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Abstract

This thesis makes five significant contributions to the theoretical analysis of the

connection between microscopic phenomena and the macroscopic physical properties of

porous rocks.

A random sphere packing model permitting contact generation during hydrostatic

compression is derived. It is demonstrated that the closure of near-contact gaps with an

extremely small mean width significantly alters the elastic properties of granular media

from those predicted by previous models in the pressure range used in laboratory

measurements.

Generalized forms of the inclusion-based formulations are obtained; major classes of

these formulations are defined according to the manner in which interactions between

inclusions in the heterogeneous system are simulated. Each class possesses an associated

microstructure that determines the topological relationship between the various

components.

Inclusion-based formulations are obtained that describe the effects of pore-scale fluid

distribution on the dielectric and elastic responses of a partially saturated rock. It is found

that the pore fluid configuration within the individual pores and the pore geometries in

which saturation conditions are varying are critical factors in determining the dielectric

and elastic properties of partially saturated rocks. In addition, it is observed that the

effect of saturation condition variations in a particular pore geometry increases as the

pore shape becomes more crack-like.
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The theoretical formulations describing the effects of pore-scale fluid distribution are

used to analyze experimental data for a partially saturated tight gas sandstone and glass

bead packing. Simple models that incorporate only the basic geometrical elements of the

resulting pore-scale fluid distributions accurately predict the experimental data. It is also

found that the same geometrical model can be used simultaneously to estimate the

dielectric and elastic responses of a partially saturated porous medium.

The effect of surface phenomena (e.g. electrical double layers and surface

conduction) at the solid-fluid interface are incorporated into inclusion-based formulations

of the dielectric response by employing the limiting case of a confocally-layered

ellipsoid. It is found that the effect of surface phenomena varies as a function of both

inclusion size and shape.
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Chapter One

Prologue

“The book of nature is written in the language of mathematics.”

Galileo Galilei (1564-1642)

Geophysics, as a discipline, is frequently concerned with the problem of determining

the nature of porous rocks that cannot be directly observed. To achieve this goal,

geophysical surveys are conducted to measure the spatial and/or temporal distribution of

particular physical properties. However, these physical property measurements provide

only an indirect means of determining and analyzing microscopic phenomena in porous

rock. When one is concerned with these types of phenomena, it is necessary to establish

an appropriate framework in which geophysical measurements can be interpreted.

One approach is to perform laboratory measurements on porous rock samples that are

believed to be similar to those that exist in situ. However, these types of measurements

can prove to be of limited utility. Minor differences in terms of rock type and/or the

conditions to which the rock is subjected can result in significant variations in physical

behavior. Therefore, it is necessary to complement these laboratory results by developing

mathematical formulations that describe the physical response of porous rocks in terms of

its microscopic phenomena. In this study, theoretical formulations are developed which

describe the role of certain microscopic phenomena in determining the observed physical
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properties of porous rocks. Given the relative importance of electromagnetic and seismic

techniques in geophysics, this study will be confined to the consideration of dielectric and

elastic response of porous rocks.

In unconsolidated sands, an important type of microscopic phenomenon is the

interaction between neighboring sand grains. Experimental data for granular materials

consistently violate the relationship between elastic wave velocities and confining

pressure predicted by previous sphere packing models. Murphy (1982a) proposed that

this discrepancy between these earlier models and the experimental results is due to the

creation of grain contacts as confining pressure increases. A random sphere packing

model that permits the generation of grain contacts is derived in Chapter Two. However,

this type of formulation is specifically structured to incorporate interactions between

neighboring particles. Hence, it is not well suited for the study of phenomena that are

related to geometrical configuration of the constituents within a porous rock.

In the range of frequencies of interest in the geophysical measurement of dielectric

behavior (i.e. 100 kHz to 1 GHz), a dominant mechanism affecting the dielectric response

of porous rocks is the charge polarization at interfaces on the microscopic scale (Poley et

al., 1978). Further, it has been observed that the geometry of the pore spaces within a

rock significantly affects its elastic wave velocities (Nur and Simmons, 1969; Toksoz et

al., 1976). Therefore, it is necessary to use a formulation that incorporates sufficient

information about the pore space geometries within the system to describe elastic and

electromagnetic wave propagation in porous rocks. This is accomplished by employing

an inclusion-based formulation to describe porous rocks. In this study, the porous rock

system is viewed as a rock matrix into which inclusions representing the individual pore
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spaces are embedded. In previous work, a diverse collection of mathematical expressions

have been obtained when the inclusion-based formulation has been employed to describe

a given physical property of composite materials. To clarify the relationship between

these formulations, the major classes of the inclusion-based formulations are derived in

Chapter Three in such a way as to avoid special cases that result from the use of specific

inclusion types. The discussion is in terms of dielectric properties; however, the basic

methods and principles used in the derivation are applicable to inclusion-based

formulations for other physical properties, such as elastic wave propagation.

A phenomenon that is characterized by the geometrical configuration of the

constituents within a porous rock is the pore-scale fluid distribution within the partially-

saturated system. In Chapter Four, mathematical expressions are developed for the

dielectric and elastic response of partially saturated porous rocks for various geometrical

configurations of the pore fluids within the individual pore space. To determine the

critical factors that control the relationship between pore-scale fluid distribution and

macroscopic physical properties, a number of numerical simulations are performed

utilizing these formulations.

The basic results obtained from this theoretical study are applied in Chapter Five to

the analysis of experimental data collected on partially saturated porous rocks. The

measured apparent dielectric constant and elastic wave velocities for a tight gas sandstone

undergoing an imbibition-drainage cycle (Knight and Nur, 1987a; Knight and Nolen

Hoeksema, 1990) are modelled by means of simple geometrical scenarios for the

resulting pore-scale fluid distribution. In addition, elastic wave velocity data for a
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partially saturated glass bead packing obtained by Domenico (1977) are examined.

In the derivation of the inclusion-based formulations, the existence of surface

phenomena at the fluid-solid interface has been explicitly neglected, although such

phenomena can have a significant effect on the electrical properties of porous rock.

Previously, these phenomena were implicitly incorporated into mathematical

formulations by assigning their effects to one of the constituents and adjusting its

properties accordingly (Knight and Endres, 1990). However, this approach does not

preserve the geometrical structure inherent in the system. In Chapter Six, an inclusion

based formulation is presented that explicitly incorporates the effects of surface

phenomena in the dielectric response of a heterogeneous medium. This is achieved by

taking a limiting case of a confocally-layered ellipsoid as its outer shell becomes

infinitesimally thin.
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Chapter Two

A Sphere Packing Model Incorporating Contact Generation

Introduction

The modelling of granular materials by means of sphere packings has been the subject

of numerous papers. Many authors (Gassmann (1951a), Duffy and Mindlin (1957),

Deresiewicz (1958), White (1965), and Walton (1975) ) employed regular packings (e.g.

hexagonal close packing, cubic packing). Brandt (1955) presented the first formulation

for the elastic behavior of random packings; however, only the overall volumetric

changes and the effective bulk modulus of the medium were considered. More recently,

Digby (1981) and Walton (1987) have presented more comprehensive treatments for the

mechanical behavior of random sphere packings. In all of these studies, it was assumed

that grain contacts were established in the initial, undeformed state and that no new grain

contacts were generated during the compression of the medium. Further, some specific

form of contact microphysics was always assumed.

Experimental evidence has shown that these mathematical models do not adequately

describe the observed elastic behavior of sphere packings. In all of the above models, the

hydrostatic strain and the effective elastic moduli are shown to be dependent on the 2/3

and 1/3 power, respectively, of the hydrostatic confining pressure. This implies that the

elastic wave velocities are related to confining pressure by essentially a 1/6 power law.

Duffy and Mindlin (1957) presented experimental data for the elastic wave velocities of a
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face-centered cubic packing of spheres. These data showed that the predicted elastic

wave velocity was significantly higher than the measured velocity, and did not have a 1/6

power dependence on confining pressure. Further, as the allowable variation in sphere

radii increased, the deviation between predicted and experimental velocity also increased.

Domenico (1977) measured the elastic wave velocities of the random packing of air

saturated glass beads under hydrostatic confining pressures between 2.7 and 34.4 MPa. A

least squares fit to the data implied that both compressional and shear wave velocities

have approximately a 1/4 power relationship with the confining pressure. Murphy

(1982a) measured the compressional and shear wave velocities of a random packing of

glass beads under vacuum and hydrostatic confining pressures between 0.1 and 35 MPa.

A 1/4 power relationship was observed at low confining pressures, and a 1/6 power

relationship was exhibited at high confining pressures.

Murphy (1982a) stated that the 1/4 power relationship can be explained by the

generation of contacts due to the closing of near-contact gaps and used a simple two-layer

model to illustrate this point. However, a general formulation for a random packing was

not derived. In this chapter, expressions are derived for the overall stress-strain

relationship and the effective moduli of a granular medium under hydrostatic

compression, which permit the generation of grain contacts due to the closure of near

contact gaps. The mathematical formulation of Walton (1987) provides a basis which can

be expanded to include the effect of contact generation caused by the closing of near

contact gaps as the hydrostatic pressure increases. Further, Walton (1987) considers two

cases of contact microphysics (i.e. perfectly smooth and infinitely rough spheres). The

formulation presented here extends these results by allowing the use of general contact
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microphysics.

Undeformed Configuration

Consider a random packing of identical solid spheres of radius R. Each sphere is

elastically isotropic and homogeneous with Lamé constants .1 and . Let V be a volume

within the packing containing N spheres and having dimensions which are very large

compared to R. Within V, the random packing is assumed to be homogeneous.

Let x (n) be the position of the center of the n th sphere relative to some given

Cartesian coordinate system. The n th sphere is surrounded by neighboring spheres,

some of which are in point contact with the n th sphere, while others are in near-contact,

as in Figure (2.1). In Figure (2.2), the system of two spheres initially in point contact (in

this case, the m th and n th spheres) is shown. Let the midpoint between sphere centers

be denoted by 0, with a position vector x (°) given by

x (°) =
- (x (n) + x (m))

. (2.1)

For this system, the inward unit vector along the line of the sphere centers, i is

defined by

I (nm)
= (2R)-’ (x (n)

- x Cm))
. (2.2)

The system of two spheres in near-contact is illustrated in Figure (2.3). In this case, let 0’
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be the midpoint between the sphere centers, with a position vector x (°) given by

(°) =
- (x (n) + x (rn)). (2.3)

Similarly, the inward unit vector along the line of the sphere centers, j for this

system is defined by

(nm) = [2(R+g(nm))]’ (x (n)
.. x (rn)), (2.4)

where 2g (nm ) is the distance (or gap) between the surface of n th and m’ th spheres along

the line of the sphere centers.

Overall Stress-Strain Relationship

In order to derive the overall stress-strain relationship, consider an initial deformed

state, obtained by subjecting the boundary of volume V to a displacement u consistent

with a uniform, compressive hydrostatic strain EI (where I is the identity tensor). Hence,

for a position vector x in V, the displacement at this point if V were a continuum is given

by

n(x)=eI x=Ex . (2.5)

It will be assumed that the sphere centers undergo a deformation which is consistent with

this uniform strain and that all deformations are reversible. Then,
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u (n) = e x (n) (2.6)

defines the displacement of the n th sphere center. Similar expressions give the

displacements for the centers of the m th and m’ th sphere.

Consider the situation where two spheres are in point contact in the undeformed state.

is the displacement of midpoint 0 with respect to the n th sphere center, then

A(no) = 1 (u (m)
- u (n)) =

- RE i (nm) (2.7)

As the hydrostatic strain increases, the contact area between spheres n and m becomes

finite; and, a force, Fm), is exerted on the n th sphere due to its contact with the m th.

Since the spheres are elastically isotropic and homogeneous, it can be assumed that Fm)

is parallel to (nm) Hence,

F () = FN i (nm), (2.8)

where FN is the magnitude of the normal component of F(m) and &1m) defines the state

of the contact between the n th and m th spheres. Since all original contacts undergo

identical deformations for a given hydrostatic strain , (nm) = for all these contacts.

For the spheres in near-contact, it is first necessary to establish a point contact before

a force is exerted on the n th sphere. Since the relative displacement of one sphere center

with respect to another is along the line of their centers, it can be shown that the point

9



contact is obtained when

ii ii =g(m), (2.9)

where

A(fb) =-(R+g(1m)) ei (nm), (2.10)

A
(no ) being the displacement of the midpoint 0’ with respect to the n th sphere center.

Once this occurs, a finite contact area is established as the hydrostatic strain continues to

increase; and, a force, F (nm) is exerted on the n th sphere due to its contact with the rn

th sphere. Given the above assumptions, the force F(m ) is given by

F (m)
= F N( )) H (i i A

(no)
I - g (nm)) (nm)

= F N
()) H ( - (R + g (nm)) C - g (nm)) (nm), (2.11)

where (nm ) defines the state of the contact between spheres n and m’, and H is the

Heaviside step function.

Now that the forces on the n th sphere due to its contacts with its neighboring spheres

are known, it is possible to relate the average stress within V to the average strain. The

average stress, (ajj), within V is given by

10



(Gjj ) = J dV = J ydV, (2.12)
spheres “ V,i

where V is the volume of the n th sphere, are the components of the Cauchy stress

within the n th sphere, and the summation is over all spheres in V. For the n th sphere,

the stress within V can be related to the tractions on S , the surface of the n th sphere, in

the following manner:

1vGiJ dV
= J (x; + t)) ds, (2.13)

where is the traction on S and x’ = x - x() is the position of a point on S with

respect to the center of the n th sphere. In general, it can be assumed that the contact

areas will be small. This allows two simplifying assumptions. First, x’ may be

approximated by

x’ (x (m)
- x (n)) =

- R I () (2.14)

for the original contacts and by

x’= 1 R (x(m)xn)=Ri(’) (2.15)
2 R+g()

for the generated contacts. Secondly, the integration of the i th component of the traction

11



over the contact surface is Fm) for an original contact and F1(hlm for the generated

contacts.

Using these approximations, Equation (2.13) becomes

a(n) dV = x

{ ((nm) F(m + m)F1)+ ) Ff + F’ ) }. (2.16)

In this expression, the first term of the right hand side is the contribution of the original

contacts and the second term represents the effect of created contacts. By using Equation

(2.16) in Equation (2.12) and changing the summation from over the indices to over

individual contacts, the following is obtained

aj>
=-. { orig. cont.

}. (2.17)
creat. cont.

The fact that the medium is undergoing hydrostatic compression is now introduced.

This means

@ij)=Pij’ (2.18)

12



where p is the pressure applied to the surface of V and 5 is the Kronecker delta. By

employing Equations (2.8), (2.11), and (2.18), Equation (2.17) becomes

P6i3 = { +
orig. cont

F(’ )H (- (R + g( ))e - g(mn ))(i ))) }. (2.19)
creat. cont.

Since V contains a large number, N, of spheres, Equation (2.19) can be expressed in

terms of average values for the type of contact involved as follows:

p jj =
‘- { T F N () (j(nm) j(nm)) +

flc (FN (‘)H (- (R + g(nm )) e - g(nm ))) ))) (2.20)

where and 11 are the average number of original contacts per sphere and the average

number of near-contacts per sphere, respectively, and <...> represent average values taken

over the contacts. Since it has been assumed that the packing is statistically

homogeneous and isotropic on the scale of the dimensions of V, then original and created

contact points have a uniform probability distribution over a sphere surface. In this
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situation, Batchelor and O’Brien (1977) show that

(i’)
j(mn)) = (j(nin ) (nm )) =

. (2.21)

Further, using

=4R3N , (2.22)
3(1

-

where 0 is the porosity of the undefomied aggregate, Equation (2.20) becomes

= 4R
{lo F N () + (FN

((nm )) H (- (R + g(nm )) e -
g(nm))) }. (2.23)

The average value of the normal force at the created contacts can be determined if the

probability density function of g (nm), f(g (nm))
, is known. Since g (nm) 0 and the

Heaviside step function is zero if

g(nm)..Re(1+E)4, (2.24)

then, Equation (2.23) can be written as

-RE(1 +Ey1

= 4R2
FN() + FN() f( g(mn ))dg(nm’ )}. (2.25)

14



In order to obtain the overall stress-strain relationship, the form of the contact

microphysics must be defined. A specific example is considered in the section on

numerical results below.

