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Abstract

This thesis is concerned with the problem of estimating
broadband acoustic impedance from normal incidence
"reflection seismograms. This topic is covered by following
the linear inverse formalisms described by Parker (1977) and
Oldenburg (1980). The measured seismogram is modelled as a
convolution of subsurface reflectivity with a source
wavelet. Then an appraisal of the seismogram. is performed
to obtain unigue bandlimited reflectivity information. This
bandlimited refiecitivity information 1is then utilized in
two different construction algorithms which provide a
broadband estimate of reflectivity;.from which a broadband
impedance function may be computed.

The first construction method 1is a maximum entropy
method which uses an autoregressive representation.of a
small portion of the reflectivity spectrum to predict
spectral values outside that small portién. The second and
most versatile construction method is the linear programming
approach of Levy and Fullagar (1981) which utili#es the
unigue bandlimited spectral information obtained from an
appraisal and provides a broadband reflectivity function
which has a minimum 1, norm. Both methods have been tested
on synthetic and real seismic data and have shown good
success at recovering interpretable broadband impedance

models.
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Errors in the data and the wunigueness of constructed
reflectivity models play important roles in estimating the
impedance function and in assessihg its uniqueness. The
Karhunen-Loeve transformation 1is discussed and applied on
real data to stabilize the construction results in the
presence of noise. The generally accepted idea that low
frequency impedance information must be supplied from well
log or wvelocity analyses because of the bandlimited nature
of seismic data has been challenged. wWhen accurate,
bandlimited reflectivity information can be recovered from
the seismic trace, then an interpretable, broadband
impedance model may be recovered using the two construction

algorithms presented in this thesis.



TABLE OF CONTENTS

iv

Page
AbStract ...ieeececsn. heessseaseaans Ceeseseceatens cees 11
List Of I1luStrations .ieeeueseoscessssseasasscassoanss Vi
Acknowledgements ..... Gttt ceeeneecans cecseeenessasaasaas ix
Background And IntrodUCLion ...eeeeeeereenseccocnsoanns 1
CHAPTER 1 Reflectivity And Impedance ...ceeeeecees eveees S
CHAPTER 2 The Convolutional Model .....eeeeeeeceennss .. 15
CHAPTER 3 Inverse Theory And Appraisal Deconvolution .. 21
Time Domain Appraisal Deconvolution ........ceeeeen. 21
Frequency Domain Appraisal Deconvolution ........... 27
Impedance Computation And Appraisal ......cccveeeen. 28
An Example Of Appraisal Deconvolution ........ceoe... 32
CHAPTER 4 Reflectivity CONStruction ......eececeececses 37
AR Extension Of The Reflectivity Spectrum .......... 40
Broédband Reflectivity Construction Using The L Norm
And A Linear Programming Algorithm .............. 50
General LP Forumulation ....eeececcscocas eesss D2
The Constrained LP SOlULION ..ieeeeesncocnccasnens 55
Data Errors And The LP Solution ......cce00eveve. 60
Inequality Constraints ....ceeeceverecvencaca. 60
_Equality Constraints .eeeessessescceacssascess 6O
Stability And Efficiency Considerations ............ 67
CHAPTER 5 Multitrace Reflectivity Construction Using
Real Seismic DAt@ veseeecsocssscnassncsscsssocnsances 718



The Real Datad .eeeeeeeceeen

LN 2 87
CONCluUSiON ..ieerecnncnnceacanonnonnns Cececctcsransnans 99
References .....ieeerenecnececascanananns Ceeeecateeeens 104

Appendix A: Derivation Of The Common Trace



Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Table

Fig.

Fig.

Fig.

Fig.

Fig.

10

12

13

14

15

vi

List of Illustrations

Seismic reflection geometry ....... ceeeseces 3

Common midpoint source-receiver pairs
resulting from multifold coverage .......... 4

Processing sequence on a CDP gather ........ 5

Normal 1incidence reflection from a
compositional boundary .....eccesveccceseess 9

Subsurface plane layered model ............. 11
Error in the linear approximation .......... 13

The convolutional model of reflection
SE1SMOGraAmMS +veeoseeooooosoasssesasssnsnasasns . 18

a) the frequency domain representation
of the convolutional model, and b)

deconvolution by spectral division ..... cees 20
Synthetic models for an example of

appraisal deconvolution ...... Ceeesesesasens 34
Appraisal deconvolution ......... ..........; 35

Relative resolution and variance
measures for the appraisals shown 1in
5« P N ... 36

The nonunigueness inherent in
reflectivity measurements .....ceeeeeoeesess 39

Autoregressive reconstruction of a
reflectivity function containing few
reflectors ® 8 & & 5 0 5 8 0 O 8 S O O S 0 S OGS S B 002 s 48

Autoregressive reconstruction of a
reflectivity function containing many
reflectors ..cieeeeertoincetrsenctnennn cecessss O

Flow diagram for the constrained LP
algorithm ..ieieeieneeransavsssassesssnsaess DB

Deconvolved ‘seismic section;
represents subsurface structure in
parts of western Alberta ....cvcctceceesase. 63



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

16

17

18

19

20

21

22

23

24

25

26

27

28

vii

Zero phase wavelet (averaging
function) estimated from data inside
the box in figure 15 .i.eteeeerenneeesneesss 63

Linear programming reconstruction of a
reflectivity function containing a few
reflectors .......... ceaseee Ceseeseesaceanan 64

Linear programming reconstruction of a
reflectivity function containing many
reflectors .....ccv ceecsevresesacsncecns cese. 66

Synthetic test data. Wavelet has band
range of 10-50HZ ....civveeenancneacsscnasss 68

Performance of the AR and LP methods
of reflectivity construction in the

presence of additive noise ......ccc0ieviene 70
Performance of the construction
methods using an innaccurate wavelet ....... 72
Stability of reconstructions with

respect to the freguency band used ......... 74

Stability of the AR method with
respect to order and the stability of
order with respect to the number of
reflection coefficients; using
accurate and innaccurate data ....ce000000.. 75

The accuracy and efficiency of the LP
solution with respect to the weighting
exponent g, using accurate data ......cc00.. 77

Data section A; - deconvolved vibrator
data along with a geological
interpretation ...eeeeseeecenesanscsnccceaes 719

Data section B; deconvolved explosion
data ® & 9 8 8 5 6 6 6 9 6 & S 4 6 5 05 SO C S 0GOS se e 79

AR reflectivity and impedance
reconstructions from section A; D)
using unsmoothed, and «c) using
smoothed spectral estimates .......ccc.c0.e .. 82

LP reflectivity and impedance
reconstructions from section A; b)
using unsmoothed, and c) using
smoothed spectral estimates .......eeeveee.. 83



Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

29

30

31

32

33

34

35

36

37

38

39

viii

AR reflectivity and impedance
reconstructions from section B using
smoothed spectral estimates ..... Ceerreeee .. B85
LP reflectivity and impedance
reconstructions from section B using
smoothed spectral estimates ........ ceeeeess B6

Application of the K-L transformation
to stabilize the choice of AR order.
Also showing the principle of the
mixing algorithm ....ieeieeireveenneeneeacas 92

Application of the K-L transformation
and mixing algorithm to the noisy
SECtION B t.iuiieeeecscenneacancsnnsnon ceesens . 83

Application of the K-L algorithm to LP
reflectivity and impedance
reconstructions .......... checseaaees ceeeenn 95

The final reflectivity and impedance
reconstructions from section A along

with the original geologic
Interpretation ... eeeeieseieenreaaecacnnsans 96
Comparison of final reflectivity
reconstructions with the original
deconvolved section (A) ...vevecececsneceses 97
Comparison of final impedance
reconstructions with impedance
averages obtained from the deconvolved
data Q..C....'....‘I..II........I..'... ...... 98

The final reflectivity and impedance
reconstructions from section B. The
given velocity log has been inserted
fOor cOmpPariSON ..iieessescssssecassoesseseasl00

Comparison of final reflectivity
reconstructions with the original
deconvolved section (B) .iiieveececeeneanessl0

Comparison of final impedance
reconstructions with impedance
averages obtained from the deconvolved
GAL@ veteeorrenrtsncancncssssesasecssasecaassal02



ix

Acknowledgements

1 acknowledge Ms. Kate Aasen for providing interesting
diversions to thesis work; Ellis and Dorothy; Mr. Patience,
my office mate, Kerry Stinson; the members of Geophysics
House - Rob Conraads, Jim Horn, and Don Plenderleith; Prof.
Tad Ulrych for being an inspiration in time series analysis
and in particular I appreciate his help with the AR parts of
this thesis; Shlomo Levy for leaving several of his then
(1979) unpublished papers lying around the department which
inspired parts of this thesis - Shlomo suggested use of the
K-L transformation; Mr. Computer, Colin Walker; Ken 'Wizard'
Whittall; and Peter Fullagar. Additional thanks go to Kate
and Kerry along with Don King for improving the language of
this thesis. I wish to acknowledge all members of this
department for providing a dynamic environment in which to
study.

1 have been fortunate in receiving financial assistance from
Imperial 0il of Canada and I deeply appreciate the time and
effort they have spent in providing a suitable data set. I
am also grateful to MRO Associates Inc. for providing a
second data set.

Finally, I would 1like to thank and acknowledge my advisor
Prof. Doug Oldenburg. Doug has provided me with endless
motivation and support during the past two years. Dougs'
enthusiastic and preceptive style of didactic guidance as
well as his strong desire to seek further knowledge have
contributed much energy to all aspects of this work.



Background and Introduction

Reflection seismologists and stratigraphic geologists

are generally interested in the problem of estimating

subsurface acoustic impedance from normal incidence
seismograms. The estimation is usually carried out in two
steps. First the measured seismogram 1is processed to

resemble the subsurface reflectivity function; and then this
result 1s converted into an estimate of acoustic impedance.
The second step normally requires the introduction of low
frequency impedance information obtained either from nearby
well logs (Galbraith and Millington, 1979), or from a
particular velocity analysis carried out on a suite of
common midpoint seismograms (Lavergne and Willm, 1977;
Lindseth, 1979). This step has been considered necessary
because of the inherent bandlimited nature of seismic
recordings. Because of experimental limitations, seismic
reflection information is typically recoverable only within
the frequency band. range of 10-60 Hz. The low frequency
information (0-10Hz) is vital to an accurate interpretation
cof a recovered impedance 1log.

