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Abstract

Wavelet estimation can be posed as a multi-channel common
information problem. Each channel of data is modeled as the
‘convolution of a wavelet with an impulse sequence. A
homomorphic transform maps the data from a convolutional to an
additive space. The mapping may also effect partial separation
of wavelet and impulses. In the additive space the wavelet can
be estimated | using averaging. This 1is termed cepstral
averaging.

This thesis reviews the homomorphic transform and
provides a synthesis and comparison of the techniques
available for 1its realization. The method of principal
components for wavelet estimation is proposed as an
alternative to cepstral averaging. The effect of noise on this
method is investigated. The investigation shows that noise may
cause principal components to produce estimates which are
inferior to cepstral averaging. For these cases an alternate
solution is proposed in which principal components are used in
the original convolutional space. A wavelet 1is estimated by
homomorphic separation for each data channel. Principal
components may then be used to define a best estimate from

this suite of estimates.
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I. INTRODUCTION

In any investigation, it is the understanding and insight
gained which 1s paramount.

"Let all things be done unto edifying."’

The original purpose of this thesis was to investigate
wavelet estimation by combining a non-linear mapping and an
optimal linear system. However, it has become primarily an
investigation of the mapping, the system and their
interaction,

Wavelet estimation can be posed aé a multi-channel common
information problem. Each channel of data is modeled as the
convolution of a wavelet with an impulse sequence. The
wavelet remains constant while the 1impulse sequence varies
from channel to channel. A non-linear homomorphic transform
can be used to map the data from a convolutional to an
additive space. This mapping may also effect partial or total
separation of the wavelet and impulses.

In the additive space the problém can be analyzed with
linear techniques. We propose the use of principal components
to further separate the wavelet and impulses.

In practice this approach yielded some unexpected
results. Resolution of these necessitated re-examination of
the homomorphic transform and principal components. This ‘led

to a clearer understanding of their interaction.

St. Paul, t Corinthians 14,26, King James Version of the Holy
Bible.



Chapter II of this thesis examines the homomorphic
transform: its underlying theory, development, properties and
practical realization. Realization includes the calculation
of the continous phase of a Fourier transform. This is termed
‘'phase unwrapping and is discusséd in Chapter 1II1I. Phase
unwrapping is essentially a numerical analysis problem
although it may incorporate diverse mathematical relations. A
new approach, of theoretical interest, is examined in detail.

Having mapped from a convolutional to an additive space,
averaging can be used for wavelet estimation. An alternate
method is provided by principal component analysis. This is
developed in Chapter IV in terms of optimal information
extraction.

The application of principal components to wavelet"
estimation 1is dealt with in Chapter V. For the case of data
cofrubted by additive noise, principal components may yield
poorer estimates than averaging. To avoid this problem,
principal components may be used in the original convolutional
space. For each channel of data a wavelet estimate may be
found by homomorphic separation.  Principal components may
then be used to define a best estimate from these individual
estimates. This procedure is also discussed in Chapter V.

Recent literature has cast doubts on the homomorphic
transform's invertibility. Chapter VI briefly addresses this

concern.



II. HOMOMORPHIC TRANSFORMS

2.1 Introduction

A probleh which arises in signal processing 1is that of
separating signals which have been combined in a known way.
The theory of mappings has proven to be wuseful in its
solution. Consider a transformation which maps combined
signals into different regions of a space. These regions may
be separated and individually mapped back to the original
space, yielding the separate input signals. Even 1if the
signals are not separated, various techniques may be more
amenable to this separation in the transform space than in the
original space. The problem then becomes that of finding an
appropriate transférmation. We do not know, a priori, that
such a transform exists and must consider each case
individually. One approach to finding an appropriate
transform is provided by the theory of homomorphic systems.

The theory of homomorphic systems was formalized by
Oppenheim (1965). He considered classes of nonlinear systems
which obey a principle of generalized superposition. These
systems may be represented by algebraically linear
transformations between input and output vector spaces and are
thus called homomorphic systems (Lipschutz, 1974, p. 123).
The generalized superposition defines the relationship between
a rule for combining signals in the input space and that for

combining them in the output space. Linear systems are a



special case of homomorphic systems.

2.2 Generalized Superposition

For the purposes of this discussion, all input signals

‘are considered to be discrete and thus may be considered as

sequences or as multidimensional vectors. The notation x(n)
‘indicates that x is a function of the discfete variable n.

" Consider a system defined by the linear transform T. Let

x,(n) and x,(n) be input signals and a and b be constant

scalars. Then the system T, by definition, satisfies the

superposition relation
Tla-x,(n) + b:x,(n)] = a-T{x,(n)] + bT[x,(n)] (1)

Noté that the order of scalar mﬁltiplication, signal addition
and system transformation of signals 1is irrelevant. This
superposition relation shows the suitability of a linear
transform to the separation of signals combined by additioh.
It is possible to define more general rules for combining
signals and for combining signals with scalars. In this case
the corresponding rules for combining the signal transforms
will be, in general, different from those used to combine the
input signals. Let * represent a rule for combining input
signals and : represent a rule for combining a scalar with an
input signal. Similarly, let + represent a rule for combining
6utput signals and - represent a rule for combining output

signals with scalars. Then a system H satisfies a generalized



principle of superposition if
Hla:x,(n)*b:x,(n)] = a+H[x,(n)] * b:H[x,(n)] (2)

Comparison of equations (1) and (2) shows that linear systems
satisfy a generalized superposition with the operations : and
. aS"muitiplication and the operations * and + as addition.

There are a variety of systems which obey a generalized
principle of superposition. The mathematical restrictions and
the formalism of such systeﬁs were developed by Oppenheim
(1975) énd the details will not be given here.

The class of systems specified by equation (2) can be
interpreted as algebraically linear transformations from an
input vector space to an output vector space. The rules for
combining signals correspond to vector addition and those for
combining scalars with signals correspond to scalar
multiplication. All systems of this class can be represented
as a cascade of three systems known as the canonic
representation. In this thesis we will consider that
homomorphic system in which * represents discrete convolution
and * represents addition. The operation : represents a rule
for combining scalars with input signals and is best defined
through the output operation - which represents scalar
multiplication. In the special case that the scalar is an
integer m, : corresponds to the convolution of the signal with
itself m times.

In the interest of readability, let us denote the output



operations * and - by + and . respectively. Then equation (2)

becomes
Hla:x,(n)*b:x,(n)] = a-H[x,(n)] + b-H[x,(n)] (3)

The canonic representation of this homomorphic system is shown

in Figure 1.

e o

|
x(n) 2(n) $(n) , y(n

Figure 1 - Canonic Representation of a Homomorphic System

D maps from a convolutional space to an additive space.

D is a homomorphic system which transforms from a
convolutional space to an additive space. It 1is defined by

the relationship

Dla:x,(n)*b:x,(n)] = a-D[x,(n)] + b-D[x,(n)] (4)

L is a linear system, defined by the relation in equation
(1). The system D-' is the inverse of D and is defined by the

relationship



D-'{a+D[x,(n)] + b-D[x,(n)]} = a:x,;(n)*b:x,(n) (5)

In general the system D specifies the canonic
representation and is called the characteristic system, The
canonic representation shows that, once D is fixed, the
problem of separating signals which have been combined by
convolution 1is reduced to that of linear filtering. The
solution, therefore, lies in the specification of the 1linear

system L,

2.3 The Characteristic System

The characteristic system D serves to transform from a
convolutional space to an additivé space. It can be
decomposed into 1its constituent transforms. Recall that the
z-transform of the convolution of two signals is equal to the
product of the z-transforms of the 1individual signals

(Appendix A). That is
Z[x,(n)*x,(n)] = Z[x,(n)]}-2[x,(n)] (6)

It is a homomorphic system which maps from a convolutional to
a multiplicative space. The system D has a canonic
representation shown in Figure 2 and may be realized in three

steps.



| : y/ Log z-! . I
x(n) X(z) %(z) %(n)

Figure 2 - Representation of the Characteristic System D

First, the z-transform maps an input sequence, x(n), from a
convolutional space into a continuous function, ZX(z), in a
multiplicative space. Next, the complex logarithm maps this
function from the multiplicative space into another continuous
function, X(z), in an additive space. Finally , the inverse
z-transform maps this continuous function from the additive
space into a sequence, %(n), in another additive space. This
output, X(n), is called the complex cepstrum,

The word cepstrum was proposed by Bogert, Healy and
Tukey (1963) as a paraphrase of the word spectrum. This,
along with fourteen other words, was proposed for use in this
additive space because "although strange at first sight,
[they] considerably reduce confusion on balance."' The
cepstrum is defined as the power spectrum of the logarithm of

the power spectrum of a signal. Oppenheim, Schafer and

Bogert et al, 1963, "The Quefrency Alanysis of Time Series for
Echoes: Cepstrum, Pseudo-Autocovariance, Cross-Cepstrum and
Saphe Cracking," in Proc. Symp. on Time Series Analysis (N.Y.:
John Wiley and Sons), p. 2089.



Stockham (1968) added the word complex to emphasize the use of
the complex transforms and the complex logarithm in the system
D.

We have implicitly assumed that the complex logarithm
maps from a multiplicative space to an additive space. This

means that is must be defined such that
log[X,(z)X,(z)] = log(Xx,(z)] + log[X,(z)] (7)

We have also assumed that X(z) has an inverse z-transform.
Thus X(z) must be the valid z-transform of some sequence,
x(n). The unique definition of %(n) requires the
specification of a region of convergence of 2X(z). We may
‘restrict x(n) and %(n) to be real and such that the regions of
convergence of X(z) and X(z) include the unit circle. That
is, X(z) and R(z) are analytic inla region including the wunit
circle. In the case that X(z) or X(z) is not analytic on the
unit circle, an alternate contour of integration may be wused
(Appendix a).

Let wus denote the evaluation of X(z) on the unit circle,

z=exp(jw), by X(jw). 1In terms of real and imaginary parts
X(jw) = Rr(jw) + j-Ri(jw) (8)

where j is the imaginary unit, j? = -1. The requirement that
%(n) be real implies that Xr(jw) is an even function of w and

%i(jw) is an odd function of w. It further implies that RX(jw)
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is periodic in w with period 27. Analyticity of X(z) on the

unit circle implies that X(jw) must be a continous function of

w. We have
2(jw) = log[X(jw)] © (9a)
R(jw) = lqglx(jw)l + j-arg[x(jw)] (9b)
Comparison of equations (9a,b) with eguation (8) implies that

2r(jw)

log}X(jw) | (10a)

Ri(jw)

arg[X(jw)] (10b)

Therefore, log|X(jw)| and arg(X(jw)] must be contiﬁuous
functions of w. Continuity of Zr(jw) = log|X(jw)| is assured,
provided X(z) has no =zeros on the unit circlé, by the
analyticity of X(jw) on the unit circle. Note that zeros of
X(z) become poles of X(z). Continuity of Ri(jw) = arg[X(jw)]
depends on the definition of the complex logarithm. Note that
X(jw), the =z-transform evaluated on the unit circle, is just
the discrete time Fourier transform.

The essential problem with uniqueness and analyticity of
the complex 1logarithm result from the ambiguity in defining
the argument (phase) of a complex function. Any integer
multiple of 27 may be added to the principal phase without

affecting the phase's being representative of that function.
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However, only one continuous phase can be representative of
the function. Also, in general, only this continuous phase
will satisfy the property of addition specified 1in- equation
(7). The procedure of finding this unique phase is commonly
termed phase unwrapping. This terminology results from the
fact that, in the numerical computation of a phase, the
principal value is obtained. Thus the phase is said to have
wrapped back 1into the principal value's range of (-w,7w).
Phase unwrapping has been, and continues to be, a major factor
in the calculation of complex cepstra. From a theoretical
point of view, the continuous phase can be uniquely defined.
The definition and computation of the unwrapped phase are
dealt with elsewhere in this thesis.

The requirements that Zf£i(jw) be continuous, odd and
periodic implicitly constrain the allowable input sequencés
x(n). 1In particular, x(n) must be such that X(jw) has a phase
of zero at w=w. It must also have a positive mean value. The
former follows directly from the above reqﬁirements, noting
that Xi(jw) is the phase of X(jw). The latter follows from
the oddness and continuity requirements. These imply that
Xi(jw), and hence the phase of X(jw), is zero at the origin.
Thus the value of X(jw) is equal to its magnitude and cannot
be ﬁegative. The possibility of a zero magnitude is precluded
because X(z) has no zeros on the unit circle. Now, the wvalue
of X(jw) at the origin 1is equal to the mean value of x(n)
which therefore must be positive, It is worth noting tﬁat,

for a sequence x(n) having a negative mean value, the phase of
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X(jw) at w=0 is an odd multiple of = and is discontinuous.

