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Abstract

Parameter estimation problems for groundwater flow systems are often non-

identifiable or unstable using only hydraulic head data. Prior information on

parameters or joint parameter estimation including tracer concentrations may be used

to stabilize the parameter set. Response surfaces and multiparameter confidence

regions are used to identify the most efficient and responsible use of prior information

and joint data sets for the purpose of parameter estimation.

Prior information on some of the parameters are used to stabilize the parameter

set for parameter estimation. Efficient use of prior information involves identifying

those parameters for which prior information will stabilize the model parameter set the

most. Responsible use of prior information involves identifying how errors in the prior

information will influence the parameter estimates. The most responsible parameters

for prior information are those parameters for which errors in the prior information

have the least influence on the final parameter estimates. Guidelines are developed

for efficient and responsible use of prior information in parameter estimation based on

an analysis of the parameter space using response surfaces and eigenspace

decomposition.

Joint parameter estimation is used when more than one data set is available

to estimate the model parameters. Response surfaces and confidence regions are

used to show how multiple data sets reduce parameter uncertainty. The value of



future data in reducing the uncertainty of parameter estimates is explored. For

weighting data sets in joint parameter estimation, three criteria based on parameter

space analysis are proposed. These three criteria are evaluated and compared to the

more traditional weighting method based on an analysis of data residuals.

A groundwater model for the San Juan Basin, New Mexico, is constructed and

calibrated using the methods developed in this thesis. Hydraulic head data, 14C

concentration data, and prior information on the model parameters is used to calibrate

the model in an efficient and responsible manner. The model is calibrated in two

stages. In the first stage, prior information on the hydraulic conductivity parameters

for the lower model layers was found to be both efficient and responsible in stabilizing

the parameter set. In the second stage, the parameter estimates and uncertainties

based on the four weighting criteria were compared.
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CHAPTER 1. INTRODUCTION

Mathematical models are commonly used to simulate fluid flow and solute

transport in subsurface environments. Site specific models are constructed in order

to better understand the subsurface environment or to predict futurevaIues of

hydraulic head and mass concentration. The simulated model results will be accurate

only if the model is a reasonable representation of the true flow and transport system.

While the mathematical and computational aspects of groundwater models are well

developed, the question of how to choose appropriate parameter values for a specific

flow and transport system is problematic. The process of choosing appropriate

parameter values for a model is termed parameter estimation.

Groundwater flow can be described mathematically by a partial differential

equation and associated boundary conditions. Models for groundwater flow require

parameter values at every point in the model domain to solve for the dependent

variable, the hydraulic head distribution in space and time. These parameters include

hydraulic conductivity, storage coefficient, boundary conditions and initial conditions.

It is impossible to directly identify a parameter such as hydraulic conductivity at every

point in the domain being modelled, so some method of indirectly identifying the

parameters must be found. The inverse method of parameter estimation uses

observations of the dependent variable (hydraulic head) to estimate the parameters

of the model.
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Hydraulic head data have traditionally been used to estimate model parameters.

However, the inverse problem using only head data is often ill-posed [Emsellen and

de Marshy, 1971]. The ill-posed nature of the inverse problem leads to unstable and

uncertain parameter estimates. Independent information (prior information) on

parameter values, such as hydraulic conductivity estimates from pump tests, have

been used to reduce the problems associated withthe ill-posed nature of the inverse

problem [Cooley, 1982]. Another way of reducing the problems due to the ill-posed

nature of the inverse problem is to use an additional data set through joint parameter

estimation. Environmental tracers (isotopes) are present throughout many

groundwater systems, and the tracer data may be used in conjunction with hydraulic

head data to provide improved parameter estimates. For large scale flow systems,

environmental tracer data is a practical type of mass concentration data for use in

estimating flow system parameters.

The work in this thesis was motivated by an attempt to understand how prior

information and joint parameter estimation stabilize parameter estimates and reduce

parameter uncertainty. In numerical experiments using a variety of models, it was

noted that in some cases prior information significantly stabilized the parameter

estimates, while in other cases prior information did not stabilize the parameter

estimates at all. Similarly, for some models joint estimation stabilized parameter

estimates significantly over single state parameter estimation, while for other models

joint estimation did not stabilize parameter estimates at all. The work in this thesis has
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focused on understanding why the above effects occur, and developing methods to

determine how prior information and joint parameter estimation can be used in an

efficient and responsible manner.

The most efficient parameters for prior information are those parameters for

which prior information wiIlstabilize the parameter estimates the most. Responsible

use of prior information involves identifying how errors in the prior information will

influence the parameter estimates. The most responsible parameters for prior

information are those parameters for which errors in the prior information have the

least influence on the final parameter estimates. For joint parameter estimation,

parameter space analysis is used to determine the information available about the

model parameters from each of the data sets. Several criteria are developed in this

thesis to determine how to combine the information from each data set to produce the

best parameter estimates.

1.1 Need for parameter estimation

Steady state groundwater flow is governed by the equation:

V-(K.Vh)--q=O onR (1.1)

subject to the boundary condition:
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-K• Vh n = Q on (1.2a)

h=H onF2 (1.2b)

where R is the spatial domain of the flow system, F is the boundary of the flow

system, V is the gradient operator, K is the hydraulic conductivity tensor, h is the

hydraulic head, q represents internal sources, n is the unit vector normal to the

boundary, Q is the prescribed boundary flux on F1, and H is the prescribed boundary

head on F2.

The solution of the flow equation requires the knowledge of the parameters K,

q, H, and 0 over the entire flow domain and on its boundary. The output from the

model are the simulated values of h throughout the domain of the model. In practice,

the flow equation is often solved by numerical methods, and the parameters take on

discrete values. These discrete parameter values will be referred to as the model

parameter values.

The most straightforward way of constructing a model of a flow system is to

obtain measurements of all the system parameters, use the measured parameter

values as the model parameter values, and directly calculate the output head values.

There are several problems with this approach. First, due to the heterogeneity of the

media, measurements of the parameters would be required at every point in the flow

domain. It is prohibitively difficult and expensive to measure all parameters at every
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point in the flow domain. Parameters such as hydraulic conductivity are expensive to

measure in the field, and in practice measurements are relatively scarce. Second, the

scale of the measured parameters is often quite different from the scale of the model.

A pump test measures hydraulic conductivity at a scale that is often much smaller

than the scale of the model. These problems necessitate an alternate method of

constructing a flow and transport model for a specific field site.

A more practical approach to constructing a model is the process of model

calibration. One way of determining if a model is a good representation of the flow

system is to compare the output head values from the numerical model to a set of

field data. If the simulated head values match the field data closely, then the model

is deemed to be a good representation of the system (at least for the purposes of

simulating the model output). If the simulated head values are a poor match to the

field data, then the model may be a poor representation of the system. Model

calibration is the process of constructing a model so that the simulated data closely

match the field data.

The traditional method of model calibration is manual trial and error. The values

of the model parameters are adjusted manually until the simulated data match the

observed data. When an adequate fit between the simulated and observed data is

obtained, the model is deemed calibrated. The parameter values of the calibrated

model are the model parameter estimates. The trial and error approach is often very
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helpful in understanding how a flow system behaves. However, the trial and error

process is often time consuming, frustrating, and subjective. It is difficult to determine

whether the parameter estimates are the best estimates, or whether other, equally

good or better sets of parameter estimates exist. The quality of the model and the

model parameter estimates are difficult to evaluate using the trial and error approach.

Formalized parameter estimation methods offer a way to automate the trial and

error model calibration process. The formalized parameter estimation schemes present

a framework in which the most likely parameter estimates can be determined, and the

reliability of these parameter estimates can be quantified. The calibration process is

automated, yet the modeller still retains control over the calibration process.The

parameter estimation methods are based on the solution of the inverse problem, which

is the solution of equations (1.1) and (1.2) for the parameters (independent variables),

given the values of the output variable h (the dependent variable). Chapter 2 provides

an overview of many of the parameter estimation methods.

1.2 IlI-posedness of the inverse problem.

The inverse problem is the basis for formalized parameter estimation, but it is

often ill-posed. Due to this ill-posed nature, strict conditions must be met in order to

obtain a meaningful solution. For a groundwater flow problem, these conditions are

that error free values of the hydraulic head must be known everywhere in the flow
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domain, and either the hydraulic conductivity or the flux must be prescribed at one

point along each streamline [Emsellen and de Marshy, 1971]. In addition, the model

must be a true representation of the real system.

In practice, the data are generally sparse, available only at various point

locations throughout the model domain. For a variety of reasons, the data are also in

error with respect to the model [Cooley, 1979]. Examples of data errors are: (1)

measurement errors due to instrument error; (2) errors in head data due to errors in

surveyed elevation; (3) areal models assume that the data is averaged over the

vertical, but the measurements may not be taken over the entire vertical interval; (4)

in cross section models, there is some uncertainty in the depth of measurement when

the screened interval of the well is long; (5) parameter variations smaller than the

modeled scale may cause fluctuations in data values that are not accounted for in the

model; (6) data may be influenced by a transient flow system, yet the model may be

at steady state. All of these factors contribute to errors in the data with respect to the

model, and the magnitude of these errors is often unknown.

In the field, parameters such as hydraulic conductivity vary continuously in

space throughout the flow system. Numerical models of the flow system, either finite

difference or finite element models, divide the flow system into elements. The

continuous variation of the field parameter is replaced by a set of discrete model

parameters. The model cannot represent the true variation in the field parameter, and
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is therefore an approximation to the true flow system. For groundwater problems, the

above factors lead to an ill-posed inverse problem. The ill-posed nature of the inverse

problem often makes the inverse problem difficult to solve.

1.3 Uniqueness, identifiability, and stability issues

Three major issues result from the ill-posed nature of the inverse problem:

uniqueness, identifiability, and stability. A detailed mathematical analysis of these

issues is contained in Carrera and Neuman [1986b]. We present these issues in a

conceptual context.

A solution to the inverse problem is said to be unique if the set of estimated

parameters is the only set which satisfies the conditions to be a solution [Carrera,

1988]. Two types of non-uniqueness have been recognized [Tarantola and Valette,

1982]. One type is due simply to the paucity of data, that is, more parameters are to

be identified than data available. The second type of non-uniqueness is due to the

structure of the physical model. Multiple minima in the objective function surface are

a symptom of non-uniqueness due to model structure. Non-uniqueness due to model

structure may be relatively rare [Carrera, 1988].

A model parameter is non-identifiable if the model output is not sensitive to the

parameter [Chavent, 1979]. For instance, in a one-dimension flow system with
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prescribed head boundaries and a uniform hydraulic conductivity, the hydraulic

conductivity is non-identifiable using head data. The value of hydraulic conductivity

has no influence on the head distribution. If a parameter is non-identifiable, then the

solution to the inverse problem is non-unique. However, a non-unique solution may

occur even if all parameters are identifiable.

A group of parameters may also be non-identifiable. For example, when all

model parameters are estimated using only head data, the set of model parameters

are non-identifiable [Cooley and Naff, 1990]. The model output is not sensitive to the

entire set of model parameters, considered jointly. A suite of different combinations

of parameter values result in identical model outputs. Because of the non-identifiability

of the entire set of model parameters, all model parameters are very seldom

estimated. It is common practice to estimate only a subset of the model parameters,

usually the internal model parameters. The model boundary conditions are commonly

specified.

The major difficulty associated with parameter estimation arises from the

instability of the parameter set being estimated. When a parameter set is unstable,

small errors in the data can lead to large errors in the estimated parameters. Since

errors in the data are unavoidable, large errors in estimated parameters are common

in unstable problems. Unstable parameter sets also lead to large uncertainties in the

estimated parameters. Unstable parameter sets are characterized by a large, nearly
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flat region in the response surface (see Chapter 4). A side effect of parameter

instability is that it slows the convergence rate of the iterative algorithms used for

parameter estimation. Instability often leads to iterative algorithms that stop at points

that are not the true minimum, leading to the ‘(false) assumption that multiple local

minima exist. Thus, instability is often confused with non-uniqueness. Some

researchers have concluded that instability in the inverse problem is such a major

problem that sensible parameter estimates are unattainable in many instances

[Yakowitz and Duckstein, 1980].

1.4 Methods for controlling instability

Since parameter instability is a major issue in parameter estimation for

groundwater flow problems, many researchers have focused on methods of controlling

the parameter instability. Three approaches are possible: (1) reduction in parameter

dimension; (2) incorporation of prior information on parameter values; and (3)

collection of additional data.

1.4.1 Parameter dimension

The parameter dimension is the number of parameters to be estimated. In a

numerical model, an independent model parametermay be assigned to each element

for each type of parameter [eg. Shah et al., 1978]. In this case, there will generally be
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more parameters than data, and the resulting parameter estimates will be non-unique.

To reduce the parameter dimension, elements may be grouped in zones, and a model

parameter assigned to each zone [eg. Cooley, 1977]. Zones for one type of

parameter, such as hydraulic conductivity, may not correspond to zones for another

type, such as recharge.

As the number of zones increases, the fit of the simulated data to the observed

data becomes better, while the uncertainty of the parameter estimates increases. As

the number of zones decreases, the fit of the simulated data to the observed data

becomes worse, but the parameter estimates have lower uncertainties. Several

methods have been developed to determine the optimum number and arrangement

of the zones (Shah et a!., 1978; Yeh and Yoon, 1981; Sun and Yeh, 1985: Carrera

and Neuman, 1986a; Cooley et al., 1986). All methods attempt to minimize the

uncertainty of the parameter estimates while maximizing the fit of the data to the

model. The methods select the simplest model compatible with the available data.

Reducing the number of zones (parameter dimension) may not always help to

reduce the problems associated with the inverse problem. For the case of estimating

all model parameters, the inverse problem is non-identifiable regardless of the number

of parameter zones. In other cases, the geology of the site may impose a given

number and arrangement of zones. It may not be possible to reduce the number of

zones and still retain a credible model of the site.
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1.4.2 Prior information

Independent information on the estimated parameters (called prior information)

has been recognized as valuable in stabilizing the inverse problem. The prior

information can either have a specified reliability [Neuman and Yakowitz, 1979] or an

unknown reliability [Cooley, 1982]. For the case of estimating all the parameters for

a groundwater flow model, the inverse problem becomes identifiable in the presence

of prior information [Carrera and Neuman, 1986b]. Although identifiable, the inverse

problem may still be very unstable.

Though prior information may be valuable in stabilizing the inverse problem, a

cautious use of prior information may be advisable. Prior information may not

significantly stabilize an inverse problem. There is little advantage to be gained by

obtaining prior information about a parameter which will not be effective in stabilizing

the model parameter set. In this thesis, guidelines are developed to identify those

parameters for which prior information will most efficiently stabilize the parameter set.

Another concern when using prior information is that it may not be

representative of the model parameter values. The prior information may be in error

or biased with respect to the model for a number of reasons. First, prior information

may be obtained at a scale which is different from the scale of the model. As an

example, suppose the prior information about hydraulic conductivity for a model zone
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is obtained using a slug test. The slug test samples smaller volume of the subsurface

than the model zone, and the slug test may miss some large scale features that the

model zone includes. The hydraulic conductivity obtained from the slug test would

most likely be different than the hydraulic conductivity at the scale of the model. If

prior information about all hydraulic conductivity zones were obtained from slug tests,

the prior information would most likely be consistently biased with respect to the model

hydraulic conductivity values. Second, prior information on parameters such as

hydraulic conductivity is often extrapolated from measurements taken outside of the

modelled region. This extrapolation introduces the possibility of errors in the prior

information. Third, prior information may be obtained in parts of hydrogeological units

that are not representative of the entire unit. As an example, in low permeability units,

hydraulic conductivity measurements are often obtained in the higher permeability

lenses within the units. Also, if the prior information is obtained from tests near the

outcrop of a hydrogeological unit, it may not represent the parameter values for the

same unit at depth. All of these factors contribute to the fact that the prior information

may be unrepresentative of the model parameter values.

The influence of unrepresentative or biased prior information on the final model

parameter estimates is explored in this thesis. The biased prior information influences

not only those parameters with prior information, but the other model parameter

estimates as well. In fact, small errors in prior estimates may lead to greatly magnified

errors in the final estimates for other parameters. In this thesis, guidelines are
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developed to identify those parameters for which errors in the prior information lead

to the smallest possible errors in the final parameter estimates.

1.4.3 Additional data

Additional data on the dependent variable may be used to stabilize the inverse

problem. This additional data may take the form of additional hydraulic head data, or

it may be a new data type, such as mass concentration data. If the additional data are

more hydraulic head data, they may or may not assist in stabilizing the inverse

problem. When estimating a subset of the model parameters, the additional head data

may help stabilize the parameter estimates. However, when estimating all model

parameters, the additional head data will not stabilize the inverse problem. In this

case, the inverse problem is non-identifiable regardless of the number of head data

used.

Additional data may take the form of mass concentration data. The mass

concentration data will yield information on the flow parameters, since the

concentration is dependent on the fluid velocities, which are a function of the flow

parameters. For this reason, the mass concentration data should assist in stabilizing

the parameter estimates for the flow parameters, even when estimating all model flow

parameters. The use of head and concentration data together falls under the concept

of joint parameter estimation.
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Solute transport of a single decaying nonreactive species is governed by the

advection-dispersion equation:

V •9 (D•Vc - Vc) - = e. on R
(1.3)

subject to the initial conditions:

c = c on R at t—_t0 (1.4a)

and the boundary conditions:

(0 DVc - OVc)•n = g1 on (1.4b)

c=g2 onF4 (1.4c)

where D is the dispersion tensor, c is the mass concentration of the solute, V is the

fluid velocity, 2. is the decay coefficient, 0 is the porosity, c0 is the initial concentration,

g1 is the specified mass flux along F3, and g2 is the specified concentration along F4.

The components of the fluid velocity are calculated from the solution to the flow

equation by

Vi = EJ13[——---—] (1.5)

The components of the dispersion coefficient are given by

D11 T”i,j + (cL—cT).YL + D,,611 (1 .6)

where cL is the longitudinal dispersivity, cia- is the transverse dispersivity, V is the

magnitude of the fluid velocity, °d is the molecular diffusion coefficient, and ö, is the
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Kronecker delta.

The solution to the solute transport equations requires the knowledge of

additional parameters, such as cxi, cIT, 0, and the initial and boundary conditions on

mass concentration. These additional parameters may either be estimated during the

solution of the inverse problem, or independent information on these additional

parameters could be obtained.

The concentration data may eliminate the non-identifiability of the parameter

set and stabilize the parameter estimates. In some instances, concentration data will

stabilize the parameter estimates and reduce parameter uncertainty significantly, while

in other cases the concentration data may not stabilize the parameter estimates

[Weiss and Smith, 1993]. Methods of determining whether the additional data will

significantly stabilize the parameter estimates are developed in this thesis.

For joint parameter estimation, relative weights for each data set are required.

Three methods of weighting are developed in this thesis, based on obtaining the best

possible estimates given the data available. Another issue involved in incorporating

concentration data is the question of the additional transport parameters needed to

simulate the mass concentrations. If these additional parameters are specified using

prior information, the parameter values may be in error. Methods are developed in this

thesis to evaluate the influence of errors in the transport parameters on the estimates
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of the flow parameters.

15 Outline of thesis

The objective of the thesis research is to develop methods for stabilizing

parameter estimates for groundwater flow models in an efficient and responsible

manner. For determining the usefulness of prior information, guidelines are developed

to identify those parameters for which prior information will most efficiently stabilize

the parameter set. Since the prior information may be in error with respect to the

model, guidelines are also developed to identify those parameters for which errors in

the prior information leads to the smallest possible errors in the final parameter

estimates. Using prior information on the basis of these guidelines will result in an

efficient and responsible method of stabilizing the inverse problem using prior

information.

For joint parameter estimation, methods are developed to determine the

usefulness of mass concentration data for the purposes of stabilizing the estimated

parameter set. Several different weighting methods for the data sets in joint estimation

are developed and evaluated. Methods of determining the influence of errors in the

transport parameters on the estimates of the flow parameters are also developed. All

of the above issues are explored through an examination of the model parameter

space.
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The thesis is organized as follows. Chapter 2 contains an overview of previous

work in single state and joint parameter estimation, as well as parameter space

analysis. Chapter 3 details the methods and philosophy of parameter estimation used

in this work. An introduction to the concepts needed for parameter space analysis is

provided in Chapter 4. In Chapter 5, the parameter space analysis is used to evaluate

the use of prior information in parameter estimation. Guidelines are developed for

efficient and responsible use of prior information. In Chapter 6, joint parameter

estimation is analyzed in the context of parameter space analysis. A groundwater flow

model for the San Juan basin, New Mexico, is constructed and calibrated to illustrate

the methods developed in this work, and the results are presented in Chapter 7.
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CHAPTER 2. REVIEW OF PARAMETER ESTIMATION

Parameter estimation for groundwater flow systems has been investigated for

over three decades. The majority of the research has focused on single state

parameter estimation, generally estimating flow parameters using a set of hydraulic

head measurements. Less work has been done on coupled inverse problems, such

as joint flow-mass transport or joint flow-thermal transport problems. This chapter

describes past research on the major issues involved in single state and joint

parameter estimation for groundwater models, as well as past work on analysis of

models using parameter space methods.

2.1 Single state parameter estimation

A great deal of research has been done on parameter estimation for a single

state variable in groundwater flow systems. Complete reviews may be found in Yeh

[1986] and Carrera [1988]. The following is a short overview of the major issues

involved in parameter estimation for a single state variable. The first issue,

parameterization, concerns how the true parameter structure is represented by the

discrete model parameters. The second issue, model construction, includes

determining the correct model structure. The other issues concern estimating model

parameters, assuming a given parameterization and model structure.

19



2.1.1 Parameterization

The field parameters, such as hydraulic conductivity, vary continuously in

space. The boundary parameters, such as specified head, also vary continuously

along the boundary. This continuous variation in the field parameter is replaced by a

set of discrete model parameters. Parameterization refers to the method by which the

true parameter variation is represented by a set of discrete model parameters. There

are several popular parameterization methods:

1. Zonation: The flow region is divided into a number of subregions, or zones, and a

constant parameter value is assigned to each region [eg. Cooley, 1979]. The zonation

approach is conceptually simple, and the zonation may be based on geological or

hydrogeological information. Since the number of parameters is less than the number

of data, the reliablifties of the parameter esfimates may be quantified. The major

criticism of the zonation approach is that the zonation may be incorrect or

unrepresentative of the true system. If the zonation is incorrect, then the parameter

estimates for the zones may be incorrect or meaningless. The issue of determining

the correct zonation is discussed under model construction below.

2. Interpolation: This approach is generally used with finite element methods. A value

of the parameter is assigned to each node of the element, and interpolated within the

element by a local basis function [eg. Yeh and Yoon, 1981]. The elements used for
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parameter interpolation need not be the same as the elements used for the head

interpolation.

3. Discretization: The discrete values of the parameters at every model node or within

each element are taken as the model parameters. This approach can be used with

either zonation or interpolation, and results in a large number of model parameters

[eg. Shah et a!., 1978]. The advantages of this method are that the model structure

does not need to be determined a priori. The disadvantages are that a large number

of model parameters need to be estimated, often greater than the number of data.

The inverse problem is underdetermined, and estimates of the parameter reliability are

difficult to obtain.

4. Stochastic: The model parameters are viewed as random functions, characterized

by a mean and covariance. The estimated parameters are the mean, trend and the

covariance of the field parameters [eg. Kitanidis and Vomvoris, 1983].

All of the above parameterization methods are valid, and each has advantages

and disadvantages. The method chosen is often determined by the type of information

required about the system being modelled and the purpose for which the model is

being developed.
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2.1.2 Model construction

In order to adequately calibrate a numerical model for a flow and transport

system, three major model construction steps need to be followed. First, the model

should include all physical processes relevant to the flow and transport system.

Second, the structure of the model should resemble that of the real system. Third, the

values assigned to the model parameters need to be similar to the true system

parameter values. Most of the work in parameter estimation for groundwater flow

models has concentrated on the third step.

The physical processes of the system are represented in the model by the

equations used for the numerical model. For steady state groundwater flow, equations

(1.1) and (1.2) adequately represent the physics of the flow process. For solute

transport, the advection-dispersion equation (1.3) has traditionally been used to

represent the physics of the mass transport process. However, it is recognized that

this representation using a constant dispersivity is not generally valid in a

heterogeneous porous medium [eg. Geihar and Axness, 1983].

The model structure needs to be defined correctly. The type of boundary

conditions and the location of the model boundaries need to be determined. Within the

model domain, the structure of the hydraulic conductivity, recharge, porosity, and

dispersivity distributions need to be defined. When discrete values of the parameters
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within each element of the model grid are sought, it is not necessary to determine the

model structure before estimating the parameters. Since each element is a separate

model parameter, the results of the parameter estimation will determine the model

structure. More commonly, a zonation or interpolation scheme is used to parameterize

the model. The shape of the parameter zones and the location of the boundaries of

the zones need to be determined before the parameters are estimated. In some

cases, the geology of the site will greatly assist in determining the shape and location

of the internal zones. The model structure is defined by the shape and location of all

model parameter zones.

One approach for determining the correct model structure consists of selecting

the model structure which leads to the best model fit while maintaining parameter

stability [Shah et al., 1978; Yeh and Yoon, 1981]. Alternative models with different

parameter structures are compared. Sun and Yeh [1985] have proposed a method for

automatically determining the model structure without having to construct alternative

models. However, their approach does not include prior information on the model

parameters.

Linear hypothesis testing can be used to compare alternative models. Cooley

eta!. [1986] sequentially compared pairs of models for a large scale flow system using

hypothesis testing. A simple model for the flow system was initially proposed, and

more complex models were compared to this simple model. Models that significantly
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improved the fit of the data were accepted. More complex models were often rejected,

based on the fact that the fit to the data was not improved significantly.

Criteria-based approaches have been used to compare model structures.

Carrera and Neuman [1986a] present four criteria, and use these criteria to

discriminate between competing models. The criteria tend to select the simplest

models that are compatible with the data. Additional complexity can be built into the

models as the quantity and quality of the data increase.

Once the model structure has been determined, the parameters of the model

need to be estimated. The remainder of this chapter concerns estimating the

parameters of the model.

2.1.3 Direct and indirect techniques

The techniques used to solve the inverse problem can be classified as either

direct or indirect. The direct technique treats the model parameters as unknowns, and

uses the hydraulic head distribution and the spatial derivatives of this distribution to

solve for the unknown parameters directly. The solution of the direct technique

requires that an estimate of the hydraulic head be known everywhere in the system,

and that a value of the transmissivity is known on every streamline in the system.

There are methods of relaxing these requirements; for instance, using a flatness
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criterion [Emsellem and de Marshy, 1971]. Most of the early work with parameter

estimation used the direct formulation of the inverse problem [Stallman, 1956]. Many

mathematical techniques can be applied to the direct method of parameter estimation,

among them are linear programming [Klelnecke, 1971]; quadratic programming [Hefez

et al., 1975]; and kriging with matrix inversion [Yeh et al., 1983].

The indirect technique uses an output error criterion, usually the difference

between the measured head values and the model generated head values. The model

parameters are iteratively updated until the output error is minimized. The indirect

technique has been more popular because of its flexibility and stability. Prior

information on parameters can be incorporated into the parameter estimation scheme,

and several data types can be used. The indirect technique is implemented in the form

of minimizing an objective function, resulting in a type of least squares minimization

problem. Mathematical programming techniques for minimizing the objective function

are often used, such as gradient search procedures [Jacquard and Jam, 1965];

quadratic programming [Yeh, 1975]; Gauss-Newton method [Cooley, 1977]; conjugate

gradient method [Neuman, 1980]; maximum likelihood method [Carrera and Neuman,

1 986a]; and the direct search method [ Woodbury et a!., 1987].

2.1.4 Formulation of inverse problem

The specific aim of indirect parameter estimation techniques is to minimize the
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difference between the measured and model generated hydraulic heads. However, the

real objective of parameter estimation techniques should to be to estimate meaningful

parameters. It is necessary to recognize that the hydraulic head data generally

contains errors, and the parameter estimation needs to be performed in a statistical

framework. Three primary statistical approaches- have been introduced: non-linear

regression, Bayesian, and maximum likelihood methods. Each of these approaches

starts from a different philosophical background, however, they each result in a similar

set of equations for parameter estimation. A fourth approach, based on the stochastic

formulation, has also been proposed.

2.1.4.1 Non-linear regression

Non-linear regression generally results in a weighted least squares criterion for

parameter estimation. The weighted least squares criterion attempts to match the

model calculated hydraulic heads to the observed hydraulic heads in a least squares

sense. For hydraulic head data and prior information on parameters, the objective

function to be minimized is:

S [(h_hjTWh(hh*) + (pp*)TW(pp*)j (2.1)

where h* is the vector of observed heads, h is the vector of model calculated heads

at the observation points, W is a weighting matrix, T is the transpose operator, p* is

the vector of observed prior information on parameters, p is the model calculated prior
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information, W is a weighting matrix, and ? is the trade-off between head and prior

data. When S is minimized, the differences between the observed and calculated

heads and the prior and calculated parameter values are minimized.

The main advantage ofthis approach is that it allows the use of a large body

of literature [eg. GraybilI, 1 97] on hypothesis testing, definition of confidence regions,

and model selection. The reliability of the estimated parameters can be determined

from the linearized covariance matrix [Yeh and Yoon, 1981]. Non-linear confidence

intervals for the estimated parameters can also be determined [ Vecchia and Cooley,

1987; Cooley, 1993].

2.1.4.2 Bayesian estimation

The Bayesian approach assumes that the data on hydraulic heads and prior

information on parameters can be represented as joint probability density functions,

and the resulting parameter estimates have a probability density function. The most

general approach is presented by Tarantola and Valette [1982], and the approach of

Gavalas et a!. [1976] is nearly equivalent. The observed hydraulic heads can be

described by a probability density function r(h). The prior information on parameters

is described by the a priori probability density function r(p). The calculated data

obtained from the model is described by a conditional probability density function,

Q(h/p), that is, the probability that the head values are h, given that the model and its
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parameter values are described by p. The posterior conditional probability density

function of the parameter values, s(p/h), is the solution to the parameter estimation

problem. Bayes theorem states that s(p/h) = Q(h/p)r(p)/r(h), thus the probability

density function of the parameter estimates can be constructed by knowing the

statistics of the prior information and the model.

