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ABSTRACT

Neotectonics may be defined as any recent movement or deformation at or near the
earth’s surface, and the associated geological processes or mechanisms thereof (Vita-Finzi 1986).
A regional study of large landslides was undertaken in southwest Yukon, with the aim of
assessing the relationsh'ip between large landslides and neotectonic processes, with particular
emphasis on the role of seismicity.

‘Landslides were inventoried in an area covering 18,800 km? in southwest Yukon and
4,400 km? in adjacent south-eastern Alaska. Their spatial distribution was found to correlate
with certain lithological units, regional faults, and often dense clusters of low-level earthquakes.
Seismicity is especially intense in the Cement Creek area, where the relative temporal
distribution of landslides departs from the regional slope exhaustion model and more closely
resembles a steady-state distribution. A recent (1983) landslide in this area was attributed to a
modest M5.4 earthquake (Power 1988).

Field reconnaissance in Cement Creek valley was undertaken to assess the possible role
of neotectonic processes, and to gather data for a program of numerical modelling. Rupture
surfaces of the landslides were generally coincident with bedding surfaces in the tightly folded
volcanic rocks. Geomorphic evidence suggests an incremental displacement failure mechanism.

The available methods of dynamic numerical modelling are reviewed. Program UDEC is
found to be an appropriate analytical package for the modelling program. Limited verification
~tests of UDEC were performed. _

Strong motion data from a magnitude 4.6 earthquake were input successively to a
representative slope model. The program was able to simulate geomorphic features related to
slope deformation at Cement Creek, as well as confirming seismicity as a possible landslide
© triggering mechanism.
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CHAPTER 1

Introduction

1.1 Background

The evaluation of terrain hazards becomes increasingly important with the expansion of
urban development and transportation networks into mountainous areas. Among the most
prevalent of these hazards are landslides which account for significant losses in life and property
annually.

An inventory of slope movements in Fraser Valley (southwestern British Columbia) by
Savigny (in press) revealed more than 30 Holocene (post-glacial) landslides with volumes up to
550 million cubic metres. Many of these landslides are concurrent with local and regional faults,
a correlation also noted in southwestern British Columbia by Piteau (1977). It was proposed
that, among other factors, neotectonic processes may have contributed to these slope movements.

Seisrﬁicity along the fault systems in Fraser Valley is currently quiescent, and the
relationship between landslide processes and neotectonic activity in Fraser Valley is enigmatic.
In a study of the interrelationship between large ancient landslides and seismicity in Fraser
Valley, Naumann (1990) concluded that slope pore pressures had a potentially greater effect on
slope stability than paleoseismicity. However, positive correlations between comparatively
recent earthquakes and large landslides in the Canadian Cordillera are documented by Mathews et

al. (1978), Mathews (1979), and Evans er al. (1987). For this reason a parallel study was

undertaken to assess the effect of neotectonic activity on landslide processes.
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1.2 Research Synopsis

The aim of this research is to assess the relationship between large landslides and
neotectonic processes, with particular emphasis on seismicity. Within this context, neotectonics
may be defined as any recent movement or deformation at or near the earth's surface, and the
associated geological processes or mechanisms thereof. There is no generally accepted time-scale
implied in the definition of neotectonics (Vita-Finzi, 1986), and hence here it shall be arbitrarily
taken as the period that has elapsed since the final retreat of continental ice from the landscape.

The study area chosen is in southwest Yukon Territory, encompassing portions of eastern
St. Elias Mountains, western Yukon Plateau, and the intervening valley system. Terrain in this
region is not only physiographically similar to the mountains of southwest British Columbia, but
it has undergone similar patterns of Late Cenozoic continental glaciation. The southwest Yukon
is dissected by several seismically active régional faults and has a comparatively greater degree
of tectonic activity. Moreover, Holocene displacements have been reported along contiguous
structures in southeastern Alaska (Richter ez al., 1971; Plafker et al., 1977). The importance of
neotectonism in the assessment of terrain hazards in this fegion is underscored by Clague (1979,
1982).

Regional landslide data were derived primarily from aerial photograph interpretation with
limited field verification. The landslide population is assessed in terms of the factors that
contribute to slope instability. Although sorﬁe degree of interrelationship exists between them,
care must be taken to separate the role of the contributing factors from the-mechanisms that
trigger instability, such as seismicity.

Seismicity is a temporally transient neotectonic process that is to some extent spatially
constrained. Its effect on regional landslide patterns should be manifest as an overprint that may
have a distinct spatial bias and temporal signature. Once areas have been defined where

seismicity is a suspect mechanism, localized studies may be undertaken to assess the specific

effect.
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1.3 Thesis Structure

This thesis is arranged in two distinct but related parts.

Part I is comprised of Chapters 1 through 4. The introductory comments are contained
in Chapter 1. In Chapter 2 the regional geological and physiographic setting of southwest Yukon
are cast. Chapter 3 contains a presentation of aerial photograph inventories in southwest Yukon
and adjacent southeastern Alaska. These are followed .by an analysis of the factors that
contribute to regional slope instability patterns. Chapter 4 focuses on Cement Creek, an area
where neotectonic effects are considered an important factor contributing to landsliding.
Numerical study of the effects of seismicity on slope stability are recommended as a complement
to Part 1.

Part II is comprised of Chapters 5 and 6, embodying the results of Part I and applying
them specifically to numerical analyses. Chapter 5 provides an overview of the available
numerical methods for dynamic analysis of rock slopes, including the chosen method, program

UDEC. This is followed by a verification of UDEC. Chapter 6 contains. the results of the

UDEC analyses. Chapter 7 contains the conclusions of the research.




CHAPTER 2

Regional Setting

2.1  Location

The study area encompasses approximately 18,800 km? in southwestern Yﬁkon (Fig.
2.1), and includes portions of Kluane National Park and Kluane Wildlife Preserve. Extensions of
the study into contiguous corridors of eastern Alaska cover an additional 4400 km2. The
population centres include Haines Junction, Destruction Bay, and Burwash Landing. Haines
Road and Alaska Highway, important transportation links between Yukon and Alaska, are

located in Shakwak Valley.

2.2 Physiography and Climate

The principal physiographic divisions in the study area are Shakwak Valley, St. Elias
Mountains, and Yukon Plateau (Muller, 1967; Rampton, 1981) (Fig. 2.2).

Shakwak Valley is a broad trough extending from Dezadeash Lake northwest to Alaska,
separating St. Elias Mountains from Yukon Plateau. The valley floor descends from 900 m in
the southeast to 600 m in the northwest, and varies between four and ten kilometres in width.
Gently undulating valley bottom topography is characterized by glacial landforms, and hosts
several rivers and large lakes. Drainage is good to moderately poor, with no stream extending
along the length of the valley.

St. Elias Mountains in Yukon comprise a vast region of rugged terrain that includes

Kluane, Donjek, Alsek, and Icefield ranges, and Duke Depression (Rampton, 1981; Fig. 2.2).
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The Kluane Ranges rise abruptly to the southwest of Shakwak Valley, offering relief exceeding
1600 m and a virtually continuous escarpment of 950+ m on the valley frontage that is breached
only by major drainages. They are separated from Icefield Ranges to the west by Duke
Depression and Donjek Ranges, and to the séuth by Alsek Ranges. Characteristically steep,
angular peaks are separated by serrated ridges, and commonly attain heights of 2000 m or more,
with some exceeding 2500 m. Alpine glaciers mantling the peaks are more abundant to the west.
Duke Depression (Muller, 1967) is a system of upland plateaux and valleys 200 m to 500 m
higher than Shakwak Valley, that extends northwest from Burwash Uplands near Kluane Lake to
White River near the Alaskan border (Rampton, 1981). The region is dissected by several
antecedent braided river valleys that are fed by glaciers descending from the icefields to the west.
Between these valleys, well incised, high gradient rectangular drainages often follow structural
trends. Further west, Icefield Ranges form the core of St. Elias Mountains. They rise to well
over 3000 metres beneath a thick carapace of ice, and include the Mt. Logan massif, the highest
point in Canada at 6050 m.

In sharp contrast with St. Elias Mountains, topography of Yukon Plateau rising to the
northeast of Shakwak Valley (Bostock, 1948) is characteristically subdued. Rounded or flat-
topped peaks of Ruby, Dezadeash, and Nisling ranges comprising its western edge are connected
by broad ridges, typically attaining heights of 1500 m to 1750 m, with a few rising to 2200 m.
Non-continuous frontage along Shakwak Valley is typically less than 900 m, giving way to low,
rounded, domal hills to the northwest. Reticulate drainage dissecting this region occupies broad,
well incised, low gradient, stream valleys.

The climate regime in the study area is designated dry continental (Wahl et al., 1987).
St. Elias Mountains to the west form a major orographic barrier to inland movement of warm,
moist Pacific air masses; mean annual precipitation in St. Elias Mountains is transitional from up

to 3500 mm near the coast to less than 500 mm in eastern Icefield Ranges and Kluane Ranges,

and to less than 400 mm in Shakwak Valley (Wahl er al., 1987). Summers are characteristically
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brief and cool, and the winters long and cold. The mean monthly temperatures for Burwash

Landing and Haines Junction in Shakwak Valley are shown on Figure 2.3.

2.3 Glaciation and Quaternary History

Southwest Yukon and eastern Alaska have been extensively glaciated in Late Tertiary and
Quaternary time. Tillites interbedded with Neogene volcanic rocks were identified in areas of
Alaska adjacent to the study area (Denton et al., 1969). In Shakwak Valley, three major glacial
advances of Wisconsinan and Illinoian age have been identified (Denton er al., 1967; Muller,
1967). These advances correlate at least partially with advances further northwest near the
Yukon-Alaska border (Rampton, 1971), and in eastern Alaska (Denton, 1974). An approximate
chronology of late Pleistocene and younger advances for the Kluane Lake area was compiled by

Rampton (1981) (Table 2.1).

Table 2.1. Quaternary glacial chronology of the Kluane Lake area.

Neoglaciation < 2,800 b.p.

Slims Nonglacial 2,800 - 12,500 b.p.

Kluane Glaciation 12,500 - 29,500 b.p.

Boutellier Nonglacial 29,600 - 100,000
Icefield Glaciation b.p.

Silver Nonglacial > 100,000 b.p.
Shakwak Glaciation

A reconstruction of the Kluane glaciation proposed by Denton (1974) involves ice lobes
from Kaskawulsh, Dusty, and Lowell glaciers coalescing in Shakwak Trench and merging with

northwest flowing ice from Donjek Valley. Surficial features in Shakwak Valley infer a

maximum ice height of at least 1830 metres during this period (Denton et al., 1967), with the
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height decreasing somewhat to the northwest (Rampton, 1979a). The ice was constrained by
Kluane and Ruby ranges before exiting Shakwak Valley and merging with a smaller lobe from
White River Valley. The maximum glacial advance was attained at the northwest end of

Shakwak Valley around 14,000 b.p., followed by a rapid recession.

2.4 Regional Geology

2.4.1 Tectonic Setting

The boundary between the northeastern Pacific Plate and the North American Plate is the
principal tectonic feature of southeastern Alaska. Movement along the plate boundary is
transiﬁonal from primarily dextral-transcurrent slip on Queen Charlotte-Fairweather Fault to
convergence on Chugach-St. Elias and Pamplona Fault Zones (Perez er al., 1980).
Northwestward motion of the nonheagtern Pacific Piate relafive to the North American Plate is
estimated at 59 to 63 mm/year in the Holocene (Chase, 1978; Minister et al., 1978 in Perez et
al., 1980). Strain is accommodated By oblique subduction offshore in Transition Fault Zone,
folding and thrusting in Chugach-St. Elias Fault System (Plafker, 1987), and dextral offset on
Totschunda Fault (Lisowski et al., 1987). Evidence of Holocene strain in Yukon is limited
(Souther et al., 1975; Clague, 1979). |

Two distinct, sub parallel zones of seismicity are recognized in this region (Horner,
1983; Wetmiller et al., 1989). Situated albng‘vthe southeastern Alaskan coast, Fairweather-
Yakutat Zone includes Queen Charlotte-Fairweather and Chugach-St. Elias Faults, and,
Transition and Pamplona Fault Zoﬁes. One huﬁdred and twenty five kilometres inland, Denali-
Shakwak Zone, which includes Denali Fault System, Duke River Fault, and Totschunda Fault,
passes through southwestern Yukon and southern Alaska (Fig. 2.4). Denali-Shakwak Zone is

less active than Fairweather-Yakutat Zone in terms of both rriagnitude and total number of

recorded earthquakes (Horner, 1991 pers. comm.).
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The principal faults and terranes in southwest Yukon are shown on Figure 2.4. Segments
of Denali Fault in Yukon and eastern Alaska underwent several hundred kilometres of dextral
transcurrent displacement between latest Cretaceous and Eocene time, with less than 40 km of
- subsequent offset (Lanphere, 1978; Plafker, 1989). Surficial and stratigraphic features in Yukon
(Clague, 1979) and eastern Alaska (Richter et al., 1971; Plafker, 1977) suggest Pleistocene or
Holocene offsets have occurred, but Quaternary dislocations are confirmed only to the west of
Nabesna River, some 70 kilometres into Alaska.

Duke River Fault (Muller, 1967) separates predominantly Paleozoic rocks of Alexander
terrane from Permo-Triassic rocks of Wrangellia terrane. Major displacements are post-Late
Triassic and pre-Miocene aged (Campbell er al., 1978), although possibly related faults in
western Yukon exhibit Miocene or later offset (Muller, 1967; Souther et al., 1975); the
magnitude of the displacements are unkpown. Quaternary movement on Duke River Fault has
not been noted (Campbell ez al., 1978). Structure and stratigréphy west of Kluane Lake near
Steele Creek indicate northeast directed thrusting on a steeply southwest dipping plane (Muller,
1967), although transcurrent offset has a].so been suggested (Read, 1976; Campbe]l et al., 1978).

In eastern Alaska, Totschunda Fault extends over 180 kilometres northwest from near the
Yukon border to where it merges with Denali Fault. Vertical and invariably dextral horizontal
offsets 'in Wisconsin aged glacial deposits on Totschunda Fault indicate significant Quaternary
movement (Richter er al., 1971). Estimates of Late Cenozoic transcurrent displacement were
refined by Plafker er al. (1977) to four kilometres or less with an age not older than Late

Miocene.

2.4.2 Geology Southwest of Denali Fault

Pre-Cenozoic rocks of Wrangellia (Fig. 2.4) described by Read et al. (1975) and Read

(1976) consist of a thick succession of Pennsylvanian to Permian volcanics beneath Permian

clastic sediments and carbonates. These in turn are overlain by Upper Triassic to possibly early




Chapter 2 Regional Setting

Jurassic subaerial and submarine basic volcanics and Middle Triassic to Jura-Cretaceous(?)
shallow marine sediments. These sequences are intruded by Cretaceous and Tertiary plutons,
and predominantly basic Permo-Triassic through Tertiary sills and dykes (Dodds, 19824, b, ¢).
Where present, cover consists of Jura-Cretaceous flysch (Dezadeash Formation of Eisbacher
1976), Lower Tertiary clastic sediments (Amphitheatre Formation), and Neogene (Wrangell)
volcanic rocks (Dodds, 1982a, b, ¢). Contiguous strata in the eastern Alaska 'Ranges are
described by Richter et al. (1973) and Richter (1976).

Permo-Triassic strata of Wrangellia are typically folded about northwest trending axes
and are highly dissected by faulting. ) Folding and faulting are most intense in the areas
immediately west and south of Kluane Lake where Duke River Fault and Denali Fault converge.
Tertiary cover is folded about northwest trending axes and is-locally dislocated by faults,
although not to the extent of the underlying strata.

Rocks of Alexander terrane (Fig. 2.4) described by Read et al. (1975) and Campbell et
al. (1978) are predominantly comprised of generally low-grade metamorphosed, pre-Ordovician
through Triassic volcanics, volcaniclastics, sediments and carbonates. They are intruded by
Pennsylvanian through Pérmian and Jurassic through Cretaceous dioritic bodies, Tertiary
plutons, sills, and dykes, as well as basic sills and dykes of lower Paleozoic(?) through Tertiary
ages (Dodds, 19824, b, ¢). Basement rocks are locally overlain by Upper Cretaceous and Lower
Tertiary (Amphitheatre Formation) clastic sediments, and Neogene (Wrangell) volcanic rocks
(Dodds, 19824, b, ¢).

