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ABSTRACT

The purpose of this thesis is to show, using computer simulation of
flow systems_in a variety of hypothetical slopes, how different geological
environments affect the groundwater flow regime, which in turn is funda-
mental to the stability of a slope. Galerkin's method is used to derive
a finite element program to model two dimensional, saturated, steady
state flow through anisotropic and heterogeneous rigid porous media.

An understanding of the regional geology is required in order to un-
derstand the regional flow system. The following points are illustrated.
a. In anisotropic media, the most adverse groundwater condition

for slope stability occurs when the major axis of conductivi-
ty lies down the dip of the slope.

b. Depending on their characteristics, faults, contacts ahd
dykes can be either detrimental or favourable in their ef-
fect on the flow system. Careful field investigation is
required to establish that effect.

c. Deep weathering commonly causes a confining zone of low

conductivity, a situation very detrimental to stability.
"d. Stress relief fractures on valley walls can adversely in-
fluenée the effect of groundwater on stability.

e. A regional aquifer can cause high pore pressure development

beneath a valley.

f. Fluctuations in the regional groundwater system can cause

instability in Pleistocene terraces.

g. The presence of an underlying less conductive zone or unit
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can have an adverse effect on the flow system. Conductivity.:.
contrasts of leés than two orders of magnitude can
cause pore pressure development cfitical to stability.

Three other points are demonstrated which have direct application to

slope stability analysis and control.

1. The pressure head distribution on rock wedges can be non-
linear rather than the commonly assumed linear distribu-
tion.

2. The introduction of a reservoir at.the toe-of a slope
can influence the groundwater regime well above the
reservoir surface; even a low reséryoir can causg?she
change requiréd to cause instébiiity. -

3. Piezometric measurements and drainage systems musf pPenetrate
fhrough any less conductive unit that might be act;ng as a

slide plane.
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CHAPTER ONE: INTRODUCTIOH

The critical role that gfoundwater plays in the stability of
slopes has 1ongAbeen recognized. However, for many years the mechanism
that related porewater pressures to the strength of the soil or rock was
not understood. In 1923 Terzaghi provided that link with his effective
stress law. Using the concept of effective stress, a number of tech-
niques have been developed to quantitatively analyze the stresses in a
slope to provide an estimate of stability. All of these methods assume
that porewater pressures are a known quantity. In practice, these are
usually obtained by field measurement with piezometers. Unfortunately,

. such measurements are both difficult to obtain and sometimes inaccurate.

In 1940, Hubbert proposed the exact mathematical equations
that govern steady-state groundwater flow. However, it was not until
lToth (1962, 1963) introduced the method of mathematically modelling a
groundwater flow system by solving a formal boundary value problem, that
it became possible to obtain an estimate of the groundwater flow system .
by a means other than with direct measurement of the pore pressure dis-
tribution. With an understanding of condﬁctivity contrasts and a know-
ledge of the water table configuration, flow systems could be readily
mgdelled and an estimate of the complete pore pressure distribution
obtained. The power of this technique was demonstrated by Freeze and
Witherspoon (1966, 1967) who discussed in detail the theoretical analysis
of regional groundwater flow systems. It is now possible to model three-
dimensional, transie;t groundwater flow through a porous media that in-

cludes both saturated and unsaturated zones (Freeze, 1971a).



Mathematical models can provide an independent check on
measured pore pressures. When anomalies arise, models can point to
field conditions not previously expected and modifications to fieid
investigations can result.

Deere and Patton (1967, 1971) and Patton and Hendron (1974)
have discussed the implications to slope stabilify of groundwater flow
in a number of different sldpe'environments. Despite the recognition of
‘these implications, the versatile modelling techniques now available
have not been applied to accurately illustrating flow systems in the
complex geologic environments often associated with unstable slopes.

The purpose of this thesis is to show, using computer simu-
lations of flow conditions in a variety of hypothetical slopes, how
different geologic environments affect the groundwater flow regime which
in turn is fundamental to the stability of a slope. It will be shown
-that to understand the distribution of pore pressures in a given slope,
it is necessary to understand the regional flow system in which the
slope is located.

"To familiarize myself with the mechanics of slope stability
aralyses and to establish how the effects of groundwater were factored
into the analyses, a review was undertaken of all the available litera-
“ture pertaining to the techniques of slope stability analysis. The
~results of this review are reported in Chapter Two. In Chapter Three,
the theory underlying the computerized mathematical models is given in
--detail and a simplified example is presented thch illustrates the

numerical technique. In any practical application of mathematical



models it is critical that underlying assumptions are understood. These
are presented in Chapter Four. The results of the modelling and dis-

cussion of their implications is found in Chapter Five and in Chapter

Six the project is summarized.



CHAPTER TWO: A REVIEW OF SLOPE STABILITY AMALYSES

Introduction

To completely document all the developments which have led to

-the presently used techniques of analyzing slope stability would require

a lengthy volume. The pufpose of this weview is twofonld. TFirstly, a
brief description is given of the three categories of analysis: methods
based on limit equilibrium, clastic solutions of the finite element
type, and Cundall's method based on discrete particle mechanics. Fol-
-lowing this initial discussion, a more detailed acéount is presented of
the various steps which have led to the present-day form of the limit
-equilibrium method. Three distinct aspects of this development can be.
isclated: identifying all the stresses acting, understanding the mecha-
mnics which relate the stresses, and determining the natural properties
~which govern the material tehaviour when the stresses are acting.

The initial intent of this review was to gain insight into the
-assumptions that various investigators have made regarding the role of
-groundwater. This underlying motivation remains. For this reason, the
chapter concludes with a brief discussion of the concept of effective

stress followed by a summary of different ways of handling groundwater

in limit equilibrium techniques.



Categories of Slope Stability Analysis

The three categories of slope stability analysis are summarized
in Table 2-1. As well as descriptions, also listed are advantages, dis-

advantages, and the ability of each to account for groundwater.
Limit Equilibrium Methods

Limit equilibrium methods assume a failure plane, consider
forces acting on the failing mass, and further assume that a critical
limit occurs after which resisting forces are no longer greater than
forces causing instability. Failure then occurs simultaneously every-
where élong the failure surface. For a given slope, a factor of safety
is calculated by considering the ratio of the materials shear strength
(forces resisting failure) to the shear stress (forces causing failure).
The critical limit referred to above is equivalent to a factor of safety
of omne. |

In relating shear strength to normal stress, materials are
assumed to follow either Coulomb's Law (Coulomb, 1776):

1= ¢ + 0 tang (2.1)
or the Revised Coulomb Equation (Terzaghi, 1923, 1936):
T = ct + (ot - u)tand' 2.2)

where 1 = shear strength

¢ and c' = cohesion and effective cohesion
. O, = total normal stress
u = porewater pressure



CATEGORY OF ANALYSIS

ADVANTAGES

DISADVANTAGES

GROUNDWATER

LIMIT EQUILIBRIUM

The equilibrium condition of
a rigid body or a system of
rigid bodies is considered.
A factor of safety is cal-
culated by comparing the
shear strength to the

shear stress.

ELASTIC SOLUTIONS OF
THE FINITE ELEMENT TYPE

The stress-strain condition
of a continucus body is
developed, based on the
theory of elasticity.

DISCRETE PARTICLE ANALYSIS

A slope 1is modelled as a
collection of discrete
rigid biocks. The equi-
librium of each block is
considered. Uses an
explicit time integration
by considering a series of
gtatic equilibrium analyses
(quasi-dynamic). Motion is
calculated as a function of
time.

Results in a single factor ¢f safety
(within confidence limits) which is

' easily understandable.

Readily handles hetcrogeneous material
properties.

Readily handles any porewater pressure
distribution.

When a pre-existing, known discon-
tinuity controls the failure, exact
modelling 1s possible.

Results in a complete stress picture
for the body. Stresses, strains, and
displacements can be obtained.

A faillure plane need not be assumed.
All the laws of mechanics are satis-
fied: equilibrium, compatibility,
and boundary conditions.

Fairly easy to handle a quasi-dynamic
situation.

Results ‘n a dyramic {llustration of
the slope which stands if stable or
falls {f uastable.

Does not require the preselection of

a failure surface.

Systems 6f fractures can be modelled
exactly.

Allows for unlimitcd displacements and
rotations.

Can describe a progressive failure.

2.

3.

If the failure surface has not been
located, the worst case must be found
by trial and errar.

No measure of strain on displacement
is obtained.

Because only static equilibrium con-
ditions are considered, dynamic
situations such &as a progressive
failure cannot be modelled.

Is indeterminate due to an inadequate
understanding of the normal stress
distribution on the base and the
normal and shear stress distribution
on the sides of slices. Depending
on the method, different assumptions
are made to render the problem
determinate.

Limited to small strain by the theory
of elasticity. (This does not pre-
clude large displacements.)

Because the body must remain a con-~
tinuum, discontinuities cannot be
truly mndelled although approxima-
tions can be made by using nighly
elastic joint elements.

The correct stress-strain relac;onship
for each element must be known.
Cannot handle a progressive failure.

Is written in terms of total stresses,
not effective stresses.

Applies only to slopes which can be
modelled as systems of rigid blocks.

Any groundwater flow
system can be readily
handled.

Groundwater can be .
handled in terms cf -
porewater pressures

at nodes or seepage
forces. However, the
effect of groundwater
on a materials modulus
of elasticity is not
generally agreed upon.

Cannot at present
handle porewater
pressures.

Table 2-1.

Categories of Siope Stability Analysis




¢ and ¢' = angle and effective angle of internal friction

Depending on which law is used, analyses are said to be in terms of
total or effective stresses.

Most stability analyses involve an experimental
calculation of ¢ and ¢ or c' and ¢' Theée values are then used in the
analysis, in essence replacing the real by an ideal material. Terzaghi
and Peck (1967, p. 104) point out that this replacement involves the
assumption that both ¢ and ¢ or c' and ¢'.are independent of strain and
only when the shearing stress at every point along the continuous failure
surface overcomes the shear strength ~is. a failure generated.

In fact, with the exception of ideal plastic materials, strength
is dependent on strain. After an initial feak is overcome, strength
decreaées.with further strain until a constant residual value is attained.
Figure 2-1 shows schematically the stress—strain curves for an ideal
plaétic material (peak strength'not strain dependent) and a more real-

istic material (strength is strain dependent).

(a) ileal

-— peak

. strength
stress
(b) real
+~— residual
strength
strain

Figure 2-1. Schematic stress-strain curves
for ideal and real materials



For any natural material characterized by curve (b) in Figure 2-1, the
assumption of a simultaneous failure will be violated because strains
along a potential failure surface will not be uniform. As a con-
sequence, material along parts of the failure surface will be éxerting
peak strength and the remainder, something less. TFailure will then
start at one point and propagate along the failure surface causing a
"progressive fajilure'. Progressive failures invalidate the assumptions
on which limit equilibrium techniques are based.

A review of all the ideas pertaining to progressive failure
is beyond the scope of this project. However, for further background,
the reader is referred to Bishop (1967, 1971), Bjerrum (1967), Christian
and Whitman (1969), Haefeli (1965), Lo (1972), Lo and Lee (1973),
Lutton (1971}, Romani et al (1972), Turnbull and Hvorslev (1967), and
Manfredini et al (1975).

Despite the above limitations, limit equilibrium techniques.
remain a powerful tool. Heterogeneous material properties cause no
difficulty. Any porewater pressure distribution can easily be included.
The geometry of failure planes controlled by discontinuities can be
modelled exactly. And finally, provided one is aware of the limita-
tions and assumptions underlying its calculation, the resulting factor
of safety is understandable and useful for both design purposes and
decision-making.

Because of an inadequate understanding of the normal stress
distribution along the base of the slide and the normal and shear
stress distribution on the sides of slices (in the case of methods

involving slices), limit equilibrium methods are indeterminate. To
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render the problem determinate, an assumption must be made regarding
either the side or base forces. The various techniques of limit
equilibrium analysis are differentiated by the assumption used to

overcome this mechanics problem.
Elastic Solutions of the Finite Element Type

An alternate approaéh te the limit equilibrium methods is to
use the stress-strain relationships of the theories of elasticity and
model a slope as a continuous elastic medium. Commonly, such analysecs
are solved numerically using the finite element technique. The result
is an understanding of the stress-strain condition of the slope. No

.factor of safety is generated but the method is ideal for.identifying
zones of stress concentration. An underlying and limiting assumption
required by the theory of elasticity is that strains are small, less
than one percent. To overcome this difficulty and to approximate dis-
continuities, Goodman et al (1968) proposed the use of joint elements
with properties much different than the surrounding rock. The medium
is still, however, modelled as a continuum.

Another limitation is that most stress-strain analyses are
in terms of total stresses. Although porewater pressures can be
introduced as an external force on any node, it is not clear what
effect the water has on the stress-strain relationships which must be

assumed for every element. (P. Byrne, personal communication).
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Nevertheless, this approach is used for both soil and rock
and is particularly useful in developing the stress-strain situation
that exists around excavations such as open pits and underground
openings. One advantage is that in obtaining the stress<strain pic-—
ture, actual displacements can be measured and predicted. Examples in
the literature are numerous but for a start the reader is referred to

Desai (1972).
Discrete Particle Analysis

Cundall (1971, 1974) and Cundall et al (1975) describe
another approach to slope stability.utilizing the concepts of discrete
particle mechanics. A computer program has'been developed which
models a rock slope as an assemblage of discrete and rigid blocks;
Presumably if ﬁhe computer capacity and data were available, smaller
and smaller rock blocks could be considered until, in fact,‘a soil was
being modelled. The program is similar to limit equilibrium analyses
in that all displacements occur along joints and discontinuities, but
different in that displacements,.rotations, and interactions of the
blocks are calculated as a function of time with failure surfaces
being generated as instaﬁilities develop. The program differs from
finite element analysis in that as an instability develops the rock
blocks are free to undergo large displacements and rotations.

The analysis is not truly dynamic: an explicit time integré—
tion is used by considering a series of static equilibrium analyses.

In each step the equilibrium of each block is considered. Resultant
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forces are used with Newton's second law to calculate an acceleration.
Thus, motion is calculated as a function of time. Interaction with
the program is via a graphics terminal. The geometry of a slope,
complete with discontinuities, is drawn on the terminal and, with
program execution, instabilities can be seen to develop and failures
occur,

Unfortunately, Cﬁndall's work is entirely in terms of total
stresses. Because the effects of water are almost always critical to
slope stability im soil or rock, it is apparent that this method has
severe limitations until it can be modiﬁied to work in terms of effec-

tive stress.
Historic Development of Limit Equilibrium Methods

Without question, the first significant contribution was
Coulomb's (1776) memoir presented to the Academy of Science in Paris.
Heyman (1972) gives not only a copy of the original memoir but also an .
English translation wifh discussion of the principal features.

In his paper, Coulomb first presented the law that now bears
his name (2.1). Although since refined, this basic empirical law
remains the backbone of many aspects of Applied Science. Modified to
allow for effective stress (2.2), it underlies almost all presently
'used techniques for analyzing slope stability.

In considering potential failures behind retaining walls,
Coulomb used, for the "simplicity of the results obtained, the ease of

their application in practice, and the wish to be useful to and understood
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‘by workmen'" a planar failure surface. However, he did go on to briefly
describe a method to handle curved surfaces. 1In this technique he
broke his region into vertical slices. The credit for first usiné
curved failure surfaces and slices is usually given to much more

recent investigators.

Coulomb also recognized the critical role of water. He
suggested that the pressure of water reduced the angle of internal
friction. His reasoning was perhaps incomplete; he attributed thé
problem to "replacing soil forces by the frictionless pressure of a
fluid" (Heyman, 1972) p. 57), but his astute observation is neverthe-
less worth noting.

Leggett (1962, p. 430) describes the contribution of Alexandre
Collin, a little known French engineer. Collin's book (1846) describes
the first shear tests on clay. These were completed to determine the
mechanical properties of the soil which he might then apply in the
mathematical analysis of the stability of an unsupported slope.

Collin also recognized the dependence of all theoretical studieé of
slope stability upon the local geélogic structure and conditions.

In 1860, Rankine put forward his theory of earth pressure.
Like Coulomb, he dealt with potential failures and forces behind
retaining walls. Both Coulomb and Rankine considered “active and
passive pressures and thrusts caused by a cohesionless soil not
subject to seepage forces'" (Taylor, 1948, p. 488).

