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ABSTRACT

Geophysical inversion methods are most effective when applied to
linear functionals; it is therefore advantageous to employ linear models
for geophysical data. A two-dimensional linear model consisting of many
horizontal prisms has been developed for interpretation of gravity profiles.
A Backus-Gilbert inversion which finds the acceptable model "nearest" to
an initial estimate can be rapidly'computed; iterative application of the
technique allows a single-demsity model to be developed at modest expense
of computer time. Gravity data from fhe Guichon Creek Baﬁhoiith'ﬁéré:
inverted as altest of the method, with reéults comparéble to a standard

polygon model.

The entropy of these linear models is a useful property which can
be minimized to find an optimum "structured" or "compact'" model. Since a
numerical optimization is used, computations become prohibitively long for
any large number of parameters. Several simple models have been found by
minimizing the entropy of an intial model under the constraints imposed by
a known gravity profile. Similar results can be obtained by using a simpler
objective function. It is also possible to maximize model entropy; this
procedure tends to evenly distribute the anomalous mgss beneath the profile,
while minimum entropy tries to concentrate mass in as few prisms of the

model as possible.
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CHAPTER 1

Introduction To Gravity Modelling

There are three major steps necessary to obtain useful informétion
from geophysical explorations; data acquisition, analysis, and interpretation.
Data must first be recorded in the field with sufficient accuracy to allow
drawing geological conclusions. Secondly, the data must be analyzed and
put into a form which enable them to be related to properties of the explo--
ration objective. Finally, by applyihg theoretical knowledge of the rela-
tionships between physical properties of the earth and the type of data under
consideration, one can estimate those physical properties in the explored
region. This thesis will consider some new variants of this third stage in

the treatment of gravity data.

Before any geophysical data can be used to estimate the physical
parameters of the earth, it is necessary to solvé the "direct problem" for
the particular type of data.l The direct (or forward) problem consists of
predicting values of a geophysical function from known parameters'of the
earth. For example, if free oscillation.data are to yield information
about the earth's density, the relationship between the periods of the oscil-
lations and a known density function must be known; i.e. one must be able
to accurately predict the oscillation periods for a hypothetical earth of‘
known density. Fortunately the direct problem of finding the gravitational
attraction of a given density distribution (e.g. a body of known shape,

location, and density) can be solved using potential theory (MacMillan 1930).

If the forward problem can be solved, it may be possible to find



solutions/to the "inverse problem'", which attempts to find physical para-
meters of the earth from observed values of certain geophysical functions.
Geophysical inversion frequently is a problem in modelling: one sgeks
parameters for a model whose properties correspond to observations of the
real earth, by using the solution to the direct problem for the model para-
meters and type of data available. The parameters may be determined in two
ways: by an analytic method based on the functional relationship of the
paraméters to the data; or by a trial-and-error process in which an inter-
preter édjusts model parameters in an attempt to improve the fit to the
data (in this case, he is continually soiving the direct problem, rather
than finding a formal solution to thevinverse problem). A simple éxample
of inversion is refraction seismology, where the objectiveé are the velocities
and thicknesses of crustal layers which produce the observed travel times

at the surface.

In many cases, inversion is a subjective process without exact
solution. To begin with, the infinite detail of the real earth cannot be
uniquely determined from the finite number of observatiods available. It
may also be true that several models can satisfy the same set of data, if
those déta are not in themselves sufficient to determine a unique model.

This is true of gravity data, as it is well known that many quite different
density distributions may produce identical gravity anomalies (Skeels, 1947).
The non-uniqueness of inverse problems has been treated in different ways.
Many techniques impose enough constraints on the model being sought to ensure
that it is unique. A similar, but conceptually simpler, viewpoint is to

seek‘particular members of the set of models which satisfy the data, usually



by optimizing some property of the model, for example, finding the '"nearest"
acceptable model to a specified initial model which does not satisfy the

data.

Several different types of models may be used with the same data,
and the inversion procedure will naturally depend on the type of parameters
being used. For example, the parameters of a gravity model might be the
external shape and constant density of an anomalous body, or perhaps the
density at various points in a given subsurface region. In some problems,
the speed and efficiency of the inversion may be imbroved by defining a new
type of model whose parameters are more simply related to the observed data.
Lineér.models are often preferable, since they obviate the need for iterative
procedures required in fitting non-linear models to the data. By a linear
model, we mean a model whose parameters are linearly related to the observed

geophysical data. -

The inverse problem in gravity exploration has usually been ap-
proached by considering restricted classes of models with only a few para-
meters, and adjusting an initial model to find a "best-fit" solution; this
has generally meant non-linear models and hence iterative methods. With
the viewpoint of finding particular models in a large set, the linearity of
the density-gravity relationship can be exploited to develop new modelling
techniques. Before considering methods, a brief description of the objec-

tives and requirements of the inversion process 1s in order.

Several types of anomalies may be found in the earth's gravity



field, by applying different corrections to the total field (e.g. free-air
anomaly, Bouguer anomaly, isostatic anomaly: see Garland, 1965, Chapter 4);
different interpretation methods can be developed for different types of
anomalies. Modelling techniques for exploration data usually attempt to
define a single subsurface formation to account for an isolated anomaly
(Grant and West, 1965, p. 268, term this '"'quantitative interpretation').

The anomaly is defined by applying all necessary corrections to the raw daté
(e.g. latitude, free-air, Bouguer,.terrain) to find the Bouguer anomaly
(Grant and West, 1965, pp. 236-243), and then removing regional variations
from the Bouguer gravity to locate isolated, local features. The gnomaly
should then be due solely to some isolated body whose density is different

from the crustal average.

The separation of local anomalies from the regiohal field requires
great care, since the shape of residual anomalies can be altered by the
separation process (Skeels, 1967; Ulrych, 1968). Any analytic inversion
pfocedure can only be successful if the anomalous gravity corresponds to
a real.feature of the earth, and is not évenApartly a result of a filtering
process. If the regional separation is successful, a model can be formu-
lated strictly in terms of the density contrast between an anomalous feature
and the average crustal rocks. In this case, "density" can'be taken to

imply "density contrast."

The corrections applied in finding residual anomalies contain
many uncertainties, and thus gravity models need not produce an exact fit

to the observations (and usually cannot do so). For the purpose of studying



modelling techniques, we will assume that the anomalous gravity is exactly
known, but frequently will accept a close fit rather than attempting to
produce perfect agreement with the data. The remainder of the thesis is

concerned with finding simple models from residual anomalies.



CHAPTER 2

Gravity Data And Inversion Techniques

2.1 Common Methods of Gravity Modelling

There are several ways to build models for the crustal structﬁres
which produce gravity anomalies. A model could be formed by sbecifying:
the shape and position of a body of constant density; the location of a
number of simple bodies; the density (contrast) at various points in the
subsurface; or other parameters. The basis of the inversion process is to
establish the relationship between the model parameters and the surface
gravity (i.e. to solve the forward problem); and then apply the relationship
to compute a set of model parameters corresponding to the observed gravity.
The comput;tional method will depend on the nature of the parameters, and
'~ in some cases in merely trial and error adjustment to improve an initial

model.

Perhaps the most common methods of determining simple models from
gravity aﬂomalies stem from the polygon methods of Talwani et al (1959) and
Talwani and Ewing (1960), developed to solve the direct problem for two and
three-dimensional features, respectively. The two-dimensional method assumes
the body to be an N-sided polygon of known, constant density; and uses the
positions of the vertices to compute the gravity effect of the body. By
specifying the locations of each vertex in an initial polygon, and comparing
the computed gravity to an observed surface gravity profile, one can make
iterative changes to the coordinates of each vertex until there is accept-

able agreement with the real data. A three-dimensional body can be modelled

-



with a series of horizontal lamina, each of polygonal outline. Again the
gravity effect can be compuﬁed from the coordinates of each vertex and the
given density, and iterative changes can be made to an initial model to
produce good agreement with the measured gravity on the two-dimensional
surface. Rather than using a trial and error basis for successive changes
to the model, Corbato (1965) suggested a least-square error apbroach to
improve a two-dimensional polygon, and thus accelerated convergence to the ‘

observed anomaly.

Another frequently used approach is to consider models consis-
ting of many bodies of simple shape, for example, spheres or rectangular
prisms. Tanner (1967) developed an iterative procedure to develop two-
dimensional models consisting of constant density rectangular blocks. He
assumed tﬁat the density, width, and depth to top of each block are known,
so that the unknown parameters to be obtained are the depths to the bottom
of each block. Dyrelius ana Vogel (1972) also used this approach. Negi
and Garde (1969) and Agarwal (1971) developed similar models, but allowed
each vertiéal column to be subdivided into units of different density.
Their methods were aimed at finding gravity models of sedimentary basins,
where severél layers of different density might be expected. Nagy (1966)
used models consisting of three-dimensional prisms of various sizes and
densities, and then used trial and error adjustment to improve the fit of
an initial model to a gravity map. Cordell and Henderson (1968) found
three-dimensional models made up of vertical prisms, using an automatic
iterative method to solve for the.depths of the prisms beneath a gridded

two-dimensional surface.

-



Modelling is by no means the only way to usefully interpret gra-
vity data. Many other approaches have been used, some of which are des-
cribed by Garland (1965) and Grant and West (1965). One example is to
examine the characteristics of potential fields in the spatial frequency
domain (e.g. Odegafd and Berg, 1965; Berezhnaya and Telepin, 1968). Another
widely used method is downward continuation, which attempts to find the
"topography" of a density interface (Grant and West, 1965). However, as
this thesis is intended to give insight into modelling techniques, such

other methods will not be discussed further.

2.2 Non-Uniqueness in Gravity Inversion

The greatest problem to be overcome in finding the source of a
gravity anomaly is the non—uniqueness associated with potential field inver-
siéns; i.e. different bodies or crustal structures can produce the same
gravity effect at the surface, and there is no way to distinguish which of
the acceptable models corresponds to the feal earth, from the gravity data
alone. Skeels (1947) presented several examples of quite different forma-
tions whiéh produce the same surface gravity. He also developed an analytic
proof (using Green's theorem to integrate the vertical gravity effect around
the body) to show that a layer of variable density can have the same gravity
profile as a point mass at greater depth. Skeels noted that the ambiguity
in interpretation can be considerably reduced if other geological br geo—

physical data are available.

In a further analysis of non-uniqueness, Roy (1962) studied

situations in which a unique model could be developed; for example, if the

.



anomalous density is confined to a plane at known depth, there is only one
density function which can produce a given gravity anomaly. He noted that
this assumption is implicit in structural determination by downward conti-
nuation. Another unique class of models are those of constant density and
known external shape; models of this type usually treat size, position,

and orientation of the anomalous body as unknown parameters.

Al-Chalabi (1971) examined methods for finding models which pro-
vide unique solutions to the inverse problem. He discussed other (di.e.
nop—potential) sources of non-uniqueness, including.incomplete knowledge
of the anomaly; observational errors; and the use of simple models to
déscribe the complicated real earth. He studied the results of modelling
with polygons, using artificial gravity profiles from polygonal bodies.
Unique solutioné were possible if the model polygon had as many sides as
the 'real' body; however, the uniqueness could be destroyed by inadequate
profile length or other factors. If the ﬁodel polygon had fewer sides
than the real body, any solution would not be unique. Al-Chalabi's con-
clusions Qere: a satisfactory solution can be obtained by specifying only
one model parameter, provided none of the factors contributing to ambiguity
are too great; and, in cases where there are strong sources of ambiguity,
it is desirable to produce a number of solutions by examining intervals in
the parameter 'hyperspace' corresponding to acceptable agreement with the

observed anomaly.

Most techniques for inverting gravity data avoid the problem of

non-uniqueness by using restricted classes of models; solving for a very

-



10

limited number of unknown parameters may ensure that there is only one
model of that type which acceptably fits the data. The usual method is to
alter chosen parameters of an initial model to obtain agreement with the
observed gravity, and thus the final model may largely depend on the nature
of the initial model. Iﬁ such methods, the "uniqueness" of the solution
may lie in being the acceptable model which most closely resembles the
initial estimate. It is possible that an inverse method thought to be
unique is not; for example, Parker (1973) found that the standard models
for magnetization of the oceanic crust (which are very similar to gravity
modelling using a constant thickness layer), do not provide a unique
~inverse for the magnetic anomalies observed at the ocean surface, although

this is commonly believed to be the case.

One difficulty‘ﬁith many methods is that the restrictions on the
model are incorporated into the numerical techniques used, and the inter-
preter may not be. fully aware of them. Fér example, the polygon methods
produce a model of a given number of sides, but do not guarantee that a
different‘polygon will not also be acceptable. The Cordell-Henderson method
requires a reference plane to mark the top, midpoint, or bottom of the
prisms which comprise the model. Such restrictions often necessitate an
initial model which fits the data reasonably well. For example, Cordell
and Henderson found their results to be physically plausible only for res-
tricted choices of reference plane; to obtain a reasonable spherical model,

the reference plane had to be set through the center of the sphere.

The non-uniqueness of gravity inversions is then not an insur-

-



11

mountable obstacle. It is usually possible to produce a simple model (with
a limited number of parameters) to account for any gravity anomaly; however
it will not necessarily be the only aéceptable simple model. Before making
a geological interpretation, it is essential to examine the inversion method

to understand the limitations of the solution.

The availability of other geophysical or geological data can be
of great help in establishing an initial model which allows a reasonable
solution to the inverse problem. In situations where there is little prior
information, the choice of initial model may become difficult; in this case,
a methbd requiring few assumptions about the form of the anomalous body
would be advantageous. Some new techniques for gravity data will be deve-
loped later in hopes of finding inversions without requiring a detailed

initial model.-

2.3 New Approaches to Geophysical Inverse Problems

a. The Backus-Gilbert Method

in recent years, a strong theoretical basis for geophysical
inverse problems has been established, particularly in the work of Backus
and Gilbert (1967, 1968, 1970). A major innovation is that the non-
uniqueness of inversions is exploited by seéking particular models which
satisfy the data from the Hilbert space* of all possible models. This can
usually be achieved by optimizing some property of the model subject to
the constraints imposed by the observations; for example, the "distance"*

of the model from an initial model (in a parameter space) might be minimized,

*
See Appendix A,
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or tﬁe average properties of adjacent models might be obtained by finding
the "smoothest'" model. Some of the older inversion methods may produce
similar results, but the Backus-Gilbert approach emphasizes the true nature
of the solution; in addition, their formalism is much more flexible in that
similar algorithms can be employed to produce models of different properties.

Parker (1970) has given a good summary of their techniques.

A centrél concept in the Backus-Gilbert method is that models
which satisfy the data are points in a Hilbert space which includes all
possible models. In one sense, such models can not be unique for any geo-
physical data, since only a finite number of data are available, but the
earth's properties can be infinitely variable if viewed on a sufficiently
fine scale. Particular data, for example potential field observations,
may also cqntain other sources of non-uniqueness. A model with N parameters
(or one parameter evaluated at N spatial positions) may be considered to

lie in a N-dimensional subspace.

‘If the geophysical functions under consideration can be expressed
as inner products* defined on the Hilbert space, the Backus-Gilbert formalism
can exploit the properties of the inner product to develop a model from the
observations. A linear functional can always be written as an inner product
(Hoffman and Kunze, 1961, p. 235); non-linearity can also be handled, so
long as the functional is Frechet—differentiable* and can be linearized in
the region near an initial model. 1In geophysical inversions, this restric-

tion is usually no problem, since most earth data have heen shown to be

*
See Appendix A,
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Frechet-differentiable; Backus and Gilbert (1967) cite several examples,
including mass, moment of inertia, travel times of seismic waves, and normal

mode oscillation frequencies.

