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Abstract

Inversion of measurements from a geophysical electromagnetic survey to produce a

two- or three-dimensional conductivity model of the Earth is computationally demanding.

The classical approach is to linearise the inverse problem and iterate towards the solution.

A typical, modern version of this approach is described in the initial part of this thesis,

and applied to the one-dimensional inversion of time-domain electromagnetic data.

One of the most time-consuming parts of a linearised, iterative inversion procedure is

the generation of the Jacobian matrix of sensitivities. In this thesis, I have developed an

approximate method for generating these sensitivities. The approximation is based on the

adjoint-equation method in which the sensitivities are obtained by integrating, over an

individual cell, the scalar product of an adjoint field (the adjoint Green’s function) with

the electric field produced by the sources for the geophysical survey. Instead of calculating

the adjoint field in the multi-dimensional conductivity model, an approximate adjoint field

is computed in a homogeneous or layered halfspace, or using the Born approximation.

This approximate adjoint field is significantly quicker to compute than the true adjoint

field and leads to considerable reductions in the time required to generate the Jacobian

matrix of sensitivities. The time-differences were found to be of one or two orders of

magnitude for the small examples considered in this thesis, and this saving will further

increase with the size of the problem.

The approximate sensitivities were compared to the accurate sensitivities for two

and three-dimensional conductivity models, and for both artificial sources and the plane

wave source of magnetotellurics. In all the examples considered, the approximate sensi

tivities appeared to be sufficiently accurate to allow an iterative inversion algorithm to

converge to an acceptable model. This was emphasised by the successful inversion, using

approximate sensitivities, of two sets of magnetotelluric data: a synthetic data-set and a

sub-set of the COPROD2 data.
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Chapter 1

Introduction

There are many geophysical techniques which use the principles of electromagnetism

to investigate the electrical conductivity of the Earth. The techniques involve a source, ei

ther natural or artificial, that generates electric currents within the Earth. Measurements

are then made of the electromagnetic fields associated with these currents. The behaviour

of the currents is dependent upon the spatial variation of the Earth’s conductivity, and so

information about the conductivity can be inferred from the measurements of the electro

magnetic fields. A compendium of present-day techniques is given by Nabighian (1988).

Geophysical electromagnetic techniques were pioneered by the mining industry and

underwent considerable development in the period immediately following World War II

(Brant 1966). Exploration for mineral deposits remains the main use of these techniques

today. However, electromagnetic methods are also used to study both the deep and

shallow structure of the Earth’s crust. Techniques such as the magnetotelluric method

are used to investigate the large-scale features of the lithosphere (e.g., Jones 1993), and

methods using small, controlled sources play a role in engineering and environmental

studies of the shallow subsurface (e.g., Heiland 1940; Ward 1990).

Before the general accessibility of computers, quantitative interpretation of the mea

surements obtained from geophysical electromagnetic techniques was limited to the use

of “type” or “master” curves (Grant and West 1965; Telford, Geldart & Sheriff 1990).

Such curves showed the electromagnetic fields that would be observed over simple Earth

models for certain sources and were obtained either from analytic formulae if such existed

or from scale-model experiments. If a type curve could be found that matched to some

extent the observations, then the corresponding model could be considered to resemble

the region of the Earth under investigation.
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CHAPTER 1: INTRODUCTION 2

With the coming of accessible computer resources, it became possible to compute

the electromagnetic fields over more complex models than those used to produce type

curves. Cagniard’s (1953) procedure for calculating the magnetotelluric response of a

halfspace made up of uniform, horizontal layers was adapted by Wu (1968) for the nu

merical computation of the response for an arbitrary number of layers. Algorithms were

also developed for computing the electromagnetic fields generated in a layered halfspace

by controlled sources (e.g., Ryu, Morrison & Ward 1970; Scriba 1974). As the speed

and memory of computers increased, so did the complexity of the models and sources for

which the electromagnetic fields could be computed. Programs were written to compute

the magnetotelluric response over two-dimensional conductivity models (e.g., Madden &

Swift 1969; Brewitt-Taylor & Weaver 1976; Rodi 1976; Jupp & Vozoff 1977) and to

compute the electromagnetic fields generated in such models by controlled sources (e.g.,

Everett & Edwards 1992; Unsworth, Travis & Chave 1993). These models were described

by large numbers of parameters, usually the conductivities of rectangular cells into which

the Earth model was divided, and were general enough to represent arbitrary conductivity

distributions. Computer programs have also been written to calculate the electromagnetic

fields generated in arbitrary three-dimensional models, both for the plane wave source of

magnetotellurics (e.g., Jones 1974; Mackie, Madden & Wannamaker 1993) and for con

trolled sources (e.g., Gupta, Raiche & Sugeng 1989; Livelybrooks 1993). MDonald &

Agarwal (1994) and Newman & Alumbaugh (1995) have developed three-dimensional

forward-modelling programs specifically designed for the new generation of massively par

allel computers. However, it is not yet possible, given generally available computer tech

nology, to carry out forward modelling for the size and complexity of three-dimensional

models that one would like.

The development of automated interpretation schemes has followed closely behind at

each stage in the evolution of forward-modelling programs. With the ability to compute

what would be measured over an arbitrary conductivity structure, and to quickly compute

the solution to matrix equations, it became possible to apply mathematical techniques

to invert the nonlinear relationship between the parameters describing a model and the
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measured values of the electromagnetic fields. The first inversion techniques to be applied,

and the ones which have proven to be the most enduring, are variations of the Gauss-

Newton technique (Gill, Murray & Wright 1981). Wu (1968) and Jupp & Vozoff (1975)

applied such techniques to the inversion of magnetotelluric data to obtain horizontally-

layered conductivity models. The basis of this collection of techniques is to linearise the

relationship between the model parameters, m, and the observations, d(0I):

d(0 = d[mj + i[m] Sm + R. (1.1)

The data that would be measured over the Earth if it were equivalent to the model defined

by m are denoted by d[m]. The matrix J is the Jacobian matrix of “sensitivities”, or

partial derivatives, of the data with respect to the model parameters:

[mJ = i = 1,...,M, j = 1,...,N, (1.2)

where M is the number of observations and N is the number of model parameters.

Assuming the remainder R can be neglected, eq. (1.1) can be inverted, using some reg

ularised procedure, to give a perturbation Sm to the model that will (hopefully) bring

the predicted data closer to the observations. Successive iterations will then converge

to a model that minimises the misfit between the observations and the predicted data,

usually measured in terms of the 12 norm. This was the goal of the initial applications of

Gauss-Newton techniques.

Linearised, iterative inversion procedures for geophysical electromagnetic data have

since undergone many refinements. The increased speed of computers now means for

ward modeffing no longer constrains possible inversion techniques for the one-dimensional

magnetotelluric problem. It is in the context of this problem that Gauss-Newton inver

sion procedures for geophysical electromagnetic data have received much of their develop

ment (Constable, Parker & Constable 1987; Smith & Booker 1988; Whittall & Oldenburg

1992), and are now concerned not only with convergence and robustness, but also with the

nonuniqueness of the inverse problem. These sophisticated forms of the Gauss-Newton
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method involve many more model parameters than there are observations, and attempt

to find the model that has the minimum value of some norm subject to the constraint

that the observations are reproduced to an appropriate level of misfit.

Sophisticated Gauss-Newton procedures have now been used to invert magnetotel

luric data to give two- and three-dimensional conductivity models (e.g., deGroot-Hedlin &

Constable 1990; Mackie & Madden 1993), and to invert data obtained in controlled-source

surveys for two-dimensional models (Unsworth & Oldenburg 1995). However, computer

resources restrict the size and complexity of the multi-dimensional problem that can

presently be handled, both because of the time and memory requirements of the forward

modeffing and because of the time required at each iteration to generate the Jacobian

matrix of sensitivities and to invert the linear system of equations.

Many other techniques have been applied to the inversion of geophysical electro

magnetic data. Because the one-dimensional magnetotelluric problem is the simplest

electromagnetic inverse problem it has received the most attention. An excellent dis

cussion and comparison of the various techniques applied to this problem is given by

Whittall & Oldenburg (1992). The majority of techniques consider the inverse problem

as an optimisation problem, as do the Gauss-Newton methods, in which an objective

function is to be minimised. The objective function is usually some combination of a

data misfit and a model norm. Two such techniques are simulated annealing (Dosso &

Oldenburg 1991) and genetic algorithms (Schultz et al. 1993). A considerable amount of

work has also been done on the theoretical aspects of the one-dimensional magnetotel

luric inverse problem, both to investigate the existence and uniqueness of solutions, and

to devise means of constructing solutions (e.g., Bailey 1970; Weidelt 1972; Parker 1980).

The alternatives to the linearised, iterative Gauss-Newton procedures are generally

not as efficient and so have not yet been considered for the two- and three-dimensional

electromagnetic inverse problems. And since even the Gauss-Newton algorithms are re

stricted by current computing power, the only feasible approaches to multi-dimensional

inversion of geophysical electromagnetic data are those involving some form of approxima

tion. Most of the methods that have been developed are based on a linearised procedure
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but with one or more of the component calculations carried out using an approximation.

For example, Torres-VerdIn & Habashy (1993) make use of an approximate forward

modeffing algorithm, both for the forward modeffing within their inversion routine and

to generate the Jacobian matrix of sensitivities, in their procedure for inverting cross-

borehole measurements for a two-dimensional conductivity model. The generalised sub-

space technique developed by Oldenburg, McGiffivray & Ellis (1993) enables the matrix

equation at each iteration of a Gauss-Newton procedure to be inverted in much less time

than the corresponding exact calculations. Mackie & Madden (1993) and Ellis & Old

enburg (1994) use conjugate gradient techniques to solve the matrix equation at each

iteration in their procedures for the multi-dimensional inversion of magnetotelluric data.

These techniques have the additional advantage that the Jacobian matrix of sensitivi

ties need not be explicitly generated, but rather that additional forward modellings are

carried out to compute the product of the Jacobian matrix with the necessary vectors.

Smith & Booker (1991) use a Jacobian matrix of approximate sensitivities in their inver

sion procedure for the two-dimensional magnetotelluric problem. Until it is possible to

carry out the necessary computations for multi-dimensional inverse problems in the same

amount of time as is currently possible for the one-dimensional magnetotelluric prob

lem, Gauss-Newton algorithms using accelerated, approximate ways of both generating

the Jacobian matrix of sensitivities and solving the linear system of equations at each

iteration offer the most practicable means of constructing solutions to multi-dimensional

problems.

This thesis is concerned with the development of a rapid, approximate method for

generating the Jacobian matrix of sensitivities needed by any iterative, linearised in

version procedure. In particular, an approximate form of sensitivity is sought that will

be suitable for the multi-dimensional inversion of geophysical electromagnetic measure

ments, and that will be sufficiently general to apply to any survey configuration. I begin

in Chapter 2 by describing a Gauss-Newton procedure for inverting time-domain electro

magnetic measurements to recover a one-dimensional conductivity model of the Earth.

The purpose of this chapter is two-fold: (1) to illustrate the inversion philosophy and
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major components of a Gauss-Newton algorithm unrestricted by computing power, and

(2) to develop an inversion program, albeit one-dimensional, for a common controlled-

source survey configuration. The contents of Chapter 2 have been published (Farquhar

son & Oldenburg 1993) and the inversion program is currently being used by a number

of mineral exploration companies.

Chapter 3 is an introduction to the subject of approximate sensitivities. In this chap

ter, I discuss the need for a rapid method of approximating the sensitivities and describe

the previous work on this subject. A statement of the approximate form of sensitivity

that I present in this thesis is given in Chapter 4. The approximation is obtained from

the adjoint-equation method (a derivation of which is included in Chapter 4) by replacing

the true adjoint field with an approximate adjoint field that is considerably quicker to

compute. In Chapter 5, I discuss the possible forms of this approximate adjoint field,

and compare the main candidates with the true adjoint field for a purely two-dimensional

example. The approximate sensitivities for the two-dimensional magnetotelluric problem

obtained using the approximate adjoint fields described in Chapter 5 are investigated in

Chapter 6. The approximate sensitivities are compared to accurate sensitivities for a

simple conductivity model. A comparison of their respective computation times is also

carried out. To conclude Chapter 6, the approximate sensitivities are tested in a Gauss-

Newton inversion procedure analogous to that described in Chapter 2. Magnetotelluric

data from a synthetic data-set and a field data-set (a sub-set of the COPROD2 data) are

inverted to recover two-dimensional conductivity models.

In Chapter 7, I compute approximate sensitivities for the 2.5d and three-dimensional

controlled-source problems. Comparisons are made of the approximate and accurate sen

sitivities for simple conductivity models. The comparisons for the three-dimensional

problem are limited by computing power, but they are sufficient to illustrate the ma

jor differences in the respective computation times for the approximate and accurate

sensitivities. Finally, the major conclusions of this thesis are summarised in Chapter 8.



Chapter 2

One-Dimensional Inversion of

Time-Domain Electromagnetic Data

2.1 Introduction

Gauss-Newton inversion procedures for geophysical electromagnetic data have un

dergone much development in the context of the one-dimensional magnetotelluric prob

lem. These procedures now concentrate on obtaining the model that has the minimum

value of some norm subject to the constraint that the observations are reproduced to an

acceptable level. Such a procedure has not yet been applied to the controlled-source sur

vey configurations commonly used in the exploration industry, even for one-dimensional

models. Fullagar & Oldenburg (1984) did construct an iterative, linearised procedure

for the one-dimensional inversion of frequency-domain data collected using the horizon

tal loop source-receiver configuration. However, Fullagar & Oldenburg minimised the

norm of the model perturbation at each iteration rather than the norm of the model

itself. In this chapter, a Gauss-Newton procedure is developed for inverting data from a

controlled-source sounding. The procedure contains aid the features present in the mod

ern approaches to solving the one-dimensional magnetotelluric inverse problem. As such,

this chapter also serves to illustrate the ultimate capabilities of inversion procedures for

multi-dimensional problems.

The geophysical method for which the inversion procedure is developed in this chap

ter is the time-domain electromagnetic (TEM) method. The TEM method is used exten

sively in the exploration, geotechnical and environmental applications of geophysics. A

review of the method and its uses is given by Nabighian & Macnae (1991). Typically, a

step or ramp turn-off in the current flowing in a rectangular transmitter loop is used to

induce currents in the Earth, and the variation with time of the vertical component of the

7



CHAPTER 2: 1 d INVERSION OF TEM DATA 8

magnetic field, or its time derivative, resulting from these induced currents is measured.

These measurements can be at any point on the surface of the Earth, either inside or

outside the transmitter ioop.

The conductivity model for the inversion procedure is composed of a large number

of horizontal layers of fixed thickness, and is terminated by a half-space. In general there

are many more layers than observations, so the inverse problem is under-determined.

This increases the nonuniqueness of the mathematical solution but allows the model that

minimises a specific norm to be found from the infinity of models that adequately re

produce the data. Suitable choice of the model norm enables the inversion procedure to

produce the model that is the most plausible representation of the region of the Earth

under investigation. Ideally, the model that is produced should exhibit the right “char

acter” (that is smooth or blocky in accordance with the assumed geology), be as close as

possible to the conductivity section obtained from a well-log or a neighbouring sounding

(if such is available) and have a minimum amount of structure. This last point is partic

ularly important since arbitrarily complicated structures, which would seem unlikely to

resemble the Earth, can suffice as mathematical solutions to the inverse problem. The

aim is to generate a model that contains just enough structure to fit the observations, but

no more. The flexibility to generate models of a particular character, and hence produce

the most plausible model for a particular geological setting, is a fundamental feature of

the inversion algorithm developed in this chapter for the TEM method.

2.2 The forward problem

Consider firstly the forward problem of calculating either the vertical component

of the magnetic field, h(t), or its time derivative, 8h(t)/ot, induced at some point on

the surface of a layered conductivity structure by a step turn-off in the current in a

rectangular transmitter loop. To exploit the work that has been done on electromagnetic

methods in the frequency domain, the analysis is carried out in the frequency domain

and only at the very end are the results transformed to the time domain. The notation of
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Ward & Hohmann (1988) is used in which lower-case letters represent fields in the time

domain and upper-case letters represent fields in the frequency domain.

The magnetic field, H, due to a rectangular transmitter loop can be evaluated by in

tegrating H due to a horizontal electric dipole around the transmitter ioop (Poddar 1982).

The major portion of the forward problem therefore involves calculating H due to a hori

zontal electric dipole. The computation of the magnetic and electric fields due to a dipole

source on the surface of a homogeneous or layered halfspace is required throughout this

thesis. The method used to compute these fields is described in Appendix A.

The method given in Appendix A for computing the magnetic field in a layered

halfspace due to a horizontal electric dipole source makes use of the Schelkunoff poten

tials A = Ae and F = Fe (section 4, Ward & Hohmann 1988) where ê, is the unit

vector in the z-direction. When computing just the vertical component of the magnetic

field, only the potential F is required. In the th layer of the conductivity model (see

Fig. A.1), F, the two-dimensional Fourier transform of F, satisfies the ordinary differen

tial equation

( — = 0, (2.1)

where u = k + k — ew2 + iwp.o-. and e are the magnetic permeability and electrical

permittivity, respectively, of the layer: they are assumed fixed in the inversion process

but can have different values in different layers. cr is the conductivity of the th layer.

The tilde indicates the (k, ky,,) domain. The steps for solving this differential equation

are given in Appendix A.

Once F (kr, k, z,w) has been found for all j, the time-domain values of either h(t)

or Oh(t)/Ot for the rectangular transmitter loop are obtained by the sequence of linear

transformations shown in Fig. 2.1. The inverse Hankel transform of F that gives H as a

function of space and frequency for the dipole is numerically evaluated using the digital

filtering technique of Anderson (1979b). Integration of the dipole response around the

rectangular transmitter ioop is done using a Romberg integration routine (e.g., Press et

al. 1992). Finally, the time-domain values of h are computed from the frequency-domain
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(km, k, z, w)

dipole

inverse Hankel transform

H (x, y, z, Li))

di pole

Integration around transmitter loop

H (x, y, z, w)

loop

Inverse Fourier transform

h (x, y, z, t) or

8h (x, y, z, t)/8t

loop

Figure 2.1 The sequence of integrations used to transform the values of the
vector potential due to a horizontal electric dipole as a function of wavenum
ber and frequency to values of the vertical component of the h field, or its
time derivative, for the rectangular transmitter ioop as a function of space and
time. This sequence of linear transformations is also used to obtain the sensi
tivities 8h/9cr (z, y, z, t) for the rectangular transmitter loop from the values

of OF/9o (k,k,z,w) for the dipole.

values of H using the routine of Newman, Hohmann & Anderson (1986). This sequence

of linear transformations is also used in the next section to obtain the sensitivity of h

from the sensitivity of F.