2.4 The Inverse Characteristic System

The inverse characteristic system D-' 1is defined in
equation (5). It transforms from an additive space to a
convolutional space and has the canonic representation shown
in Figure 3. The transform 1is realized by cascading a z-
transform, complex exponential and inverse z-transform. The
complex exponential is unique and, if X(z) is analytic on the

unit circle, so is exp[X(z)].

‘ | i
#(n) 2(z) x(z) | x(n)

Figure 3 - Representation of the System D-!

The tinverse characterstic system D-!' maps from an additive
space to a convolutional space.

2.5 The Linear System

The linear system L is the only system in H which is
uhspecified once D is fixed. 1Its specification will depend on
the characteristics of the inputs, the mapping D and the

intended outcome of the procedure.
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2.6 Properties Of The Complex Cepstrum

We will consider here only finite length input sequences
x(n) with positive index n. Such sequences have z-transforms
with no singularities in the z plane and can be represented as

(Schafer, 1969)

Mo
X(z) = A-z"TJ(1-a(k)-z- ") ] (1-b(k) -2) (11)
k=1 k=1

m,

where |a(k)|<1 and |b(k)|<1. The a(k) are the m, zeros inside
the unit circle and the b(k) are the m, zeros outside the unit
circle. The first factor, A, is a constant and the second
factor represents a shift of the 1input sequence by mo»
positions.

Let us consider the first two factors in equation (11).
For real sequences A 1is real, and if A 1is positive it
contributes only to %(0) (Oppenheim and Schafer, 1975). If A
is negative, its contribution to %X(n) is more complicated. 1It
can be shown (Tribolet, 1979) that the sign of A is equal to
the sign of the mean value of x(n). Thus, normalizing the
input by multiplication by +1 or -1 to make A positive is
consistent with satisfying the continuity requirement of
Xi(jw) at the origin.

In the second factor, the exponent of z, mgy, gives rise

to a term %X,(n) in the complex cepstrum of
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£,(n) = -[mg-cos(mn)l/n (12)

(Ulrych, 1971). 1f X(z) has many zeros outsidev the unit
circle, m, can be large and %,(n) may dominate the complex
cepstrum. Thus it is important to shift the input seqﬁence to
remove this term. This is eguivalent to removing the 1linear
phase component of X(jw) and is consistent with satisfying the
requirements that Xi(jw) be continuous and periodic.

Several properties of the complex cepstrum have been
examined (Oppenheim and Schafer, 1975; Tribolet, 1979). Those
most relevant are outlined below.

1. The complex cepstrum decays at least as fast as 1/n.

That is
. n
|Z(n)| < C-|d /n]| - ®w<n<oo

where C is a constant and 4 is the maximum of |a(k)| and
|Ib(k)|.
2. I1f x(n) 1is minimum phase (no zeros outside the unit.

circle) then

and %x(n) can be calculated recursively, directly from x(n).
3. 1f x(n) is maximum phase (no zeros - inside the unit

circle) then
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and x(n) can be calculated recursively, directly from x(n).

4, If x(n) is of finite duration, %(n) will nevertheless
be of infinite duration.

5. The complex cepstrum of a sequence x(n) whose
spectrum is smooth tends to concentrate near n=b. This
property is a result of the fact that a smooth spectrum
results from a sequence whose zeros are far from the unit
circle. Thus Ja(k)| and. |b(k)| are small and property 1
implies that %(n) decays rapidly with n.

6. Adding an impulse at the origin to a cepstrum is
equivalent +to scaling the time sequence. Consider a complex
cepstrum which 1is non-zero only at the origin and has
magnitude A. Then applying the inverse transform yields a
time sequence which 1is exp[A] at the origin and zero
elsewhere. Since addition maps to convolution and this
convolution merely scales the sequence by exp[A], the property
follows. Note that the scale factor is always positive.

Recall that we have excluded input sequences having zeros
on the wunit circle. In the case that x(n) has finite
duration, X(z) has a region of convergence which includes the
‘unit circle. 1In the general case the contour of integration
of X(z) can be changed by exponentially weighting the input

sequence (Appendix A). That is, x(n) becomes

w(n) = x(n)-expla+n]
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vhere a is a real constant. The sequence w(n) has the z-

transform
W(z) = X(z-exp[-al)
or

W(z) = X(z-b)
where b=exp[-al. Thus, the zeros and poles of X(z) are moved
radially by the factor b. I1f we have a convolutional input,

x(n)=x,(n)*x,(n), then
x(n)-expla-n] = x1(n)-exp[a-n]*xz(n)-exp[a-nl

Thus, exponential weighting of the convolutional of sequences
is equivalent to the convolution of exponentially weighted
sequences. Exponential weighting can be used to make a mixed
phase sequence either minimum phase or maximum phase by moving
all its zeros and poles either 1inside the wunit circle or
outside the unit circle. Then the special properties of the

minimum and maximum phase sequences can be exploited.
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2.7 Computational Realization Of The Characteristic System

We have discussed the characteristic system, D, in terms
of continuous transforms. In fact, the z-transform, when
evaluated on the unit circle, is just the Fourier transform.
In practice we cannot compute continous transforms and must
use a discrete representation. We use the discrete Fourier
transform to evaluate samples Bf X(jw). This computation
leads to an aliased cepstrum (Oppenheim and Schafer, 1975).
That 1is, if %(n) 1is the true cepstrum, the calculated

cepstrum, X,(n), will be

Xo(n) = %iﬁ(n+k-N)
Ke-o-
-where N is the number of points in the original sequence x(n).
Since, in general, %(n) is of infinite duration, %,(n) will be
an aliased version of #(n). However, as &(n) decays
exponentially, appending zeros to the 1input sequence will
increase N and reduce the aliasing error.

Schafer (1969) has shown that one may reduce cepstral
aliasing by exponentially weighting the input seqQuence. This
has the effect of exponentially weighting the complex
cepstrum, causing it to decay more rapidly. Examples of this
effect may be found in Stoffa et al.(1974).

The most difficult part, in practice, in calculating the
complex cepstrum lies in the computation of the argument or
phase of X(jw). We must compute samples of the continous

phase of X(jw) to define Ri(jw) as in equation (10b). If we
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use the relation ARG[X(jw)] = tan-'[Xi(jw)/Xr(jw)], where
Xi(jw) and ZXr(jw) represent the imaginary and real parts of
X(jw), we obtain the principal value of arg(x(jw)]. In
general, the principal value of the phase is discontinuous and
thus will not suffice. Methods of computing samples of the
continuous phase are dealt with in the next chapter.

For the special case that the inpht sequence 1is either
minimum or maximum phase, the complex cepstrum can be

calculated, without aliasing, directly from x(n). Oppenheim

and Schafer (1975) provide details of the method used.

2.8 Summary

We have discussed a non-linear homomorphic transform
which maps convolutions into additions. This transform may
effect the separation of convolved signals. Several
properties of this transform were presented. There are
restrictions on the allowable input signals due to the use of
complex 1logarithms and 1inverse =z-transforms. There are
computational problems 1in computing the complex logarithm

which will be dealt with in the next chapter.
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III. PHASE UNWRAPPING

3.1 Introduction

The problem of phase unwrapping can be approached from
many directions. Let us wuse a geometrical approach to
elucidate the concepts.

Say we have a real sequenée, x(n), with Fourier transform
X(w). X(Q) is a complex valued function of w and may be
represented by a path in the complex plane. Let Xr(w) and
Xi(w) represent the real and imaginary parts of X(w) and let
them define the axes of a complex plane as in Figure 4. As w
increases from zero, X(w) traces out a path in the complex
plane as shown. The principal phase of X(w), ARG[X(w)], is
defined as the angle a straight line from the origin to X(w)
makes with the positive real axis. Traditionally this angle
is measured positive upward and negative downward. The angles
+7 and -7 coincide on the negative real axis. If the path of
X(w) crosses the negative real axis, ARG[X(w)]) undergoes a
jump discontinuity of 27. If X(w) is moving down, the jump is
from +7 to -n. If it is moving up, the jump is from -7 to +m.

We wish to define a unique phase, arg[(X(w)], which
changes continuously everywhere including the negative real
axis. This phase will generally be unbounded and will
increase or decrease continuously across this axis. arg[Xx(w)]
can be defined by adding to ARG[X(w)] an integer number of

multiples of 2#. That is
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Xi(w)
/A X(w)
ARG[X(w)]
& > Xr(w)
arg[x(w)]
l

Figure 4 - Complex Function in the Complex Plane

As ¢ increases, F(yw) traces out a path in the complex
plane.

arg[X(w)] = ARG[X(w)] + L(w)-27

where L(w) is an integer which makes arg[-] continuous. L{w)
can change only at discontinuities in ARG[:]. These occur
6n1y when Xr(w)=0 and ZXi(w) changes sign. The continuous
phase, arg[X(w)]l, 1is called the unwrapped phase of X(w) and
the act of finding L(w) is called phase unwrapping. Note that
if X(w)=0 for some w there can be no unique phase.

This problem 1is intimately related to the unique
definition of the complex 1logarithm, This follows as
arg[X(w)] is the imaginary part of the logarithm of X(w). It
is also related to the requiremenﬁ that, 1if two complex

functions are multiplied, their phases will be added. In
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general
ARG[X,(w)] + ARG[X,(w)] # ARG[X,(w) + X;(w)]
but
arg[X,(w)] + arg[X,(w)] = arglX, + X,(w)]
Note that if one uses the definition
ARG[X(w)] = tan~'[Xi(w)/Xr(w)]

then ARG[:] 1is defined on (-7/2,n/2) and the discontinuities
occur at points on the imaginary axis. This foliows because
the ratio Xi(w)/Xr(w) does not have the sign information of
its constituents and thus tan-'[:] is projected onto the right
half plane. Then L(w) can change when X(w) crosses the
imaginary axis (Xr(w)=0). An example of the principal value
of a phase and the corresponding unwrapped phase are shown in
Figure 5.

Various approaches have been put forth to determine the
unwrapped phase. Schafer (1969) wused an algorithm which
searched for discontinuities in the principal phase, ARG(w),
and removed them by addition of n-.27 using the appropriate n.
A technique to exploit the analytic definition of the phase as
the integral of 1its derivative was developed by Tribolet

(1977). Bhanu (1977) wused a different technique to exploit
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ARG[X(w)]

2n

A
I

—-2n _|

arg[xX(w)]

2n _|

o
A4
€

Figure S - Principal Value and Unwrapped Phase

The principal value of a phase (ARG) s wrapped into
(-w),n) while the unwrapped phase (arg) is continuous.

this same definition. Steiglitz and Dickinson (1982) proposed
polynomial factorization as a means of computing the phase. A
novel approach, of some theoretical interest, has been

developed by . McGowan and Kuc (1982) wusing number theory
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applied to polynomials.

These methods will be presénfed briefly. The method of
McGowan and Kuc will be discussed in more detail to elucidate
the concepts 1involved. Some discussion of the properties of

functions which affect phase unwrapping will be presented.

3.2 Principal Value

The method of phase unwrapping by processing the
principal value is due to Schafer (1969). The relation
between the principal value, ARG(w), and the continuous phase,

arg(w), is
ARG(w) = {arg(w)}MOD2~

That is, the continuous phase, modulo 27, 1is the principal
phase. Schafer's algorithm searches for discontinuities in
ARG(w) caused by the modulo operation and removes them by the
appropriate addition or subtraction of 2wx. The algorithm
starts at arg(0), which is 0 for real x(n), and searches for
discontinuities at increasing w. The user must specify a
threshold within which adjacent samples must lie for the phase
to be considered continuous. In general, the algorithm
becomes more accurate as the spacing between adjacent samples
is reduced. Any mis-identified discontinuities will affect
the unwfapping at larger w.

More recently, Poggiagliolmi et al. (1982) proposed

another algorithm for processing the principal phase. It also
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searches for discontinuities, but adaptively recalculates
phase values between the original values of the Fourier
transform. They suggest shifting the input sequence such that
its first moment 1is zero before calculating the transform.

This is an attempt to remove part of the 1linear phase

component and may reduce the number of discontinuities.

3.3 Integration Of The Derivative

Various methods to compute the ~unwrapped phase use a
numerical solution of an analytic expression. Essentially,
these methods are attempts to do numerical integration with
constraints.

Let x(n) be a sequence and X(w) be its Fourier transform.