These assemblages have undergone at least two pre-Cenozoic deformation episodes with
attendant folding and faulting. A third post-Miocene episode created predominantly strike-slip
faulting and prominent west-southwest and west-northwest trending folds. Deformation is most

intense to the east near Duke River Fault and the trace of Denali Fault (Read, 1976; Campbell et

al., 1978).
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2.4.3 Geology Northeast of Denali Fault

Rocks northeast of Denali Fault described by Kindle (1953), Muller (1967), and
Tempelman-Kluit (1974) are comprised primarily of Paleozoic metamorphic terrane and Jurassic
through Early Tertiary igneous rocks (Fig. 2.4).

Paleozoic and lower Mesozoic oceanic rocks of Windy-McKinley terrane (‘Unit 3' of
Muller 1967) consist of metamorphosed marine sediments, mafic volcanics, ultramafics and
[metamorphosed] limestone bodies (Wheeler er al., 1987). Contiguous sections in the eastern
Alaska Ranges are described by Richter (1976).

Nisling terrane is locally comprised of two packages of rocks; to the east are Cambrian
through Devonian "partly metamorphosed carbonaceous and siliceous offshelf sediments” and to
the southeast is a Cambrian "metamorphosed passive continental margin assemblage"” (Wheeler et
al., 1987). The rocks consist of quartzite, biotite-muscovite schist, marble lehses and locally
phyllite, greenstone, and amphibolite (Wheeler et al., 1987). They are in part equivalent to
"Aishihik Assemblage” of Erdmer (1991), "Nasina Quartzite" and "Biotite Schist" of
Tempelman-Kluit (1976), and "Unit 1" of Mulle; (1967).
| Gravina-Nutzotin Belt (Berg et al., 1972) in Yukon is comprised of Jura-Cretaceous
flysch (Dezadeash Formation of Eisbacher, 1976), minor non-marine strata, and on Figure 2.4
includes Paleozoic metamorphic rocks ("Kluane Assemblage” and, in part, "Aishihik
Assemblage" of Erdmer, 1991). Igneous terrain includes mid-Jurassic, Cretaceous, and early
Tertiary granitic bodies (Muller, 1967; Tempelman-Kluit, 1975). Original structures are poorly

preserved in the metamorphic terranes; tightly spaced west-northwest and north trending folds

are preserved in the flysch sequences (Eisbacher, 1976).
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1982a, b, c; Wheeler et al., 1987; & Horner, 1983).
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CHAPTER 3

Landslide Inventories and Regional Assessment

3.1 Introduction

A brief description of the inventory method and its limitations in Section 3.2 is followed
by presentation of the Yukon and Alaska inventories in Sections 3.3 and 3.4. An assessment of
the landslide distribution is given in Section 3.5, and the factors controlling the distribution are
discussed in Section 3.6. An overview of steady-state and exhaustion regional landslide

distribution models in given in Section 3.7.

3.2 Inventory Method

The landslide and lineament inventories were prepared with data collected from small
scale (ca. 1:70,000) black and white aerial photographs. The airphoto set was analyzed a
minimum of three times to improve the consistency and accuracy of the interpretations.
Preliminary results were calibrated by comparison with available records of landslide occurrences
in the inventory area. Field visits in 1990 and 1991 at a number of the sites verified the airphoto
interpretations.

The morphological features used to identify landslides in aerial photographs include
scarps, ground cracks, rupture surface scars, debris trains or lobes, slope ponding, bulges or
depressions in slope profile, offset or dammed drainages, tonal variations, and contrasting

vegetative patterns (Mollard, 1977; Rib et al., 1978). Topographic lineaments are commonly
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~expressed as linear or sub-linear ridges or depressions, distinct patterns of drainage or
vegetation, tonal variations, or alignments of topographic features (Ray, 1972; Mollard, 1988).
Landslide and lineament locations were transcribed to 1:250,000 scale compilation maps.
Plan areas of the landslides were taken from the compilation maps with an analog planimeter.
Summary information for each of these sites in Appendfx 1 includes the following; (a) an
informal site name, usually based upon a local geographic feature; (b) the type of movement,
based upon the classification of Varnes (1978); (c) the site location, both as a latitude-longitude
pair, and as a coordinate pair corresponding to the alpha-numeric grid on the border of Figures
3.1 and 3.2; (d) the predominant bedrock division at the site, taken from compilation maps by
Dodds (1982a, b, c) and Kindle (1953) and; (e) observations and comments specific to each site
in the last column. Because most of thé landslides are complex movements, the type given (point
(b) above) corresponds to the predominant mode: where\;er the mode is uncértain it is annotated
with a question mark (?). The term "landslide zone" refers to areas of widespread, often

coalescing landslides where individual movements cannot be discerned.

3.2.1 Inventory Limitations

Significant effort was made to ensure the inventory is accurate and complete.
Notwithstanding these efforts, the inventory has several limitations. First, the diagnostic
morphology of most of the landslides in this region is modified by exogenic processes.
Modification can be substantial with increasing age, making recognition of older landslides
difficult, and as a consequence the number of ancient landslides may be under-represented in the
total population. Secondly, small landslides (those with volumes lvess than approximately 1x106
m3) were ignored because they are difficult to identify consistently on small-scale aerial
photographs. Such landslides are ubiquitous in the study area, and contribute significantly to
mass wasting in this region. Their importance as a regional slope forming process cannot be

discounted, especially in those areas where large-scale slope movements are absent.
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3.3 Yukon Landslide Inventory

3.3.1 Previous Studies

Several landslides in the study area are shown on maps of bedrock geology (Dodds,
1982a, b, c) and surficial geology (Rampton, 1979a, b, c; 1981). A suite of landslides on Mount
Wallace (Sheep Mountain) at the south end of Kluane Lake was investigated by Clague (1981).
His study concluded that extreme relief, geological structure, seismicity, and intense precipitation
were the probable causes of instability. A regional synthesis of natural hazards by Clague (1982)
included the locations of a number of landslides in St. Elias Mountains and Shakwak Valley.
Power (1988) studied a recent landslide in Tertiary volcanic sequences at Cement Creek, and
concluded that geological structure,. groundwater conditions, and seismicity contributed to that
event. A terrain hazard inventory of the Kluane Regional Planning Area prepared by Thurber
Consultants (1989) notes several landslides in the northeastern study area. No regionai study of

large landslides in southwest Yukon had been undertaken prior to this study.

3.3.2 Results

The distribution of landslides and lineaments is shown on Figures 3.1 and 3.2. 98
landslides covering approximately 230 km? (1.2% of the study area) were identified. The
temporal distribution of the landslides has not been determined. However, the age of one
landslide (Sheep Mountain Rock Avalanche) has a radiocarbon age between 500 and 1950 b.p.
(Clague, 1981), and another (Cement Creek #1), occurred in the spring of 1983 (Power, 1988).
Based upon their appearance and with assumed rapid physical modification, the majority are
considered Middle-to-Late Holocene in age. However, the span of ages is believed be from

earliest post-glacial (ca. 12,500 b.p.) to very recent.
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3.4 Alaska Landslide Inventory

3.4.1 Previous Studies

Landslides in the Eastern Alaska Ranges along Totschunda Fault and the westernmost
segment of Denali Fault are noted by Richter et al. (1971). Additional lancislides in this region
are shown on a geological map of the Nabesna Quadrangle compiled by Richter (1976). An
aerial photograph reconnaissance of Totschunda and Denali Faults in Eastern Alaska Ranges by

Plafker (unpublished data) identifies a.-number of landslides.

3.4.2 Results

The distribution of landslides and lineaments in the eastern Alaska study area is shown on
Figufe 3.3. 14 landslides covering an area of apbroximately 40 km?2 (1.0% of the Alaskan study
area) were identified along Totschunda Fault corridor; no landslides were identified on the
Alaskan segment of Denali Fault. The temporal distribution of the landslides has not been

determined, but the majority are believed to be of Middle-to-Late Holocene age.

3.5 Assessment of the Regional Landslide Distribution

The assessment of the regional landslide distribution is in two sections. First, a brief
overview of the fundamental aspects and limitations of regional assessment are given, and

secondly, the gross slope stability patterns are described.

3.5.1 Fundamental Considerations

The scope and methods of assessing slope stability at regional scale differ from those

used in localized studies. Local (site specific) studies usually emphasize post-failure analysis,
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and tend to concentrate on site description, the geometry and mechanics of the landslide, the
engineering properties of the earth materials, and other aspects of local significance (i.e. Hendron
et al., 1985; Evans et lzl., 1989; Cruden et al., 1992). In .contrast, regional studies generally
focus on the identification and mapping of a landslide population, usually by remote sensing,
followed by the application of comparative analyses to the population (i.e. Piteau, 1977; Nilsen
et al., 1977; Hansen et al., 1991; Savigny in press). The aim is usually to identify the
underlying factors affecting the population, with the possibility of extrapolating the results to
adjacent areas, or to other regions with similar geological, tectonic, or geomorphic styles or
processes. By their nature, regional studies emphasize the qualitative aspects of slope stability
because the large number of intrinsic and extrinsic factors affecting a landslide population often
cannot be practically quantified at regional scale. Indeed, from the regional perspective, the
effect of local variations in rock mass strength and behaviour on slope stability average out
(Piteau, 1977), and the overall slope stability pattern reflects the relative stability of entire rock
sequences, geological features, or physiographic divisions.

The many factors that affect slope stability are summarized by Coates (1977) and Piteau
(1977), and may be grouped into three broad categories. First are the properties of the earth
materials, such as their structural and lithological character, as well as their arrangement and
orientation in space. Secondly are the aspects of the geomorphic setting and environment such as
topography, total relief, slope form and orientation, and hydrology. The final category of factors
are the external factors, also termed triggering mechanisms, that include peak climatic events or
climatic change, seismicity and neotectonism, and anthropogenic modification. The trigger
mechanisms are considered to be independent of the earth material properties and the geomorphic
setting (Coates, 1977).

At any time, and under a prescribed set of ambient geological and geomorphic

conditions, the stability (or instability) of a slope reflects the balance between geological

processes that create relief, and erosional processes that diminish relief. It is assumed that slopes
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have a tendency to evolve toward an equilibrium state under the influence of the ambient
conditions.  Landsliding is one possible response to disequilibrium between the opposing
processes. In slopes at or near limiting equilibrium, movement is initiated when the local critical
stability threshold is exceeded by stresses imposed by the external triggering mechanisms (Coates
et al., 1977; Palmquist et al., 1980). An important corollary to this model is that the character,
magnitude, or frequency of these processes may change with time, and for this reason, the
concept of slope equilibrium (or disequilibrium) is relative only to the temporal interval it is

defined for.

3.5.2 Spatial Distribution and Density

The spatial distribution of landslides in Yukon is shown on Figures 3.1 and 3.2, and in
Alaska on Figure 3.3. In Yukon the majority of the landslides are situated in St. Elias
Mountains; comparatively few occur in Shakwak Valley or to the east in Yukon Plateau. Several
distinct clusters of landslides are apparent on Figures 3.1 and 3.2; one to the west of Donjek
River (~ HS5, Fig. 3.1), and the other between Kathleen and Mush Lakes (~ G7, Fig. 3.2).
Smaller clusters also occur in the Grizzly Creek area (~ C12, Fig. 3.1), the south end of Kluane
Lake (~ B16, Fig. 3.1), and at Chalcedony Mountain (~ K2, Fig. 3.2). The remaining
landslides are sporadically scattered throughout the study area. The majority of landslides in the
Alaskan study area are proximal to Totschunda Fault and faults related to it (Fig. 3.3).

The population density of large landslides (total landslide population divided by the total
area of the'study region) for this inventory and other regional studies in mountainous terrain are
compared in Table 3.1. The densities represent the average spatial frequency of landsliding. As
noted in Section 3.1.1, the data in Table 3.1 are biased toward comparatively recent landslides.

This effect was also noted by Whitehouse et al. (1983) for data from New Zealand, and probably

applies to the data of Savigny (in press) as well. Therefore, rather than representing a uniform
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sample of landslides throughout Holocene time, the densities are considered more representative

of Late Holocene landslides.

Table 3.1. Comparison of landslide population densities.

Location Area (km?) | Density (km2) Source
Southwest Yukon, Canada 18,800 1/192 Everard (this study)
Central South Island, N.Z. 10,000 1/238 Whitehouse et al. (1983)

Southwest B.C., Canada ) 4900 1/140% Savigny (in j)ress)
Eastern Alaska, USA 4400 1/314* Everard (this study)

* Reflects population density in a corridor specifically adjacent to a regional fault.

In general, population densities are on the order of one per several hundred square
kilometres in all four regions. The results obtained in Yukon and New Zealand are similar, but
exhibit some disparity when compared with the densities from Alaska and British Columbia. A
comparatively high population density derived from the aata of Savigny (in press) suggests that
rocks near major faults are more susceptible to instability. Indeed, while landslides and landslide
deposits occupy one percent of the eastern Alaska study area, the corresponding coverage in
southwestern British Columbia is neérly four percent (Savigny, in press), suggesting the latter
rocks are especially susceptible to instability. However, this contrasts with a rather lower
density from data in eastern Alaska. The differences are attributed to the sharpness of relief and

climate, both of which are more conducive to instability in southwest British Columbia.

21




Chapter 3 Landslide Inventories and Regional Assessment

3.6 Factors Affecting the Landslide Distribution

3.6.1 (Climate and Climatic Change

The principal climatic factors that affect slope stability, either as peak events of
comparatively short duration or as gradients in ambient climatic conditions over extended periods
of time, are the precipitation and temperature regimes.

The mean annual temperature ip the study area is dependent on elevation, and varies from
approximately -3C in Shakwak Valley to below -10C in St. Elias Mountains (Wahl et al., 1987).
The mean annual temperature is -3C and -4C at Haines Junctiqn Aand Burwash Landing
respectively (Environment Canada, 1993), and decreases with increasing altitude to between -10C
and -15C at 2500 m (Wahl ez al., 1987).

The primary effect of this temperature regime is to encourage the formation of ground ice
and permafrost. Permafrost is continuous from thé latitude of Kluane Lake and north, except for
isolated pockets of discontinuous permafrost in lowland areas and at higher elevations in St. Elias
Mountains (Heginbottom er al., 1992). South and east of Kluane Lake the permafrost regime in
upland areas degrades to discontinuous and becomes sporadic near the British Columbia border.
Lowland and valley bottom areas in the vicinity of Dezadeash Lake have only isolated pockets of
permafrost (Heginbottom ez al., 1992). The presence of permafrost in hill slopes inhibits deep
penetration of atmospheric water, and tends to enhance active layer slope-movement processes
and surficial denudation. This is well evinced by the presence of solifluction lobes, skin flows,
and surficial landsliding throughout the study area. |

Frost-wedging on slopes may occur in near surface pore spaces during the April-May and
September-October shoulder seasons when the mean temperature is near freezing. Data

discussed by Piteau (1977) accentuates a positive correlation between rockfalls on steep slopes
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and the frequency of freeze-thaw cycles, but this process affects a relatively thin near surface
zone and is not considered a controlling factor in deep-seated slope movements.

The mean annual precipitation in Shakwak Valley at Burwash Landing and Haines
Junction is 289.9 mm and 305.8 mm respectively (Environment Canada, 1993), and generally
increases to the west (Wahl et al., 1987) as noted in Section 2.2. Precipitation data for Burwash
Landing and Haines Junction are presented on Figures 3.4, and 3.5; detailed data for the eastern
St. Elias Mountains are not available. Differences in the mean monthly precipitation patterns and
in the rain/snow proportions of total precipitation reflect varyihg degrees of orographic influence
at each of these locations, as well as a number of other interrelated factors (Wahl er al., 1987).

In the months May through September the bredominant form of precipitation is rain, and
the extreme 24 hour precipitation events that have been recorded during these months comprise
more than 75% of the mean monthly precipitation in most cases. Further, the expected annual
24-hour maximum total rainfall for 2, 5, and 10 year returns in Table 3.2 represent considerable
portions of the mean rainfall in any month. These data suggest that high intensity rain storms are

not infrequent in this region.

Table 3.2. Expected maximum 24-hour total rainfall (mm) for various return

periods. *
Return Period (years) 2 5 10 15 20 25 30 50
Burwash Landing 22.0 30.6 | 363 | 39.5 | 41.7 | 43.5 | 449 N/A
Haines Junction 19.0 320 | 406 | 454 | 48.8 51.5 53.6 59.5

* Source: Wahl et al. 1987.