Culmann (1866) described plane failure through the toe of a

slope. Forces acting on the failing wedge included only the weight of
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the wedge and a resisting force resulting from a cohesion that was
constant along the failure surface.

During the early 1900's much work was conducted in Sweden
because of numerous slope failures that had occurred along the Swedish
railroads. A ﬁajor commission on slope stability was established and
several important contributions resulted. From observing many failure
surfaces that approximated circular areas, several "circular arc"
methods were developed, including the method of slices, p-circle
method and the log spiral method.

The method of slices was developed by Fellenius (1927,
1936). The mass above an assumed failure surface is divided into

vertical slices (Figure 2-2). The forces acting on each slice include
the weight "W", the cohesion "c" and a third force "P" due to the
materials angle of internal friction. Figure 2-3 shows how ¢ and P
are directly related to Coulomb's law. Letting c be the resisting
force due to cohesion? the total resisting force is
F, =c+ W _tan¢ ’ : . (2.3)

R N
The frictional component of the resisting force is Wy tan¢ and can
be represented vectorially by ﬁﬁ + P where P is inclined at an angle ¢
to the normal component of the weight (ﬁ&). Because only moments are

being considered, the use of P is equivalent to the use of WNtan¢

because Wﬁ itself causes no moment.
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Figure 2-2. Fellenius' method of slices for a curved sliding surface
through the toe of a slope (after Fellenius, 1936, p. 450)

gon?

Figure 2-3. Force diagram showing a weight W
acting on a slope inclined at an angle a
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For each slice, P is tangent to a small circle with centre
the same as that of the sliding surface and radius rsin¢ (Figure 2-
2). The basic equilibrium equation used in the derivation of the
factor of safety is the summation of moments about the centre of
rotation. Interslice forces are assumed to act parallel to the base
of the slide and therefore. cancel out in the summation. The worse
case is found by trial and error after a large number of failure
surfaces have been considered.‘

The ¢-circle method was described by Taylor (1937) although
he attributed an earlier origin to Professors Glennon Gilboy and
Arthur Casagrande. Taylor considered both failures passing through
and below the toe. The region above the failure surface is assumed
to be é single free body (Figure 2-4) . The forces acting on the mass
are the weight "W", a cohesion "c¢" acting parallel to the chord joining
the two ends of the failure surface, and "P" a "resultant force trans-
mitted from grain to grain of the soil across'" the failure surface
(Taylor, 1937, ﬁ. 345). fP", as before, is assumed to act at an
angle ¢ to the failure circle, making it tangent to a small circle
(the ¢-circle) with centre at the origin of the failure circle.
Moments of the mass about the origin are considered. A special case
for ¢ = 0 results when the material in question (for example, satu-
rated undrained clay) can be considered purely cohesive. This case is
thoroughly reviewed by Skempton (1948). As with Fellenius' method of
slices, a large number of assumed failure surfaces must be considered

in order to find the most critical case.
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rsing

Figure 2-4. The ¢-circle method
for toe failures (Taylor, 1937, p. 344)

Rendulic (1935) proposed a slight variation from the ¢~circle
method based on assuming the failure circle to be a log spiral. Using
this assumption he avoided the basic éssumption of the ¢~circle method
as all radius vectors can be shown to intersect the failure curve at an
angle of ¢ (Figure 2-5). Again, trial and error must be used to find
the critical failure surface.

All of the three "circular arc" methods initially assumed dry,
homogeneous and isotropic materials. After the introducticn of the con-
cept of effective stress they were extended to account for porewater

pressures.
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N

Figure 2-5. Rendulic's log-spiral method

Terzaghi's development of this concept stands with Coulomb's
law in'importance to the understanding of slope stability. Although
first suggested in his work of 1923, it was not until he published his
1936 paper, in English, that the full impact of his empirical law could

be felt. His effective stress law is

6 =0 -u (2.4)
e t
where
0e = effective stress
ot = total stress
u = porewater pressure

Coulomb's law (2.1) could then be restated in terms of effective stress

(2.2).
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Although commonly used in practice, the validity of Terzaghi's
empirical effective stress law has been the subject of some controversy.
Some of the debated ideas will be presented in a later section.

Following the introduction of his effective stress law,
Terzaghi (1936(c)) went on to show how Fellenius' and Rendulic's methods
could be modified for water pressures if part of the failing mass was
below a static water table. For the submerged portion he simply used
buoyant unit weights. He also noted that "percolating water" could be
represented by‘flow nets. Using the porewater pressures he obtained
from his flow net, He was able to use Fellenius' method for the case of
steady séepage.

Taylor (1937) expanded Terzaghi's discussion in considering
four cases using the ¢-circle method: complete submergence (Figure 2-6),

sudden drawdown, steady seepage, and capillary saturation (Figure 2-7).

=id

Figure 2-6. Taylor's ¢~circle analysis for complete submergence
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For complete submergence (Figure 2-6), Taylor used the "effec-

tive" weight, Wg, defined by

Wg = (YT - Ywater) x volume (2.5)
where
Yo = total unit weight
Ywater = unit weight of water .

Using WS causes a redefinition of P because of their inter-
dependence. Two additional water forces are introduced, E , the resul-
tant of water forces acting everywhere normal to the failure circle; and
E,, the resulting "supporting" force due to the water above the failing
mass. El will not cause a moment. The moments of the entire mass are
then considered as before.

The sudden drawdown case was simply calculated by removing the
force E2 .

For steady seecpage, Taylor commented that, although flow nets
could be sketched and used to obtain solutions, the work involved was
long and tedious. The true solution for steady seepage would lic some-
where in between complete submergence and sudden drawdown. He recom~
mended that the sudden drawdown calculation be used for the s:.eady
seepage case. Although his approach was conservative, he doubted that
"the accuracy which can be attached to stability computations was great
enough to warrant the drawing of a flow net and the involved procedure
that must follow'" (Taylor, 1937, p. 373).

Taylor considered one other case, capillary saturation

(Figure 2-7).
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Figure 2-7. Taylor's ¢-circle analysis for capillary saturation

For this.case he used a total weight which consisted of the weight of
the soil plus the weight of water retained by capillary action. This
condition, he explained, could be attained by shutting off the supply of
seepage water and thus eliminating seepage forces. Essentielly, this
would require draining to lower the water table below the failing slope.

The various circular arc methods discussed so far are theore-
tically incorrect, satisfying only one of the three aspects of static
equilibrium, moment equilibrium; leaving unsatisfied the question of
horizontal and vertical force equilibrium.

In 1954, Janbg (1954, 1957, 1973) first presented his General-
ized Procedure of Slices. His work included the first attempt to con-
sider all the three aspects of equilibrium as well as providing a method‘
that could handle failure surfacés of any shape. The fo;ces he con-

sidered are shown in Figure 2-8, where

dP = external load

AW = slice weight
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E and E + dE horizontal interslice forces

1

T and T + dT vertical interslice forces

dS = resisting forces along the base

dN = normal force along the base.
X L
—p , y
%a——
dp
/”! /‘-‘—

Figure 2-8. TForces ugsed by Janbu
in his Generalized Procedure of Slices

For each slice he considered vertical, horizontal, and moment

equilibrium. Integrating the vertical and horizontal forces for the

AY

entire body, he was able to consider vertical and horizontal equilibrium
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for the méss as a Qhole. For stability criteria he used the horizontal
condition of equilibrium. The resulting expression for safety factor
was indeterminate without assuming a line of thrust for the interslice
forces. These were then obtained by succeésive approximations and re-
introduced into his safety factor expression. Terzaghi and Peck (1967,
P- 253) suggest that with Janbu's method, moment equilibrium for indi-
vidual slices is not satisfied by the forces derived from the solution.
However, more recent summaries (for example, Wright et al, 1973; Duncan,
1975) include Janbu's method with those that satisfy all conditions of
equilibrium,

Bishop (1955) put Fellenius' circular arc method of slices on
a more correct foundation from a statistics point of view. Figure 2-9

shows the forces he considered, where

w = weight of slice
X ,X = vertical shear forces
n’ ntl

E ,E = resultant horizontal interslice forces
n’ ntl
S = shear force acting on the slice base

P = normal force acting on the slice base

By considering the moments about the origin "0" he developed
an expression for the factor of safety which included the interslice
forces. The terms involving these interslice forces had been previously
shown by Krey (1926) and Terzaghi (1929) to cause only minor changes if
neglected. The resulting simple expression meant an easy calculation of
the safety factor but was in general conservative and\could lead to

unenconomical design. For this reason, Bishop went on to describe a
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method that by successive approximations ensured that the vertical shear
forces should sum to zero. Like Janbu, he had to assume a reasonable
line of thrust. He also gave an expression that if satisfied would

ensure that horizontal interslice forces would be in equilibrium as

well.

Figure 2-9. Forces used in Bishop's method

However, he added that, although the gain in accuracy obtained by
ensuring vertical shear forces summed to zero was significant, the same
could not be said of ensuring horizontal interslice force equilibrium.
Bishop's simplified method which involves satiéfying overall moment
equilibriuh and vertical shear force equilibrium but not horizontal

intersiice force equilibrium is commonly used and has been shown
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(Duncan, 1975; Morgenstern and Price, 1965; Wright et al, 1973) to give
accurate results for most cases.

Lowe and Karafiath (1960) proposed a graphical, modified
method of slices which satisfied horizontal and vertical force equili-
brium but not moment equilibrium. After calculating the magnitude and
direction of weight and water forces, they assumed a "reasonable' direc-
tion for lateral earth forces. TFor a trial factor of safety, "a series
.of force polygons were constructed, one for each slice. By plotting the
force polygons contiguous with each other and in sequence, a closure
polygon is obtained" (Lowe and Karafiath, 1960, p. 542). If closure is
not obtained, a new factor of safety is assumed and the exercise is
repeated until the appropriate factor of safety is obtained.

The introduction of .the computer into common usage in the
1950's revolutionized procedures for anélyzing slope stabiiity. Clearly
many time-consuming and repetitive operations became simple‘and quick.
Little and Price (1958), Horn (1960), and Whitman and Bailey (1967)
discuss the application of the computér to slope stability.

Until the introduction of the computer, techniques were
developed to give fast, reasonably accurate answers even though Laws of
Mechanics were not always satisfied. Because of the indeterminate
nature of Limit Equilibrium methods, techniques which satisfied the Laws
of Mechanics commonly required successive approximations to reach a
solution. Without the computer such solutions were unwieldy and time-
consuming. However, with the computer, this difficulty was removed and
iterative methods which ensured all the Laws of Mechanics were satis-

fied, replaced the earlier-approximate methods.
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Such a method was proposed by Morgenstern and Price (1965).

The forces they considered are shown in Figure 2-10 where

X, x + dx
E', E' + dE'
Pys By AR

de
dn'

ds

aw

E‘

Py

P
/ /d{‘r ' b
dN
o}

vertical interslice shear forces
lateral effective side thrusts
resultant side water pressure
water pressure acting on the base
effective normal pressure

shear force acting on the base
inclination of the base

weight of the slice

r——*‘”'—ﬂw”—ﬂ*ﬂﬂg x + dx

x| E' + dE'
!

P+ de

dW

Figure 2-10. Forces used in the Morgenstern-Price Method

By taking moments about the centre of the base of the slice, summing

forces perpendicular and parallel to the failure surface and subse-

quently simplifying, two governing differential equations in three
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‘unknowns remain, a statically indeterminate problem. The remaining un-
knowns are the laterai side thrust E', its position of action, and the
vertical interslice shear foree x. A number of assumptions are possible
to reduce the problem to a solvable case including assuming the position
of the line of thrust or assuming a relationship between E and x.
Morgenstern and Price use a form of this latter assumption by relating
the total horizontal stress E (= L' + Pw) and x by

x = X £{(2)E {2.6)
where A is a constant which depends on reasonable boundary conditions
and f(z) is an arbitrary function of z,»the vertical coordinate. f£(z)
can be estimated from available élasticity solutions or (Morgenstern and
Price, 1965, pp. 87 and 88):

Specified on the basis of the intuitive assumption that

for most cross-—sections the higher the rate of curvature

of the slip surface, the greater the ratio beiween the

shear and horizontal forces at the slip interface ...

Ultimately reliable field measurements of internal stress

will provide the best guide.

Sﬁarting with guessed values of A and f(z) they integrate
across all the slices to obtain values of & , the total horizontal
stress and Mn, the moment; which in general will nct both be zero. By
modifying A and f(z) and systematically iterating, values are finally
found for which E, and M, are zero.

Morgenstern and Price (1965) introduce porewater pressure data

in the form of a coefficient "ru“ as defined by Bishop and Morgenstern

(1960):

r, = ;E- 2.7)
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where
u = pore pressure
Y = specific weight of the slide material
h = depth below slide surface

Although r, can be varied from slice to slice, it would seem more reason-
able to develop a flow net solution and introduce directly the appropriate
. values of the pore pressure. (This approach is used by Fredlund (1974).)
The use of r, will be discussed more thorqughly in a later section.

Since Morgenstern and Price published their paper, several
others have‘described solutions which depend on different assumptions
used to eliminate the indeterminacy of the problem. Spencer (1967)
assumed parallel interslice forces; i.e., a constant interslice force
inclination. Bell (1968) made an assumption about the variation of the
normal stress acting on the potentialvslip surface. Interslice forces,
however, did not enter into his equation of equilibrium as he considered
them internal to the free body being examined. Janbu (1973) restated
his method which assumes a line of thrust of interslice forces. The
various methods are summarized by Duncan (1975).

Thus far in this discussion, no comment has been given on the
relationship between analyses for rock slope stability and soil slope
stability. The first concepts and methods for analyzing slope stability
originated within what is now considered the science of Soil Mechanics.
The closely related science of Rock Mechanics developed some time later
but is based on many of the same principles. Limit equilibrium tech~

niques are used for the analysis of both soil and rock slope stability.
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If a rock slope 1s so highly fractured or weathered that it
can be considered to act like a soil, then the techniques of soil
mechanics are applicable. More commonly, the strength of a rock slope
is controlled by discontinuities, faults, and fractures, and is better
modeiled as a system of rock blocks and wedges. In some céses, inddi~-
vidual blocks and wedges must be considered. Techniques for handling
these cases are described by Goodman and Taylor (1967), John (1968),
Londe et al (1969, 1970), and Hendron et al (1971). Obvicusly, scale
and the nature and spacing of discontinuities are critical in deciding
on the most appropriate model.

In summarizing the development of limit equilibrium tech-
niques, three distinct aspects can be isolated: identifying the dif-
ferent stresses acting; understanding the mechanics which relate the
stressés; and determining the natural properties that govern the mate-
rial behaviour when the stresses are acting.

The recognition of different stresses, one due to overburden
load and the other due to fluid pressures, led Terzaghi to his effective
stress law. His recognition of this concept was a major step férw;rd.

A further stress problem is the role of residual tectonic stresses due
to past and present geologic processes. These éan be grouped into local
or regional residual stresses. Local stresses are often due to stress
relief and rebound after removal of materials. This removal can be.a
result of natural processes such as rivers and glaciers or man-made
excavations. Regional stresses are related.to large geologic structures
resulting from regional tectonic activity. The exact role of residual

tectonic stresses is not-completely understood and certainly at the
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present time 1s not included in limit equilibrium slope stability cal-
culations. Although the magnitude of these stresses Is probably small,
in some cases it may be significant.