2.3 Calculation of the sensitivities

In order to construct an iterative, linearised algorithm for inverting values of h(t)

or 8h(t)/8t for a horizontally layered conductivity model, a procedure is required for

calculating the Jacobian matrix of sensitivities where the sensitivities are the partial
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derivatives of the data with respect to the model parameters. For the problem in this

chapter,

= , (2.2)

where h is the jth observation and o is the conductivity of the j’ layer. Here, and for

the remainder of this chapter, h is used to represent either h or Oh/Ot, depending on

which is being considered as the data.

The method used here to calculate the sensitivities for the one-dimensional inverse

problem is a special case of the general adjoint-equation method for calculating the sen

sitivities for the multi-dimensional electromagnetic inverse problem. The general method

will be described in Chapter 4, and will form the basis for the approximate form of

sensitivities developed in this thesis.

The layered conductivity structure that is the model for the one-dimensional inverse

problem (see Fig. A.1) can be described in terms of a linear combination:

(z) = (z), (2.3)

where the basis function is equal to unity within the th layer and zero everywhere

else. The coefficient is equal to the conductivity of the th layer. Using this definition

for the layered conductivity structure, eq. (2.1) can be rewritten in a form that is valid

for all zE(—oo,00):

/2 N

— u0 — iw crjb) F = 5, (2.4)

where u = k + k — jt ew2 and S represents the dipole source in the appropriate layer.

Differentiating with respect to 0k
(McGifflvray & Oldenburg 1990), making use of the

chain rule and realising that S is independent of o, eq. (2.4) becomes

= iLL)/Tk.F, (2.5)
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which is an inhomogeneous ordinary differential equation for the sensitivity OF/Ook.

The boundary conditions are —* 0 as z — ±00. This boundary value problem

can be solved using the adjoint Green’s function method (Lanczos 1961). Hence,

= f iwk(z)F(z)Gt(z;)dz, (2.6)
-

where the adjoint Green’s function Gt(z; c) satisfies

N

(_u+iwaj)Gt(z;) S(z-) (2.7)

and

G(z;) —* 0 as z —* +00. (2.8)

To construct the adjoint Green’s function, two linearly independent solutions of the

homogeneous form of eq. (2.7) are needed, one of which satisfies the boundary condition

as z — —cc, and the other which satisfies the boundary condition as z —* +co. For the

problem under discussion here, it is only the value of the sensitivity at the surface of the

Earth (c = 0 in eq. 2.6) that is of interest. In the region —cc < z = 0, where the

conductivity is zero, the adjoint Green’s function has the form exp(u0z). In the region

= 0 z < cc, eq. (2.7) is the complex conjugate of eq. (2.4). And, since P
—* 0 as

z —* +oo, the adjoint Green’s function is proportional to F* in this region. Hence,

Gt(z. — fce_, z_0, 29“ ‘‘
— lc+F*(z), z<=0.

At z = = 0, Gt(z; ) must be continuous, and its derivative with respect to z must be

discontinuous by an amount equal to 1 (Roach 1982). This determines the two coefficients:

*()
c_ = I*(o) — uo*(0)

1

(2.10)

c+ = - -

FI*(O) — uoF*(0)
(2.11)
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where the prime denotes the derivative.

So, using the explicit form of the adjoint Green’s function given above, and remem

bering that is unity in the th layer and zero everywhere else, eq. (2.6) becomes

Ui)
= j [E(z)j2 dz. (2.12)

F (0) —u0F(0) z—z

This expression for the sensitivity links the change in F(k, k, z = 0,w) to the change

in the conductivity of the j’ layer. F is known throughout the layers from the forward

modeffing mentioned in the previous section. The desired sensitivity, Oh/Oo, can be

obtained from 8F/Uu by the series of linear transformations shown in Fig. 2.1.

2.4 The inversion algorithm

(obs) .Consider a set of M observations, h , i = 1, . . . , M, which can either be of the

vertical component of the h field, or of its time derivative. The goal of the inversion

algorithm is to find a set of layer conductivities that adequately reproduces these obser

vations. Because the conductivities found in the Earth can vary by orders of magnitude,

it is convenient to work with the logarithm of conductivity in the inverse problem. Also,

working with logarithms ensures that o is positive. Let m = ln o, and let the vector

m = (m1,. . . , m)” define the model for the inverse problem.

The inverse problem is nonunique: if there is one model that adequately reproduces

the finite set of observations, then there is an infinite number of such models. To find a

specific model, a norm of the model is minimised which has the form

4’m = II Lm (m — m)
j2

(2.13)

where Wm is a weighting matrix, is a reference model and . represents the

12 norm. The model, m, that minimises 4m will have a character that depends on the

particular choices for the weighting matrix and the reference model. The reference model
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can be used to include any a priori information that may be available about the possible

conductivity structure.

The appropriate numerical values of Wm for generating a model of a specific char

acter can be obtained by considering a functional analogous to m for models that are

continuous functions of depth, for example,

= jw(z) T[m(z) _m(z)1I2 dz. (2.14)

The operator T can be the identity operator, or the first- or second-order derivative with

respect to z. The function w(z) is an additional weighting function which can be used to

enhance or suppress structure over certain depth ranges. The weighting matrix Wm can

be obtained by making m the discrete equivalent of m

To determine whether or not the data produced by the model conductivity structure

are sufficiently close to the observations, the following measure of misfit is used:

= (h(0b
— h[m])

2
(2.15)

where h[m] represents the data computed for the model m. W is a weighting matrix

which is usually a diagonal matrix whose elements are the reciprocals of the error estimate

of each datum. The objective in the inversion is to find a model which gives a misfit,

d’ equal to a target misfit For the examples considered in this chapter (and

throughout this thesis), it will be assumed that the measurement errors of the data are

unbiased, independent and Gaussian. In such cases, q is equal to the x2 random variable.

From the properties of the x2 random variable (Menke 1984; Parker 1994), the expected

value of cbd is equal to M, the number of observations. Hence, the final target misfit in

the inverse problem is usually taken as = M.

The relationship between the observations and the model parameters is nonlinear

and so an iterative method is required to solve the inverse problem. The data misfit after
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the (n + l)th iteration is given by

(n+i)

= 1 (h(0bs)
— h[m’)])

2
(2.16)

To avoid excessive structure developing in the model during early iterations, the target

th • (n) (tar)misfit for the (n + 1) iteration is chosen to be max (,Bq ) where typically 0.1 <

3 < 0.5. Also, it is the norm of the model produced by this iteration that is to be

minimised:

(n+i)
= II Wm (m(’ — m)

2
(2.17)

The inverse problem to be solved at the (n + l)th iteration is therefore:

Minimise (2.18)

subject to (n+1) max(,t) c, (2.19)

The general approach to solving this optimisation problem is to construct an objec

tive function

(n+1)
+

((fl+1)
-

q), (2.20)

where -y is a Lagrange multiplier. This objective function is then linearised about the

model using a Taylor series expansion, differentiated with respect to the model

perturbation Sm = m(1)
— and the resulting derivatives equated to zero. The

set of simultaneous equations is then solved for the model perturbation. (See, for ex

ample, Gill, Murray & Wright 1981; Oldenburg, McGiffivray & Ellis 1993.) It is this

method of solving the linear inverse problem at each iteration that will be used for multi

dimensional electromagnetic inverse problems elsewhere in this thesis. However, for the

problem considered in this chapter, the method of singular value decomposition (SVD)

was used. This method is particularly efficient when the matrix equation to be solved

at each iteration is not too large (less than, say, 200x200), which is the case for the

one-dimensional problem treated here.
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Consider again the data misfit at the (ri+ i)tI iteration given in eq. (2.16). Consider

a Taylor series expansion of h[m(’)] about the model

h[m2419 = h[m] + J[m] Sm + R, (2.21)

where = Oh/8m = uOh/ao (since the model is in terms of the logarithm of the

layer conductivities) is the Jacobian matrix of sensitivities. Assuming the remainder term

R can be neglected, substituting eq. (2.21) into eq. (2.16) gives a linearised estimate, çj’,

of the true data misfit:

= W4 (h(0b
— h[m] — [Sm)

2 (n+1) (2.22)

By writing Sm explicitly as the difference between the model parameters at two successive

iterations (e.g., Oldenburg 1983; Constable, Parker & Constable 1987), and introducing

the reference model, eq. (2.22) becomes

= II W (h(0)
— h[m] — 3 + — .j m’’ + 3 m)

2

d — (2.23)

where

d = W (h(0b
— h[m] — Jm + Jm()) (2.24)

= JW’, (2.25)

— m9. (2.26)

The linearised inverse problem to be solved at the (m + i)tI iteration can now be stated

as:

Minimise cbm = Ilth4’W2 (2.27)

subject to q = — jth(n+1)II2 = (2.28)
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The SVD solution of an under-determined system of equations is the one with the

smallest 12 norm (Wiggins 1972; Parker 1977; Menke 1984; Golub & Van Loan 1989).

Writing the SVD of as J = UAVT the solution to the linear inverse problem in

eqs. (2.27) and (2.28) is given by

= VTA_1UT (2.29)

where = s S/(-y s + 1), s is the th singular value of and is the Kronecker

delta (Wiggins 1972). The Lagrange multiplier y (the same as that in eq. 2.20) could

be chosen using a line search so that the constraint q q in eq. (2.28) is satisfied.

However, it is a solution to the full nonlinear inverse problem that is required. A line
(n+1) *search is therefore used to choose -y such that bd = cbd. The value of -y from the

previous iteration is used as an initial estimate for y for the current iteration. The

corresponding model is computed using eq. (2.29), and a forward modeffing carried out

to determine the data misfit, bd, for this model. 7 is then halved, the corresponding

model computed using eq. (2.29) and a forward modelling carried out to calculate the

data misfit for this new model. 7 is then repeatedly altered, assuming a locally linear

relationship between in cd and in , until either q5, or the smallest possible data misfit,

is obtained.

2.5 Examples

2.5.1 Synthetic data

Synthetic data were generated from the three-layer conductivity structure shown in

Fig. 2.2. The transmitter loop was a square of side 50 m and the vertical component of

the h field due to a step turn-off in a 1 A current was calculated 50 m from the centre

of the loop. Both the transmitter and receiver were on the surface of the conductivity

structure, and 20 values of h were calculated over the range of delay times shown in

Fig. 2.3. Gaussian random noise with a standard deviation of 2.5% was added to the
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Figure 2.2 The three-layer model (“true”) used to generate the synthetic
data, and the three models produced by the inversion routine. For clarity, the
individual layers in the smallest, flattest and smoothest models are not shown.

values of h. The data, with error bars equal to the standard deviation of the added

noise, are shown in Fig. 2.3.

The inversion routine was used to obtain three different conductivity models, each

with a distinct character, that reproduced the synthetic data to the same level of mis

fit. These three models minimise, in turn, the difference between the model and a

reference halfspace of 5 x 10—2 S m1, the gradient of the model, and the curvature.

For convenience, these models are referred to respectively as the smallest, flattest and

smoothest. The controlling factor for each model is the weighting matrix YLm To ob

tain the appropriate form of Wm for the smallest model consider eq. (2.14) with w = 1

and T = I, where I is the identity operator. Consider also a description of the layered

model analagous to that in eq. (2.3). Eq. (2.14) then becomes

= J [m — m] (z)2dz (2.30)
z0 j=1

100 101 102

Depth (m)
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Figure 2.3 The synthetic data, and associated error bars, generated from the
three-layer model in Fig. 2.2. The values of h were calculated 50 m from the
centre of a 50 m x 50 m transmitter ioop. A step turn-off in a 1 A current
was used as the transmitter current waveform and Gaussian random noise of
standard deviation 2.5% was incorporated into the data. The continuous curves
represent the data predicted by each of the three models shown in Fig. 2.2.

N N

J [m_m] [mk—mj(z)k(z)dz (2.31)
z=O

N

= (m — m
)2 f dz (2.32)

j=1 z=zi_1

= (m —

)2
, (2.33)

because of the particular nature of the basis functions, t is the thickness of the

th layer. Comparing eq. (2.33) with eq. (2.13), the weighting matrix required for the

smallest model is therefore

= diag (‘T (2.34)
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The thickness of the basement halfspace is infinite, and so the final element of Wm is

assigned the same value as the previous element. The value of the model in the basement

halfspace will not therefore dominate the model norm.

To obtain the weighting matrix for the flattest model consider eq. (2.14) with w = 1

and T = d/dz:

d 2

= J --

[m(z) — m(z)] dz. (2.35)
z=O uZ

An analogous form of this expression for the discrete case that results in an appropriate

model norm to minimise is

N—i / (ref) (ref) 2
i[m. -m ]-[m.--m. 1’

= 3

Lz.

‘

) (2.36)
j=i 3

Letting Lz equal the vertical distance between the centre of the th layer and the centre

of the layer above, comparison of eqs. (2.36) and (2.13) implies that the weighting matrix

for the flattest model is given by

—

_____

1/2 (tl±t2) 1/2
0 . . . 0

0
—(t2+t3)/2 (t2+t3)_h/2 0

0 _(tN_i)uh!2 (tN1)h/2

0 ... 0 -C
(2.37)

where the constant C was chosen as 103(tNi)/2. This value is effectively negligible

compared with the other elements in the matrix, and yet is sufficiently large so that W’

can be computed. For the smoothest model, the weighting matrix is the square of the

matrix used for the flattest model.

The resulting three models are shown in Fig. 2.2. All have 100 layers (i.e., N=100),

the thicknesses of which increase exponentially (to the base 1.05 with the thickness of

the first layer equal to 0.5 m). During the inversion process, 3 (the desired reduction in

misfit at each iteration) was kept fixed at 0.5. This gave a slow but steady convergence

towards the final model. Fig. 2.4 shows the variation of q and m during the course
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Figure 2.4 The variation of (a) the data misfit, c1d (b) the model norm, m’
and (c) the Lagrange multiplier, 7, during the inversion of the synthetic data in
Fig. 2.3 to produce the flattest model shown in Fig. 2.2.

of the inversion to produce the flattest model. The thirteen iterations shown in Fig. 2.4

took 90 minutes on a Sun SparclO workstation.

The data calculated from the three models produced by the inversion routine are

represented by the continuous lines in Fig. 2.3. The values of c5d for the smallest, flattest

and smoothest models were all equal to 20 (M = 20). Although these three models

reproduce the observations to the same level of misfit, they are noticeably different in

character. These different characters are a direct consequence of the particular model

norm that was minimised in the inversion. The most obvious differences appear in the

depth ranges that are poorly constrained by the data: below approximately 200 m the

smallest model returns to its reference halfspace of 5 x 10—2 5m’, the flattest model

levels out to achieve zero gradient, and the smoothest model degenerates to a straight

line when no longer influenced by the data. Similar behaviour can be seen at shallow

depths above about 10 m. Even in the depth range to which the data are most sensitive
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(10— 200 m, approximately) there are differences in character between the three models.

The smallest model manages to follow the block nature of the true model quite closely,

whereas the smoothest model smears out the high conductivity layer as much as it can

in order to produce the model with the minimum amount of curvature.

From Fig. 2.2 it is obvious that the smallest model is the closest to the “true” Earth.

However, the remarkable agreement above 10 m depth is somewhat fortuitous, since the

model at these depths is very poorly constrained by the data. And the exact agreement

below 200 m is only to be expected since the reference model was chosen to have the

same conductivity as the basement halfspace in the true model. For many of the other

data-sets that the inversion routine was tested upon, it was found that the smallest model

often contained an unreasonable amount of structure. A model with the least amount of

variability required to reproduce the observations is generally preferred.

2.5.2 Field data

To test the inversion routine with more realistic data, two sets of field data acquired

during an environmental study were inverted. Values of the time derivative of the vertical

component of the h field were measured at the centre of a square (60m x 60m) transmitter

loop using the Geonics Protem system (see Nabighian & Macnae 1991). The data, and

their assumed error estimates, obtained from soundings at two different locations are

presented in Figs. 2.5 and 2.7.

The Protem instrument uses a linear ramp turn-off of length r instead of a pure step

turn-off, which is impossible to generate in practice. This modification of the source

current waveform can be taken into account when calculating the resultant time decay

of the fields by convolving the time-derivative of the linear ramp turn-off with the values

of Oh/Ot calculated for a pure step-off current source (eq. 1, Asten 1987):

ahr 00 Oh
(t) = j (u) r’(t - u) du. (2.38)



(1
r() = —t/r

t < —T,

—T t 0,
t>0.

Its time derivative, ‘1’ is therefore a boxcar of length T and height 1/T. The response,

Oh”/Ot, for the ramp turn-off was obtained from the response, Oh/Ot, for the step turn-off

by numerically evaluating eq. (2.38) using a Romberg integration routine (e.g., Press et

Model fi: 191.
Model f2: ç = 179.
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Figure 2.5 A TEM sounding acquired during an environmental survey. The
transmitter ioop was 60 m x 60 m, and the receiver was at its centre. The data
were acquired in three overlapping sweeps: 7 its —0.7 ms, 0.1 —2.8 ms and 0.8—
70 ms. The observations and assigned error estimates are represented by the
error bars. The continuous curve indicates the data predicted from both models
fi and f2 in Fig. 2.6.

The linear ramp turn-off is represented by

(2.39)

i05

I 1111111 I 1111111 I I I II III

1

al. 1992).
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The observations shown in both Figs. 2.5 and 2.7 were acquired in three overlapping

sweeps, the first sweep from 7 s to 0.7 ms, the second from 0.1 to 2.8 ms, and the

third from 0.8 ms onwards. The length of the ramp, r, for these sweeps was 3.5 jis, 35 ,us

and 45 ,us respectively. These different ramp times give the data a somewhat sawtooth

appearance in the time-range for which the sweeps overlap.

