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Abstract

The electromagnetic induction problem 1is non-linear, and
thus is wvery difficult to solve for all but the simplest
symmetrieg. Because of this, qQuantitative modelling of the
conductivity structure from geomagnetic depth sounding data is
expensive and time consuming, and the possibility that the
- anomaly is prodﬁced by channelling of regibnally induced
currents may invalidate the results. Fér this reason traditional
methods of analysis are generally qualitative 1in nature, with
guantitative information estimated on the basis of simplified
models of the anomaly. The theory and assumptions used in these
traditional methods are studied in this thesis, and the range of
their applicability is investigated. |

To avoid the current channelling complication, and to also
get a linear relation between the model and the data, the
problem 1is reformulated with the subsurface current density as
the model parameter, rather than the conductivity. The
disadvantage of this formulation 1is that models that fit the
data are very non-unique. The character of this non-unigqueness
has been explored using Backus-Gilbert appraisal, and by the
construction of unconstrained models. The results indicate that
reasonable resolution of the true model's horizontal features is

possible, but that wvertical resolution will be lacking. To



1ii

counter this, the 1infinite range of possible models is
constrained by introducing expected physical features of the
true model into the model construction algorithm.‘ This
construction algorithm was ‘tested using data generated from a
variety of artificial models, and was successful 1in resolving
both the horizontal and vertical positions of the major features
in all of them. The algorithm was then used to determine the
subsurface current structure for real data taken across the

Cascade anomaly in Washington State.
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INTRODUCTION

Geomagnetic depth sounding (G.D.S.) 1is one of the many
electromagnetic methods used to determine the conductivity
structure of the earth. 1In this particular method the
electromagnetic measurements used are the surface values of thel
three directional components of the magnetic field. G.D.S. in
practice is further subdivided into problems of global and’local
extent, with the first evaluating the earth's gross conductivity
structure wusing the assumption of radial symmetry, and the
second determining more local structures using the plane earth
assumption. This thesis will be concerned only with the local
G.D.S. problem, so henceforth, wunless specified otherwise,
G.D.S. will refer only to this subdivision of the problem.

In G.D.S. problems, the sources (or primary fields) for the
electromagnetic induction into the earth have traditionally been
natural large scale variations in the magnetosphere. Several
types of natural source have been used in the past, as will be
outlined 1in Chapter 2, and the ones most commonly used for
G.D.S. studies will be discussed in somewhat more detail, also
in that chapter.

All electromagnetic induction problems are identical in
initial formﬁlation; from this point the intréctability of the

general problem has led to the branching into separate methods



along paths of different simplifying assumptions. 1In the
magnetotelluric method, the assumption is usually that of a one-
dimensional plane earth, with .conductivity varying only with
depth. In this one-dimensional case, the forward problem of
electromagnetic induction can be solved quickly and cheaply, for
both the plane 1layered case, (Cagnaird, 1953; Keller and
Frischnecht, 1966) and for the continuous case (Oldenburg,
1979). The inverse problem 1is also quite well solved, and a
variety of different methods are in the literature (Cagnaird,
1953; Becher and Sharpe, 1969; Bailey, 1970; Oldenburg, 1979;
Fischer et al, 1980).

The forward problem of the two-dimensional induction
problem is more difficult and more expensive, although numerical
solutions do exist (Jones and Price, 1970; Jones, 1970; Madden
and Swift, 1969). There 1is also some ambiguity about the
correctness of the solutions in each case, and the fastest way
to do the problem numerically (Praus, 1975). Correspondingly,
although methods for inversion of electromagnetic surface
readings over two-dimensional structures do exist, (Jupp and
Vozoff, 1977), they are very expensive and their iterative
procedures can fail because of lack of convergence (Jupp and
Vozoff ,1977). In general, most model constructions for the two-
dimensiocnal case are simply forward modelling attempts, with
starting models either adjusted interactively (Po;ath et
al, 1970), or adjusted randomly in Monte Carlo fashion

N

(Anderssen ,1975; Woods, 1979) until a satisfactory fit with the



data is achieved.

The threejdimensional problem easily involves an order of
magnitude increase in difficulty over the two-dimensional case.
The solution of the forward problem is an enormously expensive
proposition (Lee et al, 1981), and to this author's knowledge
there are at this time no working methods for true three-
dimensional inversion. In this thesis, the three-dimensional
case will not be considered.

The assumption of vertical one-dimensionality 1is probably
very good in some areas, such as in the deep ocean away from the
ridges (Oldenburg, 1981) or in sedimentary basins
(Vozoff, 1972). However, &n many cases the reason an area will
be of interest will be because of its anomalous electromagnetic
responses, with this anomalous behavior implying an .underlying
Astructure more complex than the one- dimensional case. It is t;
handle these cases that the methods constituting G.D.S. have
been devised.

Unlike some electromagnetic induction methods, such as the
global G.D.S. problem in which the assumption of radial symmetry
is made, or controlled source studies in which the primary field
is known, there are no universally applied assumptions in G.D.S.
Rather, the avoidance of the intractability of the general
induction problem is attained simply by concentrating on
qualitative results, with little emphasis placed on rigorous

guantitative evaluation.

The intuition needed to arrive at these qualitative results



is generally obtained by reviewing the solutions for simple, but
basic, forward problems. For this reason , Chapter II gives the
results for induction of a general source field over a
homogenous half space (in section 2.1) and also gives the
results for three idealized two-dimensional structures which
should be quite representative of the range of two-dimensional
anomalies possible (in section 2.2).

A review of the traditional methods wused in geqmagnetic
depth sounding 1is presented in Chapter III, with many of the
discussions drawing upon the results of Chapter II. It will be
seen that both the qgqualitative and quantitative information
obtained using these metgods is crucially dependent on the
horizontal wvariations in the source field, as well as upon
induction outside the measurement array. Both of these factors
are difficult to estimate well (Gough, 1973; Lilley, 1975). As
well, many of the final qualitative Fesults obtained from these
methods are based on the intuition of the individual authors,
where often it would be preferable to have an automated method
to avoid individual biases.

To avoid these problems, a different method of analysis of
G.D.S. data for presumed two-dimensional anomalies is suggested
in Chapter IV, In this approach the current density distribution
in the earth is treated as the desired model rather than the
conddctivity structure. By formulating the problem to consider
6nly the results of the induction process, (that is, the induced

currents in the earth) rather than the total induction process,



the difficulties due to the non-uniformity of the source field
and the non-local induction effects are avoided. As well, the
problem in this formulation is 1linear, éimplifying manifestly
the inversion procedure.

On thebother hand, by ignoring the primary field altogether
a great deal of model-limiting information is thrown away, and
so we expect the non-unigueness of our results to be increased.
In fact, using only the two-dimensional assumption, the current
density formulation will be shown to be hopelessly non-unique
(section 4.2 and 4.3). However, by presuming certain physical
characteristics expected of natﬁral two-dimensional current
structures, and incorpo;ating these as constraints in a model
construction routine (section 4.4) this non-unigueness can be
greatly reduced. .

In the final chapter (Chapter V) of this thesis, the new
formulation described in Chapter IV is applied to real data
taken along a linear array in southwestern Washington, over the
~Cascade Anomaly.

Throughout this thesis, the attempt is made to present the
material in as readable a fashion as possible. For this reason
proofs or mathematical developments which are not considered
essential for the continuity of the discussion are either

referenced, if possible, or relegated to the Appendix.



Chapter 1I

The Source Field

I.1 General Nature of Sources

The sources utilized for geomagnetic depth sounding are the
naturaily occurring variations in the earth's magnetic field.
These can include the variations in the earth's internal field
as well as the variations and disturbances in the external
magnetosphere, but the most commonly employed are the latter.
Because of the unpredictability of most magnetospheric
disturbances, the ‘'choice' of sou}ce to be used is usually
limited to post-procurement editing of data. For this reaéon
most field experiments entail continuous recording of magnetic
data for long periods, of up to months. The selection of source
type will depend on the size and position of the array, as well
as upon the depth one wishes to 'see' into the earth. 1In
general, analysis of. the results will be simplified if the
horizontal wavelengths of the source field are much larger than-
‘the dimensions of the array. Thus, for large arrays (200 km. by

500 km.) the sources used will be the large scale disturbances



such as the Dst, or polar magnetic substorms. For smaller
arrays, it might be possible to use the more localized source
fields, such as micropulsations.

The desired depth of penetration would determine the range
of initial amplitude of the source required, as well as the
dominant period range in the source. The skin depth formula for

a homogenous earth is:

(1.1.1)

where T = period

d = depth at which field has decayed to 1/e of
original magnitude
O = conductivity

If a conductiQity of 1dzs/m is assumed, which 1is perhaps a
reasonable average for crustal and mantle conductivities
(Brace, 1971), then the approximate skin depths can then be
evaluated for the dominant period ranges (Garland, 1979, pg.

257)) of selected magnetospheric disturbances. (see Table 1.1).



Table 1.1: Skin Depths for a Homogenous Earth

Magnetospheric Dominant Skin
Disturbance Period Depth (d4d)
. . -3
Lightning 10 s 0.159 km.
. - -‘
Micropulsation 10 - 10 1.59-50.3 km
Polar Substorm 1035 159 km,
4
Dst 10 's. 503 km.
Diurnal Variations
Solar 24 hrs. 1480 km.
Lunar 25 hrs. 1540 km.

Diurnal wvariations,

long period (up to one year) external

variations, and even the internally origined secular variations,

have been used for global s

tudies of the

earth's

gross

radial

conductivity structure (Chapman, 1919; Chapman and Price, 1930;



Lahiri and Price, 1939; Rikitake, 1950; Runcorn, 1955; McDonald,
1957; Eckhardt et al, 1963; Banks, 1969). However, this thesis
deals only with the local G.D.S. problem, so attention will be
focussed mainly on those disturbances with period ranges
enabling investigation to depths of 500 km. Although
micropulsations fit into this category they are not a commén
source in G.D.S. As well, they are diverse and complex in nature
(Jacobs, 1970); for these reasons they will not be discussed
here.

All the external sources to be ' considered result from
disturbances in the steady-state interaction between the earth's
dipole field and the solar wind. In this steady state, or guiet
time, the magnetic field frozen 1into the highly conducting
plasma of the solar wind compresses the earth's dipole field
(see Fig. 1.1). A shock front of highly compressed field 1lines
-marks the boundary between the regions of influence of the
interplanetary magnetic field (IMF) and the earth's dipole
field, and acts as an effective 'shield', excuding the ions of
the solar wind from the earth (Nishida, 1978). However, it has
long been accepted that a portion of these energetic charged
particles must be finding entry into the earth's ionosphere
(Rostoker, 1972). This was experimentally confirmed by the
correlation between satellite measurements of the 1ion flux in
the ionosphere and observed acitivity on the sun (Garland, 1979,
pg.,253).

The mechanism for the 1ion entry 1is still not well



Fig.

10

Shock wave Magnetosheath. Magnetopause

1.1

The steady state interaction between the earth's dipole
field and the solar wind. The . dotted line indicates the

magnetopause, inside which the earth's field is confined.
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understood or agreed upon, but it has become apparent that the
direction and magnitude of the components of the IMF are
important controlling parameters in the process (Akasofu, 1979).
Satellite measurements of the IMF and coincident surface
readings of the eafth's field have indicated that a southward
directed IMF is probably a neccessary (although not sufficient)
condition for substorm activity (Rostoker, 1972). Perreault and
Akasofu quantified this by showing that an empirical relation
could be found betweeﬁ the IMF and the development of
geomagnetic storms (Perreault and Akasofu, 1978; Akasofu, 1979).
The rate of energy dissipgtion, u(t), was evaluated for 15 major
geomagnetic storms, using measurements of ring current and
aurora particle injection, and estimates of Joule dissipation in
the ionosphere. It was found that this estimated ‘energy
dissipation u(t) could be closély duplicated by an empirically
determined function €(t), dependent only on interplanetary

parameters:

€(t) = vB? sinq-g-lf (Joules/sec)

with: v(t) : speed of the solar wind plasma

B(t) : total magnitude of the IMF
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©(t) : Tan"' (I1By/Bzl) for Bz > 0
180 -Tan"(lBy/le) for Bz < 0
fo : estimate of linear dimension of the

cross-section of the magnetopause
(assumed = 7Re)

The right hand side of eguation 1.1.2 is closely related to
the Poynting vector flux of the interplanetary .electromagnetic
field, so that €(t) can be regarded as the rate of ehergy
coupling between the solar wind and magnetosphere (Akasofu,
1979). 1t 1is noted that if the IMF has only a northward
component, then the coupling should be zero, and that for a
completely southward directed IMF the coupling is a maximum
VBzf:. The correlation of €(t) with substorm activity (as given
by the substorm index AE) has subsequently been found to be

2 .J/s (Akasofu,

quite good for values of €(t) less than 10
1979). (see Fig. 1.2).

Once 1inside the magnetosphere, the bulk of the solar ion
flux is carried to the magnetotail (Rostoker, 1972; Akasofu,
1979), with a certain amount of these charged particles
spiralling along the earth's dipole field lines. At the poles
the convergence of the field lines results in the particle's
reflection so that they travel from pole to pole (Akasofu and
Chapman, 1961). The centrifugal force due to the cﬁrvature of
the field lines, as well as the inhomogeneity of the earth's

field (Alfén, 1950,pg.14-23; Akasofu and Chapman, 1961) results

in an eastward drift of the electrons in their pole to pole
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travel, and a westward drift of the protons. This drift gives
the effect of a ring current at eguatorial 1latitudes at about
two or three earth radii (Akasofu and Chapman, 1961), with the
result of this ring current being a dipole fiéld which opposes
the earth's internal dipole field.

Low values of energy input into the magnetopause
( € <10 a/s ) correspond to extremely quiet conditions, with
'normal’ energy dissipation processes in the magnetosphere
maintaining a steady state. When the value of €& increases to
a critical value of 10ll J/s , it is suggested that the normal
dissipative modes cannot handle the increased rate of energy
being transferred to.the magnetotail (Akasofu,1979). The result
is that a portion of the currents in the magnetotail are then
diverted along magnetic field lines to the polar ionosphere.
Equivalent current systems for this process have been suggested
by a number of authors wusing ground based measurements,
(Birkeland, 1908; Bostrom, 1964; Kisabeth and Rostoker, 1971;
Kisabeth and Rostoker, 1977), with most recent models (for
northern latitudes) featuring field-aligned currents (Birkeland
currents) connected by a strong westward electrojet 1in the
morning sector, and Birkeland currents connected by a strong
eastward electrojet in the evening sector (see Fig. 1.3). This
postulated diversion of magnetotail energy into currents in the
polar ionosphere is generally accepted as the basic model for

the polar substorm. It has been noted (Akasofu, 1979) that the

strong correlation between the coupling rate €(t) and substorm
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NOON
IONOSPHERIC.
CURRENTS
DOWNWARD
FIELD-ALIGNED
'/ //cURRENT S
(b)
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(SO
]
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(a)

MAGNETOSPHERIC
CURRENTS

Fig.-1.3
Polar magnetic substorm models:
(a) detailed model of aﬁroral zone electrojets and
connected field-aligned Birkeland currents from Rostoker

(1978)

(b) magnetospheric and field-aligned current model from

Kisabeth (1975).
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activity, both in growth and in decay (see Fig. 1.2) indicates
that it is the energy coupling rate which controls all phases of
the substorm. This is in contrast to the previous concept (for
example, Rostoker, 1972) of the substorm as simply an energy
unloading device activated when the energy density of the
magnetotail reached some critical limit.

In addition to the diversion of currents from the
magnetotail to the polar ionosphere, there is also 1large scale
injection of ions into the ring current system, with a resultant
decrease in the main dipole field@. This effect and its
subseguent slow décay congtitute the storm-time disturbance or
Dst.

The source most commmonly used for G.D.S. is the polar
substorm. The main reasons for this are the strength (hundreds
of nanotesla) and the uniformity (scale length of thousands of
kilometers) of its disturbance field. In practice there are
usually more than one overlapping substorms, with the final
superposition constituting a polar storm. The entire storm is
used as the source, with generally no attempt made to separate

)

the individual substorms, or the Dst.
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1.2 Mathematical Models of the Source Field

To facilitate a physical understanding of the induction
process in the case of complex magnetospheric source fields, it
is practical to mathematically formulate the true source field
as a summation of elementary solutions of the wave equation, and
then attempt the physical wunderstanding in terms of a single
solution.

In the region 0 > z > -h, between the surface of the earth
and the lowest cﬁrrent element of the source field (see Fig.

1.4), Maxwell's equations are:

V-B =0
(1.2.1)
VD=0

(1.2.2)

Yk =D (as o= 0)

(1.2.3)



Source
Currents

'4

Geometry of the source field and the earth
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(1.2.4)

Thus, presuming M=M,, and € =€, everywhere in the region
0 >z > -h, using a time dependence of e‘wt, and taking the curl

of 1.2.3 and 1.2.4, we arrive at:

VE = QE
(1.2.5)
or
VH = Q.H
(1.2.6)
with:
P = —wz}‘of-o
(1.2.7)
and
VE =0
(1.2.8)

The solution of 1.2.5 (or 1.2.6) results in two independent
solutions, corresponding to the TE mode (E3 = 0) and the TM mode

(Ha = 0) (Budden, 1961, pg. 13-15,22-30), For the TE mode, the
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elementary solution for the freqguency w is:
- : . , . . t
E(x,y,z,t) = Eo{ky,-kx,O}e‘k‘x etkﬂe«.klaie {w

(1.2.9)
and for the TM mode:

ﬁ(x,y,z,t) = HO{ky,-kx,O}e‘k*xeik%jeﬂkuﬁecwt
(1.2.10)

where in both cases:

k: +k; *k;a = - R
(1.2.11)
Note that the parentheses {} denote the vector components.

To completely describe the primary field of an arbitrary
source would reqguire summation of the elementary solutions of
both the TE and TM modes over all possible kx and k5 values. (By
virtue of 1.2.11, kz, is not independent).

For simplicity in the discussion, consider a source that is
producing TE mode waves 6nly. (It will be shown in section 2.1
of Chapter II that this is the only mode that need be considered
for induction in the earth). In this case the electric field

vector of the primary field at any point (x,y) is:

~

-m [- -}
E(X,y,z,t) = e‘wt(f A(kx,kY) {kYI—kX,O} *
-00 =00 ]
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- oy -iky 2
cethxx gtkyy etk“’ dkxdky

(1.2.12)

The negative sign for the exponential involving the z
component is chosen to ensure that tﬂe waves will always by
propagating downward; kz, here is thus > 0 always.

The x and y components of_ﬁ are not independent because of
1.2.8, so the spectrum A(kx,ky) (denoted the 'angular spectrum'
by Booker and Clemmow (1950)) can be found using the values of
either Ex or Ey over an arbitrary plane surface (Booker and
Clemmow, 1950)., Using the z = 0 ‘plane, drqpping the time

dependence for conveniencé, and considering Ex only, we have:

o ©©
Ex(x,y,0) = gg A(kx,ky)ky e‘k‘x e‘k” dkxdky

~00 ~Co

(1.2.13)
This is a double inverse fourier transform, allowing ‘us  to

write:

© L L
A(kx,ky) = 1/(4T#ky)ggg Ex(x,y,O)e“x e dexdy

Bt (1.2.14)

It 1is apparent then, as shown by Booker and Clemmow (1950)
and Wait (1954), that the angular spectra of comﬁlex sources can
be calculated for known values of Ex on one plane, and then used
for the calculation of the electric ( or magnetic ) field at any
6ther position. It was indicated in section 1.1 of Chapter 1

that the equivalent model for a substorm would in some areas
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resemble a horizontal line current; the angular spectrum for
this model is thus of obvious interest and is calculated below.
A line current of magnitude I in the y direction,
oscillating at a freguency w, at a height h, has an associated
electric field with only a component in the y direction (Landau

and Lifschitz, 1960, pg.195; Wait, 1970, pg.23):

Ey(x,2) = =i(pwI)/(2m Ko {(Q)*[x* + (z+nF 1%}
(1.2.15)
where K, 1s the modified Bessel function of order zero.
Expressing this as a summation of elementary solutions on an

arbitrary plane z = constant:

e o]

.Ey(x,z) =jA(kx)e—ik"xdkx A .
et (1.2.16)
(Note that as there can be no plane wave propagation in the y
direction, then k, and ks are no longer independent in this

case). The amplitude spectrum is given by:

o
A(kx) -<imw1>/<4ﬂ'“>fr<°{ P x T+ (zoh ) T2petkex gy
-

“(@a + k)" (24h)

I
“(ipgewI)/[41 (@, +kx' )"] e
(1.2.17)

(from Gradshtyn and Rhysik , 1965, pg. 736)

Thus, the final expreésion for Ey is:
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oo
LN .
EY(XrZ) = —(Fowl)/(4")je'(?°‘*kx)2iik)e'tk,‘x/(-?q_kxz)llz dkx
o (1.2.18)

For the line current example, a plot of the surface value
of the elementary wave amplitude vs. the horizontal wavelength,
2fr /kx, is given in Fig. 1.5 for a line current of period one
hour, at a height of 100 km. It is important to note from this
figure, that even for this very uncomplicated source an infinite
superposition of waves of differing wavenumbers is produced.

For each elementary solution (as denoted by equation 1.2.9
or 1.2.10) the total horizontal wavelength of the primary field

will be given by:

A = 201/ (kxt+ky ) ®

(1.2.19)
As seen from the line current example, most real fields will be
composed of an infinite number of wa;es of different horizontal
wavelengths. In G.D.S. the important wavelength will be the
minimum value which still has @ significant amplitude at the
surface. This wavelength will be the value of the largest
significant spatial non-uniformity, and is commonly called the
scale 1length. It will be seen in Chapter 2 and Chapter 3 that
the scale length of the primary field and its estimation are of
fundamental importance in virtually all aspects of conventional
G.D.s. analysis. The traditional range of values of A was given

by Price (1962):
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1.5

Plane wave amplitude spectrum on the surface of the earth
from a 1line current at height 100 km. The log of the
amplitude is plotted against the log of the spatial
wavelength A ( A in km.) at periods:

1 sec, (O)

20 hr. (A)
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4x10%km. < A < 4x10° km.