A second aspect of the development of limit equilibrium tech-
niques was arriving at a full understanding of the mechanics which
relate the stresses being considered. Given the problem in terms of
effective stresses and a computer to eliminate repetitive and time-
consuming operations, the task was then to properly relate all the
forces acting. This was achieved by application of all the laws of
static equilibrium. The problem, however, is still indeterminate and
the various assumptions used for solutions, result in the different
methods,

The finai aspect is a large subject in itself and a thorough
treatment is well beyond the scope of this review. However, for com-

pleteness I mention it here. The usefulness of any method depends on

used in the various equations. Such properties include cohesion,
internal friction angle, specific weight, permeability, porosity, and
.compressibility. To obtain a meaningful value or distribution of values
which describe each -of these properties is a difficult task. Laboratory
measurements, field measurements, and back calculations can all be used
but it remains a difficult problem. It is this aspect, more than the
others, which limits the accuracy and usefulness of the techniques

themselves.
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The Concept of Effective Stress

The concept of effective stress may not be as simple as sug-
gested by Terzaghi's empirical law (2-3). 1In fact, Terzaghi (1923)
originally proposed the la&_in a slightly different form:

o, = 0, - au (2.8)
where o is a parameter, the exact value of which is controversial.
Terzaghi (1923) suggested that g should equal the porosity but found
experimentally that o = 1. These conclusions were repecated in his
1936(a) paper where he called o a reduction factor. Hubbert and Rubey
(1959, 1960) attempted to show theoretically that ¢ = 1 but the validit§
of their proof has been questioned by Laubscher (1960). Skempton (1961)

proposed that more correct expressions for effective stress in fully

saturated material are

£ he £ - = _ _ atany, .

or shear strength o, = o - (1 tan¢')u (2.9
c

for volume change O = Op ~ (1 - EE)U (2.10)

where _ .
a = the area of contact between particles per unit

gross area of the material

Y = intrinsic angle of internal friction

=~
1

effective angle of internal friction

(e}
i

compressibility of the solid particles

c = compressibility of the overall material

and the other symbols are as defined previously.
For fully saturated soils, at pressures normally encountered

in engineering practice,. both "a" and "cs/c" are very small and
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(2.9) and (2.10) will degenerate to Terzaghi's empirial relationship
(2.3). However for saturated rock and concrete relationships (2.9)
and (2.10) should be used.

Nur and Byerleev(l97l) give both experimental evidence and a
theoretical proof of (2.10). However, they note that "when the compres—
sibility of the aggregate is sufficiently greater than that of the
grains,' Terzaghi's empirical law is an excellent approximation
regardless of porosity. For mechanically isotropic, elastically linear
aggregates, the law (2.10) holds. They further suggest that one caﬁ
determine "accurately the strain in a porous solid with pore pressure
from the measured elastic modulii of the material without pore pres-
sure."

In practiée, Terzaghi's empirical law is commonly used. It
would appear from the above discussion that under certain circumstances
Terzaghi's law gives an adequate approximation but in other cases more
accurate relationships should be used.

The problem of effective stress in unsaturated materials is:
discussed by Jennings (1960), Blight (1967), and Skempton (1961), who
point out that above the saturated zone Terzaghi's empirical law does
not hold. They proposed alternate forms of thé effective stress law and

the reader is referred to those papers for details.

Groundwater and Limit Equilibrium Methods

Fredlund (1974) summarized the different procedures for

handling groundwater in limit equilibrium methods. He listed the fol-

-

lowing five alternatives:
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1. total stress analysis, no porewater pressure

.2. wuse of the coefficient r,

-3. pore pressures are expressed as a ratio of overburden
~pressure

-4. pore pressures are expressed as x and y coordinates
-z0f a peizometrio line

;5, .pore pressures are evaluated by .interpolation between

v:zgrid .of known pore pressures

-zEXcept under very special~circumétances (for example clays with
sStrength due unly to cohesion), a total stress analysis in which strength
~#ls not .considered to be a function of . -pore pressures, is not appropriate

:«*for slope stability analysis. In fact, the presence of water is commonly
-#the-.cause of stability problems and an effective stress analysis is best.
==AsS _previously oentioned, Bishop and Morgenstern (1960) intro-

wzguced -the porewater pressure coefficient r, defined by (2.7) or

=g (2.11)

~“*The -pore pressure can be .seen by (2.11) to beiexpresseo as a simple
#function of the -depth h .. ~Although ‘T, ‘can be-mado to vary from slice
fﬁto;slice,.ituresulfs in an -approximation .that can be markedly different
Aviirom.the actoal,case, ’In~reality,~porewatef pressures are rarely a simple
- #ddnear fundétion of :depth. -The:exception is thecase of a saturated static
*%%water-table where r, ~would simply indicate the ratio of the specific
3weight of water to that of the overburden. Such a condition is not com—
ﬂ;@monﬁin:nature. “Because techniques are-now available to accurately model
field conditions with relative ease, it‘no longer makes sense to use an

-#approximation like T, and -its-use sheculd be discouraged.
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Expressing poye pressures as a ratio of overburden pressure
was suggested by Hilf (1948) as a means of estimating construction pore
pressures in rolled earth dams. As with the use of r,, means ars now
available to accurately establish conditions by numerical modelling and
the use of this approximation is also no longer justified.

In a situation where field measurements have established the
piezometric sur%ace, expressing pore pressures as X and y coordinates of
a piezometric line may be the best way to handle groundwater.

Evaluating pore pressures by interpolation between a grid of
known pore pressures which have been obtained by field measurement
and/or mathematical modelling is the best of the listed alternatives.
Fipite difference and finite element techniques are now commonly avail-
able to model complex groundwater flow regimes. Provided the boundary
conditions have been correctly interpreted and reasonable estimates have
been obtained of natural properties, these methods give accurate solu-

tions of the groundwater flow problem.
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CHAPTER THREE:  GROUNDWATER FLOW, GALERKIN'S METHOD
AND THE FIHITE ELEMENT METHOD

Introduction

Fluid flow through porous media can be treatéd mathematically
as a boundary value problem. For regions that are geometrically simple
and that consist of homogeneous isotropic materials, one can obtain an
exact analytic solution. For more complicated regions ana materials,
exact solutions are not possible and numerical approximations are
necessary.

Galerkin's method is one of a number of procedures available
for finding an approximate numerical solution to a differential equation.
Others include the method of Kantorovich, Raleigh-Ritz, and Euler's
finite Difference technique (Crandall, 1956; TForray, 1968; Kantorovich
and Krylov, 1964). All of these methods utilize an approximating function
for the unknown quantity and involve minimizing the resulting error. The
various methods are differentiated by their degree of generalization and
technique of error minimization. In some cases, one method can be shown
to reduce to another. For example, Crandall (1956, p 233), Kantorovich
and Krylov (1964, pp 262-264) apd Forray (1968, p 193) discuss the
equivalence under certain condition, of the Raleigh-Ritz and Galerkin
methods. |

The following discussion is limited to solving the equation

of flow for two dimensional, saturated, steady state flow through anisotropic
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and heterogeneous porous media. Galerkin's approach and the finite element
technique are used to develop a set of solvable linear equations. The
works of Pinder and Frind (1972) and of Remson, Hornberger and Molz

(1971) were particularly useful in synthesizing concepts.
Theory
"Consider a region R in which we wish to compute the hydraulic

head, ¢(x,y), at certain points or nodes. Let these nodes form the

vertices of small but finite triangular elements (Figure 3-1).

X

Figure 3-1 . Descritization of region into finite
triangular elements.
Other more complex (higher order) elemental shapes are possible and are
desirable for more accurate solutions to geometrically complex regions.
For example, Zienkiewicz (1971) and Pinder and Frind (1972) discuss the

curved isoparametric quadrilateral. Howevér, for simplicity this discussion
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will be limited to that of the triangle.

+ The solution ¢(§,y) in R can be viewed as a surface with
coordinates ¢i, ¢j, ¢k at the ith, jth, and kth nodes respectively.
The simplest approkimation of this solution surface is a linear plane

which for each element is of the form:
¢ = Ax ++ By + C . (3.1)

We want to solve for the nodal values of ¢(x,y) therefore we solve for
A, B and C knowing the plane used in approximating the element i,

j, k must pass through all three pointé, thus:

¢i = Axiv+ Byi + C
., = Ax, + By, + C 3.2)
¢J i }’J . ( /
¢k = AXk + Byk + C
Equations (3.2) can be used to solve for A, B and C . The resulting

expressions for A, B and C can then be substituted into equation (3.1)
so ¢', the approximation within the triangular element, can be written
in terms of the nodel values of ¢ at the vertices and three coefficients

which are functions of the node positions:

¢! = Ni¢i + Nj¢j + N (3.3)

k¥

where



N, = [(xjyk - xkjj) + (yj - Yk)X + (kg - xj)y]/ZD
Nj = [(xk}’i - Xiyk) + (yk - yi)x + (xi - Xk)y]/ZD (3.4)
N ==

K [(xiyj - ijk) + (yi - yj)x + (xj - Xi)y]/ZD

and 2D = 2 x area of the elemental triangle i, j, k
= determinant 1 X, yi
! xJ' yJ
SR VR

Equation (3.3) can be re-written as:

n
b = ¢' - Z N-‘b- (3.5)
i=1 t*
where i labels the nodes contributing to that element, -n is the total
number of nodes contributing,‘ ¢i are the heads at the ncdes and Ni
are defined by equation (3.4) and are called "shape" or "basis" functions.
For more complicated elements, the basis functions are linear, quadratic
or cubic polynomials, depending on the element shape (Pinder and Frind,
1972, p 110).
Equation (3.5) expresses the linear approximation to the real
¢ wvalues. The basis functions, Ni’ are chosen so that the boundary
conditions imposed on the governing partial differential equation, (the
equation of flow), are satisfied. Where Darcy's Law is assumed to be
. correct, the governing equation for two-dimensional steady-state flow

through anisotropic porous media is:
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4y 4 <' 2y 2 (3.6)

a
L(¢) =.5; (K XX 9X Yy 93y

where L is the differential operator and Kxx and Kyy are the
hydraulic conductivities in.the' x and vy directions; The k and y
axes are chosen‘to correspond locally (i.e. for each element) with the
principle directions of the hydraulic conductivity ellipse.

Equation (3.5) will be the exact solution to (3.6) if
L(¢') =0 (3.7)

This condition is equivalent to the requirement that L(¢') be orthogonal

to all the shape functions (Kantorovich and Krylov, 1964 p. 262) or,

}J L") Ny dx dy = 0 (2.8)
R

and substituting in equation (3.5):

n
JJ L( Y N.¢.) N dx dy = 0 (3.9)
R i=1 J j=1...n

Equation (3.9) results in n equations in n unknowns. Expanding

equation (3.9):

2 ’3
“ [(ax o 3%t 5y Ky E)y)(z N6 N, dxdy =0 (3.10)
i= J =1 .. . n
R
Now, for a given triangular element, three equations will be
generated, one for each node of that triangle. Assuming KXX and X

are constant within the element in question, equation (3.10) can be

re-written
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2 2

JJ X B'Ni 3 Ni
¢ IK  —F+K SN, dx dy = 0 (3.11)
i=1 | ** ax2 ry Byz J

R

This equation includes second derivatives which are difficult to handle
numerically. To eliminate then, Green's Theorem is applied in the

following form (Weinstock, 1952, p 13):

2 2
” ¢3i+¢3———dxdy=~” G2 90, Ay gy gy

3X2 3y2 ) _ X 9x 9y ay
a4 ~
+ J ¥ o ds (3.12)
c
3¢

where ¢ represents the boundary of R and an is the outward normal
derivative of the function ¢(x,y):

3 _ 2, 43

an 9X X 3y ¥y
£ and Ry are direction cosines.

X

Comparing (3.11) and (3.12) we can write

v =N,
¢ = Ni
and rewrite Green's Theorem as:
82Ni BzNi f BNi aNj aNi BNj
J[ Nj 5 + Nj 5 dx dy = - JJ % % + 3y ° By‘ dx dy
9x ay
R
¢ . 3Ni
+ JJ Nj 5;—-ds (3.13)
c
BNi oN aNi
where —— = —= 8 4+ —=§

an X X dy y
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Combining this result with equation (3.11) we can write the

governing differential equation as:

n [ aN, Eﬁj BN, N, n AN,
- . = + ) L e— < 7 — =
fj ’Z I Kyy 55 Sgl-dh dy + [ Nj .Z 5= ¢, ds =0
i=1 =1
’ C
j=1. n
(3.14)
N’ N . N .
where -t = | C— 2 + K S L
an XX 9X X Yy 3y 'y

Equation (3.14) represents the flow over a region which in our

case is a triangular element. At any given node there will. be contributions

from the surrounding elements. We are interested in the value of the

head at each nodal point. To write the equation for a given node we

must sum the contributions from each cof the adjacent elements. If thers
are "E'" adjacent elements, we can write thelequation for a given node as

|
N aNe NS n oN® ‘

n oN; .
,e i i e i, j _ e i -
JJ z ¢i‘kxx 9x 9x + Kyy Iy ay dx dy J Nj izl on ¢i ds 0

(o4

j=1.. .n

where i labels the node in question and j didentifies the nodes of the
corrners of the contributing elements.
The last term in equation (3.15) incorporates the Neuman

boundary condition (constant flux):

—a—(P- _ .
K>-=gq (3.16)

where q 1is the flux of water into the element per unit length of
boundary. It is formed only when q 1is non zero in which case it takes

the form (Pinder and Frind, 1972, p 112),

(3.15)
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I Ni q ds (3.17)

[}

According to Zienkiewicz and Cheung (1968, p 154) it reduces to

| 37& (3.18)

‘where %2 dis the length of the element on the boundary.

At nodes where a Diriéhlet boundary condition (constant head)
is encountered, equation (3.15) is not generated as ¢ is a known
quantity at such nodes.

Cgmbining (3.15) and (3.18) we can rewrite the equation for a

given node as:

E |frn . NS a_NJe . ON;  aNC |
ezl fjizl i % 3% T T Yyy 3y dy. dx dy = === =0 . (3';9)
i=1. n

or in matrix form:

[P1{¢} + {F} =0 (3.20)
whewe

E o ON; aNT _aND  on
By s = ezl ” Z Ko 30 ——lax K5y -—lay dx dy (3.21)
and
E eze
F, = E 5‘——2 : (3.22)
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[P] and {F} can be evaluated, and using standard techniques of matrix
algebra we can solve for {¢} . The matrix of coefficients [P], which
is often called the stiffness matrix by analogy to structural mechanics,
will be mostly zeros. This results from contributions to a given nodal
equation beigg only from those elements surrounding the node for which
the equation is being written. [P] can be described as sparse and
banded.

The programmed solution, listed and documented in Appendix I,
sweeps through the region element by element. For each elément, three
quantities are calculated corresponding tobthe contributions of-that
element to each of the equations of the three vertices. During program

“execution the equation for each node is generated as the computor sweeps
all the contributing elements surrounding that node. A brief outline
of the solution used in my program for the fesulting matrix equation is

given in a latter section of this chapter.
Example

To illustrate the numerical technique, an example follows. For
simplicity of computation an isotropic material will be considered. We
can then set K = KXX = Kyy and factor accordingly. The flow region -

is bounded by constant head boundaries and is illustrated in Figure 3-2 .
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Figure 3-2 . Region of flow.

Consider node 1 in Figure 3-2 . The contribution from

element e to the equation for node 1 is:

an®  an®  an®  an® NS an®  aN®  on®
%o e RO N IO 2,71, %2 N
1{ 3x ox dy 9y 2{ 8x ox dy dy
oN BNi 'aN§ aN‘l3 .
- . - == .2
T T T ey Ty |2 O (3.23)

From element e + 1 we can write:

il aNe+l 3Ne+1 aNe+l aNe+l BNe+l 8Ne+l 3Ne-l—l
K o 1 . 1 + 1 . 1 + g 3 1 + 3 .
1 ox y oy oy "3 9x  ° 9x oy
aNe+1 aNe+1 aNe+1 aNe+1
+ 0 4 . 1 4 . 1 Ae+l -0 (3.24)
41 ox X oy oy .

From element e 4+ 2 we can write:
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r

et2

‘ aNe+2 8Ne+2 aNe+2 aNe+2 N aNe+2 3Ne+2 8Ne+2
Ke+2 " 1 . 1 + 1 . 1 + b 4 1 + 4 1
1| ox X 3y oy 4{ ox Ix oy Ay J
aNe+2 aNe+2 _8Ne+2 8Ne+2
F oo 2 1,2 1 aet2 0 (3.25)
20 3x ox Ay y
The equation for node 1 1is obtained by summing the three

contributions from the three surrounding elenments.