The linear ramp turn-off in the transmitter current must also be taken into account

in the inversion process. Because the inversion is being carried out in the time domain,

the sensitivities required for a ramp turn-off in the transmitter current can be obtained

by applying the convolution in eq. (2.38) to the sensitivities calculated for the pure step

turn-off.

Estimates of the errors were not available for the data-sets shown in Figs. 2.5 and 2.7.

Values that seemed reasonable were therefore assigned to the data. For the data in

Fig. 2.5, errors of 1% were assigned to the measurements before 50 ,us, and errors of 5%

were assigned to all other measurements, except over the interval 90 ,us to 3 ms. In

the centre of this interval (0.3 ms to 0.8 ms) there is an obvious discrepancy between

measurements from the first and second sweeps, suggesting larger errors in these data.

Errors of 10% were therefore assigned to the whole interval (90 ,us to 3 ms) over which

there was overlapping of the three sweeps, although the discrepancy between the first

and second sweeps in the first part of the interval was subsequently found to be due to

the different ramp times for the two sweeps. For the data in Fig. 2.7, errors of 1% were

assigned to the measurements before 80is, errors of 5% to the measurements between 80is

and 5 ms, and errors of 10% to those after 5 ms.

Fig. 2.6 shows two inversion results for the data in Fig. 2.5. Model fl, represented by

the solid line, was obtained using the same weighting matrix as for the flattest model in

Section 5.2.1. Model f2, represented by the dotted line, was obtained using the weighting
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matrix

—1 1 0 ... 0
0—11 0

= ... (2.40)

—1 1
0 0-C

where C = iO. Both models have 200 layers increasing exponentially in thickness (to

the base 1.03, with the first layer of thickness 0.1 m). Because of this increasing layer

thickness, the model norm constructed using Wm above is essentially a discretised version

of

= x: [:]2donz = jz [d(lnu)]2d (2.41)

(Remember that m = ln u.) The model norm constructed using Wm in eq. (2.31) is a

discretised version of

= f° [d(ln)]2
(2.42)

The dashed line in Fig. 2.6 corresponds to the result obtained from a parameter estimation

program (TEMEX—GL), based on Anderson’s (1979a) routine, which was restricted to

contain seven layers.

The values of the misfit, q, for models fi and f2 were 191 and 179, respectively.

The value of d for the seven-layer model was 983. Models fl and f2 produce nearly

identical fits to the observations, as illustrated in Fig. 2.5. However, the two values

of misfit quoted above are still significantly larger that the expected value of 56 (the

number of observations). No model could be found which gave a smaller misfit than

that for model f2. This suggests that the error estimates that were assigned to the data

are smaller than the true errors in the measurements. This seems entirely plausible,

especially for the late-time measurements in each data-set, where errors of 30 or 40% are

more likely to be realistic.

The similarity between the two models in Fig. 2.6, despite the different nature of

the weighting matrices used to produce them, emphasises the robustness of an inversion



Figure 2.6 fi and f2 are the two versions of the flattest model obtained from
the inversion of the data in Fig. 2.5. The best-fitting seven-layer model produced
by a parameter estimation routine (TEMEX—GL) is also shown.

routine which looks for a minimum-structure model. Since models fi and f2 both contain

just enough structure to fit the data, it is not surprising that they agree on the features

that are required by the data. This provides confidence that the particular sequence of

conductive and resistive layers to a depth of about 300 m is present in the real Earth.

Below 300 m the models are less strongly constrained by the observations, and so

the particular form of the weighting matrix begins to dominates their behaviour. The

weighting term z that appears in eq. (2.41) but not in eq. (2.42) causes structure in

model f2 to be suppressed at these depths compared with model fi. However, the fact

that both models fi and f2 do show increases in conductivity around 500 m depth, rather

than levelling off, might indicate the presence of a good conductor on the extreme limit

of penetration of this sounding. When this increase in conductivity was removed from

CHAPTER 2: id INVERSION OF TEM DATA 26

Solid — model fi,
Dotted — model f2,
Dashed — parameter estimation.
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model if, the misfit did increase to a value of 219, and the predicted data from this

modified model did not fit the last two data points in Fig. 2.5 as well as those for

model fi. Similarly, removing the final increase in conductivity from model f2 resulted

in an increase in the misfit to 194, suggesting that this feature might be required by

the data. At shallow depths, the different weighting matrices lead to structure being

enhanced in model f2 relative to model fi.

As a final example, the data from the second sounding (see Fig. 2.7) were inverted.

The weighting matrix was the same as the one used to produce model f2 in Fig. 2.6.

The resulting model is represented by the dotted line in Fig. 2.8. It is again made up of

200 layers whose thicknesses increase exponentially with depth. The solid line in Fig. 2.7

represents the data predicted from this model. The corresponding value of the misfit

was cd = 1216. The assigned error estimates again seem to be too small and it was not

possible to obtain a misfit close to the expected value of 40. The solid line in Fig. 2.8

represents well-log measurements of conductivity obtained from a borehole 70 m away

from the location of the sounding. There is good agreement between the model and the

well-log measurements in the depth range 10— 150 m, especially on the location of the

upper regions of the two conductive zones around 35 and 90 m. The character of the

well-log, comprising transition zones rather than a few layers of constant conductivity, is

also reproduced by the model in Fig. 2.8. This type of model, constructed by minimising

the 12 norm of its gradient, therefore seems particularly suited to this geological setting.

2.6 Conclusions

In this chapter, I have presented an inversion algorithm that generates a layered

conductivity structure from measurements, at any point on the surface of the Earth,

of the time-variation of h, or Oh/8t, induced by a rectangular transmitter loop. The

inversion algorithm is a Gauss-Newton algorithm that minimises a norm of the model

subject to the constraint that the observations are reproduced to an appropriate level.

The form of the model norm to be minimised is flexible, and can be constructed to

enable the algorithm to find the most plausible model from the infinity of models that
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Figure 2.7 A second sounding from an environmental survey. The survey
geometry and the three measurement sweeps are the same as for Fig. 2.5. The
error bars indicate the observations and assigned error estimates, and the con
tinuous curve represents the predicted data from the flattest model produced
by the inversion and shown in Fig. 2.8.

adequately reproduce the observations. Which model is the most plausible will depend

on the geological setting and the amount of prior knowledge, and may be the one with

the least amount of structure, or the one that is the closest to some reference model that

represents the preconceived image of the region under investigation.

The algorithm described in this chapter is robust: it does not become unstable in

the presence of noisy data. In addition, the combination of (1) finding a model that

has a minimum amount of structure, and (2) requiring that the desired misfit at each

iteration is only gradually decreased, leads to a procedure that consistently finds a model



Figure 2.8 The flattest model (dotted line) obtained from the inversion of
the data in Fig. 2.7. The solid line represents the values of the conductivity
measured in a borehole 70 m from the observation location.
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that reproduces the observations and is a plausible representation of the Earth. The final

model produced by the algorithm is also insensitive to the particular starting model used.

Finally, the solution to the one-dimensional controlled-source inverse problem de

scribed in this chapter is not restricted by computing power unlike the multi-dimensional

problems considered later in this thesis. All the calculations are therefore exact, including

the generation of the Jacobian matrix of sensitivities.



Chapter 3

Introduction to Approximate Sensitivities

3.1 Multi-dimensional problems

Before I start to discuss approximate sensitivities, I shall summarise some concepts

relevent to multi-dimensional geophysical electromagnetic inverse problems.

The source for the magnetotelluric method is assumed to be a plane wave impinging

on the surface of the Earth. Because of this simple source, the magnetotelluric method is

the one for which the forward and inverse problems can be most easily carried out. The

measured quantities in a magnetotelluric experiment are the horizontal components of

the electric and magnetic fields. Since the details of the plane-wave source are unknown,

the ratio of orthogonal components of the electric and magnetic fields is calculated (in

the frequency domain). An apparent resistivity and phase are obtained from this ratio

(see eq. D.1), and it is these quantities that are considered as the data acquired in the

experiment. To investigate the two- or three-dimensional structure of the Earth, these

data have to be collected at many different locations on the surface of the Earth as well

as at many frequencies.

For a two-dimensional conductivity model, the electric and magnetic fields induced

in the model by a plane-wave source divide into two decoupled modes. One mode involves

the component of the electric field parallel to the strike direction (i.e., the direction in

which the model is invariant) and the two components of the magnetic field perpendicular

to the strike direction. This mode is known as the “E-polarisation” mode since the only

component of the electric field within the model is parallel to the strike direction. It is

also referred to as the “transverse electric” (TE) mode since the only component of the

electric field in the model is perpendicular (or transverse) to the vertical direction (see

section 4.1.1, Weaver 1994). The other mode involves the component of the magnetic field
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parallel to the strike direction and the components of the electric field perpendicular to the

strike direction. It is therefore called the “H-polarisation” or “transverse magnetic” (TM)

mode since the only component of the magnetic field in the model is parallel to the strike

direction (and transverse to the vertical direction). This decoupling into two modes also

applies to any situation in which the source is invariant in the strike direction of the

model.

In the exploration industry, controlled-source methods are used more often than the

magnetotelluric method. A typical controlled-source method has either a current loop

or a grounded line current as a source, and involves measurements of the frequency- or

time-dependence of the electric or magnetic fields. When considering a two- or three-

dimensional target region, these measurements are either collected at many different

locations relative to a stationary source, or at a fixed distance from the source for many

different source positions, or a combination of the two.

In this thesis, the term “forward modeffing” is used to refer to the process of com

puting the values of the measurements that would have been obtained if the geophysical

experiment had been carried out over the mathematical conductivity model rather than

over the Earth itself. One forward modeffing produces values for the measured quantities

at every observation location for every source location. I shall further specify that one

forward modeffing, as considered in this thesis, corresponds to only one frequency or de

lay time: if measurements were collected at ten frequencies then ten forward mode]iings

would be required to compute values for all the quantities measured in the experiment.

I shall also assume that, in the process of computing the predicted data for a particular

frequency or delay time, a forward modeffing produces the values of the electric field

everywhere in the conductivity model.

As a final point, it is worth noting the correspondence between “sensitivities” and

“Fréchet derivatives”. Sensitivities are obtained by first parameterising the conductivity

model and then differentiating the equations that define the forward problem with respect

to the model parameters (see sections 2.3 and 4.2). An alternative approach is to consider
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a general perturbation to the model before any parameterisation is introduced. The

resulting effect on the observed quantity can be expressed as (Parker 1994):

d [m(r) + Sm(r)] = d {m(r)] + (D(r),Sm(r)) + R, (3.1)

where d represents the observed quantity and (.,.) represents the inner product. If the

remainder R is such that jR/j6mj — 0 as — 0, then D is the Fréchet derivative

of d. If the model parameterisation is now introduced such that m(r) = m&(r)

and Sm(r)
=

Smib(r), eq. (3.1) becomes

d [m+ Sm] = d [m] + (D(r),(r)) 5m + R, (3.2)

where m = (m1,... , m)’. For the problems considered in this thesis, the inner prod

uct (•,) is the volume integral over the whole of three-dimensional space. Hence,

(D(r),(r)) = jDi(r)j(r)dv. (3.3)

Comparing eq. (3.2) with eq. (1.1), it can be seen that the sensitivity is equivalent to the

volume integral of the product of the Fréchet derivative and the basis function:

I
= I D(r) (r) dv. (3.4)

um j

3.2 The need for approximate sensitivities

The Gauss-Newton algorithm described in Chapter 2 is the inversion methodology

that one would like to use to solve the two- and three-dimensional electromagnetic in

verse problems. However, the computations required by some of the components of

this algorithm become very time-consuming when applied to two- and especially three

dimensional problems. The three most computationally intensive components are (1) the

forward modeffing, (2) the generation of the sensitivity matrix and (3) the solution of
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the linear system of equations. Each of these operations has to be performed at least

once for each iteration. Highly sophisticated and efficient forward modeffing schemes are

now being developed for two- and three-dimensional conductivity models (e.g., Everett &

Edwards 1992; Unsworth, Travis & Chave 1993; Mackie, Madden & Wannamaker 1993;

Livelybrooks 1993; MDona1d & Agarwal 1994; Newman & Alumbaugh 1995). The in

version of the linear system of equations has also received attention, and techniques such

as a generalised subspace method can be used to speed up the solution of the matrix

equation without hindering the progress of the iterative inversion scheme (Oldenburg,

WGiffivray & Ellis 1993; Oldenburg & Li 1994). The generation of the Jacobian matrix

of sensitivities, however, has received little attention.

The three main methods of calculating the sensitivities for the general electromag

netic inverse problem are the brute-force or perturbation method, the sensitivity-equation

method and the adjoint-equation method (McGiffivray & Oldenburg 1990). The compu

tation times for these methods are roughly equivalent to N x Mf, N x Mf and M0 x Mf

forward modeffings respectively where N is the number of model parameters, Mf is the

number of frequencies (or delay times) and M0 is the number of observation locations

(Mf x M0 = M). The actual time taken by each of these three methods will depend on

their implementation for a particular problem. It is sometimes possible to exploit features

of a forward modeffing algorithm to reduce the time needed to generate the sensitivities.

For example, Oristaglio & Worthington (1980) make use of the already-factored matrix

from their finite-difference forward-modeffing program when calculating the sensitivities

using the sensitivity-equation method. However, the above estimates of the computation

times for the three methods of calculating the sensitivities are reasonable when construct

ing an inversion scheme around an existing forward-modeffing program, and are a good

indication of how the computation times for the sensitivities are affected by the number

of model parameters and data.

For surveys over two- or three-dimensional geological structures, the typical number

of measurements is of the order of one or ten thousand. The number of parameters re

quired to adequately describe any model used in the inversion of such measurements will
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also be of the order of one, ten or a hundred thousand. Given that forward-modelling

programs for such two- or three-dimensional conductivity structures currently have com

putation times of at least several minutes, it can be seen that calculating the sensitivities

using any of the accurate methods described above will be very time-consuming, if not

prohibitive. It therefore becomes necessary to consider approximate methods for gen

erating the Jacobian matrix of sensitivities if multi-dimensional electromagnetic inverse

problems are to be tackled.

3.3 Previous forms of approximate sensitivities

3.3.1 The one-dimensional problem

There has been one investigation of approximate sensitivities for the one-dimensional

electromagnetic inverse problem. Boerner & Holladay (1990) demonstrated that the

sensitivities with respect to the layer conductivities do not depend strongly on the model

when components of the electric or magnetic fields associated with only horizontally-

flowing currents in a horizontally-layered model are considered. They illustrated this by

considering a horizontal electric dipole source and measurements of the resulting vertical

component of the magnetic field, with both the source and measurement location on

the surface of the Earth. They computed the sensitivities of these measurements with

respect to the conductivity of a thin test layer for three models: a homogeneous halfspace

of conductivity 0.01 S m1, a halfspace of 0.01 S m1 in which a conductive layer of

0.05 S m1 was embedded, and another halfspace of 0.01 S m1 in which a resistive layer

of 0.002 S m1 was embedded. The plots of the sensitivities as functions of the depth of

the test layer illustrate the weak dependence of the sensitivities on the model: all three

curves are smooth and continuous across the boundaries of the conductive or resistive

layer, they all exhibit the same general characteristics, and differ at most by 10%.

Boerner & Holladay call the sensitivity with respect to the conductivity the “incre

mental” sensitivity. The sensitivity with respect to the logarithm of the conductivity,



CHAPTER 3: INTRODUCTION TO APPROXIMATE SENSITIVITIES 35

what Boerner & Holladay call the “fractional” sensitivity, is obtained by scaling the in

cremental sensitivity by the conductivity of the layer: c9/O(ln u) = o O/8o. This is the

sensitivity that is applicable when the model is defined in terms of the logarithm of the

conductivity, as is usually the case. Because of the weak dependence of the incremental

sensitivities on the structure in the model, the dominant influence on the fractional sen

sitivities is the scaling by the layer conductivities. Boerner & Holladay exploited this by

inverting synthetic data using a simple, linearised procedure in which the fractional sensi

tivities were approximated by the incremental sensitivities calculated for a homogeneous

halfspace and scaled by the conductivity of the layers. They found that the convergence

of the inversion procedure was not hindered by the use of these approximate sensitivities,

and that in some instances the rate of convergence was increased.

Boerner & Holladay state that the weak dependence of the incremental sensitivities

on the conductivity model is not to be expected for measurements of the electric and

magnetic fields associated with current flow across the boundaries of the layers. However,

the plots of Boerner & West (1989) show that, for a situation in which currents flow across

the layer boundaries, the fractional sensitivities are also strongly dependent on the scaling

by the layer conductivities, and that the fractional sensitivities for a one-dimensional

model can be approximated by scaling the incremental sensitivities for a homogeneous

halfspace by the conductivities of the layers. (The situation Boerner & West considered

was that of a grounded electric dipole source and measurements of the corresponding

electric field, although calculated in the wavenumber domain, at zero frequency and with

a geometrical factor removed.)

3.3.2 The two-dimensional problem

Approximate sensitivities have been used to reduce the time required to invert mag

netotelluric data for two-dimensional conductivity models. Oldenburg & Ellis (1993) and

Effis, Farquharson & Oldenburg (1993) used the sensitivities from the one-dimensional

magnetotelluric inverse problem as approximate sensitivities for the two-dimensional
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problem. For each observation location, a horizontally-layered conductivity structure

is imagined in which the conductivities of the layers are equal to the conductivities of

the cells in the two-dimensional conductivity model immediately beneath the observation

location. One-dimensional sensitivities are calculated with respect to the layer conductiv

ities. These sensitivities are then used in the two-dimensional inversion as the sensitivities

for the cells immediately below the observation location.

It was found that iterative inversion procedures using these approximate sensitivities

converged to acceptable models when the data were either for the E- or il-polarisation,

or determinant averages of the data for the two modes. These approximate sensitivities

were not as successful, however, when used to jointly invert observations from both the

E- and il-polarisations, especially when there were significant differences between the

data from the two modes. This is not surprising since the decoupling into two distinct

modes does not exist in the one-dimensional magnetotelluric problem, and so the one-

dimensional sensitivities used as approximate sensitivities in the joint inversion were the

same for both modes.