The maximum value corresponds to the circumference of the
earth, whereas the minimum value was obtained from an estimate
of the sharp drop-off point of the amplitude spectrum for a line
current, as shown in Fig. 1.5. (Note that Price also considered
.a height of 100 km. for his line current, and used four times
this height as his estimate of the cut-off point). Methods of
experimentally estimating the scale length wili be discussed in

section two of Chapter I1I,
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Chapter 11

The Electromagnetic Induction Problem

2.1 General Source Field Over a Homogenous Half-Space

To 1illustrate the méjor features of the induction process,
including non-uniformity of the source field, the simplified
case of an isotropic, homogenous earth is considered. As will be
seen in Chapter 1III, the real conductivity structure of the
earth will often be modelled as a normal, one dimensional
structure containing a small anomalous region. To be able to
intuit the variations in the 'normal' induced field of the one
dimensional earth due to the inclusion of the anomalous portion,
one must obviously first understand fully the normal field case.
It 1is possible to solve for the normal field for both a layered
earth (Cagnaird, 1953; Keller and Frischnecht, 1966) and a
continuously varying earth (Oldenburg, 1979), but for simplicity
only the homogenous earth case will be treated here. The
extension of the theory to the full one-dimensional problem is
relatively straightforward, and in any case, the major

gualitative points of the discussion will be the same for both.
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Much of the development that will be presented here is
similar to that done by Price (1950,1962). However , slightly
different assumptions will 1lead to a different physical
description of the solutions and should provide more insight
into the problem. It should be emphasized that the assumptions
that Price makes are not invalid; it is simply that the form of
his solutions lead to a conceptually differént way of wviewing
the induction process.

Presume two homogeﬁous half-spaces as 1in Fig. 1.4
(disregarding the source field) , with the positive z direction
downwards, and O as denoted. As shown in Appendix A, for a time
dependence of eiwt in a homogenous medium, Maxwell's egquations

can be put in the form:

Mt

VE = ¢
(2.1.1)

where:

Q= iwpneo- w",.4°€.°
(2.1.2)
As well, E is non-divergent everywhere except at the boundary

between the half-spaces (see Appendix A):

<
1
n
o
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For the range of values of O expected in the earth, and the
period range commonly used in G.D.S. (listed in Table 2.1), the
second term in eqQuation 2.1.2 will be inSignificant in
comparison to the first term, within the conductive lower half
space. In other words, the. displacement currents in the
conductor will be negligible compared to the real currents.
Using this and the zero conductivity in the upper half-space, we

have for eguations 2.1.1 and 2.1.2:

Q= Q= -wz}uoeo z <0
(2.1.4)

?=@e= iW’.,LOO' _ z >0
(2.1.5)

Using a separation of variables to solve eguations 2.1.1

and 2.1.3, we presume a solution of the form:

E(x,y,z) = Z(z)g(x,y)e°wt

(2.1.6)

where:

§(x,y) = {Fx,Fy,Fz}
(2.1.7)

- . Lwt . . .
(Note, the time term, et® , will appear in all eguations, so we
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will drop it henceforth, resurrecting it only in the final
solutions).

. . : : 2
Using 2.1.6 in 2,1.1, with a separation constant -V we

get:
T : LS
?- (Fhi/z = -vi- (k. ’Tgpwx

k3
= (313.+.%§%)/py

Ixd
_ (F, VR
(3 3gt)/Fe

(2.1.8)
Similarly, wusing equation 2.1.6 to separate 2.1.3 with a

separation constant - «K:

(A W)z = -2y /s

IX 2\3 e

(2.1.9)

The solutions for the equations involving %(z) in 2.1.8 and
2.1.9 are, respectively:
2 3“1
2(z) = et (V' *®) 2
(2.1.10)

2(z) <

[[}
(1]
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Obviously then,

u
L=t(V+@)?
(2.1.12)
The left hand eguation in 2.1.9 has two possible solutions:

Solution 1

dFe |, 3Fy _
IxX )%
(2.1.13)
and
Fz = 0
(2.1.14)
Solution 2
_ ol 2F:
Fx = v,._ ——x—
(2.1.15)
L S ]
Fy = Sp }3

(2.1.16)
where the second solution makes use of the last expression in

equation 2.1.8.
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It is noted that solution one requires the 'Z' component of
the electric field to be zero; this corresponds to a TE mode
solution (ie., E is in the boundary plane). On the other hand,
upon taking the curl of the electric field for solution 2, it is
found that.the 'Z' component of the magnetic field 1is zero,
corresponding to the TM mode solution (ie., ﬁ in the boundary
plane).

Thus, it is expected that the separation of the problem
into solutions of Type 1 and 2 should be directly related to the
separation of plane waves into TE and TM mode components, and
this will be seen to be the case.

In identical fashion to Price's development, the first type

is solved by letting:

Py = P0Gy
3{1 3
(2.1.17)

3Py
ax

n

Fy

(2.1.18)

where P(x,y) is a scalar quantity. Thus, all terms on the right
hand side of equation 2.1.8 lead to:

b k3
YP L 3P L yip g

)xl 331

(2.1.19)
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The function P(x,y) and the value of V can be shown to be
the same in both half-spaces. Thus, the final form of the first

type solution is:

”1 M,_
= - (V¢ P+ Pa)
E,(x,y,2) = {-%%w-%%qo} (A, e (V40 . B|e( e ﬁ
(2.1.20)
for z < 0
- ' (V' Y
El(xIYIz) = {.P_P._,—.Bi,O} C‘ e( @C ¢
33 X
(2.1.21)

4 for z > 0
with P(x,y) satisfying 2.1.19. (Note that in 2.1.21 the solution
for 2(z) has only the negative exponential term to avoid
unbounded solutions at z =Yoo ).

It should be pointed out here that each solution
corresponding to a different YV (where V can vary between 0 and
®) 1is as valid as any other; the total solution will be the
summation (or integration) of all these ‘'elementary' solutions
over the entire range of VvV .

Using Maxwell's equation relating ﬁ and the curl of E (A.13
in Appendix A), the magnetic field for the first type solution

is found to be:
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- o 1y _ )P B-P _ \)tp
H‘(X:sz) = 1(\>l+(Pc-) /(W/Jo) ( {Ti'—a—i' W]i

i T
SO 5P 3P 9P (O'+ @) &
Ale + {B-X'TS'WI}B'e ]
(2.1.22)
for 2z < 0
- Ul Y
HiGuyz) = 809 @e )/ (upe) (25,30, - )
- (9\'1’ (Pe\“lz
‘C,e
(2.1.23)
for z > 0
At the boundary of the half-spaces, z = 0, the tangential

and all three components of H must be

m

components of
continuous.

This leads to:

B, = -A;- (1 - R)/(1 + R)
(2.1.24)

and

O
"

A,* (2R)/(1+R)

(2.1.25)

where:

b ] "
R= (Dtfa) ™

Vit Qe
(2.1.26)
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To get the same form as Price (1950), let:

. I
= A (VT Q) Y (wp)

A, =
(2.1.27)
' . 2 "y
By, = =B i( V' + @) /(W)
(2.1.28)
The magnetic field at the surface then becomes:
= o Vit OP ' Ry 4 oo VP
H(x,y,0) = -{(a,' +B, )%T,(A| +B, )3_3,(1&, B, )Tmz}
(2.1.29)
and from 2.1.24, 2.1.27 and 2.1.28:
B, = A (1 - R)/(1 + R)
(2.1.30)

From the sign of the exponential in equation 2.1.22 (and
using the value of Qa,(from equation 2.1.4) it is clear that A;
is the complex magnitude of the inducing or primary field, and
B, is the complex magnitude of the induced or secondary field.
It will be seen in Fig. 2.1 that the argument of (1-R)/(1+R) is
always between 0 and /2. This ensures that in equation 2.1.29
the magnitude of the horizontal components of the primary
ﬁagnetic field will always be increased by the addition of the

secondary horizontal field, whereas the magnitude of the primary
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vertical field will always be decreased by the secondary

vertical field.:

-

Substituting 2.1.4 and 2.1.5 into 2.1.26, the value of R

is:

R=[(V- wlluoeb)/( Vs iwluoo)]”l

(2.1.31)

The separation constant, Y , will be shown later in this

development to be equivalent to the total horizontal spatial

2

. 1y
wavenumber, (kx"® + kyl)l, so that V is directly related to the

scale length, A , discussed in section 1.2:

A =217/ '

(2.1.32)

Thus, the range of expected - values of V is readily
obtained from the range of A arrived at in section 1.2: these
are given in Table 2.1, along with the ranges of the other
variables important in G.D.S. Even for the largest expected

scale 1length, and for all periods greater than 5 seconds, it is

found that:

V' >> wzf‘oeo

(2.1.33)

Thus, 2.1.31 can be approximated by:
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o]
"

/(1 + ip)ie
(2.1.34)

where:

oo
]

o p/VT

(2.1.35)
If P is very large, the magnitude of R (from equation 2.1.34)
will be very small, so that }rom equation 2.1.,30 |B;/A:| X 1.
This corresponds to significant 1induction of the horizontal
components into the earth, and almost total extinction of the
vertical field. As well, the phase difference between A' and B,
will be near zero. If ﬁ is very small, the magnitude of R will
approach 1, so that IBf/A:l is nearly zero, and B' is nearly
Y/2 out of phase with A;. This indicates near total refléﬁtion
of the inducing field from the surface. The complete dependence
of B, /A, on B is plotted in Fig. 2.1. A median value of B = 1 is
suggested as the value of p above which there 1is significant
induction into the earth.

Using the ranges of VY and w in Table 2.1, and taking
conductivities of .005 S/m (resistive crustal rock) and .5 S/m
(conductive crustal rock) (Brace, 1971; Garland, 1979, pg. 277)
the range of values of P is calculated, and displayed in Tables
2.2 and 2.3. It is clear from the tables that the scale length
has a gizeable effect on the value of F. However, it must be

noted from Fig. 2.1 that for all values of F greater than 100,

the magnitude and phase of |B:/A:| will be approximately the
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The ratio of the complex magnitudes of the inducing and

induced magnetic field at the surface for the TE mode

solution 1is B'/A'., Given is the dependence of this ratio

on the dimensionless parameter F.

a) MOD(B'/A') vs LOG,, (R)
b) ARG(B'/A') vs LOG,e (p)
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same, so that for all A > 1d4km. the surface values will be
nearly the same. Also from Tables 2.2 and 2.3 it is clear that
for the majority of the wvalues of period, conductivity, and
scalelengfh there will be significant induction of the primary

field into the earth for the TE mode.



Table 2.1:

Parameter Ranges in G.D.S.

0 (crustal)

.005 S/m - .5 S/m

Y (separation

parameter)

‘7 . \ ‘g -1
1.57x10 m - 1.57x10 m

A (horizontal

scale length)

400 km. - 40000km.

T (period)

1s. - 72000s. (20hrs.)

w = 2T/T

-8
8.7x10 Hz. - 6.28 Hz.

39



Table 2.2: Values of p for varying T, A.

O = .005S/m
10s. 1m. 5m. 20m. 2hr. 10hr.
(km.) )
4 4 s 4 . 4
4x10 |.16x10° |.27x10° |.53x10 |.13x107| 220 44
1x10° | .10x10% | .17x10% ] 332103 | 83 14 2.8
4

5x10° |.25x10 |.42x10° 83 .21 3.5 .69
1x103| 100 17 3.3 .83 .14 .028
5x10% 25 2.2 .83 .21 .035 |.0069




Table 2.3: Values of p for varying T, A.

G = .55/m

i0s. 1m. 5m. 20m, 2hr. 10hr.
(km.)

4 ] 7 3 . 6 s
4x10 |.16x10 |.27x10 |.53x10 {.13x10 |.22x10 4400

1x10 [ 1ox107 . 17x10% | .33x10° | 8300 | 1400 280
3 é s :

5x10° | .25%x10 |.42x10 8300 | -2100 350 69
3 s

1x10% | .10x10° | 1700 330 83 14 2.8

5x10%| 2500 420 83 21 3.5 .69
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Returning to the second type solution, the form of the
electric field satisfying 2.1.8, 2.1.15, and 2.1.16 is found to

be:

~(Megal'te

E = afFr e -} '
Eplxiy,z) = 538, 3y '&V1+¢a)“2Fz} Aze
1]
3 R v (VM +@a) 2
+{ YRAET] 'Q01+¢LYH)FZ} B, e
(2.1.36)
for z < 0
E ( ) = {BFQ 1Ft ( -Pr )F } C ‘('\)‘+¢e\“‘%
X Y.zl = gy "R N+ DN A ,
(2.1.37)
for z > 0
with Fz satisfying:
»F  3H T _
Xt *v*\) Fz = 0
(2.1.38)

In similar fashion to the case for the first type solution,
Fz(x,y) and VY are found to be the same for both the
nonconductive and the conductive half spaces. As well, each
value of v between 0 and e merely represents one elementary
solution with the complete solution again being the sum of all
elementary solutions. Also in analogous fashion, the
corresponding magnetic field for each elementary solution is

fouﬁd to be:



43

Pa [{bFz SLITIW o T2

ﬁz(x,y,z) = (i/wﬂo%v, NRLD

"l
. (- 3? W 0} p,e V1Ol Y
(2.1.39)

for z < 0

liy
Pe {oF BFe 0} Cye '(91+¢e\' 2

ﬁl(x,}’,z) = (l/wFo(\V'*Q NI 3‘3

(2.1.40)
for z > 0

Again using the boundary conditions at z = 0, we get:

By = Ay {[1 - 2ER)/[1 + X Rl

(2.1.41)
C, = Ay {2/[1 + g: R]}

(2.1.42)

where R 1is the same as defined previously, in equation 2.1.26,

and:

(2.1.43)

To obtain the same format as for the type one solution,

define:
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Pa.
(0" + ¢“3I'1A r N

>
~N -
[}

(l/w,}o)
(2.1.44)

and

Pa
CRT NI

o)
N
[

(=i/wps)

(2.1.45)

Thus, the magnetic field at the surface becomes (using

2.1.39):

Hy(x,y,0) = {(a) + B;02R —(a) + B3 0))

b
(2.1.46)
with:
B, = A, [( zf R - 1)/( :e R+ 1)]
(2.1.47)

When the amplitude of (A; + B{) is evaluated over the range of
values of o,w, and Vv given in Table 2.1, it is found that in all

cases:

tA, + Bl = IC)I % 0
(2.1.48)
The largest value of ICQI occurs when the period is 1 second,
the conductivity is .005 S/m., and the horizontal wavelength is
40,000 km., and is still only 2.8 x 10-5. Thus, for the range of

parameters of G.D.S., both the transmitted field and the total
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surface field are effectively zero, so that the TM mode will
neither induce currents within the earth, nor be measureable at
the surface. The TM mode can therefore always be ignored in
G.D.S.

The analogy between the first type solution and TE mode
waves, and the second type solution and TM -modes waves 1is
completed in Appendix B. Also included is the derivation of the
standard form of the Fresnel relations and Snell's law. It is
found that the elementary solutions of the induction equation
corresponding to different values of the separation constant VvV,
are in fact plane waves of differing total horizontal

wavenumber. The main points of this analogy are given below.

First type solution (TE Mode)

- . .k -ak .
E‘(x,y,z,t) = {ky,-kx,0}a, eq&xet33e L‘“Eetwt

: H L Y twt
+{ky,-kx,0}B, e"h‘xe "Js’e‘k‘“2 e

(2.1.49)

ﬁ‘(x,y,z,t) = (=1/wpms) {(kza)kx, (kza)ky,-V'}
A, eik,x e{k:lje-Ckmie twt 4



+ (1/wpe) {(kza)kx, (kza)ky, V'}

B, etkeXgikyd ikt o bt

for z < 0

> ik tkey =ckyet H
E,(x,y,z,t) {ky,-kx,0} C, e H ey e gluwt

H (x,y,2,t)

(1/wpme) {(kze)kx, (kze)ky,-V?*}
C, eth* othyyikie  luwt

for z > 0

Here, A,, B;, and C; obey 2.1.24 and 2.1.25.

Second type solution (TM Mode)

Ez(x,y,z,t) = (1/weo) {(kza)kx,(kza)ky,- V*}

Azetk“xeikﬁe-ik“i e cwt

+ (1/we ) {(kza)kx,(kza)ky, V*'}

Bzetklxekaje Ckagt e twt

46

(2.1.50)

(2.1.51)

(2.1.52)

(2.1.53)
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H ' Ueex _ikyy i Lwt
Hy(x,y,2,t) = {ky,~kx,0} A e ¥e'ffe thua? ¢ iv

L Y (ki  Cwt
-{ky,-kx,0} Bze‘&xeLJHeLi“ e ™

(2.1.54)
for z < 0
ﬁl(x,y,z,t) = (1/wé&,) {(kze)kx, (kze)ky,-yt}
c, otkax JtkyY rikget Lwt
(2.1.55)
ﬁz(x,y,z,t) = {ky,-kx,0} CleLk"xe‘.kﬁe‘Lk“%ecwt
(2.1.56)

for z > 0
Here, A, ,B, , and C, obey 2.1.41 and 2.1.42.
In these elementary solutions, the wavenumbers are shown

(in Appendix B) to be related to the separation parameter VY by:

V7
(kx* +ky )~ = Y

(2.1.57)

kza = -i( Qo+ V)T = —i( V-wpo0) "2

(2.1.58)
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kze = -1( ¢e+\)l)"l= -i( \>1+in66)“1

(2.1.59)

The equivalence of the elementary waves of Chapter I
(section 1.2) to the elementary solutions of the homogenous
earth induction problem is thus complete. The separation
constant V is found to be related to the scale length discussed

in the source field description:

A= 2mr/V
(2.1.60)
Again, the complete solution will be a summation of all the
elementary solutions, or in the continuous case, an integral
over all horizontal wavenumbers. In this complete solution only

the TE mode need be considered.

2.2 Uniform Source Field Over a Two-Dimensional Earth:

Forward Modelling

A common simplification in G.D.S., and one used in most
forward modelling algorithms, 1is that the source field is
effectively horizontally uniform. Thus, the waves of the source
field can be considered to be propogating vertically downward.
The ~limits of this assumptioﬁ are discussed in detail in

Appendix C; in quick summary, the results indicate that for
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periods less than 2 hrs. and for areas where the source field
scale length is > 5000 km. (such as at midlatitudes), this
assumption will be wvalid.

Jones and Pascoe (1971) have embodied this simplification
in a finite difference approach to calculating the surface
magnetic and elecéric fields over two dimensional structures,
using the Gauss-Seidel iterative method. Their programs handle
separately the situations where the electric vector of the
primary field is parallel té the strike of the structure ( E-
polarized) or the magnetic vector of the primary field is
parallel to the strike ( ijolarized). However, in the case of H
polarization, the symmetry along the strike of the structure
ensures that the_only non-zero component of the total magnetic
field at the surface will be the horizontal component
perpendicular to the strike. Further, for this polarization the
continuity of any magnetic field vector across an interface
guararnitees that the values of this non-zero magnetic component
will be the same at every surface position (Jones and Price,
1970). Thus, in G.D.S. the only interesting éase is that of E
polarization.

Because of the expense involved in running the program of
Jones and Pascoe (J-P), only a few selected conductivity
structures have been studied. It is often considered that there
are three major types of localized anomalies present in the .
eérth, these being (Schmucker, 1970, pg. 78; Oldenburg, 1969,

pg. 117):
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1) near surface anomélies in the upper crust

2) intermediate anomalies 1in the lower crust and uppermost
mantle

3) deep anomalies due to imbalances or wundulations in the

high conductivity layer of the upper mantle

The three models shown in Fig. 2.2a,b,and c are representative
of these three anomaly types. For each, the J-P forward programs
héve been used to generate the surface values due to an E-
polarized inducing field. The “'anomalous' field was then
produced by subtracting from these the 'nqrmal‘ field values due
to the anomaly-free one dimensional structure. The results are
given in Fig. 2.3a,b, and c for a period of 5 min., and in Fig.
2.5a,b, and ¢ for a period of 50 min.

If first order induction effects only are important, that
is, mutual induction is insignificant, then the induced currents
will be directly proportional to, and in phase with, the local
electric field. Thus, for these 1localized conductive bodies
used, the anomalous induced currents would resemble 1line
currents in phase with the local electric field. From eguation
2.1.52, the downgoing electric field in a half-space of
conductivity can be written (considering only ‘the TE

mode) :
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E thex tkyy =0 Lwt
E(x,y,z,t) = {ky,-kx,0} C(kx, ky) gtheX tkyy ~tkyet (w

(2.2.1)
where from equation 2.1.59:
kze = -i(V+iwp,e) ™
(2.2.2)
and from 2.1.57:
V= kxt + ky1
(2.2.3)

To allow for wvertical .incidence, the vector components are
normalized by division with ¥V, giving:

E (D (sxm®©. o.
E(x,y,z,t) = {cos®,-5inB,0} c' (@) e (PO X * 06y

~tkiet (wt
ettt o

(2.2.4)

with:

sin® = kx/v ;: cosB = ky/>
(2.2.5)

Taking the strike of the two dimensional structure to be in the

y' direction, then a vertically propogating (V =0) E-polarized

wave (sinB =0) of the TE mode (E3 =" 0) will be represented by:



E(Z,t) - {1,0,0} c| 'e-ikieielwt

(2.2.6)
The portion of the spatial exponential which corresponds to
propagation 1is obtained by taking the real part of kze from
equation 2.2.2, so that the phase difference between the
electric field at the surface and that at a depth 2z, will be
given by:

.Il

¢ = [g¢hg] Zo, (in radians)

: (2.2.7)
If first order induction only is significant, the current along
the anomaly and its corresponding magnetic field at the surface
will be in phase with the electric field at the depth 2,. The
phase difference between the anomalous magnetic field and the
electric field measured at the surface will thus be ¢ - from
equation 2.2.7.

To test the approximation of first order induction the
field of a line current at the same depth as the anomalous
conductivity has been superimposed on the results from the
forward induction, in Fig. 2.3a,b, and ¢, and Fig. 2.4a,b, and
c. In all cases the magnitude of this.current is normalizéd to
the maximum value of the calculated horizontal field from the J-
P induction prégram. For both the shallow and the intermediate
anomalies, the match of the 1line current -and J-P results is

nearly exact for the horizontal field component. This should in

turn mean that the vertical field match is as good, because the
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Results from the Jones-Pascoe program for the three
models (a,b,c) of Fig. 2.2, at a period of 5 min. The
solid line represents the J-P results, and —&— 1is the
superimposed field of a line current at the depth of the
anomalousAconductivity. The magnitude of the line current

is normalized to the maximum value of the Bx component.
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‘superimposed field of a line current at the depth of the
anomalous conductivity. The magnitude of the line current

is normalized to the maximum value of the Bx component.
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vertical field is always the negative Hilbert transform of the
horizontal field for a two dimensional structure (see Appendix
D). However, the vertical components are not nearly as similar
as their horizontal counterparts. It is suggested that this
indicates some minor failing in the J-P program, of either
inherent nature, or due to the grid selection by the author. The
matches for the third type anomaly are quite good for the
horizontal component, but are very poor for the vertical
component. In this case, however, ghe original assumption of a
localized anomaly is not true, so that mutual induction is
possible within the high conductivity =zone beneath the
undulation. Thus, the fit of the 1line current field is not
expected to be as good in this case.

To further check the wvalidity of the line current
approximation the phase difference 4> between the anomalous
field and the surface electric field has been calculated from
equation 2.2.7, and also directly from the J-P results (see
Table 2.4). The values for the shallow and midcrustal anomalies
are comparative in each example. For the mantle undulation there
is a large difference between the two estimates of phase, and
this is again indicative that in this case mutual induction is

important.