If the parameters and measurement errors are normally distributed and the

model is linear in its parameters, it can be shown that the posterior conditional

probability density function s(p/h) is normally distributed as:

s(plh) exp{_.[(h_h*)TCh1(h_h*) + (p_p*)TC(p_p*)]) (2.2)

where Ch1 is the hydraulic head covariance matrix, and C1,1 is the parameter

covariance matrix. The entire probability density function can be obtained. The

estimated parameters can be described by a probability density function, but it is

difficult and expensive to determine the entire distribution. The practical approach is

to determine the maximum a posteriori point of the distribution. Maximum aposteriori

estimation of a normal distribution is equivalent to minimizing the quadratic objective

function:

S = (hhjTCh’(hh’) + (pp)Tcl(pp.) (2.3)

This objective function is identical to the objective function found using a least squares

criterion, when the inverse covariance matrices equal the weight matrices. The least
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squares criterion and the Bayesian estimation criterion with normally distributed data

errors and parameters lead to minimizing the same objective function.

2.1.4.3 Maximum likelihood estimation

Maximum likelihood estimation calls for choosing parameters that maximize the

likelihood function. If the data errors are normally distributed, the likelihood function

is similar to equation (2.2) above. The chief differences between maximum likelihood

estimation and Bayesian estimation are philosophical. Bayesian formulations consider

the model parameters to be random variables, while maximum likelihood formulations

consider the model parameters to be fixed but unknown. The lack of information

causes the parameters to be uncertain, but the model itself is deterministic. Maximum

likelihood estimation does not require that the model be capable of reproducing the

true system exactly, because the parameters are chosen as most likely within the

framework of a specific model structure. This recognition that the model is not exact

leads to criteria for comparing competing models [Carrera and Neuman, 1 986aJ.

2.1.4.4 Stochastic formulation

Stochastic formulations of the inverse problem emphasize capturing the spatial

variability of the parameters. The parameters are considered random functions, and

are estimated at every point in the aquifer. A statistical model is proposed to represent
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the spatial variability of the parameter within the flow system. This statistical model

can generally be characterized by its mean, covariance, and trend. The spatial

variability of the heads are derived from the spatial variability of the parameters

through a linearized flow equation. The parameters describing the mean, covariance

and trend of the model parameters are estimated using a maximum likelihood

approach, conditioned on the head and prior parameter data. Kriging is applied to

provide minimum variance, unbiased, point estimates of the parameters using all

available information. This approach has been described by Kitanidis and Vomvoris

[1983] for a one dimensional flow system and Hoeksema and Kitanidis [1985] for two

dimensional flow systems, while Dagan [1985] used analytical techniques for

parameter estimation in an infinite medium and with statistically uniform parameters.

Dagan and Rubin [1988] extend this approach to identifying different parameter types

in an unsteady flow regime.

2.2 Joint parameter estimation

Joint parameter estimation methods for groundwater flow systems have mainly

been studied in the context of joint flow-mass transport systems and joint flow-thermal

transport systems. The joint parameter estimation methods were used because

multiple data sets were available, and the joint estimates often resulted in lower

parameter uncertainties than single state parameter estimates. Joint parameter

estimation methods often allowed more parameters to be estimated than equivalent
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single state parameter estimation methods.

In many parameter estimation studies using concentration data, the flow field

and associated flow parameters are considered known, and only the transport

parameters are estimated using the concentration data. Umari et at [1979] used

concentration data with a linearized version of the transport equation to estimate

dispersivities. No estimates of the reliabilities of these estimates were possible in their

formulation. Wagner and Gorelick [1986] estimated all transport parameters for a one

dimensional system using concentration data, and included estimates of the reliability

of the parameter estimates. Carrera and WaIters [1985] estimated the transport

parameters and boundary conditions for a one dimensional tracer test.

True joint parameter estimation studies estimate both the flow and transport

parameters simultaneously. Strecker and Chu [1986] combine a method of

characteristics solute transport simulation with quadratic programming to estimate

transmissivities and dispersivities for a hypothetical aquifer. Because the observations

of head and concentrations had no error, they were able to accurately estimate the

unknown parameters. Wagner and Gorelick [1987] considered optimal groundwater

quality management under parameter uncertainty in which a coupled flow-mass

transport model was identified. Mishra and Parker [1989] considered parameter

estimation for coupled unsaturated flow and transport. Coupled inverse problems in

general were discussed by Sun and Yeh [1990a], and equations and synthetic
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examples for adjoint state parameter estimation were derived for both joint flow-mass

transport and flow-thermal transport. Sun and Yeh [1990b] discussed identifiability

issues for joint flow-mass transport systems. Galley et al. [1992] used an analysis of

data residuals to determine the relative weights for the two data sets in applying

parameter estimation for joint flow-mass transport to a field problem. Xiang et a!.

[1993] developed a composite L1 estimator to identify parameters in a joint flow-mass

transport model, and showed the L1 estimator to be more robust in handling

observation data containing outliers than the more traditional L2 estimators.

Temperature data has been used in a joint inversion scheme to improve the

parameter estimates [Woodbury and Smith, 1988; Wang et al., 1989]. Using only

hydraulic head data, Woodbury and Smith [1988] could estimate only the ratio

between recharge and hydraulic conductivity. The introduction of temperature data

allowed independent estimates for recharge and hydraulic conductivity. The solution

to the joint inverse problem did result in an improvement in the parameter estimates

[Wang et a!., 1989], but temperature data is not readily available at many field sites.

Use of temperature data for parameter estimation in groundwater flow systems is

restricted to more permeable systems with a significant component of vertical

groundwater flow. Joint geophysical-hydrological parameter estimation has also been

proposed by Copty et a!. [1993]. They first estimated the flow parameters using only

head and permeability data, then included seismic velocity data through Bayesian

updating. Semiempirical relationships were used to correlate the seismic velocity and
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and hydraulic properties.

Less formal methods of parameter estimation using environmental tracer data

have been employed. Campana and Simpson [19831 used 14C data to determine

residence times, vertical flow velocities, and average recharge rates for an aquifer

using discrete state compartmental models. Phillips et al. [1989] used hydraulic head

and ‘4C to determine the hydraulic conductivity distribution in two confined aquifers in

the San Juan Basin, New Mexico. Dispersion was not considered when determining

the 14C travel times. They used the estimates of hydraulic conductivity determined

from isotope travel times and the hydraulic head distribution to construct a numerical

model of flow in the aquifers. Krabbenhoft et al. [1 990a,1 990b] used stable isotopes

to estimate the discharge rates of a kettle lake to the surrounding aquifer. They used

two methods to determine the recharge rates, an isotope mass balance method and

a calibrated quasi three dimensional flow and transport model. The recharge rate to

a shallow unconfined aquifer system has been investigated using hydraulic head data

and tritium data [Robertson and Cherry, 1989]. A groundwater flow model was

constructed using permeameter estimates of hydraulic conductivity, and recharge

rates determined from the tritium distribution. The simulated hydraulic heads using this

model compared well with the field measured hydraulic heads. The dispersivity of the

medium was then calculated by comparing field measured tritium distributions to a one

dimensional solution to the advection-dispersion equation. These less formal methods

use the idea that environmental tracers provide additional information about the flow

33



system, but they lack a framework in which to quantify both parameter uncertainty and

the role of the environmental tracer data in reducing parameter uncertainty.

2.3 Parameter space analysis

The results of most parameter estimation methods are typically a set of

parameter estimates and associated uncertainties. Analysis of the parameter space

allows the modeller to visualize the results of parameter estimation, and develop a

clearer understanding of the results. Parameter identifiability and uniqueness issues

can be clearly visualized using parameter spaces. Most parameter space analysis

consists of visualizing response surfaces (objective function surfaces) in two

dimensional parameter space

Sorooshian and Arfi [1982] used two dimensional response surfaces to study

the sensitivity of model parameter estimates in rainfall-runoff models. They believed

that individual parameter sensitivity, measuring the sensitivity of one parameter while

holding the other parameters constant, was a poor method of determining parameter

sensitivity. They introduced two indices to measure two parameter concurrent

sensitivities, based on the shape and orientation of the response surface in parameter

space.

The relationship between model structure and parameter observability and
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uniqueness in rainfall-runoff models was investigated by Sorooshian and Gupta[l 983].

Response surface studies were used to investigate the effects of different model

structures and different objective functions. Sorooshian and Gupta [1985] focused on

evaluating a model based on whether the parameters could be identified. They

introduced some multiparametermethods for evaluating the identifiability of model

parameters. Reparameterization of rainfall-runoff models was suggested in order to

improve parameter identifiability.

Two dimensional parameter uncertainty regions in rainfall-runoff models were

investigated by Kuczera [1 983a]. Kuczera [1 983b] evaluated the effects of including

independent information on the parameters. This study also showed the effects of

different kinds of data on parameter uncertainty, as well as the compatibility of

different kinds of data.

In groundwater modeling studies, parameter space or response surface

analysis is rare. Carrera and Neuman [1 986b] showed, using response surfaces, that

log-transformation of the hydraulic conductivities generally resulted in better

conditioned parameter estimates. They also used two dimensional response surfaces

to demonstrate an example of parameter non-uniqueness. Toorman eta!. [1992] used

parameter response surfaces to evaluate the influence of two data types on parameter

estimates in unsaturated one-step outflow experiments. They evaluated the influence

of outflow and matric potential data on three model parameters, and concluded that
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using both data types together generally resulted in more unique solutions. Parameter

uncertainty was not evaluated.

This thesis extends the use of response surfaces and parameter space analysis

in several ways. First, most of the work using response surfaces described above was

restribted to two dimensional parameter space, since it is easy to visualize in two

dimensions. Eigenspace decomposition is used in this thesis to visualize multi

dimensional response surfaces. Second, response surfaces and parameter space

analysis are used to identify those parameters which most efficiently stabilize the

parameter estimates. Third, parameter space analysis is used to determine the effects

of errors in prior information, and to identify those parameters which lead to the

smallest errors in the parameter estimates. Finally, response surfaces are used to

show how joint data sets reduce parameter uncertainty, and parameter space analysis

is used to develop several different weighting criteria in joint parameter estimation.
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CHAPTER 3. PHILOSOPHICAL AND NUMERICAL ISSUES IN THE INVERSE

PROBLEM

This chapter covers the philosophical and computational aspects of parameter

estimation used in this work. The choice of philosophy is often controlled by the

objectives of the study. Once a philosophy has been chosen, it controls the methods

and results of parameter estimation, as well as the interpretation of the results. The

type of parameterization and type of estimation are the philosophical issues

considered. Computational aspects include the numerical scheme used forthe forward

simulations of flow and transport and the modifications to the basic parameter

estimation method.

3.1 Philosophical issues

This work is geared toward the application of parameter estimation to joint

groundwater flow and mass transport models for large scale flow systems. The

underlying philosophy throughout the work is to develop responsible parameter

estimates with minimum uncertainty. To accomplish these goals, a parameter

estimation method that allows the calculation of estimated parameter reliabilities is

required. The number of parameters needs to be smaller than the number of data in

order to calculate the estimated parameter reliabilities. A zonation approach to

parameterization will be used, with the zonation controlled by the geology of the site.
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3.1.1 Parameterization

In numerical models, the continuous spatial variation in the field parameters

must be replaced by a discrete set of model parameters. Methods of accomplishing

this parameterization were discussed in Chapter 2. In this thesis, zonation is used to

parameterize the internal model parameters and a combination of zonation and

interpolation is used to parameterize the boundary conditions. This type of

parameterization is chosen because zonation allows the number of parameters to be

less than the number of data, which in turn allows the reliabilities of the parameter

estimates to be calculated. If the number of parameters were greater than the number

of data, parameter reliabilities could not be calculated.

The major criticism of the zonation approach is that the zonation may be

incorrect or unrepresentative of the true system. If the zonation does not reflect the

true structure of the system, the parameter estimates for the zones may be incorrect

or meaningless. The philosophy of zonation taken in this work is that the geological

data can be used to define the large scale zones. Geological or hydrostratigraphic

units are mapped and used as the basis for zonation. There is often a sharp contrast

in parameter values between geological units. Within each of these units, the

parameter values vary continuously in space. If a trend in the parameter values within

each unit is hypothesized, then the geological unit is subdivided into zones to reflect

the trend in the parameter value. If no trend in the parameter value is hypothesized,
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then the geological unit is not subdivided. Alternative models using different parameter

structures may be compared to decide if a geological unit should be subdivided into

multiple zones. Hypothesis testing [Cooley et a!., 1986] or criteria based methods

[Carrera and Neuman, 1 986c] can be used to select the proper zonation within each

unit.

3.1.2 Method of parameter estimation

Any of the three statistical philosophies for parameter estimation introduced in

Chapter 2 can be used, since they all lead to similar objective functions. In this thesis,

a non-linear regression approach is adopted, with a linearized approximation for the

parameter reliabilities. This approach allows the calculation of parameter uncertainties

and parameter confidence regions, which are used extensively in this work.

3.2 Computational aspects of non-linear regression

In order to estimate parameters, two problems must be solved; the forward

problem and the inverse problem. The forward problem consists of solving equations

(1.1) and (1.3) for the dependent variables, hydraulic head and tracer concentration.

The inverse problem estimates the independent variables in equations (1 .1) and (1 .3)

using measurements of head and concentration. The forward problem is solved using

finite element methods. The inverse problem is solved using a modified Gauss-Newton
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scheme.

Three unique aspects are introduced in this thesis for the parameter estimation

process. First, the forward transport problem is solved using the Arnoldi algorithm

[Woodbury et al., 1990], which allows rapid calculation of tracer concentrations in

simulations with many time steps. The Arnoldi algorithm is extended to permit the

calculation of sensitivity coefficients through the sensitivity equation method. Second,

the matrices in the Gauss-Newton method are scaled using the parameter values.

This scaling is performed so that the matrices are independent of the differences in

parameter values, which is helpful when evaluating parameter uncertainties. Third, the

Gauss-Newton equations are solved using singular value decomposition [Press et a!.,

1986]. The singular values and vectors are used to allow a visual interpretation of

parameter uncertainty through parameter space analysis.

3.2.1 Solution to the forward problem

The finite element method was used to solve both the flow and transport

models. For steady state flow, the finite element method is straightforward to

implement and can be solved rapidly. For transport using the standard Crank-Nicolson

time stepping scheme, numerical dispersion and stability issues constrain the size of

the elements and the time step length required for accurate solutions. For large scale

flow systems, a large number of time steps are required for accurate solutions.
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Consequently, a large amount of computer time is required in order to accurately

simulate tracer concentrations, especially in large-scale settings The forward problem

must be solved many times during the parameter estimation process. If the computer

time required to simulate tracer concentrations could be reduced, it would result in a

large overall saving in computer time required to obtain parameter estimates. In order

to be able to use parameter estimation methods in large scale flow and transport

systems, an alternate time stepping method is desirable.

One alternative method for time stepping in finite element methods is the

Arnoldi algorithm [ Woodbury eta!., 1990]. The Arnoldi algorithm replaces the global

stiffness and storage matrices with much smaller matrices, and steps through time in

the reduced system. The finite element solution is a linear combination of Arnoldi

vectors, and a small number of Arnoldi vectors can capture the essential

characteristics of the solution. The Arnoldi vectors are calculated from the finite

element matrices, and combined to create the reduced system of equations. The

reduced system of equations is marched through time, and a reduced solution is

determined at each time step. At times of interest, the reduced solution is expanded

into the full solution. The numerical formulation of the Arnoldi algorithm is outlined in

section 3.2.1, and the details of the Arnoldi algorithm for the transport equation are

described in Woodbury et a!., [1990] and Nour-Omid et al. [19911.

For most problems, less than 15 Arnoldi vectors are needed to capture the
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essential characteristics of the solution. Once all Arnoldi vectors are calculated, the

small (less than 15 x 15) system is marched through time using a Crank-Nicolson

scheme. The computer time required to march this small system through time is

negligible. For a small number of time steps (less than 15) the Arnoldi method is

slower than the Crank-Nicolson method. However, for many time steps, the Arnoldi

method can be much faster than the Crarik-Nicolson method.

In theory, the computer time required for the calculation of a single Arnoldi

vector should be equivalent to a single Crank-Nicolson time step. However, this

equivalence is not true when iterative methods are used to solve the system of

equations. For the Crank-Nicolson method, after the initial time step, the starting point

for the iterative solution at each time step is close to the true solution. The iterative

methods converge rapidly, generally in less than 5 iterations for reasonable time

steps. When calculating the Arnoldi vectors, the starting guess for the iterative

methods is far from the solution, and an average of 25-50 iterations is required for

convergence, more if the system of equations is poorly-conditioned. The algorithms

in this work use the ORTHOMIN conjugate gradient method (Mendoza et a!., 1992)

to solve the systems of equations. Using ORTHOMIN, the Arnoldi method really only

starts to outperform the Crank-N icolson method when more than 50 to 100 time steps

are required.
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3.2.2 Solution to the inverse problem

Non-linear regression is a common method for parameter estimation. The

regression technique and solution methods used in this thesis follow Cooley and Naff

[1985] and Hill [1 992]. Aset of observations Y1, I = 1,n of the physical system are fit

to a model which has the parameters B1, I = 1,p. The parameters B. are the true

unknown values of the parameters. The functional relationship between the

observations and the model parameters is

Y=f(B)+E (3.1)

where e is a vector of random variables assumed to have a distribution of

N(O, 2 V) (3.2)

where V is a known (n x n) positive definite variance-covariance matrix. The matrix

V defines the relative covariances between the data, and o is a scaling term with an

unknown magnitude.

The parameter estimation problem for joint data sets actually uses three types

of data; hydraulic head data, mass concentration data, and prior estimates of the

parameters. Equations (3.1) and (3.2) can be applied to both the both the head and

concentration data, though each data set will have different functional relationships

and error terms. The functional relationship f(B) for the head data is the steady state

groundwater flow equation (1.1), while the functional relationship f(B) for the

concentration data is the mass transport equation (1.3). For the prior information on
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model parameters, the functional relationship between the observations and model

parameters is

Y=B-i-E (3.3)

and has a distribution defined by equation (3.2). In real world problems, the use of

(3!2) for the errors in the prior information is not always valid. Chapter 5 examines the

consequences of biased prior information.

The non-linear regression approach minimizes an objective function S(b) to

estimate the parameters b, with the resulting parameter estimates defined as 6. For

the joint parameter estimation problem using head, concentration, and prior

information on parameters, the objective function is:

S(b)—wh(Yh—f(b))TV,1 (Yh—f(b)) + w(Y_f(b))T V1 (Y—f(b))

+ (bb)T V, (b,,—b) (3.4)

where the h subscript denotes those terms relating to head data, the c subscript

denotes those terms relating to concentration data, and the p subscript denotes those

terms relating to prior information on parameters. The Wh and w, terms are weights

designed to yield a trade-off between the parts of the objective function. The design

and magnitude of these weighting terms are discussed in chapter 6.

A modified Gauss-Newton method will be used to determine the parameter

estimates for the objective function given in (3.4). The basic Gauss-Newton method
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and various modifications are given in Cooley and Naff [1985]. For this work, the

Gauss-Newton method is modified by scaling the approximate Hessian matrix,

augmenting the Hessian matrix using Marquardt’s modification [Marquardt, 1964], and

singular value decomposition (SVD) [Press et al., 1986]. This combination of

modifications is used not only to reduce problems associated with ill-conditioned

parameter sets, but also to allow easy analysis of the uncertainties associated with

the parameter estimates.

The basic Gauss-Newton method is based on computing, at each iteration, the

minimum of the second order Taylor expansion of the objective function (3.4). The

resulting set of equations are:

Hdk=g (3.5)

where

H = approximate Hessian Matrix = XT V’ X (3.6)

g = Gradient Vector = XT V (Y - f(b)) (3.7)

The approximate Hessian matrix (also called the least squares coefficient matrix) is

a first order approximate to the true Hessian matrix. The vector dk is the correction to

the parameter vector at the kth iteration. The matrix V’ is the inverse of the combined

data reliability matrix. The matrix X is the sensitivity matrix, whose elements are

where {f(b)}1 is the ith data point and b1 is the jth parameter. Because the

objective function (3.4) is non-linear with respect to the parameters, more than one

iteration is required to obtain the parameter estimates. A starting guess for the
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parameters is used to initiate the procedure. The approximate Hessian matrix and the

gradient vector are calculated using the initial estimates of the parameter values.

Equation (3.5) is solved for the parameter corrections, and an updated set of

parameter estimates is calculated. These updated parameter values are then used to

recalculate the approximate Hessian matrix and gradient vector, and new parameter

corrections are calculated. This process is continued until the parameter values

converge within a given tolerance. The final parameter values are the parameter

estimates. The calculation of the uncertainties in the parameter estimates, and their

relationship to the response surfaces, are discussed in Chapter 4.

3.2.2.1 Calculation of the sensitivity matrix

For the Gauss-Newton method, calculating the sensitivity matrix of partial

derivatives is the most time consuming portion of the parameter estimation process.

Three methods are in use [Yeh, 1986].

1. Influence coefficient method. Each parameter is perturbed from its original estimate

by a small amount, and a complete simulation is performed with the perturbed

parameter. Since the method requires perturbing the parameters one at a time, the

method requires p+1 forward simulations to determine the sensitivity matrix.

2. Sensitivity equation method. The governing equation is differentiated and

rearranged so that the partial derivatives with respect to each parameter are used as
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the dependent variable. The numerical solution to the set of equations yields one

column of the sensitivity matrix. Again, p+1 simulations are needed to determine the

sensitivity matrix.

3. Adioint state method. The adjoint state equations for the original partial differential

equations must be derived. The number of adjoint equations to be solved to determine

the sensitivity matrix is equal to the number of observations n.

The influence coefficient method is the least accurate method [Sun and Yeh,

1 990a]. The sensitivity equation method is efficient if there are more observations than

parameters to be identified. The adjoint state method is more efficient if there are

more parameters to be identified than observations. For this work, there are always

more data than parameters, so the influence coefficient and sensitivity equation

methods are the best options. Both methods are used in this work, but in general the

sensitivity equation method is superior, for reasons given below.

Sensitivity equation method aiplied to steady state flow equation

The discretized form of the flow equation is:

Ah=f (3.8)

A is the (I x I) global stiffness matrix, where I is the number of nodes in the finite

element mesh, h is the (1 x 1) vector of hydraulic head values at each node of the

finite element mesh, and t is the (I x 1) forcing vector, which includes boundary

47



conditions and flux terms. The sensitivity formulation of the flow equation is:

(i9)
abj ab1 ab1

where b is the fth parameter. The variable to be solved for is , the sensitivity

vector of the head to the jth parameter. The form of the equation is identical to the

original discretized flow equation, and only the right-hand side changes for each

parameter. The matrix consisting of the derivative of the stiffness matrix with respect

to each parameter (second term on the RHS) is very sparse. Because only a sparse

matrix needs to be formed for each parameter, and only the RHS of the system of

equations is altered, the sensitivity equation method is very efficient. It is much faster

than the influence coefficient method for calculating the sensitivity coefficients in the

steady state flow equation.

Sensitivity equation method applied to the transient transport equation

The discretized form of the transport equation is:

[A + (1/At) M] c1 = [(1/At) M] C1 + f (3.10)

A is the global stiffness matrix for the transport equation (different from the flow

equation), M is the global storage matrix, At is the time step length, c is the vector

of concentrations at the new time step, c is the vector of concentrations at the

previous time step, and f is the forcing vector. The sensitivity formulation of the

transport equation is:

48



[A+.IM]
t+At

+ —

.
{c}÷ (3.11)

The variable to be solved for at each time step is , the partial derivative of

concentration with respect to the fth parameter at the current time step. From the

solution to equation (3.10), the concentrations at each time step are known. The

derivative of the concentration with respect to the parameter isknown at the previous

time step. The form of the sensitivity equation is identical to the discretized form of the

transport equation, only the right hand side is different. However, unlike the flow

equation, the matrix of the derivatives of the stiffness matrix with respect to the

parameters (third term on RHS) is a full matrix. Any change in the flow parameters

alters the entire velocity field, on which the global stiffness matrix is based. For the

transport equation, the sensitivity equation approach and the influence coefficient

approach are approximately equal in terms of computer time required.

Sensitivity equation method applied to the Arnoldi transport equation

Since the Arnoldi algorithm is used for time stepping in the transport equation,

the sensitivity matrix equations need to be derived with respect to the Arnoldi

equations. The Arnoldi algorithm reduces the discretized transient transport equation

(3.10) to a reduced set of equations:

[I + (1/At) P1 = [(1/At) P] w1 + g (3.12)

where:
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I = Identity matrix

= [QT M A1 MO]; (mxm)

g = 0T M A1 f ; (mxl)

w= QTC ;(mxl)

0 = matrix of Arnoldi vectors; (Ixm)

m = number of Arnoldi vectors

Since the sensitivity equation is of the same form as the transport equation, the

sensitivity equation (3.11) can also be reduced to the Arnoldi form. For each

parameter b., the vector and the matrix . must be formed. The vector...!.
3b1 abj

can immediately be reduced into Arnoldi dimensions by pre-multiplying by (QT M A1).

However, the matrix must be multiplied by the concentrations at each time step,

and the resultant vector then reduced to Arnoldi dimensions and added to the RHS

vector. This operation, performed at each time step, is inefficient. The advantage of

the Arnoldi reduction is wasted.

An approximate method for calculating the sensitivity coefficients using the

Arnoldi algorithm was developed. Instead of multiplying the matrix . by the

concentrations and then reducing the resultant vector at every time step, the

multiplication and reduction is only done a few times during the entire time stepping

scheme. The resulting sensitivity coefficients are not exact. The accuracy of the

sensitivity coefficients depends on the number of times the multiplication and reduction

is performed. One multiplication and reduction, using only the concentrations at the
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end of the simulations, was generally not adequate. The convergence rate using these

sensitivity coefficients was relatively slow. Using two multiplications and reductions,

the sensitivity coefficients were generally adequate. More than five multiplications and

reductions resulted in good approximations to the true sensitivity coefficients for most

problems in this thesis.

Near the minimum of the objective function, especially in poorly conditioned

problems, the sensitivity coefficients need to be quite accurate. Though increasing the

number of time steps in which the true RHS vector is calculated does increase the

accuracy of the sensitivity coefficients, it is at the expense of computer time. The

algorithm used in this work switches from the sensitivity coefficient formulation for the

transport problem to the influence coefficient method once the convergence rate slows

significantly. It was found that the influence coefficient method, combined with the

Arnoldi algorithm for transport, performs well near the minimum. Forgroundwaterflow,

the sensitivity coefficient formulation is used at all iterations, since it is much more

efficient than the influence coefficient method.

3.2.2.2 Modifications to the basic Gauss-Newton method

To speed convergence for unstable problems and to allow consistent analysis

of parameter uncertainties, three modifications to the basic Gauss-Newton method

were made. The first is the Marquardt modification, which moves the descent direction
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from a Newton direction toward a steepest descent direction if a reduction in the

objective function does not occur at any iteration [Marquardt, 1964]. The

implementation of this modification is described in Cooley and Naff [1985]. The second

modification is scaling the approximate Hessian matrix and gradient vector by the

parameter values. The third modification is to use singular value decomposition (SVD)

to solve the Gauss-Newton system of equations while discarding small singular

values.

The approximate Hessian matrix and the gradient vector are defined in

equations (3.6) and (3.7). The elements of the approximate Hessian matrix and the

gradient vector are scaled by the current parameter values.

HIk = HJk
* b *

bk (3.13)

g. g.*b. (3.14)

This scaling is not the usual scaling performed in modified Gauss-Newton methods.

Scaling the approximate Hessian matrix by the parameter values produces a matrix

that is independent of the differences in parameter values. Later in this work, the

scaled Hessian matrix is used to characterize the relative uncertainties of the

parameters as they relate to the parameter space. If the approximate Hessian matrix

were left unscaled, the parameter space would reflect not only the relative parameter

uncertainties, but the differences in parameter values as well.

The third modification is to use singular value decomposition (SVD) to solve for

52



the parameter corrections at each iteration. The scaled approximate Hessian matrix

is decomposed by SVD into eigenvectors and eigenvalues (for a square matrix,

elgenvalues are identical to singular values).

H = U*A*UT (3.15)

where U is the matrix of elgenvectors and A is the diagonal matrix containing the

singular values. The parameter corrections at each iteration are calculated by:

Ab = UK1 UT * g (3.16)

However, before the parameter corrections are calculated, the singular values of the

scaled Hessian matrix are examined. If there are one or more singular values that are

much smaller than the other singular values, these small singular values are set to

zero. This procedure prevents the estimation routine from searching along very flat

directions of the parameter space for a minimum, and allows the routine to

concentrate on the steepest directions in parameter space. For poorly conditioned

problems, this procedure speeds convergence and allows a set of parameters to be

estimated where ordinary methods would fail to converge. The singular values are

also used to characterize the shape and orientation of the parameter confidence

regions, as described in Chapter 4.
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CHAPTER 4. CONCEPTS OF PARAMETER SPACE ANALYSIS

Parameter space analysis can be a valuable tool for understanding and

calibrating groundwater flow and mass transport models. The parameter space

contains information about the parameter estimates and their associated uncertainties,

and also the shape and orientation of the confidence region. The shape and

orientation of the confidence region can provide information about the interaction of

the model parameters and the data. This chapter introduces the concepts needed for

parameter space analysis. Parameter spaces and response surfaces are defined, and

the relationship between the response surface and the parameter confidence region

is formalized. The linear approximation to the parameter confidence region is

examined along with its representation by eigenvectors and elgenvalues. Examples

of response surfaces and confidence regions for well- and poorly-conditioned

parameter sets are shown.

4.1 Parameter space

The parameter space for a model is the p-dimensional space that contains all

possible combinations of parameter values, where p is the number of model

parameters. Each model parameter is represented by an axis in parameter space. If

no information is available about the model parameters, any point in the parameter

space is equally likely as the set of parameter estimates. The process of parameter
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estimation identifies the most likely region of parameter space for the estimated

parameters.

In this work, the parameter spaces are scaled. Each axis in parameter space

is scaled by a value representing that parameter, usually the parameter estimate. The

scaling is performed so that the parameter space represents the relative uncertainties

in the parameter estimates, and not just differences in parameter values. For instance,

if parameter b1 has a value of 2000, and parameter b2 has a value of 0.001, a 10%

uncertainty in b1 will be much larger than a 10% uncertainty in b2. The unscaled

parameter space creates the impression that b1 is much more uncertain than b2, while

the scaled parameter space shows that b1 and b2 have similar relative uncertainties.

Scaling parameter space is equivalent to comparing parameter coefficients of variation

rather than comparing parameter variances.

4.2 Response surfaces

Using non-linear regression, an objective function is minimized to obtain

parameter estimates and their associated uncertainties. For a joint parameter

estimation problem using both hydraulic head and mass concentration data, and

including prior information on the parameters, the objective function is given by

equation (3.4). Values of the objective function can be mapped into the parameter

space, and these values define a p-dimensional surface called the response surface
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(also known as the objective function surface). The global minimum in this response

surface defines the set of the parameter estimates.

A response surface can be constructed for a model when the following

conditions have been met. First, a groundwater model needs to be defined and

constructed. The location and type of boundary conditions, initial conditions, and

distributed parameters need to be defined and a numerical model constructed.