Effective Moduli

In order to determine the effective moduli of the granular medium, it is necessary to

consider the effect of the application of an additional incremental deformation to the

sphere packing after the initial hydrostatic deformation. Therefore, assume that the

boundary of V is subjected to a further deformation öuwhich is consistent with a uniform

strain tensor öE. Then, the displacement of a point x in V, if it were in a continuum,

would be given by

u (x) = öE• x , or u (x) = & x. (2.26)

It will be assumed that this incremental deformation is small enough that effects of

contact generation and destruction can be neglected, that the sphere centers undergo an

incremental deformation which is consistent with a uniform incremental strain, and that

all incremental deformations are reversible. Hence,

(n)
= E . x (n)

, or u = “. (2.27)

Given this as a starting point, then the incremental relative displacements of the

midpoints 0 and 0’ with respect to the n th sphere center are given by

15



6A(no) =
- R öE• j(mu) (2.28)

and

- (R + g(nm)) 6E. j(mu)• (2.29)

Since the spheres are composed of homogeneous, isotropic material, it can be assumed

that the incremental force at an original contact is given by

oF = 0 F(’I) j (mu) + 0 F.(I) j (nm) (2.30)

where

(mu) —

- R[OE . (mu)
-

nm) j(nm)) j (rim)]
(231)

— H -R[oE. j(nm)-(&Mimu)imu))j (rim)] II

Similarly, the incremental force at a created contact is

OF ={8FN(mu))j G) + 3FT(Imu))j (mu)} x

H((R+g(mu)) eg(mu)) , (2.32)

where

16



j (nm)
= -(R+ g(nm)) [SE. j(nm)

- (s jnm)(nm))j (nm)]

(233)
II -(R+g(nm)) [SE. j(nm)

- (& j(nm)i1(nm))j (nm)] I

and SFN and SFT are the magnitude of the normal and tangential component of the

incremental contact force SF, respectively.

The concept of the contact stiffness is now introduced. Let DN and DT be the normal

and tangential contact stiffness, respectively. Then,

DN=d’ (2.34)
dw

and

DT=dT, (2.35)

where w is the magnitude of the normal component of the relative displacement of 0 or

0’ (i.e. parallel to i (‘) or i (nm )) and r is the magnitude of the tangential component of

the relative displacement of 0 or 0’ (i.e. perpendicular to i
(nm) or i (nm)). Since the

incremental displacement is small, then

SFN=DN Sw, (2.36)

and
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FT=DT &. (2.37)

Hence, the contact forces can be rewritten as

- R { (DN()-D T((I)) )(6 ()+D T((T)) E• i()) (2.38)

for the original contacts, and

m) =(R+g(nm))

{
(DN()-DT) (e ()+

D T()oE ()

}
H(-(R+ g(mn)Eg(nm))) (2.39)

for the created contacts.

Using the same procedure as was used to determine the relationship between pressure

and hydrostatic strain, the following relationship is found between the average

incremental stress, (&Yj), and the incremental average strain (ek1):

___

I. (nm) (nm). (nm). (nm)
=

_______

(i 0) { lo R [ 2 (D N () - DT ()) (&kli Shi j 1k 1 ) +8itR2

DT () ((&jk) (i() i’)) + (&) ((t) im)))] +
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[ 2 ((D N
))

- DT( ))) (R + g( )) H ( - (R + g (rim )) e - g (rim ))) (&)

(i’’) $) i1i) + (DT(CInm)) (R + g(mn )) H ( - (R + g(nm )) e - g(nm ))) x

((&jk) (i1m) i’9 + (&k) (i(’) ik(’)))] }. (2.40)

Since the initial deformation was hydrostatic, the homogeneous and isotropic nature of

the random packing is retained during the incremental deformation. Hence, Equation

(2.21) and another result from Batchelor and O’Brien (1977),

/. (rim) . (rim) . (rim) . (nm)\
— /. (mn) . (rim) . (rim ) . (nm)\

\1i 1j 1k 1 / \1i 1j k 1 /

(2.41)

may be used.

By inserting Equations (2.21) and (2.41) into (2.40), the resulting expression can be

compared with

= c’j (&M), (2.42)

where the effective moduli, Ck1 , can be expressed in terms of the effective Lamé
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constants, j.t” and as follows

=

8ij 6k1 +J.L (6ikö1 +6il6k). (2.43)

Hence, it can be found that

= () { (i() - DT()) +

((D N
(m ))

- DT
(m ))) (R + g( )) H (- (R + g (nm )) c - g (nm))) } , (2.44)

and

= { (D N () + D T (t)) +

((D N (ci )+DT
(m

))(R + g (mn )) H( - (R + g (mn ))e- g (mn ))) }. (2.45)

Letting f(g (nm)) again be the probability density function of g (mn), then, as was done

above, A. and can be written as
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= () { j(r N () - D T ()) + X

-RE(1 +c)1

j ( N (cifr ))
- DT

(m ))) (R + g (nm)) f (g (nm)) dg (nm) (2.46)

and

= 2 { ! (D N () + D T ()) + x

-Rc(1 +e)’

j ( N
((nm )) +

DT
((nm’ ))) (R + g (nm)) f (g (nm)) dg (m) } . (2.47)

Numerical Results

From the above analysis, it can be seen that the general elastic behavior of a contact

generating granular medium is described by Equations (2.25), (2.46), and (2.47). In order

to obtain numerical results, it is necessary to define the nature of the contact microphysics

and f(g (nm’)), the probability density function of g (nm)
, for the sphere packing.

The contact microphysics gives the form of the interaction between spheres in

contact. Let us assume that spheres are infinitely rough (i.e. no slippage along the contact

surfaces). Then, using the results of Walton (1978), the following expressions can be

derived for the contact forces and contact stiffness:
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FN()=41
(e)312

(2.48)
3itB

FN(cI )) = 4R”2 (- Re - g(nm )(i + e))3/2
, (2.49)

3tB

DN()=
2R(- c)1’2

(2.50)
tB

DT(’1)=
4R(- c)’12

(2.51)
iu(2B+C)

(2.52)

(2.53)
iu(2B+C)

where

B=—’— Ji + 1 (2.54)

and

c=—i—I’ 1 (2.55)
-

___

The nature of the probability density function, f(g (nm))
, has not been established.

However, given the nature of the problem, it is plausible that g (m’) has a Maxwell

22



distribution. Hence, f(g (nm)) is given by (Papoulis (1965))

f(g(nm)) = 211(2 (g(Im))2exp [ - (g(1m))2(2 cc2) 4] H (g(11m’))
• (2.56)

cc3 1I2

The maximum of f(g (nm)) occurs at (X• 2l’2 and has a value of 23/2 (cc e 1/2’ -1
).By

using Equations (2.48) through (2.53), and (2.56), the following expressions can be

* *
derived for the confining pressure p and the effective moduli ? and II:

— (i
- -

E)312 J 21/2 RE

J
(1 - x)3I2x2exp( x2)dx } , (2.57)—

2(1+e)3it2B cc3it’1

*= (1Ø)C(c)h/2

{

io+
21/2 1RE\3x

1o2B(2B+c) lCcc31/21+81

r1 1

I

(1 - x)1 /2x2exp( x2)dx+( - E (1 - x)’ /2x3exp( x2)dx]

}

, (2.58)
1 +E)

0

* (i
- 0) (5B + C) (- 8)H2 (

_________________

21/2 (_Re)3x11=
1O2B(2B+C)

o+1c
cc3it”2 1+e

r1 1

I (1 - x)’ /2x2exp( x2)dx+( - if (1 - x)’ /2x3exp( x2)dx] } , (2.59)
1 +E/Lo o

where
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= (2)’ (-RE 12
. (2.60)

‘1 +eI

The integrals in Equations (2.57) - (2.59) can be shown to reduce to generalized

hypergeometric functions (Gradshteyn and Ryzhilc (1965)). However, to evaluate these

expressions, it is much more practical to perform a numerical integration.

Table (2.1) gives the values of parameters used in evaluating Equations (2.57) -

(2.59). These values are typical of those used for dense packings of glass beads in

Domenico (1977) and Murphy (1982a). Values for r and 11c were obtained from Bernal

* *and Mason (1960). Figures (2.4), (2.5), and (2.6) illustrate log (- e), log ( ), and log (a )

as functions of log (p), respectively. In each case, a = 0.OO1R and 0.0001R were used. In

addition, the results for the model of Walton (1987) are also shown for two cases: the

number of contacts 1 = T + Tc and 11 = flo.

In each case, the model of Walton (1987) gives linear relationships in terms of log (p),

corresponding to the 2/3 power law for (- e) and the 1/3 power law for the effective

moduli 2.*and From Figures (2.4) - (2.6), it can be seen that three distinct regions

exist in the response of the contact generating model. At low pressures, the contact

generating model asymptotically approaches Walton’s model for 1 = 11o as p decreases.

At high pressures, the contact generating model asymptotically approaches the

completely contacted model, i = r + 11c’ as p increases. Between the two, a transition

zone exists. The onset of the transition zone as pressure increases is related to the mean

value g (nm’) (i.e. once a significant portion of the possible contacts are established, the

transition begins.). This behavior of the transition is independent of the choice of the
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probability density function, as it is a general response of the sphere packing due to

contact generation.

If an attempt were made to describe the response of the model in the transition zone

by means of a power law relationship, Figures (2.5) and (2.6) show that the effective

exponent would be greater than 1/3 for the relationship between the effective moduli and

the confining pressure. Hence, the effective power law between confining pressure and

elastic wave velocities would have an exponent greater than 1/6. This is consistent with

the experimental results of Domenico (1977) and Murphy (1982a).

Conclusions

In this chapter, a model for the elastic behavior of a granular medium which allows

the generation of grain contacts during hydrostatic compression is presented. The form of

this model permits the use of a variety of contact microphysics and statistical

distributions for the gap width of the near-contact. Numerical results for this model

display significant differences in comparison with models that assume no contact

generation, particularly in the transition region. Further, it can be observed that this

transition zone will occur over the range of confining pressures of interest in geological

and geophysical problems (106
- i07 Pa) for values of a small in comparison to the

sphere radius. This means that extremely small near-contact gaps can have a significant

effect on the elastic behavior of a granular medium. The behavior of the contact

generating model is consistent with experimental results for random packings of glass

beads.
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A, = 2.1474 X 1010 Pa

2.9655 x 1010 Pa

R = 4.064 x i0 m

— 0.383

= 6.4

= 2.1

Table 2.1: Parameters used in numerical results.
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Figure 2.2: The original point contact configuration.
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Figure 2.3: The near-contact configuration.
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Figure 2.4: Computed log (-e) as a function of log (p) using the contact generating

model where (1) a = 0.001 R and (2) a = 0.0001 R. Dashed lines are

Walton (1987) model for rj rc, (Line A- A) and r = rio + lie (Line B -

B’).
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Figure 2.5: Computed log (A*) as a function of log (p) using the contact generating

model where (1) cx = 0.001 R and (2) cx = 0.0001 R. Dashed lines are

Walton (1987) model for ii = ro (Line A- A’) and ii Tb + Tic (Line B -

B’).
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Figure 2.6: Computed log (j*) as a function of log (p) using the contact generating

model where (1) a = 0.001 R and (2) a = 0.0001 R. Dashed lines are

Walton (1987) model for 1 = lo (Line A- A’) and 11 =lo + Tc (Line B -

B’).
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Chapter Three

Inclusion-Based Formulations for the Dielectric Properties of Heterogeneous Media

Introduction

In the range of frequencies of interest in the geophysical measurement of dielectric

behavior (i.e. 100 kHz to 1 GHz), a dominant mechanism affecting the dielectric response

of porous rocks is the charge polarization at interfaces on the microscopic scale (Poley et

al., 1978). Inclusion-based formulations permit the incorporation of sufficient

information about the geometrical configuration of the constituents in a porous rock to

describe this phenomenon. Numerous studies have used inclusion-based formulations to

investigate the relationship between microstructural features and macroscopic dielectric

properties for heterogeneous media; these have been reviewed by van Beek (1967). All

of these formulations describe the microstructure in terms of a background matrix into

which inclusions are embedded; however, a diverse collection of mathematical

expressions has been obtained. While some of this diversity can be attributed to the

explicit use of specific inclusion types (i.e. inclusions with a given shape and

composition), other variations result from fundamental differences in the methods used to

derive these formulations. To illustrate these fundamental differences, as well as the

common elements, the major classes of inclusion-based formulations are derived in this

chapter. The degree of generalization that is maintained in this discussion is not found in

previous work on the subject; therefore, the differences between the resulting expressions
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are not caused by the explicit choice of specific inclusion types. In addition, this work

has permitted us to identify a general class of iterative formulations and their associated

hierarchical structure. It is important to note that the basic methods and principles used in

the derivation of the dielectric properties are applicable to inclusion-based formulations

for other physical properties.

Definition of an Effective Medium

To start the discussion, let us consider a heterogeneous medium that is composed of

isotropic materials possessing causal, linear electrical rheologies that are described in

terms of generalized permittivities (see Appendix 1). Let a volume V be some

representative volume element within this heterogeneous system which has dimensions

that are large in comparison to the scale of the inhomogeneities, yet small in comparison

to the size of the total system. The material in V is subjected to an applied uniform

electric field that is time harmonic with angular frequency . It will be assumed that the

wavelengths and attenuation lengths of this field are large in comparison with the

dimensions of V. Therefore, a quasi-static approach is appropriate for determining the

propagation of electromagnetic waves within this volume.

The microscopic structure is uniformly distributed such that the system is

homogeneous and isotropic on a macroscopic scale. Hence, the macroscopic electrical

behavior of the heterogeneous system can be simulated by the response of an effective

homogeneous material with a generalized permittivity . Let D ard E be the

generalized electric displacement and electric field strength within the system,

respectively, in complex notation. Then, the effective generalized permittivity of the
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material in V is defined by

(3.1)

where

D(x)dv (32)
Jv

and

E=V1f E(x)dv (3.3)
iv

are the volume averages of D ani E , respectively. In addition, the pointwise

constitutive relationship

D(x) =eg(x)E(x) (3.4)

is valid at all points x in V. Rearranging terms in Equation (3.4) and taking the volume

average, one obtains

+
v.’J [cg(x)

-
E] E(x) dv. (3.5)
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Given the definition of the effective generalized permittivity (Equation 3.1),

Equation (3.5) implies that

v’ [eg(x)-egjE(x)dv=O. (3.6)
iv

Hence, the volume average of the pointwise difference in polarization between the

heterogeneous and effective media must vanish. This equation defines the fundamental

relationship between a heterogeneous system and its equivalent effective medium. To

evaluate Equation (3.6), the structure of the underlying medium used in inclusion-based

formulations will now be considered; it will be seen that it is necessary to analyze the

response of the individual inclusions in order to accomplish this procedure.

Analysis of an Individual Inclusion

It will be assumed that the microstructure within the heterogeneous medium can be

described in terms of a homogeneous matrix with a generalized permittivity Eg(0) into

which homogeneous inclusions composed of materials having generalized permittivities

are embedded. Considering the structure of this system, Equation (3.6) may be

rewritten as

V ; Veg°+ J (eg0 eg(°))EO)(x)dv (3.7)
vinc
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where is the volume of the inclusions in V and E(0(x) is the electric field strength

within the inclusions. The two terms on the right hand side of Equation (3.7) can be

viewed as a reference and perturbation term, respectively. In general, it is very difficult

to precisely determine the electric field within the inclusions. However, it is possible to

estimate E (x) within an individual inclusion by treating it as a single inclusion

embedded in an infinite, homogeneous background with a generalized permittivity egO).