In this thesis, it is proposed that the estimation of
acoustic impedance be carried out with a2 somewhat different
philosophy; in a way which essentially follows the Backus-—

Gilbert framework of 1linear 1inverse theory (Oldenburg,



1981). First, the measured seismogram is modelled and then
appraised to obtain unique information about the subsurface
reflectivity function. This wunique information is called
'reflectivity averages' and the method used here to obtain
it is called 'appraisal deconvolution'. A broadband
reflectivity function is then constructed using this unique
information along with some physical constraints and a
suitable algorithm. From this result, an interpretable
broadband estimate of subsurface impedance may be obtained.
The importance of this work lies primarily in the insights
gained by approaching impedance recovery using a linear
inverse fofmalism; and in the efficacy of the wvarious
procedures which have been refined to construct broadband
reflectiviﬁy and impedance models.

A brief review of some important aspects of the seismic
reflection method and associated terminology is now
presented.

The basic seismic reflection survey entails recording
subsurface boundary reflections arising from an artificial
disturbance (shot or. source) created near the ground
surface. These reflections are recorded at a line of
equally spaced receivers (geophones) which extend a short
distance from the source point (see figure 1). A
disturbance arriving at the geophone from a single

reflection will be called the source wavelet (shown 1in the




seismic traces as a coherent wiggle - fiqure 1). According
to the simple laws of reflection (for horizontal boundaries)
the reflection point (RP) is located vertically beneath the
source-receiver midpoint.

Each disturbance created and recorded will have a
single source geometry similar to that shown in fiqure 1.
By overlapping the single source geometry at successive
shots, it is possible to arrange such that different source-
receiQer offsets have a common midpoint (see figure 2). In

the case of horizontal boundaries, these common midpoint

Resulting Seismic Traces

Fig. 1. Diagram showing a typical source-receiver geometry
used in seismic reflection prospecting and the recorded seismic
trace from each receiver.




pairs  will be associated with a common depth point (CDP) as
shown in figure 2. A collection of seismic traces for which
the source-receiver offsets have a common midpoint is called
a CDP gather (see figure 3). The number of traces 1in the
gather defines the magnitude of multifold coverage obtained
by the overlapping shots. A CDP gather with N traces
provides N-fold CDP coverage and - is said to cover the
subsurface by Nx100 percent. The stacking pfocedure which
will be described in the following paragraph attempts to

make use of this redundant information to 1increase the

Resulting Traces

¢

Fig. 2. Common midpoint source-receiver pairs resulting
from multifold coverage and the recorded trace from each
receiver.



signal to noise ratio of the data.

Observing the CDP gather in figure 3 it is evident that
there is differential travel time (or normal moveout-NMO). to
each reflective event across the gather for different
source-receiver offsets. After correcting this differential
travel time in each trace to match the travel time of the
normal incidence ray, all traces may be summed together
algebraically (i.e., stacked) enhancing the signal to noise
ratio of the result (assuming random noise). The resulting

stacked trace 1is then plotted at the source-receiver

Midpoint

tacked Result
CDP Gather NMO Corrected Stacked Resu

\

Fig. 3. Processing sequence on a common depth point gather,
resulting in a stacked normal incidence seismic trace.



midpoint, thereby producing a normal incidence seismogram in

which the reflective event is located vertically beneath the

source-receiver midpoint. This seismogram is in suitable

form for treatment by the methods described in this thesis.

Obtaining unique reflectivity information from a normal

incidence

seismogram involves many assumptions

sequential processing steps. A proper treatment of

observed seismogram must include the effects of:

(1)

(2)

(4)
(5)

(6)

(7)

energy losses through geometrical
spreading, anelastic absorption, and
transmission losses across boundaries in a
layered media

dispersion

source type and coupling

field geometries and array responses
multiple reflections and other coherent
noise

the mathematical model imposed on. the
seismogram

other

and

the

The solutions of these complications will not be adressed in

this thesis.

It is assumed that the seismic data have

been

processed so that the seismogram, denoted by s(t), may be



considered to result from the convolution of the subsurface
reflectivity function r(t) with the source wavelet w(t) plus
random noise n(t). That is, the normal incidence seismogram

is described by the following convolutional model

S@Y=r)¥ Wk) + Nk

where the symbol * denotes the convolution operation.

Acoustic impedance estimation from a normal incidence
seismogram will be developed from basic concepts. A
complete treatment of the problem begins in chapter 1 with
the developement of linear relationships between
reflectivity and acoustic impedance according to normal
‘incidence, plane wave theory. A discussion of the
convolutional model 1is then provided in chapter 2 to
establish simple grounds for understanding the complete
experimental problem. 1In chapter 3, the traditional method
of deconvolving the seismogram when properties of the source
wavelet are known is viewed under the umbrella of inverse
theory.

Two distinct methods of reflectivity construction will
be presented in chapter 4 and  their efficacy shown wusing
synthetic seimic data. The first construction method is a
maximum entropy method which uses an autoregressive
representation of a small portion of the reflectivity

spectrum to predict spectral values outside that small



portion. The second and most versatile construction method
is a linear programming approach which utilizes the wunigue
spectral information from an appraisal deconvolution and
provides a reflectivity function which has a minimum 1

|
norm, leading naturally to an impedance model with blocky

character.

The final chapter is devoted to examples of the above
construction methods using real seismic data. Also, the
Karhunen-Loeve transformation, a weighted averaging
procedure which plays a strong role 1in stablizing the
impedance reconstructions, is described and then utilized on
real data. |

Errors in the data and the wunigueness of constructed
reflectivity models will play important roles in estimating
the acoustic impedance function and in assessing its
unigueness. These features will be developed in some detail
throughout this thesis. The generally accepted idea that
low frequency impedance information must be supplied from
well logs or velocity analyses because of the bandlimited
nature of the seismogram, 1is challenged. 1f accurate,
bandlimited reflectivity information can be recovered from
the seismic trace, then an interpretable, broadband
impedance model may be constructed using the two algorithms

presented in this thesis.



1 Reflectivity and Impedance

A review of the basic concepts in normal incidence,

plane wave theory will now be presented to establish the
relationship between reflectivity and écoustic impedance to
be used throughout this thesis.

At a compositional bdundary, incident and reflected
wave amplitudes are related by a reflection coefficient r

which depends on the density p and velocity v of the

adjacent media

Jéu; -~ RV.= PV,

=
A; RV, +£PY,

N

where A; is the incident and As 1is the reflected wave

amplitude (see figure 4).

A A
i p-density
Medium 1 v.-velocity
‘nterfﬂce ¢ 7 47 T 1 7 3T T ¥ 7T Y YT TTrR Y7 7
.l Medium2 £
Transmitted Va
Energy

Fig. 4. Normal incidence reflection from a compositional
boundary.
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The product of density and velocity is the acoustic
impedance of the medium and will be denoted z. Extending
this concept to a layered subsurface with many boundaries,
an expression for the reflectivity series 1is obtained in

which there is a reflection coefficient at each boundary

described by (see figure 5)

& = A .2
Zkyi+ Zk

Rearranging this expression, a simple formula for the

computation of acoustic impedance results

Ziw = 2 (15 )

:Z-ﬁ-<l+r '3

izg N =0

where 2z, 1s the acoustic impedance in the initial layer.

Expressions 1.2 and 1.3 represent the méin objectives
of the reflection seismologist. First the seismologist must
obtain an accurate reflectivity = measurement. This
measurement 1s then converted into an estimate of ‘subsurface
acoustic impedance so that rock types and perhaps other
information may be inferred.

Defining 4dl as the logarithm of normalized acoustic
impedance, where the normalization is with respect to the
initial acoustic impedance z,, expression 1.3 becomes

o= 2 n([5) = In(Ze0) 14

1=



Reflectivity Acoustic
Surface Series Impedance
Layer 1 Z
" L AR Ak SR A Al r] —
Layer 2 y &3
rvvvryvrery r2 —
Layer 3 13
r'.ITl LA LUK 4 r3 A-:
Tr:vcvvlll rK-] '—‘ ——]
Layer k Z; ]
T T T T 7T 7rYy K A |
Layer ksl Zj 4 |

Fig. 5. Subsurface plane layered model showing the ?eflectivity
series and acoustic impedance funtion defined for this type
of model.

In order to simplify further discussion of ﬂz it will be

from here on referred to as impedance, distinguishing it

from 2z which is the acoustic impedance.

For |r|<1,

oo rm-l
In —‘ﬁ%) =+ Ysrit 223 2n-1

zar
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This approximation is valid for |r|] <.25 as shown in figure

6. Using this simplification, expression 1.4 reduces to
OZKH:f.?-r( .S
j= 1 ’

which gives a linear relationship between impedance and

reflectivity. This expression may also be written

nZK+\ = Mkt 2.ry§

or

57&("”2&4«\'7&?1‘} | 1.6

In the time domain it can be shown that relation 1.6 has the

continuous analogue (eg. Peterson et al, 1955)

-42%—-{):2(({) 1.7

or

t .
76) = 2§ reun du .9

o]
where the reflectivity function r(t) and the reflection

coefficients r, are related by

Y
)= 2 M SE-7)
1=



where N is the number of boundaries and S(t— Q}) is the
Dirac delta function located at the time occurence U of
each reflection coefficient. Equation 1.8 may be also

written as (eg., Peacock, 1979) °

() = 20CE) ¥ (U(¢) | 1.9

where u(t) 1is the wunit step function. Convolving the
reflectivity function with the unit step performs the role

of integration.

-

fr) - h=

Residual

;"‘ “|"‘le

Fig. 6. The error between f, and the linear approximation
fy, for values of |r{ less than .9,
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In this thesis, the 1linear relationships between
reflectivity and impedance (equations 1.5-1.9) will be used
in place of the nonlinear relationship (equation 1.4), to
simplify further mathematical transformations. It must be
remembered however, that all linear relations have the
restriction that reflection coefficients |r| must be less
than .25, If a reflection coefficient exceeds .25 then the

impedance should be calculated via equation 1.4.
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The Convolutional Model

The purpose of this chapter is to briefly explain the
convolutional model in seismic reflection theory and to make
clear the limitations of conventional deconvolution (inverse
filtering / Spectral division) technigues at recovering
broadband reflectivity information from a seismic trace. A
seismic trace 1is generally 1looked upon as a seguence of
overlapping source wavelets that result from a variety of
reflecting boundaries (Ricker, 1940 and 1953). Information
about the subsurface geology is hidden 1in the traveltimes
and amplitudes of these wavelets, that is, they conceal the
subsurface reflectivity function. The wultimate goal of
seismic deconvolution is to replace each overlapping wavelet
with a corresponding reflection coefficiént representative
of a subsurface boundary. It will be shown that this goal
can be only partially fulfilled using a conventional
deconvolution technique. Several good examples of
conventional deconvolution techniques can be lfound in

Deconvolution, Geophysics Reprint Series 1, wvolumes I and

I1.

