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Abstract 

In seismic data analysis, recorded data often are transformed to various domains to 

discriminate against coherent and incoherent noise. For instance, by mapping a shot 

record from time-space domain to frequency-wavenumber domain, coherent linear noise 

can be attenuated. Similarly, by mapping a common-midpoint gather from time-space to 

time-velocity domain (velocity stacks) multiples are separated from primaries based on 

moveout discrimination. In these procedures the correct identification of seismic events 

with similar moveout can be severely affected by the aperture of the array and the discrete 

sampling of the wavefield. 

Economic and/or logistic reasons usually dictate the cable length and spatial sampling 

of the seismic experiment. This thesis examines how the resolution (the ability to distin­

guish close events) of slant stack and parabolic stack operators deteriorates under limited 

aperture. An algorithm is developed to increase the resolution of the aforementioned op­

erators. This procedure constructs an operator that collapses each seismic signal in 

the transform domain, thus diminishing truncation artifacts. The overall procedure is 

equivalent to the simulation of a longer array of receivers. 

Slant stacks and the parabolic stacks are linear operations used to map the seismic 

data into another domain, the transform domain (r — p or r — q). In this thesis an inverse 

problem is posed. This is accomplished by considering the data as the result of a linear 

operation onto the transform domain. This approach permits one to incorporate prior 

information into the problem which is utilized to attenuate truncation artifacts. 

The prior information is incorporated into the inverse problem by means of the 

Bayesian formalism. The observational errors and the prior information are combined 
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through Bayes' rule using the likelihood function and a long tailed distribution, respec­

tively. The posteriori probability is then used to induce the objective function of the 

problem. Finally, minimizing the objective function leads to the solution of the inverse 

problem. The advantage of incorporating a long tailed distribution to model the trans­

form domain is that the solution is constrained to be sparse which is a desired feature 

for highly resolved models. 

The method is also used to design an artifacts-reduced 2-D discrete Fourier transform. 

A by-product of the method is a high resolution periodogram. This periodogram coincides 

with the periodogram that would have been computed with a longer array of receivers if 

the data consist of a limited superposition of linear events. 
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Chapter 1 

Introduction 

It was the furthest point of navigation and the culminating point of my expe­

rience. 
Joseph Conrad: Heart of Darkness 

1.1 Background 

Limited aperture is a long standing problem in exploration seismology. Geophysicists 

are constantly dealing with a finite amount of data and consequently with truncation 

artifacts. An important part of the seismic technology for oil exploration still relies on 

two basic procedures: velocity analysis and stacking. With the development of new 

technologies and with the necessity of revealing more complicated seismic structures, 

high resolution techniques for velocity processing and multiple attenuation have become 

an important requirement. 

Thorson and Claerbout (1985) were the first to note a need for high resolution tech­

niques for velocity processing to cope with finite amount of data in C M P processing. 

They address the problem by developing an inverse technique to retrieve velocity panels 

from C M P data. In another scenario, the pioneering work of John P. Burg (1975) on 

maximum entropy spectral analysis (MESA), shows how to estimate spectral estimators 

without imposing any implicit assumption about the samples of the time series that were 
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Chapter 1. Introduction 2 

not recorded. Burg's technique assumes that a finite length time series is only a circum­

stantial outcome of a longer process and therefore, it is not convenient to assume that 

values outside the time series gate are zero (missing samples). The Maximum Entropy 

principle (Jaynes, 1967) is the elegant mechanism utilized by Burg to avoid drawing any 

assumption about the missing information. 

Slant stacking and parabolic stacking entail two-dimensional operators routinely used 

to process seismic data. The resolution of these operators is affected by the aperture of 

the seismic array. In this context, the aperture plays a role equivalent to the length of 

the time series in time series analysis. Slant stack and parabolic stack operators are two 

members of the generalized discrete Radon transform (Beylkin, 1987). 

Slant stacking is usually used to decompose and/or filter signals that exhibit linear 

moveout. An example is vertical seismic profiling (VSP), where the composite seismo-

gram is a superposition of seismic events with constant ray parameter. Slant stacks also 

perform an important role in wave equation theory, since they may be related to plane 

wave decomposition (Treitel et al., 1982). 

The parabolic transform maps a parabola into a point in the transform domain, 

although this is only true when the aperture of the array is infinite. If the seismic data 

consist of a superposition of parabolas, then the parabolic transform will decompose the 

seismogram into a superposition of isolated points. However, limited aperture introduces 

amplitude smearing into the transform domain and therefore the resolution or focusing 

power of the transform is deteriorated. The same reasoning is applicable in time series 

analysis where truncation introduces sidelobes and, consequently, difficulty arises in the 

identification of close spectral peaks. 

In CMP or shot gathers the seismic signal is organized in hyperbolic paths. In order 

to apply the parabolic transform to decompose these hyperbolas, the parabolic model 
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must be first satisfied. Hampson (1986) proposed to validate the parabolic approxima­

tion by means of a normal moveout (NMO) correction. After NMO, there is a range of 

hyperbolic events that may be accurately approximated by parabolic paths and therefore 

the conditions to successfully apply the parabolic transformation are satisfied. Yilmaz 

(1989) proposed to model CMP gathers after a t2 transformation of the temporal axis. 

Hampson (1986) and Yilmaz (1989) posed the problem in the frequency-offset (u; — h) 

domain. The latter permits the problem to be broken down into several smaller inverse 

problems, one at each frequency in the seismic band. These researchers have adopted 

zero order quadratic regularization or damped least squares (Lines and Treitel, 1984; Tit-

terigton, 1985) to design the parabolic operator. In this thesis, it is shown that damped 

least squares is not necessarily the best means by which to solve the problem. In fact, 

damped least squares imposes smoothness onto the transform domain and consequently, 

instead of sharpening up the image (enhance the focusing power of the transform), it 

tends to blur and introduce smearing into the transform domain. 

1.2 Motivation 

My interest in this topic arose after investigating together with T.J. Ulrych a technique to 

estimate a side-lobe-free 1-D discrete Fourier transform, a problem originally suggested 

to us by Colin Walker. There are many approaches to estimate high resolution spectral 

estimates based on the idea of side lobe suppression. However, none of these approaches 

deals with the problem of estimating a high resolution discrete Fourier transform, and 

hence none is capable of estimating the spectral amplitude as well as the phase of the 

signal. The spectral estimation problem can be posed as a linear inverse problem where 

the target is the power spectral density that honors a few lags of the autocorrelation 

function (Priestly, 1982). However, since the autocorrelation is a phase-less function, only 
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the spectral density can be recovered. To retrieve a high resolution estimate of amplitude 

and phase, instead of using autocorrelation constraints, we considered data constraints. 

A non-parametric method to estimate the high resolution DFT was developed by posing 

the problem as an inverse problem and using a regularization approach derived from a 

Bayesian description of the problem in probability space. Two dimensional applications 

were developed to estimate the spatial spectral signature of narrow and broad band 

seismic data (Sacchi and Ulrych, 1995a). 

My attention then became focused on slant stacks and parabolic stacks. In the 

frequency-offset space, the Radon operator looks very similar to the transformation mat­

rix used to retrieve the DFT. The regularization scheme developed to estimate the side-

lobes free DFT was re-examined to compute slant stacks and parabolic stacks free of 

truncation artifacts. 

The primary results of the regularization scheme devised to cope with limited aper­

ture were presented by myself at the 64th Annual meeting of the Society of Exploration 

Geophysicists in Los Angeles, USA (Sacchi and Ulrych, 1994), later expanded and pub­

lished (Sacchi and Ulrych, 1995b and c). These works were primarily focused on inverse 

velocity stacking, a name usually reserved for Thorson's (Thorson and Claerbout, 1985) 

technique. 

Although the ultimate goal of my research involves the estimation of aperture com­

pensated slant stack and parabolic stack operators, there are other areas where I found 

that these algorithms may be applied. As geophysicists we live in a truncated world. We 

are always faced with the problem of data coverage. A simple deconvolution problem 

may be posed as an aperture problem where from a few samples of the central band of 

the seismic signal we attempt to reconstruct the missing or deteriorated low and high 

frequencies. It is in these types of situations that the correct regularization of the in­

verse problem plays a crucial role. In particular, I would like to mention the problem of 
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impedance reconstruction from band-limited seismic data, extensively studied by many 

researchers (Oldenburg et al., 1983; Walker and Ulrych, 1983). 

1.3 Scope and contribution of this work 

The purpose of this thesis is to investigate new means of estimating Radon operators in 

situations where the physical size of the seismic survey (cable length) inhibits the correct 

identification of close signals. The proposed methodology does not replace the existing 

techniques to compute 2-D linear transforms but, rather, complements them. 

This thesis provides a novel inverse procedure to compute Radon operators. The 

Bayesian framework is adopted to derive the regularization strategy that is used to solve 

the inverse problem. The regularization term is derived by assuming a long tailed pdf to 

model the prior distribution of parameters. 

The inverse procedure is also used to estimate a high resolution 2-D discrete Fourier 

transform. The goal is to estimate from a limited number of receivers the 2-D spectral 

signature of a group of events that are recorded on a linear array of receivers. 

1.4 Thesis outline 

The linear Radon transform or the slant stack transform is presented in Chapter 2. The 

stability/resolution tradeoff is also studied. This chapter details some pivotal concepts 

that are used throughout this thesis. 

Parabolic stacks as an alternative procedure for velocity processing are presented in 

Chapter 3. The validity of the parabolic approximation by means of a time stretching 

transformation and a normal moveout correction is also studied. 

Chapter 4 introduces a new procedure to enhance the resolution of slant stack and 

parabolic stack operators. The feasibility of the technique to process seismic data is 
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examined with synthetic and real field examples. 

In Chapter 5, the regularization scheme presented in chapter 4 is used to estimate 

2-D spectral estimators. This problem may appear rather disconnected from the rest 

of the thesis. However, the aperture problem has a significant impact in spectral ana­

lysis problems. The reader will find that many of the ideas developed to treat aperture 

limitations in Radon operators may also be applied in a spectral analysis scenario. 

Finally, in Chapter 6, the core of the thesis is reviewed. Two important aspects 

are examined. First, the potential strength of the techniques to process real data when 

dealing with severe aperture limitations. Secondly, I provide a discussion on the main 

limitations of the techniques. 



Chapter 2 

Slant Stacks 

Y aqui mt despido yo 

Que he relatao a mi modo, 

Males que conocen todos 

Pero que naides conto 

Jose Hernandez -.Martin Fierro 

2.1 Introduction 

Different techniques have been devised to identify and/or filter linear events. Generally, 

they have the following common framework. First, they assume that a set of linear events 

are recorded on an array with discrete and limited coverage. Secondly, they assume that 

the noise is uncorrelated with the signals. In geophysics, linear event identification has 

been an active field of research. Two classic examples are vertical seismic profiles (VSP) 

(Hardage, 1985) and slowness vector estimation in seismographic arrays for earthquake 

detection and location (Goldstein and Archuleta, 1987). In VSP processing, linear event 

detection-estimation is used to identify and separate the principal components of the 

VSP data: the up-going and the down-going waves. 

A general strategy for event identification-estimation involves the following approach. 

First, the data are transformed to a new domain where each component may be isolated. 

Then, after masking the undesired components, the data are mapped back to the original 

7 
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domain retaining only the desired information. 

The so-called covariance methods, spectral matrix methods or eigenstructure meth­

ods, that have been borrowed from the field of sonar processing (Bienvenu and Kopp, 

1983; Wax et al., 1984), exploit the separability of the signal and noise covariance ma­

trices. Although they have been developed to process narrow band signals, covariance 

methods can be applied to broad band applications by carrying out the processing at 

each narrow band frequency that comprises the broad band. These techniques have been 

successfully applied in VSP processing (Mari and Glangeaud, 1990; Mari and Gavin, 

1990) and in wavefield decomposition of multi-component records (Rutty and Jackson, 

1992). To fully separate two signals of different slowness by means of the spectral matrix 

approach, the signals must be uncorrelated. In other words, the inner product of their 

steering vectors must vanish. This is a very restrictive assumption that usually does 

not hold. This short-coming, however, can be overcome by un-correlating the signals by 

means of a frequency-spatial averaging procedure. The latter implies that some type of 

a priori information about the dips and the extension of the frequency smoothing must 

be provided (Mari and Gavin, 1990). Freire and Ulrych (1988) have applied the singular 

value decomposition (SVD) to separate down and up-going waves in VSP processing. 

Their technique is another way of interpreting the Karhunen-Loeve (KL) transform in­

troduced in geophysics by Hemon and Mace (1978) and extensively studied by Jones 

(1985). Similar to the spectral matrix approach, the SVD or KL method requires prior 

knowledge of the dip of the target signal. Recently, Ulrych et al. (1995), have developed 

a hybrid technique to cope with the aforesaid problem. First, they apply an eigenvalue 

based metric (Pisarenko, 1972) to identify the dip of each primary wavefield: up-going 

and down-going waves. Then, this information is used to rotate the wavefield target to 

simulate a signal with infinite apparent velocity. Finally, the packing property for flat 

events of the SVD or KL transform (Jones, 1985) is used to isolate the target wavefield. 
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The Radon transform does not require any a priori knowledge of the apparent velocity 

of each linear component, but the performance of the transform is severely affected by 

the aperture of the array and by spatial undersampling (alias). In seismic processing, 

the Radon transform is commonly known as the r — p (r denotes time and p ray para­

meter) or slant stack transform. The original idea developed by Radon in 1917 (Deans, 

1983), has provided a basic framework for many problems of image reconstruction in 

physics, astronomy, medicine, optics, nondestructive testing, and geophysics. In image 

processing, it is also called the Hough transform (Pratt, 1991), which may be regarded 

as a transformation of a Une in Cartesian coordinate space to a point in polar coordinate 

space. 

In geophysics, the properties of the Radon transform were examined by Phinney et 

al. (1981), Durrani and Bisset (1984) and Tatham (1984). Chapman (1981) developed 

exact formulas for a point source in cartesian or spherical coordinates, and for a line 

source in cylindrical coordinates. The relationship between the Radon transform and the 

plane wave decomposition is also well established (StofFa et al., 1981; Treitel et al., 1982). 

Least squares procedures to compute the Radon transform were investigated by Thorson 

and Claerbout (1985), Beylkin (1987) and Rostov (1990). These authors showed how 

to mitigate the smearing caused by the finite aperture. Recently, Zhou and Greenhalgh 

(1994) linked the least squares solution to p-dependent Wiener filters. These researchers 

derived the slant stack formulas in the continuous domain, but the resulting algorithms 

are identical to those obtained by other researchers ( Beylkin, 1987; Kostov, 1990). 

In order to avoid the inversion of prohibitively large matrices the problem may be 

posed in the frequency-space domain (/ — x). This technique was adopted by Beylkin 

(1987), Kostov (1990), Foster and Mosher (1992), and recently by Zhou and Green­

halgh (1994). This allows us to solve several small problems in the band that comprises 

the signal. Some stability concerns arise when the problem is tackled in this manner. 
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Particularly, a least squares solution can be extremely unstable at low frequencies. In ad­

dition, it is interesting that slant stacks can be also computed in the time-space domain. 

Thorson and Claerbout (1985) and, recently Yilmaz and Tanner (1994), have presented 

high resolution least squares slant stack operators designed in time-space domain. Their 

procedures use an iterative inversion scheme especially devised to solve large linear sparse 

operators. Thorson and Claerbout (1985) have also shown how to update in each itera­

tion the variances of the model to drive the solution to minimum entropy. Yilmaz and 

Taner (1994) have also developed an interesting scheme based on fuzzy logic to mitigate 

the alias. 

This chapter is organized as follows. First, I provide the basic definitions of the 

continuous Radon transform in the x — t and r—p planes. Then, two different approaches 

are used to formulate the Radon pair. The first definition, the conventional slant stack 

operator, uses the forward mapping to compute the Radon space and a deconvolution 

operator to map the r — p space into the x — t space. The second definition, the inverse 

slant stack operator, uses a deconvolution operator to compute the Radon space and a 

simple mapping to recover the x — t space. Discrete formulas for the aforesaid operators 

are also derived. In the discrete case, I analyse two crucial problems that constantly 

arise in geophysics: stability and resolution. These problems are formally examined 

using prolate spheroidal discrete sequences (Slepian and Sonenblick, 1965). Finally, the 

theoretical analysis is illustrated with numerical simulations. 

2.2 Slant stacks 

2.2.1 The slant stack operator (conventional definition) 

Let u(h,t) represent a seismic signal. Throughout this thesis variable t designates the 

time and h the offset or range. For a continuous array we define the slant stack by means 
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of the following transformation 

v(p, r) = (Cu)(p, r) = f°° u(h, t = r + hp)dh. (2.1) 

J—oo 

Where p and r denote the slope or ray parameter and the intercept time, respectively. 

v(p, r) is used to designate the signal in the r — p domain. The adjoint transform C* is 

given by 

u(h, t) = (£*v)(p, T) = r v{p, t = r- hp)dp. (2.2) 

J—oo 

In the frequency domain, the pair of transformations are given by, 

V(p,u>) = [°° U(h,w)eiuphdh, (2.3) 

J —OO 

U(h,u)= f°° V{p,w)e-iuphdp, (2.4) 

J—oo 

substituting, (2.3) into (2.4) yields 

U(h',w) / e-^^'Updh' (2.5) 

-OO — oo 

which may be written as follows 

U(h,w) = U(h,u)*p(h,u), (2.6) 
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where * denotes convolution and the function p is given by 

/>(*,«)= r e-^hdp, (2.7) 
J—oo 

making the substitution z — —up equation (2.7) becomes 

/

OO 1 O71-

.„He d z = M H h ) - (2'8) 

The convolution operator is a delta function with respect to the variable h. Using the 

property of the 8 function, 

U(h,u)= fcU{h,u,)*6(h) 
(Z.y) 

the inversion formula becomes, 

U(h,u)=l-^U(h,u). (2.10) 

The inverse is computed in two steps. First, the adjoint is used to evaluate U(h,u). 

