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ABSTRACT 

A Bayesian decision framework is developed for addressing data worth questions for hydrogeological 

design in heterogeneous geological environments. This framework is developed specifically for aiding 

hydrogeologists, dealing with groundwater contamination, in the design of exploration programs 

searching for aquitard discontinuities. It can be used to evaluate, and compare, the cost effectiveness of 

(a) patterns of precise point measurements (e.g. boreholes), which are often expensive, and (b) areal 

geophysical surveys which are imprecise, but usually less expensive. 

The framework consists of two basic modules: a geostatistical indicator algorithm for simulating 

aquitard heterogeneity and a numerical model for simulating contaminant transport. Bayesian decision 

analysis ties these two modules together. The Bayesian nature of the framework also provides a 

methodology for combining a conceptual understanding of the local geology with quantitative 

information. Indicator geostatistics allows the handling of hydrogeological parameters which behave in 

space as non-Gaussian random variables. 

The estimated worth of a measurement was found to be particularly sensitive to economic parameters. It 

was less sensitive to hydrogeological and geostatistical parameters. 

The framework was applied in a retrospective fashion to the design of a remediation program for soil 

contaminated by radioactive waste disposal at the Savannah River Site, in South Carolina. The cost 

effectiveness of different patterns of point measurements was studied. This study included determining 

the number and spacing of the most cost effective pattern. Contour maps were produced of the net worth 

of a single, point measurement. These contour maps can be used to design sequential sampling programs 

involving single or multiple measurements. Good potential was also shown for determining the cost 



effectiveness of an areal geophysical survey. The net worth of patterns of precise, point measurements 

was compared to that of an imprecise, areal seismic survey. 

These results indicate that the framework can be very valuable in determining if additional exploration is 

cost effective and in designing efficient exploration programs. Results also show that ignoring a 

conceptual understanding of geology can lead to erroneous data worth analysis. 

The framework could be modified to handle other data worth questions in hydrogeology or other 

disciplines, such as mining, or petroleum reservoir engineering. 
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CHAPTER 1: INTRODUCTION 

High costs are the major challenge presently facing the remediation of groundwater/soil contamination. 

In 1990, die U.S. EPA estimated tiiat diere were 951 Superfund sites, 27 000 potential Superfund sites, as 

well as up to 100 000 other potential major sources of groundwater/soil contamination in the U.S. alone 

(National Research Council, 1990). These numbers do not include the many sites on US military 

installations. The cost of cleaning up individual major contamination sites is commonly in the $10's of 

millions, but can range up to the billions of dollars. The total cost of cleaning up all of these sites could 

exceed a tiillion dollars. Such high costs are unacceptable to society, particularly when tiiere are odier 

more pressing social and environmental problems, such as economic competitiveness and air pollution, 

facing us. Therefore, it is critical to remediate these contamination sites in a cost effective fashion. 

A crucial key to cost effective remediation is making good design decisions for remediation programs. 

However, making good decisions on designs is not a simple task since there can be much uncertainty in 

the quality of any particular design. Making good design decisions requires two important questions be 

answered: 

(1) Given uncertain conditions, how does one choose a good design? 

(2) Is it cost effective to collect more information so that one can improve a design? 

Massmann and Freeze (1987a and b), Massmann, et al. (1991), Sperling (1991), and SperUng et al. (in 

press) address the former question. The objective of diis thesis is to address the second question. This 

objective is reached by developing a Bayesian decision framework for addressing data worth questions in 

reahstic hydrogeological design problems that deal with groundwater contamination. The framework can 

be valuable in reducing costs because it provides the site engineer with a tool not only for spending site 

exploration dollars more efficientiy, but for deciding when enough information has been collected and a 



final remediation design decision can be chosen. This latter point is very important as it reduces the time 

necessary to make design decisions. The framework is specifically applicable to the hydrogeological 

design of new waste disposal sites or remediation programs for existing sites of groundwater 

contamination. 

The framework must able to handle geological heterogeneity for it to be useful in realistic design. 

1.1 HYDROGEOLOGICAL DESIGN AND GEOLOGICAL HETEROGENEITY 

The design of new waste disposal sites, or remediation programs for sites of existing groundwater 

contamination, involves selecting the best design from a set of possible design alternatives. For 

example, in the design of a new landfill, one must consider whether an expensive synthetic liner is 

required to contain leachate, or whether no Uner is needed. Selecting the best design is often an 

expensive balancing act. On one side, the range of costs of constructing new landfill sites, or remediating 

existing contamination, is large. For example, the cost of proposed design alternatives for closing down 

four seepage basins at the Savannah River Site, South Carolina ranged from only $3.3 million to over 

$100 million (Killian et al., 1987). An overly conservative design can be a huge waste of resources. 

On the other side, a poorly designed remediation program that does not halt contamination, or a poorly 

designed waste disposal site that leaks leachate and contaminates local groundwater supplies, can result 

in large remediation costs and irreparable damage. The best design minimizes the combined cost of 

carrying out the design as well as any subsequent costs if the design performance fails to meet 

expectations. Choosing a poor design can be expensive. 

Uncertainty caused by geological heterogeneity can make the choice of the best design alternative 

difficult. The performance of any alternative may depend upon where and how fast leaking contaminants 



will be transported. Often, the major factor controlUng contaminant transport is geological heterogeneity, 

Uiat is the variability of hydrogeological parameters such as the hydraulic conductivity, dispersivity, or 

bed diickness. The true states of these parameters are uncertain since the porous medium is hidden below 

die surface, and is often highly variable. Therefore, there is a wide range of possible states for die three 

dimensional distiibution, and a wide range of possible performances of the various design alternatives. 

The choice of design can be facilitated by reducing the uncertainty in geological heterogeneity by 

gathering additional information through a sampling program. However, gathering data can be 

expensive. Will the expense of additional data collection be cost effective in allowing a better design 

decision to be made? And if so, what is the best sampling program to obtain this information? Decisions 

are needed as to the number and types of measurements to be taken, and their locations. 

Present exploration programs are generally based solely on the professional judgment of the site engineer 

or geologist. However, the complexity of die heterogeneity of hydrogeological parameters can be 

overwhelming. On one hand, many cases exist where insufficient exploration resulted in expensive, 

poor designs. For these cases, more information might have prevented the poor design. On the other 

hand, the adversarial and regulatory environment that exists at many Superfund sites in the U.S.A. has 

sometimes led to too many data being collected and delay in action. This has resulted in a waste of 

resources that could have been better spent cleaning up odier contamination sites. 

It is clear Uiat in many cases the worth of data is not analyzed properly. Consequentiy, diere is need for a 

tool which can help hydrogeologists/engineers evaluate the worth of data in hydrogeological design. 

1.2 PREVIOUS WORK 

Evaluating the worth of data is not a new question. Over die last 50 years, much work has been done in 



designing sampling programs in geology. However, "with few exceptions, the research to date on sample 

network design has focused on the goal of improved estimation of spatial averages over a predefined area 

of interest." (Barnes, 1989. p.l2). Some selected references are Slichter (1955), Drew (1979), Delhomme 

(1983), and Bogardi et al. (1985). While this type of work makes valuable contributions to the design of 

sampling networks, there is no consideration of the monetary worth of a sampling program. Excluding 

monetary worth misses the fundamental point of a sampling program in hydrogeological design: the 

question of whether it is worth paying for a sampling in the first place. 

The work which has put a monetary worth on sampling programs has been based on Bayesian decision 

theory. (Bayesian decision theory will be discussed in Chapter 2.) Davis and Dvoranchick (1971), Davis 

et al. (1972), Dawdy (1979), Davis et al. (1979), and Attanasi (1979) utilized Bayesian decision theory to 

evaluate the worth of hydrological data. Ben-Zvi et al. (1988) evaluated the worth of a borehole in a 

simple groundwater contamination problem. Maddock (1973), in one of the pioneering works, extended 

Bayesian decision analysis to the management of a farm, utilizing an analytical groundwater flow model. 

Management decisions involved many factors including pumping rates for irrigation and types of crops to 

be planted. However, hydrogeological parameters were assumed to be homogeneous. Such an approach 

can be used in some hydrogeological design problems. Often, however, geological heterogeneity must be 

dealt with to effectively carry out design, particularly when dealing with groundwater contamination. 

Gates and Kisiel (1974) did a very interesting study that evaluated the worth of measurements of 

hydrauhc conductivity, storativity, hydraulic head and recharge/discharge rates using a computer model 

that predicted hydraulic head in the Tucson Basin in Arizona. The parameters were heterogeneous; 

however, the worth of data was quantified in terms of a cost associated with the precision of the predicted 

heads, rather than a design decision. 

None of the previous work that puts a monetary value on a sampling program has utilized geostatistics, or 

the concept of regional variables. Utilizing geostatistics is important because it is the most powerful tool 



available today for handling geological heterogeneity. Many hydrogeological parameters that govern 

groundwater flow and contaminant transport behave as regional variables (de Marsily, 1984, and 

Rouhani, 1985). A regional variable is correlated in space. Geostatistics utiUzes the spatial correlation to 

constrain the variability of possible states of the three dimensional distiibution of hydrogeological 

parameters. Thus, by using the spatial correlation, an improved estimate of geological heterogeneity can 

be achieved and the performance of a design alternative can be estimated more closely. Nevertheless, 

these estimates can still involve great uncertainty. Massman and Freeze (1987a and b), Massman et al. 

(1991), Sperling (1991), and Sperling et al. (in press) used geostatistical methods to address the problems 

of hydrogeological design under conditions of uncertainty, but they did not address the issue of data 

worth. 

Cahn (1987) developed sti-ategies for sampling programs utilizing geostatistical concepts. However, she 

did not evaluate the wordi of a measurement before it was taken. Rouhani (1985) linked the worth of a 

measurement of hydraulic head to the economic value related to die precision of die predicted hydraulic 

head, but he did not link the worth to a design decision. 

More recendy, Marin et al. (1989) and Medina (1989) oudined a Bayesian risk methodology for the 

permitting of waste disposal sites under conditions of uncertainty. Permitting was based upon whether 

the contaminant concend"ation would reach a critical level at some compliance point. Uncertainty in the 

contaminant concentration was estimated using Monte-Carlo simulations. In dieir work, diey discuss 

how the worth of a measurement is quantified in terms of the increased precision of the estimated 

concenti^tion. However die worth is not linked to an engineering design decision, nor do diey actually 

carry out an analysis of die worth of data. 

Freeze et ai. (1988) and Freeze et al. (in press) produced a general oudine of a Bayesian stochastic 

framework for addressing the data wordi question in hydrogeological design involving correlated random 

variables. However, diey did not put dieir ideas into practice. 



1.3 APPROACH AND CONTRIBUTION OF THESIS 

Many hydrogeological parameters affect contaminant transport. As a first step, the framework will deal 

with only one hydrogeological parameter: aquitard continuity. This parameter has been chosen for three 

reasons. Firsdy, aquitard continuity is one of the major parameters controlling contaminant d"ansport. 

In aquifer systems of non-zero vertical gradients, aquitard discontinuities are often the most significant 

factor controlling flow behavior and the spread of contaminants (Haldorsen and Chang, 1986; Fogg, 

1986; and Duffield et al. 1989). This factor is particularly important when there is a great difference 

between the hydraulic conductivity of the aquifers and the aquitard of interest. Variations of other 

hydraulic parameters, such as porosity, hydraulic conductivity, or storativity, within a hydrogeological 

unit are of lesser importance. This contention is supported by Fogg (1986), Desbarats (1987) and 

Haldorsen and Chang (1986) who report that the most significant factor controlling the flow pattern is 

often the transition between sand and shale units rather than variations within a particular unit. Newson 

and Wilson (1988) report diat even abandoned wells have provided important paths for contamination to 

spread vertically through aquifer/aquitard systems. 

Secondly, it is a common problem. Aquitard discontinuities have enhanced die spread of contamination, 

or have been a significant problem at numerous contamination sites (Roux and Altoff, 1980; Jackson et 

al., 1985; Duffield et al., 1989; and Kennedy, et al., 1990). 

Finally, aquitard continuity affects the ti-ansport that is most critical: die vertical spreading of 

contamination to clean aquifers. Previous experience has shown diat the clean up of a contaminated 

aquifer is often economically impossible. Therefore, the horizontal spreading of contamination in an 

aquifer diat is akeady contaminated is not as important as die vertical spreading of contamination to a 

clean aquifer. To the best of the author's knowledge, no other work has been done on evaluating the 



effect of uncertainty of aquitard continuity on the prediction of contaminant transport. 

The framework consists of two basic modules. The first is an indicator geostatistical simulation 

algorithm for handling aquitard heterogeneity. It accounts for the spatial correlation between 

measurements. Indicator geostatistics allows the handling of (a) hard, point measurements (which are 

precise, but are probably few and expensive), (b) soft, point measurements (which are imprecise, but are 

probably cheaper and more numerous), and (c) hydrogeological parameters which behave in space as non 

Gaussian random variables. Bed thickness determined from complete borehole logs represent an 

example of hard data. Bed thickness determined from incomplete borehole logs could represent soft data. 

Geophysical measurements could also represent soft data. The incorporation of soft data is important 

because there is often a lack of hard data. 

The second module is a numerical model (finite element or finite difference) for simulating contaminant 

transport. Bayesian decision analysis ties the two modules together. The Bayesian nature of the 

framework provides a methodology for combining a conceptual understanding of the local geology with 

quantitative information. Including a conceptual understanding of geology is vital in many cases. For 

example, whether an aquitard is formed in a meandering stream environment or in a deep marine 

environment has immense implications as to how far an aquitard can be extrapolated from a measurement 

point. A case study illustrates that ignoring a conceptual understanding of geology can lead to erroneous 

data worth predictions, resulting in a poor design decision. 

The framework can evaluate and compare the cost effectiveness of sampling programs consisting of (a) 

point, hard measurements, or (b) soft, geophysical surveys covering a large area. The framework will 

determine the best sampling strategy from a series of proposed ones. The best sampling strategy is not 

guaranteed to be the optimal pattern because the optimal pattern is the best of all possible sampling 

strategies, not just the best of a finite set of proposed ones. 



This thesis will concentrate on unconsolidated aquifer/aquitard systems formed in clastic depositional 

environments. It assumes that the discontinuities in an aquitard are a result of depositional processes and 

post depositional erosional processes only. Discontinuities caused by tectonic or other processes, such as 

faulting, are not considered. 

In summary, the major contribution of this thesis is the development of a Bayesian decision framework 

for evaluating the worth of data in hydrogeological design in heterogeneous geological environments. It 

can be used for tackling one of the most significant problems in environmental contamination: reducing 

the high costs associated with it. The framework provides a tool for allowing decision makers to not only 

expend site exploration dollars more efficiently, but to determine when enough information has been 

collected. This latter point is particularly important as it reduces the time necessary to make design 

decisions. 

The second major contribution is the holistic approach used to develop the framework. This approach is 

accompUshed by two factors. The first, and primary factor, is the Bayesian nature of the framework. 

This is the key to the integration of all the factors affecting a design and the expression of data worth in 

monetary terms, the major driving force of any exploration program. The second factor is the 

incorporation of many different types of information, including soft data, hard data, and a conceptual 

understanding of the local geology. Including as many sources of information as possible is critical 

because there are often few reliable hard data. 

In addition, to the best of the author's knowledge, the framework is unique in its tackling of aquitard 

continuity, often the critical uncertainty confronting decision makers involved in groundwater 

contamination. Also, the framework is not just conceptual in nature, but has been demonstrated with a 

real field case. 

Finally, the framework is applicable to other exploration programs in hydrogeology and other fields. The 



methodology is sufficienUy general diat it can be easily modified to handle odier hydrogeological 

parameters such as hydraulic conductivity, or to similar problems in other disciplines, particularly mining 

and petroleum engineering. 

Chapters 2 to 5 present the different components of the framework. Chapter 6 describes how the 

different components are tied into the framework. Chapter 7 presents a sensitivity study of data worth 

using generic design examples, while Chapter 8 demonsti-ates the framework using a case history. The 

case history is the closure of four seepage basins at the Savannah River Site in South Carolina. 



CHAPTER 2: A N OVERVIEW OF BAYESIAN DECISION ANALYSIS 

2.1 INTRODUCTION 

Bayesian decision analysis is a powerful mediod of madiemadcally selecting die best design from a number 

of alternatives under uncertainty. It is powerful because it combines bodi engineering judgement and 

measured data in the decision process. It also provides a method for evaluating the worth of obtaining further 

information, which is one of die principal questions asked in design under uncertain conditions: Is it cost 

effective to get more information so that uncertainty will be reduced, allowing a better decision to be made? 

Or would it be more cost effective to go with the currentiy available data, and use a more-conservative design 

approach. In hydrological design, the number of uncertain events affecting different design alternatives can 

be overwhelming. 

This chapter will introduce the basic concepts of Bayesian decision theory using a simple design problem. 

The incorporation of the methodology into the framework described in this thesis will be discussed in later 

chapters. 

The three major components of Bayesian decision analysis are die prior, posterior, and preposterior analyses. 

The prior analysis is used to choose the best design alternative from a series of available ones, based on 

current information. A posterior analysis is used to choose the best design alternative once new information 

becomes available. A preposterior analysis is used to determine whether collecting new information is cost 

effective. 

2.2 PRIOR ANALYSIS 

The prior analysis selects the best design alternative, A ^ , from a set of "I" possible alternatives, A;, based on 

present information. For diis discussion, diere will be J possible events, Ej, that affect the performance of die 

design alternatives. Only one event can be ti-ue, Ep, but it is unknown. 



The methodology will be illustrated with the design of a simple landfill (Fig. 2-1). The landfill is to be 

constructed on an unconfined surficial aquifer. Beneath the surficial aquifer is a thick clay aquitard, which in 

turn is underlain by a confined aquifer of economic importance for water supply. A downward vertical 

gradient exists across the aquitard. The lower aquifer is bounded from below by impermeable bedrock. In 

this thesis, a landfill failure is defined as any event in which contamination of the lower aquifer occurs. If 

failure occurs, then the owner of the landfill will have to pay for an expensive cleanup. 

It is assumed that failure will only occur if a permeable discontinuity, or window, exists in the aquitard. The 

aquitard is a marine clay formed during a marine transgression over the lower sandy aquifer. Its deposition 

was followed by a marine regression during which fluvial sands were deposited, forming the upper aquifer. 

Marine clay is generally continuous over distances on the order of kilometers. However, during this 

regression, there existed a large fluvial channel existed which could have eroded through the clay layer, 

creating a window. The approximate location of this fluvial channel is assumed known, but it is not known 

whether the channel has created a discontinuity in the form of a window through the aquitard. 

The landfill is to be designed to minimize the combined cost of landfill construction and cleanup if failure 

occurs. For simpUcity, only two alternative designs are considered here: 

1) A L , install a synthetic liner, or 

2) A [ ^ , install no liner. 

It is assumed that the synthetic liner will leak to some degree in the future. Therefore, its benefit will be in 

reducing the amount of leachate escaping, rather than completely containing it. 

The two events affecting the performance of the design alternatives are 

1) E^f/, a window is present in the aquitard at the fluvial channel, and 

2) E f ^ , no window is present in the aquitard at the fluvial channel. 
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Figure 2-1: Cross section tiu-ougli example site. 

If no window is present, then failure cannot occur and there is no need for a synthetic hner. However, 

if a window does exist, then a liner will substantially reduce the amount of contamination and associated 

cleanup costs. 