This system is subjected to an applied field with uniform strength Ea at infinity. The

values of Eg° and Ea are selected such that interactions with the other inclusions in the

system are simulated. Given the macroscopic isotropy of the heterogeneous system, it

will be assumed that Ea and E are oriented in the same direction.

The quasi-static behavior of this system is govern by

cgO)V2i.i,(x) 0 (3.8)

within the background matrix and

4)v24,()(x) = 0 (3.9)

inside the inclusion. The term qi is the electric potential; and, E (x) = - V i.ji (x).

Continuity of the electric potential and the normal component of the generalized electric

displacement lead to the following boundary conditions along the surface S that forms the

interface between the inclusion and the background:
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jj(b)(x)I5=v()(x) Is (3.10)

and

([egO’)v1r0’)(x)] ii)15=([eg(O VNI(’)(x)] . ii) Is, (3.11)

where ii is the unit normal vector on S directed into the background. Such boundary

conditions exclude the existence of surface phenomena, such as an electrical double

layer, along the surface S.

In order to obtain an analytic solution for E(0(x), the inclusion shapes must be

restricted to ellipsoids. The ellipsoid under consideration has semi-axes of lengths

ai, a2, and a3, respectively, where a1 a2 a3. The shape of the ellipsoid is uniquely

defined by the aspect ratio pair (xl,c2) , where

(3.12)

Using the results of Stratton (1941), it can be shown that the electric field within this

ellipsoid is uniform and has a strength given by

E ()(x) =Ea8g0,{[egb +(egO) - egO’)) A(xi,cL2)]4cos (3.13)

where Ea is the magnitude ofEa, 0j is the angle between the j th semi-axis and Ea, and

is the unit vector along the j th semi-axis. The term A(cq,c2)is the depolarization
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coefficient associated with the j th semi-axis and is uniquely determined by the shape of

the ellipsoid. In terms of the semi-axis lengths, the depolarization coefficients are

defined as

r° r i-i
A(al,cx2)=-ala2a3 J (s+a2)4[J] (2)j 2ds (j=1,2,3). (3.14)

Jo k=1

The depolarization coefficients for the three principal axes are related by

A1(x1,x2)+A2(cx1,x2)+A3(a1,x2)=1. (3.15)

In order to preserve macroscopic isotropy in the heterogeneous medium, identical

ellipsoidal inclusions are assumed to be oriented in a uniformly random manner. The

electric field strength inside such an inclusion is estimated by averaging the result given

by Equation (3.13) over all possible orientations of the inclusion with respect to Ea.

Performing this process, it is found that the expected value of the estimated electric field

strength within an inclusion is

(b) 3
(E (Ox) { [eg(b)+(eg()_eg(b)A(1,2)]1} E a (3.16)

This quantity will be used in Equation (3.7) to approximate the electric field inside the

inclusions within the heterogeneous medium. It will now be shown that major classes of

inclusion-based formulations can by defined by the manner in which cgO’) and Ea are
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used to specify the inclusion interactions. Further, no explicit restrictions will be placed

on the shape and composition of the ellipsoidal inclusions permitted in the medium; thus,

the expressions which are obtained are of a more general nature than those previously

given in the literature.

Classical Inclusion Formulations

Let us consider a heterogeneous medium in which a continuous distribution of

ellipsoidal inclusion types are present. It will be assumed that the nature of the inclusion

interactions is such that the same values of cgO’) and E a can be used in the determination

of E(x) within the individual inclusions. Using the result given by Equation (3.16),

Equation (3.7) becomes

e;E=c10)E+1e0)EaJ J J cjfl(40,a1,c2) x
Eg’ 1 Z2

f{egO, cg(°), eg(O,a1 ,c12) th2 da1deg(’), (3.17)

where

f(egO), g(O), Eg, 0i ,a2) =(eg(’) - eg(O)) [Eg +(g(’) - egO’)) A(a1,a2)] (3.18)

and E is the magnitude ofL The distribution of inclusion types in V is described in

40



terms of the fractional volume density function c(e),x1,cz2). For a distribution which

is discrete in any inclusion parameter (i.e. cg(i), (X1, (X2), the appropriate integral is

transformed into a summation and the definition of cj is modified.

Equation (3.17) represents a group of formulations which will be referred to as

classical inclusion formulations; various subdivisions of this group are defined by the

values chosen for eg(b) and E a in order to simulate inclusion interactions. The magnitude

of these interactions is dependent on the inclusion types present and their concentrations,

as well as the relative contrast in the generalized permittivity of the constituents. If the

inclusion concentration is very dilute, reasonable accuracy is obtained by assuming that

there are no inclusion interactions (i.e. eg(1) = eço) and E a E) (Wagner, 1914; Burger,

1919; Fricke, 1953). Hence, Equation (3.17) can be expressed as

= [1 +

-J f f cinc (e’,a1,(x2) x

tZ Z2

f(eg(°),Eg°),eg,a1,a2) da2 da1 dcg(1)]
, (3.19)

which is a generalization of what has previously been referred to as the dilute

approximation.

At higher levels of inclusion concentration, it is necessary to incorporate inclusion

interactions into the analysis. One approach for simulating this effect is to assume

(b) (o) and determine how the value of E a is modified by increasing inclusion

concentration. One method, which has its origins in the work of Lorentz and others
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(Mossotti, 1850; Clausius, 1879; Lorentz, 1880; Lorenz, 1880), achieves this by equating

the sum of the induced dipole moments due to the inclusions in a given spherical volume

of the heterogeneous medium with the induced dipole moment of an equivalent sphere

composed of the effective medium (Landauer, 1978). From this analysis, it can be shown

that

*+2(O)
Ea

g
E. (3.20)

3E.’L°i

Hence, equation (3.17) can be expressed as

E*E(0) ( ( (
(0) = 9 I I I cj (e),al,a2) x

+ 28g JE Jai J2

f (() eg(O), CgXl X2) dx2 do1 dCg, (3.21)

which is a generalization of what is commonly referred to as the Lorentz approximation.

In addition, several other techniques for estimating the apparent field intensity E a have

been suggested. Fricke (1924,1953) presented an approach where E a is assumed to be

equal to the average electric field strength in the matrix material. Sihvola and Kong

(1988) gave a technique where E a acting on a given inclusion is the sum of E and the

strength of the depolarization fields due to the other inclusions.

An alternate approach for simulating inclusion interactions is to assume that E a = E
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and determine the appropriate value of egO’) that describes the effective background

experienced by the inclusions. From an analysis of experimental results, de Loor (1953,

1964, 1968) determined that egO’) has a value between e and °) in lossless composites

and that no unique value of egc”) adequately describes all heterogeneous media. Of

particular interest is the case where egO’) = e (Böttcher, 1945; Polder and van Santan,

1946; Taylor, 1965), which is commonly referred to as the self-consistency condition.

This value of egO’) was determined by Böttcher (1945) on the basis of the theory of

reaction fields (Onsager, 1936; Böttcher, 1942). Incorporating this condition into

Equation (3.17), one obtains

= (o)
+J J’ •.

cj11(e0)c1c2) X

Eg aj X2

f(e,eg°,eg,cx1,x2 ) dO2 da1 deg’, (3.22)

which is a generalization of the average field or self-consistent approximation.

All classical inclusion formulations are obtained by determining the perturbation term

in Equation (3.7) with respect to the background matrix e0). Hence, the accuracy of this

group of formulations can be limited in terms of inclusion concentration. For cases of

high levels of inclusion concentration, another group of formulations based on the two

methods proposed by Bruggeman (1935) is commonly used.
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Bruggeman’s Symmetric and Unsymmetric Formulations

Bruggeman’s unsymmetric approach, commonly referred to as the differential

effective medium or iterated dilute approximation (Norris et al., 1985a; Avellaneda,

1987), utilizes an iterative construction process to fabricate the effective medium.

Starting with a homogeneous background matrix with generalized permittivity (0), each

iteration involves the embedding of an infinitesimal portion of the inclusions present in

the heterogeneous system. After each embedding, the dilute approximation (Equation

3.19) is used to determine the effective properties of the resulting medium; this resulting

medium is used as the effective background matrix in the next embedding step.

Using the variable volume process of Norris et al. (1985a), the generalized form of

the iterated dilute approximation can be derived as follows. Let V0 be the initial volume

of the system prior to the homogenization process; then, the volume of the system after

the homogenization process (Vf) is given by

Vf= v0(i
-

)-1 (3.23)

where

øinc
= J J j f cj (t;e(),cti,cx2)dx2d1 deg(’) dt (3.24)

0 €g’ 1 2

is the total fractional volume of the inclusions. The fractional volume density function

cj (t;e), cx1 , CL2) is expressed in term of a homogenization parameter t that specifies the
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order in which inclusions are incorporated into the effective medium during the

homogenization process. For brevity, the term within the brackets in Equation (3.24) will

be denoted by Therefore, the total volume of the heterogeneous medium at any

point in the homogenization process, as specified by the value of t, is given by

1

V(t) = (i
- )‘ V0 1 (s) ds . (3.25)

Let us now consider the change in the generalized effective permittivity of the system

due to the embedding of a very small volume of inclusions which denotes the increment

from t to t + At in the homogenization parameter. If e(t) and E(t + At) denote the

general permittivities of the effective background matrix and resulting medium at this

embedding step, then the dilute approximation (Equation 3.19) gives

v(t+At) e(t+At)=V(t+At) E;()+iE;()><

{v0(lØ)-1J f I ci(s;c0,xi,a2)
t cxj a2

f(c(s),e(s),4),xi,c2)da2 do1 deg(1)] ds } . (3.26)

As the volume of the embedded inclusions becomes infinitesimally small (i.e. At —*0),

then the change in c due to the homogeneous process is described by the differential
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equation

de(t)

=[l

- .11 .flds]e(!

J J J c(t;c0),xi,a2)f(e (t),c (t),e,al,x2 )dc2 dc1 d4’) . (3.27)
a1 a2

The generalized permittivity of the heterogeneous medium is determined by integrating

Equation (3.27) from t =0 to t = 1 with the initial condition e(t =0) = eg(°). Variations

in the embedding sequence can result in significantly different values ofe (Norris et al,

1985a). This initially appears to lead to ambiguities in the application of the iterative

dilute approximation. However, it will be shown later that the nature of the

microsiructure within the heterogeneous medium uniquely defines this homogenization

process. In addition, it should be noted that the embedding sequence determines the

nature of effective background matrix for a particular inclusion as the value of Eg(’)

* . .

vanes between ‘and Cg dunng the homogenization process.

Bruggeman’s symmetric effective medium theory, which is also referred to as the

coherent potential or effective medium approximation (Landauer, 1952; Stroud, 1975;

Milton, 1985), carries inclusion-based formulations to their logical extreme by

considering the heterogeneous medium to be an aggregate of inclusions. This structure

implies that Equation (3.6) can be rewritten as
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- ejE ()(x) dv =0. (3.28)

Assuming E a = E and the self-consistency condition, one obtains

J J J Cinc (cg’xi, cX2)f(E, e, e,cxi,cx2 )dcx2da1 deg() = 0 (3.29)
ai a2

where

I I I cinc(eg0),cxi,a2)da2dxidEg01. (3.30)
a2

Norris et al. (1985 a, b) and Avellaneda (1987) have established relationships between

Bruggeman’s symmetric and unsymmetric approaches. In particular, these results imply

that the value of e, obtained from the iterated dilute approximation as Øj — 1 for the

case when all embedding steps are identical (i.e. c1 (t, cx1, cx2) = c1 (g(), cx1, cc2))

converges to the Eg* given by the coherent potential approximation. Further, Milton

(1984, 1985) has shown that the coherent potential approximation is physically realized

by a homogenization-type process. This suggests that a generalized version of the

effective medium approximation can be obtained by permitting cj to vary during the

embedding process while maintaining Øj= 1.

At this point, the major classes of inclusion-based formulations have been derived in

their generalized form. The question that now arises is which of these expressions is the
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most appropriate for a given heterogeneous medium. One criterion is to compare the

microstructure of the heterogeneous medium with the underlying microstructural model

for a given class of theoretical formulations.

Implicit Microstructural Relationships

Each theoretical formulation has an underlying microstructural model that determines

the applicability of the formulation to a given heterogeneous medium. While some

features of the microstructure are explicitly specified (e.g. designation of a background

phase and specification of inclusion types), other relationships are implicit in nature. Of

particular interest are the implicit microstructural relationships which result from use of

the Bruggeman techniques for higher levels of inclusion concentration.

The formulations derived in the preceding sections exhibit no explicit dependence of

the dielectric response on inclusion size. In fact, it has been proven that the electrical

properties are invariant with respect to the size of the inhomogeneities in the system

under the conditions assumed in this study (Cohen, 1981). However, an analysis of

experimental data for a number of simple systems indicates that there is a relationship

between the distribution of the inclusion sizes present within the system and the accuracy

of a given theoretical formulation (Pearce, 1955; De La Rue and Tobias, 1959; Meredith

and Tobias, 196 1,1962).

It can be argued heuristically that individual inclusions of a given size are embedded

in an effective background material composed of the original background matrix material

and the smaller size inclusions. Therefore, an iterative construction process will be used
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to determine the effective generalized permittivity of the system. Starting with an

original background matrix inclusions are sequentially embedded in order of

increasing size. At the k th iteration, all inclusions of a given size are embedded and the

effective generalized permittivity of the resultant system is determined; this system

becomes the effective background matrix for the (k+1) th embedding step (i.e. c (k) =

C(b)(k+ 1)).

Let us initially consider a system containing K discrete sizes of inclusions. The

variable volume process (Norris et al., 1985a) will be used during the iterative embedding

procedure. Using a classical inclusion-based formulation, the embedding of the k th size

inclusions is described by

+ a f J J cj (j;c(),ai,a2)da2daide(1)]

j k+1 a2

J J J cj (k;eg(), i,) f(e(b)(k)e(b)(k) Eg(’)ai cL2) da2da1dEg’, (3.31)
a2

wherecj11(k;e5(),a1,a2)is the volume fraction distribution function of inclusions of the

k th size and E a is determined by the approximation used. The effective generalized

permittivity of the heterogeneous medium is given by e =

Let us consider the case when a piecewise continuous spectrum of inclusion sizes is

present in the system. This implies that the construction process involves the

incorporation of an infinitesimally small inclusion volume during each embedding. In

this case, the construction process described by Equation (3.31) becomes
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dE(s) = e’(s) { JSmax

[J .L Icj (t; C),Xi,cX2)dx2dX1 dEg(i)] dt} ><

J J f cj (s;c,a1,x2)f(e(s),E(s),eg0,a1,cz2)dcc2da1deg (3.32)
a1 a2

where smin and 5max are the minimum and maximum inclusion sizes present in the

medium. The effective generalized permittivity of the heterogeneous medium is obtained

by integrating this initial value problem from E(s)=Eg(0) to E(5max) =

Comparison of this result with Equation (3.27) shows the equivalence between this type

of hierarchical medium and the iterated dilute approximation. Further, this equivalence

demonstrates that the homogenization process in the iterated dilute approximation is

uniquely defined in terms of the microsiructure of the medium (i.e. the embedding

sequence of the inclusions proceeds in order of progressively larger size).