Then, U(h,(jj) is multiplied by the frequency response of the p filter. The conventional 

slant stack pair in the frequency domain results in, 

V(p,w) = r U(h,Lo)eiu,phdh, 
J—00 

U(h,u) = Mj^Vip^e-^dp. (2.11) 
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Now, consider that the range of p is a finite interval, p € [—P, P]. This case leads to the 

following p filter, 

^ = / _ V ^ ? = 2 p ! ! ^ . (2.12) 

Substituting (2.12) in (2.6), 

It is evident that the data may be recovered after solving a deconvolution problem. 

Spatial deconvolution is required since the infinite range of the variable p is truncated to 

a finite range. The wavenumber response of the p filter has the following expression: 

p(k,u) = r p(h,u)eikhdh 

J—oo 
= r r e-^-^dhdp 

J-oo J-P 
fp 

= / 8(u>p — k)dp 
1 twP 

= - S(k' - k)dk' 
U> J-u>P 

(2.14) 

k < \u>P\ 

otherwise 

According to the last equation, the spatial deconvolution will be unstable if the wavenum-

bers in the data he outside the range [—wP,u>P]. Equation (2.14) also shows that the 

deconvolution is unstable at low frequencies. 
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2.2.2 The inverse slant stack operator 

The definition of the forward slant stack operator and its adjoint may be changed to 

construct another slant stack pair, 

u(h, i) = (C*v)(p, r)= f °° v(h, t = r- hp)dp (2.15) 

J oo 

v(p, T) = (Cu)(p, T) = r u(h, t = r + hp)dh, (2.16) 
J—oo 

the pair of transformations can be posed in the frequency-offset domain, 

U(h,cj) = r V(p,u)e-iui>hdp, (2.17) 

J—oo 

V(p,w) = f°° U(h,w)eiuphdh. (2.18) 

Substituting, (2.17) into (2.18) yields, 

V(p,v) = r V(p',w) f°° e-^-^dhdp', (2.19) 
J—oo J—oo 

where now, the convolution is with respect to the variable p, and the convolutional 

operator is given by 

/

oo 1 o_ 

- „ M £ * = M * W - ( 2 ' 2 0 ) 



Chapter 2. Slant Stacks 15 

The 7 filter is a delta function with respect to the variable p. Therefore, equation (2.19) 

becomes, 

27T 
V(P,u) =-r-V(p,u) (2.21) 

M 

or equivalently 

V(p,u,) = glv-(p,u,). (2.22) 

From the above derivation, it is clear that the p and the 7 filters have the same frequency 

response. Finally, the slant stack pair becomes, 

V{p,u) = M I^U(h,u,)e^hdh, 

U{h,u) = f°° V(h,w)e-iupdp. (2.23) J—00 

Assuming that h G [—H, H] (finite aperture), the 7 filter has the following structure 

7 ( p | W ) = f \ ^ d h = 2 H ^ ^ . (2.24) 
J-H uHp 

Hence, V(p, u>) may be calculated by solving the following integral equation, 

v M ^ i y i M ^ ^ i i P : ( , 2 8 ) 
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After a comparison of the slant stacks pairs, equations (2.11) and (2.23), it is clear that 

a deconvolution procedure is required in both cases. In the conventional slant stack 

transform, the deconvolution is necessary to recover the data from the r — p space. In 

the inverse slant stack operator the deconvolution process is required to estimate the r—p 

space. The truncation effect of the variable p may be alleviated by choosing the proper 

region of support of the transform. The truncation of the variable h is associated with 

the resolution of the transform and cannot be alleviated by simple means. Generally, 

both the variables h and p are truncated. Thus, deconvolution should be carried out 

in both the forward and inverse transform (Zhou and Greenhalgh, 1994). However, the 

range of p may be chosen in such a way that most of the energy in the signal lies within 

this range. 

2.2.3 The sampling theorem for slant stacks 

Assuming that the wavefield is evenly sampled according to U(nAh, u>), n = 0, ± 1 , ± 2 , . . . , 

the relationship between the r — p and the h — t spaces is given by 

where V(p,u>) denotes the slant stack corresponding to a continuous wavefield U(h,u>). 

The integration domain can be decomposed into small subdomains as follows, 

(2.26) 

(2.27) 
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since e * 2 i m f c = 1 Vnfc, the last equation may be written in the following form 

U(nAh, u) = H j f * % (p, o . J e - ^ ^ p , (2.28) 
w Ah 

where the relationship between the slant stack of the continuous signal and the one 

corresponding to the sampled wavefield, Vd(p,u>) , is given by 

oo 
7T Vd(p,u>) = £ V(p + 2k—-,«). (2.29) 

k=—oo 

Thus, the discrete signal has an w - p representation with support in the range p € 

l-^h>uh]- T h e components with slope p - 2 ^ , p + 2 ^ , p - 4 ^ , p + 4 ^ , . . . will 

appear to have slope p and every slope outside the range ( — ^ ^ h ) will have an alias 

inside this range. If the continuous signal has all the components inside that range, the 

aliased components do not exist and therefore we can write Vd(p, u>) = V(p, u>). It is 

clear from the above discussion that spatial sampling must be chosen so as to avoid the 

aliasing effect. If P = Pmoas = —Pmin, the following relationship guarantees the absence 

of alias, 

< , (2-30) 
& ~ J max 

where fmax = u ; m o x / 2 7 T is the maximum temporal frequency of the seismic signal. The 

product P fmax is also the maximum wavenumber. Similarly, if Ah is given, the maximum 

ray parameter that can be retrieved without alias is given by 
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Pmax — 0 A i f • (2-31) 

For a non-symmetric slant stack, Pmax ^ ~Pmin, equation (2.30) is modified as follows 

(Turner, 1990), 

M < pH— , (2-32) 

where P' = \ P m a x - P m i n \ . 

2.3 Discrete slant stacks 

Discrete versions of equations (2.1) and (2.2) are obtained by replacing integrals by 

summations and imposing finite limits. First, assume that the seismogram contains 

N = Lf — Ln traces, where the indices Lf and Ln denote far and near offset traces 

respectively. 

v(p, r) = (£u)(p, T) = t»(fc|, r + hlP)Ah,, (2.33) 
l=Ln 

where Ahi = (/ij+i — hi) for J = L n , . . . , Lf — 1. Similarly, we approximate (2.2) by the 

following expression 

u(M) = (C*V)(T,P) = ^2 v(h,t-hp)APj (2.34) 

where Apj = (pj+i — Pj) for j = Jmin, • • •, Jmax — 1- Taking the Fourier transform of 

equations (2.31) and (2.32) yields 
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V(p, /) = £ U(hh fy^Aht (2.35) 

J max 

U(h, /) = £ ^(P. f)e-2Hfh*APj . (2.36) 

Using matrix notation it is possible to rewrite the slant stack and its adjoint as follows 

(/ is omitted to avoid notational clutter), 

v = FW uu = Lu (2.37) 

u = FHWvy - L*v (2.38) 

where W u = diag[A^L n,..., AhLf] and W„ = diag[Ap J r a i n,..., ApJmax] account for the 

irregular geometry of the array and for irregular sampling of the variable p, respectively. 

The matrix F has dimension (Jmax — Jmin + 1) x (Lf — Ln + 1), and elements given by 

Fji = e-i2*fhlP>. (2.39) 

The operators L and L* form an adjoint pair. The matrix L is the forward operator 

and L* denotes the adjoint operator. The following useful relationship is proved in 

Appendix A 

L* - W U

X L H W„ . (2.40) 
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This formula shows that, apart from a constant factor, the Hermitian transpose of the 

forward mapping coincides with the adjoint when the discretization is regular in both 

spaces. 

2.3.1 The discrete slant stack operator (conventional definition) 

The slant stack operator, equation (2.37), maps the t — x space into the r — p domain; 

the adjoint, equation (2.38), maps the r — p domain into the t — x domain. It is clear that 

since L is non-orthogonal L and L* do not constitute an inverse pair. Given v = Lu, 

the problem is how to recover u. A relationship between u and u is obtained after 

substituting (2.37) into (2.38) 

u = L*Lu . (2.41) 

Equation (2.41) is uniquely invertible in / € B provided that det(L*L) ^ 0 in the band 

u= (L*L) _ 1u 
V ' (2.42) 

= G _ 1 u . 

The N x N matrix G = L*L represents a discrete version of the p filter. The pair of 

transformations which map a signal from / — h to / — p and vice-versa is given by 

v = Lu 

u= G ^ L ' v . 
(2.43) 
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The vector v always exists since it is obtained by means of a simple mapping. Both 

expressions constitute an inverse pair when the inverse of G exits. The forward and 

inverse pair does not permit to adequately model the signal when additive noise is present. 

If the data are contaminated with noise, the noise is mapped to the Radon domain. 

2.3.2 The minimum norm discrete inverse slant stack operator 

Thus far I have described the reconstruction of the data from the slant stack domain 

by means of Radon's inversion formula for discrete signals (2.11). The resolution of the 

Radon operator is mainly affected by the aperture of the array. This problem, however, 

can be diminished by recasting the problem as an inverse problem. Assuming that the 

data are the result of some transformation on the Radon domain, the problem is how to 

solve L*v = u. This is the discrete case associated with the continuous pair discussed in 

section 2.2.2: 

u = F H W„v = L*v (2.44) 

v = FW u u = Lu. (2.45) 

Two cases may arise depending of the number of unknowns and observations (traces). 

First, I will consider the underdetermined case (more unknowns than observations). 

Oversampling the Radon parameter p may lead to an underdetermined problem. The 

latter may help to remove ambiguities due to the discretization. Oversampling, however, 

as it is very well known, does not improve the resolution of the slant stack operator 

(Yilmaz, 1994). The underdetermined problem is solved by selecting a regularization 

strategy. A common means of computing a regularized solution is by the concept of the 

minimum norm. In effect, the solution chosen from among all the possible solutions that 
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fit the data is the one that has minimum energy (minimum Euclidean norm). This strat­

egy is also called zero-order quadratic regularization (Titterigton, 1985). The regularized 

solution is calculated after solving the following problem 

minimize v H W „ v , 
(2.46) 

subject to L*v = u . 

Incorporating the vector of Lagrange multipliers, A, the objective function of the problem 

becomes 

J = v H W „ v + A*W u(L*v - u). (2.47) 

and minimizing J subject to data constraints leads to 

v = L(L*L)"1u. (2.48) 

One finds that the operator L (conventional definition) has been replaced by L(L*L) _ 1 . 

The forward and inverse operators become 

v= L G V 
(2.49) 

u= L*v. 

The Radon operator exists provided that the inverse of G exists. The operator G plays 

an important role in the definition of the Radon pair. In the conventional definition, G _ 1 
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is used to recover the data from the Radon domain (2.43), while in the minimum norm 

solution, G 1 is used to construct the Radon operator (2.49). 

2.3.3 Minimum norm solution with quadratic data constraints 

In the previous section the Radon operator was computed using the concept of minimum 

norm. In this section, I will show the relationship that exists between the minimum norm 

solution for underdetermined problems and the technique called damped least squares. 

First, I will assume that the problem is overdetermined, M < N. This may appear 

rather misleading; the observation space has finite dimension (only N receivers are located 

in the field) while the model space, before discretization, lies in an infinite dimensional 

space. The least squares solution to the problem, L*v = u, is computed by minimizing 

the squared error S, 

S= e HW ue 

= (L*v - u)HWu(L*v - u). 
(2.50) 

The minimization with respect to the complex vector v yields 

L* H W u L*v = L * H W u u. (2.51) 

Combining the result proved in the Appendix A, 

L*H = W„LW. u 
-1 (2.52) 

with equation (2.51) results in the following expression 
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LL*v = L u . (2.53) 

Finally, assuming that the inverse of LL* exits, the least squares solution becomes 

v = (LL*)- 1 Lu. (2.54) 

Equation (2.54) is the unconstrained least squares solution. To avoid singularities the 

solution is usually stabilized by adding a small perturbation to the diagonal of LL*. 

This perturbation is called the damping factor or the ridge regression parameter. The 

statistical literature often refers to f3 as a smoothing parameter or a hyper-parameter. 

Formally, the damped least squares solution may be derived by minimizing the following 

objective function (Lines and Treitel, 1984), 

J, . = /3v H W v v + S, (2.55) 

after taking derivatives and equating to zero 

v = (01 + L L * ) - x L u . (2.56) 

The parameter is also the Lagrange multiplier of a minimum norm problem with a 

single quadratic constraint given by S. 

Now, considering the following identities, 
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/3L + LL*L = L(/3I + L*L) 
V ' (2.57) 

= (/3I + LL*)L, 

and since the matrices (/3I + L*L) and (/3I + LL*) are positive definite provided that 

/3 > 0, the following identity is valid 

(01 + LL*)" X L = L(/tt + L * L ) - 1 , (2.58) 

and when combined with equation (2.56) yields 

v = L()9I + L * L ) - 1 u . (2.59) 

Equations (2.56) and (2.59) may be used to either solve underdetermined and/or over-

determined problems. In general, it is more convenient to adopt equation (2.56) for 

overdetermined problems and equation (2.59) for the underdetermined case. This last 

assessment can be verified by considering the dimension of the matrices L*L and LL*. 

If the matrix G = L*L has full rank (underdetermined problem), it is possible to 

choose /? = 0. Equation (2.59) becomes the minimum norm solution with exact data 

constraints. It is interesting to note that a single quadratic constraint, S, may be used 

to obtain the minimum norm solution with N exact constraints. It appears that the 

problem formulated in (2.46) might be solved using the objective function Ju, equation 

(2.55), with (3 = 0. This is not true. The trick is valid only when applied to the solution 

of the problem and not the objective function 
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At this point one would think that if the problem is underdetermined, we may be able 

to use equation (2.59) with /3 = 0. However, the matrix G = L*L may have eigenvalues 

that are very small and may even fall below machine precision. This effect is particularly 

drastic at low frequencies. Any attempt to invert G, if it is possible, will lead to an 

erroneous result. 

2.3.4 On the stability of the operator G 

Further insight into the stability of the slant stack pair is gained by considering the 

stability of the operator G. The entire analysis is focused on two approaches to construct 

the slant stack pair. In the first definition of the Radon operator, the existence and the 

stability of Radon's inversion formula is subject to the existence and stability of the 

operator G. In fact, only when G _ 1 exists, are both transformations inverses of each 

other. This is also applicable to the alternative definition given in the preceeding section 

using the concept of minimum norm. In the former situation, the stability of the operator 

G must be carefully considered to reconstruct the data from the r—p space. In the latter, 

the stability of the operator must be taken into account to design the slant stack operator. 

The elements of G are given by 

giv = Ahi £ ApjeW'^-W, (2.60) 

when Ah is constant the relative offset is given by hi — hi> = Ah(l — V). Under this 

condition, the matrix G reduces to a Toeplitz structure. It is natural therefore to write 

9i,i> as 

9iv=g(l-V). (2.61) 
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If and Ap are constant, equation (2.60) corresponds to a geometric series with the 

following sum, 

9iv = ±hAp ^ ^ 1 , , , ^ e« . (2.62) 

Letting J = Jmax — — Jmin and M = 23 + 1, where M is the number of slopes or 

unknowns and introducing the variable, 9 = 2irfApAh(l — /'), equation (2.62) becomes 

giv = 2wAhApDj(6), (2.63) 

where the function Dj(0) is known as the Dirichlet kernel, 

The function Dj(6) plays an important role in Fourier analysis (Priestley, 1982). The 

discrete Fourier transform (DFT) of a finite length sequence is the convolution of the 

Dirichlet kernel with the DFT of the infinite sequence. Thus, the transform of the 

observed finite sequence is a distorted version of the infinite sequence transform. The 

kernel Dj{6) has a large peak at 9 = 0 of magnitude (2 J+ l ) / 2 7 r , together with secondary 

peaks at approximately 9 = ±5TT /(2J + 1), ± 9 T T / ( 2 J + 1), ± 1 3 T T / ( 2 J + 1),.... 

Since Ap and (2J + 1) are not independent, the following manipulation is convenient 

to continue with the analysis. Letting Ap = 2P/(2J + 1) where 2P denotes the region 

of support of the ray parameter, equation (2.62) becomes, 
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9(1 - n = 2pAh sin(2ir fPAhjl - I')) 

(2J + 1) ^ ( ^ / P A f c M ) * 
(2.65) 

When the number of slopes 2 J + 1 goes to infinity, while P is bounded, the elements of 

G reduce to 

where W = PfAh. The matrix <j>(l — I'), which arises in maximum time-frequency con­

centration problems, has N eigenvectors which conform to the discrete prolate spheroidal 

sequences (Slepian, 1977). In time-frequency maximum concentration problems WN is 

also called the time-bandwidth product (Slepian and Pollack, 1961). 

When W < 1/2, the eigenvalues of g(l — V) have the following properties: 

Property 1. The matrix <f>(l — /'), I, I' = 0,..., N — 1 has only N non-zero eigenvalues. 

They are distinct, real and positive and we order them so that 

9(1 - n 
1 sin(27rV7(Z - Z;)) 

(2.66) 

1 > A0(iV, W) > X^N, W) > . . . > XN-^N, W) > 0. 

Property 2. The eigenvalues obey the symmetry law 

Xk(N,^-W) = l-XN-1„k{N,W) 
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Property 3. For any arbitrarily small e > 0 there exits a constant Ce so that 

Xk>l-efork< 2WN - CemirNW 

l-e>\k>efork< 2CehnrNW 

Property 4. [Slepian, 1977] As N -* oo, Xk(N,W) -> 1 if k = 2WN(1 - e), while 

Xk(N, W) -> 0, if k = 2WN(1 + e). This is true for any e satisfying 1 > e > 0. In fact, 

this is a consequence of property 3. 

Note that all the eigenvalues are positive and different from zero which is a property 

of any Hermitian matrix (Strang, 1976). Strictly speaking, this does not guarantee the 

stability of the inverse, since several eigenvalues can be close to zero and even fall below 

machine precision. This is particularly true for large values of N. Table 2.1 shows the 

eigenvalues of the 11 x 11 <f> matrix for W = 0.2, W = 0.3 and W = 0.4. Figure 2.1 

shows the dependence of the eigenvalues on W for N = 11 and N = 25. For N > 25 

the eigenvalues cannot be computed by direct solution of an eigen-problem. In fact, 

asymptotic expressions must be used to cope with this situation (Slepian ,1977). 