An expected maximum utility criterion will be used here to select the best design alternative. It takes into 

account the probability of different events occurring. It is based on an economic objective function which is 

defined as the net present value of the expected sti-eam of future benefits, costs, and risks, taken over an 

engineering time horizon. The best alternative, or the design alternative, Aj), is die one with the maximum 

expected value of die objective function. The objective function, Z, (Crouch and Wdson, 1982) takes the 

form: 

Z=l7—7^[B(t)-C(t)-R(t)] (2.1) 

where: 

t=0 

i = discount rate (decimal fraction) 

t = time (years) 

T = time horizon (years) 



B(t) = benefits in year t ($) 

C(t) = costs in year t ($) 

R(t) = risks in year t ($) 

B(t) represents known benefits. For the landfill, these would include the annual income from disposing of 

waste. C(t) represents known costs, such as the cost of building and operating the landfill, and the costs of 

future monitoring to check for leachate plumes leaking from the landfill. R(t) is defined as the expected cost 

of failure. It is calculated by: 

R(t) =P^(t)C/t)U(Cp (2.2) 

where: 

= probability of failure in year t (decimal fraction) 

C (̂t) = cost of failure in year t ($) 

U(Cp = utility function (decimal fraction >=1) 

The cost of failure, Cf, represents all costs that could occur as a result of failure. These could include cleanup 

costs of any contamination as well as legal or other costs. The utility function, U(Cp, accounts for risk-averse 

tendencies of some decision makers. Conservative decision makers, leery of failure, will set U(Cp > 1 to 

increase the weighting of the risk. Risk neutral decision makers will use an expected value approach, that is, 

one for which U(Cp = 1. Refer to any introductory textbook on decision analysis such as Benjamin and 

Cornell (1970) for more details on utility theory and how to choose values for U(Cp. An expected value 

approach will be followed here. Therefore, equation (2.1) becomes: 

T 1 
Z=I—[B(t)-C(t)-P(t)C^(t)] 

t=0^ 

(2.3) 



In the simple landfill example to be presented now, the probability of a window at the fluvial channel is 

arbitrarily assumed to be 0.2. Therefore: 

P(Ew) =0.2 (2.4) 

P(ENW) = 0.8 (2.5) 

For simplicity, all benefits, known costs, and costs of failure will be assumed to occur immediately; therefore, 

the time term in equation (2.3) drops out and (2.3) becomes: 

Z = B - C - P f C f (2.6) 

It is further assumed that B for both alternatives will be $1 000 000 and C will be $500 000 and $200 000 for 

A L and A ^ L , respectively. Cf will be $1 000 000 for A^^. Cj for A L will be only $200 000 because of the 

reduced volume of leachate. 

The prior analysis can be visualized using a decision tree (Fig. 2-2). The square at the left of the tree marks a 

decision between different alternatives. Each branch from the square represents a possible design alternative . 

At the end of each branch is a circle with another series of branches emanating from it. Each branch of this 

second set represents a possible event, which is beyond the control of the decision maker. Each event affects 

the objective function of the alternative. Here there are only two possible events: E j ^ and E ^ . The 

probability of each event is marked below the event's branch. 

The objective function, Z, for each alternative, given that a particular event occurs, is shown at the right of 

the decision tree. The objective functions for the different combinations of alternatives and events are 



1) for a liner and a window 

Z ( A L , E W ) = $ 1 000 000 - $500 000 - $200 000 (2.7) 

= $300 000 

2) for a liner and no window 

Z ( A L , E N W ) = $1 000 000 - $500 000 (2.8) 

= $500 000 

3) for no liner and a window 

Z(Ai^,Ew) = $ 1 000 000 - $200 000 - $1 000 000 (2.9) 

= - $ 2 0 0 000 

4) for no liner and no window 

Z ( A N L , E N W ) = $1 000 000 - $200 000 (2.10) 

= $800 000 

Figure 2-2: Decision Q-ee used in die prior analysis of die example landfill. 



The expected value of the objective function for each alternative, E[Z(Aj)], is marked beside it. E[Z{A^] is 

$600 000 (= 0.2 x (-$200 000) + 0.8 x $800 000). E[Z(A^] is only $460 000 (= 0.2 x $300 000 + 0.8 x 

$500 000). Therefore, the no-liner design, A^ is the best design because it has the maximum expected 

objective function. The maximum expected objective function has been enclosed in a box. This convention 

will be followed throughout this thesis. 

2.3 POSTERIOR ANALYSIS 

The posterior analysis incorporates new information into the decision process. The new information is used 

to reduce the uncertainty by updating the prior probabilities, P(E{), of the different events, Ej, occurring. 

Traditionally, Bayes' equation is used to update the probabilities. Once the prior probabilities have been 

updated, the steps of the prior analysis are repeated to choose the best posterior design alternative. 

Bayes' equation updates P(Ej), given that a sample Sj has been taken, by: 

P(SilEi)P(Ei) 
P(EilSj)= 'p̂ ĝ ^ (2.11) 

where, 

- PCEjISj) is the posterior probability of Ej, given that sample Sj has been taken, 

- P(SjlEi) is the probability of sampUng Sj, given that Ej exists, 

- P(Ei) is the prior probability of event Ej, and 

- P(Sj) is the probability of sampling Sj. 

P(SjlEj) is also referred to as the likelihood function of samphng Sj. P(Sj) is calculated from the total 

probability of all of the different ways of sampUng S:: 



P(Sj)=IP(SjlEi)P(Ei) (2.12) 
i=i 

One of the powers of Bayes' equation is that the quality of the sample is automatically included in the 

updating by the likelihood function. The likelihood function can, for example, take into account the precision 

of the sampling device. Bayes' equation also allows the inclusion of subjective information through the prior 

term. The prior probability can be based on previous measurements and/or intuition. 

Returning to the earlier landfill example, a single borehole is to be drilled at the probable location of the 

fluvial channel to determine if a window exists in die aquitard. It is arbiti-arily assumed diat if die window 

exists there is a 70% chance that it will be found with the measurement technology selected. It is also 

assumed diat die borehole wUl not give a false outcome; dierefore, if a window is sampled dien it exists widi 

certainty. Obviously, if no window exists, then there is no chance of finding one. Therefore, the likelihood 

functions for the lx)rehole are 

P(SwlEw) =0 .7 (2.13) 

P(SNWIEW) = 1. - P(SwIEw) (2.14) 

= 1.-0.7 

= 0.3 

P(SWIENW) = 0 . (2.15) 

P(SNWIENW) = 1-0 (2.16) 

For the case where a window is sampled, S^, die updated probability of a window existing is determined 

from Bayes' equation by 

P(SwlEw)P(Ew) 
P ( E W I S W ) - P ( S ^ ) (2.17) 



The probability of sampling a window, P{Sy^) is calculated using equation (2.12): 

P(Sw) =P(SWIEW)P(EW) + P(SWIENW)P(ENW) (2-18) 

= (0.7)(0.2) + (0)(0.8) 

= 0.14 

Therefore, from equations (2.4), (2.13), and (2.18): 

P ( E „ . „ , (2.,9) 

= 1.0 

PCENW'^W) ^so be calculated using Bayes' equation, but since there are only two events it can be more 

easily calculated by: 

P(ENWISW) = 1 . 0 - P ( E W I S W ) (2.20) 

= 1 .0 -1 .0 

= 0. 

For the case of S^w 

where: 

P(SNW) =1.0-P(Sw) (2.22) 

= 1 .0 -0 .14 

= 0.86 

Therefore, from equations (2.22), (2.14) and (2.4): 



PCEw'^Nw) 
_(0-3)(0-2) 
~ (0.86) (2.23) 

= 0.07 

Note, that has reduced the probability of a window from its prior value of 0.2 to 0.07. The updated 

probability of no window, given S j ^ , P(Ej^lSj,^), is 

For the landfill example, let us assume that no window was found at die fluvial channel by die borehole. The 

updated probabilities from equations (2.23) and (2.24) are marked on the decision tree shown in Figure 2-3. 

The same steps used in the prior analysis are then used to select the posterior best alternative. The posterior 

expected objective function for A L is $490 000, but the expected objective function for A j ^ is now $752 000, 

or $152 000 higher dian calculated during die prior analysis . Ajŝ ^ is still the best design. In fact, now that 

additional information is available, it is better than originally thought during the prior analysis. 

2.4 DATA WORTH THROUGH PREPOSTERIOR ANALYSIS 

The preposterior analysis can be separated into two components: the expected value of perfect information 

(EVPI) and the expected value of sample information (EVSI). The EVPI is an estimate of die value of having 

perfect information so that uncertainty is reduced to zero and a perfect design decision can be made. The 

EVSI is an estimate of die expected value of a normal, imperfect, sampling program which will not reduce 

uncertainty to zero and diere will still be uncertainty in any design decision. 

P(ENWISNW) - 1 • P(EW'SNW) (2.24) 

= 1 - 0.07 

= 0.93 
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Figure 2-3: Decision tree used in posterior analysis of example landfill 

2.4.1 EXPECTED V A L U E OF PERFECT INFORMATION (EVPl) 

The EVPI can be explained using the concept of regret. The regret associated with a decision represents the 

monetary loss incurred by not making the best decision. It is defined as the difference between the value of 

the objective functions ZCA-j-) and Z(AQ), where A ^ represents the true best design alternative and Ap 

represents the chosen design alternative. Both are evaluated at the true event, E.^. The regret associated with 

A Q , Reg(AQ,Ej), is calculated by: 

Reg(AD,Er) = Z(AT,ET) - Z (AD,ET) (2.25) 

where. 

- Z(Aj,Ej) is the objective function for A.j. evaluated at E j , and 

- Z(Aj),Ej) is the objective function for A ^ evaluated at Ep. 

Note, that the regret can be calculated for any alternative, A , not just A Q . 



Unfortunately, is never known. Therefore, we must calculate an expected regret, E[Reg(A0)], over all the 

possible events, Ej: 
I 

E[Reg(AD)] = X [Z(AT,Ei) - Z{A^,E{)]m;) (2-26) 
i=l 

The expected regret gives the expected monetary loss when A ^ is not A j . In other words, it is the maximum 

improvement that could be expected in Aj), if Ej- was known. The E[Reg(Aj))] represents the EVPI. Since 

no exploration program will yield perfect information, die EVPI is an estimate of the maximum worth of any 

normal exploration program. An exploration program should not be carried out if its costs exceed die EVPI. 

An example calculation of the expected regret for the prior design of a liner is presented in Figure 2-4. The 

regret associated with each design/event pair is shown at the right hand side of Figure 2-4. If E^ is a window, 

dien from Figure 2-2 and equations (2.7) and (2.9), Z ( A L , E W ) = $300 000 and Z(A^,E^ff) =- $200 000. 

Hence, the prior A Q of the no hner alternative really would have been poor. The tine best alternative would 

really have been a liner. The regret in choosing AJ^L the prior analysis would be: 

Reg(ANL,Ew) = Z ( A T , E W ) - Z ( A N L , E W ) (2.27) 

= Z ( A L , E W ) - Z ( A N L , E W ) 

= $300 000 - (-$200 000) 

= $500 000 

However, if Eq. is no window , dien from Figure 2-2 and equations (2.8) and (2.10) Z ( A L , E N W ) = $500 000 

and Z(ANL,Ef^) = $800 000. Under diis outcome, die prior A Q of no-liner would still be the best. Hence the 

regret would be zero. 
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Figure 2-4: Expected regret calculations for the landfill example. 

The expected regret of die prior best design alternative of no-liner is 

E[Reg(ANL)] =Reg(ANL,ENw)P(ENw) + Reg(ANL,Ew)P(Ew) (2.28) 

= ($0)(0.8) + ($500 000)(0.2) 

= $100 000 

therefore, 

EVPI = $100 000 (2.29) 

It would not be worth carrying out any exploratory work diat cost more dian $ 100 000. 

Expected regret can also be used in the prior analysis to choose the best alternative. A ^ has die lowest 

expected regret. For example, E[Reg(AL)] = $240 000 while E[Reg(ANL)] = $100 000 (Fig. 2-4). The 

alternative with the minimum expected regret is the alternative with the highest expected objective function. 



2.4.2 EXPECTED VALUE OF SAMPLE INFORMATION (EVSI) 

There are two standard approaches for calculating the EVSI. The first is based on the increase in the 

maximum expected objective function. The second is based on the reduction in the minimum expected 

regret. These are well established in the literature (refer to Benjamin and Cornell, 1970; Davis and 

Dvoranchik (1971); or Davis, Kisiel, and Duckstein (1972)). A third approach is developed by rearranging 

the equations used in the first method to isolate the individual contributions of the different sample outcomes 

to the EVSI. It is utilized in this thesis to visualize how different factors affect the data worth process. The 

three methods will first be outlined in more detail below. 

2.4.2.1 Method 1: The EVSI from the Expected Increase in the Maximum Objective Function 

In this method, the worth of data, Wj, is calculated from the expected increase of the expected objective 

function of the posterior best design alternative, A^'^ over the expected objective function of the prior best 

design alternative, A ^ . Wj is calculated by: 

Wi = E[E(Z(AD' ) ) ] - E(Z(AD)) (2.30) 

where, 

- Z(A£)) is the objective function of A Q 

- E(Z(Ap)) is the expected value of Z(Aj5), and 

- E[E(Z(AD'))] is the expected value of E ( Z ( A D ' ) ) . 

For the discrete case of I events, Ej, and J sample outcomes, Sj, equation (2.30) becomes: 



W, = 1 
j=i 

XZ(ADj'.Ei)P(EilSj)]P(Sj) 
Li=l 

-XZ(AD,Ei )P(Ei ) (2.31) 
J i=l 

where, 

- Apj' is the best design alternative given Sj, 

- Z(AD,Ei) is the objective function A Q evaluated for event Ej, 

- POBjISj) is the posterior probability of event, Ej, given diat sample Sj has been taken, 

- PCE) is die prior probability diat event E; will occur, and 

- P(Sj) is the probability of samphng Sj. 

An example preposterior analysis using method 1 is carried out below. The worth of the example borehole 

carried out in the posterior analysis (Section 2.3) will be evaluated. In a preposterior analysis, the outcome of 

the lx)rehole is not known. A decision tree used in die preposterior analysis is shown in Figure 2-5. It 

consists of two parts. The first part, associated with the decision not to drill the borehole, is identical to the 

prior analysis. The second part, associated with die decision to drill the borehole represents the preposterior 

analysis. 

The preposterior analysis can be diought to consist of two stages. Stage 1 is a series of branches for each 

possible sample outcome. In this example, there are two: sampling either a window, S^, or no window, 

S(^ . The probability that a particular outcome will be sampled is marked in brackets beside each branch. 

Recall diat diese were calculated in (2.18) and (2.22). 

Stage 2 consists of a series of pseudo-posterior analyses. A pseudo-posterior analysis is associated with each 

sample outcome. The probabilities used in each pseudo-posterior analysis are updated according to the 

sample outcome. For the case of S[,j^, P(EY f̂lSj,jw) and P(Ef^lSf^) have already been calculated in 

equations (2.23) and (2.24). The expected objective functions are E [Z(AJ^ ISNW)] = $730 000, and 

E[Z(ALISNW)] = $486 000. Therefore, A Q ' would be A ^ L -



For the case of Syff, PCE^IS^) and P(Ej^lS^) have aheady been calculated in equations (2.19) and (2.20). 

E[Z(ANLISW)] = -$200 000, and E[Z(ALISW)] = $300 000. Therefore, A ^ ' would now be A L . 

The worth of the borehole from equation (2.30) is 

= $670 000-$600 000 

= $70 000 

Therefore, the borehole is worth $70 000. It would not be worth drilling the borehole, if it is going to cost 

more than $70 000. 

2.4.2.2 Method 2: The EVSI from Expected Reduction in Minimum Expected Regret 

Method 2 calculates the worth of data, Wj, from the expected reduction in the E[Reg(AL,')] from the 

E[Reg(AD)]. W2 is calculated by 

where, 

- Reg(AL,) is the regret of A Q , 

- E(Reg(AQ)) is the expected regret of A Q , and 

- E[E(Reg(AD'))] is the expected expected regret of A Q ' . 

For the discrete case, (2.33) becomes 

= E [ E ( Z ( A D ' ) ) ] - E ( Z ( A D ) ) (2.32) 

W2 = E(Reg(AD)) - E[E(Reg(ADO)] (2.33) 

W2= I [Z(ATEi) - Z(AD,Ei)]P(Ei) -
i=i 

J I 
1 1 ([Z(AT,/,Ei) -Z(ADj',Ei)]P(EilSj)}P(Sj) (2.34) 
j=l i=l 
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Figure 2-5: Decision tree of preposterior analysis of example borehole using method 1. 

where 

- Z(ATj',Ei) is die objective function of die posterior true best alternative evaluated for event, Ej, 

given sample, S:, and 



- Z(Aj,Ei) is the objective function of the prior true best alternative evaluated for the event, E;. 

A decision tree used in the preposterior analysis is shown in Figure 2-6. The regret for each combination of 

Ej and Aj is marked to the right of the branch representing Ej . The calculation of these values was discussed 

in Section 2.3. In the case of Sj ,^ , the expected regret for A Q ' (no liner) is $34 900. In the case of S^, the 

expected regret for A ^ (a liner) is $0. Therefore, the E[E(Reg(Aj3'))] = $30 000. 

Therefore, from equation (2.33) is 

W2 =E(Reg(AD))-E[E(Reg(AD'))] (2.35) 

= $100 000-$30 000 

= $70 000 

Therefore, the worth of the borehole is again $70 000. 

2.4.2.3 Method 3: Expected Posterior Worth of a Measurement 

Method 3 is developed by rearranging Method 1 to show contributions of the different sample outcomes to the 

EVSI. The basic philosophy of the method is to put the EVSI, or worth, of the measurement in terms of the 

posterior worth of sample outcomes. Or in other words, what is the real worth of a measurement that samples 

a window (or no window) after it has been taken. 

Recall from Method 1 that the worth of taking a measurement for the discrete case, is calculated by 

J I I 
W, = II Z(ADj',Ei)P(EilSj)P(Sj) -I Z(AD,Ei)P(Ei) (2.36) 

j=l i=l i=i 



Figure 2-6: Decision tree used in preposterior analysis of example borehole using mediod 2. 

For a given particular event, Ej, die sum of all possible sample outcomes, S:, is one; hence. 

J 
I P ( S j l E i ) = l 

j=l 
(2.37) 



Therefore, equation (2.36) can be rewritten as 

J I I J 
W i = 11 Z(ADj',Ei)P(EilSj)P(Sj) -I I Z(AD,Ei)P(SjlEi)P(Ei) (2.38) 

j=li=i i=lj=i 

Substituting Bayes' equation. 

P(SilEi)P(Ei) 
P(EilSj)= 'p ;̂̂ ^ (2.39) 

into equation (2.38) yields: 

J I I J 
W i = X I Z(ADj',Ei)P(EilSj)P(Sj) -I I Z(AD,Ei)P(EilS3)P(S3) (2.40) 

j=li=l i=lj=l 

Reversing the summation terms on the second term of the right hand side yields: 

J I J I 
Wi = S I Z(AD/,Ei)P(EilSj)P(Sj) -I X Z(AD,Ei)P(EilSj)P(Sj) (2.41) 

j=l i=l j=l i=l 

The above equation can be rearranged to give: 

J I I 
W 3 = I [ I Z(ADj'3i)P(EilSj) -I Z(AD,Ei)P(EilSj)]P(Sj) (2.42) 

j=l i=l i=l 

where Wj has been replaced by W 3 to denote that the E V S I is now being calculated by Method 3. For the 

continuous case, W 3 can be calculated by: 

W3 = E[E(Z(AD'IS)) - E(Z(ADIS))] (2.43) 



where E(Z(AQIS)) is the expected value of the prior best design altemadve, but evaluated with addidonal 

sample information S. The contributions of the different sample outcomes have now been isolated. One can 

use this method to examine die posterior worth of a measurement. For example, if the sample outcome was 

S ^ , its worth would be 

W(Sw) = E(Z(AD'ISW)) - E(Z(ADISW)) (2.44) 

which represents the difference between the expected value of the new posterior best design alternative, Aj)', 

and the new estimate of die expected value of die old prior best design alternative, A ^ . In other words, it 

represents the difference between the new best alternative and what the Ap is really worth. If the outcome of 

a measurement does not change A ^ to a different one, then the outcome has no value. 