Combining appropriate .

terms, the following equation results:

e e e e e+l e+l e+l e+l
. KeAe aml ‘ aNl N 3Nl . BNl N Ke+lAe+l 3Nl BNl N aNl . BNl ]
1 Ix ax 9y Ay L 9x ox oy ERY J
ez |y AT g BN(:){H“L
+KA ox ax dy 3y IJ
v 1
Jon®  an®  ax®  an® - anet2 a2 gnet? gyet?
+ ¢ JKeAe 2 . 1 n 2 . 1 + Ke+2Ae+2 2 1 + 2 1
2 3x 9X Yy oy 9x oxX Yy oy
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The four equations, one for

form as follows:

e, e+ l, e+ 2 e, e + 2 e,
e, e + 2 e, e + 2

e, e + 1 e e,

e+ 1, e+ 2 e + 2 e

For node 4
e+l e+l e+l e+l
Ke+1Ae+l aNl . 3N4 + aNl . 8N4
¢1 9x - ox © oy oy
e+2 et2 e+2 et+2
4 (2,0 Ny oN,, N Ny,
ox 9x Ay qy J
: ( -y )
N 3Ne+2 8Ne+2 aNcﬁh 8Ne+2
+ o Ke+2Ae+,-: 2 . 4 + 2 . 4 |
2 L 0X 9x oy 3y
\ J
1 ’ 1)
8Nf+l 8Ne+1 8Ne+l aNe+l
+ o 4Ke+1Ae+l 3 4 + 3 . 4
3 | 9% X dy ay '}
\
_ 3Ne+1 aNe+l aNe+l 8Ne+1]
+ ;Ke+1Ae+l 4 ] 4 + 4 . 4
4 ax 9x dy 3y |
\
et2 e+2 e+2 e+2T]
+ Ke+2Ae+2 8N4' ; 8N4 + 3N4 . 3N4 i
9x 9x 9y 3y [
=0 (3.29)

each node can be put in matrix

e+l e+1,e+2 N 0
e e + 2 ¢2 0
e +1 e +1 ¢3 ) 0
+ 1 e+ 1, e + 2 ¢4 G

(3.30)
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where the e, e+ 1, e + 2 represent a contribution from the element
. ‘ ,th .
of the same label. The i row can be sesn to represent the equation

.th .th , . .
for the i node and the j column contains entries corresponding
. . .th
to the coefficient of the j head value.

Matrix Solution

Figure 3-3 illustrates the matrix form of equation (3.19).

[P..] {¢i} {Fi} {0}

Figure 3-3 Matrix rform of equation (3.19)

[P], the matrix of coefficients is dimensioned m Xm where m is the
total number of nodes in the region. {¢} 1is a vector of mostly unknown
head values and {F} 1is a vector of constants which depend on the
boundary conditions. [P] ecan be partitioned into two parts of which
one consists of a smaller n X n matrix where n is the toal number of

unknowns. In numbering the nodes, the known values are numbered last.
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It is then a simple matter of multiplying the known head values by the
appropriate coefficients in the part of [Pij] where 0 < i <n and
n<j<m. For each row '"i" the resulting products can be summed,
added to Fi and transferred to the right hand side of the equation.

The resulting equation is of the form
(A7 - {¢} = {B} (3.31)

Where [A] dis an n x n matrix of coefficients, '{¢} is a vector of
n unknown hezad values and {B} 1is a vector of known constants.

Standard computer programs can be used to solve for {¢} .
Such programs are commonly based on Cholesky Decomposition or Gaussian
Elimination. The subroutine called by the program used in this study is
based on Gaussian elimination (Bird, 1975, p. 42). Kreysig (1972) discusses

the theory of the various numerical techniques.
Heterogeneity and Anisotropy

Within any element, physical properties are considered homogeneous
(isotropic or anisotfopic). However, from element to element, properties
can vary widely allowing one to model heterogeneity.

If the principle directions of any given anisotropic element
coincide with the global coordinates, equation (3.19) holds. If not, a
coordinate transformation is required. Zienkiewicz (1971, p. 301) point
out that an important difference ariées here from the structural situation.

As the matrix of coefficients [P] defines relationships between scalar

-
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quantities, it is equally valid whatever the orientation of the local
axes. Thus, use of local axes does not require a matrix transformation
or a change in the assembly technique.

For any element, a local coordinate system can be defined,
skewed appropriately from the global coordinate system. Within that
element, equation (3.19) is valid relative to the local coordinate system
.and contributions to the nodal equatiops can be calculated and added in
as before. Figure 3-4 illustrates thé simple trigonometry used to define
nodal coordinates relative to axes coincident with the local principal

directions of hydraulic conductivity.

X, X
i
Figure 3-4 Trigonometry used in defining nodal coordinates
in terms of a local coordinate system.
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The origin at (0,0) is kept fixed and the local coordinate

axes are skewed an angle of 6 from the global coordinates.

following relationships hold:

o+ 0 = tan—1 —=
X,
i
-1 71
o = tan ;* - el
1
xi = VxT + vy, cos a
2 2
! =
yi /kl + y; sin a

Equation (3.19) is solved for the transformed element in terms of

(3.32)

(3.33)

(3.34)

(3.35)

1

i’

xi, Xy and yi, y5,>y£ where the subscripts i, j, and k label the -

three vertices. Such a transformation imposes the restriction on data

that x and y coordinates must be greater than zero.
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CHAPTER FOUR: LIMITING ASSUMPTIONS
AND HYDRAULIC CONDUCTIVITY

Limiting Assumptions

A nﬁmber of assumptions underlie the theory presented in the
previous chapter. In creating models oi" groundwater flow systems for
studies of engineering significance, it ié essential to understand these
limiting aséumptions. In the following paragraphs, eight assumptions
are stated, underlined, and briefly diséussed. ;

The models are fully‘satﬁrated'with'the‘top'flow boundary

corresponding to the water table. Freeze and Witherspoon (1966) point
out that in the rigorous approach thé entire saturated-unsaturated
system should be considered as continuous and the ground surface should
be used as the upper boundary of flow. Althougﬁ possible for soils
(Freeze, 1971a, 1971b), the approach.requires knowing the rather complex
relationship between permeaﬁility and soil moisture content in the
unsaturatgd zone. Such data are difficult to obfain and not commonly
available. . Further, I know of no work that has investigated flow in
unsaturated fréctured rock. In any case, the assumption is often quite
reasonable for regional studies because the thickness of the unsaturated
zone is small compared to the total thickness of a groundwater basin and
'thérefore the effects of the unsaturated flow are probably small.

The position of the water table must be known and in most

cases is chosen as the ground surface. From an engineering point of
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view, choosing the ground surface as the water table is valid because it
represents the worst case. In fact, for many situations, this condition
may also be the most reasonable one to assume as stability problems

'

often occur after heavy rains or during snow-melt when saturation would

extend to the ground surface.

The models are steady-state. This means that boundary con-

ditions and therefore the potential distribution are assumed to be time-
independent. Freeze and Witherspoon (1966) rationalize the approxi-
mation of transient by steady-state conditions on the following basis:
1. For the regional scale of most investigations, the dif-
ferences of a few feet between high water and low water
"positions of the water table will have little effect on
flow patterns.
2. The relative configuration of the water table usually
o ‘remains the same throughout the cycle of fluctuations; .
S that is, high points remain the hlghest and low points
remain the lowest.
It may be that for some slope stability problems, transient effects of
water table fluctuations are important, but again, by considering the
steady, fully saturated condition, the worst case is covered.

The models are two-dimensional. This assumption is equivalent

to assuming a negligible gfadient in the third dimension. For the
homogeneous isotropic case this requirement leads to the result that
flow in the third dimension is alsc zero. However, for anisotropic
media, having the gradient zero in the third dimension does not neces-—
sarily mean that flow is zero in the third dimension. Flow in the third
dimension will vanish only 1if the plane of the model coincides with two
of the principal axes. This restriction is discussed in detail by Bear

(1972 p. 142). 1In complex-geologies 1t will not always be possible to
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fulfill this vestriction and some error will be introduced into the
models. I know of no sensitivity analysis which has established the
magnitude of the error. The best that can be done at present is to
minimize the error by taking the two-dimensional section perpendicular
to the contours‘of the water table surface.

The model boundaries are either a specified constant head

(Dirichlet condition) or comstant flux (Neuman condition). A special

case of the Neuman condition is when the flux equals zero, correspondiag
to an impermeable boundary. The top flow boundary is either the assumed
constant head water table or assumed flux boundary. It can be chosen to
reasonably apﬁroximéte field conditions. By constant head, it is not
meant that the head on the water table is everywhere the same Sut rather
the head at any point on the water table is kept constant with time.

The side and bottom model boundaries cannot be observed iﬁ the fieli.and
their choice requires some explanation.

The sides are usually chosen as vertical impermeable bounda-
ries corresponding to groundwater divides. This is an application of
image theory which is valid provided the groundwater divide is indeed
straight and vertical. This suggests a symmetry rarelyvmet by field
conditions, particularly in regions of éomplex geology. In fact, the
assumption holds only under mountains or vslleys exhibiting symmetric
topography and underlain by a homogeneous, isotropic, porous media. A
number of examples of irregular and perhaps more realistic groundwater
divides can be drawn for the models described in the next chapter

(Figures 5-3 to 5-11).
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The difficulty can be overcome in two ways. Firstly a person
experienced in modelling real cases may, with a knowledge of geologic
conditibns and resulting hydraulic properties, be able to estimate a
reasonable position for a groundvwater divide. The resulting irregular
boundary can be easily handled by the finite element program. However,
in some cases such a guess could be inaccurate. A second way, used in
this project, is to model a large enough region so that incorrect boundary
Jéffects wiil not be felt in the local area of interest.

The choice of a horizontal impermeable boundary at depth is
discussed by Freeze and Witherspoon (1967). At some depth, permeabili-
ties will be lower than in the near surface units and at thié point
equipotentials become vertical. The lower boundary of the higher per-
meability unit acts like an impermeable boundary and the addition or
deletica of the lower, less permeable unit has a negligible effect ou
the potential pattern. In designing a model for a given basin, they
suggest that

preliminary studies should probably begin with a greater basin
depth than would seem necessary ... if one finds vertical equi-
potentials as suggested above, the basin depth can be limited
accordingly.

Many investigators (for example, Davis, 1969) have noted the
appafent deqrease in permeability of rock with depth. This observation
certainly substantiates the above reasoning. However, assuming a
decrease in permeability or.hydraulic conductivity with depth may not
alwvays be a reasonable assumption. Snow (1968) and Brace and Martin

(1968), amongst others, discuss the dependence of permeability on effec-.

tive stress, especially in rock. Because effective stress does not
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always decrease with depth, there may be some, perhaps many geologic
situations where permeability increases rather than decreases with
depth.

Such a situation, however, requires a deforming media. The

models used in this study are based on the assumption that the con-

tinuous porous media is rigid. Of all the assumptions, this may be the

most difficult to defend. The models described in the next chapter
iillustrate a number of cases that could lead to local developments of
high pore pressures and subsequent siope failures. 1In fact, what may
actually happen is that increases in pore pressure may be limited to the
point at which the accompanying decrease in effective stress is enough
to cause a small local failure. An instantaneous increase in permea-
bility results, pressures are relieved and effective stress is increased,
which in-turn causes an increase in stability. Snow (1968) discusses
the elasticity of fractured media in response to fluid pressure changes
and gives evidence for "fracture bfeathing". This possibility does not
invalidate the results of modelling rigid media, but it may be cause for
modification of some of the results. The topic of flow in deformable
media is presently an active area of research (for example, see Gale,
'1975). With greater urderstanding it may be possible to modify regional
groundwater models accordingly. For the present, one can rationalize
the rigid media assumption, particularly for engineering studies, by
stating that the worst situation is being modelled and in any case the
problem areas are being identified.

One of the most fundamental assumptions is that groundwater

flow through porous media can be described by Darcy's Law. Bear (1972,
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p. 127) distinguishes three types of fluid flow: linear laminar flow,
nonlinear laminar flow, and nonlinear turbulent .flow. Darcy's Law holds
only for low velocities and head gradients when flow of the first type
exists. For groundwater flow systems associated with most geologic
situations, this is a reasonable assumption. For nonlinear laminar and
turbulent flow, a number of power-law relationships have been proposed.
These are also discussed by Bear (1972, p. 182).

Une final and important assumption remains to be discussed:

equivalent, continuous porous media. It is clear that examples exist

for which an equivalent porous media cannot be assumed and in modelling
groundwater flow systems for slope stability analyses these must be
recognized. Certainly models of large regions which include highly
fracturad or otherwise porous geologic units can be reasonably modelled
as a continuous porous media; while a small slope of sound rock cut by a
few fractures cannot. Louis is quoted by Londe (1971, p. 3) as sug-
gesting that for a given cross—section of rock, an equivalent porous -
media can be assumed only if the number of fissures cut by the cross-
section is of the crder 10,000. Although principles of flow through
porous media are well establiéhed, the principles governing flow through
a fractured media that cannot be approximated by an equivalent porous
media are not. The problem.is discussed by many investigators including
Castillo (1972), Gale (1975), Londe (1971), Louis (1969), Louis and
Pernot (1972), Sharp and Maini (1972), Snow (1968, 1969, 1972), Wittke
(1971), Wittke and Louis (1966) and Wittke et al (1972). It is not

possible at the present time to make generalizations about the validity
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of this assumption. Rather, each model must be judged independently on

the basis of the geologic conditions encountered.
Hydraulic Conductivity

Under the set of assumptions described above, the only mate-
rial property that requires specification is the hydraulic conductivity.
The hydraulic conductivity "K' is the coefficient of proportionality
which appears in Darcy's Law. It reflecté both properties of the fluid
and the solid matrix and is not to be confused with the intrinsic per-
meability, "k'", which is a property of the matrix only. The two are
relatéd by

Y |
=k L. .1
K=k " (4.1)

&here Y is the specific weight of the fluid and v is the viscosity.
Confusion has arisen in the past because the term "coefficient of per-
meability'" has been applied to the hydraulic conductivity.

Figure 4-1 gives approximate ranges of hydraulic conductivity
for different rock types and unconsolidated materials. This figure was
used to obtain a first estimate of relative conductivities between
different geologic units. However, in some cases, hydraulic conducti-
vities were assigned on a basis other than lithology. Davis (1969) has
pointed out that in many cases wéathering history and fracturing are
more significant to hydraulic characteristics than lithologies.

Interestingly, it is not the absolute values of hydraulic

conductivity that control the form of the potential nets described in
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the next chapter, but rather the relative conductivities between units.

For practical application, it may be more accurate go estimate order-of-
magnitude differences in hydraulic conductivity rather than exact values
and be able to produce a reasonable model of the flow system even thouéh

exact hydraulic conductivities are not known.



60.

CHAPTER FIVE: MODEL RESULTS AND DISCUSSION

Introduction.

To model the complex geclogies of interest, fairly large
models were required. However, because of the time required in setting
up element grids and tabulating element and nodal data, the number of
elements were limited to 500 and the number of nodes to‘275. This
resulted in a storage requirement of 162 k. Execution times were between
6 and 13 seconds, depending on the number of iterations required to
achieve the desired tolerance of .001 in calculating the nodal poteﬁ«
tials. All models were run on the IBM 370/168 at the University of
British Columbia.

Gillham and Farvolden (1974) reported solution instabiiity in
their finite element flow program using single precision vériables for
conductiQity contrasts of-over 500. This required their use of double
precision variables. They also found that as the number of nodes in a
cross—-section was increased, the solution -became unstable at lower con-
ductivity ratios. Using the matrix solution SLIMP, programmed by the
UBC Computing Centre, I encbuntered no such difficulties. Single preci-
sion variables were used with variations in conductivity of up to six
orders of magnitude. ¥For smaller computers the storage requirement of
162 k may at present cause difficulties but storage capabilities are

rapidly increasing, rendering this a temporary problem, if one at all.
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Six different topographic arrangeéments were modelled, each Qith
a number of different geologies exhibiting differeht hydraulic conductiv-
ity contrasts. In all, over 75 models were run. VFigure 5-1 summarizes
the models and the various principles to be illustrated. Some of these
hydrogeologic settings were suggested to me by the discussion of Deere

'and Patton (1967).

To.show the effect of different flow systems on slope stability,
use is.made of piezometric lines which iadicate hydraulic head at the
base of an érbitrary plane,‘perhaps a slide surfacé. Water would rise to
the piezometric line, in an cpen standpipe connected only to the slide
surface.