Table 2.4: Phase Difference Between

Surface Magnetic

Surface Electric

Field

Field,

Line Current and the

the Anomalous
and the Normal

for Both the

Jones-Pascoe
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Results.
Anomaly Type Depth Period Phase Phase
eq,2.2.7 J-P
Shallow 9 km.| 5 min. 1.87° 1.74°
Midcrustal 35.5 km.| 5 min. | 7.38° 5.39
Mantle 'Bump' 140 km. 5 min. 29.10° 21.0°
Shallow 9 km.| 50 min, .59° .46°
Midcrustal 35.5 km.| 50 min. | 2.33° 2.440
Mantle 'Bump' 140 km.| 50 min. 9.19% 35.93°

In summary, for localized anomalies in a host materi

al of

comparative low conductivity, the J-P forward modelling results

suggest that the line current approximation is in fact

indicating that the first

anomalies is appropriate.

order

simplification for

valid,

such
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Chapter I11I

Traditional Methods of G.D.S. Analysis

3.1 The Formulation and Separation of the Normal Field

G.D.S. has been used for one dimen;ional as well as two and
three dimensional sounding (Schmucker, 1970; Kuckes, 1973;
Lilley, 1975; Woods, 1979), but the one dimensional problem will
not be discussed here. The general presumption made in G;D.S.
analysis, as originally suggested by Schmucker (1970), is that
the earth model is basically plane layered, with only relatively
small anomalous variations of conducéivity (as indicated in Fig.

3.1a):

n o
Q}(x,y,z) = G +<%(x,y,z)
(3.1.1)
The magnetic field within the jtk layer, ﬁj(x,y,z) can always be

written:



Fig.
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1

Possible Conductivity Models

(a) The assumed conductivity model of G.D.S. is basically
plane layered, with only small 1localized regions of

anomalous conductivity.

(b) A conductivity model that is plane layered except for

a large discontinuous 'step'.

(c) The abutment of two different layered structures (as

at the land-sea boundary)..

In both (b) and (c) the concept of a normal field breaks
down if the array is close to, or spans the

discontinuity.
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ﬁ;(x,y,z) =§§(x,y,z) + ﬁ;(x,y,z)

(3.1.2)
where ﬁ?'is the 'normal' field which would exist in the absence
of the anomalous conductivity, and ﬁ; is the variation from ﬁj\
due to the anomaly. The general induction eguation is eguation
A.19 from Appendix A:

o -.CY' - ..n. . ._;‘
V'H: = 3%:u x (¢ gHa) + 1wF°°UH5

9 J

(3.1.3)
Inserting equations 3.1.1 and 3.1.2 into 3.1.3, and using
equation A.31 from Appendix A for the normal field in a region
of constant conductivity, the anomalous field ﬁ: can be

expressed as a function of the normal field:

-l ‘.K -
vE: + 967 (¥ x BY) - iwrtoc;}-l_;”

3) : 3
oy
- Pse - -
= 1wHoqf5? - ?gﬁ x (¥ x H;)
J

(3.1.4)

This equation, although never used directly, forms the
basis for most of the methods that attempt to relate the
designated normal field to the anomalous field in some
statistical manner, and then from the ensuing relations estimate
the anomalous structure. In cases where the extent of the
anomalous variation is very large, the COnéept of a normal

layered structure will not be applicable, and the defined
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concept of a normal field will break down. Examples of this are
when the measu;iﬁg array spans a large subsurface conductivity
step, or is in the vicinity of the abutment of two different
layered structures (as in the case of the earth-ocean boundary).
(see Fig. 3.1b,c) To avoid these problems of definition Lilley
(1974) has suggested that the total field be formulated in terms
of internal and external parts rather than anomalous and normal
parts. Banks (1979) has also criticized Schmﬁcker's approach on
the grounds that the veartﬁ's crust 1is ‘far too locally
heterogenous for a normal field to ever truly exist. In view of
the marked similarity of_magnetograms in general over an array,
this is probably too harsh an indictment; however, the existence
of a true normal field should always be viewed with some
reservations. ’

If the concept of the measured field being composed of
normal and anomalous components is accepted, its usefulness will
then be dependent on the ability to separate these two
components. Similarly, if Lilley's suggestion to use internal
and external components is adopted, then it will be required
that these two components be separable from the total measured
field. As indicated in Tables 2.2 and 2.3 and Fig. 2.1, the
induced vertical component over a conductive half-space almost
completely cancels out the vertical component of the inducing
field for nearly all values of period, conductivity, and scale

length expected in G.D.S. Except for a combination of 1long

period (> 2hr.), short scale length (< 5000 km.), and low
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conductivity (< .005 S/m.), the vertical component of the normal
field will bg very small. Thus, in anomalous regions, the
separation is often effectively already done for this component,
as virtually all of the measured value will be anomalous, and
internal. This forms the basis for the visual methods described
in section 3.2 of this chapter, which use the unseparated data
for preliminary analysis.

To separate the normal and anomalous fields, two methods
suggested by Schmucker .(1970) are commonly employed. These
methoas differ only in their manner of separation of the
horizontal components. In the first method a station presumed to
be distant from the anomaious region (as would be indicated by
the wvisual methods of section 3.2) is selected as the reference
station. If the scale length of the observed field 1is much
larger than the array size, then the horizontal components H and
D of the field {H,D,Z} measured at this site will serve as the
normal field. (Note that H is the component of the field in the
direction of magnetic north, D is the component in the direction
df magnetic east, and 2 is the vertical component, where the
positive direction of Z is downwards). In the case that this
condition 1is not met, one can use the regional horizontal
derivatives of the fields to calculate the first order

corrections at any position (x,y) (where the position (0,0) is

the reference site, 'x' is toward magnetic north, and 'y' |is

toward magnetic east):
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Hy(x,y) = H(0,0) + (}%}),x + (%ﬁf)'y

(3.1.5)
DN(x,y) = D(0,0) + (%%i)-x + (33?)'Y

(3.1.6)

!

From equations 2.1.20 and 2.1.36 in Chapter II, and the wvalues
of |B /Al given, the vertical electric field at the surface
should always be nearly zero. Thus, the vertical component of
the curl of the magnetic field should be near zero, allowing a

check of the values of IDw/3x and H/3y:

IHw  _ Dw
}3 XK

= iw€°E-i A/ 0

{3.1.7)

The second method used to separate the normal and anomalous
horizontal fields takes advantage of the presumption that the
scale length of the inducing field should be much larger than
the spatial wavelengths of the induced anomalous field. Thus,
spatial smoothing of the measured horizontél compoﬁents over the
array area should define the normal field.

To define the normal vertical field, Schmucker uses the
spatial derivatives of the normal horizontal field. From
equations 2.1.19 and 2.2.23 of Chapter Il it can be shown that
at any frequency the value of the vertical magnetic field in the

homogenous earth case is linearly related to the derivatives of
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the horizontal components by a frequency dependent constant, C:

_c (2Hy 4, 3Dy
zZ =C ( Svoall }\;‘)
(3.1.8)
where:
C = 1/(V+ )"
(3.1.9)

In the plane layered case the relation 1is the same _as. in
equation 3.1.8, but now C is a more complex, frequency dependent
function of the conductivity structure (Schmucker, 1970, pg.15).
(In both cases C is a mea;ure of the skin depth of penetration).
The value of C is calculated from some given model of the oﬁe
dimensional conductivity structure. Using this, and estimates of
the horizontal field gradients, it‘is then poséible to evaluate
the wvalue of the vertical normal gield, ZNy. In practice, this
method of determining Zy is not very reliable for a number of
reasons. The difficulties in accurately determining the one
dimensional structure and the horizontal field gradients
constitute the first obvious problem with this method. More
fundamental, however, are the problems incurred because of the
frequency dependence of C, and the time variations of the
horizontal gradients. If the value of Zy is calculated in the
frequency domain, then the time variations of the gradients
cannot be taken into account, whereas in the time domain the

frequency dependence of C cannot be introduced (Schmucker, 1970,
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pg.16). To avoid these difficulties, it is this author's opinion
that the normal vertical field Zy is just as reliably determined
by assigning to it the wvalue of Z, at the reference site.
Whatever the method used to determine 2,, its spatial variation
can safely be ignored. This follows from equation 3.1.8, as the
gradients of Z,, will now be second order corrections with
respect to Hy, and Dy.

Once a normal field {H,,D,,2,y} has been defined, the
anomalous field {Hp(x,y),Da(x,y),2,4(x,y)} at any station
position can be calculated from the measured field,

{H(x,y),D(x,y),2(x,y)}:

Ha(x,y) H(x,y) - H

N

(3.1.10)
Da(x,y) = D(x,y) - Dy ?

(3.1.11)
Za(x,y) = z2(x,y) - 2Zy

(3.1.12)

The problem of separating the internal and external fields
was first solved by Gauss (1839) for a spherical earth. For the

flat earth case,the separation method has been derived in a
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variety of ways (Vestine, 1941; Siebert and Kertz, 1957; Weaver,
18963)). The derivation of the separation formulae for a two
dimensional structure which is given in Appendix C 1is taken
mainly from Weaver (1963). Consider a continuous one dimensional
array running east-west perpendicular to the north-south_strike
of a two dimensional current density structure (see Fig. 3.2).
By symmetry considerations the only non-zero components of the
magnetic field will be D and 2. The relations between the
internal and external components of D and Z (as derived in

Appendix C) are:

K(Dy) = -Z¢

(3.1.13)
K(DE) = ZE

(3.1.14)
K(Zy) = Dz

(3.1.15)
K(ZE) = _DE

(3.1.16)
where the operator K is the Hilbert transform:

-~
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One dimensional surface array perpendicular to the strike

of a two-dimensional earth. The current densities
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[s <]
K(A(x)) = ‘1/W£A(U) /(x-u) du
_ i (3.1.17)
with 'jr' denoting the principal value of the integral. The

measured data is:

D(x)

DI(X) + DE(X)

(3.1.18)

Z(x)

Zr(x) + Zg(x)
(3.1.19)

Thus, combining 3.1.13 - 3,1.19, we get:

DI(X)

{D(x) + R[Z(x)]1}/2
| (3.1.20)

ZI(X)

{z(x) - K[D(x)]}/2

(3.1.21)

The intrinsic shortcoming here 1lies in a fundamental
property of the Hilbert transform. Because the denominator of
‘the integrand in 3.1.17 is an odd function, the Hilbert
transform of a constant is zero. Thus, for the normal field,
this separation technigue will never be able to separate the

internal and external portions if the inducing field is uniform,
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that is, if it consists of waves propagating vertically downward
(corresponding to an infinite scale length). As seen in section
2.1 (and as discussed by Weaver (1973)), this 1is an intrinsic
property. In the case of a wuniform field the ratio of the
secondary to the primary field amplitude can have any value
between» 0 and 1, and there 1is no way to distinguish from
measurements what the .true wvalue 1is. Thus, there will be
problems separating the internal and external portions of the
normal field if the scale 1length of the inducing field is
greater than the dimensions of the array.

It is clear from the above that estimation of the scale
length from the surface readings will be important. In a layered
structure, the crossing of a plane wave into the next layer will
‘never result in a change of the original horizontal wavenumbers
for the reflected or refracted wave (as seen for the earth-air
interface in section 2.1, also, see Panofsky and Phillips (1962,
pg. 196). Thus, the scale length should be calculable from
either the separated normal field, or the separated external
field. In the case of the homogenous earth, the inducing field
( ﬁ}) consisting of only a single TE mode wave may be found by

applying equation 1.2.4 to 1.2.9:

fil,(x,y,O) = Hy{-[kzkx],-[kzky], [kx® +ky* 1}e¥e tkyy
(3.1.22)
This would correspond to the separated external field. Using

equation 2.1.29 the resultant total surface field (H) will be:
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ﬁ(x,y,O) = H,{[-kzkx(1+T)],-[kzky(1+T) ],
[Ckx* +ky*) (1-T) ]} e"5e tky
(3.1.23)
where T is the ratio of induced to inducing complex amplitudes
from equation 2.1.30. ﬁ corresponds to the separated normal

field. The true scale length is given by:

A = 21 /(kxP+ky?) '®
| (3.1.24)
Using the horizontal components of either the separated normal
or external fields, an esgimate of A is obtained from:
N = 1ﬂ(H‘+D1)"‘/[i(§%+%‘§-)]

(3.1.25)
where it 1is noted that Hz, D? are H-H, D-D, and not |H|1,]D|1.
The expression for the plane layered case 1is identical to
equation 3.1.25, where the constant.C in this case is a complex
function of the layered structure. In both cases C is a measure
of the depth of penetration of the field.

If the inducing field consists of many waves of differing
spatial wavelengths, the non-linearity of equation 3.1.25 with
respect to H and D will result in an incorrect value for M .
However, it 1is expected that the wvalue will still be a
reasonable estimate " of the smallest significant horizontal
wavelength. It should be noted that as the complex form of the
wave solution has been used in equation 3.1.22 and 3.1.23 that

evaluation of A by this method would neccessarily be done in
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the Fourier transform frequency domain. A similar estimator has
been used which is applied to the time domain values of the
horizontal normal or external field (Porath et al, 1971):
N = 2F/|VF|

(3.1.26)
F is the total horizontal field measured at the spatial position
of the maximum gradient of F, and |6F| is the magnitude of
the maximum gradient. This estimator will be incorrect except
under verf fortuitous circumstances. Consider the expression for
the complex field in equa;ion 3.1.23. Because the estimator uses
real time domain values, we use only the real part from this
expression. Rotating into a new coordinate frame (7,5) so that
there is only one horizontal component F along a, the value of F

will be:

(3.1.27)

where:

Fo = -Hokz-Reall[1+T]
(3.1.28)
and ky, 1is the total . horizontal wavenumber. Using this to

evaluate A in equation 3.,1.26, we get:
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>
"

(21r/ky) cot(k‘Hg’ )

(3.1.29)

A cot(ka )

(3.1.30)
Thus, the estimate of the value will be incorrect by the factor
cot(kk‘g), and as this can have any value between 0 and o0, the
possible fluctuations of X' from the true value » could be
huge. It would be possible to use this estimator if the gradient
and total field value were taken at positions a quarter scale
length apart. However, as it is the scale length that 1is being
determined this is not a very practical suggestion.

For both of these methods the estimators are applied to
either the separated normal or separated external fields, so
that errors in the separations could result in errors in the
scale length value. However, both methods of separation' of the
normal and anomalous fields will tend to error by not including
enough sﬁall spatial wavelengths, whereas the separation of the
internal and external fields 1is unable to separate the long
spatial wavelengfhs. Thus, estimates of A made using both kinds
of separated fields should provide bounds on the value of the

scale length.
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3.2 Visual Methods of Analysis

As was mentioned 1in the previous section, because the
induced vertical field over a normal layered earth always
‘opposes the inducing vertical field, the anomalous amplitude
will generally be much larger than the normal amplitude. The
vertical component 1is therefore effectively already separated,
by virtue of its being mainly anomalous and internal. This
offers the rationale for doing initial preliminary analysis
before separation, by using displays of .the data itself. For
example, consider the case of a buried linear feature with
enhanced conductivity relative to the host rock. As seen in
section 2.2 of Chapter II, the anomalous magnetic field at the
surface will mimic the field of a 1line current. The vertical
field will thus wundergo a reversal in sign along a profile at
‘'right angles to the strike of the linear feature, with the zero
field point directly over top of it. As seen in Fig. 3.3, this
allows preliminary tracing of 1linear features; clearly a
conductor runs roughly north?south between stations CHU and RAW,
WIC and CUS, and REE and BAK, in the southern part of the array.

Another possibility 1is that the time variations of the
vertical component of the magnetic field will be closely
correlated with one of the horizontal field components. This is
seen in Fig. 3.3, in which , for example, the 2 components of

stations REE and WIC are «closely correlated with their

<
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3.3

(a) Magnetometer locations for the magnetograms of (b).
The array éonsists of 8 lines trending East - West, which
are numbered from North to South.

(b) Magnetograms for a substorm of August, 1972, from the

southern part of the array (after Alabi et al, 1975).
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associated Y components. The correlation indicates that it 1is
the primary field of that horizontal component which is the
dominant source of induction in the anomaly. Presume first order
induction only, that is, the secondary effects of mutual
induction by the induced field are ignored. The anomalous
current will then be perpendicular to the correlated magnetic
field component, as illustrated in Fig. 3.4. In accordance with
the results of section 2.2 of Chapter 1I, the anomalous
conductivity must then trend in this same direction. For the
anomaly of Fig. 3.3, this trend will therefore be in the north-
south direction, which is in agreement with the result of the 2
reversals.

An enhanced use of the unseparated data takes advantage of
the feature noted in Chapter II in both sections 1 and 2, that
the induced field due to a conductive region will be more
closely in phase with the inducing fields the highe} its
conductivity is. Thus, by taking temporal Fourier transforms of
the vertical component at every station in a two dimensional
array, and contouring separately the amplitude and phase
results, one will clearly see the paths of 1large highly
conductive anomalies by the clustering of the contours 1in the
phase diagram. In Fig.3.5, the path of tﬁe North American
Central Plains anomaly through Saskatchewan and into the U.S.A.
is clearly delineated in the contour plot of the phase of the Z

component (Alabi et al, 1975).
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Inducing
field

E\/H
Due to first

order induction

Fig. 3.4
A plan view of an anomalous current in the earth is
shownl Presuming only first order induction, the induced
current in a localized conductor will be perpendicular to

the magnetic vector of the inducing field.

Fig. 3.5
The contoured amplitude and phase of the magnetograms of

Fig. 3.3b, at a period of 68.3 min.
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3.3 The Induction Tensor and Induction Arrows

Presume that the normal field {Hy,Dy,Z,} has been defined,
so that the anomalous field {Hj,Da,Zq} can be separated from the
total field {H,D,2}. The methods of analysis using induction
arrows are then based on the assumption that for any frequency
w, the anomalous field components are related to the normal

field components by the induction tensor, I:

Hp T [Hy
Da =43' Dy
Za Zy
(3.3.1)
where:
I = [ Cuy Cup Cuy
Cou Coo Coe
Cau Cip Crz ,
(3.3.2)

The elements of I may be complex, to allow for possible phase
differences between the anomalous and normal fields. .

Obviously this relation can always be defined at each time
t, since there are only three equations for nine unknowns.
Unfortunately, this admits the possibility that any scheme used

to compute the tensor elements will result in the wvalues being
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time dependent. If the induction tensor elements can fluctuate
with time this_ indicates the tensor is a function of the
inducing field as well as the underlying conductivity. The
ensuing problem of trying to separéte the two influences in the
tensor will severely 1limit 1its usefulness in resolving the
earth's structure. Thus, the tensor must be reasonably
independent of the inducing field, and thus of time, to be of
value,

If the source field at each.frequency w was comﬁrised of
only one elehentary electromagnetic. wave, characterized by
wavenumbers (kx,ky,kz), then obviously the linearity of.equation
3.1.4 ensures that the values of the induction tensor will be
constant,even with time varying amplitudes. For a single wave,
and a given conductivity structure, the relation of 3.3.1 would

be:

Hp (kx,ky, t) = I'(kx,ky)a(kx,ky,t)/ Hy(kx, ky)

Dy (kx,ky,t) Dy (kx,ky)
Zp (kx,ky,t) EN(kx,ky)

(3.3.3)
The vector components {ﬁN(kx,ky),ﬁN(kx,ky),EN(kx,ky)} are the
values of the normal field components for an inducing wave of
unit amplitude at wavenumbers (kx,ky). A(kx,ky) is the actual
time varying amplifude of the inducing wave, and 1I'(kx,ky) 1is
the’ induction tensor'for the wavenumbers (kx,ky). The values of

the elements in I'(kx,ky) will depend on the interaction of the -
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transmitted wave with the anomaly, and so will be dependent on
the spatial characteristics of the wave as given by (kx,ky).
Thus, 5'(kx,ky) will be different for each (kx,ky). Because the
normal field of a waQe at a plane boundary (incident plus
reflected) will always have the same magnitude as the
transmitted wave, the actual magnitude of the inducing wave does
not enter into l'(kx,ky). In the case of more than one wave in
the source field the tptal anomalous field will be the integral

over all possible wavenumbers:

o

Ha(t)\ = j~S [1'(kx,ky)a(kx,ky,t) Hy(kx, ky) \ ldkxkdy
-0 T b -

Da(t) ' Dy(kx,ky)

Za (t) Zy (kx, ky)

(3.3.4)
where now A(kx,ky) is an amplitude density in wavenumber space.

The total normal field is given by:

o
H,(t) = g g [A(kx,ky,t ﬁN(kx,ky) Jdkxdky
Dy(t) | By (kx, ky)
z,(t) Zy (kx,ky)

(3.3.5)
Thus, to be able to represent the total anomalous field as given
in equation 3.3.4, by an expression of the form of equation
3.3.1 in which b is source ( and thus time), invariant requires

that:
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[ N o]
0 = § (111" (kx,ky) 1 Akx,ky,£) /By (ke, ky) \akxdky
-m-@” -
_ Dy (kx,ky)
fn(kx,ky)
(3.3.6)
Because the values of A(kx,ky,t) are arbitrary, this can only be

satisfied if for all (kx,ky):

I = 1'(kx,ky)
~ ~
(3.3.7)
As was pointed out earlier, this is not in general true. Thus
there is nothing that requires a priori that the induction
tensor I relating the normal and anomalous fields in 3.3.1 will
be source independent.

A variation of equation 3.3.1 was suggested by Dragert
(1973, pg. 41 - 42). Taking the spatial Fourier transforms of
the array measurements of both the normal and anomalous fields
at a particular frequency, w, one would obtain their respective
complex amplitudes at each possible pair of wavenumbers kx,ky.
The assertion was then that the relation of 3.3.1 would be true
when considered independently at each wévenumber pair (meaning
that 5,'the induction tensor, would be a function of kx,ky). The
suggestioh is not correct, because a single elementary wave of
arbitrary wavenumbers kxo,kyo, can generate an entire horizontal
spectrum of waves in the anomalous field. Consider the example,
treated in section. 2.2 of Chapter II, of a single downgoing

wave impinging on an earth that 1is homogenous except for a
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-

buried cylinder of high relative conductivity. As was seen, the:
anomalous field of this example to first order resembled that of
a buried line current. It was shown in section 1.2 of Chapter I
that a 1line current has energy at an infinite number of
wavenumber values, so that the. spatial transform of the
anomalous field would be non-zero at an infinite number of
wavenumber values. On the other hand, as was shown in section
2.1 of Chapter 1II, the normal field due to a single impinging
wave will only have one non-zero wavenumber component, at the
wavenumbers, Kkxo,kyo, of the original inducing wave. Thus, to
relate the anomalous field components at each wavenumbef pair
kx,ky would be impossigle at all values for which the normal
field value was zero and the anomalous field was not.