However, the heuristic argument used to motivate the hierarchical models described

by Equation (3.31) implicitly assumes that the inclusion of a given size are significantly

larger than those incorporated in the effective background matrix. This implies that the

relative concentration of inclusions having similar sizes is sufficiently dilute such that

their mutual interactions can be neglected. For high levels of inclusion concentration,

this implies that a very broad range of sizes must be present. This conclusion is

supported by experimental observation (De La Rue and Tobias, 1959).

The nature of the self-consistency condition used in the average field and coherent

potential approximations now becomes apparent. For all inclusions to experience the
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effective medium e as a background matrix, the distribution of inclusion types must be

identical for all sizes (ie.cinc (s; Eg,x1,cx2)=cmc(cg0),x1,c2)). This implies that the

inclusions must be present in a wide range of sizes and fill the entire space (ie.pjn i).

The generalized version suggested for the effective medium approximation differs from

the coherent potential approximation in that distribution of inclusion types varies with

size; hence, this generalization does not utilize the self-consistency condition.

Another implicit relationship of the Bruggeman formulations is the degree of

connectivity a given constituent possesses in the underlying model. To investigate this

relationship for the coherent potential and iterated dilute approximations, Yonezawa and

Cohen (1983) and Norris et al. (1985 a,b) employed simple two-component systems

consisting of conducting and insulating phases to determine the percolation threshold of

the resulting medium. In the iterated dilute approximation, the designated background

component remains connected over all levels of inclusion concentration for non-

degenerate cases of inclusion shape (i.e. needles and flat disc). In contrast, the coherent

potential approximation always exhibits non-zero percolation thresholds beyond which

complete connectivity of a given component ceases to exist; the value of this threshold is

a function of the inclusion shapes.

Conclusions

The generalized versions of the major classes of inclusion-based formulations used to

determine the macroscopic physical properties of heterogeneous media have been derived

in this chapter. All formulations of this type originate from the requirement that the

pointwise deviation in behavior between a heterogeneous system and its equivalent
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effective medium must vanish in some average sense. To evaluate this criterion, it is

necessary to determine the responses of the individual inclusions; their behavior is

estimated by analyzing single inclusions embedded in an infinite, homogeneous

background. Inclusion interactions are simulated by means of the imposed conditions

used in this analysis; the major classes of inclusion-based formulations can be defined on

the basis of the technique used to simulate these interactions. Each class of inclusion-

based formulations has an associated microstructure that specifies the topological

relationships between the various components. Of particular significance are the

hierarchical structures, in terms of inclusion sizes, that are implied by use of an iterated

embedding process. Further, the physical realization of formulations employing the self-

consistency condition represent a specific case of these hierarchical structures. In the

next two chapters, inclusion-based formulations will be used to investigate the effects of

variations in microstructure due to changes in pore-scale fluid distribution on the

dielectric and elastic responses of partially-saturated porous rocks.
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Chapter Four

The Effects of Pore-Scale Fluid Distribution on Elastic and Electromagnetic Wave

Propagation in Partially Saturated Porous Rocks: A Theoretical Analysis

Introduction

It is well established that the elastic and electrical properties of rocks vary as a

function of the level of water saturation (SW) in the pore space. Hence, it is assumed that

the level of water saturation within a porous rock can be determined by measuring these

properties. However, it is now apparent that the specific form of the functional

relationship between a particular physical property and S is significantly affected by the

pore-scale fluid distribution occurring within the medium. This has been observed in

laboratory data for elastic wave velocities (Domenico, 1976, 1977; Knight and Nolen

Hoeksema, 1990), elastic wave attenuation (Bourbie and Zinszner, 1984), electrical

resistivity (Longeron et al., 1989), and dielectric constant (Knight and Nur, 1987a).

Significantly different values of a given physical property were observed for the same

level of water saturation in these studies by varying the pore-scale fluid distribution

through the use of differing saturation methods.

Many of the theoretical formulations commonly used to model the physical properties

of partially saturated rocks cannot account for this variation in functional dependence

with changes in pore-scale fluid distribution. This is due to the inadequate description of

the geometrical configuration of the constituents within the medium. In this chapter,
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mathematical formulations are derived that allow the incorporation of the necessary

geometrical information about pore-scale fluid distribution. These formulations are used

to undertake a theoretical analysis of the effects of pore-scale fluid distribution on elastic

and electromagnetic wave propagation in partially saturated porous rocks.

Geometrical Description of Porous Rocks

Let us consider the description of the geometrical configuration of the constituents

within a porous rock. In order to utilize the inclusion-based formulations discussed in

Chapter Three, this system will be viewed as being composed of a rock matrix into which

inclusions representing individual pore spaces are embedded. By using this discretization

of the system, it is possible to specify the saturation conditions within the individual pore

spaces; however, it also implies that intra-pore phenomena control the physical properties

of interest. For elastic and electromagnetic wave propagation, communication between

individual pores is minimized when sampling frequencies are sufficiently high and/or the

permeability of the pore system is adequately low. Under these conditions, pore

connectivity can be neglected in the microstructural description of a porous rock when

determining its dielectric and elastic properties.

Since the volume fraction of the pore space is usually small, accurate results are

commonly obtained by using the classical inclusion formulations with this form of

discretization. In order to avoid possible concentration limitation associated with the

dilute approximation, the Lorentz approximation will be used to compute the dielectric

and elastic response of the porous rock system. The differences between results obtained

from use of the Lorentz approximation and the higher order iterative dilute
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approximation are small for parameters that realistically describe porous rocks.

Information from pore cast (Swanson, 1979) and SEM observations (Timur et al.,

1971; Brace et al., 1972; Sprunt and Brace, 1974) indicates that the pore space geometries

can be adequately described in terms of oblate spheroids. The shape of an oblate

spheroid is uniquely determined by a single aspect ratio a (i.e. the ratio of the minor

semi-axis length to the major semi-axis length) that has a value between 0 and 1,

inclusively. The description of the pore space geometries used in this analysis will be

restricted to these shapes. Hence, the pore shapes used in this description range from

spheres representing the major equidimensional pore volumes to discs representing

cracks.

By adopting this restriction on the permissible pore shapes, the computational effort

required to determine the physical properties is significantly reduced. In particular, the

depolarization coefficients which appear in the inclusion-based formulations for the

dielectric response can be expressed in a simple analytical form. For a non-degenerate

oblate spheroid (i.e. 0<a<1), the depolarization coefficients are given by (Landau and

Lifshitz, 1960)

A3(ai,cc2)=A(a)=1±e2(e...tan-le) (4.1)

and

A1(a1,a2)=A2(a1,a2)=,-(1-A(a)) (4.2)
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where

e = (y2
-

1)112 (43)

For the degenerate cases of a sphere (i.e. ct=i) and a flat disc (i.e. cic=O), the

depolarization coefficient associated with the unique principal axis is and 1,

respectively.

The shapes of the individual pore spaces are assumed to be independent of changes in

the local saturation conditions. Hence, the distribution of pore geometries within a given

rock is considered to be invariant and will be described in terms of a pore geometry

spectrum cpore(x). While cpore(ct) can be viewed as a continuous spectrum, a discrete

spectrum consisting of M differently shaped oblate spheroids will be used to describe the

pore space geometries.

Using the above description of the porous rock system, the mathematical expressions

for the dielectric and elastic response of partially saturated porous rocks will now be

determined. The forms of these expressions depend on the nature of the pore fluid

configuration within the individual pore spaces. While porous rock can contain

numerous pore fluids, the systems considered in this study will be assumed to contain

only two distinct pore fluids. These systems are sufficient to illustrate the influence of

pore-scale fluid distribution on the macroscopic physical properties.

Mathematical Formulations for Homogeneous Pore Spaces

Let us initially consider a situation where the incliviçlual pore spaces are completely

56



filled with one of the two pore fluids; this implies that they are represented by

homogeneous inclusions. Using Equation (3.21), the Lorentz approximation for the

dielectric response of this system is given by

* (0) r2 M 1
gg(0)

=

pore(Xm) (4.4)
Eg+2C5 n=1

where

g(0),4fl)m) = (n(o)) { [e0)+(E(n)-e(0)) A(Xm)]
‘+

4(e(°)+$’’)+(E(°)E)) A(Gm)]
-1 } • (4.5)

In this expression, 0) is the generalized permittivity of rock matrix; and, 4 (n= 1, 2) are

the generalized permittivity of the pore fluids. Further, the saturation level of the n th

pore fluid in the m th shaped pores is given by where

s)+s)=i (m=1,...,M). (4.6)

Analogous expressions for the effective elastic moduli of this system can be obtained

from the formulation derived by Kuster and Toksöz (1974). The effective bulk modulus
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k* and effective shear modulus are given by

k* -k(°) — 1 s)cre(cxm)
k(o)

(O))TUJJ (k(°), (°), k(n), (n),
cLm)] (4.7)

2 M

( k)-k(°)
3k*+40)

— -[n=1 m=i

and

_______________________

1 f 2 M

sc(c) x
n=1 m=1

FT T .](lc0),.t(0),1
),p’),Xm) } , (4.8)‘- 3

respectively. The elastic moduli of the rock matrix are denoted by k(°), (o) and those of

the pore fluids are represented by k(h1),.L(n1) (n=1, 2). The functions Tjj3j and[T. i
ijij 3

are complicated expressions involving x and the constituent elastic moduli; the reader is

referred to Kuster and Toksoz (1974) where both functions are defined. The effective

density p* is given by

2 M
,* (i-ppoe)p(0)+ s)cpore(xm)p(”) (4.9)

n=1 m=1

where

M

(Ppore cpore(czm) (4.10)
m=1
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is the total porosity in volume fraction, p(O) is the density of the rock matrix, and pOt)

(n=1, 2) are the densities of the pore fluids. Once the effective elastic moduli and density

are determined, the effective compressional and shear wave velocities are obtained from

1

(4.11)
p

and

v: = L 2 (4.12)
p

respectively.

To this point, only pore spaces that are completely filled with a single pore fluid have

been considered. However, it is probable that several distinct pore fluid species will

simultaneously occupy the same pore space within a partially saturated porous rock. Let

us now consider the dielectric and elastic response of a porous rock when this situation

occurs.

Mathematical Formulations for Heterogeneous Pore Spaces

When several immiscible pore fluids coexist within an individual pore space, it is

necessary to use a heterogeneous inclusion, i.e. an inclusion containing two or more

constituents, in order to describe the configuration of the pore fluids. In the case of the
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elastic properties, the contents of a heterogeneous pore space can be replaced in the

theoretical formulations by a homogeneous inclusion filled with an effective pore fluid

regardless of the geometrical configuration of the fluids within that pore space. To show

this, let us consider an individual pore space with a total volume V occupied with

volumes V1 and V2 of the inviscid fluid species 1 and 2, respectively. Only the

hydrostatic pressure component of the stress tensor exists in either of the fluids.

Assuming that surface tension can be neglected, continuity of tractions at an interface

between the fluids implies that P1 = P2 (the pressure in the respective pore fluid species).

Let ap be an incremental change in the hydrostatic pressure of the pore fluids, then

(4.13)
V1

and

(4.14)

where V1 arxl V2 are the incremental change in the volumes occupied by fluids 1 and 2,

respectively. The contents of the pore volume are replaced with an effective fluid with

bulk modulus kc and shear modulus =0, then

= k(e)
= (av1 + aV2). (4.15)

Rearranging the terms in Equation (4.15) and using Equations (4.13) and (4.14), we
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obtain

(k(e) (5U))) 1
= s(’) (k(’) ) ‘ + (1_s(1) ) ((2) ) ‘

, (4.16)

where (1) is the volume fraction of pore fluid 1 in the pore space. It should be noted that

given the above assumptions, Equation (4.16) is valid for any configuration of pore fluids

within the pore space.

To determine the elastic properties of the medium, the heterogeneous inclusions are

replaced by homogeneous ones filled with the appropriate effective pore fluid. While a

continuous spectrum of (i) values can occur within the heterogeneous pores of a given

shape, it will be assumed in this study that all heterogeneous pores of a given shape have

the same saturation level )• Hence, the effective elastic moduli are given by

k* k(°) — 1 F k(e)(5(1)) - k(o)

3 k*+ 4 () —

Cpore (cCm)
3k(°) - 4(O)

Tjj1 (k.(°), ,(°), (e)($)), (e)($)),
am) ] (4.17)

and

* (0) M

6 (k(°) +2 (o)) + (°) (9 k(°) + 8 (o)) =
cpore (am) x
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I(O)(3k)± 4i.(O))
[T3 - -T1ijj] (k(O), p(O),k(e)(5j)), (e)(S)), (Lm) } . (4.18)

In contrast to the elastic behavior, it is necessary to specify the geometrical

configuration of the pore fluids within the heterogeneous pore spaces when mathematical

expressions for electromagnetic wave propagation are derived. Two configurations of

pore fluids for which analytical descriptions of the response can be obtained will now be

considered. In both cases, 40 aal 42) will denote the generalized permittivity of the non-

wetting and wetting pore fluids, respectively. First, let us consider the case where an

effective pore fluid is generated by embedding small spherical inclusions of the non-

wetting phase into a background of the wetting fluid such that the resulting assemblage

resembles a gas bubble-water mixture. Using the Lorentz approximation, the generalized

permittivity of the effective pore fluid 4e) is given by

C(e) ((i) - (2) (i) - (2)
g g = () g g

, (4.19)
E(e)(S(1)) + 2e2) + 2Ev)

where s(1) is the fractional volume of the non-wetting phase in the pore space. Equation

(4.19) is valid for all values of s(’) between 0 and 1, inclusively, and implies that the

individual spheres of the non-wetting phase remain discrete and non-overlapping. To

determine the effective generalized permittivity of a system containing this type of

inclusions, the heterogeneous inclusions are replaced by homogeneous pores with the

appropriate value of e)(s(1)). Therefore, the dielectric response of such a porous
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medium is described by

* (0) MEg -

=

Cpore (am) g(c0), (e)(s(l)) am)]. (4.20)
Eg+28g ml

For the second case, the geometrical configuration of pore fluids within the individual

pore spaces is represented by a two component, confocally-layered spheroid. Let the

outer spheroidal shell be composed of the wetting phase and the inner spheroid consist of

the non-wetting fluid. Stepin (1965) derived an expression for the response of a medium

containing identical confocally-layered ellipsoidal inclusions. Expanding this result, the

following expression is obtained for a porous medium containing confocally-layered pore

spaces:

-

=

(am) h(e0),E1)2),sW,am)] (4.21)
+ m=l

where

hte° (i) (2) (1) —

g ‘ g ‘ g ‘5m m —

N1 (E(°) e(2) (‘) am) +N2(c°), E(2) (‘) am)
(4 22)

D1((o) ), c2) sj), am) D2(e°), E(2) (‘), am)

Nl(40),e),E2),s),am) = _)) ((2)...e(0)) x
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[B(sj),aj(8(2)_8W) e(2)] (4.23)

Dl(E),e1),e2),sj),am) [B(sW,am) (e2)_e.42) x

[A(am) (E(°) (2)) + 5WA(am) (1 - A(Xmj (e(2) 8(i)) (c(0) c(2)) (4.24)

N2(e0),E),E2),sl,a)= 8c2)(E)_E0)) sj) - 4(1_sj))(c2)_e0))x

[B(sj), am) (41)_e2))_(21)+E2))] (4.25)

and

D2(4°), e(2) s), am) = [B ((‘) am) ((‘)_ e(2)) - (c(2)+eO))]

[A(am) (42)_E0)) - (42)+80))] + $i) [1 - (A(Om))2] ((2)_(i)) ((o)_(2)) (4.26)

The term B($j),C) is the depolarization coefficient associated with the unique principal

axis of the inner spheroid. Evaluation of B(s),a11Jrequires the determination of the

aspect ratio of the inner spheroid which is a function of both and am (See Appendix

2). For both types of heterogeneous inclusions, the cases =0 and = 1 reduce to

the expressions for homogeneous inclusions composed of the wetting phase and non

wetting phase, respectively.