A preposterior analysis using mediod 3 can be illusti-ated with die decision ti"ee used in method I (Fig. 2-5). 

Recall diat for S^w, E[Z(ANLISNW)] = $730 000 and E[Z(ALISNW)] = $486 000. Therefore, S^w has only 

reconfirmed that the prior best alternative of no-liner is still the best and sampling no window is worth 

nothing. 

In die case of S ^ , die best alternative is now to have a liner (E[Z(ALIS^)] = $300 000). The expected 

objective function of the prior no-liner decision was found to be really only -$200 000, radier than its 

previous value of $600 000 calculated in die prior analysis. Therefore, has resulted in an improvement of 

$500 000 ($300 000 - - $200 000) in die design decision. 

The worth of taking a sample from equation (2.42) is 

W3 = ($500 000)(0.14) + ($0)(0.86) 

= $70 000 

(2.45) 



which is the same as calculated by methods 1 and 2. 

In general, the worth of data will be expressed in terms of Method 1 because it is commonly used in the 

literature. Method 3 will only be used for some demonstration examples. It is felt that Method 3 is a more 

intuitive approach which simplifies the understanding of how different factors affect the estimated worth of a 

measurement. 

2.5 APPLICATION AND EXTENSION OF THE METHODS 

The methods presented in Section 2.4 for discrete events will be applied to more complex cases involving 

spatial correlation and multiple realizations to determine probabilities. The presentation of these ideas must 

await the presentation of the geological arguments (Chapter 3), sequential indicator simulation (Chapter 4) 

and contaminant transport concepts (Chapter 5). 

2.6 NOTATION 

A D prior best design alternative 

A L liner alternative 

A N L no liner alternative 

A.J. true best design alternative 

B(t) known benefits in year t 

C(t) known costs in year t 

j * possible event 

event of no window in aquitard 

E T true event 

Ew event of a window in aquitard 



i discount rate 

Pf(t) probability of failure in year t 

R(t) risk in year t 

Reg(Aj) regret of design alternative Aj 

Sj sample outcome 

Sj ,^ sample outcome is no window 

Syj, sample outcome is a window 

t time 

T engineering time horizon 

U(Cf) utility function 

W J worth of data by the expected increase in the maximum objective function 

W J worth of data by the expected reduction in minimum regret 

W 3 worth of data by the expected posterior worth of a measurement 

Z objective function 



CHAPTER 3: GEOLOGICAL PREDICTION OF AQUITARD CONTINUITY 

3.1 INTRODUCTION 

The purpose of Chapter 3 is to explain why a conceptual understanding of local geology can be important 

in predicting aquitard continuity. 

There is a sti-ong relationship between patterns of heterogeneity of clastic rocks and die depositional 

environment that formed them (Le Blanc, 1977a and b; Weber, 1982; and Weber, 1986). A brief 

overview is presented below of a number of depositional environments and the geometric characteristics 

of clay layers deposited in them. Refer to Ravenne et al. (1989), Sneider et al. (1978), Jardine et al. 

(1977), and Le Blanc (1977a and b) for a more detailed overview of patterns of heterogeneity formed in 

different depositional environments. A review of previous work in quantifying shale/clay layer 

heterogeneity is then presented. Finally, the importance of a conceptual understanding of die local 

geology in predicting aquitard continuity is emphasized. 

In general, die relationship between depositional envkonment and patterns of geological heterogeneity is 

poorly understood for two reasons. Firsdy, the patterns of heterogeneity can be very complex. And 

secondly, the available data base on the three dimensional geometiy of clastic rock sd^atigraphy is small. 

3.2 THE EFFECT OF DEPOSITIONAL ENVIRONMENT ON THE GEOMETRIC 

CHARACTERISTICS OF C L A Y LAYERS. 

3.2.1 BRAIDED STREAM 



Braided streams occur in high energy environments where there is an abundant supply of coarse grained 

sediments (Walker, 1983). They also have easily erodible banks which allows the stream to laterally 

migrate. The Brahmaputra, for example laterally migrates up to 900 m per year (Selby, 1985). The 

result is that fine grained material generally washes through the system and any clay deposits formed are 

often eroded by the constantly changing river. Patches of shale are rare, elongate in shape and are often 

less than a meter is size (Potter et al. 1980). Leopold and Wolman (1957), cited by Wadman et al. (1979) 

found in a study of 17 braided and straight channel deposits that the average length to width ratio of shale 

layers was three. 

3.2.2 MEANDERING STREAM 

Meandering rivers form under lower energy environments than braided streams and generally carry 

smaller volumes of sediments, which are fined grained. The meander belt is generally 15 to 20 times the 

width of the channel (Le Blanc, 1977a). The Mississippi River meander belt is up tol5 to 20 miles wide. 

Shale in meandering streams predominantly occurs as accretionary flood plain deposits, as plugs in 

abandoned stream channels, or as clay drapes. 

Clay plugs are formed from clay being deposited in abandoned channels. The amount of clay deposited 

depends upon the rate at which the channel was abandoned. Rapidly abandoned channels are 

predominantly filled with clay, while slowly abandoned channels are composed of sand and silt as well. 

The size of the plugs are limited to the size of the stream channel (Richardson et ai., 1978). The plugs 

are generally resistant to erosion by the meandering stream. 

Flood plain deposits are formed during flood periods when the river overflows its banks. The flood plain 

deposits are areally extensive, but are subjected to erosion by the meandering river. Consequently, flood 

plain shales are preserved in elongated isolated bodies that range in size from 400 to 16(X) m wide and 

1600 to 3200 m long. Studies of ancient flood plain deposits indicate that shales make up from five to 



15% of the flood plain on an areal basis (Richardson et al., 1978). Potter et al. (1980) report diat flood 

plain shales can extend up to tens of km parallel to shoreline and can be up to ten or more meters thick. 

Some flood plain deposits in back-swamps and flood basins are not on the meander belt, and will not be 

eroded by the migrating river (Le Blanc, 1977a). 

Drapes are formed when clay is deposited on point bars at the ebb of a flood when die sd-eam velocity is 

almost zero (Le Blanc, 1977a). Drapes are generally small in size compared to either flood plain or 

abandoned channel clays with their size ranging from that of local depressions to entire point bars. Clay 

drapes generally range from one mm to more than 30 to 60 mm in diickness and are more common in the 

upper half of the point bar sequence (Le Blanc, 1977a). 

3.2.3 DELTAIC 

There are many types of deltas depending upon the energy of the environment, sediment source and 

supply. For simplicity, the discussion here will be limited to the two extreme types of deltas. These are 

(a) high energy sand deltas and (b) low energy mud deltas. High energy sand deltas are characterized by 

a few active meandering, disd-ibutary channels. Low energy mud deltas are characterized by many 

bifurcating distributary channels which tend to be straight, and not meander as much. There are a vast 

number of different types of deltas in between the two extremes. 

Al l deltas can be divided into a number of subenvironments consisting of distributary channels, delta 

flood plains, the delta front and the prodelta. Delta flood plains commonly contain dozens of abandoned 

distiibutary channels and have only a few active channels (Le Blanc, 1977a). Just as in the meandering 

stream environment, die abandoned channels are fdled with sediments. Quickly abandoned channels are 

predominandy filled widi clay whUe slowly abandoned channels are filled widi more silt and sand. Delta 

flood plain deposits are formed in the same manner as meandering river flood plain deposits. 



The size of a distributary channel, and hence its associated deposits is dependent upon several factors 

including: the delta size, type of bed material being eroded, and the position of the channel in the delta. 

For example distributary channels in the Mississippi near the sea are typically less than 200 m wide and 

10 m deep, while the upstream channels are up to 1000 m wide and 60 m deep (Sneider et al., 1978). 

In high energy sand deltas, fines are winnowed away from the delta fi'ont deposits. Consequently, only 

very discontinuous shale layers are deposited. Shale layers are more common at the bottom of 

distributary mouth bars. In low energy deltas, shale layers have a much greater continuity. In 

distributary mouth bars, 2 cm thick clay beds extend over hundreds of meters, particularly in the lower 

half of the bar deposits (Sneider et al., 1978). The prodelta shales can be very continuous, having 

dimensions similar to that of marine shales (Richardson et al., 1978). Shallow deltaic clays can be 

gready affected by bioturbation, gas production, and growth faults. Bioturbation is important because it 

can greatly increase the hydraulic conductivity of a clay. 

3.2.4 ESTUARINE 

Estuaries occur where a river mouth is affected by tidal action. Tidal channels meander between 

mudflats and channel bars of mud and sand. The difference between deltas and estuaries is that deltas 

have a large of amount of sediments being deposited in the river mouth. In estuaries, tidal currents and 

river discharge keep the river channels open (Selby, 1985). However, similar depositional features are 

associated with both estuaries and deltas. For example, barrier bars, lagoons and coastal swamps can be 

found in both types of environments. 

The nature of the clay deposits is dependent upon the forces affecting them. For example, in esmaries 

with low wave energy, mud banks can occur with areal dimensions which are up to lOO's to 10(X)'s of 

meters squared. In estuaries with high wave energy, clay mosdy occurs in small to medium sized patches 



which are a few meters thiclc. In tidally dominated estuaries, drapes can occur on point bars and on 

sheets parallel to die channel (Potter et ai, 1980). Estuarine clays can be gready affected by bioturbadon. 

3.2.5 SUBMARIISfEFAN 

The classical depositional process of the submarine fan is the turbidity current. Submarine fans 

predominandy occur on delta fronts, continental shelves and deeper ocean basins. Turbidite layers tend 

to be laterally extensive covering hundreds of meters and with litde variation in thickness (Walker, 

1983). 

Shales are predominandy deposited in the lower portion of submarine fans and can cover large areal 

extents. However, shales of smaller size can be deposited in the proximal portions of the fan. Hazue et 

al. (1988), in a study of a submarine fan found that the average lengdi of non-correlative shales was 

approximately 500 m in distal portions of the fan and 200 m in proximal portions. Shale layers often 

occur in thin layers interl)edded with sandstone and silt. Shales layers can be eroded in cases of increased 

sediments supply because fan channels may cut down into lower fan sediments (WaUcer, 1983), incising 

die clay layers. 

3.2.6 MARINE 

Deep marine shales have large areal extents with thin (0.3 m) shale layers commonly covering two to five 

square kilometers. Thicker shales are commonly continuous for a hundred km (Richardson et al., 1978). 

Shallow marine clays are very susceptible to bioturbadon. 

3.2.7 GLACIAL 



There are two main types of deposits associated with glaciation: tills which are deposited directly by the 

ice, and sediments deposited by meltwater. Deposits of glaciolacustrine clay form some of the most 

extensive shallow aquitards in North America (Freeze and Cherry, 1979). Clay deposited by meltwater 

streams will be similar in character to those deposited by fluvial processes and therefore will not be 

discussed here. 

Tills are generally composed of clay sized particles and are hydrologically important because they often 

form aquitards. The hydraulic conductivity of dense, fine grained unfractured glacial till, typically 

ranges from 10'^° to 10"̂ ^ m/s. 

Glacial tills form a major portion of near-surface aquitards in Canada and the northern U.S.A. because 

the last period of glaciation covered most of northern North America only 8 000 to 14 000 years ago 

(Press and Siever, 1974). Not enough geologic time has occurred for other surface deposits to form. 

Till can be formed by both alpine and continental glaciation. However, till deposits from alpine 

glaciation will not be discussed here because they comprise a small percentage of the till relative to those 

formed in continental glaciation in North America. Only the two most significant types will be 

discussed: supraglacial and subglacial till. Supraglacial till is carried on top of the glacier. Subglacial, 

or basal, till is laid down at the bottom of the glacier. 

The subglacial till forms a ground moraine that can be several meters thick. Massive basal till is the most 

widespread Pleistocene facies on land (Reading, 1983). Supraglacial till forms an ablation moraine. It 

forms on the sloping snout of the glacier and is left behind as the glacier recedes. 

Sheets of ablation and basal till can be continuous over extensive areas. For example, in Southern 

Ontario till sheets are continuous over tens of kilometers. Till units are generally thicker near the source 

rock and thinner towards the outer margins of the glacier. However, the thickness of till sheets is also 



controlled by the relief. The till is diicker in hollows and thinner or absent in topographic highs. The 

erodibility of the substi-ata is a major factor in controlling till thickness. Even though extensive deposits 

of massive till occur, they often contain isolated bodies of coarse, stratified sediments deposited by 

englacial and subglacial streams. In general, die stratigraphy of glacial deposits tends to he very 

complex. 

The composition of till can be heavily dependent upon its source. For example, glaciers that cross over 

old lakes pick up fine grained lacustrine sediments and leave a clayey till. In general, when the source 

rocks are sedimentary, till is predominandy clay sized. When the source rocks are granite, or other 

crystalline rocks, till is more sandy or silty. Tills formed from crystalhne source rocks are less likely to 

form aquitards. 

3.3 QUANTITATIVE DESCRIPTION OF SHALE HETEROGENEITY 

Most of die work in quantifying the relationship between shale/clay layer heterogeneity and depositional 

environments is recent and is restricted to die field of peti-oleum geology. Zeito (1965), noted the 

dimensions of shales in different types of environments. Weber (1982) extended diis work. He presented 

the cumulative probability distribution of the lengdis of shale layers formed in marine, delta barrier, delta 

fringe, delta plain, distiibutary channel, and coarse point bars environments (Fig. 3-1). Haldorsen (1989) 

and Hazeu et al. (1988) present similar cumulative probability distributions for shale layers formed in 

submarine fans. Geehan et al. (1986) also presents similar curves for shales formed in flood plains, 

abandoned channels, and as drapes on point bars. 

Haldorsen and Lake (1984, p. 449) note that "No universal validity is claimed for die findings of Zeito, 

but there appears to be significant confidence in some of the data." The important point to note is that 

there is a distinct difference between the different cumulative distributions. 



However, there is uncertainty in the exact probability distribution for a particular environment for two 

reasons. The first is the cumulative probability distributions are estimated from a limited number of 

measurements. The second reason, as pointed out by Haldorsen (1989), is that the dimensions measured 

in outcrop of shale layers, as reported by Weber (1982), are not the true length of the shale, but a cross 

section through the shale layer at some unknown angle. 

Little work has been done in quantifying the spatial distribution and correlation of shale/clay layers 

formed in different sedimentary environments. Zeito (1965) found in a study of outcrops that the centers 

of shale layers were randomly distributed. 

Inconclusive work has been done on relating the length of a shale layer to its thickness. Delhomme and 

Giannesini (1979), cited by Haldorsen and Chang (1986), concluded that in the deltaic system that they 

studied, the thickness of shale layers was only related to local topography that prevailed at the time of 

deposition and was independent of shale length. However, Wu et al. (1973) found an approximate 

relationship between the thickness of different layers and thek lengths in Mississippi alluvial deposits. 

Kossack (1989), in the most comprehensive study, reported that there were only six publications with 

enough layer length and thickness data to permit analysis. His results are inconclusive. 

Some work has been done on quantifying the geostatistical nature of clay/shale layers. However, this 

work will be presented in Chapter 4, after geostatistical concepts have been introduced. 

3.4 THE IMPORTANCE OF GEOLOGY IN PREDICTING AQUITARD CONTINUITY 



A conceptual understanding of the local geology can be the most critical factor in predicting aquitard 

continuity in clastic depositional environments. This will be particularly true when diere is a shortage of 

measurements of the aquitard, which will be the norm in most hydrogeological design situations. This is 

0 100 200 300 400 500 600 
L E N G T H DF S H A L E L A Y E R Cn> 

Figure 3-1: Cumulative probability distribution of shale lengdi in different depositional environments, 
(modified from Weber (1982)) 

clearly demonsti-ated in an interesting study of shale continuity in the Ivishak peti-oleum reservoir at 

Prudhoe Bay by Geehan et al. (1986). The Ivishak Formation is a combination of sandstones, 

conglomerates, and shales deposited in a largely progradational, fluvial/deltaic complex. The continuity 

of shales in one chronostratigraphic horizon was studied. The thickness of intersected shales was first 

contoured without any geological input (Fig. 3-2). This results in a maximum continuity case. (Note, for 

example the three data points at X , Y, and Z.) 

However, a very different picmre is obtained once die data are contoured to geologically conform to the 

genetic type of shale (Fig. 3-3). The reason for this change can be seen by examining the shale at X , Y, 

and Z. The shale at these points was assumed to be continuous in Figure 3-2. However, the shale at 

points X , Y , and Z represent drape, abandoned channel, and flood plain facies respectively and dierefore 



cannot be one continuous unit. The flood plain shale will have a large lateral condnuity, but the 

abandoned channel and drape shales will have a lateral continuity on the order of lO's of meters. Hence, 

even diough the three shale units are present in three adjacent wells, are chronostradgraphically 

equivalent, and are of the same approximate thickness, diey do not correlate. Consequendy, the addition 

of geological information has fundamentally altered the picture of shale continuity. 

The importance of using geological information is shown by the stî ong relationship which exists between 

patterns of clay heterogeneity and depositional environment. Even if the relationship is not well 

quantified, it could be vital to include because the range of characteristics is immense. For example, a 

clay layer formed in a braided stream environment would be expected to have a continuity on the order of 

meters while a clay layer formed in a deep marine environment would be expected to have a continuity 

on the order of kilometers. Therefore, simply knowing the depositional environment that formed an 

aquitard can provide crucial information in predicting aquitard continuity. 

Geological information will be most useful when it can be combined with existing quantitative 

information. The Bayesian methodology for carrying out this combination is developed in Chapter 4 and 

is carried out for the Savannah River Site case history in Chapter 8. 

However, it must be noted that combining geological understanding with quantitative data can be limited 

at present. Not enough work has been done in estabUshing the necessary quantitative relationships 

between environment of deposition and patterns of shale/clay layer heterogeneity. But, these 

relationships will become better established in the future as more research is carried out. 
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Figure 3-2: Prediction of shale continuity in the Ivishak Formation without geological information, 
(modified from Geehan et al. (1986)) 



Figure 3-3: Prediction of sliale condnuity in die Ivisiiak Formation widi geological information, 
(modified from Geehan et al. (1986)) 



CHAPTER 4: SEQUENTIAL INDICATOR SIMULATIONS OF AQUITARDS 

4.1 INTRODUCTION 

This chapter describes how aquitards are numerically generated using the sequential indicator simulation 

(SIS) algorithm. The SIS algorithm is powerful because it not only accounts for the spatial correlation 

of a random variable of interest, but provides a means of incorporating measurements that have a wide 

range of reliability. Incorporating measurements with a wide range of reliabihty is vital in 

hydrogeological design because precise (hard) data is usually scarce and expensive while cheaper, 

imprecise measurements are often more readily available. 

Some general geostatistical concepts will be presented in Section 4.2. This will be followed by a 

discussion of indicator kriging, the mathematical basis of SIS (Section 4.3), and how the SIS algorithm 

works (Section 4.4). Section 4.5 will present non-Bayesian and Bayesian methods of inference of the 

geostatistical parameters used by the SIS algorithm. The Bayesian method will be used as much as 

possible in this thesis; however, the non-Bayesian method will also be used in some cases for practical 

reasons. Bayesian inference is the key to incorporating geological understanding into the SIS algorithm. 

Limitations of the SIS algorithm are then discussed in Section 4.6. Finally, alternative simulation 

algorithms will be covered (Section 4.7) and the geostatistical nature of clay layers will be reviewed 

(Section 4.8). 