Then, as in the previous chapter, we define
R(w) = logl[x(w)] (2a)
or
R(w) = log|X(w)]| + jerarg[X(w)] (2b)
where the complex logarithm is defined as 1in the previous
chapter and equation (2b) represents a proper Fourier
transform. The derivative of R(w) 1is well defined and is

given by

X' (w) = d{log(X(w)]}/dw . (3a)
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X' (w)

log' |X(w)]| + j-arg'[X(w)] (3b)

X' (w) X' (w)/X(w) (3c)

where the prime 'denbtes differentiation with respect to w.

Comparison of equations (3b) and (3c) shows that the
derivative “of arg[X(w)] 1is equal to the imaginary part of
X' (w)/X(w). It can be shown (Oppenheim and Schafer, 1975)

that
arg'[X(w)] = {Xr(w) Xi'"(0w) - Xi(w) Xr'(0)}/|X(w)]? (4)

The phase, arg[X(w)], can be unambiguously defined as

w

arglX(w)] = farg'[x(y)] dy (5)
(o]

with 1initial condition arg[X(0)]=0. As mentioned 1in the
previous chapter, arg[X(w)] must be continuous and odd.
Equation (5) establishes continuity. Oddness will result if
the mean phase derivative is zero. That is

0 = 1/2#:/2;rg'[x(w)] dw (6)

o]

If this is nbt true, removal of the linear phase component
will make it so. Implicity, it has been assumed that we have
independent knowledge of arg'[X(w)]. 1In fa;t, this can be

computed directly from x(n) wusing the relation (Tribolet,
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1977)
Xr'(w) + j-Xi'(w) = -j<F{n-x(n)} (7)

where F{.} denotes the Fourier transform. Thus, computing
arg'[X(w)] by using equations (7) and (4) and integrating as
in equation (5) yields the unwrapped phase.

The computational problem is the numerical integration of
equation (5). The most straight-forward solution is to use a
trapezoidal rule for integration. Again, this method improves
as the spacing between adjacent samples of arg'[X(w)]
decreases. This approach also suffers from error propagation
in that an error in integration at w=w, will affect the result
at wa,.

A more sophisticated method of carrying out the
integration was developed by Tribolet (1977) and 1is called
adaptive integration. The principal phase ARG(w) as well as
the phase derivative, arg'(w) are calculated. The phase
derivative 1is then integrated as in (5) using a trapezoidal
rule between, say, w;,; and w,. This computed value of the
phase is then compared to the principal value. The constraint
that these values must be close to each other to within an
integer multiple of 27 is added. That is

.

| {fARG[X(w) }+27-L(w)} - arg((X(w)]| < E

for some integer L(w), where E is some small positive number
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supplied by the user. The algorithm checks values of L(w) to
satisfy the inequality. If no L(w) suffices, another point of
the phase derivative is calculated midway between w, and w,.
The traﬁezoidal rule is applied between w; and (w,-w,)/2 and
the procedure iterated until the inequality is satisfied. The
procedure is initiated by taking a DFT of x(n) and n-x(n) to
obtain ARG[X(w)] and arg'[X(w)]. Then the integration stérts
at w=0 and proceeds to higher w, recalculating points as
needed. This method also suffers from error propagation. An
error in determining L(w,) will carry through for w>w,.

Bhanu (1977) investigated Tribolet's algorithm and
compared it to alternate techniques. He also proposed and
investigated the use of piecewise polynomial interpolation of
the phase derivative as a better rule of integration. This
requires the evaluation of the second derivative of the phase,
computed from F{n?.x(n)} as well as the first derivative and
the principal value. There 1is a trade-off of more initial
computation for increased accuracy in the integration.

Note that, although the principal value of the arctangent
is contained in (-n/2,n/2), by retaining the sign information
of the terms in tan '[Xi(w)/Xr(w)] a wvalue unique within

(-7,7) can be assigned.
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3.4 Factorization

Steiglitz and Dickinson (1982) proposed the use of
polynomial factorization of the z-transform as a "reliable and
acurate"'! method of phase computation. Once the roots of a z-
transform are known, 1t can be factored into the product of
polynomials of degree one (dipoles). These dipoles may then
be evaluated on the unit circle to form the Fourier transform.
The phase of the'product is equal to the sum of the phases of
each of the dipoles. The continuous phase of each dipole, and
thus the product, can be calculated unambiguously. With this
method, the problem becomes that of finding roots of a complex
polynomial. Steiglitz and Dickinson used a Newton-Raphson
root-finding algorithm. They ignored the problem of repeated
roots and saadle’points on the grounds that these rarely occur

in practice.

3.5 Number Theory

McGowan and Kuc (1982) proposed a method of defining the
continuous phase based on number theory. The theory will be
discussed in detail and relevant proofs presented.

In linear system control theory the problem of stability
is important. There are methods which will determine the
stability of a system without actually finding which part of

the system is unstable. A particular method of determining

Steiglitz and Dickinson, 1982, "Phase Unwrapping by
Factorization," I1.E.E.E. Trans. A.S5.S.P., v. ASSP-30, No. 6,
p. 984,
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stability gives information about the number of roots of a
polynomial which are inside or outside the unit circle without
actually 1locating them. This same method may be used to
determine the continuous phase.

Conéider a real sequence x(n), n=0,1,...N-1 with the

discrete Fourier transform (DFT)

N-1
X(w) = Sx(n)-expl-j-nw] (8)
‘ h<o

The phase can then be written as
arg(X(w)] = tan " '[Xi(w)/Xr(w)] + L{w) -7

for O<w<m. tan-'[-] is the principal value arctangent, that
is -n/2<tan-'<w/2, and L(w) is an integer function of w thch
makes arg[-] a continuous function. Finding L(w) is the phasé
unwrapping problem. Consider the arctangent function in
Figure 6. Consider a point on the principal branch, L=0,
defined by F(w) = Xi(w)/Xr(w) (and assuming Xi(w) to have no

singularities). This point can change branches to L=1 only if

F(w) goes to + 00 , It can then 'wrap' onto the L=1 branch
at - 00 without exhibiting any discontinuity. Likewise,
if F(w) goes to - oo , this point can change to the L=-1

branch. The arctangent can change branches only at
singularities of F(w), or equivalently, at zeros of Xr(w).
However, a branch change is not required at these

singularities. F{(w) may go to infinity and return on the same
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arctan(x) + Ln

n_ -

“n -

. I [
—~20 0 20

Figure € - Branches of arctangent Function

The function can continuously change branches at
infinities.

branch. Thus, whether or not F(w) changes sign and the
direction of the sign change provides the information
necessary to determine L(w).

Let us assume that X(w)#0 on O0<w<w. This 1is the
consfraint that there are no zeros on the unit circle 1in the
z-plane. The product Xi(w)-Xr(w) has the same sign as the
ratio Xi(w)/Xr(w) but has no singularities. Consider the sign
of Xi(w)-+Xr(w) as w increases through a zero of Xr(w). (Note
that ZXi(w) doesn't change sign for w close enough to the zero
of Xr(w).) If the product's sign changes from positiye to
negative, L(w) 1is 1increased by one. I1f an opposite sign

change occurs L(w) is decreased by one. If there is no sign
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change L(w) is not changed. L(w,) is generated, in principle,
by 1letting w increase from w=0 to w=w; and incrementing or
decrementing L{(w) as required. The condition arg[0]=0
provides the starting value, L(0)=0. Now the problem of phase
unwrapping has become that of finding the sign changes of
Xi(w) Xr(w) through the zeros of Xr(w). A solution to this
problem can be obtained using Sturm's theorem (Beaumont and
Pierce, 1963). Sturm's theorem arises in number theory and
provides a methodvof finding the number of distinct real roots
of a polynomial between two arguments. The method involves
the generation of a Sturm sequence, a sequence of polynomials
of decreasing degree, generated recursively from two given
polynomials (Marden, 1966). McGowan and Kuc use the feal and
imaginary 'parts of the DFT to start the sequence. They found
it convenient to express the Sturm sequence 1in terms of
Chebyshev polynomials. The Sturm sequence provides sufficient
information to determine L(w) and hence the unwrapped phase.
The method proceeds as follows. The real énd imaginary
parts of X(w) are expressed in terms of Chebyshev polynomials
of the second kind. Chebyshev polynomials of the first kind,
T(n), and of the second kind, U(n), as functions of cos(w) are

defined as (Snyder, 1966, p.11-24)
T(n) = T(n,cosw) = cos(n-w) nz0 (9)

U(n) = U(n,cosw) = sin[(n+1)w]/sin(w) n=0 (10)
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Relevant recursion relations between these polynomials are,

for nz22,

T(n)

[U(n) - U(n-2)] (11a)

T(1)

u(1) (11b)

"T(0) = U(0) = 1 (11¢c)

For n21 there is the recursion relation
U(n+1) = U(n).U(1) - U(n-1) (113)

where it 1is understood that U(n) and T(n) are functions of
cos(w). (Note that Chebyshev polynomials are an orthogonal
set (Snyder, 1966)). From the identities (9) and (10), X(w)
in (8) can be expressed as

b V-2

A/-
X(w) = Sa(n)-U(n) + j-sin(w) >b(n)-U(n) (12)
h=o

h=o

where the a(n) are linear combinations of x(n) and b(n) = -
x(n). Details on calculating a(n) and b(n) are given in

Appendix B. Equation (12) may be written as

X(w)

Xr(w) + j-Xi(w) (13a)

X(w) P(0,w) + j-sin(w) -P(1,w) (13b)
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X(w) = P(0) + jesin(w)-P(1) (13¢)

where it 1is understood that P(0) and P(1) represent

polynomials which are functions of w. That is
-1
P(0) = P(0,0) = Xr(w) = >a(n)-U(n,cosw) (14a)
h=o
and

P(1) = P(1,w) = Xi(w)/sinw = ég;(n)°U(n,c05w) (14b)
nvo _
Note that the sign of P(1) is the same as fhat of Xi(w) on .
O<w<m,

P(0) and P(1) are poiypomials in U(n). They are used to
generate a Sturm sequence, denoted by {P(0),P(1),...,P(M)}
where M<N-1. This Sturm sequence is a sequence of polynomials
of decreasing degree. Each polynomial is a function of w.
The sequence 1is generated using the 'negative remainder'
relationship (Marden, 1966). 1In fact, this relationship is
merely Euclid's algorithm for finding the greatest common
divisor of integers or polynomials (Beaumont and Pierce,

1963). The relationship is
P(k-1) = Q(k)-P(k) - P(k+1) (15)

where 1<ksM-1, P(k) and Q(k) are polynomials of degree k.

The degree of the polynomials P and Q is defined to be that of
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the highest degree Chebyshev polynomial, U, in their sum, 1f
a P contains a term U(K) where K is the highest degree in the
sum, P is of degree K.

The recursion (15) proceeds, given P(k-1) and P(k), by

finding Q(k) and P(k+1) such that
deg{Q(k)} = deg{P(k-1)} - deg{P(k)} > 0 (16)
and
deg{P(k+1)} < deg{P(k)}

The existence of Q(k) and P(k+1) are guaranteed (Beaumont and
Pierce, 1963) and, in fact, this algorithm 1is equivalent to
the 1long division of polynomials. We choose Q(k) such that
(16) is satisfied and such that the highest degree term of
P(k-1) 1is identical to that of Q(k)-.P(k). It may happen that
othef terms of lesser degree are also identical. This results

in the elimination of these terms. That is, writing (15) as
P(k+1) = Q(k)-P(k) - P(k-1)

then P(k+1) will be of degree less than P(k-1). For example,
if- P(0) 1is degree N and P(1) is of degree N-R, then we take
Q(1) of degree N-(N-R) = R so that Q(1)-P(1) is of degree N

and



P(2) = Q(1).P(1) - P(0)

The highest degree term in P(0) is cancelled by the highest
degree term in Q(1)-P(1). (Possibly some other terms will
cancel, Dbut this is not guarénteed.) The algorithm continues,
discarding Q, by increasing k until k=M-1 where P(M+1)=0.
Then P(M-1) = Q(M).P(M) and P(M) 1is the greatest common
divisor of P(0) and P(1). If M=N-1, P(N-1) = P(M) 1is a
constant. Detailé of the recursion are given in Appendix C.

Let u§ define the operator V(w) which, when applied to
the Sturm sequence, gives the number of sign changes iﬁ the
sequence for a fixed w. To calculate V(w), fix an « and count
sign changes from adjacent P(n) in {P(0),P(1),...,P(M)}. If
adjacent P(n) have opposite signs V(w) is incremented by one,
otherwise it is unchanged. The number of sign changes in the
Sturm sequence, as a function of w, will determine L(w), the
function required to unwrap the phase. Specifically,
L(w) = V(w). This follows from the properties of the Sturm
sequence and is proved below.