It has been shown then, that the relation of equation 3.3.1
is not universally true. However, it has been proposed that for
arrays at latitudes mid-way between the polar areas and the
equator, the source field will be effectively horizontally
uniform for the ranges of parameters used in G.D.S. (Lilley and
Bennett, 1973; Banks, 1973), with estimates of the scale length
being on the order of 5000 to 10,000 km. (Gough, 1973; Banks,
1973; Lilley, 1973; Mareschal, 1981). Under these conditions it
is claimed that the induction tensor will be independent of the
source variations. Consider the effect on the induction tensor
formulation in the uniform field situation. In the limit as the
kx and ky values of a wave go to zero, the direction and mode

(TM or TE) of the wave no longer serve to distinguish the
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direction of the electric and magnetic fields in the horizontal
plane. For a vertically downgoing wave there is no distinction
between the TE and TM modes, and the only wavenumber is kz, yet
there are an infinite number of possible rotations of the wave

components about the direction normal. It 1is found, hoﬁever,
that any vertical wave can be decomposed into a sum of two
waves: one with its electric vector along some given horizontal
direction (E polarized), the other with its magnetic vector
along this same direction (H polarized) (Jones, 1971). Thus, the
uniform field case still involves two wave types with the

consequent relation between the anomalous and normal field now

being:

Hp HNE 0
Da )= Ig | O * Im| Dam
Z, 0 0

(3.3.8)
where the subscripts E and M refer to E polarized and H
polarized respectively. Equation 3.3.8 has been simplified
because of the zero values of Dy and H,, due to our choice of
referehce axes, and because of the zero value of the normal
vertical field in the uniform field case. Also from this , we

have the total normal field being given by {HygDyns0}. Thus, we

can rewrite 3,3.8 as:
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E M
E ™M

DA = CDH CDD 0 . DN
E M

(3.3'9)
Here, the superscripts E and M indicate the original tensor that
the elements are from. Thus, in the case of a perfectly

horizontally wuniform field the induction tensor will be

independent of the source field, and should thus contain
retrievable information ébout the underlying conductivity
structure.

What needs to be dgtermined then, is whether a sufficient
degree of uniformity for~induction tensor invariance is attained
at scale lengths 1in the range 5000 - 10,000 km. This is
considered in detail in Appendix C. The discussion indicates
that for the scale lengths suggested for midlatitudes; and for
periods greater than 2 hrs., the values of 1'(kx,ky) will in
fact be nearly identical. Thus, the relation of equation 3.3.1%
will be wvalid- for these parameter ranges. It should be noted
that it is because the tensor relates the normal field to the
anomalous field that the magnitude of the transmitted wave need
not be considered. This is not true of the similar relation
between the external and internal fields. If these portions of
the surface field are related by a tensor in identical fashion
to that in equation 3.3.1 (as done by Lilley (1974)), the
significant changes in the rétio of the transmitted wave to the

external field at all values of (kx,ky) will always result in a
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tensor that is time dependent.

Consider ;hat the induction tensor is in fact independent
of time. One can then define the relation between the normal and
anomalous field at each frequency w as in equation 3.3.1, except

for an uncorrelated 'noise' term:

Ha Hn He
Dg |= 1| Dy | + | D¢
Zp Z,, Zg

(3.3.10)

The estimated values of the elements of I will be those
which minimize the power of the uncorrelated terms (Schmucker,
1970, pg. 20 - 21). By minimizing the power of each component of
the noise vector with respect to the real and imaginary parts of
each of the tensor elements, three independent sets of linear
equations are obtained, one for each column of i (see Appendix D
for the complete method). As an example, the set of eguations

for the third column is:

Cau S2a Hu
-1

C"D = (§) : SQHDN

Car S

where:
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QN
t

Sunky  SthuHn  S2uHa
SHudn S dudy  Szabdw
Suwein Sotnin  Sanwn
(3.3.12)
is the matrix of auto and cross powers. The power Sap of two

signals A,B of length To is defined as:

Spg(w) = a(w)B¥(w)/ To

(3.3.13)

The most important terms of the induction tensor are those
of the bottom row, corresponding to the relation of Zp to the

normal field:

(3.3.14)
Presuming that the contribution due to induction by the normal

vertical component will in general be very small, we have:

Za = GauHy *+ Cyy Dy
(3.3.15)
For each frequency w, two 1induction arrows can be defined,
corresponding to the portion of Zz which is in-phase with Hy and

Dy:
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U(w) = -{Q'Real[CeH(w)] + Q-Real[c%b(w)]}
(3.3.16)
and the portion which is out of phase with Hy and Dy:
V(w) = {Q-Imag[CEH(w)] + §~Imag[C;D(w)]}
(3.3.17)

where % is the unit vector in the direction of magnetic north
and § is the unit vector in the direction of magnetic east.

The' negative sign on‘the left hand side of equation 3.3.16
is commonly introduced to maintain:  the convention set by
Parkinson's original development of induction arrows (Parkinson,
1958, 1962). Alsc, in the case of a localized conductive path,
if first order induction only 1is significant, the sign
convention will ensure that the in-phase induction arrow U will
point towards this conductive anomaly. This is illustrated in
Fig. 3.6 for a horizontal line current running north-south at
depth z,.

It is generally presumed that the in-phase induction arrow
at. a frequency w will point towards nearby current
concentrations induced at that fréquency , as seemingly
indicated in Fig. 3.6. (Banks, 1973; Beamish, 1977; Garland,
1979, pg. 270). However, it 1is not clear that this can be
accepted 1in general. Consider the horizontal conductive anomaly
shown in Fig. 3.7. This anomaly is not offered as a possible

real earth model, but simply as a test of the generality of the

induction arrow's properties. Using the first order induction
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Fig. 3.6

The direction of the in-phase induction arrow near a line

current running'North - South.
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Fig. 3.7

First order induction in crossing conductive paths. The
ratios of currents in the two conductors will depend on
both the conductivity and the magnitude of each component
of the inducing field. However, the coefficients of the

induction tensor will depend only on the conductivity.
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approximation throughout (that is, ignoring self-induction), we
will have the H componen£ of the normal field inducing current
in the -east-west direction and the D component of the normal
field inducing current in the north-south direction. The final
relation for Z, in terms of H, and D,, at any surface position

(x,y) is:

2 (x,y,w) = r(w)-[Cy(x,y) opHy + C, (x,y)o, D]
' (3.3.18)
C, and C, are spatially dependent constants, with their sign as
indicated in Fig. 3.7, and r(w) is a ffequency dependent complex -
constant relating the‘ normal components Hy,Dy to their
associated electric fields at the depth of the anomalous
conductivities. Thus, the in-phase induction arrow 1in this

example is:

U= ~{[r(w)0,C, (x,y)]% + [r(w)6,C, (x,y)]9)

(3.3.19)
The direction of 8 will depend on the position of the station
through the values of C, and C,. More significantly, the
direction of U will depend on the comparative values of ¢, and
C,, rather than on the relative strengths of the'currents in
each conductor. If the station was situated such that |C,| and
|C,| were equal (which would be true along the bisectors of the
axes), then for G, >>¢,, 6 would point towards the conductor

lying along the y axis, and for G, >>G,, U would point towards
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the conductor lying along the x axis. The relative amplitudes of
the current densities in these cases could take on any value,
depending on the amplitudes of H, and D,. This clearly
illustrates that the induction arrows do not necessarily point
' towards current concentrations, but rather, from the examples
considered, they point generally towards the area of high
comparative conductivity.

Up to this point, only the case where local induction
effects were dominant in the production of the anomalous field
has been considered, so that there was a neccessary correlation
between the 1locally hegsured normal and anomalous fields.
Another possibility for anomalous behavior is current
concentration, or channelling (Whitham and Andersen, 1965; Dyck
and Garland, 1969; Gough, 1973), in which a uniform current flow
due to large scale regional induction is channelled through a
localized high conductivity zone (see Fig. 3.8). The anomalous
magnetic field in the channelled current case does not depend on
local induction, thus, it 1is not immediately clear how the
calculated values of the induction tensor, and therefore, the
induction arrow, will relate to the position and orientaticn of
the perturbing conduc;ive body.

In ignoring induction effects, we reduce the problem to one
of quasi-static direct current (DC) flow. The pertinent
Maxwell's equations, after elimination of the time derivative
terms, are (from equations A.12, A.13, A.14 and A.27 in Appendix

A):
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: I TN /11
- - —_— - - S T B N
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Fig.

8 \
The effects of current channelling through a conductive
sphere. The arrows give the magnitude and direction of
the electric field outside the sphere, for the two
orthogonal directions of the regional current flow:

(a) regional current flows East - West

(b) regional current flows North - South
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TE =0

(3.3.20)
S 4
V'H = 0

(3.3.21)
%xﬁ = 0

(3.3.22)
Lo -d - -
UxH =6E = J

(3.3.23)

The curl-free nature of the electric field enables us to -write

the electric field as the gradient of a scalar potential:

(3.3.24)
which when coupled with equation 3.3.20 gives us Laplace's

equation:

Vv

n
o
N

(3.3.25)
In this quasi-static case, we also have from equation A.20 in

Appendix A the boundary condition ensuring the continuity of the
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normal component of current flow across a boundary:
6’(6‘E) =§3 =0

(3.3.26)
Equations 3.3.24, 3.3.25 and 3.3.26 govern the DC problem.

In the foilowing aiscussion it will be presumed for
simplicity that the source field is perfectly horizontally
uniform. All the arguments pertaining to the validity of this
assumption in practice and its effect on the invariance of the
induction tensor will apply here as well, but will not be
discussed. We will also presume first order induction effects
only, so that the north;south currents will be proportional to
Dy only, and the east-west currents will be proportional to Hy
only. The linearity of the equations involved allows us to
consider separately the cases in which the regional current is
only north-south, or only east-west. Any other direction of
regional current flow can always be considered as a
superposition of these, with the resultant current vector at any
point being the sum of the vectors corresponding to each of the
two solutions.

In Fig. 3.8, a sphere of radius 'a' and conductivity o
imbedded in a host rock of lower conductivity ©, serves as the
model. Equations 3.3.25 and 3.3.26 can be solved 1in spherical
coordinates, for the boundary condition of a uniform electric
field Eo at large distances aﬁay from the sphere. The symmetry

of the problem ensures that the solution for one direction of
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this regional electric field can be simply rotated by T /2 to
give the solution for the orthogonal direction. As an example,
the solution for the potential outside the sphere for the
uniform field in the 'x' direction is (Telford et al, 1976, pg.

647-649):

Vix,y) = -Eq x{1-[a%(b-1) 1/ (b+2) (x*+y*) "]}
(3.3.27)
where 'b' is the conductivfty ratio 0}/6\: From equation 3.3.35,
the directional derivétives of the potential give 'us the
components of the elecFric vector at any point outside the

sphere. For the uniform field in the 'x' direction:

Ex(X,Y)
= Egl1 + [a3(b-1) (2x*-y*) 1/[ (b+2) (x* +y? 7))

(3.3.28)

Ey(x,y) = Bofla®(b=1)(3xy) /[ (b+2) (x*+y*) "]}
' (3.3.29)

The electric field vectors for each of the two uniform
field directions are shown in Fig. 3.8. It is clear that the
current concentration effects on the outside of the sphere are
most pronounced in the regions along the axis of symmetry

parallel to the direction of the regional current flow (regions
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! and 3), and are at a minimum in the regions along the radial
line orthogonal to this (regions 2 and 4). Thus, in regions 1
and 3 the anomalous vertical .magnetic field will be most
dependent on Dy,in regions 2 and 4 it will be most dependent on
Hy, and 1in the intermediate regions there will be a continuous
grading, with the W/4 bisectors marking the 1lines of equal
dependences. Thus, from this qualititave discussion, the in-
phase induction arrows will always point generally towards the
sphere. In fact, symmetry will' require that the arrows will
always point towards the very center.

In guick summary of the main points regarding the induction
tensor and the induction érrow we have:

(1) Relating the anomalous magnetic field vector to the
normal field vector via the 1induction tensor is not
universally correct.

(2) In the case of a horizontally uniform field the induction
tensor will correctly relate the anomalou§ and normal
fields, to first order. The induction arrows will point
in general towards regions of anomalously high
conductivity, which will not neccessarily be the regions
of highest current concentration. The degree of
uniformity required for the invariance of the tensor will
be attained at values of the scale length encountered in
practice at midlatitudes, for periods'greater than ~ 2
hrs.

(3) The uncertainty of the invariance of the induction tensor
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will apply to the case of current channelling as well.
However, if the field is uniform,such as at midlatitudes,
the induction arrows will point also toward the anomalous

high conductivity zone.

3.4 Quantitative Methods Used in G.D.S.

Quantitative modelling of the earth's condﬁctivity for
areas containing presumed anomaloﬁs structure has received much
less emphasis in the ©past than the cbrresponding gualitative
modelling. The true inverse problem of finding a model that fits
the data in either a 'one-shot', or an iterative prqdedure, has
not been solved to this author's knowledge. The other approach
to this 1s to select a possible model, either based on
gualitative information and infuition, or simply picked
randomly, and then use forward modelling routines to see if it
fits the data. If model selection is done interactively with the
forward modelling then the model can be adjusted until a good
fit is obtained (Porath et al, 1970; Gough, 1973; ; Dragert,
1973, pg.94-96). However, the final model is always non-unique,
so that it 1is very possible that the biases of different
individuals doing the model perturbations could result in very

different final solutions. As well, it has been found 1in some

cases that a model to fit the data cannot be found (Whitham and
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Andersen, 1965; Porath et al, 1971). (The suggested reason for
this was that the anomalous field was due to current
chanhelling, so that the areas considered in the model studies
were simply not large enough to encompass the true model.) The
alternative to the interactive approach would be the 'Monte
Carlo' method, 1in which models are selected randomly for
subsequent trial in the forward modelling routine (Cochrane and
Hyndman, 1970). For the two dimensional and three dimensional
cases this would clearly bé prohibitively expensive. As well, it
is not clear that for arbitrarily ' complex models that the
exiéting forward modelling routines will give accurate results.
Thus, either the models must be made simpler (meaning they no
longer are completely arbitrary) or the forward model results
must be considered guestionable. .

To avoid these difficulties, and yet still obtain estimates
of some of the basic guantitative values, such as the depth and
.lateral extent of the anomalous conductivities, certain
approximate measures have been devised. If the visual data
displays and induction arrows consistently indicate a 1long
narrow anomaly, then it is common to model the internal source
as a 1ine current. Presume that the current, of magnitude I, is
parallel to the earth's surface and 1in the negative 'y'
directicn, and that the measuring array is perpendicular to the
strike of the current (see Fig. 3.9). Then, by Ampere's law, the
magnitudes of the directional components Bx,Bz at any position

x' along the array will be given by:
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3.9

A variety of different two-dimensional current density
models, with the currents travelling into or out of the
page. In all cases the station array is at the surface,
perpendicular ‘to the strike of the currents. The

different models are indicated by:
(a) ©

(b) [
(c) X

(@) X

3.10

The dependence of the 'peak to 'rpeak' width of the Bz
component, for the current density models of Fig. 3.9.
The width's are seen to vary with the depth of the

anomaly as well as with its lateral extent.
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Fig. 3.9
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n

Bx(x) }%Izo/{ZTr[(x—x°)2+z:]}

(3.4.1)

Bz (x)

Pol(x-x5) /{21 [(x-xo)az:]}
(3.4.2)
where (x,,2,) is the position of the line current (see Fig. 3.10
for sample plots of Bx(x) and Bz(x)). The depth of the line
current can be found from either the distance between the point
at which the Bx field is a maximum, (x,,0), and the points at
which it is half the maximﬁm value (xy,0):
Z5 = IXV;- X, |
(3.4.3)
or from the separation between the positions (x,,0), (x_,0) of
the positive and negative peaks of the Bz component:

Ay

z, = 1/2|x_—x+

(3.4.4)

It is sometimes claimed that this depth represents the
maximum depth possible to the anomalous current, and that any
other current distribution giving the same data values on the
surface must be shallower. This statement is not strictly
correct, as is shown in the following argument.

Consider a distribution of currents along a sheet parallel
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~to the earth's surface, at a depth z2,. If the currents in ‘this
sheet are constrained to flow only in the positive or negative
'y' direction, with their magnitudes not varying with 'y', 'then
a lineal current density j(x) is sufficient to describe them. It
will be shown that for 2, < 2,1t is always possible to find a
j(x) such that at the surface the field of the line current at
(xp,2,) 1is completely duplicated. Without loss of generality we
can simplify the algebra of the problem by setting the
- coordinate origin on thé surface directly above the line
current. Thus, the field components of ‘the original line current

reduce to:

Bx(x)

polzo/[ZTr(z;+x;)]
| (3.4.5)

Bz (x) PIx/[2T (z5+x)) ]
(3.4.6)
\
The surface fields, Bx , sz, due to the sheet distribution of

currents are obtained using the Biot-Savart law, and are:

. ol .
B (x) = (po/2m) ({15(w2, 1/0x-0)" +2 71}
Bhas (3.4.7)
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(s &
Bz () = (po/2m) ({130 (x-w) 1/1 (x-w)*+2 713w
-

(3.4.8)

Thus, for the fields of the sheet distribution of current to

mimic that of the original line current requires that:

®
S‘[j(u)z]/[(x—u)2+z?]du = Izo/(z:+xz)

Bt (3.4.9)
and

[+ .} .

g [j(u)(x-u)]/[(x—u)z+zf]du = Ix/(z:+xl)

o (3.4.10)

Taking the spatial Fourier transform of both sides of eguation
3.4.9 and 3.4.10 (where the Fourier transform,.j‘, is defined as
in equation C.5 in Appendix C), noting that the left hand side
in both cases is a convolution, and then applying the Faltung

(or convolution) theorem, we arrive at:

Fi501-Fiz, /(42 = 13 12, /(224x™) )

(3.4.11)

F T /it ez = 1 Fx/(z04x0) ]
(3.4.12)
Using the general Fourier transform expressions (from Appendix

C, equations C.3 and C.4):
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Frastea®)y = we S
(3.4.13)
-I¢!
Fix/rea)] = -Trie “sgn(p
(3.4.14)
both eqguations 3.4.11 and 3.4.12 result in:
T30 = 171816
(3.4.15)
where:
{= % 72
(3.4.16)

Taking the inverse Fourier transform of eguation 3.4.15 we

arrive at the final result:

j(x) = 18 /[T (§%+x%)]

(3.4.17)

Thus, we can duplicate the field due to any line current
with a distribution of current on a sheet situated between the
line current and the surface. Correspondingly, this suggests
that if such a sheet current was present at the same time as the
line current, but with its direction of flow reversed, then the

field at at the surface would be null. Thus, it is conceivable
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that current distributions could exist of any magnitude and
depth, but which iﬁ total give rise to no surface readings. If
such an 'annihilator' distribution was present, then currents
could conceivably be flowing undetected at greater depths than
that of the original line current. It is alsd shown in Appendix
F that even when all the currents in any model are restricted to
being in phase, (so that ‘'annihilator' distributions are
impossible) there can still be currents in the model that are
deeper than the line cdrrent, with the model dupliéating the
surface data of the line current. The correct statement about
the possible depth of the ‘anomalous currents is that if the
surface field readings’can be duplicated by a line current at a
certain depth, then there must be some current at that depth or
shallower. This statement is proved in Appendix F.

Another method of estimating the depth of an anomaly is by
considering the smallest period at which the anomalous field is
still significant, and then using this frequency in a skin depth
calculation. One problem involved with this method 1is that bf
estimating the one dimensional conductivity structure for use in
the skin depth calculation. The other problem arises because of
the possibility of channelled currents. It is very possible that
the channelling of the regional current system will not be
strictly horizontal, so that the channelled current under the
array will be at a different depth than that at which the
regional system was induced. The dominant periods of the

anomalous .fields in such a case would thus be indicating the
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depth of the regional current system, and not that of the
channelled currents.

Estimates of the lateral width of the anomaly might be made
from the spatial extent of the anomalous field, as indicated on
the contour maps of the vertical field's phase, or on contour
maps of the ampitude of the horizontal anomalous field. However,
the calculated fields (see Fig. 3.10) for the different current
densify models of Fig. 3.9 illustrate that the indicated width
is a function of depth, as well as the actual lateral extent.
Thus, the true width may be difficult to estimate in this
manner, particularly for Qeep anomalies.

A method wused to calculate the extent of anomalous bodies
has been to select a starting model that qualitatively fits the
data, and then perturb the size of the anomaly until a best fit
with the data is attained (Porath et al, 1970). As discussed
previously, this type of interactive modell}ng is open to
problems of human bias, as well as being expensive to perform.

In summary of this section, it 1is clear that the
intractability of the 1induction problem for two and three
dimensional models severly limits the extent of quantitative
analysis' possible. The methods and estimators used have been

shown to be of questionable validity.
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Chapter IV

The Current Density Model

4.1 The Current Density Formulation

Determining the earth's conducfivity as a function of
spatial position 1is the. ultimate goal in G.D.S. analysis.
However, for reasons to be outlined shortly, a more useful
approach in many cases is to consider the current dehsity as the
model parameter to be determined. In an initial simplification,
only two dimensional models will be allowed, with all current
flowing only in the 'y' direction. Aithough this two dimensional
constraint will obviously not be applicable in all real
examples, a sufficiently large number of elongated anomalies in
G.D.S. do appear to have this degree of symmetry, making it a
reasonable 1initial simplification (Gough, 1973). The symmetry
assumptions ensure‘that a linear array perpendicular to the
strike of the structure is sufficient to measure all non-
redundant information available at the earth's surface (see Fig.
4.1). It will be presumed that the separation of the anomalous

and normal fields measured along this array has been performed,
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4.1

The presumed two-dimensional model. The conduétivity is
invariant in the Y direction (out of the page), and.all
currents are assumed to flow in this direction. A linear
array of magnetometers perpendicular to the strike of the
model is sufficient to record all non-redundant

information available.
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so that henceforth all data will be considered to be purely
anomalous and internal.