The hydraulic head "¢" consists of two parts:
o=z +Y ‘ (5.1)

where z is the elevation head and ¥ is the pressure head. Figure 5-2
illustrates the different parts of the hydraulic head.
-The pore pressure "u" found in Terzaghi's effective stress law,

(2.4), is related to the pressure head by
u=yy ' ‘ (5.2)

where Y is thé specific weight of water. Also shown on Figure 5-2 is a
plot of pressure head at the base of the slide plane. In most slope
stability analyses the slide is broken into vertical slices and the

’ bfeséure head is used to calculate the pore pressure acting on each

- slice. In practice, it is not necessary to plot a separate pressure head
-diagram, as a measurement of the height of the piezometric line above the

slide plane can be taken directly from the numerically simulated hydraulic
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The effects of anisotropy. Figure 5-3

Thrusts and interbedded sedimentry
rocks. Figure 5-5

Faults, contacts, dykes and weather-

/

P
Layered colluvium and weathering
profiles. Figure 5-8

Flat lying weak rocks, fractures dues
to stress relief, and the effects of
a regional aquifer. Figure 5-9

ing profiles. Figure 5-6

Pleistocene Terraces. TFigure 5-10

Deformed metamorphic rocks, and the
effect of a reservoir on a deep rock
slide. Figure 5-11

Figure 5-1. Summary of Models
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Pressure head distribution
'wm___d/////—- on slide plane

h

v+ z

where h hydraulic head

<
It

pressure head

elevation head

piezometric
line

rslide
plane

\

“12

equipotentials or lines of

equal hydraulic head

Figure 5-2. Hydraulic head, pressure head
and elevation head.

\\\\\v—arbitrary datum
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head net. Slope stability formulae can be adapted to process this data
directly.

The remaining figures discussed in this chapter are found in
»APPENDIX II. For reader conﬁenience they should be unfolded and kept
handy while rééding. The various figures can be considered dimensionless
and scale is presented as a multiple of an arbitrary constant. Such
models can equally well represent flow patterns for systems covering only
a few acres or for those extending cver many hundreds of square miles

Freeze and Witherspoon, 1967).
The Effects of Anisotropy

Hydraulic charécteristics of both soil and rock are mcre
commonly anisotropic than isotropic. Maasland (1957) gives an extensive
discussion of anisotropy. He points out that.anisotropy in soils can ba
caused by stratification. An apparent directional hydraulic conductivity
is created in a stratified medium which is identical to that of an
anisotropic medium. The stratification may be a result of the shape of
mineral grains or alternating layers of different texture. In general,
horizontal conductivity is greater than vertical conductivity. He also
notes that in many sedimentary rocks there may be a dissemination of very-
thin shale or micaceous lamination through the porous bed. In common
coring techniques these laminations would cause fractures between piecéé
of core. Testing of the core pieces would miss the thin layers and an

erroneous measurement of anisotropy would be obtained. He cites laboratory
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“and field evidence of anisotrqpy in soils with horizontal to vertical
conductivity ratios ranging from 1 to 42.

Anisotropy resulting from fracturés in rock is discussed by
Snow (1968). He notes that "anisotropy is the rule; isotropy in frac-
tured rocks is a special circumstance of pressure and fracture geometry."

Figure 5-3 illustrates the effects of anisotropy on the ground-
water regime. As will be seen in the next section, the asymmetric
:.topographic profile could represent a variety of cases of dipping-geo-
logic units which have been eroded to form flatirons.

The homogeneous, isotropic case is shown in Figure 5-3a, while
Figures 5—3b through 5-3e illustrate an anisotropy of one order of mag-
nitude skewed at various angles from the global coordinates. To simulate
a decrease of conductiviﬁy with depth, twc isotropic units underlie the
anisotropic region. Note that the equipotentials tend to follow the
direction of maximum hydraulic conductivity.

To consider the effect of the different orientations of anisc-
tropy on slope stability, an arbitrary failure surface was drawn beneath
the right—hand valley wall. For each figure, the piezometric line
representing the hydraulic head at the base of the slide was drawn.
‘These lines are plotted together on Figure 5-4. It can be seen that the
highest hydraulic and pressure heads occur when the maximum conductivity
is parallel to the dip of the slope, while the lowest occur when the
anisotropy is flatlying.

If the difference in elevation between valley floor and the

higher, right-hand peak is 1,000 feeﬁ, the maximum difference in pressure
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head of the two extreme cases (5-3b and 5-3d) is approximately 100 feet.
This represents a pore pressure difference of over 6,000 pounds per foot
length of slide surface, assuming a one-foot—thick section!

The example vividly illustrates that different orientations of
anisotropy can cause very different pore pressure distributions in a
slope. It shows, as will the other examples to be discussed, the impor-
tanée of understanding the geology and hydraulic characteristics of a
large area around a slide, not just the slide itself. Interestingly, a
dip slope, as well as causing the most adverse groundwater conditions,

is also the weakest from a. strength of reck perspective.
Thrusts and Interbedded Sedimentary Rocks

A common geologic situation occurs when thick sedimentary units
are folded or thrust up from their original horizontal pcsition. With
Fime, the less resistant units are eroded to form valleys, while the more
resistant beds form ridges or flatirons. Figure 5-5 (modified from
Deere and Patton, 1967, Figure 5)'shows six different models of inter-
bedded units with a variety of conductivity contrasts. As discussed in
the previous example (Figure 5-3), the dip slope is underlain by the most
adverse head distribution. To compare the effects of different conduc-
tivitf contrasts, piezometric lines have been plotted indicating the
hydraulic head at the base of Unit A beneath the dip slope on the right-
) hénd‘side of the valley.

Figure 5-5a shows what could be interbedded sandstones and

~shales with the more resistant sandstone occupying the ridges. The
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sandstone has a conductivity two orders of magnitude greafer than the
shale. It is possible that a situation could exist where the more
resistant capping‘unit is also the less conductive unit. TFor example,
sugh a situation is believed to egist on Saltspring Island in the Strait
of Georgia whefe the shale occuﬁying the valleys has developed a secon-
dary fracture permeabiiity, méking it more conductive than the sandstone.
The groundwatér regime for such an example is shown in Figure 5-5b. For
comparison, the piezometric line from 5-5a is plotfed on 5-5b. In both
examples, high hydraulic heads existvbénéath the .dip slope, although in
5-5b the piezometric léVel is somewhat higher because of the thicker
confining unit.

With a greater conductivity contrast the results are more
startling. This is seen dﬁ‘Figure 5-5¢ where Unit A has been assigned a
conductivity of 10—6, four orders of magnitude lewer than the units on
.either side. The resﬁlting rise in the piezometric line is very great.

Uuit A may represent a distinct lithology with low conductivity
or it could represent a thrust surface. The thrusting, through produc-
tion of a fault gorge could haQé éaused the lower conductivity; or a unit
of 1ower.conductivity could have>caused thebhigh'pore pressures which in
turn led to the thrﬁst fauiting. . This latter possibility was proposed by
Hubbert and Ruby (1959). 1In real exampies, both mechanisms might be at
work and it may ﬁot be possible to isolate cause and effect. Figure 5-5c¢
does show, however, the high fluid potentials that could develop beneath
a thrust surface. It appears that the stability of enormous thrust

biocks is based on the same principles as the stability of much smaller

slopes. .
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No method has yet been developed for successfully measuring
anisotropic conductivities in all geologic situations, although Louis and
Pernot (1972) describe a detailed field investigation they used to esta-
blish anisotropic hydraulic éharacteristics in metamorphic rocks at a
potential daméite. However, such detailed work is expensive énd not
always possible. For that reason it is often necessary to match model
results with a rather scanty amount of field information. If a fit is
not obtained, the model is adjusted until a fit is found. Unfortunately,
in complex geologies, more.than one combination of anisotropic and hetero-
geneous hydraﬁlic conductivities‘éan result in the same potential net.
This problem is illustrated by Figure 5-5d, where Unit A has been assigned
an aniéotropic conductivity with the major axis (x') 10;3 and the minor
axis (y’), 10 6. Even with‘the low conductivity across the unit, the
result is a similar but slightly lower piezometric line than in 5-5a,
Qhere Unit A has an isotropic conductivity of 107%. With minor adjust~
ments to the anisotropic conductivities the two could be made the same.
This results from the fact that any homogeneous anisotropic medium can be
transformed into a fictitious isotropic medium (Maasland;l957, p. 238).

A general example of the transformation of an anisotropic two-layer
system is described by Stevens (1936). The reader is referred to these
papers for details. The lesson to be learned is that great care must be
taken in adjusting models on the basis of scanty field data.

Figures 5-5e and 5-5f show an anisotropic conductivity in
Unit A with a contrast of two orders of magnitude. In Figure 5-5f,

however, ponded water has been introduced in the valley. Both piezometric
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lines are plotted on 5~5f. The ponded water causes a significant rise
in the piezometric line. It is particularly worth noting that the
effect of the ponded water is felt well above the level of the water on

the valley sides.
Faults, Contacts, Dykes and Weathering Profiles

Where there is extensive subsidiary fractu;ing, faults may
take the form of high permeability conduits. Conversely, movement along
-a fault may cause a gouge zone of very 1ow conductivity. <{ontacts can
also cause a ﬁide variety of effects on the potential distribution depending
on the different lithologies in contact, their respective structures,
and the nature of the coﬁtact itself. Similarly a dyke, zlthough
initially much less permeable than the surrounding country rock, may be
much more susceptible to weathering and with time become more permeable
than the surrounding rock. Deformation of an area intruded by less
ductile dyke rocks can cause the dykes to be more permeable through a
higher intensity of fracturing. Clearly, careful field investigation is

required to establish the significance of any one of these features.

Figure 5-6 illustrates some of the diverse effects described
-above. For comparison, a plane has been drawn on the section beneath
the left-hand valley wall and the piezometric lines representing the
hydraulic head on this plane have been drawn for each of 5-6a through 5~

6f. All the piezometric lines are drawn together on Figure 5-7.
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The homogeneous isotropic case is shown in Figure 5-6a. In
Figure 5-6b a less conductive unit is seen overlying another. The
contact is simple. Thé difference is not great but the piezometric line
of 5-6b is higher than 5-6a. ‘Presumably if the conductivity contrast
was greater or‘the orientation of the contact different, a more dramatic
difference would be apparent.

In Figure 5-6c a fault zone is shown with a conductivity
significahtly higﬁer than the surrodnding rock units. Such a fault acts
as a drain and no problems related tb.slope stability are apparent. 1In
Figures 5-6d and 5-6e the fault zone has been assignéd a lower con-~
ducvitity than the surroﬁnding rock. The two differ only in that
opposite conductivities have been assigned the two major rock'units; In
both Figures 5--6d and 5-6e the fault zone causes a higher gradient
‘beneath the toe 6f the slope in the underlying rock unit. A similar
situation could result from the intrusion of a less permeable dyke along
the contact.

Figure 5-6f shows a situafion which combines some of the
features of the previous four figures. As well, a weathering profile
has. been added and the 5verlying unif hééwbeen éssigned an arisotropic
conductivity. The figure could represent dipping sedimentary rocks
thrust against or lying unconformably on a massive intrusive rock of
much lower conductivity.. A deep weathering profile has developed
extending much further down the fault zone or contact between the two
units., The situation is reasonable for many non-glaciated areas of the

world.
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An extensive review of weathering profiles and their effect on
flow systems and slope stability is given by Deere and Patton (1971).
Table 5-1 gives'their description of the parts of a weathering profile
for igneous and metamorphic récks. In many sedimentary rocks the
‘weathering profile is similar but in carbonates the saprolite (I-C) may
be absent and the partly weathered rock (II-B) may not be possible to
identify. The relative permeabilities and strengths are also listed in
Table 5-1. Note that the low-strength rgsidual soils are underlain by a
zone of much higher permeability.‘ Inevitably this confining situation
will lead to stability problems. The relative permeabilities suggested
by Deere and Patton were used as a basis for assigning conductivity
values to the various zones shown in Figure 5-6f. The toe of both
slopeé in the vailey shows hydraulic heads defrimental to slope stabi-
lity. ‘This can be seen in Figure 5-7 by the high piezometric level of

5-6f relative to the other cases.
Layered Colluvium and Buried Weathering Profiles

The recurrence of landslides in areas of old slide debris or
colluvium is a fairly common problem. In tropical ‘areas the problem is
intensified by the development of weathering profiles both on original
ground surface and in subsequent layers of colluvium. The problem of
slope stability in léyered colluvium is discussed in detail by Deere and
Patton (1971) who point out that desiccation or consolidation of the
colluvium causes complex layering and ﬁhat buried weathering profiles

can cause examples of the‘classic confined artesian aquifer situation.



Relative Relative
Zone Description Permeability| Strength
I RESTDUAL Topsoil, roots, organic| medium to low to
SOIL IA material zone of leach-| high medium
ing and aluviation.
May be porous. '
IB Characteristically clay| low commonly low,
enriched with accumula- high if
tions of Fe, Al, Si. cemented
May be cemented. No
relict structures
present.
IC Saprolite. Relict rock| medium low to medium;
structures retained. relict struc-
Silty to sandy material tures very
with less than 10% core significant
stones., Often o
micaceous.
II | WEATHERED Transition from sapro- | high medium to low

ROCK IIA

I1B

UNWEATHERED

IIT
- { ROCK III

lite to partly weath- |
ered rock. Highly
variable, soil~1like

to rock-like. 10% to

"957% core stones with

fines commonly fine

to coarse sand.
Spheroidal weathering
common. '

Partly weathered rock.
Soft to hard rock.
Joints stained to
altered. Some altera-
tion of feldspars and
micas.

No iron stains are
apparent along joints.
No weathering of feld-
spars and micas.

medium to
high

low to
medium

where weak
structures and
relict struc—
tures are
present

nedium to
to high#*

very high#*

* Considering only intact rock masses with no adversely oriented
geologic structures.

Table 5-1.

after Deere and Patton (1971, p. 92)

Weathering Profile for Igﬁeous and Metamorphic Rocks
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Figure 5-8 is an attempt to illustrate the groundwater flow
system in such an environment. The basis of the models is Figure 8 of
Deere and Patton (1971, p. 108). Figure 5-8a is the homogeneous iso-
tropic case. A single layer‘df colluvium over a dipping anisotropic
rock unit is shown-in Figure 5-8b. The colluvium covers a simplified
weathering profile. In the weathering profile, conductivities have been
adjusted where appropriate, but the anisotropy has been maintained. In
Figure 5;8c the single layer of colluviim has been sélit'by Unit A,
which represents a partial weathering préfile developed on a lower layer
of colluvium. Its effect is a zone of 1ower conductivity. Unit A con-
fines the lower colluvium layer and high pore pressures have developed.
For éomparison, the piezometric line representing the hydraulic head at
the base of Unit A has béen plotted for each model. Alsc plotted is a
dashed line representing the weight of overburden above the base of
Unit A, A specific weight of 130 pounds per cubic foot has.been assumed
and the line plotted in terms of an equivalént height of water. If
overburden weight becomes less than pore pressures the dashed line will
dip below the piezometric line. An example of this is shown in Figure 5-
8c and is labelled an area of instability. In real cases, failure would
probably occur before such a large discrepancy between the two lines
developed. -However, the effect of the buried weathering profile has

been clearly demonstrated.
<
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Flatlying Weak Rocks, Fractures Due to Stress Relief
and the Effects of a Regional Aquifer

Matheson and Thomson (1973) have investigated the occurrence
in central Alberta of valley rebound due to stress relief. The rebound
was accompanied by interbed slip that would give rise to gouge zones in
valley walls. Ferguson (1967, 1974) describes similaf rebound phenomena
in the Allegheny Plateau region where he found compression faults in the
valley bottoms and tension fractures in the valley walls. Patton and
Hendron (1974%) discuss the above phenomena and further poiqt out the
: effect of high fluid pressures on valleys in groundwater discharge
areas. Figure 5-9 shows three models which illustrate the groundwa;er
regime for an area which exhibits some of these features. The basis for
the modelé is Figure 5 of Patton and Hendron (1974, p. 10).

The models are of a valley cut into flatlying sandstoneé and
shales. The position of the water table below the ground surface has
been assumed. For comparison between models, the pressure head distri-
bution on a wedge in the valley wall is shown.

The isot;opic homogeneous case is shown in Figure S—Qa. In 5-
§b the sandstone and shale units have been introduced with a conduc-
tivity contrast of two orderé of magnitude. Rebound beneath the valley
due to stress relief is indicated by a slight upwarping of the units.
Lower conductivity zones, parallel to bedding and somewhat exaggerated
from the mylonitic zones'described by Patton and Hendron (1974) or the
gouge zones of Matheson and Thomson (1973) are seen in the valley walls.