We require two theorems to lead up to the final result,
These are presented here with proofs.

Theorem: If P(0,w) and P(1,w) have no common zeros for
O<w<wm, then sign[P(M,w)], where P(M) is the greatest common
divisor of P(0) and P(1), cannot change for O<w<m.

Proof: P(M) was generated by Euclid's algorithm:

P(0) = Q(1)-P(1) - P(2)
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P(1) = Q(2)-P(2) - P(3)

P(M-2) 0(M=-1).P(M-1) - P(M)

n

P(M-1) Q(M) -P(M)

If P(M)=0 for some w, then this recursion implies, by
induction, P(M-1)=0, P(M-2)=0, ..., P(1)=0, P(0)=0. But, by
hypothesis, P(1) and P(2) have no common zeros on O<w<m,.
Therefore P(M)#0 for any w on O<w<w and cannot change sign.

Q.E.D.

Theorem: If P(0,w) and P(i,w) have no common zeros, then
V{P(k,w)} does not change, as a function of w, except at a
zero of P(0,w).

Proof: Say V{P(k,w)} changes. This can only happen at a
zero of some P(k,w), say w=wo. That is, P(k,w)=0. Euclid's

algorithm then implies (equation (5))

P(k-1 ,wo) = -P(k+1 ,(4)0)
or

P(k-1,we) *P(k+1,wo) < 0

That 1is, members of the Sturm sequence separated by one other
member have opposite signs. (This must be true -because
otherwise P(k-1,ws) = P(k+1,wo) = 0 which would imply

P(J,w,)=0 for every J>k including J=M which cannot be by the
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previous theorem.) Therefore V{P(k,w)} cannot change through a
zero of P(k,w), O<k<M.
Q.E.D.

This theorem can be illustrated by considering the signs
of {P(k-1),P(k),P(k+1)} near w=w,. Say they are {-,+,+}.
Then if P(k) changes sign, from + to -, the seQuence becomes
{-,-,+} and the number of sign changes ié the same (i.e. 1).
The other possible cases are

| {-,-,+} becoming {-,+,+}
{+,-,-1 becoming {+,+,-}
{+,+,-} becoming {+,-,-}
By inspection we see that the number of sign changes is
unchanged. If more than one of the P(n) are zero the above
‘applies to each P(n) individually. Note that P(k) and P(k+1)
cannot both be =zero for some wo as the division algorithm
would imply P(0) and P(1) are also both zero, which is
contrary to our hypothesis. Note that when P(k) is actually
zero, sign changes cannot be counted by comparing the signs of
adjacent terms as zero has no sign, However, we can ignore
the 0 and compare the signs of the terms on either side
(Beaumont and Pierce, 1963). This follows directly from
Euclid's algorithm.

Now 1let us consider the first term of the sequence,
P(0,w), as w passes through a zero, w,, of P(0,w). That is
P(0,wo)=0. Since P(1,w,)#0 by hypothesis, three situations of
interest can occur. First, P(0):P(1) does not change sign,

and V(w) does not change. Second, P(0)-P(1) changes from - to
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+ and V(w) decreases by one. That is, P(0) and P(1) change
from having opposite signs to having the same sign. Third,
P(0)-P(1) changes from + to - and V(w) increases by one. That
is, P(0) and P(1) change from having the same sign to having
opposite signs., By the previous theorem these are the only
conditions under which V(w) can change. Therefore, V(w,) 1is
equal to the number of times P(0).P(1) changes from + to -,
minus the number of times it changes from - to +, as w
increases from O'to Wo «

Because P(0,w) = Xr(w) and P(1,w) = Xi(w)/sin(w) it
follows that V(w) contains the branch number of the arcténgent
of Xi(w)/Xr(w). In fact, L{w) = V(w). V(w) may also be used
to keep track of the relative number of branch changes in the
phase between two points, say w, and w,, as w goes from w; to
[APEN

Because the relation between X(w) and V(w) is direct,
calculating V(w) does not involve sampling X(w). We compute
the Sturm sequence which 1is a purely algebraic recursion
(Appendix C). Then we evaluate P(n,w) for all n from 0 to M
at those w for which we want the phase. We then calculate the
number of sign changes in the P at each w, yielding V(w). We
can choose as many or as few w as we like. The method is not
recursive and does not depend on previous calculations as did

the integration methods.
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3.5.1 Computational Details

McGowan and Kuc (1982) present a computer program for
carrying out the evaluation of L(w) wusing this method. In
general this algorithm will be computationally slow when
compared to a single Fast Fourier Transform (FFT) (Brigham,
1974, p 177). This results from the computation of many
trigonometric functions and multiplications in the evaluation
of the Sturm séquence. Say we have an input sequence of
length N. Then we calculate a Sturm sequence of, at most, N
polynomials"of lengths N, N-1, N-2,..., 1. Thus we evéluate
N + (N-1) + (N-2) + ... + 1 or about N?/2 coefficients. Each
coefficient 1is multiplied by a trigonometric function. Thus,
to evaluate the sequence of polynomials at one value of w we
must carry out about N?/2 trigonometric function evaluations
and multiplications. For B values of w we need B-N2?/2 such
operations. If B=N we need N3/2 such operations. This
compares with about N-:log,N such operations for a single
(power of 2) FFT. In fact, we may use the FFT to evaluate
these polynomials and increase efficiency. Consider the

polyhomial
P(k,w) = a(0)-U(0,w) + a(1).U(1,w) +...

where U(n,w) = sin[(n+1)w)]/sin(w). Bringing sin(w) out of

the sum yields

sin(w) +P(k,w) = a(0)-sinfw] + a(1)-sin[2w} + ...
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which can be written as

sin(w) +P(k,w) = 0+sin[0w] + a(0)-sinfw] +...

which is 1in the form of a Fourier transform. Using the FFT

will reduce the number of operations. For example, if N is a

power of 2, these operations will number about N?log,N.

3.6 Difficulties Of Phase Unwrapping

We will consider only the problem of accurate data. That
is, we want the phase of the input sequence x(n), whére we
know x(n) accurately. As we have seen, the unwrapped phase
can be defined analytically. However, finite numerical
evaluation of the analytic expressions introduces
computational errors. These may lead to an incorrect result.
The question naturally arises as to which types of sequence
are more susceptible to these errors. Generally speaking,
when the zeros of X(z) are far from the unit circle, the phase
will be well determined. It will wvary slowly and any
discontinuities will be easily detected. As a zero comes
closer to the unit circle, the phase develops a rapid change
near that zero. 1If the zero 1is on the unit circle the
amplitude becomes =zero and the phase 1is wundefined. The
difference in the phase curve if a =zero 1is just 1inside
(minimum phase) or just outside (maximum phase) the unit
circle can be large (Bhanu, 1977; Clayton and Wiggins, 1976;

Poggiagliomli et al., 1982). Thus, if computations shift a
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zero just across the unit circle, serious inaccuracies could
result. For zeros near the unit circle the problem of phase
determination is ill-conditioned. This is because the ratio
Xi(w)/Xr(w) used in the arctangent becomes poorly determined.
I1f both Xi(w) and ZXr(w) are small, small errors 1in the
evaluation of Xr(w) can cause large changes in the ratio.

The question becomes that of which types of sequence have
zeros close to the unit circle. A type of sequence which will
be relevant in this thesis consists of a random impulse train.
Steiglitz and Dickinson (1982) discuss such a sequence. If
the sequence values are independent random variables then, as
the sequence length increases, its zeros tend to become evenly
distributed in angle and tightly clustered near the unit
circle., Also, the probability increases that there will be a
zero so close to the unit circle that a given algorithm will
not be able to place it on the correct side of the circle. 1If
this sequence is convolved with a short sequence, a finite
number of extra zeros are introduced and the above result
still holds.

The question of how close a zero must be to the wunit
circle to be incorrectly 1identified was explored by Bhanu
(1977). For simple short sequences, zeros with a magnitude of
1.00001 were correctly identified although magnitudes between
about 0.9 and t.1 are typically considered close to the unit

circle.
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3.7 Comparison Of Phase Unwrapping Techniques

The comparison of phase unwrapping techniques is
difficult. On well conditioned data they will all work well.
On poorly conditioned data, their accuracy will depend on the
individual data set. The interaction between the zeros of
e#en a short sequence 1is complicated and not amenable to
direct analysis. Thus, the comparison of various techniques
must be empirical. Computational time requirements of some
techniques has been evaluated empirically or analytically.
The computational time of McGowan and Kuc's technigue does not
depend of the input data, only on its length., Using a power
of 2 FFT to evaluate Sturm sequences, run time is of the order
of N2log,N. That is T = O(N2log,N). Steiglitz and Dickinson
found that their algorithm typically ran in T.= 0(N2), The
algorithms of Tribolet, Bhanu and Poggiagliolmi et al.
initially run in T = O(N-log,N) before adaptation. Adaptation
time depends on the data and the program parameters.

McGowan and Kuc's algorithm was‘ implemented using a
FORTRAN program. Tribolet's algorithm was published as a
FORTRAN program (Tribolet, 1977). On the data used for this
thesis the programs yielded identical results except for
computation time._ Tribolet's algorithm almost always took
less time. For example, for an input sequence of 90 points
padded with zeros to 256 points, McGowan and Kuc's algorithm
took 0.048 ms while Tribolet's algorithm ﬁad an average run

time of about 0.02 ms on an Amdahl 470 V/8 computer.
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3.8 Summary

Phase unwrapping can be approached from many directions.
Iterative methods include search algorithm, adaptive
integration and polynomial factorization. Number theory
provides a direct relation between a time sequence and its
phase. 1In principle, the phase determination is unstable for

zeros near the unit circle.
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IVv. PRINCIPAL COMPONENT ANALYSIS

4.1 Introduction

We have examined theoretical aspects of the homomorphic
transform as applied to convolutional problems. The transform
changes convolutional problems to additive ones. Techniques
developed for additive problems may then be applied. Using
this transform, wavelet estimation can be stated as a multi-
channel common information problem. The formalism 1is
presented in the next chapter. This chapter shows how this
problem can be approached 1in the general case. It thus
provides a solution in anticipation of its application. The
reader's forbearance is requested.

Suppose we have a suite of sequences, each sequence a
function of n. Write {x,(n),x,(n),...}. Suppose further that
each of these seqguences contains some common signal 1in
addition to a component which is, in general, different in
each sequence. We seek a way to extract the common signal
from the suite in an optimal fashion. We may measure the
amount of common signal between sequences by their covariance.
By seeking a linear combination of the sequences which
optimizes the common signal we are led to a technique known as
principal component analysis (Dhrymes, 1970, p. 53). 1In fact,
this technique can be shown to be equivalent to the Karhunen-
Loeve, Hotelling, or eigenvector transforms (Hall, 1979,

p. 115). Because there exist a variety of ways to derive this
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result, that which lends the most insight to the problem dealt

with in this thesis will be derived.

4.2 Principal Components

Let us begin by defining several terms. The terminology
is reminiscent of the statistical literature, reflecting the
origins of this development, although the definitions will be
for deterministic data. Say we have a suite of M sequences,
each sequence a function of n and of length N. 1In vector form
we write {x,(n),xz(n),...xM(n)} = x'(n) where wunderscore
denotes a vector and prime denotes the transpose of a vector
or matrix. We define the variance of an element of x(n), say

xi(n), by

N
var(x;) = 1/N >.[x;(n)-m;]? (1)

h*1

where m; is the mean of x;(n), defined by
N
m; = 1/N glx (n) (2)
We define the covariance of two sequences x;(n), xj(n) as
v
cov(xi,xj) = 1/N ?;{xi(n)—mL][Xj(n)-mj] (3)

Equation (3) can be extended to define the <covariance matrix

C, of x(n), whose elements are given by CU = cov(xi,Xj). That

is



N
C = 1/N‘EL[5(n)-m][§(n)-m]' (4)
n=i
where m is the vector of means m' = {m,,m;,...m,} and [-][.]}"

represents the outer product of vectors (Gelb, 1974). C is
symmetric and can be shown to be positive semidefinite
(Dhrymes, 1970, p 3). For compactness of ;otation let us
define the operator E{:-} to be the sum 1/N;?f-}. (Note that
‘this is not the expectation operator in probability theory, as

we are not dealing with random variables.) Then equations

(1),(2), and (3) become

var(xl) = E{[xi(n)—m[]Z} (5a)
mi_ = E{xi(n)} (5b)
C = E{[x(n)-m){x(n)-m]") (5¢)

We can consider the covariance of two sequences to be a
measure of the signal common to both, where that signal is
defined in terms of fluctuations about a mean.