The general expression used to calculate the magnetic field
due to the current in a given volume V is the Biot-Savart law

(Panofsky and Phillips, 1962, pg. 125):

ﬁ(x,Y,Z) = Ho/QWSSI‘{fE(x',y‘,z') X ?]/ra}dx'dy‘dZ‘

v (4.1.1)
where r is the difference vector between the position of the
line current, (x‘,y',z‘) and the position at which B is
measured, (x,y,z):

T o= X, (x-x') + X, (y-y') + Ry(z-2')
(4.1.2)

The components of B(x,y,z) are thus:

Bx(x,y,2) = po/am((( {0(z=2") 3y~ (y=y" )35 1/ (x-x")¥
v

+(y—y')z+(z-z')1] dx'dy'dz\

(4.1.3)

By(x,y,z) = fu/4ﬂffg{[(x—x')j%-(z-z')jx]/[(x-x')z‘
\Y}
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+(y—y')1+(z-z')l] ax' dy' dz'

(4.1.4)

B2(x,y,2) = o/am ([ (1(y-y")50-xmx" )3, 1/1 (xmx
v
+(y-y' ) +(z-2")*] dx'dy' az’
(4.1.5)
. -
For the simplified current density system considered, j will be
in the 'y' direction only, and its amplitude will not vary in
-
that direction. The values of B(x,y,z) will be taken only at
z=0. Using thece simplifications, and integrating from y =-® to

y =+00, the components of B(x,y,O) become:

= 0 TT1 - '.' o} z A ) [}
Bx(x,y,0) = Ho/2 f{{[ 2'3,1/0(x=x" )" +2'* 1)ax' gz
5 (4.1.6)
By(x,y,0) =0
(4.1.7)
Bz(x,y,0) = 'F°/21TH{[(x‘-x)jj]/[(x-x‘)z+2'z]}dX‘dZ‘
S

(4.1.8)
wvhere S 1s the area of interest outside of which jj will be

presumed to be zero. In future, as Bx(x,y,0) and Bz(x,y,0) do



not depend on y or z, they will simply be referred to as Bx(x)
and Bz(x).

The major advantage of inverting the data to find a current
density model rather than a conductivity model is the avoidance
of the intractability of the non-linear induction equation. 1In
the new formulation the model parameter 3j(x,z) is linearly
related to the data as shown in equations 4.1.6 and 4.1.8. The
forward problem expressed in these equations 1is easily and
cheaply solved,as is shown in section 4.3 of this chapter. As
well, the solution of the general linear inverse problem is very
well wunderstood, with a variety of methods and technigues
available in the 1literature (Backus and Gilbert, 1967,1968;
Wiggins, 1972; Oldenburg, 1976; Parker, 1977).

Another. advantage to using a current density model is that
its very formulation avoids the problem of current channelling.
The region of interest of the model can be defined precisely by
using the geometric decay of the magnetic field away from a line
current to determine the boundaries beyond which currents will
have negligible effect at the measuring stations. The problem of
having to solve over a large and poorly determined regibn of
interest to ensure that the effects of channelling of the
regional current flow are included (Porath et al, 1971; Gough,
1973) will simply not be encountered.

The inherent disadvantage in wusing the current density
model is its non-uniqueness. It has been pointed out earlier in

section 3.4 of Chapter III that the field due to a line current
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can be duplicated by an infinite number of different current
distributions. As well, 1t 1is possible for 'annihilatdr
distributions' to exist which will have non-zero current density
values, but which will not give rise to any measurable surface
magnetic field. As formulated, the current density inverse
problem can only utilize the internally origined portion of the
measured magnetic field, effectively ignoring the external field
required to induce the internal current system. The disregarding
of this information explains the difference 1in uniqueness
difficulties between the conductivity and current density model
approaches.

The current densit§ model has been used before (Banks,
1979; Woods, 1979), but the uniqueness problem has 1led the
authors to constrain the current models to an infinitesmally
thin sheet at some constant depth. The thin sheet formulation
will probably give a good indication of the horizontal position
of the actual earth currents, but it cannot give any information
as to their depths. As well, the depth of the thin sheet must be
chosen with some caution, for as shown in Appendix F, 1if the
thin sheet 1is deeper than the actual current, then no current
distribution along it will be possible that fits the data.

The <current density inverse problem left simply as
originally stated 1is probably hopelessly non-unique. This will
be illustrated in section 4.2 by Backus-Gilbert type appraisal,
and in section 4.3 by the construction of a variety of

dissimilar models, all unlike the original model, but all of
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which match the data. However, by imposing certain expected
physical features of the earth model as constraints in the
construction process, it is possible to greatly restrict the
range of allowable models. It will be shown in section 4.4 that
"true' models which match these physical requirements are

closely recovered in this constrained construction.

4.2 Uniqueness and Backus-Gilbert Appraisal

The statement that a particular inverse problem is non-
unigue is rather nebulous, as there are varying 'types' and
‘'degrees’ of non-uniqueness. In certain problems the unigueness
of the data set produced by a particular model can be p;oved,
such as in the global G.D.S. problem (Bailey, 1970) or in
horizontal loop electrémagnetic sounéing over a stratified earth
(Fullagar, 1981). However, in both cases, to obtain the unique
model requires an infinite amount of perfectly accurate data. As’
this condition can never be reached in practice, there will
always be a certain range of acceptable values for the model,
even though theoretically there is a one to one correspondence
between models and data sets. The non-unigueness incurred in the
above-mentioned cases would be expected to be 'less' than that
in cases such as the current density problem, in which an-

infinite amount of perfect data would still not guarantee a
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unique model wupon inversion. As well, even though the total
model may not be uniqué, there may be portions of 1it, or
features 1in it, which are required in all models that fit the
data. Backus and Gilbert (1967,1968,1970) have outlined the
appraisal procedure to quantify these different aspects of non-
uniqueness. In a linear problem, the model and data can always
be related by a Fredholm integral equation of the first kind

(Parker, (1977):

e, (r) ={{m(t)g, (Pras
R (4.2.1)
where:
e : is the i datum
is the kernel function associated with the

ith datum

Q

m : is the model
R : is the region of interest outside which the
model is considered to be zero (in this case
R is a surface)
Consider that there are N data, with N associated linearly
independent kernel functions. A function, designated an
averaging function, is now constructed from a linear combination

of the kernel functions:
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N
AT, T) = £ (5,)g,(r)

o (4.2.2)
such that the function A is unimodular (ie. it has wunit area)
and 1is as 'close' as possible to a Dirac delta function at some
designated position I, . The measure of closeness to a delta
function can be defined in a number of different ways (Backus
and Gilbert, 1970; Oldenburg, 1976); the measure used here is

the first Dirichlet criterion (Oldenburg, 1976):

S(ty) =SS IA(T, D) - §(E-To) ) ds

-

R
(4.2.3)
The average of a model at the position a, is defined as:
<m(ry)> = ((m(T)a(r, 5 )as
R (4.2.4)

If the averaging function A(?,ﬁ,) was exactly a Dirac delta

t

function, then:

<m(ry)>

Cm(t)8(T,5, )as
R

m(T, )

(4.2.5)
so that the value of the model at the position ?0 would have
been exactly recovered. In any event, independent of the form of
A(T,T,), the values. of the averages <m(T, )> are unique to the
problem, as they are dependent only on the wvalues of the

coefficients %, and on the data:
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<m(zy)> = ((m(T)A(T, 5 )ds

»

n

=)

N
$Cm(T)E o« (T, ) g, (T)ds
N

oL
|

= €« () [ {[m(Prg  (Tras]
¢ R

N
=< & (fp)e;

(S
(4.2.6)
Thus, the averages musﬁ'be the same for all models, including
the true model, and therefore completely codify our unique
information about the problem. If the averaging function for a
position ED is very close‘to a delta function at that position,
then its wunit area ensures that the model average <m(2,)> is
probably very close to the true model value at that point. As
well, as all models have the same unigque value of the average
then the range of model values at this position will be
neccessarily limited. By constructing averaging functions at a
variety of positions in the region of interest R, one can
guickly determine those positions at which all models will be
similar, and those at which the range of possible model values

will be less constrained.

In practice, because the averages <m(;;)> will always be
calculated as'a linear combination of the data (as in equation
4.2.6), the errors in the data will introduce error into the
averages. Let the observed value of the data be e

value, eLt, and the error in the observed value, {eé, such that:

.r the true
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e; = e+ §e;
(4.2.7)
Similarly, we Qill have for the averages:
()5 = <m(E, 5% + S<m(E)>
(4.2.8)

The assumption will be made that the errors are Gaussian, so

that the expected value and covariance of the error terms are:

E[{ei] =0

(4.2.9)

COV((eL,Jgj] Elfe de;]

Li}

CCJ

(4.2.10)
We will also presume the errors are ‘uncorrelated so that the
covariance matrix, C, reduces to a diagonal matrix, with the
diagonal elements being given by the square of the standard

error O. of each datum e :

(4.2.11)

Using 4.2.7 in equation 4.2.6, we have:



Thus:
R N
§<m(fy)> = éo(ufe;
. =1

The expected value of the error in the average is:

El<m(ry)>] = E[§<m(5,)>]

N
E[$ «iSe(]
A=}

[}
e
S
-
m
oy
(1)
!

The variance of the average then becomes:

VAR[<m(T, )>] = VAR[E<m(E, )>]

118

(4.2.12)

(4.2.13)

(4.2.14)
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N

N
E[(S&de) (€ ude)]
< 3

[ )

(4.2.15)
The future algebra of the averaging function determination will
be greatly simplified if we now reformulate the problem by

normalizing with respect to the standard errors, O :

e (r) e (r)/6; = gg{[m(?)gt(?)]/ct}ds

(€ m(r)G; (T)as
R

(4.2.16)

N
VAR[<m(T, )>] = L VAR[e, (T)]

L=

=g°<c

(S

(4.2.17)
Backus and Gilbert (1970) show that resolution (as quantified by
any suitable 'delta-ness' criterion) and accuracy are mutually
antagonistic properties, so that any improvement in one
neccessarily degrades the other. Thus, in each application one
must choose the coefficents &« so as to obtain the optimum

'trade-off" between resolution and accuracy. To allow a
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continuously variable trade-off the parameter © is introduced.
The choice of © ,between 0 and T7/2, will determine the relative
emphasis on resolution or accuracy, when the coefficients are
calculated by minimizing the following objective function with

respect to each «;:

W(z,) = cosOs(r,) + sin® VAR[<m(r,)>]

(4.2.18)
Backus and Gilbert (1970) prove that the averaging function
obtained 1in this way (where S would be any suitable 'closeness'
criterioh) will have the }owest possible valué of the wvariance
for a given value of the resolution. The trade-off curve of
resolution and variance as a function of € thus obtained will
be the optimal curve for the problem. A value of © = 0 will
strictly minimize the ‘'closeness' of A(Y,r,) to a delta-
function, and the values of « determined will result in maximum
resolution, but with a conseguent maximum in the variance. On
the other hand, © = /2 will ensure that the variance 1is a

minimum, but now with resolution also at its minimum.
We add the wunimodular condition to the problem by the
method of Lagrange multipliers, so that our objective function

becomes:
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Y (r,) = cosfs(r,) + sinbvarl<m(r,)>] + 2p[1-{{a(F)as]
R
(4.2.19)

with the values of «; satisfying:

L=

N N
1= {0< a6 (@)1as = £ ((6, (Fras
R ® (4.2.20)

Minimizing with respect to each «; gives:
/3= 0

= cosONS(T, ) /Aki) + sin©(3/3K) {VAR[D<m (£ )>]}
- 2p{{Rac, ) /i las
R (4.2.21)
Substituting the expressions for S(f;), VAR[§<m(r,)>], and
A(?,a,) from egquations 4.2.3, 4.2.15,and 4.2.2 into eguation

4.2.19 we obtain for each &« :

N
cosOl [£ 4 ([ 6 (Fre: (Tras) - 6 (F)) + sin®o:
=1 R

(G (fras = o
R (4.2.22)

To use simpler matrix notation, let:
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(Se; Do dras = Ty = Te

R
(4.2.23)
be an element of the NxN inner product matrix [1, and:
SSGL(r)dS = U
R
(4.2.24) .

be an element of the 1xN vector ﬁ, and GL(E;) and <« be elements
of the 1xN vectors G , and;z respectively. Thus, considering the .
minimization with respect to each of the «;'s as in 4.2.21 the
final matrix relation is:

-

cos@[d'r -Eo] + sin@ - PB =

(4.2.25)
The unimodular constraint is now:
S -3
U = 1
(4.2.26)

The inner product matrix, [‘ , 1s obviously symmetric, and is

also positive definite:

x-0-x7 =
~

““M2
“MNMZ
]
-
o]
=
(48

[(ei(¥r1x) (65 (Frx;)as
R

4

C—A\z
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N N
- {§ 1o Brx0) €g; (%) 1as
Rt J

=SS (_éGL(I')Xi)Z ds > 0
R (8

(4.2.27)
Thus, I' can be diagonalized (Parker, 1977):
[' = rART
(4.2.28)
where R and R are orthogonal NxN matrices such that:
B—l - BT
(4.2.29)

and {3 is an NxN diagonal matrix containing the eigenvalues of
[', where all eigenvalues are greater than zero. Using. this
expansion, multiplying both sides by R and utilizing equation
4.2.29, 4.2.25 becomes: |

s

cosG[R-B-L\ - Eo- R] + sinea-g - B f‘JE =0
(4.2.30)
The matrix [’ can be considered to both 'rotate' and ‘'stretch'
the components of an arbitrary vector; the decomposition ofl?
in eguation 4.,2.27 separates these two operations, with the
diagonal matrix {3 being pure 'stretching', and R and Bf.being

pure rotations. We denote the resultant vectors of the rotation

of;&,ao, and U by R as:
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N -
« =« R
(4.2.31)
A -
GO = GO'B
(4.2.32)
A\ Y
U = U-B
(4.2.33)

Using these relations and collecting terms in equation 4.2.30,

the rotated coefficients for the averaging function are found to

be:

A A (4 -
< = [RU + cos6Ge ] D
(4.2.34)

where D is the diagonal matrix:

D = cosBA + sind1 (
(4.2.35)
Rotating two vectors will not change their inner product, so the

unimodular condition of equation 4.2.26 is not changed:
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9L
al
1}
2>

a>
(]

(4.2.36)
This equation allows the value of the Lagrange multiplier R to

be calculated:

A o A A =\ A
B = [1-cos6G, D'~ 01/1U-D - U]
(4.2.37)
The values of the averaging function coefficients are then found

. . . . T
by rotating equation 4.2.34 with the matrix R :

K =& R = [PG + FOS%/:’]P-" RT
(4.2.38)
The utility of the diagonalization approach is now apparent, as
the decomposition of the inner product matrix need be done only
once for all values of O and E;, whereas otherwise a matrix
inversion would be required for each different value.

In the two dimensional current density problem the two
forms of the kernels relating the data and the model for
different station positions are given in equations 4.1.6 and
4,1.8. For a given'arréy of stations over a region of interest
ﬁ, the calculation of the averaging function at a position
(x5,25) and any 6 proceeds in the same manner as just outlined.
The exact methods used to calculate the integrals neccessary for
determination of the elements of the inner product matrix[? and
the elements of the vector U are given in Appendix G. Displayed

in Fig. 4.2 are the averaging functions calculated in the above
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Fig. 4.2

Averaging functions calculated@ for the two-dimensional
current density problem. The avefaging functions have
been calculated at maximum resolution ( © = 0) on the
trade-off curve, and are thus as 'close' as possible to a

Dirac delta function at the points:
(a) (1,25)

(b) (10,25)
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manner for two positions in the regioﬁ of 1interest R. Both
averaging functions have been calculated at the highest
resolution, © = 0. It is noted immediately that these functions
are very spread out, particularly with respect to depth, z,and
thué show very little resemblance to the delta function they are
to emulate. The resolution at any other value of © would be even
worse. It is also clear that the peak of the averaging function
is - much 'more localized 1in the 'x' direction than in the 'z’
direction, indicating that the horizontal resolution of the true
model's features will be superior to the resolution in depth. A
more critical feature of the averaging functions is the shift bf
the peak of the function toward the surface away from its called
for point,this being particularly noticeable in Fig. 4.2b. This
large bias in the position of the averaging functions clearly
invalidates the concept of the average as being a moment of the
model around the desired point. Thus, in these cases, the actual
averages would hold little meaning. As well, it. further points
out the extreme lack of depth resolution. The bias is due to the
decrease in the required magnitude of currents in models fitting
the data which are concentrated closer to the surface. This is
a fundamental property of this current density formulation, and
as such, 1s wunavoidable through changes such as array design,
etc.

The computed averaging functions for the current density
problem have thus shown that the non-uniqueness of the problem

is indeed severe. However, although the resolution of the true
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model's features with respect to depth is indicated to be

extremely poor, there should be fair horizontal resolution.

4.3 Construction: The Smallest Model

A customary first model to construct when inverting data is
one with minimum structure. Here, that first model will be the
smallest model, 1in a least squares sense, which fits the data.

The objective function to be minimized is:

$a) = CClatxr,z') |2ax gz
R (4.3.1)
To ensure that the current density model J fits the data, the
data eguations are added to the objective function via the

Lagrange multipliers, PL:

¢ (3) = (Clatx',z)| ax'dz’
R
N
+ 28R le - ffo  (x',2)a(x" 2" Yax" a2
TR R v
(4.3.2)

However, the smallest model found by minimizing (#(J) in
eguation 4.3.2 would not be physically reasonable, as the
'smallest' criterion would ensure that all the currents would

congregate 1in the uppermost portion of the region R. To offset
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this effect, a weighting function, W(x,z) is introduced into the

objective function:

¢ () = (Cwixr 2 )3tz 2| ax'az’
R

Z

+ 22 Bile;- gg G {x',z')J(x',z')dx"'dz"]

: R

L

(4.3.3)
The exact form of the weighting will be dealt with later.
Minimizing the objective function with respect to an

arbitrary infinitesmal perturbation of the model gives:

[}
o

¢ (3+63) - (D)

ZSSW(X',Z')J(X',Z')&J(X',Z')dX'dZ'
R

1}

N
-2¢ p;ﬁm(x' ,2')G; (x',2')dx"dz"
TR (4.3.4)

As §J is arbitrary, this requires that:

N
J(x,2z) = § B;G(x,z)/W(x,z)
N
(4.3.5)
However, the model must also satisfy the data, so that for all

values of 'j':
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e =£§ J(x',z‘)qj(x',z')dx'dz'

.
=S FiSS[Qj(X"z')Gi(x"z‘)/W(x'rz')]dx'dz'
(S ]

) (4.3.6)
or in matrix form:
s fI
(4.3.7)
where:
nj = Ql = gg[G&(X',z')Gi(x',z')/w(x',z')]dx'dz'
. (4.3.8)

-4 ]
and B is the vector containing the Lagrange multipliers, Bl . [

~

is symmetric and positive definite, so that [” can be

diagonalized:

¢ = RART
(4.3.9)
Thus, the values of B, are easily found:
-é = 3 BQ~'BT
(4.3.10)

allowing the model J(x,z) to be calculated from eguation 4.3.5.
The required form of the weighting function W(x,z) must now
be determined. Consider two 1line currents, I,,I;, of equal

magnitude, but at different positions,(x,,z,) and (x,,2,)
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respectively (see Fig. 4.3). The ratio of the Bx component of

the first current to that of the second at a station (x,,0) is:

Bx,/Bxz = {[(x,-%5) +2,5)1/z0}-{z, /[ (%, =%,)% +2,% 1}
(4.3.11)
This ratio could be made unity by multiplying the currents I, ,I,

by the weight factors Wf‘, and W: :

WS (x,2) = 2 /[(x ~x, ) +z. 7]

(4.3.12)
where i = 1 or 2. Following the same reasoning, the weighting
function for the Bz component is found to be:

wii(xlz) = (% -%,) /1 (% =%, )7 +2;%)

(4.3.13)

Thus, the weighting function 1is different for the two

components. As well, for each station position x, the weighting
functions would change. Clearly there is no universal weighting
function which will apply in all cases. For this reason an
approximate weighting function to offset the depth effects only
is suggested:
W(x,z) = 2~ %
(4.3.14)
where 'z' is the depth of the 1line current, and « 1is some

weighting factor. At large values of the station position xg,
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the asymptotic values of the weghting functions of equations
4.3.5 and 4.3.6 are proportional to 1/z and 1/z? respectively,
so that a reasonable value of « in equation 4.3.14 should be
between 1 and 2. |

The numerical integration technique wused to obtain the
elements of [‘ for the averaging functions of the previous
section is easily adapted to include the variable weighting
function in equation - 4.3.14 (see Appendix G), so that the
calculation of the smallest models for a given data set requires
little extra programming. The artificial data to be used was
generated from parameterized current density models (see Fig.
G.1). The field components, Bx,Bz, at any station position due
to a rectangular grid element of constant current can be
calculated 1in closed form (see Appendix G). Because of the
linearity of the eqguations involved, the contributions to the
surface field from each grid element can then be summed, giving
the resultant field due to the current model. Using these data
sets, 'smallest' models were then constructed using the outlined
method, for different values of the weight factor, «.

The first 'true' model used to generate artificial data was
that shown in Fig.‘4.4a. The models constructed using this data,
for weightings of o« = 0, &« = 1, and « = 2, are in Figqg.
4.4b,c,and d respectively. In the unweighted case (X = 0), the
currents, as expected, are concentrated at the surface. However,
the calculated model does indicate the proper horizontal

position of the original model. In the second and third examples



135

Fig. 4.4
L,-Norm smallest model construction. The various models
are:
(a) the true model
(b) model constructed at <« = 0,

(c) model constructed at X= 1,

(d) model constructed at &= 2,



0 - 8D 2 o o
I / : i N fi O 8_ 8 -/
A — o QR
CURRENT " ,  CURRENT CURRENT CURRENT (X10% )
& o 250
S b VI S S S A T Y S B §J11'1:1111||J

o=

9¢ 1



137

the weightings are increased from«X = 1 to « = 2, and the
currents in the models in each case are 'pushed' deeper.
Unfortunately, the models still show little resemblance to the
true model, although they again have accurately indicated the
"true' horizontal position. As well, there 1is clearly no
indication in the calculated models of the depth at which the
true model might be. To further check the apparent ability to
horizontally resolve features, the model in Fig. 4.5a was used
as the true model, with the calculated models for the different
values of « being 1in Fig. 4.5b,c,and d. Once again the
unweighted model 1is concentrated at the surface. It is
noteworthy in this case that the horizontal features of the
model are quite poorly resolved, which suggest that the sheet
current models wused by Banks (1979) and Woods (1979) might run
into similar difficulties. The weighted model constructions for
this example quite clearly show the horizontal positions‘of the
true model currents, but again give no indication of the depth.

The final model construction was a further test of the
presumed lack of vertical resolution. The true model is shown in
Fig. 4.6a,-and the weighted models are in Fig. 4.6b,c,and 4. The
results confirm the previous conclusions, as the two line
currents are not resolved at any weighting value.

The weighted smallest model constructions done here have
substantiated the predictions made from the Backus-Gilbert
appraisal. The general horizontal features of the true model are

all reproduced to some extent in the calculated model, whereas
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Fig. 4.6
Lz-Norm smallest model construction. The various models
are:
(a) the true model
(b) model constructed at « = 0.’

(c) model constructed at A« = 1.

(d) model constructed'at = 2,
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the vertical features are not resolved at all.

4.4 Constrained Model Constructions Using Linear Programming

It has been shown in the previous sections that the surface
data do not limit the range of possible models enough to give
vertical resolution of the true model's features. To further
restrict the range of permissible models, it is suggested that
expected physical features of the model be incorporated, or
favoured, in the model construction.