The basic notation of the Backus-Gilbert method is as follows:
a) Ej0 or‘Yj are the observed data
b) Ej(M) is the data functional of the model M
Frechet differentiability implies
c) Ej(M + AM) = Ej(M) + (Fj, AM) + e(AM).
d) F, is the Frechet kernel, and (Fj, AM) is an inner product

3

e) A=1 aiF is an averaging kernel for the model M

i
The inversion starts with computation of the Frechet kernels for
the particular data functionals and model parameters. Different approaches
are then available, depending on the nature of the desired solution. For
éxample, the-"distance" of an acceﬁtable model from an initial guess can
be minimized, subject to the constraints that the data functionals have
certain known values. This reduces to a classical calculus of variationmns
probleﬁ, easily solved via thg Lagrangian multiplier technique (details are
given in Appendix C). If the functionals are non-linear, the solution must

be iterated in small linear steps from the previous model.

Another technique is to find average properties of acceptable
models, using an averaging kernel which is a linear combination of the

Frechet kemmels. The avefaging kernel is given by
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The 1968 paper demonstrates that the average model <m> can then be expressed

as a linear combination of the observations, i.e.

<m>=f Am dV =% a
\Y

Y
g 11

so long as the fqnctionals are linear, or can be linearized in the neigh-
bourhood of the average model. Establishing a criterion for the quality
of the local averages leads to computational methods for determining the
coefficients a, of the averaging.kernel. Backus and Gilbert (1970) minimized

i
the '"spread" of A, given by

1

S(r_,A) = 12 f '(r-ro)z A(r)? dr

0
to determine averaging kernels for whole earth models. The basic aim of

the process is to find an average with the shortest resolution length pos-
sible. The form of tﬁe averaging kernels gives an estimate of the resolving
power of the inversion, ideally, A(r) should be a delta function (hence the

term "§-ness criteria'" in the 1968 paper).

One advantage of this approach is that the averages are unique

if the model is linear; in addition, all models which are '"near" to each

other (in the sense that E,(m) - E,(m') is linear in (m-m'), where m, m

3 3

denote different models) have the same average properties. The averaging

process thus obtains unique solutions from a finite series of observations;
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however it does not remove other sources of non-uniqueness. When the data
coﬁtain errors, the model averages can no longer be precisely determined.
The problem that then arises is that the standard error in <m> increases

as the resolving length decreasés, i.e. there is a tradeoff between the
resolution of the averaging kernel and the standard error in thg resulting
averages. In their 1970 paper, Backus and Gilbert were concerned with
computing tradeoff curves for noisy data, and with strategies which lead to

a reasonable compromise.

In some cases, the resolving power of the data may be so poor that
different models cannot effectively be distinguished. This is certainly
true for gravity data. Since the gravity-density relationship is linear
(see Chapter 3), all possible density models are ''mear" to one another in
the Bgckus—Gilbert sense. It has been noted earlier (Section 2) that quite
different models can produce the same gravity effect; the only properties
common to all models are the total (anomalous) mass, and the surface position
of the center of mass (which can easily be found from the data alone, e.g.

Grant and West, 1965, pp. 227-230).

Backus and Gilbert applied their methods to the problem of deter-
mining the density structure of the earth, and have been able to estimate
the resolution limits imposed by the finite data set available. Parker
(1970, 1972) successfully adopted their technique to model the conductivit&
structure of the mantle, and to make gross estimates of the core densities
of the outer planets. Der and Landisman (1972) used the same basic apprdach
to produce crustal models froﬁ surface wave observations, and examined the

ability of the data to resolve density and shear velocity.
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b. The Generalized Inverse Approach

Other authors in recent years have attempted to solve inverse
problems using the generalized inverse of a matrix (Penrose, 1955). If the
available data can be related to model parameters by a matrix equation, the
generalized inverse will give a particular model which satisfieg the data,
the solution being the one of least Egclidean "length" (Smith and Franklin,
1969). Here "length" implies distance from the origin in parameter space
(see Appendix A). The usual application is to solve for corrections to
initial model parameters, which is equivalent to the Backus-Gilbert method

of minimizing "distance" between models.

The basic formulation of a generalized inverse problem is as
follows (Wiggins (1972) and Jackson (1972) give more complete details).
One seeks N model parameters Pi knowing M observations Oj of the real earth.
Changes in model parameters are related to changes in the data functional

by a matrix A' of "variational parameters".

[A'] [aP'] = [ac'] (1)
where IAij'J = [BCilan]

C, = Fi(P

i ) is the linearized functional corresponding to

3

observation i

Solving this system using the generalized inverse of A yields a set of
2 _
parameter corrections APi, such that both lAPI and e2 = IAAP - AC]2 are

minimized (Wiggins, 1972). If model parameters have different dimensions,
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scaling is necessary to make the minimization reasonable. Error statistics

may also be incorporated in weighting. One then solves the modified system

AC S (2)

A AP =

where A = S-l/2 Al Wl/z

AP = w‘l/2 AP

AC = s‘1/2 AC!

S = covariance matrix of the observations

=
]

covariance matrix of the parameters

The inversion is performed by finding the eigenvalues and eigenvectors of A.
Three further benefits of this analysis are: near-zero eigenvalues can be
rejected to remove potential instability of the solution caused by noisy data;
the eigenvectors corresponding to columns of A are a measure of the resolution
of the parameters; and the row eigenvectors can indicate the informétion

distribution among the observations.

The generalized inverse method is becoming popular, since it can
easily be implemented using standard matrix techniques. Jordan and Franklin
(1971) used a variation of the basic method, and found earth density models
by considering them to be outputs of a linear filter; this formulation allows
rejection of models which are not "smooth". Jackson (1972) examined the
theoretical performance of a generalized inverse for underdetermined and
overconstrained systems. Wiggins (1972) also studied resolution in deducing

density models from surface wave and free oscillation data. Like the Backus-



18

Gilbert method, the generalized inverse requires linear or linearized
functionals; non-~linear models can be found by jiterative solution of a

linearized system.

Braile et al (1973) used the method to solve for the densities of
multi-prism gravity models. The number, size, and position of-prisms was
left to the discretion of the interpreter, allowing considerable use of
other data. The generalized inverse found corrections to densities of>an
initial model, with reaéonable success in such application as a crustal model
for a profile across Texas. However, their success depended on being able
to construct a good initial model comprised of prisms of various sizes, and
their method might not be practical in areas where little other information

is available.

c. Monte Carlo Modelling

Monte Carlo techniques for geopﬁysical modelling have become
practical with the advent of large, fast digital computers. In essence,
these methbds construct models whose paramefers are randomly distributed
over specified intervals, and then test these random models to find those
whose properties agree with observations of the real earth. All the accep-
.table models are examined to estimate the average values of model parameters,

their standard deviations, and the resolving power of the data (Wiggins, 1972).

Monte Carlo methods in geophysics are usually attempts to randomly
sample the space of all models which satisfy the data, in hopes of finding

the bounds of acceptability. The main difficulty is that almost all of the
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random models are rejected; hence the model building process must be res-
tricted to ensure finding some acceptable models, and the testing simplified
to reduce total computing time. The former is accomplished by generating
parameters randomly within the restrictions of present knéwledge; for example
density values are picked in a small interval about the accepted earth models,
and usually made to increase monotonically below the upper manfle. The
testing of models against the observations usually employs linearized varia;
tional parameters rather than exact computatiohs of non-linear functioﬁals

(the variational parameters of Wiggins (1968) are frequently used to compute

free oscillation periods of earth models).

Monte Carlo methods are often used in problems where many different
data are fo be inverted. Press (1968, 1970) considered models whose para-
meters were density, shear velocity, and compressional velocity at 88 radii
within thé earth; the values were generated randomly at 23 points, and
interpolated elsewhere. Models were tested against 97 eigenperiods, various
travel time data, and the earth's mass and moment of inertia. Press found
11 acceptaﬁle models from a total of 5 million, requiring 20 hours of com-
puter time (1968). Refinements to the procedure enabled him to find 11
successes in one hour of computation (1970). Other applications have been
discussed by Keilis-Borok and Yanovskaya (1967) and Wiggins (1969) in
inversions of body-wave data, and Anderssen (1970), who sought bounds on the

conductivity of the lower mantle.

A final point of discussion is the question of whether the method

provides adequate sampling of the model space. Backus and Gilbert (1970,

-
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p. 126) suggest that it cannot; however Press (1970) demonstrated that a
small number of random models (25) can effectively span the parameter space
in which they were constructed. Anderssen.et al (1972) discussed several
points of contention, and concluded that the various methods of inversion

should be able to provide equivalent information about the earth.
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CHAPTER 3

Linear Models For Gravity Data

As noted earlier (Section 2.1), the commonly-ﬁsed methods for
modelling gravity data involve non-linear functionals; i.e. the parameters
of the model are not linearly related to the surface gravity. For example,
the polygon methods use the subsurface location of vertices as parameters;
and the unknowns in Tanner's models are depths to bottom of blocks. Linear
density models can be constructed, since surface gravity is a‘linear function
of density; the inversion techniques to be devéloped will apply to linear
models (densities at different locations are the only parameters). A linear
approach was inspired by the simplified methods developed for linear (or

linearized) functionals, which were discussed in Chapter 2.

Since gravity data may be méasured along a line or over a surface
grid, models of the subsurface density distribution may be two-dimensional
or three-dimensional, respectively. 1In either case, analytic relationships
can be established to compute the gravity effect of the model; however the
two-dimensional case requires the assumption that the model has infinite
extent in the third spatial coordinate. The two-dimensional equations are
thus always an approximation, but aré generally acceptable when the length
of an anomalous body is greater than about five times its width (Grant and
West, 1965). Only two-dimensional models will be considered here, for they
involve fewer parameters and are therefore more practical for testing new
techniques. The approach would be essentially the same for three-dimensional

models, but computational tests would be much more expensive. The primary
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purpose is to test new modelling methods, so it will be assumed that the
gravity data are exactly known; in any case, non-uniqueness precludes

detailed consideration of data errors.

The gravitational potential of any mass distribution in a Cartesian

system is

[+ ] [ ] .
- p(x ,y »z )
U(x,y,2) = v f f ) f 0’70’0 dgodyodzo (1)
-C0 e -00 r
where r2 = [(x—xo)2 + (y—yo)2 + (z—zo)z]

and y = the gravitational constant

If a body is essentially two-dimensional, one assumes that p does not vary

in the Yo direction, and performs one integration to obtain

U(x,z) = 2y f-w [-m p(xo,zo) 1n(R) dxodzo (2)
2 2 2
where R™ = (x—xo) + (z—zo) (Grant and West, 1965,p.230)

Gravity surveys measure the vertical component of gravitational attraction
at the earth's surface (z = 0); the vertical gravity is related to the

potential by

gz(xao) = ‘3U£X,Z) I
_ 9z z=0



23

hence

© ® Z X VA
oo( o’ o)

gz(X) = 2y f f 2 2 dxodzo
—o /o (x—xo) + z,

As noted earlier, 8, is a linear function of p. Linearity requires
F(ax + y) = aF(x) + F(y) (Hoffman and Kunze, 1961, p. 91)

From (3)

f ® f © zo(apl + p2) dXodZo
2y

gz(apl + pz) = 2

2
(x—xo) + z,

or

* ® Zopldxodzo Y zopzdxodzo
g, (ap; tp,) = 2Yaf_m f 7t 2y L» f 5

2 2
. (x—xo) + z —o (x-xo) + z,

ag_(py) + g,(p,) Q.E.D.
Knowing that (3) 1is linear in p, the Frechet kernel for gz is immediately
seen to be

2Yzo

G(x,xo,zo) = 2 2
(x-x )" + =z
o o

and the vertical gravity may be written as an inner product

o -]

f G(x,xo,zo) p(xo,zo)dxodzo (5)

=00 ¥ 00

gz(X) = (.G(x,xo,zo), p(xo,zo)) = f
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G(x,xo,zo) may also be considered to be the Green's function which generates

the vertical gravity from the source term p(xo,zo).

Considering gz as a derivative of the potential, the total ano-
malous mass which causes g, can be determined by an application of Gauss'

theorem; for a two-dimensional bopdy the result is
. M= 1 f gz(x)dx (Grant and West, 1965,p.273) (6)

All models which fit a given gravity profile must have the same excess mass,
since the integral is not taken over the source region, but is related

solely to the data.

Equation (3) cannot be applied directly, since an exact integration
would require a knowledge of p at all values (xo,zo);,the equations (3), (4),
and (5) must be adapted to consider models which specify p at only selected
values of X 52 - The models used hereafter will have the form shown in
Figure 1. The subsurface region underlying the gravity profile is divided
into rectangular cells, centered at (xo,zo). The model parameters are con-
stant densities p(xo,zo) assigned to each cell; the surface gravity is then
the sum of the gravity effects of each cell (again because of linearity).

The integral (4) is now written as a summation

gz(xi) = ; i G(Xi’xj’zk) p(xj’xk) n

provided that the Frechet kernel G(x,xo,zo) is modified from the point mass
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Gravity stations: xg = i*dx
dx
1 [ 1 1 1 1 1 1
dz
Prism centers: xj = j*dx
z, = k*dz
(a) Standard Model
Gravity stations: xx; = i*dx
dx
1 1 ] 1 ] ) ] 1
dz

(23 - 1/2)*dx

Prism centers: x

3
2

2(k - 1/2)*dz

(b) Large-block Model

Fig. 1. Linear models for gravity anomalies.
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expression (4) to a form corresponding to a cell of dimensions dx, dz.

Mottl and Mottlova (1972) used such a regular grid in their simple
two~dimensional models (using 20 to 30 cells to model a 5 point gravity
profile), but restricted density to values of 0 or 1 only, and thus required
an iterative method of inversion (numerical optimization of a "shape pre-
ference" function). The models of Braile et al (1973) also used prism den-
sities as parameters to exploit linearity, but reduced the total'number of
parameters by using blocks of differént sizes, usually much greater than
the surface station spacing. The models suggested here differ in tbat all
blocks will be of the same dimensions, generally equal to the station spacing;
and the‘subsurface geometry will not be altered for each set of data to

be inverted.

Modelling the earth with these discrete elements is a sampling
process, and thus the spatial frequencies which can be represented have an
upper limit. However, since the gravity data are also sampled, high frequen-~-
cies of the real earth density distribution will be aliased, and the model
should be able to ;epresent‘all real frequencies present in the data. If
prisms of dimension twice the surface spacing are used, the model cannot
represent all possible frequencies in the data; suchimodels'may be adequate
if large features are expected (which is usually true in gravity exploration).
In either case, one must hope that the station spacing used in measuring the

data is small enough to prevent a serious aliasing problem.

There are two ways to consider the nature of these models. First,

they can be viewed as models of a single parameter (density), which is
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Gravity station

/
/
e - - —

Lo - - oo oo

2 4

F--b - -

¢1, ¢2, $3, ¢y are angles to respective corners

s T, Ty r4 are distances to respective corners

Fig. 2. Geometric quantities required for the gravity effect of a
prism (after Parasnis, 1962, p.43).

specified at regular intervals in the subsurface plane. Alternately the
density of each cell might be considered as an independent parameter, and
in this case we consider properties of the N-dimensional parameter space,

where N is the number of prisms in the model.

Before the models can be used, the Frechet kernels fér a rectan-
gular prism must be calculated. They are obtained from ﬂ3) by integrating
only over the rectangular prism, where the density is éssumed constant.
Paragnis (1962, p. 44) gives the following relationship for the vertical
gravity
r.r r,

gz(x) = 2yp[xln r1r4 + bln ;—'+ D(¢p - ¢y) - d(¢; - ¢3)1 (8)
' 2°3 1 .