Let us attempt to maximize the common signal of the suite
of sequences by taking a linear combination of the x(n), say
y(n) = a'x(n), where a' = {a,,a;,...} is a vector of constant
coefficients. Our measure of the signal in y(n) is its
variance. Thus we attemt to find that a which maximizes the

variance of y(n). 1If y(n) = a'x(n) then, from equations (5)
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var(y) = a'Ca (6)

(Dhrymes, 1970) where C is the covariance matrix of x(n).
However, we see that there is no maximum of a'Ca. If a is a
solution, it could be multiplied by any constant scalar s such
that b = sa and, with a fixed, s could be increased to make
var(j) arbitrarily large. We have a problem of scale. It is
the structure of a which is important, not its magnitude.
Thus we fix the scale by arbitrarily requiring a to be of unit
length, that is a'a = 1.

Now the problem is to maximize var(y) = a'Ca subject to
the constraint a'a = 1. This can be done with the method of

Lagrange multipliers. We define the Lagrangian

L =a'Ca + A(1-a'a) (7)
where A is a Lagrange multiplier. L is maximized with respect
to a and A by setting its partial derivatives equal to zero.

This yields

dL/da 2Ca - 2Xa (8a)

]
|o
|

dL/dx

0=1-a'a (8b)

where we have used the rules of vector differentiation (Gelb,
1974; Hall, 1970) and 0 denotes the zero vector.

Premultiplying equation (8a) by a' yields
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a'Ca = A (9)

which, from (6), eguates the variance of y with the Lagrange
multiplier A.

Equation (8a) implies
Ca = Aa (10)

which is the eigenvalue problem (Strang, 1980, p.179-239) with
eigenvalues X and eigenvectors a.

Because we want the variance of y to be maximal, and this
is equal to A, we must choose the largest A which satisfies
eqguation (10),jsay.k,, and its associated eigenvector, say a;.

Thus, the solution, denoted by y,(n), is

yi,(n) = a,"'x(n) (11)

This is .defined to be the first principal component of x(n)
(Dhrymes, 1970, p. 34). The mean and variance of y, are

easily derived. The mean, my,, is

E{Y1 (n)}

my 4

Ef{a,'x(n)}

my ,

my, = a,'E{x(n)}

or finally
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my, = a;'m (12)

Thus the mean of the first principal component is the weighted
sum of the means of x(n). The variance of y, is, from (6) and

(9),
var(y1) = A, : (13)

Thus the variance of the first principal component is equal to
the largest eigenvalue of equation (10).

We expect the first principal component to contain the
most common signal of the suite. We may then investigate
other linear combinations of the sequences to see what
properties they have. Acqordingly, we seek the normalized
linear combination of x(n), say y{(n) = a'x(n), which has
maximal vériance but is uncorrelated with the first principal
component y,(n). By uncorrelated, we mean cov(y,,y) = 0. We

can rewrite this covariance as (using equation (11))

cov(yq,y) = Ef[y (n)-my,][y(n)-myl'}
cov(y,,y) = Ef[a,'(x(n)-m)][x(n)-m]'a}
cov(y,,y) = a,'E{{x(n)-m][x(n)-m]'}a
cov(y,,y) = a,'Ca

so that the constraint may be written as

a,'Ca =0 (14)
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Proceeding as before we define the Lagrangian
L = a'Ca + A(1-a'a) + ua,'Ca

where A and u are Lagrange multipliers. Setting partial

derivatives to zero yields

dL/da = 0 = 2Ca - 2\a + uCa;, (15a)
dL/dx = 0 = 1 - a'a - (15b)
dL/du = 0 = a,'Ca (15¢)

Premultiplying equation (15a) by a' and using equations (15b)

and (15¢c) yields

This is just the same result derived earlier: the variance of
y 'is equal to the Lagrange multiplier A. From the previous

derivation we have

Premultiplying by a' and using equation (15c) yields

a'Ca; = Ma'a,
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or
- 0 =a'a, (16)

which is an expression requiring the orthogonality of the

eigenvectors. Now, premultiplying equation (15a) by a' yields
2a,'Ca - 2Na,;'a + ua,'Ca; = 0

However, from equations (15¢c) and (16), the first two terms

are zero. Hence

and from equation (13)
U)\1=0

Now, in general, A; > 0 which implies u = 0 and equation (15a)

becomes

and we have returned to the eigenvalue problem. However, now
we must choose the second largest eigenvalue, say A,, and its
associated normalized eigenvector, say a,. Thus, the second

principal component is defined as
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and has the properties that

mean(y,) = a,'’

m
Var(yZ) = kz

COV(Y1IYZ) =0

This procedure can be continued (Dhrymes, 1970, p 56) by
finding that 1linear combination of x(n) having maximal
variance but which is-uncorrelated with the previous principal

components. Doing so gives M linear combinations of x(n), say

y;(n) = a;"x(n) i=1,2,...M

such that

var(y;) = A;

cov(yL,yj) =0 i#3
where the A, are the ordered (largest to smallest) eigenvalues
of C and a; are their associated orthonormal eigenvectors.

The y;(n) form a set of sequences which are mutually

uncorrelated . linear combinations of x(n) having maximal
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variance. In general we define
y'(n) = {y,(n),y;(n),...,yM(n)} as the vector of principal
components of x(n) —with yi(n) as the i-th principal
component.

If we write the transpose of the eigenvectors as the rows

of a matrix A we get
y(n) = ax(n) (17)

A has the property that the sum of the variances of z(n); the
eigenvalues of C, equals the sum of the variances of x(n)
(Ready and Wintz, 1973).

Equation (17) defines a linear transformation from x(n)
to y(n). It is known as the eigenvector,.Hotelling, Karhunen-
LoEve, or principal component transform. This transform can
be alternately derived as the solution to the optimal data
compression problem. This derivation provides additional
insight into the transform. The essential 1ideas will be
presented briefly. For a detailed derivation see Hall (1979,
p. 115), Ahmed and Rao (1975) or Kramer and Mathews (1956).

Say we have x(n) and expect a high mutual correlation
between its elements. This correlation is 1indicative of
redundant information, or signal, common to several sequences.
In order to reduce storage space or transmission channel
utilization we wish to represent x(n) using fewer data. We
separate x(n) into different components, y(n) = Ax(n), discard

some of these components, then store or transmit those
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remaining. The original x(n) are then reconstructed as well
as possible wusing the remaining components. In general x(n)
cannot be reconstructed exactly unless all of the components
are retained.

Let us denote the reconstructed x(n) by x,(n) and define
the error in reconstruction as E(n) = x(n) - x,(n). We also
define the total error, T, as the sum of the variances of
E(n). If A is constructed such that the total error |is
minimized when ndiscarding successive elements of y(n) the
principal component transform results. It follows that, if
some of the y(n) are replaced by their mean values, T is equal
to the sum of the variances of these replaced y(n). However,
the variances of the y(n) are just the eigenvalues of C. Thus
the eigenvalues contain information regarding the
reconstruction error. In particular, the ratio of the first
eigenvalue to the sum of the rest will give the proportion of
the reconstruction which would have been obtained using the
first principal component to that obtaiéed using the rest .of
the principal components.

Obviously, 1if we want the optimal reconstruction using
only one principal component, this component must be the most
common to all of the x(n). Thus this ratio may also be
considered as the ratio of the correlated or common signal in

x(n) to the uncorrelated signal or noise.
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4.3 Some Properties Of Principal Components

Let us examine some 1limiting cases to illustrate the
behaviour of this transform as a common signal estimator. Let
us write the suite of sequences x(n) as a common signal s(n)
plus a 'noise' component u(n), in general different for each

sequence. That is,

x(n) = s(n) + u(n)

Let us assume that the mean values of s(n) and u(n) are
zero and that the variances of the u(n) are identical.

A normalized linear combination of the x(n) which uses no
information about the x(n) uses identical weights. Ready and
Wintz (1973) call this the coherent sum of the x(n) and use it
for comparison to the first principal component.

Consider the case where the u(n) are identically
correlated with each other (COV(Ui,Uj) = f, f = constant) and
uncorrelated with s(n). Then the covariance matrix C has

elements
Cij = COV(Xi,Xj) = E{[s(n)+ui(n)][s(n)+uj(n)]}
Expanding the sum yieldé

cov(xi,xi) = var(s) + f
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or, as var(s) is a constant,
cov(x[,xj) = constant

Thus C is a constant matrix of unit rank having only one non-
zero eigenvalue. The first eigenvector will have identical
elements and the first principal component will equal the
coherent sum. All of the variance will be concentrated into
the first principal component. 1In fact, if the noises were
all zero the same result would follow. This indicates that
the correlations between noises makes them indistinguishable
from signal.

Now consider the case where the noises are uncorrelated

with each other and with the signal. Then

Cij = var(s) + d[jvf
where d[j is the Kronecker delta and f is a constant. Thus C
is a constant matrix plus a another constant added to the
diagonal. The first eigenvalue of C is Ay, = A + £ where A is
the eigenvalue of C;; = var(s). All the other eigenvalues are
identical and equal to the constant f (Ready and Wintz, 1973).
We can say that the signal has concentrated in the first
principal component and that the noise has spread uniformly
among all the principal components. The first principal
component 1is equal to the coherent sum. All the other

eigenvectors are orthogonal to the first and therefore the sum
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of their elements is zero. This implies that there 1is no
signal in these principal components.

In the general case noises are correlated with signal and
with each other. We can say that the most correlated signal
is in the first principal component and the uncorrelated noise
is spread uniformly over all the principal components.
Signals having vlesser and lesser correlation appear 1in
successive principal components.

Because of this concentration of signal 1in the first
principal component, and the spreading out of the noise over
all the principal components,.we can use the eigenvalues as a
measure of how much signal was 1in the original data. 1In
particular, the ratio of the first to the sum of the rest can
be used as a measure of the signal to noise ratio.

Note that there is no restriction on the sign of the
elements of g; Thus, in a principal component, one or more of
the x(n) may be inverted. This could occur if some of the
x(n) had an inverted signal -s(n), or if the noise led to

negative correlations.

4.4 Summary

Signal common to several sequences can be estimated using
linear combinations. 1Interpreting variance as an information
measure leads to the covariance matrix. The eigenvectors of
this matrix define principal components and the eigenvalues

show where the information lies.
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V. WAVELET ESTIMATION

5.1 The Problem -

In the field of seismic exploration the recorded data are
often modeled as the convolution of a wavelet with an impulse
sequence. The wavelet is a time limited function, wusually
having a smooth spectrum (zeros far from the unit circle)
(Tribolet, 1979, p. 9). The impulse sequence consists of
isolated non-zero values.

Physically, the wavelet models a wave propagating in the
Earth. The impulse sequence is a consequence of the Earth's
structure and the physical geometry of the problem. The data
are often available in the form of a suite of time sequences
called traces. The wavelet is assumed constant from trace to
trace while the impulses are, in general, different. (See
Robinson and Treitel (1980) or Telford et al. (1976) for
further information.)

This chapter deals with the problem of estimating the

wavelet, given the above data.
5.2 A Solution

Three methods of wavelet estimation were discussed by
Lines and Ulrych (1977): the Weinér-Levinson, Wold-Kolmogorov
and homomorphic methods. The former two methods require a
minimum delay wavelet and stationary impulses while the latter

requires the separation of the complex cepstra of the wavelet
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and the impulse sequence. The method of minimum entropy
deconvolution (Wiggins, 1978), while not designed as a wavelet
estimater, can yield such an estimate (Ooe and Ulrych, 1979).
1t makes an assumption about the entropy, or simplicity, of
the 1impulse segquence. We would like to avoid making these
assumptions on an arbitrary basis. In general, we would 1like
to include as much a priori information while excluding as
many arbitrary restrictions as possible. For example, 1if ' we
have an a priori estimate of the wavelet cepstrum's length we
would like to include this.

We assume a random, not necessarily stationary, impulse
sequence. If the data are a single time sequence,.this
sequence can be segmented. If the data are already 1in the
form of a suite of sequences this segmentation may not be
necessary. Each sequence is modeled as the convolution of a
wavelet with an impulse sequence.

We write the data as
xk(n) = w(n)*i_(n) k=1,...M (1a)
or in vector notation
x(n) = w(n)*i(n) (1b)
wvhere x(n), w(n) and i(n) represent, respectively, the data,

the wavelet and the impulse sequences. Each x(n) 1is thus

formed by the convolution of the same w(n) with a different
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i(n).