Second, calibration data and/or hydrogeological data need to be collected and

available for parameter estimation. The process of parameter estimation simply

searches the response surface for a minimum.

A unique response surface exists for each data value used to calibrate the

model. The shape and orientation of the response surface can indicate what

information the data has about the model parameters. The surfaces for each data

value are superimposed to obtain the total response surface. The response surface

for each data value, or each group of data values, can be analyzed. It is easy to

discover whether data values contain similar or different information about the model

parameters.

When only two model parameters are estimated, maps of the response

surfaces can be constructed as follows. A two dimensional grid is defined, with one

parameter represented by each axis. A lower and upper bound for each parameter
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value and a step size for each parameter is selected. At each point on the grid (each

combination of parameter values b1 and b2), a forward simulation is run, and the

simulated values for the hydraulic heads and tracer concentrations are calculated.

These simulated data values and the parameter values are substituted into equation

(3.4), and a value for the objective function is calculated. The response surface can

be visualized by contouring the values of the objective function throughout the grid

area.

When more than two model parameters are estimated, it is more difficult to

construct response surfaces. The process of constructing response surfaces with

more than two parameters makes heavy demand on computer time, since the number

of forward simulations needed increases as x, where p is the number of parameters.

It is also very difficult to visualize the response surfaces in parameter spaces greater

than two dimensions. We will present response surfaces for two parameter dimensions

only, and use other techniques to visualize response surfaces for more than two

parameter dimensions.

Using response surfaces, the estimated parameter values and associated

uncertainties are easy to visualize. The Gauss-Newton method described in Chapter

3 allows both the minimum in the response surface and the shape of the response

surface to be approximated without calculating the entire response surface. The

matrices involved in the Gauss-Newton method can also be used to visualize
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response surfaces for multi-parameter estimation problems.

4.3 Relationship between response surfaces and confidence regions

Contours of the response surface represent boundaries of the confidence

region for the parameter estimates [Ratowsky, 1984]. Under the likelihood ratio

method, and the assumptions that the uncertainties in the data are normally

distributed, known and included in Vh, V, and V, and that model error is negligible,

an approximate (1-o)1OO% confidence region for the parameter set B is given by:

S(b)-S()
<2 (p) (4.1)
-

where S(b) is the value of the objective function using the parameter set b, defined

by equation (3.4), S(B) is the value of the objective function at the estimated

parameter set B, and x2(P) is a chi-square distribution with p degrees of freedom. The

? term is often unknown, and can be estimated from the model. The estimate of a2

is 2, defined as:

s2 S(s) (4.2)
(n-p)

where n is the number of data and p is the number of parameters. An approximate

(1-a)100% confidence region for the parameter set B is given by:
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S(b)-S() pF(p,n-p) (4.3)

where F(p,n-p) is an F distribution with p and (n-p) degrees of freedom. For large n,

s2 approaches a2 and pF(p,n-p) approachesx2(p), so the two confidence regions are

equivalent,

Figure 4.1 illustrates a response surface and confidence regions for a two

parameter system. The response surfaces are presented as (S(b)-S())Is2so that the

confidence regions can be visualized. The parameter axes b1 and b2 are scaled by

their estimated values, so the point in parameter space at b1=1 .0, b2=1 .0 represents

the parameter estimates. Both univariate and joint confidence regions can be

calculated from this response surface. A univariate confidence interval is the

confidence interval for one parameter at a time, assuming the values of the other

parameters remain fixed. For large n, the univariate confidence interval can be

obtained from the 2(1) distribution. At a 68.6% confidence level (one standard

deviation), c=.314, and 2314(1)=1.0, so the univariate confidence intervals are

calculated from the 1.0 contour. The joint confidence region is the confidence region

for both parameters, where both can vary simultaneously. For a two parameter

system, the joint confidence region is obtained from the 2(2) distribution. At a 68.6%

confidence level,2314(2)23 so the joint confidence region is based on the 2.3

contour. Both the univariate and joint confidence regions are shown in Figure 4.1.
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4.4 Linearized confidence regions

The confidence region defined by the response surface reflects the true non

linearity of model parameters. It is often convenient to work with a linearized

approximation to this non-linear confidence region. The linearized confidence region

can be calculated from the matrices involved in the Gauss-Newton parameter

estimation scheme. The linearized confidence region is defined as

(b_)T 5Tv12 (b-13) ps2F(p,n-.p) (4.4)

where is the sensitivity matrix evaluated at the parameter estimates [Ratowsky,

1984]. The boundary of (4.4) forms an ellipsoid in parameter space centered on

This ellipsoid in p-dimensional space is often hard to visualize. It is more

convenient to calculate the major axes of this ellipsoid. The length and orientation of

these axes can be calculated from either the sensitivity matrix, the approximate

Hessian matrix, or the variance-covariance matrix evaluated at the final parameter

estimates. For this work, these axes are calculated from the approximate Hessian

matrix because it is readily available in scaled form, and can be manipulated by

adding and subtracting data without changing dimension. The scaled Hessian matrix

is decomposed by SVD into singular values and associated vectors (equivalent to

eigenvalues and eigenvectors for a square matrix). The square root of the inverse of

the eigenvalues are the lengths (L) of the axes of the ellipsoid. The associated

eigenvectors are unit vectors (U) defining the orientation of the axes of the ellipsoid
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with respect to the parameter axes.

The boundary of the ellipsoid is calculated to coincide with the 1.0 contour of

the response surface. The projection of the ellipsoid onto each parameter axis defines

the univariate confidence intervals for the estimated parameters at one standard

deviation. Since the parameter space is scaled by the estimated parameter values,

the univariate confidence intervals are for the coefficient of variation of the estimated

parameters.

For the response surface shown in Figure 4.1, a linearized confidence region

can be calculated from the scaled approximate Hessian matrix. The SVD

decomposition of the scaled approximate Hessian matrix yields eigenvectors and

eigenvalues, which can be converted into lengths and orientation of the axes

associated with the linearized confidence ellipse. Table 4.1 summarizes the lengths

and orientation of the axes of the confidence ellipse.

Table 4.1 Axes of confidence ellipsoid

Lengths of Axes L1 = .008 [ L2 = .024

Unit Vectors U1 U2

b1 axis .98 .16

b2 axis .16 -.98
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Constructing the ellipse from the Information contained in Table 4.1 Is

straightforward. The ellipse has two axes, a short axis with a length L1 — .008, and a

long axis with a length L2 .024. The unit vector U1 defines the orientation of the short

axis with respect to the parameter axes b1 and b The unit vector U1 has a projection

of 0.98 In the direction of parameter axis b1, and a projection of 0.16 in the direction

of parameter axis b2. To plot the short axis, the total projection in each parameter axis

direction is required. The total projection is the product of the axis length and the unit

vector In the direction df each parameter axis. The total projection of the short axis in

the b1 axis direction is (0.008) * (0.98) —0.0078. The total projection of the short axis

in the b2 axis direction is (0.008) * (0.16) — 0.001 3. The construction of the short axis

using these total projections Is shown In FIgure 4.2. For the long axis, the construction

Is similar. The total projection of the long axis in the b1 axis direction is (0.024) * (0.16)

— 0.0034. The projection of the long axis in the b2 axis direction is (0.024) * (0.98) —

0.023. These total projections are used to construct the long axis of the confidence

ellipse, as shown in FIgure 4.2. This confidence ellipse coincides with the 1.0 contour

of the confidence region.

The ratio of the lengths of the longest axis of the confidence region to the

shortest axis of the confidence region is termed the condition number (ON) for the

parameter estimates [Sorooshlan and Gup 1985]. The ON Is a measure of the

stabilIty of the parameter estimates, with smaller CNs Indicating more stable

parameter estimates. For this parameter set, the ON — 3.0.
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4.5 Examples of response surfaces

Response surfaces are very useful in understanding and diagnosing problems

associated with ill-conditioned parameters. The axes of the confidence regions can

yield similar information. Figure 4.1 and 4.3 are examples of two parameter response

surfaces. Figure 4.1 is a response surface for a well-conditioned parameter set, while

Figure 4.3 shows a more poorly-conditioned parameter set.

For the well-conditioned set of parameters (Figure 4.1), the response surface

has a well-defined minimum. The joint parameter confidence region enclosed by the

2.3 contour is relatively small. The condition number, CN = 3.0, is relatively small. The

response surface for the poorly-conditioned parameter set (Figure 4.3) contains a

valley with a very flat bottom. The minimum of the response surface lies somewhere

along this valley. For poorly-conditioned problems, this flat-bottomed valley is the

cause of small errors in data values leading to large errors in estimated parameter

values. Small errors in the data values can move the minimum in the response

surface to anywhere along the bottom of the valley, covering a wide range of

parameter estimates. The joint confidence region for the parameter estimates

enclosed by the 2.3 contour is relatively large. The condition number for this

parameter set is large (CN = 17), showing that one axis of the confidence region is

much longer than the other.
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When more than two parameters are estimated, it is difficult to visualize

response surfaces. The axes of the confidence ellipsoid are used to understand the

shape and orientation of the response surface. The CN can give an indication of the

conditioning of the parameter set. As the parameter dimension increases, the CN will

increase, so no absolute scale can be assigned to the magnitude of the CN A:bloser

inspection of the parameter axes will give more detailed information. For instance, if

all the axes of the confidence region are of similar length, then the parameter set is

generally well-conditioned, and the CN will be small. If one axis of the confidence

region is much longer than the other axes, a flat-bottomed valley exists in the p

dimensional response surface. If two axes of the confidence region are much longer

than the other axes, a plane in p-dimensional space has values of the response

surface near the minimum. The last two examples both represent poorly conditioned

parameter sets.

The orientation of the confidence ellipsoid relative to the parameter axes is also

important. The orientation of the confidence region will determine how an error in the

estimate of one of the parameters translates into errors in the other parameters. This

concept is discussed in Chapter 5. The orientation of the confidence ellipsoid is also

important when using joint data sets, as the difference in orientations of the

confidence regions for the two data sets will determine the reduction in parameter

uncertainty for the joint estimates. These concepts are discussed in Chapter 6.
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4.6 Relative contribution to the coefficient of variation

To better understand the confidence region, it is helpful to know the contribution

from each axis of the confidence ellipsoid to the coefficient of variation of the

parameter estimates. The total coefficient of variation for each parameter, CV, is the

square root of the element (i,i) of the inverse scaled approximate Hessian matrix. CV1

can also be calculated from the axes of the confidence ellipsoid as

CV
= lJj=1,p (U1L1)2 (4.5)

Conceptually, the squared projection of all axes of the confidence region j in the

direction of the parameter i are summed. The total coefficient of variation is the square

root of this sum. Figure 4.4 is the confidence ellipse for the response surface of Figure

4.1. The axes of the confidence region and the contribution of each axis to the total

coefficient of variation of parameter b1 are labeled. The relative contribution to the total

coefficient of variation of each parameter i from each parameter axis j is

‘U L’
RC.. =

‘ ‘‘ “ (4.6)
C

The relative contribution (RC) has values ranging from zero to one. If a relative

contribution RC is near zero, then ellipsoid axis j has a very small contribution to the

total coefficient of variation of parameter i. If a relative contribution RC is near one,

then ellipsoid axis j has a very large contribution to the total coefficient of variation of

parameter I. The relative contributions for the axes of the confidence ellipse in Table
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4.1 are shown in Table 4.2.

Table 4.2 Relative contribution to total CV from each axis of the confidence region

Axis 1 Axis 2

Parameter b1 .81 .19

Parameter b2 .01 .99

4.7 Summary

This chapter introduced the concepts needed for parameter space analysis.

Response surfaces are a picture of the objective function in parameter space. Both

univariate and joint confidence region for the parameter estimates can be determined

from the response surface. A linearized approximation to the confidence region may

be calculated from the approximate Hessian matrix, and SVD used to calculate the

axes of the confidence ellipsoid. The total coefficient of variation and the relative

contribution to the coefficient of variation from each axis of the joint confidence

ellipsoid can be determined. Examples have been presented for well- and poorly

conditioned parameter sets.
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Figure 4.3 Example of a response surface for a poorly-conditioned parameter set.

69



b2 1.0

Figure 4.4 Axes of confidence region showing partial coefficient of variation from
each axis of the confidence region.
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CHAPTER 5. PARAMETER SPACE ANALYSIS FOR EFFICIENT AND

RESPONSIBLE USE OF PRIOR INFORMATION

Parameter space analysis can be used to develop guidelines for efficiently and

responsibly stabilizing the inverse problem using prior information. When a flow model

is constructed, all parameters associated with the model need to be defined, both the

internal model parameters such as hydraulic conductivity and recharge, and the

boundary values such as specified head and specified flux. If all model parameters

are estimated using only hydraulic head data, the inverse problem will be non-

identifiable. This non-identifiability can be observed in the response surface for the

parameter set. The response surface will contain a perfectly flat-bottomed valley

cutting across the entire parameter space.

To change this non-identifiable inverse problem into an identifiable problem,

prior information is needed. This prior information can take one of two forms: (1) a

specified value for a given parameter, assuming no uncertainty in the specified value,

or (2) a prior value with some uncertainty. Specifying a parameter value with no

uncertainty is equivalent to eliminating a dimension in parameter space. Prior

information with uncertainty alters the topology of the response surface in the full

parameter space. These two uses of prior information are treated separately in this

chapter because they act differently in parameter estimation problems and produce

different results in parameter space. In this work, prior information without uncertainty
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is referred to as specifying a parameter value. Prior information with uncertainty is

termed prior information.

In many cases, when either of the above approaches is used to eliminate the

non-identifiability of the parameter set, the parameter set remains unstable. This

instability can be observed in the response surface for the parameter set. The

response surface will contain a valley with a nearly flat boffom. The unstable

parameter set is identifiable, since a unique minimum does exist, but it is very difficult

to find this minimum. The response surfaces for non-identifiable and unstable

parameter sets are very similar. The same remedies used to correct problems with

non-identifiable parameter sets can be used to correct problems with unstable

parameter sets.

When prior information is used to stabilize a set of parameter estimates, it must

be recognized that the prior information may be in error with respect to the model. As

discussed in Chapter 2, the prior information may be biased. If errors in the prior

estimates are present, the final parameter estimates for all parameters may be

influenced by the erroneous prior information. The influence of errors in the prior

information on the parameter estimates can be determined using response surfaces

and parameter space analysis.

In this chapter, guidelines will be developed to ensure the most efficient and
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responsible use of prior information. Those parameters for which prior information will

reduce the overall uncertainty in the parameter estimates the most and produce the

most stable parameter set will be the most efficient parameters. Responsible use of

prior information involves identifying how errors in the prior information will influence

the final parameter estimates. Those parameters for which errors in the prior

information will have the least influence on the final parameter estimates will be the

most responsible parameters. Both the most efficient and most responsible

parameters can be identified through an examination of the model parameter space

and response surfaces.

This chapter is organized as follows. First, a synthetic flow model is introduced.

The parameter space of this synthetic model is used to illustrate the concepts

developed in this chapter. The effect of specifying parameter values is explored using

a two parameter subset of the synthetic model. The effect of prior information is

explored using the same two parameter subset. Guidelines for identifying those

parameters for which prior information is most efficient are developed. Next, the

consequences of error in the prior parameter values is explored using a three

parameter subset of the synthetic model. Guidelines for identifying those parameters

which result in the most responsible parameter estimates are developed. Finally, the

concepts and methods developed using the simple two and three parameter systems

are demonstrated on a more complicated multi-parameter system.
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5.1 Synthetic model

A simple synthetic flow model is used to illustrate the concepts developed in

this chapter. A two-dimensional flow system is constructed. The flow system is 6 km

by 6 km, and contains two transmissMty zones, one zone of enhanced areal recharge,

and two constant head boundary zones (Figure 5.1). The remaining model boundaries

are no-flow boundaries. The flow system is at steady state. Fifteen observation points

are used. Observed values of the hydraulic head are simulated by running a forward

simulation using the true parameter values, and calculating the data values at the

sampling locations. Random Gaussian errors with an uncertainty of 1 meter are added

to these data values to generate the observed data values. These observed data

values are used to estimate the parameters.

There are five parameters in the flow system: the two transmissivity zones (T1

and T2); one recharge zone (R); and two specified head zones (H1 and H2). During

parameter estimation, the transmissivity parameters are log-transformed, and the other

parameters are untransformed. For ease of presenting response surfaces, generally

only two parameters will be estimated at one time. The other three parameters are

fixed at their true values. In the following sections, the effects of including prior

information are examined using the parameter space for parameters T1 and R. This

parameter space is examined using both the response surface and the axes of the

confidence region.
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5.1.1 Parameter space T-R

Figure 5.2 illustrates the response surface for the parameters T1 and R. The

response surface is plotted as [S(b)-S(6)]/s2,so the contours represent the height of

the response surface above the minimum. Since the parameter space is scaled by the

parameter estimates, the parameter estimates are at the point T1 = 1.0, R = 1.0 in

parameter space. The response surface contains a long, narrow valley. The axis of

this valley is oriented such that is makes a much smaller angle with respect to the R

parameter axis than the T1 parameter axis.

The confidence ellipse is a linearized picture of the response surface, with the

boundary of the ellipse corresponding to the 1.0 contour of the response surface. This

ellipse can be characterized by its major axes, calculated from SVD decomposition of

the scaled Hessian matrix at the parameter estimates. Table 5.1 gives the axes of the

confidence ellipse for this parameter set. L1 and L2 are the lengths of the two axes,

and U1 and U2 are the unit vectors showing the orientation of the axes. The condition

number for this parameter set is 16.8, indicating that axis 2 is approximately 17 times

longer than axis 1.

Both the response surface and the axes of the confidence ellipse indicate that

along the direction of axis 2 the response surface is relatively flat. The parameter set

T1-R is relatively unstable. Using equations (4.5) and (4.6), the relative contributions
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Table 5.1 Axes of confidence ellipse for T1-R parameter set

Lengths of Axes L1 = .0077 L2 = .129 1
Orientation of Axes U1 U2

T1 axis -.94 -.32

R axis .32 .94

to the parameter coefficient of variation from each axis of the confidence region can

be calculated (Table 5.2). Axis 2 is the major contributor to the uncertainty to both

parameters. If the length of axis 2 could be reduced, then the uncertainty in both

parameter estimates would be decreased.

Table 5.2 Relative contributions to the parameter CV from each axis of the
confidence region for parameter set T1-R

Axis 1 Axis 2

Parameter T1 .029 .971

Parameter R .001 .999

5.2 Efficient use of prior information

In order to stabilize this parameter set, prior information can be used. The prior

information may either be prior information without uncertainty (equivalent to specifying

a parameter value), or prior information with uncertainty. First, consider specifying a

parameter value, which results in removing a parameter dimension from parameter
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space. The response surface for this reduced parameter set can be visualized by

taking a cross section through the two-dimensional response surface (Figure 5.2)

perpendicular to the specified parameter axis, intersecting that axis at a point

corresponding to the specified value. The intersection of this cross section with the 1.0

contour is the univariate confidence interval at one standard deviation. If parameter

R is specified at a scaled value of 1.0 and parameter T1 estimated, the 68%

confidence interval for T1 is approximately 0.99<T1<1.01. If parameter T1 is specified

at a scaled value of 1 .0 and parameter R is estimated, then the confidence interval

for R is approximately 0.97<R<1 .03. Specifying R results in a smaller confidence

interval than specifying T1. For the purpose of reducing parameter uncertainty, it is

more efficient to specify R than to specify T1. This simple example demonstrates that

is it most efficient to specify the parameter whose axis is most closely aligned with the

valley in the response surface.

When one parameter is specified, and thereby removed from the inverse

problem, that parameter is assigned a single value with no uncertainty. However, the

parameter whose axis is most closely aligned with the valley in the response surface

is often the one with the most uncertainty associated with it. The above analysis

suggests that using prior information on this parameter will most efficiently stabilize

the remaining parameter estimates. This can be puzzling; the parameter with the most

uncertainty is replaced with a parameter with no uncertainty. It is the structure of the

response surface which makes this demand - based on the data available, the
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response surface contains the least information about this parameter. If this

parameter, about which the response surface space contains very little information,

does not need to be estimated, the other parameters can be estimated more

precisely. However, there is an obvious danger in specifying a value of a parameter.

If the value of the specified parameter is in error/the estimate of the remaining

parameter will also be in error, and this error Will not be accounted for in the

calculation of the confidence region. This issue is discussed in section 5.4.

Prior information with uncertainty can also be used to stabilize the parameter

set. Figure 5.3 illustrates the response surface for prior information on parameter R

only, where the scaled prior value equals 1 .0 with an uncertainty of 2%. The total

response surface for head and prior information is shown in Figure 5.4. The size of

the confidence region is reduced, and the parameter set is more stable than using

head data only. To demonstrate the efficiency of prior information on different

parameters, the lengths of the longest axis of the confidence region after including

prior information can be compared. The length of the longest axis of the confidence

region using only head data was 0.129 (from Table 5.1). For head and prior

information on T1, the length of the longest axis is 0.068. For head and prior

information on R, the length of the longest axis is 0.031. Prior information on R is

most efficient, since it reduces the length of the longest axis of the confidence region

the most with a given quality of prior information.
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These graphical approaches using response surfaces can be formalized using

the axes of the confidence region. Prior information on the parameter with the largest

element of the longest axis of the confidence region will reduce the uncertainty of the

remaining parameter estimates most efficiently. The parameter with the largest

- - element of the longest axis of the confidence region is the parameter whose axis is

most closely aligned with the longest axis of the confidence region. From Table 5.1,

axis 2 is the longest axis, and parameter R has the largest element of that axis (0.94).

Prior information is most efficient for those parameters with the largest elements of the

longest axis of the confidence region.

5.3 Effect of errors in prior information

Using prior information is an effective way to stabilize an unstable or non

identifiabe inverse problem. However, if errors exist in the prior information, these

errors will influence the estimates of the remaining parameters. Prior information

without uncertainty is used to illustrate the consequences of errors in prior information

and develop the methods of minimizing the consequences of these errors. These

methods are then extended to using prior information with uncertainty.

Based on examining a number of cases, it is apparent that in some cases an

error in the specified value of a model parameter leads to very large errors in the

estimated parameter values of the other model parameters. In other cases, an error
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in the specified value of a model parameter value leads to relatively small errors in the

estimated parameter values of the other model parameters. The ratio of a scaled error

in an estimated parameter value to a scaled error in a specified parameter value is

termed the error ratio. This section examines the causes of the error ratio, and the

reason for different error ratios for different model parameters. The underlying factor

that determines the magnitude of the error ratio is shown to be the orientation of the

confidence region in parameter space, which leads to a method of approximating the

error ratios.

5.3.1 Consequences of errors in prior estimates

To illustrate the consequences of error in prior estimates, the flow system

introduced above is used, and parameters T1 and T2 are estimated using hydraulic

head data. The data has an uncertainty with a standard deviation of 1 meter. In this

system, there are three other parameters that have been assigned specified values.

These are the inflow head boundary, the outflow head boundary, and the recharge

zone. When the parameters T1 and T2 are estimated using only the head data, and

the true values of the other parameters are used, the true values of parameters T1

and T2 are estimated. Figure 5.5 is the response surface for the parameter set T1-T2

using only head data, with the confidence region due to uncertainty in the head data.

If an error exists in the specified value of one of the other parameters, the
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estimates of parameters T1 and T2 will not be equal to their true values. Table 5.3

illustrates the consequences of an error in the inf low head boundary (H) and Table 5.4

illustrates the consequences of an error in the recharge (R) parameter. For the

parameter H, relatively small errors in the specified value lead to large errors in the

estimate of parameter T2. The error ratio is calculated as a ratio of the percentage

error in the estimated parameter to a percentage error in the specified value.The error

ratios for parameter T2 are much larger than one. The errors in the estimate of T1 are

approximately of the same magnitude as the errors in the specified head value, with

the error ratios of approximately one. When specifying R, errors in the specified value

lead to much smaller errors in the estimate of both T1 and T2. The error ratios for

specifying R are much smaller than one.

Table 5.3 Consequences of error in specified head boundary value

Value of % Error Estimate % Error Error Estimate % Error Error
H in H of T, in T1 Ratio of T2 in T2 Ratio

200.00 0.00 1.290 0.00 0.00 2.231 0.00 0.00

201.00 0.50 1.294 0:31 0.62 2.308 3.45 6.90

205.00 2.50 1.314 1.86 0.74 2.884 29.27 11.71

210.00 5.00 1.360 5.43 1.09 6.701 200.36 40.07

199.00 -0.50 1.282 -0.62 1.24 2.163 -3.05 6.10

195.00 -2.50 1.262 -2.17 0.87 1.958 -12.24 4.89

190.00 -5.00 1.241 -3.80 0.76 1.779 -20.26 4.05

180.00 -10.00 1.212 -6.34 0.63 1.531 -33.67 3.37

150.00 -25.00 1.124 -12.87 0.51 1.100 -50.69 2.03
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Table 5.4 Consequences of error in specified value of recharge

Value of %Error Estimate % Error Error Estimate % Error Error
R in R of T1 in T1 Ratio of T2 in T2 Ratio

0.00040 0.00 1.290 0.00 0.00 2.231 0.00 0.00

0.00041 2.50 1.299 0.70 0.28 2.242 0.49 0.20

0.00042 5.00 1.310 1.55 0.31 2.250 0.85 0.17

0.00044 10.00 1.330 3.10 0.31 2.273 1.88 0.19

0.00045 12.50 1.340 3.88 0.31 2.283 2.33 0.19

0.00050 25.00 1.386 7.44 0.30 2.329 4.39 0.18

0.00060 50.00 1.465 13.57 0.27 2.408 7.93 0.16

0.00080 100.00 1.590 23.26 0.23 2.534 13.58 0.14

0.00039 -2.50 1.279 -0.85 0.34 2.220 -0.49 0.20

0.00038 -5.00 1.270 -1.55 0.31 2.211 -0.90 0.18

0.00036 -10.00 1.245 -3.49 0.35 2.188 -1.93 0.19

0.00035 -12.50 1.230 -4.65 0.37 2.173 -2.60 0.21

0.00030 -25.00 1.173 -9.07 0.36 2.104 -5.70 0.23

0.00020 -50.00 0.989 -23.33 0.47 1.930 -13.49 0.27

0.00010 -75.00 0.688 -46.67 0.62 1.628 -27.03 0.36

The effect of errors in the specified parameter values is summarized graphically

in Figure 5.6. The parameter estimates produced when errors are present in the

specified parameter values are plotted in the scaled parameter space T1-T2. For errors

in H, the parameter estimates plot along a slightly curved line in parameter space. The

errors are much larger if H is overestimated than if H is underestimated, and even a

5% overestimate in H produced parameter estimates which plotted outside of the
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diagram. For errors in R, the parameter estimates plot along a relatively straight line

in parameter space, and the error ratios are nearly constant. The orientation of the

line in parameter space reflecting errors in R is different from the orientation of the line

reflecting errors in H.

For this synthetic example, several observations can be made about the

consequences of errors in specified parameter values on parameter estimates.

1. Errors in the values of specified parameters lead to errors in estimated

parameter values.

2. The estimated parameter values produced when errors are present in the

specified parameter values plot in relatively straight or slightly curved lines in

parameter space.

3. The orientation of the line in parameter space connecting the estimated

parameter values produced when errors are present in specified parameter

values bears no relation to the orientation of the parameter confidence region.

4. Errors in the specified value of recharge lead to much smaller error ratios for

the parameters T1 and T2 than errors in the specified value along the inflow

head boundary.

5. The orientation of the line in parameter space based on errors in R is different

from the orientation of the line based on errors in H.
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5.3.2 Conceptual relationship between confidence region and error ratio

In order to predict the consequences of errors in prior information, the

confidence region for both the estimated parameters and the parameters with prior

information must be examined. For example, the confidence region for T1, T2, and H

must be examined to determine the consequences of errors in H on the estimates of

T1 and T2. A three dimensional parameter space is required. It is possible to use the

axes of the linearized confidence ellipsoid to represent the three dimensional

confidence region.

The confidence region for the parameters T1, T2, and H is examined first. SVD

decomposition of the scaled Hessian matrix using the true parameter values is used

to calculate the principal axes of the confidence region (Table 5.5). Axis 3 is the

longest axis, about five times as long as axis 2 and 50 times as long as axis 1, and

U3 gives the orientation of the unit vector associated with the longest axis. Figure 5.7

shows the orientation of the longest axis of the ellipsoid in the three dimensional

parameter space, with the shaded box included to show the orientation of the axis.

The longest axis of the parameter confidence ellipsoid represents the trace of

the smallest value of the response surface in three dimensional space. If all three

parameters are considered, then the overall minimum of the response surface is at

the center of the ellipsoid. To determine the parameter estimates and confidence
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Table 5.5 Axes of confidence region forT1-T2-H parameter set

Axis Lengths 0.005 0.020 0.100

Unit Vectors U1 U2 U3

T1 -O.i7 0.98 -0.06

T2 -0.10 -0.07 -0.99

H 0.98 0.17 -0.11

region for T1 and T2 at any value of H, a slice parallel to the T1-T2 plane is taken,

intersecting the H axis at the specified value of H. The point where the minimum in

the response surface intersects this slice is approximately the parameter estimates for

T1 and T2. This minimum in the response surface is closely related to the point where

the longest axis of the confidence ellipsoid intersects the slice.

In this example, the confidence ellipsoid is oriented in such a way that the

angle between its longest axis and the parameter axis T2 is relatively small (see

Figure 5.7). The angles between the longest axis of the parameter confidence ellipsoid

and the other two parameter axes are relatively large. If the value of H is equal to the

true value, then the estimates for T1 and T2 will be the equal to their true values as

well. If the specified value of H is larger than the true value, the parameter estimate

for T2 changes significantly. Since the longest axis is aligned closely with the

orientation of the T2 axis, small errors in the specified value of H result in large errors

in the value of T2. However, errors in the specified value of H are approximately equal

to the errors in the estimated values of T1. Comparing Figure 5.7 to Figure 5.6, the
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line of parameter estimates at different errors in H is approximately the trace of the

longest axis of the parameter confidence region in three dimensional space projected

onto the T1-T2 plane. The orientation of this axis explains the fact that small errors in

H resulted in large errors in the estimate of T2.

The same analysis can be carried out for errors in the recharge parameter. The

longest axis of the parameter confidence ellipsoid in the parameter spaceT1-T2-R is

shown in Figure 5.8, and all axes are listed in Table 5.6. In this case, the longest axis

of the confidence ellipsoid is 375 times as long as the next longest axis. The three

parameters are very unstable when considered together, and the system is ill-

conditioned. The longest axis of the confidence region is oriented at a small angle to

the parameter axis R, and at large angles to the parameter axes T1 and T2. The

parameter estimates of T1 and T2 at any value of recharge can be determined by the

point of intersection of the long axis with a slice taken parallel to the T1-T2 plane at

that value of R. The longest axis is oriented at a small angle to the axis of parameter

R, so large errors in recharge result in relatively smaller errors in T1 and T2. The line

of parameter estimates in Figure 5.6 is the projection of the long axis in three

dimensional space on the T1-T2 plane.