Property 4 highlights some interesting features of the eigen-spectra of the matrix 

<j)(l—l'). First, the eigenvalues stay close to 1 for small fc, plunge to zero near the threshold 

2WN, and stay close to zero afterwards. Secondly, it is also interesting to note, that 

the width of the plunge region is proportional to \n(irWN). Since lim^oo a; - 1 ln(a;) = 0, 

the width of the plunge region becomes small when compared with the threshold 2NW 

when N is large. 



Chapter 2. Slant Stacks 30 

Figure 2.1: (a) values of A f c(ll, W) and (b) Afc(25, W) for W = 0.1,0.2,0.3,0.4. 
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k Afc(ll,0.2) Afc(ll,0.3) Afc(ll,0.4) 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.999992610514931D+00 
0.999518220506777D+00 
0.987710935929995D+00 
0.864071477590623D+00 
0.449739331222626D+00 
0.911537572343498D-01 
0.748326609798023D-02 
0.322298227725263D-03 
0.799428603213715D-05 
0.104983211827608D-06 
0.627678555715553D-09 

0.999999999370405D+00 
0.999999892249586D+00 
0.999992005714193D+00 
0.999677701763095D+00 
0.992516733902020D+00 
0.908846242765650D+00 
0.550260668777374D+00 
0.135928522409377D+00 
0.122890640700014D-01 
0.481779493220158D-03 
0.738948506877286D-05 

0.999999999999994D+00 
0.999999999995432D+00 
0.999999998709646D+00 
0.999999993851705D+00 
0.999999209925891D+00 
0.999947990244767D+00 
0.997947349605215D+00 
0.957209444589136D+00 
0.662847424914145D+00 
0.171958069924268D+00 
0.100905182398011D-01 

Table 2.1: Eigenvalues of <j>{l - V), lt I' = 0,... N - 1 for W = 0.2, 0.3, 0.4 

The aforementioned properties are valid for W < 1/2. When W = n/2, n E Z the 

matrix <f>(l — V) degenerates to the identity matrix, 

<j>{l - V) = 2W8l>v . (2.67) 

In addition, when W > 1/2 the following property is valid: 

Property 5. When | > W' > with neZ 

Xk(N, W') = n + X(N, W), W = W' - ^ . 

So far I have described some relevant properties of the eigen-spectra of the matrix 

(f>{l — V). One can use these properties to infer a stability criterion for the inversion of 

the matrix G. In particular, the condition number, Cg, of the matrix G may be assessed 

by means of the condition number of the matrix <f>(l — I'), C^,. The condition number is 
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defined as the ratio of the largest eigenvalue to the smallest eigenvalue. For a stability 

analysis, it is preferable to estimate the condition number since it is a scale-free criterion. 

Since the maximum eigenvalue is always bounded, it is also possible to draw similar 

conclusions by analysing the smallest eigenvalue of <f>(l — /'). 

Three different situations may arise depending on the value of W. Using Properties 

1, 2, 3, and 4, it immediately follows that 

CJNW)- Xo{N>W)

 W>1 
(2.68) 

Ci(N,W) = l,W=l, (2.69) 

Accordingly to Property 3, when N is large, the condition number becomes 

C*{N,W)->oo, W>\, (2.71) 

n C<I>(N,W) = 1,W = -, (2.72) 

C,(N, W') = ^ , W = W ' - ^ < W ' < ^ 
n 2 2 2 

(2.73) 

The condition number of <f>{l — V) may be computed by means of the condition number 

of the Toeplitz form g(l — V). Since the condition number is a ratio of eigenvalues it is 

easy to see that 
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Cg(N, W) = C+(N, W). (2.74) 

At this point, some comments follow immediately. First, the condition number can be 

prohibitively large when W < 1/2. Secondly, for values of W > 1/2 the condition number 

stays close to 1. The latter may appear an advantage, but recalling the definition of the 

variable W 

the right hand side of the second inequality is the spatial wavenumber, while the left 

hand side is the maximum admissible wavenumber (Nyquist wavenumber). It is clear 

that when W > 1/2 the transform is aliased. Consequently, W = 1/2 is the upper limit 

that guarantees the absence of alias. The lower frequency limit is related to the stability 

of the inverse. Obviously, the inverse of G does not exist at zero frequency. The latter 

implies that the DC level cannot be recovered (it is clear that the DC level lies in the null 

space of the problem.) Using continuity arguments, it follows that the inverse of g(l — I') 

is unstable at low frequencies. This situation is well reflected in the condition number. 

At this point, some comments on the computation of the condition number are ne­

cessary. The most serious problem arises when large eigenvalues begin to cluster very 

close to 1. Since the values 1 — A* fall below machine precision, eigen-problem routines 

cannot resolve the difference between two consecutive eigenvalues. This is particularly 

important when N is large. In this case the lower order eigenvalues cannot be computed 

by means of any eigenvalue routine. Slepian (1976) provided an asymptotic expansion 

for the eigenvalues of the matrix <j>[l — /') for fixed k, large N and W < 1/2. I am not 
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going to derive the following expression since it is beyond the scope of this thesis, 

1 - Xk(N, W) = ir*(fc!)-12<14*+9>/4[2 - a]-( f e +5)jV f c +' e"^ 

a = 1 - COS(2TW), (2.76) 

7 = M1 + ^ ] . 

Thus, the condition number becomes 

C+(N, W) = t

 1 L \ (2.77) 

where d and 7 may be computed with W = 1/2 — W. The fit with Ao is very good for 

N > 6 and > 0.1. In expression (2.77) I have replaced \N-i(N,W) by X0(N,W) 

according to property 2. This function can be tabulated for different values of N, W to 

estimate the lower limit of W and hence, the low frequency cutoff, fmin, that guarantees 

the stability of the transform. 

The inverse of G may be stabilized using one of the following tricks: 

• by shifting the signal to higher frequencies where the invertibility of g(l — /') is 

guaranteed (Beylkin, 1987). Unfortunately, some wavenumbers may be moved 

above the Nyquist limit. 

• by adding a small perturbation to the principal diagonal of g{l — V). 

In this thesis, I have adopted the second strategy. Generally, a small perturbation to 

the diagonal of G is sufficient to guarantee the invertibility of the matrix. If f3 denotes 

a positive scalar, the perturbed matrix is written as 
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g(l - I') = \<j>{l - V) + I, I' = 0, N - 1. (2.78) 

The condition number of the perturbed matrix becomes, 

Cg(N,W) = 
X0(N, W) + f{3 

(2.79) 

Note that, according to Property 5, when N is large the condition number reduces to 

it is clear that Cg increases when / decreases and that the effect of (3 is dominant at low 

frequencies. 

2.3.5 The data and model resolution matrices 

Consider an inverse operator that solves the problem u = L*v. An estimate of the 

model parameters can be written as v e , t = L + u , where L + denotes the inverse operator. 

Substituting v"' into the equation L*v = u leads to the following relationship between 

the predicted data, u p r e d and the observed data, u, 

C, = {l + fP)/f0, (2.80) 

u' r
ed = L*v e" = L * L + u = R u U . (2.81) 

The data resolution matrix, Ru , describes how close the predicted data are to the actual 

observations. When = I, the data are perfectly resolved. 
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Similarly, the model resolution matrix is defined by Rv, where 

v"' = L + L*v t r u e = (2.82) 

When R „ = I each model parameter is perfectly resolved. On the other hand, when 

R„ / I the estimated parameters are weighted averages of the "true model" parameters. 

In fact, one may define an effective averaging distance, d, that quantifies the departure 

of R„ from the identity. This may be done by inspecting the width of the sidelobes of the 

matrix R. As an example, consider two monochromatic linear events with slopes p\ and 

P2. If d < \p2 — pi|, the slant stack operator can identify both events. Therefore, v e 4 t will 

exhibit two narrow peaks corresponding to the events with slopes p\ and p^. Conversely, 

when this condition is not met, the slant stack operator cannot resolve both events, and 

the resulting model will show a broad single peak located somewhere between pi and j>2 • 

Different measures of resolution have been studied in the context of time series and 

spectral analysis (Marple, 1986). I have found the idea of spreading functions to be 

very attractive, not only because it highlights some important aspects concerning the 

resolution of linear operators but because of its historical importance. The concept of 

spreading functions and averaging distance form part of the first formal approach to 

geophysical inverse problems (Backus and Gilbert, 1968). The spreading function may 

be defined as 

where the subscript F stands for the Frobenious norm and I for the identity matrix. 

Equation (2.83) is also called the Dirichlet spread function. Notice that when the model 

Spread^) = ||I - R. | |JI = E E ( 4 i " *wi)2 - (2.83) 
» 3 
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resolution matrix approaches the identity matrix, the spreading function tends to zero. 

The foregoing discussion leads to two cases. First, consider the unconstrained least 

squares solution for the overdetermined, equation (2.54), 

= L+L* 

= (LL' ) - 1 LL* (2.84) 

= I, 

and consequently the spreading function becomes 

Spread(R„) = 0. (2.85) 

In the underdetermined case, equation (2.48), the model resolution matrix becomes 

R v = L+L* 
(2.86) 

= L(L*L)- X L*. 

It is straightforward to verify that the matrix I — R v is idempotent, hence, the following 

properties may be used to derive an expression for the spreading function: 

• If A is idempotent, A 2 = A, (Strang, 1976). The Frobenious norm of A is given 

by: 

| | A | £ = Trace(AHA). (2.87) 

• For any idempotent matrix, 

Trace(A) = Rank(A). (2.88) 
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Letting A = I — R v , the spreading function becomes 

Spread(R„) = Trace(I) - Trace(R„) 
(2.89) 

= M-N. 

In the underdetermined problem the spreading function is equal to the difference between 

the number of unknowns (slopes) and the number of observations (traces). The preceding 

analysis suggests that the overdetermined option is better than the underdetermined one. 

However, any assessment based on spreading functions must be carefully considered. 

The model resolution matrix gives an input/output relationship between two vectors. 

However, it is obvious that the so called "true model" lies in a physical space of infinite 

dimension. The vectors v and v t r u e are a simple discrete representation of a physical 

space. A simple example may help to clarify the problem. Assume that a single linear 

event is recorded on an array of N = 3 receivers. Then, according to the model resolution 

matrix, only M = 3 slopes are sufficient to perfectly resolve the model. Obviously, this 

is only true if one of the tentative slopes pi,i = 1,2,3 coincides with the actual slope of 

the linear event. If this is not the case, the vector v will have non-zero contributions in 

all of its entries. 

A similar problem is encountered in harmonic retrieval from a finite length time series. 

In this problem M frequencies and the associated amplitudes and phases are retrieved 

from a complex time series of N samples (M < N.) The problem is usually solved in two 

steps. First the frequencies are estimated, then the amplitudes and phases using a least 

squares procedure or any other method that minimizes some measure of closeness between 

the observed and the predicted time series. The first step is crucial since an incorrect 

estimation of the frequencies will incorporate a bias in the estimation of the amplitudes 

and phases. It is clear that the first problem, the retrieval of the frequencies, is an 
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underdetermined problem (the frequency is a continuous variable) which may be solved 

by means of an estimate of the power spectral density (PSD). The key is that the PSD 

is computed by solving a linearly underdetermined problem where a few samples of the 

autocorrelation function are the data constraints. Two examples that come to my mind 

are the periodogram, that is the PSD estimate with minimum energy (minimum norm 

solution), and the maximum entropy PSD which maximizes the entropy of a Gaussian 

process (Burg, 1975). 

2.3.6 Resolution analysis by means of the spectral expansion 

First I will address the resolution problem for the conventional slant stack operator. To 

this end, I will assume that a monochromatic plane wave u is recorded with a symmetric 

array of N = 2L + 1 receivers. The ray parameter of the wave is denoted by p, 

u, = C - » » / P A M I - I ) . (2.90) 

Substituting the last equation into the expression for the conventional slant stack, Lv = 

u, we have 

L 

vk = ApAh J2 e i 2 , r /(p-p*)A W . (2.91) 
l=-L 

This equation has been already met (equation (2.63)). The sum of the geometric series 

is replaced by a Dirichlet kernel, DL(0), 

vk = 2irApAhDL{e) (2.92) 
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where 8 = 2irf(p — pk)Ah. Expression (2.92) has a peak at p = pk, which corresponds to 

the slope of the plane wave. In the presence of many plane waves, vj, is a superposition 

of Dirichlet kernels. Assuming two plane waves with a slope difference of Sp, one may 

ask the following question: what is the minimum Sp that is discernible by the slant stack 

operator? One measure of resolution may be the first zero crossing, 9 = ±2TT/(2L + 1), 

of the Dirichlet kernel. Using this measure, it follows that 

S p fAh(2L + 1) 

TT^l— • (2-93) /Aperture 

This relationship is also known in optics as "Rayleigh's Criterion", (Born and Wolf, 1980), 

and simply states that the resolution is proportional to the inverse of the aperture. 

When the slant stack is computed using the minimum norm criterion (2.49) the 

resolution analysis may be tackled as follows. When M is large, the following expression 

is valid (section 2.3.4) 

G = k+- . (2-94) 

The eigenvectors of <f> are the prolate spheroidal discrete sequences. The eigenvalues of <j> 

have been extensively studied in a preceding section. The eigenvalue problem is written 

as, 

^Grk(N, W) = Xk(N, W)rh(N, W). (2.95) 
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A certain economy in notation is provided by defining, 

jG = R A R H , (2.96) 

where R is an orthogonal matrix where each column is an eigenvector Tk(N, W), and 

A is a diagonal matrix with elements given by A^i = Xi(N, W). Equation (2.96) is the 

spectral expansion of the Hermitian matrix f~lG. Since R is orthogonal, the inverse of 

G may be computed as 

G 1 = R A _ 1 R H . (2.97) 

Now, take for instance the minimum norm solution (2.49) 

v = L G - ' u 

= i L R A " 1 R H u 
/ (2.98) 

= } L E f e £ r f e ( r ? u ) 

where the coefficients jk are given by 

r fu 

The key to understanding resolution is understanding the relationship between the mag­

nitude of Afc(iV, W) and W and N. It has been shown that the eigenvalues are bounded 
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above by one for all k, and plunge to zero for values of k > 2WN. Beyond k = 2WN, 

the eigenvalues fall quickly at a fairly constant rate, such that Afc/Afc+1 is approximately 

equal to ten (Slepian and Sonnenblick, 1965). Therefore, one may adopt k' = int[2WiV] 

as the maximum eigenvalue to be used in (2.98). An interesting feature of the prolate 

spheroidal sequence, r*, is that it may be approximated by a sinusoidal function in terms 

of the average distance between zero crossings. 

2.4 Synthetic data examples 

A linear event impinging on a uniform array of receivers is used to study the resolution-

stability tradeoff. The array is composed of 15 receivers located 10 m apart. The near 

and fax offsets are located at —70 and 70m, respectively. The apparent velocity of the 

seismic event is 2000m/s. The seismic source corresponds to a zero phase Packer wavelet 

with a central frequency of 25 Hz. Most of the spectral energy is contained in the interval 

0 — 50 Hz. Spectral components which are located above 50 Hz are negligible. The data 

are shown in Figure 2.2. The r — p plane computed with the conventional definition is 

illustrated in Figure 2.3a. Similarly, the minimum norm slant stack operator is used to 

transform the data to the r — p domain. In both cases M = 41 slopes were computed. 

The minimum norm slant stack panel was computed with three different values of pre-

whitening, /? = 1 x 10~8, 1 x 10~3, 1 x 10 _ 1. The results are shown in Figures 2.3b, c and 

d. It is clear that the minimum norm solution provides more resolution of the seismic 

signal than the conventional slant stack procedure. It is also true that damping makes 

the minimum norm solution behave like the conventional definition. A significant part 

of the spectral energy is contained at low frequencies where the operator G is unstable. 

This feature is shown in Figure 2.4 where the condition numbers computed using the 

minimum and maximum eigenvalue of the matrix G before and after pre-whitening are 
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shown. It important to notice that the behaviour of this curve may be predicted using 

asymptotic values derived from the prolate spheroidal discrete sequences. The cutoff 

frequency is / = 50Hz (W = 1/2) that corresponds to the upper bound to avoid spatial 

alias. 

To complete the analysis I plotted the minimum and maximum eigenvalues of the 

matrix g{l — V) x / . In the limiting case when N is large, these eigenvalues are approx­

imately equal to those of <f>(l — I'). The result is portrayed in Figure 2.5 . The curve 

resembles the eigen-spectra of the matrix <j>(l — I'). 

2.5 Concluding remarks 

This section was devoted to the presentation of two methods of computing the discrete 

slant stack operator. The first one involves the conventional definition of the slant stack 

operator followed by the inversion of the operator G to recover the data. The second 

solution involves interchanging the definition of the forward transform of the problem. In 

this case the forward transform maps the r — p panel into the data space. The problem 

may be posed as an underdetermined linear inverse problem which may be solved using 

the concept of minimum norm. It must be stressed that other regularization schemes 

may be used to tackle the problem. 

It has been proven that the resolution of the conventional slant stack is proportional to 

the inverse of the aperture of the array (Rayleigh limit). In the minimum norm solution, 

the deconvolution of the matrix G may help to improve the resolution. However, because 

of the rather peculiar eigen-spectra of G , damping to stabilize the inverse is necessary. 

The stability is improved at the expense of resolution. 



Chapter 2. Slant Stacks 

o 

0 . 2 -

0 . 4 -

0 . 6 -

0 . 8 -

- 5 0 0 5 0 

o f f s e t ( m ) 

Figure 2.2: Synthetic data. 
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Figure 2.3: (a) r — p panel computed with the conventional slant stack operator, (b), 
(c) and (d) r — p space computed with the minimum norm slant stack operator with 
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Figure 2.4: (a) Power spectrum of the 25 Hz Pucker wavelet used in the synthetic ex­
ample, (b) Condition number of the matrix g(l — Z'),1,1'=0,... ,10. The continuous line 
corresponds to the condition number without damping. The dashed lines correspond 
to the condition number when different amounts of damping were applied. Frequencies 
above 50 Hz are spatially aliased. 
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Chapter 3 

Velocity stacks 

3.1 Introduction 

Conventional velocity analysis is performed by measuring energy along hyperbolic paths 

for a set of tentative velocities. The analysis of the results in the r — v (two way zero 

offset time and velocity) plane serves to estimate the stacking velocity that is later used 

to construct the zero offset section. The semblance (Neidell and Taner, 1971) is one of the 

most popular measures of coherent energy along hyperbolic trajectories in CMP gathers. 