4.2 BASIC GEOSTATISTICAL CONCEPTS 

Only the basic geostatistical concepts that are necessary for understanding this thesis will be covered 

here. For a more detailed presentation refer to de Marsily (1984), Clark (1979), or Joumel and 



Huijbregts (1978). Geostatistics is analogous to classical statistics. A realization, or data set, z (denoted 

by a lower case letter) is used to infer statistical parameters governing a random variable, Z, (denoted by 

a capital letter) from which z was drawn. However, in geostatistics the random variable is a regional 

variable, Z(x), with spatial correlation. From now on, unless otherwise stated, all random variables are 

assumed to be regionalized variables. 

Only statistical parameters based on the first two moments of Z(x) are of interest here: the mean, ^ i ^ , 

the variance, cs^, and the covariance function, Cov(h). In all practical situations, there wUl never be 

enough available data to estimate parameters based on higher order moments. The covariance function 

quantifies the spatial correlation of Z(x). It is similar in nature to the variogram, a term more familiar 

to many practitioners of geostatistics. The variogram will be discussed in more detail later in diis 

section. However, this diesis will utilize the covariance function rather dian the variogram. 

The covariance between Z at two points X j and X2 is defined by: 

where Xj and X2 represent locations in two dimensional space and E denotes the expected value. The 

covariance between two coincident points is die variance: 

Cov(Z(xi),Z(x2)) = E[(Z(xi) - Mz(,,))(Z(x2) - Mz(x,))] (4.1) 

Cov(Z(xi),Z(xi)) = E[(Z(xi)-Mz(,_))(Z(xi)-Hz(,^))] (4.2) 

= Var(Z(xi)) 

Geostatistics is based on two fundamental assumptions: ergodicity and stationarity. Ergodicity says that 

die actual realization, z, has the same statistical properties, or probability density function, as the 

ensemble of possible realizations generated by die random process Z(x). This is analogous to the 



assumption in classical statistics that the sample is representative of the population from which it was 

drawn. The assumption of ergodicity is necessary for the inference of the geostatistical parameters 

governing Z(x) to be made because it allows one to trade spatial averages for ensemble averages. 

The assumption of stationarity greatly simpUfies the statistical properties of Z(x) allowing tractable 

estimations of Z(x) to be made. Z(x) is stationary if, for a finite number of points n and any separation 

distance h, the joint distribution of Z(xj), Z(x2) , . . . , Z(Xn) is the same as the joint distribution of Z(xj + 

h), Z(x2 + h) Z(Xj, + h) (Meyers, 1989). This means that all of the moments of Z(x) are 

independent of spatial location, x. This assumption is too strong to be useful in practical situations; 

therefore, a weaker assumption of second order stationarity is often made. In second order stationarity, 

only the first two moments are stationary. Therefore, the mean and the covariance of Z(x) are 

independent of x. Second order stationarity will be assumed in this thesis. 

If the spatial correlation is isotropic, then the covariance of Z(x) at two points is only dependent upon 

the separation distance, h, and not on the direction of the separation. Equation (4.1) then becomes: 

Therefore, for simplicity Cov(Z(x),Z(x - h)) will be referred to as Cov(h). Cov(h) is usually assumed to 

follow a well defined analytical function, such as the exponential, spherical or Gaussian functions. 

The exponential covariance function has the form: 

Cov(Z(x),Z(x - h)) = E[(Z(x) - M^(Z(x - h) - M ^ ) ] (4.3) 

Cov(h) = az2exp(-hA) (4.4) 

while the Gaussian covariance function has the form: 



Cov(h) = az2exp(-(hA)2) (4.5) 

where o-^ is the variance of Z(x) and X is the correlation length. The correlation length is a measure of 

the strength of the spatial correlation. It represents the distance at which the covariance function drops 

to a value of Cov(0)*e"*. The spherical model has die form 

Cov(h) = C T z 2 ( l - | ^ + ^ ) h<a (4.6) 

= 0 h>a 

where a is the range. The range is another common term used to express the strength of the spatial 

correlation. It differs from the correlation length in that it represents the separation distance, h, at which 

the correlation becomes zero. Therefore, an exponential or Gaussian covariance function with X=10 m 

has a stronger correlation than a spherical covariance function with a = 10 m. Example spherical, 

Gaussian and exponential covariance functions with X and a =10 m are shown in Figure 4-1. 

h (m) 

Figure 4-1: Plot of die exponential, spherical and Gaussian covariance functions, for o-^ = 1, A, = 10 m 
and a = 10 m. 



The assumption of isotropy of Cov(h) may be poor in many real geological situations because 

correlation is often dependent upon direction. For example, the spatial correlation in an aquitard is 

generally higher parallel to bedding than perpendicular to bedding. Unless stated otherwise, it will be 

assumed that the spatial correlation of an aquitard is isotropic in the horizontal plane. 

A weaker form of stationarity than second order stationarity is the intrinsic hypothesis. It assumes that 

the variance of the first increment is finite and weakly stationary. This concept is utilized with the 

variogram, 7(h), which is defined by: 

Consequently, 7(h) is only dependent upon the squared differences of Z(x) and not on (J^. Under 

conditions of second order stationarity, the Cov(h) and 7(h) are related by: 

An important concept in geostatistics is the volume-variance relationship. The variance and covariance 

of Z depend upon the volume, or scale, of the measurement of Z(x). The covariance functions shown in 

Fig 4-1 are for the point scale. As the volume increases, and Cov(h) will decrease, until the 

extreme where the volume represents the entire domain of interest and both (s^ and Cov(h) are zero. 

Normally the volume variance relationship poses problems in estimating the geostatistical parameters of 

Z(x). The volume variance relationship will be ignored in this thesis for reasons that are explained in 

Section 4.5. 

7(h) = 0.5E[(Z(x+h)-Z(x))2] (4.7) 

Cov(h) = Cov(O) - 7(h) (4.8) 

4.3 INDICATOR KRIGING (}K.) 



This section will introduce indicator kriging (IK). It begins with a discussion of indicator random 

variables, the different types of data, and the estimation of geostatistical parameters. The problem of 

estimating the occurrence of the aquitard at a point x, wdl then be discussed. There are several 

geostatistical methods for tackling this problem, depending upon the stiictness of the statistical 

assumptions made. Only two methods will be covered here: simple and ordinary indicator kriging. For 

a more detailed description of indicator geostatistics, refer to Joumel (1989), Alabert (1987), or Joumel 

(1983). 

4.3.1 INDICATOR RANDOM VARIABLE 

In IK, it is not the specific value of a random variable Z diat is of interest, but whether Z falls into a 

particular class or not. The indicator random variable I(x) is defined as: 

i(x,z) =lifz(x)<z^ (4.9) 

= 0 if z(x) > Zj. 

where ẑ , is some critical cutoff. I(x) has a mean jij and variance a^. The mean represents the expected 

value of I(x) at a point x. Therefore, 

= E[I(x)] = P(z(x) < z,)(l) + P(z(x) > zJ(0) (4.10) 

= P(z(x)<z,) 

In odier words, iXj represents die expected probability diat z(x) at some point x is less dian die critical 

value z^. Since it has only two possible states (0 or I) it is a binary, random variable with variance, cs^, 

equal to: 



CT,2 = n i ( l - HI) (4.11) 

Hence, the exponential covariance function will have the form: 

Cov( h) = Hi(l - (4.12) 

The concept of the indicator random variable fits exactiy with our interest in aquitard continuity. Is the 

aquitard present or not? If Z(x) represents the thickness of the aquitard at point x then: 

where the inequality in equation (4.9) has been changed to an equality since negative thicknesses are 

impossible. 

In the above case, there are only two classes; however, there can be any number of classes in indicator 

kriging. Hence, it is possible to handle a variety of different types of heterogeneities, such as a sand, 

silt, clay sequence. The only drawback is that computational requirements dramatically increase with 

the number of class intervals handled. 

4.3.2 TYPES OF DATA 

i(x,z) = 1 if z(x) =0 (i.e. aquitard is not present) (4.13) 

= 0 if z(x) > 0 (i.e. aquitard is present) 

There are two main classes of data in indicator kriging: hard and soft data. Hard data represent 

measurements which have a negligible uncertainty. For hard data, the presence, or absence, of the 

aquitard will be known with certainty and I(x) will have a value of either 1 or 0. An example of a hard 



measurement would be a borehole which was cored in its entirety, with a distinct aquitard that could be 

easily recognized. In this thesis, a hard random variable is referred to as I(x) and a hard datum as i(x). 

Soft data represent measurements which have uncertainty. Geophysical surveys, or a borehole that was 

incompletely cored could represent soft measurements. In this thesis a soft random variable is referred 

to as Ij,(x) and a soft datum as i^(x). Alabert (1987) defined three types of soft data: types (a), (b), and 

(c). For a more detailed description, refer to Alabert (1987). 

Type (a) soft data represents a single valued measurement z^(x) which is only an estimate of the tine 

value z(x). Therefore, a type (a) soft measurement will have a value of either is(x)=0 or is(x)=l. 

However, it is of questionable reliability. The reliabiUty of type (a) data is quantified by two 

probabilities Pi(x) and p2(x) defined as 

Pl(x) = P(Z,(x) = OIZ(x) = 0) or P(I,(x) = lll(x) = 1) 

P2(x) = P(Z/x) = OIZ(x) > 0) or P(I,(x) = lll(x) = 0) 

Pi(x) is the probability diat a window will be sampled given diat one exists. This represents die 

confidence that the soft measurement is correct. P2(x) is the probability diat a window will be sampled, 

given that one does not exist. This represents die chance of the measurement being incorrect. The error 

in die soft data is assumed to be independent of spatial location; dierefore, pj(x) and P2(x) will simply 

be referred to as pj and P2. Alabert (1987) discusses how these probabilities can be estimated using 

calibration samples. Calibration samples are samples which have been sampled by both "hard" and 

"soft" techniques. They allow die soft data to be direcdy compared to die hard data. 



Type (b) soft data represents an interval (Zj^j„(x), Z^^^(\)) over which the true value is known to be 

bound. In type (c) soft data, the true value of Z(x) is assumed to follow a probability distribution. Only 

type (a) soft data will be used in this thesis; therefore, types (b) and (c) will not be discussed further. 

4.3.3 SIMPLE INDICATOR KRIGING (SIK) WITH HARD DATA 

In SIK, I(XQ) is estimated at point x^ by the following linear combination of the Uj, hard data points: 

where i(x„)* is the estimate of l(xj. It is an unbiased estimator. The weights, aj, j=l,..,n, in equation 

(4.14) are calculated by solving the following system of equations: 

where Cjĵ  is a covariance coefficient, representing Cov(I(Xj),I(xjj)). C ĵj. represents the covariance 

between data point x,;̂  and the estimation point x^. The development of the system of equations (4.15) is 

given in Joumel (1989) and will not be repeated here. They are developed as an optimization problem 

by minimizing the variance, Var(i(xQ)* - i(xQ)Y), between iix^)* and the true value, Kx^W-

"h 
i(Xo)* = III + X aj(i(Xj) - HI) 

j=i 
(4.14) 

"h 

X ^j^jk ~ ^ o k ' • • •> n 
j=l 

(4.15) 

Var(i(x„)* - i(x„)T) = X I (-aj)(-ak)Cjk (4.16) 
j=0 k=0 

where ao = -1 and Cj,j = Cov(I(Xj),I(x^)). 



After some simplification of equation (4.16) Var(i(xQ)* - i(xQ)j) can be calculated by: 

Var(i(x„)* - i(x„)T) = - i â Coj (4.17) 
j=i 

From equations (4.14) and (4.15) i ( X o ) * , is dependent upon knowledge of fij and Cov(h). SIK also 

requires second order stationarity. If no data points exist, then i(Xj,)* = Hj. 

4.3.4 ORDINARY INDICATOR KRIGING (OIK) WITH HARD DATA 

In OIK, I(x ,̂), is estimated by the following linear combination of the n^ data points: 

"h 

i ( X o ) * = S aji(Xj) (4.18) 
j=i 

The weights aj j = l , n ^ , are calculated by solving die following system of equations: 

"h 

S HjCjk + Ti = C„k, k= l , . . . , n (4.19) 
j=l 
"h 

I a j = l (4.20) 
j=i 

where TI is a Lagrange multiplier. These equations are derived similarly to die SIK equations by 

calculating die weights aj such diat die variance of die estimate, Var(i(xQ)* - is a minimum, widi 

the constiaint that die estimate is unbiased. For a more detailed development of the OIK equations, 

refer to Joumel (1989) or Joumel and Huijbreghts (1978). 



The statistical assumptions necessary to apply OIK are more relaxed than those needed to apply SIK. 

As noted in the above three equations, only the covariance function is assumed known. In addition, OIK 

does not require second order stationarity. OIK can be carried out under the intrinsic hypothesis using 

the variogram. 

4.3.5 COMPARISON OF OIK AND SIK 

The difference between estimates based on SIK and OIK are illustrated in Figure 4-2. The probability 

of a hole existing at fifteen points (xj, Xj, X3 ... X15) spaced ten meters apart along a one dimensional 

line has been estimated by both SIK and OIK. Two hard measurements exist: i(x3)=l and i(xg)=0. For 

SIK, it has been assumed that lij is equal to the sample average, mi=0.5. Therefore, 

An exponential covariance function with = 5 m has been assumed for both OIK and SIK. Therefore, 

Note that both OIK and SIK give the same estimates. This is because Hj was assumed to be equal to mj. 

Note that at the measurement points, the measured datum is reproduced. However, as estimation 

locations get further from the measured data points, i*(x) approaches HJ in the case of SIK and mj in the 

case of OIK. 

= (0.5)(1 - 0.5) (4.21) 

= 0.25 

Cov(h) = 0.25e-5/h (4.22) 



X (m) 

Figure 4-2: Plot of i*(x) on 1-d line by bodi OIK and SIK. 

The variance of the esdmates, Vai(i(Xg)* - i(Xo)j), by both SIK and OIK are zero at the data points (Fig. 

4-3). However, at esdmadon points away from data points, die variance of esdmates by SIK are lower 

than those by OIK. There is more certainty in i*(x) by SIK because of the more rigid statistical 

assumptions necessary to carry out SIK. Recall diat in SIK, |ij is assumed known while in OIK it is not. 

Knowing jXj provides an exti-a consti-aint on i*(x), reducing die variance or increasing die certainty. 

4.3.6 EXTENSION OF SIMPLE INDICATOR KRIGING TO HANDLE TYPE (a) SOFT DATA 

There are now soft data available in addition to the n^^ hard data. The indicator value, i*(Xo) at some 

point X Q is estimated by co-kriging the soft and hard data through the following system of equations: 

where. 

" h "s 

i * ( X o ) = ILti + S aj(i(Xj) - t̂I) + I bk(is(Xk) - Hĵ ) 
j=i k=i 

(4.23) 
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Figure 4-3: Variance of i*(x) from SIK and OIK. 

- Hi is the average of the hard data, and 

- H-i is the average of the soft data. 

The co-kriging weights are calculated by solving the following system of equations: 

" h "s 

X ajCovi(x,-Xj)-H X bkCovii^(X|-Xk) = Covj(Xo-X|) l=l,...,nh 
j=l k=l ^ 

" h 

I ajCovii^(x„-Xj) + X bkCovj^(x„-Xk) = Cov,(x„-x„) m=l,...,n, 
j=l k=i 

(4.24) 

where 

- Covj(xj-Xj) represents the covariance between two hard datum, one at point Xj and the other at 

point Xj. 



- Covjj (x,-x̂ )̂ represents the covariance t»etween a soft datum at point X | and a hard datum at 

point x^, or vice versa. 

- Covj (Xn,-x^) represents the covariance between two soft data, one at point x^ and the other 

pointât x^. 

The covariances, Covjj (xj-Xĵ )̂ and Covj (x^-x^) are calculated from Covj(x,-Xj) using the probabilities 

Pj, and pj. These calculations are discussed in Secdon 4.5. For a more detailed development of 

equation (4.24), refer to Alabert (1987). A number of different sources of soft data could be 

incorporated into the above system of equations. However, the probabilities pj and P2 would have to be 

known for each source of information. 

The indicator kriging technique used here for soft data is a Taylor-series type linear approximation of 

Bayes' equation (Alabert, 1987). For the case of one soft datum and no hard data, it is equivalent to 

Bayesian updating. However, for greater than one soft datum, soft data points are not reproduced 

exacdy. Consequendy, the conditioning of a soft datum may not be as sttong as it should be. Al l hard 

data points will be reproduced exacdy. 

4.4 SEQUEISfTIAL INDICATOR SIMULATION ALœRITHM (SIS) 

The SIS algoridim is a simple mediod of numerically generating patterns of the indicator random 

variable in one, two or diree dimensions. Only one and two dimensional patterns will be generated here. 

A one dimensional pattern will represent a two dimensional vertical cross section through an aquitard. 

A two dimensional pattern will represent a map view of an aquitard, for use in three dimensional 

hydrogeological representations. 



The methodology will be illustrated with the generation of a one dimensional pattern of an aquitard. 

The stratigraphie horizon representing the possible aquitard is first divided into a series of equal sized 

blocks (Fig 4-4). The selection of the block size will be discussed in Chapter 6. 
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Figure 4-4: One dimensional stratigraphie section divided into blocks 

The SIS algorithm is then carried out in the following steps: 

Step 1: A random generation path is chosen through all of the blocks. This has been done in this thesis 

using the following congruential generator (Bratiey et al., 1987): 

Bj = (5 X Bj.i + l)mod2" (4.25) 

where Bj is the j ' * block along the path. Any block can be the starting point of the path. Each 

integer between 1 and 2" will be generated once. Therefore, n is chosen to be as small as 

possible, while maintaining 2" greater than the total number of blocks. Integers greater than 

the number of blocks are discarded. A random path ensures that generated realizations have a 

maximum degree of disorder. 

Step 2: An estimate, i(Bj)* is kriged at block j , the first block in the path along the aquitard. 

Step 3: A random number, p, is generated between 0 and 1 using a uniform random number generator. 



Step 4: The random number, p, is transformed into an indicator value by die following criteria: 

if p > i(Bj)* , then i(Bj) = 0 and the block represents aquitard, or 

if p < i(Bj)*, dien i(Bj) = 1 and die block represent a window. 

Step 5: The indicator value, i(Bj), is dien added to die data set where it is used to condition the 

generation of die next block in the path. 

Step 6: Return to step 2 until aquitard or a discontinuity has been generated at all aquitard blocks. 

In step two, either SIK or OIK can be used; however, the framework developed in this thesis utilizes 

SIK. While SIK is more restrictive to apply than OIK because it requires an estimate of Hj and Cov(h), 

using bodi parameters is a distinct advantage. Utilizing die mean in addition to die covariance function 

allows greater power in manipulating the characteristics of the numerically generated aquitards. 

Through Bayesian updating, the mean can incorporate one's conceptual understanding of the geology. 

Hence, the generated aquitards can be forced to conform more with one's understanding of the geology 

in SIK dian in OIK. 

Using SIK can be of fundamental importance, particularly widi sparse data sets. This will be illusti-ated 

with the following example. As discussed in section 4.3.2, kriged estimates range between the sample 

average, or mean, and the measured data values. If no holes are measured, which is likely in the advent 

of a sparse data set, the indicator value at all data points will be zero and the average indicator value 

will be zero. Hence, in OIK diere will be a zero chance of a discontinuity everywhere. This is clearly 

unacceptable because an aquitard formed in any depositional environment, wdl always have a chance of 

having a discontinuity. In SIK, |ij can be assumed to have a value greater than zero, forcing a finite 

chance of a discontinuity. 



As data sets increase in size, the difference between SIK and OIK decreases. 