The error in the estimated parameters as a result of an error in the specified

value of a parameter depends on the orientation of the joint confidence region. If the

longest axis of the confidence region is nearly parallel to the specified parameter axis,
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Table 5.6 Axes of confidence region forT1-T2-R parameter set

Axis Lengths 0.016 18.100 0.048

Unit Vectors U1 U2 U3

T1 -0.93 0.30 0.21

T2 -0.16 0.17 -0.97

R 0.33 0.94 0.11

then the error ratio is small. If the longest axis is oriented nearly perpendicular to the

specified parameter axis, then the error ratio for at least one of the estimated

parameters is large.

5.3.3 Calculation of error ratios from confidence region

It is possible to calculate the error ratio from the parameter confidence region.

Figure 5.9 is a generic confidence ellipse in two parameter dimensions with the

parameter axes scaled by the parameter estimates. Using linearized error analysis,

the shape and orientation of the confidence ellipse is constant for any contour of the

response surface, so the confidence ellipse in Figure 5.9 can represent any contour

of the response surface. The error ratio is defined as the ratio of an error in the

estimated parameter value to an error in the specified parameter value. If b1 is the

specified parameter, the error ratio can be graphically constructed by using a line

perpendicular to the b1 axis tangent to the confidence ellipse. This line is represented

by A - A’. The parameter estimates, given an error in b1, are at the point where the
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line A - A’ intersects the confidence ellipse, labelled as point (X,Y). The objective

function has a minimum along the line A - A’ at that point. The error in the specified

parameter b1 is given by (X - X0). The error in the estimated parameter is given by (Y

- Y0). The error ratio is therefore (Y-Y0)/(X-X0).Because the shape and orientation of

the confidence ellipse is constant for any contour of the response surface, the

distance (X-X0)can be scaled to any error in the specified parameter. The error ratio

remains constant for any error in the specified parameter.

The conceptual method presented above can be used in simple two and three

dimensional parameter spaces, but not for multi-parameter problems. The error ratio

can be calculated from the axes of the parameter confidence ellipse. The error ratio

is

ER
- k=l,p1.kULk’ (5.1)

ii- cv12

where ER11 is the error ratio for an error in the ith estimated parameter, given an error

in the jth specified parameter. CV is the total coefficient of variation for the specified

parameter, defined in equation (4.5). This error ratio is termed the linearized error ratio

because it is calculated from the linearized confidence ellipsoid.

The error ratio depends on two factors; the orientation of the confidence region

and the shape of the confidence region. If the confidence region has a large condition

number (long and narrow), the error ratio will depend mainly on the orientation of the

longest axis of the confidence region. Figure 5.1 Oa shows an example of a confidence
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region with a large condition number, along with the longest axis of the confidence

region. The line perpendicular to b1 axis, tangent to the confidence region, intersects

the confidence region near the longest axis of the confidence ellipsoid. The ratio of

the elements of the eigenvector of the longest axis of the confidence region

approximates the linearized error ratio. If the confidence region is well-conditioned, the

contribution to the coefficient of variation from the longest axis for the fixed parameter

will be less than one, and the error ratio will be reduced from that calculated using

only the elements of the elgenvector. Figure 5.lOb shows an example of a well

conditioned confidence region, and the longest axis of the confidence region. The line

perpendicular to the P1 axis, tangent to the confidence region, intersects the

confidence region at a point somewhat below the longest axis of the confidence

region. Thus the linearized error ratio is less than that calculated only using the

longest axis of the confidence region.

5.3.4 Using error ratios to identify responsible parameters for prior information

When prior information is used to reduce the uncertainty in parameter estimates

and stabilize parameter sets, it should be recognized that errors in the prior

information may lead to errors in the estimated parameters. It is necessary to know

the influence of errors in the prior information on the parameter estimates in order to

use the prior information in a responsible manner. If errors exist in the prior

information, it would be responsible use prior information which minimizes the effects
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of these errors. The parameters that lead to the smallest error ratios are the most

responsible parameters for prior information.

Tables 5.7 and 5.8 show the linearized error ratios calculated from equation

(5.1) for the two parameter sets described above. These tables can be used to

choose the responsible parameters for prior information. For the parameter set T1-T2-

H, the largest linearized error ratio results from estimating T2 while parameter H is

specified. Errors in specified values of H will be magnified over 7 times when T2 is

estimated. At the same time, errors in the estimate of T1 will be smaller than the error

in the specified value of H. From examining Table 5.7, it is apparent that specifying

the value of T2 leads to the smallest error ratios for the estimates of the remaining

parameters. The errors in estimates of both T1 and H will much smaller than errors in

the specified value of T2. The choice of T2 as the most responsible parameter to

specify is consistent with the examination of the parameter confidence region. The

longest axis of the confidence region is sub-parallel to the T2 parameter axis, so errors

in T2 will not result in large error ratios.
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Table 5.7 Error ratios for the T1-T2-H parameter set

Fixed T1 Fixed T2 Fixed H

Estimated T1 1.0 .057 .86

EstimatedT2 1.35 1.0 7.11

Estimated H .30 .111 1.0

For the parameter set T1-T2-R, the error ratios are shown in Table 5.8. The

smallest error ratios result from specifying parameter R. This result is consistent with

the fact that the confidence region for this parameter set is sub-parallel to the

parameter axis R.

Table 5.8 Error ratios for theT1-T2-R parameter set

Fixed T1 Fixed T2 Fixed R

Estimated T1 1 .0 1.7 .32

Estimated T2 .57 1.0 .19

Estimated R 3.1 5.4 1.0

It is important to note that the error ratios for the parameter subset T1-T2 are

not always the same. From Table 5.7, an error in the specified value of T1 leads to a

1.2 error ratio for parameter T2. However, from Table 5.8, an error in the specified

value of T1 lead to a .57 error ratio for parameter T2. The full confidence region for the

parameter set determines the error ratio. The confidence regions for these two

parameter sets are different, so error ratios for the same parameters are different.
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5.3.5 Influence of non-linear confidence regions

Throughout the above analysis, linear approximations to the confidence regions

have been used to calculate the axes of the confidence ellipsoids and the linearized

error ratios. These linear approximations do not accàunt for the non-linearity of the

true confidence regions. Three indications of no-linearity are apparent in the

examples presented, especially in theT1-T2-H system.

1. The lines in parameter space reflecting the trace of the axis of the confidence

region are slightly curved for the confidence region including parameter H. This

curvature implies that the axis of the confidence region is curved in parameter

space. For a linear model, the axis of the confidence region would be straight.

2. Errors in specified parameters that overestimate the true parameter values result

in different errors in the estimated parameters than errors in specified

parameters that underestimate the true parameter values. The confidence

region is not symmetrical about the true parameter value. In a linear system,

the confidence region would be symmetrical.

3. The true error ratios are not constant as the error in specified parameter values

increases. A combination of curved and non-symmetrical confidence regions

are the cause of the non-constant error ratios. For a linear system, the error

ratio would be constant for any error in the specified parameter value. The

linearized error ratios are considered constant.
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Even though there are indications of model non-linearity, the non-linearity is

generally not severe. The curvature of the confidence region is slight, while the non-

symmetry is somewhat greater. However, since the linearized error ratio analysis

depends mainly on the orientation of the parameter confidence region, and not on the

symmetry of this region, the linear approximation is generally robust. The true error

ratios may differ from the linearized error ratios, but the conclusions based on the

linearized error ratios are valid. The parameters that result in the smallest error ratios

will most likely be the same even if the true non-linearity were taken into account.

5.4 Error ratios for prior information with uncertainty

Using prior information with uncertainty is generally an improvement over simply

specifying a single value for a parameter. In parameter space, specifying a single

value is equivalent to taking a slice in parameter space perpendicular to that

parameter axis at the specified value. The ill-conditioning is reduced by reducing the

parameter dimension. Prior information retains all the parameters in the inverse

problem, but adds a penalty term to the response surface for deviations from the prior

estimate. A beffer conditioned, more stable response surface is the result.

The error ratio method developed above can be extended to using prior

information with uncertainty. In terms of error ratio, the major difference between using

prior information with uncertainty and specifying a parameter value without uncertainty
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lies in how close the final estimate is to the prior estimate. When a parameter value

is specified, it cannot change during parameter estimation, and the final estimate is

equal to the prior information. When using prior information with uncertainty, the prior

estimate and the final estimate are different.

Two factors determine how close the final estimate are to the prior estimate;

the assigned uncertainty in the prior information and the shape of the response

surface before prior information is included. If the uncertainty assigned to the prior

estimate is small, there is a large penalty in moving away from this prior estimate, and

the final estimate will be close to the prior estimate. Conversely, if the uncertainty in

the prior estimate is large, the penalty for moving away from the prior estimate is

small.

If the response surface using only head data reflects a poorly-conditioned

problem, the final estimate will be close to the prior estimate. A poorly conditioned

parameter set is characterized by a valley with a flat bottom. The prior information,

even if it has a large uncertainty, will produce a definite minimum in the valley at the

value of prior estimate. The final estimate will be very close to the prior estimate. If

the response surface using only head data is well conditioned, the minimum defined

by the head data will have a large influence on the final parameter estimates. Even

if the prior information has large errors, the final estimates will be controlled by the

response surface for the head data.
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When prior information is assigned for more than one parameter, the

relationships between the prior and final estimate are more complicated. In addition

to the factors described above, the final estimates also depend on the relationship

between the orientation of the data response surface and the location of the minimum

and shape of the response surface using prior information. These relationships are too

complicated to form any specific conclusions. In general, we find that for an inverse

problem that is ill-conditioned before adding prior information, one or more of the final

estimates will be very constrained by the prior estimate. If the final estimate is in error,

it will introduce errors in the final parameter estimates of the other parameters.

Thus, for an ill-conditioned or non-identifiable inverse problem, the final

parameter estimates will be close to the prior estimates, regardless of the assigned

uncertainty in the prior estimates. The error ratio method will be valid for determining

the effects of errors in the prior information. For a well-conditioned problem, the final

estimates may not be close to the prior estimates, and the error ratios may be less

than those calculated by the linearized error ratios.

5.4.1 Example of the influence of the topology of the data response surface

Response surfaces T1-T2 and T1-R are used to illustrate the influence of the

topology of the response surface on the difference between the prior and the final

estimate. The response surface for T1-T2 (Figure 5.5) reflects a well-conditioned
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parameter set, and the response surface for T1-R (Figure 5.2) is poorly-conditioned.

Assume that the prior estimate has a value of T1 (prior) = 1.02 in scaled space, and

thus is in error. Figure 5.11 shows the response surface for the prior information on

T1, with an uncertainty in the prior information equal to one percent of the prior

parameter estimate. The final parameter estimates for the two parameter sets are

quite different. The total response surfaces are shown in Figure 5.12 and 5.13. Note

that the two response surfaces are not shown at the same scale. For the parameter

set T1-R (Figure 5.12), the final parameter estimate for T1 is the same as the prior

parameter estimate. The response surface using head data alone does not have a

unique minimum, but instead contains a nearly flat bottomed valley. All along this

valley, the values of the response surface are very close to the minimum. The prior

value of the parameter T1 defines where the minimum will lie along this valley. Since

the prior estimate for T1 was in error, the final estimates for both T1 and R are in error.

For the parameter set T1-T2 (Figure 5.13), the parameter estimate forT1 moves away

from the prior estimate toward the parameter estimate based on the head data only.

The head data alone produce a response surface with a definite minimum. This

minimum has a large influence on the total response surface, and pulls the final

estimates toward this minimum.

In parameter set T1-T2, the parameter space is well conditioned, and the

minimum is well defined using only head data without prior information. When prior

information is included, the parameter estimates are pulled toward the minimum using
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head data only. Even when the prior information has large errors, the final estimates

are controlled by the information contained in the head data. In parameter set T1-R,

the parameter space is poorly conditioned using only head data, as shown by a long,

flat bottomed valley in the response surface. The prior information does help transform

this problem into a well-conditioned inverse problem, with a well-defined minimum.

However, the location of the minimum (and therefore the parameter estimates) is

completely dependent on the specified value of the prior information. If the prior

information is accurate, there is no problem. However, if the prior information is in

error, even if a large uncertainty is assigned to the prior information, the value of the

parameter estimates depends on the incorrect value of the prior information.

5.5 Summary of guidelines for use of prior information

Parameter space analysis has been used to develop guidelines for the efficient

and responsible use of prior information in groundwater flow models. The axes of the

confidence region can be used to identify the most efficient parameters for prior

information. Those parameters with the largest elements of the longest axis of the

confidence region will be the most efficient parameters for reducing parameter

uncertainty and increasing parameter stability.

A linearized error ratio matrix can be calculated from the axes of the confidence

region, and used to identify the most responsible prior information. The linearized error
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ratio matrix is calculated based on prior information without uncertainty, but is also

valid for prior information with uncertainty. For ill-conditioned or non-identifiable inverse

problems, the error ratio method will be valid for determining the effects of errors in

prior information with uncertainty. For a well-conditioned problem, the error ratios may

be less than those calculated by the linearized error ratios.

To minimize the effects of possible errors in the prior estimates, those

parameters with the smallest error ratios are the most responsible parameters for prior

information. Errors in these parameters will have the least influence on the parameter

estimates for the remaining parameters. Those parameters that are the most efficient

are often the same ones as those that are the most responsible. Both guidelines lead

to selecting parameters whose axes are closely aligned with the longest axis of the

parameter confidence region.

5.6 Application to a multi-parameter system

The guidelines developed above for the efficient and responsible use of prior

information to stabilize an inverse problem were applied to a synthetic multiparameter

system. The flow system is taken from Carrera and Neuman (1986c) and shown in

Figure 5.14. The data consist of 18 head measurements with uncertainties of 1 meter.

The parameters to be estimated include 9 transmissivity zones, 2 recharge zones, one

specified flux boundary and one specified head boundary. All model parameters,
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including those describing the domain boundaries, were estimated, which resulted in

a non-identifiable parameter estimation problem. When estimating parameters, the

final estimates were found to depend on the initial values of the parameters.

Table 5.9 gives the parameter estimates and uncertainties for two sets of initial

parameter values. The transmissivity parameters are log transformed, all other

parameters are untransformed. One set of initial estimates is close to the true values

of the parameters, the other set of initial estimates is far from the true values of the

parameters. The two final sets of parameter estimates are very different. The standard

errors of the estimates from the two sets of initial estimates are very similar, so only

one set is given. The standard errors of the estimates are very large compared to the

values of the estimates, leading to very large coefficients of variation for nearly all

parameters. The correlation matrix, which is not presented here, shows correlations

of greater than .99 between all parameters except H1, which showed very little

correlation with the other parameters. The resulting parameter estimates are very

poor, due to the ill-conditioning of the problem.

5.6.1 Parameter space of multi-parameter problem

Before using prior information to stabilize this problem, the shape and

orientation of the parameter confidence region must be understood. The axes of the

parameter confidence region are calculated using SVD decomposition of the scaled

99



Table 5.9 Parameter estimates and uncertainties for multiparameter problem

Parameter Estimates

Parameters True Value Run #1 RUn #2 Standard CV
Error

T1 2.17 2.22 1.81 5.76 3.16

T2 2.17 2.09 1.68 5.66 3.36

T3 2.17 2.00 ‘1.60 5.31 3.32

T4 2.17 2.28 1.88 5.53 2.94

T5 1.69 1.68 1.27 5.46 4.26

T6 1.17 1.20 0.79 5.28 6.61

T7 1.69 1.79 1.39 5.52 3.96

T8 1.17 1.21 0.81 5.33 6.62

T9 0.70 0.73 0.32 5.25 15.92

R1 2.74e-04 2.98e-04 1.17e-04 1.49e-03 12.70

R2 1.37e-04 1.42e-04 5.60e-05 7.OOe-04 12.63

H 100.0 98.3 98.3 1.75 0.02

F 50.0 70.8 27.9 386.24 13.73

Hessian matrix calculated using the estimated parameter values. Either of the two sets

of parameter estimates listed in Table 5.9 leads to confidence regions of similar shape

and size, though centered on different points in parameter space. Table 5.10 gives the

axes of the confidence region. Table 5.11 shows the relative contribution to the total

coefficient of variation from each axis of the confidence region. Table 5.12 is the error

ratio matrix for this problem.

The longest axis of the confidence region is axis 13, which is 75 times longer

than any other axis. The valley in the multidimensional response surface is oriented
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in the direction of this axis, and is very long and flat, leading to high correlations

between any parameters that contribute to this axis. Examining the unit vector that

corresponds to axis 13, all parameters except H have a component in the direction

of axis 13. The axes of parameters F, R1 and R2 are most closely aligned with the axis

13. Based on the contribution to the parameter CV matrix (Table 5.11), axis 13

contributes nearly all the uncertainty to every parameter except H. If axis 13 could be

shortened, the uncertainty in all parameters except H would be reduced.

The linearized error ratio matrix (Table 5.12) shows that errors in parameters

R1, R2, and F lead to small error ratios for the other parameters. Errors in the

transmissivity zones lead to larger error ratios for the other parameters. Errors in the

head boundary value lead to the largest error ratios.

The confidence region for the parameter estimates can be interpreted as

follows. There is one axis that is much longer than the others, and this axis

contributes nearly all the uncertainty to all parameters except H. This axis is oriented

most closely with parameter axes F1, R1 and R2, and is perpendicular to parameter

axis H. This implies that parameter H is virtually independent of the other parameters,

and can be estimated from the data even in this ill-conditioned problem.

The unit vector associated with the longest parameter axis has some interesting

properties. The magnitudes of the components of the unit vector seem to fall into
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three distinct groups. The first group contains the transmissivity parameters. The

components of the unit vector range from 0.10 to 0.30, and seem to be inversely

correlated with the magnitude of the estimated parameter. Since the confidence region

reflects the coefficient of variation, the smaller the value of the estimated parameter,

the larger the coefficient of variation. The parameter estimates for T1 through T9 have

approximately equal variances, so their coefficients of variation are inversely

proportional to their estimated values. In this confidence region, the longest axis

contributes nearly all the uncertainty to all parameters, so the components of the unit

vector are closely correlated to the coefficients of variation. The second group of

components contain the recharge and flux parameters. All three parameters have

components of the longest vector of similar magnitude, and thus similar coefficients

of variation. The variances of these parameters are quite different, but their

coefficients of variation are similar. This is the opposite of what was observed in the

first set. The third group consists of the specified head parameter, which has no

contribution to the longest axis of the confidence region.

5.6.2 Anticipated influence of prior information based on parameter space

From the parameter space, three groups of parameters emerge. The head

boundary value can be identified quite well using head data only. Prior information on

parameter H will not reduce the ill-conditioning of the parameter set significantly.

However, errors in the prior information for H would cause very large errors in the
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other parameter estimates. Prior information for parameter H would be a poor choice,

since it is not necessary, provides no advantage in identifying the other parameter

estimates, and leads to large error ratios.

The flux boundary value and the recharge parameters all have large

components of the unit vector associated with the long axis of the confidence region.

These three parameters also have the smallest error ratios. Any of these three

parameters are good choices for prior information because they efficiently reduce the

ill-conditioning of the parameter set while reducing the influence of any errors in the

prior information.

The transmissivity parameters have smaller but still significant components of

the unit vector associated with the longest axis of the confidence region. Prior

information for any of these parameters will reduce the ill-conditioning of the

parameter set significantly, but at the expense of potentially magnifying any errors in

the specified values of the parameters.

5.6.3 Comparison of parameter space and modelled results

Based on the analysis of the parameter space, the flux boundary and the

recharge parameters should be the most efficient and responsible parameters for prior

information. The transmissivity parameters are less efficient and responsible, while
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prior information on the head boundary would be both inefficient and irresponsible.

These results need to be checked against the actual modelled results.

First, the issue of which parameters most efficiently stabilize the inverse

problem is examined. Two types of prior information are considered: prior information

without uncertainty and prior information with uncertainty. Table 5.13 shows the effect

of specifying various parameters at their true values, with no uncertainty in the prior

information. The component of the longest axis for each parameter is listed, along with

the average CV and the CN for the parameter set after specifying each parameter.

Specifying those parameters with large components of the longest axis should result

in the most stable parameter sets with the smallest average coefficient of variation.

Table 5.13 Calculated results from specifying some representative parameters at
their true values

Full Specify Specify Specify Specify Specify Specify
Parameter T1 T5 T9 R1 F H

Set

Comp. N/A 0.10 0.14 0.30 0.50 0.53 0.00
of Lmax

CN 9900.0 289.8 180.6 168.4 164.3 165.1 8944.0

Average 5.510 0.181 0.113 0.102 0.097 0.099 5.490
Cv

The full parameter set (all 13 parameters) results in a very large CN and a

large average CV. Specifying parameter H does not significantly reduce either the CN
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or average CV. Specifying any of the other parameters does significantly stabilize the

problem, because the dimension in parameter space in which all the parameters were

correlated is removed. Table 5.13 shows that specifying parameter T9 reduces

parameter uncertainty more than specifying parameters T1 or T5. Parameter T9 has a

larger component of the longest axis than the other transmissivity parameters, so

specifying T9 should reduce parameter uncertainties more than any other

transmissivity parameters. The parameters with the largest components of the longest

axis are R1, R2, and F. Table 5.13 shows that specifying parameters R1 and F result

in the most stable parameter estimates with the lowest uncertainties. The behavior of

parameter R2 is similar to parameter R1. Specifying those parameters with large

components of the longest axis are generally the most efficient in stabilizing the

parameter set.

Table 5.14 illustrates the effect of prior information with uncertainty. Prior

information is added to one parameter at a time, where the uncertainty in the prior

information is ±25% of the prior value. The CN and average parameter CV are

presented for prior information on representative parameters. Prior information on R1

and F resulted in the most stable parameter estimates with the lowest uncertainties

of any parameters. If only transmissivity parameters are considered, prior information

on T9 resulted in the best parameter estimates. Prior information on parameters with

the largest elements of the unit vector associated with the longest axis of the

confidence region are most effective in reducing the average CV.
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Table 5.14 Calculated results from prior information on various parameters

All Prior Prior Prior Prior Prior Prior H
Parameters T1 T5 T9 R1 F

Comp. of N/A 0.10 0.14 0.30 0.50 0.53 0.00
Lmax

Condition 9900.0 1181.9 973.6 413.2 274.0 295.0 8944.0
Number

Average 5.510 0.628 0.512 0.242 0.174 0.187 5.490
CV

To determine for which parameters prior information will most responsibly

stabilize the inverse problem, error ratios can be calculated. Prior information was

included one parameter at a time, where the prior value was 25% greater than the

true value. Table 5.15 gives the calculated error ratios, calculated as the ratio of the

percentage error in the estimated parameter to the percentage error in the prior value.

The first column of Table 5.15 are the calculated error ratios for the full set of

estimated parameters, where the starting estimate is equal to the true value of the

parameter. The other columns are the calculated error ratios when one parameter at

a time is specified at a value 25% higher than its true value. Because the data have

errors, the calculated error ratios do not equal the linearized error ratios from Table

5.12. However, the calculated error ratios do follow the trend of the linearized error

ratios estimated from the parameter space. For instance, when T1 is specified, the

error ratios for T1 through T5 are near one, T6 through T8 are between one and two,

T9 is above two, and the recharge and flux parameters are much higher. The
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calculated error ratios for specified recharge and flux parameters are much lower than

the error ratios for specified transmissivities. There is one pattern that the linearized

error ratios did not predict, that is the fact that the errors in the flux boundary value

as a consequence of errors in specified values for other parameters are consistenty

larger than errors in recharge. The linearized error ratios predict that these errors will

be similar in magnitude. The cause of this discrepance may be the difference between

the true and estimated parameter values. The estimate of the value of the flux

parameter is much farther from its true value than the estimates of the recharge

parameters from their true values, even though the coefficient of variation for all these

parameters is similar in magnitude. This error due to data uncertainty may carry the

whole way through the error ratio analysis. No error ratios for H were calculated,

because the parameters set was so ill-conditioned when using only prior information

on H that parameter estimates could not be reliably estimated.

Because the parameter set is ill-conditioned without prior information, the final

estimates do not depend on the uncertainty assigned to the prior information. Even

if the prior information is assigned an uncertainty of 100%, the final estimates are

identical to those using prior information without uncertainty. Table 5.15 is unchanged

for any reasonable uncertainty in the prior information.

If prior information is provided for more than one parameter, the situation

becomes more complicated. The relationship between the location of the prior
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estimates in parameter space, the relative uncertainties of the prior estimates, and the

location of the valley in parameter space determine the final parameter estimates. For

instance, when prior information on F, R1 and R2 is provided, and all three prior

estimates are 25% greater than their true value, the final parameter estimate for R1

and R2 are approximately 15% greater than their true values, and the final estimate

for F is approximately 35% greater than its true value. In another example, when the

prior estimate of F is 25% less than its true value, and the prior estimates of R1 and

R2 are 25% greater than their true values, then all three final estimates are within 5%

of the true parameter values. The errors in the prior estimates are averaged, and the

final estimates do not reflect the errors in the prior estimates.

5.6.4 Discussion of results for multi-parameter system

In order to responsibly stabilize this problem, the parameters F, R1 and R2 were

found to be the most efficient and responsible parameters to select for prior

information. Practically, these three parameters may be the most difficult to measure

in order to obtain the prior information. It is difficult to estimate the value of a flux

boundary independent of the model. Recharge is also a difficult parameter to estimate

without the use of the model unless a detailed field measurement program is

implemented. However, errors in the prior estimates of these parameters translate into

relatively small errors in the estimates of transmissivity parameters. Prior estimates

on these three param,even if they are in error or have large uncertainties, may
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be better for parameter estimation than prior information in the transmissivity

parameters. A systematic underestimation of prior estimates on transmissivity

parameters may lead to large errors in the estimation of the recharge and flux

parameters.

Should prior information on parameters be used if it is highly uncertain or has

the potential for significant errors? Three factors need to be considered: the

conditioning of the parameter set without prior information, the error ratio of the

parameters with prior information, and the distribution of the prior information. If the

parameter set is ill-conditioned without the prior information, then the prior information

will constrain the model parameter estimates. If the error ratio is large for the

parameters with prior information, then errors in the prior values may lead to large

errors in the estimated values of the other parameters. If the prior information has the

potential to systematically over or underestimate the true parameter values, then the

prior information may lead to errors in parameter estimates. If the prior information is

randomly distributed about the true value of the parameter estimate, then the prior

information might not lead to significant errors in the final parameter estimates.

However, the assumption that prior information is randomly distributed about the true

parameter value is rarely fulfilled in practice.

In this synthetic system, the full parameter set is ill-conditioned without prior

information. Parameters R1, R2 and F lead to small error ratios, but these are difficult
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parameters to measure independent of the model. The transmissivity parameters lead

to larger error ratios, but are easier to measure in the field. However, it is common for

prior information on transmissivity to be significantly biased, because of scaling

differences between the measurement of transmissivity in the field and the model

transmissivity. One solution to this dilemma is to provide prior information on

parameter T9. This parameter leads to the smallest error ratios of any of the

transmissivity parameters. Errors in this parameter value will not be magnified as

much as errors in any of the other transmissivity parameters.

If at this point the parameter set was still unstable, or a further reduction in

parameter uncertainty was required, the same analysis could be carried out to select

a second parameter for prior information. The reduced parameter space (12

parameters now) would be analyzed, and a parameter selected. This process is easy

to accomplish, since the parameter estimation in the 12 parameter system has already

been done. The scaled Hessian matrix at the parameter estimates would be used to

construct the three tables given above for the 12 parameter system. This parameter

space would be analyzed, and a second parameter selected.

5.7 Summary and conclusions

Parameter estimation problems are often non-identifiable or unstable using only

head data. Prior information on some of the parameters may be used to stabilize the
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parameter set for the purpose of parameter estimation. Guidelines have been

developed for efficient and responsible use of prior information in parameter

estimation.

An analysis of the parameter space is used to select parameters for prior

information. The most efficient parameters for prior information are those with the

largest element of the unit vector (eigenvector) associated with the longest axis of the

parameter confidence region. The axes of these parameters in parameter space are

most closely aligned with the longest axis of the confidence region. To minimize the

effects of error in prior estimates, the most responsible parameters for prior

information are those which lead to the smallest error ratios. The linearized error ratios

can be calculated from the axes of the parameter confidence region. The parameters

that lead to the smallest error ratios are often the same parameters that have the

largest element of the unit vector associated with the longest axis of the parameter

confidence region.

The parameter space analysis was applied to a multi-parameter system with

good results. The parameter space was used to gain an understanding of the

interaction of the model parameters and the data set. The parameters for which prior

information most efficiently and responsibly stabilized the parameter set were correctly

identified using the parameter space. The linearized error ratios followed the pattern

observed in the true error ratios. The parameter space analysis may lead to selecting

115



parameters about which reliable prior information is difficult to obtain. The modeller

must make a judgement regarding the reliability of the prior information against the

potential effects of errors in the prior estimate. The parameter space analysis gives

the modeller a tool to judge the potential effects of errors in the prior estimates.
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CHAPTER 6. PARAMETER SPACE METHODS IN JOINT PARAMETER

ESTI MATION

Parameter estimation for hydrogeological models using hydraulic head data is

frequently plagued by difficulties due to the illposed nature of the inverse problem.

In Chapter 5, guidelines were developed for using prior information to overcome these

difficulties in an efficient and responsible manner. Joint parameter estimation provides

another method for overcoming these difficulties. Incorporating a second set of

observation data of a different data type through joint parameter estimation may assist

in stabilizing the inverse problem.

Joint parameter estimation extends the concept of single state parameter

estimation by incorporating more than one set of observation data in the parameter

estimation process. In this thesis, the two data sets are hydraulic head data and tracer

concentration data. The tracer concentration data is used to help estimate the flow

parameters. Transport parameters are not estimated, and need to be specified.

However, effects of errors in the specified transport parameters can be evaluated. The

governing equations and boundary conditions for the simulation of flow and mass

transport have been introduced in Chapter 1. This chapter examines joint parameter

estimation in the context of parameter space analysis.

Three issues in joint parameter estimation are examined in this chapter. First,
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parameter space analysis is used to show how the two data sets interact to yield

improved parameter estimates. Second, parameter space information can be exploited

to determine a priori if a future data set will improve parameter estimates significantly,

before the second data set is collected. The third issue explored is the weighting of

the different data sets in joint estimation. Four methods of weighting data sets for the

purposes of minimizing parameter uncertainty with the available data are presented

and evaluated.

