir. Rewriting

this relation as = —çoj (cos 9i) and then substituting into equations (5.2a,b,c) gives the

familiar expressions
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= (— sin p)i + (cos y)k, (5.3a)

z1(z) = zj(O) + x tanyj, (5.3b)

h(x) = h(O) +
sin(cpjl — (53)
COS COS ço

The head wave traveltime formula relevant to GRM analysis is equation (3.23). This

is specialized to a two dimensional model by setting ys = YR = 0, n = — 5111’pk, and

k,z = cos c°k. Equation (3.23) becomes

T,(xs, XR) =

—

+
— COS Yk + Pkk,z SilL Yk) (5.4)

vkcoscok

A further simplification is obtained by expressing the components of the unit propagation

vectors Pik and q in terms of orientation angles. In the three dimensional situation, each

of these vectors is described by two angles:

Pik = (sin aik COS 7k)i + (sin aik S’fl7jk)j + (cos a:k)k, (5.5a)

qk = (sin/3 cos Sk)i + (Sfl/3jksin Sik)J + (cosflk)k. (5.5b)

ak and

/3j

are poiar angles measured from the +z axis (0 ak, I3ik ir), and and

8ik are azimuthal angles measured from the +x axis (0 7ik, < 2ir). If the recording

prolile is oriented perpendicular to the strike of the subsurface horizons, then afl propagation

vectors are confined to the xz plane. The azimuth angles equal 0 or r, and expressions

(5.5a,b) reduce to

Pik = (+SiflUk)i+(C0Sak)k, q:k (+sin/3k)i+(cos/3k)k. (5.6a,b)
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The propagation direction of the critically refracted raypath segment is obtained by straight

forward geometric analysis:

Pkk = ± [(cos cok)i + (sin çok)k], (5.6c)

where the pius sign is used for R > xs and the negative sign for R < s. Finally,

substituting equations (5.6a,b,c) into (5.4) gives the remarkably simple result

h(xS)cosak — h(xR)cos/3k IZR — sI
Tk(XS,XR) = + . (5.7)

i=1
Vk COS Pk

Equation (5.7) is a novel expression for surface-to-surface head wave traveltime that

forms the basis for an alternative development of the GRM. It differs from the analogous

equation given by Palmer (1980, p. 5) in several important ways: (i) layers are characterized

by vertical thicknesses below source and receiver, (ii) raypath orientation angles are measured

with respect to the vertical, (iii) the coefficient multiplying the source-receiver offset distance

depends only on critical refractor quantities (i.e., velocity vk and dip and (iv) the earth’s

surface may be nonhorizontai. These attributes facilitate a straightforward derivation of the

various GRM analysis tools.

The raypath angles in equation (5.7) depend on the recording proffle azimuth , which

in turn is restricted to the two values 0 or r. However, raypath reciprocity requires that

ak(7r) = —I3k(0) and f?(ir) — ak(0). These expressions imply that

cosak(7L-) = —cos/3k(0), cosf3k(1r) = —cosak(0). (5.8a,b)

Using these relations, it is easy to demonstrate that the traveltime formula (5.7) satisfies

source-receiver reciprocity: Tk(XS,XR) =
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5.3 Derivation of GRM parameters

The two dimensional earth model used to derive the GRM analysis functions consists

of uniform velocity layers bounded by plane, dipping interfaces. Figure 5.1 depicts the

relevant critically refracted raypaths. Although the subsequent mathematical development

assumes a multilayered earth, this single layer model is useful for illustrative purposes.

Receivers are deployed between two sources Si and S2 with horizontal coordinates xs1 and

Zs3, respectively; 1? denotes a typical receiver with coordinate ZR. The velocity analysis

function and the generaiized time-depth function are constructed from the traveltimes of

forward and reverse propagating head waves that arrive at the positions ZR + L/2 and

ZR — L/2, respectively. L is an adjustable separation distance. If £ = 0, then arrivals at

the single receiver at ZR are examined, and the GRM reduces to the conventional reciprocal

method. GRM analysis seeks to determine the particular separation £ such that the upgoing

segments of the two raypaths depart from the same point on the critically refracting horizon.

This determination is made by evaluating the velocity analysis function and the time-depth

function over a range of separation distances L, and then interpreting the plotted curves.

The interpretive criteria that are used for selecting the appropriate distance £ are described

by Palmer (1980, 1981, 1990, 1991) and are not investigated here.

5.3.1 Velocity analysis function

The velocity analysis function for layer k is defined as

T(xR;L) [zsix + L/2)
— Tk(z52,xn — L/2) + Tk(xSizSa)]. (5.9)

The last term on the right hand side is the reciprocal time (the shot-to-shot traveltime).
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Fig. 5.1. Critically refracted raypaths used to derive the GRM analysis functions. R denotes

a receiver located between the two surface sources S1 and S2.

Substituting the head wave traveltime formula (5.7) into this definition yields

k—i

vi
i=1

— h(:s2)[cosaik(ir)+cos/3ik(O)]

(5.10)

0 XS1

L
XR

V2

+
h(xj — L/2) COs/3jk(lr) — h(zR + L/2) COS/3k(0)

+
— xs1

2v t7k cos ço
i=1

where the dependence of the raypath angles on recording profile azimuth is explicit. Using

equation (5.3c), the layer thicknesses at the horizontal coordinates XR ± L/2 are written as

h(xR ± L/2) = h(xs1)+ (XR — Xs1 ± L/2)
sin(yj1

—

cos Pi+1 cos c°
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Substituting this expression and relations (5.8a,b) into (5.10) and reducing yield the result

T(xR;L) = -_(h(xs1)+
sin(j+1—coj) cosak(0)—cos)6k(0)

v 2 cos çoj cos cpj
j

2

+(ZR—xsjt
1 — sin(yi+i—y) cosak(0)+cosI3k(0)’1

(5.11)
VCOSOJ v coscpjjcosoj 2 j

- Hence, for a model consisting of uniform velocity layers bounded by plane interfaces, the

velocity analysis function is a linear function of the distance (ZR — xs1). The slope of this

line is used to estimate the velocity of the critically refracting layer. The intercept has a

simple interpretation that is given in section 5.3.5.

5.3.2 Apparent horizontal velocity

The apparent horizontal velocity of layer k is defined as

1 = 8T(z; L) (5 12)
Va ÔZR

Using expression (5.11) for the velocity analysis function immediately results in

= 1 — i [sin(Yi+1_ci)] cosak(O)+cos31k(O) (5.13)
Va vj cos v1 cos ço cos Oj 2

Thus, the apparent horizontal velocity of a refracting layer is influenced by all velocities

and dips in the overburden, as well as by the dip of the critically refracting horizon. How

ever, for dip angles commonly encountered in refraction exploration, formula (5.12) yields a

reasonably accurate estimate of vk. A quantitative understanding of the accuracy of (5.12)

can be obtained by analyzing a specific numerical example. Palmer’s (1980, p. 10) shallow

subsurface model is quite useful for this purpose. Since the interfaces have unusually large
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dips, this model provides a strong test of the utility of (5.12) for velocity estimation. Fur

thermore, a comparison with the numerical values of Va computed via Palmer’s (1980, p. 9)

formula serves as a check on the correctness of the current derivation.

Palmer (1980) examines a four layer model defined by the parameters

zi(0) = 0.00 m, = 0°, = 1000 m/s,

Z2(0) 20.31 m, = 10°, V2 1800 mIs,

Z3(0) = 59.55 m, O3 = 5°, = 2500 m/s,

z4(0) = 80.25 m, cp = —15°, V4 = 4000 rn/s.

(He does not give the vertical depths to the interfaces, but these may be derived from the

specified geometric parameters). In order to evaluate equation (5.13), the raypath angles

ak(O) and/3k(0) must be determined. Application of Snell’s law of refraction at interface i

yields the two recursion relations

‘i—1,k = sin1 [!z1 sin(ak + co)J — 13i—1,lc = ir — sin
[Vi_1

sin(/3k+ oi)j
— Yi.

(5.14)

Starting with akk(0) + Yk =/3kk(O) + y = ir/2, these relations are evaluated successively

fori=k,k—1,...,3,2toobtain

a2 = 43.7490°, /312 = 156.2510°,

= 26.6536°, /13 = 160.9118°,

a23 = 41.0545°, /323 = 128.9455°,

a1 = 22.5156°, /314 = 174.7119°,

a24 = 32.9588°, /324 = 161.6659°,

= 53.6822°, /334 = 156.3178°,

Finally, using these numerical values for the raypath angles in formula (5.13) yields

k=2: Va1827.77m/s, k=3: Va=2578.59m/s, k=4: Va4209.65m/s.
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These calculated apparent velocities agree closely with Palmer’s (1980, p. 11) values,

and thus confirm the validity of equation (5.13). Moreover, it is evident that Va is a good ap

proximation to the true refractor velocity v; percentage errors are reasonably small (+1.5%,

+3.1%, and +5.2% for layers 2, 3, and 4, respectively). As Palmer (1980, p. 9) points out, an

improved estimate of refractor velocity can be obtained if the dip ço of the critically refract

ing interface is known. This estimate is derived as follows. Assume that the dip angles of all

interfaces overlying the critically refracting horizon vanish (pj = 0 for i = 1,2,. . . , k — 1).

Then, equation (5.13) becomes

1 1 — tan yj [cos ak—1,k(O) + COS /3k—i ,k(0)

Va vkcoscpk Vk_i L 2

Geometric analysis reveals that the raypath angles within the layer immediately above

interface k are given by ak_i,k(0) = uk — iI and13k_1,k(0)
—

uk + cpkl, where

= sin(vk_i/vk) is the critical angle at the kth interface. Substituting these relations

into the above expression for Va and reducing yield

Va
vk (5.15)

Cpj’

Thus, under the stated assumptions, the apparent velocity exceeds the true refractor velocity.

Equation (5.15) holds in an approximate sense if the dip angles of all interfaces overlying the

critical horizon are small, rather than identically zero. A dip corrected apparent horizontal

velocity can be defined as V cos Pk Using the above model parameters, the following

values are obtained:

k=2: V=1800.00m/s, k=3: V=2568.77m/s, k=4: 1’=4066.21m/s.

Obviously, T’ is an improved estimate of the true refractor velocity; percentage errors are

0%, +2.8%, and +1.7% for layers 2, 3, and 4, respectively. Note that VL calculated for

layer 2 is exactly correct, because the dip of the overlying interface (the surface) is zero.

Interestingly, the error does not increase monotonically with layer depth.
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As indicated previously, the condition for exact validity of equation (5.15) is the dip

angles of all interfaces above the critical horizon vanish. Palmer (1980, p. 9) states that

(5.15) is approximately correct if the differences in the dip angles between successive in

terfaces (coj+1
—

ep,) are negligible. However, this assertion is easily disproved. Expression

(5.13) for the apparent horizontal velocity is evaluated for a multilayered model with veloc

ities v = 1000 + 100 i rn/s and dips ço i°, ( i = 1,2,.. . ,50). All differential dip angles

equal 10 and thus are small. A comparison between the apparent velocities and the true

layer velocity is illustrated in Figure 5.2. In particular, both Va and V depart appreciably

irom the correct velocity value as the layer index increases, i.e., as the dips of the bounding

interfaces become large. This behaviour confirms that the approximation (5.15) requires

small absolute dip angles, rather than small differential dip angles.

Fig. 5.2. Comparison of apparent velocity Va and dip-corrected apparent velocity V with

the true layer velocity vk, for a multilayered earth model.

Another model which can be used to establish the veracity of (5.13) consists of a set

of parallel, but dipping layers. Assume that all interfaces (including surface and critical

refractor) have the same dip angle (ço = ço, for i = 1,2,.. . , k). Obviously, the differential

U)
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dip angles are identically zero. Expression (5.13) immediately yields the expected result:

V0, = vk cos cp. In this case, the apparent velocity is less than the true refractor velocity.

Finally, an alternate representation of the apparent horizontal velocity is derived from

the slope/intercept formula for head wave traveltime:

Tk(xs,X,P) = mk(J!)X + bk(xs). (5.16)

Explicit expressions for the slope mk(’I’) and intercept bk(xs) can be obtained by specializing

equation (3.12) to a two dimensional earth model. Using this equation in the definition of

the velocity analysis function yields

1 — 8T — mk(O)+mk(lr) 517
VaOR 2 •

Thus, the apparent horizontal slowness is merely the arithmetic mean of the slopes of

the forward and reverse traveltime curves. This implies that Va is the harmonic mean of

the velocities measured on the forward and reverse spreads. Defining vf 1/m(O) and

Vr 1/mk(Tr), then

1 11 1 VfV,.
— = —

— + —
, or V0 = 2

V0 2 Vf Vr Vf+Vr

Lankston (1990) and Palmer (1990) state that the harmonic mean of v1 and v7 equals the

true layer velocity. The present analysis reveals that claim to be erroneous. Rather, the

harmonic mean V0 is an approximation to the true velocity vk.
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5.3.3 Generalized time-depth

The generalized time-depth function for interface k is defined as

Td(XR; L) [Tk(zs ,ZR + £/2) + Tk(ZS2,ZR — L/2) — , xs2)
— ]. (5.18)

Substituting from equation (5.7) for the head wave traveltimes gives

Td(ZR;L)
[cosak(0)_cosik(0)]

I, —1
L j 1 ç- 1 s1n(+1

— yi) cosak(0) + cos8k(O) 1
+

2jvlccoScok 4vi CoSyjcoScpj 2 Va

However, from equation (5.13) for the apparent horizontal velocity, the term in braces is

identically zero. The above expression reduces to

Td(ZR;L) =

h(x1) [cosaik;cosf3ilC]
(5.19)

where the explicit dependence of the ray angles on recording proffle azimuth has been sup

pressed because, from relations (5.8a,b), the difference cos k(I1)_cos/3k(1P) is independent

of azimuth. The time-depth of a critically refracting interface at coordinate ZR is related to

the vertical thicknesses of all overlying layers at the same position. Plotted time-depth sec

tions give a qualitative indication of refractor structure, in a manner analogous to reflection

time sections. Conversion of the time-depth to actual depth requires velocity information,

and is briefly discussed in the next section.
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The slope/intercept formula for head wave traveltime also yields an alternative expres

sion for the time-depth function. Substituting equation (5.16) into the definition of the

generalized time-depth and reducing gives

Td(XR;L)
= [mk(lr) ; mk(O)]

( — XR) +
bk(ZS2)

The reciprocal time (or shot-to-shot traveltime) is Tk(zS1,as2) = Tk(as2,cs1). Thus, from

- the slope/intercept formula

mk(0)(x52 —
xs1) + bk(x51) = mk(lr)(x52—

z51) + bk(x52).

Hence
bk(zS1) — bk(xS2)

mk(7r)—mk(O) =
xS2 —

Finally, substituting this result into the above expression for the time-depth function yields

Td(cR;L)
= bk(z51) Zs2 XR

.

bk(a52) XRS1 (5.20)
2 x2 —

2 Xs2 — Xs1

The time-depth function at receiver coordinate ZR is a linear interpolation of the half-

intercept times at the two bounding source coordinates. Thus, for the chosen earth model,

the GRM time-depth section is identical to the half-intercept time section used in classical

refraction traveltime analysis (Wyrobek, 1956).
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5.3. Depth conversion factor

Expression (5.19) for the generalized time-depth may be rewritten as

Td(XR;L) =

h(x)
(5.21)

Vjk

where the depth conversion factor is defined as

Vji,
2v

(5.22a)
COS ajk — COSI3ik

The depth conversion factoi has physical dimension of velocity. Since the raypath angles exile

and /3ik are usually not determined in a GRM interpretation, Vk cannot be evaluated numer

ically. However, various approximations to the actual depth conversion factor are useful. If

the cosines of the raypath angles are replaced with the expressions appropriate for horizontal

layering (cos exile — cos = — (Vj/Vk)2), then equation (5.22a) is approximated by

VjVk
=

_______

. (5.22b)

Alternately, the true layer velocities in (5.22b) can be replaced by apparent horizontal ve

locities to obtain
- ai ale

=

_________

, (5.22c)
i/VVa

where Vaj denotes the apparent horizontal velocity of layer i. Evaluating these expressions

with the parameters defining the shallow four-layer model yields the following numerical

values (in m/s):
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i k V Vik

1 2 1221.23 1202.68 1194.66

1 3 1087.69 1091.09 1084.91

2 3 2603.66 2593.76 2591.17

1 4 1041.93 1032.80 1029.47

2 4 2013.08 2015.61 2029.00

3 4 3315.54 3202.56 3262.22

The approximations appear to be reasonable; the largest percentage error is —3.4% (for v34).