4.5 INFERENCE OF GEOSTATISTICAL PARAMETERS 

The geostatistical parameters can be estimated using either Bayesian updating or non-Bayesian 

approaches. In the non-Bayesian approach, only sampled data are used to estimate the parameters. In 

Bayesian updating, one's conceptual understanding of geology can be included in the inference. 

However, as will be explained below, the Bayesian approach can only be practically used for estimating 

the mean. The correlation length will have to be estimated using non-Bayesian methods. Both of the 

methods of inference will now be discussed below. 

4.5.1 NON-BAYESIAN INFERENCE 

4.5.1.1 Inference of the Mean and Variance 

The mean, fij, is the expected value of I(x). Therefore, 

lil =E[I(x)] (4.26) 

= (l)P(Z(x)=0) + (0)P(Z(x)>0) 

since for Z(x)=0,1(x)=l and for Z(x)>0, l(x)=0. The above relationship then simplifies to 

HI =P(Z(X)=0) (4.27) 

= F(0) 



where F(0) is the cumulative probability distribution of Z(x). Therefore, F(0) is used as an estimator of 

die mean. Hence, 

mj = F*(0) (4.28) 

where F*(0) is an estimate of F(0) and mj is an estimate of As a convention that will be used 

du-oughout diis thesis, unless odierwise stated an asterisk will be used to denote an estimate of a 

parameter or a random variable. An estimate of F(0) by hard and soft data will be referred to by Fi*(0) 

and Fj5*(0), respectively. Fj*(0) is calculated from n^ hard data by: 

F V 0 ) = I aji(Xj) (4.29) 
j=i 

where aj is a weight for i(Xj). 

If the data were independent random variables, then aj = However, the data are spatially correlated 

and is generally clustered about areas of special interest. These factors must be accounted for if mj is to 

be unbiased. One way of accounting for these two factors is cell declustering, which is a simple 

nonprobabilistic technique (Joumel, 1983). Cell declustering will calculate non equal weights aj in the 

above equation. Cell declustering is a very useful technique because knowledge of die correlation 

length is not needed. There are odier possible methods of estimating F(0) from spatially correlated data. 

For example, could be estimated over a block representing die entire domain of interest using 

ordinary kriging. Cell declustering has been chosen here because of its simplicity. 

Consider die case of n^ hard data located in some area D (Fig. 4-5) Declustering is carried out in die 

following steps: 



(1) Area D is overlaid with a regular grid of iij cells of size d. 

(2) The number of data Uj is counted in each cell dj. 

( 3 ) Each datum in cell dj is weighted by H J and then summed. 

( 4 ) The sum of data for each cell is then weighted equally. 

( 5 ) F* j (0 ) is then calculated by: 

FVO) = ̂ I I ^ i ( x , ) 
^=1 kj=l i 

( 4 . 3 0 ) 

where n^ is the number of cells that contain data points and Uj is the number of data points in cell j . 
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Figure 4 - 5 : An example of hard data which are declustered (modified from Joumel, 1 9 8 3 ) . 

A number of different cell sizes d should be tried. The d providing the lowest F* j (0 ) should be used 

(Fig. 4 - 6 ) . For very small d and very large d, F* j (0) simply represents an equal weighting of all data. 
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Figure 4-6: F*j(0) versus different cell size d (modified from Joumel, 1983) 

F*i (0) can be calculated in a similar manner from n̂  soft data. However, die lack of reliability of die 

soft data will bias F*j (0) relative to F*(0). The reliability is accounted for by the following relation: 

Fî (O) =P(Z/x) = 0) = E[l,(x)] 

= Ei[E[I,(x)II(x)]] 

= E[I,(x)II(x)]P(I(x)=l) + E[I,(x)II(x)]P(I(x)=0) 

= PlP(I(x)=l) + p2(l-P(I(x)=l)) 

= PlF(0) + P2(l-F(0)) 

(4.31) 

Therefore, die unbiased estimate of F*(0), based on soft data, is 

F*(0) = -
F*i /0)-p2 

P1-P2 
(4.32) 

F*(0) can be calculated from a combination of hard and soft data by: 



F*(0) = (ûF*i(0) + (1 - coy 
F*i /0)-p2 

(4.33) 
Pi -P2 

The relative weight, Cù, represents the relative number of hard and soft data and the quality of the soft 

data. Alabert (1987) suggests that when the number of soft data is large, and pj and pj are correctly 

estimated, o) = nj(n^ + n )̂. If the estimates of p, and pj are unreliable, or the number of soft data is 

small, then co should be increased. 

4.5.1.2 Inference of Cov(h) 

Recall that the covariance function, defined by: 

is dependent upon [ij. Under conditions of second order stationarity and ergodicity, the covariance 

function can be estimated from the variogram, which is estimated without knowledge of |J.j, using 

equation (4.7). However, Isaaks and Srivastava (1987), quoted by Alabert (1987) report that it is better 

to estimate a covariance function directly from data, rather than deriving it indirectly from a variogram. 

Therefore, HJ will have to be estimated first by some method which accounts for the spatial correlation 

when it is not known, such as cell declustering. The estimate of Cov(h) from hard data alone will be 

referred to as Cov*j(h). A number of classes of separation distance,dj, between measurement points are 

defined. For example. 

Cov(I(x),I(x - h)) = E[(I(x) - Hi)(I(x - h) - HI)] (4.34) 

di = 0- l(X)m 

dj = 100 - 200 m 



dj = 200 - 300 m. 

For each class, die total number of pairs of points, H J , whose separation distance falls within that class, 

and their average separation distance, ĥ .̂  are calculated. Then for each class the average covariance 

between all pairs of points H J is calculated by: 

"J "j 
Cov(h,.) =11 [i(x^) - mi)(i(x„ ) - m,)] (4.35) 

m=ln=m 

The Cov(h3.) is dien plotted versus h^.. An analytical function representing Cov*j(h), such as the 
J J 

exponential function, is then fitted to the plotted points. 

Soft data can be used to improve Cov*j(h). This involves the soft-hard indicator cross covariance and 

the soft indicator covariance. The soft-hard indicator cross covariance, Cov*,, (h) is estimated with the 

same procedure as Cov*i(h). Covu^(h) is related to Cov(h) by: 

Covji (h) 
Cov(h)= 1 (4.36) 

Pi -P2 

This relation is only valid if the number of soft data is large. It is developed in more detail in Alabert 

(1987). It is based upon the following assumptions: 

(1) I(x), Ij(x), pj, and P2 are stationary 

(2) P(Z(xi) = 0IZ(X2) = 0, Z ,(X2) = 0) = P(Z(x) = 0IZ(X2) = 0) and 

P(Z(xi) = 0IZ(X2) > 0, Z ,(X2) = 0) = P(Z(x) = 0IZ(X2) > 0) 



Assumption (2) states that the information contained in a soft datum at point X2 Zj(x2), is negligible 

compared to the information in a hard datum taken at the same point, Z(x2). A combined estimate of 

Cov(h) could be: 

Cov*ii (h) 
Cov*(h) = coCov*i(h) + (1 - û ) ) - ^ — ^ (4.37) 

The weight, (o, should be chosen to account for bodi the number of hard and soft data and die quality of 

the soft data. 

The soft indicator covariance, Cov*j (h), is again calculated from the soft data using die same procedure 

as the hard data. Cov(h) is related to Covj (h) by: 

Covj (h) 
Cov(h) = ; ^ (4.38) 

(Pl -P2) 

This relationship is developed in detail in Alabert (1987) and is based on the previous two assumptions 

plus the following additional assumptions: 

(3) P(Z,(x) = OlZ(y) = 0, Z,(y) = 0) = P(Z(x) = OlZ(y) = 0) and 

P(Z,(x) = OIZ(y) > 0, Z3(y) = 0) = P(Z(x) = OlZ(y) > 0) 

Assumption (3) states diat die information contained in Zfy) is negligible compared to Z(y). 

Assumption (3) is stionger than assumption (2) because it relates to the spatial correlation of the soft 

information. Assumption (3) would be invahd in die case of a stiong spatial correlation in the error 

Zj(x) - Z(x). For example, this could occur in die case of subjective guesses which are not made 

independendy of each other. 



A combined estimate of Cov(h) is 

Cov*„ (h) Cov*, (h) 
Cov*(h) = co,Cov*,(h) -H c o j - ^ ^ + C03 (4.39) 

The weights cOj are chosen to sum up to one. They represent the number of pairs used to estimate each 

of die covariances and the quality of the soft information. 

However, a fundamental problem arises in hydrogeology. While there may be enough data to 

quantitatively estimate tiiere will often not be enough data to quantitatively estimate Cov(h). Even, 

in cases where there is much data, the measurements are rarely spaced uniformly through the area of 

interest, but are usually clustered in particular locations. This problem could be tackled through a 

Bayesian approach where data is combined with geological intuition. For example, Cov(h) could be 

estimated by comparing the area of interest to similar areas where much data are available. 

Unfortunately, as will be explained in the next Section, the author is unaware of any straightforward 

Bayesian methodology for carrying this out. 

4.5.2 BAYESIAN INFERENCE 

Bayesian statistics is philosophically different from classical statistics. The basic approach is that an 

estimate of a geostatistical, or other parameter, is updated by Bayes' equation as new information 

becomes available. In this way, an estimate is continually improved as new information becomes 

available. The Bayesian approach is very powerful because it allows one to combine different types of 

data. A geological model built from a conceptual understanding of geology can be combined with 

measured data. With very large data sets, estimates of geostatistical parameters based on the classical 

and Bayesian methods approach each other. 



Utilizing one's conceptual understanding of geology is of great importance in many cases where there is 

a lack of measured data. Recall from Chapter 3, that there should be a quandtadve relationship between 

HI (and Cov(h)) and depositional environment. This relationship could be used to estimate Hj, or 

Cov(h), based on information from a geologically similar area where many data are available. 

However, as will be discussed in this section, only the mean will be updated here. 

The Bayesian updating equation is developed below. Much work has been done on the Bayesian 

updating of probability density functions of independent random variables. The updating of 

probabilities for independent random variables is discussed in Section 2.3. However, here we will deal 

with correlated random variables. Unfortunately, litde work has been done on updating probability 

distributions of multivariate, correlated random variables. Kitanidis (1986) presents a methodology for 

updating the probability density function of a multivariate Gaussian spatially correlated random process 

for three different cases of parameter uncertainty. 

In the first case, die variance and covariance function are fully known. Therefore, only the mean is 

updated. In the second case, the covariance function is known except for a multiplicative constant. For 

example, this case corresponds to an exponential covariance function (Cov(h)=CT^exp(-h/A,)) with known 

correlation length Xj. In the final case, only the form of the covariance function is known: the mean 

and all parameters in die covariance function are unknown. 

This diesis will utdize die methodology developed for die second case to update the mean of I(x), even 

though I(x) is a binary random variable rather than a Gaussian random variable. The methodology 

should be very applicable to updating die mean of I(x) because it can be developed using only the first 

two moments and ignoring any distiibutional assumptions. A spatially correlated binary random 

variable is fully described by its first moment (or die mean) and covariance stincture. The author is 



unaware of any Bayesian updating equations developed specifically for multivariate spatially correlated 

binary random variables. The framework could be updated to incorporate new theoretical probabilistic 

methods direcdy applicable to binary random variables as they become available. 

The correlation length is not updated for two reasons. The first is to simplify the numerical calculations 

carried out in the framework. In the first of Kitanidis' two cases the likelihood functions of the 

parameters can be expressed with a fixed number of sufficient statistics, and conjugate priors can be 

used in the Bayesian updating. Therefore, the updating breaks down to simply solving a series of 

algebraic equations. However, Kitanidis' third case is much more difficult because the likelihood 

function of the parameters cannot be expressed in a fixed number of sufficient statistics. Therefore, no 

general analytical method is available for calculating the updated parameters. The second reason is that 

in any field investigation in hydrogeology, it is difficult to get enough data to numerically estimate the 

correlation structure, let alone update it. If enough data was available, and the effort was warranted, the 

framework could be adapted so that the covariance function could be updated by Bayes' equation. 

The details of the updating procedure for the second case are listed below. Kitanidis (1986) assumes 

that the random function, Z(x), has the following general linear form: 

Z(x) = ifj(x)Pj + v(x) (4.40) 
j=l 

where, 

- X is a spatial point where Z is sampled 

- fj(x) j = l , p are known functions of x 

- Pj j=l,..., p are parameters 

- \j/(x) is a zero mean spatial random function. 



The first term on the right hand side represents die deterministic component of Z(x). The second term 

on the right hand side represents a zero mean random field. For the special case where Z(x) is a second 

order stationary random field 

Z(x) = n , + V(x) (4.41) 

For a vector of n measurements, z, 

z = u[i^ + \j/ (4.42) 

where u is a vector of I's and \|/ has zero mean and covariance matrix Q^JiB). Qzz(9) is a function of 

parameters 0. It is assumed that the form of the covariance function is known except for a 

multiplicative constant, 0. Therefore, 

Qzz(0) = ̂ z z (4.43) 

where Ŝ ^ is known. The likelihood function for and 0, given a measurement vector z, is 

P(Hz, 0lz) a 0^/2exp[-| (nj. b,)TH,(Hi - b,)]0^/2exp(.ivq,0) (4.44) 

where 

- H , b , = uTS,,-lz 

-r = rank(H,) 

- V = n - r 

- q , = (zX-'-bs'^uS,,-lz)/v 



- a represents "proportional to". 

The conjugate prior for [i^ and 0 is a normal gamma 2 function: 

P(H,. e)' a e^^exp[-| (m - m^Wdi, - m,')] 

0^'/2-iexp(-^'q'0) (4.45) 

where 

- m ,̂' = the prior estimated mean 

- v'=therankofH' 

- V = vector of ones, n^ long 

- Ug = number of prior measurements. 

The updated estimated mean, m / ' is 

H"m/ ' = H 'm/ + H,b, (4.46) 

where, H " = H ' + H^. H ' and represent weights for the prior and sample estimates of the mean, 

respectively. The above equation can be rearranged into 

m / =H"-i[H'm/ + H,bJ 

= [H' + H,]-i[H'm/ + uX - i ^ ] 

= [H' + uTS^^-iu]-l[H'm/ + u'^S^-h] 

(4.47) 



Refer to Kitanidis (1986) for a more detailed development of die updating equations. The Bayesian 

updating in this thesis will be carried out using a modified version of the above equations. This 

modified version is developed below. 

Since I(x) is assumed to be a second order stationary random variable, it will have the following form: 

I(x) = HI + (p(x) (4.48) 

where <p(x) is a zero mean binary random variable widi variance M.i(l - Hi). Therefore, the equation used 

to update mj, has the following form: 

mi" = [H' + uTSii-iu]-l[H'mi' + u^S^fH] (4.49) 

where i is a vector of data n long, and the term u^Sy'^u represents the weighting of existing 

measurements (or H^). The variance is direcdy updated from die updated mean by equation (4.11). 

To incorporate a geological estimate of the mean widi measured data, m{ would represent die estimate 

of Hi based on the geological model. The confidence in the prior estimate of the mean can be quantified 

through an equivalent number of n^ measurements which are spaced enough apart to be independent. 

Therefore, H ' can be calculated by 

H' = vTSii-lv (4.50) 

where v is a vector of ones n^ long and Su is the covariance matrix between the n^ measurements. 

Since the n^ measurements are independent. Su only contains a^^ terms along the diagonal, and all 

other terms are zero. Therefore, the above equation simplifies to 



(4.51) 

Equation (4.49) can also accommodate the case where no prior knowledge is assumed. No prior 

knowledge is also termed a diffuse prior. In this case H ' is set to zero and equation (4.49) collapses to 

One problem in using equation (4.49) in this framework is that is does not directly accommodate soft 

data because soft data is biased. The development of a Bayesian updating equation that will 

simultaneously handle both hard and soft spatially correlated data is a current research topic. If the 

number of soft data is small relative to other information, or its quality is poor, then its affect on the 

updated mean could be small. Under these circumstances, the soft data could be excluded from the 

updating, or estimation of the mean. 

However, if the soft data provides a substantial quantity of information, then it should be incorporated 

into the estimation of the mean. The incorporation could be carried out by assuming that the soft data 

forms an independent data set from the hard data. The estimation of the mean would then be carried out 

in two steps. In the first step, the prior geologically estimated mean, mj', would be updated by the soft 

data alone. The updating would be done by modifying equation (4.49). Since [u^ Sj j u][u'̂  Sĵ ĵ "̂  

u]-̂  equals an identity matrix, equation (4.49) can be rearranged into 

(4.52) 

= [H'+uTSi,-lu]-l[H'm,' + 

[uTSii-1 u][uTSii-iu]-iuTSii-'i] (4.53) 



where Sj j is the covariance matrix between the soft data. Using equations (4.52) and (4.50), die above 
S S 

equation can t>e reduced to 

mj" =[H' + HJ-i[H'm,'+Hsmi] (4.54) 

where H is the precision matiix of the soft data and mj is the estimate of the mean from the soft data 

alone. The updated mean, mj", is simply the weighted average of the prior mean, mj', and the sample 

mean, mj, from the soft data weighted by the precision matrices. 

However, mj is still biased from the sample precision. Therefore, the above equation is modified using 

equation (4.32) to unbias mj, to form 

mi" = [H' + H J-1 [H'mj' +H, ]̂ (4.55) 
Pl -P2 

The above equation can then be used to update the mean using the soft data. In die second step, die 

final estimate of the mean, mj"', would be estimated by updating mj" with die hard data using equations 

(4.49) or (4.54). Note diat for hard data, equation (4.55) and equation (4.54) are equivalent because for 

hard data Pj = 1 and P2 = 0 allowing the precision terms in (4.55) to drop out. 

Note, that the updating of the mean is independent of the exact value of the variance of I(x), which is 

used to calculate the matrix Sjj and hence the weights, H ' and Hj. The magnitudes of both H ' and H^ are 

affected by the variance, but their relative sizes remain unchanged. 

Even diough die mean is updated using equations developed for Gaussian random variables, in reality its 

estimate wdl follow a Beta distribution, which is continuous between zero and one. 



4.5.3 SUMMARY OF INFERENCE OF GEOSTATISTICAL PARAMETERS 

Both Bayesian and non-Bayesian approaches can be used to estimate the geostatistical parameters. 

Non-Bayesian approaches utilize measured data only, where Bayesian updating allows one to 

incorporate geological intuition into the estimate. Both approaches have advantages and disadvantages. 

The non-Bayesian methods are the most theoretically complete and will readily incorporate both hard 

and soft data. However, they cannot incorporate geological intuition which can be critical, particularly 

in the case of sparse data sets. Nor do they provide a methodology for updating estimates as new 

information becomes available; therefore, they do not direcdy fit into the Bayesian data worth 

framework used here. 

Bayesian updating can handle geological intuition and will readily fit into the Bayesian data worth 

framework. Unfortunately, work on the Bayesian estimation of geostatistical parameters of correlated 

random variables is not as complete as that of non-Bayesian methods. Only the mean can be readily 

updated and not the correlation length. In this diesis, the correlation length will be estimated by the 

non-Bayesian approach and is assumed to remain constant. The correlation length is not updated 

because the numerical complexity of carrying out the calculations is extî eme and because the required 

number of data to carry out effective updating will rarely be available. The updating equation does not 

simultaneously handle hard and soft data, but it has been modified to handle hard and soft data in two 

different steps. 

4.6 LIMITATIONS OF SIS ALGORITHM 

There are several factors which provide limitations on the SIS algorithm. First, a number of 

geostatistical assumptions have been made to make the statistics tractable. Secondly, in reality die 

aquitard realizations are finite in size when theoretically they are assumed to be infinite. Thirdly, 



volume variance relationships do not work for the form of die SIS algoridim used here. Finally, some 

kinds of uncertainty are ignored by die SIS algorithm and diere is a practical hmit to die number of 

conditioning data points. 