6.1 Parameter space analysis of multiple data sets

Parameter space analysis is useful for understanding how two data sets interact

to produce an improved set of parameter estimates. This improvement is manifested

in a better conditioned, more stable set of parameter estimates with a smaller

parameter confidence region. The hydraulic head data set defines a response surface.

If, the model parameters are poorly conditioned, the response surface will contain a

valley with a flat bottom. The response surface defines the parameter confidence

region for the head data. A second data set, the tracer concentration data, defines a

new response surface. The total response surface used in joint estimation is the sum

of the individual response surfaces. If the tracer concentration response surface has

a shape and orientation that is significantly different from the head response surface,

then the total response surface will be better conditioned than the initial head

response surface. If the tracer concentration response surface has a shape and
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orientation that is similar to the head response surface, then the parameter confidence

region will not be reduced significantly.

The confidence regions defined by the response surfaces can be approximated

by the linearized confidence ellipsoids (Equation 4.4). The difference in orientation of

the confidence regions for the two data sets can be expressed in terms of their

confidence ellipsoids. The angle between the longest axes of the two confidence

ellipsoids can be used to approximate the difference between the two confidence

regions. This angle, called the angle of interaction (j3), can be calculated using:

cos (f3) = Uhi. U1

where Uh is the unit vector corresponding to the longest axis of the confidence

ellipsoid using the head data set, and U is the unit vector corresponding to the

longest axis of the confidence ellipsoid using concentration data set. A small angle of

interaction represents confidence regions with similar orientations, while a large angle

of interaction represents confidence regions with very different orientations. The larger

the angle of interaction, the greater the potential increase in stability and decrease in

the uncertainty of the parameter estimates using the joint data set over the initial data

set.

6.1.1 Demonstration using a two parameter set

The five parameter synthetic flow system introduced in Chapter 5 is used to
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demonstrate response surface analysis for multiple data sets. Tracer transport is

simulated within this flow system. A specified concentration is introduced along the

inflow head boundary, and the tracer concentrations are measured at the same

locations as the head data after 500 days. For this simulation, all units are assigned

an effective porosity of 0.2, and the specified concentration parameter values are

czL=100 m, T = 10 m, and c1 = 1.0. Figure 6.1 shoWs the concentration distribution

throughout the flow system at 500 days. The leading edge of the plume has moved

most of the way through the flow system. Some of the concentration samples, in the

center of the lower permeability zone, are not sensitive to changes in the parameter

values. The simulated measurements of tracer concentration are corrupted with

Gaussian distributed errors with an uncertainty of 5.0%.

Response surtaces are used to show how information from the two data sets

interact to produce smaller confidence regions in joint parameter estimation. Only two

parameters are estimated in order to visualize the response surfaces. Response

surfaces and confidence regions are discussed for two sets of parameters: (1) Set A:

transmissivity zone 1 (T1) and recharge zone (R); and (2) Set B: transmissivity zone

1 (T1) and transmissivity zone 2 (T2). These two parameter sets provide good

examples of the influence of a second data set on the uncertainty and stability of the

parameter estimates.

Table 6.1 lists the parameter estimates and uncertainties, along with the
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Table 6.1 Parameter estimates and uncertainties for parameter sets A and B

Head Data Concentration Combined
Data Data

T1 Estimate 1.320 1.326 1.320

R Estimate 0.00042 0.00042 0.00042

Std (T1) 0.0498 0.0956 0.0430

Std (R) 4.4e-05 9.4e-05 3.9é-05

CV(T1) 0.0377 0.0619 - 0.0345

CV (R) 0.1064 0.21 20 0.0988

Average CV 0.0721 0.1370 0.0667

T1 Estimate 1.303 1.303 1.303

T2 Estimate 2.284 2.297 2.297

Std (T1) 0.0102 0.0143 0.0079

Std (T2) 0.0468 0.0089 0.0078

CV (T1) 0.0079 0.0110 0.0061

CV (T2) 0.0204 0.0043 0.0034

Average CV 0.01 41 0.0076 0.0047

coefficient of variation, for the two parameter sets. The parameter estimates for T are

given in log-transformed values, and the parameter estimates for R in units of m/d.

Equal weights are assigned to each data set for joint estimation. Table 6.1 contains

the estimates for both the individual data sets and the joint data sets.An average

coefficient of variation is included to allow easy comparison between the data sets.

This table shows that for parameter set A, the additional concentration data does not

reduce the parameter uncertainties significantly, as measured by the coefficient of

variation. The average CV for the combined data set is only slightly better than for the
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head data set. For parameter set B, the additional concentration data does reduce the

parameter uncertainties significantly. The average CV for the combined data set is

much smaller than for either the head or concentration data sets. An analysis of the

response surfaces shows why the two parameter sets behave differently under joint

parameter estimation. -

The response surfaces for parameter sets A and B are shown in Figure 6.2 and

6.3. Each figure has three parts: (a) is the response surface using only head data, (b)

is the response surface using only concentration data, and (c) is the total response

surface. The 68% joint confidence region is defined by the area inside the 2.3 contour

of the response surface.

The response surface for parameter set A (Figure 6.2a) using only head data

contains a long, narrow valley with a nearly flat bottom. The estimates of T1 and R are

highly correlated, and the parameter set is ill-conditioned. The confidence region using

concentration data only (Figure 6.2b) is similar in shape and orientation to that using

head data, but is larger in size. The confidence region for the combined data sets

(Figure 6.2c) is slightly smaller than that for head or concentration data alone, and is

very similar in shape and orientation. The angle of interaction calculated from the

linearized confidence ellipsoids is 3 degrees, so the orientation of the confidence

ellipsoids are very similar. Since the two confidence regions are very similar, addition

of the second data set does not significantly increase the stability nor reduce the
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uncertainty of the parameter estimates.

The response surface using head data only for parameter set B (Figure 6.3a)

is better conditioned than that for parameter set A. A definite minimum Is observed,

bat it. stIll contains a valley oriented almost parallel to the T2 axis. The confidence

region using concentration data (Figure 6.3b) Is oriented nearly parallel to the T1 ads,

and is smaller than the confidence region using head data. The angle of Interaction

for this parameter set Is 77 degrees, confirming that the orientations of the two

confidence regions are significantly dIfferent The confidence regIon for the combined

data set (Figure 6.3c) Is much smaller than the confidence regions for the lndMdual

data sets. The parameter estimates are stable, and the uncertainty In the parameter

estimates has decreased substantially The data sets can be combIned to yield stable,

well-defined parameter estimates.

For parameter sets A and B, the addition of concentration data led to very

different behaviors. With parameter set A, the concei,tiaflon data did not reduce the

uncertainty of the parameter estImates sIgnificantly. With parameter set B, the

combined data sets resulted In stable parameter estimates with low uncertainties. The

angle of interactIon reflects the dIfference in orIentatIon of the confidence regions.

it Is often difficult to estimate both transmlsslvity and recharge together [eg.

Woodbury et aL, 1987]. This analysIs shows that when estimating T1 and R
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simultaneously, the head data and the concentration data contain similar information

about the model parameters. Both data sets are very sensitive to the value of

parameter T1, and not very sensitive to the value of parameter R. The joint data set

does a poor job in estimating the two parameters. Another example, estimating T2 and

R simultaneously, is not presented here in detail but shows a different result. For the

parameter set T2 and R, the head data and concentration data contain different

information about the parameter values. The response surfaces are different in shape

and orientation, with an angle of interaction of 39°, and the joint parameter estimates

are more stable than either of the single state estimates. There seems to be no clear

physical explanation as to why, in one case, the head and concentration data contain

similar information about the parameters, and in the second case the head and

concentration data contain different information about the parameters.

6.1.2 Multiple parameter dimensions

In most parameter estimation problems, more than two parameters are

estimated. In these cases, the response surfaces cannot be visualized. The response

surface in the form of the parameter confidence ellipsoid can be approximated. The

longest axes of the parameter confidence ellipsoid correspond to the directions of

maximum uncertainty in parameter space.

As with the two parameter problem, the confidence ellipsoids can be calculated
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for both data sets. The topologies of the ellipsoids for the two data sets can be

compared by comparing the lengths and directions of the longest axes. If the longest

axis of the confidence regions for the two data sets are similarly oriented and similar

in size, the second data set will not reduce the parameter uncertainties or instabilities

significantly. If the longest axes are similarly oriented but of different sizes, the joint

parameter estimates will be similar to those of the data set with the smaller confidence

ellipsoid. If the longest axes are oriented in significantly different directions, the second

data set has the potential to significantly reduce the parameter uncertainties. However,

simply using the orientation as measured by the angle of interaction between the

longest axes can be misleading in multiparameter estimation problems. Several axes

of the confidence ellipsoid may contribute to the ill-conditioning or large uncertainties

in the parameter estimates, and these other axes are not taken into account using the

angle of interaction.

It may be helpful to identify the largest axes for each data set by examining the

eigenspace, and then calculate the angle of interaction between each of these axes.

For instance, if each confidence ellipsoid had two axes that were much longer than

the others, a total of four angles of interaction would be calculated. If all angles of

interaction were large, then the ellipsoids would be significantly different. If one or two

of the angles were small, then the combined ellipsoid would still contain a direction

where the parameter confidence had not been reduced very much. The parameter

estimates may not improve significantly.
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A second method of comparing the confidence ellipsoids is to compare the

eigenspaces for the two data sets. The magnitude of all axes of the confidence

ellipsoid for the head data set should be examined to see how many contribute

significantly to the uncertainty of the parameter estimates. The relative contribution to

the uncertainty of each parameter from each of these long axes can be calculated.

The directions of the largest axes for the head data set are then compared to the long

axes for the concentration data set. This method has the advantage of a more

thorough analysis of the parameter space, leading to a better understanding of the

model. However, it has the disadvantage of not producing a single number that allows

the comparison between the two confidence regions. These methods are used in

section 6.4, when a multi-parameter example is examined.

6.1.3 Multiple sampling periods

The above examples used tracer concentration data sampled at a single point

in time for parameter estimation. These samples provide a single snapshot in time of

the concentration distribution. Numerical experiments were also conducted for the

tracer concentration data sampled at multiple time intervals, at 100, 500, 1000 and

1500 days, as the tracer moved through the system.

The response surfaces with the concentration data sampled at multiple time

intervals are similar in shape and orientation to the response surfaces sampled at a
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single snapshot in time. There are two differences between the response surfaces

presented for a single sampling period and the response surfaces for multiple

sampling periods. First, the response surfaces for multiple sampling periods result in

smaller confidence regions, because more data exists. Second, the confidence regions

for the data from the multiple sampling intervals are generally better conditioned than

the confidence region for the single sampling period. For the trial with a single

snapshot in time, some of the sampling locations are insensitive to changes in the

parameter values. For the trial with multiple sampling periods, all of the sampling

locations are sensitive to changes in parameter values for at least one sampling

period. Since the response surface for each sample location is slightly different, the

total response surfaces for the concentration data are somewhat better conditioned

when multiple sampling periods are used. Numerical experiments were also conducted

for a decaying environmental tracer, sampled at its steady state concentration

distribution. The response surfaces for the environmental tracer are very similar to the

response surfaces for a single snapshot in time.

6.2 Predicting the usefulness of a second data set

The use of response surfaces described above can be extended to predict how

additional data will influence the uncertainty of the parameter estimates before the

data is collected. The basis for this prediction is an analysis of the parameter space

for both the actual data set and a proposed future data set. The initial data set will
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produce a set of parameter estimates along with the parameter confidence region in

the form of a response surface. The general shape of the response surface for the

future data can be calculated even without knowing the actual values of the future

data, although the position of the confidence region in parameter space cannot be

determined until the data is collected. The superposition of the two response surfaces

will produce the total response surface for both the initial data and the proposed future

data, from which the size and shape of the confidence region can be calculated. If the

response surfaces for the initial and future data sets are similar, the future data set

will not significantly reduce the uncertainty in the parameter estimates. If the response

surfaces are quite different, the addition of the future data set will improve the

parameter estimates significantly.

Even though the actual values of the future data are unknown, and the value

of the resulting parameter estimates are unknown, the general shape and size of the

parameter confidence region can be calculated. The topology of the response surfaces

(and thus the confidence regions) depend on how the data interact with the model

parameters. The location of the minimum in the response surface depends on the

actual data values, but the overall shape of the response surface depends on the

interaction of the data with the model parameters. If the true data values are unknown,

then the location of the minimum in the response surface is unknown. However, as

long as the physical location of the data samples are known, the general topology of

the response surface can be calculated. The size and shape of the confidence region
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for the parameter estimates can then be calculated.

The general procedure is:

1. Design a model and estimate parameters based on the initial data set.

2. Use the model and parameter estimates to simulate a proposed future data set.

3. Calculate the confidence regi6n for the future data set.

4. Compare the confidence region for the initial data set to the confidence region

for the future data set, using either the angle of interaction or analysis of

confidence ellipsoids.

5. Evaluate the potential reduction in parameter uncertainty based on the

difference between confidence regions for the two data sets.

6.2.1 Demonstration using the T-T2 parameter set

To illustrate the above method, the parameter setT1-T2can be used. The initial

data set consists of hydraulic head data at the 15 observation locations, with a 1

meter standard error. The proposed future data set includes 15 concentration data

taken at 500 days after the source is introduced, It is assumed that the future

concentration data have a 5% standard error due to measurement uncertainty. This

example is similar to the one presented above, except for the assumption that the

concentration data has not been collected before the process of parameter estimation.
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Estimates for T1 and T2 are obtained using the initial hydraulic head data set

(from Table 6.1). The response surface for the hydraulic head data has been

presented in Figure 6.3a. These estimates of T1 and T2 are used in a forward model

to calculate the synthetic concentration distribution, and the concentrations are

sampled at the observation locations. These synthetic concentration data, with no

added error, are used to estimate the parameters again. This time, the parameter

estimates are not the major focus, since the estimates are the same as the estimates

using the initial head data set. The parameter values obtained from the head data set

were used to simulate the future concentration data, so these parameter values are

recovered when using the synthetic concentration data to estimate the parameters.

Instead, the parameter confidence region is the main concern. The response surface

is calculated for the synthetic concentration data (Figure 6.4a). Comparison of the

response surface for the synthetic concentration data to the response surface using

head data (Figure 6.3a) shows that the orientation of the valley in the response

surfaces are quite different. The joint confidence region (Figure 6.4b) is much smaller

than either region considered separately. The point estimates are the same as for the

head data alone.

The synthetic future data set will not have the same values as the actual future

data set. Therefore, the parameter estimates based on the synthetic data set will not

be the same as for the actual future data set. The general shape of the response

surface for the actual future data set and the synthetic future data set will be similar,
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although the location of the minimum are different. For example, the actual future data

set may have a response surface shown in Figure 6.4c. (This response surface was

generated by adding Gaussian noise to the synthetic concentration data, and thus

represents a possible concentration data set.) Note that the shape of the response

surface is similar to the synthetic future data set (Figure 6.4a), but the location of the

minimum is different. The combined response surface for the head data set and the

actual future data set is shown in Figure 6.4d. It is similar in shape to the combined

response surface for the initial data set and the synthetic future data set (Figure 6.4b),

but the location of the minimum is different.

In the above example, the future data set would significantly improve the

parameter estimates. However, for an example using the T1-R parameter set, the

future data would not improve the parameter estimates significantly. The response

surfaces for the initial and future data sets are quite similar, so the future data will not

significantly reduce the parameter ill-conditioning or uncertainty. It may not be worth

the expense of collecting additional data in this case.

6.2.2 Discussion of worth of future data

This section has presented a method for evaluating the worth of future data for

the purpose of reducing parameter uncertainty. The size of the confidence region for

the combined present data set and the proposed future data set can be evaluated.
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These confidence regions are compared to determine if the future data will

significantly impact the parameter uncertainties. The actual parameter estimates

cannot be calculated, since the true values of the future data are unknown. Different

sets of future data can be evaluated with respect to reducing parameter uncertainty.

There are two major assumptions implicit in this method. First, the model for

the initial data set and the model for the future data set are the same. The model

parameters and their uncertainties are being compared, so the model, including the

zonation and boundary conditions must remain unchanged. The initial data set should

allow the construction of a model and estimation of reasonable parameter estimates.

The future data are being evaluated on their ability to improve the parameter

estimates.

The second assumption is that the method is based on a linear analysis of

parameter uncertainty. If the model is highly non-linear with respect to the parameters,

then the confidence regions become curved and non-symmetric. In these cases, the

shape of the region depends on the value of the parameter estimates. If the model is

linear with respect to the parameters, then the shape of the ellipsoid is independent

of the value of the parameter estimates. Evaluating the worth of future data using

parameter space analysis relies on the fact that the response surface does not

change significantly when the parameter values change. Even in the case where the

model is highly-nonlinear in its parameters, this method may provide a first
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approximation to the worth of the future data in reducing parameter uncertainty.

The above analysis allows the worth of the future data to be quantified based

on its ability to reduce parameter uncertainties. The reduced parameter uncertainties

will result in a model that has more accurate predictive capabilities. The benefits of

the data must be weighed against the cost of collecting the data. A decision analysis

framework may be used to determine the worth of the data based on the ultimate

purpose of the model [Freeze eta!., 1990]. The future data is only worthwhile if the

benefits produced by the future data exceeds the cost of the data collection.

6.3 Weighting data sets in joint parameter estimation

The key difference between joint parameter estimation and single state

parameter estimation is the presence of multiple data sets. With multiple data sets,

a decision must be made regarding the importance of each of the individual data sets.

Each data set contains different, possibly unique, information on model parameter

values and uncertainties, yet some data sets contain more information than others.

The importance of each data set is manifested as a set of weights in the parameter

estimation process, as in equation (3.4). The data set containing more, or better,

information should be weighted more heavily than data set containing less information.

However, even data sets with poor quality information may be important since they

may contain unique information not found in the other data sets. It is important to
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assign an appropriate set of weights to each data set in order to obtain the best set

of parameter estimates possible. A well designed set of weights will extract the

maximum information from each data set. A poorly designed set of weights might

ignore essential information contained in some of the data sets. The use of parameter

space information allows the modeller to design a set of weights during the parameter

estimation process.

In this section, several methods designed to select an appropriate set of

weights in a joint parameter estimation problem are investigated. An analysis of data

residuals is the traditional method for weighting of the data sets in joint parameter

estimation [Galley eta!., 1992]. Using this method, a set of weights is selected so

that the residuals for each data set have approximately equal variance. In addition,

three parameter space methods are proposed to select a set of weights. These

parameter space methods select a set of weights based on an analysis of the

parameter space of the individual data sets. Weights can be selected to satisfy any

of the following goals:

1. Maximize parameter stability for the final parameter estimates.

2. Minimize the total uncertainty of the final parameter estimates.

3. Minimize the longest axes of the parameter confidence region.

Each of the parameter space approaches are designed to accomplish different goals,

and may lead to different sets of weights. All of the approaches are based on an

analysis of the parameter space. The final set of weights is selected to extract the
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most information from each data set with respect to the goal that is required.

6.3.1 Analysis of data residuals

The analysis of data residuals method uses the data residuals to determine, the

relative weights of the data sets. This method was first proposed for using both

hydraulic head and prior information on parameters [Neuman and Yakowitz, 1979]. It

has also been used with joint head-thermal data [Woodbury and Smith, 1988], and

joint head-concentration observations [Sun and Yeh, 1990; Galley eta!., 1992]. The

weights are assigned so that the variance of the weighted data residuals for each data

type are approximately equal.

The following is an outline of the above approach for two data sets. For the

joint parameter estimation problem using head and concentration data the objective

function is:

5(b) Wh(Yh—f(b)) V,,1 (Y,,—f(b)) + W(Y_f(b))T V (Y—f(b)) (6.1)

where the h subscript denotes those terms relating to head data and the c subscript

denotes those terms relating to concentration data. The Vh and V matrices contain

the relative reliabilities of the data within each data set. The Wh and w terms are

weights for each portion of the objective function, or each data set. The weights Wh

and w are to be determined. The general procedure for determining the weights is as

follows (although it varies slightly from author to author):

149



1. Minimize the objective function S(b) with Wh = w = 1.0

2. At minimum S(b), calculate variance of weighted data residuals for each data

set separately.

WhSh W S
Sh2 = s2

= c c

where Sh and S, are the minimum of the objective function using each data set

individually, and nh and n are the number of data in each data set.

3. Compute the ratio of the variances.

s2 hRatio = —

4. Adjust the weights so that the ratio of the variances is equal to one, and

estimate the parameters with the new set of weights.

5. Repeat steps 2,3,and 4 until the ratio of the variances stabilizes [Neuman and

Yakowitz, 1979] or is approximately equal to one [Galley et a!., 1992]. The

iterative steps are necessary because the data residuals may change with

different sets of weights.

6. Calculate the final parameter estimates and uncertainties.

The key point for the analysis of data residuals method is that the weights are chosen

so that the variances of the weighted residuals for each data set are approximately

equal. In the examples which follow, the criterion which chooses weights based on the

analysis of data residuals will be termed the RESID criterion.

150



6.3.2 Methods based on analysis of parameter space.

The parameter space contains information about the parameters being

estimated. This information can be used to select the weights in joint parameter

estimation problems. Three methodshave been developed to choose the weights for

each data set. Each method emphasizes a different aspect for the final parameter

estimates. The three goals for the final parameter estimates are:

1. Parameter estimates with maximum parameter stability.

2. Parameter estimates with minimum total uncertainty.

3. Parameter estimates with the largest uncertainties minimized.

The sections 6.3.2.1 through 6.3.2.3 outline the concepts for each of the weighting

methods, and section 6.3.2.4 outlines the procedural details for calculating the weights

for all parameter space methods.

6.3.2.1 Maximum parameter stability

Stable parameter estimates have the characteristic that uncertainties in the data

values do not influence the value of the parameter estimates greatly. When parameter

estimates are unstable, small errors in the data values can cause large errors in the

values of the parameter estimates.

Each data set has a unique response surface. Often these response surfaces
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for individual data sets are somewhat unstable, containing a narrow valley. When the

orientation of the valleys are different for each data set (measured using angle of

interaction), the data sets can be combined to yield more stable parameter estimates.

A specific combination of the data sets will produce parameter estimates with the

maximum parameter stability.

In order to choose weights to obtain parameter estimates with maximum

stability, the condition number (CN) of the scaled Hessian matrix is minimized. The

CN for each data set is the ratio of the longest to the shortest axis of the parameter

confidence ellipsoid. Using joint parameter estimation, the shape of the confidence

ellipsoid will change based on the weighting of each data set in the joint problem. The

weights that minimize the CN of the joint problem are to be selected.

The advantage of this weighting scheme is that the parameter estimates are

as stable as possible, given the model being calibrated and the data available. Its

major disadvantage is that the method may assign greater weights to the data set with

a larger confidence region just to produce circular confidence regions. The method

may produce stable parameter estimates with larger uncertainties than other weighting

schemes.
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6.3.2.2. Minimum total parameter uncertainty

The overall parameter uncertainty can be measured by calculating the volume

of the parameter confidence region. To minimize the overall parameter uncertainty,

the volume of this region is minimized [Sun and Yeh, 1985]. The volume of the region

is calculated using the axes of the parameter confidence ellipsoid, with the volume

proportional to the product of the lengths of the axes. During joint parameter

estimation, the shape and size of the confidence ellipsoid will change based on the

weighting of each data set in the joint problem. The weights that minimize the volume

of the confidence region for the joint problem are identified.

The advantage of this method is that the final set of parameter estimates have

a confidence region with the smallest possible volume. Having confidence region with

a small volume is good, and this type of criterion is often used in experimental design

for the purpose of discriminating among competing models [Hill, 1978]. However, the

smallest volume confidence region does not necessarily lead to individual parameter

estimates with minimum uncertainty. As an example, consider two confidence regions

with the same volume, Figure 6.5a and 6.5b. It is apparent that the confidence region

in Figure 6.5a leads to individual parameter estimates with much larger uncertainties

than those in Figure 6.5b. The parameter estimates represented by Figure 6.5a are

more unstable than those represented by Figure 6.5b.
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Selecting weights which minimize the volume of the parameter confidence

region often tends to reduce the smallest axes of the parameter confidence ellipsoid

before reducing the largest axes. Reducing the smallest axes of the confidence

ellipsoid reduces the volume much faster than reducing the largest axes. The result

of minimizing the volume of the parameter confidence ellipsoid is that the stability of

the estimated parameters is often decreased.

6.3.2.3 Minimizing longest axes of parameter confidence region.

The above weighting methods minimize either the volume of the confidence

region or maximize the parameter stability, often at the expense of the other criterion.

A third weighting method, selecting weights that minimize the length of the longest

axes of the parameter confidence ellipsoid, strikes a compromise. When the longest

axes of the parameter confidence region are minimized, the parameter estimates tend

to become more stable. The individual parameter uncertainties also tend to be

reduced. The requirements of maximum parameter stability and minimum parameter

uncertainty are balanced. The parameter estimates based on the set of weights

satisfying this criterion should be relatively stable, and have relatively small individual

parameter uncertainties.
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6.3.2.4 Procedure for weighting by the parameter space methods.

The procedures for all three proposed parameter space methods are similar.

The differences lie in what criterion is minimized during the selection of weights. For

maximum parameter stability, the CN is minimized. For minimum overall variance, the

volume of the parameter confidence region is minimized. The length of the longest

axis of the parameter confidence region is minimized as the third criterion.

The basis for all of the parameter space methods is that each data set

produces an individual parameter confidence region. As the data sets are combined

using different weights, the shape and orientation of the joint parameter confidence

ellipsoid changes. For a particular set of weights, a confidence ellipsoid is obtained

that minimizes the required criterion. The general procedure is:

1. Minimize the objective function S(b) with w = w = 1.0

2. At minimum S(b), separate the approximate Hessian matrix into two parts,

each part containing only head or only concentration information.

H= wh Hh + w H (6.2)

3. Scale the approximate Hessian matrices by the current parameter values.

4. Scale the approximate Hessian matrices by __, where 52 is:

s2 S(min) (6.3)
n-p

where S(min) is the minimum value of the combined objective function, n is the
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total number of data, and p is the number of parameters being estimated. This

scaling is done so that the inverse approximate Hessian matrix reflects the

linearized parameter confidence region. The s2 term also represents the overall

variance of the data.

5. Varying the weights between 0 and 1, search for a set of weights that

minimizes the appropriate criterion. At each set of weights, decompose the total

Hessian matrix into eigenvalues and eigenvectors that describe the parameter

confidence ellipsoid. The square roots of the inverses of the eigenvalues are

the lengths of the axes of the confidence region. These lengths are used to

calculate the criteria. The three criteria are:

(1) MINCN: minimize the CN of confidence region

CN L(max) (6.4)
L(min)

(2) MINVOL: minimize the volume of confidence region

VOL = fl1L1 (6.5)

(3) MINLEN: minimize the length of longest axis

LEN = L(max) (6.5)

6. Using the set of weights that minimized the appropriate criteria, estimate the

parameters again. Repeat steps 2 through 6 until the set of weights stabilize.

Less than three iterations are generally required for the weights to stabilize.
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The proposed weighting methods produce unequal weighted residuals for each

data set. This is not in accordance with standard regression techniques, which

demand that the weighted residuals have equal variance. However, for joint data sets,

the unequal variances of the weighted residuals may be necessary. Just as the data

and the model interact to define the parameter confidence region, the interaction of

the data and model combine to determine the calculated variance of the data

residuals. The variance of the data residuals for each data set are unique to that data

set, and this variance is somewhat model dependent. Due to this model dependence,

unequal variances of the weighted residuals for each data type may produce the best

parameter estimates for a given model.

Because the variances of the individual data sets are unequal, the assumptions

for classical weighted regression are violated. The calculated parameter variances

may not be equal to, and may underestimate, the true parameter variances. In the

following analysis, the parameter CV’S and uncertainties are calculated based on

standard weighted regression. The calculated CV’S are used to compare the different

weighting criteria. These calculated CV’s may not be equal to the true CV’S, and are

used for comparison purposes only.

6.3.3 Discussion of residual vs parameter space weighting criteria

What are the advantages of using the parameter space methods rather than
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the analysis of data residuals method of selecting weights? The parameter space

methods are designed to use more of the information available about the model being

calibrated. The set of weights is designed based on the relative information each data

set carries about the model parameters. The set of weights reflects the information

each data set has about all the parameters of the model.

The parameter space methods incorporate information about the shape and

orientation of the individual confidence regions in weighting the data sets. The data

residuals approach determines the value of each data set (and therefore the weights)

by the average residual variance for that data set. Two data sets may have similar

residual variances, yet their confidence regions may be quite different. If the

confidence region for head data is much larger than the confidence region for

concentration data, then the estimates using head data are probably further from the

true values than the estimates using concentration data. The concentration data lead

to better estimates, and should probably be weighted more heavily. In many cases,

one set of data may provide better information on one of the parameters, while the

second set of data provides better information on other parameters. The parameter

space methods allow the selection of weights based on the information each data set

has about all the model parameters.

The parameter space methods can also adapt the weights to changes in the

model or parameter set being calibrated. If the model being calibrated is altered, or
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the number of parameters being estimated is changed, the response surface for the

parameter estimates will change. These different response surfaces result in different

confidence regions, and parameter space methods can adapt the weights to the

information contained in these confidence regions. In section 6.3.4.1, an example is

presented to show how the parameter space criteria adapt the weights to changes in

the model. In Chapter 7, a flow model is calibrated for two different parameter sets,

illustrating how the parameter space criteria adapt the weights to different numbers

of parameters being estimated.

6.3.4 Comparison of weighting criteria

The four weighting criteria can be compared using the synthetic flow and

transport system introduced earlier. Only two parameters are estimated; T1 and T2.

The residual variances for each data set are approximately equal (h2 = 0.95; s2 =

0.96). Gaussian random noise at a specified level of uncertainty was used to produce

the data set, and the data covariance matrix is chosen to reflect these known data

uncertainties. This choice results in residual variances for each data set which are

approximately equal to 1.0. Therefore, using the RESID criterion, the two data sets

would be weighted equally. Figure 6.3a and 6.3b, introduced earlier, are the response

surfaces for head and concentration data respectively.

When the parameters are estimated with the joint data set, any of the four
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criteria for choosing weights may be used. Table 6.2 shows the weights, the

parameter estimates and uncertainties for the four sets of weights. Figure 6.6a.,b.,c.

and d. show the total response surfaces for the parameter estimates using the RESID,

MINCN, MINVOL, and MINLEN criterion respectively.

The MINCN criterion produces a parameter confidence region that is the most

circular with the smallest CN, at the expense of larger parameter uncertainties (Figure

6.6b). The parameter estimates based on the MINCN criterion have the largest

volume parameter confidence region, the longest length of the maximum axis, and the

largest average CV of any of the weighting schemes. The MINCN criterion weights the

head data set more heavily than the concentration data set in order to obtain the most

rounded confidence region. Because the head data set has larger parameter

uncertainties the confidence region for the joint parameter estimates using the MINCN

criterion weights is large.