Smith & Booker (1991) developed a slightly better form of approximate sensitivities

for the two-dimensional magnetotelluric problem. They assumed that the horizontal

gradient of the electric field in the two-dimensional conductivity model was small relative

to its vertical gradient. The resulting expressions for the approximate sensitivities are

the same as the expressions for the one-dimensional sensitivities used by Oldenburg &

Effis and Ellis et al., but the electric field in the two-dimensional conductivity model is

used rather than the electric field in the layered model imagined to exist beneath each

observation location. Smith & Booker’s approximate sensitivities are therefore different

for the E- and H-polarisations, and through the electric field from the two-dimensional

model, a small amount of information about the two-dimensional structure of the model

is incorporated in the sensitivities.

The advantages of the above two forms of approximate sensitivity are that they

are quick to compute and are sufficiently accurate to enable, in many cases, iterative,

linearised inversion schemes to converge to an acceptable model. The “Rapid Relaxation
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Inversion” program of Smith & Booker (1991) is routinely used to invert data from

regional magnetotelluric surveys.

The disadvantage of the above forms of approximate sensitivity is that they lead to

sparse Jacobian matrices: the approximate sensitivity for a measurement is only defined

with respect to the conductivities of the cells immediately below the location of the mea

surement. There is no information, therefore, in these approximate sensitivities about the

dependence of a measurement on the cells that are close to the location of measurement

but not immediately beneath it. Another consequence is that the discretisation of the

model is restricted to have each column of cells below an observation location.

3.3.3 The three-dimensional problem

In principle, the approximate sensitivities of Smith & Booker (1991) described in

section 3.3.2 can be extended to the three-dimensional magnetotelluric problem. Also,

attempts have been made to calculate approximate sensitivities using the Born approxi

mation (see Hohmann & Raiche 1988). However, the amount of work that has been done

on approximate sensitivities for three-dimensional problems is small.

3.4 Conclusions

Sections 3.3.1 and 3.3.2 suggest that approximate sensitivities need not be extremely

accurate to enable a linearised, iterative inversion procedure to converge to an acceptable

model. The work of Boerner & Holladay (1990) shows that the fractional sensitivities are

heavily dependent on the scaling by the conductivity structure of the model, rather than

the specific features of the incremental sensitivities. A moderate approximation of the

incremental sensitivities, when scaled by the conductivities of the model, should therefore

lead to a good approximation of the fractional sensitivities. The relative success of the

approximate sensitivities described in section 3.3.2, despite their somewhat poor level

of approximation, strengthens the argument that approximate sensitivities need not be

highly accurate to be useful.
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It is also worth noting that in an iterative Gauss-Newton procedure for solving the

non-linear inverse problem (see eq. 2.20 and the surrounding description), the Jacobian

matrix of sensitivities is evaluated at the current model: J[m(’)]. Consider for the mo

ment that the need for an iterative procedure has not yet been recognised. To find the

model that minimises the objective function, therefore, the objective function would sim

ply be differentiated with respect to the model parameters and the resulting expressions

equated to zero. This would produce a matrix equation for the model parameters, m(s01),

that minimise the objective function. However, this matrix equation involves the Ja

cobian matrix evaluated for this unknown model: J[m(s01)]. The matrix equation is

therefore non-linear and intractable. (See the section “The Nonlinear Problem” of Con

stable, Parker & Constable 1987). Comparing this to the iterative approach, [[m(’)]

can be thought of as an approximation to J[m(s01)], with only the dominant features of

J[m(’)] influencing the direction in which the iterative procedure moves through model

space, at least for the early iterations. This further suggests that approximate sensitivi

ties might be effective in enabling an iterative, linearised inversion algorithm to converge

to an acceptable solution.

It is the aim of this thesis to develop a general form of approximate sensitivity that

will be of use in the solution of any electromagnetic inverse problem, especially those

involving controlled sources.



Chapter 4

An Approximate Form of Sensitivity for the

General Electromagnetic Inverse Problem

4.1 Introduction

The three main methods of accurately calculating the sensitivities are the brute-

force or perturbation method, the sensitivity-equation method and the adjoint-equation

method (McGillivray & Oldenburg 1990). The computation times of these methods are

roughly equal to N x Mf, N x Mf and M0 x Mf forward modellings respectively. (N is

the number of model parameters, Mf is the number of frequencies and M0 is the number

of observation locations). The inversion procedure envisioned for the multi-dimensional

problem, just as for the procedure described in Chapter 2 for the one-dimensional prob

lem, is one in which there are many more more model parameters than observations.

The adjoint-equation method is therefore the most efficient method of calculating the

sensitivities for such an under-determined problem. Because it is the natural method

for an under-determined problem, and because it can be readily modified to give a use

ful approximation, the adjoint-equation method is the basis for the approximate form

of sensitivity presented in this thesis. An abridged derivation and description of the

adjoint-equation method are given below.

4.2 The adjoint-equation method for accurately calculating the sensitivities

The adjoint-equation method has previously been applied to electromagnetic inverse

problems by, for example, Weidelt (1975) and Madden (1990). Also, the method used in

Chapter 2 to calculate the sensitivities for the one-dimensional electromagnetic inverse

problem considered in that chapter is a special case of the adjoint-equation method.

39
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The derivation presented here follows that of McGiffivray et al. (1994). Consider a do

main, D, whose conductivity, o, varies only as a function of position, and whose elec

trical permittivity, e, and magnetic susceptibility, t, are constant. Consider also some

general source which can be defined in terms of electric and magnetic current densities J

and m = —iWILM. This description of the source terms is not that of McGifflvray et

al., but that used by Ward & Hohmann (1988) where M is the magnetisation. This

description is consistent with Appendices A and C in which a unit electric dipole source

corresponds to eI = 1 and a unit magnetic dipole source corresponds to M = 1. The

electric and magnetic fields, E and H respectively, that are generated in the domain are

given by the frequency-domain Maxwell’s equations:

V xE = iWUH+Jm (4.1)

VXH(O+W6)E+Je. (4.2)

The electric and magnetic fields satisfy the general boundary conditions

o(flxU) + ,13(ñxñxVxU) = Q (4.3)

on the boundary, ÔD, of the domain D. U represents either E or H, c and /3 are

constants, ii is the unit normal to OD and Q is the appropriate electric or magnetic

surface current density.

For the purposes of the inversion, the conductivity is represented as a finite linear

combination of suitable basis functions:

(r) = (4.4)

where are the basis functions and are the coefficients. Substituting this representa

tion of the conductivity into eqs. (4.1) and (4.2), and differentiating these equations with
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respect to o, one obtains

OE . 8H
V x = —iw-— (4.5)

00k

811 . OE
V x = (tr + zwe)--— + ct’kE. (4.6)

The partial derivatives OE/ôok and OH/ôok are the sensitivities of the electric and mag

netic fields with respect to the coefficient ok. These sensitivities satisfy the homogeneous

boundary conditions

a (ñx) + (ñxñxVx) = 0. (4.7)

To arrive at a numerical method for calculating the sensitivities, a suitable solution

to eqs. (4.5) and (4.6) has to be found. With this in mind, consider an auxiliary problem

in which auxiliary electric and magnetic fields, Et and Ht, are generated in the conduc

tivity, o, by as yet undefined electric and magnetic sources J and J. These auxiliary

fields satisfy the following version of Maxwell’s equations:

V x = —iw1uH + J (4.8)

V x Ht
= (o. + iw6)Et + J. (4.9)

The auxiliary fields satisfy the homogeneous boundary conditions

a(ñxU) + ,Bt(nxnxVxUt) = 0. (4.10)

If the boundary 9D extends to infinity, at and ,B need not be the same as a and /3. If

the domain D is finite, however, a = a and 13t = /3 for the analysis that follows.

Using the vector identity

V.(AxB)=B.(VxA)—A.(VxB) (4.11)
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eqs. (4.5) and (4.6) can be combined with eqs. (4.8) and (4.9) to give

.
(t x — x Hf) = J. + J . — Et . E&k. (4.12)

Integrating this expression over the domain D and using the divergence theorem gives

F / OH UE
I tEx——---——xHinds

J8D k 0k I

= ID
[Jt.

0(7k + 0o
— E E k] dv. (4.13)

It can be shown that, for the boundary conditions specified above, the left-hand side of

eq. (4.13) is equal to zero. Hence,

ID
(Jt. + jt. -) dv

= ID E k dv. (4.14)

Eq. (4.14) is the main result from which the sensitivities for the electric and mag

netic fields can be obtained for a particular problem. It requires appropriate choice of

sources, J and J, for the auxiliary problem. For example, to obtain the sensitivity of

the x-component of the electric field at an observation location r0, choose J =

and J = 0. Substituting these expressions into eq. (4.14) gives

= J E E bk dv. (4.15)
0k r0 D

For this example, the auxiliary electric field, E, is now defined as the electric field in the

domain, D, due to an x-directed unit electric dipole at the location, r0, of the observations

of E. E is the electric field due to the particular source (described by e and m) used

in the geophysical survey. To obtain the sensitivity of the x-component of the magnetic

field at r0, set J = 0 and J = S(r — r0) ê in eq. (4.14). The sensitivity is then given

by =

J E .Ek dv, (4.16)
D
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where E is now the electric field in the domain due to an x-directed magnetic dipole of

strength (—iwt) at r0.

Eq. (4.14) can be obtained by a formal Green’s function solution of eqs. (4.5) and (4.6)

(see the references given at the start of this section). The auxiliary electric field, E, in

this section is equivalent to the complex conjugate of the appropriate adjoint Green’s

function for eqs. (4.5) and (4.6). I shall therefore use the term “adjoint field” rather than

“auxiliary electric field” to refer to E.

4.3 An approximate form of sensitivity

To calculate the sensitivities using the adjoint-equation method outlined in the pre

vious section, the following are needed: (1) the electric field, E, in the domain due to the

source used in the geophysical experiment, (2) the adjoint field, E, in the domain due to

the appropriate dipole source at the observation location, and (3) the evaluation of the

volume integral (weighted by the basis function) of the scalar product of these two fields.

The computation time required to numerically evaluate the volume integral is negligible

compared to that for the other parts of the procedure. Also, in an iterative inversion

procedure the electric field, E, will already have been computed in order to calculate the

data misfit resulting from the previous iteration. No additional work therefore has to

be done to fulfil the first requirement above. However, for the second requirement, the

adjoint field has to be explicitly computed in the conductivity model for a dipole source

at each observation location in turn. It is this that accounts for the vast majority of the

computation time for this method, and hence the statement that the computation time

for the adjoint-equation method is equivalent to that for M0 x Mf forward modellings.

In this thesis, I present an approximate form of sensitivity that is much quicker to

compute than the adjoint-equation method: instead of computing the adjoint field, E,

in the multi-dimensional conductivity model, an approximate adjoint field is computed

that is considerably quicker to obtain. The types of approximate adjoint fields given in

this thesis are the electric fields in a homogeneous halfspace, or in a horizontally-layered
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halfspace, which are generated by the appropriate dipole source. The Born approximation

of the adjoint field is also considered.

Computing an approximate adjoint field will be quicker than computing the true

adjoint field in the multi-dimensional conductivity model. Repeating this calculation for

the dipole source at each observation location will lead to considerable time-savings in

the generation of the Jacobian matrix. The approximate adjoint field will obviously not

contain all the features of the true adjoint field in the multi-dimensional model. How

ever, as I shall illustrate in the next chapter, the true adjoint field is dominated by its

decay away from the dipole source. Suitable choice of conductivities for the homogeneous

or layered halfspace result in an approximate adjoint field that has the same dominant

behaviour. Such an approximate adjoint field, when combined in the volume integration

with the electric field, E, from the forward modelling (which is exact) produces approxi

mate sensitivities that are sufficiently accurate to allow an iterative inversion procedure

to converge to the desired result.

Furthermore, the adjoint-equation method of exactly calculating the sensitivities is

completely general. The approximate form of sensitivities presented here can therefore

be used in any electromagnetic inverse problem irrespective of source-receiver geometry.

In the next Chapter, I shall investigate the forms of the approximate adjoint field

for the two-dimensional electromagnetic inverse problem and emphasise the comparisons

between the approximate adjoint fields and the true adjoint field for a two-dimensional

conductivity structure. In Chapter 6, approximate sensitivities for the two-dimensional

magnetotelluric problem are calculated for a simple model and compared with the ac

curate sensitivities. The approximate sensitivities are then used in the inversion of a

synthetic data-set and a field data-set. In Chapter 7, the approximate sensitivities for

the 2.5d problem and the three-dimensional controlled-source problem are calculated and

compared with the accurate sensitivities for simple conductivity models.



Chapter 5

Approximate Adjoint Fields for the

Two-Dimensional Problem

5.1 Introduction

The approximate form of sensitivity presented in this thesis is based on approximat

ing the adjoint field required in the adjoint-equation method of accurately calculating

the sensitivities. The rationale for this was given in Chapter 4. Here I investigate vari

ous possibilities for the approximate adjoint field in the context of the two-dimensional

problem. The possibilities are the electric field computed in a homogeneous halfspace

for the appropriate dipole source, the electric field computed in a horizontally-layered

halfspace, and the Born approximation of the adjoint field. The approximate adjoint

fields are computed and compared with the corresponding true adjoint field for a simple

two-dimensional conductivity model.

5.2 True adjoint field

Consider the two-dimensional conductivity model shown in Fig. 5.1 comprising a con

ductive block of 0.1 S m1 in a more resistive background of 0.01 5 m1, and a conductive

basement of 0.1 S m1. (The mesh used for all calculations relating to this conductivity

model is shown in Fig. 5.2.) Suppose measurements are made of the electric and magnetic

fields induced in this model by a source that is also invariant in the strike direction (for

example, the plane-wave source assumed in magnetotelluric experiments). For this purely

two-dimensional problem, the adjoint field is the electric field due to a two-dimensional

dipole source at the measurement location (see Appendix B). This source is equivalent to

an infinite line of point (in three-dimensional space) dipoles which is parallel to the strike

direction and which passes through the measurement location. Suppose a measurement
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Figure 5.1 The two-dimensional conductivity model used here and in sub
sequent chapters to illustrate the approximate adjoint fields and approximate
adjoint sensitivities for the two-dimensional and 2.5d inverse problems.

of the along-strike electric field, E, has been made at x0 = —3000 m on the surface of

the model. From eq. (4.14) and Appendix B, the sensitivity of this measurement with

respect to the model parameter is given by

= fEt.Ejds. (5.1)
,=—3OOO A

Here, the adjoint field, Et, is the electric field due to a unit two-dimensional y-directed

electric dipole source (essentially an infinite line current in the along-strike direction) at

the observation location x1, = —3000 m.

The true adjoint field for the two-dimensional model in Fig. 5.1 and for the two

dimensional p-directed electric dipole source at = —3000 m was computed using the

N 100001

I
15000

(m)
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U

Figure 5.2 The mesh used for all
in Fig. 5.1.

calculations associated with the model shown

finite-element program of Unsworth, Travis & Chave (1993). The adjoint field was com

puted at each node in the mesh shown in Fig. 5.2. The amplitude of this adjoint field is

shown in Fig. 5.3a. The phase is shown in Fig. 5.4a. The frequency of the source was

0.2 Hz. Note the distortion of the phase due to the conductive block, and the increased

decay of the amplitude and the increase in the phase as the electric field penetrates the

conductive basement.

5.3 Approximate adjoint field: homogeneous halfspace

The first possible form of approximate adjoint field that I present is the electric field

computed in a homogeneous halfspace for the appropriate dipole source. The method

used for computing the electric field generated in a homogeneous halfspace by a two-

dimensional dipole is briefly described in Appendix C. Fig. 5.3b shows the amplitude

of the electric field computed in a homogeneous halfspace of conductivity 0.028 S m1

for a unit two-dimensional y-directed electric dipole source at x0 = —3000 m, and for a

frequency of 0.2 Hz. The corresponding phase is shown in Fig. 5.4b. The above value of
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Figure 5.3 The amplitudes of the true and approximate adjoint fields for a
directed electric line source over the two-dimensional conductivity model shown
in Fig. 5.1. The location of the line source is shown by the triangle. Panel (a)
shows the true adjoint field, and panels (b) to (d) show respectively the approxi
mate adjoint fields computed in a homogeneous halfspace, in a layered halfspace,
and using the Born approximation. The grey-scale represents log10 Ej.
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Figure 5.4 The phases of the true and approximate adjoint fields for the
two-dimensional conductivity model shown in Fig. 5.1. The location of the line
source is shown by the triangle. Panel (a) shows the true adjoint field, and
panels (b) to (d) show respectively the approximate adjoint fields computed in
a homogeneous halfspace, in a layered halfspace, and using the Born approxi
mation. The grey-scale represents phase in degrees.
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the conductivity was obtained by averaging the logarithm of the conductivities, weighted

by across-strike area, of the model shown in Fig. 5.1.

The approximate adjoint field shown in Figs. 5.3b and 5.4b obviously contains no

information about the conductive block nor the conductive basement. However, the dom

inant behaviour of the true adjoint field is the decay in amplitude and increase in phase

away from the source, which is exactly the behaviour of the approximate adjoint field

computed in the homogeneous halfspace. The effect of the two-dimensional structure in

the conductivity model shown in Fig. 5.1 can almost be relegated to that of a perturbation

to the field that would otherwise be present in the homogeneous halfspace. It is felt that

this level of agreement between true and approximate adjoint fields should be sufficient

for the subsequent approximate sensitivities to be useful in an iterative inversion scheme.

5.4 Approximate adjoint field: layered halfspace

The second form of approximate adjoint field is that computed in a layered halfspace.

An appropriate layered halfspace can be constructed by averaging the conductivities of

the multi-dimensional model in each of a series of horizontal layers. The electric field gen

erated in a layered model by a two-dimensional source can be computed using the method

described in Appendix A. Doing this for a unit two-dimensional y-directed electric dipole

at x = —3000 m and for a frequency of 0.2 Hz gives the electric field shown in Figs. 5.3c

and 5.4c. The layered halfspace used for this example was obtained by averaging the

logarithms of the conductivities, weighted by across-strike area, in each horizontal layer

of the model in Fig. 5.1. Just as for the approximate adjoint field computed in a homo

geneous halfspace (see Figs. 5.3b and 5.4b), there is, of course, no manifestation in the

field shown in Figs. 5.3c and 5.4c of the two-dimensional effects of the conductive block.