The various geometric quantities are shown in Figure 2. The Frechet kernel
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follows immediately from (8) as

g z(X)
o}

G(x,xo,zo) = (9)
where the geometric quantities in (8) would correspond to a prism centered

at (xo,zo). Equations (8) and (9) give an exact expression for the Frechet
kernel, but computations can be made much simpler by approximating each celi
as a point mass located at its center (in the two-dimensional case, a 'point"
mass is of course a line mass). From (3) the gravity effect of this source

.

1s

Zyzo(mass)

g,(x) = T3 (10)

where the mass is equivalent to that of the prism, i.e.
(mass) = p(dx) (dz) ' (11)

which isbexpressed in gm/length for the two-dimensional model.

To ensure that the approximation is wvalid, the results of
Equation (8) and (10) must be compared for different cells in the model.
Since we will always employ the same geometry of cell location and have
dx = dz, a simple correction can be made to (10) to give the same results
as (8), if the agreement is not acceptable. We.consider distances measured
in kilometers, densities in gm/cm3, and gravity in milligals; hence the

numerical value of y must be 6.67 (see Appendix B).

The comparison was made for prisms at various depths, and for prism
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dimension 1 km or 2 km. The gravity was computed at 1 km surface intexr-
vals, with x=0 being the ground position directly above the center of the
cell. The station spacing (and related prism dimension) is unimportant,

as we require only the ratio of the gravity effects. The results are
displayed in Table I and II. The approximation is almost always accurate
within 0.5%, however for gravity stations near the surface cells, the diffe-
rence is great enough to warrant a correction; as should be expected from

the inverse-square nature of gravity.

The Frechet kernels for the linear model are now obtained from
(10), applying the correction factor if the approximation is off by more

than 0.5%Z. The kernel is written

2y dx dz f (12)

G(i,j,k) = -
(Xi—xj)2 + zk2

and the gravity effect at surface position X, is

g, (1) = G(i,3,k) o(3,k) (13)

PN
jk
where p(j,k) is the density of the prism centered at (xj,zk). The correction

factor "f" is usually 1, the other values that were used are shown in Table III.

Using this formulation, the gravity effect of different models is
obtained simply by evaluating the inner product (13) with different p(j,k);
the Frechet kernels need be computed only once and then retained for later

use. In this procedure, the time saved by computing the approximate kernel



IN THE FOLLOWING TABLE “X" IS THE DISTANCE FROH

THE GROUND POSITION DIRECTLY ABOVE THE CENTER OF THE

PLATE OR CYLINDER

THE DENSITY OF THE PLATE IS

THE WIDTH OF THE PLATE IS
THE HEIGHT OF THE PLATE IS

THE DEPTH TO THE CENTER IS

GRAVITY EFFECT (MGAL)

X (KH) PLATE CYLINDER
0.0 23.1051 26.6800
1.0 5.2370 5.3360
2.0 1.5638 1.5694
3.0 0.7204 0.7211

4.0 0.4104 0.4105
14,0 0.0340 0.0340
15.0 0.0296 0.0296

THE DEPTH TO THE CENTER IS

GRAVITY EFFECT (MGAL)

X (KHN) PLATE CYLINDER
0.0 8.86U45 8.8933
1.0 6. 1684 6.1569
2.0 3.2018 3.2016
3.0 1.7783 1.7787

THE DEPTH TO THE CENTER IS

GRAVITY EFFECT (MGAL)

X (KM) PLATE CYLINDER
0.0  5.3337  5.3360
1.0 4.6005  4.6000 .
2.0 3.2543  3.2537

THE DEPTH TO THE CENTER IS

GRAVITY EFFECT (MGAL)

X (KM) PLATE CYLINDER
0.0 1.4043 1.4042
1.0 1.3888 1.3888
2.0 1.3045S 1.3446

14.0 0.4428 0.4427
15.0 0.4018 0.4020
TARLE L.

1.00
1.00
1.00

0.5 KM

DIFFERENCE

-3.5749
-0.0990
-0.0056
-0.0006
-0.0001
-0.0000
-0.0000

1.5 KN

DIFFERENCE

-0.0288
0.0115
0.0002

 ~0.0004

2.5 KM
DIFFERENCE
-0.0023

0.0005
0.0006

9.5 KM

DIFFERENCE

0.0001
0.0000

-0.0001
0.0000

-0.0002

equivalent cylinders.

CORRECTION FACTOR

0.86601
0.98145
0.99643
0.99912
0.99979
0.99916
0.99936

CORRECTION FACTOR

0.99676
1.00187
1.00005
0.99978

CORRECTION FACTOR

0.99957
1.00011
1.00020

CORRECTION FACTOR

1.00005
- 1.00001
0.99992
1.00007
0.99959

Grayity effects of prisms (in the standard model) and
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THE DENSITY OF THE PLATE IS 1.00
THE WIDTH OF THE PLATE IS 2.00
THE HEIGHT OF THE PLATE IS 2.00

THE DEPTH TO THE CENTER IS 1.0 KM

GRAVITY EFFECT (MGAL) ’
X (KM) PLATE CYLINDER DIFFERENCE CORRECTION FACTOR

0.5 43.3750 42.6880 0.6871 1.01609
1.5 -~ 16.1710 16,4184 -0.2475 0.98493
2.5 7.2643 7.3600 -0.0957 0.98700
3.5 4.0053 b.0272 -0.0218 0.99458
4.5 2.5050 2.5111 -0.0061 0.99757
5.5 1.7055 1.7075 -0.0020 0.99880
6.5 1.2329 1.2338 -0.0008 0.99934
7.5 0.9317 0.9321 -0.0003 0.99964
8.5 0.7283 0.7285 -0.0002 0.99973
9.5 0.58u47 0.5848 -0.0001 0.99982
10.5

|

0.4796 0.4796 -0.0001 0.99986

THE DEPTH TO THE CENTER IS 3.0 KM

GRAVITY EFFECT (MGAL)

X (KM) PLATE CYLINDER DIFFERENCE CORRECTICN FACTOR
0.5 17.2690 17.3059 -0.0369 0.99787
1.5 14.2519 14.2293 0.0226 1.00159
2.5 10.5119 10.4970 0.0149 1.00142
3.5 7.5358 7.5332 0.0026 1.00035
4.5 5.4722 5.4728 -0.0006 0.99988
5.5 4.0776 4.0785 -0.0009 0.99978
6.5 3.1229 3.1235 -0.0007 0.99979

1.5 2.4529 2.4533 -0.0004 0.99983

4

THE DEPTH TO THE CENTER IS 5.0 KN

GRAVITY EFFECT (MGAL)

X (K#) PLATE CYLINDER DIFFERENCE CORRECTICN FACTOR
0.5 10.5624 10.5663 -0.0039 : 0.99963
1.5 9.7904 9.7908 -0.0004 0.99996
2.5 8.5394 8.5376 0.0018 1.00021
3.5, 7.1640 7.1624 0.0016 1.00023
4.5 5.8970 5.8961 0.0009 1.00014
5.5 4.8292 4.8290 0.0003 1.00005
6.5 3.9673 3.9673 0.0000 1.00000
7.5 3.2836  3.2837 -0.0001 0.99997

TABLE II. Gravity effects of prisms (in the large-block models)
and equivalent cylinders.
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Standard model: z sX, = subsurface position

xj = surface position

n 1j-m| £

1 0 0.86601
1 1 ' 0.98145
2 0 0.99676

Large-block model: xxj = surface position

define XA = |x -xx_|/dx
m ]

n XA £

1 0.5 1.01609
1 1.5 0.98493
1 2.5 0.98700
1 3.5 0.99458
2 0.5 0.99787

Note: These values are valid only for dx = dz in Figure 1.
TABLE III. Correction factors used in computing Frechet kermels.

may not be important, particularly if a large computer is available. On
the IBM 360/67, about 5 seconds would be used in computing the exact kernels
for a 300 cell model and a 30 station profile; the approximate kernels are

obtained in about 1/25 of this time (0.2 sec.).

The calculations in Tables I and II also demonstrate that isolated

anomalies need not be modelled to a great depth (relative to the profile
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length). If a residual anomaly is to be nearly zero at the ends of the
profile, prisms at a depth greater than about one-third the profile length
cannot make a significant contribution to the gravity. For example, a unit
cell at depth 9.5 km. has a gravity effect of 1.4 mgal at x = 0 km., and

0.4 mgal at x = 15 km., a ratio of only 3.5; we conclude that a cell at that
depth cannot make a large contribution at the center of the préfile, if the
total gravity at the end of the profile is small. For this reason, the
models studied later will have a maximuﬁ cell depth of z = 9.5 (to center)
for a 30-unit profile length. Frbm similar considerations, in many caseé

cells near the ends of the profile need not be considered.

We can now summarize the advantages of the suggested linear
density models. Linearity is the main benefit; it allows easy computation
of the gravity of any model from the Frechet kernels. The point mass
(actually line mass) approximation simplifies the computation of the kernels;
If an initial model is used, a model whicﬁ fits the data can be obtained in
one step. Unfortunately, there are two major disadvantages. Since the
model consists of blocks, only rough approximations to complex shapes are
possible; however most gravity methods share this difficulty, since the
non-uniqueness problem prevents precise gravity interpretation. The variable
density between blocks of the model may obscure geological interpretation,
as the inversion will not necessarily indicate an anomalous structure of only
one or two densities. In most uses of gravity exploration, a single-density
model_is desired, as the exploration objective is usually'a body of a speci-
fic mineral ore, whose density should be essentially constant. The inversion

procedures tested here will therefore attempt to find models in which the

-
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density contrast of individual cells is either zero or a constant value,

in hopes of defining a simpie anomalous body.
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CHAPTER 4

Backus-Gilbert Approaches To Gravity Modelling

The techniques developed by Backus and Gilbert have mainly been
used to construct models of the whole earth, but there is no inherent
limitation against using them for more restricted examples. In particular,
linear density models of the type proposed in Chapter 3 are easily obtained

from Backus-Gilbert inversions.

It was previously observed (Section 2.3.a) that the averaging
procedures used by Backus and Gilbert are not of much benefit to the suggested
gravity models, since all linear models have the same average properties,
and the only unique properties obtainable from gravity data are the total
mass and center of mass coordinates. For this reason, attention will be
confined to the technique of finding particular models by optimizing some
property of the model under fhe constrainfs imposed by the observations (in
the present case, values of the vertical gravity component at specific points
along a sufface profile). The inherent lack of resolution of gravity data
also prevents any extensive analysis of the effects of data errors on the
models obtained. The approach used here is merely to seek approximate

density models which satisfy a gravity anomaly within a specified error.

The generalized inverse gives results equivalent to the Backus-
Gilbert "distance'" minimization. For the proposed gravity models, the
Backus-Gilbert formulation is more compact, since taking inner products re-

duces the dimension of matrices which need to be inverted. The generalized

-
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inverse uses a matrix of dimension N, where N is the number of parameters;
while the inner product matfix of a Backus-Gilbert inverse has dimension K,
where K.is the number of data. In addition, the error and resolution analyses
of the generalized inverse cannot be used to full advantage. The generalized

inverse was thus not pursued further.

4.1 Modéls "Closest" to an Initial Estimate

The first method (following Backus and Gilbert, 1967) is to find
the model closest to an initial guess. The solution is obtained by mini-
mizing the distance of an acceptable model from a given intial model; the
constraints imposed by the observed gravity are incorporated via Lagrange

multipliers. We then seek a stationary point of-

1 2
P e gl ? -

- ™M

oy v[gj(MG) - Aj + (GJ.,M—mG)]

where M, MG denote the final and initial models
Gj is the.Frechet kernel for gravity at statiom j
Aj = gravity observed at station j
gj(MG) = gravity of initial model

(G M—MG) denotes an inner product

j’
J = number of gravity data used

a, are Lagrange multipliers

3

and the factor %-will cancel out later
There are two basic steps in the inversion; first, solve for the Lagrange

multipliers o in
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lz( ak(cj,ck) =) - g ) (1)

For the.linear models of Figure la, the inner product (Gj,Gk) is

(6456 =L LG, o Gnm
nm

where [n,m] defines the subsurface position of each prism. The model M

>

which satisfies the data is now given by
M=M,+La G (2)

To find the densities for each block in the model, (2) is computed for each
subsurface position X5 2. A complete derivation of these equations is

given in Appendix C.

The system of equations (1) and (2) is easily programmed for digi-
tal computer application. The spacing of gravity stations is specified to
establish the size and position of cells in the model, and to compute the
Frechet kernels. Given regularly-spaced gravity observations, and a set of
initial densities for each prism, an exact inverse is obfained immediately.
Since the models are linear, any initial model will still yield a solution

which fits the data.

To test the program, a gravity profile was computed for the arti-
ficial body shown in Figure 3. It is a fairly complex object, and should

provide a reasonable example for inversions which cannot indicate the precise
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INITIAL MODEL
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X (KM) / 2= 0.50 1.50 2.50 -

8.00 0.0 0.0 0.
9.00 : 0.0 0.0 0.
10.00 0.0 0.0 0.
11.00 0.0 1.000 1.
12.00 0.0 1.000  1.000
13.00 : 0.0 1.000 1.000
14,00 0.0 1,000 1.000
15.00 0.0 1.000 1.000
16.00 3 1.000 1.000 1.
17.00 = 1.000 1.000 1.
18,00 1.000 1.000 1.000
19.00 1.000 1.000 1.000
20.00 : 0.0 0.0 0.
21.00 0.0 0.0 0.
22.00 : 0.0 0.0 0.
23.00 : 0.0 0.0 0.

(b) Computer representation of the body.
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detail of the earth. Figure 4 shows the model obtained by using a 'zero"
initial model. The inverse solution cannot be represented as an anomalous
body, since the computed densities are different for each subsurface prism.
A related problem is that no restrictions on density are built into the
program, and both negative and positive densities are obtained, particularly
on the edges of the model region. In most exploration situatiéns, it would‘
be reasonable to assume that a body of constant density contrast is causing
the gravity anomaly. To reduce the ambiguity of the solutions, different

strategies were employed to seek constant density models.

A surface gravity profile should extend beyond the limits of an
anomalous body, if the gravity anomaly is to be completely defined.- It is
therefore reasonable to consider models which span a regioﬁ only under the
centér of the profile. This is simply achieved by specifying limits on X
and z > which reduces the number of parameters and thus should help remove
negative densities (in the case of positive anomalies), since the constraint
of known mass‘must also be satisfied. Figure 5 shows the inversion obtained
by using é model of 105 prisms, rather than 300 as in Figure 4. Variable
density is still present, but sharp changes in density are evident? parti-

cularly in the near-surface region of the model.

To transform these models iﬁto a rough picture of a single-density
body, a program was written to replace the exact densities by discrete
values at a specified increment, simultaneously rejecting any negative
values. The resulting approximate models do not satisfy the observed gra—

vity values precisely; however they can indicate the extent and general shape

-



X (kM) / 2=

1.00
2.00
3.00
4,00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
- 12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24,00
25.00
26.00
27.00
28.00
29.00
30.00

G0 gq 08 49 00 44 00 g5 8 gg 08 L4 s g4 8 45 de e

se 00 ¢ 68 44 00 4o

06 g0 00 o4 08

COMPUTED DENSITIES

0.50

-0.127
-0.096
-0.104
-0.118
-0.135
-0.153
-0.167
"0 . 1 6‘4
-0.11
0.089
0.455
0.684
0.776
0.791
0.720
1.582
1.452
1.366
1« 255
0.061
-0.010
-0.022
-0.048
~0.078
-0.099
-0.106
-0.105
~-0.100
-0.097
-0.128

1.50

-0.063
-0.072
-0.076
-0.081
-0.086
-0.086
~-0.075
-0.040
0.040
0.187
0.378
0.542

0.651 .