The MINVOL criterion weights the concentration data set more than the head

data set (Figure 6.6c). This criterion results in a confidence region with the smallest

volume, but the parameter set has a larger condition number than any other criterion.

The MINLEN criterion weights the head data set more than the concentration data set

(Figure 6.6d), but not as severely as the MINCN criterion. The resulting parameter

estimates have a relatively small CN and volume of the confidence region. The

average CV of the parameter estimates using the MINLEN criterion is the lowest. The
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RESID criterion creates a parameter confidence region that is nearly as small as the

MINVOL and MINLEN criterion. The parameter estimates for the MINLEN, MINVOL

and RESID criterion are not significantly different.

6.3.4.1 Adaptability to changes in the model -

One way to illustrate the adaptability of the parameter space methods is to

change the model being calibrated. The same flow and transport system as above is

used, and the same parameters (T1 and T2) are estimated. The model is changed so

that the inflow boundary is a specified flux boundary rather than a constant head

boundary. The specified flux is calculated to produce the same head distribution

throughout the modelled area as the constant head boundary, and this flux value is

specified with no uncertainty. The data set used for parameter estimation is the same

as the original data set. This model is called the alternate model. The parameters T1

and T2 are estimated, first using the head and concentration data sets individually. The

parameters are then estimated using the four weighting criteria to determine the

weights for the joint data set.

Figures 6.7a and b show the response surfaces for the individual data sets for

the parameter set T1-T2 using the alternate model. The parameter estimates and the

confidence regions are very different from the original model, even though the same

parameters are being estimated with the same data set. The data yield different
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information about the model parameters because the model boundary conditions are

different. The head data alone produce much better parameter estimates than the

concentration data alone. In fact, the concentration data alone are virtually non-

identifiable with respect to the two parameters being estimated. Because the

confidence regions are different, the set of weights required to minimize the parameter

space criteria are different. -

Table 6.3 contains the parameter estimates, uncertainties, CV’S for the

individual data sets and the joint data sets using the four weighting criteria. The

response surfaces for the RESID, MINCN and MINVOL criteria are shown in Figure

6.8a,b and c respectively. The RESID criterion yields the same set of weights (wh =

1.0, w = 1.0) as the original model. However, the same set of weights does not

produce the same parameter estimates or confidence region for the joint data set. The

alternate model yields parameter estimates with smaller confidence regions for the

joint data set than the original model when using RESID or MINLEN weighting criteria.

Using this alternate model, each of the parameter space criteria produce

different sets of weights. The MINCN criterion (Figure 6.8b) weights the concentration

data more than the head data, even though the concentration data alone yields a non

identifiable parameter set. The shapes and orientations of the confidence regions

dictate that weighting the concentration data more than the head data results in a joint

confidence region that is as round as possible. The MINVOL criterion (Figure 6.8c)
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weights the head data more than the concentration data, resulting in a joint confidence

region that has the minimum volume. However, the MINVOL criterion produces

parameter estimates with the largest CN. For this alternate model, the MINLEN

criterion results in the same set of weights as the RESID criterion. The MINLEN

criterion and the RESID criterion result in parameter estimates that balance the need

for parameter stability and minimum volume of the joint parameter confidence region.

This alternate model example simply demonstrates that even when estimating

the same parameters with the same data set, the confidence regions can be very

different. Under the RESID weighting criterion, the weights are unchanged, but the

confidence regions are different. Under the parameter space criteria, the weights

change in response to the change in confidence regions. The weights change

because the parameter space methods recognize the change in information available

from each data set.

6.3.5 Discussion of results from tour weighting criteria

The parameter space methods presented above offer an alternative to the data

residuals weighting method for joint parameter estimation. The parameter space

methods have the apparent advantage of incorporating information about parameter

confidence regions. From a conceptual standpoint, the MINLEN criterion would seem

to result in the most sensible set of parameter estimates. It balances the need for
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maximizing parameter stability and minimizing the total parameter uncertainty.

In examples presented, the MINCN criterion often resulted in parameter

estimates with the largest uncertainties. This was a direct result of the MINCN criterion

minimizing the condition number at all costs. The MINVOL criterion did result in

minimizing the volume of the joint parameter confidence region, but the parameter

estimates often had the largest condition numbers. The MINLEN criterion generally

resulted in the parameter estimates with the lowest average coefficient of variation.

The volume of the confidence region and the condition number of the parameter set

were both usually small.

The RESID criterion also performed well, as measured by the average

coefficient of variation, volume of joint confidence region, and condition number. The

RESID criterion seemed to do a good job in balancing the different criteria used to

assess the parameter estimates. Based on the examples presented, as well as other

examples not presented, the MINLEN and the RESID criterion seem to be the most

reasonable to use for weighting data sets in joint parameter estimation. Both criteria

resulted in parameter estimates which balance the need for maximizing parameter

stability and minimizing parameter uncertainty.

It may be appropriate to ask why the RESID criterion performs as well as the

MINLEN criterion when it doesn’t include information from the parameter space. The
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explanation may be that, for these lower dimensional parameter spaces, a wide range

of weights produce a joint confidence region that changes in shape, but doesn’t

change the length of the longest axis significantly. As the weights change, the shape

of the joint confidence region does change, but this change is constrained by the

shape and orientation of the individual confidence regions. Though the MINLEN

criterion does minimize the length of the longest axis, this minimum length is not much

different than the length for any reasonable set of weights. The RESID criterion results

in a reasonable set of weights, and therefore does about as good a job as the

MINLEN criterion. When more than two parameters are estimated, the differences

between the parameter estimates using the parameter space criteria and the RESID

criteria should be greater. Examples of multi-parameter estimation are shown in the

following section and Chapter 7.

6.4 Analysis of multi-parameter system using joint data sets

A multi-parameter problem was examined using only hydraulic head data in

Chapter 5. The axes of the confidence region were analyzed to determine the most

efficient and responsible use of prior information to stabilize the parameter set. If

concentration data can be collected for this system, the additional data set may be

able to significantly stabilize this parameter set. The contribution of a concentration

data set is evaluated in this section.
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The flow model and boundary conditions have been introduced in Chapter 5

(Figure 6.14). To simulate a concentration data set, a constant concentration

conservative tracer is introduced along the western 2000 meters of the northern

boundary of the recharge zones. For this simulation, all units are assigned an effective

porosity of 0.2, and the specified transport parameter values are c=lOO m, T = 10

m, and c = 1.0. This tracer is sampled at the 18 sampling locations at 5000 days.

The standard error in the tracer concentration data is 5.0% of the concentration value.

The concentration distribution within the flow system at 5000 days is shown in Figure

6.9. The potential for this data set to reduce the non-identifiability of the 13 parameter

set is to be evaluated.

6.4.1 Analysis of parameter space based on concentration data set

The confidence region for the concentration data set needs to be defined. The

13 flow parameters are estimated using only the concentration data. Using the scaled

Hessian matrix evaluated at the parameter estimates, the axes of the parameter

confidence region are given in Table 6.4. Table 6.4 shows that axis 13 of the

confidence ellipsoid is very long and nearly parallel to axis H. The orientation of this

longest axis of the confidence region indicates that H is an insensitive parameter. The

model has no way of detecting the value or uncertainty of parameter H using the

concentration data. Table 6.5 lists the relative contribution to the uncertainty in each

parameter from each axis of the confidence region. Axis 13 contributes all the
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uncertainty to parameter H, and contributes some of the uncertainty to the other

parameters. However, axis 12 also contributes significantly to the uncertainty of all

parameters except H and R2.

Table 6.6 contains the error ratios for parameters using the concentration data

set. The error ratios for the concentration data set are generally similar in magnitude

to the error ratios for the head data set, with the exception of errors in the specified

head boundary. Using concentration data only, errors in the specified head boundary

have no influence on the estimates of the other parameters. However, errors in the

other parameters may have a large influence on the estimate of the head boundary

value. The error ratios for the transmissivity parameters show no distinct pattern,

unlike the error ratios using the head data only. The error ratios for the recharge

parameters, especially R1, are the largest, indicating that the estimates of the other

parameters are most sensitive to errors in recharge.

In a multiparameter inverse problem, determining the difference in shape and

orientation of the parameter confidence regions is more complicated than in the two

parameter problem. If only the longest axes were compared, axes 13 for both data

sets would be used. However, for the concentration data, axis 13 contributes mainly

to the uncertainty in parameter H and gives little information on the uncertainty of the

other parameters. Using head data, axis 13 gives information on the uncertainty of all

other parameters except H. In this example, parameter H is weakly correlated with all
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other parameters for both data sets, but is well defined using head data alone and

insensitive using concentration data alone. The longest axes cannot be compared

blindly; a comparison of only the orientations of axes 13 for both data sets for the

purposes of determining if a reduction in parameter uncertainty will occur would be a

mistake in this case.

Table 6.5 can be used to determine which axes of the confidence ellipsoid

contribute most to the uncertainty of the parameters. Axis 12 contributes the majority

of the uncertainty to all parameters except H and R2. Axis 13 contributes the majority

of the uncertainty to these two parameters. To determine if concentration data can

increase the stability of the inverse problem for the majority of the parameters, the

angle between axis 13 (head data) and axes 12 and 13 for the concentration data

need to be determined. Comparing axis 13(head) to axis 13(conc), 3 = 89.8°, and

comparing axis 1 3(head) to axis 1 2(conc), 3 = 82.3. The angle of interaction is quite

large for both cases, indicating the concentration data may help stabilize and improve

the parameter estimates significantly.

6.4.2 Joint parameter estimation using head and concentration data sets

For joint parameter estimation, weights must be selected for each data set.

These weights can be selected on the basis of any of the four criteria given in section

6.3. The weights for all criteria, along with the parameter uncertainties, CV’S, and CN’s
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of the parameter sets, are given in Table 6.7. This table also gives the parameter

uncertainties and CV’s for the head data set and the concentration data set alone.

The average CV for all weighting criteria are given to allow easy comparison between

criteria. The RESID criterion weights both data sets equally. The MINCN criterion

weight the head data much less than the concentration data, while the MINLEN and

MINVOL criteria weight the concentration data much less than the head data.

The concentration data alone yields parameter uncertainties similar to those

using head data alone, except for parameter H, which has an extremely large

uncertainty. The large uncertainty of parameter H occurs because it is insensitive. Any

combination of data sets produce parameter estimates which are much better by any

criterion than the parameter estimates using individual data sets. The MINCN criterion

results in parameter estimates with a low condition number, but the CV of the

parameter estimates is larger than any other criterion. This behavior is typical of the

MINCN criterion, which maximizes parameter stability at the expense of increasing the

uncertainty in the parameter estimates. The RESID criterion results in reasonably

good parameter estimates. However, both the MINVOL and the MINLEN criteria

produce somewhat better parameter estimates, as measured by the average

coefficient of variation. The MINLEN criterion results in the smallest average CV, yet

has the largest CN of any of the criteria. It is difficult to single out one criterion as the

best, because the criterion which produce smaller average CV’S also produce the

larger CN’s.
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6.4.3 Analysis of joint confidence region

Using the scaled version of the approximate Hessian matrix containing both

hydraulic head and mass concentration data, evaluated at the parameter estimates,

the axes of the joint confidence region can be calculated. Two aspects of this joint

confidence region relating to error ratios are evaluated; the influence of errors in the

transport parameters, and a comparison of the error ratios for the head and joint data

sets.

For this flow system, the concentration data reduce the uncertainty of the

parameter estimates significantly. However, some assumptions were made when

concentration data was simulated. Additional parameters were required to simulate the

concentration distribution. These parameter are the porosity of the internal zones, the

source strength, and the dispersivity of the medium. All of these parameters were

assigned a specified value without uncertainty. The effect of possible errors in these

parameter values on the parameter estimates needs to be determined. In particular,

it would be nice to know if errors in these specified parameters will lead to large errors

in the estimated parameters. The linearized error ratio matrix for all parameters,

including the transport parameters, must be calculated from the confidence region

using the joint data set, even though these transport parameters only enter into the

tracer data. If the linearized error ratios for any of the transport parameters are large,
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then it may be better to estimate those parameters with large error ratios rather than

specify them.

The portion of the linearized error ratio matrix, calculated using equation (5.1),

containing these transport parameters is included in Table6.8. The porosity of each

transmissivity zone is defined as a separate parameter, (given as P1 through P9 in

Table 6.8), but the longitudinal and transverse dispersivities are considered a single

parameter throughout the entire flow domain. It can be seen that errors in the

concentration source value contribute the most to errors in the estimated parameters.

For the porosity parameters, the error ratios are generally small. However, the error

ratios for lower transmissivity zones are larger than the error ratios for the higher

transmissivity zones. In granular porous media, porosity is relatively easy to estimate

independently of the model, and large errors in estimates of porosity are uncommon.

The dispersivity parameters have very small error ratios. Large errors in the specified

value of dispersivity will only lead to small errors in the estimated values of the other

parameters. Estimates of dispersivities are scale dependent and usually very difficult

to obtain independent of the model. The small error ratios for the dispersivity

parameters means that poor estimates of the dispersivities will not introduce large

errors in the estimates of the flow parameters. From this examination of the error ratio

matrix, the only transport parameter that may need to be estimated is the source

strength. We can cautiously state that the concentration data added significantly to the

parameter stability and reduced parameter uncertainty without requiring accurate
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it is informative to compare the error ratio matrix for the parameter estimates

using the joint data set to the error ratio matrix for the parameter estimates from the

head data set alone. The error ratio matrix for the joint data set is shown in Table 6.9.

The error ratios are generally smaller for the joint data set than for the single data sets

(Table 5.12 for head data; Table 6.6 for concentration data). The error ratios for the

parameter F is the exception to this generalization. Parameter F has the most

uncertainty associated with its estimate during joint parameter estimation. The longest

axis of the joint parameter confidence region is nearly parallel to the axis of F in

parameter space, resulting in large error ratios when estimating F. The parameter

confidence region for the joint data set is much smaller than the confidence region for

the single data set, and much better conditioned. These two factors allow the data set

to compensate for errors in prior information. However, since this joint data set is well-

conditioned for the 13 flow parameters, it is not imperative to use prior information to

estimate the parameter. The two data sets together will do a good job in estimating

all the parameters. Prior information with uncertainty may be used to decrease the

size of the confidence region, if the uncertainty in the prior information is less than the

uncertainty of the parameter from parameter estimation. Errors in prior information will

not have a significant effect on the final estimates, as these estimates are defined by

the well-conditioned response surface for the data.
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6.5 Summary

Three aspects of joint parameter estimation have been discussed in this

chapter. First, response surfaces and confidence regions were used to show how

multiple data sets reduced parameter uncertainty. Second, the use of confidence

regions was extended to predict the value of future data in reducing the uncertainty

of parameter estimates, before the data are collected. Third, parameter space

approaches were introduced for selecting the weights for the individual data sets in

joint parameter estimation. Four weighting criteria were compared using both simple

two parameter problems and a multi-parameter problem.

Each data set produces a unique response surface and confidence region. If

these surfaces are oriented differently for the two data sets, the parameter uncertainty

are significantly reduced when the second data set is included. If these surfaces are

similar for two data sets, the second data set will not reduce the parameter uncertainty

significantly. In simple two parameter examples, the response surfaces were

visualized. For multiparameter examples, the axes of the confidence ellipsoid need to

be analyzed to determine the difference in orientation of the confidence regions for the

two data sets.

Future data can be simulated using the model and the parameter estimates

from the original data set. The confidence region for the future data set can be
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estimated using these simulated data values. The confidence regions forthe initial and

future data sets can be compared to determine the potential reduction in parameter

uncertainty for the future data set. Though the actual future data will not produce the

same parameter estimates as the simulated future data, the actual future data will

produce similar values for parameter uncertainty.

For weighting data sets in joint parameter estimation, the analysis of data

residuals method was compared to three methods based on parameter space

analysis. The parameter space based methods have the advantage of incorporating

information about parameter confidence regions. Three criteria based on parameter

space analysis have been proposed (minimum condition number, minimum volume of

confidence region, and minimum longest axis of confidence region). Each criterion

results in the “best” parameter estimates in some sense. The parameter space criteria

can adapt the weights to changes in the model. The MINCN criterion often resulted

in parameter estimates with the largest uncertainties, but lowest condition number.

The MINVOL criterion resulted in parameter estimates with the smallest sized joint

confidence region, but the estimated parameter set often had larger condition numbers

compared to other weighting criteria. In the examples presented, the MINLEN criterion

and the RESID criterion seemed to be the most reasonable to use for weighting data

sets in joint parameter estimation. They both balanced the need for maximizing

parameter stability and minimizing the total parameter uncertainty.
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A multi-parameter flow system was used to demonstrate the reduction in

parameter uncertainty during joint parameter estimation. The parameter set was non-

identifiable using only head data. Tracer concentration data significantly reduced

parameter uncertainty and ill-conditioning. Additional transport parameters were

needed to simulate the tracer concentrations, but errors in the specified values of

these parameters were found to lead to very small errors in the estimates of the flow

parameters, based on linearized error ratio analysis. The concentration data added

significantly to the parameter stability and reduced parameter uncertainty without

requiring accurate estimates of the transport parameters. With respect to weighting

the data sets, it was difficult determine which criterion performed the best. The

MINLEN criterion resulted in the smallest average coefficient of variation, but it also

resulted in the largest condition number. The RESID criterion, MINVOL criterion and

MINLEN criterion all resulted in reasonably good parameter estimates.
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Figure 6.2 Response surfaces for parameter set A: (a) head data; (b) concentration
data; (c) joint data set
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Figure 6.5 Two confidence ellipses with the same volume and orientation, but
different stabilities and parameter uncertainties
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CHAPTER 7. JOINT PARAMETER ESTIMATION FOR THE SAN JUAN BASIN

USING PARAMETER SPACE METHODS

In this chapter, the development and calibration of a groundwater flow model

for the San Juan Basin, New Mexico, is discussed. Hydraulic head data, 14C data, and

prior information on parameter values are used for parameter estimation in the San

Juan Basin. A cross-sectional model of the hydrogeological units in the west-central

portion of the basin is constructed. The purpose of constructing the model is to

demonstrate the utility of the methods developed in this thesis for calibrating a

hydrogeological model in an efficient and responsible manner using joint data sets.

The geology of the basin has been investigated by Baltz [1967] and Fasset and Hinds

[1971]. The hydrogeology of the basin has been summarized by Stone et al. [1983].

7.1 Study area

The San Juan basin is a large structural basin (77000 km2) in northwestern

New Mexico and southwestern Colorado (Figure 7.1). The basin lies in a relatively flat

upland region south and east of the Rocky Mountains. Altitudes range from 2400 m

in the northern part of the basin to about 1550 m where the San Juan river exits the

basin. The central part of the basin is a dissected plateau, the surface of which slopes

gently to the west. Figure 7.1 is a plan view of the San Juan Basin, showing the

surface outcrop of the major Cretaceous and Tertiary units. The line A-A’ in the
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southwestern portion of the basin is the line of section along which the model is

constructed. The model extends from Chaco Canyon in the south to the San Juan

river in the north, along the center of R1OW.

The climate throughout-the basin is arid to semi-arid. The rainfall in the basin

is about 10 cm a year at the lower altitudes of the modelled cross section. The major

stream in the basin is the San Juan River, which flows westward in the New Mexico

portion of the basin. Many intermittent streams also drain the basin. The Chaco River

is the largest intermittent stream, draining the southern and western parts of the basin

and flowing into the San Juan on the western side of the basin.

7.2 Geology

The San Juan basin is nearly circular in plan view. It is an asymmetric structural

depression which contains sedimentary rocks ranging in age from Cambrian to

Quaternary. This study will concentrate on groundwater flow in the upper Cretaceous

and Tertiary units of the basin. Figure 7.2 is a schematic cross section of the upper

Cretaceous and Tertiary units along the modelled section.

The upper Cretaceous rocks of the basin are over 1830 m thick and consist of

intertonguing marine and non-marine units that represent three basin-wide

transgressive-regressive cycles of deposition. These cycles laid down the Menefee
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Formation, the Cliff House Sandstone, the Lewis Shale, with the final regression of the

sea resulting in the deposition of the Pictured Cliffs Sandstone. The Pictured Cliffs is

overlain by two Cretaceous units of continental origin, the Fruitland Formation and the

Kirtland Shale. The Tertiary rocks in the study area consist of the Ojo Alamo

Sandstone and the Nacimiento Formation. The Nacimiento contains interbedded

mudstone with sandstone lenses. Quaternary deposits consist of Pleistocene and

Holocene terrace gravels and alluvium.

7.3 Hydrogeology

Three types of hydrogeological information are available to construct a

hydrogeologic model of the basin; hydraulic head data, 14C data, and direct information

on parameter values.

The head data were obtained from Stone et a!. [1983]. Phillips et a!. [1989]

kriged 24 head data in the Ojo Alamo and 26 head data in the Nacimiento to calculate

the potentiometric surface for each aquifer. The head distribution indicates recharge

along the outcrops and discharge to the San Juan River. The head distribution also

shows that the hydraulic head contours are generally perpendicular to the modelled

cross section.

For this study, all head data available in R9W, Ri OW and Ri 1 W from Chaco
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Canyon in the south to the San Juan river in the north were analyzed for use in the

cross section model. The sample locations are plotted on Figure 7.3, along with the

information about which formation each well sampled. Most of the wells were

completed in the Ojo Alamo and Nacimiento formations, but several were completed

and sampled in lower formations. The screened intervals for the wells range from 5m

to over 1 OOm, with an average of approximately 20m. Table 7.1 contains the well data -

used in this study, listing a well identifier, well location, the elevation of the midpoint

of the screened interval, and the hydraulic head. The well identifier consists of a

number and letters. The letters indicate which formation the well was reported to have

sampled. The letter identifiers are:

(q) Quaternary Alluvium

(n) Nacimiento

(0) Ojo Alamo

(k) Kirtland/Fruitland

(pc) Pictured Cliffs

(I) Lewis

(ch) Cliff House

The hydraulic head data set consists of all wells in R9W, R1OW, and R11W, up to 15

km from the line of section. Figure 7.4 shows the modelled cross section, along with

the midpoint of the screened interval for all wells in the head data set.

The assigned uncertainty in the head data is determined in part by the distance
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Table 7.1 Hydraulic head
model

data used for calibrating the San Juan Basin

35n

39n

48n

51n

52n

27443.0 1976.0 1986.0 30.0

Well Distance from Midpoint of Hydrauhc Standard
Identifier Chaco Canyon Screened Head Error

(m) Interval (m) (m)
(m)

29n 30323.0 1993.0 2018.0 35.0

42181.0 1833.0 1953.0 30.0

40n 42011.0 1860.0 1927.0 25.0

46n 54547.0 1857.0 1855.0 45.0

47771.0 1833.0 1908.0 55.0

52683.0 1822.0 1838.0 55.0

47093.0 1775.0 1855.0 50.0

56n 62847.0 1840.0 1840.0 25.0

59n 67252.0 1738.0 1747.0 40.0

62n 69115.0 1654.0 1669.0 60.0

72n 75000.0 1658.0 1660.0 30.0

73n 74875.0 1652.0 1678.0 30.0

190 25749.0 1906.0 2026.0 60.0

200 25241.0 1915.0 2009.0 60.0

210 25749.0 1909.0 1920.0 60.0

300 28629.0 1928.0 1932.0 45.0

310 33541.0 1960.0 1975.0 20.0

320 33711.0 1857.0 1912.0 30.0

1856.0 1893.0

360 33711.0 1920.0 1920.0

1845.0 1930.0

380 40148.0 1810.0 1887.0

410 40487.0

330

340

37°

4n

32017.0

27443.0

40656.0

7ngq n

1924.0

1870.0

11Afl

1930.0

1935.0

1R9fl

20.0

20.0

55.0

35.0

35.0

20.0

20 0
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Table 7.1 (continued)

Well Distance from Midpoint of Hydraulic Standard
Identifier Chaco Canyon Screened Head Error

(m) Interval (m) (m)
(m)

440 39809.0 1846.0 1876.0 55.0

450 45230.0 1812.0 1850.0 60.0

520 47093.0 1773.0 1855.0 50.0

610 69285.0 1625.0 1658.0 55.0

740 74028.0 1526.0 1654.0 60.0

53g 46416.0 1880.0 1880.0 45.0

68g 74738.0 1663.0 1663.0 30.0

69g 74399.0 1679.0 1683.0 30.0

70g 74044.0 1710.0 1719.0 20.0

4g 4743.0 1949.0 1946.0 30.0

16g 8131.0 1874.0 1874.0 30.0

17g 7623.0 1871.0 1871.0 30.0

25g 17448.0 1957.0 1956.0 30.0

26g 17787.0 1957.0 1956.0 30.0

8k 11180.0 1862.0 1862.0 50.0

10k 15754.0 1839.0 1893.0 20.0

12k 14568.0 1902.0 1915.0 20.0

13k 12197.0 - 1876.0 1894.0 25.0

14k 12366.0 1872.0 1891.0 30.0

15k 11858.0 1833.0 1880.0 30.0

20k 25241.0 1825.0 1935.0 60.0

27k 25579.0 1320.0 1787.0 60.0

58k 57765.0 1576.0 1737.0 40.0

ich 4913.0 1826.0 1898.0 35.0

2ch 4913.0 1664.0 1852.0 50.0

6pc 14399.0 1815.0 1938.0 60.0

9ch 11350.0 1619.0 1731.0 50.0

llpc 14399.0 1798.0 1882.0 25.0

lRch 11180.0 18210 1849.0 45.0
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of the well from the line of cross-section. This uncertainty has several sources, all of

which contribute to the modelled data riot matching the measured data exactly. Some

of these sources are: (1) an uncertainty about which vertical point in the aquifer is

sampled due to the length of the screened interval of the well; (2) an uncertainty due

to the fact that-the wells do not lie on the line of section; and (3) the uncertainty due

to the natural variation in hydraulic conductivity and other parameters within each unit,

which is present in the field but not included in the model. For wells within 0.8 km (one

section) of the line of the cross-section, the standard error of measurement is 20

meters. For wells further from the line of the cross-section, the standard error of

measurement is 20 meters, plus 5 meters for each section (approximately 1.6 km)

away from the cross section. This method of assigning uncertainty based on the

distance from the modelled section is rather arbitrary, but qualitatively seems to be a

reasonable method of assigning uncertainty in a cross sectional model. The baseline

uncertainty of 20 m may seem to be large for measurements of hydraulic head, but

it is consistent with the large scale of the model. Table 7.1 also contains the assigned

standard error of measurement for each well.

The 14C data were obtained from Phillips et al. [1989] and Shute [personal

communication, 1994]. These data are available only in the Ojo Alamo and Nacimiento

formations. The 14C data available in R9W, R1OW, and Ri 1W were used for this

study. Table 7.2 contains the ‘4C data, reported in percent modern carbon, along with

the well locations and midpoint of the sampling interval. Some of the wells sampled
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Table 7.2 The 14C data used to calibrate the San Juan Basin model

Well Shute Phillip Distance Midpoint C-i 4 c-i 4 [Phillip] Standard
Identifier Well Well from of [Shute] (pmc) Error

Number number Chaco Screened (pmc)
Canyon Interval

(m) (m)

28n SJB-24-O 35405 1934 51.2 ± 0.6 9.1

39n NMO5 SJB-22-N 42181 1833 12.6 12.3 ± 0.5 2.3

40n NM22 42011 1860 19.9 2.5

48n NMO7 SJB-35-N 47771 1833 8.39 9.2 ± 0.4 4.4

81n NMO1 SJB-21-N 67500 1553 1.4 <1.73 0.5

82n NMO8 57700 1681 4.49 3.9

200 NM1O 25241 1915 37.9 7.8

22o SJB-13-O 25750 1909 iO.16±.56 5.0

230 NM17 SJB-04-O 17800 1934 50.5 51 .22± 1.14 7.5

320 NMO9 SJB-02-O 33711 1857 27.2 28.66 ± .85 3.7

330 SJB-17-O 32017 1856 40.3 ± 0.9 4.0

340 SJB-05-O 27443 1924 5.52 ± .85 0.5

380 NM11 SJB-08-O 40150 1810 8.33 8.99 ± .9 2.3

520 NM13 47093 1773 8.14 3.8

570 NMO3 62800 1626 2.79 3.7

580 NMO2 SJB-15-O 57765 1624 3.96 10.25 ± .75 2.4

830 NM23 SJB-12-O 51500 1700 8.85 4.40 ± 1.5 1.8

840 SJB-11-O 47000 1756 4.70 ±0.6 1.4

by Phillips et al. were re-sampled by Shute, and the ‘4C concentrations are in

agreement for most of the wells. Two wells sampled in both studies have different ‘4C

concentrations: wells 580 and 830. In this study, the more recent sample

concentrations are used for model calibration.
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Figure 7.5 is a location map of the wells from which the 14C data was collected.

Eight wells lie within R1OW, and the remaining 10 wells are further from the line of

section. Figure 7.6 shows the modelled cross section, along with the locations of the

midpoint of the sampling interval for the wells. Some of the same wells sampled for

head data are also sampled for ‘4C data. For most of the wells, the midpoint of the

screened interval for hydraulic head data is identical to the midpoint of the sampling

interval for the concentration data. Two wells are different. Well 340 (SJB-05-O) is

reportedly screened in the Ojo Alamo, but Phillips eta!. [1989] stated that the water

chemistry indicated that it came from the Kirtland Shale. For the model calibration, the

sampling interval is located in the Kirtland Shale. Well 58 (SJB-15-O) was screened

as deep as the Pictured Cliffs, but was probably sampled in the Ojo Alamo, so the

sampling interval is placed in the Ojo Alamo.

The assigned uncertainty in the 14C data is determined using two factors: (1)

the magnitude of the 14C concentration and (2) the distance of the well from the line

of cross-section. The sources of uncertainty in the 14C data are the same as those for

the hydraulic head data, as well as the measurement uncertainty reported by Phillips

et al. [1989]. It is important to link the uncertainty in the 14C concentrations to the

magnitude of the concentrations in order to capture the pattern of concentration

distribution, If the uncertainty were not linked to the magnitude of the concentrations,

the match between the simulated concentrations and the observed concentrations

would be dominated by the high concentration samples. The lower concentration
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samples need to be matched more closely than the higher concentration samples in

order to capture the overall pattern of the concentration distribution. The assigned

uncertainty for each sample is calculated as 10% of the ‘4C concentration, plus 0.5

pmc for each section (approximately 1.6 km) away from the cross section. Table 7.2

also contains the assigned standard error of measurement for each well.

The direct information on hydraulic conductivities is from Stone eta!. [1983].