The semblance measures the ratio of the signal energy within a window to the total 

energy in the window. Noise with non-zero mean and closely-spaced events in the same 

window deteriorates the velocity resolution when using this measure. The poor resolution 

of the semblance has lead to more sophisticated techniques based on the eigenstructure 

of the data covariance matrix (Biondi and Kostov, 1989; Key and Smithson, 1990). In 

these techniques, the data covariance matrix is decomposed into signal and noise space 

contributions. Different metrics based on the eigenvector of the signal space are then 

used to measure coherent energy along hyperbolic paths. 

The semblance, or any other velocity measure can be displayed as a contour map 

where each maximum corresponds to the kinematic pair r — v. Mapping the original 

data back from this space is not possible since these energy measures do not contain 

phase information. This short-coming may be overcome by using constant-velocity stack 

gathers that consist of constant-velocity CMP-stacked traces (Thorson and Claerbout, 

48 
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1984). For an infinite-aperture array, the summation along hyperbolas should map into a 

point in the velocity space (for a spike-like wavelet). Limited aperture, however, spreads 

the information and not only makes the identification of each seismic event difficult, but 

also degrades any reconstruction of the offset space beyond the original aperture. Hence, 

there is a practical importance for estimating high-resolution or aperture-compensated 

velocity gathers. 

To reduce amplitude smearing in the velocity space, Thorson and Claerbout (1985) 

performed the inversion of a set of constant-velocity stacks in t — h space. The problem 

involves the inversion of large matrices that is a difficult task. Thorson and Claerbout 

develop a stochastic inversion scheme that converges to a solution with minimum entropy. 

The latter is achieved by defining a Gaussian prior pdf with variable variance. To avoid 

the inversion of very large matrices, Yilmaz (1989) posed the problem in the / — h 

domain. Since velocity stacks are not time-invariant, he proposed a t2 transformation 

to force time-invariance. Time invariant operators can be easily posed in the frequency-

offset space. Thus, instead of solving a large inverse problem, we can solve several small 

inverse problems at each frequency within the seismic band. After a t2 transformation 

summation along hyperbolas is replaced by summation along parabolas. Consequently, 

the hyperbolic Radon operator is replaced by an operator with integration along parabolic 

paths. 

The parabolic transform was originally applied in a somewhat different manner by 

Hampson (1986) to attenuate multiple energy in CMP gathers. Hampson applied the 

parabolic transform to normal moveout (NMO) corrected CMP gathers. The residual 

moveout of a reflection, after NMO, can be approximated by a parabola. The multi­

ples are isolated in the transform domain and after being transformed back to the offset 

domain they are subtracted from the original data. A similar transformation has been 
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proposed by Foster and Mosher (1992) who showed that the correct suppression of mul­

tiples is particularly important in some prestack processes like amplitude versus offset 

(AVO) analysis. Their transformation is well suited for target oriented problems. The 

focusing power of the transform depends on a tuning parameter that may be adjusted to 

isolate a particular hyperbolic event. 

It is clear that the parabolic transform applied to NMO corrected CMP gathers is 

appropriate to model only energy that is organized along a parabolic path. At this point 

some remarks are in order. The focusing power of the method critically depends on 

how well the data match the Radon integration path. In parabolic stacking after NMO 

(Hampson, 1986) the hyperbolas can be accurately approximated by parabolas only for a 

limited range of time-velocity pairs. In other words, the focusing power of the transform 

in not guaranteed for the complete gather. On the other hand, if the parabolic path is 

validated by means of a t2 transformation any hyperbola can be converted into a parabola 

Unfortunately, the t2 transformation introduces a non-linear compression of the time axis 

before 1 s and an expansion after 1 s. It is clear that, after the t2 transformation, the 

frequency decomposition is not completely valid. 

This chapter is organized as follows. First, I provide analytical expressions for the 

forward and adjoint mappings. I assume that parabolic paths arise as a consequence of 

applying a t2 transformation to the CMP or CSP gather. The discrete forms are used, as 

in Chapter 2, to set the inverse problem in the frequency-offset space. Finally, I discuss 

under which conditions the NMO correction may be a good alternative to validate the 

parabolic approximation. 
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3.2 Velocity stacks 

On CMP or CSP gathers seismic events are more likely to be hyperbolic than linear. The 

T — p transform maps hyperbolas into ellipses. This does not help much for reducing the 

support of the original signal in the r — p domain. Instead of a linear slant stack it is 

better to define a transform with a hyperbolic integration path. Let u(h, t) be the CMP 

or CSP gather and v(q,r) the velocity stack. For a continuous array the velocity stack 

is defined by the following transformation 

v(q, r) = (Cu)(q, r) = f°° u(h, t = JT2 + h2q)dh , (3.1) 
J—oo 

the adjoint transform C* is defined by 

u(h, t) = (£*v)(q, T) = r v(h, r = Jt2 - h2q)dq . (3.2) 
J—oo 

The pair of transformations (3.1) and (3.2) is not time-invariant. This short-coming, 

however, may be overcome by introducing the following transformation, 

t' = t2 r' = r2, (3.3) 

this transformation compresses the time axis for samples before Is and stretches the 

samples after 1 s. The main problem of a t2 transformation is that shallow events can be 

severely aliased. However, this can be avoided by oversampling the time axis. A simple 

substitution shows that hyperbolic traveltimes are converted into parabolic traveltimes, 
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t2 = r2 + h2q —>t? = T' + h2q. (3.4) 

It is possible, now, to write a new pair of transformations in stretched coordinates 

v(q, T') = {Cu)(q, r') = f°° u(h, t'= r'+ h2q)dh. (3.5) 
J—oo 

u(h, t') = (C*v){q, T') = r v(h, r' = t'- h2q)dq . (3.6) 
J — O O 

The notation of u, v and C in expressions (3.1)-(3.2) and (3.5)-(3.6) has not been changed, 

but it is straightforward to see that they do not represent the same functions after the 

t2 transformation. The benefit of the t2 transform is that the pair of transformations 

(3.5) and (3.6) is time-invariant and therefore, the transformations can be expressed in 

the frequency-space domain, 

V{q,w)= r Uih^e™** dh, (3.7) 
J—oo 

U{h,w)= f°° V(q,u>)e-iuqh2dq. (3.8) 

Substituting equation (3.7) into (3.8) leads to 

U(h,u>)= f°° U{h',u>) f°° e-W-h'2Uqdh'. (3.9) 
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The last equation involves a particular type of convolution integral. The kernel in equa­

tion (3.9) is given by 

1>(h,u)= r e-iuh?*dq. (3.10) 
J—oo 

If the parameter q is truncated q € [—Q, Q], the kernel V» has the following form 

A special type of convolution integral must be solved in order to recover u(h, t'), 

3.3 Inverse velocity stacks 

In chapter 2,1 showed that the forward/inverse slant stack pair may be derived using two 

approaches by interchanging the definition of forward and adjoint operators. Similarly, we 

may want to define the following pair of forward and adjoint operators for the parabolic 

transform 

u(h, t') = (Cmv)(q, T' = r v(q, t' = r' - h2q)dq, (3.13) 
J-co 

/

oo 
u(h,t' = r' + h2q)dh. (3.14) 

-co 

In the frequency-offset space, these transformations become 
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U{h,w) = f°° V(q,U)e-^h2dq, (3.15) 
J —oo 

V(q,u)= f°° Uih^eWdh. (3.16) 
J—oo 

The substitution of equation (3.15) into (3.16) leads to 

V{q,u) = f°° V(q',u) f°° e-^'-^dhdq' (3.17) 
J—oo J—oo 

or equivalently, 

V(q,u,) = V(q,u)**(qiu>). (3.18) 

Zhou and Greenhalgh (1994) showed that 

•c 

= l l + i s g n ( 9 ) V^ki ' ( 3- 1 9 ) 

Deconvolution with respect to the variable q is also required when the aperture is in­

finite. This is an important distinction with respect to the linear Radon transform. 

Unfortunately, when h is truncated there is no analytical expression for o-(q,u>). 
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3.4 Discrete parabolic Radon transform 

Discrete versions of equations (3.5) and (3.6) are obtained replacing the integral by 

summation and imposing finite limits. First assume that the CMP gather contains 

Lf — Ln + 1 traces, where the indices Lf and Ln denote far and near offset traces re­

spectively 

it 
v{q, r') = (Cu)(q, r') = £ u{hh r' + hl

2q)Ahl, (3.20) 
l=Ln 

where Ahi = hi+i — hi for I = Ln,..., Lf. Similarly, equation (3.6) is approximated by 

the following expression 

J max 

u(h, t') = (£*V)(T>, q) = £ v(h, t' - h*qj)Aqj. (3.21) 
j—Jmin 

where Aqj = qj+i — qj for j = J m j „ , . . . , Jmax • Taking the Fourier transforms of (3.20) 

and (3.21) yields 

V(q, /') = E U(hh fy^'Aht (3.22) 
l=Ln 

U(h,f')= E V(qjJ')e-WhVAqj. (3.23) 

Using matrix notation and suppressing the frequency dependence, equations (3.22) and 

(3.23) can be written as 

v = F W u u = L u , (3.24) 
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u = F f f W„v = L*v, (3.25) 

where W u = diag[A/i£ n,..., AhLf] and W„ = diag[Agj r o i n,..., AqJmax]. The matrix W u 

accounts for the irregular geometry of the array, while W v accounts for the irregular 

sampling of the inverse squared slowness q. The matrix F has dimension (Jmax — «7m; n + 

1) x (Lf — Ln + 1), and elements given by 

Fij = e * 2 ^ ' h ' 3 « i . (3.26) 

The reader will realize that an important part of the analysis presented in Chapter 2 

also applies here. In fact, it is easy to derive inverse operators, by defining a new pair of 

forward and adjoint mappings as 

u = F H W„v = L*v, (3.27) 

v = FW u u = Lu. (3.28) 

The conventional operator computes the f'—q space after parabolic moveout and stacking 

(3.24). The data are recovered using the adjoint, equation (3.25), followed by the operator 

G, as 

u = G _ 1 u . (3.29) 



Chapter 3. Velocity stacks 57 

In the second formulation, the f' — q space is obtained by solving equation (3.27). 

This equation may be solved with the zero-order quadratic regularization (damped least 

squares) procedures outlined in section 2.3.3. In contrast to the linear Radon transform, 

it is not possible to find an asymptotic formulation to assess the stability and the reso­

lution of the operator. The elements of the operator G , assuming constant Aq and Ah, 

are given by 

9 l v = AhAq £ e * 2 ^ « ^ 2 ( ' 3 - ' ' 2 ) (3.30) 

which has the following sum 

gm ( 2 * ' ' A *y ' - ' ">) glv = AhAq , / 2 l f / , A q A V t ^ T ~ e 3 • ( 3 - 3 1 ) 

Gulunay (1988) has pointed out that equation (3.30) behaves like a Fresnel integral (Born 

and Wolf, 1980). 

3.5 Sampling considerations 

In section 2.2.3, I derived the sampling theorem for slant stacks. Unfortunately, it is not 

possible to derive an exact analytical expression for the parabolic stack (Hugonnet and 

Canadas, 1995). An approximate expression has been reported by Kabir and Verschuur 

(1995) 
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which has been obtained by making an analogy with the linear Radon transform. For 

the linear Radon transform we have, 

AV < _ * . (3.33) 
Wrnax Pmin | J max 

If we assume that the parabolic transform can be computed using the linear Radon 

transform after the variable transformation hi = h2, 

Ah' = 2hAh. (3.34) 

After replacing equation (3.34) into (3.33), equation (3.32) follows immediately. 

3.6 Example 

The following steps summarize the procedures involved in the computation of velocity 

stacks by means of the parabolic transform: 

1. Stretch the time axis of each seismic trace. 

2. Transform each trace to the frequency domain. 

3. Apply the parabolic stack operator (conventional or inverse operator). 

4. Apply the inverse Fourier transform to each trace. 

5. undo the stretching of the time axis. 

Figure 3.1 shows a hyperbolic event simulated with a velocity of 3000 m/sec. In 

figures 3.2a and 3.2b, the conventional velocity stack and the minimum norm velocity 

stack are portrayed. It is clear that the minimum norm velocity stack panel exhibits 
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Figure 3.1: Synthetic data. 

better resolution of the seismic event than the conventional panel computed with the 

adjoint operator. 

3.7 The validity of the parabolic approximation 

To ensure the improvement of the resolution of the parabolic transform, it is important to 

examine under what conditions the parabolic approximation is valid. Bear in mind that 

the NMO correction and the t2 transformation are tools to make the reflection paths time 

invariant. In other words, while a hyperbola will change if the time axis is translated, 

a parabola will exhibit the same moveout after a translation of the time axis. This 

important concept was used to set up our problem in the / — x space (see the transition 

from equations (3.20)-(3.21) to (3.22)-(3.23)). 

The t2 transformation maps a hyperbola in t — x into a parabola in t2 — x, regardless 



Chapter 3. Velocity stacks 60 

(a) (b) 

0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.04 0.08 0.12 0.16 0.2 0.24 0.28 

(ms!/m!) (msVm8) 

Figure 3.2: Velocity processing, (a) Velocity stack computed using the conventional oper­
ator (parabolic moveout and stacking), (b) Velocity panel computed using the minimum 
norm inverse operator. 
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of the position and velocity of the hyperbola. In other words, the transformation is 

valid for any t — v pair. Unfortunately, the frequency decomposition is not valid since 

the spectrum of the wavelet becomes time dependent. The latter was neglected in the 

formulation of the problem. The frequency distortion of shallow events that is present 

in CMP gathers reconstructed from velocity panels (Yilmaz, 1989; Sacchi and Ulrych, 

1995a) can be explained as follows. To compute the velocity gather in r — q we must 

apply a r 1 / 2 transformation to undo the original t2 transformation. The data before 1 s 

are stretched and the data after Is are compressed. Because of the alias introduced 
i 

by the t2 transformation before Is, the reconstruction is not exact and leads to the 

aforementioned distortion. 

The parabolic approximation can be also validated by means of an NMO correction 

(Hampson, 1986). Assuming that the stretching at far offsets after the correction is 

negligible, the spectral distortion of the signal may be very mild. In this case, the 

validity of the parabolic approximation depends on the position of each reflection in the 

velocity spectrum. If V denotes the velocity of a reflection and Vc the velocity used to 

perform the NMO correction, the corrected moveout can be approximated by 

t(h) = t-(O) + aih2 + a2h4 + ••• (3.35) 

where the parameters a\, a2 are given by 

a i = 2 ^ 0 ) ( ^ " ^ ) ' ( 3 - 3 6 ) 

a 2 = 8 W ( ^ - ^ } - ( 3 - 3 7 ) 
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The parabolic approximation is valid provided that 

If the last expression is satisfied, we can neglect the term o^/i 4 in equation (3.35) and 

consequently the parabolic approximation is valid. Such an approximation justifies identi­

fying the Radon parameter q with the variable a i . 

It is easy to see that the approximation may fail for shallow reflections, f.(0) —• 0. 

The correction, Vc, can be chosen to minimize the last inequality, but if there are two 

hyperbolas with different velocities but with similar i(0)'s, the approximation may not 

be completely satisfied for both hyperbolas. 

Integration paths, other than the parabolic, may be more adequate to model hyper­

bolas after NMO correction, an example is <j>{h) = a\h2 + a 2 / i 4 . However, the computa­

tional cost of a procedure to decompose CMP or CSP gathers in a r, a i , o 2 space must 

be carefully considered. 



Chapter 4 

High Resolution Slant Stack and Parabolic Stacks Operators 

Entia non sunt multiplicanda praeter necessitatem. William of Occam 

4.1 Introduction 

This chapter presents an inverse procedure to enhance the resolution of slant stacks and 

parabolic stacks. In particular, I replace the conventional slant stack and the parabolic 

stack operators by operators derived from the solution of an inverse problem that is 

solved using a regularization that serves to improve the focusing power of the operator. 

These operators seek a solution that resembles the one that might have been computed 

with the conventional one when the aperture of the array is infinite. Hence, the overall 

procedure is equivalent to simulating a longer array. Specifically, two spaxseness criteria 

are proposed to regularize the inverse problem. These criteria reduce the support of each 

signal in the transform domain, and hence, the resolution or focusing power of the Radon 

operator is enhanced (Sacchi and Ulrych, 1994, 1995b). 

It has already been mentioned that the problem of estimating a highly resolved Radon 

operator may be posed as an inverse problem. Inverse problems are naturally ill-posed 

since they do not satisfy the conditions of existence, uniqueness and stability of the solu­

tion (see, for example, Tikhonov and Goncharsky, 1987). The technique which permits 

the construction of a unique and stable solution by introducing some type of prior in­

formation is called regularization. In fact, a particular regularization by means of the 

minimum norm has already been discussed. The prior information can either be given 

63 
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in a deterministic form or in a stochastic form. Positivity is a common deterministic 

constraint useful for solving a variety of inverse problems i.e. magnetic susceptibility in­

version, density inversion, etc. A stochastic constraint assumes some relevant information 

about the model in terms of moments of corresponding distributions. 

In many problems the regularization is carried out without consideration of the nature 

of the model we are seeking. That is the case of the widely used zero-order quadratic 

regularization. This method has the advantage of imposing smoothness to the model 

which is the common way to avoid the amplification of random errors associated with 

each observation. The well known pre-whitening technique used in spiking and predictive 

deconvolution is an example of quadratic regularization (Robinson and Treitel, 1980). 

However, in many situations one may wish to use other types of regularization which 

permit some relevant information about the model to be incorporated. If the additional 

information is in the form of a pdf it may be combined with the data likelihood using 

Bayes' rule. 