0.727
0.8u46
1.050
1.099
1.013
0.784
0.405
0.181
0.085
0.029
-0.010

-0.037 .

-0.053
-0.061
-0.064
-0.065
-0.058

2.50

-0.036
-0.043
-0.046
-0.045
-0.041
-0.030
-0.005
0.039
0.114
0.221
0.346
0.466
0.565
0.650
0.739
0.820
0.839
0.772
0.623
0.430
0.268
0.162
0.093
0.046
0.013
-0.008
-0.022
-0.029
-0.032
-0.028

3.50

-0.016
-0.019

-0.018.

-0.013
-0.003
0.015
0.0uy
0.089
0.152
0.233
0.324
O.414
0.495
0.565
0.626

- 0.666

0.667
-0.618
0.523
0.405
0.292
0.203
0.136
0.088
0.053
0.028
0.011
0.000
-0.005
-0.005

0.039
0.045
0.054
0.066
0.081
0.100
0.123
0.149
0.180
0.212
0.245
0.277
0.306
0.329
0.344
0.350
0.346
0.331
0.308
0.278
0.2U5
0.212
0.180
0.150
0.125

.0.104

0.086
0,072
0.061
0.052

Fig. 4. An inversion of the artificial profile using a zero initfal model.

1y



COMPUTED DENSITIES

X (kM) / Z=
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8.00 "

9.00
10.00
11.00
12.00

- 13.00
14.00
15.00
16.00
17.00
18.00
19.00

20.00

21.00
22.00

Initial model:

80 85 320 86 08 00 00 3 g0 08 4o 00 o0 S0 e

Fig. 5.

0.50 - 1.50:

0.011. -0.0u43
0.044 - 0.010-
0.131. -0.078
0.257 0.723 .
0.369  0.654.
0.435 0.570 -
0.441 0.706
0.364- 0.807.
1.217 1.003
1.082 1.049
0.998 0.967
0.910 0.746
-0.212 0.366
-0.155 0.073
-0.034 -0.110

2.50

0.240
0.032
-0.033
0.910
-0.885
0.899

0.941 "
1.010
1.084
1.104

1.042
0.895
0.674

0.350
-0.511"

3.50

-0.105
-0.014
0.029
1.053
1.074
1. 105
1.146

1.194

1.233
1. 241

©1.204

1. 125
1.025
0.970
1.275

A more restricted model for Figure 3.

density 1.0 in 48 prisms ( 11 € x < 22, 0.5 < z € 3.5 )

6.50 "

0.105
0.311
0.456

0.559

0.636
0.698
0.751
0.796
0.835
0. 864
0.883
0.891
0.884
0.846
0.717

(4



APPROXIMATE DENSITIES

X / 2=
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.0
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12.1100
13.8700
16.0400
18.7600
22.2500
26.8200
32.9700
41.5300

53.8500
71.8000 -
94.1600 -

113.2600
127.2900
137.4700
146.6200

"168.8500

168.5000
159.3200
140.4500
99.3600
78.6500
64.7900
53.4800
43.9100
36.0500
29.7800
24.8300
20.9300
17.8300
15.3400
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21.4309
25.7176
31,4474
39.3640
50.7185
67.2621
87.7264
104.4841
116.2606
125.0552

134.5364

159.1153
162.6880

158.0511

143.32604
104.7375
84.1919
69.352%
57.0884
46.8110
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0.6239
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1.5226

2.1660

3.1315
4.5379
6.4336
8.7759
11.0294
12.4148
12.0836
9.73481
5.8120
1.2688
-2.8764
-5.3775
-5.5419
-4.5624
-3.6084
-2.9010
-2.3715
-1.3536
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-1.3533
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Approximate model derived from Figure 5.
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of an anomalous body. In some cases, the approximate gravity profile fits
the real values within 10%, a degree of accuracy which may be satisfactory
in modelling exploration data (C. Ager, personal communication, 1973).
Approximate models (for the inversion shown in Figure 5) and their gravity
effects are givén by Figure 6. These approximafions are not always geolo-
gically realistic; in the example shown, the deeper section of the model is

not connected to the near-surface features.

The distance-minimization algorithm of Equations (1) and (2) can
aiso be used for the simpler models consisting of larger prisms (dimension
two station spacings), illustrated in Figure 1. These models are of course
a poorer means of representing a complex geological formation, but could be
useful in estimating gross features. The computer program is very similar,
with only the adaptations necessary for different geometry. Equations (1)
and (2) have the identical form here; the differences in size and position
of blocks are incorporated in the Frechet-kernels. As before, approximate

solutions are constructed as an aid in interpretation.

Attempts to invert the previously-used artificial data with the
simpler models were not successful. The usual results were very unrealistic
models, with large positive and negative densities. One such example is

shown in Figure 7.

To test the validity of the method, artificial data were generated
from simple bodies which can be exactly described by a number of these large

prisms; two examples are shown in Figure 8. Inversions of these data were



Fig. 7.

COMPUTED DENSITIES

3.00

4.101
-0.942
3.184
-1.962
1.947
-0.767
3.6u42
-4.920
14,342
-4.824
-0.092
-0.123
-0.074
0.432

5.00

-2.729
-0.884
0.120
-0.148
0.402
0.511
1. 049
0.973
3.280
0.602
0.100
0.080
-0.250
-1.832

7.00

-2.922
-1.495
-0.647
-0.227
0.135
0.450
0.772
1.110
1.438
0.985
0.608
0.482
0.400
0.510

GRAVITY - MODEL GRAVITY - ERROR

12. 1081
13.8557
16.0697
18.7783
22.1984
26.8416
33.0330
41.5146
53.8385
71.8266
94.1672
113.2385
127.2491
137.4915
146.6283
168.8568
168. 4854
159.3201
140.5591
99.4003
78.6886
64.8147
53.5144
43.9765
36.1273
29.8009
24,9238
20.9478
17.9088

X (KN) / 2= 1.00
1.50 -0.238
3.50 : -0.024
5.50 : -0.226
7.50 : -0.026
9.50 -0.228
11.50 : 0.028
13.50 : -0.168
15.50 : -0.267
17.50 : -1.562
19.50 : -0.279
21.50 : -0.010
23.50 : -0.026
25.50 : -0.017
27.50 = -0.019
OBSERVED

1 12.1100

2 13.8700

3 16.0400

4y 18.7600

5 22.2500

6 26,8200

7 32.9700

8 41.5300

9 53.8500
10 71.8000
11 94,1600
12 113.2600
13 127.2900
14 137.4700
15 146.6200
16 168.8500
17 168.5000
18 159.3200
19 140.4500
20 99,3600
21 78.6500
22 64.7900
23 53.4800
24 43,9100
25 36.0500
26 29.7800
27 24.8300
28 20.9300
29 17.8300
30 15.3400

15.4146

-0.0019
~0.0143
0.0297
0.0183
-0.0516
0.0216

0.0630 -

-0.0154
-0.0115
0.0266
0.0072

-0.0215

-0.0409
0.0215
0.0083
0.0068

-0.0146
0.0001
0.1091
0.0403
0.0386
0.0247
0.03u4y
0.0665
0.0773
0.0209
0.0938
0.0178
0.0788

" 0.0746

An urisuccessful inversion using a large-block model.
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COMPUTED DENSITIES

X (KM) / Z= 1.00 3.00 5.00 7.00
3.50 : ~0.002 0.049 -0.222 -0.239.
5.50 : 0.000 -0.107 0.057 0.006
7.50 : 0.999 0.851 0.410 0.223
9.50 : 0.999 0.921 0.603 0.375

11.50 = 0.998 0.992 0.679 0.450
13.50 = 1.001 0.937 0.676 0.u457
15.50 : 0.998 0.937 0.609 0.401
17.50 : 1.002 0.757 0.u21 0.280
19.50 : -0.001% -0.138 0.116 0.120
21.50 : 0.000 -0.061 -0.041 -0.025
23.50 : ~0.002 0.058 =~0.203 -0.163

Initial model: all zero.

APPROXIMATE DENSITIES

X (KM) / 2= 1.00 3.00 5.00 7.00
3.50 = 0.0 0.0 0.0 0.0
5.50 0.0 0.0 0.0 0.0
7.50 : 1.00 1.00 0.0 0.0
9.50 : 1.00 1.00 1.00 0.0

11.50 : 1.00 1.00 1.00 0.0
13.50 : 1.00 1. 00 1.00 0.0
15.50 : 1.00 - 1.00 1.00 0.0
17.50 : 1.00 1.00 0.0 0.0
19.50 : 0.0 0.0 0.0 0.0
21.50 : 0.0 0.0 0.0 0.0
23.50 : 0.0 0.0 0.0 0.0

Fig. 9. Inversion of data from Figure 8(a)}.



" COMPUTED DENSITIES

X (KM) / 2=

1.00

3.00

1.50
3.50
5.50
7.50
9.50
11.50
13.50
15.50
17.50
19.50
21.50
23.50
25.50
27.50

BO 00 %0 00 80 g0 B0 00 00 b b0 45 80

-0.002
-0.004
-0.001
-0.004
-0.001
-0.003
-0.002
-0.003

0.001
-0.001

0.000
-0.000

0.001

0.036
-0.051
-0.005
0.011
1.311
1.407
0.565
0.562
0.489
10.137
0.028
-0.036
-0.020
-0.037

5.00

=0.026
0.038
"0.127
0.324
0.700
0.796
0.610
0.u486
0.373
0.221
0.116
0.058
0.037
0.032

First result from zero initial model.

Fig. 10.

7.00

0.019
0.089
0.183
0.319
0.u471
0.533
0.489
0.412
0.326
0.235
0.160
0.11
0.086
0.082

INITIAL MODEL

X (KM)

/ 2=

1.00 3.00

® 6 8600000004000 s0sGGOOs s

3.50
5.50
7.50
9.50
11.50
13.50
15.50
17.50
19.50
21.50
23.50

68 g0 08 o0 00 ¢ ¥ ¢,

0.0 0.0
0.0 - 0.0
0.0 0.0
0.0 1.000
0.0 1.000
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

APPROXIMATE DENSITIES

X (kM) / 2=
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3.50
5.50
7.50
9.50
11.50
13.50
15.50
17.50
19.50
21.50
23.50

Inversion of data from Figure 8(b).
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very successful. Figure 9 shows the inversion of the data froﬁ Figure 8a;
the approximate solution, starting from a zero initial model, corresponds
exactly to the body which produced the data. Figure 10 illustrates the in-
version of data from Figure 8b.' Starting from a zero initial model, the
process was repeated three times, using prior results to improve the initial
model in each case. A shape corresponding to Figure 8b can be inferred from
the final result. The more immediate success of the first example is pro-
bably a result of density being concentrated near the surface. Thé surface
blocks naturally have the greatest unit contribution to the gravity; and
thus their densities are most critiéal in fitting the data. In Figures 9
and 10, the computed densities of surface prisms are usually very close to

the densities of the "real" body, regardless of the initial model.

Two basic conclusions follow from these results. Firstly, the use
of large-block models yields a more nearly unique inverse, since approximate
models which precisély fit the data can sometimes be obtained in one step.
However, in inverting data from more complex structures, the simple model
inverse is often unreéliétic; this is likely a manifestation of an aliasing
problem. It appears that when the data contain frequencies which cannot be
represented by the model, a physically unrealistic solution will result.

The problem arises from.the lower cutoff wavenumber of the large-block models;
i.e. the model cannot sample the subsurface density as finely as the obser-

vations sample the gravity field.

4.2 A Method of "Weighted-Distance" Minimjzation

In seeking a model to represent a constant density body, one hopes
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to find compact configurations of the subsurface density in the linear model.
Using models with restricted spatial range was one attempt in this direction;
another is to establish some criterion for compactness, and then devise a
scheme to select a particular model satisfying that criterion. The Backus-
Gilbert method lends itself to this approach, if a simple property of the

model can be optimized.

A simple view of compactness is that anomalous density should be
confined as much as possible to a restricted subsurface région. A simple

method is then to minimize

1= r pz R? av 3
A

where R is a variable weighting factor, which is smallest in the most favoured
subsurface regions. Following an anlytic procedure similar to that of
Section 4.1, the following system is obtained. The Lagrange multipliers are

the solution of

]

%

WLJD

A ' : (4)

% C j

[l e I

and the acceptable model is given by

% (5)

©

I
™M
7LJFQ

Equation (5) is evaluated at each X 2 to give all the prism densities. A

more complete derivation is shown in Appendix C.
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In the form (4) and (5), it is difficult to use the system repe-
tively to improve the first solution; so it is modified to allow use of
initial models as well. Any R(xm,zn) can be used in (4) and (5), so long
as it is not a function of p(xm;zn). To allow interactive use of the method,
we consider R as an arbitrary weighting factor applied to each cell im the
model, and minimize the weighted "distance" of an acceptable model from an
initial guess. This use of R is somewhat akin to the penalty functions of
some optimization methods (see Appendix D); one possible application is to
maintain certain densities at their initial value. We now obtain the

. Lagrange multipliers by solving

J G G
A kyoy
k=1
With the resultant model being
J Gk
p=pgt+Ia — ©)
¢ 3 % )

The "weighted-distance" method is more effective than the previous
examples, since one can improve an intial model while discriminating against
those prisms which do not appear to contribute strongly to the anomaly. It
is also a convenient way of keeping certain blocks at a known density. The
computer program, listed in Appendix F as WEIGHT and SMOOTH, is of course
similar to the previous ones, but requiring additional input to establish
the weighting factors. Rather than specifying the numerical weight for each
cell, a choice of four factors is allowed. A weight of 1.0, WT, WT2, or WT3,

is assigned, depending on whether the indicator REG(N,M) is 0.0, 1.0, 2.0,
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6r 3.0 respectively. This method allows a simple display of variously
weighted regions, and facilitates the use of different numerical factors in

the same region of the'model.

Thg program was used to invert artificial gravity profiles, two
of which were generated by the simple bodies in Figure 11. Four or five
repetitions of the inversion were usually sufficient to construct é reaso-
nable single-density model., Improvement in the final stages was often a
trial—aﬁd—error interpretive process; however the initial inversion from
very simple models wés the key fo finding an acceptable solution. In all
cases, application was‘directed towards finding a body of a single known
density; in any gravity exploration, some density estimate should be avai-

lable, even if it is just a guess to be tested.

Inversions of the artificial data are illustrated in Figures 12,
13, 14, and 15. The étarting models were very simple; zéro density for the
data of Figure lla; a large block of density 0.5 gm/cc for 11b. The first
inversions were improved, partly by interpretive judgement, and partly -
through subsequent use of the program. In later stages, weighting factors
are applied to keep certain prisms at zero density, for example, those on
the boundaries of the subsurface region. Figure 12 shows the initial inver-
sion and an intermediate stage for the data of Figure 1lla, the final model
after five repetitions of the program is displayed in Figure 13. The
model's gravity and the '"real" data usually agree within 1.0 mgal; the worst

error is less than 3.0 mgal.