In July 1988 unusually severe rainstorms preceded widespread debris torrent and shallow

landslide activity in Shakwak Valley near Kluane Lake (Evans er al., 1989). The association
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between landslides and peak rainfall (storm) events or abnormally high antecedent rainfall in
other areas is well documented (i.e. Evans et al., 1983; Kaliser et al., 1986; Polloni et al.,
1991). However, correlations between deep-seated slope movement and preéipitation in
southwest Yukon have not been reported.

In broad terms, the infiltration of atmospheric water into a slope, whether it is introduced
through rainfall or rapid snow melt, has the effect of raising the piezometric surface and pore
pressures within it. The amount of change in the slope hydrogeological regime depends upon the
intensity and duration of moisture influx, the infiltration rate, the geological materials and their
arrangement, and the saturated hydraulic conductivity of the slope (Freeze, 1982). As noted
above, permafrost is continuous beneath the majority of the upland area in this study
(Heginbottom et al., 1992), and is believed to inhibit infiltration of atmospheric water into the
subsurface. For this reason, rainfall and snow melt are not considered a significant factor
cohtrolling distribution of large landslides in these areas. In those portions of the upland area
underlain by discontinuous permafrost, infiltration of atmospheric water may occur and
exacerbate slope movement.

The climate in southwest Yukon has been evolving for considerable time. Burn (1994)
notes that uplift in St. Elias Mountains has been virtually continuous since Oligocene time
(Eisbacher et al., 1977), supporting conditions amenable to glaciation and the formation of
permafrost. Presumably the formation of vast ice sheets to the west as well as orographic
isolation from the Pacific Ocean has had a considerable influence on the climate in this region.
Evidence of paleoclimates preserved in the stratigraphic record are sporadic. Pre-Quaternary
glacial activity between 2.7 and 10 Ma ago has been documented in the eastern Alaska Ranges
(Denton et al., 1969). Rampton (1981) discusses evidence of several Mid- to Late Pleistocene

non-glacial intervals, and, more recently, a hypsithermal interval between 8700 and 2800 b.p.

The warmer climates associated with the nonglacial intervals and the hypsithermal may have
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caused changes in the distribution of permafrost in this region, and for the reasons discussed

above, promoted slope instability.

3.6.2 Lithological Correlation

In this study, lithology refers to the mapped bedrock divisions and their spatial
distribution in the study area, as compiled by Kindle (1953), Muller (1967), and Dodds (1982a,
b, ¢). The correlation between landslides and the bedrock division they occur in is a convenient
index for identifying rocks that are relatively more unstable than others.

An example of a lithologically controlled landslide is Bighorn Creek Rock Block-
Slide/Avalanche, a large, highly mobile, bimodal rock slope movement that is characteristic of
several landslides in this study. Slope failure appears to be transitional from rock-block sliding
near the head of the slide to debris avalanching further down slope. Landslides with comparable
mobility in other areas of the Canadian Cordillera were described by Eisbacher (1979) and Evans
et al. (1989).

The head scarp is an arcuate scar approximately 1500 metres long and 220 metres high at
the head of what was, prior to the landslide, a cirque (Fig. 3.6). It steeply dislocates bedding in
Neogene volcanic rocks (Wrangell Lava), and may extend downward into underlying Ordovician
sediments. Its western flank is fault bounded.

. Several massive columns of virtually intact rock, one of them approximately 800 metres
wide, have translated a short distance beneath the western edge of the head scarp (Plate 3.1) (Fig.
3.6). These rock blocks have not undergone significant rotation, suggesting that initial
movement occurs on a basal sliding surface. This surface is believed to be either a bedding plane
in the volcanic sequences or the unconformable contact with underlying Ordovician rocks.

The debris stream is confined in a narrow valley adjoining a tributary of Bighorn Creek,
descending 750 m from the base of the head scarp over a horizontal distance of at least 4100 m.

Its surface is hummocky and chaotic; longitudinal debris ridges on the lee side of an over-topped
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bedrock ridge several kilometres from the head scarp are clearly visible. A landslide dam
created at the down stream confluence was subsequently breached and eroded. The age of
Bighorn Creek Rock Avalanche is unknown, although the unmodified appearance of the
detachment scar and the colluvium suggest it is Late Holocene.

The extent to which the landslide distribution is affected by lithological features such as
rock texture, composition, and fabric, is not addressed in this study. Figure 3.7 depicts the
landslide population apportioned to each of the bedrock divisions that landslides occur in,
together with the portion of the study area covered by each of these divisions. Data for
individual landslides are listed in Appendix 1.

The majority of the landslides" (52%, or 51 of 98) occ1;r in stratified Neogene volcanic
rocks (Wrangell Lava). Wrangell Lava overlays approximately ten percent of the Yukon study
area, with the greatest accumulations occurring to the northwest (Fig'. 3.8). They form discrete
but sometimes extensive areas of upiand terrain, typically as resistant, topographically high,
scarp-edged caps covering basement rocks. Laﬁdslides seated in Wrangell Lava predominate on
slopes that have been over-steepened by glacial scouring,"‘ivhere fold-tilted bedding planes are
exposed by erosion, or where differential erosion of weak underlying rocks has undermined slope
support. Because Wrangell Lava occurs as discrete packages, the landslides associated with these
rocks possess a strong spatial bias, and tend to form clusters, such as those to the west of Donjek
 River (~HS, Fig. 3.1) and at Chalcedony Mountain (~K2, Fig. 3.2).

Thirteen percent of the landslides (13 of 98) are seated in Lower Permian metavolcanic
and metasedimentary rocks of Skolai Group (Station Creek and Hasen Creek Formations
respectively). These rocks are exposed over approximately five percent of the study area as fault
bounded, elongate panels (Fig. 3.9). Many of these exposures are proximal to regional tectonic
faults, and at outcrop scale are intensely deformed and are believed to have low rock mass

strength. The remaining bedrock divisions each account for less than ten percent of the total

population.
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3.6.3 Geological Structure

Geological structure includes features of discontinuity and nonhomogeneity in rocks at
both outcrop- and regional-scale such as faults, folds, joints, bedding planes, and lithological
contacts. These features are generally considered the primary influence on rock slope stability in
this area. -

The most conspicuous structural features in the Yukon study area are Shakwak-Dalton
segment of Denali Fault System, Duke River Fault, and Cement Creek Fault. In aerial
photographs they are delineated by sub-parallel groups of topographic lineaments. Figures 3.10
and 3.11 depict the spatial relationship between landslides, lineaments, and the major faults in the
Yukon study area.

A clear correlation exists between the corridors proximal to the regional faults and
several of the landslides. There are several reasons for this association. First, the faults coincide
with zones of sheared and metamorphosed rock that is inherently weak. An example of such a
landslide is Upper Cottonwood Creek #2, an actively failing zone of friable, altered rock that is
coincident with Dalton Fault. Weathering and erosion of such rocks is enhanced compared to the
surrounding rocks, and as a consequence, slope support in these corridors is easily removed and
slope gradients are generally over-steep. Such conditions significantly contribute to slope
instability, although they are not a requisite condition for landsliding. Secondly, the degree of
rock deformation is greatesf near the regional faults (Read et al., 1975; Read, 1976, Campbell et
al., 1978), suggesting that the density of minor structures also increases near them. This concurs
with observations at Lower Cottonwood Creek #2 landslide where outcrop-scale features such as
jointing, fracture, and minor faulting that dissect the slopes are considered the primary factors
contributing to instability. The observed intense deformation is not surprising, for both

Shakwak-Dalton and Duke River faults are major tectonic features that have undergone

significant displacement.
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An example of a landslide with close spatial association to a regional fault is Congdon
Creek Rock Avalanche (CCRA), a movement first mapped by Rampton (1979c¢), and discussed
briefly by Thurber Consultants (1989). The source zone of CCRA is unclear. A weathered,
concave scar between approximately 1150 metres and 1600 metres elevation on the Kluane
Ranges frontage is the most likely location of the source zone (Plate 3.2). It is seated in Permian
metavolcanic rocks of Station Creek Formation (Skolai Group) and may coincide with steep,
northeast dipping bedding and foliation (Fig. 3.12). The estimated 70x10% m3 of landslide
colluvium on the alluvial fan below (Thurber Consultants, 1989) appears too great to be entirely
contained within this source zone. It is possible that the pre-failure slope volume was greater
than can be currently estimated by extrapolation of adjacent slope profiles over the source zone.
Shakwak segment of Denali Fault System passes beneath the foot of the slope (Dodds, 1982a).

The debris train comprises a lobate blanket on the northern slope of Congdon Creek
alluvial fan and possesses a faint surficial radiating pattern. The colluvium surface is undulating
and hummocky, with abundant pits and contorted debris ridges near the foot of the slope (Plate
3.2). The pits may have resulted from ablation of entrained ice. Numerous debris cones
(molards) noted during a traverse along the abandoned pipeline confirm that colluvium extends at
least two kilometres from the base of the suspected source zone. The position of the distal edge
of the debris lobe is uncertain.

The debris train has run out nearly 2.5 km on the surface of the alluvial fan at a nominal
slope angle of two to three degrees. This anomalously lohg run was noted by Thurber
Consultants (1989). It is one of two landslides in this study exhibiting this characteristic (see
Pirate Creek Rock Avalanche, Appendix 1). A statistically derived empirical formula describing
landslide mobility in terms of the apparent friction coefficient, f, as a function of the landslide
volume, V, was presented by Scheidegger (1973):

log;o f = 0.62419(0.15666log,0 V) [3-1]
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(where f=7/K is the total relief between the top of the headscarp and the toe of the slide divided
by the horizontal distance between these respective points). Using an estimated volume of 70x
10% m3 (Thurber Consultants, 1989), the above relation yields an apparent friction coefficient of
0.249. The estirﬁated horizontal reach, K, of CCRA is 3200 m. Back calculation yields the total
relief, V=3200%0.249=795 m. This value is nominally larger than the total relief of 765 m
derived from air photo interpretation of the extents of the slide (Fig. 3.12). .The discrepancy
between these figures is well within the range of subjective error. These data suggest that the
interpreted bounds of the slide are reasonable estimates, and that CCRA has mobility comparable
to other landslides of its size. However, volume estimates used in [3.1] are very sensitive to
small changes in the apparent friction angle. Calculations not based upon detailed field
measurements should be interpreted appropriately. Additional formulae specific to landslides
occurring in glacial and non-glacial environments are described by Evans et al. (1988).

Outcrop-scale features such as fractures, joints, bedding planes, and small faults are
generally considered to have the greatest influence on slope stability, but because of structural
complexity in the study area, their effect cannot usually be extrapolated beyond individual sites.
In general terms, these structures create penetrative planes of weakness, with the effect of not
only reducing rock mass strength, but also by representing potential simple or compound slip
surfaces within the slope.

An outstanding examble of such a slope failure is Nines Creek Rock-Block Slide
(NCRS), a massive rock-blbck translation involving much of the eastern flank of an unnamed
2500 metre peak to the southwest of Nines Creek (Fig. 3.13). Relief from the toe to the crown
of NCRS varies between 500 and 700 metres. The slide block is a coherent wedge comprised
primarily of Wrangell Lava, and may include slivers of underlying Permo-Triassic and Oligocene
strata at its base. .It has translated approximately 375 metres vertically and 700 metres
horizontally on a planar, northeast dipping surface (Plate 3.3). This surface appears to cut across

bedding in the volcanic sequences, and is believed related to pervasive jointing observed in most
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exposures of Wrangell Lava. It may in part be related to two northwest trending fault contacts in
Permo-Triassic basement rocks that intersect the southern edge of the slide. The faults are seated
in highly erodable rock coinciding with a pronounced linear trough, and may have provided a
weak zone beneath the incipient failure.

The effect of penetrative discontinuities is compounded when they are tilted concurrently
with folding. Weak surfaces in under-dip or dip slopes are extremely susceptible to failure,
especially when they are day-lighted by erosion. This is comparatively in common
topographically high Tertiary cover rocks which are often tightly folded about northwest trending
axes. An example of this is Cement Creek #1 landslide (discussed in Chapter 4), where slip is
localized along comparatively weak interbéds of altered breccia and volcaniclastic deposits in

tilted Wrangell Lava sequences.

3.6.4 Geomorphic Setting and Slope Development

The majority of landslides are situated west of Denali Fault in St. Elias Mountains (Figs.
3.1 and 3.2). Throughout this region, tectonically driven uplift has been nearly constant since
Oligocene time (Eisbacher ef al., 1977), accentuating relief as the base level has risen. Steep,
angular mountain ranges (Sec. 2.2) are dissected by several large, antecedent river valleys and a
number of tributary valleys. High gradient streams and hanging valleys suggest erosion has not
kept pace with uplift.

The larger valleys possess steep-sided, often asymmetric U-shaped profiles that are the
result of intense Pleistocene glacial scour, post-glacial sl}ope movement, periglacial modification,
and the underlying geology. Smaller upland stream valleys were extensively glaciated in the Late
Pleistocene and often terminate in cirques or glacially sculpted upland. Their profiles tend to be
somewhat more V-shaped than the larger valleys because their development has being dominated

by fluvial incision since deglaciation. Slope profiles are typically straight and steep, with well
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defined slope breaks, and relief sometimes exceeding 1000 m. In larger valleys, the lower slopes
are generally mantled with colluvium or valley train.

Large landslides are comparatively more common in tributary and upland valleys than in
trunk valleys, such as those of Shakwak Valley (Fig. 3.1, A18 - O4 & Fig. 3.2, H11 - O3),
Donjek River (Fig. 3.1, A\ll - J8), Duke River (Fig. 3.1, A14 - G12), Alsek River (Fig. 3.2, A4
- K4), Kaskawulsh River (Fig. 3.2, K4 - L1), and Duke Depression, where they are conspicuous
by their relative absence. Severely weétheréd slope scars believed to be source zones for ancient
landslides are not uncommon in the trunk vélleys, but few are-accompanied by identifiable debris
accumulations, suggesting that the colluvium has since been eroded or reworked to the point of
being unidentifiable. Rampton (19811) identified collu.vium patterns at one site suggesting the
landslide debris was dispersed by an active glacier.

Those landslides bordering trunk valleys that can be identified (i.e. Tepee Lake,
Wolverine Plateau #2 & #3, Donjek River #1, Duke River) appear to be ancient. Tepee Lake
Rock Slide (TLRS) is situated on the escarpment rim of a thick, plateau-like package of Neogene
volcanic rocks (Wrangell Lava) overlooking Duke Depreésion to the north and Donjek River to
the east. It is the largest and most clearly defined landslide of a number that have occurred along
this declivity (seé Wolverine Plateau #2 and #3, Appendix 1).

The source area of TLRS is a weathered, arcuate scar more than 1500 m in breadth,
extending downward from the top of the escarpment. The exposed portion exceeds 175 m in
height; landslide deposits and talus cover the lower portion. The headwall dips approximately 40
degrees to the north, truncating southwest dipping beds exposed in the slope. On the eastern
flank of the slide, step-like scarps beneath a thin mantle of colluvium appear to reflect underlying
bedrock topography (Plate 3.4). Relief between the crown and the toe variés from 425 to 575 m
(Fig. 3.14). Colluvium from TLRS covers the valley floor beneath the escarpment to
considerable thickness, and extends at least two km from the headwall, and perhaps as far as

Tepee Lake. Its surface is subdued and uneven, and has been extensively modified.
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Landslide colluvium at Wolverine Plateau #3 appears to abut glacial trim lines above
Wolverine Creek, inferring that landsliding along the escarpment rim occurred before or during
deglaciation (approximately 12,000-14,000 b.p.), and may be related to slope debuttressing.
More recent slope failures aiong the escarpment are comparatively minor rockfalls and slumps.
Rampton (1981) suggests landslide activity in this region was at a maximum during and
immediately after deglaciation. Increased exposure of over-steepened slopes, changes in slope
hydrologic and stress regime, and the removal of physical slope support are cited as contributing
factors. Observations by Gardner (1980) in the southwest Canadian Rockies corroborate this
view. A modern example of this phenomenon appears to be occurring at the terminus of Lowell
Glacier (Plate 3.5). These suggest that the frequency of landsliding on slopes bordering the
trunk valleys was greater in the past, and that these slopes are currently depleted of large
incipient failures. Hence, the distribution of landslides in the trunk valleys supports an

exhaustion model (Sec. 3.7) (Cruden et al., 1993).