4.6.1 GEOSTATISTICAL ASSUMPTIONS 

Geostatistical assumptions which have been made include diose of ergodicity, stationarity, and isoti-opy. 

These assumptions were explained in detail in Section 4.2. 

If ergodicity is not true then geostatistics breaks down. The assumption of ergodicity is axiomatic and 

must be taken for granted. It is apparendy just accepted in the geostatistical community as being valid 

and there is no standard way of testing its validity (Sinclair, 1991). 

In many cases, I(x), may not be second order stationary, resulting in aquitard realizations which are not 

representative of the true state of nature. An example would be a facies change in the area of interest. 

The result would be a ttend in aquitard continuity. There are a number of ways of deaUng with 

conditions that are not second order stationary. For example low order ttends in the mean could be 

filtered out, leaving a residual which could be second order stationary. Completely non-second-order 

stationarity conditions could possibly be handled by replacing the SIS algorithm with a different scheme 

for numerically generating aquitards. One such approach might be to use an algoridim based on fractal-

based geostatistics such as have been carried out in the petroleum industry (refer to Hewett and 

Behrens, 1988). 

The assumption of isotî opy is not critical. If anisotropic conditions exist, they can easily be built into 

the SIS algorithm. However, with limited data sets, anisotropy can be difficult to detect and even more 

difficult to estimate. 



4.6.2 FINITE SIZE OF AQUITARD REALIZATIONS 

Simulation algorithms assume that the domain is infinite when in reality it is bounded and finite. The 

boundaries reduce the variability of the realizations, damping the sample covariance function of the 

realizations below its true covariance function. To reduce this effect, the total size of the discretized 

aquitard must be approximately four times greater than die correlation length used in generating the 

realizations. 

4.6.3 VOLUME VARIANCE RELATIONSHIP 

Several kinds of data representing different volumes, or scales, may be available at a given site to 

condition the indicator simulations. These include: 

- boreholes, which are point size, 

- geophysical surveys, which cover a large area, and 

- previously simulated blocks, which can be up to hundreds of meters in size. 

Recall, that Uie SIS algoritiim sequentially simulates the aquitard blocks so tiiat a simulated block is 

conditioned on the previously simulated blocks. The weighting of a datum in estimating I(x) at point x 

is dependent upon the volume of the measurement because of the volume variance relationship. A 

datum with a large volume will have more weight in estimation than a datum with a small volume, 

given that the two data are equidistant from die point of estimation. If I(x) was a continuous random 

variable, then diis problem could be tackled using volume variance relationships. However, in diis 

thesis, I(Bj) is a discrete random variable with a value of either 0 or 1. The entire block represents 

eidier aquitard or a window. Under diese circumstances, I(Bj) is insensitive to the volume of Bj. 



Therefore, volume variance relationships do not apply (Soivastava, 1990). Therefore, the mediods 

oudined in this thesis are only able to handle measurements of one volume. This volume is set equal to 

the volume of the simulated blocks. I(x) would be a continuous random variable if it represented the 

average point value of I(x) averaged over every point within an aquitard block. 

Measurements with different volumes will be accounted for as follows. It will be assumed that the 

outcome of a borehole can be exd-apolated to the entire block. This will be realisuc if the size of the 

block is small and the minimum size of any clay layer is on the order of the size of the block. It is 

further assumed that there will only be one borehole taken per block. Geophysical measurements 

covering a large area will be handled by breaking up the area into a number of blocks covering the area, 

4.6.4 TYPES OF UNCERTAINTY HANDLED 

There are three types of uncertainty: natural, stadsdcal, and model (Benjamin and Cornell, 1970). 

Natural uncertainty represents the uncertainty in the random variable itself. Stadsdcal uncertainty is the 

uncertainty in the parameters, such as mean and variance, governing the probabUity distribution. Model 

uncertainty is the uncertainty in the exact form of the probability density function, e.g. "does a random 

variable really follow a normal distribution, or does it follow a Gamma distribution?" 

Simple kriging only accounts for the natural uncertainty and ignores the statistical and model 

uncertainty because it assumes that HJ and Cov(h) are known. The statistical uncertainty in the assumed 

parameters can be accounted for by using their Bayesian disfributions (Benjamin and Cornell, 1970). 

Kitanidis (1986) presents a series of matiix equations for estimating spatially correlated random 

variables that accounts for the uncertainty in die different parameters. There is no straightforward 

procedure to account for model uncertainty (Benjamin and Cornell, 1970). As an initial first order 

approximation, model and statistical uncertainty will be ignored in this thesis. 



4.6.5 NUMBER OF CONDITIONING DATA 

Recall that there is potentially a large amount of data to condition the estimate of 1(B) at some block, B. 

These data will not only include measured data, but previously simulated blocks. Ideally the estimate 

should be conditioned on all data. However, this is impractical since each conditioning data point adds 

one equation to the system diat must be solved for Uie weights aj, j=I,...,n. The solution quickly 

becomes numerically awkward as n increases because the effort needed to solve this system of equations 

is proportional to n^. 

Therefore, die number of conditioning data points is restiicted to die ones nearest to the estimation 

point. This limitation will not cause numerical problems because data points that are far away from the 

estimation point, or have odier data points in between themselves and the estimation point, will have 

little effect on the estimation result. For one-dimensional simulations, the limit is the five nearest 

previously simulated blocks and/or measured data on either side of die block being simulated. In two 

dimensional simulations, the 10 to 20 nearest measured data points or previously simulated blocks are 

used. 

4.7 ALTERNATIVE SIMULATION ALGORITHMS 

There are several standard methods for generating realizations of correlated random variables. These 

include turning bands (see Mantoglou, 1987) and Cholesky decomposition (see Clifton and Neumann, 

1982; Alabert, 1987; and Davis 1987). These methods deal widi continuous random variables rather 

than discrete random variables, and assume that the random variable comes from a multi-variate 

Gaussian distribution. It would be possible to use any of diese alternative methods for dealing with 



aquitard continuity by generating realizations of aquitard block thickness. Holes would exist if the 

aquitard diickness was below some critical value. 

However, the SIS algorithm has several distinct advantages over these methods. The first is diat the 

conditioning of realizations on bodi hard and soft data is built into die SIS algorithm. There is no 

sttaightforward method for conditioning the realization from the standard mediods on soft data. A 

second important advantage is that die SIS algorithm does not require that the simulated random 

variable come from a multivariate Gaussian distribution.; a wide range of different probability density 

functions can be handled (Gomez-Hemadez and Srivastava, 1990). Aquitard thickness may not follow a 

Gaussian distiibution. For example, if there is a finite chance of a hole, i.e. thickness equal to zero, then 

the thickness cannot follow a Gaussian distiibution because the probability of die random variable 

having a particular value is zero. 

Another important advantage of the SIS algorithm is that it deals widi extreme values much better than 

the Gaussian based methods. This is of direct interest here because one extreme thickness, or window, 

can have a major impact on the flow system and transport of contaminants. One of die specific purposes 

of IK, on which the SIS algorithm is based, is to handle extteme values (Joumel, 1983). The Gaussian 

assumption has a damping effect which greatly reduces the probability of extreme oudiers. In addition, 

the Gaussian assumption does not allow for the spatial correlation of extî eme values (Joumel, 1989), 

which again is one of the specific purposes of die SIS algorithm. Including die spatial correlation of 

extreme values is of utmost importance because it provides valuable information on predicting the 

locations of extreme values. 

The advantage of die Gaussian-based mediods is diat diey are very sti-aight forward to apply. If die 

framework were used to evaluate the worth of hydraulic conductivity measurements, which are 



generally assumed to follow a mulitvariate log-normal distribution, then die SIS algorithm could be 

readily replaced with one of die above standard methods. 

4.8 GEOSTATISTICAL NATURE OF C L A Y LAYERS 

In general, litde work has been done in quantifying the geostatistical nature of clay/shale layers, or 

relating it to depositional environments. Desbarats (1987a) found that, while the shale layers in the 

vertical direction had no correlation, they were exponentially correlated in the horizontal direction with 

a range of 15 m and no apparent nugget effect. The shales were deposited in an alluvial environment 

(Desbarats, 1987b). He noted that die physical significance of the range was not clear because indicator 

variography expresses spatial continuity of shales and sands rather than shale continuity alone. The 

range does not correspond to the average shale length. 

In the only other study relating spatial correlation and geology that the author is aware of, Phillips and 

Wilson (1989) produce a method for estimating the correlation lengdi of hydraulic conductivity based 

on the dimensions of geologic units. However, they did not study shale continuity, nor did they study 

the spatial correlation as it relates to specific depositional environments. 

4.9 NOTATION 

a range of covariance function 

j " kriging weight or declustering weight 

j * aquitard block generated by sequential indicator simulation algorithm 

covariance coefficient between I(Xj) and I(X|ĵ ) 

Cov(h) covariance function of I(x) 

Cov*i(h) estimated covariance function of I(x) 



Cov*ii (h) estimated cross covariance function between I(x) and Ij(x) 

Covji (h) cross covariance function between I(x) and Ij(x) 

Covi^(h) covariance function of l^{x) 

Cov*i (h) estimated covariance function of Ij(x) 

dj j ' ' ' distance class 

fj (x) known function of x representing drift in Z(x) 

F(0) cumulative probability distiibution of I(x) 

F*(0) estimate of F(0) 

F*i(0) estimate of F(0) from hard data 

F*, (0) estimate of F(0) from soft data 

h separation distance 

h .̂ average separation distance of data points within distance class dj 

Hj weight of measured sample data 

H ' weight of prior data 

H " updated weight of data 

i vector of data i(x) 

i(x) value of indicator random variable I(x) 

i(x)* estimated value of indicator random variable I(x) 

i{x)j true value of indicator random variable I(x) 

I(x) indicator random variable at point x 

lj(x) soft indicator random variable at point x 

mj estimate of HJ 

mj' prior estimate of |J.j 

mj" updated estimate of HJ 

m^' prior estimate of [i^ 

m^" updated estimate of 



Hg equivalent number of data 

Uj number of data point in dj 

n,, numt»er of hard data 

Uj numt)er of soft data 

p random numl)er drawn form uniform random number generator 

Pl(x) probabUity that a window will be sampled at point x, given diat one exists, P(l5,(x)=lll(x)=l) 

Pl stationary form of Pi(x) 

P2(x) probabihty that a window wdl be sampled at point x, given diat one does not exist, 

P(l,(x)=lll(x)=0) 

P2 stationary form of P2(x) 

QjJQ) covariance matiix of Z(x) 

S i i ( 0 ) known covariance matiix of l(x), except for unknown multipUcative constant 

8^2(9) known covariance matiix of Z(x), except for unknown multipUcative constant 

u vector of I's 

V vector of I's 

z vector of measurements of z 

z(x) value of Z(x) at point x 

Zj. critical cutoff 

Z(x) continuous random regional variable at location x 

0 unknown parameter 

Xj correlation lengdi of I(x) 

HI mean of random variable I(x) 

Hi mean of random variable Ij(x) 

Hz mean of random variable Z(x) 

variance of I(x) 

variance of Z(x) 



zero mean binary random function 

zero mean continuous random function 

relative weight of hard data 



CHAPTERS: CONTAMINANT TRANSPORT 

5.1 INTRODUCTION 

Recall that failure occurs when contaminants from the landfill penetrate an aquitard and spread to a lower 

aquifer. The failure time is needed in the objective function so that future costs can be converted into 

present day dollars. The purpose of diis chapter is to explain how contaminant ti-ansport is modeled and 

failure times calculated for an aquitard realization generated by the SIS algorithm. 

For simplicity it is assumed that the contaminants are miscible in water, are at low concentrations which 

do not significandy change the density of groundwater, and are non reactive and non-radioactive. It is 

further assumed that groundwater flow conditions are fully saturated and at steady state. More 

complicated contaminants or flow conditions could easily be incorporated into the framework by 

increasing the complexity of the numerical model needed to calculate failure times. 

A brief overview of contaminant transport processes pertinent to this thesis will be given first. For a 

more detailed discussion on contaminant d-ansport processes refer to Domenico and Schwartz (1990), 

Freeze and Cherry (1979), or any odier standard text on hydrogeology. A description of how 

contaminant transport and fadure times are calculated in bodi the two dimensional and three dimensional 

cases follows. 

5.2 TRANSPORT PROCESSES 

The ttansport of a contaminant that is miscible, at low concentrations, and non reactive, is governed by 

an advection dispersion equation of die following form (de Marsily, 1986): 



3 C 
V«(D V C - C v ) = - ^ (5.1) 

where 
2 

- D is the dispersion tensor (L /T) 
3 

- C is the concentration (M/L ) 

- V is die average linear velocity vector of die groundwater flow (L/T) 

-1 is time (T) 

Bold upper case letters represent tensors and bold lower case letters represent vectors. For one 

dimensional tiansport in the x direction, in a homogeneous medium, equation (5.1) becomes: 

d^c dc a c 

The first term on the left hand side represents die hydrodynamic dispersive component of tiansport while 

the second term accounts for the advective component. These different components are discussed in 

more detail below. 

5.2.1 ADVECTION 

The advective component represents die amount of dissolved contaminant physically tiansported by 

flowing groundwater at the average linear velocity of die groundwater. The average linear velocity of 

groundwater is calculated using Darcy's law: 

v = - ^ V h (5.3) 



where K is the hydraulic conducdvity tensor, n is the effective porosity, and h is the hydraulic head. 

From equation (5.3) it is seen that the rate of advective transport is dependent upon the hydraulic 

conductivity, die porosity, and die hydraulic gradient. If die co-ordinate axes coincide with die principal 

directions of anisotropy, then the off diagonal components of K become zero. Therefore, 

K = 

K , . 0 0 1 
0 K ^ , 0 

0 0 K , J 

(5.4) 

Darcy's law has the foUowing form for flow in the x direction: 

Kxxah 
" n ax 

(5.5) 

The hydraulic head field is determined by solving the flow equation, which has the following form for 

steady state flow: 

V»KVh = 0 (5.6) 

5.2.1 HYDRODYNAMIC DISPERSION 

Hydrodynamic dispersion accounts for the spreading of contaminants as they are transported. As a resuh, 

it is a dilution process; however, contaminants can arrive at a particular point faster than they would by 

simple advection at the average linear velocity. Hydrodynamic dispersion has two components: 

diffusion and mechanical dispersion. 

Diffusion is Q-ansport due to concentration gradients. The rate of diffusion is governed by Pick's law: 



f, = -D,WC (5.7) 

where 

- f(i is the mass flux of contaminant flowing through a unit area of aquifer per unit time, and 

- D(i is die apparent diffusion coefficient of the porous media. 

Mechanical dispersion is a spreading process caused by local variations in groundwater velocity. These 

local variations are the result of flow through heterogeneities diat occur at both the microscopic and 

macroscopic scale. 

On the pore scale, mixing occurs for a number of reasons. First, fluid in the center of a pore will flow 

faster than at the edges because of boundary effects. In addition groundwater will flow faster through 

some pores than others due to pore size and pore geometry. Finally, the path through any pore system 

will be tortuous and branching, causing flow dirough the pore system to keep dividing. 

On larger scales, groundwater will flow faster through more permeable parts of a flow system, such as a 

sand lens, than through less permeable parts of the flow system. As a contaminant tiavels farther through 

a flow system, dispersion is increasingly contioUed by larger scale heterogeneities. 

Mechanical dispersion typically predominates over molecular diffusion in most groundwater flow 

situations. Diffusion is only an important process at low groundwater velocities. 

5.2.3 IMPORTANCE OF ADVECTION 

Massmann (1987) reported from a study of ten case histories, diat die advection component generally 

predominates over die dispersive component if die average linear groundwater velocity is greater than 

several meters per year. He further notes that hydraulic conductivities of between 10'^ and 10"^ m/s are 



needed for diis to occur. This range of values would apply to sands and gravels for unconsolidated 

deposits. For simplicity, it is assumed in this thesis that the average linear groundwater velocities are 

high enough that advection predominates, allowing dispersion to be ignored. Travel paths from the 

landfill dirough the upper aquifer and through an existing window in the aquitard to the lower aquifer are 

assumed to occur in sand and gravel. 

This thesis assumes that contaminant ti-ansport occurs only by advection. Nevertheless, if dispersion is an 

important component of transport, it would be a simple matter to incorporate it into the framework. 

5.3 MODELING OF CONTAMINANT TRANSPORT 

Contaminant transport is modeled by first solving the steady state flow equation (5.6) for the hydraulic 

head field using a finite element or finite difference model. The advective velocity field is then 

calculated from the hydraulic head field. The ti-avel time for a plume to reach a point of failure in the 

lower aquifer is then calculated from the velocity field by a particle ti-acking routine. Recall that all 

factors governing contaminant transport are assumed known, except for aquitard continuity. 

The modeling of contaminant ttansport for the two different cases (two-dimensional and three-

dimensional) covered in this thesis will now be discussed. Two dimensional modeling is used in Chapter 

6 for explanatory purposes only. Three-dimensional modeling in used in both Chapters 7 and 8. 

5.3.1 2-D MODELING OF SOLUTE TRANSPORT 

A Galerkin finite element model is used to calculate die two-dimensional hydraulic head field from 

equation (5.6). The boundary conditions on die flow field are shown in Figure 5-1. The flow field is 

split into diree regions. The centtal region is die zone of interest where aquitard continuity is unknown. 



The aquitard in diis region is generated by die SIS algorithm. The purpose of the outer regions on either 

side of the cend-al region is to reduce die effect of the vertical boundary conditions on flow in the cential 

zone of interest. The aquitard in these regions is assumed to be continuous. 

Figure 5-1: Boundary conditions on two-dimensional flow field. 

The bottom of the system is an impermeable boundary. On the vertical sides, constant head boundaries, 

Hj, Hj, H3, and H4 occur on the edges of the aquifers while impermeable boundaries occur on the edges 

of the aquitard. Hj, H2, H3, and H4 have been chosen so that flow is from left to right and is vertically 

downward across the aquitard at die right hand side. The top boundary is a fixed water table which is 

assumed to vary linearly between the two vertical constant head boundaries on either side of the upper 

aquifer. The contaminant source is represented as a vertical line over which particles are released at a 

uniform spacing. A vertical line source was chosen to spread the plume over a large thickness of the 

upper aquifer. 

tine s o u r c e o f c o n t a n i n a n t s 

Linear tiiangular elements spaced on a rectangular mesh are used in the finite element model (Fig. 5-2). 

A variable mesh size can be used so that a finer mesh can exist in the central region than in die two outer 

regions. The aquitard layer is represented by two or more layers of elements. 



Once the hydraulic head field has been calculated by the finite element model, the average element linear 

velocities are calculated by (Frind and Matanga, 1985): 

j 

where, 

- hj is the hydraulic head at node j , 

- n is the porosity, and 

- Wj is die basis function for node j . 

The element velocities are ti-ansferred to a rectangular grid of cells to simplify the particle tracking. This 

is done by assigning to die grid point the velocity of the element that contains the grid point. The 

velocity of the particle, Vp, at any point (x,y) in some cell is dien calculated by linear interpolation of die 

velocities at the four grid points at the cell comers. Particles are tt-acked through die velocity field by the 

tangent, or Euler, mediod (see Boyce and DiPrima, 1969): 

Xp(t) = Xp(t - At) + Vp Jxp(t - At),yp(t - At)]At (5.10) 

yp(t) = yp(t - At) + Vpy[Xp(t - At),yp(t - At)]At (5.11) 

where 

- Xp(t) is die X co-ordinate of die particle at time t, 

- yp(t) is the y co-ordinate of the particle at time t. 