Figure 14 and 15 show the corresponding steps in inverting the
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COMPUTED DENSITIES

X (KM) / 2=

0.50

1.50 2.50

® 0 600 5 00O SN OSSOSO SENsEe IS
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8.00

9.00
10.00
11.00
12.00
13.00
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15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00

s 99 sp as 80
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-0.004
-0.016
-0.029
-0.022
0.0u48
0.242
0.543
0.613
0.438
0.304
0.194
0.098
0.026
-0.015
-0.025
~-0.015
-0.003

-0.005 -0.054
-0.005 -0.002
0.013 0.036
0.052 0.086
0.129 0.154
0.250 0.236
0.376 €.310
0.424 0.3u48
0.382 0.343
0.308 0.310
0.232 0.264
0.162 0.214
0.102 0.163
0.056 0.113
0.022 0.061
-0.008 -0.001
-0.003 -0.086

(a) First result from a zero initial model.
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(b) A subsequent inversion's initial model.
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Fig. 12.
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APPROXIMATE DENSITIES

X (KM) / Z=

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21.00

(c)

08 o0 0 40 55 s 68 00 38 g W

EXACT GRAVITY - APPROX GRAVITY -

VOO NEWN =
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0.50

0.0
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QOO OOODOOO

1.50

0.0

CoO0CODOQm=00C

e 0 o 0 4 o

So0CocLCooQCoO
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3.1800
3.6600
4.2600
5.0200
6.0100
7.3200
9.1000
11.6200
15.3100
20.8900
29.3400
41,2800
54.0400
59. 1600
55.5800
49.5500
42,5000
35.0000
27.9100
21.8000
16.9500
13.2700
10.5400
8.5100
6.9800
5.8100
4.9100
4.13900
3.6200
3. 1500

-

2.50

o * 8 8 4 & ,
S oo

o0 O am w00
CoLCoOCoCoCCo O

o o & o4 3

3.8327
4.3786
5.0502
5.8894
6.9565
B.3422
10.1855
12.7081
16.2755
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COMPUTED DENSITIES

X (KM) / Z= 0.50 1.50 2.50 3.50 4.50 5.50
6.00 @ -0.005 -0.159 0.047 -0.305 -0.254 -0.019
7.00 : -0.073 0.021 0.058 0.000 0.017 0.125
8.00 -0.089 0.221 N.216 0.184 0.188 0.240
9.00 : 1.072 0.557 0.390 0.321 0.305 0.327

10.00 1.235 0.673 0.u86 0. 409 0.384 0.389
11.00 0.382 0.537 0.490 0.451 0.433 0.433
12.00. : 0.422 0.455 0.473 0.u470 O.u6u 0.464
13.00 : 0.312 G.u33 0.u76 0.u88 0.489 0.488
.00 -: 0.371 0.u473 0.508 0.517 0.514 0.509
15.00 0.591 0.562 0.563 0.556 0.542 0.529
16.00 : 0.662 -0.6u7 0.631 0.600 0.570 0.545 .
17.00 0.592 0.771 0.711 0.643 0.591 0.554
18.00 1.478 0.982 0.785 0.668 0.596 0.552
19.00 = 1.413 1.034 0.788 0.652 0.575 0.532
20.00 : 1.418 0.887 0.688 0.580 0.521 0.494
21.00 0.388 0.555 0.513 0.u63 0.u437 0.u438
22.00 : 0.186 0.304 0.333 0.316 0.323 0.368
23.00 0.049 0.159 0.210 0.129 0.163 0.292
: 0.010 -0.005 0.294 -0.251 -0.096 0.237

24.00

APPROXIMATE DENSITIES

X (KM) / zZ= 0.50 1.50 2.50 3.50 4.50 5.50
6.00 : 0.0 0.0 0.0 0.0 0.0 0.0
7.00 : 0.0 0.0 0.0 0.0 0.0 0.0
8.00 : 0.0 0.0 0.0 0.0 0.0 0.0
9.00 : 1.00 1. 00 0.0 0.0 0.0 0.0
10.00 : 1.00 1.00 0.0 0.0 0.0 0.0

11.00 : 0.0 1.00 0.0 0.0 0.0 0.0
12.00 : 0.0 0.0 0.0 0.0 0.0 0.0
13.00 : 0.0 0.0 0.0 0.0 0.0 0.0
14.00 : 0.0 0.0 1.00 1.00 1.00 1.00
15.00 : 1.00 1.00 1.00 1.00 1.00 1.00
16.00 : 1.00 1.00 1.00 1.00 1.00 1.00
17.00 : 1.00 1.00 . 1.00 1.00 1.00 1.00
18.00 : 1.00 1.00 1.00 1.00 1.00 1.00
19.00 : 1.00 1.00 1.00 1.00 1.00 1.00
20.00 : 1. 00 1.00 1.00 1.00 1.00 0.0
21.00 : 0.0 1.00 1.00 0.0 0.0 0.0
22.00 = 0.0 0.0 0.0 0.0 0.0 0.0
23.00 : 0.0 0.0 0.0 0.0 0.0 0.0
24,00 0.0 0.0 0.0 0.0 0.0 0.0

(a) First trial: initial model: p = 0.5 for all cells, uniform weighting.

Fig. 14. Inversion of the profile in Figure 11(b).
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(b) A subsequent inversion with an improved initial model.
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WEIGHTED REGIONS .

X (KM) / 2= 0.50 1.50 2.50 3.50
9.00 0.0 0.0 0.0 1.000 1
10.00 0.0 0.0 0.0 0.0 1

11.00 1.000 0.0 0.0 0.0 0
12.00 1.000 0.0 0.0 0.0 0
13,00 : 1.000 0.0 0.0 0.0 0
14.00 1.000 0.0 0.0 0.0 0
15.00 0.0 0.0 0.0 0.0 0

16,00 : 0.0 0.0 0.0 0.0 0
17.00 : 0.0 0.0 0.0 0.0 0
18.00 = 0.0 0.0 0.0 0.0 0
19.00 : 0.0 0.0 0.0 0.0 0
20.00 : 0.0 0.0 0.0 0.0 0
21.00 : 1.000 0.0 0.0 0.0 0
22.00 : 1.000 1.000 0.0 0.0 0

THE WEIGHTING FACTOR IN CELLS MARKED 1.0 IS 5
THE WEIGHTING FACTOR IN CELLS MARKED 2.0 IS
THE WEIGHTING FACTOR IN CELLS MARKED 3.0 IS
OTHER REGIONS HAVE UNIT WEIGHT IN THE MINIMIZATIO

(¢) The weighting factors used in (b).
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data of Figure 1lb. 1In this case, the final model was obtained in four

iterations, and has a maximum error in gravity of about 6%.

These examples show that the weighted-distance method can quite
readily produce acceptable models from artificial gravity data. The linear
formulation allows several inversions to be made without requifing excessive
computation time; the entire sequence of operations to produce the model inb

Figure 15 consumed about 40 seconds of CPU time on the IBM 360/67.

The ultimate aim of any inversion method is to produce models of
the real earth, and thus the final test of the WELIGHT program was an inver-
sion of gravity data taken over the Guichon Creek batholith in south central
British Columbia. A detailed gravity survey was taken in 1971; other data
were‘uéed as an aid in three-dimensional modelling (using a polygon method);
and cross~sections were constructed from the complete mddel. The details
of this work have been discussed by Ager (1972) and Ager et al (1972). The
batholith is a long, narrow elliptical body, and thus should be émenable to
two—dimensional modelling. The data treated by the new method were obtained
from the Béuguer anomalies on one profile across the center of the batholith;
a constant value could be substracted to satisfactorily remove the regional
field (C. Ager, personal communication, 1973). The resulting gravity profile

is shown in Figure 16.

Surface geological investigation indicates that the density con-
trast of the batholith is -0.15 gm/cm3, and its surface outcrop extends for

approximately 13 miles along the profile. From this information, the initial
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These values were obtained by subtracting -116 mgal

from the Bouguer anomalies supplied by C. Ager.

(Note: his residual (Figure 19) was derived via

a wavelength filtering method.)

Fig. 16. Residual anomaly over the Guichon Creek
batholith.
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model was chosen as a surface layer of density 0.15 in 13 cells (since the
station spacing was one mile). The densities and the gravity data were con-
sidered to be positive, since the SMOOTH routine selects only positive den-
sities in making approximate solutions (it could easily be adapted to treat
either positive or negative density; the inversion itself does not depend
on sign). To insure that the solution also had a surface density of 0.15,

a weighting factor of 100.0 was applied to all the surface cells.

The approximate model obtained from' the inversion is shown in
Figure 17. There is a reasonable fit to the data; however the mode} is
composed of three unconnected blacks, but a single anomalous body is expected.
Three further applications of the program developed the single-body model
shown in Figure 18. The shape indicated by the WEIGHT program inversions
compares favourably with:the cross—section obtained from a standard model-
ling method (Figure 19). It is evident that the new method can be success-

fully applied to real data.

One must be somewhat careful in applying the method to real data,
for those data will not be perfectly accurate. In working with the batho-
lith data, unrealistic inverses with large positive and negative densities
often resulted from using models which did not span the entire region
beneath the profile. The probiem can be overcome by using a full-range
model (i.e. the model's subsurface width equals the length of the profile),
since the program can then assign small densities near any stations with
erroneous data; rather than fitting the data by unrealistic density configu-

rations beneath the center of the profile.



APPROXIMATE DENSITIES

2.40

O‘o

CoOCoOoooOoo0oC0
¢ o 0 5 0 ¢ o 4 &
o wum

-k O OO0 W=

4,00

o> NoleNoloNo]
(%]

ColLLOoOP0o200C0
.
%41

0.15

o
.

-—
W

0.15

¢
[ JUTOEY
[S2 ]

CODOOOODo O
[
OO0 =alO
U

X (KM) / Z= 0.80
1.60 : 0.0
3.20 0.0
4,80 : 0.0
6.40 : 0.0
8.00 0.0
9.60 : 0.15

11.20 : 0.15
12.80 : 0.15
14.40 0.15
16.00 : 0.15
17.60 : 0.15
19.20 : 0.15
20.80 0.15
22.40 : 0.15
24,00 0.15
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27.20 : 0.15
28.80 : 0.15
30.40 : 0.0

32.00 : 0.0

33.60 : 0.0

35.20 : 0.0

EXACT GRAVITY - APPROX GRAVITY - ERROR

21 12,1000
2 4.1000
3 6.9000
4 9.8000
5 12.7000
6 15.5000
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8 22.9000
9 27.5000
10 30.5000

11 31.6000
12 32.2000

13 32.7000
14 32.0000
15 29.4000
16 25,3000
17 21.2000
18 17.6000
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20 9.2000

21 5.0000

22 1.9000

Fig. 17.
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In conclusion, it is suggested that the models produced by a
"weighted-distance'" minimization are a reasonable means of interpreting
gravity data. Artificial data for two simple bodies, as well as a real
gravity profile, have been inverted by successive applications of the WEIGHT
program; in each case a simple model of one density was obtained. The
process is not completely objective, since improvement of initial models
is at the discretion of the interpreter. However, the linear functionals
allow rapid computation of each inverse, so the method can be applied

several times at a modest cost in computer time.
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CHAPTER 5

Numerical Optimization Of Gravity Models Using Entropy

5.1 Entropy of Gravity Models

It was noted earlier that gravity interpretation often has the
objective of defining the shape of a body of anomalous density. If the in-
version technique uses a combination of simple bodies, a method to find a
compact grouping of those units is desirable. To produce such single-
density models from Backus-Gilbert inversions, it is usually necessary to
apply considerable interpretive judgement. In hopes of developing a more
objective method for finding compact models, we can investigate criteria for
selecting an acceptable model of the desired form. In particular, the con-
cept of an entropy assigned to a density model will be applied as a measure
of "orﬂer" or "structure" of the model, following a suggestion of G.K.C. Clarke

(personal communication, 1971).

Entropy concepts are used in many areas of physics and mathematics,
and the success of entropy methods in other fields led to the present invest-
igation. In statistical mechanics, the entropy of a closed system is

H=-12 P log P
where P, is the probability that the system is in state s. .In general, maxi-
num entropy corresponds to the equilibrium state (Kittel, 1958). Information
theory uses entropy as a measure of average information (or average uncer-
tainty) of a message source (Latﬁi, 1968). 1In spectral analysis, the maxi-
mum entropy method developed by Burg (1967) has been quite successful, par-
ticularly in reéélving frequency components from short records (Lacoss, 1971;

Ulrych, 1972)
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Clarke's suggestion for using entropy of a density model differs
from the usual applicationms, since minimum entropy will be sought as a
criterion of maximum order of the model. In this sense, the idea is another
method for selecting a particular model from all those which satisfy the

gravity data.

Minimum entropy is an apparent conflict with the principles of
statistical mechanics and thermodynamics, since the equilibrium state of aﬁy
system should have maximum entropy. Nevertheless, minimum entropy can be
a useful property, if it can produce the most structured model compatible
with the data, since structures or concentrated bodies are the usual‘target
of geophysical exploration. In addition, the maximum entropy principle in
physiéal systems is not inviolable. Fast (1968) oBserved that in some
substitutional alloyé, the tendenciés toward entropy maximization and energy
minimization conflict. Prigogine et al (1972) examined development of
biological ordered systems, and concluded that fluctuations in irreversible
systems could produce low entropy configurations, which need not be the
loweét probability state of the system. 1In light of these examples, it is
reasonable to look for minimum entropy models, without being concerned that
they may be physically improbable if the crustal density distribution is a
random process. The knowledge that cdmpact ore bodies do exist in the

earth's crust in itself supports the argument.

By analogy with other applications, the entropy of a density model

is defined by
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H=—!31n3dv (1)
M M

\

The normalized variable'% is used to give the appearance of a probability

density function, which requires

f %-dV is monotonically increasing

For the linear density models, (1) becomes

gy om Pnm
H=-ZIy Ing | (2)
n m ;
where
M=2ZL1I Pom (cell dimensions cancel in (2))
n m

To find the desired compact or structured model, (2) must be minimized
under the constraints imposed by the known gravity anomaly. - In the present
formulation, .these are

ZZGnmpnm= = A 3)

n m

In addition, bounds can be imposed on density to produce geologically reason-
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able models. We also require p to have the same sign everywhere, if % is

to have the properties of probability. The additional constraints are now
expressed as
O<sp €A (4)

(or opposite signs for a negative anomaly).

To find a method to solve this problem, we first examine the
properties of entropy in density models. A decrease in entropy as models
become more compact is confirmed by considering horizontal cylinders of
different density but equal mass. Such cylinders will produce the same
gravity profile if centered at the same depth. To compute the entropy of

these simple models, (1) is simplified by considering density to be constant

'

inside the cylinder. Since the cylinder mass M is constant & = %-15

M

constant for a given cylinder (V is the volume), Then

=3
=fo

- 1 1 _
H = fv(v) 1n (v) dV=1nV (5)

Since lim x In(X) = 0,

x+0
integration is done only over‘the cylinder, For the two-dimensional models,
V is actually the cross-sectional area. The variation of entropy with the
density and radius of the cylinder is shown in Figure 20; we consider cylin-
ders of different demsity as acceptable models for the same gravity profile.
The entropy minimum will correspond to a point mass (radius - 0), énd the

maximum to a cylinder of infinite radius (p + 0).
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Figure 20 demonstrates that entropy has an absolute minimum only
in the limiting sense of the model becoming a point mass. We require bounds
on density (as in equation (4)), and thus entropy minimization must be done
in a bounded density interval. A major problem is that the minimum is not
a stationary point (i.e. we do not have %g-= 0) and thus the classical mini-
mization procedures cannot be used. The upper bound on density, A, should
be chosen as the desired density of the final model, since (5) implies that
the minimum entropy model will have the leaét possible volume. Minimiging

entropy of the linear models should then assign a density of zero or A to

each prism; hence a constant density model would be produced.