The Radon operator is obtained by incorporating prior information in terms of a 

family of sparse priors modelled by a generalized Gaussian. In addition, the Cauchy 

density is used to induce another type of sparse prior. Both priors lead to solutions 

consisting of isolated wavelets in the transform domain while remaining consistent with 

the data. When the regularization is imposed by the Gaussian probability distribution the 

operator is identical to the so-called called stochastic inverse (Aki and Richards, 1980). 

The latter may be derived using arguments others than those provided by Bayes' rule. 

An example is the damped least square solution (Lines and Treitel, 1984), which may be 

either derived considering a probabilistic description of the problem or by modifying the 

eigen-spectra of the problem to make the inversion less sensitive to observational errors. 

When prior information is introduced throughout a sparse regulariser not only is the 

focusing power of the transform improved, but also the alias may be drastically mitigated. 
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Therefore, this type of algorithm may be used to process real data where severe aperture 

limitation and undersampling inhibit the correct separation of seismic events with close 

moveout. 

The first type of regularization discussed here is derived minimizing the lp norm of 

the model subject to data constraints. From a Bayesian point of view, one can generate 

this regularization by assuming that the unknown parameters may be modelled by a 

generalized Gaussian distribution (Johnson and Kotz, 1970). In this case, two parameters 

are used to properly tune the inversion. A shape parameter that controls the tails of the 

distribution and a scale parameter that may be used to regulate the degree of fitting of 

the reconstructed data with the original observations. The shape parameter is crucial 

in the inversion of sparse models. An attractive feature of the generalized Gaussian 

distribution is that it may be used to provoke sparse (p « 1) or smooth models (p = 2) 

according to the selection of the shape parameter. 

A second regularization is derived using the Cauchy pdf. This pdf has been used in 

robust inversion of seismic data by Crase et al. (1990) and by Amundsen (1991). It 

is important to point out that like the lp regularization , the Cauchy regularization is 

used to diminish the influence of outlier or gross errors that may corrupt the result of 

the inversion. In this thesis, it is shown that these distributions lead to a regularization 

procedure that converges to a sparse solution. In summary, long tailed distributions are 

used to impose features onto the model and not to damp outliers as proposed by several 

authors (Gersztenkorn et al., 1986; Scales et al., 1988; Crase et al., 1990; Amundsen, 

1991). 

The prior pdf is combined with the data likelihood (pdf of the observational errors) 

using Bayes's rule. This permits the construction of the so-called Maximum Posteriori 

(MAP) solution of the inverse problem. The observational errors are modelled by means 

of a Gaussian distribution. The latter has some advantages. First, it provides a simple 
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description of the noise process. Secondly, a Gaussian likelihood leads to a MAP solu­

tion that resembles the least squares solution. In fact, the MAP solution is retrieved 

with an iteratively model re-weighted least squares (IMRLS) procedure. The latter is a 

least squares solution where the model is re-weighted using a non-linear functional that 

depends on the previous iteration. There is a strong conceptual similarity between this 

algorithm and iteratively re-weighed least squares (IRLS) (Scales et al., 1988). Still, it 

is important to mention that in IRLS the errors are re-weighted to damp the influence 

of outliers. In the IMRLS, the model parameters are re-weighted to impose sparseness 

on the solution. 

Finally, I would like to point out that there are strong similarities between the regular­

ization strategies proposed in this thesis and the problem of band-limited extrapolation 

(Cabrera and Parks, 1991). In this technique, a weighted norm is minimized honoring 

data constraints (e.g., samples of a time series). The idea is that, theoretically, a time-

limited signal cannot have a band-limited spectrum and therefore the norm is used to 

iteratively band limit and shape the spectrum. The weighted norm incorporates the a 

priori information about the shape and the spectral support of the signal. The procedure 

involves the computation of the weights from the previous iteration. Recently, Kabir and 

Verschuur (1995) applied a similar algorithm to interpolation/extrapolation of missing 

traces. Their scheme uses the parabolic Radon transform as a band limiting device which 

is iteratively applied until the missing traces are restored. 

4.2 Why sparse models? 

In chapters 2 and 3, I showed that one of the principal shortcomings of using the con­

ventional definition of the Radon operator is that amplitude smearing may mask events 

with similar intercept time and moveout. The inversion of the Radon operator by means 
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of the concept of minimum norm may help to diminish the smearing but, in situations 

where a highly resolved Radon panel is desired, the smoothing introduced by the mini­

mum norm constraint does not guarantee enough resolution or focusing power. Assuming 

that the data are composed of a finite superposition of linear events or hyperbolic events, 

the Radon operator (for an ideal delta-like wavelet) would map each seismic event into 

a point. It is evident that a model with smearing is less sparse than a model without 

smearing and thus, minimizing a sparseness criterion, subject to data constraints, may 

help to reduce aperture artifacts. 

Sparse models were widely used in another geophysical scenario. The work of Wiggins 

(1978) on minimum entropy deconvolution (MED) shows how a sparseness criterion may 

be used to simultaneously retrieve the reflectivity and the source wavelet form the seismic 

trace. The deconvolution problem, when the wavelet is unknown, is a severely ill-posed 

problem. This problem may be tackled by assuming that the reflectivity is a sparse 

time series. Wiggins' technique maximizes the varimax norm, but similar results may 

be obtained by maximizing other norms (Oee and Ulrych, 1979; Poetic et. al, 1980). 

These norms measure departure from the Gaussian assumption. In other words, the 

MED looks for the least Gaussian reflectivity that fits the data. Projection Pursuit (PP) 

provides an elegant framework to understand MED (Friedman and Tukey, 1974; Huber, 

1985; Jones and Sibson, 1986). PP is a statistical technique used to reduce the dimension 

of multivariate data. The technique operates as follows. First, a measure that defines 

some interesting configuration of the data is proposed Then, the data are projected 

into a 1-D or 2-D space where the criterion is maximized. This procedure enables us to 

project the data into a new system of coordinates where some interesting configuration 

is manifested. In MED deconvolution the data matrix (composed of the original time 

xAs pointed out by Huber (1985) "We cannot expect universal agreement on what constitutes an 
"interesting" projection." 
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series properly padded with zero to represent discrete convolution) is projected into a 

space where the spareness is maximized. The projection operator is the MED filter and 

the projection is an estimate of the reflectivity. 

It is believed that MED tends to retrieve a reflectivity that does not represent a 

real sequence of primary reflections. Some authors proposed more elaborated models 

to describe the reflectivity and use MED-style algorithms to compute estimates of the 

reflectivity sequence (Walden, 1985). I do not think that this approach provides an 

important advance with respect to the original MED idea. I suspect that the MED 

failures are not only due to the statistical assumptions. The degrees of freedom of the 

problem axe also a crucial aspect to be taken into account. In other words, since the source 

wavelet is unknown, the link between the reflectivity and the trace is very weak and, thus 

the MED norm enters into the problem as a strong constraint. The norms that I have 

adopted to retrieve sparse solutions may be related to minimum entropy norms. However, 

there is an important distinction with respect to MED techniques. The model and the 

data axe linked by the Radon operator. The data are the primary piece of information, 

and consequently the sparseness constraints enter into the problem as a secondary effect. 

In other words, the model is well anchored to the data and, therefore, the regularization 

serves to improve the model by reducing smearing. In MED, the reflectivity and the data 

are related by another unknown: the source wavelet or the inverse source wavelet. 

I hope that this small digression on sparse models and MED illuminates the differences 

between MED-style techniques and the sparse regularization scheme proposed in this 

thesis. 
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4.3 Inverse problems and Bayes' rule 

4.3.1 Bayes' Rule 

To clarify concepts, I will start with Bayes's rule. In what follows p(A\I) denotes the 

probability of proposition A being true conditional on I being true and, A means that 

A is false. The rules for Bayesian parameter estimation are simply the product and sum 

rules of probability theory which are 

p(AB\I) = p(A\I)p(B\AI) = p(B\I)p(A\BI) (4.1) 

and 

p(A\B) + p(A\B) = 1. (4.2) 

From (4.1), assuming that p(B\I) ^ 0, we derive Bayes' rule 

p(A\BI)=p(A\lfj^. (4.3) 

Bayes' rule establishes the way of updating p(A\I) when additional information, B, is 

incorporated. In equation (4.3) the proposition I is the prior information and y(A|J) 

is the prior probability of A conditional only on the information given by I (Loredo, 

1990). The term on the left-hand-side of equation (4.3) is called the posteriori probability. 

For Bayesians, probability is a measure of the degree of plausibility of a proposition. 

Basically, Bayes' rule serves to update the plausibility of a proposition when our state of 
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information changes because new data are acquired. The last assessment establishes the 

radical difference with respect to the "frequentist" view of probability. For frequentists, 

probabilities arise from the relative frequencies of outcomes of an infinite number of 

identical repetitions of an experiment. This definition restricts A to be a proposition 

about a random variable. The Bayesian viewpoint, on the other hand, expands the 

domain of probability theory to include any type of proposition. 

4.3.2 Bayesian approach to inverse problems 

The relationship between the Radon space (u> — p or u — q) and the data space when 

noise is considered is given by 

where n stands for the noise term and L is the slant or parabolic stack operator depending 

on the problem at hand. Letting v = A be the proposition we want to assess and u = B 

represent our data, Bayes' rule can be written as 

where for simplicity we have omitted J in the notation. To clarify notation, 

• p(u|v) is the probability or likelihood of obtaining the data u assuming that the 

model v is true. 

• p(v) is the prior probability of the model. 

• p(u) is the data UkeUhood and enters into the problem as a normalization factor. 

L*v + n = u (4.4) 

p(v|u) = 
p(u|v)p(v) 

p(u) 
(4.5) 
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• p(v|u) is the posterior probability of the model. 

To utilize the Bayesian formalism we must consider two remaining problems. First, 

given p(v|u), how to determine v, and second, how to determine p(v). The first problem 

can be solved by an appropriate choice of a decision rule. For example, one could use the 

maximum a posteriori (MAP) solution, V M A P , which maximizes p(v|u). This solution 

has maximum posteriori probability, which is the same (up to a normalization factor) as 

seeking the maximum joint probability. The second problem, which is probably one of 

the most cumbersome problems in inverse theory, is how to translate our prior appraisal 

about the model into a probability density function. 

If the prior probability and the likelihood functions have the forms 

p(v) oc e- 7 ' , (4.6) 

p(u\v) oc e~Ju . (4.7) 

Then, the posteriori distribution is given by, 

p(v|u) oc p(v) x p(u|v) 
(4.8) 

x e-(J.+J.). 

The MAP solution will coincide with the minimum of J = — ln[p(v|u)], where J is usually 

called the objective or cost function. 

(4.9) 
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If the posterior distribution is multi-modal the objective function is not a strictly convex 

function, therefore a global optimization problem is required to find the MAP solution. 

If the prior and the likelihood are modelled with normal distributions, the objective 

function becomes the classical quadratic form widely used in inverse theory (Tarantola, 

1987). 

It is important to point out that other estimators of v may be used. For instance, 

the mean v of the posteriori pdf 

v = /p(v|u)dv. (4.10) 

or the median, v i , 
2 

^ ( v < v j ) = | . (4.11) 

From a computational point of view the MAP is usually preferred, since the computation 

of the mean and/or the median require the integration of the whole model space. For 

a symmetrical unimodal posterior pdf, the mean, the median and the MAP estimator 

coincide. The normalization constants of the pdf's are not required to minimize the 

objective function, and therefore they can be omitted in the analysis. 

Bayesian inference considers Jv as additional information which may help to deter­

mine the most likely set of parameters. From a non-Bayesian perspective (rather, a 

classical inverse theory approach) this term serves to stabilize the inversion (Tikhonov 

and Goncharsky, 1987). The classical school uses the concept of regularization to obtain 

a stable inverse of an ill-posed problem. Typically, probabilities are not mentioned and 

attention is focused on formulating an objective function. In the Bayesian approach the 
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aim is to incorporate probabilistic information into the formulation of the inverse prob­

lem. Moreover, in the Bayesian approach the objective function is an intermediate step 

which is required to construct a solution. 

There are two approaches to derive a cost function. The Bayesian approach, which is 

what was just explained, entails the construction of the posteriori probability and then 

the objective function. In inverse theory a more direct approach is usually adopted. 

In the latter the objective function is designed by combining a misfit criterion with a 

regularization function that is derived from a smoothing criterion. I feel that in many 

situations the Bayesian approach may highlight some formal aspects of the inversion. 

However, when an objective function is derived by means of Bayes' rule, a common 

questions arises: why that pdf and not another?. On the other hand, in classic inverse 

theory the objective function is accepted without any problem, i.e., smoothing with 

derivatives (Constable et. al, 1985). Yet we have to realize, that both approaches may 

lead to similar or even to the same objective function. In fact, smoothing strategies based 

on derivatives may be related to Gaussian models with a particular covariance structure 

(Wang and Braile, 1994). 

4.3.3 Assigning a prior to the model 

Bayesian inference has been historically divided by the degree of objectivity in the selec­

tion of priors. Various attempts have been made to find prior probabilities which rep­

resent a state of total ignorance about the model (Jeffreys, 1961; Jaynes, 1968). These 

priors are derived from mathematical arguments of symmetry and invariance. An objec­

tive prior may be also derived using the principle of maximum entropy (Jaynes, 1968). 

Consider a random variable, x, with pdf f(x). The entropy h given by 
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h = - [°° f(z)]n[f(z)]dz (4.12) 
J—oo 

expresses the uncertainty associated with the distribution f(x). Therefore, the distribu­

tion that most honestly describes the data, given only what it is known without assuming 

anything else, is the one with maximum entropy (Jaynes, 1968). It is natural, therefore, 

that when we attempt to make inferences based on incomplete information, that we draw 

them from that probability distribution that has the maximum entropy allowed by the 

available information. 

The entropy is maximized subject to the following constraints 

(4.13) 

and 

/ f(x)gk(x)dx = afc, 
Ja 

* = 1,2,.. ,m, (4.14) 

where the first constraint is a normalization constraint, the second is a set of moments 

that are assumed to be known. Using the Euler-Lagrange equation of the calculus of 

variations the maximum entropy pdf is given by 

/(*) = ,[-A0-A1fl1(a!)-A2fl3(x)-ATOflrTO(x)] (4.15) 
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The Lagrange parameters A 0 , A i , . . . A m are estimated by replacing f(x) into the con­

straints (Kapur and Kesavan, 1992) and solving a nonlinear problem. 

Many well known pdf's may be obtained using the principle of maximum entropy. An 

example is the generalized Gaussian distribution. In this case, the prescribed constraints 

are equation (4.13) and the dispersion measure associated with the lp norm, 

(*„)*= f°° \x\pf(x)dx. (4.16) 
J—oo • 

The pdf that maximizes the entropy is 

l - l / p ^ i ] x £ 

The generalized Gaussian distribution with shape parameter p and scale parameter <rp 

describes a family of distributions. In particular when p — 2, equation (4.17) corresponds 

to the normal or Gaussian distribution, when p = 1 to the Laplace double exponential, 

and when p —> oo to a uniform distribution. The metric induced by the generalized 

Gaussian distribution is the lp norm. Laplace's double exponential is a pdf that has 

longer tails than the normal distribution. This property is exploited in robust statistic 

to damp the influence of outliers (Huber, 1981). 

Another typical long-tailed probability density is the Cauchy distribution, 

= ( 4 - 1 8 ) 
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This distribution provides an attractive prior to model a sparse distribution of para­

meters. In addition, it leads to a regularization function similar to Burg's entropy (Burg, 

1975). Equation (4.18) can be derived using the principle of maximum Entropy when 

.E[ln(l + x2/o~l)] is prescribed (Kapur and Kesavan, 1992) (E denotes expectation). In 

that case, JE?[ln(l + x2/cr2)\, plays a role similar to a dispersion measure. 

The inverse problems studied in this thesis are posed in the frequency-offset space. 

Hence, the priors must be modified to cope with complex variables. Neglecting the 

normalizing term (not needed to compute the MAP estimator), the priors may be formally 

written down as 

f(V,ap,p)<xe^ , (4.19) 

It is evident that we can identify the pdf of the bivariate variable Re( V) + ilm( V) with 

the univariate pdf of the complex variable V. 

4.3.4 Assigning a probability to the noise 

To start with, I will assume that the second moment of the noise is known. Then, the 

principle of maximum entropy gives rise to the Gaussian pdf as the least informative 

probability distribution. Throughout this analysis I will consider that the seismic noise 

is Gaussian with zero mean and variance <r2. 

The real and imaginary parts of the discrete Fourier transform are defined by 
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N r M = jfi £ £ L i nt co s (u ; f c r ) 
NiM= ^E^=intsin(u}kt) 

(4.21) 

where u>* = 2irk/N, k = 0,1,2,N — 1. It follows that since the real and imaginary 

parts are linear combinations of a normally distributed variable nt, they are also normally 

distributed with zero mean and variance given by (Priestly, 1981) 

Var(iVr(u;fc)) = 

Var(iV,(u;fe)) = 

a* ,k^0,N/2 

{ 2*1 ,k = 0,N/2 

al ,k^0,N/2 

0 ,k = 0,N/2 

(4.22) 

(4.23) 

In addition, the covariance is given by 

Cw{Nr{u>k),Ni{ul)) = 0,Vk,l (4.24) 

similarly, 

Cav(Nr{u>k),Nr(en)) = Cav(Ni{uk),Ni{un)) = 0,Vfc,Z (4.25) 

From the above discussion it is clear that the real and imaginary parts have a bivariate 

distribution 
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1 l 
p{NrM, Ni(u>k)) = — e 3 < k^O, N/2 (4.26) 

Now, it is possible to regard the joint distribution of the real and imaginary part as the 

distribution of a complex variable Nr + iNi, 

4.3.5 Maximum a Posteriori Solution (MAP) 

When we combine the generalized Gaussian prior and the Gaussian likelihood, the fol­

lowing objective function is obtained 

Jp = v ^ Q p V + (L*v - u ) H C n - 1 ( L * v - u) (4.28) 

where the diagonal matrix Q p has the following elements 

When p = 2, the elements of the diagonal matrix Q c are equal. The cost function Jp 

corresponds to a mixed lp and Z2 norm problem (Alliney and Ruzinsky, 1994). Note, 

however, that this is a special mixed norm problem since the argument of the norm is the 

amplitude of a complex variable, |Vj |, and not the complex variable itself. The matrix C n 

stands for the noise covariance matrix which is assumed to be known. The minimization 

of $ p gives rise to the following solution, 
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v = (Q p + L C n - 1 ^ ) " 1 ^ - ^ . (4.30) 

The diagonal matrix Q p in equation (4.30) is non-linearly related to the model. Equation 

(4.30) can be rewritten using the following manipulations 

(4.31) 
= (Qp + L C T ^ Q p - 1 ! , . 