From the above results, it can be seen that the mathematical formulations for the
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dielectric and elastic properties of a partially saturated porous rock differ for the various

geometrical configurations of the pore fluids within the individual pore spaces. To

appreciate the significance of these differences, it is necessary to simulate the physical

behavior of a model system using these expressions. In the following analysis, this

approach will be used to illustrate the factors that control the relationship between pore-

scale fluid distribution and macroscopic physical properties.

Numerical Simulations

A partially saturated porous rock containing air and deionized water will be used in

the following numerical simulations. In order to employ the preceding mathematical

expressions, it is necessary to specify the constituent properties. In the case of

electromagnetic wave propagation, it will be assumed that the rock matrix and pore fluids

are simple, linear materials where

o(j)
(j=O,l,2); (4.27)

e4i) and ai) are the apparent permittivity and conductivity of the j th component,

respectively. Both apparent quantities are taken to be independent of o. This is a

reasonable approximation for the dielectric behavior of commonly occurring pore fluids,

and both e) and J) are easily obtained. However, due to complex physical and

chemical processes taking place at the rock-water interface, determination of the rock

matrix parameters requires special consideration. Knight and Endres (1990) showed that
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the adsorbed water in a water-wetted sandstone should be considered as part of the rock

matrix and the parameters used to describe this system should reflect this wetted state.

This is an important factor since the parameters describing a wetted and dry rock matrix

can differ significantly, particularly in the case of sandstones with large values of surface

area to volume ratio (SN). By incorporating the adsorbed water into the rock matrix

system, the S used in the theoretical models refers to the level of bulk water saturation

(Sbw).

The parameters used to describe the dielectric properties of the constituents are given

in Table (4.1). The wetted rock matrix values were obtained from an analysis of

dielectric data for a sample of Berea sandstone. The frequency used in the modeling

computations is 105 kHz. The parameters used for modeling the elastic properties are

given in Table (4.2). It should be noted that the difference between dry and wetted matrix

elastic parameters was observed by Toksöz et al. (1976); their value for wetted Berea

sandstone is used in this analysis.

Initially, the effects of the pore fluid configuration within the individual pore spaces

will be investigated. For each type of pore fluid configuration, a series of models

containing a single pore geometry (i.e. all inclusions in a given model have the same

value of cc) is generated; models within a series are varied by changing the aspect ratio of

the pore space. For a given model, the physical property of interest is determined as a

function of Sb; for presentation purposes, these results are normalized to the Sb= 0.00

value of the quantity under consideration. It is assumed that the value of local Sb (i.e.

the value of Sbw for an individual pore space) for all pore spaces is identical to the overall

value of5bw when a heterogeneous inclusion type is utilized. The total porosity Øpore is

66



maintained at 0.01 in all models.

Let us first consider the relationship between pore fluid configuration and the

dielectric response. Figures (4.1) and (4.2) give the computed values of the apparent

dielectric constant (i.e. 1=C/E vacuum) and the apparent conductivitya, respectively, as

a function of Sb for models employing homogeneous inclusions. It can be observed that

both ic and a display nearly linear variations with changing Sb. Figures (4.3) and (4.4)

show the computed values of 1c and a, respectively, as a function of Sbw for models

utilizing heterogeneous inclusions filled with an effective fluid consisting of air bubbles

in water. These results differ significantly from those employing homogeneous

inclusions in that distinctly non-linear relationships are observed for both ic and a.

Figures (4.5) and (4.6) illustrate the computed values of 1c and a, respectively, as a

function of Sb for models using heterogenous inclusions consisting of an air inner

spheroid and confocal water shell. Once again, these results differ from those obtained

with homogeneous inclusions in that distinctly non-linear relationships are observed for

both ic and a. Further, comparison of results obtained with the two types of

heterogeneous inclusions show that the variation in the pore fluid configuration

drastically alters the functional dependence on Sb.

Another way to alter the pore fluid configuration within the heterogeneous inclusions

is to reverse the roles of the wetting and non-wetting phases. The effects of wetting

phase variation on the dielectric properties of partially saturated rock has been

experimentally observed by Poley et al. (1978). In the above simulations, the water phase

was taken to be the wetting phase. While air cannot realistically act as the wetting phase
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in the pore fluid configurations used in this analysis, its dielectric properties do not

significantly differ from those of many hydrocarbons in comparison to the dielectric

properties of water. Therefore, it is useful to consider the effect of reversing the role of

the two pore fluids used in this study. Figures (4.7), (4.8) and (4.9), (4.10) show the

computed values of ic and a, respectively, for the two types of heterogeneous inclusions

when air-wetted. Comparison of the air- and water-wetted states for either type of

heterogeneous inclusion shows that variation in wetting phase significantly affects the

form of the Sbw dependence. It should be noted that in both cases the water-wetted matrix

parameters were used; it is expected that rock matrix parameters should vary with

changing wetting conditions. However, this effect cannot be quantified at present.

Let us now consider the relationship between pore fluid configuration and the elastic

behavior of the model. In the derivation of the mathematical formulations, it was shown

that the contents of a heterogeneous inclusion can be replaced by an effective pore fluid

having elastic moduli that are independent of the geometrical configuration of the pore

fluids within the inclusion. Therefore, it is only necessary to compare models containing

homogeneous and these “generic” heterogeneous inclusions when analyzing the effect of

pore fluid configuration on the macroscopic elastic behavior. Figures (4.1 1)-(4. 14)

illustrate the computed values of k*, V and V , respectively, as a function of Sb for

models containing homogeneous inclusions. Models employing homogeneous inclusions

exhibit nearly linear variations of elastic properties with changing Sbw. Figures (4.15)-

(4.18) show the computed values of k*, V and V , respectively, as a function of SbW

for models containing the “generic” heterogeneous inclusions. These results differ

significantly from those obtained with homogeneous inclusions in that distinctly non
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linear relationships are obtained between the elastic properties and Sb. In particular,

little change occurs in the elastic properties until high levels of Sb (i.e. in excess of 0.95)

are obtained; this is when a signficant increase occurs in the bulk modulus of the effective

pore fluid.

Let us now consider the effects of local variation in saturation conditions on the

effective physical properties by using three simple schemes for varying local Sb within

the pore geometry spectrum. These simple schemes for increasing overall Sb from 0.00

to 1.00 are as follows: (1) water preferentially fills the largest cc geometries; (2) water

preferentially fills the smallest a geometries; and, (3) all geometries fill in unison. In all

cases, homogeneous inclusions will be used to represent the individual pore spaces.

These schemes are schematically shown in Figure (4.19). The pore spectrum used is an

estimate for the pore geometries present within a Berea sandstone based upon Cheng

(1978) and is given in Figure (4.20).

Figures (4.21)-(4.26) show the computed ic, a, k*, V and V , respectively, as a

function of Sb when these three schemes are used to vary the pore-scale fluid

distribution. These results illustrate the significant differences which can occur in the

functional relation between a given physical property and Sbw when the sequence in

which local saturation conditions vary is changed. In particular, changes in the saturation

conditions in the smaller aspect ratio geometries have an effect on the dielectric and

elastic behavior which is well out of proportion to their percentage of the total porosity

(i.e. at high Sb value for scheme 1 and at low Sb values for scheme 2).

Unlike the other effective physical properties in this study, both “4 and v are
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themselves functions of effective quantities. Therefore, variations in both V, and V can

be viewed in terms of the relative changes in these quantities. From Equations (4.11) and

(4.12), it can be shown that

dV = dV dk* + dV d.L*
+

dp*

dSb dS,w d,.t* dSb dp* dSbw

= i i *

+ a_ di.t” - ør’ore V (p(w) - p(a)) (428)
2V dSb 3V dSb 2

and

dV dv; dp*
±.4y

dp*

dSb — dj.t* dSb dp* dSb

=
di.t - øPoreVs (p(w) - p(a))], (4.29)

where (w) and p (a) are the densities of water and air , respectively. In general,

dk*
O (4.30)

dSbw

and

(4.31)

Therefore, it follows that
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1 —2— di?
>0 (4.32)

2V dSb 3V dSb —

and

i d
0. (4.33)

2V: dSb

Thus, the existence of a relative minimum or maximum indicates values of Sb where

there is a change in the nature of the dominant mechanism that controls the relationship

between V, or v: and Sb. A positive slope indicates that changes in the elastic moduli

dominate; a negative slope means that variation in the effective density is controlling

parameter. In general, variations in elastic wave velocities due changes in the saturation

conditions in the larger cx pores are controlled by changes in pa’. Conversely, changes in

the saturation conditions in the smaller cx inclusions cause variations in V and V that are

dominated by changes in the effective elastic moduli.

Conclusions

Inclusion-based formulations describing the elastic and electromagnetic wave

propagation in a partially saturated porous rock have been derived by depicting this

system as a rock matrix containing inclusions representing the individual pore spaces. By

considering various styles of pore-scale fluid distribution, it has been found that

drastically different functional relationships between these physical properties and overall

saturation level are obtained while maintaining fixed constituent properties and pore

71



structure. Numerical simulations performed with these formulations have illustrated the

significance of pore-scale fluid distribution in determining elastic and electromagnetic

wave propagation within partially saturated porous rocks. In particular, it has been

demonstrated that the pore fluid configuration within the individual pore spaces and the

pore geometries in which local saturation conditions are varying are critical factors in

determining the physical properties of partially saturated rocks. Further, changes in the

saturation conditions in the smaller aspect ratio geometries have an affect on the physical

response of the porous medium that is well out of proportion to their percentage of the

total porosity. In the next chapter, these basic results will be used to analyze the

experimentally measured dielectric and elastic response of partially saturated porous

rocks.
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Rock Matrix Deionized Water Ak

1Ca 7.604 80. 1.01

a(in) 1.387x103 7.75x 10 0.

Table 4.1: Dielectric constants and conductivities used for the constituents of the model
sandstone.

Rock Matrix Deionized Water Ak

k (in -N-) 3.2 x 1010 2.237 X i0 1.550 x
m2

t (in N) 2.45 x 1010 0. 0.

p(in) 2650. 998. 1.293

Table 4.2: Elastic moduli and densities used for the constituents of the model
sandstone.
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Figure 4.1: Computed 1cI1c(Sbw=O.OO) as a function of Sb for a series of simple

models containing homogeneous pores. Aspect ratio (cc) of the pore

geometry present in a given model is denoted.
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Figure 4.2: Computed c/(Sb=O.OO) as a function of Sb for a series of simple
models containing homogeneous pores. Aspect ratio (a) of the pore

geometry present in a given model is denoted.
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Figure 4.3: Computed 1/ic(Sbw=O.OO) as a function of Sb for a series of simple
models containing pores filled with the water-wet effective pore fluid.
Aspect ratio (x) of the pore geometry present in a given model is denoted.
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Figure 4.4: Computed aIa(Sb=O.OO) as a function of Sbw for a series of simple
models containing pores filled with the water-wet effective pore fluid.
Aspect ratio (a) of the pore geometry present in a given model is denoted.
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Figure 4.5: Computed 1/1c(Sb=O.OO) as a function of Sb for a series of simple
models containing water-wet confocally-layered pores. Aspect ratio (ci) of

the pore geometry present in a given model is denoted.
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Figure 4.6: Computed o/(Sb=O.OO) as a function of Sb for a series of simple
models containing water-wet confocally-layered pores. Aspect ratio (ce) of

the pore geometry present in a given model is denoted.
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Figure 4.7: Computed 1c/1’(Sbw=O.OO) as a function of Sb for a series of simple
models containing pores filled with the air-wet effective pore fluid. Aspect
ratio (ce) of the pore geometry present in a given model is denoted.
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Figure 4.8: Computed 1/1(Sb=O.OO) as a function of Sb for a series of simple
models containing air-wet confocally-layered pores. Aspect ratio (ce) of

the pore geometry present in a given model is denoted.
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Figure 4.9: Computed a/a(Sb=O.OO) as a function of Sb for a series of simple
models containing pores filled with the air-wet effective pore fluid. Aspect
ratio (ct) of the pore geometry present in a given model is denoted.
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Figure 4.10: Computed cIa(Sb=O.OO) as a function of Sbw for a series of simple
models containing air-wet confocally-layered pores. Aspect ratio Qx) of

the pore geometry present in a given model is denoted.
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Figure 4.11: Computed k*/k*(Sbw=O.OO) as a function of Sbw for a series of simple
models containing homogeneous pores. Aspect ratio (cL) of the pore

geometry present in a given model is denoted.
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Figure 4.12: Computed */*(sbwo 00) as a function of SbW for a series of simple

models containing homogeneous pores. Aspect ratio (ct) of the pore
geometry present in a given model is denoted.
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Figure 4.13: Computed V/V(Sb=O.OO) as a function of Sb for a series of simple

models containing homogeneous pores. Aspect ratio (a) of the pore

geometry present in a given model is denoted.
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Figure 4.14: Computed v:/v:(sbW=o.oo) as a function of Sb for a series of simple
models containing homogeneous pores. Aspect ratio (a) of the pore

geometry present in a given model is denoted.
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Figure 4.15: Computed k*/k*(Sbw=O.OO) as a function of Sb for a series of simple
models containing heterogeneous pores. Aspect ratio (cL) of the pore

geometry present in a given model is denoted.
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Figure 4.16: Computed .t*/$t*(Sbw=O.OO) as a function of Sb for a series of simple

models containing heterogeneous pores. Aspect ratio (a) of the pore

geometry present in a given model is denoted.
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Figure 4.17: Computed V/V(Sb=O.OO) as a function of Sb for a series of simple

models containing heterogeneous pores. Aspect ratio (ce) of the pore

geometry present in a given model is denoted.
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Figure 4.18: Computed V’/V(Sbw=O.OO) as a function of Sbw for a series of simple
models containing heterogeneous pores. Aspect ratio () of the pore

geometry present in a given model is denoted.
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Figure 4.21: Computed w as a function of Sbw for the model sandstone using the three
fluid distribution schemes for varying local Sbw level.
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Figure 4.22: Computed c as a function of Sb for the model sandstone using the three
fluid distribution schemes for varying local Sb level.
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Figure 4.23: Computed k* as a function of Sb for the model sandstone using the three
fluid distribution schemes for varying local Sbw level.
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Figure 4.24: Computed t’ as a function of SbW for the model sandstone using the three

fluid distribution schemes for varying local Sb level.
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Figure 4.25: Computed V as a function of SbW for the model sandstone using the three

fluid distribution schemes for varying local SbW leveL
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Figure 4.26: Computed V as a function of Sb for the model sandstone using the three

fluid distribution schemes for varying local Sbw level.

99



Chapter Five

The Effects of Pore-Scale Fluid Distribution on Elastic and Electromagnetic

Wave Propagation in Partially Saturated Porous Rocks: An Analysis of

Experimental Results

Introduction

A number of experimental studies have clearly demonstrated the dependence of

macroscopic physical properties on pore-scale fluid distribution (Domenico, 1976, 1977;

Bourbie and Zinszner, 1984; Knight and Nur, 1987a; Longeron et al., 1989; Knight and

Nolen-Hoeksema, 1990); differing styles of pore-scale fluid distribution were obtained in

these laboratory experiments by changing the saturation technique. The theoretical

importance of pore-scale fluid distribution in determining the dielectric and elastic response

of a partially saturated porous rocks was demonstrated in the last chapter. The

mathematical formulation employed in that analysis will now be used to study the

experimentally measured elastic wave velocities and apparent dielectric constant of partially

saturated porous materials.