Another consequence of equation (S)“is that model entropy is a
useful property only if density is a variable parameter. Any model which
assumes constant density also has constant entropy, since the mass is a
known constant; i.e. by specifying the density of a model, one is also

specifying its entropy.

5.2 Numerical Optimizations of Model Entropy.

Minimizing entropy under the constraints (3) and (4) is a dif-
ficult non-linear optimization problem, which cannot be solved by the tech-
niques of variational calculus, since the minimum is nét a stationary point.
As a result, a somewhat different viewpoint of the model is developed; we
consider the densities of N prisms as N independent parameteré, rather than
viewing density as a single parameter which varies with the spatial coor-
dinates. Thé prpblem is then an optimization in an N-dimensional space.

There are many methods for optimization in general parameter spaces, but
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most are designed for specialized problems, so that a particular example is
often tractable with only one or two procedures. Beveridge and Schechter
(1970) have analyzed many numerical methods and discussed their feasibility
for various problems. On their recommendation, and that of the UBC Computing
Center (C. Bird, personal communication, 1973), the COMPLEX search method

of Box (1965; Box et al 1969) was adapted to minimize entropy.

The major advantage of the COMPLEX method for the entropy problem
is that it makes no use of derivatives or gradients. Derivatives of model
entropy cannot be used, since they become infinite for those cells whose
density approaches zero, and the desired compact models will have prisms of

zero density.

= - -e P.:_ 1 ]
H ZM]'nM Zp' Inp

5H '
%—.=g—p(p' lnp') =Inp' + 1 (6)
and lim lnp'=-w

p'+0;

This difficulty led to the rejection of most popular optimization methods.
A brief description of the general ideas behind these techniques is given

in Appendix D.

The COMPLEX method follows an initial strategy somewhat similar
to Monte Carlo modelling. Starting with one acceptable model (considered

to be a point in the N-dimensional parameter space), a set of "points" with
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random coordinates are generated. The random points can be made to define

new acceptable models (or "feasible points') by moving them towards the
centroid of feasible points until all constraints are satisfied. The

feasible points define the vertices of a figure termed a "complex'". Searching
for the optimum of an objective function consists of evaluating the function
at each vertex, rejecting the vertex of "worst" value, and repiacing it by
reflection through the centroid of remaining points. At each step, tests

are required to make sure each new point is feasible; in addition, additional
strategies can be employed to keep the search moving towards the optimum
point. The details of the method, along with modifications developed for

the present use, are described in Appendix E,.

The application of a COMPLEX search to the minimum entropy problem
is quite straightforward. The coordinétes of the parameter space are the
densities of the N prisms which comprise the model. All densities are
assumed to lie in the interval [0,A], whefe A is the expected constant
density of an anomalous bo&y. The implicit constraints are a known gravity
anomaly,.As, which must be satisfied within a specified limit &8; thus the

constraints are written

-L1z¢6, p | <8 or

A
|2y I Gy P
-Gs(xj-zzcjnmpmﬂ)sc 7N

along with the bounds

0spop SA (8)
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Equations (7) and (8) are linear in Prm’ and thus the feasible region is
convex, since it can be shown that any region whose boundaries are defined
by linear constraints is convex (Beveridge and Schechter, 1970, p. 113;

Cooper and Steinberg, 1970, p. 68).

It is convenient to write the necessary computer programs in
several parts; the programs used here were as follows. The START program
computes all necessary arrays (such as the Frechet kernels) and passes
them, along with an acceptable model and the gravity data, to the searching
routines. POINTS generates the initial complex from the starting model.

The TEST subroutine ensures that each point satisfies the implicit constraints
(7). SEARCH does the rest of the job, computing entropies, finding "worst"
points, and generating new ones. The optional routine RESTAR (very similar
to POINTS) will create a new complex from the current best point if: (a)

the centroid appears to be uﬁfeasible; (b) the search is stalled at one

vertex; or (c) a specified number of iterations have been completed.

Several subtle difficulties cah arise in obtaining reasonable
results from these programs. Since the search region is convex, the centroid
of feasible points must always lie within it; however the finite precision
of the computer may cause an apparently unfeasible centroid when the search
is near a boundary. This problem can usually be overcome by genérating a
new complex from the current beét point. To maintain é reasonable rate of
progreés, a fairly generous error should be permitted in applying the con-
straints; a general rule of thumb is to set & at 5% to 10% of the maximum

gravity. The limits of model gravity allow acceptable models to have a range
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of masses; frquently the search will initially only reduce the mass before
concentrating it in as few cells as possible. In these cases, the final
model tends to have a smaller mass than is indicated by the data; the den-
sities could be multiplied by an appropriate séalelfactor to restore the

true mass.

The first test of the method was a simple example to show that the
minimum entropy model will in fact be the most compact. A simple 9-prism
model was used, with gravity constraints generated by a density of 0.9 in
the center cell. The search started from a model with mass 0.5 in the
central block, and Q.4 distributed around it, as shown in Figure 21. As

expected, entropy minimization concentrated all the mass in the center block.

A more difficult problem is to start from a very diffuse initial
model; in the previous example, fhe ?enter cell was cleafly dominant in
the inftial model. This time a l2-parameter model was used, with gravity
data generated by a unit-density cell in the third block of the middle
column. The initial model had density 0.1l in the nine cells grouped
around the expected source of the anomaly. This search did not successfully
converge, as the cells whose mass initially increased were not in the
central location. The model obtained in 600 iterations is shown in Figure 22.
It seems likely that a very diffuse initial model may be brought to an

intermediate stage of compactness which cannot be further improved.

To test the method on a possible exploration objective, the gravity

profile of the body shown in Figure 23 was used. A starting point was ob-
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INITIAL MODEL

Z (KM)/ X= 14,00 15.00  16.00
1.50 0.050 0.050  0.050
2.50 : 0.050 0.500  0.050
3.50 : 0.050 0.050  0.050

TOTAL MASS IS 0.9000
MODEL - ENTROPY

1 1.61116

15 FEASIBLE POINTS WILL BE PICKED

400 IS THE MAXIMUM NUMBER OF ITERATIONS ALLOWED
A NEW COMPLEX WILL BE GENERATEL EVERY 125 ITERATICNS
NO RESTARTING OF THE COMPLEX AFTER 5 ITERATIONS
THE GRAVITY WILL AGREE WITHIN 0.400 MGAL
OPPER DENSITY LIMIT IS 1.00 G#M/CC
CONVERGENCE IF CENTROID ENTRCPY AGRFES WITHIN O0.10E-05
THE RANDOM NUMBER GENERATOR IS INITIALIZED AT 0.0
THE EXPANSION PARAMETER OF THE CCMPLEX IS 1.40

CONVERGENCE WITHIN SPECIFIED LIMIT:

FEASIBLE POINT NO. 9
7 (KM)/ X= 14,00  15.00 16.00
1.50 : 0.002 0.001 0.002
2.50 : 0.000 0.951 0.001
3.50 = 0.001 0.001 0.000
CENTROID ENTROPY=  0.0001397
_CENTRCILC MASS= 0.9590

Fig. 21. A simple entropy minimization.
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INITIAL MODEL
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’* . 1.50 : 0.110  0.110  0.110
N 2.50 :  0.110 0.110  0.110
S 3,50 0.110 0.110  0.110
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, THE BEST POINT IS SHOWN BELOW
* .
, FEASIBLE POINT NO. 2
x Z2 (KM)/ X= 14.00 15.00  16.00
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Fig. 22. Minimum entropy from a diffuse starting model.
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Fig. 23. An artificial gravity profile for entropy minimization.



INITIAL MODEL

Z (KM)/ X= 12.00 13.00 14,00 15.00 16.00 17.00  18.00

t
....\...........‘...‘.i..l...‘....‘Q..“...“.O....

0.50 : 0.0  0.100 0.200 0.200 1.000 0.100 0.0
1.50 : 0.100  0.400 0.400 0.500 0.800 0.100  0.200
2.50 : 0.0 0.400  0.700 0.700 0.300 0.0 0.0
TOTAL MASS IS 6.2000 | MODEL - ENTROPY
1 2.52968

THE BEST POINT IS SHOWN BELOW

FEASIBLE POINT NO. 18
Z (KM)/ X= 12.00 13.00 14.00 - 15,00 16.00 17.00 18.00

L2 BN K B BE B I BE B BE BE BE BN K BC BE BB BUBE BE BN A AN B B B BE B BN A IR N BE BC NN B B B B B RN NN N NN WY R 3

0.50 = 0.000 0.002‘ 0.000 0.000 0.994 0.002 0.000

1.50 : 0.000 0.000 0.675 0.766 0.988 0.000 0.001

2.50 : 0.002 0.586 0.998 0.942 0.002 0.000 0.017
CENTROID ENTROPY= 1.9187727
CENTROID MASS= 5.9904

Model gravity accurate within 3.0 mgal.

£8

Fig. 24. A minimum entropy model from the artificial profile.
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tained by using a "zero" initial model in the WEIGHT program of Chapter 4.
The ;esults of this.example are shown in Figure 24; the allowed error has
permitted a solution different from the "real' body. The final solution also
seems to reflect the starting médel, since the largest densities of that
model were all increased. Nonetheless, the method is partially fulfilling
our basic purpose; to provide an objective means for producing a compact

model from the diffuse inversions produced by the methods of Chapter 4.

One advantage of the COMPLEX method is that it can easiiy opti-
mize different objective functions. A simple function which may also

produce a final model of density A is
F(p) ==L Zp_ (p__ = A) . (9

Each term in the summation is zero at p=0 and p=A, hence minimizing F(p)
should sgt each Pom to a value of 0 or A. The similarity to entropy is
illustrated in Figure 25. This is to be expected, since the first term in
a Taylor series for 1ln(x) is (#—l) (Abramowitz and Stegun, 1965, p. 68),
and thus the first term in (x) In(x) is x(x-1). The main difference is
that F(p) is not normalized, which can be an advantage in the minimization,
particularly if the mass of the model is greater than about 3.0 (here mass
refers to the sum of all prism densities, as in Equation (2)). In such
cases, the contribution to entropy from each cell is restricted to the
interval x<0.3 in Figure 25; and an increase in density for any cell will
not improve the objective function. In minimizing the unnormalized function

(9), bringing an individual density towards A will still improve the value
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INITIAL MODEL.

% (KM)/ X= 12.00  13.00° 14.00 15.00 16.00 17.00  18.00
0.50 : 0.0  ~0.100 0.200  0.200 1.000 0,100 0.0
1.50 = 0.100  0.400  0.400  0.500 0.800 - 0.100  0.200
2.50 : 0.0 0.400  0.700 0.700 0.300 0.0 0.0

TOTAL MASS IS 6.2000 OBJECTIVE FUNCTION 2.59999
THE BEST POINT IS SHORN BELOW
Z (KM)/ X= 12,00 13.00 14,00 15.00 16.00 17.00 18.00
0.50 : 0.0 0.0 0.001 0.0 0.989 0.0 . 0.0
1.50 =, 0.004. 0.997 0.0 0.996 0.996 0.0 0.0
2.50 : 0.0 0.845  0.998 0.138  0.001 0.029 0.001
MASS IS 5.9950 CENTROID FUNCTION= 043207086

Model gravity accurate within 3.0 mgal

Fig. 26.

An optimum model for Figure 23, using x(x-A).

98
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of the objective function.

The new functién can be optimized with the same basic programs,
except that the SEARCH routine no longer computes entropies. The example
of Figure 24 was repeated, with results shown in Figure 26. In-the same
number of iterations, F(p) has been more succéssful than entroﬁy in putting
all the mass in cells of density A, which is probably a result of entropy
being normalized by a mass M=6.0. Once again the error limit has prevented
exact duplication of the body in Figure 23. This example suggests that F(p)
is a reasonable alternative to ehtropy, particularly for multi-block
mddels; however the nature of the search will likely prohibit any dramatic

saving of computer time.

The optimization programs can also be easily adapted to find
maximum entropy models, which may be of interest if maximum entropy does
indicate the most probable state (;1though it may be suggested that the
most probable density configurations preclude the existence of gravity
anomalies); By analogy to the arguments suggesting minimum entropy as a
measure of compactness, maximum entropy should produce the most diffuse

model compatible with the observations.

Maximum entropy models were computed for two of the earlier
examples for direct comparison to minimum entropy. Figure 27 is the result
of 400 iterations of the simple 9-parameter model; the maximization is
clearly trying to evenly distribute the mass. Figure 28 is the comparison

for the gravity profile of Figure 23. Maximizing entropy has not made any

a
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INITIAL MODEL

Z (KM)/ X= 14.00 15.00 16.00

® 0 9 0590 000 ¢ ¢S OeSOeEAITSCOESS O

1.50 : 0.050 0.050 0.050

2.50 : 0.050 0.500 0.050

3.50 : 0.050 0.050 0.050
TOTAL MASS IS 0.9000

'MODEL - ENTROPY

1 1.61116

THE BEST POINT IS SHOWN BELOW

FEASIBLE POINT NO. 13

Z (KM)/ X= 14,00 - 15.00 16.00
1.50 ¢ 0.100 0.0u40 0.077
2.50 : 0.029 0.228 0.091
3.50 : 0.143 0.232 0.103

CENTROID ENTRCPY= 2.1702032

CENTROID MASS= 1.0422

Model gravity accurate within 0.4 mgal.

Fig. 27. A maximum entropy model corresponding to Figure 21.



Z (KM)/ X= 12.00 13.00 14.00 15.00 16.00 - 17,00

LI B B 3R K BB BE BN BC BN BN BB BB R AN A B IK B BN R BN B BN BU BN BE AN BN B RE B A IR AR IR BB N IR BN AN 3

0.50 0.000 0.002. - 0.000- 0.000 0.994 0.002

1.50

0.000 0.000  0.675 0.766 0.988 0.000

2.50 : 0.002 0.586 0.998 0.942 0.002 0.000

(a) Minimum entropy.

Z (KM)/ X= 12.00 13.00 14.00 15.00 16.00 17.00

LI 3 B BK B B BU B BE K B 2R IR JN- O BN 2 DR JN K I AU B B B K IR B 2R IR BRI B AL BU R 2L 2K B L B A 2 B I J

0.50 : 0.001 0. 128 0.217 0.261 0.946 0. 135

1.50 0.187 0.473 0.401. 0.591 0.561 0.149

1

2.50 : 0.281 0.493 0.674 0.532 0.258 0.125

.0

(b) Maximum entropy.

Fig. 28. A comparison of maximum and minimum entropy models for Figure 23.

18.00

0.000
0.001
0.017

18.00

0.017
0.239
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N K ITMAX CPU TIME COMMENTS
- — _(sec.)

9 15 400 34 converged

12 ' 15 606 58 partly converged
18 21 400 61 partly converged
21 25 500 82 partly . converged
60 62 1000 - - 501 no progress

N = Number of parameters
K = Number of points in the complex

ITMAX = Number of iterationms
TABLE 1V. Computation time for numerical optimizations.

dramatic change in the model, while minimum entropy has had some success in
concentrating the mass. Our expectations regarding maximum entropy models

seem to be upheld.