However, the rapid decrease in amplitude and increase in phase of the true adjoint field

in the conductive basement is well reproduced in the approximate adjoint field computed

in the layered halfspace. This is not surprising since this feature of the two-dimensional
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model is replicated in the layered halfspace used for computing the approximate adjoint

field.

5.5 Approximate adjoint field: Born approximation

The third form of approximate adjoint field presented here results from the Born

approximation. Consider the integral equation describing the true adjoint field, E, in

the multi-dimensional conductivity model (eq. 27, Hohmann 1988):

Et(r) = E(r) + j G(r; r’) Et(r’) (r’) dv’, (5.2)

where is the electric field calculated in some background conductivity model and Lio is

the difference between the background and true conductivity structures. G is the tensor

Green’s function for the background conductivity model. Eq. (5.2) is exact. The Born

approximation for E is obtained by replacing E in the integrand by E:

E(r) E(r) + j G(r; r’) . E(r’) (r’) dv’. (5.3)

The elements of the tensor Green’s function,

/G
G(r;r’) = G?,,z ) , (5.4)

\ G J
are such that is the x-component of the electric field generated in the background con

ductivity model by a unit y-directed electric dipole. For the E-polarisation case, eq. (5.3)

reduces to a scalar equation and the only relevent component of the tensor Green’s func

tion, for a homogeneous halfspace background model is given by Hohmann (1988).

For the il-polarisation case, the relevent components of the tensor Green’s function (G,

G & G) for a homogeneous halfspace are given by Lee & Morrison (1984).
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The Born approximation for the adjoint field was calculated for the conductivity

model in Fig. 5.1. The background conductivity model in which and were caldu

lated was a homogeneous halfspace of 0.01 S m1. This value is the same as that for the

resistive background in the model in Fig. 5.1, and was chosen to minimise the number of

cells over which the numerical integration in eq. (5.3) had to be carried out. The resulting

approximate adjoint field generated by a two-dimensional y-directed electric dipole source

is shown in Figs. 5.3d and 5.4d. As before, a frequency of 0.2 Hz was used. From Fig. 5.3

it can been seen that the Born approximation produces a poorer approximation of the

amplitude of the adjoint field than that computed in the homogeneous halfspace. This

is because of the difference between the background conductivity used to compute the

Born approximation and the conductivity of the homogeneous halfspace used to produce

Fig. 5.3b. However, the phase of the Born approximation (Fig. 5.4d) is somewhat better

than that computed for the homogeneous halfspace above about 1000 m and does give

an indication of the increase in phase that the true adjoint field exhibits in the conduc

tive basement, although this is not nearly as well reproduced as in the approximation

calculated in the layered model.

5.6 Computation times

The true and approximate adjoint fields described in this chapter were computed

on a Sun Sparclo workstation. The time required to compute each of these is listed

in Table 5.1. For the given values, the adjoint field was computed at the 861 nodes in

the mesh shown in Fig. 5.2 (21 vertically and 41 horizontally) for the two-dimensional

y-directed electric dipole source. The approximate adjoint fields calculated in a homo

geneous or layered halfspace have similar computation times which are significantly less

than the computation time for the true adjoint field. The Born approximation takes

considerably longer to compute than the true adjoint field. This is because the Green’s

function needed in eq. (5.3), that is the electric field in the homogeneous halfspace due
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True adjoint field 75
Approximate adjoint field: homogeneous halfspace 1

layered halfspace 2
Born approximation 25

Table 5.1 Example computation times for the various types of two-dimensional
adjoint fields.

to a two-dimensional electric dipole, has to be computed for dipoles at depths within the

model, not just for one at the surface.

5.7 Conclusions

In this chapter, I have presented three forms of approximate adjoint field. An exam

ple for each was computed for a simple two-dimensional conductivity model and compared

with the true adjoint field. The approximate adjoint field computed in the homogeneous

halfspace replicates the dominant features of the true adjoint field: the decay in ampli

tude and increase in phase away from the dipole source. The approximate adjoint field

computed using the layered halfspace matches the behaviour of the true adjoint field in

the layered features within the two-dimensional model. The Born approximation of the

adjoint field exhibits some of the two-dimensional features present in the true adjoint field,

although it does not match the amplitudes of these features. These points are further

illustrated by Figs. 5.5 and 5.6: the differences between the logarithm of the amplitude

of the true adjoint field and the logarithm of the amplitude of the three approximate

adjoint fields are shown in Fig. 5.5, and the differences between the phases are shown in

Fig. 5.6. It is further evident from these figures that all three approximate adjoint fields

are good overall approximations of the true adjoint field.

The approximate adjoint field computed in the homogeneous and layered halfspaces

are significantly quicker to obtain than the true adjoint field. The Born approximation,

however, is substantially slower to compute than the true adjoint field.
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In the next chapter, I shall use the three forms of the approximate adjoint field

introduced in this chapter to compute approximate sensitivities for the two-dimensional

magnetotelluric problem.



Figure 5.5 The differences between the logarithm of the amplitude of the
true adjoint field shown in Fig. 5.3a and the logarithm of the amplitudes of the
approximate adjoint fields shown in Figs. 5.3b to 5.3d. The panels show the
differences between the true adjoint field and (a) the approximate adjoint field
computed in a homogeneous halfspace, (b) that computed in a layered halfspace,
and (c) using the Born approximation.
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Figure 5.6 The differences between the phase of the true adjoint field shown
in Fig. 5.4a and the phase of the approximate adjoint fields shown in Figs. 5.4b
to 5.4d. The panels show the differences between the true adjoint field and
(a) the approximate adjoint field computed in a homogeneous halfspace, (b) that
computed in a layered halfspace, and (c) using the Born approximation.
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Chapter 6

Approximate Sensitivities for the Two-Dimensional

Magnetotelluric Inverse Problem

6.1 Introduction

In the previous chapter, I compared three forms of approximate adjoint field that

could be used for a two-dimensional inverse problem. In this chapter, I use these adjoint

fields to calculate approximate sensitivities for the two-dimensional magnetotelluric prob

lem. These sensitivities are compared with sensitivities calculated using the brute-force

(or perturbation) method. In the final two sections of this chapter, the approximate

sensitivities are used within a minimum-structure, Gauss-Newton algorithm to invert

synthetic and field data.

6.2 Calculation of the sensitivities

6.2.1 Sensitivities for apparent resistivity and phase

The observed quantities in a magnetotelluric experiment are usually considered to

be the frequency-domain values of apparent resistivity, pa, and phase, ç. For a two

dimensional Earth, for which the magnetotelluric problem can be split into two decoupled

modes, the apparent resistivity and phase are given by

paQ”) = and b(w) = phase () (6.1)

for the E-polarisation mode, and by

pa(W) = and (w) = phase () (6.2)

57
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for the il-polarisation mode, where w is the angular frequency and t is the magnetic

permeability. The strike direction is assumed to lie in the y-direction. The sensitivities

for the apparent resistivity and phase can be expressed in terms of the sensitivities for

the electric and magnetic fields (see Appendix D):

= 2Pa {e () - e iL) } (6.3)

and

(1OE”\ (1OH’\
= sm - (6.4)

These relationships therefore enable approximate sensitivities for the apparent resistivity

and phase to be calculated from the approximate sensitivities for the electric and magnetic

fields obtained using the method described in Chapter 4.

6.2.2 Area integration

For the two-dimensional magnetotelluric inverse problem, the sensitivities for the

electric and magnetic fields have the form (see section 5.2)

=
jEt.Ezi&jds (6.5)

where F represents one component of the electric or magnetic field (either E, E, H or

Hr). For the typical situation in which the model comprises rectangular cells of uniform

conductivity, that is the basis function is equal to 1 within the j” cell and equal to

zero everywhere else, the area integration in eq. (6.5) becomes

OF =

J J E . E dz dx, (6.6)
9o-j 0 ZO
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Z
(x0,z0) (x1,z0)

(a0,z1) (xj,z1)

Figure 6.1 The notation used for the bilinear interpolation and integration
of the electric and adjoint fields over a cell in a two-dimensional conductivity
model.

where, for simplicity of notation, the th cell is assumed to extend from z0 to x and

from z0 to z1 as shown in Fig. 6.1.

The forward-modelled electric field E will usually only be known at the nodes in the

model (that is, at the vertices of the cell shown in Fig. 6.1). To calculate the integral in

eq. (6.6), the real and imaginary parts of the components of E are bilinearly interpolated

over the rectangular cell:

E(x,z) = c1xz + c2z + c3x + c4. (6.7)

E represents the real or imaginary part of the component of the electric field. For a

general cell, the 4 x 4 system of equations relating the values of E at the vertices of the

cell to the coefficients c, i = 1,... , 4, in the above expansion was solved analytically. The

resulting expressions are then used to calulate the coefficients for a particular cell from

the values of E at the vertices of that cell. The adjoint field, E is bilinearly interpolated

in an analogous manner. With the real and imaginary parts of the components of E

and E in the form of eq. (6.7), the integration with respect to x and z in eq. (6.6) could

also be carried out analytically for a general cell. The resulting expression is a function
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of the coefficients in the bilinear expansions of E and E. For a particular cell, therefore,

the integral in eq. (6.6) can be evaluated, using analytic formulae, from the values of the

electric and adjoint fields at the vertices of the cell.

It was found that the horizontal discretisation of the mesh (see Fig. 5.2) used to

calculate the sensitivities in the next two sections was too coarse for the above technique

to accurately evaluate the integral over the cells close to the dipole, especially for the

H-polarisation mode. The adjoint field for this mode varies more rapidly near the source

than the adjoint field for the E-polarisation mode shown in Figs. 5.3 and 5.4. The cells in

the mesh were therefore sub-divided horizontally and the forward-modelled electric field

(which does not vary rapidly horizontally) linearly interpolated over these sub-divisions.

The adjoint field was explicitly computed at the vertices of the sub-divisions. This re

quired an insignificant number of additional computations. The technique described in

the previous paragraph was then used to evaluate the area integration over each sub

division.

6.3 Comparison of approximate and accurate sensitivities

6.3.1 Homogeneous halfspace

Programs were written to compute approximate sensitivities for the two-dimensional

magnetotelluric problem using each of the three forms of approximate adjoint field de

scribed in Chapter 5. The programs were first tested by computing the approximate

sensitivities for a homogeneous halfspace. For this special case, the approximate adjoint

fields are not in fact approximate but exact, and so the resulting sensitivities are exact.

Consider a homogeneous halfspace of conductivity 0.01 S m1 with the same hori

zontal and vertical dimensions as the model shown in Fig. 5.1. Suppose measurements of

the E-polarisation apparent resistivity and phase had been made at x, = —3000m on the

surface of the model at a frequency of 0.2 Hz. Sensitivities were calculated for these obser

vations using the brute-force (or perturbation) method. The model was divided into the

800 cells (20 vertically and 40 horizontally) shown in Fig. 5.2. The conductivity of each
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cell was perturbed in turn by 10% (this perturbation is large, but was required to obtain

accurate values for the cells far from the observation location) and a forward modelling

performed to calculate the resulting changes in the apparent resistivity and phase. The

sensitivity with respect to the perturbed model parameter is then given by the change

in the apparent resistivity or phase divided by the change in the model parameter. (The

forward modelling was carried out using the transmission-surface modelling program of

Madden 1972.) These sensitivities are shown in Figs. 6.2a and 6.2b. The sensitivity is

plotted as a constant value over the area of the cell to which it refers.

Approximate sensitivities were calculated for the homogeneous conductivity model

described above. The forward-modelled electric field was computed using the program of

Madden (1972). All three forms of approximate adjoint field were used, and the resulting

sensitivities compared with the brute-force sensitivities shown in Figs. 6.2a and 6.2b.

The E-polarisation sensitivities calculated using the adjoint field computed in a layered

halfspace (all the layers of which had the same conductivity) are shown in Figs. 6.2c

and 6.2d. There is very good agreement between the brute-force sensititivities and the

sensitivities calculated using the adjoint field in the layered halfspace. The approximate

sensitivities calculated using the adjoint field computed in a homogeneous halfspace and

those calculated using the Born approximation of the adjoint were indistinguishable from

those in Figs. 6.2c and 6.2d.

A comparison was also made of the brute-force and approximate sensitivities for

the H-polarisation mode. The brute-force sensitivities are shown in Figs. 6.3a and 6.3b.

The approximate sensitivities calculated using the adjoint field in a layered halfspace are

Figure 6.2 (Following page) Sensitivities for the E-polarisation apparent resis
tivity and phase for a homogeneous halfspace of conductivity 0.01 S m1 and
for a frequency of 0.2 Hz. The observation location is indicated by the tri
angle. Panels (a) and (c), and the colour-bar on the left of the figure, show
log10ãlnp/Olno. Panels (b) and (d), and the colour-bar on the right, show
log108q5/6lncr. Panels (a) and (b) were produced by the brute-force method,
and panels (c) and (d) were produced by the approximate-sensitivity program
using an adjoint field computed in a layered halfspace.
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shown in Figs. 6.3c and 6.3d. Again there is good agreement between the brute-force and

approximate sensitivities.

6.3.2 Two-dimensional model

Approximate sensitivities were calculated for the two-dimensional model shown in

Fig. 5.1. As in the section above, measurements of the apparent resistivity and phase

made at Xc, = —3000 m on the surface of the model at a frequency of 0.2 Hz were

considered. The E-polarisation brute-force sensitivities are shown in Figs. 6.4a and 6.4b,

and the approximate sensitivities in Figs. 6.4c and 6.4d. The approximate sensitivities

were calculated using the approximate adjoint field computed in a layered halfspace. (For

this example, the approximate adjoint field is that shown in Figs. 5.3c and 5.4c.)

There is good agreement between the brute-force and approximate sensitivities shown

in Fig. 6.4. A comparable, although slightly poorer, level of agreement was found for the

two other forms of approximate sensitivity. It should be noted that, because the sensitiv

ities shown in Fig. 6.4 are with respect to ln a, they depend directly on the conductivity

model as well as the behaviour of the electric and adjoint fields within the model. (This

Figure 6.3 (Following page) The H-polarisation sensitivities for the homoge
neous halfspace. Panels (a) and (c), and the colour-bar on the left of the figure,
show log10jOlnp/Oln4 Panels (b) and (d), and the colour-bar on the right,
show log10Oq/Olno. Panels (a) and (b) were produced by the brute-force
method, and panels (c) and (d) were produced by the approximate-sensitivity
program using an adjoint field computed in a layered halfspace.

Figure 6.4 (Page 65) Brute-force and approximate sensitivities for the E
polarisation apparent resistivity and phase for the conductivity model shown
in Fig. 5.1. The observation location is indicated by the triangle. The fre
quency was 0.2 Hz. Panels (a) and (c), and the colour-bar on the left of the
figure, show log10Olnp/O1ncrj, and panels (b) and (d), and the colour-bar
on the right, show log10Oq/Olnoj. Panels (a) and (b) show the sensitivities
produced by the brute-force method, and panels (c) and (d) show the approxi
mate sensitivities calculated using the approximate adjoint field computed in a
layered halfspace.
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can be seen from the relation O/O(ln o) = o 6/0o.) The dramatically increased sensi

tivity in the conductive block that results from this, and the enhanced sensitivity in the

conductive basement, can be clearly seen in Fig 6.4. This is the two-dimensional mani

festation of what Boerner & Holladay (1990) observed in their “fractional” sensitivities

for the one-dimensional problem (see section 3.3.1).

The H-polarisation sensitivities were also calculated for the two-dimensional con

ductivity model. The brute-force sensitivities are shown in Figs. 6.5a and 6.5b, and

the approximate sensitivities calculated using the adjoint field in a layered halfspace are

shown in Figs. 6.5c and 6.5d. The agreement between the brute-force and approximate

sensitivities is similar to that for the E-polarisation sensitivities. Again, the two other

forms of approximate sensitivity gave a slightly poorer level of agreement.

6.4 Computation times

Table 6.1 lists the computation times for the various methods of calculating the

Jacobian matrix of sensitivities for a small two-dimensional magnetotelluric example.

The sensitivities were calculated for 80 data (observations of apparent resistivity and

phase for both E- and H-polarisations at four locations and at five frequencies) with

respect to the conductivities of the 800 cells used to parameterise the model in Fig. 5.1.

The approximate adjoint fields in both the homogeneous and layered halfspaces were

only explicitly computed for one observation location and then translated horizontally

to calculate the sensitivities for the three remaining observation locations. This results

in a considerable time-saving that becomes more significant with increasing number of

observation locations. In a similar manner, for the Born approximation of the adjoint

Figure 6.5 (Following page) Brute-force and approximate sensitivities for the
H-polarisation mode for the conductivity model shown in Fig. 5.1. Panels (a)
and (c), and the colour-bar on the left of the figure, show log10Olnp/ôlncr,
and panels (b) and (d), and the colour-bar on the right, show log10 q/Olnu.
Panels (a) and (b) show the sensitivities produced by the brute-force method,
and panels (c) and (d) show the approximate sensitivities.
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field, both and G, which were calculated in a homogeneous halfspace, were explicitly

computed for only the first observation location and then translated horizontally for

the other observation locations. This reduces the computation time for this third form of

approximate sensitivities, although it is still not less than that of the accurate sensitivities.

It is not until there are tens of observation locations that the approximate sensitivities

based on the Born approximation of the adjoint field require less time to calculate than

the accurate sensitivities.

Accurate sensitivities: brute-force 500 mm
adjoint-equation 2.5

Approximate sensitivities: homogeneous halfspace 0.25
layered halfspace 0.5
Born approximation 5

Table 6.1 Example computation times for the various types of sensitivities for
the two-dimensional magnetotelluric inverse problem.

6.5 Two-dimensional inversion of magnetotelluric data

So far in this chapter, I have been concerned with the comparison of the values of

the approximate and accurate sensitivities. Although this is important, the usefulness of

the approximate sensitivities ultimately depends on their successful performance within

an inversion routine. In this section, therefore, I test the behaviour of an iterative,

linearised inversion procedure that uses the approximate sensitivities. The inversion

strategy discussed in Chapter 2 is used to invert synthetic and field magnetotelluric data

to recover two-dimensional conductivity models.