The depth conversion factors are used to calculate layer thicknesses from the observed

time-depths via expression (5.21). For k = 2, this equation yields

hl(XR) = v12 Td(XR; L), (5.23a)

while for k > 2:

= vk_1,k [T4XR; L) —
(5.23b)

Vertical depths to the refracting interfaces are obtained simply by summing the layer thick

nesses: zkfrR) = zl(XR) + hj(XR) for k 2. Note that the depth zk(XR) is an

unambiguously defined function of the receiver coordinate ZR. In contrast, the ‘depth’ cal

culated via Palmer’s (1980) time-depth function is a radius of a circular arc centered at the

receiver position.

Continuing with the illustrative example, numerical values of the time-depth for the

three subsurface interfaces can be obtained by evaluating expression (5.20). Sources are

located at the horizontal coordinates zs1 = —100 m and xs2 = +60 m, and the receiver is

positioned at the coordinate origin. The results are

k = 2: Td(0;L) = 16.63ms, k = 3: Td(0;L) = 33.74ms, k = 4: Td(0;L) = 45.23ms.
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Finally, vaiues of interface depths at ZR = 0 are calculated using the exact and approximate

depth conversion factors. The results are (in m):

z(Q) (0)

2 20.31 20.00 (—1.5%) 19.87 (—2.2%)

3 59.55 59.98 (+0.7%) 59.85 (+0.5%)

4 80.25 79.29 (—1.2%) 80.15 (—0.1%)

The associated percentage errors indicate that, for this example, an adequate result is ob

tained by using the approximate depth conversion factors.

5.3.5 Time-depth near a shotpoint

The intercept on the time axis of the velocity analysis function (5.11) has a simple, but

nevertheless useful, interpretation. From formula (5.3c), the vertical thickness of the th

layer at the coordinate xs1 + £/2 can be written as

hj(z1 + L/2) = h(xs1)+
sin(co:+1 —

2 cos Pi+1 cos ço

Substituting this result into expression (5.11) for the velocity analysis function yields

T1,(XR;L)
‘ h(xs1+L/2) [cosoik — COS/3jk]

+
ZR —ZS1

However, from equation (5.19), the summation term is recognized as the generalized time

depth at the coordinate xs1 + L/2. Thus

T(xR; L) = Td(ZS1 + L/2; L) +
ZR ZS1 (5.24)
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The time axis intercept of the linear velocity analysis function equals the interface time-

depth at a point offset a distance L/2 from source 1. This interesting relationship provides a

tool for estimating refractor depths near a source, where head waves are either nonexistent

or difficult to pick accurately.

5.4 Critical offset refraction profiling

5.4.1 Earth model

The two dimensional earth model considered in this section is ifiustrated in Figure 5.3. A

single layer with uniform velocity v is underlain by a medium where velocity v2(z) depends

solely on the horizontal coordinate. Surface and subsurface horizons are undulating and are

defined by the depth functions zl(x) and z2(x), respectively. The dip angles of these two

interfaces are given by

—1 Fdzi(z) dz2(x)
= tan

dx
S02(Z) = tan

dx

These relations define the sign convention associated with interface dip.

Forward and reverse traveltime data axe recorded by receivers distributed along the

surface. The observed traveltime curves are designated Tf(z) and Tr(x), respectively. The

slopes of the two traveltime curves are

dTf(z) — dTr()
mf(x)

dx
m(x) =

— dx

Note that a negative sign is included in the definition ofm7(x). From the measured slopes of

the traveltime curves, the angles of incidence of rays arriving at the surface can be calculated.

Let the functions (x) and ,t(x) refer to the incidence angles of the forward proffle and

reverse profile raypaths, respectively. Then, straightforward geometric analysis yields the

expressions
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Fig. 5.3. A 2D earth model with undulating surface and refractor topography. Forward and

reverse raypa.ths exiting from the same point C on the critical horizon intersect the surface

at B and A, respectively. M is the midpoint coordinate of A and B.

ILf(Z) = sink cosS1(x)mf(a)] + yi(x),

= sin [vlcoscol(x)mr(x)]
—

jtffr) and are acute angles measured with respect to the vertical. The previously

established sign conventions for surface dip and traveltime slope determine the positive

sense of these two incidence angles. In particular, jLf(c) is positive if the angle opens in

the clockwise sense. The converse holds for ILr(x); it is positive if the angle opens in the

counterclockwise sense (see Figure 5.4).

0

Lc(xM)

XM

zi

A

B

vi

V2(X)
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The measured traveltime data pertain to waves that are refracted at the subsurface

horizon z2(r). In general, the raypaths of these waves may undergo noncritical refractions

at the interface. However, the inversion procedure discussed here adopts the following fun

damental assumption: the critically refracted portion of the total raypath is coincident with

the undulating subsurface interface. Although this is an approximation, it is sufficiently

accurate if the structure on the interface is not too severe. In the presence of syncinal

structure, the approximation is reasonable because there is a tendency for the diffracted

raypath to follow the interface (see, for example, Figure 7.1). Since raypaths penetrate be

-neath anticinal structures, the approximation is less accurate in these cases. Nevertheless,

refraction seismologists commonly adopt this assumption as a useful working hypothesis. In

fact, it underlies the popular interpretive rule known as the ‘law of parallelism’ of refraction

traveltime curves (Rockwell, 1967; Sjögren, 1980; Ackermann et al., 1986; Brflckl, 1987).

Figure 5.3 depicts forward and reverse raypaths exiting from the same point C on the

subsurface interface. If i2(z) sin1 [vl/v2(x)] is a variable critical angle defined along

interface 2, then these rays depart at an anglei2(xc) with respect to the normal to z2(2).

Points of intersection of the reverse and forward rays with the surface zi (x) are designated

A and B, respectively. These two points are separated by the critical offset distance, i.e.,

the minimum horizontal distance between a surface source and receiver at which a critical

refraction can be observed. Obviously, the critical offset varies along the line of proffie due

to the changing depth and dip of the two interfaces, as well as the the varying velocity v2()

of the lower medium. If XM denotes midpoint coordinate of A and B, then a critical offset

function L(xM) can be defined at every midpoint position on the surface. The inversion

technique outlined below is based on the fact that an exact solution to the refraction problem

is possible if this function is known. A procedure for estimating the critical offset function

from the measured traveltime data is discussed in a subsequent section.

5.4.2 Inversion method

If the two points A and B on the surface are separated by the critical offset distance,

then a closed form solution for the subsurface model parameters can be obtained. Figure
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5.4 indicates that

— XB—XC
tan ttf(XB) —

zC —
Z5

XC —
X4

tan1t(xA) —

zC —
Z

Solving these equations for the two unknown coordinates (XC, zc) yields

XC =

zC =

(XB — ZA) COS /Lf(XB) cos liT

sin (ti.e() +

(5.25a)

(5.251,)

These relations establish the position of the point of critical refraction C in terms of known

quantities. Furthermore, since the sum of the angles of triangle ABC equals ir radians, the

critical angle at C is given by

pf(XB) + lLr(XA)
i2(XC)

= 2
(5.26)

Hence, the refractor velocity at point C is determined by v2(xC) = vi! sini2(XC). Finally,

the local dip of the refracting interface is calculated by analysis of either triangle ACD or

triangle BCE in Figure 5.4. The result is

S02(XC) =

lif(XB) —

XB COS lif(XB) sin iir(ZA) + XA Sifl ILf(XB) cos Pr(XA)

sin (lif(XB) +

(‘ — zA)sinl&f(XB)sinlir(ZA)

sin (lLf(XB) + 1Lr(2A))

ZB sin pf(XB)cosILD(ZA) + zAcoslif(XB)sinlLr(XA)

sin (lif(XB) + ltr(XA))

2
(5.27)
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Fig. 5.4. An expanded view of triangle ABC in Fig. 5.3. Angles j and p describe the

orientation of raypath segments CB and UA relative to vertical, respectively. The critical
and dip angles at point C on the refractor are i2 and Y2, respectively.

Expressions (5.25) through (5.27) constitute a mathematically exact solution of the specified

seismic refraction problem. The formulae are not restricted to the particular geometric

situation depicted in Figure 5.4, but remain valid if the refracting point C does not reside

between the surface points A and B (i.e., if either pf(zB) <0 or ir(XA) < 0).

The above inversion formulae for critical angle and dip are similar to the classical re

fraction solution for an earth model with plane interfaces and uniform velocities. In that

case, the forward and reverse traveltime curves are straight lines with slopes that are inde

pendent of the horizontal coordinate x. Hence, the forward and reverse angles of incidence

are also constant: ILf(x) =
and p7(x) = pr. Equations (5.26) and (5.27) reduce to the

familiar expressions i2 = (ELf + p1)/2 and Y2 = (jLf — ,u)/2. There are no analogues to

A



118

equations (5.25) in the classical solution, because vertical depths to the refracting interface

are determined only at the source locations.

A set of point estimates of the position of the critically refracting horizon is obtained

by repeated application of formulae (5.25a,b) at various midpoint locations along the line.

A profile of the interface can then be constructed by interpolating these points. Additional

constraints on. the interpolant are provided by the interface dip estimates at each refract

ing point C. Assuming an error-free inversion, the constructed depth proffle should pass

through the coordinates (ac, zc) and have slope tan cp2(xc) at this point. A procedure for

constructing a smooth interpolation of a set of point estimates of depth and dip is presented

in Chapter 6.

5.4. 3. Critical offset determination

The inversion method outlined above requires the critical offset distance L(xM) to

be known at each analysis midpoint along the profile line. Jones and Jovanovich (1985)

describe a computational technique for estimating critical offsets at the source positions on

a line. This section discusses an extension of their method to arbitrary locations along a

reversed refraction proffle. Moreover, an analytical, rather than computational solution to

the problem is given. Consider two surface locations with a common midpoint coordinate

XM and separated by the horizontal distance L. A candidate critical refraction raypath

can be constructed from these two points by projecting the incoming raypath segments

downward until they intersect (Figure 5.5). The projection directions are determined from

the known incidence angles f(rM + L/2) and (ZM — L/2). The propagation time along

this hypothetical raypath is called a ‘predicted’ traveltime and can be derived via geometric

analysis. It is
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T7,,.d(ZM;L) =.

Lc(xM)

COS1Uf(XM + L/2) + co5r(xM £12)

(Itf(XM + L/2) + Itr(XM — £12))

zl(ZM + £72) — zl(XM — £12) Sin1Uf(ZM + L/2) — sin/ir(aM — L/2)

+ L/2) + i?(xM — £12))

Note that this expression simplifies considerably if the surface is horizontal (i.e., zi(x) =

zi(O) = constant). At the same two surface locations, an ‘observed’ traveltime is determined

from the measured forward and reverse traveltime curves as follows:

XM
A \1/

B

Z2(X)

Fig. 5.5. Determination of the critical offset distance L(xM) at the midpoint coordinate

ZM. Raypath segments projected downward from A and B on the surface intersect at point

C on the refracting interface.

T0b3(XM; L) = Tf(XM + L/2) + Tr(ZM — L/2)
— TR, (5.29)
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where TR is the reciprocal time: TR = Tf(xS2)= Tr(xj). For a fixed midpoint coordinate

XM, expressions (5.28) and (5.29) are evaluated over a range of values of the separation

distance L, extending from well below to well above the expected critical offset distance.

Figure 5.4 indicates that whenT7,.d(xM; L) =T0b3(XM; L), then L = L(aM). The common

time calculated at this separation distance is the critical offset traveltime Tc(XM) associated

with the midpoint position. Application of this analysis technique at various midpoint

locations along the profile line yields several point estimates of the critical offset function

L(x).

5.5 Conclusion

The theoretical foundation of the generalized reciprocal method of refraction traveltime

inversion has been reformulated in terms of layers characterized by vertical, rather than

normal, thicknesses. This reformulation results in a simplification of the derivations of the

two GRM analysis functions, and thus has educational value. However, it also allows point

estimates of interface depth to be calculated from the measured traveltimes. A refractor

depth profile can then be calculated by interpolating the depth points. Although the GRM

is based on a simple 2D model with plane interfaces, interpreters apply the technique in

more realistic environments with nonpiane refracting horizons. The results that are obtained

should then be viewed as approximate.

In contrast, the proposed method of critical offset refraction profiling explicitly incor

porates undulating interfaces and variable refractor velocities into the model. A mathe

matically exact solution to the traveltime inverse problem indicates that point estimates of

interface depth, interface dip, and refractor velocity can all be obtained from the observed

arrival times. These point estimates are positioned properly in space; there is no need for a

subsequent migration of the solution. In common with many other refraction interpretation

methods, independent knowledge of the overburden velocity v is required. Although the

derivations in this chapter assume a uniform layer velocity, this is not a practical necessity.

Rather, it is only necessary that vi be reasonably constant over the extent of the triangle

ABC in Figure 5.3. Lateral variations with a characteristic scale greater than the horizontal
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dimension of the triangle are allowed. The primary approximation adopted by this technique

relates to the refracted raypath: it remains coincident with the undulating interface. The

implications of this approximation for the inversion should be investigated more thoroughly.

Finally, extension of the method to multilayered earth models represents another avenue

of developement. Using the present algorithm, this could be achieved via a layer stripping

approach.
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CHAPTER 6

CONSTRUCTION OF A SMOOTH REFRACTOR DEPTH PROFILE

6.1 Introduction

Linear inverse theory provides techniques for constructing acceptable models that are

consistent with the available data. However, if acceptabffity is judged by the data misfit

alone, then there are usually infinitely many equally valid solutions. A specific solution can

be obtained only by extremizing some functional of the model, subject to a requirement

that the final model is in satisfactory agreement with the observations. Since different

functionals can produce models with significantly different character, an essential step in

the solution of any inverse problem is to select the ‘right’ functional. Minimization of the 12

norm of the model yields a ‘smallest’ model that often has high variability and hence may

be difficult to interpret. Similarly, models can be constructed by minimizing the 12 norm of

the first or second derivative; these are often referred to as ‘flattest’ or ‘smoothest’ models,

respectively. These latter types are particularly useful because they can be interpreted as

minimum structure solutions for many geophysical inverse problems. It is anticipated that

the true earth model that gives rise to the measured data has at least as much structure as

observed on these constructed models.

Methods for calculating minimum structure solutions have been described by various

authors. These methods differ in the manner in which the required additional information

regarding the model is treated. Johnson and Gilbert (1972) construct a smoothest model

by explicitly incorporating endpoint values of the model and its derivative into the objective

functional to be minimized. Oldenburg (1984), in computing a flattest model, specifies

an a priori model value at an endpoint. Parker, Shure, and ilildebrand (1987) minimize

a seminorm of the model. This chapter discusses two generalizations to the conventional

method for constructing a smoothest model. In this technique, the governing equations are

integrated by parts twice; each such integration introduces extra parameters into the model

construction problem. Numerical values for these additional parameters are obtained either

by (i) prescribing a priori values at any abscissae within the interval of model definition,
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or (ii) optimizing the appropriate objective function with respect to the parameters. These

generalizations are readily extended to model construction problems that involve minimizing

the 12 norm of other derivatives of the model.

In this chapter, the smoothest model construction formalism is applied to the problem

of determining a depth proffle for a critically refracting horizon. It has only recently been

demonstrated that refraction traveltime data can be processed to yield point estimates of

interface depth (Jones and Jovanovich, 1986; Pavienkin et aL, 1986; All Ak, 1990). Moreover,

as shown in the previous chapter, local dip estimates can also be derived from the traveltimes.

-A refractor depth proffle can then be calculated by smoothly interpolating all of these data.

This procedure provides a useful alternative ‘to the popular time-to-depth conversion method

associated with the GRM (Hatherly, 1980; Hatherly and Neville, 1986; Kilty et al., 1986;

Lankston and Lankston, 1986; Lankston, 1989; Palmer, 1990, 1991). In the GRM technique,

circular arcs -with radii given by expression (5.23a) are ceutered at each analysis location

along the seismic line. The position of the refracting interface is then estimated by the

envelope of the set of arcs. This envelope is approximated by tangent lines to pairs of adjacent

arcs; problems specific to this method are identified and discussed by Hatherly (1980). The

technique has antecedents in the depth determination procedures of Thornburgh (1930),

Dix (1941), Tarraut (1956), Hales (1958), and Hawkins (1961) where possible refractor loci,

rather then point depth estimates, are calculated from the traveltime data.

The interpolation method described in this chapter circumvents those problems related

to calculating an envelope of a set of circular arcs. It also possesses several specific advantages

regarding treatment of the data. However, perhaps the most important difference pertains

directly to the derived models: the method proposed here yields the smoothest refractor

depth profile consistent with the given data. This attribute is not shared by the model

constructed via the GRM technique.

A general theoretical developement of the smoothest model construction method is pre

sented before discussing the particular application to interpolation. Hence, the results in this

chapter are useful for the solution of other geophysical inverse problems that may require a
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smooth model. Assume that an N-vector of observed data e0b3 is related to the true earth

model mj(x) via a Fredholni integral equation of the first kind:

b

e0b3
= j g(x) mt(x) dx + Se. (6.1)

g(z) is a vector of known kernel functions and Se is a vector of additive random errors. The

true earth model mt(x) is unknown and is to be estimated. Predicted data generated by a

constructed earth model m(x) are given by the linear functional

b

ed(m) j g(x) m(x) dx. (6.2)

In the following development, the 12 norm is used to quantitatively measure both model

structure and data misfit. For example, the square of the 12 norm of the second derivative

of the model is
b

)j rn” 112
= j m”(x)2 dx.