In a great number of cases the anomalies which attract
attention in G.D.S. are those which appear to be very localized,
as these suggest interesting geophysical structures such as
geothermal hotspots, ancient craton boundaries, fault zones,
etc. This localized type of model consisting only of a few large
model elements will not be favoured by the least-squares L,-norm
used in the smallest model calculation, which is clear from the
flattened, spread-out models calculated in the previous section.
The norm which most favours construction of the desired sparse,
localized models is the L, -norm (Levy and Fullagar, 1981).

Another physical feature is that no currents in the model
will be expected to be more than /2 different in phase. From
equation B.9 in Appendix B, the complex vertical wavenumber in a

homogenous earth is:
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H
k%e i(vt*'(?e)‘-

i( v+ inQG)”L

| (4.4.1)
where V is the horizontal wavenumber, 2®/» (as defined in
section 2.1 of Chapter II). The real part of ke will define the
oscillatory or ‘'travelling' nature of the wave, so that the
depth at which the wave has travelled a quarter wavelength from

the surface is given by:

. . {
zy, = W/2 {REAL[i( V" + iwy,0)*]}
(4.4.2)
The value of 2,; will increase with increasingvy, so it will

always be true that:

Zy, > /2 (2/wpeo )™ = 1,578

(4.4.3)
where Jﬂis the skin depth. Thus, the induced currents that are
more than /2 out of phase with those at the surface will be
insignificant, as they are deeper than the skin depth of the
inducing wave. (It 1is noted that in the case of currents that
are channelled large distances vertically upward, this argument

will break down.)
To reiterate, the two expected physical features of the

model are:

1. The current model will be sparse, that 1is, it will
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consist of very localized current elements.

2. No currents in the model will be more than /2 out

of phase.

Both of these constraining features are easily applied
using linear programming, with an L,-norm objective function to
be minimized. The current density model is parameterized into an
N x M grid of rectangular elements, with each having a constant
current. within them (see Figq. G.1). The contribution to the
-surface field at (xk,O), due to a current Jq in the grid
element (i,j), can be calculated (see Appendix G), and is

linearly proportional to Jﬂ :

X . X
B(A‘ (Xk) = J"J Ai:\ (Xk)
(4.4.4)
2 2
Bij (Xk) = J"J A{_J' (Xk)
(4.4.5)

Presume now that the currents in all grid elements are in phése.
( The possibility of phase differences will be considered
later). The linearity of the current density equations then
allow the total field at any surface position (x,,0) to be

calculated from the sum of each grid contribution:
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N M
Belx) =& & 3y Ay (x,)
L) J=
(4.4.6)
N ™M 2
L3 g2t
! (4.4.7)

Considering éll the surface stations (x,: k = 1,L) and both
directional components results in an L x (2NM) set of linear
equations, which in most cases will be underdetermined (that is,
2NM > L). A model to fit these equations can be found using
linear programming. This model will be the smallest model in the

L, -norm sense, if the model minimizes the objective function:

N oM
¢ (3) =$ S 195 |
s (4.4.8)
As well, because the L, -norm results in sparser, more localizea
models than the least-squares norm (Lz—norm), the calculated
model will be in accordance with the first expected physical
feature.

Linear programming solves the underdetermined problem with
only positive values of the variables allowed, which is why the
formulation to this point has presumed the grid element currents
are all in phase. The desired condition was a much weaker one;
that there be no currents in the model more than Y/2 out of

phase. Presume now that the currents in each grid element (i,3j)

at each frequency 'w' are not in phase, with their complex time
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domain representation being:

5 Hwt+ B:5)

(t) = |35 | e
(4.4.9)

and the corresponding frequency domain representation being:

-~ (4] [
Jig (w) = 35| cos @y + 1]3¢ | sinbij
(4.4.10)
for w > 0. If no currents are more than /2 out of phase, then
it is ensured that a minimum value of 695 can be found such that
[64 -6ain] > 0 always. Phase shift all the currents by this
minimum value of O : |
Jq (t) et Omin
Llwt +(S;S-—£9m;01
e

ﬁ (t)

n

JO

| LJl
(4.4.11)

In the frequency domain the imaginary and real components of

each current element (i,j) are:

Sﬂ(w) =|J:3|cos(eﬂ-9mh)
+ ilJ:&' sin( G - Omin)
(4.4.12)
Thus, as cos(Oij - Omin) and sin( Oi;- Omin) are guaranteed to be
greater than =zero, then the values of the real and imaginary

parts of all currents SES(W) will be greater than zero. The

linear programming -approach as outlined can then be applied
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separately to the real and imaginary portions of the phase-
shifted data,. and the constructed models will be in accordance
with the second expected physical feature. The final real and
imaginary portions are then recombined to give the amplitude and
phase of each model element. The original phase-shift of the
data is subtracted from the phase values to give the final phase
representation of the model.

Using the unweighted L,-norm 'smallest' criteria as in
equation 4.5.8 will result in the éame unphysical shallow modeis
as in the previous least-squares construction. To offset this
the weight function W(z) is again included in the objective

function:

(4.4.13)
As well, in practice there Qill be some error in the data, so to
fit the data eguations of 4.5.6 and 4.5.7 exactly would be
overfitting the data. This is handled by expanding each equation
into two inequality constraints. For example, equation 4.5.6

becomes:

N M
B, (x,) + §B,(x,) zé,'é' 3i By (x,)

(4.4.14)
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N ™M x
Be(x) - §B,(x) <& § 3 Ay (%))
L"l\‘"-l
(4.4.15)
where &Bx(xk) is the estimated standard deviation in B, (x,). The
model would then be required to fit the data only to within the
standard deviation of each data point. This completes the
formulation of the L, -norm linear programming construction.

The linear programming construction was applied to the same
suite of true models as used previously. Because the method of
calculating the data from the parameterized true model is
identical to the method used to calculate the contribution of
each grid element in the construction, the grid meshes wused in
each were made dissimilar, with the grid size in the data
calculation being 20 x 20, and that in the construction, 16 x
16. The first set of true and calculated models are shown in
Fig. 4.7. In all cases, only the amplitude current density model
is given.

In Fig. 4.7, the calculated models are constructed at
various values of the weight factor «, for surface fields
calculated using the true model. Gaussian white noise with a
standard deviation of 10% of the maximum field value was added
to the data. Because of the rapid geometric decay in the field
of the anomalous current, this noise level will be very‘high at
- stations to either side of the anomaly, and is thus unreasonably
large. The unweighted model is concentrated near the surface as

expected. However, for both of the weighted constructions (« =

1, <= 2) the calculated models are very similar to the true
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Fig. 4.7 L,-Norm linear programming model construction. 10%

noise was added to the true model data. The various models are:
(a) the true model

(b) model constructed at «

1]
o
.

(c) model constructed at <
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(d) model constructed at
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model, with the horizontal and the vertical features recovered.
When the grid size is taken into account, the total current in
the large peak is also found to be close to that of the true
model. It is an important point that both values of the
weighting produce similar results, as this removes the problem
of determining the 'best' wvalue of <X for each data set to be
inverted. In fact, values as large as 10 were tried for o , and
causéd little difference 1in the constructed model, indicating
great stability with respeét to the weighting. In all subseguent
models this stability is taken advantage of, with the value of X
fixed at 1.

The horizontal and vertical resclution of this construction
were then checked using data from the true models of 4.8a and
4.9a, to which 1 % noise was added. The construction was done
using a weighting of « = 1, and the results are in Fig. 4.8b and
4.9b. The resolving ability in both the horizontal and the
vertical direction is evident.

The true models wused to this point have all matched the
first presumed physical feature, in which the true model was
assumed to be sparse, with only a few 1localized current
elements. To check the limit of the L,-norm construction with
respect to less localized true models, the models of Fig. 4.10a
and 4.11a were used to generate the surface data. The
constructed models in Fig. 4.10b and Fig. 4.11b do show the
tendency of the L,-norm to over-localize the current elements.

HoweQer, the data still supply enough information so that the
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main features of both dike-like anomalies are recovered,
including their dip.

In summary, this linear programming modelling approach is
found to be stable with respect to both the weighting function
and to reasonable amounts of noise in the data. It has good
vertical as well as horizontal resolution when the true models
vconsist of a small number of localized model elements. Even for
dike-like anomalies which are localized 6nly in one direction,
the construction still recovers the major features of the true
model.

The data sets used to test the linear programming
construction algorithm have to this point been generated from
current density models, with all current elements 1in these
models being in phase. A more realistic test is to use as the
starting data the output from the Jones' forward induction
program, where now the true models would be conductivity models.
This will in particular check the construction algorithm's
ability to handle data containing various phase shifts, and will
also test the correlation between the constructed current
structure and the original conductivity model.

The first conductivity model used to generate data was that
in Fig. 4.12a, consisting of a localized conductor in a layered
structure, with a horizontal position of 189 km. and a depth of
35 km. Because of the inconsistency between the two directional
components of the output in Jones' program (as noted in section

2.2 of Chapter 1II), only the Bx component has been used for
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these inversions. The constructed amplitude current density
model is shown in Fig. 4.12b. The basic structure of this
current density model is a close reproduction of the original
conductivity model, and the depth (34.6 km.) and horizontal
‘position (188.1 km) also match that of the original model.

A second conductivity model was used to check the verticél
resolution, with two localized conductors at 9 and 35.5 km.
depth, with both at a horizontal position of 189 km. (see Figqg.
4.13a). Again, the constructed current model (in Fig. 4.13b) has
resolved the major features of the conductivity model, and has
accurately delineated the horizontal position (188 km.) of the
original conductors. As well, a reasonable estimate of the

depths.of the conductors (8.3 km., 30.2 km.) has been made.
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Chapter V

Analysis of G.D.S. Across the Cascade Anomaly

G.D.S. data from an array of magnetometers spanning the
Cascade anomaly of Washington State (Law et al, 1980) has been
obtained from the University of Washinéton's Geophysics Section.
The Cascade anomaly was originally detected by a linear array of
stations in southwestern Washington (see Fig. 5.1) with the
induction arrow responses indicating a localized north-south
conductor between the stations KOS and WHI (see Fig. 5.2). The
coincidence of this conductive path with the Cascade vélcanic
belt generated significant interest, prompting . further
investigations to trace the course of the conductive path to the
north and to the south. One such investigation recorded the
surface magnetic field of a polar magnetic storm in February of
1980, at the array sites indicated in Fig. 5.3. The data from
this event (see Fig. 5.4 and 5.5) is used here to demonstrate
the ﬁ‘—norm linear construction programming routine described in
section 4 of Chapter 1IV.

The discussions of appraisal and construction in Chapter IV

were all based on the presumptions that the normal and anomalous
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Fig. 5.2
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fields had already been separated, and that the subsurface
structure was  two ‘dimensional. The linear programming
construction further assumed that the internal currents
producing the anomalous field were very localized and that none
of these currents were more than TV/2 different in phase. Thus,
beforé any construction of models is done, the separation of the
total ffeld into its normal and anomalous portions must be
performed, and then all the assumptions must be checked using
the anomalous field values.

The normal field defined in Chapter 111 was the total
surface field that would be 1induced over the regional one
dimensional structure. Ho;ever, the stations in this array are
all very close to the land-sea boundary, so that the geomagnetic
coast effect (Parkinson, 1959; Everett and Hyndman, 1967) will
be pronounced at all of them. Although it is of interest and 1is
often studied, the coast effect in this experiment simply
obscures the desired response from the inland Cascade conductor.
For this reason it is advantageous to include the anomalous
field of the coast effect in the defined normal field, so that
upon subtracting this normal field from the total field only the
anomalous portion due to the Cascade conductor remains. Law ef
al (1980) have done this using the calculated response of the
coast effect at each inland station.(Everett and Hyndman, 1967).
However, for the array supplying the data for this thesis the
coasf effect will be complicated by the proximity of the Puget

Sound. As well, the two outermost stations in this array, NIS
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‘and GRE, are only separated longitudinally by about 80 km.
Because of these points, the simplification will be used here
that the coast effect is constant across the array. The strong
similarity between the magnetograms at the stations which are
most distant from the presumed location of the Cascade anomaly
(NIS and ORT), indicate that this simplification is reasonable.
The field at the outermost station, NIS, is designated the
normal field. The anomalous field at the remaining three
stations is then calculated as the difference between the
individual measured fields and this normal field, and both the
one-dimensional structure response as well as the coast effect
should be removed.

The first step in the analysis of the anomalous field
(henceforth called simply the field) at the stations ORT, MUD,
and GRE will be the calculation of the spectra for each
directional component. The first 23.75 hours of the digitized
magnetograms were used, which was 4096 points at a 20 second
digitizing interval. The mean and linear trend were removed from
each signal and the Fast Fourier Transform was applied. The
amplitude spectra are given in Fig. 5.6, 5.7, and 5.8. The
original measurement of the magnetic field was digital also,
with each count representing .25 nanotesla (nt.). Thus, an
intuitive 'threshhold level', below which the amplitude spectra
might be considered to be merely noise, would be .125 nt. (The
half count value is taken because there is an equal amplitude of

signal at the corresponding negative frequency). If this level
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is used, the meaningful range for most of the spectra would only
include periods greater than ~1 hour. However, the strict use
of this 'threshhold' 1level 1is not appropriate, because the
inducing fields are more correctly modelled as a sum of

frequency components with time varying amplitudes;

b(t) = § a;(t) cos(w t)

: (5.1)
rather than as a sum of freqguency components with constant
amplitude, as modelled by the Fourier transform. The time
variations of the amplitude, a;(t), will spread the energy of
each frequency ’compohent of the signal over a range of
frequencies in the Fourier transform representation. As an
example, for a signal b(t) as in equation 5.1, but with a single

frequency component, w, , its frequency spectrum will be:

B(w) = [Ay(w)/2] ® [§(w-w,)] + [Ag(w)/2] ® [&(w+wy)]
(5.2)
with:
A(w) = JFlag ()]
(5.3)

Thus, the threshold level can probably be taken to be much lower
than half the count rate. The possibility that the model of
equation 5.1 is more physically representative of the source

suggests that complex demodulation (Banks, 1975) may be a more
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reasonable approach to determining spectra than the Fourier
transform approach, but it has not been used here.

The assumptions embodied in the construction routine of
section 4 in Chapter IV can now be checked. A measure of the
degree of polarization of the magnetic field vector at any

frequency 'w' can be obtained from (Samson, 1977):

p(w) = [nTr($*) - (Trs) 1/[(n-1) (Tr$)*]
| (5.4)
wvhere p(w) 1is the degree of polarization at 'w', 'n' is the
number of vector components, and §(w) is the smoothed spectral
matrix of the magnetic vector. The unsmoothed spectral matrix is

given by:

s'(w) = Swa (W) S (W) s (W)

Sy, (W) Sgy (W) gy (w)

Sy (W) S (W) 8y, (w)
(5.5)

with Sig (w) for two arbitrary vector components A and B being

defined as:

She (W) = A(w)B¥(w)
(5.6)
(A(w) and B(w) are the complex magnitudes of the spectra for
each vector component). The value of the degree of polarization

can vary between 0 and 1, corresponding to completely random
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polarization and to a completely polarized signal. Using the
spectra previously determined, the spectral matrix §:(w) was

calculated, and subsequently smoothed with a 3 point filter

(.25,.5,.25) to give S(w):

Reai[SAB(w)] Real[S'ag (W)] ® (.25,.5,.25)

(5.7)

Imag[SﬂB(w)]

Imag[Siag (w)] & (.25,.5,.25)
(5.8)
The smoothing of the spéctral matrix before the degree of
polarization is calculated is based on the implicit assumption
that the field is more correctly modelled by eguation 5.1,
rather than by the Fourier transform expression. 1If the
uﬁsmoothed spectral matrix was used, the degree of polarization
from eqguation 5.4 would be 1 at every freguency, in accordance
with the constant amplitude and constant phase assumption of the
Fourier transform model. ,
The values of p(w) are plotted in Fig. 5.9 for the stations
ORT, MUD, and GRE. The magnetic vector at all stations 1is
strongly polarized for nearly all frequencies, with the vectbr
at MUD and ORT being almost completely polarized. This allows us
to approximate the frequency components of the magnetic vector
at 'each station position 'x' by a completely polarized signal

(Born and Wolf, 1975, pg. 32):
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H(x,w,t) = Ho(x,w): [cos(wt+ P(x,w))]

(5.9)
D(x,w,t) = Do(x,w)[cos(wt+Pp(x,w))]

(5.10)
Z(x,w,t) = Zo(x,w)-Icos(wt+q%(x,w))]

(5.11)
As indicated, Hy, Do, 2o,Pu,Pp and @ are all independent of
time. The varying position of the vector described by these
three components will trace out the surface of an ellipsoid,
with principle axes having lengths A,B, and C, and directions
§ ,% ,ﬁ . These parameters completely determine the nature of
the polarization of the vector. The procedure to obtain the
principle axes lengths and directions is detailed in Appendix H.
Basically, the three component equations of 5.8 =~ 5,10 are
converted to a gquadric equation representing an ellipsoid, which
is then éimplified by diagonalizing the matrix of coefficients.
The relative lengths of the principle components A,B, and C are

then given by the eigenvalues (A{) of the coefficient matrix,

which are the non-zero elements of the diagonal matrix:
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A 1/

(5.12)
B < 1/2,'?

(5.13)
C X 1/a;'"2

(5.14)

The direction of each principle axis is given by the eigenvector
associated with its eigenvalue.

The spectra for each station were smoothed using the three
point filter (.25,.5,.25),the eigenvalues were determined, and
the ratios of the smallest to second largest eigenvalues were
calculated at each freguency. The results given for the periods
from 20 min. - 4 hrs. (see Fig. 5.10 ) indicate that at both ORT
and MUD the anomalous field vector is effectively linearly
polarized.

The high degree of polarization found in the anomalous
field at all three stations, and in particular ORT and MUD,
could be due only to either a highly polarized inducing field,
or to a direction of constant symmetry in the conductive
structure. From the original magnetograms in Fig. 5.4 and 5.5 it
appears that the inducing field is in fact polarized, at least

for the long periods. However, even for a linearly polarized
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inducing field, if the conductivity structure is three-
dimensional the anomalous field will not be expected to be
linearly polarized, because of the probable phase shifts between
the directional components. Thus, it is felt that the linear
polarization at ORT and MUD indicates that the structure has a
direction of constant symmetry. Further to this,>as shown in
Fig. 5.11, the fact that two stations have a linearly polarized
signal suggests that the current must be localized at a single
deﬁth, as currents at different depths would introduce a phase
shift between the directional components at at least one
station. |

If the field is presﬁmed to be due to a line <current, the
vector directions of the 1longest principle axis at any two
stations must both be perpendicular to the 1line current, and
also must be perpendicular to the normals.to the line current
which intersect the stations. This would completely determine
the location of the line current, including the dip and strike,
if the vector directions were perfectly accurate. Using the
directions of the 1largest principle axis from the associated
eigenvectors, the dip and strike of the conjectured line current
was calculated usiﬁg the ORT and MUD eigenvectors. The mean
values and standard deviation of "the dip and strike of the
proposed line current path were found from the 1 hr. - 20 hr.

period range to be (see Fig. 5.12):

DIP = -1.001° + 7.117°
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Two lineal conductors are shown at different depths. As
shown in section 2.2 of Chapter II, the resultant field

from each of these conductors can be modelled as a line

'current, as shown at stations A and B. As the conductors

are at different depths, there will be a phase difference
between their respective fields, so that both stations

cannot have a linearly polarized signal.
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STRIKE = -15.029° + 5.825°

where the dip 1is downward in the direction of the strike, and
the strike is measured clockwise from north. The dip is small
enough to be ignored, thereby allowing the use of the two-
dimensional approximation.

The assumptions of Chapter IV have been validated for this
data set, except for the assumption of the maximum phase
difference. The check of the phase differences was incorporated
in the modelling routine itself, and it was found that the
assumption was not violated. The remaining step is to rotate the
vector data and station positions to a new coordinate system
aligned along the estimated strike of the structure, using the
station NIS as the origin of the new coordinate system. The
error 1in the angle of the strike will introduce error into both
the station position; and the rotated magnetic data, with the
resultant error in the magnetic field values easily incorporated
into the 1linear programming method. There is no éasy way to
incorporate the error in the station position into the linear
programming, but 1its relative value will be small so it has
simply been ignofed. The final station positions (x) are given

in Table 5.1.
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Table 5.1: Station Positions

Station Position
NIS 0.0 km.
ORT 33.2 km.
MUD ) 57.7 km.
GRE 80.9 km.

Using the one-dimensional station positions (x), the
component of the rotated field perpendicular to the proposed
strike, and the vertical component, the construction of models
was performed using the linear programming method of Ch. IV. For
the 1longer periods (1 - 4 hrs.) the constructed models
consistently reguire a localized current in the depth range 11 -
21 km., at a station position, x = 50.6 + 2.8 km. (see Fig.
5.13a,b,and c). Varying the size of the region of interest, or
the 'tightness' of fit to the data.can result in the removal or

appearance of the currents at the edges of the region, but never
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Fig. 5.13
Linear programming current models calculated using the
real data at a variety of periods. The periods of each
model, with the 1indicated position of the central line
current, are:
(a) 4 hr. Depth.ev.vveeeneee..16.9 km.
Station Position...46.5 km.
(b) 2 hr. Dépth..............14.1 km.
Station Position...50.7 km.
(c) 1 hr. Depth.vieeeeeeeee..21.0 km.
Station Position...52.5 km.
(d) 20 min. Depth.....e.eevee..11.0 km.

Station Position...52.5 km.
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results in the disappearance of this central current. This
indicates that the other current elements are strictly artifacts
of the noise and the modelling parameters, whereas the central
current is required to satisfy the data. It is noted that the
depth of this current (15.7 + 4.2 km.) is in good agreement with
the lvalue of 17 * B km. estimated for the southern section of
the Cascade anomaly, using a best fitting line current model for
a period of 1 hr. (Law et al, 1980).

For the linear programﬁing models consfructed- at higher
frequencies, the central current, ‘although still evident,
becomes less and less significant (Fig. 5.13d). For periods leés
than 15 min. it &as not always possible to find a model that
matched the data, indicating that either the two-dimensional
symmetry assumption was no longer valid at these periods, or
that the currents were perhaps travelling in a different
direction. The induction arrow results of Law et al (see Fig.
5.2) are in accordance with this, as they 1indicate the
disappearance of the north-south currents between KOS and WHI
for periods less than ~1 hr,.