The convolutional operation in (1) is not in a form most
amenable to analysis. However, by wusing the homomorphic
transformation discussed earlier, the equations can be mapped

from a convolutional space to an additive space. That is
D{w(n)*i(n)] = D[w(n)] + D[i(n)] (2a)

or

A

Z(n) = &(n) + 1(n) (2b)

where the circumflex denotes a complex cepstrum. The data are
nowAin the form of a suite of sequences, each containing a
common component, Ww(n), and a different component, i(n). We
wish to estimate #(n) from the X(n). This has been done by
averaging the %(n) (Clayton and Wiggins, 1976; Otis and Smith,
1977). ‘Averaging is a data-independent technigue which
ignores any information in the data. Principal component
analysis, on the other hand, 1is data-dependent and uses
information in an optimal fashion (Ulrych et al, 1983). Thus
it may be an improvement over averaging. The homomorphic
transform provides us with the possibility of separating, at
least partially, #(n) from the i(n) by low quefrency windowing
(Ulrych, 1971).

Before discussing the principal component (P.C.) method,

let us examine averaging. Assume that, for each fixed n, the
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elements of 1i(n) can be considered as random variables with

identical probability distributions and =zero mean. Then
M

1/M > 1,(n) will tend to zero for large M (Otis and Smith,

K=
1977). The estimate of #(n), denoted by %.(n), is defined as

M
W (n) = 1/M EZik(n) (4a)
k=
M
b (n) = 1/M ik_[v?(n)ﬁk(n)] (4b)
x3
M :
% (n) = @(n) + 1/M21 (n) (4c)
k=1

The estimated cepstrum equals the wavelet cepstrum if the sum
in equation (4c) is zero. The inverse homomorphic transform
of @o(n) yields we(n), the wavelet estimate.

Proceeding as above, we define the P.C. estimate of #(n)

as

Mz

M
Wa(n) = [ S;akién)]/

a k=1

(5a)

a
1 K

x
“

where the a, are the first P.C. weights. The reason for
normalizing the estimate can be shown as follows. - Eqguation

(5a) can be written as
M M M
We(n) = [ iiakﬁ(n)+ Egakik(n)]/ EZaK (5b)
K=y K=1 k=1

or
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M M
¥ (n) = @(n) + Sa i, (n)/>a, (5c)
» K=1 ket
which is analogous to equation (4c). Again, if the sum is
zero, the estimated cepstrum equals the wavelet cepstrum.

It should be noted that, in the original convolution, the
wavelet's scale and time origin were 1ost; In principle they
cannot be recovered and we will not be concerned with them.
If the sum 1in equations (4c) or (5¢) is an impulse at the
origin, w.(n) will differ from w(n) only by a multiplicative
scale factor (see property 6 of the complex cepstrum). For
the examples used in this thesis we arbitrarily set the zero
quefrency point to zero to normalize the scale factor and

prevent it from affecting cepstral correlations.

5.2.1 The Smoothing Function

In practice we have a finite number of data and cannot
expect the impulse cepstra to average to zero. Suppose that,
in equation (4c) or (5¢c), the sum is not zero. Write the sum
as §(n). Then (4c) or (5c) becomes

We (n) = @#(n) + G(n)
with inverse homomorphic transform

we (n) = w(n)*g(n)

where §(n) 1is the complex cepstrum of g(n). The estimate is
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the convolution of the true wavelet with g(n). g(n) may be
considered as a smoothing function which distorts the
estimate. (It is worth noting the similarity of this to a
result from the field of linear inversion where the estimated
model is the true model viewed through a resolution function
(Wiggins, 1972; Oldenburg and Samson, 1979).

In order to illustrate this smoothing function consider
the following example. (One may consider the data as samples
of a time function with a 1 ms interval. Then one would read
'ms' for 'points'.) We generate a suite of six data sequences,
i(n), of length 70 ms. The data are impulses which are
Poisson distributed in spacing and Gaussian,distributed in
amplitude. The Poisson parameter is 11 ms, which is both the
mean and variance of the distribution. Figure 7 shows the
data and the corresponding smoothing function obtained by
cepstral averaging and low quefrency windowing with a Hanning
window of length 40 ms (centred on the origin). The window
length is a result of hindsight and will be shown to be
appropriate in subsequent examples. Note that the smoothing
function approximates an impulse. The complex cepstra and
their average are shown in Figure 8. Note the exponential

decay indicating the lack of cepstral aliasing.
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Figure 7 - Smoothing Function

Six random impulse sequences (a) and their smoothing
function due to cepstral avaraging and windowing (b).

5.2.2 The Wavelet

Now let us consider the wavelet. We assume a mixed delay
wavelet, shown with its cepstrum in Figure 9. The wavelet 1is
time limited to 20 ms and its cepstrum is quefrency limited to
about 25 ms. This 3justifies the use of a 40 ms window for
comparisons using this wavelet. Note the cepstrum's higher
amplitude than the previous impulse cepstra. Plotting is to
the same scale. The power spectrum of the wavelet 1is also
shown. Note 1its low pass nature. Small changes to the high

frequency spectrum due to convolution or noise may dominate
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-128 (0] 128

Figure 8 - Complex Cepstra Due to Impulses

These cepstra correspond to the impulse sequences of Figure
7. Note the exponential decay.

the linear phase computation. This can be avoided by setting
the phase to zero above some frequency and removing the linear
trend to that point, If the energy content for greater
frequencies 1is small, changes to the wavelet and its cepstrum

will be small.
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Figure 9 - An Assumed Wavelet

The assumed wavelet (a) is mixed delay. Its cepstrum (b)
is time limited and {ts power spectrum (c) {s low pass.

5.2.3 Principal Components vs Averaging

'Let us now compare the P.C. method to averaging. A
feature of the P.C. method is its ability to discriminate
between cepstra. This is demonstrated in Figure 10. The
input data are the convolution of our wavelet with three
sequences of random impulses. Random noise has been added to
the first sequence. The noise is zero mean Gaussian with a
variance of 25% of that of the noise free sequence. The
cepstrum of the noisy input is noticeably different from the

others. The P.C. estimate yielded weights of [0.1,0.7,0.7]
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(b)
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(c)
(d)
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Figure 10 - Discrimination by Principal Components
Input impulse sequences (a) and data derived by their
convolution with a wavelet (b). The top data sequence has

additive noise. Cepstra (c) show the noisy input’s difference.
The average and first principal component of (c) are shown in

(d).

indicating successful discrimination of the noisy input.

wavelet estimates due to averaging and the first P.C.

shown in Figure 11,

The

are



68

=30 0 30

ms
Figure 11 - Wavelet Estimates

Wavelet estimates derived from the first principal
component (1 PC) and averaging (AVE.) of cepstra of Figure 10.
The input wavelet is shown at the bottom.

To obtain a numerical comparison of the estimates we
define a misfit error., The misfit is the sum of squares of
the difference between the wavelet and the estimate. The
wavelet and estimate are first scaled to unit variance, then
time shifted for minimum misfit. Since we are calculating a
256 point cepstrum, the wavelet estimate is 256 points 1long.
Thus the null estimate has a misfit of 256 and the wavelet
itself has a zero misfit. In this example the average
estimate had a misfit of 78 versus the principal component's
40. These indicate an improvement of the P.C. method over

averaging.
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5.2.4 Multiple Sequence Data

Let us now apply these methods to a more general example.
The data are 15 sequences generated by the convolution of our
wavelet with random impulse sequences of length 70 ms (Figure
12). The Poisson parameter is 6 ms implying an appreciable
wavelet overlap due to the convolution. The wavelets
estiméted from averaging and the first two P.C.s are shown in
Figure 13, Their respective misfits are 8.1, 5.9 and 370.
The first P.C. estimate has a smaller misfit than the average
and the second P.C. bears little resemblance to the wavelet.
These results are encouraging and lend credence to our
expectations of the P.C. method.

On the basis of the previous result for a noisy input we
proceed by adding random noise. The noise is Gaussian with a
variance of 5% of that of the data. The noisy data are shown
in Figure 14 along with the wavelet estimates. Misfits of the
average and first two P.C.s are 20, 280 and 16. Note that the
misfits are generally larger than for the noise free case,
which is expected. However, the behaviour of the first two
P.C.s is uﬁexpected and bears closer examination. It appears
that the proper wavelet estimate is in the second P.C. rather
than the first. This is not predicted by our theoretical
development and examples. In fact, it seems paradoxical. To
resolve this apparent paradox, let us re-examine the
homomorphic transform and its interactions with the time and
quefrency domains.

The behaviour of the homomorphic transform in the
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| (a) _qJ\/VVM,NVNJ\_— (b)

ms () 90
ms

Figure 12 - Multiple Sequence Data

Fifteen random {impulse sequences (a) and convolved with a

wavelet (b).
presence of additive noise is not well understood. However,
-the phase spectrum may be stronély affected (Buttkus, 1975;
Clayton and Wiggins, 1976; Jin and Rogers, 1983). It is
possible that P.C. analysis can aid in our understanding of
how noise affects the cepstrum. The appearance of the wavelet

cepstrum in the second P.C. may imply that noise has induced
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Figure 13 - Wavelet Estimates

Wavelet estimates due to first two principal components (1
PC, 2 PC) and average (AVE.) of cepstra of data in Figure 12.
The input wavelet is shown at the bottom.

a common signal in the cepstra. This signal appears in the
first P.C. and the next most common signal, due to the
wavelet, appears in the second P.C. This hypothesis can be
tested by examining the time-quefrencey relationship for pure
noise inputs.

In practice we cannot generate completely uncorrelated
noise. However, we can compare the correlations of noise in
the time domain (input) with those in the quefrency domain
(output). Poorly correlated sequences have a covariance
matrix with similar eigenvalues. This is due to the lack of a

common signal and the distribution of uncorrelated noise over



72

(a)

A (b)
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— A\ /\/\ INPUT

ms

0 ms 90
Figure 14 - Notisy Data
The data of Figure 12 but with 5% additive noise (a). (b)
shows the wavelet estimates due to the first two principal
components (1 PC, 2 PC) and averaging of cepstra. The i{nput

wavelet 1s shown at the bottom.

all the P.C.s. On the other hand, highly correlated sequences
yield (ordered) eigenvalues which decrease rapidly. This
occurs because the sequences contain mostly common signal.
Thus, the eigenvalues of inputs and outputs are indicative of
changes in relative correlations.

Consider the suite of six input noise sequences shown in
Figure 15. The noise is zero mean Gaussian. 1Its variance is

irrelevant as scale factors are removed in the cepstra (Figure
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ms

Figure 15 - Noise Inputs

A suite of random noise inputs.

16). Note the high amplitude of the cepstra and the strong
odd component due to the phase. The cepstra are plotted to -
the same scale as the previous two examples. For comparison,
each set of eigenvalues 1is normalized by dividing by the
largesf value. The eigenvalues for the output decrease more
rapidly than for the input (Figure 17). This implies that the
outputs (cepstra) are more highly correlated than the inputs
(time). One must be cautioned against inferring that the
transform has produced non-random outputs from random inputs.

Correlation may not be a suitable measure of similarity in the
quefrency domain for time domain noise. It is likely that
this noise induced correlation dominates the first P.C. The
observation that the wavelet estimate appears in the second
P.C. 1implies that, aithough the noise may induce a common

component, this 1is uncorrelated with the wavelet cepstrum,
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Figure 16 - Cepstra of Noise

The complex cepstra of the noise inputs of Figure 15.

This follows because the P.C.s are mutually uncorrelated.
We can gain further insight by examining cepstral

covariance matrices. For comparison, the wavelet alone yields
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INPUT
OUTPUT

0

i 1

1
3.0 5.0 7.0
EIGENVALUE #

1.0

Figure 17 - Eigenvalues of Input and Output

The eigenvalues of input (dark Yine) decrease more slowly
that those of the output. This implies that the output is more
correlated than the {input.

a constant matrix with the value 0.063. The covariance matrix

due to input noise alone 1is shown in Figure 18, Note the

range of values of both signs. Several elements have a
0.633 0.314 0.400 0.079 -0.411 -0.130
0.314 0.359 0.241 -0.097 -0.365 -0.143
0.400 0.24%1 0.574 0.068 -0.219 -0.029
0.079 -0.097 0.068 0.244 0.042 0.065
-0.411 -0.365 -0.219 0.042 0.496 O0.166

-0.130 -0.143 -0.029 0.065 0.166 0. 146

Figure 18 - Covariance Matrix of Noise

The covarlahce matrix of the noise cepstra of Figure 16.
These elements compare with the wavelet cepstrum’s correlation
of 0.063.

magnitude greater than the covariance of the wavelet cepstrum
(0.063). Thus covariances of cepstra due to noise alone can
be much larger than those due to signal alone.