Similarly, the square of the 12 norm of the misfit between observed and predicted data is

given by

II e03 — e,,.d(m) 12 = [eobs —e1.d(m)j [cobs — elfl.d(m)},

where the superscript T indicates transposition.

6.2 Smoothest model construction

A detailed discussion of the method for calculating the flattest model is given by Aldridge

et al. (1991). The analogous derivation for the smoothest model is conceptually similar,

although algebraically more complicated.
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6.2.1 Modified data equation

Initially, equation (6.2) is integrated by parts to obtain a modified data equation satisfied

by the first derivative of the constructed model:

b

ed(rn) m(b)h(b)
— j h(x)m’(x) dx, (6.3)

where h(x) is the indefinite integral of the original kernel function vector g(x):

h(x)
= / g(u) du. (6.4)

The value of the model at the endpoint b is required to evaluate the right-hand side of

equation (6.3). However, the expression is easily rewritten in terms of a model value m(ci)

specified at an arbitrary abscissa c within the closed interval [a, b]. From the fundamental

theorem of calculus

b b

m(b) — m(ci)
= j m’(x) dx

= j H(x — Cl) m’(x) dx, (6.5)

where H(x) is the Heaviside unit step function. Eliminating m(b) from equations (6.3) and

(6.5) yields

ed(m) = m(ci) h(b)
— / {h(x) — h(b)H(x — ci)] m’(x) dx. (6.6)

In the model construction problem, m(ci) is considered to be a parameter independent of

the abscissa Cl. This independence is emphasized by writing d1 for m(ci). Equation (6.6)

becomes
b,

ed(m’) = d1h(b)
— j p(x;cl)m’(x) dx, (6.7)



126

where a new kernel function vector is defined by

p(x; ci) h(x) — h(b) H(x — ci). (6.8)

Note that the predicted data are now considered to be a functional of the first derivative

m’, rather than the model m itself. Furthermore, due to the presence of the term d1h(b),

these data are a nonlinear functional of m’.

If the above procedure is repeated, then a modified data equation satisfied by the second

derivative of the constructed model can be derived. Thus, expression (6.7) is integrated by

parts and the fundamental theorem is used to transfer endpoint information to another

arbitrary location C2 with the interval [a, bJ. The result is

ed(m”) = d1 h(b) — d2 [k(b) — (b — ci)h(b)j + J p(x; ci, c2) m”(x) dx, (6.9)

where the kernel function vector is defined by

p(x;cl,c2) k(z) — h(b)R(z — ci) — {k(b) — (b— ci)h(b)JH(x — c2). (6.10)

ci and c2 are two abscissae in [a, b} where the parameters d1 m(ci) and d2 m’(c2) are

defined. Also, k(x) is the indefinite integral of h(z):

k(x)
= / h(u) du. (6.11)

Finally, R(x) in equation (6.10) is the ramp function with unit slope: R(z) = xH(x).

Expression (6.9) is the desired result. It indicates that the predicted data are a nonlinear

functional of the second derivative of the constructed model. In the particular case where

both c1 and C2 are restricted to the upper endpoint b, formulae (6.9) and (6.10) reduce to

familiar forms.
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6.2..2 Objective function

In order to construct a smooth model that simultaneously minimizes the misfit between

observed and predicted data, consider the objective functional

mm” 112 + ‘N [eobi — eWd(m”)] 112 . (6.12)

The scalar jt (0 < +oo) is a tradeoff parameter that controls the relative importance of

the two terms. Equation (6.12) also includes a model derivative weighting function w(z) and

a data weighting matrix W. The function w(z) can be used to emphasize certain portions

of m”(z) during subsequent minimization of 4’. Similarly, the matrix W aiiows a point-by-

point weighting of the input data according to prescribed criteria. Commonly, W2 is taken

to be the inverse of the covariance matrix of the observational error 6e. However, the matrix

in (6.12) is not restricted to this specific type of weighting.

Appendix D demonstrates that the second derivative function that extremizes 4 must

be a linear combination of the weighted kernels pj(x; c, c2)/w(x)2,j = 1,2,. . . , N:

m”(z) = aT
p(z;ci,c2)

(6.13)

where a is an N-vector of coefficients. Using this representation for m”(z), it is straightfor

ward to demonstrate that

wm” 112 = aTF(ci,c2)a, (6.14)

and

e,,.d = d1h(b) — d2 [k(b) — (b— ci)h(b)] + r(ci,c2)a, (6.15)

where F(ci, c2) is an inner product matrix formed from the kernel function vector p(x; c1, c2):

b

F(c1,c2) j w(x)2p(x;cl,c2) p(x;ci,c2)T dx. (6.16)
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The matrix F(c1,c2) is symmetric and, if the original kernel functions gj(x) are linearly

independent on [a, bj, positive deilnite. Substituting expressions (6.14) and (6.15) into (6.12)

converts the objective functional into a quadratic form in a, d1, and d2:

(a,ci,c2,cli,d2)= aTr(ci,c2){WTWr(ci,c2)+,ttI]a

+ 2 [d1h(b) — d2 [k(b) — (b — c )h(b)] — eobs]TT r(ci, C2) a

+ dh(b)TWTWh(b) — 2dld2h(b)TWTW[k(b)
— (b— ci)h(b)]

+ 4 [i — (b — cl)h(b)]TWTW [k(b) — (b — ci)h(b)]

— 2d1 h(b)TVSITWe0b3 + 2d2 [k(b)_(b_ci)h(b)jTv.rTwe0,3 +e3WTWe0b3. (6.17)

Dependence on the two abscissae ci and cz is via the inner product matrix I’(ci, c2) (as well

as explicit dependence on Cl). Note that expression (6.17) is a complete quadratic form in

the independent variables a, d1, and d2 in the sense that afl possible terms are present. In

contrast, the analogous quadratic objective function given by Johnson and Gilbert (1972)

lacks the cross product term in d1 and d2, the linear terms in both d1 and d2, and the

constant term. Additionally, the remaining terms differ in detail from those given above.

6.2.3 Extremizing the objective function

Straightforward methods of multiva.riable calculus are now used to extrernize the objec

tive function with respect to all of the variables relevant to the problem. Thus, calculating

O/8a and setting the result equal to 0 yields the linear system

{F(ci, c2) +11çVVTW)_l]a = e0 — d1 h(b) + d2 {k(b) — (b — ci)h(b)]. (6.18)
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If values for the four scalars (Cl, d1, C2, (12) are prescribed, then (6.18) can be solved for the

coefficient vector a. This offers an interesting alternative to the conventional method for

constructing a smoothest model, where Cl and c2 are typically restricted to one of the end

points a or b. However, for the current analysis, optimum values of the four parameters are

desired. Thus, extremizing ‘ with respect to d1 and d2 yields the two additional expressions

[wTWh(b)]T[di h(b) — d2 {k(b) — (b — ci)h(b)]
— e0b0 + F(c1c2)a] = 0,

[WTW [k(b) — (b
—

cl)h(b)J] [dlh(b) — d2 [k(b) — (b — ci)h(b)]
— e0b3 + r(c1,c2)a] = 0.

Substituting from equation (6.18) immediately reduces these expressions to the simpler forms

aTh(b) = 0, (6.19)

aTk(b) = 0. (6.20)

Geometricafly, these conditions imply that the N-dimensional coefficient vector a must be

orthogonal to the 2-dimensional subspace spanned by h(b) and k(b).

Finally, the objective function 4’ must be extremized with respect to the two abscissae

Cl and C2. However, Appendix E demonstrates the remarkable result that the derivatives

ô4’/Ocl and ô4’/8c2 both vanish if the prior conditions (6.18), (6.19), and (6.20) hold.

Thus, these three equations are sufficient to extremize 4’ with respect to the live quantities

(a , Cl, d, C2, d2). As long as these conditions are imposed, any convenient pair of abscissae

Cl and C2 can be chosen to evaluate the inner product matrix T’(Cl, c2). Expressions (6.18)

through (6.20) are then a system of N + 2 equations in the N + 2 unknowns a3, d1, and

d2, and can be solved simultaneously with standard techniques of linear algebra. However,



130

additional insight is obtained by first eliminating the coefficient vector a to form a simple

2 x 2 system for d1 and d2:

Ad = b. (6.21)

In this expression, d = (d1,d2)T, and the elements of the matrix A and the vector b are

given by

all = h(b)Tr_(jt) h(b), a = (b — cl)all — k(b)TF_l() h(b),

a2l = h(b)Tr_l(t) k(b), a22 = (b — cl)a21 — k(b)Tr(t) k(b),

= h(b)Tr(I)eob$, = k(b)TF_l(,I)eobs. (6.22)

Here r—1(,t) stands for {r(ci, c2) +,t(WTW)_hj . If the special cases h(b) = 0, k(b) = 0,

and k(b) = /3 h(b) (where /3 is a constant) are excluded, then it can be shown via the Cauchy

Schwartz inequality that the determinant of this system is nonzero. The optimum values of

d1 and d2 obtained by solving (6.21) are linear combinations of the observed data eobs. After

these two parameters are determined, the coefficient vector a is found by solving equation

(6.18).

6.2.4 Constructing the model

The model m(x) is obtained by integrating the second derivative m”() in equation

(6.13) twice. Integration constants are chosen so that the predicted datae3,,.d(m) reproduce

the observed data e0b3 in the limit as the tradeoff parameter JL approaches zero. Thus

m() = di+d2(x_ci)+aTj jp(u;cic2)du dv. (6.23)

Optimizing the values of the parameters d1 and d2 in the above manner has beneficial

implications for the curvature of the model. In general, the second derivative of the model
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is given by expression (6.13). Substituting in the explicit form for the kernel function vector

p(x;cl,c2) yields

m”(x) = w(x)_2{aTk(x) — aTh(b) {R(x — ci) — (b — ci)H(z — c2)j — aTk(b)H(x
— c2)}.

If conditions (6.19) and (6.20) hold, then the second derivative simplifies considerably to

m”(z) = a Tk(z)/w(x)2.These extra conditions remove a step discontinuity in the second

derivative at a = cz due to the Heaviside function. Assuming that k(x) and w(z) are

continuous, then the constructed model is twice continuously differentiable, i.e. m(x) E C2

on (a,b).

This model is also unique except in those cases where the determinant of the 2 x 2

matrix A vanishes. Three particular cases are readily identified by analysis of det A. From

equations (6.22):

det A = [hbT r—’() k(b)]
2

— [hbT T() h(b)j [k(b)Tr_1(tt) k(b)j.

Obviously, this determinant vanishes if either h(b) or k(b) equals 0. The sole remaining case

arises in the following manner. Since () is positive definite, r—’/2(p) exists. Define two

vectors u and v as:

r’/2()k(b).

The above expression for the determinant becomes det A = (uT v)2 — (uT u) (vT v). If

u /3v (where /3 is a constant), then the Cauchy-Schwartz inequality implies that u 112

v > (uTv)2. Hence, the determinant is nonvanishing in this situation, which is

equivalent to the condition h(b) /3k(b).

In these three cases, the constructed model is unique only to within an arbitrary additive

constant ao or linear function a + aix. These situations are now described in detail.
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Case 1: h(b) = 0. This situation arises if the original kernel functions g3(x) all possess zero

area (e.g., Oldenburg, 1981). The system Ad = b reduces to a single equation that can be

solved for d2:
L-(ITp—1(

d —

e03
2 —

— k(b)TI’-1(1L)k(b)

Also, the linear system for the coefficient vector a simplifies to

[r(ci, C2) + (ITT)IJ)_1ja = e0,3 + d2 k(b).

Since the right hand side is known, solution for a is possible. The model m(x) is then

calculated from (6.23) by picking any value for the parameter d1. Thus, constructed models

differ by an arbitrary additive constant.

Case 2: k(b)= 0. The 2 x 2 system Ad b reduces to a single relation between d1 and

d2:
h(h\TT’—1(

.. e0b3 —

1 + — Cj 2
= h(b)TT ()h(b) =

Also, expression (6.18) becomes

[r(ci,c2) + ifVVTW)hja = e0,3 —

It is again possible to solve for the coefficient vector a. The model is constructed via (6.23)

after picking a value for either d1 or d; the remaining parameter is obtained from the above

relation between d1 and d2. Constructed models then differ by an arbitrary linear function

of x.

Case 3: k(b) = /3 h(b). This case is a generalization of the previous one. The two equations

in (6.21) are no longer independent, but reduce to the single expression

d1 + (b—ci —/3)d2 =
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Once again, equation (6.18) becomes

[F(cl,c2) + t(WTW)_1]a = e0b3 — )h(b),

and can be solved for the coefficients. Model construction proceeds as indicated for Case 2

above. Hence, the model is unique only to within an arbitrary linear function.

This analysis highlights a particular advantage of the current formulation, where the

separate system (6.21) is derived for the two parameters d1 and d2. The specific mathe

matical conditions for nonuniqueness in the calculated model can be determined simply by

examining the equation det A = 0. Moreover, as indicated above, model construction can

stifi proceed in these situations. In contrast, the alternative development of Parker et al.

(1987) is very ambiguous regarding both of these issues.

6.3 Interpolation via the smoothest model

The theory developed in the previous section is clearly illustrated by the problem of

constructing a smooth interpolation of a set of discrete samples. This is a common problem

in many branches of geophysics. The particular application considered here consists of

calculating a continuous depth profile of a refracting interface from a set of point estimates

of the refractor depth and dip. These point estimates can be derived by analyzing the

first break traveltimes of a seismic experiment by various techniques. There are many such

techniques available to the practicing interpreter, and these are not examined individually

here. However, the methods typically employ the assumption that the critically refracting

horizon is plane or nearly plane. Under these circumstances, it is logical to construct an

interface depth proffle that possesses minimum curvature. Thus, the final model for the

interface adheres closely to the prior theoretical assumptions used for inferring its depth.

Many shallow seismic refraction projects are undertaken in conjunction with a driffing

program (e.g., Hawkins, 1961; Hasselström, 1969; Hatherly and Neville, 1986; Schwarz,

1990). Accurate depths to an interface are determined at the drillholes and the refraction
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method is then used to extend this information between or beyond the wells. In some

cases, outcrops of the target horizon provide additional geologic control on both depth

and dip (Kilty et at, 1986). When constructing a proffle of the interface, the depth and

dip information from all available sources should be integrated together. Extra data from

dri]lholes, trenching, outcrops, etc. then contribute directly to the solution, rather than

merely providing ‘tiepoints’ to the profile determined from refraction data. This goal can be

readily achieved if the problem of caiculating the refractor proffle is posed as an interpolation

issue. In this case, the data weighting matrix W assumes an important role. This matrix

can be used to nondimensionaJize different data types, and to emphasize those particular

data deemed more important in the inversion. In contrast, there is no provision in the

GRM depth conversion technique for including additional geological or geophysical data

with variable weighting.

6.3.1 General theory

The complete set of N measured data is divided into two distinct subsets: n depth

samples and N — n dip samples, where 0 m N. These data are observed at abscissae aj

that are ordered as follows:

Depth: a < X2 < < < x

Dip: a Xn+1 < Xn+2 < < XN1 < XN b.

The abscissae associated with the dip samples do not necessarily coincide with those of the

depth samples. In particular, note that the extreme cases n = N (no dip samples) and n = 0

(no depth samples) are allowed.

Expressions for the kernel functions pj(x; ci, c2) are now derived. The depth data are

treated first. For j = 1,2,.. . , n, a predicted datum is considered to be a sample from a
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function e(x):

eTd e(xj)
=

The th component of the kernel function vector g(x) is a Dirac delta function centered at

the sampling point 2j : gj(z) = S(x — z,). Hence, the singly and doubly integrated kernels

are

h(x) = k1(x)

An expression for the more general kernel function pj(z; c, c2) is then obtained from equation

(6.10):

p3(x;cl,c2) = R(x—x)—R(x —C1)+(Xj —ci)H(x-—c2). (6.24)

The clip data are examined next. A simplification arises if these data are redefined

as slope, rather than dip samples. The transformation is easily effected by calculating the

tangent of each dip angle. From the fundamental theorem of calculus, the difference in the

slope of the function e(x) between two locations z1 and C2 is given by

Zj &

e’(xj) — e’(c2)
= £2

e”(z) dx = j [H(z — c2) — H(x
—

xa)] e”(x) dx.