3.6.5 Seismicity .

Landslides have long been known to be secondary effects of earthquakes (Radbruch-Hall
et al., 1976).‘ The association between landslides and earthquakes in the Canadian Cordillera is
documented by Mathews et al. (1978), Mathews (1979), Evans et al. (1987) and Wetmiller et al.
(1989). Other examples have been studied in Alaska (Miller, 1960; Plafker, 1968), Peru (Plafker
et al., 1978), and elsewhere.

The record of historical seismicity in the Kluane-St. Elias region is largely incomplete.
Since 1899, nine earthquakes greater than magnitude seven have occurred in Fairweather-Yakutat
Zone, including the 1979 M7.2 Mt. St. Elias earthquake (Horner, 1983). Known historic
earthquakes in Denali-Shakwak Zone are all less than magnitude seven. These include a M6+
event west of Kluane Lake in 1920 (Horner, 1988), and a M6.5 event west of Dalton Fault near

the B.C. border in 1944 (Wetmiller et al., 1989).
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A seismograph installed at Whitehorse, Yukon, in 1971 allowed accurate detection of
magnitude four earthquakes, and after improvements in 1978, as small as magnitude three
(Wetmiller et al., 1989). A strong motion accelerograph at Haines Junction, Yukon, has not
been triggered (Horner, 1991; pers. comm.).

Between September 1978, and August 1990, 345 earthquakes were recorded in Denali-
Shakwak Zone in Yukon. Their epicentre locations, magnitudes, and times of occurrence are
listed in Appendix 2. The majority are concentrated in two groups along major tectonic faults
(Fig. 3.15). The first is a dense cluster of epicentres near Cement Creek Fault that extends
northwest, with decreasing intensity, to the Yukon-Alaska border. It includes the largest
recorded earthquake in the data period (Mg5.4 on March 3, 1983). The second is a diffuse, but
more extensive group that follows Denali and Duke River Faults from Kluane Lake southeast
into British Columbia. Local seismicity clusters occur south of Kluane Lake, and also to the
south of Dezadeash Lake. A microearthquake survey in tﬁe area immediately south of Kluane
Lake confirmed low-magnitude seismicity at hypoce.sntralb depths less than 15 km (Horner, 1983).
Seismicity levels on Denali Fault north of Kluane Lake, and on Duke River Fault between
Cement Creek Fault and Kluane Lake are comparatively low. Epicentres not proximal to major
faults have no distinct spatial or temporal pattern.

In a correlative study of landslides and 40 historical earthquakes worldwide, Keefer
(1984) proposed a minimum threshold magnitude between four and five for earthquake-induced
landslides. Large historical earthquakes in the Yukon study area are all greater than magnitude
six. Of the 345 earthquakes recorded between 1978 and 1990, the majority are less than
magnitude four, but there are a sufficient number greater than the threshold magnitude that
seismicity may be considered a potential triggering mechanism.

It is not known whether seismicity levels in the past are comparable with current levels.
Holocene glacial features in adjacent areas of the eastern Alaska Ranges (Richter, 1971; Plafker,

1977) have been offset by faulting that must have been accompanied by seismicity. In Yukon,
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Holocene lineations in Shakwak valley have been attributed to movement on Denali Fault
(Clague, 1979). These are cited as indirect evidence of seismicity in this region for at least part

of the Holocene.

3.7 Exhaustion and Steady-State Regional Landslide Models

The temporal distribution of rock slides in any region should adhere to either a steady-
state or exhaustion model. For a defined temporal interval, the probability of rock sliding
remains constant through time for the steady-state model whilst decreasing for the exhaustion
model, provided that the fundamental causes of slope instability (Sec. 3.5.1) remain constant or
static. Thus, assuming that the mechanisms triggering rock slides are not temporally or spatially
constrained, the steady-state model is characterized by a uniform temporal distribution, while the
distribution for the exhaustion model is biased toward older movements.

Cruden et al. (1993) examined an area of the southeastern Canadian Cordillera where
structurally controlled rock slides on over dip slopes predominate, concluding that the exhaustion
model is more representative in that terrain.

Periglacial processes (French, 1985) are very active in the Yukon study area. Many
landslides were difficult to distinguish because of this rapid cryogenic modification. As a
corollary, the extent of modification was used to establish relative age and a qualitative temporal
distribution. On this basis, the landslide population shows evidence of an exhaustion-type range
of ages. However, notable exceptions to a regional exhaustion model coincide with zones of
high seismicity, particularly in the Cement Creek area, where the apparent landslide ages depart

from the exhaustion model, and are more in keeping with an active steady state model.
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Figure 3.6. Bighorn Creek Rock Avalanche. The slide area is lightly shaded,
darker shading corresponds to intact rock blocks beneath the head scarp.
Contour interval is 100 m.

39



Chapter 3 Landslide Inventories and Regional Assessment

Wrangell Lava 1737

Skolai Gp.

Dezadeash Gp.

McCarthy Fm.

Plutonic Rocks

Amphitheatre Fm. 1/64

Others (3 units)

10 20 30 40 50 60

% study area covered W % landslide population
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Figure 3.8. Landslide locations (solid inverted triangles) are shown with the
distribution of Neogene Wrangell Lava (shaded), and major faults.
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Figure 3.12. Congdon Creek Rock Avalanche. The slide area is lightly shaded,

darker shading corresponds to the interpreted source zone. Contour interval is
100 m.
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Figure 3.13. Nines Creek Rock-Block Slide. The slide area is lightly shaded,
darker shading corresponds approximately to the slide block. Contour interval is
100 m.
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Figure 3.14. Tepee Lake Rock Slide. The slide area is shown shaded. Contour
interval is 100 m.
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Plate 3.1. Bighorn Creek Rock Avalanche. The debris train is clearly seen
descending the narrow valley from the headscarp area (A). A large rock block
has come to rest beneath the headscarp. Longitudinal debris ridges may be seen
on the down slope side of the bedrock ridge at (C).
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Plate 3.3. Nines Creek Rock-Block Slide. The slide block (B) has translated as a
coherent wedge. Debris avalanches off the flank of the block post-dating the

original movement are seen below (B) and to the right. The rupture surface (A)
is a remarkably planar feature.
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Plate 3.4. Tepee Lake Rock Slide. This movement is characteristic of the several
large, ancient landslides that occur along the rim of Wolverine Plateau.
Hummocky, extensively modified colluvium is indicated (A). The position of the
distal edge of the debris train is unknown.
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Plate 3.5. Active slumping at the terminus of Lowell Glacier. Instability in the
slope opposite the snout of the glacier (S) is probably exacerbated by repeated
loading and unloading of the slope during glacial surges and recessions.
Structures related to the fault (indicated by the arrow) are believed to
significantly contribute to the relative stability of the slope.
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CHAPTER 4

Landsliding at Cement Creek

4.1 Introduction

The extent of penetrative discontinuity control in the landslide population, the spatial
correlation between landslides and clusters of epicentres, and the anomalous departure of
landslides in the epicentral cluster areas from the temporal exhaustion model discussed in the last
chapter are cited as regional evidence of neotectonic effects. The Cement Creek area was studied
in greater detail to confirm these effects and develop a framework for numerical simulations.

Field investigations undertaken in 1991 involved reconnaissance of the accessible
landslides and local geology on the north slope of Cement Creek valley with the intent of

determining the processes contributing to these movements.

4.2 Location

Cement Creek is located approximately 50 kilometres west of Kluane Lake in the eastern
St. Elias Mountains. The location is in the Kluane Wildlife Sanctuary, just outside of Kluane
National Park (Fig. 4.1). There is currently no human habitation or development in the region;
roads constructed for mineral exploration extend into Burwash Uplands, 25 kilometres to the

east.

54



Chapter 4 o Landsliding at Cement Creek

4.3 Bedrock Geology of the Cement Creek Area

The bedrock geology of the Cement Creek study area is illustrated on Figure 4.2.
Basement assemblages consisting of Pennsylvanian to Permian volcanics and volcanically derived
sediments of Station Creek Formatioh (Skolai Group) are exposgd north of Cement Creek Fault
(Dodds, 1982a). Oligocene to Miocené continental clastic sediments of Amphitheatre Formation
(Muller, 1967) are exposed locally in fault bounded panels and unconformably overlay Skolai
Group rocks. Exposures near Cement Creek consist of well indurated, grey polymictic
conglomerates, grey and buff sandstones, subordinate mudstones, and occasional interbedded
coal seams. Local sectional thicknesses are on the order of 200 to 300 metres (Eisbacher et al.,
1977). Miocene or younger rhyolitic to dacitic sub-volcanic intrusions outcropping north of
Cement Creek Fault may be associated with porphyritic felsic dykes intruding lower Wrangell
Lava (Muller, 1967).

Stratigraphically uppermost and predominant in this area is Wrangell Lava (St. Clare
Province; Muller, 1967; Souther et al., 1975), a succession of Miocene to Pliocene andesitic and
basaltic flows with minor interbedded sediment, tuff, and volcanic ash. Wrangell Lava overlies
Amphitheatre Formation near Cement Creek but is locally absent north of Cement Creek Fault.
S‘ections of the Wrangell pile locally exceed 700 metres in thickness (Skulski et al., 1986), and
are as thick as 1200 metres immediately south of the area on Figure 4.2 (Souther, 1974). The
informal upper, middle, and lower lithostratigraphic divisions defined by Souther et al. (1975)
are retained here. Lower and Middle Wrangell Lava near Cement Creek comprise rusty
weathering, blocky flows up to ten metres in thickness. The flows are commonly separated by
comparatively thin (typically less than 0.2 metres), densely compacted, ochre to mauve
weathering, typically altered horizons comprised of angular intra-Wrangell and Wrangell derived
clasts up to 20 cm in diameter, in a clay matrix. Wrangell Lava ié dissected by several

intersecting sets of joints in most exposures. Conspicuous sub-vertical joints are apparent
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wherever there has been recent ground movement along Cement Creek. These joints are
attributed to valley stress relief during deglaciation or stream incision.

Cement Creek Fault appears to be a westward extension of the Wade Mountain Fault
Zone (Read et al., 1975). Where exposed near Cement Creek, it is a sub-vertical zone of
sheared and bleached rock approximately 20 metres wide (Power, 1988). An unnamed fault
extends from Cement Creek Fault southeast toward Duke River Fault (Dodds, 1982a). Both
faults dislocate Lower and Middle Wrangell Lava, but overlying surficial deposits are
undisturbed. Minor sub-vertical faults cutting Lower Wrangell Lava have sub-horizontal
slickensides and are believed to be splays from Cement Creek Fault. These observations imply
that transcurrent movement on these faults persisted until at least Miocene or Pliocene time.
However, Quaternary sediments near the extrapolated northwestern trace of Cement Creek Fault
are tilted (Souther et al., 1975), suggesting later displacement has occurred.

Tertiary rocks are folded about west-northwest trending axes, with the intensity of
deformation greatest near Cement Creek Fault and to the west where folds become overturned

(Dodds, 1982a).

4.4 Geomorphology of the Cement Creek Area

Terrain development in Cement Creek valley reflects intense Late Cenozoic regional
deformation, and the effect of Quaternary glacial advances. Relief in this area is moderately
high, the result of rapid regional uplift (Horner, 1988) and intense Holocene erosion.

Topographic expression is characterized by angular, glaciated mountain peaks exceeding
2500 metres with steep, glacially scoured bedrock slopes, and by steep sided, deeply incised
stream valleys. Cement Creek valley has a broad, roughly v-shaped, but asymmetric profile,
varying from less than one to several kilometres in width. Valley slope angles typically vary
between 20 and 40 degrees, and on the north side of the valley, possess some degree of

conformity with underlying bedding. 1In aerial photographs the upper elevation limit of
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Pleistocene glacial scour in Cement Creek Valley appears to be approximately 1700 metres.
Alpine glaciers locally persist to elevations as low as 2200 metres.

Glacially derived surficial deposits blanket bedrock on the lower valley slopes. A 1.25 m
section exposed on the northern lip of Cement Creek canyon comprises, from top to bottom: (a) a
thin organic mat (< 0.25 m, variable); (b) a uniform clean sand (= 0.4 m), and; (c) a gritty,
predominantly silt layer with sub-angular volcanic clasts to 10 cm in diameter (= 0.6 m). The
lower horizon may be a partially reworked ice contact deposit. The surficial deposits do not
appear to be draped over the lip of the canyon currently occupied by Cement Creek, suggesting
that it has incised on the order of 100 m since deglaciation.

Coarse diamicton from debris torrent deposits are not uncommon in many of the tributary
streams to Cement Creek. Active slope processes include deep-seated bedrock movement,
comparatively small scale slumping of unconsolidated surficial deposits where there is active

stream erosion, and solifluction in some of the Quaternary deposits mantling upper valley slopes.

4.5 Landslide Distribution at Cement.Creek

Landslides in Cement Creek valley predominate on the northern valley wall above
Cement Creek (Plate 4.1; Fig. 4.3). Field work undertaken in 1991 involved reconnaissance of
sites one through four; sites five and six were not visited. Landslides are numbered as they
appear in Appendix 1.

No détable materials were recovered in the field. However, based upon the degree of
physical surficial modification their ages range from recent (site 1) to ancient (site 3).

All of the landslides are seated in Lower and Middle Wrangell Lava (Fig. 4.2). For
landslides on the northern wall of Cement Creek valley, slip is facilitated where generally south-
dipping, fold tilted beds are exposed. An investigation of the landslide at site one by Power
(1988) concluded that rupture had mainly occurred along discrete, comparatively low-strength

horizons that separate the volcanic flows (Section 4.3). This landslide is described in Section
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4.6. This is the general mode of failure at site four (described below), and probably at site three
as well, but the advanced age of the latter prevented reliable verification.

The landslide at site four appears to have occurred in at least two temporally separate
events. The temporal distinction is made on the basis of the relative degree of weathering of the
rupture surface(s). The rupture surface corresponding to the presumed earlier movement is a
weathered, well-exposed, slightly undulating plane iﬁ the eastern portion of the slide area. The
western portion, which corresponds to the later movement, is a smooth, comparatively
unweathered surface that is overlain by colluvium except near the crown of the slope (Plate 4.2).
Both rupture surfaces are locally parallel to bedding orientations measured near the crown of the
slide, although the more recent landslide appears to have failed on a deeper structural plane. A
small downbhill-facing scarp in the western portion of the crown area orthogonally truncates
bedding and trends approximately parallel to the bedding strike. The origin of this scarp is
unclear, but it is believed related to shear displacement along ubiquitous sub-vertical joints
observed in the volcanic rocks, and may be related to coseismic or gravitational deformation.

Slope movement(s) at site two are seated in a zone of extremely sheared and altered rock
coinciding with the position of the unnamed fault (Fig. 4.2). Moderately northeast dipping beds
exposed in the headscarp are crosscut by smooth, somewhat weathered, high-angle planes parallel
to the fault. Retrogressive slope movements post-dating the initial failure appear to be seated on

these planes.

4.6 Recent Landsliding at Cement Creek

In the spring of 1983, a local pilot reported the occurrence of a large landslide in the
Cement Creek area. A detailed investigation in 1986 included geological and geophysical
measurements, as well as a microgeodetic survey (Power, 1988).

The landslide is situated on the southern margin of a small plateau north of Cement

Creek (Site 1, Fig. 4.3). A 90 metre deep Holocene canyon incised by Cement Creek forms the
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southern edge of the plateau. It is seated in tightly folded Lower Wrangell Lava approximately
300 metres south of Cement Creek Faul; (Fig. 4.2).

Ground cracks circumscribing a low hili, Wﬁich now comprise the headscarp, are clearly
visible in pre-1983 aerial photographs (Plates 4.3, 4.4). These are evidence of incremental slope
movements prior to the 1983 landslide. The landslide has 'developed as a rock block slide
affecting an estimated area of 0.6 km?2 and with an approximate volume at 10-12x10% m3. It is
encompassed by a roughly circular headscarp five to eight metres high, and, although it is
dissected by several deep medial cracks, the displaced mass is largely coherent.

Groundwater discharge at the toe occurs only where Supface water has infiltrated dilated
sub-vertical faults and tension cracks at the toe of the slide; no seepage was observed in adjacent
undisturbed bedrock. These observations do. not preclude the presence of groundwater and
associated pore-pressure gradients in the slope.