Since ( C n + L * Q P

 1L) and (Q p + L C n

 XL*) are positive definite and thus, invertible, 

the following identity holds 

(Q p + L C n - 1 ! * ) " 1 ^ " 1 = Qp" 1 L(C n + L ' Q p ^ L ) " 1 (4.32) 

and expression (4.30) is equivalent to 

v = Q p - 1 L ( C n + I / Q p ^ L ) - 1 ! ! . (4.33) 

It must be stressed that for theoretical assessment regarding uniqueness and convergence, 

the operators (4.30) and (4.33) are equivalent. 

The lp regularization may lead to division by zero when Vi —• 0. To avoid this 

inconsistency the following modification is included 

Q P i i = P 

2o% 

ivjr 2
 i f |v5i>e, , x 

(4.34) 
e p " 2 i f |Vi| < e . 
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With this modification, all samples smaller that e axe weighted in the same manner. 

This technique was also used by Huber (1981) in robust statistical procedures to assign 

a constant weight to errors below a given threshold. 

If the Cauchy distribution is adopted, the objective function derived from Bayes 

theorem is given by 

Jc = £ l n ( l + ! ^£) + ( L * v - u f C n - ^ L V - u ) . (4.35) 

It is straightforward to see that in equations (4.30) and (4.33) the matrix Q p is replaced 

by Q c , 

« « < = ^ T T ^ ) - < 4 - 3 6 > 

Crase et. al (1990) and Amundsen (1991) used this criterion to improved the inversion 

of seismic data in the presence of outliers. In a time series analysis scenario, the Cauchy 

regularization has been applied to retrieve the spectral signature of seismic wavefields 

(Sacchi and Ulrych, 1995b). 

It is evident that some iterative strategy is required to solve equation (4.30) or (4.33). 

Letting Q denote Q p or Q c , the algorithm follows 

v f c + i = ( Q f c + L C ^ L ^ ^ L C n ^ u , (4.37) 

similarly we can operate with (4.33), 
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(4.38) 

The algorithm is initiated with either a flat model or with the following approximation: 

v = Lu. The number of iterations necessary to reach the solution will depend on the 

adopted regularization. Usually 5 iterations yield a good approximation to the minimum 

of Jp (p « 1) and/or Jc. One advantage of the lp regularization, is that the degree 

of sparseness may be modified by selecting the shape parameter p. One inconvenience, 

however, is that trimming of small amplitudes is required. 

The effect of the non-linear weights Q p or Q c can be summarized as follows. In each 

iteration, the non-linearity produces a model that, while consistent with the data, has 

the minimum amount of structure or maximum sparseness. In fact, the algorithm drives 

the solution to a state in which most samples are equal to zero with only few samples 

different from zero. The algorithm is referred to as the Iteratively Model Re-weighted 

Least Squares (IMRLS) algorithm. The re-weighting function may be also derived using 

other priors than those proposed in this chapter. 

4.3.6 Algorithm complexity 

The operators (4.30) and (4.33) are equivalent, however, it is important to consider 

the computational advantages of one over the other. For underdetermined problems 

(M > N), clearly, it is more convenient to solve equation (4.33) than equation (4.30). 

The following cases arise depending on the discretization in model and data space: 

• Slant Stack operator: If the ray parameter axis is evenly discretized, the matrix LL* 

is Toeplitz Hermitian. If a zero order quadratic regularization is adopted (damped 

least squares), the elements of the diagonal matrix Q are equal, consequently, 
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Q + LL* is also Toeplitz. In this situation, fast solvers like Levinson recursion may 

be used (Rostov, 1990). When the weighting function is derived from the Cauchy 

prior or the generalized Gaussian (y ^ 2), the elements of the diagonal matrix Q are 

unequal. Hence, the Toeplitz structure is destroyed. In this case, the solution may 

be computed with any solver for Hermitian matrices. I have adopted a Cholesky 

decomposition (Press et. al, 1992) but other techniques may be utilized. Since only 

a few iterations are required to reach a feasible solution, the computational cost of 

Cholesky decomposition is reasonable. 

• Parabohc stacks: The operator LL* is Toeplitz Hermitian providing that the Radon 

parameter is evenly discretized. When zero order regularization is adopted (damped 

least squares) equation (4.30) may be solved using the Levinson recursion. Any 

other case is solved using Cholesky decomposition. 

4.3.7 Convergence 

In this section, I show that the proposed algorithm minimizes the cost function Jp and/or 

Jc. The change of the objective function between two consecutive iterations may be 

approximated by a first order Taylor expansion 

AJk = Jk+i — Jk 

= VJkHAvk. 
(4.39) 

The solution at iteration k + 1 satisfies, 

L C n u = (Qfe + L C ^ L ^ V k + x 

= (Qfc + LCn^L'Xvfc + Avk) 
(4.40) 



Chapter 4. High Resolution Slant Stack and Parabolic Stacks Operators 83 

thus, 

V J ^ - C Q f c + L C n - ^ A v * . (4.41) 

Finally, combining the above expressions 

AJk = -Avk

H(Qk + LC^L-JAvfc. (4.42) 

The objective function is decreased providing that ( Q * + LC„ 1L*) is positive definite. 

This is proved in the next section. 

4.3.8 Convexity of the objective function 

If the objective function is strictly convex and possesses bounded derivatives, then the 

problem 

J = min (4.43) 

or 

V J = 0 (4.44) 

has a unique solution. The convexity assumption serves to guarantee equivalence between 

(4.43) and (4.44). If we are satisfied with local uniqueness, strict convexity can be 
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replaced by convexity (Rockafellar, 1970). The function J is convex provided that the 

Hessian matrix, H = V V J , is positive definite 

x H V V J x > 0 for all x other than x = 0 , (4.45) 

where the entries of the Hessian matrix are 

82J 

If the regularization is derived from the generalized Gaussian, the Hessian becomes 

W J P = | Q P + L C - 1 L * . (4.47) 

The quadratic form v H Q p v is always positive definite, while v H L C n
- 1 L * v is symmetric 

and positive semi-definite (positive definite if L* has full rank), hence the sum is positive 

definite. It might happen that some elements of the matrix Q p become unbounded when 

Vj? —> 0. The threshold operator in equation (4.34) serves to avoid this degeneracy. 

If the Cauchy criterion is adopted as the prior of the problem, the Hessian of the 

objective function is given by 

V V J c = D + L C ^ L * , (4.48) 

where D is a diagonal matrix with the following elements 

(4.46) 
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Du = 

Since o\ > 0, the Hessian is a positive form. Thus, the convexity of J is guaranteed for 

both regularises. The existence of the solution is also guaranteed in both cases. Finally, 

note that the equivalence between equations (4.30) and (4.33) is also satisfied. 

4.3.0 Derivation of the damped least squares solution 

What is the relationship between the well known damped least squares approach and the 

sparse regulariser? There is an easy way to answer this question when the regularization 

is induced by the generalized Gaussian. We simply set p = 2 in (4.30) to end up with 

If the noise covariance matrix is diagonal, C n = <rn

2I, then the damping factor reduces 

to the ratio of variances. 

The situation is quite different when we use the Cauchy density to model the prior 

distribution of parameters. If the parameter <rc in (4.20) is chosen according to <rc » 

\Vi\,i = 1,...M then, Q c « <r~2I. Thus, for large values of <r compared with the 

amplitude of the model, the Cauchy density also leads to the damped least squares 

solution (4.49). This should not be a surprise, since the Cauchy density represents a 

curve quite similar to the Gaussian, although with large tails. 

v = (<r2 - ' i + L C n ^ L ' J ^ L C n ^ U . (4.49) 
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4.4 Application to slant stacks 

4.4.1 Slant stacking non-aliased data 

The synthetic example presented in section 2.4 is used to test the performance of the 

sparse regularization scheme. First, I computed the slant stack using the high resolution 

slant stack operator derived with the generalized Gaussian prior with p = 1. Similarly, I 

also used the operator derived from the Cauchy prior. The results are shown in Figures 

4.1c and 4.Id. In Figures 4.1a and 4.Id, I have also plotted the r — p space computed 

with the conventional slant stack operator and with the damped least squares solution. 

The sparse regularization leads to a well focused r — p panel. Notice, that the smearing 

in the first two panels has been significantly diminished. 

4.4.2 Slant stacking beyond the alias 

A synthetic data set was generated by superimposing five linear events with slowness and 

intercept times given in table (4.1). 

Event r V v = p 1 

w [s/m] [m/a] 
2 0.50 1.82 x 10"4 5500. 
3 0.60 2.17 x 10"4 4600. 
3 0.80 2.17 x 10"4 4600. 
4 0.82 1.82 x 10"4 5500. 
5 0.90 -1.80 x 10"4 -5550. 

Table 4.1: Parameters used to generate the synthetic data. 

The composite seismogram is illustrated in figure 4.2. The receivers are uniformly 

distributed 100m apart. The spatial Nyquist frequency is 5 x 10 - 3 m - 1 . The seismic 

signature is simulated with a Pucker wavelet of 35Hz. The problem is solved in the band 
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Figure 4.1: (a) r — p transform computed with the conventional Radon operator (linear 
moveout and stacking). Panel (b) shows the Radon transform computed with the damped 
least squares algorithm, (c) and (d) were computed with operators derived from the sparse 
regularization. The generalized Gaussian prior, p = 1, was used in (c) and the Cauchy 
prior (d). 
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1 — 125Hz. The maximum resulting wavenumber is kmax = fmax x pmax = 0.022s-1. The 

r — p panels computed with different operators are portrayed in Figures 4.3a, b ,c and d. 

The first panel corresponds to the conventional slant stack operator, linear moveout and 

stacking. The remaining panels to the damped least squares solution p = 2, (figure 4.3b) 

and to the IMRLS solution with p = 1.1 (figure 4.3c). In addition figure 4.3d shows the 

r — p domain computed using the regularization derived from Cauchy prior. The aliasing 

effect is clearly presented in the r — p panels portrayed in Figures 4.3a and b. The sparse 

regularization has produced not only very well focused r—p panels but also the aliasing 

effect has been significantly attenuated. This is clearly shown in figures 4.3c and d. For 

completeness, in Figures 4.4a, b, c and d a contour plot of the temporal envelope of 

the T — p panels is shown. The envelope was computed by means of a discrete Hilbert 

transform (Oppenheim and Schaffer, 1975). The maximum contour corresponds to Odb, 

while the minimum to —30db. An enlarged portion of these figures containing the fourth 

and fifth linear event is shown in Figures 4.5a, b, c and d. 

Thus far I have described a noise-free problem. To continue with the analysis, the 

data were contaminated with Gaussian noise with standard deviation, <r„ = 0.15. The 

original wavefield, the noise and the composite seismogram are plotted in figure 4.6a, b 

and c respectively. First, the conventional slant stack operator is displayed in Figure 

4.7a. Then, the adjoint operator is applied to the r — p space to map the data space 

(Figure 4.7b). It is clear that since the forward and the adjoint transformation do not 

constitute an inverse pair, the deconvolution of the operator G is required to properly 

map the data (section 2.3.1). The data space after deconvolution is shown in Figure 4.7c. 

It is understood that the conventional operator can not separate signal from noise. This 

can be alleviated, however, using inverse operators. Figure 4.8a shows the r — p domain 

computed with the Cauchy regularization. The resolution of the operator is comparable 

with the resolution achieved in the noise free case (Figure 4.3d). The reconstructed data 
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space is portrayed in Figures 4.8b and the estimated noise space in Figure 4.8c. 

There is no doubt that a critical aspect of the technique is the selection of the proper 

tradeoff to avoid over or under-fitting the data. The tradeoff between reliability of the 

estimate and resolution is governed by the parameter <rc. A line search routine based on 

Brent's method (Press et al., 1992) is adopted to estimate the value of <rc that provokes 

the misfit to lie in a previously defined interval. It is convenient to use a broad interval 

centered at the expected value of the x 2 statistics, E{x 2) — 2N. This strategy signific­

antly reduces the number of line searches. Figure 4.9 shows the average power spectrum 

of the data |u/<rn|2 and the misfit function at each frequency: 

If v = 0 for all frequencies, the misfit function is proportional to the average power 

spectrum of the data. If we define power as 

P ( / ) = |iL|' = ^ , 

it is possible to compare the power spectrum of the data with the misfit function. In 

addition, notice that at high frequencies where v = 0 the misfit must coincide with the 

power spectrum. In other words at high frequencies there is nothing to invert, therefore 

the most reasonable vector of parameters is v = 0. The same analysis is valid at low 

frequencies where the signal to noise ratio is usually very small. From this perspective 

the tradeoff parameter behaves as a noise rejection device. 

Generally, line searching may be avoided. A trial tradeoff can be used to perform the 

inversion. If the r — p panel looks too noisy, the tradeoff may be increased to reject the 
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Figure 4.2: Synthetic profile with 5 linear events. The apparent velocities and intercept 
times are displayed in Table 4.1. 

noise. Truncating the number of iterations is another strategy to avoid over-fitting the 

data. A useful minimum of the objective function can be reached in a few iterations and, 

in this case, the x 2 test may be used as a stopping criterion. 

4.4.3 High resolution wavefield decomposition of V S P data 

This section is devoted to the demonstration of the capability of the model re-weighted 

least squares algorithm to compute highly focused r — p panels in the context of VSP 

processing. Figure 4.10a shows a VSP window composed of 26 traces of 250 samples each. 

Figures 4.10b and 4.10c illustrate a main goal in VSP processing that of the correct sepa­

ration of up-going and down-going waves. Figure 4.10b portrays the r—p space computed 

using a least squares solution with zero order regularization (damped least squares). We 

can distinguish two wavefields located at « ±1.6 x 10 - 4s/m. The r — p domain was 





Chapter 4. High Resolution Slant Stack and Parabolic Stacks Operators 92 

(a) 
o 

0.2 

0.4 

0.6 

0.8 

X 1 

"i i i i r 

J L J L 
-0.0002 -0.0001 0 0.0001 0.0002 

P (s/m) 

(c) 
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.8 

1.8 

2 

i 1 1 r 

J L _L 
-0.0002 -0.0001 0 0.0001 0.0002 

P (s/m) 

(b) 

0.2 

0.4 

0.6 

0.6 

1 

1.2 

1.4 

1.6 

1.8 

"i r i r 

J I I L 
-0.0002 -0.0001 0 0.0001 0.0002 

P (s/m) 

(d) 

0.2 

0.4 

0.6 

0.6 

X 1 

1.2 

1.4 

1.6 

1.8 

2 _L _L 
-0.0002 -0.0001 0 0.0001 0.0002 

P (s/m) 

Figure 4.4: Contour plot of the normalized envelope of the panels showed in Figure 4.3. 



Figure 4.5: Blowup of the fourth and fifth events (Table 4.1) portrayed in figure 4.4. 
The events are perfectly resolved in (c) and (d). The contour fines corresponds to 
0, -5, -10, -15, -20, -25 and -30db. 
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Figure 4.6: (a) The synthetic wavefield. (Figure 4.2). (b) Gaussian noise (<TJV = 0.15). 
The noise has been normalized for plotting, (c) The composite seismogram derived from 
(a) and (b). The noise standard deviation (<r„ = 0.15) represents 15% of the maximum 
amplitude encountered in the wavefield. 
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Figure 4.7: (a) The r — p space of the noisy synthetic wavefield displayed in Figure 4.6. 
(b) Data space estimate with the conventional slant stack, (c) Reconstruction of the data 
after the deconvolution of the operator G " 1 . The noise is completely mapped back to 
the data space. 
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Figure 4.8: (a) The r — p space computed with the slant stack operator derived from the 
Cauchy regularization. (b) The reconstructed data space, (c) Estimate of the noise space. 
The noise is rejected by adjusting the tradeoff parameter at each frequency (Figure 4.9). 

also computed using the lp regularization with shape parameter p = 1 (Figure 4.10c). 

A comparison of this figures leads to the following comments. The sparse regularization 

yields a panel where the finite aperture artifacts (smearing) are substantially diminished. 

Another striking feature is that the down-going wavefield almost collapses into a single 

trace, suggesting that the algorithm has managed to retrieve a resolution comparable 

with the one we might expect from a longer array. Filtering in r — p becomes an easy 

task since each wavefield can be clearly identified and extracted from the data. 
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Figure 4.9: Misfit function versus frequency. The upper diagram show the power spec­
trum density of the data. The lower diagram shows the data misfit function, x2) versus 
frequency. The expected value of the variable x 2 together with its standard deviation 
are also plotted. 
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Figure 4.10: (a) VSP segment, (b) r — p panel computed with the damped least squares 
solution, (c) IMRLS solution using the lp prior with shape parameter p = 1.1. 
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4.5 Application to velocity processing 

In what follows, I devise a synthetic example to explore the focusing power of the sparse 

regularization procedure when applied to parabolic stacking. The synthetic example was 

already presented in Section 3.4. As in the previous example, a t2 transformation is used 

to validate the parabolic approximation. The data correspond to a single hyperbolic event 

of velocity v = 2500m/s. The square ray parameter of this event is q = 0.16ms2/m2. 

Figures 4.11a and 4.11b portray the velocity panel computed with the conventional par­

abolic stack operator and the damped least squares solution. In addition I used the 

Cauchy prior density and the generalized Gaussian (p = 1) to induce sparse solutions. 

The results are displayed in Figures 4.11c and 4.lid. The maximum number of iterations 

was set to 5 in both cases. 