The simple convolutional model without additive noise
states that the measured seismogram s(t) (whether it be the
result before or after the stacking procedure), is eqgual to
the reflectivity function r(t) convolved with a source

wavelet w(t), that is,

SCt) = r)¥Fwe)
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The source wavelet is defined to take on a variety of
characteristics depending on the experimental procedures
used and the .physical effects of wave propogation. The
source wavelet is sometimes defined as the particle velocity
of a single reflected disturbance as recorded in time by a
geophone. However, it 1s necessary to include processing
effects in the wavelet when considering a deconvolution of
stacked seismic data. Probable effects contributing to the
source wavelet are summarized below:

(a) source type and coupling

(b) transmission effects

(c) field geometries and geophone arrays
(d) ghosting effect

(e) near surface weathering

(f£) instrument response

(g) processing effects (eg., stacking)

(h) etc.

By following a convolutional model where all experimental
effects listed above are attached to the source wavelet, a
strong foundation is set for recovering an estimate of
subsurface reflectivity from the measured seismogram.
Reflection seismologists realize the importance of the
source wavelet in seismic data brocessing and are actively

engaged in devising improved methods which provide source
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wavelet estimates. These methods may be classified into
three groups:
(1) direct knowledge of fhe source signature
(eg., vibrating source)
(2) direct measurement of the source signature
(Mayne and Quay, 1871; Kramer et al, 1968)
(3) estimation of a wavelet from the measured
seismogram based on assumed statistical or
physical properties of the reflectivity
function and wavelet (Robinson, 1967;
Ulrych, 1971; Otis and Smith, 1977; Lines
and Ulrych, 1977, and Oldenburg, et al.,
1981).

For all discussions relating to the convolutional model, it
will be assumed that the source wavelet is known and that
determination of a broadband reflectivity function is
desired.

This section will conclude with a pictorial
representation of the convélutional model and an example of
spectral deconvolution which indicates what reflectivity
information may be uniguely recovered from the seismogram.
Figure 7a shows the result of a seismic experiment (whére

the data are measured in time) in which the source wavelet
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is a delta function. The convolution of a delta function
with subsurface reflection coefficients results in a perfect
recovery of the true reflectivity function. Convolving the
subsurface structure with a more realistic soﬁrce wavelet
leads to a poorly resolved, uninterpretable measurement of
reflectivity as shown in figure 7b. This effect may be
observed in the frequency domain by applying the convolution
theorem to figure 7b. The convolution in the time domain
becomes a multiplication of spectral components in the

frequency domain as shown in figure 8a (where only the

o ol

Subsurface

Measured
. Source
Reflectivity Reflectivity
g Wavelet
Function Function

V -

Fig. 7. a) The convolution model in the time domain using
an ideal wavelet and, b) using a more realistic wavelet.
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amplitude spectra and positive frequencies are shown: phase
effects have been left out for simplicity). Note that the
bandlimited character of the measured reflectivity is due to
the bandlimited nature of the source wavelet. In general,
the reflectivity function is not bandlimited and thus it is
seen that a complete recovery of the original reflectivity
spectrum 1is inhibited by the spectral nulling effect of the
wavelet.

Unigue reflectivity information may be obtained from
the measured data by removing the spectral smoothing effects
of the wavelet within 1its nonzero bandrange. 1In other
words, a rough appraisal of unigueness may be made by
performing a bandlimited spectral division as shown in
figure 8b. Since the wavelet contains insignificant energy
at both low and high freguencies, no reflectivity
information is recoverable at these frequencies. Only those
frequencies which are contained within the bandwidth of the
wavelet can be recovered (see figure 8b). This band of
freqﬁencies represents the only unique reflectivity
information recoverable through spectral division or inverse
filtering technigues.

The nonuniqueness inherent in recovering broadband
reflectivity is now apparent from the above analysis. There
are infinitely many reflectivity functions which will

satisfy the resultants of figures 8a and 8b. The only
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information that' all such functions must have in common is
the band of freguencies shown on the right hand side of
figure 8b. However, recovering broadband reflectivity
information from seismic data can be a tréctablé problem if
the missing frequencies are accurately replaced. .Standard
methods for replacing low frequencies involve well 1log or
velocity analysis. Alternatively, a reflectivity
construction technigue, which utilizes the information
provided by a single deconvolved trace, may be used to fill
in the unknown frequencies. Two such reflectivity

construction methods are presented in chapter 4.

©
-
2 s
.é A
CJ) < -
{ 1 [ i [ [ | T B
O Frequency Hz 125 0 125 0 125
Reflectivity. Wavelet Measured
Spectrum Spectrum . Reflectivity
' ' Spectrum
) [T il 1 { 1 i ) 10 1650 1 R
0 125 0 125 0 125
Measured Wavelet Recovered
Reflectivity Spectrum Reflectivity
Spectrum ~Spectrum

Fig. 8. a) The convolution model (fig. 7b) in the frequerncy
domain and, b) deconvolution by spectral division.
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3 Inverse Theory and Appraisal Deconvolution

The purpose of this section is to provide the reader
with the basic concepts of inverse theory and its relation
to deconvolution. This heuristic approach requires that the
notation be somewhat simplified; a more rigourous treatment
of this topic can be found 1in Oldenburg, (1981). This
section is in most part a precis of that paper.

The convolutional model of a seismogram neglecting the

additive noise term -is written

SCE) = ree) F wir) 3.

When the wavelet is known, eguation 3.1 may be appraised in
either the time or frequency domain. Each of these
approaches will be discussed seperately although the results

under similar conditions are identical.
A) Time domain appraisal deconvolution

In the time domain, an inverse filter v(t) is desired

that contracts the wavelet into a delta function; i.e.,

WE)* V() = S (+) 32

But in the seismic case, w(t) is bandlimited, so there is no
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filter which will contract the wavelet into a delta
function. Finding an inverse filter which contracts the
wavelet into a zero phase approximation to a delta function
is the best alternative. By zero phase, it is meant that
the approximated delta function has its energy peak located
at the true delta function position and is symmetrical about
its energy peak. This can be done by finding a filter which
minimizes the integrated sqguared difference between the two

sides -of 3.2, that is, the filter minimizes

@z{ lw@)*vi) - g(t-to)lldt 3.3

where the optimum position tg of the desired spike
approximation may depend on the length or phase
characteristics of the wavelet (Treitel and ﬁobinson, 1966
Oldenburg, 1981). Obtaining the best v(t) by minimizing
¢ , both sides of 3.1 are then convolved with the inverse

filter to perform the appraisal deconvolution
SAYRy) = rce)*wee) * Ve
= f)¥ a&)
<t 2 3.4
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where <r(t)> denotes reflectivity averages. Pictorially,

the appraisal might look like:

A+

SE) VE) {ree)?

The convolution of the wavelet with the inverse filter
produces an averaging function which is in some sense more

localized than the original wavelet. For example:

!
————

AVA % ‘UA V\]f‘uﬁm
Wet) | V) - ak)
The averaging function plays a fundamental role in inverse

theory because its character immediately indicates the

resolving power of the wavelet. This type of averaging
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function is often called a zero phase wavelet by seismic

data processors.
From 3.4, the convolution of the averaging function

with the true reflectivity model will produce reflectivity

averages. For example:

]

T e 1

rce) | ack) {ree)>

Knowledge about the true reflectivity, recoverable from the
seismogram, is completely summarized by the average values
<r(t)> and the averaging function a(t) unless extra
information is provided about the form of r(t).
Deconvolution utilizing the most resolved.  averaging
function is seldom useful on noisy seismic data because the
inverse filter will enhance the noise in the data to

unacceptably laige values. The noisy seismogram is written

SGE) =) *we) + Nnt)
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Convolving this with an inverse filter v(t) produces
SWRVE) =r@®YFWE)YRVE) +ni) ¥ vet)
= r)kack) )k VE)

= Lr@)7 + S<r®) 7 3.5

where S§<r(t)> is an error term arising from the additive
noise. In this case it will be desirable to find an inverse
filter which produces the most resolved averaging function
and also keeps the error term minimum.

Data errors can be accomodated in the inverse filter
solution by minimizing a statistical norm of §<r(t)>. The
statistical form of the error term which 1i1s mathematically
complimentary to the functional form of the resolution

measure 3.3, is its yariance which is denoted
Y = Var ] §<rt)7] = VarL nat) ¥ vee) ]

By simultaneously minimizing the error variance ¥ and the
resolution measure ¢ , an optimum inverse filter v(t) may be

derived. Let
¥ =¢cose + ¥sine 3.4

where © is called the tradeoff parameter and varies between

0 and ﬂ72. A tradeoff between resolution and statistical
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error produced by the resulting inverse filter may be
obtained by mihimizing 3.6 using different values of ©.
When ©=0, the v(t) which minimizes 3.6 yields the most
resolved averaging function, but the reflectivity averages
derived from s(t)*v(t) will have the greatest uncertainty.
As © increases, resolution will be lost but greater
statistical accuracy will be achieved. By wusing this
philosophy, an inverse filter may be derived at any value of
© and that one which provides the best compromise between
resolution and accuracy must be chosen,

Since Qb is not calculable, it is convenient to define
a resolution measure 'L' as being the inverse height of the
averaging function at its energy peak. Then, for example,
as © increases from 0 to W2 we may plot a tradeoff curve

to monitor resolution L and variance AY. The result would

look something like:

increasing ©=0 Tradeoff Curve
variance

o=/,

L decreasing
Y
resolution
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In practical appraisal deconvolution, the inverse filter is
derived at a nonzero value of the tradeoff parameter so that
better statistical accuracy will be attained. Very often a
dramatic decrease in the variance can be achieved with only
a small sacrifice in resolution as 1indicated by a steep

initial decline of the tradeoff curve.