The landslide has undergone finite displacement estimated at 30-40 metres and currently
appears to be metastable. Kinematic analysis by Power (1988) suggests the landslide's left flank
has undergone oblique slip along bedding on the northern limb of an asymmetric, southeast
plunging syncline intersecting its southwest corner (Fig. 4.2).

On the basis of investigations completed as part of this study, most of the rupture surface
is believed to coincide with low-strength intraflow horizons (See. 4.3), except near the headscarp
where bedding is truncated. Slip has occurred where south-dipping beds daylight in the canyon
wall several tens of metres above Cement Creek. Massive lava columns up to 60 metres high
have separated from the toe along sub-vertical joints. Below the toe, a thick blanket of rubbly
debris extends downward into Cement Creek.

If it is assumed that this slope was at or near a state of limiting equilibrium prior to 1983,
it may also be assﬁmed that one or more temporally spaced trigger mechanisms disturbed
equilibrium and initiated the 1983 movement. Surface water infiltration through pre-existing

joints, which appear to go to considerable depth, is unlikely because the landslide was observed
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in the late winter, long before seasonal snow melt began. Moreover the presence of continuous
permafrost (Heginbottom et al., 1987) all but precludes infiltration. Toe erosion is clearly not a
factor because Cement Creek was already incised well below the toe elevation of the incipient
failure. The most likely trigger mechanism is ground shakirig attributed to strong motion during
a burst of seismicity in the Cement Creek area coinciding with the time of the 1983 movement.
Two moderate earthquakes on March 30, 1983, one a M5.4 event with the epicentre 13 km from
this landslide, the other a M4.8 event with the epiceﬁtfe less than 5 km away. These were
followed by a series of lower magnitude after shocks during April, 1983, and generally elevated

levels of low-magnitude seismicity for several months afterward (Fig. 4.4).

4.7 Summary

Landslides in the Cement Creek area are seated in the Lower and Middle stratigraphic
divisions of Wrangell Lava. The predominant mode of slope failure was observed to be basal
slip along tilted intraflow surfaces that are exposed in steep valley slopes. Evidence collected in
the field and from aerial photographs shows that finite, incremental slope deformation may
precede large magnitude movement. Landslides are observed to move as coherent, block-like
bodies at less than critical displacements.

Landslide processes have been particularly active in the Cement Creek area during the
Holocene. The spatial and relative temporal landslide distribution departs from the regional
slope exhaustion model. Neotectonic effects, especially earthquake strong motion, are believed
to be important mechanisms triggering slope movement.  Numerical analysis of slope
deformation induced by earthquake loading was undertaken to test this hypothesis. An overview

of the most commonly used numerical dynamic analysis methods are presented in Chapter Five,

as well as discussion and verification of the selected method.
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Figure 4.2. Bedrock geology of the Cement Creek area showing folds and major
Jaults (after Dodds, 1982a). Lithological descriptions are after Dodds (1982a).
Landslide locations are shown shaded.
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A

Plate 4.2. Cement Creek #4 Rock Slide. The landslide area is contained in the
slope indentation below numeral (4). The photographs are oriented with west
toward the top of the frames.
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Plate 4.3. Cement Creek #1 Rock Slide. The landslide is roughly centred on the
domal hill in the middle of this pre-1983 photograph. The photographs are
oriented with west toward the top of the frames. Ground cracks circumscribing
the hill are clearly seen on its northern perimeter. A bench on the wall of
Cement Creek Canyon at the toe of the slide is believed to be locally co-planar
with the rupture surface.
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Plate 4.4. Post failure oblique view of Cement Creek #1 Rock Slide. The
photograph was taken looking east down Cement Creek Valley. Incremental
displacement along the pre-1983 circumferential ground cracks is clear. A debris
stream originating from the western portion of the toe overlies the canyon slope.
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CHAPTER §

Overview of Dynamic Analysis-Methods and Verification of UDEC

5.1 Introduction

This chapter focuses on two distinct but related topics. The first is a broad overview of
the numerical methods available for seismic response analysis of rock slopes. The second is an
introduction to the distinct element method (program UDEC), the method selected for the
analyses in Chapter 6. Limited verification of shear wave-propagation and elasto-plastic shear

~ displacement modelled by UDEC are compared with closed-form solutions.

5.2 Methods of Dynamic Numerical Analysis

Among the numerical methods available for the dynamic response analysis of slopes are
limit-equilibrium, continuum and discontinuum formulations. Each of these methods is discussed
as a class of analytical technique, including the addition of Newmark analysis (Sec. 5.2.2) which
is considered a corollary of limit-equilibrium analysis. This overview is not intended to be
rigorous, and may not necessarily include state-of-the-art developments in all aspects of this
field, but rather is included to familiarizé the reader with the most widely known numerical

methods, as well as their comparative strengths and weaknesses.

5.2.1 Limit-Equilibrium Methods

Limit—equilibﬁum (pseudo-dynamic) anélytical methods are well established in both soil

and rock mechanics. In principle, these methods consider the force equilibrium of a rigid-elastic
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body sliding on a defined rupture surface, and typically utilize a factor of safety criterion to
evaluate the stability of the system. The factor of safety is defined as the sum of the forces
resisting movement divided by the sum of the driving forces. Dynamic loading is accounted for
by including an inertial body force in the static stability calculation [5-1a], that corresponds to an
arbitrarily oriented ground acceleration. Slope failure is assumed to occur if the dynamic factor
of safety (de) becomes less than unity along the potential rupture plane. An expression for de
of the simple block system on Figure 5.1 is given below [S-1b] (adapted, after Crawford er al.,
1982):

_ Z (static resisting forces)

+ Y (dynamic forces 5-1a
2 (static driving forces) 2 (dy ) [5-1a)

_ [ %y ]#Lcos B~ Ksin(B-8)Jtang
[sinB+Kcos(f-6)]

[5-1b]

where ¢ denotes cohesion and W is the weight of the block. Similar expressions can be derived
to accommodate different geometries (Naumann, 1990), and more complex failure criteria
(Sarma, 1975).

The limit-equilibrium method is attractive because of its simplicity, but is limited by
several assumptions implicit in its formulation: 1) sliding occurs on a continuous surface with
known orientation, and with uniform strength properties that obey a perfectly plastic Mohr-
Coulomb criterion; 2) the sliding body is rigid, and the body forces acting upon it are resolved
through its centre of mass; 3) the ground accelerations are considered continuous, and therefore;
4) any induced displacement along the slip surface results in total slope failure. Assumptions (1)
and (2) generally preclude adequate representation of most rock slopes, which are comprised of
jointed, discontinuous rock with non-linear elasto-plastic deformation behaviour. Assumption (3)

is unrealistic because ground accelerations during earthquake loading are transient.
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5.2.2 Newmark Analysis

Newmark (1965) recognized that for a given slope or structure, the critical accelerations
during a seismic event are transient. Under such loading, the factor of safety may be less than
unity for discrete intervals, and hence a slope may undergo permanent, finite displacement
without complete failure. The formulations presented by Newmark (1965) incorporate tﬁe
preceding ideas into a limit-equilibrium type of analysis, and embody a number of different
failure geometries. Slopes are represented as rigid, elastic bodies sliding on continuous surfaces
of known orientation. A variety of force-displacement relationships may be assigned to the slip
plane. The basic methodology of Newmark has been extended and modified a number of times
since its introduction (i.e. Sarma, 1975; Crawford et al., 1982; Ghosh et al., 1989).

Consider the example of a block sliding on a cohesionless horizontal plane (Fig. 5.2a)
(Newmark, 1965). The base has time varying motion, y(), and the sliding block has motion
x=y+u, where x is the net motion and u is its motion relative to the base. The resistance to
sliding, Ng, where N is a coefficient and g is the acceleration due to gravity (assumed constant),
is equal in magnitude and bppositely directed to the minimum acceleration required to just set the
block in motion. In this case the value of N is equal to tan(¢), where ¢ is the intrinsic
(Coulomb) friction angle of the plane.

For simplicity, the acceleration of the base is given as a rectangular pulse (Fig. 5.2b) of
magnitude Ag and duration ty; the resistance Ng is shown as a dashed line. In Figure 5.2¢ the
velocities of the base and the sliding block are shown. The base has velocity V at time ty which
remains constant. At time t;, the sliding block also attains velocity V, and relative motion
between the base and the block ceases bécause their velocities are equal. The shaded area on
Figure 5.2¢ represents the relative displacement, u,,, between the sliding body and the base for a

single acceleration pulse, and may be calculated from the expression:
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2
Up= A (1 - _IY_) [5-2]

Equation [5-2] (Newmark, 1965) assumes equal resistance to motion for accelerations of
both positive and negative magnitude. For the case of an unsymmetrical sliding resistance, such
as a block sliding on an inciined plane, [5-2] does not account for greater sliding resistance in the
“uphill" direction, nor does it account for cumulative displacement in the direction of the lowest
sliding resistance that would occur after multiple acceleration pulses. Such cases are routinely
handled using available computer algorithms, or by using empirical displacement relationships

such as those derived by Newmark (1965).

5.2.3 Continuum Methods

The finite element method is by far the most extensively used continuum formulation for
the evaluation of the seismic response of slopes and structures in soil and rock (Clough er al.,
1966; Dezfulian et al., 1970; Valliappan et al., 1985; Alheid er al., 1988). Other continuum
formulations such as FLAC (Cundall et al., 1988) offer an alternative, but have not enjoyed the
popularity of the finite element method.

Continuum methods represent the model domain as a continuous medium. The domain is
normally discretized into a number of deformable elements that may be virtually any size or
shape. The individual elements are connected at their boundaries by a finite number of nodal
points. Approximate solutions for the system are obtained at the nodes. Finite element
formulations readily incorporate pore pressures, non-homogeneous and transient stress regimes,
as well as the anisotropy, heterogeneity, and nonlinear behaviour that is associated with
geological materials (i.e. Goodman et al., 1968; Idriss et al., 1974; Finn et al., 1988). These
features allow more realistic behaviour in geomechanical models and offer the user far greater

flexibility with problem geometry than the methods described in Sections 5.2.1 and 5.2.2.
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‘The evaluation of earthquake response with the finite element method requires solution of

the following system of differential equations:

(M) +[CI6) +TK 1) = {R()} (53]

where [M], [C], and [K] respectively are matrices of terms for the mass, damping, and stiffness
of the assembled elements; (1) are nodal displacement vectors, with single and double dots
denoting the first and second derivatives with respect to time; and {R(z)} is the earthquake load
vector. Equation [5-3] may be solved by a number of methods, including mode superposition
(Clough et al., 1966) and step-by-step integrétion (Wilson ei al., 1962). A more comprehensive
description of the theory and applications of dynamic analysis with the finite element method is
provided by Desai et al. (1972).

The continuum approach to the dynamic analysis of geological media has several
limitations. Representation of the inherent heterogeneity and discontinuity in most rock masses
often requires the formation and solution of large matrices [5-3]. In practical terms these may be
unsolvable in a medium possessing either complex heterogeneity or a high density of
discontinuities. In pfactice these problems may be somewhat alleviated by assuming some degree
of homogeneity, by employing an equivalent continuum model (Goodman ez al., 1968), or by
assuming that displacements will occur along a few "key" discontinuities in the problem domain.
However, these assumptions may fail to adequately characterize the behaviour of a
heterogeneous, discontinuous medium, and ‘can artificially constrain the number of degrees of
freedom of the system. Further, in general terms, the elements normally used to model
discontinuities do not readily accommodate large displacements (Wang et al., 1993), and stiffness
matrices must be reformed whenever there are significant displacements between nodes. For
these reasons, problgms involving large displacements, such as those that may occur in a slope

undergoing critical earthquake loading, may be time-consuming and pofentially difficult to solve.
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5.2.4 Discontinuum Methods

Discontinuum techniques are formulated specifically to analyze the behaviour of
particulate or discontinuous systems. The majority fall within a general class of methods known
as discrete element methods. Itasca (1992) reviews the four sub-classes of discrete element
analyses. They are the: 1) distinct element method; 2) modal methods; 3) discontinuous
deformation analysis, and; 4) momentum-exchange methods. A hybrid rigid-block model is
proposed by Wang et al. (1993). Of these four methods, only the distinct element and modal
methods have been developed to the point where they may be used for dynamic analysis of
general systems. The focus of the following discussions will be oriented toward the distinct
element method. Applications of the distinct element method to dynamic analysis of surface
structures have been demonstrated (Bardet ez al., 1985; Brady et al., 1988; Lorig et al., 1991).

In discrete element methods, the model domain is divided into an assemblage of elements
or blocks that are separated by discontinuities (joints). The blocks may be rigid or deformable,
depending upon the formulation that is used. Block to block interactions occur along the joints,
which have prescribed constitutive laws that define the behaviour of the interactions. The
distinct element method retains all the flexibility of the finite element method with regard to input
(i.e. heterogeneity, non-linear behaviour) and problem geometry. The solution procedures used
in discrete element methods vary somewhat, particularly in the case of deformable blocks. The
procedure specific to the distinct element method is discussed in Section 5.3.

In general terms, rock masses may be characterized as blocky, discontinuous systems.
This is particularly true of near-surface rock where confining stresses are usually small when
compared with intact rock strength, and the predominant mode of deformation is by slippage or
separation along discontinuity plénes. This type of deformation is accentuated by dynamic
loading. The distinct element method is well suited for the analysis of such systems. An

important feature of the distinct element formulation is that the block elements may undergo
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finite displacement and rotation (including complete detachment), and can form new contacts that
result from relative motions of the blocks (Itasca, 1992). Contact and motion logic for the
elements are not affected by large displacements.

A disadvantage of the distinct element method is that the critical time step used in the
calculation cycle must sometimes be made very small to ensure numerical stability. The time
step is related to material stiffness and element or zone size. Because of this, some simulations

can take considerable time.

53 Description and Formulation of UDEC

Since it was first introduced in 1971 (Cundall, 1971), the distinct element method has
undergone nearly continuous development that is reviewed by Pritchard (1989). The generalized
two-dimensional formulation of the distinct element method is a computer program marketed by
Itasca Consulting Group known as UDEC (Universal Distinct Element Code) (Itasca, 1992). The

following discussions deal specifically with UDEC Version 1.83.

5.3.1 General Formulation

UDEC utilizes a time domain algorithm that solves the equations of motion for a block
system with an explicit finite difference method. The solution procedure is known as dynamic
relaxation (Otter et al., 1966), wherein the nodal. points (or elements) in the system are displaced
according to Newton's Second Law, a process that is justified on physical grounds (Cundall,
1987). Element displacements are adjusted so that unbalanced forces within the system are
minimized, and the equilibrium or steady-state solution is approached incrementally. The
physical principles and solution procedure are discussed by Cundall (1980) and Lemos et al.,
(1985). A brief description of the basic principles and the calculation cycle implemented in

UDEC follow, including adaptations of the code that are specific to dynamic analysis.
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5.3.2 Element Representation

UDEC allows the use of either fully-deformable or rigid elements. Fully deformable
elements are normally used in wave propagation problems such as earthquake response analysis,
or when a high degreé of accuracy is desired in the solution of quasi-static problems. The use of
rigid elements is permissible if Tess accuracy is desired, or when element deformation is not
considered important to the solution of the problem. The majority of analyses performed in this
study use fully-deformable elements, and they will form the basis of tl}e following discussion.

There are seven different constitutive relationships available for fully-deformable
elements in UDEC. A homogeneous, isotropic, elastic constitutive relationship with a linear
stress-strain law is normally used for dynamic analysis of discontinuous rock under low confining
stress, where strain is anticipated to occur predominantly along discontinuities. Although high
transient stresses may occur in a rock mass during dynamic loading, the load interval usually
lasts only a few tens of seconds or less. Because of this, plastic deformation of the model

elements may be ignored without significant error.