4.5.1 Identification of multiples 

Three primary reflections corresponding to velocities of 3300m/s and with intercept times 

of 0.4s, 0.8s and 1.2s were used to simulate a CMP gather. This example intends to 

reproduce the synthetic example created by Yilmaz (1989) to test his algorithm. Su­

perimposed on these events there is a primary reflection corresponding to a velocity of 

3000m/s with its resulting multiples. Near and far offset traces are located at 0m and 

2500m respectively. The spatial sampling in the offset space is 100m. The seismogram 

is displayed in Figure 4.12. Similarly to the previous examples, the r — q plane was first 

obtained with the conventional parabolic transform and with damped least squares. The 

results are portrayed in Figures 4.13a and 4.13b. Smearing introduces ambiguity into the 

discrimination of the reflections. This feature is particularly striking at r = 0.4,0.8,1.2s 

where primary and multiples interfere. When the data are processed with the IMRLS 

algorithm with weights derived from the Cauchy density and the Generalized Gaussian 
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Figure 4.11: (a)Velocity processing with the conventional parabolic stacking operator, 
(b) shows the r — q panel computed with the damped least squares procedure, (c) and (d) 
were computed with the IMRLS algorithm with the generalized Gaussian prior (p = 1) 
and the Cauchy prior, respectively. 
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Figure 4.12: (a) A synthetic CMP gather with three primary events; (b) a primary 
reflection and its multiples; (c) composite CMP gather (primaries and multiples). 

(p = 1), the smearing is drastically reduced. The resulting velocity panels are displayed 

in Figures 4.13c and 4.13d. 
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Figure 4.13: (a) Velocity processing with the conventional parabolic stack operator. Panel 
(b) shows the r - q panel computed with the damped least squares solution, (c)-(d) 
IMRLS solutions, generalized Gaussian prior (p = 1) and the Cauchy prior, respectively. 
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4.5.2 Offset space reconstruction from parabolic stacks 

The simulations presented in this section are primarily intended to examine the focusing 

power of the parabolic transform when applied to velocity processing. Figure 4.14a shows 

two seismic reflections of 1800 and 2200m/sec. The central frequency of the seismic 

source is 20 Hz. The record was contaminated with band-pass Gaussian noise with 

<rn = 0.05 (relative to the signal energy). Four traces have been removed from the 

gather to simulate a gap. The r — q space is first computed using the damped least-

squares and then the IMRLS algorithm. It should also be noted that only the available 

traces are used in the computations. This is the principal difference with the technique 

proposed by Kabir and Verschuur (1995), where the gaps are loaded into the procedure 

as zero traces which are iteratively restored. Figure 4.14b and 4.14c show the Radon 

space computed using damped least squares and the IMRLS procedure after 5 iterations, 

respectively. Figures 4.15a and 4.15b show the reconstructed offset space corresponding 

to the damped least squares solution and to the IMRLS algorithm with the Cauchy 

prior. Figure 4.15c portrays the traces that were extracted from the data to produce the 

gap, together with the recovered traces. The central four traces correspond to Figure 

4.15a while the rightmost segment to Figure 4.15b. It is evident from Figure 4.15c, that 

diminishing smearing in the Radon space improves the reconstruction of missing traces. 

In the next example, we applied the parabolic transform to the same synthetic CMP, 

however, in this example the parabolic approximation is validated by means of a NMO 

correction. The data were corrected with a constant velocity Vc = 2640m/s. Figures 

4b and 4c show the r — q panels computed using damped least squares and the IMRLS 

algorithm. The reconstructed data and a blow up of the missing traces are portrayed in 

Figures 4.17a, 4.17b and 4.17c, respectively. It appears that the parabolic transform can 

better model the reflections after a NMO correction than after a t2 transformation. In 
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Figure 4.14: Parabolic processing after a t2 transformation, a) Synthetic CMP gather, 
b) r — q domain computed with damped least squares, c) r — q panel computed with 
model re-weighted least squares procedure. The parameter q is the squared slowness. 

the latter case, the reconstruction does not strongly depend on the resolution in model 

space. In fact, Figure 4b is not very focused but it does give a good reconstruction of 

the missing traces. 
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Figure 4.15: Offset space reconstruction after parabolic transform processing. The para­
bolic approximation is validated using a t2 transformation, a) Reconstructed offset from 
the T — q panel portrayed in Figure 4.14b. b) Reconstructed offset from the r — q panel 
portrayed in Figure 4.14c. c) Original missing traces, reconstructed missing traces from 
the r — q space: damped least squares (center), model re-weighted least squares (right). 
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Figure 4.16: Parabolic processing after a NMO correction, a) Synthetic CMP gather, b) 
r — q domain computed with damped least squares, c) r — q panel computed with model 
re-weighted least squares procedure. 
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Figure 4.17: Offset space reconstruction after parabolic processing. A NMO correction is 
applied to validate the parabolic approximation, a) Reconstructed offset from the r — q 
panel portrayed in Figure 4.16b. b) Reconstructed offset from the r — q panel portrayed 
in Figure 4.16c. c) Original missing traces, reconstructed missing traces from the r — q 
space: damped least squares (center), model re-weighted least squares (right). 
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4.5.3 Field data example 

Figure 4.18a illustrates a shot record acquired in deep water which consists of 42 traces 

gathered every 50 m. The inner offset is located at 230 m. The shot has four missing 

traces located at 1830,1880,1930,1980 m. We consider the parabolic stacking after a t2 

transformation and after the NMO correction. Figure 4.18b portrays the shot gather 

after the t2 transformation. Figure 4.19a shows the r — q space computed using zero 

order regularization or damped least squares. 

The parameter q in this case is equal to the squared slowness of each event. The r — q 

panel was used to restore the shot gather (Figure 4.19b). The new near offset trace is 

located at 30m. The near offset observations are restored but the gap at far offsets is not 

properly restored. The data were also processed with the IMRLS algorithm using the 

Cauchy prior. The results are portrayed in Figure 4.20a (r — q panel) and 4.20b (restored 

data). The missing far offset traces are partly restored. I found that complete restoration 

of all the events is very difficult. The noise and the imperfections of the hyperbolic paths 

inhibit a perfect localization of each event and therefore not all the events are properly 

modelled. 

To continue with the analysis, I consider the effect of parabolic stacking after a NMO 

correction. Figures 4.21a and 4.21b portray the original shot record and the record 

after the NMO correction, respectively. The r — q panel computed with the damped 

least squares solution is plotted in Figure 4.22a. The restored seismic record is plotted in 

Figure 4.22b. In this case the missing inner offset as well as the far offset traces are partly 

recovered. After the NMO correction the curvature of .the reflections is small and hence, 

the operator can properly localize most of the events. The IMRLS solution is portrayed in 

Figure 4.23a. A comparison of Figures 4.23a and 4.22a shows some interesting features. 

It is clear that the Cauchy regularization improves the focusing power of the parabolic 
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transform, which is particularly clear from a comparison of the reflection at « 1.4sec. 

Yet, we have to recognize that there is a resolution tradeoff. It is evident that the Cauchy 

regularization enhances the resolution but it is also true that the noise is not properly 

attenuated. 
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Figure 4.20: Parabolic processing after a t2 transformation, a) T — q panel obtained using 
model re-weighted least squares (Cauchy prior), b) Reconstructed offset space, the new 
inner offset is located at 30 m. 
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Figure 4.22: Parabolic transform processing after a NMO correction, a) r — q panel 
obtained using damped least squares, b) Reconstructed offset space, the new inner offset 
is located at 30m. 



Chapter 4. High Resolution Slant Stack and Parabolic Stacks Operators 114 

Figure 4.23: Parabolic processing after NMO correction, a) r — q panel was obtained 
with model re-weighted least squares (Cauchy prior), b) Reconstructed offset space, the 
new inner offset is located at 30m. 
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4.6 Concluding remarks and discussion 

It has been shown that amplitude smearing can be considerably diminished using a sparse 

prior to derive slant stack and parabolic stack operators. Two different criteria, which 

are related to well studied probability distributions, were presented. I have not found 

substantial differences between the lp (p = 1) or the Cauchy regularization. It appears 

that any prior that drives the solution to sparseness is adequate to diminish amplitude 

smearing. 

The algorithm has also proved to be capable of restoring missing traces. The latter 

is subject to the validity of the parabolic approximation after NMO correction or to the 

relative absence of the effect of wavelet stretching following the t2 transformation. The 

validity of the parabolic approximation cannot be satisfied for any time-velocity pair 

of the CMP or CSP gather. Besides, we can generate highly resolved solutions for a 

particular range of the velocity spectrum of the data. On the other hand, the parabolic 

transform after a t2 transformation maps each hyperbola into a parabola. It must be 

realized, however, that shallow reflections can suffer a non-negligible frequency distortion 

due to the t2 mapping. 



Chapter 5 

Aperture Compensated Discrete Fourier Transform and Applications 

...porque supone la imposible adicion del instante presente y los preteritos. 

Jorge Luis Borges: Tlon, Uqbar, Orbis Tertius 

5.1 Introduction 

Spatio-temporal analysis of seismic records is of particular relevance in many geophysical 

applications, e.g., vertical seismic profiles and plane wave slowness estimation in seismo­

logy. The goal is to estimate from a limited number of receivers the 2-D spectral signature 

of a group of events which are recorded on a linear array of receivers. The conventional 

analysis based on 2-D Fourier transformation might result in poorly resolved spectral 

panels due to the presence of sidelobes which tend to mask the signals. This is more 

noticeable when the spatial aperture of the signal is small compared with the range of 

wavenumbers we are seeking. The combined effect of the sidelobes and noise make the 

problem even more severe. 

Many of the 1-D high resolution spectral analysis techniques which are cited in the 

literature can be easily extended to the 2-D case. A review of these methods can be 

found in Kay and Marple (1981). Two dimensional extensions of these procedures are 

given by Marple (1987). The power spectrum estimate is computed by honoring a few 

lags of the autocorrelation function (1-D or 2-D depending the problem). Examples of 

these approaches are 2-D parametric spectral analysis (Lim and Malik, 1982) and the 
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Capon maximum likelihood method (Capon, 1969). Hybrid techniques can be designed 

by applying any 1-D high-resolution spectral method to the rows of an auxiliary array 

composed of column vectors obtained with the discrete Fourier transform (DFT). Since 

the auxiliary array is complex, high resolution algorithms in complex form are necessary 

(Marple, 1987). The hybrid scheme serves to improve the resolution of only one of the 

variables (temporal frequency, / , or wavenumber, k.) In array processing, the spatial 

resolution is limited by the small number of receivers relative to the number of time 

samples of each trace. In other words, the spatial coverage dictates the requirement of 

high resolution methods. 

Ulrych and Walker (1981) and more recently Swingler and Walker (1989) applied lin­

ear prediction to extrapolate the data and simulate a longer array which can be analyzed 

using conventional spectral analysis. The idea of creating a synthetic aperture (a longer 

array) is also explored here. 

Subspace methods can certainly provide high resolution but their performance is 

severely affected when the number of signals are over or underestimated. In fact, these 

methods are based on a 2-D extension of Pisarenko's harmonic spectral analysis (Pisar-

enko, 1973) which, as is well known, is very sensitive to the number of harmonics that 

compose the process. A similar problem is also encountered in parametric spectral es­

timation, where a knowledge of the number of parameters is vital in obtaining reliable 

estimates. This is the usual tradeoff between resolution and statistical reliability. 

Since the techniques described above provide a high resolution power spectral density 

(PSD) estimate, only the autocorrelation function of the data can be reconstructed. A 

different approach to the problem of determining a high resolution 2-D PSD estimate 

is explored in this chapter. First, the constraints are the data rather than the autocor­

relation function. Secondly, the unknown is an un-windowed DFT, or in other words a 

DFT where truncation artifacts (sidelobes) are mitigated. The regularization strategy 
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developed in chapter 4 is applied to compute the high resolution DFT. A by-product 

of the method is a high-resolution periodogram (Sacchi and Ulrych, 1995a). This peri­

odogram coincides with the periodogram that would have been computed with a longer 

array of receivers if the data consist of a limited superposition of planes waves. This 

assumption may be validated by using small spatio-temporal windows. Windowing is a 

common manner to satisfy stationarity requirements. 

The technique is useful in axray processing for two reasons. First, it provides spatial 

extrapolation of the array (subject to the above data assumption) and secondly, missing 

receivers within and outside the aperture are treated as unknowns rather than as zeros. 

Synthetic and field data is used to assess the applicability of the technique. Finally, 

I would like to stress that this chapter expands the idea of sparse regularization to 

the problem of spectral estimation. Moreover, this chapter serves to place the spectral 

estimation problem within the linear inverse theory scenario. 

5.2 The discrete Fourier transform as an inverse problem 

For simplicity I will start with the 1-D DFT since extensions to higher dimensions are 

straightforward. Consider a ./V-sample time or spatial series xo, x\, x2,..., s c w - i - The 

DFT of the discrete series is given by 

J V - l 

Xk = £ xne-^nk'N k = 0,...,N-l, (5.1) 
n=0 

and similarly, the inverse DFT is given by 

1 N-l 

k=0 
(5.2) 
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Now, assume that we want to estimate M spectral samples where M > N. A standard 

approach to solving this problem is by means of zero padding. Denning a new time series 

consisting of the original series plus a zero extension for n = N,..., M — 1, one can 

estimate M spectral samples using the DFT. This procedure helps to remove ambiguities 

due to discretization of the Fourier transform but, as is well known, it does not reduce the 

sidelobes created by the temporal/spatial window or improve the resolution. Estimation 

of M spectral samples without zero padding may be posed as a linear inverse problem 

where the target is a DFT that is consistent only with the available information. At 

this point, it is interesting to note that the underlying philosophy is similar to Burg's 

maximum entropy method (MEM) (Burg, 1975). However, in Burg's MEM the target is 

a PSD estimate. 

Rewriting equation (5.2) as 

i M-l 

*n = V 7 £ XkeiMlM n = 0,..., N - 1, (5.3) 
M k=o 

gives rise to a linear system of equations 

d = F m , (5.4) 

where the vector d € R N and m £ C M denote the available information and the unknown 

DFT, respectively. Equation (5.4) is a linearly underdetermined problem which, as is well 

known, can be satisfied by many different solutions. Uniqueness is imposed by defining a 

regularized solution, m, which may be obtained by minimizing the following cost function 

J(m) = $(m) + | |d -Fm| | ^ . (5.5) 
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The regulariser $(m) serves to impose a particular character on the solution. 

5.3 Zero order quadratic regularization (damped least squares) 

To start with, I will assume that the data are contaminated with Gaussian noise and that 

the samples of the DFT can be modelled with a Gaussian distribution. For simplicity, 

I will assume that the discretization of both spaces is regular and that the covariance 

matrices of the model and noise are diagonal matrices. Under this assumption, one may 

use Bayes' rule to estimate a MAP estimator of the DFT. This assumption leads to the 

minimization of the following objective function 

As usual, the first term represents the model norm while the second term is the misfit 

function. Taking derivatives and equating to zero yield 

Jaa = XmH m + (d - Fm)H(d - Fm). (5.6) 

m = (FHF + Aljif ) _ 1 F H d . (5.7) 

The last expression can be rewritten using the following identity 

(FBF + A I M ) _ 1 F H = FH(FFH + X1N)~\ (5.8) 

where 1M and IN represent M x M and N x N identity matrices, respectively. Recalling 

equation (5.8) and that F F ^ = ĵ Iw, we end up with the following expression 
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m = (± + \)-1FHd. (5.9) 

The result is nothing else than the DFT of xn modified by a scale factor. The solution 

expressed by equation (5.9) becomes 

^ ^ T ^ E ^ 2 ^ - 1 ) , (5.10) 

which is the DFT of the windowed time series (equation (5.1)) and is equivalent to 

padding with zeros in the range n = N,..., M — 1. It is easy to see that this regular­

ization yields a scaled version of the DFT. Hence, the associated periodogram exhibits a 

resolution that is proportional to the inverse of the length of the time series (the usual 

resolution criterion for the periodogram.) The periodogram becomes, 

Pk=XkX*k, fc = 0 , . . . , M - l . (5.11) 

It is interesting to point out that Oldenburg (1976) arrived to the same conclusion using 

the Backus and Gilbert (B&G) formalism which is a completely different approach to 

inversion. Specifically, when the first Dirichlet criterion of B&G theory is used the 

resulting expression leads to an expression equivalent to equation (5.10). This is a simple 

consequence of using this criterion; other spreading functions lead to different results. An 

important conclusion which may be drawn from Oldenburg's paper is that the resolution 

is fixed and cannot be modified. An intuitive explanation is as follows; since the resolution 

of the PSD is controlled by the width of the sidelobes which are independent of the scaling 
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factor, the DFT computed with the Gauss-Gauss model will lead to a PSD estimator 

that is equivalent to the periodogram of the truncated time series. 

5.4 Regularization by the Cauchy-Gauss model 

In the previous section I showed that the Gauss-Gauss regularization does not serve the 

purpose of obtaining a high resolution PSD estimator. The sparse regularization scheme 

used to compute Radon operators may be used here to estimate a high resolution DFT. 

The reason is simple and can be interpreted as follows; in general, the interpretation 

of spatio-temporal data is involved with a finite number of events which exhibit spatial 

continuity. If the data show great complexity, time and/or spatial windows are chosen 

such that particular events may be more easily distinguished and mapped. Because of 

the limited number of such events, it is appropriate to require a model which consists 

of the minimum number of events that can satisfy the data. This is the classic idea of 

simplicity or parsimony and quite opposite in philosophy to norms which describe the 

"structure" of a surface by means of, for example, the smallest, flattest or smoothest 

models. A "long tailed" distribution, like the Cauchy pdf, will induce a model consisting 

of only few elements different from zero. The objective function of the problem becomes, 

Jcg = Je(m) + -^(d - Fm) f f (d - Fm) (5.12) 
n 

The function, Jc{x), which is expressed by 

M - l 

is the regulariser imposed by the Cauchy distribution and is a measure of the sparseness 
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of the vector of spectral powers Pk = XkX£, k = 0,..., M — 1. The constant ac controls 

the amount of sparseness that can be attained by the inversion. The sparseness of the 

estimate will also depend on the noise level since «rn may inhibit a reliable sparse solution. 