Now let wus examine the matrices from the previous
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example. For clarity, only the result from the first six
inputs will be considered. Consider the matrices derived from
the cepstra of the impulse sequences, Co; from the impulses
convolved with the wavelet with no noise, C,;; and with 5%

noise, C, (Figure 19). The impulse cepstra, C,, generally

0.002 0.002 -0.000 -0.001 -0.001 -0.000
0.002 0.114 -0.009 -0.036 -0.046 -0.011

-0.000 -0.008 0.017 0.014 0.007 0.008 (a)
-0.001 -0.036 0.014 0.039 0.035 0.021 a
-0.001 -0.046 0.007 0.035 0.092 0.022

-0.000 -0.011 0.008 0.021 0.022 0.023

0.064 0.065 0.064 0.064 0.064 0.066

0.065 0.127 0.075 0.055 0.023 0.071

0.064 0.075 0.069 0.062 0.051 0.065 (b)
0.064 0.055 0.062 0.068 0.069 0.065

0.064 0.023 0.051 0.069 0.104 0.061

0.066 0.071 0.065 0.065 0.061 0.072

0.009 0.006 0.009 0.008 0.002 0.009

0.006 0.016 0.016 -0.001 -0.005 0.006

0.009 0.016 0.028 -0.000 -0.017 0.009

0.008 -0.001 -0.000 0.012 0.003 0.010 (c)
0.002 -0.005 -0.017 0.003 0.044 -0.008

0.003 0.006 0.009 0.010 -0.008 0.015

Figure 19 - Covariance Matrices

The covariance matrices due to impulse cepstra (a),
impulses convoived with a wavelet (b) and impulses convolved
with a wavelet, with 5% additive noise (c).

yield off diagonal terms less than the wavelet's cepstral

covariance (0.063). - The covariance matrix due to impulses

convolved with the wavelet, C,, has less structure than C, and

generally higher correlations, all positive. The matrix

to noisy data, C,, has generally smaller correlations than C,

due
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and more structure, including negative corrrelations.

These observations can be interpreted as follows.
Correlations due to the impulse sequence contribute less to
the matrix structure than those due to the wavelet. Time
domain noise can . dominate both of these 1in the cepstral
covariance matrix and strongly affect the P.C. estimate.
Thus, in a sense, P.C.s may amplify noise effects compared
with averaging.

The presence of both positive and negative P.C. weights
implies that the wavelet cepstrum will tend to cancel. These

may thus be used as an indicator of noise dominance.

5.2.5 Single Seguence Data

Having achieved an wunderstanding of some  of the
interactions between the homomorphic transform and P.C.
analysis, let us proceed.

Consider the case where the data are a single sequence.
This can be converted to a multi-sequence input by
segmentation. Segmentation can be done on the basis of the
envelope (Ulrych et al, 1983). The envelope is defined as the
magnitude of the complex signal (Bracewell, 1965, p 271;
Clayton and Wiggins, 1976) and its maxima can be wused as an
indicator of the locations of the underlying impulses (Taner
and Sheriff, 1977). The envelope is smoothed to reduce noise
effects and merge closely spaced maxima. Centering windows on
these maxima yields the trace segments, which may overlap.

This windowing will, 1in general, destroy the original
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convolutional model and has a poorly understood effect on the
homomorphic transformation (Tribolet, 1979). However, if the
window changes on a longer scale than.the wavelet, we expect
it to affect only the impulse sequence. Once the data have
been converted into the desired form we proceed as before.

Let wus consider a single sequence example. The data are
the convolution of a single 500 ms impulse sequence convolved
with our wavelet (Figure 20). Envelope maxima yield window
locations. A 90 ms Hanning window was wused to extract 18
segments (Figure 21). The wavelet and estimates due to
averaging and the first and second P.C.s are also shown.
Their respective misfits are 60, 59, and 409. Note that the
.average and first P.C. have similar misfits, the P.C.'s being
marginally better. The seco;d P.C. estimate is dissimilar to
the wavelet. The corresponding cepstra are shown in Figure 22
with the weights yielded by the first P.C. The lack of
variability among these weiéhts and the misfit's similarity to
the average's indicate that the 1impulse cepstra did not
strongly affect the covariance structure.

Let us now examine the effect of additive noise 1in this
context. The data with 5%, 10% and 30% noise are shown in
Figure 23. (Note that individual segments may have different
signal to noise ratios.) The wavelet, average estimate and
first two P.C. estimates are shown in Figure 24. The
segments' cepstra and the corresponding first P.C. weights
are showﬁ in Figure 25. (Note that, for 30% noise, 17

segments were defined.) Misfits of the various estimates are
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Figure 20 - Single Sequence Data

A random impulse sequence and data abtained by convolution
with a wavelet (a). The envelope before and after smoothing

(b).
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Figure 21 - Segmentation and Estimation

Segments of the data in Figure 20 (a) and wavelet estimates
due to first two principal components (1 PC, 2 PC) and averaging

(AVE.) of cepstra (b). The input wavelet is shown at the bottom
of (b).

shown in Table 1. The second P.C. becomes a better estimator
than the first as the noise level increases. In fact, for 30%

noise, it is better than the average. Examination of the
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Figure 22 - Cepstra of Segments

The cepstra of the segments shown in Figure 21. The first
principal component (1 PC) and average (AVE.) cepstra are also
shown. The weights used to form the first P.C. weights are
shown next to the corresponding cepstra.
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Figure 23 - Noisy Single Sequence Data

A data sequence with 5%, 10% and 30% additive noise (top to
bottom).
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Figure 24 - wavelet Estimates

The wavelet estimates due to the noisy data of Figure 23.
The first (1 PC), second (2 PC) and average (AVE.) estimates are
shown for 5% (a)., 10% (b) and 30% (c) noise. The input wavelet
is shown at the bottom of each panel.
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Figure 25 - Segment’s Cepstra
The cepstra due to the noisy data of. Figure 24. Inputs

have 5% (a), 10% (b), and 30% (c) noise. The first principal
component weights are shown beside the corresponding cepstra.

first P.C. weights and misfits shows that, as the weight's
variability increases, the wavelet estimate tends to shift

from the first to the second P.C. Note also that, for low
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Wavelet Estimate Misfits
Noise Ave. 1 p.C. 2 P.C.
5% 39 19 190
10% 18 74 56
30% 75 134 32
Table 1 - Wavelet Misfits

noise (5%), the first P.C. yielded a better wavelet estimate
than averaging. Also, for high noise (30%), the second P.C.
yielded a better estimate than averaging. At an intermediate
noise 1level, the P.C. method yielded a worse result than
averaging.

It may seem paradoxical that, for the averaged estimate,
the misfit is lower for 10% noise than for 5% noise. However,
there are many factors to be considered. Segmentation is
affected by noise, and cepstral windowing may affect the noise
as well as the wavelet. Also, for this particular wavelet,
setting the phase to zero above some frequency may affect the
noise's relation to the wavelet. These do not detréct from
the fact that, for a fixed noise level, the P.C. estimates
may be compared to the average estimate. One must be'
cautioned against inferring that adding noise to an input

will, in general, improve the estimate.
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5.2.6 Low Pass Inputs

In previous examples the homomorphic transform was
stabilized by setting the phase to zero above some angle w;.
It may seem obvious that, having admitted ignorance of this
phase, we should do likewise with the magnitude. This would
prevent the shifting of energy above w,; to zero phase. For
cepstral averaging this is a logical thing to ao. However,
this will induce a common signal in the cepstra which may
adversely affect the P.C. method of analysis. Let us examine
this further.

Say a time sequence has a Fourier transform with
magnitude M(w). Setting M(w) to a small value above w=w, is
equivalent to setting log[M(w)] to a 1large negative value.
This may be done in two steps. First, multiply log[M(w)] by a
boxcar function. (i.e. wunity on O<w<w;,; and zero on w,Sw<w).
Second, add a bandpass function which is zero on O<w<w, and a
large negative value, say A, on w,<w<w. This prbcedure is
shown graphically in Figure 26. The Fourier transform of the
boxcar is a sinc function and that of the bandpass function is
a cosine modulated sinc function with peak value A, call it
A-S(n) (Bracewell, 1965). In the quefrency domain this is

eqguivalent to convolution with a sinc function and addition of

A-S(n). A becomes larger as M(w) is set to smaller values
above w,. Figure 27 shows the cepstrum of our wavelet with
the log magnitude set to various values above w, = 0.62-7.

The values were derived by subtracting 13, 10, 7, 3 and 0 from

the original value at w,. Note the dominance of A-S(n) as A
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Figure 26 - Low Pass Signals

The energy above some angle may be set to a small constant
by setting the 1og magnitude to a large value. This can be done
by multiplying the 1l1og magnitude by a boxcar function, then
adding a bandpass functtion.

becomes large. (The zero quefrency point has been set to
zero.) |

This effect and the arbitrariness of A suggest that this
is not an appropriate procedure when P.C. analysis is to be

used on the cepstra.

5.3 An Alternate Solution

We have seen that, in the presence of additive noise, the
use of P.C.s on cepstra 1is inappropriate. However, the
principal component method may still be utilized.

The homomorphic transform allows for wavelet estimation
by 1low quefrency windowing. Exponential weighting of inputs
and de-weighting of oﬁtputs may improve the estimate (Buhl,
et al, 1974). A wavelet estimate can be obtained from each
input sequence by this method. This yields a suite of
estimates from which\the most common wavelet can be extracted
by principal components.

This is illustrated in Figure 28 using the noisy multiple

B

sequence data generated previously. An exponential weighting
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Figure 27 - Out of Band Energy

Cepstra due to the wavelet of Figure 9 but setting the 1log
magnitude constant above the angle ¢:=0.62'w. This constant has
been set to the original value minus 13, 10, 7, 3, and O (top to
bottom).

factor of 0.98 and a 5 ms cepstral window were used to produce
wavelet estimates. These estimates were normalized to unit
variance and shifted to align their envelope peaks. The most
common estimate may be defined as the average or the first

P.C. Their misfits are 163 and 20 respectively which shows a
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Figure 28 - Time Domain Principal Components

Wavelets estimated from the data of Figure 14 wusing
cepstral windowing (a). The first principal component (PC) and

average (AVE) of these estimates (b). Input wavelet is shown at
the bottom.

significant improvement of the P.C. method over averaging.
These misfits compare with 20, 280 and 16 for the cepstral
average and first two cepstral P.C.s. Thus this technique can

yield an estimate which is comparable to cepstral averaging.
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5.4 Practical Considerations

The previously discussed wavelet estimation scheme has
sevéral parameters which must be specified. These include the
segmentation window shape and length, cepstral window shape
and length and exponential weighting factor. Specification of
these must be done carefully, on the basis of a priori
information and experience.

The segmentation window should be slowly varying. Its
length 1is a trade-off between wavelet distortion and sequence
length. Shorter sequences have greater distortion but tend to
yield more reliable phase unwrapping. The cepstral window
should probably nof have sharp discontinuities. 1Its lenth
can be adjusted by monitoring the corresponding estimates.
Exponential weighting is again a trade-off between distorting
the wavelet's cepstrum and separating it from the impulse
cepstra.

Due to the statistical nature of the scheme, more data
will tend to improve the estimate.

This technique is not user independent. Its flexibility
and power can be fully realized only with careful and

judicious use.

5.5 Summary

The application of the principal component method for
wavelet estimation has been demonstrated. The method may be
used in the quefrency domain or in the time domain after

cepstral windowing. Additive noise may induce a common signal
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in the cepstra. Setting out of band energy to a small value
will add a common term to the cepstra. In the presence of

these common signals the P.C. method is more appropriately

applied in the time domain.



VI. INVERTIBILITY OF THE HOMOMORPHIC TRANSFORM

A recently published note suggests that, due to phase
unwrapping, the homomorphic transform may not be 1invertible
(Jin and Rogers, 1983). This note is supported by examples
illustrating their failure to obtain a successful inversion.
This failure should not occur. To set our minds at ease these
same examples ére presented here demonstrating their
successful forward and inverse transformation.