5.3.3 Interface Constitutive Relationships

Force and displacement behaviour at the element interfaces (contacts) may be assigned bi-
linear or non-linear elasto-plastic constitutive relationships. In the bi-linear model, the response
~ to normal and shear loading at edge-to-edge interfaces (joints) between elements are governed by

incremental linear stress-displacement relations:

AG, = kyAu,

4
Ao, = k,Au, 4]
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where k, and k; are the joint normal and shear stiffnesses, and Au, and Au; are the incremental
normal and shear displacements. Corner-to-edge ‘and corner-to-corner contacts utilize a force-
displacement law formulated identically to [5-4], except that the shear and normal stiffness are in
units of force/length rather than stress/length. The maximum shear stress (or force) is limited

according to the Mohr-Coulomb friction criterion:
|os| < ¢ + 0, tan ¢ = Oy(max) [5-5]

where ¢ denotes cohesion, and ¢ is the basic joint friction angle. Tensile strength can also be
included in the calculation.

The non-linear, or Continuously-Yielding (C-Y) joint model is intended to simulate post-
peak strain softening that occurs in rock joints due to cumulative shearing damage on the joint
surface. The implementation utilizes a bounding surface concept (Dafalias et al., 1982, in Itasca,
1992) and is described in detail by Cundall er al. (1988) and Itasca (1992). The stress responses

to normal and shear loading are expressed incrementally as:

Ac, = kylu,

Ao, = Fk,Au, [>-6]

and the joint normal and shear stiffnesses &, and k are given by:
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where a,, e,, a;, e; are model parameters The exponential form of [5-7] simulates the increases
in shear and normal stiffness observed in rock joints! with increasing normal stress (Bandis et
al., 1983). A generalized shear stress-displacement curve for monotonic loading under constant
normal stress is shown on Figure 5.3. The factor F in [5-6] is an internal factor governing the

instantaneous shear modulus, and is formulated:

(1-0,/7,)
1-r

F= [5-8]
where 7, is the bounding strength, and r is an internal factor for restoring elastic stiffness
immediately after load reversal. It is seen in [5-8] that the value of F depends upon the ratio
between the actual and the bounding stress. The value of the bounding strength curve is

calculated from the expression (Itasca, 1992):
T,, = O, tan @,,sgn(Au,) [5-9]

where ¢, can be considered the friction angle that would apply to the joint if it was to dilate to
its maximum dilation angle, and is continually reduced by a semi-empirical method as joint
damage accumulates. |

A potential error? was found in the algorithm for the C-Y joint model. During
simulations of monotonic shear tests, the shearv stress-displacement curves were found to be
insensitive to joint cohesion. The reasons for this behaviour may be related to the lack of a

cohesion term in [5-9], or an algebraic flaw in the algorithm.

1 The normal stiffness in filled discontinuities, depending upon the filling thickness, may be
considered normal stress independent, or nearly so (Barton et al. }1987, pp. 88-89).

2 Currently being discussed with the manufacturer.
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5.3.4 Gridpoint Calculation Cycle

A deformable element representation is obtained by internally discretizing each block
with a triangular finite difference mesh. Each triangle is assumed to obey a constant strain law.
Gridpoints are assigned at the triangle vertices, and a lumped mass based upon the average
shared mass of the adjacent triangular zones is assigned to the central gridpoints.

The gridpoint calculation cycle begins with summation of the forces, F;, acting upon a

given gridpoint i:
F; = F +F{ +F] [5-10]

where the superscripts x, ¢, and / denote force contributions from external, contact, and internal
sources respectively. Contact forces apply only-to these gridpoints laying on the boundary of the
element. The equation of motion for the gridpoint is based upon Newton's Second Law (Brady

et al., 1988):

aa—?+adi =%+g,- | , [5-11]
where u; is a vector of the gridpoint displacement components with the single dot denoting the
first derivative with respect to time; a is the viscous damping term, m is the gridpoint lumped
mass, F; is the sum of the forces from [5-8], and g, is the component of gravitational
acceleration. Integration of [5-11} using a central finite difference approximation yields the

expression:

(- 8172) (1 _aAt/z) +((Fl.(’)/m)+g,-)At
1+0‘A’/2
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where the superscripts in parentheses denote the time that the corresponding term is evaluated.
Inspection of [5-12] (Lorig er al., 1991) reveals that if velocity #*-2?/2) is known, then the
velocity #,(**4?/2) may be calculated directly from the force components acting at the gridpoint.

The dynamic algorithm used in UDEC is limited by the assumption that velocities and
accelerations remain constant during the calculation time step, Ar. The method relies on the
physical concept that a finite time interval is required for a disturbance to pass through a block
system. If the time step size is chosen so that a displacement cannot propagate from one element
to the next in one time step, the equations of motion for all the elements become uncoupled and
the numerical procedure is stable (Pritchard, 1989). With deformable elements, the size of the
time step must obey constraints related the size of the triangular finite difference zones and the
stiffness of the system (Itasca, 1992).

The increment of gridpoint displacement may be calculated from the new velocity:
Ay; = u;At [5-13]

With the displacement of each gridpoint known, the position of the element boundary may be
updated and new contact stresses and displacements for the next time step may be calculated from
the interface constitutive relations. Incremental strains, €, and rotations, 8, in each zone are
evaluated at each time step, and are related to gridpoint node displacements according to the
definitions of two-diménsional strain:

g = (l'ti,j +‘2j,i)

[5-14]

91'j=

(ﬁi,j “"j,i)

where the single dot denotes the first derivative with respect to time; the subscripts i and j on the

left hand side of [S-14] are directional indices; and the subscripts i, j on the right hand side of
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[5-14} denote partial derivatives with respect to the i and j directions. New stresses in each zone

are calculated from the expression:
Aoy = AAg, 65 +2 A [5-15])

where A and U are the Lamé constants; AO',-J- are the elastic increments of the stress tensor; As,-j
are the incremental strains; A€, is the increment of volumetric strain, and; 5,-1- is the Kronecker
delta function (Itasca, 1992). The explicit incremental calculation approach is a valuable feature
because it is comparatively easy to incorporate non-linear or post-peak constitutive behaviour into
the algorithm.

The calculation cycle described in Equations [5-10] to [5-15] provides new gridpoint
velocities and displacements, contact forces, and zone stresses that are applied as initial

conditions for calculations in the next time step.

5.3.5 Damping

In most numerical analyses, some form of damping must usually be applied to account
for energy losses that occur in physical systems. In soil and rock these losses are frequency
independent and predominantly hysteretic. They can be attributed to internal deformation of
intact geological materials, displacement along planes of discontinuity, frictional heating, or the
movement of fluids within the system.

Both mass- and stiffness-proportional damping are available in UDEC. They may be
used individually, or both types may be applied in combination in what is termed Rayleigh
damping. Rayleigh damping is defined in the following manner. For any mode i of a multiple
degree of freedom system, the fraction of critical damping, li, with corresponding frequency, @,

may in principle be determined from:
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X %(%H?wf] [5-16]
where « is the mass-proportional constant, and J is the stiffness-proportional constant (Idriss et
al., 1974). From inspection of [5-16] it is seen that Rayleigh damping is clearly not frequency
independent. The mass-proportional component is dominant at lower frequencies, ;avhile the
stiffness-proportional component is dominant at higher frequencies. However, for most systems,
there exists a band of frequencies wherein Rayleigh damping remains roughly constant, and
frequency independent démping may be simulated (Itasca, 1992). These frequencies are related
to the natural modes of the system and té the input excitation signal.

The damping forces in UDEC are applied at the gridpoints of the system. With mass-
proportional damping the forces are proportional to the absolute velocity and mass of the node,
but are app14ied in a direction opposite to the velocity (Itasca, 1992). For stiffness-proportional
damping, either contact forces or zone stresses are applied that are proportional to stiffness and
the relative velocity or strain rate (Itasca, 1992). The limitations of velocity proportional
damping are summarized by Cundall (1987).

In static and quasi-static problems, either mass-proportional or an adaptive viscous
damping scheme is used. The adaptive scheme adjusts the viscous damping term in [5-11] in
proportion to the change in kinetic energy of the system at each time step, in a manner that

- simulates critical damping (Itasca, 1992). However, Pritchard (1989) notes that in quasi-static
problems with certain geometries, erroneous body forces may be created.

In dynamic problems either mass- or stiffness-proportional or Rayleigh damping may be
used. For problems that involve large element displacements, it is generally inappropriate to use
mass-proportional damping .because motion may be artificially inhibited. In such systems
stiffness-proportional or a modest amount of Rayleigh damping may be the preferred choice

(Itasca, 1992).
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5.3.6 Adaptations to Dynamic Analysis

Geomechanical models at the scale of surface and underground engineered structures are
usually best represented by an unbounded medium. Numerical representations that discretize a
finite region of space in the vicinity of the structure require that the artificial numerical boundary
enforce conditions analogous to an infinite space or half-space. Fixed or elastic boundaries are
usually sufficient for static or quasi-static analyses. However, difficulties can arise in dynamic
analyses because; 1) outward propagating waves can be reflected back into the system, and; 2)
the boundaries may fail to adequately represent the motion of the half-space or infinite-space
adjacent to the discretized domain. . Non-reflective boundaries and a dynamic free-field have been

implemented in UDEC to deal with these problems respectively.

5.3.6.1 Non-Reflective Boundaries

In principle, the problem of outward propagating waves may be remedied by 'extending
the model boundaries a sufficient distance from the region of interest that allows material
damping to dissiﬁate the energy. In materials with a high level of natural damping this solution
may be viable. However, in materials such as rock that have a.small amount of natural damping
this can be imprabtical, in terms of both computer storége requirements and run time. An
alternative method proposed by Kuhlmeyer er al. (1969) is to incorporate energy absorptive
boundaries. Such a scheme was adopte}d in UDEC. Non-reflecting boundaries providing viscous
normal and shearAtractions ‘are imple}nented as independent dashpots attached to the model

boundaries (Fig. 5.4). The tractive forces are formulated as:

T = TPG [5-17]

S

T, = —pCyw
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whére v, and v, are the components of velocity normal and parallel to the boundary, p is the
mass density of the material at the boundary, and, C, and C; are the p- and s-wave velocities
respectively (Kuhlmeyer et al., 1969). The tractions are calculated at every time step and applied
as boundary loads. Numerical instability may arise because the tractive forces are calculated

with velocities lagging by half a time step (Itasca, 1992).

5.3.6.2 Dynamic Free-Field

The reasoning that necessitates non-reflective boundaries applies equally to the rationale
for the implementation of the dynamic free-field. The purpose of the free-field is to simulate the
motion of an infinite space or half-space that is assumed to exist at the model boundary The free-
field is a one-dimensional explicit finite difference calculation performed in parallel to the model
system, and is coupled to gridpoints along the lateral boundaries of the model by viscous
dashpots (Fig. 5.4). The free-field consists of a column of unit width that is discretized into n
elements of equal length Ay, with n+1 lumped mass gridpoints. The elastic properties of the
free-field are representative of the model system, including contributions from discontinuities.

The free-field calculation is independent of the horizontal coordinate, x, and therefore

element deforrhations are expressed as:
Oy ou

where &, and Y,y are the elastic normal and shear deformations in the y direction, and; u, and U,

are relative displacements of the free-field (Itasca, 1992). The free-field calculation provides

element stresses O'{x and G{y, and gridpoint velocities vf and v){ . The coupling of the free-field

to the model elements is shown on Figure 5.5. Free-field stress contributions to the model are
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provided at discrete points along the block edge at the same y-coordinates as the free-field

gridpoints. At an arbitrary gridpoint i the applied forces are:

B, =%[(c{x,xy)j B +(0'£x’xy)j]Ay [5-19]

where the subscripts x and y denote directions, and the subscripts xx and xy denote normal and
shear stresses corresponding to the directional subscripts of the free-field elements j and j-1. The

applied forces at the corner gridpoints of the model element (for example corner A, Fig. 5.5) are:

Rey =~pC, (2, - )i [5-20]

where 1 is one-half the block edge length. The free-field velocity at point A is obtained by linear

interpolation between its adjacent gridpoints i and i-1.

5.4 Verification of UDEC

The formulation and constitutive relationships of UDEC have been validated with
analytical solutions in a number of static and dynamic simulations (Cundall, 1971; Cundall ef al.,
1988; Itasca, 1992). However, no verification data are available for: 1) the accumulation of
permanent strain on discontinuities in response to dynamic loading, and; 2) the response of a
geological medium to upward propagating seismic waves. These are key considerations with
regard to the incremental deformation behaviour of rock slopes.

Closed-form solutions to these problems have been formulated, and are available in
widely available software. Comparative analyses were performed between the encoded closed-

form solutions and UDEC to verify its performance.
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5.4.1 Comparison of Newmark's Method and UDEC

Newmark (1965) offers the first rigorous treatment of earthquake induced ground
displacement. It is in essence a closed-form solution for the shear displacement of a
geometrically and mechaﬁically simple slope system. The methodology described in Section
5.2.2 is readily adaptable to digital analysis of arbitrary ground accelerations. The program
selected for Newmark analysis is TNMN (Taga Inc., 1989).

Comparative analyses betweeﬁ TNMN “and UDEC were performed using a single rigid
block sliding on an inclined plane, similar to the system depicted on Figure 5.1. The input
acceleration signal is assumed oriented parallel to the slip plane. To attain this condition in
UDEC the block system is rotated until the slip plane is horizontal, and the input signal is
applied to the bottom boundary of the model. The resolved vertical and horizontal components
of gravity are applied to the system as shown iﬁ Figure 5.6. Although the appearance of the
UDEC model is different, the physical system represented in each of the models is identical.
.Material properties used in each of the analyses are listed in Table 5.1 following page).

Yield accelerations in the down-slope and up-slope directions for the block system are
0.185g and 0.532g respectively. Gravity is assumed vertical and constant at -9.81 m/s? in all
analyses. A sinusoidal acceleration signal with peak amplitude 0.200g (1.96 m/s?), frequency
0.5 Hz, and duration 12 seconds was input to the TNMN model. The peak amplitude was
selected to ensure down-slope displacement, without the possibility of up-slope displacement for
oppositely directed acceleration pulses. Because UDEC utilizes velocity rather than acceleration
input, a sinusoidal velocity signal of amplitude 0.624 m/s, frequency 0.5 Hz and duration 12
seconds was applied to produce the desired peak acceleration of 1.96 m/s2 (0.200g). The
velocity signal produces accelerations with a cosine wave form, but this presents no ambiguity
when compared with the sinusoid wave in TNMN, because the number of critical acceleration

peaks in each case is the same.
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Table 5.1. Material Properties Used in Comparative Analyses

Program TNMN UDEC
Mass Density (kg/m3) | 2500 2500
Friction Angle of Slope Material 20 20
(Degrees)* '
Elastic Modulus (GPa) N/A** 40.0
Poisson's Ratio N/A** 0.25
Joint Normal Stiffness (GPa) N/A** 4.0
Joint Shear Stiffness (GPa) N/A** 4.0

* no cohesion was used in these analyses
** not applicable

The results of the TNMN (Newmark) analysis shown on Figure 5.7 indicate an
accumulated relative block displacement of 3.14 cm. This result compares with the accumulated
relative displacement of 3.12 cm obtained with UDEC (Fig. 5.8). Accelerations of the base and
sliding block in the UDEC model are shown on Figure 5.9. The base block has a uniform
amplitude of +1.96 m/s2. The base block has a yield acceleration of 1.82 m/s2, a difference of
1.6% from the theoretical value of 1.85 m/s?. Initially high accelerations (2.66 m/s2) occurring
in the first few cycles of the simulation result from abrupt velocity gradients in the static system
at the beginning of the dynamic run. Figure 5.9 show that these "spikes" produce a nominal up-
slope displacement of 4.7x105m that can be ignored without incurring significant error in the
calculation.

In summary, these data show that UDEC obtains results comparable to the closed form
solution encoded in TNMN for the accumulation of permanent deformation along discontinuities
due to dynamic loading. The comparison is valid only for the bi-linear elasto-plastic joint model
available in UDEC and the perfectly plastic strain law assumed in TNMN. TNMN has no

equivalent to the continuously-yielding (non-linear) joint deformation model in UDEC.
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5.4.2 Comparisbn of Shake4 and UDEC

Program Shake (Schnabel et al., 1972) is a numerical implementation of the closed-form
solution for horizontal displacements occurring due to one-dimensional shear wave propagation
in horizontally layered media. The conceptual representation of the Shake model domain consists
of a linearly viscoelastic one-dimensional "column" of rock with horizontal, infinitely extending
layers, that is bounded at its base by an elastic half-space. The input disturbance (an
acceleration) may be épplied at any vertical coordinate in the column, but is assumed to
propagate vertically upward from the half-space. Only horizontal motion of the medium is
permitted. The program calculates (in the frequency domain) the response of the system in terms
of either, or all of, acceleration, velocity, displacement, or shear stress history in the time
domain, or in the frequency domain Fourier or power spectra. The program assumes that each
layer of material comprising the system is completely defined by its thickness, mass density,
shear stiffness, and critical damping ratio (Schnabel er al., 1972). A modified version of the
program called Shake4 (version 6) was used for these analyses.