Of particular interest are the results of Knight and Nur (1987a) and Knight and Nolen

Hoeksema (1990) that give the measured apparent dielectric constant and elastic wave

velocities, respectively, for similar samples of a tight gas sandstone undergoing the same

two saturation techniques. Before the existence of these results, individual experimental

studies have been concerned with the effect of differing saturation techniques on a single
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macroscopic physical property. Further, a variety of different saturation procedures and

porous media samples were used in these studies; hence, there is difficulty in comparing

the results of these experiments. The data set obtained by Knight and co-workers permits a

direct assessment of the variation in the dielectric and elastic response of the same rock type

undergoing the same saturation methods.

Further analysis of the relationship between elastic wave velocities and differing styles

of pore-scale fluid distribution is undertaken by considering the experimental data obtained

by Domenico (1977). In his experiment, Domenico subjected a glass bead packing to two

saturation techniques that differ from those employed in the tight gas sandstone

experiments. It is shown in this study that the physical properties of both the tight gas

sandstone and the glass bead packing are replicated by utilizing simple models to describe

the geometrical configuration of the constituents. In addition, it is seen that a single

geometrical model for pore-scale fluid distribution can be used simultaneously to estimate

the dielectric and elastic behavior of the tight gas sandstone.

Tight Gas Sandstone: Experimental Results

Knight and Nur (1987a) measured the apparent dielectric constant (iç) of a tight gas

sandstone sample from the Spirit River Formation in the Alberta Basin; Knight and Nolen

Hoeksema (1990) measured the compressional wave velocity (Vp) and shear wave velocity

(Vs) on a similar sample from the same formation. The experimental procedures employed

are described in detail in these two studies. The sample used in the dielectric measurements

has a porosity of 0.070 and a gas permeability of 7.18 jt D; the sample used in the study of

the elastic wave velocities has a porosity of 0.052 and a permeability of 1 i D. A complete
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petrographic description of the Spirit River samples is found in Walls (1982).

In both laboratory studies, measurements were made during a continuous imbibition

drainage experiment (where imbibition is the displacement of air by water in a water-wet

system and drainage is the displacement of water by air). Starting with a desiccator dried

sample, S was initially increased through imbibition by adsorption of water vapor,

followed by the soaking of the sample in deionized water. The maximum value of S

obtained through this procedure was approximately S 0.90 in both experiments. Water

saturation was subsequently decreased through drainage by evaporative drying. As S

was varied, its value was determined by means of sample weight.

Figures (5. 1)-(5.3) display the measurements of ica, VP and V, respectively, obtained

during the imbibition-drainage cycle. The dielectric data were measured at a frequency of

105 kHz; the central frequencies for the V and V measurements were 1 MFIz and 600

kHz, respectively. Each data set clearly illustrates the dependence of the functional

relationship between a physical property and SW on the saturation technique used. There

are clearly two distinct regions in both the apparent dielectric constant and elastic wave

velocity data sets that can be related to the location and nature of the water present in the

pore space. Knight and Nur (1987a,b) defmed a critical value of SW (SWO) separating these

two regions in the dielectric response (i.e. S° = 0.15); these two regions are labelled in

Figure (5.1). In region 1 (S <SW°), the water present in the rock exists as monolayers of

adsorbed water coating the surfaces of the pore space. In region 2 (SW > SW0), a bulk

water phase filling the central portion of the pore space is also present. For the sample

used in the dielectric measurements, SW° has been shown to correspond to a surface layer
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of bound water, approximately 1 nm in thickness (Knight and Nur, 1987a,b). The same

distinction can be made in an analysis of the elastic data shown in Figures (5.2) and (5.3).

In this case, the value of S° cannot be precisely defmed and a zone of transition in which

S occurs is denoted (i.e. 0.25 Sj 0.35).

In region 1, where only bound water is present, a significant increase in iCa and a

decrease in the elastic wave velocities, particularly V (Clark et al., 1980), occurs as S

increases towards S°. Variations in the physical properties within this saturation range are

due to complex rock-bound water interactions. Since rocks in situ usually contain the

bound water phase, the physical behavior of rocks in this region of S values will not be

considered in this study. Of interest in this study is the theoretical analysis of the hysteresis

that occurs in both data sets at higher S values. This hysteresis in the physical properties

has been attributed to changes in the geometrical distribution of fluids within the pore space

that occur during the imbibition-drainage cycle (Knight and Nur, 1987b; Knight and

Nolen-Hoeksema, 1990). Based on earlier works by Haines (1930) and Foster (1932), the

following model was proposed by Knight and Nur (1987a) in order to explain the results

of their dielectric measurements.

At low levels of S, as water content is increased by the adsorption of water vapor, the

water preferentially adsorbs on the surfaces of the pore space. This adsorption leads to the

development of thick surface layers of water along the outer portion of the pore volume

with a thin, interconnected gas phase within the central portion. This arrangement of gas

and water means that the individual pore spaces are in a partially saturated state. When the

imbibition process is continued at higher levels of SW by soaking the sample, the bulk water

phase tends to maintain this established geometrical configuration by continuing to move
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along and coat the surfaces. However, this geometrical configuration is a metastable state

persisting until closure occurs between the surface layers of bulk water. At this point, the

rearrangement of the bulk water and air to a more thermodynamically stable configuration

occurs, causing the break-up of the interconnected gas phase and the filling of the central

pore volumes with the bulk water phase.

The model proposed for the drainage process is quite different. During drainage, the

bulk water empties from each individual pore space as it is accessed, removing all but the

first few tightly-held monolayers of bound water. Hence, the geometrical configuration of

the pore fluids that occurs during imbibition is not re-created during drainage. The

imbibition process favors the development of pores with co-existing gas and bulk water

phases; the drainage process tends to develop either fully bulk water-saturated or fully gas-

saturated pore spaces.

Since the object of this study is to assess the effects associated with the geometrical

distribution of the bulk water phase, we are only concerned with the behavior of the tight

gas sandstone in the range of the S values between 50 and 1.00. In this region, the

discussion will be in terms of bulk water saturation (Sb) over a range from 0.00 to 1.00.

Further, the bound water phase is considered to be part of a wetted rock matrix system

(Knight and Endres, 1990); this implies that the total porosity of the samples must also be

corrected for the existence of the bound water phase. If the value of SW° is taken to be 0.15

and 0.35 for the dielectric and the elastic measurements, respectively, then the corrected

porosity (Ø, the total porosity occupied by the bulk water phase) for the dielectric and

elastic samples is 0.0595 and 0.0338, respectively.
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Tight Gas Sandstone: Numerical Simulation

Let us first consider the drainage process. Given that the segregation of pore fluids

occurs, homogeneous inclusions composed of either air or bulk water are used to model the

pore-scale fluid distribution. The effective permittivity and elastic moduli of such a system

with homogeneous pore spaces is calculated by using Equation (4.4) and Equations (4.7)

and (4.8), respectively. The overall value of Sb is varied by simultaneously changing the

local Sb level in all pore geometries such that emptying occurs in unison across the entire

pore geometry spectrum. This scenario for the pore-scale fluid distribution is schematically

shown in Figure (5.4). Given that the topology of the pore space within a rock necessitates

essentially simultaneous drainage of all aspect ratio geometries in order to access the total

pore space, this scheme is considered to be realistic for modeling the experimental data.

For the imbibition process, it is necessary to treat each individual pore as being

simultaneously occupied by air and bulk water until the rearrangement of pore fluids

occurs. Given the configuration of thick surface layers of bulk water and an interconnected

air phase in the central volume of the pores, confocally-layered spheroids consisting of a

bulk water outer shell and an inner air spheroid are reasonable inclusion geometries to use

in simulating the process. Further, it will be assumed that all pores with a given shape will

have identical levels of local Sb prior to the critical rearrangement phenomenon. The

effective permittivity for a system containing confocally-layered pore spaces is computed

from Equation (4.21). Since the pore spaces are heterogeneous, Equations (4.16) through

(4.18) are used to determine the effective elastic moduli.

To simulate the pore-scale fluid distribution which occurs during the imbibition process

prior to the critical rearrangement of pore fluids, the following idealized geometrical
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arrangement of pore fluids was employed; this geometrical configuration is schematically

illustrated in Figure (5.5). As Sbw starts to increase from 0.00, the lower aspect ratio

geometries, which are generally associated with the pore throats (in the case of the tight

sandstone model, this will be assumed to be a 0.5), are initially filled to some level of

local Sbw. The local levels of Sbw specified for the various pore throat shapes in this

simulation are given in Table (5.1). This establishes the presence of the narrow gas

pockets within the pore throats. This geometrical configuration within the pore throats is

maintained as the overall level of Sbw of the medium is increased by confocally filling the

remaining pore geometries until S , the point at which the rearrangement of pore fluids

occurs, is achieved. The critical value of overall water saturation S is taken to be 0.65

and 0.80 in the case of the dielectric and velocity models, respectively. After the

rearrangement of the pore fluids, it will be assumed that the pore-scale fluid distribution is

identical to that used to model the drainage process at the given value of Sb.

The constituent properties used for modeling the dielectric and elastic properties of the

tight gas sandstone are given in Tables (5.2) and (5.3), respectively. The frequency used

in the computation of the dielectric properties is 105 kHz. Figure (5.6) illustrates the pore

geometry spectra used to describe the two samples. These spectra are based on the work of

Toksöz et aL (1976) and Cheng and Toksöz (1979). Since different samples were used in

each of the experiments, small differences in the fractional volume for a given aspect ratio

are permitted between the pore geometry spectra representing the two samples. In both

cases, the total porosity used is corrected for the bound water being incorporated as part of

the rock matrix system.
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Figure (5.7) shows the computed apparent dielectric constant (ic); Figures (5.8) and

(5.9) show the computed compressional and shear wave velocities (“4 and V),

respectively. In all cases, the experimental data is superimposed on the model response.

While there are differences between the theoretical models and experimental data, the basic

form of both are in good agreement. The model accurately predicts the functional form and

magnitude of the hysteresis which occurs in both the apparent dielectric constant and elastic

wave velocities as the sample undergoes the imbibition - drainage cycle. The differences

which are observed can be attributed to inaccuracies both in the geometrical schemes used

to represent the pore-scale fluid distribution and in the parameters used for the constituents

and pore geometry spectra. However, it is significant that the relatively simple scenarios

used to depict the geometrical configurations occurring within the rock give good results.

In particular, it can be observed that the existence of the thin interconnected air phase

throughout the pore space during the imbibition technique prior to the rearrangement of the

pore fluids causes a significant enhancement in Ka and a depressed, almost constant value

of V, and V. Further, the drainage technique gives a much more uniform variation in

physical properties with changes in SbW.

Glass Bead Packing: Experimental Data

Domenico (1976, 1977) investigated the functional relationship between elastic wave

velocities and S for a glass bead packing by employing two different saturation methods

that he referred to as the flow and imbibition techniques. The experimental procedure used

is given in detail in the above references and is briefly summarized below. In the flow

technique, the sample was initially saturated with nitrogen gas; the gas was subsequently
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totally displaced by a brine solution. Partial saturation was achieved by injecting a series of

gas-brine mixtures into the sample. The gas and brine were mixed prior to injection;

however, the two pore fluids remained immiscible during the emplacement procedure.

Approximately ten pore volumes of the prepared fluid mixture were passed through the

glass bead packing between measurements.

The imbibition method initially utilized the flow method to obtain a partially saturated

state. Subsequently, the fluid exit valve was closed and pure brine was injected into the

glass bead packing until the gas phase present within the pore space was completely

dissolved into solution. This results in a significantly increased pore fluid pressure (pf)

within the porous medium. To obtain a partially saturated medium, p was decreased and

gas was exsolved from solution. During this process, the confining pressure (Pc) was

adjusted such that the effective pressure (Pe=Pc-Pf) was constant for all measurements.

During both saturation techniques, the level and uniformity of S within the glass bead

packing was monitored by means of an X-ray system.

Figures (5.10) - (5.13) illustrate the experimental results for the elastic wave velocities

as a function of S; these measurements were performed at a central frequency of 200

kHz. Over the range of S values between 0.70 and 1.00, the two saturation techniques

gave distinctly different results for V at both effective pressures. Although the flow

technique produced a less uniform distribution of S values along the length of the sample,

these variations are not sufficient to explain the observed differences between the two

saturation methods. For S values between 0.88 and 1.00, the flow technique gives a very

uniform S distribution while differences between the two methods are the most
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pronounced. There are indications in the V measurements that the two saturation

techniques are different; however, the data are not conclusive.

It is hypothesized in this study that Domenico’s flow technique results in a pore-scale

fluid distribution similar to that obtained during the imbibition method employed by Knight

and co-workers. By initially saturating the medium completely with brine, it is established

as the wetting phase throughout the glass bead packing. Subsequent injection of a distinct

gas phase results in it being placed in the central portion of the pore spaces. Up to some

critical level of S, (Se), the pressure within the gas can overcome other thermodynamic

factors in order to establish and maintain an interconnected gas phase. Once again, such a

configuration of fluids is thermodynamically metastable; and, gas pressure cannot maintain

gas interconnectivity beyond S.

However, there is a significant difference between these two saturation techniques.

Knight’s method results in a continuous sequence of changes in the pore-scale distribution

of fluids which represents a single realization of the metastable process. Hence, physical

properties display a clear functional relationship as S is varied. However, this metastable

process is sensitive to the saturation history of the porous medium. By flushing large

volumes of fluids through the porous medium, Domenico’s technique produces relatively

independent realizations of the metastable process for each measurement. Hence, this

technique can produce significantly different pore-scale fluid distributions for similar values

of S. In particular, the value of S at which S occurs varies between realizations of this

process. This is reflected in the scatter observed in the elastic wave velocity data and the

variation observed in local S (see Figure 22 in Domenico,1977) over the range of S

values between 0.70 and 0.90.
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Domenico’s imbibition technique results in a style of pore-scale fluid distribution which

is significantly different from those previous discussed. The exsolution of a gas phase

from solution to obtain high values of S should result in the formation of individual gas

bubbles throughout the pore space. Further, the creation of the gas bubbles should be

relatively uniform through the pore structure of the rock.

Glass Bead Packing: Numerical Simulation

The pore-scale fluid distribution resulting from Domenico’s flow method is simulated

by means of the same geometrical scheme used to represent Knight’s imbibition technique.

The generation of gas bubbles implies that Domenico’s imbibition technique is

characterized by heterogeneous pore spaces. Hence, Equations (4.16) through (4.18)

describe the effective elastic moduli resulting from this saturation technique. Further, it

will be assumed that the exsolution process produces a uniform distribution of gas bubbles

such that the local S within a given pore space is the same as the overall value of S.

The elastic properties of the constituents are given in Table (5.4); Figure (5.14) gives

the pore geometry spectrum used to represent the glass bead packing. It is assumed that the

relative amount of the bound water phase is small in comparison to that of the bulk water

phase within the glass bead packing. Therefore, corrections for the volume occupied by

the bound water phase were not made; and, the results of the numerical simulation are

expressed in terms of total water saturation. In simulating the flow technique, S was

taken to be 0.80; and, pore throat geometries were assumed to have aspect ratios of 0.5 or

less.
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Figure (5.15) and (5.16) show the computed compressional and shear wave velocities

(V and V), respectively, for the glass bead packing model. The functional relationships

between VP and S obtained from the numerical simulation for the two saturation

techniques is in good qualitative agreement with the experimental data. In particular, the

dominance of the density effect over the lower S, range during the flow method and the

dramatic decrease in V as S decreases from full water saturation during the imbibition

technique are accurately reproduced. Numerical results for V show that the expected

difference between the two saturation methods is very small. Hence, it is not surprising

that the experimental data is not conclusive.