Thus, for i = n + 1, n + 2, .. . , N, a predicted slope datum is a functional of the second

derivative of e(x):

e’(x) = d2 +
jbpi(z;cl,c2)eII(x) dx,

where d2 = e’(c2) and the kernel function is defined by

pj(x;cl,c2) = H(x—c)—H(x-—xj). (6.25)
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Comparison of the above two expressions with equations (6.9) and (6.10) indicates that

h(b) = 0 and k(b) = —1 for the index range j = n + 1, m + 2,. . . , N. Hence, if the dataset

consists entirely of slope samples (n = 0), then the interpolation problem is an example of

the Case 1 phenomenon described in the previous section (i.e., the constructed interpolant

e(x) is unique only to within an additive constant).

If the weighting function w(x) equals unity, then explicit formulae for the elements of

the inner product matrix F(ci, c2) can be derived by substituting the above kernel functions

into (6.16) and integrating. Arbitrary nonuniform weighting requires that the integrals be

evaluated by numerical techniques. The examples presented below adopt uniform weighting.

For Cl c2, there are 15 distinct formulae for the matrix elements I’jj, corresponding to

various locations of the coordinates z and x relative to c1 and C2. These equations are

omitted here for brevity. If Cl > c2, then a transformation of the independent variable via

= a + b — x and a reindexing of the data allow the previously established formulae to be

used.

As indicated previously, it is possible to solve for a, d1, and d2 simultaneously. This is

the preferred method of solution for situations with a large amount of data. It eliminates

the need to invert F(t) in order to obtain the elements of the matrix A and the vector b

as in (6.22). However, for small scale problems like the following examples, calculation of

F(t) is not computationally burdensome. Singular value decomposition (SVD) is used

here to compute the inverse. An advantageous feature of this technique is that it allows the

singular vectors associated with very small eigenvalues to be winnowed from the solution

simply by truncating the SVD sum. Small eigenvalues arise when the matrix F(Au) is nearly

singular, and contribute to a large variance in the computed solution.

Let P(ji) denote the th element of the matrix {F(ci,c2)+1(WTW)_1]
. Then,

define three sums as follows:

n ii N

= > l’’(p), = x, =

3=1 j=rn+l
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These quantities are all defined for the full index range i = 1,2,. . . , N. After some algebraic

manipulation, the elements of the matrix A and the vector b in equation (6.21) reduce to

the simple forms

all P, a12 = (xj — ci )P +
i=l 2=1 i=n+l

n n N

a21 (Q+Ri), a22 = (x—c1)(Qi+R) + (Q+Rj),
i=l i=l

=
b2 =

Solution for d and then the coefficient vector a is now possible. The problem is com

pleted by constructing the function e(z) via equation (6.23). Expressions for the doubly

integrated kernel functions in (6.23) are obtained by integrating equations (6.24) and (6.25)

for p,(z; Cl, c2). There are five distinct cases that must be examined, each corresponding to

different location of the coordinate x relative to the two abscissae Cl and C2.

6.3.2 Numerical example

Figures 6.1 through 6.4 present a synthetic example from shallow refraction seismology.

The top panel in each figure depicts the elevation profile of a near surface alluvium/bedrock

interface (dashed line). A small channel is located adjacent to a larger and broader anticine.

Elevations are referenced to an arbitrary horizontal datum plane. Nonuniformly spaced

elevation and slope samples from the interface are indicated by asterisks. Initially, these are

considered to be error free.

If accurate estimates of interface depth and dip are available (say, from a shallow bore

hole) then these values can be used to construct a smoothest elevation model. Figure 6.1

depicts this situation. The prescribed elevation and slope values are indicated by open
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Fig. 6.1. A smoothest refractor model e(x) constructed from six error-free depth samples

(indicated by asterisks). Dashed lines (- - -) refer to the true earth model and solid lines

(—) refer to the constructed model. The independent values of the refractor elevation and

slope are taken from the true earth model and are indicated by small squares at abscissa

ci = C2 = 23.75 m. The 12 norm of the second derivative of the constructed model is

0.228 m_h/2.
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Fig. 6.2. Same as Fig. 6.1 except that optimum values of the refractor elevation and slope

are calculated at Cl = c2 = 23.75 m. The 12 norm of the second derivative is reduced to

II e” = 0.129 m’2.
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squares at horizontal coordinate ci = C2 = 23.75 m. The constructed model and its deriva

tive (solid curves) pass through these points. However, the second derivative of the model

possesses a jump discontinuity at this location. This discontinuity arises from the Heaviside

step function with onset at a = c2 in equation (6.24). If the depth and dip values are spec-

fled erroneously (i.e., unequal to the true earth model values) then the cusp in e’(x) and the

discontinuity in e”(x) can be magnified (Aidridge et al., 1991).

Figure 6.2 displays the smoothest elevation model constructed by using the optimum

values of d1 and d2. There are obvious differences from the previous model on the flank of

the anticine and on the flat portion between anticine and syncine. The second derivative of

the elevation proffle is now a continuous, piecewise linear function. It is emphasized that the

same model is obtained if the parameters d1 and d2 are optimized at any pair of horizontal

positions ci and C2 along the proffle (including outside of the range encompassed by the

six elevation samples). The 12 norm of the second derivative is reduced by optimizing the

parameters, as expected. Aidridge et at (1991) discuss the relation of these interpolants to

cubic splines. In particular, the constructed elevation profile in Figure 6.2 is a cubic spline

on [a, bJ, whereas e(z) in Figure 6.1 consists of two cubic splines joined end-to-end at the

coordinate x = C2.

Inclusion of slope samples, as in Figure 6.3, results in a more accurate reconstruction of

the refracting interface and its first derivative. However, continuity of e”(x) is now sacrificed.

As predicted by equation (6.25), a jump discontinuity is introduced into the second derivative

at each abscissa x associated with a slope datum. Hence, the constructed elevation proffle

is no longer a cubic spline on [a, bj.

In actual practice, the calculated interface depth and dip samples will contain some

random error. This situation is simulated in Figure 6.4. Random numbers drawn from a

uniform probability distribution on ±0.50 m (standard deviation = 0.29 m) are added to

the accurate elevations. Also, each slope sample is perturbed by an amount corresponding

to a uniformly distributed random dip angle on ±5° (standard deviation = 2.9°). A model

that is an exact fit to these error contaminated samples would contain spurious structure

induced by the noise. Hence, a model is constructed that reproduces the erroneous data
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Fig. 6.3. A smoothest refractor model constructed from six depth samples and six dip

samples. All data are error-free. Optimum values of the refractor elevation and slope are

calculated at Cl = C2 = 23.75 m. e” 0.354 m’2.
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Fig. 6.4. A smoothest refractor model constructed from error contaminated data. Depth

and dip samples are located at the same abscissae as in Fig. 6.3. Optimum values of the

refractor elevation and slope are calculated at c = C2 = 23.75 m. J= 0.259 m’2.
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approximately, rather than exactly. The tradeoff parameter ,u and the weighting matrix W

can be used advantageously for this purpose. Since a constructed smoothest model depends

on the value of the tradeoff parameter, predicted data generated by this model will also be

a function of p. The notation ez,,.d(p) is used to explicitly denote this dependence. If the

weighting matrix is diagonal with elements W:, i = 1,2,. . . , N, then the degree of misfit

between observed and predicted data is quantified by

Edepth(JL) j,2 {e — erd(p)]2,

6slope(p) N —

W [ebs
— e()j2.

- jfl+1

A value for the tradeoff parameter is sought such that these misfits are approximated by

depth(P) Eslope(P)
N—n

Note that, for uniform weighting, the right hand side of each expression above is proportional

to the rms value of the standard deviations of the data errors. Selection of a search procedure

for p is largely a matter of personal preference. For small scale problems like the present

example, a few trial runs with guessed values of p allow a sufficiently precise estimate to be

made. Alternately, it is possible to implement an automated iterative scheme that converges

upon the desired tradeoff parameter.

Figure 6.4 displays a refractor elevation model constructed with the misfit values Edepth =

0.30 m and e3j0 = 0.0063. The slope data are weighted by 0.12 relative to the depth data.

Hence, the misfit to the slope samples corresponds to one standard deviation of a uniform

distribution of dip angles on ±5°. Also, optimum values for the two parameters d1 and

d2 are used. Interest in detecting the shallow channel may stem from various exploration
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objectives: placer ore localization, groundwater accumulation, contaminant migration, etc.

However, the figure suggests that the channel is just at the limit of detectability for the

given horizontal sampling and error statistics.

6.4 Conclusion

The conventional method for constructing the smoothest model is generalized in two

important ways:

1) The additional information required to calculate the smoothest model may be specified

anywhere within the interval of definition [a, bj. This improvement can be particularly useful

if the best known value of the model (or its slope) is not located at an endpoint.

2) Madmum smoothness can be obtained by calculating optimum values of the model and

its slope directly frorri the observcd. data. This technique is advisable if independent values

of these parameters are unknown or are difficult to estimate accurately.

It is evident that these techniques can be extended to model construction situations

where the 12 norm of a higher derivative of the model is minimized. The modified data

equation satisfied by the m derivative of the model m()(z) will entail ii parameters cij de

fined at the abscissae cj as follows: dj m(1)(cj), i = 1,2,... ,n. Extremizing the relevant

objective function leads to an n x n system of equations Ad = b for the unknown d. A

unique solution exists when det A 0, and the model constructed with these parameters

will possess a continuous th derivative (m(a) E C’s) provided that the original kernel func

tion vector g(x) E C (this assumes that the weighting function w(z) is also continuous).

If the determinant vanishes, then the model that yields an absolute minimum of m(”) 12,

subject to constraints provided by the data, can still be constructed but is only unique to

within an additive polynomial of at most degree n — 1. Only the smallest model (n = 0) is

unique in all situations.

Application of this model construction formalism to the problem of calculating an in

terface depth profile yields a useful tool for seismic refraction exploration. The smoothest

model is the natural model to adopt in this situation because refraction traveltime inversion



145

methods assume, either explicitly or implicitly, that local interface curvature is negligable.

The resulting depth profile and its derivatives are mathematically well defined throughout

the horizontal range (a, b) and thus can be used for other forward modeling purposes. The

method is also flexible, as evidenced by the following specific advantages compared with

depth determination via the GRM:

1) Additional depth and clip data arising from a variety of geological, geophysical, or engi

neering techniques are readily incorporated into the computation.

2) Variable weighting of all data is easily achieved.

3) An adjustable misfit to error contaminated data is possible.

Numerical examples presented here and in Aldridge et al. (1991) demonstrate the feasi

bility of the technique for refractor depth profile construction. Obviously, there is stifi much

to learn about issues such as weighting of different data types, resolvability of small scale

features, optimum horizontal sampling, etc. However, the algorithm presented here provides

a flexible tool for investigating these and related phenomena.
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CHAPTER 7

REFRACTOR IMAGING USING AN AUTOMATED

WAVEFRONT RECONSTRUCTION METHOD

7.1 Introduction

The Wavefront Method is one of the earliest of the many techniques for interpreting re

fraction arrival times. In 1930, Thornburgh demonstrated that subsurface wavefronts could

be reconstructed from surface arrival times by applying Huygens’ principle in reverse. Sub

sequently, Hagedoorn (1959) elucidated an imaging condition for delineating a refracting

horizon. First, two oppositely propagating wavefront systems are reconstructed from the

arrival times recorded on a forward and reverse spread, respectively. Then, pairs of these

subsurface wavefronts intersect on or slightly below the refracting interface when the sum

of their times equal.s the known reciprocal time (the shot-to-shot traveltime). This imag

ing principle yields the correct spatial locus of a critically refracting horizon if the earth

consists of constant velocity layers ‘bounded by plane dipping interfaces. However, several

investigators have demonstrated that the imaging condition is reasonably accurate even if

the measured arrival times are due to diving rays, rather than true critically refracted rays

(Hagedoorn, 1959; Rockwell, 1967; Schenck, 1967; Hill, 1987). Diving rays may arise from

nonpiane structure on the refracting interface, or a velocity gradient within the underlying

medium.

Extensive application of the wavefront method has been limited by two factors: i) la

borious graphical techniques are required to construct the subsurface wavefront loci, and ii)

detailed knowledge of the near surface velocity structure is necessary. This study directly ad

dresses the first of these two issues. Instead of defining the wavefronts by a tedious graphical

application of Huygens’ principle (e.g., Rockwell, 1967), a finite-difference computer algo

rithm is used to downward continue surface arrival times through a specified velocity field.

The algorithm is rapid and accurate, and is capable of handling a heterogeneous velocity

structure.



147

Recently, Hill (1987) downward continued refracted waveforms to obtain a two dimen

sional image of shallow structure. Although the technique presented here works only with

arrival times, the goal is identical. The advantage of this approach resides in its compu

tational simplicity. Since the propagation algorithm operates directly in the space-time

domain, no transformations of the recorded wavefield, with attendent concerns about sam

pling adequacy (Clayton and McMechan, 1981; Hill, 1987) are necessary. Furthermore, true

amplitude recording and processing of seismic traces are not required. However, prior pick

ing of these traces to obtain the arrival times is necessary, and this may be a time consuming

job in some situations.

7.2 Finite-difference traveltimes

7.2.1 Wavefront Construction

Vidale (1988, 1990) has recently developed an algorithm for calculating the first arrival

times of a seismic wave propagating through a two or three dimensional velocity structure.

The velocity field is sampled on a uniformly spaced 2D or 3D grid; plane wave finite-difference

operators are used to extrapolate the traveltimes from point to point throughout this grid.

Calculations are initiated at a source point within the predefined velocity field. The al

gorithm properly handles the various wave types that comprise first arrivals (body waves,

head waves, and diffractions). Subsequent contouring of the computed traveltime field yields

a visual impression of propagating wavefronts. The phrase wavefront construction is used

here to refer to traveltime loci calculated in this manner. Figure 7.1 depicts the subsurface

wavefront systems generated by a sequence of shots buried in an earth model with undulat

ing surface and refractor topography. The direct wave through the overburden is the initial

arrival near each shot location. Beyond the crossover distance, the wave refracted by the

higher velocity bedrock arrives first. The traveltimes recorded along the nonplane surface of

the model are accurately computed by assigning a P-wave velocity to the uppermost layer

equal to the speed of sound in air
(“-i

350 m/s). Wavefront contours are then suppressed in
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0

t/0

0

horizontal position (m)

Fig. 7.2. Surface arrival time curves for the five wavefront systems depicted in Fig. 7.1.

this region for visual clarity. The surface arrival time curves displayed in Figure 7.2 illustrate

that nonpiane topography has a complicating effect on an interpretation.

Vidale’s wavefront construction algorithm has been altered in two important ways in

order to improve its suitability for the shallow refraction problem. First, the traveltime

calculations are initiated from a spatially extended source, rather than a point source. In

the 2D case, source activation times are specified on and inside a rectangular region located

within the velocity field; arrival times at grid points outside this rectangle are generated by

the normal working of the algorithm. Since wavefronts are strongly curved in the immediate

vicinity, of a point source, use of the plane wave finite-difference operators will yield inaccu

rate traveltimes in this region. Moreover, these inaccuracies will be propagated to greater

distances, where the plane wave extrapolators are locally valid. In order to avoid this prob

lem, near source traveltimes are calculated via mathematically exact formulae appropriate

0 25 50 75 100
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for either a constant or linear velocity field. Although more complicated velocity distribu

tions can be considered, these particular velocity functions provide sufficient flexibility for

many traveltime computation problems.

Second, the mathematical form of the traveltime extrapolation operator is modified in

those cases where there is a large velocity increase across a grid cell. This situation is rela

tively common in the shallow refraction environment. The interface between unconsolidated

overburden and consolidated bedrock, or between saturated and unsaturated alluvium, often

represents a sharp velocity increase. In these cases, as the following analysis indicates, the

conventional traveltime extrapolation formula may fail.

Figure 7.3a depicts a system of plane wavefronts propagating across a square grid cell

with side length h. The arrival time at the corner numbered 4 must be calculated from the

known arrival times t1, t2, and t3 at the other three corners of the cell. Assuming a plane

wave advancing with a constant slowness s, this time is given by t4 — ti + (/h cos

where the angle S describes the ray direction relative to the cell diagonal. Simple geometric

analysis yields

I t3_t22
COSS = 1

—

____

Hence

t4 = t1 + i/2(hs)2
— (t3 —t2)2 . (7.1)

This expression is identical to Vidale’s (1988) equation (3), which was derived by approx

imating the partial derivatives in the 2D eikonal equation by finite differences and then

solving algebraically for t4. The present derivation clearly reveals the underlying geometric

assumption of plane wave propagation.

If the argument of the square root in equation (7.1) becomes negative, then the plane

wave extrapolation formula is obviously invalid. This may occur, for example, if there is a

dramatic velocity increase across the cell (implying that the slowness s assigned to the cell
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Fig. 7.3. Finite-difFerence traveltime extrapolation operators. (a) Locally plane wavefronts;

9 is the angle between the ray (heavy line) and the cell diagonal. (b) Circular wavefronts.