The sensitivities are just one of several components in an inversion procedure, and so

the effectiveness of the approximate sensitivities will depend on the details of the inversion

strategy used: convergence of one algorithm using approximate sensitivities does not

mean that all algorithms will converge. However, testing approximate sensitivities in all
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possible algorithms is clearly impractical. Here I consider an algorithm that is typical

of those that one would like to apply to the multi-dimensional electromagnetic inverse

problem.

6.5.1 Synthetic data

Approximate sensitivities, calculated using the approximate adjoint field in a layered

halfspace, were used to invert a set of synthetic data generated from the conductivity

model in Fig. 5.1. Values of the E- and H-polarisation apparent resistivity and phase

were calculated at four observation locations (Xe —11000, —3000,5000 and 13000m)

for five frequencies (1, 0.5, 0.2, 0.1 and 0.05 Hz). Gaussian random noise was added to

these data. The standard deviation of the noise added to the apparent resistivity was 5%,

and the standard deviation of the noise added to the phase was 2 degrees. The data are

shown in Fig. 6.6.

The 80 synthetic data were inverted using an iterative, linearised, minimum-structure

inversion procedure in which the system of equations at each iteration was solved using

a subspace technique. The details of the inversion algorithm are given in Oldenburg &

Ellis (1993). The model norm that was minimised was the discrete equivalent of

= fa3w3(m — rn0)2 +
JA 1

/O(m_mo)2

______

cw Ox ) + wz ) ) ds, (6.7)

where the model, m, was equal to ln o, and the reference model, m0, corresponded to

a halfspace of conductivity 0.01 5 m1. The values of the coefficients were = 10—2,

= 3 and c = 1. The weighting functions, w8, w and w were constant and equal to

unity throughout the model, except for w, which was equal to 10 in the top four layers

of the model. This was to suppress structure developing in the near-surface layers as a
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Figure 6.6 The synthetic data (shown by the circles and error bars) generated
from the model shown in Fig. 5.1, and the predicted data (shown by the lines)
from the final model produced by the inversion of the synthetic data. The
filled circles and solid lines correspond to the E-polarisation data, and the open
circles and dashed lines to the H-polarisation data. The units of the apparent
resistivity, Pa are fm and those of the phase, q, are degrees.
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result of the large H-polarisation sensitivities for these layers (see Figs. 6.3 and 6.5). The

subspace vectors were the steepest-descent vectors

vk = (Wm)’ Vm (6.8)

where YLm is the weighting matrix associated with the discrete equivalent of eq. (6.7),

and is the data misfit for the kt partition of the data. The data were ordered

according to their individual misfit and then divided into, in this case, 20 partitions. The

approximate sensitivities were calculated using the approximate adjoint field in a layered

halfspace. The conductivities of the layers were chosen by averaging the logarithms of

the conductivities within each layer of the model.

The final model is shown in Fig. 6.7. The conductive block has approximately

the correct amplitude and is situated at the correct depth and horizontal location. The

conductive basement has also been recovered. The predicted data produced by this model

are shown in Fig. 6.6.

The values of the data misfit, model norm and Lagrange multiplier during the inver

sion are shown in Fig. 6.8. The data misfit decreases at the requested rate (/3 = 0.8) for

the first seventeen iterations. The inversion algorithm can then only decrease the misfit

more slowly than the requested rate. The target misfit of 80 is achieved after 31 iterations

and the misfit then remains constant for the remaining iterations. The model norm grad

ually increases before levelling off once the algorithm has achieved the target data misfit.

The Lagrange multiplier steadily increases for the first twenty iterations, but then varies

considerably for the next ten. This coincides with the iterations for which the algorithm

cannot decrease the misfit at the requested rate. It appears as if the algorithm is having

to work hard to lower the misfit to the target value. Once the target misfit has finally

been achieved, the Lagrange multiplier levels off and shows only small variations as the

algorithm attempts to further minimise the model norm.

The results of the above inversion of synthetic data are what would be expected if

accurate sensitivities had been used in place of the approximate sensitivities: the final
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Figure 6.7 The final model produced by the inversion of the synthetic data
shown in Fig. 6.6. The model used to generate these data is the one shown in
Fig. 5.1. The colour-bar is the same for both figures. The triangles indicate the
observation locations.

72

model reproduces the data to the desired level of misfit and has the typical smeared-

out appearance of a model produced by a minimum-structure inversion algorithm. The

behaviour of the data misfit, model norm and Lagrange multiplier (with the possible

exception of the oscillations between iterations 24 and 30) is also what would have been

expected if accurate sensitivities had been used in the inversion procedure.

As a final comment for this section, if the approximate sensitivities of Smith &

Booker (1991) had been used to invert the synthetic magnetotelluric data considered in

this section, the model could only have contained four columns of cells, one beneath each

observation location. The horizontal resolution of the final model would therefore have

been considerably less than that in Fig. 6.7.

N 10000

I
S— 15000
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Figure 6.8 The data misfit, q, model norm, 1m’ and Lagrange multiplier, ,
as functions of iteration during the inversion of synthetic data discussed in
section 6.5.1.

6.5.2 COPROD2 data

To conclude this chapter, the approximate sensitivities were used in the inversion of

a set of field data. The data-set chosen was a sub-set of the COPROD2 data-set collected

in southern Saskatchewan and Manitoba. A description of the COPROD2 data-set and

their context is given by Jones (1993). The data are dominated by the effects of the North

American Central Plains (“NACP”) anomaly: a linear zone of high conductivity at mid

crustal depths that runs north from South Dakota through Saskatchewan before turning

eastwards under Hudson Bay. The anomaly appears in the COPROD2 data as low values

of the E-polarisation apparent resistivity and high values of the E-polarisation phase. In

contrast, the H-polarisation measurements show little indication of the anomaly.
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The COPROD2 data have been used by the magnetotelluric community as a test

data-set for the comparison of two-dimensional inversion schemes (see Ingham, Jones &

Honkura 1993). The considerable splitting of the E- and H-polarisation modes mentioned

above makes the COPROD2 data-set a challenging test for any inversion procedure, es

pecially considering the size of the problem is close to the limit of what can presently

be contemplated. All the inversion programs thus far applied to the COPROD2 data-set

have struggled to some extent, either because of the nature of the data or because of

their considerable number.

The sub-set of the COPROD2 data chosen for consideration here is the same as

that used by Ellis, Farquharson & Oldenburg (1993), except that stations to the east of

118 km, and so relating to the Thompson belt (“TOBE”) anomaly, were omitted. The

total number of data was therefore 896. The error estimates were the same as those of

Ellis et al. The observed values of apparent resistivity and phase are shown in Fig. 6.9.

For the inversion carried out here, the model was divided into 30 layers and 62

columns as shown in Fig. 6.10. The columns were arranged so there was one column

beneath each observation location and an additional column between each pair of stations.

There were therefore just over twice as many columns as there were stations. The resulting

number of cells was 1860.

The inversion algorithm was the same as that used in section 6.5.1. Approximate

sensitivities were calculated using the approximate adjoint field computed in a layered

halfspace. The conductivities of the layers of this halfspace were obtained by averaging

the logarithms of the conductivities in each layer of the two-dimensional model. A one-

dimensional inversion of the complete data-set was carried out to produce the best-fitting

horizontally-layered model. This model, which has a conducting surface layer of 0.5 S m1

that ramps down to a resistive basement of 0.01 S m1 below about 7 km, was then used

as the reference model in the two-dimensional inversion. This reference model was not

included in the horizontal and vertical gradient terms (see eq. 6.7) in the weighting

matrix Lm The subspace vectors were again obtained by partitioning the data in terms

of misfit, but 200 partitions were used here rather than the 20 in section 6.5.1.
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Figure 6.9 The sub-set of the COPROD2 data considered in section 6.5.2.
The observations are represented by the circles, crosses and error bars. The
lines indicate the predicted data for the final model produced by the inversion
(see Fig. 6.11). The filled circles and solid lines correspond to the E-polarisation
data, and the crosses and dashed lines to the il-polarisation data. The units of
the apparent resistivity, Pa are m and those of the phase, q, are degrees.
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Figure 6.10 The mesh for the model used in the inversion of the COPROD2

data. The final model is shown in Fig. 6.11. The vertical exaggeration is 2.9:1
(this is different from Fig. 6.11).

As mentioned at the start of this section, the COPROD2 data-set has proved to be

challenging to many inversion programs. This was also the case here. The main difficulty

was that both the E- and H-polarisation sensitivities were large for the uppermost layers in

the model. The values of w3 and w for these layers were therefore increased to counteract

the development of excessive structure that these large sensitivities would otherwise cause.

The process of choosing the most effective form of this additional weighting was empirical.

I therefore ran the inversion program numerous times, each using a different form of

weighting in the near-surface layers. Once the misfit had stopped decreasing, I would

alter the weighting to see if a further decrease in the misfit could be achieved. The final

result of the inversion process was the model shown in Fig. 6.11. The predicted data for

this model are shown in Fig. 6.9, and the corresponding value of the x2 misfit is 1370.

This is greater than the target value of 896. However, the final misfit is close to this

target misfit, and the comparison between the observed and predicted data in Fig. 6.9 is

good.
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In summary, therefore, the inversion of the CQPROD2 data using the approximate

sensitivities has produced a model that reproduces the observations to almost the desired

level of misfit. The final model also contains the multiple, distinct, mid-crustal conductors

that have been produced by other inversions of the COPROD2 data.

6.6 Conclusions

In this chapter, I have calculated approximate sensitivities for the two-dimensional

magnetotelluric inverse problem. These sensitivities were compared with brute-force sen

sitivities for a two-dimensional conductivity model. It was shown that the agreement be

tween the approximate and brute-force sensitivities is good, especially when considering

the sensitivity with respect to the logarithm of the conductivity. The level of agreement,

as illustrated in Figs. 6.6 and 6.7, seems sufficient to enable iterative, linearised inver

sions of magnetotelluric data which use these approximate sensitivities to converge to an

acceptable model. This was emphasised by successful inversions of a synthetic data-set

and of the COPROD2 data.

It was also shown that the approximate sensitivities are considerably quicker to

compute than even the most efficient method of accurately calculating the sensitivities.

For the small example considered in section 6.4, a factor of five difference was obtained.

This factor will increase with the size of the problem, since the approximate adjoint

field is calculated for the dipole at only one observation location and then translated for

all other observation locations. Calculating the accurate sensitivities using the adjoint

equation method requires the adjoint field to be computed for a dipole at each observation

location. The difference-factor for the inversion of the COPROD2 data in section 6.5.2

was estimated to be two orders of magnitude.

Figure 6.11 (Following page) The final model produced by the inversion, using
the approximate sensitivities, of the sub-set (shown in Fig. 6.9) of the COPROD2
data. The vertical exaggeration is approximately 2.3:1.
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Chapter 7

Approximate Sensitivities for the 2.5d and

Three-Dimensional Inverse Problems

.1 Introduction

In Chapter 6, I investigated approximate sensitivities in the context of the two-

dimensional magnetotelluric problem. I presented a comparison of the approximate and

accurate sensitivities for a simple two-dimensional conductivity model. This comparison

covered all the observed quantities relevent to the two-dimensional magnetotelluric prob

lem: measurements of apparent resistivity and phase for both the E- and il-polarisations.

It was shown that there was good agreement between the accurate and approximate sen

sitivities. It was also shown that the computation time for the approximate sensitivities

was considerably less than for any of the accurate methods of calculating the sensitiv

ities. Finally, in the last part of Chapter 6, I presented the results of two inversions

using the approximate sensitivities, one of synthetic data and one of field data (a sub-set

of the COPROD2 data). The approximate sensitivities performed successfully in both

inversions.

In this chapter, I consider the approximate sensitivities for the 2.5d problem and

the three-dimensional controlled-source problem. The main goal is to construct com

putational algorithms to calculate the approximate sensitivities for these more realistic

and widespread problems, and to determine how much faster the approximate sensitiv

ities are to compute than the accurate sensitivities. A complete investigation similar to

that in Chapter 6, including test inversions using the approximate sensitivities, was not

contemplated. It was assumed that if a similar level of agreement to that in Chapter 6

was obtained between the approximate and accurate sensitivities, then the approximate

80
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sensitivities would perform as well in a 2.5d or three-dimensional inversion as they did in

the two-dimensional inversions of magnetotelluric data.

In the first half of this chapter, I consider the approximate sensitivities for the 2.5d

inverse problem in which the electric and magnetic fields vary in all three dimensions

but the conductivity model varies in only two-dimensions (the vertical direction and

one horizontal direction). The approximate sensitivities are compared with accurate

sensitivities for a homogeneous halfspace and for a simple conductivity model, and the

difference in computation time between the approximate and accurate sensitivities is

demonstrated.

In the second half of this chapter, I consider the approximate sensitivities for the

three-dimensional controlled-source problem. This is the most general geophysical elec

tromagnetic inverse problem and is the one we ultimately want to solve on a routine

basis. However, the extent to which a comparison of approximate and accurate sensitivi

ties could be made was severely restricted by the limitations placed on three-dimensional

forward modelling by current computer technology. The only feasible comparison was

therefore for a model in which a confined region had been parameterised into 5 x 5 x 5

cells. Using this parameterisation, the approximate and accurate sensitivities were com

pared for a homogeneous model and for a simple three-dimensional conductivity structure.

These comparisons also served to illustrate the considerable difference in computation

times for the approximate and accurate sensitivities.

1.2 Calculation of the sensitivities for the 2.5d problem

To calculate the sensitivities for the 2.5d problem, the general expression given by

eq. (4.14) is first manipulated to take advantage of the particular nature of the problem

(Unsworth & Oldenburg, 1995). As for the two-dimensional magnetotelluric problem

discussed in Chapter 6, the model for the 2.5d problem is usually parameterised in terms

of rectangular cells of uniform conductivity. These cells are infinite in extent in the strike
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direction (assumed as before to lie in the y-direction). The expression for the sensitivity

can therefore be written as

= jfEt.Edsdy, (7.1)
oo A3

where F represents the appropriate component of the electric or magnetic field (Es, E,

E, H, H or H) and A is the area of the cell (in the across-strike plane).

The forward modeffing for the 2.5d problem was carried out using the program of

Unsworth, Travis & Chave (1993). This program essentially solves a two-dimensional

problem for each in a sequence of along-strike wavenumbers k. The required electric

or magnetic field is then obtained by performing the one-dimensional inverse Fourier

transform in k. The forward-modelled electric field, E, in eq. (7.1) can therefore be

written as

E(x,y,z) = _j E(x,k,z) dk, (7.2)

where y8 is the y-coordinate of the source. E(x, k, z) emerges naturally from the program

of Unsworth et al. The approximate adjoint field, E, can be expressed in a similar

manner:

Et(x,y,z) =
— j Et(x,1c,z) eio) dk, (7.3)

where y0 is the y-coordinate of the observation location. Et(c, ks,, z) is easily obtained

when it comes to considering an approximate adjoint field. Substituting the above two

expressions for the forward-modelled and adjoint fields into eq. (7.1) gives

=
j-- J J f A(k,k) ei eio) dk dk dy, (7.4)

3 —00 —00 —00

where the area integration, A, in the along-strike-wavenumber domain is defined as

A(k,k) = f Et(x,k,z) .E(,k,z) ds. (7.5)
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Using the Fourier transform definition of the Dirac delta function:

S(k) =

—

j:
e’ dy, (7.6)

the integration with respect to y in eq. (7.4) can be performed to give

= (7.7)

assuming, for simplicity, that y = y0 = 0. This equation reduces to

OF 1[
= (7.8)

To calculate the sensitivities for the 2.5d problem, therefore, the area integration in the

along-strike-wavenumber domain (eq. 7.5) is evaluated at each of the wavenumbers re

quired by the forward modeffing. The area integration at each wavenumber is carried

out using the same method as for the purely two-dimensional problem described in sec

tion 6.2.2. The sensitivity for a particular cell is then obtained by the integration over

the wavenumbers in eq. (7.8).

7.3 Comparison of approximate and accurate 2.5d sensitivities

7.3.1 Homogeneous halfspace

As for the two-dimensional magnetotelluric problem, the program for computing the

approximate sensitivities was first tested on a homogeneous halfspace conductivity model.

For this simple model, the sensitivities calculated using this program should be equal to

the accurate sensitivities.

Consider a homogeneous halfspace of conductivity 0.01 Sm’ having the same di

mensions as the model shown in Fig. 5.1 and parameterised using the mesh in Fig. 5.2.

Consider a controlled-source electromagnetic experiment in which an along-strike electric

dipole source (a point source in three-dimensional space) is located at x3 = —11000m and

= = 0. Suppose measurements are made of E at x0 = l000m and y0 = = 0, and
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at a frequency of 0.2 Hz. The accurate sensitivities for this arrangement were calculated

by both the brute-force (or perturbation) method using the forward-modelling program

of Unsworth, Travis & Chave (1993) and the adjoint-equation method (Unsworth & Old

enburg 1995). The sensitivities calculated using the latter method are shown in Figs. 7.la

and 7.lb. The sensitivity is plotted as a constant value over the area of the cell to which

it refers.

The program written to compute approximate sensitivites for the 2.5d problem was

used to calculate sensitivities for the homogeneous halfspace. The experimental configura

tion was the same as that described above. The adjoint field was that due to a y-directed

unit electric dipole and was computed in a layered halfspace using the method described

in Appendix A. The resulting sensitivities are shown in Figs. 7.lc and 7.ld. There is very

close agreement between the accurate sensitivities calculated using the adjoint-equation

method and the sensitivities calculated using the approximate-sensitivity program (which

should equal the accurate sensitivities for this special case of the homogeneous halfspace).

7.3.2 Two-dimensional model

Approximate sensitivities were calculated for the two-dimensional model shown in

Fig. 5.1. The controlled-source experimental configuration used in the previous section

was also considered here. The accurate sensitivities calculated using the adjoint-equation

Figure 7.1 (Following page) Sensitivities for the 2.5d problem described in sec
tion 7.3.1. The conductivity model was a homogeneous halfspace of 0.01 5m’.
The source and observation locations are indicated by the open and solid trian
gles respectively. Panels (a) and (c) show log10Oln Ej/Oln °i, and panels (b)
and (d) show log10 0 ç/0ln crj. IE and q are the amplitude and phase, respec
tively, of the electric field. The phase is measured in radians. The colour-bar
refers to all four panels. Panels (a) and (b) were produced by the adjoint
equation method, and panels (c) and (d) were produced by the approximate
sensitivity program using an adjoint field computed in a layered halfspace.
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method are shown in Figs. 7.2a and 7.2b. The approximate sensitivities calculated using

an approximate adjoint field in a layered halfspace are shown in Figs. 7.2c and 7.2d.