Conclusions

The processes involved in the filling and emptying of a porous rock with fluids are

undoubtedly complex. In this study, simple models are employed to describe the pore-

scale fluid distribution resulting from the use of a given saturation technique. The treatment

of these saturation methods has been simplified to consider only the basic geometrical

elements characterizing the pore space and the contained fluids. The good agreement that is

obtained between the theoretical models and the experimental data implies that these

geometrical effects are critical factors in determining the physical properties of partially

saturated rocks. Further, it is significant that a single geometrical model for the pore-scale

fluid distribution was used simultaneously to estimate the elastic wave velocities and

apparent dielectric constant of a partially saturated rock.

In the theoretical formulations used, it was assumed that communication between

individual pore spaces is minimal. Hence, intrapore phenomena control both the elastic and
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electromagnetic wave propagation in the porous medium. This is achieved experimentally

by taldng measurements at sufficiently high sampling frequencies and/or using porous

media that possess adequately low permeability. In the cases of the tight gas sandstone and

the glass bead packing, these requirements appear to have been satisfied.

However, a review of the experimental work in the literature on elastic wave velocities

in partially saturated rocks suggests that these conditions commonly do not hold. Drainage

by evaporative drying has been used to control overall S in a number of studies (Wylie et

al., 1956; Gregory, 1976; Murphy, 1982b, 1984, 1985). The theoretical results for the

tight gas sandstone (Figures 5.8 and 5.9) and Berea sandstone (Figure 4.25 and 4.26)

imply that elastic wave velocities should vary in a nearly linear manner with changing S.

Results obtain by Murphy (1982b, 1984, 1985) show that significant departure from this

quasi-linear relationship occurs as sampling frequency decreases. In the case of Massilon

sandstone (Murphy, 1982b), the combination of very high permeability (737 mD) and

sampling frequencies in the vicinity of 500 Hz gives results that are well described by the

phenomenological formulations of Gassmann (195 ib) and Biot (1956) where complete

pressure communication within the pore fluid is assumed. However, the behavior of tight

gas sandstones (Murphy, 1984) and granite (Murphy, 1985) measured at sampling

frequencies of approximately 5 kHz display an intermediate type of functional relationship

that cannot be adequately described by the inclusion-based formulations used in this study

or the phenomenological approach. Further, there appear to be no adequate methods to

determine a priori whether a particular formulation is valid for a given porous rock for a

specific set of conditions.
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Range of Local Level of S bw

5x101cc>101 0.98

10’>cc102 0.75

10-2>a 0.20

1O-3>c104 0.10

Table 5.1: Level of local Sbw maintained in the pore throat geometries during the

imbibition process prior to the rearrangement phenomenon.

Rock Matrix Deionized Water Ak

Ka 13.75 80. 1.01

Ga(inj) 2.53x103 5.x105 0.

Table 5.2: Dielectric constants and conductivities used for the constituents of the tight

gas sandstone model.
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Rock Matrix Deionized Water Air

k (in-N-) 2.9x10’0 2.237x109 1.550x105
m2

t(in-N-) 2.6x10’0 0. 0.

p (in5) 2650. 998. 1.293

Table 5.3: Elastic moduli and densities used for the constituents of the tight gas
sandstone model.

Glass Bead
Packing Brine

k (in N’1 2.137 x 1010 2.098 X i0 1.378 x 106
m2I

t (in -N..) 3.053 x iO 0. 0.

p(inE-) 2420. 1080. 11.67

Table 5.4: Elastic moduli and densities used for the constituents of the glass bead
packing model.
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Figure 5.1: Measured apparent dielectric COflStaflt (1(a) of a tight gas sandstone
undergoing imbibition-drainage cycle (sampling frequency=lO5kHz) (from
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Figure 5.2: Measured compressional wave velocity (Vp) of a tight gas sandstone
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value; (c) all pore geometries filling in unison after rearrangement
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drainage scenarios. Experimental data are superimposed on the theoretical

results.
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scenarios. Experimental data are superimposed on the theoretical results.
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Figure 5.10: Measured compressional wave velocity (Vp) of a glass bead packing
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Domenico, 1977).
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Figure 5.12: Measured compressional wave velocity (Vu) of a glass bead packing

undergoing flow and imbibition methods (Pe=31.00 MPa) (from
Domenico, 1977).
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Figure 5.13: Measured shear wave velocity (Vs) of a glass bead packing undergoing
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Figure 5.14: Pore geometry spectrum (in volume fraction) used for elastic models of
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imbibition and flow methods.
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Chapter Six

A Model for Incorporating the Effects of Surface Phenomena in the

Dielectric Response of Heterogeneous Media

Introduction

The presence of surface phenomena can significantly affect the dielectric response of a

heterogeneous medium. One method for incorporating the effect of surface phenomena in a

theoretical formulation is to redefine the bulk components. In particular, the adsorbed

water phase present within a water-wetted sandstone was considered to be part of the rock

matrix system; and, the parameters used to describe this system reflect this wetted state

(Knight and Endres, 1990). However, this approach does not preserve the geometrical

structure of the system; the effects of surface phenomena are uniformly distributed

throughout the rock matrix. In order to retain the structure of the system, it is necessary to

employ a mathematical formulation that localizes these mechanisms at the interfaces within

the system.

The region in which surface phenomena occur is generally very thin in comparison to

the dimensions of the individual pore spaces. Thus, the effects of surface phenomena can

be incorporated into the analysis of an individual inclusion by specifying the appropriate

boundary conditions. This approach was first used by O’Konski (1960) in order to

introduce surface currents and an associated surface conduction into an analysis of a

spherical colloidal particle. Subsequently, a number of studies (Schwarz, 1962; Schurr,
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1964; Dukhin, 1971; Dukhin and Shilov, 1974; Fixman, 1980, 1983) have employed a

variety of different boundary conditions in order to incorporate surface phenomena into the

analysis of a spherical particle.

To adequately describe the geometry present within a porous medium, it is necessary to

consider more versatile inclusion shapes, such as ellipsoids. However, analytical solutions

for ellipsoidal inclusion geometries employing the necessary boundary conditions have not

been found. O’Konski (1960) offered an approximate solution for the ellipsoidal case

based on his results for a spherical particle. He assumed that the effects of the surface

phenomena could by represented by an equivalent volumetric mechanism which is

uniformly distributed throughout the ellipsoid. Again, this approach radically alters the

geometrical configuration of the system under consideration.

In this chapter, a new approximation for the case of an ellipsoidal inclusion influenced

by surface phenomena is present. Motivated by the technique used by Miles and Robertson

(1932) in an analysis of the spherical case, the starting point of this model is a confocally

layered effipsoidal system. The outer shell in which the surface phenomena take place is

taken to be infinitesimally thin while the number of unit charge carriers and unit dipoles

within this region is conserved. In the limit, this results in a homogeneous (i.e. single

component) inclusion possessing a surface permittivity representing the surface

phenomena. For spherical geometries, this method gives a result identical to that obtained

rigorously by means of boundary conditions.

Response of a Homogeneous Inclusion with Surface Phenomena

Determination of the macroscopic dielectric properties of a heterogeneous medium by
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means of an inclusion-based formulation requires an analysis of the response of the

individual inclusions. The analysis undertaken to this point has employed boundary

conditions that exclude surface phenomena at the interfaces between the inclusions and

background material. It is possible to incorporate the effects of surface phenomena into

this analysis by specifying the appropriate boundary conditions; however, an analytical

solution has not been determined for the case of a general effipsoidal inclusion.

An approximation for a homogeneous ellipsoidal inclusion when surface phenomena

occur can be obtain by initially representing this system as a two-component confocally

layered ellipsoidal inclusion. The outer and inner ellipsoids of this confocal system have

principal semi-axis lengths of (aç’ ),aç’)) and (aç2),$2),aç2)), respectively. The

relationship between the semi-axis lengths of the two ellipsoids is given by

(a1))2= (a2))2+ (j=l, 2, 3) (6.1)

where is the ellipsoidal coordinate associated with confocal ellipsoids. The shape of the

outer and inner ellipsoids are uniquely determined by the aspect ratio pairs (c41),a) and

(a(12),c42)), respectively. For a heterogeneous system containing this type of

inhomogeneity, Equation (3.6) can be rewritten as

VEg+ J (Eg(X) eg(°))EO)(x)dv (6.2)
Vmc

where the perturbation term now involves the volume integration over the confocally
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layered inclusions. Since the outer shell and inner ellipsoid are composed of homogeneous

materials with generalized permittivities 4) and 42, respectively, the evaluation of the

perturbation term only requires the determination of the electric field strength within each

component.

As was done in Chapter Three, E (1)(X) within an individual inclusion is estimated by

treating it as an isolated inclusion embedded in an infinite homogeneous background with

generalized permittivity subjected to a uniform applied electric field with strength Ea.

Stepin (1965) determined the electric field strength within such a system; his analysis

showed that the electric field strength within each layer of the inclusion can be decomposed

into “homogeneous” and “heterogeneous” components. Further, it was demonstrated that

integration of the contribution due to the “heterogeneous” component over the volume of a

given layer is zero. Hence, only the “homogeneous” component need be considered in the

evaluation of the perturbation term. The “homogeneous” component of the electric field

strength is

3
- (E(1)e(2)a(2)

Ea0= Ea ‘ ‘ ‘ cos O 2 (6.3)
J=i TIO(4 ),$ ),4 ),a(1),a(2))

within the outer ellipsoidal shell and

Ej0= Ea E b 1 2
C05 e I (6.4)

j=1 [io(4
),4 ),4 ),a(1),a(2))

134



within the inner ellipsoid. The terms qo and Thj are defined as follows:

loj(ee(1)e(2)a(1)a(2)) = {[A2)(czc2)c42)) _i]
-

!j A2)(xc2)$2))}

{[A1(cc1)a1)) -11 ::A1)(c1$1))}
+ )i)i)

A’)(aç’),a’)) x

[1_A1)(xç1),c41))]

(‘_ )(‘- (6.5)

and

nij(41),42),a(2)) = [A2) ((2)$2))
_1]

-

A ((2)c42))
, (6.6)

where A’ (c4’ ),c4’)) and A2)(aç2),42)) are the depolarization coefficients with respect to

the j th axis for the outer and inner ellipsoid, respectively.

Using Equations (6.3) and (6.4), it can be shown that the expected value of the volume

integral for a confocally-layered inclusion that is oriented in a unifomly random manner is

given by

KI (cg(x) - e) EOkx)dv) Eae(ac1)41)ac1))

vinc
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I
,

Nj),$1),$2),a(1),a(2)fl
(6.7)

= j. Rjfr(),41),42),a(1),a(2)) J

where

N(4°) E’ (2) a(1),a(2)) = (e(2) (O)) 1) V(2)(a(2)) - V’ - jO)) x‘g’g’

{[A2) (a(2) c$2))
- 1] i)

- A2) (2)a2) 42) v(’) (a(1),a2)} (6.8)

and

R(e(b) (i) (2) a(1),a(2)) = {[A2) ((2)2))...
i]

i) A2) ((2)c$2)) E(2)} xg’g’g’

—

1] ) — A1)(aç1x1))41)}(aç1) ço aç’)) + A1)(1),x1)) <

[1 - A1)( 1x1))] (e$’)
- 4’))(e(g’) —42))(aç1) aç1) (6.9)

The volume of the outer confocal shell and inner effipsoid are

y(1) (a(1),a(2)) = it [(aç 40 aS’)) - (aç2) a5) a52))] (6.10)

and
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V(2) (a(2)) = it (a) aj aç2)), (6.11)

respectively.

To obtain an estimate for a homogeneous inclusion possessing surface phenomena, it is

necessary to consider the limiting case as —* 0. Using a Taylor series expansion, the

following approximations for quantities pertaining to the outer ellipsoidal shell can be

obtained when is very small relative to a2) (j = 1, 2, 3):

(j = 1,2,3), (6.12)

aç1)a)aç1)=aç2)a)aç2)+ C(a(2)) , (6.13)

v(’) (a(1),a(2))
- it[C (a(2)) + 2D (a(2))] , (6.14)

and

A’)(ç’),c$’))= A2)(cz2),c$2)) + F (a(2)) (j = 1,2,3), (6.15)

where

a(2) a(2) a(2) a(2) a(2) a(2)
C(a(2)) i ( 223

+ aç2) + a(2) )‘ (6.16)
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a(2) (2) (2) (2) (2) (2) (2) a(2) (2)+ a2 + a3 j a2 a3 a1 a3 + 1 a2
(617)

a2)a aç2aç2 aç2aç2 2
(ac2))3 (a)) (a2))3 ,(

and

Fi(a(2)) { L (a22]A2(ac1,ac1)- (ac2)42) $2))

{3{s + (a] { + (a] + [s + (aç2] [ + (aS2))] + + (ac2)y] [s + (4]}

+ (ac2]
5/2 { + (a]

3/2 [ + ($2] 3ds } . (6.18)

Expressions forF2(a(2)) and F3 (a(2)) are similar to Equation (6.18) with the appropriate

permutation of indices.

During the limiting process, it is assumed the total number of the unit dipoles and

charge carriers within the outer shell are conserved. Since generalized permittivity is

directly proportional to the density of unit dipoles and unit charge carriers, ) is related to

an equivalent generalized surface pemfittivity in the limiting case as follows:

e(’)V(1)(a(1)a(2)) = A’S(a(2)) (6.19)
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where S (a(2)) is the surface area of the inner ellipsoid and describes the electric nature

of the surface phenomena for the homogeneous inclusion. Using Equation (6.14), it is

found that for small

3(1)S((2)) 1D(a(2))
(620)g 4itC(a(2)) C(a(2))

By inserting Equations (6.12) - (6.15) and (6.20) into Equation (6.7) and taldng the

limit — 0, the following approximation is obtained for the expected value of the volume

integral over a homogeneous inclusion with principal semi-axis lengths (ai, a2, a3) and

generalized pemiittivity possessing surface phenomena described by the surface

permittivity:

(E(x) - )) E(kx)dv”) = 4EacVinc
M.j(e, a)

(6.21)

/ J pj(eb),e),Ag ,a)

where

Mj(c),e),,a) = - 40)
+ [1 - A (ai,2)1 S(a) V (6.22)

and

pj(e0)cO)241)a)
= A(cci,z2) + (1 - A(a1,x2)]4b)

+ 3AJ(ctl,a2) x
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S(a) {F(a) + [1-Ai (ai,a2)]C(a) (ai a2 a3)’} [4itC(a)]’
i)•

(6.23)

Unlike the result obtained in Chapter Three for an inclusion without surface phenomena, it

is apparent that the dielectric response of this inclusion is explicitly dependent on its

dimensions. In addition, it can be seen that this approximation differs significantly from

that proposed by O’Konski (1960); the effects of the surface phenomena are not expressed

simply in terms of an effective inclusion permittivity.

In order to test the validity of this approach, let us briefly consider two specific cases

for the approximation given by Equation (6.21). First, for an ellipsoidal inclusion without

surface phenomena (i.e. = 0), the result derived in Chapter Three for a homogeneous

inclusion is obtained. Second, in the case of a spherical inclusion, Equation (6.21) gives

J (e(x) - E)EW(x)dv 3Ea ‘ic
() + 2r-

. (6.24)
vj (E+2r1 2..g’)+2e

This result is identical to the form obtained by O’Konski (1960) and others using boundary

conditions to explicitly incorporate surface phenomena.

The form of this approximation can be greatly simplified by restricting the inclusion

shape to a spheroid of rotation. Let a = al = a and b = a3; the shape of the inclusion is

uniquely defmed by its aspect ratio, x b/a. In this case,

F(a) = -[(2a2+b2)(1A(c)) 2a-2] (j = 1,2), (6.25)
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F(a) = -[(2a2+b2)Mx) - b-2] (j = 3), (6.26)

and

C(a)= (2b+?), (6.27)

where A((x) is the depolarization coefficient associated with the unique axis. Incorporating

Equations (6.25)—(6.27) into Equation (6.21), the following estimate is obtained for the

expected value of the volume integral in the case of a spheroidal inclusion:

(qx) - E (i)(x)clv) Ea v’inc><

{ 4fr(1) - + 2[1 + A(cz)] f(b,x)

[1 -A(a)] + [1 +A(x)] e) + [1... )] (2 + 1)(2c2 + i)’ I3(b,cx)?