B) Freguency domain appraisal deconvolution

Deconvolution is carried out in the frequency domain by
spectral division. 1If S(f), R(f), and W(f) are respectively
the Fourier transforms of s(t), r(t), and w(t), where the

Fourier transform pair is defined as,

* bt
SCQ:gsme‘“” d+

<o

S = ?S(O LTS

then the convolution theorem applied to 3.1 yields
SG) = REEIWK)

A spectral division gives

RG) = S(é)/w(ﬂ = S(fvz/\?g(l? 3.7
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where W¥(f) is the complex conjugate of W(f). It is well
known that this eguation will produce erroneous results at
frequencies where W(f) is small if the data are 1inaccurate,
so 3.7 is necessarily altered by adding a stablizing term to
the denominator. For inaccurate data, the stablizing term
has been derived 1in the frequency domain by Oldenburg,
(1981). In a manner qQuantitatively consistent with the time
domain formulation, the fregquency domain appraisal equation

may be written

W¥*(£)
[W)I* +Ltan 6

B) = SG) 3.9

where o is a constant dependent on the magnitude of random
noise in the dafa .and ©& is the tradeoff parameter. The
instabilities in the spectral division will now be overcome
if © 1s sufficiently large.

Equation 3.8 can be written

RE) = S(6) V) X

where V(f) 1s defined as the guantity in curly brackets.

Taking the inverse Fourier transform of 3.9 yields

Lrid) Y = S@) F )

where v(t) is the inverse filter in the time domain. Thus
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bthe results of appraisal 1in the freguency domain are
completely analagous to those in the time domain. Each
appraisal carried out at a tradeoff value & yields unique
reflectivity averages, a statistical variance of those
averages, and an averaging function.

All appraisal deconvolutions presented in this work
were carried out in the frequency domain because of the

computational and conceptual ease of working in that domain.

C) Impedance computation and appraisal

An appraisal shows that the reflectivity averages,
their statistical error, and the associated averaging
function completely summarize our knowledge of the true
reflectivity function when the wavelet is known. However,
in the event that the output from an appraisal is used to
compute an impedance function, some care must be taken to
differentiate between an intefpretable, broadband
reflectivity model, and averages of the reflectivity model.
An interpretable, broadband reflectivity model is one which
produces an adeqguate fit to the data and provides a
meaningful impedance estimate. In general, reflectivity
averages cannot be successfully used alone to provide a
useful impedance function because they lack important low
frequencies. For example, integrating the basic model

equation 3.1 by convolving it with twice the unit step
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function u(t), gives

WE)XSE) = 20 *r) * wk)

Denoting the 1left hand side th), as the integrated

seismogram and making use of equation 1.9 gives

S@) = W) R W)

Next convolving both sides by the best inverse filter of the

wavelet produces
SEYHRVCE) = L) ¥ WY R vee)
= 7@ * alk)

=<))7

This result 1indicates that by appraising the integrated
seismogram, impedance averages, <“Z(t)>, are obtained. The
convolution of the integrated data with the inverse filter

produces an output equal to the convolution of the true
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impedance model with the same averagingh function obtained

from the reflectivity appraisal. For example:

AV -

f»th) ai) <MLy7

The resolving capability of the averaging function, in this
case, is not as important as its low frequency content.
Since the frequency content of the averaging function is
dependent on that of the wavelet, it is missing both low and
high frequencies; and it is the lack of low frequencies in
the averaging function which leads to the uninterpretable
impedance estimate <°z(t)> shown above. Clearly there are
troughs and peaks 1in the impedance averages which do not
exist in the true impedance model and the major structural
trends are absent.

Reflection seismologists' have generally known that
bandlimited impedance averages, when considered as a final
model, will usually not produce correct structural

interpretations. Thus, techniques of recovering the low .
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frequency impedance information from well 1log or velocity
analyses have been developed (Galbraith andeillington,
1979; Lindseth,1979). 1In addition (or alternatively), the
operating philosophy of the seismologist should include the

idea of constructing broadband models from the appraised

seismic data, to help clarify the interpretations. 1In ‘the
next chapter, reflectivity averages obtained from an
appraisal are used 1in two algorithms which construct
broadband reflectivity (and thus impedance) estimates.

A comment about unigueness may be made by reflecting on
the basic model equation s(t)=r(t)*w(t). There are
infinitely many functions r(t) which satisfy this equation
(given the bandlimited nature of the wavelet) and this
number 1is further enlarged if we accept that the data are
inaccurate and .permit functions which generate statistically
allowable misfits to those data. This group of permissible
functions' may well give rise to a wide range of computed
impedance functions, unless some way ©of <constraining the

nature of the constructed reflectivity functions is.devised.

D) An example of appraisal deconvolution

The impedance function ZZ(t) shown in figure 9a was
derived from an interpretation of well 1log data and
represents a reasonable picture of general subsurface

impedance in parts of Alberta. This impedance model will be
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used as a starting point for synthetic examples of appraisal
deconvolution. A reflectivity function (panel b) was
computed from‘ the impedance model via equation 1.7 and
convolved with a wavelet (panel c), to produce a synthetic
seismogram s(t). Random noise having a STD of 20% of
maxls(t)\ was added to this result, providing the noisy
seismogram shown in panel d. The time sampling interval for
this example 1is 4mséc. The corresponding freguency domain
representation of this procedure is shown in panels e-g;
where only the amplitude spectrum of positive freguencies
are displayed.

The appraisals, carried out in the frequency domain at
seven different values of tradeoff parameter © , are shown
in figure 10. The relative resolution and variance measures
defined by L/Lgy and Y/)% respectively, are listed in table
1 (where Ly simply refers to the first value computed). The
normalized averaging functions for each value of © are
plotted in the first column of figure 10, The normalized
reflectivity averages along with their amplitude spectra are
plotted in column 2; and the normalized impedance averages
are shown in column 3. Note the change in character of the
averages and in their spectral content as the tradeoff
parameter is increased. Stability is achieved around & =1
where fregquencies outside the bandrange of the wavelet have

been significantly reduced in importance.
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Although the resulting averages are undesireable for
impedance interpretation, they are unique and may be
utilized 1in a construction procedure which leads to
broadband forms of reflectivity and impedance; The topic of

reflectivity construction will be covered next.

© L/‘-o 23/35

.00 1.O 1.0

NoJ .5 195
A 2.0 . 014
Y 2.5 .002]
|.O 3.5 00082
[.4 528 00028
| .52 |0.0 .000062

Table 1. Relative resolution and variance measures for the
appraisals shown in fig. 10. ’
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Reflectivity Construction

Seismic reflection analysis, thus far, has led to the
formation of wunigue information about the reflectivity
function based ‘upon the method of appraisal deconvolution.
It has been shown that the only unigue information
obtainable through use of the convolutional model is in the
form of reflectivity averages <r(t)>=r(t)*a(t), where af(t)
is an averaging function. It was also shown that the only
unigue impedance information recoverable by appraisal
method§ is in the form of impedance averages
<02(t)>=’ngt)*a(t), where a(t) 1is the same averaging
function as above. It was noted that impedance averages are
unacceptable as a finzl model of subsurface structure
because of the bandlimited nature of a(t). Since appraisal
methods (i.e., inverse filtering methods) must always fail
to generate an acceptable impedance function if the source
wavelet is missing 1low frequencies, it 1is worthwhile
investigating whether a particular construction mefhod might
successfully £ill in the missing frequency information about
r{(t). 1In fact, since the unique information about r(t)
recoverable by appraisal methods represents only a
bandlimited portion of its spectrum (eg., figures 8&10), the
recovery of missing portions of R(f) will require some sort

of construction technigque.
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The problem of broadband reflectivity recovery as
described herein may be thought of as follows. First an
appraisal of the seismogram is performed which replaces each
overlapping wavelet present in the data with a zero phase
averaging function. Then by use of a construction method,
each zero phase averaging function 1is replaced by a
corresponding reflection coefficient representative of a -
subsurface boundary. Two construction procedures will be
described which have shown success 1in accomplishing this
goal, but first an example is presented which emphasizes the
nonunigueness inherent in any reflectivity construction
procedure.

Consider the dual example shown in figure 11. 1In panel
(a) is a blocky (or minimum structure) impedance function.
A more realistic impedance function (a noisy version of the
of the blocky impedance model) 1is shown 1in panel (b).
Directly below each impedance model 1is the reflectivity
function computed from each via equation 1.6. Adjacent to
each reflectivity function 1is its associated ‘amplitude
spectrum. The bandlimited (10-50Hz) averages of r (t) and
ro(t) shown in panels (h) and (i), are very similar.
Therefore, it is reasonable to expect that any construction
algorithm carried out identically on both <r,(t)> and
<r1(t)$, utilizing only the bandlimited information supplied .

by each, would 1lead to similar broadband reflectivity
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models. Further, these constructed models may not resemble
either r'(t) or rz(t) if no constr;int is placed on the form
of the constructed output because there are infinitely many
reflectivity models which' have averages similar to those
shown in panels (h) and (i). The size of model space may,
however, be restricted by considering only a particular
class of models. Both construction methods discussed in
this thesis tend to favour, in theory, the construction of
models similar to r'(t), that 1is, models with as few
significant reflection coefficients as possible. The first
of these methods, an autoregressive (AR) technique, makes
the assumption that the reflectivity spectrum R(f) behaves
in a predictable manner. It will be shown that this method
can accurately reconstruct the missing 1low frequency

portions of a reflectivity spectrum.

A) Autoregressive extension of the reflectivity spectrum

It is well known that the maximum entropy method (MEM)
of power spectrum analysis, when applied to a short portion
of a stationary data series, will in some cases, provide a
more resolved spectral estimate than that from any
conventional Fourier transform methoé. This 1s because
conventional spectral estimators assume that the data are
zero outside the known interval, whereas the MEM estimate

assumes that the data are ‘'continued in a sensible way'
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outside that known interval. By 'continued in a"sensible
way', it 1is meant that the process which produced the data
series is modelled in a manner which allows prediction of
unknown data. For example, only a fraction of one period of
a sine wave need be known in order to infer its complete
unending form. We must only specify that the process
indicated by the known fraction is monochromatic. A general
process which requires only a small portion of the data
series to derive an adequafe model for the whole 1is an
autoregressive (AR) process. It can be shown that the MEM
spectral estimator assumes an AR model for the stationary
data series to be examined (eg., Ulrych and Bishop, 1975).
The AR representation of a stationary data series x

with zero mean, is

e
Xg =2 S Xem €k 1.
=1

where e is a white noise series with zero mean and variance
OEQ. And the =m are prediction filter coefficients of
order p. This expression indicates that a future value zxg
can be predicted to within an error exr from

1

xk~\'xK—2"""xk%p' that is, from 'p past values of x.