There is good agreement between the approximate and accurate sensitivities shown in

Fig. 7.2. Because these sensitivities are with respect to the logarithm of the conductivity,

the direct effect of the conductivity structure is clearly evident, just as for the two-

dimensional magnetotelluric sensitivities shown in Chapter 6. The agreement between

the approximate and accurate sensitivities for the 2.5d problem is better than that for

the two-dimensional magnetotelluric sensitivities. This is because the adjoint field is now

fully three-dimensional and so is even more dominated by its decay away from the dipole

source compared to its decay away from the line source in two dimensions.

7.4 Computation times for the 2.5d problem

The computation times for the accurate and approximate sensitivities for a small

2.5d example based on the model in Fig. 5.1 are listed in Table 7.1. These times are for

observations of the amplitude and phase of E at six observation locations at a frequency

of 0.2 Hz and for the 800 cells in the model. For this small example, the computation of

the approximate sensitivities was quicker by a factor of five than the most efficient method

of calculating accurate sensitivities. This factor will increase further as the size of the

problem increases, just as for the magnetotelluric sensitivities discussed in Chapter 6 (see

section 6.4).

Figure 7.2 (Following page) 2.5d sensitivities for the conductivity model shown
in Fig. 5.1. The experimental configuration was the same as that considered in
section 7.3.1. The source and observation locations are indicated by the open
and solid triangles respectively. Panels (a) and (c) show log1öln E/Olnoi,
and panels (b) and (d) show log108q5/Olnu. The colour-bar refers to all four
panels. Panels (a) and (b) were produced by the adjoint-equation method, and
panels (c) and (d) were produced by the approximate-sensitivity program using
an adjoint field computed in a layered halfspace.
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Accurate sensitivities: brute-force 5000 mm
adjoint-equation 25

Approximate sensitivities: layered halfspace 5

Table 7.1 Example computation times for the accurate and approximate sen
sitivities for the 2.5d inverse problem.

7.5 Calculation of the sensitivities for the three-dimensional problem

The general expression for the sensitivity given by eq. (4.14) applies without simpli

fication to the three-dimensional problem. It is usual for the model to be parameterised

into cuboidal cells of uniform conductivity. For this situation, the sensitivity with respect

to the conductivity of the th cell is given by

= JET.Edv, (7.9)

where F is any component of the electric or magnetic field, and V is the volume of the

th cell. Most forward-modeffing programs produce the values of the electric field, E, at

the vertices of the cells. For E in this form, the integral in eq. (7.9) can be evaluated

by tn-linearly interpolating the real and imaginary parts of the components of B over

the volume of the cell (an extension to three dimensions of the method described in

section 6.2.2):

E (at, y, z) = c1 xyz + c2 xy + c3 yz + c4 xz + c5 x + c6 y + c7 z + c8, (7.10)

where B represents the real or imaginary part of a component of the electric field. The 8 x

8 system of equations relating the values of B at the vertices of the cell to the coefficients

c, i = 1,... , 8, was solved for a general cell using an analytic software package (Wolfram

Research, Inc. 1992). The adjoint field, E, is also tn-linearly interpolated over the cell

in an analogous manner. With both B and Et in the form of eq. (7.10), the integration in

eq. (7.9) can be performed analytically for a general cell to give an expression involving
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the coefficients of the tn-linear expansions. These analytic formulae are then used to

evaluate the integral in eq. (7.9) for a particular cell from the appropriate nodal values

of E and E.

7.6 Comparison of approximate and accurate three-dimensional sensitivities

7.6.1 Homogeneous halfspace

A program was written to compute the approximate sensitivities for the three-

dimensional problem. The program was tested by comparing the sensitivities it pro

duced for a homogeneous conductivity model with those calculated using the brute-force

method. The forward-modeffing program “SAMAYA” (Gupta, Raiche & Sugeng, 1989)

was used for the brute-force calculation of the sensitivities. A grounded wire source

extending from (50, —5, 0) m to (50, 5,0) m, and measurements of the vertical compo

nent of H at (0, 750,0) m were considered. The conductivity model was a homogeneous

halfspace of 0.01 Sm’. The region extending from x = 400 to 650 m, from y = —100

to 150 m and from z 0 to 250 m was discretised into 5 x 5 x 5 cuboidal cells as shown in

Fig. 7.3. The conductivity of each of these 125 cells was perturbed in turn by 1%. The

resulting brute-force sensitivities for measurements of the amplitude and phase of H at

a frequency of 100 Hz are illustrated in Figs. 7.4a and 7.4b. The sensitivities shown are

those for the shaded cells in Fig. 7.3. The sensitivity is plotted as a constant value over

the cell to which it refers.

Sensitivities were calculated for the homogeneous halfspace using my approximate

sensitivity program. The model parametenisation and experimental configuration were

the same as described above. The forward-modelled electric field, E, was computed using

SAMAYA (Gupta et al., 1989). The adjoint field was computed in a layered halfspace using

the method described in Appendix A. Because observations of the vertical component of

the magnetic field were being considered, the source for this adjoint field was a vertical

magnetic dipole. The resulting sensitivities are shown in Figs. 7.4c and 7.4d. There is



Figure 7.3 Geometry for the three-dimensional example considered in sec
tions 7.6 and 7.7. Panel (a) is the side view and panel (b) is the plan view.
S indicates the y-directed grounded wire source and R indicates the observa
tion location. The shaded cells are the ones for which the sensitivities are shown
in Fig. 7.4. The numbers correspond to distances in metres.

good agreement between these sensitivities and those calculated using the brute-force

method.

Figure 7.4 (Following page) Sensitivities for the three-dimensional problem
described in section 7.6.1. The conductivity model was a homogeneous halfspace
of 0.01Sm1.Panels (a) and (c), and the colour-bar on the left of the figure, show
log10 IOln IHI/ôlnoi, and panels (b) and (d), and the colour-bar on the right
of the figure, show log10i8q/ôln. HI and 4’ are the amplitude and phase,
respectively, of the vertical component of the H-field. The phase is measured
in radians. The sensitivities shown are those for the shaded cells in Fig. 7.3.
Panels (a) and (b) were produced by the brute-force method, and panels (c)
and (d) were produced by the approximate-sensitivity program using an adjoint
field computed in a layered halfspace.
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7.6.2 Three-dimensional model

Brute-force and approximate sensitivities were also calculated for a simple three-

dimensional conductivity model. The survey configuration and model parameterisation

were the same as those in section 7.6.1. The conductivity model comprised a conductive

block of 0.1 Sm’ in a background of 0.01 Sm’. The conductive block coincided with

the central square of nine cells in the third plane of cells down from the surface and the

central square of nine cells in the fourth plane of cells below the surface. The brute-force

sensitivities are shown in Figs. 7.5a and 7.5b, and the approximate sensitivities calcu

lated using the approximate adjoint field in a layered halfspace are shown in Figs. 7.5c

and 7.5d. There is, in general, good agreement between the brute-force and approximate

sensitivities shown in Fig. 7.5, although there are differences between the sensitivities of

the phase for the cells outside the conductive block, especially in the second row (see

Figs. 7.5b and 7.5d). However, the resolution of the comparison is poor because of the

limited number of cells in the model, making it difficult to determine the significance or

cause of these differences.

7.7 Computation times for the three-dimensional problem

The computation times for the sensitivities calculated in sections 7.6.1 and 7.6.2 are

given in Table 7.2. Six observation locations were considered at the single frequency of

100 Hz. The computations were carried out on a Sun Sparcl0 workstation. An estimated

Figure 7.5 (Following page) Sensitivities for the three-dimensional problem
described in section 7.6.2. The conductivity model comprised a homogeneous
background of 0.015m1with a conductive block of 0.15m1 coinciding with the
cells of enhanced sensitivity shown here. Panels (a) and (c), and the colour-bar
on the left of the figure, show log10Oln jHI/ölno, and panels (b) and (a), and
the colour-bar on the right of the figure, show log10 ô qf/öln oi. The sensitivities
shown are those for the shaded cells in Fig. 7.3. Panels (a) and (b) were pro
duced by the brute-force method, and panels (c) and (d) were produced by the
approximate-sensitivity program using an adjoint field computed in a layered
halfspace.
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time for the adjoint-equation method is also given. This estimate is equal to the time

required to carry out six forward modeffings for this test-case using SAMAYA. Even for

this small example the approximate sensitivities are almost two orders of magnitude

quicker to compute than the accurate sensitivities. This time difference will increase as

the number of observation locations increases for the same reason as that described in

section 6.4.

Accurate sensitivities: brute-force 260 mm
adjoint-equation 12 mm

Approximate sensitivities: layered halfspace 10 s

Table 7.2 Example computation times for accurate and approximate sensitiv
ities for the three-dimensional inverse problem.

It is noteworthy that the approximate sensitivities for the three-dimensional problem

are quicker to compute than those for the 2.5d problem for the same number of observation

locations and frequencies, and for the same number of layers in the model. To understand

this, consider the way in which the adjoint field is computed for the two problems (see

Appendix A). For the three-dimensional problem, the two-dimensional inverse Fourier

transform that gives the spatial dependence of the adjoint field is converted to a one-

dimensional Hankel transform using eq. (2.10) of Ward & Hohmann (1988). This is then

evaluated using the digital filtering program of Anderson (1979b). For the 2.5d problem,

the k and k dependencies are considered separately, as described in section 7.2. The

forward-modelled electric field and the adjoint field are combined in the (x, k) domain.

The adjoint field is therefore required as a function of x and for a sequence (typically

ten) of values of k?,,. To obtain the adjoint field as a function of x for each value of k, an

inverse cosine/sine transform has to be carried out. This is done using the digital filtering

technique of Newman, Hohmann & Anderson (1986). The time required to evaluate one

Hankel transform and one cosine/sine transform is similar. Because of this, and because

the evaluation of the Hankel and cosine/sine transforms accounts for the majority of the
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computation times for the two methods, the sensitivities for the 2.5d problem are roughly

ten times slower to compute than those for the three-dimensional problem.

The number of cells in the example considered in sections 7.6.1 and 7.6.2 is tiny

compared to the number that would be required in a three-dimensional inversion of a re

alistic data-set. The number of cells required would be of the order of iOO. However, the

number of cells used to produce the sensitivities shown in Figs. 7.4 and 7.5 was the largest

for which the brute-force sensitivities could feasibly be calculated. A parameterisation

involving 8 x 8 x 8 cells was investigated, but a single forward modeffing for this number

of cells required 75 minutes. Carrying out 513 such forward modellings to calculate the

sensitivities was considered impracticable. In addition to computation time, the amount

of memory required by three-dimensional forward-modeffing programs severely constrains

the number of cells that can be considered. For example, the model containing 8 cells

required 70 Mbytes of memory. This is approaching the maximum amount of memory

typically available on today’s computers.

7.8 Conclusions

Programs were written to compute approximate sensitivities for the 2.5d and three-

dimensional inverse problems. For the 2.5d problem, the approximate sensitivities for

a simple conductivity model were compared with the accurate sensitivities. The agree

ment was found to be better than that for the two-dimensional magnetotelluric sensitiv

ities discussed in Chapter 6. The approximate sensitivities for the 2.5d problem should

therefore enable an iterative, linearised inversion procedure to converge to an acceptable

model. Also, for the small example considered in this chapter, the computation of the

approximate sensitivities was quicker by a factor of five than the most efficient method of

calculating the accurate sensitivities. This factor will increase further as the size of the

problem increases, just as for the magnetotelluric sensitivities discussed in Chapter 6.

For the three-dimensional problem, the approximate sensitivities were computed

for a simple three-dimensional conductivity structure and compared to the brute-force
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sensitivities. There was good agreement between the approximate and brute-force sensi

tivities. However, the number of model parameters for which the brute-force sensitivities

could be computed was severely restricted by the computation time required by the

three-dimensional forward-modelling program. The comparison of the sensitivities was

therefore of a much lower resolution than for the two-dimensional magnetotelluric and

2.5d problems.

Although the example for the three-dimensional problem was severely restricted

in size, it did show that the approximate sensitivities for this problem are considerably

quicker to compute than the accurate sensitivities. The difference was roughly two orders

of magnitude for the small example presented in this chapter. This time difference will

increase significantly as the number of observation locations increases.



Chapter 8

Summary

The multi-dimensional inversion of geophysical electromagnetic data is too computa

tionally demanding to be carried out on a routine basis, even using present-day computer

technology. The aim of this thesis was to contribute a means of accelerating the multi

dimensional inversion process.

In Chapter 2, I described an iterative, linearised inversion procedure for inverting

time-domain electromagnetic measurements for a one-dimensional conductivity model.

This procedure is typical of the inversion strategy that one would ultimately like to

apply to the multi-dimensional inversion of electromagnetic data. The most computa

tionally intensive components of this inversion procedure are the forward modelling, the

generation of the Jacobian matrix of sensitivities, and the solution of the linear system

of equations. In this thesis, I concentrated on developing a quick, approximate method

for calculating the sensitivities.

The approximate form of sensitivity that I presented is based on the adjoint-equation

method. This method is the most efficient way of accurately calculating the sensitivities

when the inversion strategy is based on an under-determined problem. As described in

Chapter 4, the vast majority of the computation time required by the adjoint-equation

method is due to calculating the adjoint field, E, in the multi-dimensional conductivity

model for dipole sources at every observation location. The approximate sensitivities

are obtained by replacing the true adjoint field by an approximate adjoint field that is

much quicker to compute. Three possible forms of the approximate adjoint field were

investigated: the electric field computed in a homogeneous halfspace for the appropriate

dipole source, the electric field computed in a horizontally-layered halfspace, and that

computed using the Born approximation.
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In Chapter 5, I investigated the three different forms of approximate adjoint field in

the context of the purely two-dimensional problem. It was shown that all three forms

replicated the dominant behaviour of the true adjoint field. The approximate adjoint

field computed in a layered halfspace matched the features in the true adjoint field due

to one-dimensional structures in the conductivity model. The approximate adjoint fields

computed in the homogeneous and layered halfspaces were considerably quicker to com

pute than the true adjoint field. The Born approximation of the adjoint field, however,

was slower. Although the computation time of the sensitivities using the Born approxi

mation could be made smaller than that for the accurate sensitivities, the computation

times for the sensitivities calculated using the approximate adjoint fields in a homoge

neous or layered halfspace were even quicker. The approximate adjoint field in the layered

halfspace is therefore the most useful of the three possible forms investigated here.

In Chapter 6, I investigated the approximate sensitivities for the two-dimensional

magnetotelluric problem. I compared approximate and accurate sensitivities for a simple

conductivity model. The level of agreement was good, and the approximate sensitivities

using the approximate adjoint field in either a homogeneous or layered halfspace were

considerably quicker to compute than the accurate sensitivities. The approximate sen

sitivities were used within an iterative, linearised procedure to invert both a synthetic

data-set and a field data-set. The inversion strategy was the same as that used for the

one-dimensional inversion of time-domain electromagnetic data in Chapter 2, except that

a subspace methodology was used to solve the linear system of equations. The approxi

mate sensitivities performed successfully in the inversion of the synthetic data-set. The

field data-set was a sub-set of the COPROD2 data-set which has proved challenging for

the many inversion procedures that have been applied to it. The inversion using the

approximate sensitivities did not achieve the final target misfit. However, the misfit that

was achieved was close to the target value and the major features in the data were re

produced. The final model also contained the multiple mid-crustal conductors that other

investigations have produced. The inversion using the approximate sensitivities therefore

performed as well as any of the other inversion procedures applied to the COPROD2 data.
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To conclude the work for this thesis, approximate sensitivities were computed for

the 2.5d problem and three-dimensional controlled-source problem. These situations,

especially the latter, are much more common in geophysics than the special case of

two-dimensional magnetotellurics. These situations are also significantly more time-

consuming. The approximate sensitivities for the 2.5d and three-dimensional problems

were computed for simple conductivity models and compared to the accurate sensitivities.

The agreement for the 2.5d problem was found to be better than for the two-dimensional

magnetotelluric problem. The agreement for the three-dimensional problem was also

found to be good, although the number of model parameters used for the comparison was

severely restricted by the computation time required by the three-dimensional forward-

modelling program. Since the level of agreement between the approximate and accurate

sensitivities was found to be similar, if not better, than that for the two-dimensional

magnetotelluric problem, it was assumed that these approximate sensitivities would per

form just as well in an iterative, linearised inversion procedure. The more important

result from the comparisons of the approximate and accurate sensitivities was the dif

ference in the computation times. This difference was considerable, especially for the

three-dimensional problem where a difference of two orders of magnitude was found,

even for the small example that was considered. Also, the relative differences in compu

tation times between the approximate and accurate sensitivities for the two-dimensional,

2.5d and three-dimensional problems all increase as the number of observation locations

increases.

In this thesis, therefore, I have presented an approximate form of sensitivity that is

appropriate for the multi-dimensional inversion of any geophysical electromagnetic data

set. The approximate sensitivities appear to be sufficiently good approximations of the

accurate sensitivities to enable an iterative, linearised inversion procedure to converge

to an acceptable model. And, as desired, the approximate sensitivities are considerably

quicker to compute than the accurate sensitivities, especially for the three-dimensional

controlled-source problem.
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Appendices

Appendix A: Computation of the Electric and Magnetic Fields in a

Layered Halfspace due to a Dipole Source

The electric or magnetic field generated in a layered halfspace by an electric or

magnetic dipole source is required throughout this thesis: in Chapter 2 the vertical

component of the magnetic field is required on the surface of a layered halfspace for a

horizontal electric dipole source, and in Chapters 5 to 7 the approximate form of adjoint

field that is found to be the most useful is the electric field generated in a layered halfspace.

In this appendix, I outline the method that was used to calculate the electric and magnetic

fields generated in a horizontally-layered halfspace by an electric or magnetic dipole

source.