This direct information can be used as either prior information on parameter values

or initial parameter estimates for model calibration purposes. However, the prior

information may not be representative of the model parameter values for several

reasons. First, the prior information is obtained from drill stem tests, slug tests, and

pump tests, which sample the subsurface at a much smaller scale than the model

parameter zones. The prior information may underestimate the model parameter

values due to differences in scale. Second, the prior information in low permeability

units is often obtained in the more permeable sandstone lenses within a lower

permeability mudstone or shale unit. The sandstone lenses are often not

interconnected, and the prior information obtained from the lenses may overestimate

the overall permeability for the units. Third, the prior information is often from locations

far from the modelled area. This prior information is often taken near the outcrop, and

may not be representative of parameter values at depth. Table 7.3 contains the prior

information available on the hydraulic conductivity values for the units in the model,

along with the source of the prior information and the estimation method. Several prior
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values are available for some of the units.

A second source of prior information is the model of Phillips and Tansey[1 984].

They constructed a quasi three-dimensional groundwater flow model of the Ojo Alamo

and Nacimiento formations, using 14C ages to obtain the hydraulic conductivity

distribution. They divided the Nacimiento into three units; an aquifer and two aquitards.

The thickness of the aquifer was obtained by adding the thicknesses of the sandstone

lenses throughout the Nacimiento together, and considering this total thickness an

aquifer located in the center of the Nacimiento. An aquitard was located above and

below this aquifer. The model was calibrated by adjusting the permeability of the

aquitards. Table 7.3 also contains the prior information available from the Phillips and

Tansey [1984].

7.4 Model construction

A cross-sectional model of the hydrogeological units in the west-central portion

of the basin, representing the southern limb of the basin, is constructed. The purpose

of constructing the model is to demonstrate the utility of the methods developed in this

thesis for calibrating a hydrogeologic model in a responsible manner. Hydraulic head

contours for the basin show that the flow direction is generally N-S, so the model is

constructed along a north-south cross section through the middle of R1OW. The

southern boundary of the model coincides with the bottom of Chaco Canyon, and the
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Table 7.3 Prior information on the parameters in the San Juan Basin model

Formation Prior Hydraulic Source Test Method
Conductivity

Nacirniento 0.63 rn/yr Phillips and thermal gradients
aquitard Tansey [1984]

Nacimiento 0.015 rn/yr Phillips and model calibration
aquitard Tansey [1984]

Nacimiento 6-15 rn/yr Phillips and calculated from flow
aquifer Tansey [1984] path and 14C data

Nacirniento 11 rn/yr Stone et al., estimated
aquifer [1983]

Ojo Alamo 15-50 rn/yr Phillips and calculated frorn flow
Tansey [1984] path and 14C data

Ojo Alamo 55-177 rn/yr Brimhall [1973] aquifer pump tests

Fruitland/Kirtland 0.001-0.01 rn/yr Stone et al. [1983] estimated based on
variety of tests

Fruitland/Kirtland 0.015 rn/yr Phillips and thermal gradients
Tansey_[1984]

Pictured Cliffs .001-3.3 rn/yr Stone et al. [1983] aquifer tests

Pictured Cliffs 0.7 rn/yr Stone et al. [1983] permeability data from
Reneau and Harris

[1953]

Lewis Shale - - no data

Cliff House 1.11 rn/yr Stone et al. [1983] recovery test

Cliff House 0.11 rn/yr Stone et al. [1983] permeability data frorn
Reneau and Harris

[1953]

Menefee 1 .Oe-6 to 1 .1 Stone et al. [1983] aquifer tests
m/y

northern boundary is located at the San Juan River. The distance from Chaco Canyon

to the San Juan River is approximately 75 km along R1OW.
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7.4.1 Model boundary conditions

The locations of the model boundaries were chosen so that simple boundary

conditions could be applied. Figure 7.7 is a conceptualized cross section showing the

layering and boundary conditions. The flow system is assumed to be at steady state.

1. Upper Boundary

The upper boundary of the model is chosen to coincide with the elevation of

the water table in the uppermost unit. From south to north along the cross section, the

surface elevation starts at 1820 meters at the base of Chaco Canyon, and increases

gradually to the outcrop of the Ojo Alamo, at approximately 2000 m. A plateau

continues for about 15 km north of the outcrop of the Ojo Alamo, and then surface

elevations decrease to the San Juan River, at approximately 1690 meters.

The upper boundary is represented as a specified head boundary. To impose

this boundary, four nodes are located along the top of the flow system, one at Chaco

Canyon, one at the outcrop of the Ojo Alamo (20 km), one at 35 km, and the fourth

at the San Juan River (75 km). The value of the hydraulic head at each of these

nodes is estimated, and the hydraulic head along the rest of the boundary is

interpolated linearly between these nodes. During model calibration, the elevations of

the top boundary change, and the FEM grid can adjust to reflect these changes. The

initial estimate of the head along the top boundary is the surface elevation.
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2. Lower Boundary

The lower boundary is represented by a no-flow boundary within the Menefee

Formation. The Menefee Formation is the unit below the Cliff House, and is a

relatively thick sequence of marine shales and siltstone lenses. Though more

permeable formations do exist below the Menefee Formation, the flow across the

Menefee represents a small percentae of the total flow through the system. The

hydraulic conductivity of the Menefee is assigned a value of 1 .Oe-6 m/yr, and is not

estimated. Several factors were taken into account in order to locate the domain

boundary below the Cliff House. First, no hydraulic head or 14C data was available in

units below the Cliff House near the cross section, so the parameters for lower units

would have been extremely difficult to estimate. Second, numerical experiments

showed that including the units below the Cliff House in the model resulted in very

little change in the hydraulic head or 14C concentration distribution in the upper layers.

Including the lower units was not necessary in order to simulate flow and transport in

the units where data exists.

3. Southern Boundary.

The southern boundary of the model is chosen to coincide with the bottom of

Chaco Canyon. This canyon is a suriace water and shallow groundwater divide. It may

not be a groundwater divide for the deeper regional groundwater system. However,

the units intersecting this boundary are low permeability, so the no-flow boundary

specification is probably reasonable.
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4. Northern Boundary

The northern boundary is specified to be a no-flow boundary. The San Juan

River marks the lowest elevation (in a N-S cross section) of the basin, and also marks

the axis of the basin. The San Juan River should be both a shallow groundwater and

a regional groundwater divide, so a no-flow boundary is appropriate.

7.4.2 Hydrogeological units in the model

Six major hydrogeological units are included in the model. The vertical location

and dip of these units were obtained by plotting all data from the well logs, and fitting

the units to the well log completion intervals. The distribution and thickness of the

hydrogeological units in the model is shown in Figure 7.7. The Cliff House Sandstone,

the lowest stratigraphic unit estimated using the model, crops out in Chaco Canyon

at an elevation of approximately 1820 m. Based on well data, it dips to the north at

an angle of about 1.50. It is represented as a 50m thick unit. All other units dip to the

north at an angle of about 10. The Lewis Shale crops out just north of Chaco Canyon.

It is relatively thin near the outcrop and increases in thickness northward up to 525m.

The Pictured Cliffs Sandstone crops out about 8km north of Chaco Canyon, and

maintains a constant thickness of 25m throughout the model domain. The

Kirtland/Fruitland Shale is represented as a unit 200 meters thick. The Ojo Alamo

Sandstone crops out about 15 km north of Chaco Canyon, and dips north at 10. It is

represented as a 50 m thick layer. The Nacimiento Formation is the highest

207



stratigraphic unit in the cross section. It is present only north of the outcrop of the Ojo

Alamo, and ranges in thickness from 0 to 150 meters. For this model, the Nacimiento

is considered a single hydrogeologic unit. Though the Nacimiento contains

interbedded mudstone and sandstone lenses, it is not known whether the sandstone

lenses are interconnected. Defining the Nacimiento as a single hydrogeologic unit is

more reasonable than breaking it into several units, since the location and extent of

multiple units would be difficult to determine.

7.4.3 Concentration boundary conditions and parameters

In order to simulate the 14C data, the boundary conditions and parameters that

are specific to the tracer concentration field are required. The ‘4C is introduced along

the top boundary of the model, where it enters the groundwater flow system at the

water table. This boundary is a specified concentration boundary. The required

parameters are the half life of the 14C isotope, the initial concentration at the inflow

boundary, the horizontal and transverse dispersivities, and the effective porosity for

each unit.

The determination of the initial concentration of 14C at the water table is not

straightforward. Phillips et al. [1989] used six different correction models to estimate

the initial concentration of 14C samples in the San Juan basin, and obtained values

ranging from 31 to 150 prnc. Phillips eta!. [1989] determined that the correction model

208



of Vogel [1967] compared favorably with the other correction models they examined.

The correction model of Vogel assigns an initial activity of 85 pmc to every sample.

For the model in this thesis, an initial concentration of 85 pmc is used at the water

table. This boundary condition was applied along the water table in the region where

downward flow from the water table to the aquifer was present. In the discharge

portion of the upper boundary, a third-type boundary was applied.

The horizontal and transverse dispersivities are not straightforward to

determine. Phillips et al. [1989] used well logs and stochastic transport theory to

estimate horizontal dispersivities of approximately 300 meters. However, using a one

dimensional transport model, they showed that the concentration distribution was not

very sensitive to the horizontal dispersivity for a decaying solute. Comparing horizontal

dispersivities ranging from 0 to 1500 m, the maximum difference in 14C ages was

found to be 11%, within the measured uncertainty in the 14C concentrations. For the

model in this thesis, a horizontal dispersivity of 300 meters is used. The transverse

dispersivity is estimated at 10 meters. The effective porosity is assigned a value of

0.2. After the parameters are estimated using the joint data set, the consequences of

incorrectly specifying the parameters controlling the concentration distribution are

examined.

The half life of 14C is approximately 5740 years [Fontes, 1980]. Since the flow

system is at steady state and is presumed to have been relatively unchanged for a

209



long period of time relative to the half life of 14C, the 14C concentrations are also at

steady state. The time needed to reach a steady state distribution depends on the

distance from the source. For a wide range of aquifer properties, it was determined

that concentrations were relatively unchanged within the model domain after 50,000

years. The maximum simulation time is specified to be 50,000 years.

The ‘4C distribution is calculated both using standard Crank-Nicolson time

stepping and the Arnoldi algorithm. Using the Crank-Nicolson time stepping procedure,

relatively accurate steady state distributions can be calculated using time steps of 500

years, so only 100 time steps are needed to calculate the 14C distribution. Using the

Arnoldi algorithm, the amount of computer time required to accurately calculate the

steady state 14C distributions is dependent on the contrast in hydraulic conductivity

between the model layers. In general, at least 10 Arnoldi vectors are needed for

moderate contrasts, and up to 15 Arnoldi vectors are needed when the contrast in

hydraulic conductivity between layers is greater than 3 orders of magnitude. In

addition, many more iterations are needed to solve for each Arnoldi vector when the

contrast between the layers is large. Because the hydraulic conductivity of each layer

is variable during the parameter estimation procedure, and contrasts of greater than

six orders of magnitude are common, the Arnoldi algorithm performs poorly during

parameter estimation for this model. The Crank-Nicolson procedure is more robust,

and hence more reliable during parameter estimation. It is often faster as well.
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7.4.4 Model grid

The model is based on a finite element technique using triangular elements.

The mesh is aligned with the regional slope of the hydrogeological units. This

alignment allows easy representation of the units, and allows the elements to be

aligned with the streamlines in the more permeable units. The upper boundary of the

mesh is adjustable so that it can coincide with the elevation of the water table in the

upper units. For the flow model, the elements are 250 meters long and between 5 and

15 meters high.

7.5 Model calibration strategy

The flow model, as described above, contains 10 parameters that need to be

estimated. There are 4 head boundary parameters; the value of hydraulic head at

each of the 4 nodes that define the upper surface of the cross section. There are also

6 hydraulic conductivity parameters, one for each layer in the model. The anisotropy

for each model hydraulic conductivity zone also needs to be defined, but this

parameter is not estimated initially. The anisotropy is assigned a value of 100 for each

model layer, and subsequently the effect of errors in the specified value of anisotropy

on the parameter estimates are determined.

The model is calibrated in two stages. In the first stage, all 10 model
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parameters are estimated. The hydraulic head and 14C data are used both individually

and jointly to estimate the model parameters. The parameter space for the joint data

set is examined to determine how to use prior information to stabilize the parameter

set most efficiently and responsibly. It is shown that the uncertainties in the estimates

of hydraulic conductivity parameters in the lower layers of the model are many orders

of magnitude larger than the uncertainties of the other parameters. The uncertainties

in these parameters dominate the model parameter space, both in the single state and

joint parameter estimates. It is also shown that prior information on these parameters

stabilizes the parameter space, and leads to very small error ratios for the remaining

parameters.

The second stage of model calibration builds on the first stage. The hydraulic

conductivity parameters in the upper model layers are the most interesting, since most

of the data is available in these layers. In the second stage, prior information is used

to specify the parameter values for the lower model layers, and the remaining

parameters are estimated. The relative weighting of the hydraulic head and the 14C

data for the joint data set is examined. The effects of possible errors in the anisotropy,

source strength, and dispersivity is analyzed using the parameter space during the

second stage of parameter estimation.
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7.6 Model calibration for 10 flow parameters

In the first stage of model calibration, the model parameter space using

hydraulic head and 14C data is analyzed. Those parameters for which prior information

will most efficiently and responsibly stabilize the model parameter set are identified.

7.6.1 Parameter estimates based on the hydraulic head data set

The hydraulic head data set contains 55 hydraulic head data, 14 in the

Nacimiento, 18 in the Ojo Alamo, 8 in the Quaternary Alluvium, 8 in the

Kirtland/Fruitland, 2 in the Pictured Cliffs, and 4 in the Cliff House. The distribution of

these data is shown in Figure 7.4. No data are available in the Lewis shale. The initial

parameter estimates are listed in Table 7.4. The hydraulic conductivity parameters are

the horizontal hydraulic conductivities, in units of m/yr. For the hydraulic conductivity

parameters, the initial estimates are based on the average values of the independent

information for each of the hydrogeological units. For the head boundary parameters,

the initial estimates are equal to the surface elevation at each node, in units of meters.

The final parameter estimates are listed in Table 7.4, along with the standard

error of the parameter estimates and the coefficient of variation. When a different set

of initial estimates were used, the final parameter estimates for the hydraulic

conductivity parameters were found to be dependent on the initial estimates. The final
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Table 7.4 Parameter estimates and uncertainties based on hydraulic head data

Parameters Initial Estimate Final Estimate Std. Error CV

KCh 1.1 1.1 21.3 498.3

K 1.30e-02 1.4e-04 30.2 7.9

K 7.OOe-01 8.5e-01 49.3 706.4

Kk 1.40e-02 6.le-04 44.5 13.8

F< 100.0 209.6 55.7 24.0

K0 10.0 149.2 52.1 23.9

H1 1820.0 1805.0 43.7 0.024

H2 2000.0 1975.0 23.2 0.012

H3 1990.0 1940.0 13.3 0.007

H4 1690.0 1686.0 13.3 0.008

parameter estimates for the head boundary parameters were independent of the initial

estimates. Figure 7.8 shows the head distribution for the flow system using the final

parameter estimates from the head data set.

For the hydraulic conductivity parameters, the standard error is given in log

transformed units. A standard error of one implies an uncertainty in the parameter

estimate of one order of magnitude. The standard errors range from 21 to 55, implying

the hydraulic conductivities are virtually non-identifiable using this data set. These

parameter uncertainties exceed the physical bounds on hydraulic conductivity, since

the parameter values are not constrained in the estimation procedure. For this flow

model and boundary conditions, it could be expected that the hydraulic conductivity

parameters are non-identifiable using the hydraulic head data. The coefficients of
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variation (CV) is the standard error divided by the log transformed parameter value.

For hydraulic conductivity parameters with an estimate near one, the log transformed

estimate is small, and the CV is large. For instance, K and Kk have similar standard

errors, but the log transformed estimate for K is much smaller than Kk, and the CV

of K is much larger than the CV of Kk.

For the head boundary parameters, the standard errors are given in meters.

The standard errors range from 13 to 43 meters, with the largest uncertainty in the

estimate of the hydraulic head at the node located in the position of Chaco Canyon,

node 1. From Figure 7.4, very little data exists in the vicinity of H1, and the most data

exists in the vicinity of H4, so it is reasonable that H1 has the most uncertainty and H4

has the least uncertainty. The CV’s for the head parameters are the standard error

divided by the estimate, and the values of CV are relatively small. H3 has the smallest

coefficient of variation, since the standard error of H4 and H3 are nearly equal, while

the estimate of H3 is larger than the estimate of H4. The head parameters are

reasonably well defined by the data.

Table 7.5 presents the fit of the simulated and the observed data, along with

some statistics describing the fit. The actual differences between the simulated and

observed data range from 2.2 m to 104.2 m. The weighted difference is the actual

difference divided by the assigned standard error for each data point. The weighted

differences range from 0.07 to 2.69. The number of residuals greater than zero is
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slightly more than the number of residuals less than zero, and the average weighted

residual is near zero. The value of the objective function at the minimum is 58.69. The

goodness of fit can be evaluated by the s2 statistic, defined in Chapter 4 as the

minimum of the objective function divided by the number of data minus the number

of parameters. If the weighted errors in the data are normally distributed and have a

unit variance, the goodness of fit should be about equal to one. The goodness of fit

is equal to 1.3, implying the standard errors that were assigned to the data are slightly

smaller than they should be, assuming the model is an accurate representation of the

flow system.

7.6.2 Parameter space based on head data set

Table 7.6 lists the axes of the confidence region for the final parameter

estimates using the head data set. Axis 10 is the longest axis of the confidence

region, with a length of 690 units. The response surface is the flattest in the direction

of axis 10. Axis 9 is about half as long as axis 10, and axis 8 is an order of magnitude

shorter than axis 9. All four of the longest axes are greater than 5.1 units in length,

which means that the parameters which have large components from these axes have

coefficients of variation greater than 5. Examining the unit vectors, which define the

orientations of the axes of the confidence region, the two longest axes only have

components from the hydraulic conductivity parameters. The head parameters have

no components of the unit vectors that define the orientations of the longest axes of
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Table 7.5 Fit of observed and simulated head data at the parameter estimates
based on the head data

Data Identifier Observed Simulated Difference Weighted
Data Data Difference

28n 1969.0 1936.5 32.5 0.54

29n 2018.0 1952.1 65.9 1.88

35n 1986.0 1958.6 27.4 0.91

39n 1953.0 1898.4 54.6 1.82

40n 1927.0 1898.8 28.2 1.13

46n 1855.0 1824.6 30.4 0.67

48n 1908.0 1864.7 43.3 0.79

51n 1838.0 1835.1 2.9 0.05

52n 1855.0 1869.1 -14.1 -0.28

56n 1840.0 1772.6 67.4 2.69
.

59n 1747.0 1744.3 2.7 0.07

62n 1669.0 1730.7 -61.7 -1.03

72n 1660.0 1689.6 -29.6 -0.99

73n 1678.0 1691.8 -13.8 -0.46

190 2026.0 1949.1 76.9 1.28

200 2009.0 1949.2 59.8 1,00

210 1920.0 1949.1 -29.1 -0.49

• 300 1932.0 1955.6 -23.6 -0.52

310 1975.0 1944.1 30.9 1.54

320 1912.0 1941.9 -29.9 -1.00

330 1893.0 1942.7 -49.7 -2.48

340 1930.0 1955.5 -25.5 -1.27

360 1920.0 1943.2 -23.2 -0.42

370 1930.0 1907.9 22.1 0.63

380 1887.0 1910.0 -23.0 -0.66

410 1935.0 1907.0 28.0 1.40

430 1889.0 1924.1 -35.1 -1.75

440 1876.0 1911.3 -35.3 -0.64

450 1850.0 1880.7 -30.7 -0.51

520 1855.0 1869.1 -14.1 -0.28

610 1658.0 1729.8 -71.8 -1.31

740 1654.0 1700.7 -46.7 -0.78
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Table 7.5 (continued)

53(1 1880.0 1873.5 6.5 0.14

68ci 1663.0 1690.1 -27.1 -0.90

69g 1683.0 1690.9 -7.9 -0.26

70(1 1719.0 1694.4 24.6 1.23

l6ci 1874.0 1868.3 5.7 0.19

17p 1871.0 1864.2 6.8 0.23

25(1 1956.0 1948.0 8.0 0.27

26ci 1956.0 1951.2 4.8 0.16

8k 1862.0 1885.8 -23.8 -0.48

10k 1893.0 1891.9 1.1 0.06

12k 1915.0 1910.0 5.0 0.25

13k 1894.0 1889.9 4.1 0.16

14k 1891.0 1890.1 0.9 0.03

15k 1880.0 1886.0 -6.0 -0.20

20k 1935.0 1921.6 13.4 0.22

27k 1787.0 1836.6 -49.6 -0.83

58k 1737.0 1811.5 -74.5 -1.86

ich 1898.0 1842.0 56.0 1.60

2ch 1852.0 1834.2 17.8 0.36

6pc 1938.0 1887.3 50.7 0.85

9ch 1731.0 1835.2 -104.2 -2.08

11c 1882.0 1883.3 -1.3 -0.05

l8ch 1849.0 1879.1 -30.1 -0.67

Avera(1e Weighted Residual: 0.0882

Number of Weighted Residuals greater than 0 : 29

Number of Weighted Residuals less than 0.0 : 26

Value at Objective Function Minimum = 58.69

s2 = 1.3

the confidence region.
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Table 7.6 Axes of confidence region for parameter estimates based on head data
set

Axis .1e-03 5.9e-03 i.7e-03 1.3e-02 1.9e-01 10e-01 5.le÷002.8e+O1 3.0e÷0 6.9e+02
Lengths

Parameters U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -0.87 0.50

K 0.00 0.00 0.00 0.00 0.11 0.00 0.98 -0.16 0.00 0.00

K 0.00 0.00 0.00 0.00 0.02 0.00 0.00 -0.02 0.50 0.87

Kk 0.01 -0.01 0.02 0.00 -0.99 -0.03 0.11 -0.02 0.01 0.02

K0 0.00 -0.01 -0.01 0.00 -0.02 0.71 -0.11 -0.70 -0.01 -0.01

K0 0.00 0.01 0.01 0.00 0.02 -0.71 -0.11 -0.70 -0.01 -0.01

H1 -0.09 0.16 -0.52 0.83 -0.02 0.00 0.00 0.00 0.00 0.00

H2 -0.28 0.35 -0.71 -0.54 -0.02 0.00 0.00 0.00 0.00 0.00

H3 -0.91 0.18 0.37 0.10 0.00 0.01 0.00 0.00 0.00 0.00

H4 -0.30 -0.91 -0.29 -0.04 0.00 -0.01 0.00 0.00 0.00 0.00

The unit vector for axis 10, the longest axis of the confidence region, shows

that the largest components come from parameter axes Kth and K, with very small

components from the other parameter axes. Axis 9 is oriented in a direction between

the axes of KCh and but is nearly perpendicular to the axes of all other parameters.

Similarly, the unit vector for axis 9, the second longest axis of the confidence region,

also has the largest components from K and K, and almost no components from

the other parameter axes. Axes 9 and 10 are perpendicular to each other, and are

both in the plane of the KCh and K axes. The plane containing axes 9 and 10

contains values of the response surface very near the minimum.
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The third longest axis, axis 8, has its largest components from parameter axes

F< and K. The four shortest axes of the confidence region, axes 1 through 4, contain

mainly components from the head parameters. The confidence regions for the head

parameters and the hydraulic conductivity parameters are nearly independent,

because the axes which contribute to the confidence region for the head parameters

are nearly perpendicular to the axes which contribute to the confidence region for the

hydraulic conductivity parameters. However, the confidence region for the head

parameters is not completely independent from the confidence region for the hydraulic

conductivity parameters, since there are some small components of the longer six

axes of the confidence region from the axes of the head parameters.

The table of relative contributions to the CV of the parameters (Table 7.7)

shows that axes 9 and 10 contribute most of the uncertainty to three of the hydraulic

conductivity parameters, KCh, K,and Kk. Axis 8 contributes most of the uncertainty to

the hydraulic conductivity parameters, I< and K. The uncertainty in the head

parameters comes from many different axes of the confidence region, including some

of the largest axes of the confidence region. It was noted above that the head

parameters have almost no projection in the direction of the six longest axes of the

confidence region. However, they do have very small projections, and these very small

projections multiplied by the length of the long axes yield some of the uncertainty in

the head parameters.
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Table 7.7 Relative contribution to the CV from each axis of the confidence ellipsoid
based on the head data set

Parameters U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

Kd, 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.37 0.64

K1 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.43 0.02 0.03

iç 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.06 0.94

KR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.94

K0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.03 0.07

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.03 0.07

H1 0.00 0.00 0.03 0.27 0.03 0.00 0.04 0.08 0.48 0.08

H2 0.01 0.04 0.22 0.50 0.13 0.01 0.00 0.01 0.09 0.00

H3 0.38 0.03 0.17 0.05 0.00 0.25 0.00 0.04 0.04 0.03

H1 0.03 0.61 0.08 0.01 0.00 0.27 0.00 0.00 0.00 0.00

The parameter space has yielded the following information. First, there is a

large, multidimensional region in parameter space that has a value of the objective

function near the minimum. The large parameter uncertainties come from more than

one direction of parameter space. This situation is different from the multiparameter

example in Chapter 5, where large uncertainties in the parameters were present, but

these uncertainties came from only one axis of the confidence region. Second, three

groups of parameters can be identified as having nearly independent confidence

regions. The first group contains the parameters KCh, and Kk. The second group

contains the parameters K0 and K. The third group contains the head parameters.

Both the first and second group have large parameter uncertainties, but these

uncertainties are due to different axes of the confidence region.
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7.6.3 Parameter estimates based on 14C data set

The model parameter space for the 14C data can be compared to the model

parameter space for the head data to determine the potential for 14C data to stabilize

the parameter estimates. The 14C data set contains 18 data, 6 in the Nacimiento and

12 in the Ojo Alamo (Figure 7.6). The initial parameter estimates are chosen to be

identical to the final parameter estimates using the head data. The final parameter

estimates using only the 14C data are listed in Table 7.8, along with the standard error

and coefficient of variation. Figure 7.9 shows the steady state 14C concentration

distribution for the flow system using the final parameter estimates using only the 14C

data. This figure shows that the 14C data exist only in the upper portion of the flow

system, and samples from deeper formations would not result in any measurable

concentrations of 14C.

For the hydraulic conductivity parameters, the standard errors for Ku,, K1, and

are very large. No data are available in these units, and the 14C data is virtually

insensitive to these parameter values. The standard errors for I< and K are about 0.2

orders of magnitude, while the standard error for Kk is about 4 orders of magnitude.

For the head boundary parameters, node 1 has the largest standard error, because

no 14C data exists in the southern end of the model domain. The remaining head

nodes have standard errors between 15 and 40 meters, similar to those using head

data.

222



Table 7.8 Parameter estimates and uncertainties based on 14C data set

Parameters Initial Estimate Final Estimate Stcl. Error CV

K 1.1 1.100 787.2 19088.2

K1 1.44e-04 0.208 292.9 398.7

K 8.52e-01 0.715 3116.4 21386.4

Kk 6.lle-04 0.013 3.696 1.893

iç 209.6 10.770 0.204 0.203

K 149.2 0.398 0.167 0.363

H1 1805.0 1983.0 4153.1 2.218

H2 1975.0 1991.0 33.2 0.017

H3 1940.0 1997.0 15.0 0.008

H4 1686.0 1714.0 39.8 0.023

Table 7.9 shows the fit of the simulated and the observed 14C data. The actual

differences between the simulated and observed data 14C concentrations range from

0.05 to 11.1 pmc. The weighted differences ranged from 0.10 to 3.08. The residuals

greater than zero outnumber residuals less than zero, and the average weighted

residual is greater than zero. The value of the objective function at the minimum is

40.5. The goodness of fit is 5.0, larger than the goodness of fit for the head data.

Again, the assigned standard errors are smaller than they should be, according to how

well the data fit the model.
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Table 7.9 Fit of observed and simulated 14C data using parameter estimates based
on 14C data set

Data Identifier Observed Data Simulated Data Difference Weighted Difference

28n-c 51.20 52.59 -1.39 -0.15

39n-c 12.60 11.37 1.23 0.54

40n-c 19.90 17.63 2.27 0.91

48n-c 9.20 19.07 -9.87 -2.24

Bin-c 1.40 0.03 1.37 2.74

82n-c 4.50 3.94 0.56 0.14

200-c 37.90 32.97 4.93 0.63

220-c 10.16 8.71 1.45 0.29

230-c 50.50 54.40 -3.90 -0.52

320-c 27.20 38.61 -11.41 -3.08

330-c 40.30 29.78 10.52 2.63

340-c 5.52 5.57 -0.05 -0.10

380-c 8.33 11 .25 -2.92 -1.27

520-c 8.14 5.79 2.35 0.62

570-c 2.79 0.48 2.31 0.62

580-c 3.96 2.89 1.07 0.45

830-c 8.85 4.28 4.57 2.54

840-c 4.70 5.77 -1.07 -0.76

Average Weighted Residual 0.096

Number of Weighted Residuals greater than 0: 11

Number of Weighted Residuals less than 0.0: 7

Value at Objective Function Minimum = 40.49

s2 = 5.0
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7.6.4 Parameter space based on 14C data set

Table 7.10 lists the axes of the confidence region for the final parameter

estimates using the ‘4C data set. The longest axis is axis 10; the second longest is

axis 9. Both of these axes have significant components from the parameter axes KCh

and K, a small component from K1, and almost no components from the other

parameters. Axis 8 is 18 units long, and is aligned closely with the parameter axis K1.

Axis 7 is 1.6 units long, and is aligned most closely with the axis of Kk. All other axes

Table 7.10 Axes of confidence region for parameter estimates based on 14C data
set

Axis 9.2e-04 8.Oe-03 1.le-02 5.2e-02 1.3e-01 2.9e-O1 1.6e÷O0 1.8e+01 4.7e+02 2.9e+04
Lengths

Parameters U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

Kth 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.75 0.67

K1 0.00 0.00 0.00 -0.04 0.04 0.00 0.05 -1.00 0.06 -0.01

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 -0.66 0.75

K 0.03 -0.01 0.01 -0.25 0.22 -0.17 -0.93 -0.03 0.00 0.00

K0 -0.05 -0.02 0.01 0.65 0.69 0.31 -0.07 0.00 0.00 0.00

K0 -0.03 0.04 -0.04 0.41 0.03 -0.91 0.07 -0.01 0.00 0.00

H1 0.07 -0.03 0.02 -0.59 0.69 -0.22 0.35 0.06 0.00 0.00

H2 0.45 -0.66 -0.60 0.04 -0.02 0.01 0.00 0.00 0.00 0.00

H3 0.89 0.30 0.35 0.08 -0.01 0.00 0.00 0.00 0.00 0.00

H4 0.05 0.69 -0.72 -0.03 0.04 0.05 -0.01 0.00 0.00 0.00
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are less than one unit long. The table of relative contributions to the CV of the

parameters (Table 7.11) shows that axis 10 contributes most of the uncertainty to

three of the hydraulic conductivity parameters, Kd,, K0,and K1, and the parameter H1.