For this reason, equation 4.1 is called a forward prediction
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representation, A reverse prediction expression may be

written

nﬂ:\

where the A%“ are reverse prediction filter coefficients and
e® also has variance 021. This representation shows that a
.past value X can be predicted to within an error e& , from
XK+\'XK%1"'*"XK+p' that is , from 'p' future values of x.
It follows, then, that for an AR process x, past and future
values can be predicted from any set of N>p known vélues of
X, |

If the prediction filter coefficients are determined by
minimizing the variance of the error series, the reverse and
forward solutions are 1identical. Thus, a single set of
filter coefficients may be found by minimizing the sum of
the forward and reverse error variances. This sum is

estimated by the following forumula

20t = Z (ex +Let,] *)

N-P K-Pﬂ

NP g(x*‘ n?-g(m Kiem)

P
+ (Xk-p “m2::<\>’\m XK~p+m)13 1.3
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Differentiating 4.3 with respect to the filter coefficients

leads to the following matrix equation

C\Si:él 4.4

N
Crme :KZ Jr()(K-m XK-L + XK'-p+m Xk-p +£>
=pH

m,l.:ljl)....P

C

X

oL
H

N
NE :KZ+ (R Xyt + Xi-p Xi-p it )
zptl

£ = h 2, ....p

and
N T
== (ehyyelyy e °<P>

The o{'s may be obtained by inverting eguation 4.4.

Alternatively, the prediction coefficients can be
determined efficiently by minimizing 4.3 wusing .the Burg-
Levinson recursion technigue described by Ulrych and Bishop
(1975). Both solutions effect a least squares fit of an AR
model of order 'p' to the data series x.

The first method of constructing a broadband
reflectivity function uses an AR model of the reflectivity

spectrum to predict values of R(f) outside the freguency
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band range of the source wavelet. Consider the basic model
eguation s(t)=r(t)*w(t) and its: Fourier transform
S(f)=R(f)W(f). 1If W(f) contains significant energy in the
band of frequencies between f, and f2' then the reflectivity
spectrum R(£f)=S(f)/W(f) can be adequately recovered only in
that frequency band. This band of recovered frequencies
represents a small portion of the complex data series R(f).
Thus, if R(f) can be‘modelled as an AR process of some
order, then the recovered portion of R(f) may be used to
estimate that AR model which will allow a sensible extension
of R(f) outside freguencies £, and f,. Importantly, a
proper choice of order 1s necessary for good prediction
results. For the reflectivity construction problem, it will
be shown later how the choice of p is related to the number
of major subsurface boundaries or reflection coefficients.
Attempting to show that the reflectivity spectrum R(f)
may be represented as an AR process,/the reflectivity r(t)

is first written in terms of a sampling function

N=| |
fe) =3 [ S t-nat) | 4.5
h=o |

where At is the sampling interval, N is the number of data
samples, rp is the reflection coefficient at each sample

interval, and §(t-nat) is the Dirac sampling function. The
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s

N1 Lal4n/N . ~
RJ :'\Zo rne / 'j:O,I)....N'l 46

where the subscript j refers to the jth frequency ff=j/NAt
and where values of j larger than N/2 refer to negative
frequencies (N/2 being the Nyguist 1index). The inverse

discrete Fourier transform is defined as

N-| _
MEws Ry e S nag) o N-l
430 J J

Expression 4.6 may also be written

' N-1 |
Real LRj] =2 cos@min/i)

N-l
Imag[Rj]:"Z rosin(amgn/n) 4.7
h=o . ‘

These rélations will be referred to as reflectivity
constraint eguations.

From eguation 4.6, the reflectivity spectrum is a sum
of complex sinusoids. Ulrych (1973), and Ulrych and Clayton
(1976) have shown that harmonic functions may be adequately
modelled as AR processes. The order of a single complex

sinusoid is p=1, and in general, the order of a complex
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harmonic process is equal to the number of complex sinusoids
of different period included in the data. From 4.6, the
number of complex sinusoids of different period Ty
(Th=NAt/n) included in the reflectivity spectrum is equal to
the number of nonzero reflection coefficients I'n- Thus, the
order 'p' of the discrete reflectivity spectrum and the
number of reflection coefficients are directly related. For
computational considerations, the order of R must be less
than the number of spectral values recovered between f; and
£, This puts a limit on the number of significant
reflection coefficients which may exist within the data
window being considered. 1If 20 complex frequency values of
R are known, then there should be less than 20 significant
reflection coefficients contributing energy to those known
frequencies to insure &a proper determination of the AR
model.

The AR representation of the reflectivity spectrum may

be written
P v
R; :n%‘«m Rjem + €5 4.8

where all terms are complex. This expression is used to
extend values of R to fregquencies outside the known range
f\ and fg9. Part of the success of this AR extension method

depends on accurately determining the order 'p' of the
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reflectivity spectrum, i.e., determining the optimum number
of significant reflection <coefficients expected 1in the
constructed result given M known complex freguency values.
Optimum criteria for determining the order of a data series
havé been discussed by Ulrych and Bishop (1975), and Ulrych
and Clayton (1876). However, choosing an order of 2/3 to
3/4 the number of recovered freqguency samples provides good
results if that number exceeds the number of significant
reflection coefficients expected in the solution (an
averaging procedure is described in the next chapter which
stablizes the choice of AR order). Having chosen a good
order, the prediction filter coefficients are determined and
then equation 4.8 is implemented in a forward manner to
extend the high frequency end of R , and in a reverse manner
to fill in the missing low freguencies.

The synthetic example shown in figure 12 demonstrates
the ability of the AR technique to recover low freguency
impedance structure, An ideal starting point for the AR
method is an accurate portion of a reflectivity - spectrum.
The 20 estimates of R between 10 and 50 Hz shown in panel
(a), repfesent an accurate portion of the true spectrum
shown in panel (3). Panels (b) and (c) show the
corresponding bandlimited reflectivity and impedance
functions. The bandlimited and true impedance functions are

compared in panel (c).
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Fig. 12. Autoregressive reconstruction of a reflectivity
function containing a few reflectors.
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Panel (d) shows the result of extending the spectrum
into the 1low freguency range only, using AR prediction and
an order of 15 (which is greater than the number of spikes
in the true reflectivity shown in panel (k)). Panel (e)
illustrates that the resulting constructed reflectivity
function has not improved 1in appearance, however, the
resulting impedance function (panel (f)) contains the proper
low freguency information needed to give it geologic
meaning.

Panels (g)-(i) show the result of predicting both the
low and high missing frequencies. The reflectivity function
(panel (h)) is plotted as a spike series simply because it
has a <complete spectrum within the Nyquist frequenéy. The
resulting impedance structure (panel (i)) indicates that the
predicted high freguency values are somewhat erroneous,
This 1is a common occurrence among the various reflectivity
models that we have tested using the AR method. It appears
less profitable to predict the very high frequencies because
of small uncertainties in determining the proper prediction
filter coefficients. These uncertainties may propagate into
large errors 1in the predicted spectral value as the
prediction filter slides off the edge of the known data and
begins to predict spectral values exclusively from
previously predicted values. Fortunately, the small band of

missing low freguencies <can, in many cases, be accurately’
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recovered.

Figure 13 shows the results of applying the AR method
to a more complicated example. Panels (3j)-(1) show the
results  of adding 10% white noise to the simple synthetic
impedance model presented in the previous example. The 18
spectral estimates of R (shown in panel (a)), between 14
and 50Hz, are accurate. The results of predicting only the
missing low frequencies are very encouraging as has been
shown in panels (d)-(f). The results of also predicting the
missing high frequencies (panels (g)-(i)), show a simpler
and perhaps more interpretable reflectivity function but the
resulting impedance estimate has not been improved. An
order of 12 was chosen for this example.

More examples of this method are presented in section
C) of this chapter and in the final chapter where it is

applied to real data.

B) Broadband reflectivity construction using the llnorm and
a linear programming algorithm

Broadband reflectivity recovery in the time domain by
minimizing the l‘ norm leads naturally to a linear
programming (LP) formulation (Claerbout and Muir, 1973;
Taylof et al, 1979), but ll norm minimization has also been
used for reflectivity construction in the frequency domain.

Levy and Fullagar (1981) have formulated a procedure to
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function containing many reflectors.
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construct a reflectivity function containing a minimum
number of reflection coefficients. Their method, carried
out in the freguency domain, assumes only that processing of
the seismogram has resulted in unigue reflectivity
information (reflectivity averages), i.e., a bandlimited
portion of the true reflectivity spectrum has been
recovered. This method has an advantage in that .the
solution 1is constructed from only the most reliably known
spectral values of R(f). However, as formulated, it does
not take fuil advantage of the unique reflectivity averages.
An outline of Levy and Fullagar's géneral LP approach will
be followed by an explanation of how their approach. can be
made more efficient utilizing information from an appraisal
of the seismogram and information from velocity or well log

analyses.

(a) General LP formulation .
An outline of this method begins with the sampled

reflectivity function given previously as
N-|
(EY=3 1, S(k-nat)
N=o

The objective 1is then to find that set of reflection

coefficients rp which satisfy the constraint equations 4.7,
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and which have a minimum 1, norm, that is,

M-I
Il reedl, =r§o|r,,| IS minimum 4.9

Minimization of the 1, norm will produce a set of reflection
coefficients with a minimum number of nonzero values.
As an aside, utilizing expression 1.7, eguation 4.9 may

be rewritten

47wy, _ X!
—;:-H"R—-“, = nzzolrn] | 410

Minimizing the 1| norm of the reflectivity function is thus
' equivalent to minimizing the 1, norm of impedance gradients.
This minimization will broduce an impedance model with a
minimum of structural variations.

One way to formulate the LP solution 1is by first
obtaining estimates of the reflectivity spectrum R by

spectral division of the seismogram

375§ /% -

where j refers to the jth frequency as before. But 6nly
those spectral components, where W 1is sufficiently large,
are used. Estimates of R may also be obtained through many
other methods of zero phase déconvolution. For example,

they may be obtained from an appraisal deconvolution.
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Reliably determined spectral values are then substituted
intb the constraint equations 4.7 and an LP algorithm is
selected to find those reflection coefficients rp which
satisfy equations 4.7 and which have a minimum 1, norm.
Note that if both 4.11 and 4.7 are satisfied in the above
procedure, the constructed reflectivity function, denoted by
re(t), should adequately reproduce the observed seismogram
ive., s(t)Trg (£)*u(t). |

Most LP algorithms are designed to locate only positive
unknowns, whereas both positive and negative reflection
coefficients are expected. The solution to this problem is
to express each r, as the difference between two positive

guantities, 1l.e.,

- - . 2

=G =bn 5 AnZ20) N-1 |
| nzo,l,.... 4.1

b ZO ) '

n

This relation 1is then substituted into equations 4.9 and
4.7, and an LP algorithm will search for the positive
unknowns ap and bp. The number of unknowns is doubled by
this procedure, thereby increasing the computing costs.
However, 1if no extra information can be inéorporated into
the LP algorithm, the formulation outlined above must be

followed.