In each case, the square grid cell has side length h and assigned slowness s.

is quite small). In these cases, the arrival time t4 is calculated via the alternative formula

= ruin {t1 + t2 + hs, t3 + hs}. (7.2)

The geometric basis of equation (7.2) is ifiustrated in Figure 7.3b. In effect, the plane

wavefront approximation is abandoned and Huygens’ principle is used directly to calculate

the next traveltime. Although this computed time is not exactly correct, extensive numerical

testing indicates that equation (7.2) is superior to the fix advocated by Vidale (1990) (i.e.,

if the argument of the square root becomes negative, take t4 = t1).

a)

ti t2

b)

ti t2

h

t3 t4t3 t4
\
\
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7.2.2 Wavefront reconstruction

Figure 7.4 displays the forward and reverse wavefront systems generated by shooting

over a shallow syncine. These are the wavefronts that give rise to the first arrival times

observed on the surface. The finite-difference traveltime algorithm can now be used to

recreate subsurface wavefronts from knowledge of the arrival times recorded at the surface.

The source rectangle is placed at zero depth and is greatly elongated in the horizontal

dimension. This line source is then activated sequentially (rather than simultaneously) with

an initiation function T(z) derived from the recorded refraction arrival times T(z):

Ts(X) = TR — T(X), (7.3)

where TR is the reciprocal time. At source-receiver offsets X less than the crossover distance,

phantom arrival times T(X) can be constructed from parallel traveltime curves recorded

from distant shotpoints (Rockwell, 1967; Ackermaun et al., 1986). The line source generates

a set of wavefronts radiating downward into the specified velocity field (Figure 7.5). The

downward continuation velocity function v(z, z) is selected as a good approximation to

the actual near surface velocity structure. Hence, within the overburden, the calculated

wavefronts coincide with the emerging refracted wavefronts of Figure 7.4. Since the position

of the refracting interface is initially unknown, the wavefronts are continued to greater depth

using the known velocity field v(c, z). Rockwell (1967) referred to these traveltime loci as

a “directed wavefront system”; in this study, the phrase wavefront reconstruction is used to

describe the process of creating an emergent wavefront system from recorded surface arrival

times.

7.3 Refractor imaging

Let tf(x, z) and tr(z, z) refer to the subsurface traveltime fields reconstructed from the

forward and reverse arrival times, respectively. Then, according to Hagedoorn’s (1959)

imaging principle, the refracting interface is implicitly defined by the relation
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Fig. 7.4. Forward and reverse first arrival wavefronts for a shallow syndine model. Over

burden velocity v = 1500 m/s, bedrock velocity v2 = 2500 rn/s. Grid cell size is 5 m and

contour interval for wavefronts is 30 ms.

0

.5

0

1 1.5 2

.5 1 1.5

horizontal position (km)
2



154

I

a)

2.5

I

a)

U)

•0

Fig. 7.5. Emergent wavefronts reconstructed from the surface arrival times recorded over
the shallow syndine. Downward continuation velocity v(x, z) = 1500 rn/s. Grid cell size is
5 m and wavefront contour interval is 30 ms.
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tf(X,Z) + tr(x,z) TR. (7.4)

Figure 7.6 graphically illustrates the superposition of the two reconstructed wavefront sys

tems shown in the prior figure. This 2D array of superposed traveltimes is systematically

searched to locate grid points where the imaging condition (7.4) is satisfied. If equation

(7.4) does not hold on a grid point, linear interpolation between adajacent points is used

to find the proper depth. The resulting depth locus z() (dashed line in Figure 7.6) is an

accurate spatial image of the original refracting horizon, except near the edges of the input

velocity field where the subsurface wavefronts are not reconstructed correctly.

Figure 7.7 indicates that the technique is also capable of imaging anticinal structure

The apex of the anticine is imaged slightly too deep because the refracted rays penetrate

beneatk this stucture, rather tKan propagating along the undulating interface (e.g., Rage-

doom, 1959, figures 2 and 3). Note that a. similar problem does not occur with the syndine,

because there is a tendency for the diffracted ray to follow the interface in the presence of

syncinal structure.

The calculated locus for the refracting horizon depends on the reciprocal time TR and

velocity field v(x, z) used for downward continuation of the surface arrival times. Variations

in these quantitites from their correct values will induce variations in the depth and position

of the refractor.

It is relatively easy to assess the dependence of the refractor image on the value of the

reciprocal time. The forward and reverse subsurface traveltime fields are added together

and the result is contoured for various candidate “imaging times”. Figure 7.8a illustrates

this situation for the buried syndline. If the imaging time used is less than or greater than

the true reciprocal time, then the interface image is too shallow or too deep, respectively.

This particular dependence upon the reciprocal time is the converse of that predicted by

the classical wavefront method (Rockwell, 1967, p. 378). The difference arises from the

method of reconstructing the subsurface wavefronts. Currently, finite-difference traveltime

computations are initiated with the source function (7.3) and the algorithm is run forward
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Fig. 7.6. (a) Superposition of the two reconstructed wavefront systems of Fig. 7.5. Dashed

line is the locus satisfying the refractor imaging condition. (b) Comparsion of the true (solid)

and imaged (dashed) refracting interfaces.
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Fig. 7.7. (a) Superposition of the forward and reverse reconstructed wavefronts (contour
interval = 30 ms) over a shaJiow anticine. Dashed line is the refractor image. (b) Comparison
of the true (solid) and imaged (dashed) refracting interfaces.
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Fig. 7.8. Dependence of the syncline locus on imaging time (top) and downward continuation

velocity (bottom). Different images correspond to increments of 10 ms in imaging time and

100 rn/s in velocity, respectively. Heavy lines are the images corresponding to the correct

values of TR and v.
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in time. Hence, subsurface wavefronts are labeled with times later than the surface source

values. In contrast, the classical wavefront reconstruction methods label the subsurface

wavefronts with times earlier than the surface measured times. In either case, the true

position of the interface corresponds to an imaging time equal to TR.

Quantifying the dependence of the refractor image on the downward continuation ve

locity is more complicated. Forward and reverse subsurface wavefront systems must be

reconstructed for each velocity function used in the analysis. Figure 7.8b displays a set of

images of the shallow syncine calculated for various values of a constant downward continu

ation velocity. If the velocity is less than or greater than the actual overburden velocity, then

the interface image is too shallow or too deep, respectively. Moreover, a grossly incorrect

continuation velocity distorts the shape of the interface structure. Hence, in common with

many other seismic refraction interpretation techniques, accurate time-to-depth conversion

with the wavefront method requires good knowledge of the overburden velocity distribution.

This information can be obtained from uphole times, direct and reflected arrivals, shallow

refractions, and borehole data.

Finally, the accuracy of the solution depends on the reliability of the picked first arrival

times. The ability of the method to resolve small scale features on the refracting horizon is

also limited by the field geophone interval. These phenomena are analyzed by performing

the inversion with noisy traveltime data sampled at an assumed geophone interval. Figure

7.9 displays the refractor image obtained by downward continuing error contaminated arrival

times sampled every 25 m. Spatially correlated, normally distributed time errors (standard

deviation 5 msec; correlation distance = 100 m) are added to the theoretically exact

refraction picks. Appendix F describes the method used for computing correlated random

noise. A cubic spline is then loosely fitted to the noisy arrival times and is used in equation

(7.3) for the source initiation function. The experiment has detected the presence of the

syndine, and its lateral position and depth are approximately correct. Long wavelength

undulations on the refractor are artifacts of the spatially correlated noise, but are not unduly

harmful to the structural interpretation.
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Fig. 7.9. Reconstructed wavefonts and syndine image formed from noisy traveltime data
sampled at a geophone interval of 25 m. Grid cell size is 5 m and wavefront contour interval
is 30 ms. Long wavelength undulations on the refractor arise from spatiafly correlated
traveltime errors.

7.4 Refractor velocity estimation

A particular advantage of the wavefront method is that the interface depth calculation

is independent of the refractor velocity. Rather, the velocity of the substratum can be es

timated after the position of the refracting horizon is determined. The distance between

two points on the interface divided by the difference in the reconstructed wavefront times at

these points is an estimate of the refractor velocity. This value is assigned to the midpoint

of the two points for plotting purposes. In effect, the directional derivative of the subsurface

traveltime field along the interface locus is computed by a centered finite-difference formula;

the reciprocal of this value corresponds to the local velocity of the refractor. Either the for

ward or reverse wavefront systems may be used for the computation. Figure 7.10 illustrates

that the refractor velocity estimated in this manner possesses systematic errors related to

.5 1 1.5 2

horizontal position (km)
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Fig. 7.10. Refractor velocity estimates for the syncine (top) and anticine (bottom) models.

The spatial differencing interval used for the calculation is 200 m. Small amplitude, short

wavelength oscillations are artifacts of the grid interval.
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the interface structure. However, for the two synthetic examples examined here, the inferred

velocity values are everywhere within 3% (or ± 75 m/s) of the correct values.

7.5 Field data example

The interface imaging procedure is tested with a shallow refraction dataset acquired

at the archeological site of Phalasarna in western Crete. Hadjidaki (1988) discusses the

historical and archeological significance of this site and also gives a detailed description of

the surface and near subsurface conditions. Forward and reverse refraction proffles were

recorded along an inline spread of 18 geophones (geophone interval = 0.5 m, near source

offset 0.5 m) during the summer of 1989. The data acquisition system consisted of a

portable signal stacking seismograph with a hammer energy source. First arrival time picks

were made on stacked traces in order to reduce random errors induced by ambient noise.

The arrival times observed at reciprocal source positions at opposite ends of the spread

differ slightly (16.40 msec vs. 16.70 msec on the forward and reverse profiles, respectively)..

Since a. successful inversion requires consistency in the measured reciprocal times, reciprocal

time corrections (Hatherly, 1982) are applied to the picked arrival times. A constant time

shift is added to the raw time picks on each source gather in order to adjust the observed

reciprocal times to the average value of 16.55 msec.

Figure 7.11 displays the 18 first break picks recorded on the forward and reverse proffles

after application of these reciprocal time corrections. A preliminary interpretation of the

plotted traveltime curves identifies the direct and refracted branches. Overburden velocity,

determined from the slopes of the direct arrival segments, exhibits a weak lateral variation

(‘—‘ 8%) over the 9 m spread length. This information is used to construct a near surface

velocity function for subsequent downward continuation of the refracted arrival times. A

cubic spline is fitted to the 16 refraction picks on each spread and is extrapolated to zero

offset as a straight line. These curves are then used in equation (7.3) to calculate the source

initiation functions required for the wavefront reconstruction algorithm.
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horizontal position (m)

Fig. 7.11. Shallow refraction traveltime data acquired at the dry harbor of Phalasarna,
Crete. First break picks are indicated by triangles, and interpreted arrival time branches by
smooth curves.

Figure 7.12a depicts the subsurface wavefronts generated by downward continuing the

refracted arrival times through a near surface velocity field given by v(x) = 252 — 2.11

(x in m and v in m/s). A shallow undulating interface is then imaged using the corrected

reciprocal time TR = 16.55 msec. The refractor velocity estimate (Figure 7.12b) exhibits

two distinct zones: i) abrupt variations about 800 rn/s on the left, and ii) a low velocity

zone slower than 800 rn/s on the right.

The validity of various refractor velocity functions can be tested by using the wavefront

construction algorithm to compare predicted traveltimes with the observed traveltimes. A

uniform refractor velocity of 800 m/s leads to unacceptably large differences (Figure 7.13b).

When a low velocity zone is introduced into the refractor, good agreement is obtained

(Figure 7.13c). The effect of the low velocity zone is evident in the plotted forward and

reverse wavefronts of Figure 7.14 between 6 m and 8 m horizontal position. Note that

0
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Fig. 7.13. Comparison of observed and predicted first break times for two refractor velocity
functions. (a) Constant velocity (dashed) equals 800 rn/s and variable velocity (solid) in
cludes a low velocity zone between 6 and 8 m. (b) Predicted traveltimes calculated with the
constant refractor velocity. (c) Predicted traveltimes calculated with the variable refractor
velocity.
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Fig. 7.14. Subsurface wavefronts (contour interval = 0.5 ms) constructed from the earth
model with the laterally varying refractor velocity. Grid cell size is 0.02 m. Note the effect
of the low velocity zone between 6 and 8 m.
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the strong variations in refractor velocity displayed on the left in Figure 7.12b need not be

incorporated into the model to obtain an adequate fit to the measured arrival times. Further

adjustment of the refractor velocity to obtain a closer fit is probably unwarranted.

Although the recovered model of Figure 7.14 generates acceptable predicted traveltimes,

it cannot be stated with certainty that this is the correct earth model. Other interpretations

of the observed traveltime data, incorporating multiple layers or lateral changes in structure

and/or velocity, are possible. Since the refraction dataset does not include arrival times

recorded from far offset shotpoints, it is not possible to distinguish between these alternatives

(Ackermann et al., 1986). However, the inferred model is consistent with known subsurface

information from the vicinity of the refraction proffle. Archeological treadling conducted

about 17 m distant encountered dipping sandstone bedrock at approximately 1.8 m depth

(Hadjidaki, 1988). Various earthen and gravel layers overlie the bedrock. A porous, aerated

sandstone might have a P-wave velocity as low as “.‘ 800 rn/s. Hence, the preliminary

interpretation is that the interface imaged in Figure 7.14 is the upper surface of the sandstone

bedrock. The very low velocity between 6 m and 8 m may be a zone of more extensive

weathering, fracturing, or aeration. Alternately, it is possible that one of the overlying

shallow gravel layers has been imaged.

7.6 Conclusion

The essential requirements for reconstructing shallow refracted wavefronts are:

1) arrival times T(X) from a given marker horizon recorded

• (or phantomed) on a forward and reverse spread,

2) a reciprocal time TR,

3) a near surface velocity function v(x, z).

A simple modification of Vidale’s finite-difference traveltime algorithm then allows the rapid

calculation of the subsurface wavefront systems that give rise to the recorded arrival times.
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Although the synthetic examples described here use a uniform near surface velocity, down

ward continuation through a varying velocity field is also possible with no increase in com

putation time. The buried refracting horizon is delineated in a subsequent step by applying

Hagedoorn’s imaging principle. No prior assumption regarding the refractor velocity is re

quired. Rather, the velocity of the substratum can be estimated by calculating the directional

derivative of the reconstructed wavefront systems along the imaged interface.

Picking of first arrival times and assignment of these picks to specific refractors are

necessary in this method. The final locus for the refracting interface is sensitive to errors

- in the picked times, as well as to an incorrect choice of the reciprocal time and velocity

field. However, since the technique is not computationafly intensive, it is possible to assess

the magnitude of the position and depth uncertainty by performing the inversion repeti

tively. The forward modeling capabffities of the finite-difference traveltime algorithm can

also be used to quickly generate predicted arrival times from the inferred subsurface model.

Comparison of these times with the observed data is a powerful method of establishing the

significance of various features of the recovered earth model.

Finally, two specific problem areas with the automated wavefront reconstruction method

have been identified that merit further research: i) downward continuation of traveltimes

recorded along a nonplane surface, and ii) correction of the refractor velocity function for

the effects of structurally induced errors. Although a fully automated solution to these

problems is not yet available, this should not prevent the immediate application of the

method in shallow seismic refraction exploration.
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CHAPTER 8

TWO DIMENSIONAL TOMOGRAPHIC INVERSION WITH

FINITE-DIFFERENCE TRAVELTIMES

8.1 Introduction

Curved ray traveltime tomography was originally developed by Bois et al. (1972) for the

purpose of estimating the seismic velocity distribution between two boreholes. Following

their seminal work, several investigators advanced the technology of tomographic imaging

with curved raypaths (Lytle and Dines, 1980; Bishop et aL, 1985; McMechan et aL, 1987;

Bregman et al., 1989; White, 1989). Curved ray methods are necessary for accurately

reconstructing the velocity field in highly refractive media. Although straight ray techniques

are adequate in media with relatively small velocity variations, it is difficult to decide when

the simplifying assumption of straight line raypaths becomes invalid. Hence, there is a

compeffing reason to use curved ray methods in all situations: they are based on a more

accurate model of wave propagation through variable velocity media.

Traveltime tomography is a nonlinear inverse problem that can be solved by local lin

earization and iteration. Since the velocity field is updated on each cycle of the tomographic

imaging procedure, rays have to be retraced between all source-receiver pairs. This raytrac

ing constitutes a large part of the computational cost of curved ray tomographic inversion.