The comparison model is a homogeneous column 30 m high comprised of material with
mass-density and shear stiffness equivalent to moderately jointed volcanic rock (Lama et al.,
1978c¢). Because UDEC utilizes a two-dimensionai model domain, the column was assigned a 15
m width in the UDEC analyses. To attain boundary conditions analogous to Shake4, the
dynamic free-field calculation (Sec. 5.3.5.2) was used to simulate the motion of a horizontally
infinite medium surroundingrthe column, and a non-reflective boundary (Sec. 5.3.5.1) was used
at its base to simulate wave 'energy dispersion in the elastic half-space. The material properties
for each model are listed in Table 5.2. The constitutive properties of the non-reflective boundary

are calculated from the criteria- proposed by Goodman et al. (1968).
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Table 5.2: Material Properties Used in Comparative Analyses

Program Shake4 UDEC
Mass-Density of Material (kg/m3) N 2600 2600
Elastic Modulus (GPa) 21.0 21.0 (11.4)*
Poisson's Ratio 0.25 0.25 (0.18)*
Joint Normal Stiffness (GPa) N/A 2.0
Joint Shear Stiffness (GPa) N/A 2.0

* parentheses correspond to equivalent elastic properties of the
viscous boundaries
The implementation of damping in Shake4 is frequency independent (Schnabel er al.,
1972), while in UDEC damping must be applied at a central frequency such that frequency
independent damping is emulated (Sec. 5.3.4). Viscous damping was applied to the UDEC
model at the frequency of the first natural mode of the column (15.0 Hz). Stiffness proportional
damping is ineffective in this model because it has no contacts. However, viscous damping
opposes block motion (Sec. 5.3.4) and may interfere with the model response. For this reason
the critical damping ratio was kept to a modest level of 2.0% in both the Shake4 and UDEC
analyses.
A series of sinusoid acceleration signals between 1.0 and 13.0 Hz at discrete intervals of
2.0 Hz were applied to each model. The maximum acceleration at the base of the model was
limited to 0.10g. Peak acceleration response was evaluated at nine vertical intervals in each
model (including the base) and response spectra were compiled. Forcing frequencies at or past
the first natural mode of the column were not tested. The reasons for this are that; 1) the
theoretical dynamic amplification at resonance is 25 times the base acceleration (= 2.5g) and
represents an acceleration observed only under special conditions in natural systems (Wetmiller ez

al., 1988), and; 2) for the purposes of earthquake response analysis, only those frequencies under
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10 Hz are usually of interest. Acceleration response spectra at four uniformly spaced depth
intervals are shown on Figures 5.10a through 5.10d. The acceleration data corresponding to

these spectra are listed in Table 5.3.

Table 5.3: Peak Acceleration Values of Response Spectra*

Frequency (Hz) | surface .-7.'5m -15m -22.5m
1.0 | 0.987, 0.987 | 0.986, 0.986 | 0.985,0.985 | 0.983,0.983
3.0 1.032, 1.031 1.029, 1.028 | 1.019, 1.018 | 1.004, 1.003
5.0 1.132, 1.134 | 1.123, 1.124 | 1.094, 1.095 | 1.048, 1;047
7.0 1.318, 1.318 | 1.296, 1.296 | 1.233, 1.231 | 1.129, 1.123
9,0 1.659, 1.660 | 1.615, 1.62i 1.484, 1.486 | 1.274, 1.268
11.0 i.373, 2.391 | 2.279, 2.289 | 2.003, 2.007 | 1.568, 1.558
13.0 4.503, 4.451 | 4.253, 4.199 | 3.532, 3.476 | 2.424, 2.362

* Paired acceleration values in m/s2 correspond to [UDEC, Shake4] respectively.

The response spectra for each model exhibit excellent agreement. The mean difference
between the calculated peak acceleration values is less than 0.2% at frequencies of 11.0 Hz or
less. The mean differences at 13.0 Hz are less than 1.8%, with a maximum difference of 2.6%
recorded at a depth of 22.5 m. This result is probably due to the increasingly sensitivity of the
dynamic amplification factor to small changes in the effective forcing frequency as the natural
(resonance) modes of the system are approached.

Also implied in these results is the

effectiveness of the dynamic free-field boundary for simulation of elastic far field motion during

dynamic analysis.
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5.5  Summary

An overview of the numerical methods available for dynamic analysis was presented in
Section 5.2. The distinct element method possesses many features that make it the appropriate
choice for modelling of discontinuous rock masses. The generalized two-dimensional
formulatioh of the distinct element method known as UDEC is described in Section 5.3. UDEC |
simulations ‘of dynamically induced linear-plastic joint displacement and one-dimensional shear
wave propagation were verified by comparison with closed-form solutions. The results agree
well, and demonstrate that UDEC is capable of simulating physically correct behaviour in simple

systems.
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Figure 5.1. Physical framework for limit-equilibrium analysis. The slope is B

degrees from horizontal. An arbitrary acceleration pulse Kg at angle 8 from
horizontal produces a body reaction force KW in the block.
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Figure 5.2a. Block sliding on a horizontal plane (after Newmark, 1965).
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Figure 5.2b. Rectangular acceleration pulse of magnitude Ag (solid line) is
shown with the block critical acceleration Ng (dashed line) (after Newmark,

1965).
ﬂ‘
-
V= Agt0 P>
Q \\,
g e
tO tm
Time, t

Figure 5.2¢c. Schematic plot of base and sliding block velocities with time. The

area of the hatched region is equal to the relative displacement of the sliding
block (after Newmark, 1965).
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Figure 5.3. Shear stress-displacement curve under monotonic loading and
constant normal stress for the C-Y joint model (after Itasca 1992). The
instantaneous tangent modulus Fk is shown, as well as the bounding strength

curve T,
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Figure 5.4. Schematic representation of the dynamic free-field and non-reflective
boundary implementations in UDEC (after Itasca, 1992). '
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Figure 5.5. Schematic representation of the linkage between the dynamic free-
field calculation and the model domain in UDEC (after Itasca, 1992).
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Figure 5.6. The UDEC model used for comparative analysis of Newmark's
method. The force components acting upon the top block are equivalent to those

that would be present if the model was rotated B degrees clockwise.
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Figure 5.7. Results of TNMN (Newmark) analysis. The input acceleration signal
is shown in the top frame. Peak relative velocity and accumulated relative
displacement between the block and the base are shown in the middle and bottom
frames respectively.
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UDEC (Version 1.83)
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Figure 5.8. Results of UDEC shear deformation analysis. Accumulated relative
displacement between the bottom (non-sliding) and top (sliding) block is shown
plotted against model simulation time.
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UDEC (Versionl].83)
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Figure 5.9. UDEC shear deformation anal&&is block accelerations. The bottom
block representing the base acceleration is history 3. The sliding block is
represented by history 6.
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Figure 5.10a. Peak acceleration response spectra for UDEC and Shake4 (at
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m depth).
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m depth).
Acceleration Response Spectra
22.5 m depth
3
2.5

—L-F UDEC -e- Shakeﬂl

.

Acceleration (m/s"2)
n

0.5 t }

0 2 4 6 8 10 12 14
Frequency (Hz) '

Figure 5.10d. Peak acceleration response spéctra Jor UDEC and Shake4 (at 22.5
m depth).

102




CHAPTER 6

Dynamic Analysis Of Slope Deformation At Cement Creek

6.1 Introduction

The generalized deformation behaviour of rock slopes at Cement Creek in response to
earthquake loading is analyzed with UDEC in this chapter. The aim is to determine whether
seismicity may be considered a viable landslide triggering mechanism, and to gain insight into
seismogenic deformations of rock slopes. No analyses of this type have been undertaken in the

Yukon study area until now.

6.2 Modelling Approach

The UDEC model described here is based upon geomorphic observations and geological
rheasurements obtained during field reconnaissance of the Cement Creek area. Detailed
structural, lithological, and geomechanical data pertinent to this area are not available. The
appfoach to numerical modelling of data-limited systems in rock mechanics is discussed by
Starfield er al. (1988). The principal tenets of their methodology are:

1) the model ‘should be a simplification of reality. Its design should be motivated

primarily by the qu;:stions necessitating the model, rather than the details of the system

being modeled.

2) the intent of the analyses is qualitative rather than quantitative. Modelling is

performed to gain an understanding of the behaviour of the system, rather thén to make

absolute predictions about it.
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With these principles in fnind, it is seen that the investigation procedure is heuristic,

rather than a deterministic process.

6.3 UDEC Model Geometry and Characteristics

The predominant mode of failure observed at landslide sites on the north wall of Cement
Creek valley is by shearing along penetrative surfaces in the rock mass. Structural deformation
in the bedrock underlying these slopés is intense, and precludes the design of a model that is
representative of all of the landslides. One landslide for which there is limited reliable data and
excellent exposure of the failure surface is Cement Creek #4. In view of this, generalized
structural and slope géometries based upon Cement Creek #4 landslide were adopted for the
analyses.

Cross section A-A' (Fig. 4.3) passes through Cement Creek #4 landslide in the
approximated direction of slippage on the basal plane. Topographic profile A-A' corresponding
to the section line is shown on Figure 6.1. Elevations for the profile were taken from NTS
topographic map sheets 115 F/8 (Tempest Mountain) and 115 G/5 (Steele Creek). The pre-
landslide topography indicated on Figure 6.1 was reconstructed from slope profiles adjacent to
the slide area, and reflects the measured orientation of the underlying structural planes.

The UDEC model is illustrated on Figure 6.2. The geometry is simplified from that
shown in the profile on Figure 6.1. To increase numerical efﬁciency‘, the size of the model was
scaled downward. The base of the model is fixed in the vertical direction, and assigned a
viscous-boundary condition to simulate energy dissipation in the half-space beneath the model
(Sec. 5.3.6.1). The left and right lateral boundaries were similarly assigned viscous-boundary
conditions, and were coupled to a parallel free-field calculation (Sec. 5.3.6.2).

Discretization of the model domain represents a balance between numerical efficiency
and the importance of providing enough detail to characterize the behaviour of the system.

Achieving this balance is a trial-and-error process. Because it is impractical to discretize the

104



Chapter 6 _ Dynamic Analysis of Slope Deformation at Cement Creek

model at the frequency of field measurements, discontinuities are included explicitly at a coarse
scale, and constitutive properties equivalent to the intervening jointed rock mass are assigned to
the model elements. |

Two discontinuity sets .are incorporated in the model. The principal set divides the
model domain into 20 degree dipping blocks with thicknesses varying between 23 and 24 metres
(Fig. 6.2). These coarsely emulate the bedding surfaces separating the individual flows in the
volcanic rocks. The topmost block is further split into two 12 metre thick layers, a spacing that
approximates the upper limit of the measured bedding thickness in the field (Sec. 4.2). Their
inclination conservatively corresponds to measured dips that vary between 18 and 27 degrees in
the crown area of Cement Creek #4 landslide. With the exception of Cement Creek #2, all of
the landslides investigated at Cement Creek have failed along these planes (Sec. 4.4).

The second discontinuity set .subdivides the two topmost blocks into an array of
quadrilateral prisms at a 12.5 metre spacing. These prisms are the only elements in the model
that may translate freely. They correspond to the sub-vertical joints that were observed at the
toe of Cement Creek #1, where rock columns have detached from the main body of the
landslide. They roughly parallel the free-face of the landslide mass, and persist for considerable
distance up slope from the toe (Power, 1988). These structures are probably present at Bighorn
Creek Rock Avalanche as well, where massive, coherent rock blocks have detached from the

head scarp (Sec. 3.6.2).

6.4 . Slope Pore Pressure

No hydrogeolgical data are available for slopes in the Cement Creek area. It is widely
acknowledged that the pore pressure regime in a slope can have a significant effect on stability
(i.e. Hodge et al., 1977). However, as noted in Section 4.6, the presence of continuous
permafrost generally prohibits infiltration of surface water, except where pre-existing

discontinuities have been dilated by slope movement. Because of this, as a siinplifying
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assumption, all analyses are performed with the slope in an unsaturated (zero pore pressure)
state. The potential destabilizing effect of surface water infiltration into dilated discontinuities is

recognized, but is not analyzed in this study.

6.5 UDEC Model Parameter Selection

UDEC allows the usé of a variety of constitutive laws for the model elements and
discontinuities. Strength and deformation constants for the rock mass and joints are required
input parameters for UDEC. No specific data for these parameters are available for rocks in the
Cement Creek area. Representative values were selected from published sources, except where
noted below. The general references used are Lama et al. (1978a, b, ¢), Pasamehmetoglu e al.

(1981), Bandis et al. (1983), Barton et al. (1987), and Lu (1993).

6.5.1 Rock Mass Characterization

The model elements in all of the analyses utilize an elastic, isotropic constitutive model
with linear stress and strain laws and a Mohr-Coulomb failure criterion. The elements are
internally discretized with a deformable finite-difference mesh that complies with the wave
transmission restrictions of Kuhlmeyer er al. (1973). Confining stresses throughout the model
are low when compared to the intact rock strength. Because of the confining stress state, plastic
deformation of the elements is not considered significant, and model deformation is expected to
occur predominantly along discontinuity planes.

The rock mass model parameters are summarized in Table 6.1.
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Table 6.1: Rock Mass Parameters Used in the UDEC Analyses

* Parameter Rock Mass | Viscous Boundary

Density (kg/m3) 2,600 2,600
Elastié Modulus (MPa) 16,000 9,600
Poisson's Ratio 0.25 _ 0.16
Bulk Modulus (MPa) 9,000 4,690
Shear Modulus (MPa) 6,000 3,810
Friction Angle (deg) 45* N/A*
Cohesion (MPa) 2.0% N/A*
Tensile Strength (MPa) 0.2%* N/A*

* the parameter is not strictly required for problem calculation.

The elastic modulus of the rock mass was back-calculated from seismic refraction data
obtained at Cement Creek #1 landslide by Power (1988). Beneath a comparatively thin low-
velocity layer, his data indicate a single refractor with an average p-wave velocity of 2725 m/s.
The p-wave velocity, Cp, is related to the deformation constants of an elastic, isotropic media by

the relation:

C

P [6-1]

where p is the mass density of the media, and X and G are the bulk and shear moduli

respectively. Assuming Poisson's Ratio of 0.25, [6-1] yields a dynamic elastic modulus of 16.1

GPa.
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The calculated dynamic modulus is between 30 and 65 percent less than elastic moduli in
andesites measured in small-scale tests, but is.well in accordance with increased deformability
and decreased rock strength for in-situ conditions noted by Heuze (1980). Similar behaviour in a
number of independent tests are compiled by Lama er al. (1978b). The differences between
small-scale and in-situ elastic constants is attributed to the increasing influence of flaws and
discontinuities within the rock mass at larger scales (da Cunha, 1990).

Cohesion and tensile stréngth data ar.e available for small-scale tests (Pasamehmetoglu et
al. 1981, Lama et al. 1978a), but represg:ntative in;situ values are not. No guidelines for an
appropriate scale reduction could be found, and hence small-scale test values were arbitrarily
reduced by an amount proportional to the modulus reduction, although there is no physical
justification for this assumption. |

Parameters of the viscous boundary are based upon those of the rock mass adjusted to

account for the presence of discontinuities. The equivalent elastic modulus, E,g,, can be
approximated by an equivalent continuum formulation (Goodman et al., 1968):
Egw E ks

where E is the rock mass elastic modulus, &, is the joint normal stiffness, and s is the joint
spacing. Note that for these analyses, because the rock mass modulus already reflects the

influence of in-situ joints, s corresponds to the coarse joint spacing in the model (24 metres).

6.5.2 Rock Joint Characterization

Discontinuities (joints) in these analyses are assigned either a bi-linear, elasto-plastic
Coulomb slip law, or a non-linear strain softening law known as the continuously yielding (C-Y)

joint model. The yield criteria for these laws are outlined in Section 5.3.3. The supposed error

108



Chapter 6 Dynamic Analysis of Slope Deformation at Cement Creek

in the C-Y joint model noted in Section 5.3.3 necessitated adopting a zero joint cohesion
assumption in the analyses. The implications of this assumption are discussed in Section 6.7.3.
- The rock joint model parameters used in the analyses are summarized in Table 6.2.