Beneath the valley floor are faults due to heaving. Clearly the flow
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‘regime is detrimental to the stability of the valley walls, pérticularly
in the circled areas above the hbrizontal gouge zones which act t;f;;ain
the groundwater into the valley.

The groundwater regime is even more detrimental to stability
in Figure 5-9c¢ where an increased head has been assigned to the left
boundary of the thinner sandstonérunit, giving it the role of a regional
aquifer. Beneath the valley, the increase of hydraulic head with depth

" is much greater than in the two previous figures. Because of their
orientation perpendicular to the équipoténtials, the vertical faults in
the base of the valley have little effe;t on the flow system. However,
the effect of the horizontal gouge zonés is pronounced. Comparison of
the pressuré head distribution on thejwedges from the tﬁf;e models
clearly illustrates the influence on.;lope stability that the various
groundvater regimes would have. Also, note the non linear distribution
of pressure head on the wedge, different from the commonly assumed

1inear distributions.. ‘ P

Pleistocene Terraces

In many parts of centrai British Columbia distinct terraces
are found on the sides of present-day river valleys. Theyhafe usually
a result of glaciofluvial, glaciolacustrine, or alluvial processes
.and EOnsiét of a varying amount of clay, silt; sand and gravel, depend-

ing on their origin. Good examples are found in the Fraser Valley,
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Thomson Valley and throughout the Okanagan. If water is available for
irrigation, they provide ideal farming sites. Roads and railways take
advantage of the terraces when possible, but in many places it is
necessary for them to traverse a slope beneath a terrace. Stability
problems in the uncbnsolidated terrace sediments are fairly common.
Dee:e and Patton (1967) discuss the stability of varved clay tefraces.

. The-models presented in Figure 5-10 approximate an area
adjacent to Trout Creek in Summerland, Scuthern Okanagan, B.C., where a
slide was initiated about 60 years ago and is still moving. This "per-
petual landslide" has been studied in detail by Riglin (1976). For
Figure 5-10, pre-slide topography was eéfimated. Although ;he details of
the géology are from the Trout Creek area, the intent is to illustrate a
geologic environment and associafed groundwater flow system that is simi-
lar to many places. |

The isotropic, homogeneous case is shown in Figure 5-10a.
Simplified versions of the geology are shown in Figures 5-10b aand 5-10c.
Volcanic rocks (Unit A) overlie less conductive granodiorite (Unit B).
The terrace sediments consist of a lowermost group of Tertiary sediments
(Unit C), a flatlying layer of less conductive fill or silt (Unit D),
and an upper zone of sands and gravels (Unit E). In Figure 5-10c¢ the
volcanics havé been assigned an anisotropic conductivity.

In Figure 5-10d, Units C and D have also been given aniso-
tropic conductivities, the water table in the'sands and gravels has been

‘ioﬁeréd to a more realistic level, and a less conductive unit has been
added representing the possible effects of a buried weathering profile

on the top of the granodiorite.
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This same case is shown in Figure 5-10e except that irrigation
of a section of the terrace has been simulated by raising the water
table back to the ground surface. In Figure 5-10f the unit repreéenting
the weathering profile has beeﬁ assigned a conductivity higher than the
surrounding rocks, perhaps representing a grus developed on the grano-
diorite. In the same figure, part of Unit C, thé Tertiary sediments
have also been given a higher conductivity.
| To compare the effects of the different flow systems, an
arbitrary, initial slide surface was drawn, piezometric lines esta-
blished, and stability analyses undertaken for the models shown in
Figures 5-10a, 5-10c, 5-10d and 5-10f. No attempt was made to find the
most critical slide surface although the failure surface used is similar
in form to the slide surface that has developed at the Trout Creek
locality. FigureSIS—lob and 5-10e are exactly the same, in the area of
the slide, as 5-10c aﬁd 5-10f ‘respectively, rendering analyses ﬁnnecessary.

The technique of analysis used is a simplified limit equi-
librium method described by Patton and Hendron (1974). The slide is"
broken into slices and for each slice shearing forces parallel to the
base and resisting forces parallel to the base are calculated. For the
entire slide, resisting forces are summed and compared to shearing
forces to calculate a factor of safety.‘ Interslice forces are con-
sidered to sum to zero and moments are not considered. The method is
appropriate for a first estimate of the stability. The absolute values
of the factors of safety may not be exact bht-the relative values are

useful for comparison.
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In calculating factors of safety, it is first necessary to
decide on a base model, assign it a factor of safety of one and back-
calculate for the angle of internal friction, phi. This phi value is
then used in the remaining factér of safety calculations. Another way
of comparison is to calculate in each case the phi required for a factor
of safety of one. These phi values can then be compared to each other,
.to laboratory data, or to values reported in the literature. In this
.Qay, both the validity of the model can be checked and the significance
of the different flow systems can be judged.

Results of the calculations are given in Table 5-2. TFor the
lower water table shown in Figures 5-10e and 5-10f, a phi value of only
10.9 - 11.3° is required, while the saturated cases of Figures 5-10a and
5-10c require phi values of 15.5 - 17.3° for stability. ‘Lab testing by
- Riglin {1976) of the remoulded material from the slide plane of Trout
Creek resulted in a phi value of 18°. This value indicates that a more
critical slide surface probably exists for which a higher phi value is
required for stability than suggested by my calculations. Nevertheless,
18° is close and with changes in the flow system causing a 557 range in
tha factor of safety (.89 to 1l.44), it is reasonable to conclude that
changes in the pressure head due to flow system variations could cause
the terrace to fail.

Many similar situations probably exist in British Columbia and
other parts of the world. In all cases, the nature of the regional flow
system and the position of the terrace in the fegional system are criti-

cal to understanding and improving stability.



79.

Factor of Safety PHI for Factor
Case for PHI = 15.5° ~ of Safety = 1.0
Figure 5-10a 1.0 A ' 15.5°
Fiéure 5--10¢ .89 . 17.3°
Figure 5-10d 1.39 ‘ 11.3°
Figure 5-10f 144 . 10.9°

Table 5-2. 'Results of Stability Analvsis of a Pleistocene Terrace
(Figure 5-10). Slice geometry is shown in the figure.
A specific weight of 130 pounds per cubic foot was used.

Deformed Metamorphic Rocks and the Effect
of a Reservoir on a Deep Rock Slide

The hydraulic characteristics of metamorphic rocks have not,
fo my knowledge, been studied in great detail. Polyphase déformation
can cause complex fold patterns and different lithologies with very
different conductivities may be arranged in patterns only understandable
after detailed local and regional mapping. In some cases it may not be
possible to reasonably model all the complexities. On the other hand,

- metamorphic rocks often exhibit a surprisingly consistent foliation
defined by microfaults or fractures, preferred orientation of inequant
minerals, laminar mineral aggregates or a combination of ‘these micro-
structures (Hobbs et al, 1976). 1In many cases the foliation is inclined
to original bedding. Such a conéistent foliation may be much more

critical to the groundwater regime than lithologic differences and its
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presence may make possible reasonable modelling of a seémingly complex
region.

The models shown>in Figure 5-11 are intended to illustrate a
metamorphic ferrain with a conéistent foliation that has itself been
gently folded in a broad antiform. The groundwater regime ofvthe dif-
ferent models will be compared by considering the piezometric line
representing the pressure head at the base of a deep-seated poteﬁtial
rock slide on the dip slope of the valley. Each different geologic
situation is shown with and without a reservoir covering a small portion
of the toe. Each figurg illustrating the reservoir case also includes
the piezometfic line from the non-reservoir case. Figure 5-12 is a
.compilation of all the piezometric lines.

Figure 5-1la is the homogeneoﬁS-isotropic case with no reser-
voir, while Figure 5-11b is the matching reservoir case. In Figure 5-
1llc an anisotropy has been introduced to represent the fcliation. Davis
(1969) notes that reliable field measurement of anisotropy in dense
rocks is virtually lacking but goes on to describe a case where per-
meability was approximately twice as large in the direction of échisto—
city as it was perpendicular. Lacking better information, this anisotropy
was used. The introduction of even this slight anisotropy causes a
moticeable rise in the piezometric line. The effect of the reservoir,
Figure 5-11d, is more pronounced than in the previous pair.

In Figure 5~1le and 5-11f a more conductive zone has been
introduced near the surface, representing a higher fracture frequency
due to stress relief and weathering. It has a moderating influence on

the plezometric line. .
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A through-going, less permeable zone is seen in Figure 5-1lg.
Compared to the surrounding rock, conductivity across the foliation has
been reduced by ten, while along the foliation only by four. This zone
represents a through;going, more schistose layer, perhaps a thrust
surface, that could brovide the necessary slide plane for instability to
occur. The resulting rise in piezometric surface in both 5-~11g and 5-11h,
the matching reservoir case is dramatic.

To show the sensitivity of the ygroundwater flow system to
conductivity contrasts, another model was.run‘like 5-11g but with a
- reduction by ten of the conductivity in the schistose zone. It is shown
in Figure 5-~11i. The resulting piezomet;ic line is almost twice the
heighf of the previous pair, above the slide plane.

The thrust surface and fhe more conductive zone representing
fractures and weathering near the grownd surface are combined in
Figures 5-11j and 5-1l1k. Again, the more conductive surface zone has a
moderating influence on the piezometric line.

A zone three times higher in conductivity than the country
rock has been added beneath the thrust surface in Figures 5-11%2 and 5-11lm.
Such a zone may be due to subsidiary fracturing or perhaps a different
lithology. - By comparing fhe piezometric line of 5-112 to that of 5-11j
(non—reservoir.cases) and 5-1lm to that of 5-11k (reservoir cases), on
Figure 5-12 it can be seen that the confined, more conductive zone causes

a small but measurable rise in the piezometric .surface.
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To further illustrate the effect of the different groundwater
flow regimes on the potential rock slide, a stability analysis was
carried out for each case., The procedures outlined in the previous

section were used. The results are summarized in Table 5-3.

Factor of Safety PHI for Factor

Case ~ for PHI = 31.9° of Safety = 1.0
5-1la 1.0 31.9
5-11b .99 . ‘, | 32.1
5-11c : .97 32.8
5-11d .94 : 33.6
5-1le : 1.04 30.9
5-11f 1.02 31.4
| 5—11g | .79 38.1
5-11h .74 40.0
(5-11i) (.26) (67.3)
5-113 .88 35.3
5-11k .85 36.1
5-114 .78 38.7
5-11m .76 39.2

Table 5-3. Results of stability analysis of a potential
rock slide in metamorphic terrain. Slice
geometry is shown in Figure 5-12. A specific
weight of 170 pounds per cubic foot was used.
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With the exception of 5-111i, factors of safety vary from .74
to 1.04, a range of 33%. For the same models, conductivity contrasts
were less than two orders of magnitude. These contrasts were chosen to
be as realistic as possible based on data in the literature and my
limited experience. The model shown in Figure 5-11i has a conductivity
contrast of about three orders of magnitude. The results of the stabi-
lity analysis for this case are shown bracketed in Table 5-3 because the
situation is completely unrealistic. 1n order for that slope to stand,
the specific weight of the slide materiai would have to be well over
300 pdunds per cubic foot.

Conductivity contrasts of at least twelve orders of magnitude
exist in the real Qorld but it can be concluded from the above calcu-
lations that variations in geology causing conductivity contrasts of
only two orders of magnitude can have a critical effect on the ground-
>water flow regime of a slope. A fault gouge or geologic unit need not
be impermeable or eveﬁ of exceedingly less conductivity than the sur-
rounding material to adveréely affect the flow regime in such a way as
to cause instability.

Two important practical points are demonstrated in these
models. Firstly, they show that to get useful and accurate field
measurements of pressure head in a slopé investigation, it is critical
that the piezometers penetrate through any less conductive unit that
might be acting as a slide plane. The second point is that if a less per-
meaﬁle zone underlies a slide, for drainage to be an effective remedial

measure, drain holes must penetrate beneath this less permeable zone.
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In all reservoir cases illustrated in Figure 5—11, the effects
of the ponded water are felt in the valley slope well above the leyél of
the water surface. As.small as the reservoir is, it causés a reduction
in the factor of safety of from 1% to 5%. Although this reduction may
seen insigﬁificant, if a slopé is already close to failure, the change
in groundwater regime caused by the introduction of even a small reser-
voir may be all that is réquired to cause instability. However, accord-
.ing to Patton (Personal communication, 1976) the detrimental effec; on
stability shown by my modelling, is not general and cases can be found
for which the introduction of a reserovir causes an increaée in a
slope's stability.

Tﬁe phi's calculated for a f;;tor of safety ofgpne should be
considered tb establish the reasonablégéss of the models.n The strength
parameters compiled by Deere and Patton (1971, p. 142) include a number
of phi ;alueé for gneisses, schists, phyllite and granites, weathered to
varying degrees, that bracket ghe 30.9° -~ 40° range listed in Table 5-3.

From this comparison the models appear realistic.
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CHAPTER SIX: SUMMARY AND CONCLUSIONS
Sloﬁe Sﬁability Analyses

1. There are three distinct aspects in the analysis of the stabi-
lity of a slope: identifying all the stresses acting, understanding the
mechanics which relate the stresses, and determining the natural proper-

ties which govern the material behaviour when the stresses are acting.

2. The three categories of analysis, limit equilibrium, elastic-
finite element, and Cundall's discrete particle method each have their
own advantages and limitations. For any given situation, local condi-

tions and the purpose of the analysis will govern the choice of category.

3. Limit equilibrium techniques have reached the stage where all
the laws of static equilibrium can be satisfied. However, the resulting
equations are indeterminate without some simplifying assumption. Dif-

ferent limit equilibrium methods utilize different assumptions.

4. Terzaghi's empirical effective stress law is valid for satu-
rated soils but, in some cases of saturated rock, Skempton's modified

form may be more appropriate.
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5. To undertake a slope stability analysis in terms of

effective stress, pore pressures must be known.
In practice, these are approximated as a percentage of overburden pres-

sure, approximated with an assumed coefficient, obtained by field measure-

ment or obtained from mathematical models.

6. Difficulties remain in both accurate field measurement and
" mathemati-al modelling of flow systems in complex geological environ-
ments, The best understanding of the pore pressure distribution in a
- slope will be obtained if field measurement and modelling are used
together. Use of the pore pressure coefficient or the assumption of
pore pressures as a percentage of ovegpurden pressure aie'no 1onger

R

necessary methods of approximation.
Limiting Assumptions

The following assumptions underlie the theory used tc produce

the mathematical models developed in this project:

1. The models are fully saturated with the top flow boundary

corresponding to the water table.

2, The position of the water table must be known and in most

- cases is chosen as the ground surface.
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3. The models are steady-state.

4. The models are two~-dimensional.

5. The model boundaries are either a specified constant head

(Dirichlet condition) or coanstant flux (Neuman condition).
. 6. . The continuous porous media is rigid.
7. Darcy's Law accurately describes the groundwater flow.

8. The geologic case being modelled can be reasoﬁably approxi-

Vs
L

mated by an equivalent continuous porous media.
Model Results

1. The models developed in this study serve to rigorously verify
many of the possible implications of different flow systems on slope
stability, particularly those previously suggested by Deere and Patton

(1967, 1971) and Patton and Hendron (1974).

2. Anisotropic hydraulic characteristics are common in both soil
and rock. The models completed for this study suggest that for slope
'sgability the worst case is when the principal axis of hydraulic conduc-
tivity dips down the slope, while the most stable case is when the

principal axis is horizontal.
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3. Thick interbedded sedimentary units that have been folded or
thrust up, eroded, and now stand as ridges and valleys often have as-
sociated complex flow systems. As in the simple anisotropic case, the

flow system has a maximum adverse effect on the dip slope.

4. Faults; contacts, and dykes can cause a variety of effects on
the groundwater flow system. Careful field investiagtion is required to

establish the significance of any one of these features.

5. Weathering profiles can commonly vresult in a less conductive
zone confining another with the resulting flow system extremely detri-

mental to stabilityQ

6. Layers of colluvium or old 1éndslide debris, particularly if
buried weathering profiles are present, can cause complex groundwater
flow patterns. Less permeable units are often present and can act as’
confining layers causing zones of high pore pressures which can lead to

instability.

7. Stress relief fractures on valley walls, if accompanied by the
production of gouge can adversely influence the effect of the ground-

' ~water flow regime on stability,

8. The presence of a regional aquifer beneath a valley can cause
anomalously high pore pressure development which can have a detrimental

effect on the stability of valley walls.
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9. The pressure head distribution on rock wedges can be non-

linear and quite different from the commonly assumed linear distribution.