55

No attempt is made in the above formulation to utilize
that unigue 1information which could be supplied by an
appraisal of the seismogram and by well log or velocity
analyses. This information, when available, can make a
valuable contribution to the LP solution. Assimilating
reflectivity averages and impedance estimates into the
algorithm leads to a more efficient and reliable solution of

the LP reflectivity construction problem.

(b) The constrained LP solution

In the constrained LP approach, the objective is to
find that set of reflection coefficients I'n which satisfy
the constraint eqguations, and which have a minimum weighted

l\ norm, that is,

| "
lwe)r®d]] = 2 1w el s minimum 4,13
n=o

where the W, are weights meant to emphasize those r, which
are prominent in the avefage values <r(t)>. A natural
weighting function for this approach 1is the arithmetic
inverse of the reflectivity averages, <r(t)>~}. rThis is
because the LP algorithm using 1, norm minimization, will
tend to reduce an ry 1if it has a large relative weight.

Thus, 1if the average wvalues <r(t)> indicate that. a
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particular reflection coefficient should be near zero, that
interpretation is assisted in the LP algorithm by giving it

a lafge weight relative to other possible rn's. A natural

form of 4.13 is then

N=l
l<rer> bl =3 1<, 7Y ir, ) 41y

nN=o

where <rp> refers to the digitized averages, and q 1is a
weighting exponent ranging from 0 (no weighting) to 2 or

more (g=1 or 2 is usually sufficient to provide good

results).

The reflectivity averages may also be used to provide
polarity information to the LP algorithm. Defining a

polarity function as

sgn(< r4)7) = $9n ({7

| if £ty> 20O

-] if <f?» SO0 4.1S
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the constraint equations may be rewritten
N .
] - l : .
Real [R;] -nz My cosCaTgn /) sgnict)
z0

N-\
Trag [R5 =~2_ R sinGnin/u) sgnern) 4 fg

RZ0

where rﬁ=sgn(<rn>)rn and j ranges over only the most
reliable frequencies as before. Then the LP 'algorithm may
search for the strictly positive unknowns r,, eliminating
need for the difference eguation 4.12. The true ©polarity
and magnitude of the constructed reflection coefficients may
be recovered by applying rp=sgn(<rp>)rgQ

Additional constraint equations may be added to those
in 4.16 if impedance estimates are available from velocity
or well log analyses. From eguation 1.5, impedance

constraint eguations may be written
K
,7k4l 3325'2(}\
h=o

. | |
223 s9n(irn) T, 4.17
N=o

where k+1 is the index of the impedance that 1is known and
equation 4.17 1is in the proper form for input to the
constrained LP algorithm. 1If only the basement impedance is

known (i.e., 47“’ ), this relation becomes essentially a
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constraint on the dc frequency R For example, the

following two equations provide identical constraints:

| N-|
7/7N:Z T

=0

N=1
‘KCG\I:jo :'Eg- rn

The constrained LP algorithm is summarized in figure

REFLECTIVITY

Weighting

information Objecﬁve

Polority Function

Information
AVERAGES

LP Constructed | ll l
Reliable . Algorithm  [Reflectivity =~ T 1 ]
Spectral Constraint
3 s R .

Estimotes R; Equations
Impedance
Estimates - >

Fig. 14. Flow diagram for the constrained LP
algorithm.
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Before presenting examples of the LP method, it is
noted that by using the reflectivity averages to constrain
the construction problem, certain restrictions are
automatically placed on the resolution of dipole reflection
coefficients. For example, a thin shale wedged in a porous
sand formation might result in the following reflectivity

function

L .
Yoaen gyl
LA
P R T
e at———————

Shale ST Ymsec +wown7 {ime

ve

Sand 0T

rct)

Experimentally, the following reflectivity averages would be

recovered (from eguation 3.4)

~(t) alt) LrlE)?

Therefore, this dipole can not be resolved by either
appraisal or construction methods. However, if such dipoles

are sufficiently seperated to be resolved by the appraisal,
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then these features, complete with the low frequency
information, may be recovered through construction

procedures.

(c) Data errors and the LP solution

In practical cases, the observed seismogram contains a
certain amount of noise which will affect subsequent
processing. This data noise translates into ‘an error for
each recovered spectral vglue Rj of the reflectivity
spectrum. In the presence of noise, it is undesireable to
solve the constraint equations exactly. Two ways of
handling errors in estimates of R have been discussed for
this LP approach by Levy and Fullagar (1981) and will be

briefly presented here.

1) Inequality constraints

Most LP algorithms allow inequality constraints, where
each constraint equation is required to be satisfied within
a specified error bound. The reflectivity constraint
equations may be easily converted into 1inequality
constraints as follows

* Real [R{]+E; 2 z 2 cosain/n)

2.

: N~
tImeﬂ[R,ﬂi’éj 23 2 [, sinGmqn/n) 4.20

nN=o
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where Ej and Eﬁ are specified wuncertainties at the Jjth
frequency.

In this 1ineguality formulation, the LP algorithm is
required to minimize the l.norm of the r,, while satisfying
the 1inequality relations 4.20. Error terms Ei and Ej' can
be most simply chosen empirically by assuming a data noise
level and then reqguiring the uncertainties to be a fraction
of this. Note that the number of constraint equationé is

doubled in this procedure.

2) Equality constraints

In the process of determining those reflection
coefficients which have a minimum lynorm, the LP algorithm
may alsé directly determine an estimate of the errors Ed and
Sd at each freguency. This may be done by retaining the
equality constraint relations, but introducing the

uncertainties as additional unknowns

| Nl
Real[R;] = £t %Ofﬂ cos(2TT9n /n )

N-1 |
Iqu)[Rj] =&y - '\Z:O Cn Sin(2m{n/n) 4.2

Also, an additional equation which constrains a statistical
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norm of the uncertainties is necessary to control the levels
of noise recovered 1in the LP solution. The details of a
constraint on the lynorm of the error terms is covered by
Levy and Fullagar (1981). Then the LP algorithm will search
for those r  which have a minimum 1) norm and in so doing
also determine error terms at each frequency which favour
the minimization. Of course, the errors Ei and 21‘ can be
positive or negative, so they must be cast in the form of
4.12 for input to ihe LP algorithm. Note that the number of
unknowns is increased by 4 at each frequency, but the number
of constraint eguations needed in this approach is nearly
half the number used in the inequality formulation.

For the following examples of LP construction, an
inequality approach was adopted. Synthetic data was
generated using a zero phase wavelet (an averaging function)
estimated from the correlated and stacked seimic data shown
in figure 15 (both the data and wavelet estimate were
provided by Imperial Oil of Canada). The wavelet and 1its
amplitude spectrum are shown in figure 16.

The first example of constrained LP construction is
shown in figure 17. The reflectivity function shown in
panel (b) was computed from the impedance model in panel
(a). The reflectivity was then convolved with the zero

phase wavelet to produce the synthetic seismic trace in

panel (c). The appraisal deconvolution shown in panel (d)
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Linear programming reconstruction of a reflectivity

function containing a few reflectors.
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indicates littie improvement over the original data because
the zero phase wavelet 1is already an 1ideal averaging
function. The constructed reflectivity function 1in panel
(e) was recovered by supplying the LP algorithm with
accurate spectral values between 12 and 35 Hz. The averages
<r(t)>'vere used to weight the objective function and
polarity constraints were also provided. The resulting
impedance function, shown in panel (f), compares very well
with the true impedance. No impedance constraints were
included in this example. |

Figure 18 shows the results of applying the LP method
using a noisy version of the impedance log from the previous
example. The noisy 1log 1is shown in panel (a). The
complexity of the resulting reflectivity and deconvolution
(panels (b) and (d)) present a difficult problem for the LP
algorithm since the method is best suited to find simple
reflectivity functions.

Accurate values of R between 10 and 35 Hz, supplied to
the LP algorithm along witﬁ polarity constraints and
weighting (from <r(t)>=l) lead to the recovered reflectivity
function in panel (e). The resulting impedance function
(panel (f)) shows that the construction was reasonably
successful at recovering the major trends of the original
impedance. By 1including two impedance constraints, one

midway and one on the basement impedance, a good recovery of
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the original impedance structure was obtained as shown in
panel (h). Further examples of this method are presented

next.

C) Stability and efficiency considerations
~ Before applying the AR and LP construction methods to
real seismic data, it 1is worthwhile invéstigating their
performance on synthetic examples under the following
complications.
1) the presence of additive noise in the data
(both methods)
2) inaccurate knowledge of the source wavelet
(both methods)
3) wvariance of the known freguency range f‘ to
f5 (both methods)
4) sensitivity of AR order to the number of
reflection coefficients (AR method only)
5) effects of different weighting functions
(LP method only)

Figure 19 shows the synthetic data which will be the
starting point for examples of the above considerations.
The sampling interval is 4msec.

For the first and second complications above,
constructions will be performed using two slightly different

spectral estimates. Since the wavelet is known, estimates
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Fig. 19. Synthetic test data. Wavelet has a band range
of 10-50Hz.

of R between frequencies f, and f, may be obtained through
a bandlimited spectral division; S(f)/W(f). Or estimates of
R may be taken from an appraisal of the seismogram;
S(f)V(f). More reliable estimates of R may be obtained
from the appraisal because insignificant or noise
contaminated fregquencies have been winnowed from these

results. Recalling equation 3.4, the appraised seismic

trace may be written

d) = r@) ¥ aw) = S ¥ V)

In the frequency domain this becomes

D&Y = REOAK) = SEIVK)

If A(f) is zero phase and approximately unity within the



69

banarange f‘ to f2, then the discrete spectral estimates D,,
may be eguated to Ri between £, and f9 for use in the
construction algorithms.