- At is the time step, and 

- Vpj[Xp(t),yp(t)] is die x component of die particle velocity at point [Xp(t),yp(t)]. 

m m 

///û û///JJJ7 / miiy 
77777777777777777J77 

\/wwvwvwwwwm 
Figure 5-2: Sample finite element grid for two dimensional vertical cross section. 

The time step. At, is kept small so that it takes at least ten steps for a particle to cross one cell. This is to 

keep particles from jumping sti-eamlines. A number of particles are released at different points in the 

source area and are ttacked through the flow region. Failure occurs if any of die particles reaches die 

lower aquifer. It is assumed that any of the particles reaching die lower aquifer represents a major 

breakthrough of contamination. 

There are several limitations associated with the approach carried out here for modeling contaminant 

tiansport and groundwater flow. For example, the position of the water table is fixed. In reality die 

position of die water table is dependent upon the geometry of the aquitard used in the flow model. This 

could cause errors in the calculated hydraulic head field. Another potential numerical problem is created 

by ttacking particles dirough die velocity field using die Euler or tangent method. For large time steps, 

particularly in non smooth velocity fields, particles could jump stieam lines resulting in an incorrect 

paths being followed. 



Both of these limitations could be removed by making the analysis more complicated and numerically 

intensive, thus increasing the reliability of the calculated failure dmes. For example, a free surface 

model would account for a changing water table. Problems of particles jumping stream lines could be 

solved by having a very fine finite element mesh or by tiacking die particle using a modified Euler or 

Runge Kutta approach. However, the purpose of the two dimensional cross section is to provide a simple 

test case on which to build die more compUcated and more realistic diree dimensional case. Hence, we 

are only concerned with first order accuracy for this case, and for simplicity, inaccuracies due to the 

above numerical problems will be ignored. The overall rehability of estimated worths will be more 

gready affected by uncertainty in other factors such as aquitard heterogeneity and boundary conditions on 

die flow model. 

5.3.2 3-D MODELING OF SOLUTE TRANSPORT 

In the three-dimensional modeling, die hydraulic head field is solved using die USGS finite difference 

MODFLOW package. MODFLOW is a commercially available computer model that has been widely 

used throughout the groundwater world over the last 20 years and has been well validated. 

The ti-ansport of contaminant is solved using die USGS MODPATH particle tracking routine. 

MODPATH assumes that advective ti-ansport dominates odier forms of ttansport. MODPATH uses flow 

velocities calculated direcdy by MODPATH to move particles of contamination dirough die flow field. 

For a detailed description of MODFLOW or MODPATH, refer to McDonald and Harbaugh (1989) and 

Pollack (1989), respectively. 

5.4 NOTATION 



C concentration of contaminant 

D dispersion tensor 

apparent diffusion coefficient of die porous media 

Dĵ  dispersion in the x direcdon 

mass flux of contaminant flowing through a unit area of aquifer per unit time 

h hydrauhc head 

K hydraulic conductivity tensor 

Kj^j hydrauhc conductivity in x direction 

Kyy hydrauhc conductivity in y direction 

K^z hydraulic conductivity in z dkection 

n porosity 

t time 

V average linear velocity of groundwater flow 

Vĵ  average linear velocity of groundwater flow in x direction 

Vpĵ  X component of particle velocity 

Wj basis function for node j 

Xp(t) X co-ordinate of particle at time t 

yp(t) y co-ordinate of particle at time t 



CHAPTER 6: OUTLINE OF FRAMEWORK 

6.1 INTRODUCTION 

Chapter 6 ties together the different components introduced in Chapters 2 through 5 into the data worth 

framework. The framework is able to evaluate die worth of hard, point measurements and soft, areal 

measurement. A soft, areal measurement could consist of some type of geophysical survey such as a 

shallow seismic, or a radar survey. Soft, point measurements cannot be handled. 

Different mediods of measuring aquitard discondnuities are discussed in Secdon 6.2. Secdon 6.3 

describes how the framework evaluates the wordi of a single hard measurement. Secdon 6.4 discusses 

the sensitivity of diis estimate to numerical artifacts of die mediodology. Section 6.5 presents how die 

methodology developed in Section 6.3 can be used to estimate the worth of a soft geophysical survey 

which covers a large area. Section 6.6 discusses how the framework could be modified to handle data 

wordi problems in other disciplines, such as mining engineering and reservou- engineering. 

6.2 MEASURING AQUITARD DISCONTINUITIES 

Aquitard continuity can be measured direcdy using hard data provided by boreholes, or soft data 

provided by geophysical surveys, or by odier methods. It can also be measured indirecdy by methods 

such as hydraulic head measurements, pump tests, barometiic efficiency, and age dating of water. 

Boreholes provide both hard and soft point measurements. If die borehole is continuously cored, the 

presence of a distinct aquitard should be determined with certainty. However, if one meter split spoon 

samples were taken every two meters, a thin aquitard could be missed. Geophysical measurements could 

range from areal surveys covering the entire region of interest, such as radar or seismic surveys, to point 



measurements such as geophysical logs in a borehole. It is assumed that geophysical measurements will 

be imprecise. No specific geophysical technique is targeted in this thesis. However, several methods 

would be applicable such as seismic, resistivity, and radar surveys, and gamma ray or self potential logs. 

Measurements of hydraulic head, H, are available in virtually all hydrogeological investigations. They 

can be used in two forms to predict aquitard continuity. In the first form, many H measurements are 

taken throughout the aquifer, but at the same time. They can be used to estimate, or constrain, patterns of 

hydraulic conductivity through inverse techniques (see Yeh ,1986; Kitanidis and Vomvoris ,1983; and 

Clifton and Neuman, 1982). However, these techniques are not widely used because dieir numerical 

complexity is high and stabihty problems can lead to a difficulty in obtaining solutions. Previous work 

has also shown that such measurements of H are not very effective in determining the continuity of 

aquitards or aquifers. Fogg et. al. (1979), quoted by Rouhani (1985), found that radical changes in 

transmissivity created only small changes in hydraulic head, while Fogg (1986) reported that hydraulic 

heads give litde indication of interconnected zones of aquifer/aquitard systems, even with carefully 

calibrated models. Duffield et. al. (1989) confirmed these results in their study of the Savannah River 

Site in South Carolina. They found that windows and faults in aquitards, with significant vertical 

gradients across them, produced only small changes in the H field which were difficult to detect widiout 

closely spaced monitoring wells in the vicinity of the window. 

In the second form, H measurements taken fi-om a single well at different points in time form a time 

series. H measurements in this form are potentially a very valuable way of investigating aquitard 

continuity. The fluctuations in hydraulic head, both natural and induced, will be correlated for two 

aquifers diat are hydraulically connected. Fluctuations in hydraulic head for aquitards that are not 

hydrauUcally connected should be independent or show a significant time lag. 

Pump tests can be valuable in testing aquitard continuity. A well in one aquifer can be pumped while 

drawdown is observed in adjoining aquifers. A large drawdown is a good indication of hydraulic 



connection. Such a connection may be caused by an aquitard discontinuity between the aquifer with the 

pumping well and the aquifer with the observed drawdown. However, no analyses are known to the 

author that determine exactiy how a window will affect a pump test. 

The age dating of water through isotope analysis could be very useful in predicting aquitard continuity. 

If die water in two adjacent aquifers have gready different residence times, dien the aquitard separating 

them is probably continuous. For a more detailed explanation of the age dating of groundwater, refer to 

Domenico and Schwartz (1990) or Fritz and Fontes (1980). 

Barometric efficiency, B^, could potentially be used to establish the continuity of aquitards that act as 

confining layers for near-surface aquifers. B^ relates the decline in peizometiic head in an aquifer to a 

given increase in air pressure. It is defined by: 

Be = ^ (6.1) 

where 

- 7 is die specific weight of water 

- dh is the change in the peizometiic level, and 

- dP^ is the change in the air pressure. 

The greater is die value of B^ , die greater is die confining ability of the aquitard and the greater die 

likeUhood of its continuity. Refer to Freeze and Cherry (1979) for a more detailed explanation of 

barometiic efficiency. 

Some of the above methods could be very promising in helping to predict aquitard continuity. However, 

as a first step, only the worth of boreholes, geophysical surveys, and/or local geological information will 



be directly evaluated in this diesis. Other types of data could be added to die framework later if desked. 

However, such additions could involve a great deal of numerical complexity. 

As noted in Chapter 3, a regional geological understanding of how an aquitard was formed can be very 

valuable in predicting continuity. In this thesis prior geological understanding can be incorporated into 

the framework, but its worth will not be evaluated. 

In diis thesis, only the presence or absence of aquitard is of interest; aquitard thickness is ignored. 

Therefore, data consists of a set of yes or no values; eidier the aquitard is present beneath a location (xj) 

or it is not. If desired, aquitard thickness could be put into the framework through co-kriging or 

probability kriging. However, this will not be done for two reasons. First, it is unclear whether a 

relationship exists between layer thickness and continuity (see Chapter 3). Secondly, co-kriging will 

substantially increase the complexity of the framework, but is expected to bring litde improvement over 

simple indicator kriging (Joumel, 1983). Practice in probability kriging has shown diat generally die 

increase in precision over normal indicator kriging is small and not worth the increased effort (Sinclair, 

1990). For a detailed discussions on cokriging or probability kriging refer to Joumel and Huijbreghts 

(1978) or Sullivan (1985), respectively. 

6.3 EVALUATING THE WORTH OF HARD, POINT MEASUREMENTS 

This section ties together all of the ideas presented earlier to show how the framework evaluates the 

worth of a sampling program for hard, point measurements. This presentation uses an example design 

where the worth of a single hard measurement is evaluated. The example design is presented below. 

6.3.1 EXAMPLE DESIGN 



The example design is similar to the landfdl presented in Chapter 2. The boundary conditions, 

hydrogeological and geostatistical parameters are shown in Figure 6-1. The confidence in the estimates 

of die mean is arbitiarily set to be equal to diat of 15 prior measurements. (Recall, diat the updating of 

the mean and die confidence in die prior estimate of die mean are discussed in Section 4.5.2.) The finite 

element mesh is shown in Figure 6-2. The mesh consists of 2 520 elements and 1 397 nodes. The worth 

of a single, hard measurement is evaluated. The hard measurement in this case will represent a borehole 

which is cored and logged in its entirety. It is taken 75 m (block 5) from the left hand side of the zone of 

interest. 
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Figure 6-1: Boundary conditions, hydrogeological and geostatistical parameters used in the example 
design. 

The two design alternatives are again to have either a liner or no liner. The economic parameters are 

shown in Table 6-1 while numerical parameters are shown in Table 6-2. A discount rate of 10% is used. 

A minimum of 100 realizations is used to estimate the objective function of an alternative for each prior 

analysis for a particular set of sample outcomes in die preposterior analysis. The number of realizations 

needed to obtain a reliable estimate of the objective function for an alternative is discussed in Section 

6.4. Five particles were released from the source. Experimentation indicated that five was the minimum 

number of particles released from the source which yielded consistent data worth estimates. Results were 

not significandy improved by using more than five particles. 
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Figure 6-2: Finite element mesh used in example design with eight times vertical exaggeradon. 

Altemadve Benefits Costs Cost of Failure 
(millions $) (millions $) (millions $) 

Liner 10. 5. 1. 
No Liner 10. 0. 10. 

Table 6-1: Economic parameters used in example design. 

Parameter Value 
minimum number of realizations to estimate Z 
number of particles released from source 
# of aquitard blocks 
starting seed 
first aquitard block generated 
minimum number of conditioning data 

points on either side of est. pt. 

100 
5 
30 

6874462 
2 
5 

Table 6-2: Numerical parameters used in example design. 

6.3.2 TWO METHODS OF GENERATING REALIZATIONS FOR THE FRAMEWORK 

Recall that there are two basic components in analyzing the worth of a sampling pattem: die prior 

analysis and the preposterior analysis. Aquitard realizations generated in the prior analysis are created by 

the SIS algorithm using the prior estimates of the geostatistical parameters. Aquitard realizations 



generated during the preposterior analysis are created by die SIS algorithm using estimates of die 

geostatistical parameters updated from sample outcomes. 

In a sti^ghtforward application of the principles discussed in Chapter 2, aquitard realizations would be 

first generated during die prior analysis. A second set of realizations would dien be generated during die 

preposterior analysis. An alternative way is to generate realizations during the preposterior analyses and 

then "reuse" them in die prior analyses. The advantages and disadvantages of each method are discussed 

below. It will be shown diat numerical problems lead to the abandonment of the first method. 

6.3.2.1 ReaUzations Generated During Both Prior and Preposterior Analysis (Abandoned Approach) 

6.3.2.1.1 The Prior Analysis 

The prior analysis can be visualized by a decision tree (Fig. 6-3) that is slighdy different from the one 

presented in Chapter 2 (Fig. 2-2). In Figure 2-2, a design alternative only had two possible outcomes: 

failure or no failure. The tine outcome was uncertain. Here, the design alternative has as many 

outcomes as realizations that are generated. Each outcome is assumed to be equally likely. To simplify 

the rest of die Figures presented in this Chapter, the effect of all of die possible outcomes is represented 

by die expected value of the objective. The prior analysis is shown as the upper limb in Figure 6-4. 

Using die objective function given as equation (2.3) and the data fi-om Table 6-1, die prior best design, 

Ap, is die no liner alternative widi E(Z(Ai^))=$7.743 x 10^ and E(Reg(Ai^)=$2.195 x 10^. The prior 

probability of failure is 0.37. 



objective 
aquitard realizations function 

Figure 6-3: Decision tree used in prior analysis and its simplified version to right. 

6.3.2.1.2 Preposterior Analysis 

The preposterior analysis is carried out in the following basic steps: 

1) A pattern of n measurements is proposed. 

2) The 2" combinations of different sample outcomes Sj are calculated. 

3) The mean is updated, based on sample outcome Sj. 

4) A series of M aquitard realizations, R^^ij, are generated using die updated parameters and 

conditioned on Sj. (The subscript mlj on R refers to m* realization which is 

conditioned on sample outcome Sj.) 

5) For each realization, R^|j, contaminant transport is modeled for each alternative, Aj, to 

determine if failure occurs for Aj. Failure times are calculated. 

6) The failure time is dien used to calculate die objective function, Z(A,,R^|jlSj), for each A,, for 

all M realizations, R^ij. 



7) The alternative, A ^ , ' , with the highest expected objective function, over all M realizations is 

then selected. 

1 ^ 
ECZCADO) = M I Z(AD'.Rmij I Sj) (6.2) 

ni=l 

Z(AQ',R^IJISJ) is die objective function of die posterior best design alternative for 

realization R^|j, given Sj. 

Steps 3 through 7 are repeated for each of the 2" sample outcomes Sj. 

The expected expected objective function of the best preposterior design is calculated by 

j=l m=l 

10) The worth of die sampling pattern is calculated from 

Wordi = E [ E ( Z ( A D ' ) ) ] - E(Z(AD)) (6.4) 

Recall that all hard measurements are assumed to be taken at die same scale as the blocks that form die 

discretized stratigraphie horizon containing die aquitard. If a measurement is taken at a block, the 

outcome of the measurement is assumed to apply to the entire block. 

In step 2, it is assumed that there are only two possible outcomes at any sampled block: either an 

aquitard is measured or a window is measured. Since there are n sampling locations, there are 2" 

possible combinations of sample outcomes. 



For the preposterior analysis of the borehole taken at B5, there are only two possible outcomes: or 

S ^ . Each sample outcome is used in turn to update the geostadsdcal parameters. The updating of 

geostatistical parameters was discussed in Section 4.5.2. One hundred new reahzations are generated for 

each set of updated geostatistical parameters. The new best design, A ^ ' , is chosen for each set of 

realizations. These results are summarized in Figure 6-4. 

The worth, Wj, of the borehole from the expected increase in the maximum expected objective function 

is 

Wi = E [ E ( Z ( A D O ) ] - E [ Z ( A D ) ] (6.5) 

= [($4,355 X 106)(0.05) + ($7,802 x 106)(0.95)] - $7,743 x 10^ 

= $-112 700. 

The worth, W2, of the borehole from the expected decrease in the minimum expected regret is 

W2 =E[Reg(AD)]-E[E((Reg(AD'))] (6.6) 

= $2,195 X 105 - [($0)(0.05) + ($2,158 x 105)(0.95) 

= $145 000. 

Note, diat even though die two mediods ought to be equivalent (see Chapter 2), here they give different 

worths for the same borehole. Wj even has a negative value, which is impossible. The minimum 

possible worth for a measurement is zero. This difference is caused by changes in the system between 

the prior and the preposterior analysis. The system refers here to the entire set of parameters used in 

either the preposterior or the prior analysis. These include the geostatistical parameters, the expected 

value of die objective function of die different alternatives, and die probability of failure. If anyone of 

diese parameters changes between the prior and die preposterior analysis, die system has changed. It is 

explained below how the system has changed. 



The properties of the ensemble of realizations used in the prior analysis must be idendcal to the 

properdes of the ensemble of realizations used in die preposterior analysis; no sample in reality has been 

taken to change the ensemble of realizations. Therefore, all parameters must remain consistent between 

the prior and preposterior analysis; their expected values in the prior analysis must equal their expected 

expected values in the preposterior analysis. However, in die example analysis, the probability of failure 

and objective functions for the different alternatives are inconsistent (Table 6-3). Only the geostatistical 

parameters remain consistent. 

PRIOR 
ANALYSIS 

Zm\iUS4 774 
E[Reg(A,̂ )]=S3 188 

PREPDSTERIDR 
ANALYSIS 

Note: All dollars 
ore in thousonds 

ECZ<A^IS^)]-$4 355 

E[Rg9(A|̂ ISy>] = «0 

=0.109 

P(FaillS,<>= 1.0 

ECZ<A^Sy)3=«3 550 

E[ReQ<A^S^M=$805.0 

E[Z<ALIS,^>]=*4 780 
E[Re9<A^^IS^^»*3 238 

f^m^'0047 
P(roillSHv)=0.36 

E[Z(A^IS^>]=*7 802 

ECRegC A ̂  IŜ ^ >]= S215.8 

Figure 6-4: Preposterior analysis of example design when realizations are generated in both the prior and 
the preposterior analysis. 



Theoretically, the generated realizations are only dependent upon the geostatistical parameters; therefore, 

the properties of the prior and preposterior ensemble of realizations would approach each other as the 

number of generated realizations increased, since the geostatistical parameters remain consistent. 

Therefore, if a huge number of realizations were generated, the ensembles of realizations would be 

almost identical. 

Parameter EfPrior Value! EfE(Preposterior Value)! 
mj 0.05 0.05 =(.05)(.109)+(.95)(.047) 

30 30. =(.05)(30)+(.95)(30) 

Z ( A L ) $4,774 X 10^ $4,759 X 106 =(.05)($4.355xl06)+(.95)($4.780xl06) 
Z ( A N L ) $7,743 x 106 $7,589 X l(P =(.05)($3.550xl0V(.95)($7.802xl06) 

P(failure) 0.37 0.392 =(.05)(l.)+(.95)(0.36) 

Table 6-3: The values of parameters used in the prior analysis and the expected value of parameters used 
in the preposterior analysis. 

Unfortunately, in reality this does not happen. The realizations are only pseudo-random and are 

dependent upon a number of "artificial" parameters, which are functions only of the algorithm used to 

generate die realizations. These parameters are: die starting seed, the number of the first aquitard block 

generated, the order in which the aquitard blocks are generated, and the number of aquitard blocks 

generated. Change any of these parameters and a different set of realizations are generated. This effect 

is defined as noise in diis diesis. Because of this pseudo-randomness, the properties of die ensemble of 

realizations generated during the prior and the preposterior analyses will not be exactiy identical, 

regardless of how many realizations are generated. Given the sensitivity of the system, even diese very 

small inconsistencies in Z ( A L ) , Z{A^), and Pf are enough to cause die large discrepancies in data worth 

noted in equations (6.5) and (6.6). 