The numerical optimizations were not successful in developing any
really complex models, largely because they require very extensive computa-
tions. Table IV shows the CPU time consumed fot various trials of the mini-
mum entropy program. The 60-parameter example was an attempt to improve a
simﬁle model for the artificial profile of Figure 1lla, Chapter 4 (the initial
model was obtained using the WEIGHT program); there was no discernible
improvement towards compactness in 1000 iterations. We conclude that the
numerical method is not practical for any excessive number of parameters

(i.e. prisms in the model).
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The results of numerical optimizations support the suggestion
that minimizing entropy will produce a compact model, i.e. a model of maxi-
mum allowable density. Simpler objective functions can also be adopted
towards the same goal. Unfortunately, the straightforward application of
these criteria is very time-consuming. It appears that these optimum
models, as presently derived, are not practical for any complex system
requiring many parameters. However, this does not necessarily mean that
a practical minimum entropy method cannot be developed; since there may be
many other approaches to the problem, for example transformation into a

space where entropy is a more simply-behaved function.
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CHAPTER 6

Conclusion

Geophysicists are continually seeking new ways to obtain accurate
data and extract information from them. In many applications, modelling plays
an integral role in interpretation. Gravity ekploration data lend themselves
to modelling techniques, and it is hoped that some of the new developments for

gravity problems presented here can be useful in exploration situations.

The linear models proposed in Chapter 3 have proven quite useful for
inverting gravity profiles Via a Backus—Gilbert'approach (developed in Chapter
4). Initial experience with the '"weighted-distance" method indicates that it
is flexible, particularly in iterative use, when certain densities from the
previous solution can be held constant. Approximate models (composed of prisms
of a single density) can frequently give an adequate fit to a given profile

after 4 or 5 repetitions, at quite modest expense in terms of computer time.

Reasonable care must be taken with real data to ensure an acceptable
solution. It is perhaps best to use models spanning the subsurface region
beneath the profile, so that the inversion can more easily account for noise
in the data. If a model has too few prisms to adequately represent the data,
an oscillatory solution (i.e. large positive and negative densities) may

result.

There are many possibilities for further improvement of the methods

of Chapter 4. The present work certainly justifies more application to real
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data. In some situations, it appears fhat the requirement of exact agreement
with the data is detrimentai; the inversion produces an exceptionally close
fit by using unrealistic densities. In these examples, it may be helpful to
relax the constraints, by demanding agreement only within a specified error.
Gilbert (1971) and Wiggins (1972) have discussed ways in which this might be

achieved.

The large-block models may also préve useful for real data, if the
problem of bad solutions for high~frequency data can be overcome. It may be
possible to find acceptable inverses in the spatial frequency domain, and fit
the model only to the lower frequency components of the data. The large blocks

could then be subdivided for further improvement using the complete data set.

The investigation of entropy in Chapter 5 demonstrateé thét optimi-.
zing a compactness property of a density model is a feasible idea, although
not neéessarily a practical one. Other aﬁproaches to the entropy problem
may well be more efficient., Numerical optimization waé of some help in
solving a difficult problem, and might conceivably be useful with many other-

types of models.

The COMPLEX method described iﬁ Chapter 5 might be easily adapted
to other prohlems if three simple changes are made: (1) allow a variable
number of constraints (the present program requires 30); (2) incorporate
objective function evaluations as a separate routine; and (3) add an indi-
cator to choose maximization or minimization. It appears that the COMPLEX
method will work best with a small number of parameters, so the large-block

models might be of some benefit here.
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All the investigations herein were pursued in hopes of gaining
some basic insight into the nature of the modelling process. Perhaps the
greatest benefit from these studies is the knowledge that new methods from
other areas of geophysics and applied mathematics can easily be adapted to

the problems of exploration geophysics.
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APPENDIX A

Méthematical Concepts

Centroid: The coordinates of the centroid of N points in M-dimensional

space are:

w -1
j N

xij j=1,m (Cooley and Lohnes, 1971, p.30)

i=1

' > >
Conjugate directions: Any two directions (i.e. unit vectors) ry, r, are

conjugate for a given matrix A if
r, Ar, =0 (Pierre, 1969, p.314)

\

Convex region: A region is convex if the line segment between any two

points of the region is contained entirely within the region.
(Beveridge and Schechter, 1970, p.1l13)

Distance in an inner product space is given by the norm of X, - Xz, i.e.

1

- - - _ ¢ 3 1/2
D= || XX, |l = (X;-X,, X;-X,)

where Xl’ X2 denote two points in the space. Depending on the type of inner

product defined, this might be
2 2 2

N
D" = [V(xl - xz) dv or D° = i (xl. - X

Frechet differential: A function is Frechet differentiable if

-
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E(m + dm) = E(m) + (F,dm) + €(dm)

where (F,dm) is an inner product

and €(dm) approaches zero faster than ||dm||

F is called the Frechet derivative or Frechet kernel of E.

(Backus and Gilbert, 1967, p. 249)

Hilbert space: a infinite-dimensional linear vector space, over the field

of complex numbers, with an associated inner product whose properties are:

a) (x,x) = 0 if and only if x = 0

v

b) (x,x) >0
c) (xty,z) = (x,z) + (y,z)

d) (ox,y) = a(x,y)

*
e) (x,y) = (¥y,%) * = complex conjugate

(Dunford and Schwartz, 1958, p.242)

Inner product: A scalar valued function of a pair of vectors (x,y) of the

properties shown above. Examples are:

i 1
i3]

(Hoffman and Kunze, 1961, pp. 221-222)

Norm: The norm on an inner product space 1is

[x]] = (x,x).l/2 (Dunford and Schwartz, 1958)
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APPENDIX B

Units In Gravity Modelling

Before applying the eéuations for gravitational attraction of the
cells comprising the linear model, they are adapted to allow convenient
units for the density and distance parameters. The units to be used are:

[gz] = milligal = 103 X cm/sec2

[p] = gram/cubic centimeter

[z)], [x] = kilometer
The vertical gravity due to a horiiontal cylinder, which we take to appro—-
ximate the gravity of a prism, is
- @) (1) (z)) (mass) 4 (15

&,

2 .
(x—xo) + z 2
o

6.67 x 10—8 dyne—cmZ/gm2
8

The gravitational constant is ¥y

6.67 x 10 cm3/sec2—gm
(mass) here is mass per unit length, equivalent to a horizontal prism dx
by dz, of density p.
i.e. (mass) = p(dx)(dz)
The appropriate units are

(mass) = gm—kmz/cm3

Thus g, in (1) has units

z
(o]

[g_]1 = [vy] (mass) [ > ]

(xfxo) + z
cm3 X gm—km2 x 1
km

' 2
sec -gm cm

km/ sec2
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To transform g, to milligal, we multiply by 108, since 1 km = 105 cm and
1 mgal = 10_3 cm/secz. We are thus using a gravitational constant
Y = 6.67

in calculating the Frechet kernels.
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APPENDIX C
Derivations For Backus-Gilbert Inversions
I. We wish to find a model M which satisfies the observed gravity
data, i.e.

g5 D = A i=1Lk (1)

3

and is the "closest" such model to an initial estimate MG. The model para-
meters are the densities of various rectangular prisms; linearity of g with
density enables us to write

M = (G,,M) : : (2) -

%3 3
where Gj is the Frechet kernel for gravity at the jth station

and (Gj,M) denotes an inner product

In parameter space, the distance of M from MG is given by
| |M-M ||2 = M, MM) = | (p=p)? av (3
G G’ G v G

where p and pG are the densities of the models, and V denotes the subsurface
region containing the models. The gravity effect of the initial model is
which is combined with (1) and (2) to give

v
The problem is then to minimize (3), subject to the constraints (4); which
can be solved using Lagrangian multipliers (Sokolnikoff and Redheffer, 1966,

p.346). The minimum is located by finding a stationary point of



1 2 K
F(p) = 2 f (p-pG) dv - L aj[gj(MG) + f

\Y 1 v

Taking %g = 0, and observing that

2
=1 f ©Pe) " av =f (p-pg) AV
v v

2
9
0
— 2, =0
op ]
3

We have

K
f (p=pg) dV - I o f G, dv=0
v 1 '

For the solution to be valid at all points of V, we require

To evaluate the aj, substitute (6) into (4)

K
Gj(p—gc) av = f z o Gk Gj dav

N

G,(p~- dv - A,
J(p ) J]

or

105

(5)

6)
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~

by o ogg0) = Ty (66 (7

in the inner product notation.

Equation (7) is a linear system which can be solved for o by
standard matrix methods, since the inner products (Gk’Gj) form a square
matrix of dimension K. The steps in the solution are:

a) Compute the Frechet kerneis and their inner products
b) Compute gravity of initial model

c) Solve (7) for the Lagrangian multipliers o

d) Use the o in (6) to find the final model M.

II. Similar systems can be devised to optimize other properties of the
model. One possibility is to minimize llMR]Iz, where R is a spatial weight-
ing factor, which allows us to discriminate against subregions of V in
finding a model. In this case the constraints analogous to (4) are simply
A, = M
A gj()

and (5) becomes

N =

2 2 K
F(p) = f p" RT dV - T a,[ f G. p dV - A.]
' Iy 3 J

1

Taking %g = 0 as before, the solution is

Gy
)

o = (8)

= R

Again, we find the ak_by applying the constraints to get
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K
G, L G
Aj=f S S or
v 2
K S , &5 .
>‘j=iak(§— R ) (9)

in the inner product notation. This is also a linear system, which we solve

for o to use in (8).

III. The most flexible approach is to combine the methods of I and II,
allowing use of an initial model as well as spatial weighting factors. We

now want to minimize

2 2 2
lI(M—MG)Rll = fv(p‘pc) R® 4V

Equation (9) becomes

=
WLJD

Sk
Ay ey = e ( ) (10)

-

and the final model is given by

p=p +Z_j_i (11)
Note. All these derivations have written inner products as integrals, e.g.

%=L%p“

For the multi-prism models, the inner products are really summations of the
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form

g. =X LG, P
| am Jnm nm
where j denotes surface position

and [n,m] indicates subsurface location of the prism

Thus in applying these results, the integrals are replaced by the appro-
priate summations. The derivations could be repeated using summations, but

this would not change the results.

Notation. M denotes a complete model; i.e. a set of densities.
p denotes density as a spatial variable, or density of individual

prisms.
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APPENDIX D

Numerical Optimization Techniques

Finding a model to fit any geophysical data very often requires
optimization processes. When the data functionals are non-linear, one fre-
quently seeks uniqﬁe model parameters by minimizing errors of the model
predictions compared to the observed data. If a non-unique class of models.
is being considered, a particular model can be selected by optimizing some
property of the model with the constraints that the predictions of the model
agree with the observations (within some limit). The nature of the model,
the number of parameters, and the type of "objective function'" to be opti-
mized often make the analytical methods of variational calculus unsuitable.
In these cases, the basic approach to the problem is to seek an optimal point
in parameter space; i.e. the N model parameters are each considered as
coordinates of an N-dimensional space, and the optimum model is then a point
in that space whose location is determined by the optimum value of the

objective function.

Parameter optimization methods have seen some geophysical applica-
tions in recent years. Rastrigin (1965) developed a theoretical procedure
to minimize error between model predictions and observed data, and dis-
cussed some simple methods of "searching' for the optimum point. Al-Chalabi
(1971, 1972) used searches in parameter space to find polygonal models
(following the Talwani procedure) which gave optimum fits to gravity profiles.
The HEDGEHCG and EDGEHOG methods (Jackson, 1973) émploy searches to produce

density and velocity models of the upper mantle from seismic data (EDGE-
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HOG is a refinement aimed at defining the envelope of all models which fit

the data).

A considerable literaﬁure has now developed on the subject of
numerical optimization. Cooper and Steinberg (1970) gave a good review of
basic mathematical concepts, along with descriptions of several commonly
used procedures. Box et al (1969) briefly reviewed several methods with a
view towards choosing methods for a particular problem. Pierre (1969)
described the commonly used techniques, with some discussion of computer
application. An excellent book by Beveridge and Schechter (1970) examined
the subject in detail, recommending methods proven in practice, and discussing

the procedures best suited to particular problems.

In general, numerical optimization methods attempt to locate an
optimum in-a series of moves starting from a given point. The basis of any
method is the means of selecting the direction and length of each move.
Methods can be roughly classified using two basic criteria: (1) whether or
not constraints on the coordinates (parameters) can be incorporated; and
(2) whether or not gradients are used. The usual terminology is that a
"direct" search does not employ gradients. The efficiency and speed of
search differs between these groups; however themtype of problem to be sol-
ved may dictate which class of procedure to use. As a general rule, un-
constrained gradient methods are fastest. An evaluation of methods falling
into each class can be found in the following sections of Beveridge and
Schechter:

1) Unconstrained direct search pP. 363-406
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2) Unconstrained gradient search pp. 407-433
3) Constrained direct search pp. 448-456
4) Constrained gradient search pp. 435-448; 457-483

The following brief review follows their descriptions.

Unconstrained optimization is naturally much faster fhan a con-
strained problem, since motion in parameter space need not be confined to
particular regions. Direct search methods may either move in prescribed
directions, or use values of the objective function to determine the search
direction. The basic systematic search method is univariant search, in
which an optimum is found along each coordinate axis from the initial point;
unfortunately this is usually inefficient. Rosenbrock's method (Beveridge
and Schechter, 1970, p.404) is an effective and reliable adaptation of the
basic idea, allowing acceleration in distance and change of direction. The
Sequential-Simplex method (p.372) determines moves from objective function
values; basically one evaluates the objecfive function at the vertices of
an n-sided "simplex" in parametér space, and replaces the vertex of worst

function value by reflecting it through the centroid of the figure.

Faster convergence is often possible if gradients of the objec-
tive'function can be used. The simplest application is to move a given
distance in the direction of steepest ascent or descent (i.e. the gradieﬁt
direction) in hopes of eventually finding a stationary value of the objective
function. The method is not usually recommended, since the gradient is
often only a local property which does not "point" to the optimum; in addi-

tion, oscillations about the optimum can result from the fixed distance of
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each step. An efficient method which will converge is searching along con-
jugate directions (See Appehdix A for definition) until the gradient direction
becomes . perpendicular, whereupon new conjugate directions are selected.
Several techniques have been suggested for selecting conjugate directions;

the frequently recommended Davidon-Fletcher-Powell method (Box et al, p;30;
Pierre, p.320; Beveridge and Schechter, p.426) employs the gra&ient of the

objective function at the initial point.

Constrained optimization is a more difficult task, and a common
approach is to avoid constraints as much as possible. In some cases, this
can be achieved by transformation of variables (Box, 1966). Another method
is to create a new objective function by adding the constraints (multiplied
by a suitably large constant) and then use an unconstrained method (Beveridge
and Schechter, pp.443-448; 477-482). Incorporating constraints as 'penalty
functions" in this way keeps the search out of unfeasible regions (where
the constraints are not satisfied and the modified objective function has
a value far from the optimum). The penalty function methods are often im~
practical,lsince the objective function is distorted near boundaries, and
since the choice of weighting factors to apply to violated constraints may

be critical to the success of the optimization.