For the first example, various amounts of random noise
were added to the original synthetic trace s(t) 1in figure
19. The noisy seismograms are shown in panel (a) of figure
20 along with appraisal deconvolutions carried out on each
trace at © =1, The amount of noise added to the data is
indicated on the center line. The AR constructions are
shown in panel (b). Fourteen recovered spectral values
between 14 and 40Hz were used to predict the missing low
frequencies and the high frequencies to 125Hz using an order
of 11. The results on the left were obtained using spectral
estimates obtained from S(f)/W(f) and the results on the
right were obtained wusing appraisal estimates S(f)V(f).
Straight spectral division by the known wavelet has provided
sharper reflectivity constructions, however, the resulting
impedance models are not better than those obtained by using
appraisal estimates.

The LP constructions are shown in panel (c). Spectral
values between 14 and 40Hz were derived from S(f)/W(f) to
obtain the results on the left; and spectral values were
derived from S(f)V(f) to obtain the constructions on the
right. Clearly, wusing the appraisal estimates provides

better LP constructions.
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The second example, shown in figure 21, demonstrates
the effect of inaccurate knowledge of the wavelet. Trace 1
in panel (a) shows the true mixed phase wavelet used to
generate the original data and trace 5 shows a zero phase
version of this wavelet which is used as an inaccurate
wavelet. An appraisal of the original data wusing the
inaccurate }wavelet is shown in trace 6 (compare this with
trace 3; an appraisal wusing the true wavelet). The AR
constructions are shown panel (b). Again, 14 recovered
spectral values between 14 and 40Hz were used to predict the
missing low frequencies and the high frequencies to 125Hz
using 5 different orders as indicated. The results using
spectral division estimates S(f)/W(f) shown on the left are
somewhat better than the results using appraisal estimates
S(f)v(f) shown on the right.

The LP constructions are shown in panel (c). The same
known frequency range was used and different weighting
exponents 'g' were tested. Also for the bottom 2
reflectivity constructions, a constraint was placed on the
basement impedance. Again, wusing the appraisal output
S(f)V(f), provides much better LP constructions.

The third example tests the effects of varying the
known frequency range f| to f2‘ The AR and LP results shown

in figure 22 were obtained using accurate spectral estimates

of R(f) in the ranges indicated. The LP constructions shown
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on the right remain stable, but the AR results shown on the
left fail when the number of known frequency values becomes
close to, and hence, the order becomes less than the number
of spikes (9) in the original reflectivity r(t).

The fourth example shown in figure 23 demonstrates the
effect of varying the AR order using accurate and inaccurate
data. Twenty spectral values between 10 and G50Hz were
obtained from a spectral division of: 1) accurate data and
2) data with 10% added random noise. The AR constructions
obtained wusing accurate spectral values are shown on the
left and the constructions using inaccurate spectral vélues
are shown on the right. The normalized squared error (NSE),
plotted vs order, between the true and constructed models

and defined by

NSE = Imc({:)-nr\,\oc)]1 c- conshructed
] m+(£)]1 t-irue

are shown at the bottom of figure 23. The NSE indicate that
a long prediction filter (i.e., a high order) 1leads to
stable reconstructions. In other words, a good AR
construction may be obtained if the order 1is greater than
the number of significant spikes expected in the solution.
Because a greater range of reliable fregquency values are

spanned by a longer filter, a more reliable prediction of



74

_JM_LWWA‘ Fée) —A"A“LL"V‘V‘A‘
ls—ﬂw |0-50“2__A_AW_A__.A_V_V_A_
12 — Al 1050
7~ Apa A 0 -320

15—-/\./»—.,/\,_./\_.\/&]\-. 1§ -£0 _)\_A_L_A_rvj.
]OW [s-40 __L«_A__M
5——A-Wv«~J\,»J\-'ls“3o __AA_J\_A_PJL
order FREQUENCY

AR RANGE USED LP -

i

7654 _ﬁ#
l | | ]
0 4

Fig. 22. Stability of reconstructions with respect to the
frequency band used.


file:///0-SOh

75

ree) _LA_J_.L_»\V_VA.

‘A"A“’L‘LTYL
Ay
W
__AJ\,.JI\N,\_”V\.J\.
—J(\—J-.J\VW
A A g e
— A
*_AA~A~¢~1rJh
Mg
——KLJ\.J\««V-\,J\»
*MVLAW\A.
—_AAAJLJLﬂrQL
—WW
— At
—’LA-J\_A-»‘V\JL

3n~g\u\;w5:54w<ow;

order
Nolse FREE 109, NOISE
NSE NSE NSE NSE
3_ RERL f__ 171 4 \D.—‘ 2R o._ T,
(18]
- ] [7o -
Z
o ° w o
& e o 0 Tl o T o oA

Fig. 23. Stability of the AR method with respect to order
or +the stability of order with respect to the number of
reflection coefficients; using accurate and innaccurate data.



76

unknown values may result. However, if the filter is too
long (close to the length of the known data), noise on the
data will also be predicted, perhaps giving udesireable
results. This example suggests choosing the largest
possible order consistent with assumed noise levels in the
spectral data. If the signal to noise ratio of the data 1is
very high, choosing a 1large order should 1lead to good
results. Also, the NSE for the impedance constructions
indicate that, out of 9 boundaries in the true ”Z(t), only 6
boundaries are significant with respect to the order.

The last example 1in this section compares the use of
different weighting exponents on the objective function 1in
the LP algorithm. Figure 24 shows LP constructions using 14
spectral. values between 14 and 40Hz and 3 different
weighting exponents. The constructions are all very good
but the ones' using objective function weighting (g=1,2)
provide a good solution in 1/3 of the computing time

required with no weighting (g=0).
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5 Multitrace Reflectivity Construction using Real Seismic

Data

A) The Real Data

Data set A, shown in figure 25 along with a geological
interpretation, consists of 24 adjacent traces taken from
the deconvolved seismic section in figure 15 (vibrator
data), where the data location 1is indicated by the box.
Sonic logs are available near the seismic line, but they are
at least 1 mile removed. Data set B, shown in figure 26,
consists of a .5sec window of deconvolved explosion data (38
traces in all). \ A close by velocity log is available for
part of that time window near a trace location.

The raw trace amplitudes for each data set represent
measured voltages. Thus, if absolute reflection and
impedance magnitudes are desired, then it is necéssary to
match the energy in each deconvolved trace with energy
consistent with subsurface reflectivity. The standard
method of energy scaling utilizes available well logs. A
synthetic seismogram is constructed from a nearby velocity
log (and a density 1log if available) and then the total
energy in the deconvolved trace is matched to the energy in
the synthetic. Energy scaling 1is necessary 1in the
constrained LP approach if impedance or spectral

constraints, obtained from well log or velocity analyses,
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are included in the algorithm.

Since each seismic trace 1in sections A and B has
undergone an appraisal deconvolution, it represents
reflectivity averages, <r(t)>=r(t)*a(t), plus noise error
§<r(t)>=n(t)*v(t). The specific appraisal technigues used
on each data set are unknown, but it 1is assumed that the
_original source wavelet has been localized into a zero phase
averaging function, a(t)=w(t)*v(t). Each deconvolved trace

may be written

de) =r@Y %Ay + SLr@wyy

In the freguency domain this is

D@ =REOAK) +$ R(O 5|

Normally, A(f) is a smooth function and generally deviates
from 1its 1ideal value of unity between £, and fl (eg., fig.
16). Therefore, it may be necessary to first remove any
spectral smoothing of R(f) produced by A(f) before supplying
spectral estimates to a construction algorithm. Since an
average A(f) is availablé for data set A (fig. 16), the
sensitivity of the construction methods wiéh respect to the
smoothing effect of the averaging function will be tested

using the following two slightly different estimates of
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1) R(f) ¥ D(£)/A(f) (smoothing removed)
2) R(f) ¥ D(f)

for f‘ < f > fl

Figure 27 shows construction results for data set A
using the AR algorithm. The original data and the impedance
averages obtained from them are shown in panel (a). Panel
(b) shows the reflectivity and impedance constructions using
spectral estimates D(f)/A(f); and panel (c) shows the
results wusing estimates D(f). In both cases, 33 recovered
frequencies between 13 and 46 Hz were used to predict the
missing low freguencies and high freqguencies to 62 Hz using
an order of 24. No major differences exist in the two
constructed sections, however, the results in panel_(b),
obtained by using estimates D(f)/A(f) are somewhat noisier.

The LP constructions for data set A are shown in figure
28. The results wusing spectral estimates D(f)/A(f) are
shown in panel (b); and the results using estimates D(f) are
shown in panel (c). In both cases, reliable frequencies
from 12 to 35 Hz were used and two 1impedance constraints
were included; one midway and one on the basement impedance.

Clearly, the constructed section in panel (c), obtained by
using spectral estimates, D(f), provides the most consistent
results.

The above AR and LP construction results are generally
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trace by trace comparable, establishing confidence in the
reliability of both methods. Using smoothed spectral
estimates, D(f), provided more consistent LP constructions
and less noisy AR constructions. Thus, further
constructions will be carried out using smoothed spectral
estimates, D(f), obtained from the appraised data.

Autoregressive constructions for data set B are shown
in fiqure 29. The original data and the impedance averages
obtained from them are shown in panel (a). Frequencies
between 12 and 40 Hz were deemed reliable.by examining the
amplitude spectra of several deconvolved traces. An order
of 13 was used for the AR construction shown in panel (b),
where the missing low freguencies and high frequencies to 65
Hz were predicted for each trace.

The LP constructions for data set B are shown in figure
30. Freguencies between 12 and 40 Hz were used along with
one impedance constraint (midway) to obtain the results
shown in panel (b).

The AR and LP constructed sections obtained from data
set B  provide similar and more localized reflectivity
information. However, both constructed sections retain the
noisy character of the original data. A somewhat noisy
character is also observed in the constructed sections
obtained from data set A. Although good interpretations

could be made from these sections, the consistency of the
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results must be improved before the AR and LP algorithms can

be routinely applied to seismic data.

B) The Karhunen-Loeve Transformation

The recovered broadband sections above were laterally
inconsistent in some places, not because of the presence of
structural changes but more likely due to the presence of
noise in the data. A linear transformation known as the
Karhunen-Loeve (K-L) transformation (eg. Ready and Wintz,
1973; Kramer and Mathews, 1956) can be used to extract the
major similarities 1in a set of adjacent seismic traces for
the purpose of imroving lateral consistency.