Two-point raytracing between a specific source and receiver is an iterative process, and may

encounter difficulties due to shadow zones and multipathing. In this study, the problems

associated with conventional raytracing are circumvented by calculating traveltimes to all

points of a two dimensional slowness field with a rapid finite-difference algorithm (Vidale,

1988). Raypaths are then generated by following the steepest descent direction through

the computed traveltimes from each receiver back to the source. This method yields the

raypaths of all wave types that comprise first arrivals (body waves, head waves, and diffrac

tions). Moreover, since arrival times are calculated throughout the slowness field, arbitrary

recording geometries are easily accommodated.
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In addition to rapid and accurate forward modeling, tomographic inversion requires the

solution of a system of linear algebraic equations to obtain the improved velocity field. This

solution may exhibit erratic and unphysical behavior due to noise in the observed traveltime

data and/or ill-conditioning in the equations. Hence, some form of regularization is often

used to stabilize the inversion. For example, Lytle and Dines (1980) introduce Laplacian

smoothing into the system when calculating a perturbation to a slowness model. Bishop et

al. (1985), Bregman et al. (1989), and White (1989) limit the size of the model perturba

tion by using the damped least squares method. Macrides et al. (1988) impose inequality

constraints on a perturbation calculated via an ART algorithm. The present approach is

to apply linear equality constraints directly to the slowness model, rather than to a model

perturbation, on each iteration of the inversion procedure. In addition to improving the

mathematical conditioning of the system, the constraint equations allow the introduction of

a priori geological or geophysical knowledge about the model into the iuversioa. In particu

lar, the constraints may arise from a desire to impose a preferred character, like flatness or

smoothness, on the slowness solution. Alternately, one may seek a model that is close, in

some quantitative sense, to a prescribed base model. Inclusion of these constraint equations

restricts the nonuniqueness that is common in realistic tomographic inverse problems.

The nonlinear tomographic inversion procedure described in this chapter consists of four

basic steps:

1) calculation of first arrival traveltimes from each source location to all points of a gridded

slowness field,

2) generation of raypaths between all source-receiver pairs,

3) solution of a large and sparse system of linear equations for a perturbation to the existing

slowness model,

4) updating and (optionally) smoothing the slowness model.

This four-step process is initiated with an estimate of the true slowness function, and is

repeated until an acceptable match is obtained between observed and calculated traveltimes.
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The initial estimate is usually a uniform slowness field. Subsequent sections describe these

steps in more detail, and demonstrate the inversion procedure using synthetic traveltime

data from simulated VSP and crosswell experiments.

8.2 General theory and model representation

The traveltime of a seismic wave propagating through a slowness field s is given by the

path integral

t(s)
= f sdl, (8.1)

r(s)

where r(s) is the raypath connecting source and receiver, and dl is an incremental path

length. Since the raypath locus depends on the slowness, the traveltiine t(s) is a nonlinear

functional of s. The problem can be linearized by considering the traveltime difference

At t(s + As) — t(s), where As is a perturbation to the slowness field s. For a sufficiently

small perturbation, the raypath F(s + As) is approximated by the original raypath F(s).

Fermat’s Principle then implies that the traveltime through the perturbed slowness field

can be evaluated by integration along the unperturbed raypath. The traveltime difference

becomes

At
= J As dl. (8.2)

T(s)

Hence, a smafl difference in traveltime is linearly related to a small difference in slowness.

The two dimensional slowness function s(x, z) is represented by a set of K square cells,

each with a uniform slowness value mk (k = 1,2, . .. , K). Thus, within a cell, a raypath

is a straight line segment. For a collection of raypaths, equation (8.2) is expressed as the

matrix/vector product

At = A(m) Am, (8.3)

where A(m) is a matrix of raypath length segments within the square cells of the slowness

model m. In the tomographic inversion problem, a model perturbation Am is sought such
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that the improved model m + m approximates the true slowness model that generates the

measured traveltime data. Hence, the traveltime difference vector it is given by

t0b3 t,.d(m), (8.4)

where t3 is a vector of observed arrival times, and t,.d(m) is a vector of predicted tray

eltimes computed from the known slowness model m. In principle, equation (8.3) can be

solved for the required model perturbation. In practice, solution difficulties arise because the

-raypath matrix is commonly nonsquare, large, sparse, and rank deficient. Moreover, since

the observed traveltimes contain random errors, the system (8.3) may be inconsistent. In

this case, an exact solution does not exist and a minimum misfit solution is usually sought.

Finally, if the initial model m is a poor approximation to the true slowness, several iterations

of the model updating procedure may be necessary before the inagnitude of the traveltime

residual vector zt becomes acceptably small.

8.3 Forward modeling

The first arrival times of a seismic wave propagating through a two dimensional ve

locity structure are computed by Vidale’s (1988) finite-difference scheme. This algorithm

uses plane wavefront traveltime operators to extrapolate arrival times from point to point

throughout a uniformly spaced grid. The method is rapid and accurate, and can be ap

plied to a heterogeneous medium with moderate to strong velocity variations. Podvin and

Lecomte (1991) describe improvements to the local traveltime extrapolators that allow mod

els with very strong velocity contrasts to be examined. The traveltimes of all wave types that

comprise first arrivals (body waves, head waves, and diffractions) are calculated. Reflections

and other later arrivals are not included; this represents a limitation of the technique as

currently formulated.

Vidale’s method is based on a centered finite-difference solution of the eikonal equation

on each square cell of a gridded slowness field. Thus, the associated discretization error

is second order in the grid cell size. An input slowness function s(x, z) is sampled on a



173

uniformly spaced two dimensional grid. If the grid interval is h, then the sampled slowness

values are given by sj = sQc, zj), where ij = Xmin + (i — 1)h and Z = Zmjn + (j 1)h (with

i 1,2,.. .,I and j = 1,2,... ,J). Since there are IJgrid points, there areK = (I—l)(J--l)

square cells. The slowness assigned to a particular cell is the arithmetic mean of the slowness

values at the four bounding grid points:

1
mk = (sj + .s+i,j + si,j+i + S+1,j+1), (8.5)

-where k i + (I — 1)(j — 1). With this indexing scheme, the elements of the vector

constitute a row-ordered sequence of the two dimensional array of cell slowness values. An

individual cell is referenced either by the coordinate indices of its upper left corner (ii), or

by its sequential index (k).

Calculations are initiated at a designated source point (,z3) (not necessarily coinci

dent with a grid point) within the slowness model. Since wavefronts are strongly curved

in the immediate vicinity of a point source, plane wavefront traveltime extrapolators are

inappropriate in this region. Furthermore, near source inaccuracies are propagated to all

greater distances. In order to mitigate these effects, the traveltimes in a near source rect

angle are calculated via mathematically exact formulae derived from certain simple velocity

distributions. Hence, consider the linear velocity function

v(z,z) = v3 + a(x —x3)+a2(z— z3), (8.6)

where v3 is the velocity at the source location, and a and a are the horizontal and vertical

components of the velocity gradient vector. Numerical values for these constants are obtained

by performing a least squares fit to the velocity samples vj = l/sjj surrounding the source.

The gradient components can be expressed in terms of the magnitude a and direction angle

çS (relative to vertical) of the gradient: a,, = a sin q’ and a = a cos q, where a = ../a2,, + a

and tan 4 = a,,/a. If the frame of reference is rotated through the angle , then the velocity
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field (8.6) is transformed into a one dimensional function. The spatial coordinates in the

rotated system are designated by primes and are given by

xl = x cos 4) — z sin 4), x SIn 4’ + z cos 4’.

In the rotated frame, the velocity function becomes v(z’) = v3 + a(z’ — z). The arrival

time at an arbitrary near source location (z’, z’) can then be calculated by standard 1D

techniques. The result is

I 21( i l’2j( I\2
I l — — a LkX Xs) IZ Z31

LIx ,Z — Siflit ii ,a y 4v[v3+a(z —z3)J

Wavefronts associated with this time field are eccentric circles with centers that are displaced

along a stiaight line through the source point, in the direction of the velocity gradient vector.

In the limit a —+ 0, it can be shown via L’Hopital’s rule that equation (8.7) reduces to the

proper expression for a uniform velocity field (i.e., circular concentric wavefronts).

The finite-difference algorithm calculates a traveltime tjj at every grid point of the

slowness field. If a receiver is not located on a grid node, then an interpolator is needed

to estimate the arrival time at the actual receiver position. Simple bilinear interpolation

provides adequate accuracy. Hence, if a receiver with coordinates (x,., z7) is located within

cell ij, then define the dimensionless quantities p = (z? — x)/h and q = (z,. — z)/h. The

interpolated traveltime is given by

t(xr,zr) = (1 —p)(l — q)t +p(l — q)tj,1+ q(1 —p)t,11 +pqt+i,+i. (8.8)

If the four arrival times bounding cell ij are due to local plane wave propagation, then

equation (8.8) is an exact expression for the traveltime at the interior point (x,., zr). In other

cases, the interpolator (8.8) has accuracy 0(h2) (Dahlquist and Björk, 1974, p. 319) and

thus is consistent with the level of accuracy associated with the forward modeling scheme.
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8.4 Ray generation

Raypaths are generated by following the steepest descent direction through a computed

traveltime field from each receiver back to the corresponding source point. This strategy

was originally suggested by Vidale (1988), and has recently been implemented by Podvin

and Lecomte (1991).

The horizontal and vertical components of the traveltime gradient vector within cell ij

are approximated by the centered finite-difference formulae

Ot (t+1,+ t+,+i) — (tq + (8.9a)
2h

(t,1 + — (t +t1,1) (8 9b
2h

Assignment of a constant traveltime gradient to a cell is compatible with the assumption

of locally plane wavefronts used in the forward modeling algorithm. The steepest descent

direction is opposite to the gradient direction of the traveltime field. Hence, within cell ij

(or k), the steepest descent direction is defined by the angie

—1 at/az
= tan + ir (modulo 2w). (8.10)

8k is measured clockwise from the positive horizontal axis. For a fixed source, all raypaths

that cross cell ij have this same orientation angle. The lengths of the raypath segments

within the cell range from zero to a maximum of h.

A representative situation for cell ij is depicted in Figure 8.1. The raypath enters the

cell at point A on its right boundary with coordinates (ma, za). Depending on the value of

the steepest descent angle assigned to the cell, the ray may exit on any of the remaining

three sides or one of the four corners. The logic that selects one of these seven possibilities
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xi xiii x
— I I

zi

zj+1

z

Fig. 8.1. Raypath (heavy line) traced through square cell ij of a 2D slowness model. Ray
enters cell at point A, follows the local steepest descent direction across the cell, and exits
at point B.

is given in the first column of Table 8.1, where al and a2 are positive acute angles defined

by
—1 fZj+1 — Za\ —1 fZa Zj

= tan
h

a2 = tan
h

These two angles are illustrated in Figure 8.1. After an exit option is selected, the coordinates

of the exit point B are easily determined (columns 2 and 3 in Table 8.1). These coordinates

(xl,, zb) constitute the entry point coordinates for the next cell that the ray crosses (columns

4 and 5 in Table 8.1). In the particular case displayed, the raypath enters cell i,j + 1 on

its top boundary. Hence, a different logical scheme is required to extend the raypath across

this next cell. A total of eight logical tables are necessary to handle all of the possibilities.

B
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Angle Range Exit Coordinates Next Cell Indices

o < ir/2 i + 1 j + 1

ir/2 <8k <r — Xa + (Zj+i — za) cot 8k Zj+l i

=lr—al Xi zi+i i—i j+1

1<9k.<lr+a2 xi zahtallOk i—i j
xi Zj i—i f—i

r + <8k <3ii-/2 x + (Zj — za) cot 0k i j — 1

3ir/2 9j <2ir z1 i + 1 j — 1

Table 8.1. Ray tracing logic for an entry point on the right side of a square grid cell. Column
1 gives possible ranges for the steepest descent angle 9k assigned to the cell. Angles al and
a are defined in the text and ifiustrated in Fig. 8.1. Columns 2 and 3 give the horizontal
and vertical coordinates of the ray exit point, respectively. (xa, za) are the ray entry point
coordinates. Columns 4 and 5 give the indices of the next cell that the ray enters.

These correspond to a raypath entering a cell on the right, bottom, left, and top sides, and

the upper right, lower right, lower left, and upper left corners.

The length of the raypath segment within cell ij is easily calculated once the entry and

exit coordinates are known. Although tomographic inversion requires only the value of the

segment length, the actual coordinates (xa, Za) and (zb, zb) are also retained in order to

create raypath plots for diagnostic purposes.

Ray tracing is initiated at each receiver position. If a receiver is located on a grid

node or grid line, then an average of the steepest descent angles from the neighboring cells

determines which cell the raypath enters first. Tracing then begins using the logic outlined

above. However, if a receiver is positioned within a cell, a separate logical scheme generates

the initial path segment to the enclosing cell boundary. The technique is similiar to that

described above and is given in Appendix G. Iterative generation of path segments continues

until the raypath arrives at the boundary of a defined near-source zone. The size and shape
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of this region vary slightly depending on whether the point source resides on a grid node, a

grid line, or within a cell (see Appendix G). The final portion of the raypath is then taken to

be a straight line from the boundary point directly to the source position (c3,z3), regardless

of the local values of the steepest descent angle. This ray termination procedure is designed

to overcome difficulties associated with nonuniformity of the traveltime gradient vector in

close proximity to the source.

Figure 8.2a is a contour plot of a velocity model bounded by two vertical boreholes.

A shallow low velocity anomaly overlies a dipping, higher velocity zone. The first arrival

wavefronts from a surface source located between the boreholes are illustrated in Figure 8.2b.

The wavefronts are retarded by the low velocity zone and advance more rapidly through the

high velocity zone. In addition, Figure 8.2b displays the raypaths traced through this time

field from 18 downhole receivers back to the source. The raypaths are orthogonal to the

wavefronts, as expected.

8.5 Inversion mathematics

As indicated previously, system (8.3) is typically ill-conditioned and inconsistent. Hence,

an undamped least squares solution (m = (ATA)_lAT.t) may yield a model update vec

tor with relatively large and unrealistic cell-to-cell variations in slowness. The conditioning

of these equations can be improved by incorporating model constraint information into the

inversion. Hence, the system (8.3) is augmented with sets of linear equality constraints on

the updated model m + zm. In addition to mathematically stabilizing the inversion, these

equality constraints allow the convenient introduction of a priori geological or geophysical

knowledge (or bias) into the problem.

In general, a set of linear constraint equations applied to the improved model m + m

is written as the matrix/vector multiplication

B(m + z.m) = b, (8.11)
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250
horizontal position (m)

Fig. 8.2. (a) Velocity model (contour interval = 100 m/s) with a horizontal low velocity
zone and a dipping high velocity zone. Maximum velocity = 2800 rn/s; minimum velocity =

1633 rn/s. (b) Wavefronts (contour interval = 25 ms) and raypaths generated by a surface
source. The raypaths are traced from 18 downhole receivers back to the surface source.
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where the coefficient matrix B and the right hand side vector b are prescribed. The

subscript m (n = 1,2,. .. , N) is used to refer to a particular set of constraints. A perturbation

Am that simultaneously satisfies, in the least squares sense, the linearized data equations

and the model constraint equations is sought. Hence, the relevant objective function is

(Am) = A Am — At 112 + B(m + Am) — b 112, (8.12)

-where the scalars p (0 < < +oo) are adjustable tradeoff parameters that control the

relative importance of the various terms. Extremizing with respect to Am yields the

linear algebraic equations

[ATA + p, BBn] Am ATAt + — B m). (8.13)

For nonzero ji, the coefficient matrix in this expression is usually nonsingular. The re

quired model perturbation Am can be obtained by solving (8.13) using standard techniques

of numerical linear algebra. However, the coefficient matrix is large (K x K, where K is the

number of slowness cells) and may be dense even if the original raypath and constraint ma

trices are sparse. Hence, it is advantageous to seek a solution method that avoids explicitly

forming the square matrices ATA and

It is straightforward to demonstrate that (8.13) are the normal equations associated with

the least squares solution of the rectangular system

A At
— Bim)

Am = . (8.14)

vhi(bN- BNm)
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Algorithm LSQR (Paige and Saunders, 1982) is used to solve equation (8.14) directly for

m. LSQR is an iterative solution technique for large and sparse systems of linear equations

that is closely related to the conjugate gradient method. It is designed to seek the minimum

norm least squares solution of a set of equations. Numerical studies of LSQR applied to

the tomographic inversion problem indicate that it is both rapid and accurate (Nolet, 1985;

Scales, 1987). A simple FORTRAN version of the LSQR algorithm is given by Nolet (1987).

The dimensions of the coefficient matrix in (8.14) are (Ndata +N03) x K, where Ndati,

and N3 are the number of data and constraint equations, respectively. Since this matrix

may be large and sparse, a significant reduction in storage space is achieved by storing only

the nonzero elements in a one dimensional array. The full index scheme described by Scales

(1987) is used here to store and address the matrix elements. With this storage method,

the sparse matrix/vector multiplications required by the LSQR algorithm are particularly

simple to implement. -

Finally, the correction to the slowness value at grid point ij is determined by averaging

the slowness perturbations calculated for the four surrounding cells:

(tXm_i + Amkj+1 + Amk_l + Amk), (8.15)

where k = i + (I — 1)(j —1). Grid points located on the edges (corners) of the slowness model

are updated by adding the average of the perturbations associated with the neighboring two

(one) cells. After all grid points are updated, forward modeling of traveltimes for the next

iteration of the inversion can proceed.