Many techniques have been developed to incorporate constraints
directly. In general, all constraints may be considered to be inequalities,
since an equality can be expressed as two inequalities, and since equalities
involving real data usually have some allowable error. The most widely used

methods are probably those of linear programming (Beveridge and Schechter,
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pp. 287-322), which deal with problems where all constraints and the object-
ive function are linear functions of the parameters; the feasible region
then has linear boundaries. Since the objective function is also linear,
the optimum must lie on a corner of the feasible region, and efficient
matrix methods are a?ailable to find thié optimum corner. More generall
problems may be solved with variations of the unconstrained me&hods. The
usually recommended direct method is the Complex method (Box, 1965), which |
stems from the Sequential Simplex method., Details of the method are given

in Appendix E,

Gradient methods usually require linearization of constraints to
be most effective, and usually incorporate constraints into the choice of
search direction to avoid leaving the feasible region. The hemstitching
technique (Beveridge and Schechter, p.456) allows any meﬁhod of choosing the
search direction, but follows the gradient of a constraint to move back into
the feasible region whenever any constraint is violated; unfortunately this
often means that the search is not moving towards the optimum point. Rosen's
gradient pfojection (Beveridge and Schechter, p.469), or the method of
riding constraints (Box ef al, p.42) always use the constraints in choosing
the search direction to ensure that the search stays in the feasible region.
Linear constraints can be added to the Davidon-Fletcher-Powell method of
choosing conjugate directions (Box et al, p.47), and thus this efficient
method can be applied to some constrained problems. Beveridge and Schechter
suggest that most of these methods have the basic problems of steepest ascent
searches, and recommend the Complex method for most non-linear constrained
problems, particularly if the optimum is expected near a boundary of the

-

region.
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APPENDIX E

‘The Comp lex Method

The Complex method of numerical optimization (Box, 1965) can be
applied to many different problems, since it does not require any speciél
type of objective function. The search procedure is similar té the Sequen-
tial Simplex method (see Appendix D), but incorporates constraints on the
parameters of the objective fuﬁction. The only problem in implementation
is that an initial feasible point (i;e. one which Safisfies all the con-

straints) is required before the search begins. -

The allowable constraints are bounds on all the model parameters,
Ai < x; g Bi i=1,N ) | 1

plus implicit constraints of the form
vy € G j=1M (2)

e With a known initial point, the other

where yj are functions of thé X
vertices éf the "complex" are found as follows: the coordinates X of each
point afe éenerated\randomly in the intervals (Ai’Bi); the quantities yj are
calculated for the point; if any of the implicit constraints are not satis-
fied, the point is moved halfway towards the centroid of feasible points as
many times as are necessary to make the trial point satisfy all the con-
straints. This method ensures that other feasible points can‘be found, so
long as the region defined by the constraints is convex (see Appendix A).
The process is repeated until a complex of k vertices (k>N+1) is established

(each vertex is a point in the '"feasible" region of the parameter space,

i.e. the region where all the constraints are satisfied).

-
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Once the complex has been set, the objective function is evaluated
at each vertex, and the vertex of worst value (smallest for maximization;
largest for minimization) is replaced by over-reflection through the centroid

of remaining points. The coordinates of the new vertex are

. _ ) .
X R a(X.’R C;) + ¢ i (3)
where Xi R = coordinates of worst vertex
3
X'i R - coordinates of replacement’
>

Ci = coordinates of the centroid of all other vertices,
given by

K

=1 -
€ = %1 (§=lxi, 57 %4,R : (4)

and o is an expansion parameter (Box suggests a=l.3)

of cburse, the replacement point must satisfy all the constraints (equations

(1) and (2)). If any coordinate X' does not lie in the required interval

i,R
(Ai’Bi)’ it is given a value just inside the appropriate bound. If any im-
plicit constraint (equation 2) is violated, the trial point is moved halfway

towards the centroid of other points and tested again; the new point is then

e = '
X'y R= 05 @&y gt C) (5)
Once an acceptable new point is found, the rejection process is repeated
with the current worst point. The search could stall if the replacement

point still has the worst function value. To avoid this problem, Box
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suggested moving such a point halfway toward the centroid, rather than

reflecting it back again.

Guin (1968) suggested some modifications to the method, which
allow it to be used in non-convex regions. In a non-convex regibn, the cen—
troid may eventually fall outside the region, making it impossible to find
new feasible points by moving towards the centroid. In this eventuality,
Guin suggested creating a new complex using the "best'" point as the initial
point, and creating other points by random generation in the interval bet-
ween the best point and the old centroid. The coordinates of a new point

are then
X =xi°+R(ci-xi) : (6)

where Xi o are the coordinates of the best point
L .

Ci are coordinates of the old centroid

R is a random number (0<R<l)

Each point is tested for feasibility and moved towards the current centroid
if necessary. Guin's other ideas were to reject the second worst point if
one point is continually the worst, and to move a trial point halfway towards

the centroid if a bound on a variable (i.e. coordinate) is exceeded.

An additional feature has been implemented by the University of
B.C. Computing Centre. They suggest periodically restarting the complex

(following Box's method) to accelerate searching when far from the optimum



117

(0'Reilly, 1971); a new complex is created from the best point after a spe-
y

cified number of iterations, but not after a maximum number has been passed.

The actual search procedure used for the minimum entropy problem
follows Box's basic method, incorporating some of the other suggestions and
some new variations. Restarting is optional after a specified number of
iterations; the new complex may be produced by random number generation in |
the complete interval (Ai’Bi)’ or in the region near the best point and the
old centroid. In the latter case, Guin's method has been slightly altered
by using a random number (R in equation (6)) evenly distributed betyeén -1
and +1, thus the coordinates of a new point can fall on both sides of the
best point relative to the old centroid. Guin's suggestion for generating
a new complex if the centroid becomes an unfeasible point was adopted. When
one point is consistently the worst, a new complex is generated from the
current best best point, since this problem was found to be an indication
that the search was not progressing very well. This strategy proved more
successful than Box's suggestion, since repeated moves toward the centroid
can lead to apparent convergence of the search, if the centroid itself has

the worst function value.

When the optimum ﬁas been reached, all the vertices of the complex
should approach the centroid; hence the convergence test is to evaluate the
objective function at the centroid, and stop the search when several suc-~
cessive evaluations agree within a specified limit. In addition, a specified
maximum nuﬁber of iterations will stop searching, to avoid using excessive

computer time when progress is slow.



118

APPENDIX F

Computer Program

The required inputs are as follows.
M1, M2, N1, N2 define the locations of blocks to be used in the model.

JA = 1 defines the first gravity station (M is measured from JA).

JB = number of data in the profile.
DX = DZ = station spacing = cell dimension.
WT, WI2, WI3 are weighting factors to apply to each cell in the model.
REG(N,M) an indicator (0.0, 1.0, 2.0, 3.0) of which weighting factor
to apply (1.0, WT, WT2, WT3).

RHO(N,M) = cell densities for the initial model.

GZ20(J) = the gravity profile.

Other routines mentioned.

FSLE: a UBC Computing Centre routine which solves
[PROD(J,K)] [Y(D)] = [B(K)].

HIST: an optional line-printer plot of the data.

In SMOOTH, C is the desired increment of density to be displayed.



WWEIGHT"

¥

A PROGRAM TO COMPUTE MODELS FROM WEIGHTED REGIONS OF THE

C SUBSURFACE GRID
REAL 2(10),6G(30,10,30),PROD (30,30),GZ0 (30),E(30),DENS (10, 30),
1X (30),6GzM (30), T (30,30) ,RR(10,30) ,Y(30) ,MASS,REG (10,30),
2RHO (10,30) ,B (30) ,G2 (30) ,YNAM (100) ,XNAM (100)
INTEGER IPERM(100)
C EACH CELL HAS AN ASSIGNED WEIGHT OF "WT" OR 1.0,DEPENDING ON
C. THE SPECIFIED VALUE OF REG(N,M): THE MODEL IS FOUND BY MINIMIZING
C THE SUM OF (|DENS-RHO|*RR) SQUARED
READ(5,3) M1,82,N1,N2,JA,JB,DX,DZ,WT,WI2,¥T3
Do 5 I=1,30
Z (I)= (I-.5) *DZ
5 X (I)=I*DX
3 FORMAT (615, 5F10. 3)
C THE INITIAL MODEL AND REGIONS TO BE WEIGHTED ARE GIVEN
READ (5,4) ((REG(N,M),N=1,10),M=M1,M2)
4 FORMAT (10F5.2) ,
READ (5,4) ((RHO(N,M),N=1,10) ,M=M1,H42)
C DISPLAY THE INITIAL MODEL
WRITE(6,16) (Z(N),N=N1,N2)
16 FORMAT (//1X,'INITIAL MODEL',/,1X," X (KM) / 2= ',10F8.2)
WRITE(6,31) .
DO 17 M=M1,M2
17 WRITE (6,40) X (M), (RHO(N,M),N=N1,N2)
C *x% :

C THE FRECHET KERNELS FOR GZ ARE COMPUTED; “C" CORRELECTS THE CYLINDER

c

EXPRESSION TO THAT OF A RECTANGULAR PRISM OF EQUAL MASS
DO 10 J=JA,JB
DO 10 M=M1,M2
DO 10 N=N1,N2
IF (J.EQ.M.AND. N.EQ.1)C=.86601
IF(IABS (J-M).EQ.1.AND.N.EQ. 1) C=.98145
IF(J.EQ.M.AND.N.EQ.2) C=0.99676
IF (IABS (J-M).GT.1.0R.N.GT. 1) C=1.0

bI1



RR (N,M)=1.0
IF (REG(N,M).EQ.1.0) RR(N,M)=HWT
IF (REG (N,M) .EQ.2.0) RR (N,M)=WT2
IF (REG(N,M).EQ.3.0) RR(N,M)=WT3
10 G(J,N,M)=2.0%C*2Z (N)*DX¥D2%6.67/ ((X (J)~X (M) ) #*2+Z (N) *Z (N))
C THE WEIGHTED REGIONS ARE DISPLAYED
WRITE(6,27) (Z(N),N=N1,N2)
27 FORMAT (//1X, "WEIGHTED REGIONS',/,1X,
1' X (KNM) / 2= ',10F8.2)
WRITE(6,31)
DO 28 M=M1,M2
28 WRITE(6,40) X (M), (REG(N,M),N=N1,N2)
WRITE (6,29) WT,WT2,WT3

29 FORMAT (/1X, '"THE WEIGHTING FACTOR IN CELLS MARKED 1.0 IS',F9.1,

2/,1X,'THE WEIGHTING FACTOR IN CELLS MARKED 2.0 IS',F9.1,

3/,1X,'THE WEIGHTING FACTOR IN CELLS MARKED 3.0 1IS*,F9.1,

1/,1X,'OTHER REGIONS HAVE USNIT WEIGHT IN THE MINIMIZATION')
C &%k¥

C THE INq%RJngDgCTS OF THE FRECHET KERNELS ARE GENERATED

DO 15 K=JA,JB
PROD (J,X) =0.0
DO 15 M=M1,M2
DO 15 N=N1,N2
15 PROD (J, K) =PROD (J,K) +G(J,N,M) *G (K,N,M) /RR (N, M)
C *x¥*%
C THE LAGRANGE MULTIPLIERS ARE FOUND BY SOLVING THE MATRIX PROD;
C W“FSLE" IS A COMPUTING CENTRE ROUTINE FOR SIMULTANEOUS EQUATIONS
READ (5,20) (GZO (J),Jd=JA,JB)
20 FORMAT (6F12.3)
WRITE (6, 18) ,
18 FORMAT(//1X,' X GZ(MODEL) GZ (REAL) DIFFERENCE'/)
DO 22 J=JA,JB
GZ (J)=0.0
CO 21 M=M1,M2
DO 21 N=N1,N2

21 GZ (3)=6Z (J) +G(J, N, M) *RHO (N, M)
B (J)=6Z0 (J)-GZ (J)
22 WRITE(6,23) J,G%(J),GZO0(J),B(J)

23 FORMAT (1X,I4,3F10.4)

0¢t



JLN=JB=JA+1

LENA=30

LENBX=30

LENT=30

NSOL=1

CALL FSLE (JLN, LENA PROD,NSOL, LENBX,B,Y,IPERM,LENT,T, DET, JEXP)
C ¥%x%

C THE FINAL MODEL IS COMPUTED USING THE LAGRANGE MULTIPLIERS Y
C %%

DO 26 M=Mi, M2

DO 26 N=N1,N2

DENS (N,#)=0.0

DO 25 J=JA,JdB

25 DENS (N, M) =DENS (N, M)+Y (J) %G (J, N, M)

26 DENS (N, M) =DENS (N, M) /RR (N, M) +RHO (N, M)
WRITE (6,30) (Z(N),N=N1,N2)

30 FORMAT (1X,//.1X, YCOMPUTED DENSITIES',//,1X,' X (KM) / 2= 7,
110F8.2)
WRITE (6,31) |

31 FORMAT (1X,° R R RRRCLRPRPRR )
DO 35 M=M1,H2

35 WRITE (6,40) X(M),(DENS(N M), N=N1,N2)

40 FORMAT (1X,F8.2,' : ',10F8.3)

C *%x%

C THE GRAVITY EFFECT AND MASS OF THE FINAL MODEL ARE COMPUTED
C AND DISPLAYED
WRITE (6,42)
42 FORMAT (1X,//,1X,'OBSERVED GRAVITY - MODEL GRAVITY -~ ERROR'//)
DO 50 J=Jh,JB
GZM (J) =
MASS=0.0
DO 45 M=M1,M2
DO 45 N=N1,N2
MASS=MASS+DENS (N, M)

45 GZM (J)=GZM (J) +DENS (N, M) *G(J, N, H)
E (J) =GZ0 (J) -G2ZM (J)
50 WRITE(6,55) J,GZ0(J),G2ZM (J),E(J)

55 FORMAT (1X,I5,2F11.4,F10.4)
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WRITE (6,60) MASS
60 FORMAT (1X,///.,1%,'TOTAL MASS IS ',F10.4//)
C PLOT THE GRAVITY PROFILE
READ (6,65) XMN,XMX
65 FORMAT (2F10. 4)
READ (5,70) (YNAM(I),I=1,80)
READ (5,70) (XNAM(I),I=1,80)
70 FORMAT (80A 1)
CALL HIST (GZO,JLN,DX,YNAM,XNAM,XMN, XKX, 1)
C COMPUTE AN APPROXIMATE MODEL
CALL SMOOTH(DENS,G,M1,N1,M2,N2,X,Z,MASS,JA,JB,GZ0)
STOP
END

SUBROUTINE SMOOTH (DENS,G,M1,N1,42,N2,X,2,HASS,JA,JB,GZ0)
REAL ADENS(10,30),G20(30),GA (30),MASS, AMASS, ER (30),C,X(30),
1Z (30), CENS (10, 30),G(30 10, 30)

9 READ (5,10) C
10 FORMAT (F10.4)

IF (C.EQ.0.0) GO TO 80
12 LO 13 M=M1,M2

DO 13 N=N1,N2
ADENS (N, M) =C*FLOAT (IFIX ( (DENS (N, M) +0.5%C) /C))
IF (ADENS (N,M).LE.0.0) ADENS (N,M)=0.0
13 CONTINUE
C NOW COMPUTE AND COMPARE GRAVITIES
. DO 15 J=JA,JB
GA (J)=0.0
AMASS=0.0
DO 14 M=M1,H42
DO 14 N=N1,N2
GA (J) =GA (J) +ADENS (N, M)*G(J N, M)
14 AMASS=AMASS +ADENS (N, ¥)
15 ER (J) =GZ0 (J)-GA (J)

At



WRITE (6,30) . (2 (N),N=N1,N2)
FORMAT(//1X,'APPROXIMATE DENSITIES',//, X,
1'X (KM) / Z=',10F8.2)

WRITE (6,33)
FORNAT(1X".............'....‘.....'O......')
DO 35 M=M1,M2 '
WRITE (6,37) X (M), (ADENS(N,M) ,N=N1,N2)
FORMAT(1X,F8.2," : ' ,10F8.2)

WRITE (6,42)

FORMAT(//1%X,'EXACT GRAVITY - APPROX GRAVITY - ERROR'/)
DO S0 J=Ja,JB

WRITE (6,55) J,G20(J),GA (J),ER(J)

FORMAT (1X,I15,2F11.4,F10.4)

WRITE (6,60) MASS,AMASS

FORMAT (1X,///,‘TRUE MASS IS v,F10.4,/,1X,
1'APPROX. MASS IS ',F10.4)

GO TO 9

RETURN

END
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