The appearance of the Cascade anomaly currents only for the
longer periods ( 30 min. - 4 hrs.) is at odds with its shallow
depth. As indicated in Table 1.1, the skin depths for these
periods at a conductivity of .61 S§/m (which is very high for
shallow crustal rocks) are on the order of hundreds of
kilometers. This suggests that the currents are probably due to

channelling of a regional current system, and are not due to
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local induction. The proposed direction of the segment of the
Cascade anomaly studied in this thesis is shown in Fig. 5,14,
along with the southern section from Law et al, and an
approximate northern section fr;m Hensel (1981). The implication
of this 'complete' path ié that the Cascade anomaly currents are
simply being channelled along some relatively conductive path
into the Puget Sound. This appears to rule out the possibility

of a conductive conduit connecting the chain of Cascade

volcanoes.
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Fig. 5.14
A final map of the Cascade anomaly showing the
approximate positions of portions as estimated by:

(a) Law et al (1980) — .o

(b) This thesis —_——t

(c) Hensel (1981) = - — - — -
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CONCLUSIONS

A detailed investigation has been made of the assumptions
and limitations 1inherent in the traditional methods used in
G.D.S. The approximation of an induction tensor linearly
relating the normal and anomalous fields is found to be probably
.valid at midlatitudes, for periods greater than ~2 hrs. However,
as shorter periods are used, or in regions where the inducing
field cannot be considered horizontally uniform, its wvalidity
will degrade, and wultimately will fail. The induction arrows
derived from the induction tensor will share the  same
limitations. As well, it has been shown wusing very simple
examples that the arrows will not neccessarily point towards
current' concentrations, but rather will point towards high
relative conductivities, for both induced and channelled types
of anomalies.

The varioqs quantitative measures commonly employed in
G.D.S. to determine depths of currents, lateral extents of
anomalies, and scale lengths, have been shown to be of limited
usefulness, and in fact, one estimator for the scale length
(Porath et al, 1971) 1is revealed to be erroneous. It is also
concluded that quantitative modelling of the conductivity
structure at this stage 1in its development is not always the

most practical way to proceed, as the modelling is expensive and
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time consuming because of the non-linearity of the 1induction
formulation. As well, because of the possibility that the
anomaly is due to channelling of regionally induced current
systems, the extent of the region over which the modelling is to
be done is always in doubt. The failure of modelling efforts in
certain‘studies has been blamed on this inability to find the
proper region of interest (Whitham and Andersen, 1965; Porath et
al, 1971).

To avoid these diffichlties and to also put the problem in
linear form, it is suggested in Chapter IV that the anomaly be
modelled in terms of current density rather than conductivity,
with an initial simplification of two-dimensionality. The region
of interest of the model 1is easily determined in this
formulation, and the linearity allows for fast and inexpensive
computations for both the forward and inverse problems. The
major disadvantage of the current densjty approach is the non-
unigueness that is inherent in this approach. The extent and
type of this non-uniqueness is explored using the averaging
functions of Backus - Gilbert appraisal (1967,1968,1970). It is
found that the surface data will constrain the range of possible
models such that resolution of the major horizontal features of
the true model will be apparent 1in all constructed models.
However, the averaging functions indicate that constraining the
model construction with the data alone will result in no
resolution of the true model's vertical features.

These conclusions were confirmed by the construction of the
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L,-norm weighted smallest models, with the different models that
fit the data all correctly indicating the horizontal positions
of the current elements in the true model, but with none of the
models giving an accurate vertical placement.

To overcome this uniqueness difficulty, certain expected
physical features of the true model were incorporated or
favoured in the model construction. It was suggested that many
anomalies would be localized and would be sparsely distributed,
and so a weighted L,-norm 6bjective function was introduced for
the construction of a parameﬁerized current density model using
linear programming. The currents were also presumed to be due
mainly to first order induction, so that no significant currents
in the model would be more than T/2 different in phasé. With
these constraints and model features incorporated in the linear
programming construction, it was found that both vertical and
horizontal resolution of the features of localized, sparsely
distributed true models was now possibie. This ability of the
construction algorithm to recover the major features of the true
model was found to be stable with respect to the weighting
factor (for « 2 1), which allowed this factor to be fixed at
& = 1 for all subseguent modelling. As well, the success of the
algorithm persisted in the presence of reasonable amounts of
noise (up to 10% of the maximum data value for simple models;
and 1-2% of the maximum data value for more complex models).
Even when data was inverted using as true models current density

confiqurations that were localized only in one direction, the
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resultant coﬁstructed models were still a good replication of
the true model.

In the final chapter the linear programming construction
was applied to real data measured at stations crossing the
Cascade anomaly in Washington State. The data was checked, and
found to be in good accord with the assumption of two-
dimensionality. As well, the nearly linear polarization of the
signal at two stations indicated that the anomaly probably
consisted of only a single iocalized current. After rotating the
data énd station positions into the proper reference frame,
current density amplitude.models wefe constructed over a range
of periods from 20 min. to 4 hrs. and it was found that all
models required a localized current near the station MUD, at a
depth of from 11 - 21 km. The mean value of depth of 15.7 + 4.2
km. from all the models is in good agreement with the estimated
depth of Law et al (1980) for the southern portion of the
anomaly. The three sﬁggested segments from Law et al (1980),
this thesis, and Hensel (1981) show good continuity, and
indicate that the current path does not extend to the northern
Cascade volcanoes. The shallowness of the significant currents
in the models in comparison with the skin depths at their
respective periods indicates that the anomaly is probabiy due to
the channelling of regional currents through a local high

conductivity feature.
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Appendix A

Maxwell's Eguations in a Conductor

Maxwell's equations in their general form are:

V.D =ﬁ

(A.1)
7B =0

(A.2)
a4 _ _3-‘9‘
VXE = Se

(A.3)
Vi = J +%%

(A.4)

1f we presume that all time dependences are of the form

wwt

e and that €, 4 are equal to €, Mo everywhere, then the

eqguations simplify to:
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v.D = 0

(A.5)
V-8B =0

(A.6)
GXE = -iwB

(A.7)

V xH = 3 + in
(A.8)

Employing the constitutive relations for an isotropic medium:

=
]
Q
23]

(A.9)

ol
]

&
o

(A.10)

wl

n
-

et §

(A.11)
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we arrive at the starting form of Maxwell's equations for all

problems in this thesis:

-V.E =/°/€o

(A.12)
VHE =0

(A.13)
JxE = —iwyoﬁ

(A.14)
VxH = (9 + iw€y) E

(A.15)

All induction problems that will be dealt with in this
thesis will consist of a non-conductive half-space (air) and a
conductive half-space (earth) with the source 1in the vnon—
conductive half-space at a distance from the boundary plane (as
shown in Fig. 1.5). The Z axis will always be perpendicular to
the boundary, with the positive direction downward.

Within the earth, the lowest conductivity exéected (~ 155

S/m) is still much greater than the value of w€, corresponding
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to the highest freguency used in G.D.S. (the freguency range is

shown in Table 2.1):

Cmin = 107> S/m >> v, €, = 5.6x10'% s/m
(A.16)
Thus, within the earth we can always neglect the displacement

current term, so that A.15 becomes:

T—I=0’T’§ for z > 0

at
¢

(A.17)
Taking the curl of both sides of equation A.17 and wutilizing
equation A.13 on the left hand side of the subsequent egquation,

we arrive at:

2 ~ - - -
V°H = -VO xE + C(V xE)
(A.18)
Upon replacing E from A.17, and %x.é from A,14, we have:
-4 e - - -d
U*H = -Y9 4 (3 xH) + i H
5 x (9 xH) iwpp
(A.19)

This is the general equation for the magnetic field in an
inhomogenous earth. The corresponding result for the electric
field is obtained in analogous fashion by taking the curl of

both sides of A.14 and then simplifying with A.12 and A.17:
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VE

ivioE + (9p)/¢,

(A.20)
Going back to eguation A.15, taking the divergence of both sides
(and noting that the divergence of the curl of a vector is

always zero), it will always be true that:

V100 + iwen)E] = 0
(A.21)
Thus, by application of the divergeﬁce theorem, the vertical
component of the vector ( O + iw&o)g'is continuous across the
boundary plane separatiqg the halfspaces, so that at the

boundary:

(Cair + iv&)Ea@in= (Cearth * iW €4 )E; (enrih)
’ (A.22)

Using A.16 and the zero conductivity of the air, we have:

Ez(earthy = 1(W€/0 )Eq (air)

(A.23)
Again from A.16, it is apparent that at the boundary plane of
the two half-spaces, the vertical electric field in' the earth
and consequently the vertical currents, will be insignificant.
If the conductivity varies only with depth after the boﬁndary,
then by symmetry considerations, Ez and J, in the earth will
always be insignificant, regardless of the source type.

Considering equation A.21 again, expanding the terms,
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utilising A.12, and finally converting 'iw' back to S% , leads

to:

L +-€% = -(Vo- E)
(A.24)
If O varies only in the Z direction, and Ez from the previous
discussion 1is insignificant in the earth, then the source term
for charge <creation on the right hand side of A.24 is

negligible, leading to the equation governing the rate of decay

of existing free charge:

W4T 4 -
e T 0

€p
(A.25)
The solution of this is:
_c‘ t
/O =/o°e €¢>
(A.26)

Even for the most resistive rock ( © = 10°° S/m) the half-life
for free charge is only ~10 °s. Effectively then, there will be
no free charge 1in the earth if © = O (z) only (except at the
boundary ). As well there can be no free charge in the non-

conducting half-space. Thus, everywhere except at the boundary:-

< 2
V'-E =20

(A.27)
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Simplification of A.20 is now possible because of the lack

of free charge, leaving:

V'E = @E
where:
% ="W’.€ofio
z <0 (air)
P = iwp,o

(A.28)

(A.29)

(A.30)

z > 0 (earth)

Again, these results are for the case where ¢ is a function of

depth only.

| I1f we now further stipulate that
depth occurs in a layered fashion, with
each layer (giving VO = 0 within

simplifies to:

within the n™ layer, where ®. is the

layer.

the variation of O with
G (z) constant within

each layer), then A.19

(A.31)

value of @ in that
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Appendix B

Correlation of Price's Induction Solutions with Plane Wave

Solutions

As seen in section 2.1 of Chapter I1I, the required non-
divergence of the electric field in the homogenous earth
induction problem can be satisfied in two ways, leading to two
independent types of solutions. Solutiohs of the first type will
be correlated here with waves with a transverse electric vfield
(TE) and the second type will be correlated with waves with a

transverse magnetic field (TM).

Type one solutions

The first type solutions for the electric field are given

by equations 2.1.20 and 2.1.21 in Chapter II:

a _ 2 - “1
E (x,y,2) = {22 ,-3P g} 5 o (¥+@a) "2
l Y WX

+ B, e(ﬂi+¢“\l]

(B.1)
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H
E,(x,y,2) = (B _ 2P 3 [c, e‘(ﬂl*'Qe\ liI

3y FY
(B.2)
z >0
with P(x,y) satisfying (from 2.1.19):
P NP V'p =
IXT * 33‘ ¥ P 0
(B.3)
and with A,,B,, and C, satisfying (from 2.1.24, 2.1.25, and
2.1.26):
B, = -A;-[(1-R)/(1+R)]
(B.4)
Cy, = A [2R/(1+R)]
(3.5)
where:
[}
R=[( N +P)/( I +Pe)]”®
(B.6)
The elementary solution to B.3 is:
P(x,y) = eLKx eiknﬂ
(B.7)

with:
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kx2 + ky* = V2
(B.8)
,Letting:
kze = -i( V' + Je )”z
(B.9)
and:
kza = -i( V¥ + Qq )”1
(B.10)
and using B.7, then the e%ementary solutions B.!1 and B.2 take on

standard plane wave

dependence has been

E, (x,y,2)

E,(x,y,2)

To simplify

these

format (where it 1s noted that the time
resurrected):
i{ky,-kx,0} [A, e-ckzaieek,‘xe&kjj ec’.wt
+ B, eikmi e(,k,‘xei Jjekwt
(B.11)
z <0
-k kX ¢ y

i{ky,~-kx,0} C, e kzeL *" et Jjebum

| (B.12)

results we rotate by an angle -& about

the 2 axis to a new horizontal coordinate system '(§ ,7 )  (see
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Fig. 'B.1) such that the electric vector is only along §, and
horizontal propogation is only in the 72 direction. The eguation

for the electric field becomes:

E\(€,7,2) =i{9,0,0) [a, &Fal ¢V i0t

(B.13)

E,(g M 2 i19,0,0} ¢, s-keet iV o cwt
(B.14)
z >0
In terms of the incident angle © and the transmitted angle e'
(where the angles may be complex):

ka sin@ 2y,

(B.15)

ka cos & kza
(B.16)
for z < 0

where:
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P X

Fig. B.1
Rotating by an angle - about the Z axis to a new

horizontal coordinate system. The horizontal direction of

propogation is now purely in the z direction.
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]
ka = ( Y¥+ kza') fa

(B.17)
is the total wavenumber in the air. Also:
ke sin©' = 0y,
(B.18)
ke cos o' - kze
(B.19)
for z > 0
where:
ke = ( v+ kze’)'/L
(B.20)

is the total wavenumber in the earth.
The equivalence of Y 1in the earth and the air, combined
with B.15 and B.18, results 1in Snell's 1law (Panofsky and

Phillips, 1962, pg.196-197):

| ka/ke = sin 9‘/sin e
(B.21)
Also, equating the first term in B.13 with the incident wave
amplitude Ei, and the second term ' with the reflected wave

amplitude Er, we have:
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. 2 Y *+ Pa Y
Er/Ei = B, /A, = [(D+®Pay*_ yy (D *tFa ',
/ l/ I \7"+Qe / \)14.(?2 ‘
(B.22)
Upon substitution wusing B.9, B.10, B.16 and B.19, we arrive at
the usual Fresnel relation for the electric field for the TE

mode (Panofsky and Phillips, 1962, pg.198):

Er/Ei = [cos O - (ke/ka)cqse']/[cose + (ke/ka)cos®']
(B.23)
In similar fashion we have for the transmitted wave amplitude,

Et:

. . ) 1 ] YV +Qa VN
Et/Ei = C,/a, = 2 (X2t Pa yh rp (D7 +Pa yhy
/ /A - v o / e
(B.24)
which after substitution becomes the second Fresnel relation for

the TE mode (Panofsky and Phillips, 1962, pg.198):

Et/Ei = 2 cos© /[ (ke/ka)cos®' + cosO ]

(B.25)

Type two solutions

The second type solutions for the magnetic field are given

by equations 2.1.39 and 2.1.40 in Chapter II:

H, (x y.2) = (i/wpe) Pa. {2 _3F 03 [A e-(0’+<PaW“12
2 1Y ‘ FO (\)"1'@0.)”7' )37 3)(' 2
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e(91+@a

~e
[ W)

(B.26)

for z < o

"
Pe {QFi»_'DF}'O} Cze’("""‘q’QA :

Hy (x,y,2) = (i/w}"°)(\>1+q>e)“r. 7y X

(B.27)
for z > 0
with Fa(x,y,z) satisfying (from 2.1.38):
2 2
2 Fa F _
;x1+ }}\d} + vL[f‘% =0
' (B.28)
and with A,,B,,C; satisfying (from 2.1.41 and 2.1.42):
Pe Pe
= A,-[1 - (Z&)R)/[1 + (L&)R
By = Ap-[1 - (FZIRV/I1 ()R]
(B.29)
C, = Ap-2 /[1 + (Fe)R]
Pa
(B.30)
Again, the elementary solution to B.28 is:
Fa(x,y) = e‘kxX o tkyy
(B.31)

with:
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kx2 + ky2 = Qz
(B.32)

Using the definitions for kze and kza as in B.9 and B.10, and
substituting the result of B.31 into B.26 and B.27 we obtain the

standard plane wave format for the magnetic field in the type

two case:

Hy(x,y,2) = =(i/wpe) <52 {ky,=kx,0)

. tkey ~lkpat ¢ e tkyy Chkapa?  (wt
°[A1e‘k‘xe Ve tha® glut -B,_ek' e dde T )

(B.33)

for z < 0

Pe
ke

o ‘.. . o . t
Hp(x,y,2) = =(i/wp,) {ky,-kx,0} Czekﬂ‘e*ije‘k“} e

(B.34)

for z > 0
Rotating into the new coordinate system (g ,? ), in identical
fashion to that done for the type one solution, the magnetic

field becomes:
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ﬁa(g " a2) = /e p,) Po (9,0,0) [a,eV0e hrat it

2
k%Q.

(B.35)

for z < 0

= : : @, (VN ~tKze? (wt
Hz(§ ,7 ,2) = —(1/wf%) k:; {v,0,0} C,e 7e €7 e

(B.36)

for z > 0 .
Following the same procedure .as for the type one solution,
Snell's law 1s again recovered, and also the Fresnel relations

for the TM mode (Panofsky and Phillips, 1962, pg.198):

Hr/Hl = “Ba/A?‘
= [(ke/ka)cos® - cos8'1/[(ke/ka)cos© + cosG']
(B.37)
Ht/Hi = Cz/Az

[2(ke/ka)cos© 1/[ (ke/ka)cos® + cosB']

(B.38)
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Appendix C

The Uniform Field Assumption

A common assumption in both G.D.S. and magnetotellurics is
that the electromagnetic plane waves comprising the pfimary
field can all be considered to be propagating vertically
downward, so that the field is ho;izontally uniform. This
assumption inherently implies that all waves of significant

amplitude in the source field must adhere to three conditions:

(1) The angle from the vertical of the
direction of propagation of the wave

transmitted into the earth is near zero.

(2) The  horizontal wavelength of the
transmitted wave is much greater than
the lateral extent of any anomaly, so
that there will be 1little horizontal
variatibn in the inducing field across
the anomaly.

(3) The complex magnitude of the transmitted
wave (for a normalized incident wave) is

the same for all waves.
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From equation 2.1.51 or 2.1.52, and using eguation 2;1.57, the
downgoing electromagnetic wave in the earth'can be expressed as:
F o= By el o kel oot
(C.1)
where g is the total horizontal distance and F can be either
the electric or magnetic vector. Equation C.1 can be rewritten
as a product of éecaying and propogating parts of the wave:

F=F (

™ma 2 C ~( Real (k )i C
X eI S(k;c\ )(e(,\)fe calt&ye ecwt)

(C.2)
Note that from eguation 2.1.59 the imaginary part of kie is

e Ima.s (k}e\ 2

always negative, so that does 1in fact represent

A
decay with increasing depth. The propogation in the §’ direction
. D . . .
1s represented by e f, and that in the 2z direction by
-t k . '
e LRcul(itxi so that the angle of propogation, © measured from

the vertical is given by:

6 Tan™' [V/-Real(kze)]

0l

Tan§‘[9/1mag(1+iF)]

(c;3)
with the definition of B the same as in equation 2.1.35. The
dependence of © on P is plotted in Fig.C.1. It 1is seen that
for P > 100, all waves propogate virtually vertically downward.
Using the expected physical range of P given in Tables 2.2 and

2.3, and interpreting for a midrange conductivity of .05 S/m, it
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Fig. C.1
The propagation angle from the wvertical of the
transmitted wave into a half-space of uniform
conductivity. The angle is plotted as a function of the

dimensionless parameter, p .
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is seen that for large values of the horizontal wavelength ( A >
5x1dskm.) this magnitude of P is attained for all periods less
than ~ 2 hours. Thﬁs, within these parameter boundaries the
first condition will be satisfied. As well, the large horizontal
wavelengths required will certainly guarantee that the second
condition is also satisfied.

The remaining condition, if met, will ensure that the
magnitude of the anomalous response will be the same for all-
significant waves in the soﬁrce field. The relations between the
complex magnitudes of the incident ' (A), reflected (B), and
transmitted (C) waves are defined in equations 2.1.24 - 2.1.30,

with the results'being:

B=f(p)a
(C.4)
C=A+B
=1+ £(B)] A
(C.5)

The amplitude of f(P ) is plotted in Fig.2.1la. Between B = 100
and F—écn , |f0p )| varies by a factor of 2, so that condition
(3) 1is not satisfied for this range of P - However, in some
methods of analysis used in G.D.S;, which will be discussed in
Chapter III, one is concerned only with the relation between'the

'normal surface field, and the addition to the 'normal' surface
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field due to an interio: anomalous region,{(that 1is, the
anomalous field). The 'normal' field is the total surface field
that would exist iﬁ the absence of any anomalous variations from
a one dimensional conductivity structure. In this case only the
ratio of C to (A + B) must remain constant for all waves to act
alike, and this is always guaranteed by the continuity of the
magnetic field across a boundary, as expressed in equation C.4.
Thus, in this case the third condition is not required, so that
the wuniform field assumption is valid for the parameter ranges
satisfying the first two conditions. It should be emphasized
that this works only fbr methods using the relation between the
total 'normal' surface field and the anomalous surface field. It
will not be true for methods which relate the magnitude of the
incident field to the anomalous field, as that will require that

condition (3) be fulfilled.
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Appendix D

Separation of the External and Internal Fields

In illustration of the more general separation formulas
derived by Siebert and Kertz (1957) and Weaver (1963), the
simplified case of a two dimensional earth will be considered.
Presume that neither the inducing field nor the earth structure
varies in the 'y' direction (see Fig. 4.1), and also that the
station array 1is along the surface at right angles to the y
axis. Thus, the magnetic field will only have directional
components Xg,Xy and Zg,Z; in the 'x' and 'z' directions
respectively. The subscripts 'E' and 'I' will denote whether the
field component is of external or internal origin.

Let a single external line current, I, at the position
x=0,z=-H, be the source of the fields at the surface. The
measured field at any array position x, from Ampere's law will

be:

Xe(x)

(FOI/Zw)-[H/(H1+x1)]

(D.1)

Zg (x) -(po1/2t) [x/(H +x*)]
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(D.2)
We will need to know the general Fourier transform expressions

(Ryshik and Gradstein, 1963, pg. 250):

Fla/tea)) e 'V

(D.3)

Fix/(x*+a%)]

i}

-frie~lilasgn(§)
. (D.4)

where the Fourier transform, } , of a function of x, f(x), is

defined here to be:

o
} [f(x)] = ‘(‘f(x)eﬂgxdx
T® (D.5)

and the 'sgn' function is 1 or -1 depending on the sign of its
argument. Using these, the spatial Fourier transform of the

measured fields along the surface will be:

- [Xp(x))
E

( Mol /21) (e~ 1§ 1M

(D.6)

Flze) = (por/em el sgn(g))
(D.7)

Thus:
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Flzg(x)1/ Fx(x)) = isgn(E)
. § 1-1/7am) ]

(D.8)
(from Lighthill, 1958, pg. 43). We can rewrite equation D.8:

Jrzg1 = F 1-1/0m07 F (xe(0)]
(D.9)
Then, using the Faltung, or convolution theorem, (Bracewell,
1965, pg.25) we can rewrite the relatién between X and Zg in

the frequency domain as a convolution in the time domain:

w N
2g(x) = ( %g(x' ) 1/07 (xox") Jax'
-

(D.10)

The convolution with the function [-1/(Trx)] is the Hilbert
transform (Bracewell, 1965, pg. 267). Denoting this operation by

the symbol 'K', D.10 becomes:

Zg(x) = K[Xg(x)]

(D.11)

Noting that the reciprocal of sgn(%) is still sgn(?), we

could also have rewritten equation D.B in the form:

Frxex)] = -isgn(§) Frzex))
(D.12)

which results in:
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Xp(x) = -K[zg(x)]

(D.13)

The linearity of Ampere's 1law allows us to extend this
result for one external line current, to the general case of an
arbitrary number and distribution of external line currents.