Consider N traces of seismic data, where each trace
s; (t) 1is composed of a common signal x(t) plus a difference

signal n;(t); i.e.,

SR =XE) +N;) 5.2

If the n;(t) represent noise signals, then it is useful to
find an x(t) which summarizes the most correlated components
in the N traces. In general, the common signal may be

written as a linear combination of the s;(t) as follows

N
X<£):z’gls‘ *) S3

.
-
I=
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The s,(t), i=1,...N, span at most N dimensions in Hilbert
space and if the traces are highly cor;elated, they will
have a preferred orientation in that space. This suggests
rewriting the common trace as a linear combination of M

orthonormal basis functions jy(t)

" |
XCE) -—;;:okj ‘13-(@ M< N S
ey | .

where the directions of these basis functions are defined by

the eigenvectors of the inner product or covariance matrix
b
r‘:gsi({:)gjﬁt)dt $S
a .

The 98(t) may be defined as follows (see appendix A)

—_

. | =
9%<t):='_—" bd Y S$.6

Ny

where

S=(50), 5,4), . ...Sy®))

>%is the jth eigenvalue arranged in descending order 1i.e.,
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-—
)\\ > >\7_ >...>\N and b.) is the jth eigenvector of r' The
wg% in 5.4 may be found by minimizing the sum of integrated
squared differences between x(t) and the s;(t), that is by

minimizing

N BN ;
¢= Zg (%—*j %’Cﬂ“si&ﬂ at ST
=l a =

The result derived in appendix A is

NS
N izl .
where bij is the eigenvector matrix defined in appendix A.

Substituting 5.6 and 5.8 into 5.4 gives

X(k) = Z YQ bj | $9

where

Y-Lzb
] 4 4
Each term in expansion 5.9 is called a principal component
of the common trace. For example, ‘Xl§:o§? is the first
principal component and so on. If the N traces are highly
correlated, then ,X\ and 7(\ will be relatively large and

most of the information about - the common trace will be



90

contained in the first principal component. In fact if all
N traces are identical, then the first principal component
contains all of the information about the common trace and
the other components are trivial. At best, the components
of the first principal eigenvector provide optimum trace
weights to construct the desired common trace. In any case,
if M=N, i.e., if all principal components are summed, then

5.8 gives the mean trace (as shown in appendix A)

- N
X(£)===> 50 (4)
N (=)
A cfiterion could be established to help determine how many
principal components should be included in the common trace.
However, if only the major similarities between 3 or 5
traces are desired, then only one or two principal
components need be used to provide a common trace
In this thesis, expression 5.9 is referred to as the K-
L transformation and the common trace formed by this
transformation is called a principal component or K-L trace.

The K-L transformation can be applied in an overlapping

manner to deconvolved seismic data, to reflectivity and
impedance constructions, and to the choice of AR order, to
help improve the reliability and interpretability of
constructed reflectivity and impedance sections.

For example, the left hand side of figure 31 shows the
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results of applying AR prediction to the bandlimited
reflectivity function, «<r(t)> (12-46Hz), wusing several
orders. The seventeen known frequencies between 12 and 46Hz
were used to predict the missing low frequencies and the
high frequencies to 125Hz. The results are slightly
different for each order. Considering N=5 traces and using
only the first principal component gives the K-L traces
shgwn on the righﬁ hand side. These traces are very
consistent over a wide range of orders indicating that the
choice of AR order is less critical using the K-L approach.
Figure 31 alsc shows the principle of the mixing algorithm.
Traces 1-5 are used to obtain the top K-L trace, traces 2-6
are used to obtain the next K-L trace and so on.

Figure 32 shows the results of applying the algorithm
to the deconvolved data set B using N=3 and only ﬁhe first
principal component. The resulting principal component
section shown below, indicates that significant information
in the original data has been preserved and the noisy
character is absent.

Application of the K-L algorithm to an LP reflectivity
construction (from figure 28) is shown in figure 33. The
original constructed reflectivity and impedance sections are
shown on the left and the- principai component sections,

obtained wusing N=3 traces and only the first principal

component, are shown on the right. The interpretability of
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Fig. 31. Application of the K-L transformation to

stabilize the choice of AR order.
principle of the mixing algorithm.

Also showing the
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both sections has been markedly improved. Using this K-L
algorithm, noisy traces can be discriminated against while
preserving the most correlated information recovered by the
constructions.

The final constructed reflectivity and impedance
sections for data set A are shown in figure 34 along with
the original geologic interpretation. Both the AR results,
shown on the left, and the LP results, shown on the right,
were obtained by applying the K-L transformation to the raw
constructions shown previously wusing N=3 traces and the
first principal component in the mixing algorithm. The AR
and LP sections provide nearly identical interpretations.
The positive impedance contrast at the PreCretaceous
unconformity (which is a dominant feature in nearby well
logs) clearly correlates in all traces and the oil bearing
Redwater Reef shows up as an impedance low. Overall, it is
easier to make structural interpretations from the recovered
impedance sections. Comparisons between the original data
and the reconstructions are shown in figures 35 and 36.

The final constructed reflectivity and impedance
sections for data set B are shown in figure 37, Again,
these results were obtained by applying the K-L mixing
algorithm to AR and LP constructions using N=3 traces and
the first principal component. The available velocity log

has been inserted into the impedance reconstructions for
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comparison. The well 1log confirms the firs£ .3sec of
adjacent reconstructions and consistency between the AR and
LP results provides additional confidence 1in the final
models. Again, it is evident that subsurface structural
interpretations would be aided by using the impedance
section. Comparisons between the original data and the

reconstructions are shown in figures 38 and 39.

Conclusion

The problem of estimating béoadband acoustic impedance
from reflection seismograms has been investigated using a
linear inverse formalism. It was shown that a conventional
deconvolution / inverse filtering technique (which recovers
unigue bandlimited reflectivity information from the
seismogram) should precede the use of a particular
_construction algorithm (which attempts to recover the
unknown frequency bands). Two construction methods
presented in this thesis, the AR and the LP methods, have
shown success at recovering missing spectral information.
The K-L transformation was applied in real data examples to
stabilize both methods in the presence of noise and
impgdance constraints provided additional stability to the
LP sdluticn.

The AR method represents an inexpensive

(computationally) way to obtain reconnaissance broadband
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impedance information. Although the method works very well
on synthetic and real data examples, at this time there is
no way to constrain the output using information available
from other analyses. Absolute impedance information, from
available well 1logs should be utilized to improve the
stability of AR constructions 1in the presence of noise.
Other improvements to this method might include ways of
obtaining the prediction filter coefficients by constraining
the predicted dc frequency Rg or solving for the missing
frequencies directly using maximum entropy considerations.

The LP algorithm provides the most versatile approach
to recovering broadband impedance. Robust in the presence
of noise, this method allows much room for improvement;
restricted only by the creativity of the designer and the
efficiency of the linear programming algorithm.

It is concluded that impedance sections obtained from
both construction methods could greatly aid the
interpretation of subsurface structure. The problem of
reflection polarity may, in many cases, be solved by
performing an impedance construction. For example, until
the constructions for data set A were performed and the
positive impedance contrast was identified, the polarity of
the given data was not known. In fact, polarity was unknown
for both data sets until preliminary constructions were

performed.
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Appendix A: Derivation of the Common Trace

Consider N traces of seismic data, where each trace
s, (t) is composed of a common signal x(t) plus a difference

signal n; (t); that is,

Sie)=XCEY 4 N CE)

If the n; (t) represent noise signals, then it is wuseful to
find an x(t) which summarizes the most similar components of
the N traces. 1In general, the common trace may be written

as a linear combination of the N traces as follows
N
KEY=2 B 5i) 2
{=1

The most straight forward procedure is to find that common
trace which minimizes the sum of integrated squared

differences between x(t) and the si(t), i.e.,
N b s
QZS:Z S (x) -6 1)) dE | 3
I=1 a

is minimized with respect to x(t). Obviously, this

minimization leads to the mean trace

X&) =

Mz

LS <) Y
NS

"
—
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)

where the /5{ in 2 are all 1/N. There 1is no way to
discriminate against an erroneous trace 1in this procedure
because it is simply averaged in with equal importance. It
is desireable to find that set of weights Ai which
emphasize very similar traces andé rejects noisy or
inconsistent traces. This can be done by formulatinc the

common trace as a linear combination of orthornormal basis

functions.

Orthogonal Recomposition .

The s; (t) span at most N dimensions in Hilbert space.
If the s;(t) are highly correlated, they will have &
preferred orientation in that space. This suggests rewiting
the common trace as a linear combination of basis functions
which are orthonormal and contain one member which minimizes
the projection distances between it and the N traces.

The orthogonal recomposition of the common trace begins

by forming the inner product or covariance matrix

b

[0 = sicvsidt 5
q
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Since r‘ 1s symmetric, it may be written as

M=BAB"T

N Ne
0 A

1s a diagonal matrix of the eigenvalues of T" arrangec in

descending order (A\>A1>...>\), and

- -2

b by - by

—_—

1s a matrix compesed of the eigenvectors ky of T" . The
& = . ,

eigenvectors of rﬂ define a set of principal orthogonal

directions (analogous to the principal stress directions
obtained from & stress matrix). The matrix l3 has the
following property

BBE@&I;Zw 2g¢ = S

) EKJ
where I is the identity matrix, §}Kis the Kronecker delta
and b;j =B.

A set of orthonormal basis functions Vg(t) may be
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obtained by projecting the vector of seismic traces onto
each eigenvector and normalizing by the corresponding

eigenvalue as follows

{ - ‘ N
&)z=—h,'S = — S (&) A
fi = b ¥ = g b

3= (5,0),5,(8), .-~ Sy

and b
ﬁ,-(a B dE =85 /
a

The original traces may be reconstructed from the basis as

follows
N
sngmbmm g
g

This may be checked by substituting 6 into 8 as follows
N X
Sit) =2 iy b;KﬁK%bjk HO
N N
2% ki 55
N
:;z:l Sis $§)

= Sk
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The common trace “is then written as & linear

combinatior of M orthonormal basis functions
M
X&) =2 L) M2N
j:\ j 7
The c{j may be found by minimizing

N b .
:25 (x@)- i) dt

-25(2« e zwm,w ) dt

13V G

Minimizing this with respect to t>glq1ves

3¢ . |
2 ._z { < ¥ (£ B8

Mz

"2 T bic %O Y § At

=\

>~

Usin3 7 N N
T 0 =2(Ze m2 iy by )



111

Thus

S (&) |

If M=N, then 11 reduces to the mean trace
X () = —ATZSKM 12
K=l
If M<N, then 11 can be written
M Y LN
XCt\Z,Z\(ij"S '3
J:\
where