The bedding surfaces in the volcanic rocks are characterized as filled joints in these
analyses. The strength and deformation behaviour of filled joints depend upon the type and
thickness of the filling material (Goodman et al., 1972, in Barton et al., 1987; Bandis, 1990). In
small-scale direct shear tests on brecciated intra-flow zones in layered basalts, Ruiz et al. (1970,
in Barton et al., 1987) report an effective friction angle and cohesion of 42 degrees and 242 kPa
respectively. These values are considered an upper strength limit for these zones. Lu (1993)
reports average’friction anglgs from direct shear tests on tuffs of 35 and 30 degrees respectively
for wet and dry samples: “Residual angles and cohesions were not reported in these tests.
Residual friction angles derived by Lu (1993) from uniaxial and triaxial tests vary between 17
and 20 degrees. Residual cohesion is assumed to be zero.

It was previously noted that rocks-in the Cement Creek area are intensely folded. It is
believed that a considerable amount of flexural slip has occurred on the intra-flow surfaces. Such
slip can create shear localizations and aligned zones of fine-grained particles along the slip plane.
The net effect is believed to reduce the peak mobilized shear strength along of the joint surface.
For these reasons, a friction angle of 36 degrees was selected as a representative intermediate
value. A residual friction angle for the sub-vertical joints is not used because shear displacement
on these joints is within the elastic range in these analyses. Tensile strength is assumed to be
zero on all joint surfaces.

UDEC was used to evaluate the monotonic shear stress/displacement behaviour of the
linear and non-linear joint models using the values in Table 6.2. The evaluations were
performed at constant applied normal stress. The linear joint model has a considerably greater
peak shear strength than the non-linear model if an identical peak friction angle is used. It was

decided to use an equivalent peak shear strength for the two joint models for the dynamic
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analyses presented in Section 6.7. This required using a lower peak friction angle in the linear
joint model, indicated in Table 6.2.. The shear stress/displacement behaviour of the adjusted
joint models is illustrated on Figures 6.3 and 6.4. The linear model exhibits modest strain
hardening behaviour in the plastic de;,formatioﬁ zone. This behaviour is the result of normal
closure on the joint surface under t.hAe ambjent stresses, which produce a normal stress increment
Ao, =k,Au,, and hence a higher peak shear strength in accordance with the Coulomb friction
law (Sec. 5.3.3). The peak strength increase is less than 0.4% over the range of displacements
indicated on Figure 6.3, and is nét considered a significant source of error in the analyses in
Section 6.7. However, this behaviour may become a significant factor in analyses with relatively

large strains.

Table 6.2. Rock Joint Parameters Used in the UDEC Analyses

Parameter Sub-vertical Intra-flow Viscous
joints breccia zones Boundary
Normal Stiffness (MPa/m) 1,000 1,000 1,000
Shear Stiffness (MPa/m) 400 100-400* 400
Pgak Friction Angle (deg) 34 36 (29.5)** 36
Residual Friction Angle (deg) N/A 18 (N/A)** N/A
Cohesion (MPa) 0 0 0
Tensile Strength (MPa) 0 0 0

* The shear stiffness of most rock joints increases in response to increasing normal
stress (Barton er al., 1987). This effect is explicitly incorporated included in both
the linear and non-linear analyses.

** Values in parentheses are for the bi-linear elasto-plastic joint model. All other
values are common to both models.
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6.6 Modelling Procedure

Dynamic simulations with UDEC cpnsist of two distinct phases.

The first is a static phase that involves creation of the model, and simulation of the slope
evolution as well as any external events that may have affected it. In these analyses, the model
slopes are assumed to have been glacially excavated with an in-situ stress state of Ko=0.5. A
sample UDEC input file included in Appendix 2 outlines the excavation procedure. The model
is cycled to equilibrium in the post excavation state and is saved as a "base" model for the next
stage of the simulation.

The second phase is a dynamic loading phase, in which digital strong motion input is
applied to the base of the model and the free-field. This ensures that the far field conditions
simulated by the free-field calculation have the same motion as the model domain. Earthquake
strong motion is input as a stress or velocity boundary condition. The former is preferred
because the velocity boundary condition tends to produce violent reactions in the model. Lorig
(1991) makes use of velocity boundary input, but does not specify the boundary conditions used;
or any assumptions regarding them.

Digital seismic data can usually be obtained as a velocity-time history, and is easily
converted to a stress history by procedures outlinéd by Itasca (1992). The model is cycled until
the seismic time history is ended. A period of quiescence after the dynamic loading phase may
be included by simply appending an appropriate quantity of zeroes to the digital input file.
Multiple strong motion records may be concatenated in sequence to simulate multiple earthquake

loadings if desired.
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6.7 Results of UDEC Modelling

6.7.1 Earthquake Data

No strong motion data are available for the Cement Creek area. The nearest strong
motion accelerograph at Haines Junction, Yukon, some 140 km to the southwest, has never been
triggered (Horner, 1991; pers. comm.). Digital strong motion records from a number of
temporally separate earthquakes associated with the 1985 Nahanni, N.W.T. earthquake
(Wetmiller et al., 1988) were obtained from Pacific Geoscience Centre.

The earthquake record chosen for these analyses corresponds to a magnitude 4.6 event
that occurred on November 9, 1985. The velocity time history is shown on Figure 6.5. Only
the first three seconds of the earthquake fecord are used to reduce computation time; ground
motions are very small in the remainder of the record, and do not contribute to slope
deformation. Zeroes are appended to the end of the record to bring the total time to 4.0
seconds.

The velocity response of the UDEC model measured at location A on Figure 6.2 is
shown on Figure 6.6. The response exhibits a modest amount of distortion when compared with
the input signal, and peak response is approximately 14% less than the input record. These
effects are attributed to joint slip on the bedding surfaces in the model as the shear wave
propagates upward. Increasing the joint stiffness can improve the correspondence between input

and response signals, but this can lead to unrealistic joint behaviour.

6.7.2 Deformation Response of the UDEC Models

The UDEC models were subjected to five consecutive loadings of the earthquake record
described above. Only horizontal earthquake motions are input to these analyses. The results of

these simulations is summarized in Figures 6.7 through 6.13.
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Figure 6.7 illustrates total displacement vectors of the model elements in the simulation
using the linear elasto-plastic joint displacement law. Both of the unconstrained layers at the top
of the model have undergone shear displacement. Note that the displacement vectors in the top
layer include the displacement increment of the bottom layer relative to the rest of the model
domain. The vectors show generally increasing element displacement toward the toe of the
model "landslide”. Figure 6.8 illustrates this effect in greater detail. It depicts the total shear
displacement at the bottom right hand corner of each quadrilateral element in the bottom layer.
The horizontal coordinate of the corner's location is shown on the abscissa. It is clearly seen
that the shear displacement is several times greater at the toe of the movement than at the
crown.

Figure 6.9 is a detail view of the toe area of Figure 6.7. Time histories of shear
displacement was monitored at the two contact locations noted. These histories are shown on
Figure 6.10. With the exception of the first earthquake loading, the shear displacements induced
by successive loading at each of the contacts are approximately equal. The greater displacement
exhibited on the first pulse is believed to be related to the release of residual "locked in" shear
stresses on the joint surface at the end of the static loading phase. It is not known if the "locked
in" stresses are representative of in-situ conditions. ~The magnitude of the incremental
displacement is different at each of the contacts, resulting in a widening of net displacement
difference between the two contacts as the simulation progresses. The net displacement
differences are manifest in the model as widening vertical gaps between the translating elements.
This process is analogous to the formation of ground cracks observed near the toe of Cement
Creek #1 Rock Slide. The gaps are also created up slope from the toe with smaller net
increments of dilation with each successive earthquake event.

Figure 6.11' depicts total displacement vectors of the model using the non-linear strain
softening joint displacement law. All of the elements below point "A" (indicated) are sliding

down the basal slip plane, indicating general shear failure of the basal joint surfaces. All
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elements above point "A" do not experience general shear failure at the end of the loading cycle,
but have undergone irréveréible plastic shear displaéement. A detail of the toe area is shown on
Figure 6.12. |

Figure 6.13 shows the time history of sheaf displacements of the two contacts indicated
on Figure 6.12. The progression of strain softening along the joint surface ultimately leading to
shear failure is depicted. As with the linear joint model, the net difference in shear displacement
between the contacts widens with successive earthquake load applications. The amount of
difference increases rapidly as strain softening progresses. The third earthquake pulse causes
general shear failure of contact 6172, as evidenced by the sloping displacement curve during the
quiescent interval after the load interval. The fourth loading interval causes immediate large
strains that are depicted by the nearly vertical displacement curve. Contact 5551 remains stable
until the fifth loading interval, where it exhibits large strain behaviour similar to contact 6172,
This simulation clearly demonstrate a possible mechanism for progressive, increrﬁental slope
failure. This type of movement has occurred at Cement Creek #1 Rock Slide. Plate 4.4 clearly
shows a debris stream that emanated from the eastern portion of the toe and cascaded downward

into Cement Creek canyon. Portions of the slide block above this area have remained stable.

6.7.3 Implications of Cohesionless Joints

The effect of using no joint cohesion may have an effect on the specific results reported
here, but are not believed to substantively alter the general behaviour of the system. Including
joirit cohesion Would have the effect of translating the curves in Figures 6.3 and 6.4 p the
ordinate axis, without altering the shape of the curve. The result is that higher transient stresses

during earthquake loading would be required to induce slope movement.
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6.8 Summary

The data generated by these numerical simulations provides important verification of the
role of seismicity as a landslide triggering mechanism for Neogene volcanic rocks in the Cement
Creek area. Geomorphic features such as ground cracking and related landforms commonly
referred to as sackungen (Hutchison, 1988) can be explained in terms of seismicity induced, non-
critical slope deformation, although seismogenic deformations are not the only cause of such

landforms.
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Figure 6.5. Earthquake velocity input record.
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Chapter 7 Conclusions

CHAPTER 7

Conclusions

This research was undertaken to explore the relationship between large landslides and
neotectonic processes in mountainous terrain. The focus of the study changes as data frqm the
regional assessment is used to characterize a local, but generalized study of the role of seismicity
as a slope deformation process.

The regional distribution of landslides in southwest Yukon correlates with several
factors. Landslides are markedly more frequent in Neogene ;'olcanic rocks (Wrangell Lavas) and
in Permo-Pennsylvanian meta-sediments and meta-volcanics of Skolai Group. The higher
number of landslides in these rocks can be attributed to the presence of pervasive structural
discontinuities within them, and their high topographic position, which is accentuated by erosion
and broad regional uplift. Landslides correlate well with zones of weakened rock adjacent to
regional faults, and are comparatively more common near fault segments known to be seismically
active. All of these factors impart a spatial bias to the landslide distribution.

Seismicity is particularly dense in the Cement Creek area. In addition to a high spatial
density of landslides, the apparent temporal distribution departs from the expected regional slope
exhaustion model. The geology, geomorphology, and landslides in this area were studied in
relatively more detail during field reconnaissance in preparation for numerical studies of
seismogenic slope deformation.

Program UDEC was selected for the dynamic numerical analyses, and limited verification
tesﬁng was undertaken. UDEC simulations compare well with closed-form solutions for elasto-

plastic shear displacement and vertical shear wave propagation in geometrically simple systems.
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Chapter 7 Conclusions

Results of geheralized slope analyses with UDEC show a correlation between the
observed geomorphic features associated with slope deformation in the Cement Creek area and
comparatively low-magnitude seismic loading. The formation and pattern of ground cracking
observed in the field can be explained by incremental sldpe displacement. Earthquake loading is

shown to be a viable landslide triggering mechanism.
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APPENDIX 2

EXAMPLE UDEC INPUT FILE
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* CEMENT (nl1) UDEC 1.83

* Static modelling phase with excavation

*

new

* Set defaults

set jecondf 8

set clemin 2

set deg on

set grav 0.0 -9.81

head

CEM(nl)

*

* Set material properties

* Rock mass material & sub-vertical joints (1) E=16.0 GPa; v=0.25
prop mat 1 d=2600 k=10.667¢9 g=6.40e9 fr=45 coh=2.0e6 ten=2.0e5 &
jkn=1.0e9 jks=4.0e8 jfr=34 jco=0.0 jte=0.0
* Interflow material (2) C-Y joint model

prop mat 2 jkn=1.0e9 jks=2275 jen=0.0 jes=1.0 jr=0.015&
jif=36 jfr=18 minjks=1e8 maxjks=4e8

* Viscous boundaries (3) E=9.0 GPa; v=0.16
prop mat 3 d=2600 k=4.69¢9 g=3.81e9 &
jkn=1.0e9 jks=4.0e8 jfr=36 jco=0.0 jte=0.0
*

* Generate initial geometry

ro 0.10

bl 0,0 0,200 200,200 200,0

cr 62.5,200 200,150

cr 0,125 62.5,200

cr 0,210 200,137.5

del bl 86

del bl 388

del bl 243 _

Create bedding planes and vertical cracks

cr 0,198 200,125

cr 0,175 200,102

cr 0,150 200,77.5
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cr 0,125 200,52

cr 0,99 200,26

cr 0,72.5 200,0

cr 0,48 200,-25

cr 0,24 200,-49

jdel

cr 62.5,200 62.5,175

cr 75,195.5 75,170.5

cr 87.5,191 87.5,166

cr 100,186.5 100,161.5

cr 112.5,182 112.5,157

cr 125,177.5 125,152.5

cr 137.5,173 137.5,148

cr 150,168.5 150,143

cr 162.5,164 162.5,138

cr 175,159.5 175,132.5

cr 187.5,155 187.5,129

jdel

del bl 6620

del bl 6297

*

* Generate finite-difference mesh in blocks
gen edge 14

*

* Assign material properties to model
ch mat 1 con 1 jmat 2 jcon 8
ch ang 88 92 jmat 1 jcon 8

*

* Set boundary conditions

bo mat 3

bo cor 37 63 xvis yvis ff

bo cor 24 266 xvis yvis ff
bo cor 63 24 xvis yvis yvel 0
*

* Free field lateral boundaries - 20 nodes
ff gen 0 125 20
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ff0 125 mat 1 con 1

ff xvel 0 yvel 0

*

* Set damping & insitu stress (K0=0.5)

damp auto

insitu str -2.5506e6 0 -5.1012e6 ygr 1.2753e4 0 2.5506e4 &

szz -2.5506e6 zgr 0 1.2753e4

*

* Excavate model with time-varying external stress condition
tab10,12.5,1507,0

bo cor 266 37 str -2.5506e6 0 -5.1012e6 ygr 1.2753e4 0 2.5506e4 hi tab 1
*

* Cycle initial state to equilibrium

cytS

* Release external stress on top boundary; cycle to equilibrium; save model
bo cor 266 37 xfr yfr

cyt2

sav nl.mod
*
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* CEMENT (nl) UDEC 1.83

* Dynamic model run example

*

new

r nl.mod

head

CEM (nl) - N12(T5)

*

* Reset global variables & assign monitoring points

reset hist disp rot jdisp time

his ncyc 25 type 1 &

sdis(6172) ndis(6172) sstr(6172) nstr(6172) &

sdis(5551) ndis(5551) sstr(5551) nstr(5551) &
sdis(100,150) ydis(100,150) xvel(100,150) yvel(100,150) &
xdis(100,162) ydis(100,162) xvel(100,162) yvel(100,162) &
xacc(100,150)
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* Damping: 1% @ 12.0 Hz stiffness proportional for dynamic analysis
damp .01 12 stiff

*

* Boundary Conditions

* Read digital earthquake record
bo hread 1 c:\udec\n12t5.der

bo cor 37 63 xvis yvis ff

bo cor 24 266 xvis yvis ff

* Transient stress boundary on bottom of model and free-field
bo cor 63 24 str 0 -4.0e4 0 xhis 1
bo cor 63 24 xvis yvis yvel 0

bo xhis 1

ff sxy -4.0e4 xvis yvis yvel 0

*

* Cycle and save state

cyt4

sav 12t.nl

cyt4

sav 12t2.n1

cyté

sav 12t3.nl

cytd

sav 12t4.nl

cyt4

sav 12t5.n1

*

return
kkokok ok
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