Table 7.11 Relative contribution to the CV from each axis of the confidence region
based on 14C data set

Parameters U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

Kct, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

K1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99

K0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Kk 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.07 0.29 0.02

K0 0.00 0.00 0.00 0.03 0.21 0.21 0.31 0.04 0.19 0.02

K 0.00 0.00 0.00 0.00 0.00 0.56 0.08 0.34 0.01 0.00

H1 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.25 0.11 0.58

H2 0.00 0.10 0.16 0.02 0.02 0.01 0.11 0.52 0.06 0.00

H3 0.01 0.10 0.26 0.33 0.04 0.01 0.15 0.03 0.00 0.07

H1 0.00 0.06 0.12 0.00 0.05 0.42 0.12 0.02 0.00 0.22

The confidence region using 14C data can be compared to the confidence

region using the head data by calculating angles of interaction. For the longest axes

(axis 10 for ‘4C data; axis 10 for head data), the angle of interaction is 8.9°, indicating

that the orientations of the axes are not much different. For the second longest axes

(axis 9 for both data sets), the angle of interaction is also 8.9°. Recall that the longest

axes contain mainly uncertainties from the hydraulic conductivity parameters from the

lower layers of the model. Because the axes are very long, even this small angle of
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interaction reduces the uncertainty of the parameters using the joint data set.

However, the uncertainty of the parameters is still be large, and the maximum

uncertainty still occurs along this direction of parameter space. It is more difficult to

predict the reduction in uncertainty for the other model parameters.

7.6.5 Joint parameter estimation

Joint parameter estimation using both hydraulic head and 14C data is used to

estimate the model parameters. For joint estimation, the weights for each data set are

required. The weights can be chosen using any of the methods presented in Chapter

6. Table 7.12 contains the parameter estimates and uncertainties for all four weighting

criteria. All four criteria weight the head data more heavily than the concentration data.

The head weights all have Wh = 1 .0, and the concentration weights range from w0 =

0.1 to w = 0.52.

Table 7.12 also contains some additional statistics about each set of parameter

estimates, including the average CV, the CN, the volume of the confidence region,

and the length of the longest axis of the confidence region. It also contains statistics

about the fit of the observed and simulated data at each set of parameter estimates.

Sh is the value of the head portion of the objective function evaluated at the set of

parameter estimates, and S is the value of the concentration portion of the objective

function evaluated at the same estimates. The h2 statistic is Sh/nh, and the s2 statistic
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is SJnc, where nh and n,, are the number of head and 14C data respectively. The s2

statistics give a measure of the fit between the observed and simulated data, and are

used to compare fits among the different weighting methods. For the purpose of

comparing fits, the number of parameters being estimated is not contained in the s2

statistic.

It is important to note that the fit for each individual data set using the joint

estimates is somewhat worse than the fit for each data set using the estimates from

that data set. Each data set leads to a different set of parameter estimates, and the

joint parameter estimates reflect the trade-off between the two data sets. For instance,

using the parameter estimates based on the head data only, Sh is 58.7, while for the

joint parameter estimates using the MINLEN criterion, Sh is 66.0. Similarly, using the

parameter estimates based on the 14C data only, S,, is 40.5, while for the joint

parameter estimates using the MINLEN criterion, S,, is 85.2. The difference between

Sh using the head data set and Sh using the joint data set is smaller than the

difference between S,, using the 14C data set and S using the joint data set, reflecting

the fact that the head data is weighted more heavily than the 14C data. Examining the

s2 statistics, the ‘4C data always fits worse than the head data, for all sets of weights.

However, as the relative 14C weights increase, the fit of the 14C data becomes better

and the fit of the head data becomes worse.

The parameter estimates and uncertainties for all four weighting criteria are
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similar, though definite patterns emerge. The standard errors and CV’s for all

parameters are somewhat reduced from those using only the head data. The

parameters KCh, K1 and K. all have standard errors near 5 orders of magnitude.

Though these standard errors are reduced from those produced using head or

data alone, they are still significant. The parameters Kk, K0 and K all have standard

errors approximately between 0.1 and 0.3, much reduced from those using only head

data. The uncertainty in Kk is significantly reduced from that using either data set

alone, though the uncertainty in Kk increases as relative weighting of the 14C data

increases. For K and K0, the uncertainties are nearly the same or somewhat larger

than those using the 14C data alone. Note that the uncertainties in K and I< decrease

as the relative weighting of the concentration data increases. The head parameters

have standard errors between 7 and 33 meters, reduced by nearly a factor of two

from those using either data set individually.

Comparing the different weighting criteria, the MINCN, RESID, and MINLEN

criteria all have relatively small concentration weights. The parameter estimates are

slightly different for each set of weights. The smallest average CV is produced by the

MINLEN criterion, though the average CV’s for the RESID criterion and MINCN

criterion are not much larger. Both the MINLEN and the RESID criterion seem to strike

a good balance between minimizing the condition number and minimizing the volume

of the confidence region. It must be noted that the average CV’S are dominated by the

large CV’S for parameters K and
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Figure 7.10 shows the head distribution for the flow system using the joint

parameter estimates using the MINLEN criterion. Comparing Figure 7.10 with Figure

7.8, the head distribution using only head data, the joint data set seems to produce

parameter estimates which allow more flow through the lower layers of the system.

The joint data set results in larger conductivities for the aquitards, which allows greater

leakage into the lower model layers. Figure 7.11 shows the concentration distribution

for the flow system using the same estimates.

The four weighting criteria all weight the head data more than the concentration

data. For the parameters with the largest uncertainties, these weights reduce the

parameter uncertainties as much as possible. However, for the parameters F< and K,

the 14C data results in much better parameter estimates than the head data. Weighting

the concentration data less than the head data does not result in the smallest possible

uncertainties in these parameters. As the relative weight of the concentration data

decreases, the fit of the 14C data becomes worse. The estimates of those parameters

which the 14C data can estimate well (K0 and K in this case) becomes more uncertain.

7.6.6 Parameter space based on joint data set

Table 7.13 lists the axes of the confidence region for the final parameter

estimates using the joint data set for the MINLEN criterion. The confidence region has

many similarities to the confidence region for the head data set (Table 7.6). Axes 9
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and 10 are the longest axes of the confidence region. Both have significant

components from the parameter axes K and K, but small components from the

other parameter axes. The third longest axis, axis 8, is nearly parallel to parameter

axes K1. The fourth and fifth longest axes, axes 7 and 6, have their largest

components from parameter axes K0 and K.

Table 7.13 Axes of confidence region for parameter estimates based on joint data
set at MINLEN weights

Axis 2.6e-03 4.3e-03 6.2e-03 1.2e-02 4.4e-02 1.6e-01 2.le-01 2.9e-01 1.le+02 1.3e+01
Lengths

Parameters U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

Kd, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.97 0.25

K1 0.00 -0.01 0.00 -0.04 0.14 -0.01 0.08 -0.99 0.01 0.06

K0 0.00 0.00 0.00 0.00 0.01 0.00 0.01 -0.06 -0.25 -0.97

Kk -0.01 -0.10 0.01 -0.11 0.97 0.10 0.05 0.14 0.00 0.00

K0 -0.01 0.00 0.00 0.00 -0.10 0.47 0.87 0.05 0.00 0.00

K 0.01 -0.01 -0.01 0.00 -0.05 0.88 -0.48 -0.05 0.00 0.00

H1 0.01 0.02 -0.03 -0.99 -0.12 -0.01 -0.01 0.02 0.00 0.00

H2 0.18 0.97 -0.13 0.01 0.10 0.01 0.01 0.00 0.00 0.00

H3 0.95 -0.14 0.27 0.00 -0.01 -0.01 0.01 0.00 0.00 0.00

H4 0.25 -0.18 -0.95 0.02 0.00 -0.01 0.01 0.00 0.00 0.00

The table of relative contributions to the CV of the parameters (Table 7.14)

shows that axis 9 contributes most of the uncertainty to four of the hydraulic

conductivity parameters, KCh, K1, K,and Kk. Axes 6 and 7 contribute most of the
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uncertainty to the other two other hydraulic conductivity parameters, K0 and K. The

uncertainty in the head parameters comes from many different axes of the confidence

region.

Table 7.14 Relative contribution to the CV from each axis of the confidence ellipsoid
based on the joint data set at M[NLEN weights

Parameters U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

KCh 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

K1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.79 0.19

K0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.16

Kk 0.00 0.00 0.00 0.00 0.22 0.03 0.02 0.20 0.36 0.19

1<0 0.00 0.00 0.00 0.00 0.00 0.15 0.84 0.01 0.00 0.00

K0 0.00 0.00 0.00 0.00 0.00 0.67 0.32 0.01 0.00 0.00

H1 0.00 0.00 0.00 0.49 0.10 0.00 0.01 0.15 0.16 0.09

H2 0.01 0.37 0.01 0.00 0.43 0.11 0.06 0.01 0.00 0.00

H3 0.43 0.03 0.21 0.00 0.03 0.06 0.24 0.01 0.00 0.01

H4 0.01 0.01 0.84 0.00 0.00 0.08 0.05 0.00 0.01 0.00

The error ratio matrix (Table 7.15) shows smallest error ratios result from prior

information on KCh, while the second smallest error ratios result from prior information

on K. Prior information on any of the parameters KCh, K1, or Kk result in very

small error ratios for the remaining parameters. Errors in any other parameters lead

to very large error ratios for the parameters KCh, and K1. Since these parameters

have large uncertainties, the errors due to the error ratio may be within the parameter

uncertainties. Regardless, prior information on the parameters KCh, K0, and K1 are the
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most responsible since they lead to the smallest error ratios.

Based on examining the parameter space, three groups of parameters can be

defined. The first group contains parameter Kth, K, K1 and Kk. For the joint data set,

prior information on Kth is the most efficient in reducing the overall parameter

uncertainty, and leads to the smallest linearized error ratios. Prior information on any

of the parameters in this group will reduce the uncertainty for all the parameters in the

group. The second group contains the parameters 1<0 and K. Prior information on

these parameters will not reduce the uncertainty of any of the parameters in the first

group. Prior information on K0 or K will mainly reduce the uncertainty in these two

parameters. The third group contains the head parameters. Prior information on the

head parameters will not reduce the uncertainty in any of the hydraulic conductivity

parameters significantly. The linearized error ratios show that the head parameters are

the least responsible parameters for prior information.

7.6.7 Discussion of results for 10 parameter system

Estimating all 10 flow parameters in the model resulted in very large

uncertainties for the hydraulic conductivities in the lower model layers. These large

uncertainties dominated the model parameter space, and thus dominated the way the

parameter space criteria selected the weights for joint parameter estimation. Prior

information on these parameters with large uncertainties will efficiently stabilize the
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parameter set. From the error ratio matrix, errors in the prior information for any of

these parameters will not result in significant errors in the parameter estimates of the

other model parameters.

Because the large uncertainties in the hydraulic conductivities of the lower

model layers dominated model parameter space, the weighting criteria focused on

reducing these large uncertainties. However, if the modeller were interested in

estimating the hydraulic conductivity of the upper model layers as well as possible, the

results would be disappointing, since the weighting criteria did not lead to the best

estimates of these parameters. Since the uncertainties in the hydraulic conductivities

of the upper model layers was small compared to the lower model layers, reducing

the uncertainties in the upper model layers was not a priority for the weighting criteria.

In fact, the weighting criteria that weighted the head data more than the 14C data

increased the uncertainties in the upper model layers.

For the second stage of parameter estimation, we wish to focus on estimating

the hydraulic conductivities of the upper model layers as well as possible, given the

data available. Based on the first stage, it is efficient and responsible to use prior

information to define the parameter values for the lower four hydraulic conductivity

parameters, KCh, K, and Kk. These four parameters are specified at the parameter

values from joint parameter estimation. Specifying the parameter values of the lower

model layers will not significantly affect the parameter estimates for the upper model
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layers.

7.7 Model calibration for 6 flow parameters

For the second stage of model calibration, only six model parameter are

estimated. These parameters are the two hydraulic conductivity parameters, iç and

K, and the four head parameters. The same model and boundary conditions are

used. The other four hydraulic conductivity parameters are specified at the values

from the joint parameter estimates, which are very close to the prior parameter

estimates. The model parameter space using hydraulic head and 14C data is analyzed.

The weighting criteria for the joint parameter estimates is the main focus. After

estimation of the parameters using the joint data set is disussed, the effect of errors

in the other model parameters is examined.

7.7.1 Parameter estimates and confidence region based on hydraulic head data

set

The parameter estimates for this reduced parameter set using only hydraulic

head data are nearly identical to the parameter estimates for the full parameter set

using hydraulic head data. Table 7.16 contains the parameter estimates, standard

errors, and CV’S for the 6 parameters using only hydraulic head data. The standard

errors and CV’s are somewhat reduced from the full parameter set. With the full
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parameter set, some of the longest axes of the parameter confidence region contained

part of the uncertainty in these parameters. These long axes are now eliminated, and

therefore the uncertainties in these parameters is somewhat reduced. However, the

standard errors for the hydraulic conductivity parameters are still extremely large,

suggesting these parameters are virtually non-identifiable using head data. The

standard errors for the head parameters range from 9.8 to 25 meters.

Table 7.17 lists the axes of the confidence region for the 6 parameter set using

the head data. Axes 5 and 6 are the longest axes, and have components only from

the parameter axes K0 and K. Axes 1 through 4 contain components only from the

head parameters. Again, the confidence regions for the hydraulic conductivity

parameters and head parameters are nearly independent of each other. Note that

axes 1 through 4 of the 6 parameter system are very similar to axes 1 through 4 of

the 10 parameter system (Table 7.6). Also, axes 5 and 6 of the 6 parameter system

are similar to axes 6 and 8 of the 10 parameter system. These similarities show that

the confidence region for the parameters in the 6 parameter system is nearly the

same as that for the 10 parameter system. The table of relative contributions to the

CV of the parameters (Table 7.18) shows that axis 6 contributes most of the

uncertainty to the two hydraulic conductivity parameters. The four smallest axes

contribute most of the uncertainty to the head parameters.
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Table 7.17 Axes of confidence region for parameter estimates based on head data;
6 parameter system

Axis Lengths 4.le-03 6.le-03 7.le-03 1.4e-02 3.4e+00 1.9e+01

Parameters U1 U2 U3 U4 U5 U6

K0 0.00 0.00 0.00 0.00 -0.73 -0.68

K0 0.00 0.00 0.00 0.00 0.68 -0.73

H1 -0.06 -0.08 -0.49 -0.87 0.00 0.00

H2 -0.23 -0.23 -0.81 0.49 0.00 0.00

H3 -0.94 -0.19 0.27 -0.08 0.00 0.00

H4 -0.25 0.95 -0.19 0.03 0.00 0.00

Table 7.18 Relative contribution to the CV from each axis of the confidence region
based on head data; 6 parameter system

Parameters U1 U2 U3 U4 U5 U6

K0 0.00 0.00 0.00 0.00 0.03 0.97

K0 0.00 0.00 0.00 0.00 0.03 0.97

H1 0.00 0.00 0.07 0.88 0.00 0.04

H2 0.01 0.03 0.40 0.55 0.00 0.01.

H3 0.68 0.06 0.17 0.05 0.04 0.00

H4 0.02 0.65 0.03 0.00 0.28 0.02

7.7.2 Parameter estimates and confidence region based on 14C data set

Table 7.16 also contains the parameter estimates and uncertainties for the 14C

data set when estimating only 6 parameters. The parameter estimates for this reduced
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parameter set using only 14C data are nearly identical to the parameter estimates for

the full parameter set using the same data. The standard errors and CV’S are again

somewhat reduced from the full parameter set, for the same reasons explained above.

The standard errors for the hydraulic conductivity parameters are near 0.13 orders of

magnitude. The largest standard error is for parameter H1, due to the scarcity of data

in the southern end of the model.

Table 7.19 lists the axes of the confidence region forthe 6 parameter set using

the 14C data. Axis 6 is the longest axis. Axes 4, 5 and 6 have the largest components

from parameter axes K0, K and H1. Axes 1 through 4 have the largest components

from H1, H2, and H3. The six axes of the 6 parameter system follow the same pattern

as axes 1 through 6 of the 10 parameter system (Table 7.10). The table of relative

contributions to the CV of the parameters (Table 7.20) shows that axes 5 and 6

contributes most of the uncertainty to K0, K, H1, and H4, while axes two and three

contribute most of the uncertainty to H2 and H3.

The confidence region using 14C data can be compared to the confidence

region using the head data by calculating the angle of interaction. For the longest axes

(axis 6 for 14C data; axis 6 for head data), the angle of interaction is 37°. The axes

have quite different orientations. However, using the head data, the longest axis is 19

units long, while for 14C data, the longest axis is 0.25 units long. Though the axes

have different orientations, the axis for 14C data is much shorter than the axis for head
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Table 7.19 Axes of confidence region based on 14C data; 6 parameter system

Axis Lengths 8.le-04 6.5e-03 9.Oe-03 7.Oe-02 1.3e-01 2.5e-01

Parameters U1 U2 U3 U4 U5 U6

K0 -0.01 0.03 -0.04 0.80 -0.54 -0.25

K0 0.00 -0.02 0.04 0.44 0.25 0.86

H1 0.02 0.01 0.01 -0.40 -0.80 0.44

H2 0.43 0.78 0.46 0.01 0.01 -0.01

H3 0.89 -0.29 -0.34 0.01 0.01 0.00

H4 0.14 -0.55 0.82 0.02 -0.03 -0.05

Table 7.20 Relative contribution to the CV from each axis of the confidence ellipsoid
based on the 14C data; 6 parameter system

Parameters U1 U2 U3 U4 U5 U6

K0 0.00 0.00 0.00 0.26 0.41 0.33

K0 0.00 0.00 0.00 0.02 0.02 0.96

H1 0.00 0.00 0.00 0.03 0.44 0.53

H2 0.00 0.50 0.34 0.02 0.05 0.09

H3 0.03 0.22 0.63 0.04 0.07 0.01

H4 0.00 0.05 0.21 0.01 0.08 0.65

data. The parameters are much better defined using the 14C data; thus the joint data

set may not improve the parameter estimates significantly over those using 14C data

alone. Remember that the longest axes contribute mainly to the uncertainty in the

hydraulic conductivity parameters.

242



7.7.3 Joint parameter estimation for 6 parameter system

Joint parameter estimation using both hydraulic head and 14C data is used to

estimate the 6 model parameters. For joint estimation the weights for each data set

can be chosen using any of the methods presented in Chapter 6. Before presenting

the weights calculated using each method, the issue of weighting for this parameter

set is discussed in a conceptual manner.

Table 7.16 contains the parameter estimates, uncertainties, and other statistics

about the parameter estimates, including information about the fit for each data set.

The head data produce better fits than the 14C data at all sets of weights. However,

even with the worse fit, the 14C data estimate the two hydraulic conductivity

parameters much better than the head data, and the 14C data estimate the H2 and H3

about as well as the head data set. When the head data is weighted more heavily

than the 14C data, the fit of the calculated head data to the observed head data is

better, since the parameter estimates are closer to those using only head data. At the

same time, the fit for the 14C data is worse, since the parameter estimates are farther

from the estimates using only 14C data. Since the calculated uncertainty depends on

the fit of the data (see equations (4.2) and (4.3)), those parameters which the 14C data

estimate well (K0 and K in this case) is poorly served by weighting the head data

more than the 14C data. Conversely, if the 14C data are weighted more heavily than

the head data, the fit cf the calculated 14C data to the observed 14C data is better,
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since the parameter estimates are closer to those using only 14C data. Those

parameters which the 14C data estimate well, K0 and K, benefit by weighting the 14C

data more than the head data. It makes sense to weight the 14C data more heavily

than the head data in this case, since the ‘4C data produces better estimates of the

hydraulic conductivity parameters than the head data.

Table 7.16 contains the parameter estimates and uncertainties for all four

weighting criteria. The MINCN and RESID criteria weight the head data more heavily

than the 140 data. The RESID criterion produces weights which are somewhat different

from the weights produced from the 10 parameter set. The RESID criterion weights

the head data more heavily because Sh2 is always smaller than s2. The MINLEN and

MINVOL criteria weight the 14C data more heavily than the head data. As discussed

above, this weighting makes sense conceptually, since the 14C data produce better

estimates than the head data for the most uncertain parameters.

The parameter estimates and parameter space change as the weights change.

For K and K0, the parameter estimates become larger as the 14C weight increases.

The uncertainties in these parameters also become decrease as the 14C weight

increases. For parameters H1 and H4, the parameter uncertainty increases as the 14C

weight increases. These parameters are more uncertain using 14C data than head

data, so this increase in parameter uncertainty is not surprising. For parameters H2

and H3, the parameter uncertainties decrease slightly as the 14C weight increases.
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Though individual parameter uncertainties move different directions as the 14C

weight increases, the overall parameter uncertainty generally decreases as the ‘4C

weight increases. The minimum overall parameter uncertainty, as measured by the

average CV, is observed at the parameter estimates using the MINLEN weighting

criterion. Weighting the head data more than the ‘4C data, as required by the MINCV

and RESID criteria, does not result in the lowest uncertainty joint parameter estimates.

7.7.4 Parameter space based on joint data set

If more reliable parameter estimates are required, the parameter space for the

6 parameter set can be examined to determine the most efficient and responsible

parameters for prior information. Table 7.21 lists the axes of the confidence region for

the final parameter estimates for the joint data set using the MINLEN parameter

estimates. The longest axis, axis 6, has the largest component from parameter K,

and the second largest component from axis K0. Prior information on these two

parameters would be the most efficient in reducing the overall parameter uncertainty.

Table 7.22 is the error ratio matrix for this parameter set. Prior information on

K results in the smallest error ratios. Prior information on K0 also results in relatively

small error ratios, as does prior information on H1. Prior information on the other head

parameters lead to larger error ratios for the hydraulic conductivity parameters. K is

the most responsible parameter for prior information, while K0 and H1 are also good
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Table 7.21 Axes of confidence region based on joint data set at MINLEN weights;
6 parameter system

Axis Lengths 1 .29e-03 3.64e-03 4.47e-03 1 .76e-02 1 .26e-01 5.50e-02

Parameters U1 U2 U3 U4 U5 U6

I< -0.03 0.02 0.00 0.05 -0.53 -0.85

K -0.01 0.02 0.05 0.05 0.85 -0.53

H1 0.04 -0.03 -0.02 -1.00 0.02 -0.07

H2 0.24 -0.95 0.22 0.04 -0.01 -0.03

H3 0.96 0.20 -0.19 0.04 -0.01 -0.03

H4 0.14 0.25 0.96 -0.02 -0.05 0.02

Table 7.22 Error ratio matrix based on joint data set at MINLEN weights; 6
parameter system

Parameters with prior information

Estimated K0 K0 H1 H2 H3 H4
Parameters

I< 1.00 -0.58 -0.51 6.71 17.91 5.07

K0 -1.08 1.00 0.81 -1.72 -4.29 9.24

H1 -0.02 0.02 1.00 -0.46 -0.32 -0.26

H2 0.01 -0.01 0.00 1.00 0.08 0.06

H3 0.01 -0.01 -0.01 0.03 1.00 0.07

H4 0.06 -0.05 -0.04 0.23 0.75 1.00

choices for prior information. Prior information on the other head parameters would

not be as responsible if the modeller were interested in the estimates of I< and K.
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7.7.5 Effect of errors in other parameters

In calibrating the above model, several parameters were not estimated. These

parameters are the effective porosity in each unit, the anisotropy for each unit, the

initial concentration for 14C at the boundary, and the longitudinal and transverse

dispersivities. These parameters were assigned a specified value. It is important to

determine whether errors in the specified values of these parameters influence the

estimated parameters significantly. For this purpose, the linearized error ratio matrix

can be computed for these transport parameters.

The resulting error ratio matrix is shown in Table 7.23. The parameters P0 and

P, are the effective porosity of the Ojo Alamo and Nacimiento respectively, and the

parameters An0 and An are the anisotropy of the Ojo Alamo and Nacimiento.The

parameters that have significant error ratios are the hydraulic conductivity parameters

as a result of errors in c, c, and Ann. Errors in the boundary 14C concentration may

be magnified over three times when estimating the hydraulic conductivity parameters.

Errors in cL lead to largest error ratios for K0 and K, while errors in xT lead to very

small error ratios for K than I<. The estimates of the hydraulic conductivity

parameters are very sensitive to errors in the estimate of c. This sensitivity is

problematic, since prior information on aL is difficult to obtain. The parameter

estimates are insensitive to errors in the anisotropy of K0, but more sensitive to the

anisotropy of K. These error ratios are consistent, since in the Ojo Alamo, the flow
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Table 7.23 Error ratio matrix for transport parameters using parameter space based
on joint data set at MINLEN weights; 6 parameter set

Transport Parameters

Estimated P0 P, c An0 An
Parameters

K0 0.55 0.52 -3.6 -9.0 -0.30 -0.01 0.61

K -0.79 -0.71 3.3 11 .5 0.86 0.01 -1.37

H1 0.00 0.00 -0.01 0.02 0.00 0.00 0.00

H2 0.00 0.00 0.01 -0.01 0.00 0.00 0.00

H3 0.00 0.00 0.00 0.00 0.00 0.00 0.01

H4 0.00 0.00 -0.02 0.00 0.01 0.00 0.01

direction is dominantly along the dip of the unit, and therefore not very sensitive to the

anisotropy of K0. In the Nacimiento, there is a small component of vertical flow, and

the anisotropy of the unit does affect the flow field. Based on these linearized error

ratios, estimating both and XL along with the flow parameters for this model would

be more responsible than simply using prior information on these transport

parameters. Using prior information for the other transport parameters is responsible,

since the linearized error ratios are small.

Based on the above error ratio analysis, parameter estimation for the flow

system is performed for 8 parameters: the six flow parameters and and For

the final parameter estimate is 79.5 pmc. For aL, the final parameter estimates is 350

m. Both of these parameter estimates are close to their prior values, so the estimates

for the flow parameters are similar to the parameter estimates using prior information
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on c1 and c. The linearized error ratios show the potential for large errors when

using prior information on cjr and aL, but these prior estimates are close to the

estimates using the calibration data, so no large errors occur.

7.8 Summary of model calibration for the San Juan Basin

A cross section model for the San Juan basin has been developed. Hydraulic

head data, 14C data, and independent information on parameter values have been

used to calibrate this model in an efficient and responsible manner. The model has

been calibrated in two stages.

In the first stage, 10 flow parameters were estimated, the hydraulic conductivity

of the 6 model layers and the head boundary values at four nodal points. The joint

estimates did reduce the uncertainty in the model parameters significantly over the

head data set. However, estimating all 10 parameters resulted in large uncertainties

for the hydraulic conductivities in the lower model layers in both single state and joint

parameter estimates. These large uncertainties dominated the model parameter

space, and thus dominated the way the parameter space criteria selected the weights

for joint parameter estimation. The criteria weighted the head data more heavily than

the concentration data. These weights reduced the uncertainty in the overall

parameter estimates, but did not produce the best estimates for all model parameters.

Prior information on the parameters in the lower model layers was found to be most
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efficient in stabilizing the overall parameter set. Errors in the prior information for any

of these parameters did not result in significant errors in the parameter estimates of

the other model parameters.

In the second stage of model calibration, the focus was on obtaining the best

possible estimates for the hydraulic conductivities in the upper model layers. Prior

information was used to define the parameter values for the lower four hydraulic

conductivity parameters, and only six model parameters were estimated: two hydraulic

conductivity parameters and the four head parameters. The concentration data

resulted in much better estimates of the hydraulic conductivity parameters than the

head data set. For this parameter set, the MINLEN and MIN VOL parameter space

methods weighted the concentration data more heavily than the head data. These

weights made sense conceptually, and resulted in the best estimates for the hydraulic

conductivities in the upper model layers, and the minimum overall parameter

uncertainties. The RESID and MINCN criteria weighted the head data more heavily

than the 14C data, a weighting scheme which did not result in the best parameter

estimates. The error ratios for the parameters which were specified were generally

small, with the exception of the initial concentration of 14C and the longitudingal

dispe rsivity.
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Figure 7.1 Plan view of the San Juan Basin showing outcrops of major units and thelocation of the modelled cross section. The white in the center of the basinrepresents the outcrop of the Nacimiento Formation. The shaded areasrepresent the outcrop area of the Ojo Alamo SS, Kirtland/Fruitland Shale,and Pictured Cliffs SS.
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Figure 7.7 Conceptual cross section showing layering and model boundary
conditions.
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CHAPTER 8. SUMMARY

The work in this thesis is devoted toward understanding parameter estimation

for groundwater flow models. Parameter estimation using only hydraulic head data

often results in ill-conditioned parameter estimates, leading to problems with non

unique and unstable parameter estimates with large uncertainties. Prior information

on parameters or joint parameter estimation including tracer concentration data have

been proposed to reduce the ill-conditioning of the parameter estimates. Prior

information or joint estimation reduce the ill-conditioning of the parameter estimates

in some situations, but in other situation they do not reduce the ill-conditioning of the

parameter estimates significantly. The focus of the thesis has been to understand in

what situations prior information or joint estimation will significantly improve the

parameter estimates, and develop guidelines for using prior information and joint

parameter estimation in an efficient and responsible manner.

The key contributions of this thesis are:

1. Parameter space analysis using response surfaces and linearized confidence

regions is introduced. Response surfaces are used to understand conceptually

how prior information and joint parameter estimation improve parameter

estimates. Linearized confidence regions are used to extend the concepts to

multiple parameter dimensions.

2. Guidelines are developed for the efficient and responsible use of prior
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information in groundwater flow models. Efficient use of prior information

involves identifying those parameters for which prior information will stabilize

the parameter estimates the most. Responsible use of prior information

involves those parameters for which errors in the prior information have the

smallest influence on the parameter estimates.

3. Guidelines are developed to identify situations where joint parameter estimation

will significantly improve parameter estimates over single state parameter

estimation. Criteria are also developed and evaluated for weighting individual

data sets in joint parameter estimation.

4. The above guidelines are used to develop and calibrate a groundwater flow

model for the San Juan Basin, New Mexico. Hydraulic head data, 14C data, and

prior information on parameter values are used to calibrate the model. The

most efficient and responsible use of prior information is identified. Weighting

criteria are applied and evaluated to determine appropriate weights for the head

and 14C data.
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