The layered haifspace in which the electric or magnetic field is to be calculated is

made up of uniform layers of constant conductivity as shown in Fig. Ad. The TE and

TM mode Schelkunoff potentials of Ward & Hohmann (1988) are used:

A = Ae, (A.1)

F = Fe, (A.2)

where ê is the unit vector in the z-direction. In the j” layer, A and F satisfy the

following ordinary differential equations (section 4, Ward & Hohmann 1988):

( — ) A = o,

( -

= o,

where the tilde represents the two-dimensional Fourier transform, = k + k — i€W2 +

iw,uoj, w is the angular frequency, p and e are the magnetic permeability and electrical
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Figure A.1 Notation and coordinate system for the horizontally layered con
ductivity model of the Earth used in this thesis. is the depth to the bottom

of the th layer, and and are the conductivity and thickness, respectively,

of the th layer. S represents the dipole source.

permittivity, and is the conductivity of the th layer. The definition of the two-

dimensional Fourier transform used by Ward & Hohmann is also used here:

and

aDO aDO

(k,k,z) = / / F(x,y,z) e_i k) dxdy, (A.5)
i-CO i-DO

DO DO

F(x,y,z)
=

U1
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S
z=-h

o= 0
z=0

z’
z2

zi-’
ti

zi

ZN 2

UN1 tN-1

ZN1

P(k,k,z) e”’ d1cdk. (A.6)
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The solutions for and are

A(k,k,,z,w) = C(k,k,w) e z_1) + D(k,k,w) e_uj_zj_1), (A.7)

= U(k,k,w) euj z_i) + Vj(k,k,w) e_Ui_Zj_). (A.8)

In the region of free space above the layered halfspace, A and F satisfy

A0(k,k,z,w) = Co(kz,ky,w)eu0z + Do(k,k,w)e_u0z, (A.9)

Po(k,k,z,w) = U0(kz,ky,w)eu0z + V(kz,ky,w)e_u0z, (A.10)

where ug = k + k.

Firstly, consider the potential F. From Ward & Hohmann eqs. (1.152) and (1.153),

the boundary conditions on F at z = are

k, z=z_i,w) = k, z=z_i,w), (A.11)

oP.

____

a2’
k, z=z_1,w) = ‘ (ku,, k, z_—z_1,w). (A.12)

Substituting eq. (A.8) into the above boundary conditions gives

+ V = Ui_ie_1ti_1 + j_ieUj_huj_1, (A.13)

uU — uVj = uj_iUi_ieui_lti1 — u_iVj_ieui_1ti_1 (A.14)

= — is the thickness of the J’’ layer. These two boundary conditions can be

combined in a matrix equation:

(1 1 (U
= ( e1ti1 e_Ui_lti_1

(A 15
u —Ui) ) U_i&L_1t_1 _u_1ei1i1) a_i)

This can be rewritten as

(v’) =

e’ M (), (A.16)
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where

/ (1 + ___)e_2u_1ti_1 (1 —

M — (A 17—

(‘—ti) (l+L)

In eq. (A.16), the exponential term exp(u1t_1)has been factored out of the matrixM

so that the propagation through the layers carried out below remains stable. Applying

the boundary conditions at the surface of the halfspace and using eq. (A.lO) for the

potential F in the free space above the layered halfspace leads to

() =

where

/(1i!a’ ‘i—-’_I\ u01 \ u0’1 ‘Al
- (1-) (i+’))

uo Uo

Eqs. (A.18) and (A.16) can be used to propagate the boundary conditions through the

layers to produce an expression relating the coefficients of the potential P in the free

space above the halfspace to those in the basement halfspace:

N+1 N N+1

(E.°)
= () ex(>uiti) ]JM, (E11). (A.20)

There can be no upward-decaying solution for F in the basement halfspace, so UN+l = 0.

It is assumed, at the moment, that the source is at a height z = —h above the layered

halfspace. If this source is a unit x-directed electric dipole then, from eq. (4.137) of

Ward & Hohmann,

v —

_____

—uoh A2lo
— 2k+k . ( . )

For a unit x-directed magnetic dipole,

v—-- k —uoh

2
(A.22)
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using eq. (4.106) of Ward & Hohmann. Eq. (A.20) is therefore a pair of simultaneous

equations in the two unknowns U0 and VN+l. Once U0 is known, eq. (A.18) can be used

to obtain U1 and V1. Successive applications of eq. (A.16) then give the coefficients U

and Vj, and hence the potential F, in every layer.

A modified version of the above approach was used for the potential A. The boundary

conditions on A at z = z_1 are, from Ward & Hohmann eqs. (1.182) and (1.183),

A(k, k, z=z_1, w) = A1(kr, k, z=z_1, w), (A.23)

1 oA. 1 oA.

=

(k,,k,z=z_i,w). (A.24)

Because of the awkwardness, numerically, of the second boundary condition at the surface

of the layered halfspace (above which o = 0), the source is assumed to lie within layer 1

(at z = h). The final result for the source on the surface of the halfspace is obtained

by letting the source approach the surface from below. In layer 1, therefore, eq. (A.7) is

modified to contain a term representing the particular solution:

A1 = G eU1Z + D1 e_U1Z + A e_U1_l. (A.25)

Extending the analysis of Ward & Hohmann to determine explicit expressions for their

quantity A, the appropriate expression for A eq. (A.25) for a unit c-directed electric

dipole is

= 2 k+k’
(A.26)

and

A — [LW — iW/2U1 ik
A 27

p —

—
2u k+k’

for a unit x-directed magnetic dipole. The boundary conditions can now be propa

gated through the layers in a similar manner to the potential F to obtain two simul

taneous equations in the two unknowns C0 and DN+l (D0 is zero since there is now

no downward-decaying part of the solution in the free space above the halfspace). To
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obtain the potentials for y-directed electric and magnetic dipoles, the transformation

(x,y) —* (y,—x) [ —* (k,_k)] can be used.

Once the potentials A and F are known, the components of the electric and magnetic

fields can be calculated throughout the layered halfspace using eqs. (1.129) and (1.130)

of Ward & Hohmann:

E
= a2A —

(A.28)z o+iew 9xOz

= 1 82A
+ , (A.29)

cr + iew Oyôz
72

=
. (- + k ) A, (A.30)

c7+iEW \UZ J

and

8A 1 L92F
H = + -—-- , (A.31)

Oy iwu 9x8z

OA 1 02F
(A.32)

OX iW[L oyaz
72

H = (-- + k ) F, (A.33)
ZWI \OZ /

where k2 = — iwuo. The above equations are in fact transformed to the (k,k)

domain and used to obtain B and H from A and F, and then the transformation back

to the (x,y) domain that is appropriate for the particular problem is carried out. For

the purely two-dimensional case discussed in Chapters 5 and 6, the electric field for the

two-dimensional dipole sources is obtained by setting the along-strike wavenumber, k,

equal to zero before carrying out the inverse cosine/sine transform to recover the x

dependence of the electric field. For the 2.5d case discussed in Chapter 7, the inverse

cosine/sine transform with respect to the across-strike wavenumber, k, is performed at

different values of the along-strike wavenumber, k. The resulting (z, k )-dependence of

the electric field is then used in the calculation of the sensitivities. Finally, for the three

dimensional case also described in Chapter 7, the two-dimensional Fourier transform

with respect to k and k is converted to a Hankel transform using eq. (2.10) of Ward &
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Hohmann, and this Hankel transform performed to obtain the full spatial dependence of

the electric field. The numerical evaluation of the cosine/sine transforms was carried out

using the method of Newman, Hohmann & Anderson (1986), and the evaluation of the

Hankel transform was carried out using the method of Anderson (1979b).

Appendix B: Adjoint-equation method for the purely two-dimensional

inverse problem

For a purely two-dimensional problem, that is, one in which both the conductivity

model and the source are invariant in the strike direction, the adjoint field required

to calculate the sensitivities becomes the electric field due to a two-dimensional dipole

source. This can be seen as follows. Consider the particular form of eq. (4.14) for a given

measurement and assume that the model and ID are invariant in the strike direction which

is chosen here as the y-direction. One obtains

= f J J E(z,y,z) .E(z,z) (x,z) dxdydz (B.1)
9o.j —00 —00

= jj(x,z) E(x,z).{f00Ef(x,Y,z) dy} dxdz. (B.2)

where F represents the component of interest of the electric or magnetic field. With

out loss of generality, the adjoint field can be expressed as a two-dimensional Fourier

transform:

E(x,y,z) = J J Et(k,k,z) dkdk. (B.3)
-00 -00
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If this expression for the adjoint electric field is substituted into eq. (B.2), then the

integration with respect to y can be carried out, since

= S(k). (B.4)

This reduces the adjoint field to only its zero along-strike-wavenumber component:

= jfbj(xz) E(a,z).{_j dk} dxdz. (B.5)

The term within the braces is the electric field due to a two-dimensional source, that is,

one that is invariant in the strike direction. Eq. (B.5) can therefore be rewritten as

= j
E(x, z) . E(x, z) (x, z) ds, (B.6)

where the adjoint field, Et, is now due to a two-dimensional dipole source at the observa

tion location (x0,z0). This is the appropriate expression for the sensitivities for a purely

two-dimensional inverse problem.

Appendix C: Electric fields due to two-dimensional dipole sources

on a homogeneous halfspace

The first form of approximate adjoint field presented in Chapter 5 for the purely two

dimensional inverse problem is the electric field generated in a homogeneous halfspace by

a two-dimensional dipole source. To calculate the corresponding approximate sensitivities

in Chapter 6 for the two-dimensional magnetotelluric inverse problem, this approximate

adjoint field is required for both electric and magnetic dipole sources oriented in both the

a- and y-directions on the surface of the halfspace.
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Electric dipole source

To develop an expression for the electric field generated in a homogeneous halfspace

by an x- or y- directed two-dimensional unit electric dipole, initially follow the derivation of

Kaufman & Keller (1983) for the electric field generated by a point (in three-dimensional

space) electric dipole. Consider an electric dipole oriented in the y-direction and suppose

that both the dipole and the point at which the electric field is to be calculated are situated

within the conductive halfspace (see Fig. C.1). Assume that z is positive downwards.

Kaufman & Keller make use of the vector potential A:

A = (O,A,A) (C.1)

such that

E = iwA + V(V . A). (C.2)

w is the angular frequency, and [I and cr are the magnetic permeability and conductivity

of the halfspace. The two non-zero components of the vector potential are:

=
_ j {e’l + J0(Ap) dk (C.3)

= j u2+A
e_UJ1(p) dA, (C.4)

where u2 = )2 + iw,ucr and p2 = x2 + y2. I have followed the convention that Ward &

Hohmann (1988) use for the time- to frequency-domain Fourier transform. This accounts

for the plus sign in the above expression for u. h is the z-coordinate of the dipole source.

Using eq. (2.10) of Ward & Hohmann (1988) to convert the above Hankel transforms

to two-dimensional Fourier transforms gives

1 °° °°1 —

= J J — { Iz-hI +
+

e_u} dk dk (C 5)

=
— L L A(u+ A)

e_U ik e ky)
dk dk, (C.6)
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o=O
z=O

S
z=h 0

0•

Figure C.1 The coordinate system and geometry for computing the electric
field induced in a homogeneous halfspace by a two-dimensional dipole source, S.

where now A2 = k + k. Substituting these two expressions into eq. (C.2) gives the three

components of the electric field resulting from the y-directed finite electric dipole:

1 J kk
(e’

u A
82 _ u+A

_u(z+h))+ e

+
k1cu

uA(u + A)e} dk dk, (C.7)

1 J J°° f (iwp — k
(e_uIz_ +

U
—

82 — u u) u+A

2ku

— A(u + A)e} dkdk, (C.8)

and

1 fofoIik /
= — (u sgn(z — h) e_uIz_hI +

u(u — A)
e_u(z+h))

_cru u+A
2ik A

V U+
( + A)

e (z+h)} dk dk. (C.9)
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Appendix B shows that the adjoint field required to calculate the sensitivities for a purely

two-dimensional inverse problem can be obtained from the electric field for a finite dipole

source by considering only the zero along-strike-wavenumber component. If this is done in

the above equations the following expressions are obtained for the electric field generated

in a homogeneous halfspace by a two-dimensional y-directed electric dipole source:

= 0, (0.10)

B = — f e_UZ dlc , (0.11)
2r J_u+kj

= 0. (0.12)

where it has been assumed that the source is at the surface of the halfspace (h = 0)

and now u2 = k + iwo. From the above equations it is clear that for this type of

source there is only an along-strike component of the electric field. This is exactly what

is required when calculating the sensitivities for the E-polarisation mode of the two-

dimensional magnetotelluric inverse problem. Note that eq. (0.11) agrees, as it should,

with eq. (4.208) of Ward & Hohmann for the electric field due to an infinite line current.

To obtain expressions for the electric field produced by an x-directed two-dimensional

electric dipole first consider the electric field produced by a finite x-directed electric dipole.

This field is given by eqs. (0.7) to (0.9) after rotation of the coordinate axes corresponding

to the transformation (x,y) —* (y, —x). This implies that (1c,k) —÷ (ks,, —kr) and

(Br, B, E) —* (Er, —Er, Es). The electric field due to the two-dimensional dipole source

is then obtained by considering only the components of the equations corresponding to

zero along-strike wavenumber:

___jU(e’ + e_u) dk, (0.13)

= 0, (0.14)

= f k (sgn(z — h) eZ + e_u(z+h)) dk. (0.15)
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The electric field for an x-directed two-dimensional electric dipole is therefore restricted

to lie in the plane perpendicular to the strike direction. The integrals in the above

equations can be evaluated (Lee & Morrison 1984) to give analytic expressions for the

field components:

= —- j- K(ik’r) +
z)
K1(ikr), (C.16)

= K0(ikr) + --K1(ikr), (C.17)

where k2 = —i wjio- and r2 = x2 + z2 for the electric dipole on the surface of the halfspace.

K0 and K1 are the zeroth and first order Modified Bessel functions of the second kind.

Magnetic dipole source

To develop expressions for the electric field induced in a homogeneous halfspace

by a two-dimensional magnetic dipole source initially follow the analysis of Ward &

Hohmann (1988). Consider the Schelkunoff potentials A and F such that

E
— 1 ÔAZ OFZ C18

OxOz

182A OFz z C19
yuOyOz Ox’

=
+ k2) A, (C.20)

where k2 = —iwiu. For a unit x-directed magnetic dipole

=

j°° / (e’ — e_u) ei(kx+kv) dk dk, (C.21)

and

F = i_: L (€_ulz_h + e_u) dk dk. (C.22)
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Here, as before, u2 = k + k + iw,uo and )2 = k + k. Substituting these expressions

into eqs. (0.18) to (0.20) gives

J f (sgnz — h) — 1]e_uIz_ +
2A

e
u(z+h))

8712
—

j_ U +

x dk dk, (0.23)

/

= j j { (sgn(z — + e_u)

k2 U
— e_u) } dk dk, (0.24)+ (eu1zh1 +
+

and

j°° °° ik

= 8 2 j
___(e_ul7_I — e_u(z+h)) dk dk. (0.25)

71 j_ - U

To obtain expressions for the electric field generated by a two-dimensional z-directed

magnetic dipole on the surface of the halfspace consider the reduced forms of the above

equations for k = 0:

(0.26)

iwI f U
e_UZ dk, (0.27)

= 2irju+k
= 0. (0.28)

For a y-directed two-dimensional magnetic dipole use the transformation (x, y) —* (y, —z)

in eqs. (0.23) to (0.25) before considering the reduced form of these equations. This gives

= f e
— u z

e
z
ai, (0.29)

271

= 0, (0.30)

= 0. (0.31)
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Using eq. (3.914) of Gradshteyn & Ryzhik (1994), eq. (C.29) can be reduced to

wpkz
=

— —K1(zkr) (C.32)

where k2 = —iw,uo and r2 2 +

The electric fields described above were computed by evaluation of the Bessel func

tions or, if the expression for the electric field could not be reduced to one involving

Bessel functions, by evaluation of the Fourier transform using the digital filtering code of

Newman, Hohmann & Anderson (1986).

Appendix D: Sensitivities for the magnetotelluric apparent resistivity

and phase

In the magnetotelluric inverse problem, the data are usually considered to be values

of the apparent resistivity, pa, and phase, q, where

p(w) = --- and (w) = phase (i). (D.1)

E and H represent orthogonal horizontal components of the electric and magnetic fields.

w is angular frequency and u is magnetic permeability. Since it is the apparent resistivity

and phase that are the data in the inverse problem, the sensitivities are required for these

data rather than for the electric and magnetic fields. However, the sensitivities for the

apparent resistivity and phase can be obtained from those for the electric and magnetic

fields as follows. Differentiating the apparent resistivity in eq. (D.1) with respect to the

model parameter o gives

(D2
8o wi H Ocr \jHj)
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— 2 E fi OEI IE OH
D 3

— w H UH H2 (

Note that all the quantities in the above expression, the electric and magnetic fields as

well as the sensitivities, are to be evaluated at the observation location.

Since the electric field in the frequency domain is a complex quantity it can be

written as

E = Ee4’E. (D.4)

Treating both Ej and 4E as functions of the model parameters, differentiating eq. (D.4)

with respect to o gives

-

= E —-

(i) + e (D.5)
Ocr ôcr Ocrj

= iEea +
EOjE{

(D.6)
8cr E &r

1 ÔE

___

1 ÔIEI
=

ä=ô
(D.7)

Equating the real and imaginary parts of eq. (D.7) gives

___

= () (D.8)

and

___

= m (). (D.9)

This argument can also be applied to the magnetic field resulting in

ôIH
= Hj Re (D.1O)

9uj \H 9c7jJ

and

__

= m (). (D.11)
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Eqs. (D.8) and (D.10) can be substituted into eq. (D.3) to give a final expression for the

sensitivity for the apparent resistivity:

—
- D12

— w H UHI E Ou) HI H o)j .

= 2Pa {e () - e £Z) }. (D.13)

This expression can be used to calculate the sensitivity for the apparent resistivity since

Pa is known at the observation location, and OE/Ou and OH/ôo can be calculated using

eq. (4.14).

To determine the final expression for the sensitivity for the phase consider the ratio

B — IEIei4’E —

(D14
HIHIe’H H

By definition,

= —

(D.15)

and so

—

__

— (D16)
oo.j

— oo

= m () - m (E (D.17)

using eqs. (D.9) and (D.11). The sensitivity for the phase can therefore be calculated

using eq. (D.17) and eq. (4.14).