Consider now that the source is a line current at a depth H
below the surface. From Ampere's law the field Xy, 21 at the

surface will be:

Xp(x) = -(p,1/2%) [H/(x*+H")]

(D.14)

2r(x) = -(p1/2M [x/(x*+1%)]
(D.15)
Following the same arguments as before, these equations lead to:

XI(X) K[ZI(X)]

(D.16)

ZI(X) -K[XI(X)}
(D.17)
Again, this result can be extended to an arbitrary distribution

of internal currents.
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The total fields.measured at the surface will be:
DY

X(x)

Xy(x) + Xp(x)

(D.18)

Z(x) Zp(x) + Zg(x)
(D.19)

Taking the Hilbert transform of the measured total data gives:

K[X(x)] = K[Xp(x)] + R[Rg(x)]
= -Zp(x) + Zg(x)
(D.20)
and:
K[2(x)] = Rl2yx(x)]) +R[Zg(x)]
= Xp(x) - Xg(x)
(D.21)

Thus, the portion of the measured field that is due to

internal sources can be separated:

Xr(x) = {R[Z(x)] +X(x)}/2

(D.22)
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zp(x) = {2(x) - K[X(x)]}/2

(D.23)

It should be noted that the Hilbert transform of a constant
gives a zero result, so that in the case of a constant field of
either internal or external origin, eguations D.22 and D.23 will
not be able to separate the components, and will merely divide

the total field into equal parts of each component.
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Appendix E

Determination of the Induction Tensor Elements

The following method of obtaining values for the induction
tensor elements 1is due to Schmucker (1970). Other methods have
been suggested by Everett and Hyndman (1967), and Woods (1979,
pg.53).

The anomalous and normal fields at any frequency 'w' are
considered related by the induction tensor, but with the
possibility that a portion of the anomalous field cannot‘be

correlated with the field:

Hp I Y Hy Hg
Da | = Cpu Cop Cpi Dy |+ D¢
Zp Cau Capy Cynp Zy Z¢

(E.1)
The values of the tensor elements are complex, with the real and

imaginary parts represented here by superscript I or R as shown:

R T
Cun = Cyu * 104y

(E.2)
" The auto and cross powers of two signals a(t) and b(t) of equal

length To Will be defined as:
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Sag = A(w)B¥(w) /7,
(E.3)
where A(w) and B(w) are the Fourier transforms of a(t) and b(t)
respectively, and the star '*' denptes the complex conjugate.
The desired values of the tensor are those which minimize
the uncorrelated terms Hy, D and 2Z¢. Consider the last

anomalous vector component:

Za = CayHn * GpDn + Gy 2y *Zg

(E.4)
' *
The values of ZS and Z¢ are then:
R . I R I
Zg = —(CEH + ICEH)'HN - (C'QD + ICQD)'D
R I
'(sz + 1CH)-ZN + Zﬁ
(E.5)
and:
* . L R R o *
Zf = -(Cau - iCyu)+HE - (Cqy -iCyy)- Dy
R A *
(Cza - iCh) Zn * 2Zn
(E.6)

where we ‘have expanded the tensor terms into both real and
imaginary terms. Z¢, and thus the autopower 52[%_ of zg, is
dependent on six independent variables, as seen in E.6, so that
the minimum must occur when the derivative of Szeg is zero with

respect to each of them:
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9S3c3¢

332&1{ = 0 : = 0
T Ay, 5.7)
E.7
3321‘\3 =0 ; QSZEQ =0
3C3o 3o e
E.8
BSEIZK =0 : 352§§ =0
Bcfi PIETY ( )
E.S

Using the chain rule (where 'u' is any of the independent

variables) we have:

3
226 =« (A %, 2%

(E.10)

Evaluating this using equations E.5 and E.6 for each of the

cases, Six separate equations are obtained:
* *

(E.11)

¥
-ZgHy + ZgHR = 0

(E.12)
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ZeD, + Z¢Dy = 0

(E.13)
-2.D, + ZeDf = 0

(E.14)
ZpZy + Zo28 = O

(E.15)
32, + Zly = O

(E.16)

For each of the pairs (E.11 and E.12), (E.13 and E.14), and
(E.15 and E.16) the only possible solutions are either that

Hy,Dy, and Z, are zero, which maximizes Zt, or that:
ZgHy = ZgHy =0, Hy 50

(E.17)

ZS'D'J:Z‘DN:O,DNkO

(E.18)



244

ZeZy = L T8 = 0, Zy % 0
(E.19)
This 1is 1in fact a restatement of the original problem, as each
of E.17, E.18 and E.19 is merely stating that Z is uncorrelated

with the normal field, with:

.SHNEK =0 ; SESHN =0
(E.20)

Sone = 0 7 Sgepy = 0
‘ (E.21)

Savyg = 07 Szean =0
(E.22)

. . * .
Inserting the expressions for i¢ and Zg from E.5 and E.6 into
each of the above eguations, we arrive at the set of linear

equations:

CanSHauHy ¥ CanSouHy * Caz SanHy = Swa Ha
’ (E.23)



CanSudy, * CapSppy  + Coa Saape = Seada

CauSuyay * CivSowznw * Cia Sanzn = Szaze

wvhich allow us to calculate the values of the three

tensor elements: v
Can : Stk
-1
Civ = 5 -l Sub.
CQ} S22y

where S is given by:

SHNH“ SD\IHN SZNHN
§_ = SNN Da sDn Do Szw Dna

Shein  Sowin  Sauvia

The values of the induction tensor elements for the

rows would proceed in identical fashion.
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(E.24)

(E.25)

induction

(E.26)

(E.27)

other

two
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Appendix F

Properties of Current Distributions that Mimic a Line Current

Presume that a particular two-dimensional current
distribution that fits the observed surface readings Bx,By along
a linear array at a frequency w, is a line current at a depth
2y, as in Fig. 3.7. The ability to fit the data with this 1line
current model then imposes certain ‘constraints on all»other
possible models that fit the data. As many actual anomalies have
surface magnetic fields that closely resemble those of a single
line current, these model constraints are of obvious interest.

Consider a current distribution, j(x,z), which is non-zero
between z=0, and z=00. For this distribution to duplicate the
surface field due to the line current, the values of Bx and Bz
must match at all surface positions 'x' along the array. Because
of the linear relationship between the two components (as shown
in Appendix D), it 1is sufficient to consider only one of the
components. Using the Bx component, a suitable model j(x,z) will

thus satisfy:
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oo O
= (pe/200) (10500, 9) 91/ (x-u)* +9* 1} auav

-t O

(F.1)

Noting the convolutional form of the right hand side we can

rewrite equation F.1 as:
m N
1z, /(x*+2,) = { [3(x,v) ® (v/(x*+"))] av
(o]

Taking the Fourier transform with respect to 'x' of

of F.2 gives:
© .
1ve S e o g [a(g,v) ™ 'SV gy

o

where:
@® .
. SR
J(?,v) = S\ jlu,v) e du
-
Equation F.3 simplifies to:

/

[ o3
Ie.lglh = g J(i,v) e-]i(u— dav

o

both

(F.2)

sides

(F.3)

(F.a)

(F.5)

Consider now a model that has no currents at, or shallower

than the line current depth, that is, j(x,z) 1is non-zero

only

between 2z +€ and o , where € is an arbitrarily small number.

Usihg this, moving e-@'2° to the right hand side 1in F.5, and
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}

introducing a change of variables, v'= (v-z), egquation F.5
becomes:
c Iglo’
~i€{v
1 = g\ J(g,v') e g dv'!
€ (F.6)

The‘ upper limit of integration in F.7 must actually be finite
because of the finite 'depth' of the earth; denote this finite
limit by 'R'. Now, by the mean value theorem (Fulks, 1969,
Pg.125) a value of the integrand will be able to be found at

some position vV within the range of integration such that:

I = (R-€) J(F,¥) IS

(F.7)
This must hold for all values of g, which means that in the
limit as g goes to ® , J(i,v) must increase monotonically to
infinity. Thus, the requirement that the entire current
distribution be at a greater depth than that of the line current
results in physically unténable models. In other words, all
realizable models that fit the data must have some current at,
or shallower than the line current depth.

Return to the general problem again, where the current
distribution that will mimic the line current can be non-zero
anywhere between z=0 and z=00., The required relétion between
this current distribution and the line current is then given by
equation F.5. If the current distribution J(g,v) has elements

which are not in phase with the original line current, then that
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model will have both real and imaginary portions, JR(E,V),
QI(g'V) respectively. Designating the line current as the =zero
phase position, then I will be pure real. This leads to equation

F.5 becoming:

R ,U e \Y

(F.8)

)]
=]
o

@
0 = g JI(Q,V) e-lgwdv

© . (F.9)
In the case of F.9, as euiglwis always greater than zero, the
neccessary zero value of the total integral requires that either
JI(E,V) is everywhere zero, or that Jlji,v) has elements of both
negative and positive sign. If we now restrict our range of
possible models to include only those where the current elements
in the model are different in phase by less than T/2, then the
only way to satisfy equation F.9 will be to have JI(g,v) zero
everywhere. Thus, applying this constraint forces all current
elements to be invphase with the original line current. Although
this precludes the possibility of 'annihilator' distributions in
the model, it does not preclude currents at depths greater than
that of the line current. An example of such a distribution is

one consisting of a line current of magnitude I5/4 at a depth

225, plus a lineal current density:



250

J(x) = I5{(ze-2, ) /[x +(2,~2, P ]
- (22°-z|)/4[x1+(22°-z()2]}
(F.10)
along a depth z,, where z, < Z5.
In a case spch as that given, where all the currents are in
phase and the current distribution contains only one line

current I at a depth z, greater than 2o, then it must be true

that:

zOI° 22z, 1

Lo

(F.11)
This is required to ensure that the X component of the original
line current field is always greater than or equal to . the X

component of any portion of the mimicking current distribution

at asymptotically large values of x.
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Appendix G

Analytic and Numeric Integrations

In section 2 of Chapter IV the inner products of the
current density kernels are to be computed. The kernels
correspond to the contribution to the surface magnetic field at
station position (x,0), due to a current density at the position
(x',2'). There will be two types of kernels, corresponding to
the vertical (z) and horizontal (x) components of the field (as

given in eqguations 4.1.6 and 4.1.8):

Gx(x,x',z') Fq/2ﬂ' {-z'/[(x-x')z+z'z]}

(G.1)

Ga(x,x',2') = Mo/2T {(x'-x)/[(x-x")?+2'?]}

L}

) (G.2)

This allows for six types of inner product integrals:

| .
[3k1= Sgéx({jnx',z') Gx(xk,x‘,z‘) dx'dz"'
S
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= }Q74ﬂ1 Sg\ z'* dx'dz’
A [(gj—x')‘+z"] [(x =x')*+z2'*]
(G.3)
with either X5 X xk, or x; = Xp.
2
[}k = SSGE({j'X"z') G%(xk,x',z') dx'dz'
| S
= }Joz/4ﬂ1 {x'-xk)(x'-x3i) dx'dz"'
C[(xy-x")*+2' 2] [(x -x")*+2'%]
S (G.4)
with either %j X X r OT X5 = X .
3
r}k= SSG*(XK'X"Z') Gx(XJ,X',Z') dx'dz’
S
= p:/4ﬂ“' -z (x'-xg) dx'dz"
[(xj-x")r+2'> ] [(x, -x")*+z2'?]
S (G.5)

with either X; X X r OF Xj = X.

The range S will be designated A < x' < B; € < z2' < D, where €
must always be greater than zero. Using standard integrating
techniques, the first integration of these inner products can be
carriéd out with respect to either of the variables, resulting

in the following analytic forms.
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First integration with respect to z :

\

M

B
NJ/4W1 S‘ dx' {(x'-xk)/[(x'—xk)l—(x'-XJ)2J

" {ran™ [D/(x"=x) 1-Tan™ [€/(x"~x,) 1]

+ (x'-gj)/[(x'—XJ)1-(x‘-xk)l]
-{Tan"[D/(x‘-xJ)]-Tan-'[6/(x'—{j)]}}
(G.6)

X X Xk

3 .
pé/srrlé‘ ax' { 1/(x"=x,)

«[Tan™ (D/(x"-x)) - Tan™" (€/(x'-x,))]

+ (e/[(x"-x, )" +€*] - D/[(x"-x, ) *+D*])}

(G.7)

B
F&/4ﬂ‘ S‘ dx’' {(x'-xJ)/[(x'-xd)l-(x'—xk)z]
A

{Tan"’ [D/(x'-xk)]-Tan-l[€/(x'-xk)]}

2

+ (x'-xk)/[(x'-XJ)L—(x'—xk) ]
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. {Tan-| [€/(x‘-x‘\')]—Tan-| ['D/(x'-xd' )11}
(G.8)

XJ %xk

B
M= povemr Coax {1/(xt-x)

[Tan”! (D/(x'-x,)) - Tan”' (€/(x'=xy))]

+ (D/[(x'=x)?4D" ] = €/[(x'-x, ) + € 1)}

(G.9)
0% *k
B
3r3k = Mo/8M* 5 (x'—xk)/[(x'-xs.)z-(x'-xk)z]
: A
« Inf[(x'-x; )" +€ ][ (x'-xx)* +D?]) dx"
[(x"=x )*+D* J[(x"~x, )* +€?]
(G.10)

X; ’\xk

B
3 2
rjk = Poz/SFT S (x'-x%,)° ax'

ﬂ 1 | b3 kX
/T k=% )" +€%) - 1 /[(x"-x, )" +D "1}
| (G.11)
In all cases, the results for Xy X X, can be shown to have as

their limiting values the Xy = X, expressions, when X — X,.
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X

> _
= gﬁ;gﬁ z'*dz ln(L(xx-A)‘+z"][(xs-B7'+2'1])
8(z

40t 't +d%). 4 [(xk-B)'--*z"][(x_; “A) +z'?]
€
+ 2 Tan” | [(x«-A)(x -A)-2'%]
z' [z'(xk-A)+z‘(xs-A)]
-Tan™ [[{x«-B)(x; -B)-2"%]
[z'(xk-B)+z'(§j-B)]
(G.12)
XJ k Xk
X D
= Mo gdz' (xx—-A) - (xx-B)
gm* {[z"+(xK—A)‘] [z'2+(x,-B)* ] |
€ .
+ 1 Tan ((XK—A)) - 1 Tan’ ((XK—B»}
zl z' z' z'
(G.13)
Xy = Xk

D
= Mo dz'( 1 1n|[{x;-A) +2'* ][ (x«=B)* +2'* ]
8d [(xk-A)z+z"][(XJ-B)1+Z'1]
€



+

4z

- Tan”!

+ Phn_' [(xk-A)(x5-A)-2'%]
' [z‘(xk—A)+z'(§s-A)]

[ (xx=B) (xj=B)-z'% ] )]

[z'(xk-B)+z'(§3-B)]

. 1 d 1n
8(z't+d?

/

[(xx-A)2+2'*][(xi-B)*+2'%]
[(x, -B)*+2'* ][ (x;-A)* +2'*]

(z

N

2d? [Tan"([(xa—A)(xs-A)-Z'I]

'(xk-A)+z'(xj—A)]>

'(xk—B)+z'(§j-B)J] }

- Tan"(E(xK-B)(xs-B)-Z'll
z

D
g dz' [1__'I‘an'l XK =A\- (xx-2)
2 z' z'| [z"+(x, -A)*]

(G.
X, % X
-[1_Tan™ [xx-B\- (xx-B)
z' z'/] [z'*+(x,-B)"]
(G.

256

|

14)

15)
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D
T -
3(‘1. = t"_ (z'dz'[_h [Tan'Q(x;-A—d)z-dz+z'z])
< 4Mre 4z'4d 2z2'd
€
- Tan’’ ([(x;-B-d)‘ -d1+z‘1]>J
22'd
- g A In([(xe-A)"+2'* J[ (x5 -B)*+z'" ]
8(z't+d*) (4 [(xk-B)‘+z"][(&j-A)‘+Z"]

+ g_[Tan"I ([(xk—A)(xi-A)-z"]
z' [2' (x -2)+2" (X;-A)]

- Tan™' ([(xu-B)(xs—B)-z"'] ]§
[2" (x,-B)+2' (x; -B)]

" (G.16)

Xy *XI\,

3 o 2
Mo K rrer S
J 8\'7"‘€ [(xk-B)"+z"‘] [(xk-A)"+z"'])

(G.17)

In all cases;
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4 = (xk—{j)/2

(G.18)

The integration with respect to the final variable for
either of the two possibilities must be done numerically, due to
the "Tan™ ' and 'ln' terms in the integrand. The method of
numerical integration that was used involved sampling the
integrand function between the limits of integration, and then
fitting a cubic spline to these values. The cubic spline
estimates the firsi, second and third  derivatives of the
integrand curve at every sampled point, so that the integral can

be readily estimated:

X4+D

Sf(x')dx' = Df(x) + D%f'(x) + D f''(x) + DYf''' (x)
: 2! 3! 4!

X

(G.19)

The sections of the integrand curve which changed rapialy, and
thus were difficult to spline, were located and sampled on a
much finer basis. The integrated results of the splining
technique were compared with results using various U.B.C.
computer library integrating routines, and were always within
.0001. Also, the numerical integration was done wusing the
integrands from both the first integration with respect to 'x'
and with respect to 'z', with the results agreeing within .0001.
The particular utility of integrating with respect té 'x' first,

is that it allows the simple introduction of the weighting
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factor, z“, into the integrand for the weighted smallest model

construction of Chapter IV.

The second result needed for the calculation of the
averaging functions in Section 2 of Chapter IV is the integral
of each of the kernels over the region of interest. There are

only two possibilities, and both have analytic solutions:

B

T

v = §
A

= .'i"_{(_&k_'_li).ln [D*+(B-xx) ]
2 2 [e*+(B-x,)%]

G‘(xk,x',z') dx'dz’

M

- (xx-A), 1n [D*+(A-xu)* ]
2 [€l+(A‘Xk)1]

- D-Tan"' (xn-B) - ¢Tan™' (XK'B)
D

(G.20)

B D
zUk = g‘& G, (x, ,x',2") dx'dz'
A €



260

= Mo l[n In (D"+b") - € 1n [e*+b"
2w (2 D*+a? €L +a?
+ a [Tan-‘(é/a) - Tan-'(D/a)]

- b [Tan™' (€/b) - Tan"(D/b)]}

(G.21)
where;
a = X, - A
(G.22)
b = X~ B
(G.23)

For both the forward modelling routine and the linear
programming construction, the contribution to the surface field
from a rectangle of constant current density is required (see
Fig. G.1). The contributions for each component at a station

position "x¢' are;

i

Xje1 Brer
Bx(x;,0) Mo JﬂgJJ -z'dx'dz’

2 ) J [(xgmxT)E ez ]
I

= (po/2) 35 15

(G.24)
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Fig. G.1
Parameterized current density model. The current density
is constant with respect to position within each grid

element.
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Bz(x;,0) = Mo Jik J.(x‘-xa) dx'dz'

2 [(xL-x')"+z"-]

s, ]
X;  2x

(Po/Zﬂ’ ) JJk

X 2
The values of IJ-k and I.ik are:

» v - . =l .
I = zy [ Tan (x; ~xj) - - Tan (x.. -xI’H)J

' -4 Lt - . ot
+ zk“[Tan (x; X ,,.) Tan (xu X .,.>J
z z
k+t k4t

+ [ xi-xy ) 1n [z"+ (x: -xJ)‘]
2 ) [zpr + (x -x{) 1]

+ [ xi-x4) . 1In [Zhat * (xi-x)% )
2 [zper+ (x;-x},)%]

2 -1 -1
1., = (x; -x}, F[Tan zke1 |- Tan z'« \]
Jk At T %
X XJ*\ XL Xj+|

262 -

(G.25)

(G.26)
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+ (xi-x-')-[Tan.‘ z. \- Tan 2 %t1)]
’ X, ~X] LTS

+ 2% , 1In ([(xa—xj,‘q)z +Z'&:|]>

[(x¢i-x} ) +z 1)

tzh . 1 <mi'x;.')z 2zt ] )

[k ~xg * +20]

(G.27)
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Appendix H

Determining the Major Axis of an Ellipsoid

Let the linear transformation of a three dimensional vector

X be represented by a real valued matrix A:

(H.1)

-

The square of the length of the new vector, y, is:

(H.2)
The matrix B will be real and symmetric. The endpoints of all
the position vectors X for which the squared length of ¥y is a
constant will map out a quadric surface (Sokolnikoff, 1951;

Strang, 1976), with the governing equation being:



265

= (X ,%;,%3) b, by, by Xy
by, by baa Xo
b;, by, bsz Xq

i 3
=£, S, b‘:j XLXJ'
[N d=Y
(H.3)
For C > 0 the quadric surface is an ellipsoid. From eguation

H.2, the matrix B will be positive definite as well as

symmetric, which ensures that we can always decompose B:

B = $AS’
(H.4)
where S is an orthogonal matrix:
s =sT
(H.5)

and éﬁ is a diagonal matrix, with all values of the diagonal

greater than zero:

A

"
>
o

(H.6)



- 266

(H.7)

Defining a new coordinate system by:

§=5s"x
(H.8)
(where the length of E is guaranteed to be the same as that of

X by the orthogonality of 5) then equation H.7 reduces to:

C = g-‘:Qag
(H.9)
Thus, in the rotated system, the egquation of the ellipsoid

becomes:

z X 2
¢ = A0 v Ay
(H.10)
A A A _
so that the unit vectors {,,gl,gg lie along the principal axis
of the ellipsoid. The maximum lengths of the ellipsoid in each

~of the axis directions (using the fact that A,,2,,and A5 are all

greater than zero) are:

§‘ max = (C/?\\)Uz’

(H.11)
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Ezma.x = (Cc/ >\z)”7‘

(H.12)

{3 max = (C/)\g)”l
(H.13)
Thus, a measure of the relative lengths of the principal axis of
the ellipsoid is given by the ratios of the square roots of the

eigenvalues:

Y:. max = )3
gzma,x )‘l
(H.14)
E' max - 7\3
ggm )|
(H.15)

As well, the directions of the principal axis of the ellipsoid
in the original space are given by the rows (or eigenvectors) of

S:

A
§| = (Sy ,53 ,S3)

(H.16)
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gz = (S2 +S22,522)

(H.17)

A

fa

(Si3 /523 ,533)
(H.18)
where the orthogonality of 2 ensures the unit length of the

eigenvectors.