10. The stability of thg Pleistocene terraces found throughout
British Columbia is in part dependent on the regional groundwater flow
system in which the terraces are located. Fluctuations in the - ground-
waﬁer regime causing anomalous increases in the water table could cause

a terrace to fail.

11. Modelling of flow systems in highly deformed metamorphic
rocks may not be possible because of the complexities of the geology.
However, in many cases a through-going foliation exists which may control

the flow system and allow reasonable modelling.

12. A more permeable zone near the surface, due to a higher frac-
ture frequency or weathering, has a moderating influence on the ground-

water flow regime from a slope stability perspective.

13. The presence of a lithologic unit or thrust surface of lower
conductivity than the surrounding rocks can have a major effect on the
flow system. Conductivity contrasts of less than two orders of magni-

tude can cause pore pressure developments critical to stability.
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14. The introduction of a reservoir at the toe of the slope can
influence the groundwater regime well up the slope from the reservoir
surface. If a slope was aiready close to being unstable, even a low

reservoir could provide the change required to cause instability.

"15. Piezomzters should penetrate through any less conductive unit
that might be acting as a slide plane. For drainage to be an effective
remedial measure, drainholes must also penetrate beneath such a less

permeable zone.

16. All of the results of the modélling illustrate the basic theme
of this thesis: to understand the flow system, and the;efore pore pres-—
sures, that are fundamental tc the stability analysis of a slope, it is
necessary to understand the regional flow system in which the slope is
located. This understanding can only be cbtained with a thorocugh know-

ledge of the regional geology.
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APPENDIX 1: COMPUTER PROGRAM

Language: Fortran IV
'Pufgose: To solve, using the finite element method, the steady-

state equation of flow for two-dimensional, saturated,
heterogeneous, anisotropic porous media.
Listing: A complete listing of the program, sample output, and

sample data filé, is found at the end of this appendix.

Flow Chart: See Figure I-1.
Subroutines:
1. NOTRAN

Purpose: To calculate contributions to nodal equa-
| tions from elements not requiring a cooordi-

nate transformation.

Availability: Self-contained.

2. TRANS

Purpose: To calculate contributions to nodal equa-
tions from elements requiring a coordinate
transformation. After transformation,
appropriate contributions are calculated.

Availability: Self-contained.
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6.
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SLIMP
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Purpose: To solve and improve iteratively a system

of linear equations of the form

Availability:

GRAPH 1

[A] - {x} = {B}
General Iibrary, Computing Centre,

University of British Columbia.

furpose: To set up data appropriately and call SCATCN

- for plottingf

"Availability:

GRAPH 2

Self-contained.

Purpose: To set up a data file for MPLOT

Availability:

SCATCN

Self-contained.

Purpose: To produce a contour map from a set of

scattered data points.

Availability:

- MPLOT

General library, Computing Centre,

University of British Columbia.

Purpose: To produce an equipotential map from the

results of a finite element flow program.

Availability:

Department of Civil Engineering, Univer-

sity of British Columbia.
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Input:
Parameter Description
NODTOT Total number of nodes
N Total number of unknown potential values
LTOT Total number of elementsA
MCON Number of contours to be drawn
MPLOT If MPLOT = 0, no plot is generated
If MPLOT = 1, GRAPH 1 is called and a plot
ggnerated witﬂ SCATCN
1f MPLOT = 2, GRAPH 2 is . called and a plot
generated with MPLOT
IND | iUsed by SCATCN. Indicates type of plot
desired. 1If IND = 0, scattered data points
will be plotted if there are less than 25.
If IND = 1, no data points will be plotted,
and if IND = 2, all data points will be plotted.
NO Number of boundary nodes
NIB Number of the first boundary node
SIZE Size in inches of the final plot made by SCATCN

SCA - Scale factor used by MPLOT so y .. = 9



Parameter

LDAT (I, J)

XCo(I), YCO(I)

PERMX (NEL),
PERMY (NEL)

Q(NEL)

EL (NEL)

THETA (NEL)

CN(I)

103

Description

Element data. A 2-D array containing the
identity of the vertices of the triangular
elements. For the jth element,
LDAT (1, J) contains the nodal number of the
first corner
LDAT (2, J) contains the nodal number of the
‘ second corner
LDAT (3, J) contains the nodal number of the
third corner
One~dimensional arrays containing the x
(horizontal) and y (vertical) coordinate of
fﬁe I nodes.
One-dimensional arrays containing the x
(horizontal) and y (vertical) hydraulic con-
ductivities for each element.
One-dimensional array containing the flux into
each element per unit length of element boundary.
One-dimensional array containing the length of
element boundary through which Q(NEL) flows.
One-dimensional array containing the angle
which the principal axis of hydraulic conduc-
tivity for any given element is skewed from |
the global codrdinateé system.
One—dimensioﬁal array containing the values

of the MCON contours to be drawn.



Mo« IEN N RO BSRIVINES

99

- 29

-4

OO

COMMON LDAT{3,500),XCC(275),YCO(275),PHI{275),G(275),
1T(2754275)4X{275),B1275) , IPERM(550),RZ{275)+AR{500),L{275),

2P{275,275)+Q(500),EL(500):F(500), THETA(500),ALPHA(275) 4XCOT{275), .

3YCOT(275) ,RT{275) y PERMX(520),PERMY(500),BX{500)+BY{500):CN(50),
4DATA(39273)sTITLE(20).dCCP (1) ¢ I15JsKyNEL,NCDTOT sN,NP1,MCON,
5SI1ZEsINDyNCyN1B,SCA,LTOT

READ(5,99) TITLE

FORMAT(20A4) ' '

READ{S541) NODTOTyN,LTOT,MCON,MPLOT,INDyNO,N1B,SIZE,SCA
FORMAT(816,2F10.1) '
READ(552) {{LDAT(I4+J)+1=143),J=1,LT0OT)
FORMAT{1814)
READ{544){YCOLI1),XCO(I),I=1,NODTOT}
FORMAT(10F8.1)

READ(5,y8){ PERMXINEL)PERMY(NEL) 4NEL=1,LTOT)
FORMAT(B8F10.6)
READ(5,18) (QINEL) »,NEL=1,LTOT)
FORMAT(13Fé€ol)

QEAD(S:ZQ)(CL(VEL)yN”L 1,L7073
FORMAT(10F802)

READ(5,20) (THETA(NEL) »NEL=1,LTOT) -
FORMAT(16F5.1)

READ(5,80) (CN(.1),I=1,MCON)
FORMAT( 10F 8o 1)

#*%COMPLETION OF DATA READ INyWRITE QUT INPUT**%

WRITEZ(6,98) TITLE

FORMATI{1H1,20A4)

WRITE(6,19) WODTOTH.LTOT.N ’ .

FOAMAT(1HO,"NODE TOTAL IS*,15,5X, 'cLEMENT TOTAL IS,

LI5, "X PUNKNOWNS?,15)

WEITZ 6,71

FORMAT {1HO,3X, * ZLEMENT NOos 74X s *AREA? 11Xy *PERMXT , 5Xy "PERMY? 9 Xy
LITHETA? 8X P10, 9X P EL 510X "I 45X+t J" 45X 'K/ /)

#2527 TOP FLOW BOUMDARY TO THE GRDOUND SURFACE#®x%

Y01
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Z

© 4]

42
43
44
45
46
47
48
4
50
51
52
53
54
55
56
57
53
59
60
61
62
63
64
65

66

67
68
65
70
71
72
73
74
75
76
77
78

OO0 o0

10

OO0 W OO0 W0

(@]

NP1l=N+1

DO 6 J=NP1ZNODTOT
PHI(J)=YLO(N)
CONTINUE

*2INITIALIZE PARAMETERS**

DO 10 I=1,275
DO 10 Jd=1,275
P{I4J)=0.000
T{I,4)=0.000
CONTINUE

DO 5 J=1,275
X{J1=0.000 o
B(J)=0,00C
RZ{J1=0,000
CONTINUE

DO 3 J=1,550
IPERM{J)=0,000
CONTINUE

DO 9 I=1,500
F{I)=0.0
CONTINUE

*#CONVERT COORDINATE ANGLE TO RADIANS#=

DO 31 NEL=1,LTOT

THETA(NEL)=(THETA(NEL}/360.0)%2,0%3,14159

CONTINUE

#*kCALCULATE MATRIX COEFFICIENTS®=

DO 11 NEL=1,LTOT
I=LDAT{1,NEL)
J=LDAT(2,NEL)
K=LDAT(3,NEL)

ARINELI=({ (XCOUJIIXYCO(K)I={XCOIKIRYCU(I) ) -{{XCOLI)*YCO(K]))
1I=(XCOUK)I=YCO{IN))+{(XCOUI)*YCO(J))=(XCO(L)I*YCO(I)))I*0a.5

S0T
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b |
&

82
83
84
85
86
" 87
88
89
90
91
92
93
94
95
36
S7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

TF(AR(NEL)» LT 0.01i AR(NEL)—-AR(NEL)

WRITE(6551) NrLyAR(NcL),PcRMX(NEL3'PLRWY(NEL) THFTA(NEL)Q
IQINEL)»ELINEL),I,4J4K

51 FORMAT(1H 45X,1544X, F105115Xr2F10o61§X9F7a415X1F6o2,5X9F6.29
15X,216) o

BXINEL)}=PERMXINEL)}/ (4 0*%AR(NEL))
BY{NEL)=PERMY{NEL)/{4o0%AR(NEL))

#*%CALL APPROPRIATE SUBROUT INE®**

OO0OO

IF{THCTAINEL)wEQo0o0) GO TO 42
CALL TRANS
GG TO 11

42 CALL NOTRAN

1 CONTINUE

*%SET SUBROUTINE PARAMETERS AND CALL SLIMP*®=%

QOO0 RO

M=275
NDIMAT=M
ITMAX=14
EPS=5,E-3
NRHS=1

00 14 I=1,N

DO 14 J=NP1,NODTOT

P{I+J)=P(I,J)%PHI{J)

BIIN=BlI)-P{I,J)+F(1)
14 CONTINUE

DO 12 I=1,N
D0 12 J=NP1,NQDTOT
P{I,J)=0.000

12 CONTINUC
DO 29 I=NP1,NODTOT
00 33 J=1,N0ODTOT

90T
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119
-120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
- 136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

OO0 O w
O

OOOr

23
21

OO0

"p(14J4)=0.000
CONTINUE

CALL SLIMP(PrTvaX,RZ,IPERMvMyNDIMATyEPS;NRHSoITMAX)

#xWRITE OUT RESULTS®*

WRITE(6,22)

FORMAT(IHlybxg'NODE NOo‘,IOXy'XCODRD'99X,'YCOORD"15Xy'PHI'//)
DO 16 I=1.N

WRITE(6s15) IoXCOlI)yYCO(I)yX(I) :

FORMAT(1H sSXyI5,lOX,FlOol,SXyFlOelleX'FXOeZ)

CONT INUE

DO 17 1=NP1,NODTOT

WRITE(6,151 I’XCO(I)yYCO(I)'PHI(I)

CONTINUE

=%CALL PLOTTER IF REQUIRED®

IF{MPLOT+EQeC) Go TO 21

IF(MPLOToEGo2) GO 7O 23

CALL GRAPHI

G0 TO 21

CALL GRAPH2

CONTINUE

STOP

END

SUBROUTINE NOTRAN

C OMMON LDAT(B,SOO),XCD(Z?S),YCO(ZYS),PHI(275),G(275)1
1T(275,275),X(275)y8(275)yIPERM(55O)qRZ(275)1AR{SOO)9C(275)9

2P(275;275)1Q(5OO);EL(SOO§9F(500),THETA(500),ALPHA!275),XCOT(275)q

3YCOT(275),RT(275),PERMX(SOO)yPERMY(SOO)vBX(SOO)yBY(SOO)oCN(SO)o
40ATA(3,Z75)9TITLE(ZO)QJCCP(I)7I1J1KQNEL1NJDTOT’NyNPl:MCONy
SSIZE,IND,NO,NlB,SCA,LTDT

wxsnkCALCULATION OF MATRIX COSFFICIENTS FUR ZLEMENTS NOT
REQUIRING COORDINATE TRANSFDRMATIJN*****

P(IyI)=P(I,I)+{BX(NEL)*((YCD(J)—YCG(K))**2)+

LOT



157
158
159
160
161
162
163
164

165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
1380
i81
182
183
184
185
186
137
188
189
190
191
192
193
154
195

OO0

IBYINELI* ( (XCO(K)=-XCO(J))*%2)})

PL{IoJ)=P{I )+ {BXINELI*I{(YCO(J)=-YCOA(K) IF{YCO{KI=YCO(I)})
1+#BY(NEL)Z( {XCO(K}I-XCO(JI NI *(XCOL{I)-XCO(KiI)I)

PLI ZK)=P(I K)+(BXINEL)={(YCOLJ)-YCO(K) ¥R{YCOL{I)-YCO(J)I))
1+BY INEL)*{IXCO(K)I=XCO(JII)*(XCOLJI-XCT(I3))

PUJsI)=P(JyI)+{BXINEL)*({YCOIK)=YCOLI})={YCO{I)-YCO(K))I
T+BY(NEL)® ({XCOL I} -XCOUKII¥{XCOIKI=-X23{J)}))

PUJrJd)=P{JyJi+(BXINEL)®{(YCOIK)I-YCO(I))*%x2)+
IBY(NELI®{[XCOLI)I-XCOUK)}I=%2))

PLJyKI=P(J,KI+{BXINEL)=(IYCOUKI=YCO(I))&{YCO(I)~ YCO{Jd
1+ BYINEL)®((XCOUI)-XCO(K) ) *{XCO{J}~-XCa{I})})

PIKsI)=PU{KyT)+IBXINELIX{(YCTLI)-YCO(UII*(YLCO(J)- YCO(K)))
I+4BY(NEL)={{XCOUJI-XCO(I 1) *F{XCO{K}=XCT{J))))
P{KsJ)=P(K,J)+(BX{NELIH((YCOL{I)-YCO(J)i=(YCO(KI-YCO(I}))
L+#BY(INEL) X (XCO(J)=XCO(T) I E{XCO{I)-XCT(K)I))

PIKsK)=P K K)+{BX{NEL)®{(YCO(I)-YCO(J))%x%x2)+

IBY{INEL)Y*{ (XCO{JI=XCO(I))x*2))

FII)=F{I)+{0.5*Q(NEL)*EL{NEL))
FOJ)I=F(J)+ {0 5%QINEL)®=zL(NEL)) .
FIKI=F(KI+{05%QINELI*ELINEL))

RETURN

END

SUBRIUTINE TRANS

COMMON LDAT(3,500)+XC0O(275)+YCO(Z2753,PHI{275)+G(275),

1T(2754,275) 9 X(275) 4B(275) I PERM{550),R2(275),AR(500),C(275),
2P(275+275)4+Q(500j,EL{500}),F(500), THETA(S500) +ALPHA(275) +XCOT{275),
3YCOT(275)+RT (275} PERMX(5C0 ), PERMY{500),84{500)+8Y{500),CN(50),
4DATA(3,275) +TITLE{20) sJCCP (1) s T4y KyNELs NODTOT #N,NPL+MCON,
5SIZEL.IND,NOyN1IB,SCA,LTOT :

#%4%COORDINATE TRANSFOIMATION AND CALCULATION OF MATRIX
COZFFICIENTS FOF ELEMENTS HAVING ANISOTROPY SKEWED
FROM GLOBAL COORDINATES womkk*

ALPHA(I)=ATANIYCO(I)/XCO(I))-THETA(NEL)

801



196
197
198
199
1200
201
202
203
204
205
206
207
208
209
210
211
212
213
21 4%
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

ALPHA(J)=ATAN(YCO(J)/XCD(J))-THETA(NEL)'
ALPHA(K)=ATAN(YCO(K)/XCO(KJ)-THETA(NEL)

RT(IY=SQRT((XCO(I)**2)+(YCG(I)#*2§)
RT(J)=SQRTI{XCO(J)**2)+{YCD(J)#%2) )
RT(K)=SQRT((XCO(K)**2)+(YCO(K;*¢2);

XCOT(I)=COS(ALPHA(I))*RT(I)
XCOT(J)=COS(ALPHA(J))*RT(J)
XCOT(K)=COS(ALPHA(K)}*RT(K)