Except for inputs with zeros on the unit circle, 1if the
forward transform can be calculated, so can its inverse, to
within the precision of the computation. If the phase is
unwrapped incorrectly an ihcorrect cepstrum will be
calculated. However, even 1f this occurs, the inverse
transform will still yield the original input. This follows
from the fact that phase unwrapping adds integer multiples of
27 to the principal phase (except the method of McGowan and
Kuc (1983) which adds multiples of 7). These are transparent
to the inverse operation of exponentiation. (Note that the
whole inverse system is realized by this exponentiation and
Fourier transforms, which are invertible.) |

The first example consists of two impulses, of magnitude
2000 and 1992, separated by 20 points (Figure 29). The
sequence 1is extended to 1024 points with zeros. 1Its cepstrum
and the cepstrum's inverse are shown. Note the successful
inversion. (Calculations were performed with single precision
arithmetic in a FORTRAN program.) The cepstrum is minimum

delay and exhibits some aliasing.
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Figure 29 - Inversion of Cepstra

An input (a) consists of two impulses of amplitude 2000
1999. 1ts cestrum (b) and the cepstrum’s inverse (c) show the

return of the original input.
with additive noise.

inverse of (e).

(d) is the input sequence of

and

(a)

(e) is the cepstum of (d) and (f) is the
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The effect of additive noise with a standard deviation of
5 1is also shown, This noise 1level 1is too low to be
perceptible in the plots. It has, however, changed the
relative magnitude of the impulses such that the sequence is
nearly minimum delay. Again the cepstrum inverted correctly.

In the second example, the first impulse has a magnitude
of 2000 while the second is reduced from this by 33% (Figure
30). The 1input, cepstrum and the cepstrum's inverse are
shown. When noise having a standard deviation of 20 is added,
the cepstrum's appearance changes dramatically. However, it
still inverts to the original input.

The results of Jin and Rogers (1983) are reproduced in
Figures 31 and 32 for comparison.

All of the inputs dealt with in the production of this
thesis were invertible. We can be satisfied that the results

of Jin and Rogers are anomalous.
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Figure 30 - Inversion of Cepstra

An input (a) consists of two 1impulses with different
amplitude. 1Its cepstrum (b) and the cepstrum’s inverse (c) show
the return of the input. (d) i1s the input (a) with additive
noise. (e) is the cepstrum of (d) and (f) 1is the inverse of

(e).
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(a) Signal with two spikes of nearly identical amplitudes. free of noise. (b) Complex cepstrum of the signal in (a). (c) Returned signal
‘of (a). (d) Signal of (a) with noise added. (¢} Complex cepstrum of the signal in (d). (f) Returned signal of (d).

Figure 31 - Inversion of Cepstra

The results of Jin and Rogers {1983). This compares with
Ftgure 29.
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(a) Signal with two spikes whose amplitudes are quite different, free of noise. (b) Complex cepstrum of the signal in (a). (c) Returned
signal of (a). (d) Signal of (a) with noise added. (¢) Complex cepstrum of the signal in (d). (f) Returned signal of (d).

Figure 32 - Inversion of Cepstra

The results of Jin and Rogers (1983). This compares with
Figure 30.



98

VII. DISCUSSION AND CONCLUSIONS

The wavelet estimation problem has . been formulated in
terms of multi-channel common signal estimation. This does
not require restrictive assumptions about the wavelet's phase.
The formulation includes a homomorphic transform to map from a
convolutional to an additive (cepstral) space. Realization of
the transform requires the computation of a Fourier
transform's continuous phase. |

In the additive space the problem is one of common signal
estimation. Properly formulated, the method of principal
components yields an optimal estimate which can be compared to
averaging.

The successful application of this technique has been
demonst;ated for noise free data. In the noisy data case
principal components may yield a poorer estimate than
averaging. This occurs because noise may 1induce a common
signal in the cepstral space. Principal components then
estimate this noise-induced signal instead of the wavelet
cepstrum. If an attempt is made to reduce noise effects by
setting out of band energy to a small value, another common
signal is added to the cepstra.

Thus, for noisy data, we are 1led to an alternate
solution. A wavelet is estimated from each input channel by
exponential weighting and cepstral windowing. Principal
components are then used to extract the most common estimate

from this suite of estimates.
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APPENDIX A - THE Z-TRANSFORM

The z-transform of a sequence x(n) is defined as

22 n
X(z) = S x(n).2z~ (1)
h=-o60
wvhere z is a complex number.

The inverse z-transform is defined as
x(n) = 1/21rjfx(z)-z"'1 dz (2)
C

where C ié a counterclockwise closed contour in the region of
convergence of X(z), encircling the origin in the z-plane.
Together, (1) and (2) form a z—transﬁorm pair.

1f, in (1) and (2), C is taken as a circle centred on the

origin, z=r.exp[jwl, on -m<w<w, then (1) and (2) become

[ d
X(r-expljwl) = S [x(n)-r")-expl-jw) (3)
he-o®
r
x(n).r™" = 1/2f}rx(r-exp[jw])-exp[jwn]dw (4)
-1

These imply that X(r-exp[jw)) is the discrete time Fourier
transform of x(n).r-". Thus the Fourier transform can be used
to evaluate the z-transform on a circle centred on the origin.,
If r=1, equations (3) and (4) become a Fourier Transform pair.
Setting r#1 is referred to as exponential weighting (Oppenheim

and Schafer, 1975).



100

APPENDIX B - FOURIER TRANSFORMS AS CHEBYSHEV POLYNOMIALS

The Discrete Time Fourier Transform (DTFT) can be written
in terms of Chebyshev polynomials of the second kind (McGowan
and Kuc, 1982).

Consider a sequence x(n) where x(n)=0 for n<0 and n>N.

The DTFT of x{(n) is

N
Flw) = S x(n)-expl-jnw] (1)

nso
or, in terms of real and imaginary parts
M I3
F(w) = > x(n).cos(nw) - j- S x(n)-sin(nw) (2)

h=o h=zo

Chebyshev polynomials of the first kind, as a function of

cos(w), are defined as (Snyder, 1966)
T(n,w) = cos(nw) (3)
and those of the second kind as
U(n,w) = sin[{(n+1)w])/sin(w) (4)
There is a recursion relation betwen (3) and (4):
T(n,w) = [U(n,w) - U(n-2,w)]/2 (5)

From equations (2) and (3) we write
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N N
Flw) = Sx(n)+T(n,w) - j- Sx(n)-sin(nw) (6a)
hzo

hzo

Defining R = Real{F} amd I = Imaginary{F}, we write (6a) as

F =R+ j-1I (6b)
Consider the real part of (6):

R = S x(n)T(n,w) | (7)
hzo

Dropping the argument w and using eqguation (5), (7) becomes

N s
R = {S x(n)-U(n) - Z'x(n)-U(n-z)}
hzo

h=o

or, using the definitition in (4),

R = { ¥x(n)esinl(n+w) - Sx(n)-sinl(n-1)wl}/2sin(w)

hro

 Rearranging terms and noting that -x(0)-sin(-w) = x(0).sin(w)

and x(1).sin(0) = 0, yields

R = {[2:x(0)-x(2)]-sin(w)

»;-1
+ 5 [x(n=1) - x(n+1)]]|sin(nw)
h:

2

+ [x(N-1)]+sin(Nw) + [x(N).sin[(N+1)w]}/2sin(w)
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or, bringing the denominator inside the sum and using (4)

yields

N
R = fg:a(n)-U(n,w) (8)

h=o

where

a(0)

x(0) - x(2)/2

[x(n)-x(n+2)]/2 n=1,...N-2

a(n)
a(N-1) = [x(N-1)]/2

a(N) = x(N)/2

Now consider the imaginary part of (6):

V%
I = - >'x(n)-sin(nw) (%a)

h <o
or, as the first term is zero,

NV-1

I = - S x(n+1)sin[(n+1)w] (9b)
hzo
Setting
b(n) = -x(n+1) (10)

in (8). yields

w1
I = 5 b(n)-sin[(n+1)w]

hso
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p-1
sin(w). > {b(n)-sin{(n+1)wl/sin(w)}

h=o

]
]

N-1
sin(w). S b(n) -U(n,w)

[
[}

where we have used the definition (4). Therefore we write (1)

in terms of Chebyshev polynomials of the second kind as

4 N-1
Flw) = Sa(n)-U(n,w) + jesin(w). S'b(n)-U(n,w)

h=e hzo

where the a(n) and b(n) are given by equations (8) and (10)

respectively.
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APPENDIX C - GENERATION OF A STURM SEQUENCE

This appendix illustrates a method of generating a Sturm
sequence from two Chebyshev polynomials of the second kind
(McGowan and Kuc, 1982). The notation is designed to allow
easy transcription to a computer program.

Chebyshev polynomials of the second kind, U(n), are
defined in appendix B and have the recursion relation (Snyder,

1866)
U(n)-U(1) = U(n+1) + U(n-1) (1)

We start with the two polynomials

Vid

P(0) = S’a(0,n)-U(n) (2)
nso
o

P(1) = S'a(1,n)-U(n) (3)
h=o

where a(k,n) refers to the n-th coefficient of the k-th
polynomial P(k). The Sturm sequence 1is a sequence of
polynomials of decreasing degree, generated recursively from

P(0) and P(1) by Euclid's algorithm (Marden, 1966)
P(k+1) = Q(k)-P(k) - P(k-1) (4)
The general polynomial can be written as

w-k
P(k) = S a(k,n)-u(n) (5)

n=o
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and the final polynomial as

P(N) = a(N,0)-0(0) (6)

In the recursion (4), let us define the Q(k) as the first

degree polynomial

Q(k) = d(k,0).-0(0) + d(k,1)-U(1) (7)

where the d are constants.

For -clarity 1let us begin with an example by generating

P(2). 1Inserting (2), (3) and (7) into (4) yields

V-1
P(2) = { S a(1,n)-u(n)}-{d(1,0).-0(0)+d(1,1)-0(1)1]}

N
-{E;a(o,n)-U(n)}

or, expanding,

(1,n)-da(1,0)-U(n)}-u(0)
5 (1,n)-d(1,1)-0(n)}-0(1)

vo °

a(0,n)-U(n)}

=0

Omu

3

+

3

”-
P(2) = { 5
n=<

{

{

My

>

The relation (1) and the fact that U(0)=1 yield
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w1
P(2) = Sa(1,n)-d(1,0)-U(n)

h<o

+ {a(1,1)+a(1,1)}-0(0)

2
fa(1,n=1)-d(1,1)+a(1,n+1).d(1,1)}-U(n)

V)]

+
MR

+ {a(1rN_2)’d(1r1)}'U(N-1)
{

a(1,N=1).8(1,1)}.U(N)
- S/_.'va(O,n)-U(n)

h

+

[}

Collecting like terms yields

P(2) = {a(1,0)-a(1,0) + a(1,1).d(1,1) - aio,o)}
* %g%a(1,n)-d(1,0) + [a(1,n=-1)+a(1,n+1)].d(1,1)
" - a(0,n)}-U(n)
+ {a(1,N-1).d4(1,0)+a(1,N-2)-d8(1,1)-a(0,N-1)}-U(N-1)

+ {a(1,N-1)-d(1,1)—a(0,N)}-U(N)

We choose Q by finding d(1,0) and d(1,1) such that the terms

in U(N) and (N-1) cancel. That is,

a1, 1) a(0,N)/a(1,N=1)

a(i1,0) {a(0,N-1) - a(1,N=-2)-d(1,1)}/a(1,N-1)

By 1induction we can write the general term for the k-th

polynomial as
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P(k) = {a(k-1,0).-d(k-1,0)+a(k=-1,1)-d(k-1,1)~-a(k-2,0)}
M-k
+ S {a(k-1,n)-d(k-1,0)+[a(k-1,n-1)+a(k-1,n+1)]

hx?

- a(k-2,n)}-U(n)

and the final polynomial as

P(N) = {a(N-1,0)-d(N-1,0) + a(N-1,1)-d(N-1,1)

- a(N-2,0)}-U(0)

The k-th polynomial can be written as

A=K
P(k) = 3 a(k,n)-U(n) k

hzo

2'oooN

where

a(k,0) = a(k-1,0).d(k-1,0)+a(k-1,1)-d(k-1,1)-a(k=-2,0) (8a)

and, for n>0

a(k,n) = a(k-1,n).d(k-1,0)+[a(k-1,n-1)+a(k-1,n+1)])-d(k-1,1)

- a(k-2,n)

(8b)

where, for k=0,...N-2,

d(k+1,1) = a(k,N-k)/a(k+1,N-k-1)
(9a)
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and

d(k+1,0) = [a(k,N-k-1)-a(k+1,N-k=-2).-d(k+1,1)]
/a{k+1,N-k=-1)
(9b)

The recursion relations (8) and (9) allow the computation of
all the P(k), k>0, provided P(0) and P(1) are not relatively
prime. If this is the case, the highest degree coefficient of
a P(k) is zero and a division by zero in (9) will occur. For
this case the next polynomial generated has a degree reduced
by more than one. The recursion.then skips one iteration and

continues for subsequent calculations.
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