Several investigators apply a spatial filter to the slowness field between tomographic

iterations in order to suppress short wavelength variations in the computed values (Dines

and Lytle, 1979; Radcliffe et al., 1984; Gersztenkorn and Scales, 1988). These variations

may arise from noise in the traveltime data and/or instabilities in the inversion. Smoothing

then serves to condition the slowness field for the next forward modeling step. Hence, an

optional 9-point square smoother with prescribed weights Wi is included here. The smoother
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is applied to the gridded values. The smoothed slowness value assigned to grid point ij is

given by

Sj = Wi Si—1,j—1 + W2 Si,j_1 + W3 Si+1,j_I

W4 Si—1,j + W5 S:j + W6 Si1,j

tV7 i—1,j+1 + W8 St,31 + W9 sii,ji , (8.16)

where > = 1. Grid points residing on the edges of the model are smoothed by concep

tuaJly extending the grid by one point with the local values. In the examples to follow, the

ifiter weights are W5 4/12 and all other wj = 1/12.

8.6 Model constraint equations

There is a wide variety of linear equality constraints that can be employed in the tomo

graphic inversion problem. The particular type of constraint used in this study is charac

terized by a two dimensional ‘operator’ or ‘filter’ with five specified constantsci, C2, C3, C4,

and C5. Figure 8.3 depicts the application of this operator to interior cell ij of a slowness

model. Using the row-ordered indexing scheme, the kth component of the ifitered image Bm

is given by

Cl mj + C2 mk+I_l + C3 mk_l + C4 mk_I+l + C5 mj.

Edge cells are handled by conceptually extending the slowness model beyond the defined

region with the local cell slowness values. For example, application of the 5-point operator

to the upper left corner cell (i = 1, j = 1 corresponding to k = 1) of the model m is via the

formula

ci m2 + C2 ml + (c3 + C4 + c5)ml.

One such constraint is applied to each cell of the slowness model. Development of the matrix

representation B for this set of equations is merely a matter of proper row and column
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Fig. 8.3. Schematic representation of the 5-point constraint operator applied to cell ij of a
slowness model. The slowness values in five neighboring cells are multiplied by constants Cl

through C5 and the products are summed.

indexing. In general, the components of the right hand side vector b may differ, implying

spatial variation in the value of the applied model constraints.

The 5-point operator is an extremely simple and flexible mechanism for introducing

various types of constraint information into tomograplilc imaging. Some examples include:

Case 1: C5 = 1 and all other c = 0. An individual cell slowness is not constrained by its

immediate neighbors. Rather, inversion produces a model that is closest, in the least

squares sense, to a given target model b.

Case 2: c = 1/2h, C3 —1/2h and all other c1 = 0. This operator is a centered finite

difference approximation to the horizontal derivative of the slowness field. A similar

approximation to the vertical derivative is achieved by setting c2 = 1/2h, C4 = —1/2h

xi xi+i x
I I

C4
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and all other ci = 0. These operators introduce first-difference regularization, or flatten

ing, into the inversion.

Case 3: ci = 1/h2, C5 = —2/h2,c = 1/h2 and all other cj = 0. This operator, as well as its

vertical counterpart, introduces second-difference regularization, or smoothing, into the

inversion.

Case 4: c = C2 = C3 = C4 = 1/h2 and C5 = —4/h2. This operator incorporates Laplacian

smoothing into the inversion.

These constraints are inherently local in character; they consist of linear relations between

adjacent cell slowness values. Obviously, an operator with larger spatial extent (say, a 9-

point square ifiter) would provide more options. However, the current 5-point operator

offers a reasonable compromise among the competing issues of flexibility, accuracy, and ease

of implementation. -

Combinations of constraints applied by the simple 5-point operator can also be con

sidered. For example, the next section illustrates situations where both horizontal and

vertical first-difference regulañzation is applied (i.e., N 2). The first system of constraint

equations corresponds to c = 1/2h and C3 = —1/2h, while the second set corresponds to

C2 = 1/2h and C4 = —1/2h. In each case, the right hand side vector b is set equal to 0.

8.7 Synthetic examples

The examples presented in this section demonstrate the ability of the tomographic in-

version procedure to image a smoothly varying velocity field. Figure 8.2a displays the 500 m

x 500 m velocity model used to generate synthetic traveltime data. Since the grid interval

is h = 5 m, there are IJ = 10201 grid points used for the forward modeling and K = 10000

square cells used in the inversion.

The data acquisition geometry used for the first example simulates a double-well VSP

plus crosswell experiment. Nine surface sources, located between two vertical boreholes,

are spaced 50 m apart. Traveltimes are recorded by 18 borehole receivers (9 per well; 50 m
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separation) from each source position. In addition, the 9 downhole receivers in the right well

record traveltimes from 9 sources symmetrically placed in the left well. The complete set

of 243 raypaths linking all source-receiver pairs is illustrated in Figure 8.4. Note that these

first arrival raypaths tend to avoid the low velocity zone, resulting in a region of reduced

ray coverage. Furthermore, no raypaths penetrate below 450 m depth.

Contoured velocity tomograms obtained by inverting the combined VSP and crosswell

traveltimes are displayed in Figure 8.5. As indicated above, both horizontal and vertical

first-difference constraints are imposed in the iterative inversions. Additionally, in Figure

8.5b, the slowness values of the cells adjacent to the two boreholes are constrained by the

true slowness function. In an actual field experiment, this information may be available

from borehole velocity logs. Each of these reconstructions produces an rms traveltirne error

of “-i 0.5 ms, which is about 0.25% of the rms value of the synthetic traveltimes (200.7 rns).

The main features of the true velocity model are recovered by both of the inversions

depicted in Figure 8.5. The location and amplitude of the dipping high velocity anomaly are

approximately correct. Also, the shallow low velocity zone has been detected and correctly

positioned, although the actual velocity value at its center is about 90 rn/s too high. This

effect is associated with the reduced raypath density in this area of the model. Interestingly,

inclusion of the borehole velocity constraints does not yield a dramatic improvement. The

principal difference between the two reconstructions appears in the region below 400 m

depth, where raypath coverage is negligible or nonexistent.

Six (Figure 8.5a) and nine (Figure 8.5b) iterations are required to reduce the initial

rms traveltime misfit to ‘—‘ 0.5 ms, with most of the improvement actually occurring on the

first iteration. As stated above, the conjugate gradient solver LSQR is also an iterative

algorithm. Theoretically, LSQR requires at most K iterations to converge to the solution

of a system with K unknowns (assuming exact arithmetic can be performed). For the

tomographic inversions described in this section, an acceptable solution is obtained with

about 10 iterations in LSQR, which is three orders of magnitude less than the theoretical

value K = 10000. This results in an appreciable saving in computation time.
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Fig. 8.4. 243 raypaths traced through the velocity field of Fig. 8.2a. These rays link all
source-receiver pairs of a combined double-well VSP and crosswell experiment.
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Fig. 8.5. Reconstructed velocity models (contour interval = 100 m/s) obtained by inverting
the combined VSP and crosswell traveltirnes. (a) No borehole velocity constraints applied.
Max velocity = 2819 rn/s; mm velocity = 1724 rn/s. (b) Velocity constraints imposed at
boreholes. Max velocity 2801 m/s; mm velocity = 1724 rn/s.
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Fig. 8.6. Reconstructed velocity model (contour interval = 100 m/s) obtained by inverting
noise contaminated VSP and crosswell traveltimes. Max velocity = 2810 m/s; nun velocity
= 1731 rn/s.
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Figure 8.6 illustrates that the tornographic inversion is stable when the synthetic tray

eltimes are contaminated with small amounts of random noise. Random numbers drawn

from a uniform probability distribution on ±4 ms are added to the exact traveltimes. The

iterative inversion is initiated with the same constant slowness model used for the previ

ous example. The convergence criterion for terminating iterations is arbitrarily selected to

be 2.5 ms of rms traveltime error, or approximately one standard deviation of the noise.

No borehole constraints are imposed. An accurate velocity reconstruction results when the

weights of the flattening constraints (..jij and in equation (8.14)) are set sufficiently

high.

C
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The final example examines the ability of the constrained inversion algorithm to recon

struct the interwell velocity field when only crosshole traveltimes are available. Figure 8.7

displays the 81 crosswell raypaths. The zone of reduced ray coverage at shallow depths is

much more extensive. Images obtained by inverting error free traveltimes are illustrated in

Figure 8.8. Once again, both horizontal and vertical flattening constraints are applied. The

image in Figure 8.8a displays a shallow low velocity zone and a deeper, dipping high velocity

zone. However, the peak of the high velocity anomaly is shifted downdip by a significant

distance. An inversion including borehole velocity constraints is displayed in Figure 8.8b.

- Surprisingly, the reconstruction is not improved; rather, a spurious region with high velocity

gradients develops near the right well.

The tomographic inversions in this section are all initiated with uniform slowness models

calculated via the method described in Appendix H. Similar results are obtained from a

range of nearby slowness values. Alternately, a nonuniform starting-mode1 obtained by

horizontal interpolation of the borehole slowness values can be be used. For the examples

considered here, this latter technique does not yield any obvious improvement in the velocity

reconstructions.

8.8 Conclusion

Finite-difference traveltime computation offers an attractive alternative to conventional

raytracing for tomographic inversion purposes. The method is sufficiently rapid and accu

rate, and handles all of the various wave types that constitute first arrivals. Moreover, since

traveltimes are computed throughout a slowness model, very general recording geometries

are easily accommodated. The main limitation of the technique is that it is restricted to first

arriving waves. Hence, the present formulation cannot be applied to the reflection tomogra

phy problem. However, current efforts to generalize finite-difference computation methods

to reflection traveltimes (e.g., Podvin and Lecomte, 1991) are encouraging.

The introduction of constraint information into traveltime tomography is a responsible

way to address the nonuniqueness inherent in this inverse problem. Constraining information

may arise from known geological or geophysical properties of the subsurface velocity model
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500

Fig. 8.8. Reconstructed velocity models (contour interval = 100 m/s) obtained by inverting
only the crosswell traveltimes. (a) No borehole velocity constraints applied. Max velocity
= 2811 m/s; mm velocity = 1792 rn/s. (b) Velocity constraints imposed at boreholes. Max
velocity = 2862 m/s; mm velocity = 1728 rn/s.
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(say, from outcrops or borehole logs). Alternately, constraints may derive from a desire

to impose certain reasonable attributes, like flatness or smoothness, on the constructed

model. The method of incorporating constraints into the mathematical inversion procedure

is adaptable to either viewpoint. Linear equality constraints are applied directly to the

constructed model, rather than to a model perturbation, and are satisfied in the least squares

sense. The examples illustrate the imposition of flattening constraints and known borehole

information in the reconstruction of a smoothly varying interwell velocity field. Inclusion of

this constraint information allows the solution of a problem that is strongly underdetermined

- (243 data and 10000 unknowns). Nevertheless, a superior result is not necessarily achieved

by the addition of the borehole velocity constraints.
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CHAPTER 9

SUMMARY

This thesis contributes to knowledge in three specific areas of seismic refraction travel-

time analysis:

(1) Forward modeling and inversion of head wave arrival times is extended to three dimen

sional layered earth models in Chapters 2, 3, and 4. This class of models is characterized

by uniform velocity layers bounded by plane interfaces with arbitrary strike and dip. Com

putational procedures are developed for both single-layer and multilayered models. In the

single-layer case, closed form mathematical solutions to the forward and inverse problems

exist. A rigorous derivation of a traveltime equation for critically refracted waves propa

gating within a multilayered model is also given. The resulting expression is not strictly

‘closed form’; it requires a minimal amount of raytracing to evaluate numerically. This

formula forms the basis of an iterative head wave traveltime inversion algorithm designed

to recover the parameters defining a single-layer or multilayered earth model. Inclusion of

constraint information in the procedure, in the form of inequality relations satisfied by the

model parameters, often governs the ability of the algorithm to converge to a realistic solu

tion. Tests with simulated and field data, acquired in various recording geometries, indicate

that the single-layer version of the algorithm is reasonably robust. However, the multilay

ered inversion algorithm appears to require fairly restrictive constraints in order to operate

effectively.

(2) Improvements to various two dimensional refraction traveltime inversion methods that

allow for nonplane interfaces and/or variable velocity media are developed in Chapters 5,

6, and 7. Two existing techniques (the generalized reciprocal method and the wavefront

method) are extensively analyzed and a new method (critical offset refraction profiling)

is proposed. This new technique is an improvement over the GRM in that it explicitly

incorporates undulating interfaces and horizontally varying refractor velocity into the model.

Moreover, point values of interface depth, interface dip, and refractor velocity are obtained

from the observed arrival times. Hence, a depth profile of the critically refracting horizon can
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be constructed via interpolation techniques. A rational procedure for calculating a smooth

depth profile, based on methods of linear inverse theory, is presented. This latter technique

is not limited for use solely with the critical offset refraction profiling method, but may

augment any traveltime analysis procedure that yields point depth or dip estimates of the

subsurface interface (such as the modified GRM developed here). Finally, an automated

implementation of the classical wavefront method for interpreting refraction arrival times

indicates that an image of an interface can be obtained directly from the picked times,

with no intermediate computational steps. A finite-difference propagation algorithm is used

- to downward continue the observed times through a heterogeneous near-surface velocity

structure. A simple imaging condition involving the reciprocal time then defines the locus

of the subsurface refracting horizon. Tests with synthetic data indicate that both antidinal

and synclinal structures can be imaged accurately. Shallow refraction data acquired at an

archeological site is also used to assess the workability of the algorithm.

(3) Application of finite-difference traveltime computation methods to the two dimensional

tomographic inverse problem is treated in Chapter 8. An iterative algorithm is developed for

reconstructing a. P-wave velocity field from measured first arrival times. Rapid and accurate

forward modeling of all first arrival types (direct waves, head waves, and diffractions) for

arbitrary source-receiver geometries is achieved with a finite-difference algorithm. Curved

raypaths, needed for converting traveltime residuals into localized updates to the slowness

model, are generated by following the steepest descent direction through the computed tray

eltime field from each receiver back to the source. Incorporation of constraint information

into the procedure, in the form of horizontal and vertical first difference regularization, serves

to stabilize the inversion and drive the solution toward a model with a. preferred character

(i.e., a ‘flat’ slowness model). Tests with simulated vertical seismic profile and crosswell

arrival times indicate that the algorithm can successfully reconstruct a smoothly varying

interwell velocity field, even when the problem is severely underdetermined.

These contributions can be applied to the solution of practical problems in seismic

refraction exploration, for various objectives and at many different scales. The stage is
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now set for generalizing the techniques to more complicated three dimensional models with

nonpiane interfaces and/or nonuniform velocities.
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APPENDICES

Appendix A: Conic sections in poiar coordinates

Expressions for conic sections in plane polar coordinates can be found in most textbooks

on analytic geometry. However, these formulae typically assume that the coordinate origin

is located either at the center of symmetry or at a focus of the curve. In this appendix,

an alternate representation of the effipse or hyperbola in polar coordinates is derived. The

principle axes of the conic are rotated by an arbitrary angle S with respect to the coordinate

axes, and the origin resides at any point along the major axis of symmetry.

In Figure Al, the primed coordinate system is obtained by a clockwise rotation of the

unprimed system through the angle 9. The coordinates of a given point relative to each

system are related via

= x cos 9 + y sinS, y’ = —z sin9 + y cos 9. (Al)

Consider an ellipse with center located on the z’ axis at (x’, y’) = (la, 0). The sexuimajor

axis a and the semiminor axis b are parallel to the x’ and y’ coordinate axes, respectively.

Figure Al depicts the case where a < l. However, the situation a> 1C is also allowed; in

the case, the effipse encompasses the origin. In the primed reference frame, the equation of

the effiptical locus is

(z-lc)2

+ (c)2 = i. (A2)

Substituting from relations (Al) yields

(x cos s + y sinS — ic)2
+
( cos x sin

9)2

= 1.
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However b2 = a2(l — e2) where e is the ellipse eccentricity (0 < e < 1). Thus

(1—e2)(xcos6+ysin6—l)2+ (ycos8—xsin9)2 = a2(1—e2).

This expression is converted to plane polar coordinates (X, a) via the substitutions x

X cos a and y = X sin a. After some algebraic reduction, a quadratic form in the radial

coordinate X is obtained:

X2 [i — e2 cos2(a — 0)] — 2X [(1 — e2)l cos(a — 6)] + [(1 —e2)(l — a2)j = 0. (A3)

The quadratic formula can be used to solve equation (A3) for X as a function of the azimuthal

angle a. However, this is algebraically tedious as well as unecessary for present purposes.