Taking derivatives of Jcg(x) and equating to zero yields the following result 

m = (ACT1 + F H F ) " 1 F H d , (5.13) 

where A = <72/<r\ and Q is a M x M diagonal matrix with elements given by 

Q« = i + ^ r . ; = O , . . . , M - I . (5.H) 

Although expression (5.13) resembles the damped least squares solution, we note that Q 

is nonlinearly related to the DFT of the data. Equation (5.13) can be rewritten as 

m = QFH(\IN + F Q F H ) _ 1 d . (5.15) 

From the theoretical point of view of uniqueness and convergence, the operators given 

by equations (5.13) and (5.15) are equivalent. However, from the point of view of com­

putational advantages, the following observations apply 

• Whereas equation (5.13) demands the inversion o f a M x M matrix, equation (5.15) 

requires the inversion of a N x N matrix. 

• The operator (ALy-f FQF H ) in equation (5.15) is Toeplitz Hermitian, provided that 

the time series is uniformly discretized, and a fast solver like Levinson's recursion 

can be used. 
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• In the case of nonuniform discretization, a Cholesky decomposition is appropriate. 

This type of algorithm is also appropriate in the case of gapped data. 

As I have already mentioned, the Cauchy-Gauss model leads to an algorithm that 

resembles the damped least squares solution. This is particularly true when <rc is large 

compared to the spectral amplitudes that we are seeking. In this case the functional 

<S"(x) w K + x^x/(o-2) where K is a constant. Thus, minimizing Jcg{x) is equivalent to 

minimizing JM(x). In the contrary case, the algorithm will seek a DFT with a sparse 

distribution of spectral amplitudes leading to an enhancement of the spectral peaks 

and reducing windowing effects or sidelobes. In the Gauss-Gauss regularization, the 

scale parameters crn and <rx reduce to a single hyper-parameter, A, which completely 

defines the distribution of the unknown model. On the other hand, in the Cauchy-Gauss 

regularization, we have two independent hyper-parameters, <rc,o-n or A,<rc. When the 

power of the noise is known, the optimum <rc is computed using any fitting criterion, e.g., 

the x 2 criterion. The simultaneous estimation of <rc and <rn is not an easy task since it 

demands the computation of the marginal joint pdf of <rc and <rn for a given solution, x. 

The DFT is iteratively retrieved starting with the windowed DFT. Since the Hessian 

matrix of Jcg is positive definite, the uniqueness of the solution is guaranteed (section 

4.3.8) 

5.5 Hybrid two-dimensional estimator of the D F T 

I present a hybrid procedure based on standard Fourier analysis in the temporal variable 

while, for the spatial variable, I will carry out the inversion using the Cauchy-Gauss 

regularization using the IMRLS algorithm. Usually the length of the temporal window 

is sufficient to achieve high resolution with simple methods based on standard Fourier 

analysis while the aperture of the array limits the spatial resolution. The two dimensional 
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algorithm works as follows: 

• Each record is transformed to the frequency offset domain using the FFT. 

• High resolution analysis is performed at each frequency that comprises the signal 

using the Cauchy-Gauss regularization. 

• The amplitude in the f — k space is plotted to identify the spatio-temporal structure 

of each source. 

• Alternatively, the data outside the original aperture may be extrapolated to sim­

ulate a longer array, and any 2-D spectral technique may be used in conjunction 

with the extended data set. 

Undesired components can be masked before mapping back the un-windowed DFT 

to space-time. This is demonstrated in detail in the broad band example below. 

5.5.1 First example: spatio-temporal spectrum narrow band signals 

The IMRLS algorithm is applied to estimate the spatio-temporal spectrum of a signal 

received by a passive array of receivers. This problem frequently arises in radar and sonar 

processing (Bienvenu and Kopp, 1983). The goal is to estimate the direction of arrival 

and the temporal spectral signature of a set of sources impinging from different angles on 

a uniform array of N receivers. In seismology, the problem has been particularly studied 

to detect plane-wave signals and estimate the slowness vector. The array of receivers is 

linear but the method can be easily generalized to any distribution of receivers. 

Three narrow band linear events with the following features were generated. The 

data consist of two sinusoids with unit amplitude and with normalized wavenumbers of 

0.30 and 0.25 units and normalized frequency of 0.20 units, respectively. The third wave 
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(/ = 0.35, k = —0.25) has an amplitude which is 25% below the amplitude of the first and 

second waves. The temporal extension of each channel is 150 samples, which represents 

one order of magnitude above the aperture of the array (15 receivers). Gaussian noise with 

standard deviation, <7„ = 0.1 was added to the composite record. The noise represents 

40% of the amplitude of the third wave. Each channel was tapered with a Hamming 

window. The spatio-temporal spectrum computed using the periodogram is illustrated 

in Figure 5.1a. The contour lines correspond to normalized amplitudes ranging from 0 

to —40db, with an interval of —5db. The f — k plane is dominated by sidelobes due 

to truncation in space and time. This is more noticeable for the wavenumber, since the 

aperture of the array is one order smaller that the length of the time series. The data were 

processed with the hybrid procedure based on the Cauchy-Gauss model. The parameters 

crn and <rc were chosen to reject the noise. The number of iterations varies from frequency 

to frequency, usually « 10 iterations are sufficient to reach the minimum of the objective 

function, Jcg. The resulting high resolution / — k panel is portrayed in Figure 5.1b. 

Contour lines range from 0 to —40db as in Figure 5.1a. There is a clear enhancement 

of the spatial resolution and a suppression of the background noise. Since the contour 

lines exhibit similar width in the k and / direction, we can infer that the normalized 

aperture is of the same order as the length of the time series. In other words, the f — k 

panel portrayed in Figure 5.1b corresponds to an equivalent array of approximately 150 

receivers. 

5.5.2 Second example: broad band applications 

The algorithm was tested with two broad-band linear events impinging an array of 25 

receivers. The source is modelled with a Ricker wavelet with central frequency, / = 20Hz. 

The first event has slowness 1.2 x 10_ 5s/m and the second —1.2 x 10_ 6s/m. Since I used 

a different polarity for each wave, there is destructive interference at near offset traces 
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Figure 5.1: 2-D spectrum of three narrow band signals of normalized fre­
quency-wavenumber pairs: (0.2,0.3), (0.2,0.25) and (0.35,-0.25). a) Conventional 2-D 
estimator obtained with the DFT. b) 2-D estimator obtained with the Cauchy-Gauss 
model. 
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(Figure 5.2a.) I changed the sign convention of the temporal DFT in order to obtain 

positive wavenumbers for waves propagating with positive slowness. 

First, I examine the noiseless case. Figure 5.2a shows the data while Figure 5.2b 

illustrates the conventional PSD computed with the DFT. Since the slowness of each 

event is nearly identical, the conventional / — k panel cannot distinguish the existence of 

two signals. The positive and negative wavenumber quadrants were masked to estimate 

the wave with negative slowness (Figure 5.2c) and the wave with positive slowness (Figure 

5.2d). Although both wavefields were decomposed, the decomposition is not correct as 

is clearly shown by the character of the wavelet which varies with offset in both figures. 

The same procedure was carried out using the Cauchy-Gauss inversion scheme. The 

noise variance was set to zero, o~n = 0, to fit the data exactly. The parameter «rc is 0.1% 

of the maximum amplitude encountered in the raw periodogram which is computed from 

the finite length DFT. The PSD computed with the Cauchy-Gauss DFT is shown in 

Figure 5.2e. We note that there is a clear enhancement of the spatial resolution. The 

wavefields with negative and positive slowness are portrayed in Figures 5.2f and 5.2g, 

respectively. These panels were computed after masking the corresponding wave number 

quadrant. Comparing Figures 5.2f and 5.2g with Figures 5.2c and 5.2d it is clear that the 

high resolution scheme enables us to correctly discriminate both events. Figures 5.2f and 

5.2d also show that the wavelet does not suffer substantial changes with offset. Figures 

5.2h and 5.2i show the original aperture plus the extrapolated aperture computed with 

the conventional DFT and with the high resolution DFT, respectively. It is evident that 

the high resolution DFT corresponds to a longer array of receivers. 

Finally, the data were contaminated with Gaussian noise (<7n = 0.1). Figure 5.3a 

portrays the data. Figure 5.3b shows the PSD computed using the DFT (conventional 

f—k analysis). Figures 5.3c and 5.3d show the wavefield separation using the conventional 

DFT analysis. Not only is the character of the wavelet changing with offset, but also the 
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Figure 5.2: a) The synthetic wavefield used to study the performance of the high resolu­
tion DFT. 

signal-to-noise-ratio has not been improved. 

The Cauchy-Gauss PSD is illustrated in Figure 5.3e. When compared with Figure 

5.3b, we note that the resolution has been improved and the noise is substantially atten­

uated. It must be pointed out that, like in the broad-band case, the parameters <Tc and 

(Tn are chosen to suppress the noise. The Cauchy-Gauss DFT was used to reconstruct 

the t — x space after masking the right and left quadrant of the / — k domain and the 

results are portrayed in Figures 5.3f and 5.3g. These figures show an accurate separation 

of each wavefield and an important signal-to-noise-ratio enhancement. 

5.6 Application to field data. Vertical Seismic Profiling (VSP) 

The VSP data are composed of two principal linear wavefields: the down-going and the 

up-going waves. The down-going waves have the higher amplitude and tend to mask the 

up-going waves. The data are portrayed in Figure 5.4. As in the previous examples, the 
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Figure 5.2: b) Spatio-temporal spectrum using the windowed DFT. c-d) Wavefield sep­
aration, e) High resolution spectrum computed using the Cauchy regularization. f-g) 
Wavefield separation based on the high resolution DFT. 
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Figure 5.2: i) Wavefield extrapolation using the conventional DFT, h) Wavefield extra­
polation using the DFT computed using the sparse regularization 
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Figure 5.3: a) Synthetic wavefield contaminated with random noise. 
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Figure 5.3: b) Spatio-temporal spectrum using the windowed DFT. c-d) Wavefield sep­
aration, e) High resolution spectrum computed using the Cauchy regularization. f-g) 
Wavefield separation based on the high resolution DFT. 
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Figure 5.4: Segment of a VSP used to test the high resolution spectral analysis algorithm. 

2-D PSD was computed with the conventional DFT and with the high-resolution DFT. 

The results axe portrayed for different windows in Figures 5.5, 5.6 and 5.7. It is clear 

from a comparison of the / — k results that the Cauchy-Gauss f — k result is considerably 

superior not only in allowing a better identification of different wavefields, but also from 

the point of view of the design of suitable filters for surgical removal of events. 

5.7 Discussion 

The high resolution technique for the estimation of the power spectrum presented in this 

chapter is based on the application of an algorithm that seeks a sparse solution to the 



Chapter 5. Aperture Compensated Discrete Fourier Transform and Apphcations 134 

Figure 5.5: 2-D spectral signature of the VSP in the interval 500 - 800m. The left 
panel illustrates the spectrum computed using the windowed DFT. The right panel is 
the spectrum computed with the high resolution DFT. 

Figure 5.6: 2-D spectral signature of the VSP in the interval 800 - 1200m. The left 
panel illustrates the spectrum computed using the windowed DFT. The right panel is 
the spectrum computed with the high resolution DFT. 
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Figure 5.7: 2-D spectral signature of the VSP in the interval 1200 - 1600m. The left 
panel illustrates the spectrum computed using the windowed DFT. The right panel is 
the spectrum computed with the high resolution DFT. 

ubiquitous problem of spectrum estimation from a finite set of data. What makes the 

algorithm very attractive is that, since the sparseness measure is minimized subject to 

data constraints, phase information is also recovered and allows the extrapolation of the 

signal outside the original window, or aperture, depending on the problem. The latter is 

consistent with the idea of simulating a longer array and then estimating the PSD using 

Another attractive feature of the method is that the background noise may be con­

siderably attenuated after tuning the hyper-parameters. The synthetic examples and the 

VSP example show the potential of the technique in the processing of real data. The 

technique has wide applicability and a wide range of problems suggest themselves. 

It is important to mention that the algorithm is not intended as an alternative to 

the pivotal FFT algorithm. However, it may be applied in cases where effects related 

the DFT. 
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to aperture limitation give rise to difficulties in the identification and interpretation of 

closely spaced events. 

Finally, I would like to stress the importance of using prior information to improve 

the resolution of 2-D spectral estimators. It is important to recognize, however, that 

there is a resolution tradeoff. If the data do not consist of a limited number of plane 

waves, the sparse assumption is doomed to failure. This facet is constantly present in 

any inverse problem. 



Chapter 6 

Summary 

I shall use the adjective 'naive' for any theory, whether realistic or idealistic, 

that maintains that inferences beyond the original data are made with cer-
s 

tainty, and 'critical' for one that admits that they are not, but nevertheless 

have validity. g i r H a r o l d J e f f r e y s : Theory of probability 

This thesis explores an inverse approach to the computation of slant stack and para­

bolic stack operators. In a similar fashion, I have also examined the problem of spectral 

estimation. 

I have demonstrated the applicability of sparse regularization schemes to enhance the 

resolution of some linear operators that are widely used in geophysics. How to treat 

missing and truncated information is an important problem in exploration seismology. 

This thesis contributes to a better understanding of the relationship that exists between 

resolution/aperture and the regularization of the Radon operator. 

In Chapter 2,1 have analysed two different approaches to design slant stack operators. 

The first corresponds to the conventional definition of the Radon pair where a simple 

linear mapping is used to obtain the r—p space and inversion is needed to recover the data. 

The second approach, which is conceptually richer, entails the definition of an inverse 

problem where the target domain is the r—p space. When the problem is posed as an 

underdetermined linear inverse problem, a minimum norm regularization may be used to 

enhance the resolution of the slant stack operator. However, the achieved enhancement 

137 
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may not be enough to correctly separate signals that exhibit similar moveout. An eigen-

structure analysis of the slant stack operator based on prolate spheroidal sequences leads 

to several interesting results associated with stability and resolution. I have outlined a 

procedure to predict the condition number of the slant stack operator that may be used to 

optimally design the operator. Similar arguments may be applied to the parabolic stack 

operator. However, in this case, the eigen-structure of the operator cannot be assessed 

by analytical means. 

I have investigated the development of non-traditional regularization procedures for 

linear inverse problems. The regularization of the Radon operator is derived using Bayes' 

rule to incorporate a long-tailed distribution into the inverse problem. Two different pri­

ors, which are related to well studied probability densities, were used to derived the 

regularization strategy: the generalized Gaussian distribution and the Cauchy distribu­

tion. When the generalized Gaussian distribution is adopted, we can construct models 

with different degrees of sparseness by selecting p, the shape parameter of the distribu­

tion. In particular, when p = 2, the solution corresponds to damped least squares which 

may be derived using zero-order quadratic regularization or by considering a Gaussian 

model and a Gaussian likelihood function. The Cauchy prior leads to a cost function 

that resembles Burg's entropy (Burg, 1975). In particular, it is important to stress that 

the algorithm (IMRLS) produces a sparse solution which, according to Burg's definition 

of entropy, also corresponds to a minimum entropy solution. 

The Radon transform is basically a dip decomposition scheme. The inverse procedure 

presented in this thesis, assumes that the decomposition should be in terms of a few 

events. This assumption is no longer applicable if the data consist of a dense superposition 

of linear events or of many hyperbolas depending on the problem. 

I have shown that the inversion of the Radon operator permits resolution enhancement 

of the linear and/or parabolic Radon transform. As Thorson and Claerbout (1985) have 
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pointed out, this is a global strategy that cannot handle amplitude variations. Even 

in this case, the technique may, up to a degree, enhance the resolution of the Radon 

operator. Of course, part of the residual smearing that is observed in real T — p or T — q 

panels is not completely due to limited aperture, but probably to amplitude versus offset 

variations and the imperfections of the traveltimes curves due to lateral heterogeneity. 

As is well known, the solution of an inverse problem strongly reflects the assumptions 

that were used to pose the problem. If sparseness is the correct feature to look for, then 

the Cauchy or the generalized Gaussian (with shape parameter p = 1) pdf's are good 

candidates to derive the regularization. I have not found substantial differences between 

using the generalized Gaussian (p = 1) or the Cauchy prior. It is probable that any prior 

that leads to a sparse solution is adequate to diminish smearing in the Radon domain. 

In Chapter 5, I applied the Cauchy regularization to retrieve a high resolution 2-D 

power spectrum estimator. The algorithm is best suited to the analysis of plane waves 

(undamped harmonics in the 1-D case). In a classical spectral estimation context, the 

power spectrum is retrieved by honoring a few autocorrelation constraints. I prefer to 

use data constraints to compute a high resolution discrete Fourier transform and then, 

as a by product, compute the power spectrum. As I have already mentioned, resolution 

enhancement is not always possible. If the data do not consist of a limited superposi­

tion of plane waves, or if strong amplitude variations are present, a more conservative 

approach may yield more reliable results. In this case, a simple periodogram rather than 

any high resolution spectral method is more appropriate to analyse the data. This is 

simply a consequence of using a norm that mimics a sparse distribution of parameters. 

Hopefully, further work on aperture compensation will be incorporated in many industrial 

applications associated with seismic imaging. 
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Appendix A 

Scalar products 

Let L be a linear operator mapping V into U and let (., .)v and (., .)TJ represent the 

scalar product in V and U respectively. The adjoint of L, L*, is a linear operator mapping 

V into U. Then for any v G V and u G U 

(L*v,u)u = (v,Lu) v . (A.l) 

Defining the following scalar products 

(L*v, u)tj = v H L * * W u u , (A.2) 

(v,Lu) v = v j r W v L u . (A.3) 

Using equations (A.l), (A.2), and (A.3) we have 

(L*v,u) 0= (v,Lu) v 

= v H W„Lu 

= v f f W v L W u

1 W u u 

= (W u - 1 L H W t ) v ,u ) u 

(A.4) 
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From the above equality it follows that 

L * = W " 1 L H W V , (A.5) 

which is exactly equation (2.40). 