YCOT(I)=SIN(ALPHA(I))*RT(I)
YCOT(J)=SIN(ALPHA(J))*RT(J)
YCOT(K)=SIN(ALPHA(K))*RT(K)

P(IyI)=P(IyI)+(BX(NEL)*((YCOT(J)-YCDT(K))**Z)*
lBY(NEL)*({XCDT(K)-XCOT(J))**2))

P(19J3=P{IyJ3+(BX{NEL)*((YCOT(J)-YCOT{K))*(XCOT(K)-YCOT(I)))
1+8Y(NEL)*((XCDT(K)~XCOT(J))*(XCOT(I)-XCDT&K))))

P(I,K)=P(IyK)+(BX(NEL)*((YCOT(J)-YCOT(K))*(YCOT(I)-YCOT(J)))
l+BY(NEL)*((XCDT{K)—XCDT(J))*(XCDT(J)-XCDT(IJ)))

P(J:I)=P(J,I)+(BX(NEL)*((YCOT(K)-YCDT(I))*(YCDT(J)~YCOT(K)))

l+8Y(NEL)*f(XCOT(I)—XCOT(K)3*(XCDT(K)—XCDT(J))))
P(J’J)=P(J;J)+(8X(NEL)*i(YCOT(K)-YCOT(I))**2)+

lBY(NEL)*((XCOT(I)~XCDT(K))**2))
P(JyK)=P(J,K)+iBX(NEL)*{(YCDT(K)—YCDT(I))*(YCDT(I)—YCOT(J)))

1+8Y(NEL)*((XCOT(I)~XCDT(K))*(XCQT(J)-XCDT(I))))

P(K,I)=P(K,I)+(BX(NEL)¢({YCOT(I)~YCOT(J))*(YCOT(J)-YCOT(K)))
1+BY(NEL)*((XCOT(JE*XCGT(I))*(XCJT(K)-XCDTQJ))))

P(K,J)=P(K:J)+(BX(NEL)*((YCOT(I)—YCDT(J))*(YCDT(K)—YCOT(I)))
l+BY{NEL)*((XCOT(J)'XCOT(I))*(XCJT(I)-XCJT(K))))

P(K,K)=P(K,K3+(BX(NEL)*((YCOT(I)-YCGT(J))**2)+
18Y(NEL)*((XCOT(J)—XCQT(I))**2))

F(I)=F(I)+(0a5*Q(NEL)*EL£NEL))_
YI)=FlJ)+00, 520 INELY*SL (NEL))
FUKI=F(KI+(0a5%0(NEL)*EL (NEL) ]

601



235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272 -

273

C
C
C

70

OO

RETURN

END

SUBROUTINE GRAPH1

COMMON LDAT(BQSOO)yXCO(275)9YCD{275)oPHI(275)aG(275)9

1T{2754275) ¢ X1275) +8(275) y IPERM(550),R2Z{275)4AR{500),C(2751),
2P(275,275)sQ(500),FL(500),F{500), THETA{500) +ALPHA{275) ,XCOT{(275),
"3YCOT(275) sRT{275) s PERMX(500)yPERMY(5001.:83X(500),BY{500}+CN(50),
4DATA(3y275) s TITLE(20) sJCCPLL1) ¢+ 1 +4JsKeNELsNODTOT oNyNP1yMCON,
5SIZE, IND,NOyN1B,SCA,LTOT ‘

#*xx%pLOT OF EQUIPOTENTIAL S##ix

DD 70 I=1,N
DATA{1,1)=XCO(I)
DATA{2,1)=YCOLI)
DATA{3,1)=X(1)
CONT INUE

DO 71 I=NP1,NODTOT
DATA(1,13=XCO(T)
DATA(2,1)=YCO{1)
DATA{3,1)=PHI(I)
CONTINUE

CALL SCATCN(DATA,NODTOT,CNyMCON,SIZE,y IND)

CALL PLOTND

RETURN

END

SUBROUTINE GRAPH2

COMMON LDATI(3,500)4XCO(275)sYCO(275),PHI{L2T5)+G(275),
1T{2754275) s X{(2753+8L275) 3 IFERM(550)R2(275),AR{500),C(275),
2P(275,275),0Q0(500)4EL(500),F{500)» THETA(50U) +ALPHA(275) 4 XCOT(275),
3YCOT{275) yRT{275) 4 PERMX{300),PERMY {300)+BX{500),BY{5001),CN{(50),
4DATAL3,275) s TITLE(20)JCCPHLL) 91 +sdsKyNELINUDTOT»NoNPL/MCON,
5SIZE,IND,NC,N1BsSCA,LTOT

*x%xWRITE DATA IN TEMPOIRARY FILE IN FORMAT REQUIRED BY MPLOT***=x

NE1=1

OTT



274
275
276
277
278
279
280
231
282
283
284
285
286
287
288
283
230
291
292
2393
294
295
296
297
258
299
300
301
302
303
304
305
306
307
308
509
310
311
312

81

82

83

85
84

86

90

87
88

NE2=LTOT

NN=NODTOT
NS=1
NA=10
XM=1,0
YM=1,50
IFLOW=0
JeCr(l)=1

WRITE(8,81) TITLEZ

FORMAT(20A4%)

WRITE(8,82) LTOTyMCONINELyNE2,NNgNDsnNSsNAs SCAy XMy YMy IFLOW
FORMAT{81643F8:2414)

WR!TE{S?SE)(JCCP(I):I:lyNS)

WRITE(8,83)(CN(I),1I=1,MCON)}

FORMAT(6F12.0)

DO 84 NEL=1,LTOT

I=LDAT(1,NEL)

J=LDAT{2 ¢NEL)

K=LDAT{3NEL)

WRITE (8:s85) I1:J9KsXCOUI)yXCOLJ)yXCOIK)IYCO(I),YCO(J),YCIA(K)
FORMAT(31646F8.1) '

CONTINUE

DO 86 I=14N

GII)=X(1)

CONTINUE

- DO 90 I=nNP1,NODTOT

G(I)=PHI{I)

CONT INUE
WRITE(8,89){G{I),I=14N3DTOT)
FORMAT{6F1263)

DO 88 I=NiLByNODTCT
WRITZ(8,87) XCO(I),YCOL(I])
FORMAT({2F1262)

CONTINUE

RETURN
END

Tt
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SLOPE GROUNDWATER 6
253

215
15
223
81
103
15
54
214
41
4

19

33
48
64
82

g0

100
109
117
236
131

140

148
164
160
172
181
4
11
23
35
49
66
77
85
96
104

216
220
53
226
228
2
41
2
18
3
17
30
43
62
72
95
107
108
234
129
130
238
239
152
242
170
244
212
10
22
34
45
56
65
82
95

103

215
1
29
224
80
229
16
55
3
30
7
18
42
55
61
81
93
111
233
235

130

128
137
240
151
158
171
173
6
12
24
36
48
63
75
83
93
101

446

1 216
29 220
224 53
80 226
229 103
16 15
55 54
3 2
30 41
7 3
i8 19
42 33
55 48
51 64
81 82
393 90
1i1 107
232 109
235 117
130 129
132 237
137 238
240 148
164 241
158 242
171 170
179 244
6 4
12 11
24 23
36 35
48 49
63 66
75 77
83 85
93 G6
101 1Q4

11
217
221

54
227
230

29

62

16

42

5

21

35

57

65

83

91
232
118
119
119
138
239
152
159
2473
169
245

>

19

31

46

59
67
76
36
S4

102

217
221
54
227
230
29
62
16
42

21

35

57

65

83
101
232
118
119
130
138
239
152
159
243
169
245

19
31
46
59
67
76
86
G4
102

2
218
29
224
30
103
16
54

41

18

42

55

61

81
230
111
233
117
236
237
137
148
241
158
1790
179

12
24
25
43
63
75
83
a3

101

2

i
40
71
S0
101
41
61

43
23

44
56

75

84
231
108
234
120
123
238
148
150
242
174
243

178

20
32
44
57
64
73
8%

4
4

100

i
40
71
S0

214
41
61

43

23

44

56

75

84
231
108
109
120
128
238
148
152
242
174
243
178

20
32
44
57
64
73
34
91

100

58
218
221
224
227
215

29
54
i6
41

i8

42

55

6l

81
101
232
118
117
236
138
137
240
i59
158
244
245

i9
31
46
59
o1
76

86

94
102

196
15
222
225
228
40

71
i7

55~

17
30
43
62
72
80
100
233
1z22
122
237
140
149
151
160
160
169
246

21
33
47
58
68
4
87
92
li2

15
222
225
228

49
71
17

213
17
30
43
62
72
30

100

108

118

119

237

140

149

151

160

174

169

246

9
21
33
47
58
63
74
87
92

112

L 214

21,0 2400,0
218 219 219 220
40 53 53 222
71 226 226 71
90 91 91 228
2 2 1

41 53 53 4]
6L 72 72 71
16 18 18 16
214 . 3 3 213
9 11 11 17
23 31 31 30
44 45 45 43
56 63 63 62
75 73 13 712
84 95 95 80
231 107 107 231
111 110 110 108
234 117 117 118
235 129 129 235
128 132 132 128
138 139 139 138
137 140 149 148
240 241 241 151
159 162 162 159
243 170 170 174
244 181 181 171
178 247 212 213
8 10 10 9
20 22 22 21
32 34 34 33
44 45 45 47
57 56 56 58
64 65 65 68
73 82 82 T4
84 95 95 g7
91 103 103 92
100 111 111 112

15

223
81

103
15
54
81
41.

19
33
48
64
82
90
232
109
122
236
131
132
150
164
164
172
169
4
11
23
35
49
66
77
85
96
104
113

(A4S



40
41
42
43
44
45
46
47
48
49
50

- 51

52
53
54
55
56
57
58
56
60
€1
62
63
&4
65
66
67
68
€S
70
71
72
73
T4
75
76
77
78

113
123
134
142
154
163
173
180
8
25
38
60
68
85

g2

113
136
142
1566
173
188
250
211

39

70
106
145
186
197

51
127
177

27

g9
147
2017
147
2G2

111
122
130
139
150
162
172
179
211

20

34

49

69

86

97
115
121
144
153
176
180
189
210

25

60

g7
136
176
193

52
106
167
208

79
157
208
203
192

19800, C

110
120
131
140
152
160
171

178

13
22
36
59
78
g8
105
114
133
141
165
184
187
193
13
37
69
105
144
184
195
79
126
186
28
98
163
28
202
201

110
120
131
140
152
160
171
178
13
22
36
59
78
g8
105
il4
133
141
165
184
187
163
13
37
69
105
144
184
195
79
12¢
186
28
98
168
28
202
201

320000

113
123
134
142
154
163
173
180
8
25
38
60
68
86
92
115
136
144
166
173
ig8sg
250
210
39
70
106
145
186
1¢7
51
127
177
27
99
157
207
147
192

114
121
135
141
153
161
183
187

10

24

46

58

77

87
104
125
134
156
163
183
248
251

14

38

78
115
156
185
196

70
146
190

52
116
177
206
168
200

18000.,0

114

121

135
141
153
161
183
187
10
24
46
58
77
87
104
i25
134
156
163
183
248
251
14
38
78
115
156
185
209
70
146
190
52
116
i77
205
168

110
120
131
140
152
160
171
178
13
25
38
60
78
88
105
114
136
141
166
184
138
193
210
39
70
106
145
186
26
79
126
186
28
S8
168
39
202

4000.0

109
119
132
149
164
174
181
247
12
37
50
69
16
97

102

124
135
155
176
182
249
195
209

51

89
126
167
189

27

89
145
194
206
127
191
204
192

109
119
132
149
164
174
181
247
i2
37
50
69
76
97
102
124
135
155
176

182

249
195
209

51

89
126
167
189

27

89
145
194
206
127
191
204
192

1640000

114
121
135
141
153
161
183
187
i3
24
46
58
78
87
105
125
1356
156
163
184
188
251
14
38
78
1i5
156
186
26
79
146
190
52

116~

177
39
163

124
133
143
155
165
175
182
248

14

32

47

56

74

96
112
123
144
154
161
185
189
252

26

50

83
125
166
194

39

93
157
198
205
147
190
116
191

3200.0

124

133
143

155
165,

175
182

211

14

32
47

66

74

96
112
123
144
154
161
185
189
252

26

50

88
125
166
194

3¢

38
157
138
205
147
1s¢
116
19%

109
119
132
149
164
174
181
212
i2
37
50
67
78
97
105
125
135
156
176
182
188
195
14
51
89
iz26
167
189
27
89
145
194
52
127
191
204
192

15600.,0

122
130
139

150

162
i72
179
6
20
34
49
69
38
94
115
121
143
153
175
180
185
196
25
60
97
126
176
i83
52
106
167
167
79
146
199
203
200

122
130
139
150
162
172
179
6
20
34
49
69
88
94
115
121
143
153
175
180
189
196
25
60
97
13s
176
193
52
106
167
208
79
146
199
203
200

240000

124
133
143
155
165
175
182
211

14

37

50

67

74

97
112
125
144
156
176
185
249
252

26

51

89
126
167
194

39

98
157
209
205
147
150
116
191

123
134
142
154
163
173
180
8
25
38
60
68
85
Q2
113
136
142
166
173
188
250
253
39
70
106
145
186
197
51
127
177
27
99
157
198
147
199

15600.,0

¢tt



79
80
81
82
83
84
85
86
87
88
89
90
51
92
93
94
395
96
97
98
- §g¢
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

15000, 0
14C00. 0
17000, 0
13200, 0
9600, 0
1275000
12180.0
16000, 0
12180-,0
9600, 0
12800.0
14400.0
12800.0
1600000
13600, 0
15200, 0
14200.0
15C00. 0
14600.0
15400, 0
12000, 0
15800.,0
5600, 0
16600, 0
13000, 0
17200. 0
16000, 0
17800, 0
10400, 0
19000, 0
17200, 0
12000, 0
17600.0
19600. 0
18200.0
19800, 0
16800, 0
10000, 0
20600.0

2600, 0
4000.0
6000.0
5400, 0
4200, 0
660000
8000.0
G000.0
866060
10000.0
11900, 0
14000.0
12300, 90
1500000
15200, 0
1680000
17300,0
1960060
1865000
21000,0

22000, 0

2240000
24000, 0
2562060
2600000
2730000
2700000
29800.0
2840060
31800, 0
3100060
3400000
328000 0C
3560060
34800, 0
3635000
3800060
3900060
44000a 0

1500060
1363000
1480060
12800.0
7000.0
12450, 0
11600.0
1340090
1218060
6000, C
12600,0
14000,0
13000,0
1430000
1340000
1400060
14400, 0
15000, 0
1380060
15400.0
16000, 0
15600.0
17000.0C
1640000
940000
17400, 0
18400,0
176G0.0
6200,0
18400.0
11200.,0
18800.0
15000, 0
19400, 0
1200050
1980040
20200,0
6000, 0
18600,0

3000, 0
4000, 0
460000

560000

50006 0

6600, 0
640040

8200, 0
920000
1000040
1100000
1260060
1310060
1540000
14400, 0
162600 0
1800000
2000000
19400, 0
2150040
22000,0
2220000
2500040
245000 0
244000 0
28000.0
298000
29150.0
30000, 0
315000 0
32000, 0
3280060
34000, 0
3500060
260000 0
368506 0
3820060
29000.0
4400060

14400, 0
13400-,0
14200, 0
1290060
4000.,0
12600.0
11025.0
12200,0
12400, 0
17800.0
1260060
13000.0
13200, 0
1380000
12600.0
14200,0
1320000
148000
8000, 0
15200-,0
16400, 0
1580000
1675040
164000
17600,0
168C0,0
18200, 0
1740000
18600, 0
18400, 0
15600, 0
18800.0
800000
19400, 0
20200, 0
1960GC.0
19800, 0
19600, 0
1460000

3200, 0
3000.0
6000, 0
600060
500060
720000
800000
9200, 0
1000060
10400,0
11600, 0
1260060
1380060
154006 0
15200.0
1685000
1720060
19000,0
20000, 0
2040060
23000,0
22820, 0
2420060
25000090
2740060
2640060
2860060
2850000
30600,0
3165060
33800,0
3330060
340006 0
3560000
37800, 0
356200.0
3360060
410006 0
440000 0

1 4400, 0
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