Note that the conventional expressions for an ellipse in polar coordinates are obtained as

special cases of equation (A3). Thus, setting l = 0 (i.e., origin coincident with the ellipse

center) immediately yields

I 1—e2
X(a) = a41

V l—e2cos2(a—0)

Also, if l = a e, then the origin is located at a focus of the ellipse. In this case (A3) gives

1—e2
X(a)

=

This form is common in mechanics; it describes the trajectory of a particle moving under

the influence of an inverse square central force.

A similiar analysis reveals that equation (A3) also applies to a hyperbola with the same

center location and principle axis orientation. The only difference is that the numerical value

of the eccentricity exceeds one (e > 1) for a hyperbola.
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Fig. Al. A noncentered, rotated effipse.



205

Appendix B: Traveltime analysis for a simple 3D model

A compact formula for head wave traveltime in a simple three dimensional earth model

is derived in Chapter 2 (equation (2.10)). The purpose of this appendix is to verify that the

more general expression (3.12) reduces to this known result in the special case of a two media

model with a horizontal surface. Evaluating equation (3.12) with 1,z = 0, mi,z 1,

and with the interface index k = 2 gives

-
T2(xs, , )

[cos 1I q12,z + sin ‘ q12,y] x

+
hi(O, O)(p12,z — q12,z) — xS(p12,z— q12,z) — ys(p12,i,— q12,) (B1)

Expressions for the zyz components of the unit propagation vectors are now determined.

As indicated in Chapter 2, the entire head wave raypath for this situation (depicted in

Figure 2.2) is confined to a single plane. The two vectors n2 and p22 form an orthonormal

basis for all vectors in this plane. Hence, the propagation vectors p12 and q12 can be resolved

along this basis. Geometric analysis of Figure 2.2 yields

P12 (cos i)n2 + (sin ic)P22, qrz (— cos i)n2 + (sin ic)p22, (B2)

where i is the critical angle. The unit normal n2 to the refracting interface is given by

= (sin 4 cos 02)i + (sin 4 sin02)J + (cos qfj)k. (B3)

An expression for the critically refracted propagation direction vector P22 is obtained by

recognizing that
rQ — rp

P22 =
trQ—rp1I
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where rp and r are the position vectors of points P and Q in Figure 2.2. Thus

rq — rp = (rR + dRn2) — (rs + dsn2)

= (XR—ZS)I+(YR—YS)i+(dR—dS)n2

= (X cos P’)i + (X sin [‘)j + (—X sin 8)112,

where equation (2.7) has been used and the angle S is defined by sin S = sin 4i cos(’J’ — 82).

Also, equation (2.9) implies rQ — rp = X cos S. Hence

(cos P)i + (sin ‘I’)j — (sin S)n2
P22 = . (B4)

cos

Substituting these expressions for 2 and P22 into equations (B2) yields the rather

formidable formulae

sin #2 COS 82 cos(i + 8) + sin i cos
P12 1cos S

+ sin #2 sin 82 cos(i + 8) + sinicsin’11 +
[cos #2 cos(i + 8)

k, (B5)cosS j L cosS

and
— Sfl #2 COS 82 cos(i 8) + Sin ic COS i’ 1.

q12= coso J

+
—sinq52sinO2cos(iC—8)+sinisin1

. +
cos#2cos(i8)

k (B6)
cos8 cosS

It is straightforward to verify that II P12 11=11 qi 11= 1, P12 2 = cosi, and q •n2 =

— cos i, as is required. Moreover, equations (B5) and (B6) imply that
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P12,z — q12,z 2 COS i Sifl #2 COS 62, P12,,, q12,y = 2 COS ic Sifl #2 sin 02,

P12,z — q12,z 2 cos cos #2, cos E + sin ‘1 q12,y = sin(i — 8).

These relations are substituted into the traveltime expression (B1) to obtain the final result

T2(ZS,YS,X, II’)
= sin(ic—

+
2dscosi

(B7)

where ds is the perpendicular distance from the source S to the refracting interface:

ds =h1(0,O)cos — sin(zScosO2 +yssin62).

Except for some minor notational changes, equation (B7) agrees exactly with the traveltime

formula (2.10) previously developed for this simple model situation.
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Appendix C: Traveltime analysis for a simple 2D model

A useful check on the validity of the general head wave traveltime formulae in Chapter 3 is

provided by analyzing a specific situation for which a closed form traveltime solution exists.

This is especially important because several of these expressions disagree with analogous

formulae published recently by Diebold (1987). The inconsistency between the two results

is evident when source and receiver are located on separate interfaces with different dip

angles. In this case, it is not possible to effect a coordinate frame rotation such that both

interfaces become horizontal (i.e., parallel to the zy plane).

Consider the simple two dimensional earth model depicted in Figure Cl. Two subsurface

interfaces have the same dip angle ç. The source S is located at the coordinate origin on the

surface and the receiver R is located on subsurface interface 2. L is the source-receiver range

measured parallel to the dipping interfaces. The perpendicular distances from the origin to

the subsurface interfaces are d2 and d3; vertical layer thicknesses at the same point are h1

and h2.

The traveltime of a head wave formed on interface 3 can be derived from first principles

of refraction traveltime analysis. Rotating the perspective through the small angle cp trans

forms the situation into a one dimensional problem. The total traveltime is easily obtained

by summing the refraction delay time associated with each layer that the wave traverses,

together with L/v3. The result is

T3 = . +
d2cos9j3

+
2(d3—d2)cos923

(Cl)

where sin 9jj = v/v1. The following geometric relationships are evident from Figure Cl:

d2 = h1 cos y, d3 — d2 = h2 cos , L =
+ d2 tan ça,

cos ço
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/

Fig. Cl. A simple 2D earth model with three media. S is a surface source and R is a buried

receiver.

where ZR is the horizontal coordinate of the receiver. Substituting these expressions into

equation (Cl) yields

T3(ZR)
= ZR

+
h1 cos(013

— +
2h2 cos 823 COS

V3COS9 1)1 V2
(C2)

The traveltime predicted by the general formula (3.16) is now compared with this specific

traveltime solution. For the situation being examined, (3.16) simplifies considerably. The

following conditions hold:

S

d1

XR

/

d2

vi

I
/

/

R

V3

(p
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(i) XS=YS=YR=O.

(ii) j = 1, 1 = 2, k = 3.

(iii) h1(O,0) = h1, h2(O,O) = h2.

(iv) = — Sifl 2,z = COS 50.

Evaluating formula (3.16) with these parameters yields

T3(R) = XR
COS 50 q23,2 + SIR 50 q23,z

+
h1 P13,z

+
h2(p23,2

— q23,z) (C3)
V2COSSO V2

Since the earth model is strictly two dimensional, and the recording proffle is oriented normal

to the common strike direction of the interfaces, the unit propagation direction vectors are

contained entirely within the xz plane. Thus, the components of these vectors can be

obtained by further geometric analysis of Figure Cl:

P13,z cos(6i — so), P23,z cos(623 —

q23,z sin(623 + so), q23,z = — cos(623 + 50).

Substituting these expressions into equation (C3) gives

ZR Sm 623 h1 cos(613
— ) 2h cos COS 50

T3(ZR)= + +
v2cosço v1 V2

But since sin 923 = v2/v3, this equation reduces immediately to

= ZR
+

h1 cos(913
— 0) +

2h2 COS 023 COS
(C4)

vacOsço vi V2
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This is in complete agreement with the known solution (C2)! In contrast, equation (21) in

Diebold (1987), when applied to the model depicted in Figure Cl, becomes

T3(ZR)
= ZR sin(8:3 +

+
h1 cos(913

— +
2h2 cos::3 CoScp

(C5)

Clearly, this expression differs from the expected solution (C2). It reduces to the correct

traveltime only if the dip angle ço equals zero, i.e., all interfaces are horizontal.
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Appendix D: Derivation of formula (6.13)

A standard technique from the calculus of variations is used to demonstrate the vadidity

of equation (6.13). If the function m”(z) is perturbed by an arbitrary, but small, amount

Sm”(x), then a variation S is induced in the functional 4(m”). An expression for this

variation is obtained by evaluating equation (6.12) at m” + Sm”. Hence

5cJ (m” + Sm”) —

= 2j {1Lw(z)2m(x)
— [eob3

—

eprd(m”)
jTWTWp(x;cl,c2)}SmI(x) dx + O(Sm”)2.

(D1)

(m”) is extremized by the particular m”(x) such that S is second order in Sm”. Thus,

the integral in equation (Dl) must vanish identically. Since Sm”(x) is an arbitrary small

perturbation, this can be achieved only if

m”(x) =
--- [cobs — erd(m”)] WTW P(z;cl,:2) (D2)

The m”(z) that extremizes (m”) is a linear combination of the functions pj(x; Cl, c2)/w(x)2.

Moreover, the coefficient vector in this linear superposition is proportional to the difference

between observed and predicted data. Parker et al. (1987) obtain an analogous result for a

different inverse problem formulation.
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Appendix E: Vanishing of two derivatives

This appendix proves that the extremum of the objective function in equation (6.17) is

invariant with respect to the two abscissae c and C2. Differentiating 4’ with respect to these

parameters yields the two equations

= a’ [2r WTW + I] a
ad ad

+ 2 [ctlh(b) — d2 [k(b) — (b — ci)h(b)j
—

eobs] a

—2d2h(b)TWTW[dlh(b) — d2 {k(b) — (b — ci)h(b)] — e0b3 + Fa] (El)

and

= aT [2r WTW + u ij
c9d2

+ 2 [cilh(b) — d2 [k(b) — (b — ci)h(b)]
— eobs]

T

a, (E2)

where I’ stands for F(ci, c2). These expressions are simplified by using the previous equation

(6.18) obtained by extreniizing the objective function with respect to the coefficient vector

a:

Pa + ,L(WTW)_la e03 — dih(b) + d2 [kb — (b — ci)h(b)j. (E3)

Substituting (E3) into (El) and (E2) immediately yields the simpler forms

= ,taT + 2,ud2h(b)Tcr, (E4)
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T’

C2 C2

Expressions for the partial derivatives of the inner product matrix F are required. Dif

ferentiating equation (6.16) with respect to Cl yields

= L w(x)_2 pT + p
(9P)T]

dx, (E6)

where p stands for p(z; c,c2). An analogous formula is obtained for bF/8c2.The derivatives

of the kernel function vector p(x; ci, c2) are obtained by differentiating expression (6.10).

Hence

c2)
= h(b) [H(x - ci) - - c2)j + h(b) (x - Cl) S(x - Cl), (E7)

OP(x;::,c2)
= [k(b) — (b — ci)h(b)jS(z — c2). (E8)

Substituting (E7) into (E6) and integrating gives the expression

= h(b)qT + qh(b)T, (E9)

where q is an auxilliary vector defined by q f2w(z)2p(x;c, c2) dx. Similarly, substi

tuting (E8) into the analogue of (E6) for ÔF/0c2 gives the result

0C2
= w(c2)2 [[k(b) — (b— ci)h(b)]p(c2;ci,c2)T

+ p(c2;cl,c2) {k(b) — (b — cl)h(b)]T]. (E10)
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Relations (E9) and (Elo) are the required formulae. Substituting these expressions into

(E4) and (E5) and reducing yield

= 2p (d2 — aTq) [aTh(b)], (Eli)

8C2
= —2p w(c2 )_2 [a Tp(c; c,c2)] [a Tk(b)

— (b — ci) a Th(b)] (E12)

However, if the objective function 4 is already extremized with respect to the two parameters

d1 and d2, then aTh(b) = aTk(b) = 0. Thus, equations (Eli) and (E12) reduce to the

desired results

0, — 0. (E13)

Note that both of the conditions a Th(b) = 0 and a Tk(b) = 0 are necessary for 8c1/8c2 to

vanish.



216

Appendix F: Spatially correlated traveltime errors

Suppose that x is a vector of ii random variables with covariance matrix C. Then, the

vector of n random variables y given by the linear transformation y = Ax possesses the

covariance matrix

C1, = ACXAT. (Fl)

If C,, and C1, are prescribed, then equation (Fl) can be solved for the (n x n) transformation

matrix A.

Since the covariance matrices are symmetric and positive definite, they may be factored

via Cholesky decomposition as follows:

i _y r
— .LJ 12Z ‘-‘1, — U1, .LJ1,,

where L,, and L1, are lower triangular matrices. Then, one solution of (Fl) is

A = L1,L;1, (F2)

which can be readily verified by substitution.

An important special case occurs when the z1 are a set of independent random variables

drawn from the one dimensional normal distribution with zero mean and unit standard

deviation. In this situation, the covariance matrix C,, equals the identity matrix. The

transformed random variables are given simply by y = L1, x. Moreover, each y is normafly

distributed because it is a linear combination of independent normal variates.

Within the context of the arrival time picking problem, each y is considered to be a

r.ndom time error with an assigned standard deviation o. A double-tailed exponential

function is used to evaluate the correlation coefficient between the arrival time errors at
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geophone stations i and j (Berni and Roever, 1989). The elements of the covariance matrix

become

{cgj = exp(—d/D)ojoj, (F3)

where djj is the distance between stations i and j, and D is an adjustable parameter called

the correlation distance. A large value for D (relative to the dj) implies that the individual

arrival time errors are highly correlated, and vice versa. Standard FORTRAN subroutines

(Press et aL, 1986, p. 192-199) are used to generate independent normal variates aj with

zero mean and unit variance. Hence, the y calculated via the above procedure become a set

of correlated, normally distributed traveltime errors.
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Appendix G: Ray initiation and termination logic

If a receiver is located on a grid node, on a horizontal grid line, or on a vertical grid line

(points 1, 2, and 3 in Figure Cia, respectively), then the average of the steepest descent

angles from the immediately adjacent cells determines which cell the raypath enters first.

However, if the receiver is located within a cell, as in Figure Cib, then the logic contained

in Table Ci is used to determine the initial path segment and the cell that the raypath

subsequently enters. Angles /9i through /38 are all positive acute angles and are illustrated

in Figure Gib.

Now assume that points 1, 2, and 3 are sources, rather than receivers. Then, the

set of immediately adjacent cells constitutes a near source zone. Tracing of an incoming

ray continues until the boundary of this zone is encountered. For example, the four cells

surrounding point 1 in Figure Cia form a square with side length 2h. For source points 2

and 3, the near source zones are rectangles with vertical and horizonal dimensions of 2h x h

and h x 2h, respectively. Finally, if the source is located within a cell (Figure Gib), then

iterative ray tracing proceeds to the boundary of the enclosing square cell with side length

h. In all cases, the final raypath segment is obtained by drawing a straight line from the

boundary point directly to the source position.
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Fig. Gi (a) Points 1, 2, and 3 denote receivers (or sources) located on a grid node or grid

lines. (b) A receiver located within a square grid cell.
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Angle Range Exit Coordinates Next Cell Indices

o <Bk <13i z,. + — x)tan 8k i + 1 j

= f3 i + 1 j + 1

- ir/2—/32<Ok<lr/2+133 Zr+(zj+1zr)COtOk Z3f1 i 3+1

Bk=lr/2+/33 Zj+1 i—i j+1

1—/34<Bk<+/35 Z zT+(zj—xf)tanOk i—i j

Sk=1+/35 Z Zj i—i j—1

31r/2—/36<8k <31r/2+/37 xr+(zj—z,.)cotOk zi I j—1

Sk=31r/2+/31 i+1 j—i

2ir
— /38 <Bk <2w xj+1 z,. + (zj± — zr)tan 0k i + 1 j

Table Gi. Ray initiation logic for a receiver located within a cell. Column 1 gives possible

ranges for the steepest descent direction 6k assigned to the cell. Angles /9j through /38 are

illustrated in Fig. Gib. Columns 2 and 3 give the horizontal and vertical coordinates of

the ray exit point on the cell boundary, respectively. (z,., Zr) are the receiver coordinates.

Columns 4 and 5 give the indices of the next cell that the ray enters.
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Appendix H: Optimum starting slowness

In the absence of a priori information, a. uniform slowness model is used to initiate the

tomographic inversion procedure. The value of this slowness can be chosen to minimize

the rms traveltime residual on the first iteration. This tends to reduce the total number of

iterations required for convergence to a specified misfit level.

Let t be the th observed traveltime, and let the straight line distance between the

associated source and receiver be dj. Then, the difference between the observed traveltime

and the time predicted by a uniform slowness s is t — s dj. The 12 norm (squared) of all

such differences is

4(s) = (td)2

where N is the total number of observed arrival times. Extremizing 4(s) with respect to 8

yields

-

- EfL11jt
s—st—r

Alternately, the problem can be posed in terms of an optimum velocity instead of an

optimum slowness. The result is v = 1/s. For the combined VSP and crosswell datasets

used in Chapter 8, vt equals 2191 rn/s (for both exact and error contaminated traveltimes).

For the crossliole data only, v0 = 2310 m/s.