- e(o) + [1 + A(x)] f(b,cL)
(6 28)

A(c) e) + [1 - A()] + 2A(x) CL2 (2CL2 + i) f3(b,a)

The size dependence of the inclusion response is determined by 3(b,cC), the surface area to

volume ratio for the inclusion. For oblate and prolate spheroids, f is given by
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13(b,c) = j (1 + x(cx - i)hu12 log [(2 + 1)1/2 + (6.29)

and

13(b,a) = j-- { 1 + x(1 - c,2)h/2 sin1 ((i - 2)h/2])
, (6.30)

respectively. Further, the quantity 13(b,cx) completely characterizes the effect of the

surface phenomena for all spheroidal particles having the same shape.

Numerical Simulation

To illustrate the effect of surface phenomena on the effective dielectric response of a

heterogeneous media, a system containing identical spheroidal particles will be used.

Utilizing Equation (6.28) to estimate the perturbation term in Equation (6.2) and employing

the Lorentz approximation, the dielectric response of the resulting medium is described by

_______

1

_________

— Chic X
+ 2E0

{ 4(e) - + 2[1 + A(x)] 13(b,a)

[1 -A(x)] )+[i +A(cL)] )+ [1 ft.4a)](a2 + 1)(2cc2 + i)’ f(b,c)?
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1 , (6.31)
A(cx) + [1 - A((x)] (o) + 2A(a) a2 (2a2 + 1)-i f(b, a) J

where cj is the volume fraction concentration of the inclusions in the system. Further, it

will be assumed that the constituents and surface phenomena possess simple linear

electrical rheologies of the form given in Equation (4.16) and

(i)

(6.30)
1(i)

where and are the apparent surface permittivity and conductivity, respectively. The

parameters for the system are chosen to represent a suspension of colloidal particles in a

weak electrolyte (see Table 6.1). The surface phenomenon is taken to be a simple surface

conduction (i.e. = 0. Farads); hence, the effects of this surface mechanism on e is

determined by the quantity (b, a)j$’).

Figures (6. 1)-(6.4) and Figures (6.5)-(6.8) give the computed value of i and a for

this system as a function of frequency for particle shapes a = 1.000, 0.100, 0.010, and

0.001, respectively. In all cases, the fractional volume concentration of the particles was

taken to be 0.0005. At this concentration level, it can be shown that identical spheroidal

particles in this range of aspect ratios used can have uniformly random orientation without

particle overlap. For each value of a, the response of the system is calculated for an

increasing series of 13(b, a)4) values; for a constant value of this represents a
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sequence of models where the particle size scale as expressed in terms of f(b, cx) is

increasing.

The presence of the surface conduction causes a significant enhancement of ic at lower

frequencies for the more spherical particles (i.e. cz=1.000 and 0.100). The magnitude of

the effect approaches a limiting value as f3(b, cx)i.i increases. For the more oblate particles

(i.e. cx=0.010 and 0.001), the existence of the surface conduction initially causes a

reduction of ic in the low frequency range that increases with increasing f3(b, ct).4’);

however, this trend eventually reverses itself. In the case of cx=0.010, enhancement of K

similar to that observed for the more spherical particles occurs once j3(b, is

sufficiently large; conversely, enhancement of ic relative to the no surface conduction case

is not observed for cc=0.001 for the values of f(b, cx)j4 used. The effect of surface

conduction on a is similar in all cases; increasing f3(b, a)4 results in larger values of c

over the high frequency range. Significant enhancement of a relative to the conductivity

of the weak electrolyte over the lower frequencies occurs only in the case of cx=0.00 1.

Conclusions

A model has been presented for incorporating the effects of surface phenomena in the

dielectric response of a heterogeneous medium which retains the inherent geometrical

structure of this system. This is achieved by initially viewing the inclusion as a two

component confocally-layered ellipsoid where the surface phenomena occur in the outer

ellipsoidal shell. To obtain the approximation to a homogeneous inclusion system, the

outer shell is taken to be infinitesimally thin while the total numbers of unit charge carriers

and unit dipoles are conserved. The resulting estimate of the response of such an inclusion
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shows that it is explicitly dependent on the dimensions of the inhomogeneity. This

approximation is consistent with the response of an inclusion without surface phenomena

and the result obtained for a spherical inclusion where surface phenomena are rigorously

introduced through use of the appropriate boundary conditions.

When the shape of the inclusions is restricted to spheroids of rotation, it is found that

the dielectric response of the inclusion is dependent on its surface area to volume ratio. In

addition, it is shown that the electric nature of the surface phenomena for the inclusions of a

given shape is completely defmed by the product of this ratio and the generalized surface

permittivity. Using the approximation for spheroidal inclusions, the dielectric response of

a medium containing identical inclusions possessing a surface conduction has been

simulated. It is found that the effect of the surface conduction changes significantly as the

shape of the inclusion varies.
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Electrolyte Inclusion

80. 5.

aa(in) 1.x103 0.

Table 6.1: Dielectric constants and conductivities used for the constituents of the model

colloidal suspension.
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Figure 6.1: Computed 1c as a function of frequency (plotted in log scale) for models
containing identical inclusion possessing a surface conduction. Value of

3(b, c4i) used in a given model is denoted. Aspect ratio (a) of inclusion

used in all models is 1.000.
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Figure 6.2: Computed ic as a function of frequency (plotted in log scale) for models

containing identical inclusion possessing a surface conduction. Value of

13(b, a)I$i) used in a given model is denoted. Aspect ratio (ct) of inclusion

used in all models is 0.100.
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Figure 6.3: Computed ic as a function of frequency (plotted in log scale) for models
containing identical inclusion possessing a surface conduction. Value of

f3(b, a)$’) used in a given model is denoted. Aspect ratio (a) of inclusion

used in all models is 0.010.
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Figure 6.4: Computed 1c as a function of frequency (plotted in log scale) for models
containing identical inclusion possessing a surface conduction. Value of

f(b, a)J$1) used in a given model is denoted. Aspect ratio (cL) of inclusion

used in all models is 0.001.
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Figure 6.5: Computed a as a function of frequency (plotted in log scale) for models
containing identical inclusion possessing a surface conduction. Value of

13(b, a)j4’) used in a given model is denoted. Aspect ratio (a) of inclusion

used in all models is 1.000.
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Figure 6.6: Computed a as a function of frequency (plotted in log scale) for models
containing identical inclusion possessing a surface conduction. Value of

f3(b, a)J$i) used in a given model is denoted. Aspect ratio (x) of inclusion

used in all models is 0.100.
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Figure 6.7: Computed a as a function of frequency (plotted in log scale) for models

containing identical inclusion possessing a surface conduction. Value of

1(b, cc)4i) used in a given model is denoted. Aspect ratio (ce) of inclusion

used in all models is 0.010.
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Figure 6.8: Computed a as a function of frequency (plotted in log scale) for models
containing identical inclusion possessing a surface conduction. Value of

1(b, a)j4’) used in a given model is denoted. Aspect ratio (x) of inclusion

used in all models is 0.001.
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Chapter Seven

Summary

Microscopic phenomena can significantly affect the macroscopic physical properties

of a porous rock. A mathematical model is necessary to establish and analyze the

connection between a given microscopic phenomenon and the observed macroscopic

behavior. Such theoretical formulations have been derived in this study for the

relationship between the elastic and dielectric responses of porous rocks and certain

microscopic phenomena.

Contact generation has been suggested as a possible reason for the discrepancy

between previous models and experimental data for the functional dependence of elastic

wave velocities on confining pressure in unconsolidated materials. A model for the

elastic behavior of a random sphere packing that permits the creation of new grain

contacts during hydrostatic compression was derived for the first time in this thesis.

Using this formulation, it was found that the closure of near-contact gaps having a

relatively small mean width (i.e. on the order of 1/1000 of a sphere radius) can

significantly affect the elastic behavior of the glass bead packings over the range of

confining pressures employed in these experiments.

Over a range of conditions that are of interest in the geophysical measurement of

elastic and electromagnetic wave propagation in porous rocks, the behavior of the system

is significantly affected by the geometrical configuration of the constituents on a
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microscopic scale. Sufficient information about the microstructure of porous rocks is

obtained by viewing these systems as a rock matrix into which inclusions representing the

individual pore spaces are embedded. Inclusion-based formulations can be employed to

determine the macroscopic physical properties of a porous rock when this description of

its microstructure is adopted. Major classes of these formulations are defined by the

manner in which inclusion interactions are simulated in the analysis; for each class of

formulations, there is an associated microstructure that specifies the topological

relationships between the various components.

Pore-scale fluid distribution in partially saturated porous rocks is a microscopic

phenomenon that is characterized by the geometrical configuration of the constituents

within the system. Drastically different theoretical formulations were obtained for

various styles of pore-scale fluid distribution while maintaining fixed constituent

properties and pore structure. It was determined that the pore fluid configuration within

the individual pore spaces and the pore geometries in which saturation conditions are

varying are critical factors in determining the elastic and electromagnetic wave

propagation in partially saturated rocks. Further, the effects of changes in saturation

conditions within a particular pore geometry significantly increase as the aspect ratio of

the pores decreases (i.e. as the pores become more crack-like).

The mathematical expressions derived in this study were used to analyze the variation

in the functional relationships observed between the level of water saturation and the

physical properties of a tight gas sandstone and a gas bead packing when both of these

systems were subjected to two differing saturation methods. Using simple models that

consider only the basic geometrical elements that describe the pore-scale fluid
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distribution, good agreement is obtained between the theoretical models and the

experimental data. Further, it is demonstrated that a single geometrical model for the

pore-scale fluid distribution can be used to simultaneously estimate the dielectric and

elastic response of a partially saturated rock. However, this formulation assumes that

communication between individual pores is minimal and intrapore phenomena control the

physical behavior of the system. This type of formulation does not accurately predict the

functional relationships observed in experimental data where these conditions are not

satisfied.

Surface phenomena, such as surface conduction and electrical double layers, can have

a significant effect on the electrical properties of porous rocks; however, these

mechanisms are explicitly excluded in the derivation of the inclusion-based formulations

used to describe these systems. Further, incorporation of surface phenomena into the

analysis of non-spherical inclusion shapes is very difficult. To obtain an approximation

for the effects of this mechanism on the electrical response of an ellipsoidal inclusion, a

model based on the limiting case of a confocally-layered inclusion was derived by

assuming the conservation of unit charge carriers and unit dipoles. This approach retains

the geometrical configuration inherent in the system. The behavior of the inclusion with

surface phenomena is found to depend on the absolute size of the inclusion. Using this

model, it is shown that the effects of the presence of a surface conduction changes

significantly as the shape of the inclusion varies.

The results of this study clearly demonstrate the usefulness of mathematical models in

describing the effects of a given microscopic phenomenon on the macroscopic physical
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properties of a porous rock. It is significant to note that such an analysis does not always

require a detailed description of the porous rock system; good agreement between the

observed behavior and a theoretical formulation can be obtained by utilizing a relatively

simple model. However, much basic work still remains to be done in this field. Not only

do models for other microscopic phenomena and macroscopic physical properties need to

be developed, the use of these formulations to rigorously analyze experimental

measurements in the context of inverse problem theory must be further explored.

Therefore, I foresee much significant work occurring in this field over both the near-term

and distant future.
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Appendix One

Constitutive Relationships and Generalized Permittivity

The electromagnetic behavior of a homogeneous, isotropic medium is generally

expressed in terms of its dielectric permittivity (E), electrical conductivity (a), and

magnetic permeability (pP) which describe the capacitive, conductive, and inductive

properties, respectively, of the substance. For materials exhibiting a linear

electromagnetic behavior, these quantities are defined by the following relationships for

the time harmonic fields in complex notation:

D =cE, (Au)

and

JfGE, (A12)

BtH, (AL3)

where B , D , E, H, andJ are the magnetic induction, electric displacement, electric

field strength, magnetic field strength, and electric free current density, respectively. The

quantities c, a , and t are the Fourier transforms of the impulse response for each of the
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respective properties. In general, e, a, and jt are complex functions of the form

= e’ - i e”. (A 1.4)

0=0’- ia’c (AL5)

and

= ii’ - .t”. (A L6)

where the superscripts’ and” denote the real and imaginary parts. Assuming causality,

the real and imaginary parts are related through the Hilbert transform.

The electrical properties are generally measured by observing the electric current

density which results from an applied electric field. Assuming that the effects of

magnetic induction may be neglected, this observed current density is the total current

density Jt where

J Jd+Jf (At7)

and

JdiD (A18)
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is the displacement current density associated with the capacitive behavior of the medium

(Fuller and Ward, 1970). Therefore, it is useful to revise the constitutive relationship

given by Equation (A 1.2) to the form

J= aRE. (A1.9)

where

(A1.lo)

is the generalized electrical conductivity. Conversely, the generalized dielectric

permittivity 8g can be defined in term of the generalized electric displacement D as

follows:

DEgE (A1.1l)

where

D =D + (io)1Jf (Au2)

and
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Eg= EioY1O. (AL13)

A complete description of the electrical properties of a linear material can be

accomplished by employing either generalized constitutive relationship given by

Equations (A 1.9) and (A 1.11).

The real part of e and (Yg are referred to as the apparent dielectric permittivity Ea and

the apparent electrical conductivity Ga, respectively. It is these quantities that are

generally reported as the experimentally measured dielectric permittivity and electhcal

conductivity. Further, coupling of the capacitive and conductive properties occurs at the

discrete interfaces within a heterogeneous medium. Hence, generalized constitutive

relationship provide an effective means for incorporating both types of phenomena into

the inclusion-based formulation for the electrical properties of porous rocks.
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Appendix Two

Evaluation of the Depolarization Coefficient Associated with the Unique Principal

Axis of the Inner Spheroid within a Confocally-Layered Inclusion

Evaluation of the expression describing the dielectric response of a confocally-layered

inclusion requires the determination of B ((i), x), the depolarization coefficient associated

with the unique axis of the inner spheroid. For a non-degenerate spheroidal pore shape

(i.e. 0< a<1), this is accomplished by determining the aspect ratio of the inner spheroid

(f). Let (ai,a2) and (b1,b2) be the major and minor semi-axis length pair for the pore

space and inner spheroid, respectively; then,

(A2.1)a1

and

(A2.2)

Since the two spheroids are confocal, then the semi-axis lengths are related by

(ai)2-(bi)2=(a2)2-(b2)2. (A2.3)
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Using Equations (A2. 1) and (A2.2), Equation (A2.3) can be rewritten as

i2
(A2.4)

1-a2 b1J

The fractional volume of the non-wetting pore fluid phase within the inclusion is given by

b2 (b1)2
(A2.5)

a2 (ai)2

Again using Equations (A2.l) and (A2.2), Equation (A2.5) can be expressed as

p2/3
= (ccs(1))213 (ai)2 (A2.6)

Combining Equations (A2.4) and (A2.6), one obtains

(A2.7)
(a5(1))m

13where y= f

Equation (A2.7) is the normal form of a cubic system which is discussed in Burington

(1965). For a non-degenerate oblate spheroidal pore, this equation possesses only one

real-valued root that is given by

= [2()1’2cot(2Ø)]31’2, (A2.8))
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where

= tan1[(tan (p)113], (A2.9)

= (A2. 10)

and

=
1-c2 (A2.11)

(c s(1))213

Once j3 is determined, B(s(’),á)is calculated using Equations (4.1) and (4.3). In the

degenerate cases of the sphere and the flat disc, B(s(1),X) is taken to be and 1,

respectively.
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