The geostatistical parameters remained consistent because the updating of the mean is carried out direcdy 

by Bayes' equation and is unaffected by parameters used in die SIS algoridim. The correlation lengdi is 



not updated, and therefore, must be consistent. The updating of geostatistical parameters is discussed in 

Section 4.5.2. 

In view of the foregoing, it was therefore recognized diat this mediod of generating realizations would 

not work. 

6.3.2.2 Realizations Generated During the Preposterior Analysis (Method Used in Thesis) 

In this method, all realizations are generated during the preposterior analysis. For each combination of 

sample outcome, the geostatistical parameters are updated and 100 realizations are produced. The 

ensemble of realizations used in the prior analysis is formed from die sum of die realizations generated 

during die preposterior analysis, weighted by die probability of the different sample combinations 

occurring. Therefore, die ensemble of realizations used in die prior and preposterior analysis are 

identical. The preposterior analysis is carried out in die following basic steps: 

1) A pattem of n measurements is proposed. 

2) The 2" combinations of different sample outcomes Sj are calculated. 

3) The mean is updated, based on sample outcome Sj. 

4) A series of M aquitard realizations, R^y, are generated using the updated parameters and 

conditioned on Sj. (The subscript mlj on R refers to m''' realization which is 

conditioned on sample outcome Sj.) 

5) For each realization, R^|j, contaminant ti-ansport is modeled for each altemadve. A,, to 

determine if failure occurs for A,. Failure times are calculated. 

6) The failure time is then used to calculate die objective function, Z(A|,R^|jlSj), for each Aj, for 

all M reahzations R^|j. 

7) The alternative, A ^ ' , widi die highest expected objective function, over all M realizations is 

dien selected. 



E ( Z ( A D ' ) ) = ^ I Z ( A D ' , R „ | J I Sj) (6.7) 
m=l 

Z ( A Q ' , R ^ | J I S J ) is the objective function of the posterior best design alternative for 

realization R ^ | j , given Sj. 

8) Steps 3 through 7 are repeated for each of the 2» sample outcomes Sj. 

9) The expected expected objective function of the best preposterior design is calculated by 

B l B ( Z ( A „ 0 ) , = i X l 2 Î ^ P ( S p 
j=l m=l 

10) The prior expected objective function of each alternative is calculated by 

j=l m=l 

The alternative with die highest objective function is die prior best design, A ^ . 

11) The wordi of die sampling pattern is calculated from 

Wordi = E [ E ( Z ( A D ' ) ) ] - E ( Z ( A D ) ) (6.10) 

The steps are identical to those presented in Section 6.3.2.1., except a new step 10 has been inserted. 

This new step carries out die prior analysis using realizations generated during die preposterior analysis. 

Since the ensemble of realizations used in the prior analysis and the preposterior analysis are die same. 



the expected objecdve funcdon for an altemadve is idendcal for both the prior and the preposterior 

analysis. Therefore, using step 10 

E(Z(AL)) = E(Z(ALISW))P(SW) + E(Z(ALISNW))P(SNW) (6.11) 

= ($4.3550 X 10^)(0.05) + ($4.7802 x 10^)(0.95) 

= $4.7590 x 10^ 

and 

E ( Z ( A N L ) ) = E(Z(ANLISW))P(SW) + E(Z(ANLISNW))P(SNW) (6.12) 

= ($3.5501 X 106)(0.05) + ($7.8024 x 106)(0.95) 

= $7.5900 X 10^ 

Therefore, the prior best altemadve is to have no liner. Using the results shown Figure 6-5, the worth of 

data from the expected increase in maximum expected objecdve funcdon is 

W i = E[E(Z(AD'))] - E(Z(AD)) (6.13) 

= [($4.3550 X 106)(0.05) + ($7.8024 x \Q^){0.95)] - $7.5900 x 10^ 

= $40 000 

The worth of the borehole from the expected decrease in the minimum expected regret is 

W 2 = E(Reg(AD)) - E[E(Reg(AD'))] (6.14) 

= $2.4526 X 105 - [($0)(0.05) + ($2.1580 x 105)(0.95)] 

= $40 000 

The worth of the borehole by both die above methods is $40 000. 



PRIOR 
ANALYSIS 

E[ZCA^>]=*4 7590 
E[Res(A^>]=»3 0761 

^=0.05 
P(f 010=0.392 

E[Z<A^>]-*7 589.8 
E[Reo<A^?>S245.26 

Note: All dollors 
ore in thousands 

EtZ<A^IS^>]=«4 355 
ECReB<AJS,̂ >] = *0 

P<FaillSî = 1.0 

EtZCA^Sy>]=«3 550 

ECReB<A^S )̂3=$805.0 

PREPDSTERIDR 
ANALYSIS E[ZCALiS»n,>]=*4 780 
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Figure 6-5: The preposterior analysis for example design for case where realizations are generated during 
preposterior analysis only. 

One problem is that the total number of required realizations Umits the number of sample locations. For 

example, if a minimum of 100 realizations is needed per sample outcome, dien 3 200 realizations would 

be needed for a sampling pattem of five hard measurements. (Recall that there are 32 (ie. 2 )̂ possible 

combinations of sample outcomes for a pattem of five measurements.) The practical upper limit of the 

sampling pattem is six to seven boreholes. It may well be diat phased site investigation programs often 

consider suites of this order of magnitude. 



6.4 SENSITIVITY OF ESTIMATED WORTH OF SINGLE HARD MEASUREMENT TO 

NUMERICAL ARTIFACTS 

There are many numerical parameters which are only artifacts of the methodology used in the 

framework. These parameters affect die estimated worth, W, of a proposed sample. The purpose of 

Section 6.4 is to study the sensitivity of W to these parameters and to determine if they could affect the 

decision of whether a sample is cost effective or not. 

Numerical parameters are used in bodi die deterministic modeling of contaminant tiansport and die 

stochastic generation of the aquitards. Some numerical parameters used in the deterministic modeling of 

contaminant tiansport are 

1) the density of the mesh used in the numerical model to solve for hydrauhc head 

2) the number of particles released at the contaminant source for particle ttacking 

3) the distance of vertical boundaries from the zone of interest 

4) the absolute difference used to stop iterative head calculations (used in MODFLOW). 

In this thesis, it is assumed that the correct values of the above parameters have been set by sensitivity 

analyses and that the deterministic tiansport of contamination is correcUy modeled. 

The remainder of this section is concerned with numerical parameters that affect the generation of the 

aquitards. These parameters are 

1) the number of realizations generated per sample outcome 

2) the starting seed used in the random number generator 

3) the number of the first aquitard block generated 

4) the number of blocks into which the aquitard is discretized. 



The sensitivity of the worth of a single borehole to each of the above parameters will be discussed below. 

The total effect of these numerical parameters on the estimated worth will be discussed last. 

6.4.1 THE NUMBER OF REALIZATIONS GENERATED PER SAMPLE OUTCOME 

In the example design, 100 aquitard realizations were used to estimate W. However, W is dependent 

upon the number of realizations used to estimate it. In the example presented here, as the number of 

reahzations increases W decreases and becomes asymptotic after 50 realizations (Fig 6-6); however, there 

remains an irreducible fluctuation. Therefore, it is assumed that if enough realizations are generated W 

wiU be unbiased, but diere wiU be a random error. The standard deviation of die random error, a^, is 

estimated to be $830. This corresponds to a 2% fluctuation from die average W of $44 200; dierefore, 

for the example design, die random error will have a small effect on W. 
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Figure 6-6: Sensitivity of the worth and median failure time to number of realizations per sample 
outcome. 

6.4.2 STARTING SEED USED IN RANDOM NUMBER GENERATOR 



Ideally die realizations generated by die SIS algoridim should be completely random. Unfortunately, 

they are not because they are dependent upon the U(0,1) random number generator. The U(0,1) random 

number generator generates pseudo-random, rather than truly random, sequences of numbers which are 

dependent upon a starting seed. The pseudo-random sequence changes for every different starting seed. 

The result of this incomplete randomness is that the ensemble of realizadons generated with one starting 

seed will be different from an ensemble generated widi anodier starting seed. Every different ensemble 

of realizations will yield a slighdy different probability of failure and a different set of failure times, and 

hence, a different estimated worth for a sample. 

As die starting seed increases, W moves randomly about a constant mean value (Fig 6-7). Therefore, as 

in die above case, varying the starting seed is assumed to create a random error, but will not bias W. The 

standard deviation in W,a^, is estimated to be $1 440, which corresponds to a 3.5% fluctuation about die 

average W of $41 500. Therefore, for diis example die random error will again have a small effect on W. 

10 ' 10 * 10 • 10 • 1 0 ' 10 • 10 • 
Storting Seed 

Figure 6-7: Sensitivity of die worth to the starting seed used in die random number generator. 



6.4.3 NUMBER OF FIRST AQUITARD BLOCK GENERATED 

The realizations are also dependent upon a congruendal random generator used to determine the order in 

which the aquitard blocks in a realization are generated. The order is dependent upon the numl)er of the 

fh-st block generated, which is supplied by the user. A different order, and consequendy a different set of 

realizations, will result for each different starting block number. 

W again varies randomly about a constant mean as the first aquitard block generated changes (Fig 6-8). 

Therefore, the starting block number will not bias W, but will create a random error with standard 

deviation equal to $2 080. This corresponds to a 4.4% fluctuation about the average W of $44 500. 
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Figure 6-8: Sensitivity of die worth to first aquitard block in starting padi. 

6.4.4 NUMBER OF BLOCKS INTO WfflCH AQUITARD IS DISCRETIZED 

W is dependent upon the number of blocks into which the aquitard is discretized. Fortunately, W varies 

randomly around a mean of $42 760 (Fig. 6-9). Therefore, at least for diis example, W is unbiased by die 



number of aquitard blocks, but diere is a random error widi a standard deviation of $2 630, which is 6% 

of die average worth. 

o 
o 
O n o 

o_l , , , , , , 
15 20 25 30 35 40 45 

Number of Aquitard Blocks 

Figure 6-9: Sensitivity of W to the number of blocks that the aquitard is discretized into. 

6.4.5 COMBINED AFFECT ON RELIABILITY OF DATA WORTH 

For die example design case studied here, if die numerical parameters are set correcdy, W will be 

unbiased, but each will contiibute to a random error in it. Assuming that die errors caused by any one 

parameter are independent of the others and normally disttibuted, then the standard deviation of the total 

random error, O^, in W can be estimated by the central limit theorem. Therefore, 

n 
a „ 2 = X a , 2 (6.15) 

where G ^ ^ jg variance in W caused by parameter j . For die example design presented here. 



= ($830)2 + ($ 1 440)2 + ($2 080)2 + ($2 060)2 

= ($3 400)2 

The is only $3 400 compared to an overall average W which is in excess of $40 000. Therefore, for 

the example presented here the total random error in W is small compared to the average W. The 

magnitude of the random error may be site dependent; therefore, it should be estimated for each site. In 

addition, possible bias in W due to numerical artifacts should be checked for each site. 

6.5 PREPOSTERIOR ANALYSIS OF A SOFT, AREAL SURVEY 

Section 6.5 discusses how the framework is used to evaluate die worth of a soft, geophysical survey 

which covers a large area. The survey must cover the entire area where potential windows could cause 

not only fadure, but a failure which would alter the prior best design alternative. These latter type of 

windows are denoted as Wfj. Some windows may allow failure (i.e. contamination to reach die lower 

aquifer), but the cost of the failure may not be high enough to change die prior best design alternative. 

As wUl be shown in Chapter 8, diis area is not fixed, but is a function of odier factors such as die cost of 

failure. 

Since the survey covers the entire area where Wf̂  may occur, it is assumed that the survey will sample 

any such window, given diat one exists, widi some probability, P(Swj^lWfj,). A false outcome may also 

be possible. Its probability is denoted by P(SwjjlNWfj). These two probabilities represent die likelihood 

functions (or the precision pj and P2) of die survey. They must be estimated a priori for the data worth 

analysis to be carried out; however, this will not be a simple task for two reasons. The first is that 

geophysicists generally do not quantify the precision, or quality, of geophysical surveys in these terms 

(Cross, 1992). Therefore, diere are no readily available estimates. Secondly, diey depend on may 



factors which may be poorly understood, such as stratigraphy and material properties of geological 

materials. 

The above assumption allows the multivariate Bayesian updating problem described previously for hard, 

point measurements to break down to a univariate case. The worth of the survey can then estimated 

using die mediodology for univariate random variables outUned in Chapter 2. The following information 

is needed to carry out die analysis: the prior probability of failure, the updated probability of failure for 

each sample outcome, the expected value of the objective functions for the alternatives for both failure 

and no failure, and the lUceUhood functions of the measurement. As previously mentioned, the likelihood 

functions of the survey must be estimated. Al l the remaining information is calculated or derived from 

the prior analysis, which is carried out by the framework. 

The prior analysis direcdy evaluates the prior probability of failure and the expected value of the 

objective functions for the alternatives for both failure and no failure. Note that the expected values of 

die objective functions of the design alternatives now have a different form from diat used for the hard, 

point measurements. Instead of simply calculating the total expected value of an altemadve, such as 

E(Z(A(^)), the expected value is calculated twice for each alternative, once for the realizations that fail 

and once for the realizations that don't fad, ie. E(Z(AclFailure)) and E(Z(AçlNo Failure)). Recall, from 

Section 6.3.2 that the expected values of the objective functions for the different alternatives, given 

failure or no failure, remain unchanged by sampling. 

The prior probabdity of failure is updated by Bayes' equation for the univariate case, using the likelihood 

functions. The probability of sampling different outcomes is calculated using the likelihood functions 

and the prior probabUity of failure. An example analysis is carried out for the case study in Section 8.5. 

Note, because of the uncertainty in the estimated lUcelihood functions, there will be uncertainty in the 

estimated worth of a geophysical survey. Therefore, instead of concenti-ating on die actual worth of a 



geophysical survey, the break even point, or minimum precision for the survey to be cost effective, will 

be estimated. The minimum precision of die survey should be much easier to estimate dian die actual 

precision of the survey. 

6.6 MODIHCATION TO FRAMEWORK TO HANDLE DATA WORTH PROBLEMS IN OTHER 

DISCIPLINES 

The framework forms a foundation for addressing data worth questions in both groundwater and other 

disciplines, that deal with heterogeneous geological envkonments. For example, if one were interested in 

determining the patterns of hydraulic conductivity within an aquifer, die framework could be easily 

modified to deal with this situation. Hydraulic conductivity is generally assumed to behave as a 

multivariate lognormal distribution. The framework could be modified to handle it by replacing the SIS 

algorithm with a turning bands algorithm. Flow or transport could still be simulated using the numerical 

model. 

It could also be modified for use with exploration programs used in petioleum reservoir engineering. The 

major factor in controlling flow in a petioleum reservoir is often patterns of sand/shale continuity. This 

factor is particularly ttue in enhanced oil recovery programs. The SIS algorithm could still be used to 

simulate die reservoir geology. The major modification would be replacing die numerical contaminant 

tiansport model with a numerical multiphase flow model. 

One could address a question such as: Will the increased recovery and information gained from a new 

well justify the cost of installing the well? The framework could be particularly applicable to petioleum 

engineering because the economic consequences of decisions are high. An oil well can cost $10's 

millions, but increased recovery could be worth $l(X)'s millions. In addition, die economic consequences 

are more stiaightforward to quantify dian diose in groundwater contamination because one does not have 



to deal with factors which are hard to put a monetary value on, such as die loss of a river for recreational 

use. 

It would be sttaight forward to modify die framework to address data worth questions in mine 

development. For this case, only an algoridim for simulating ore bodies would be requked. Again, if 

grade/tonnage of the ore body behaved as lognormal random variable, the SIS algorithm could be 

replaced by a turning bands algorithm. One could investigate whether one should spend (a) $100 000 on 

diamond drill holes, (b) more than a $1 million on building a shaft and collecting a large bulk sample, (c) 

nothing and build the mine, or (d) nothing and abandon the site. Mining could be a very appropriate area 

to adopt the framework for three reasons. The first is that potential mine sites often have much data 

available. Secondly, geostatistics has been employed for a number of years to many types of mineral 

deposits; therefore, the geostatistical nature of ore bodies is better understood than diat of geological 

sti-atigraphy. Finally, diere is a need because many poor decisions have been made in mine development. 

Often $10's of million have been spent developing a mine, only to find that the mine is uneconomic. 

6.7 SUMMARY OF CHAPTER 6 

Chapter 6 outiines how the framework evaluates die worth of a sampling program using a design example 

which involves two dimensional contaminant tiansport. The framework can only direcdy evaluate the 

wordi of hard, point measurements. Soft, point measurements cannot be handled. However, die 

framework can be used to estimate the worth of a soft, geophysical survey which covers the entire area 

where windows can cause a failure which alters the prior best design alternative. 

There are two mediods by which realizations might be generated by die SIS algoridim for die framework 

to estimate W. In die first mediod, realizations are generated in both die prior and preposterior analysis. 

This mediod was rejected because noise in die SIS algorithm causes die data worth calculations to break 



down. In die second mediod, realizations are generated during the preposterior analysis and are "reused" 

in the prior analysis. This method leads to correct results and was selected for use in this thesis. 

The estimated worth of a hard measurement is sensitive to numerical artifacts in the SIS algorithm. 

However, for the example presented here, this sensitivity is very small compared to average value of the 

estimated worth. 

The framework could be modified to handle odier types of data wordi problems in both hydrogeology and 

other disciplines. 

6.8 NOTATION 

Ajy prior best design alternative 

Ap' posterior best design alternative 

A L liner alternative 

A N L " ° li"®"" alternative 

Bg barometiic efficiency 

h hydrauhc head 

hydraulic conductivity in x dkection 

Ky hydrauhc conductivity in y direction 

mj estimate of mean of I(x) 

NWfj no window exists which causes failure that changes prior best design, A] 

Pj air pressure 

Pi probability of sampling a window, given that one exists 

P2 probability of sampling a window, given that one does not exist 

Reg(Aj) regret of alternative A; 



Rn,ij m* aquitard realizadon wliicli is condidon on sample outcome Sj 

Sj j * sample outcome 

W worth of data 

Wfj window exists which causes failure and changes prior best design, 

W J worth of data from the expected increase in the maximum objective function 

W2 worth of data from the expected reduction in minimum expected regret 

Z objective function 

Y specific weight of water 

Hi mean of indicator random variable I(x) 

Xi correlation length of indicator random variable I(x) 

a„2 variance of W 

2 variance of W caused by parameter j 



CHAPTER?: GENERIC DESIGN CASE: A SENSITIVITY ANALYSIS OF DATA WORTH 

7.1 INTRODUCTION 

Chapter 7 presents a sensitivity study of the different factors affecting the worth, W, of a single, point, 

hard measurement. The factors include economic, hydrogeological, and geostatisdcal parameters needed 

to carry out the data worth analysis, as well as die presence, or absence, of existing data. 

Economic parameters include die discount rate, known benefits, known costs and cost of failure for all 

alternatives. The hydrogeological parameters include the three-dimensional geometry of the 

hydrostiatigraphic units, the distribution of hydraulic conductivity and porosity throughout each unit, and 

the hydraulic boundary conditions. The geostatistical parameters include the prior estimate of the mean, 

mj, the correlation length, Xj, and the confidence in mj. 

The major purpose of diis study is to present an analysis of how and why different factors can affect W. 

The secondary purpose is to show how sensitive W is to errors in parameter estimates. The effect of diis 

sensitivity on the decision of taking a measurement will be discussed briefly. A measurement will only 

be taken if its estimated wordi is greater than its cost. However, this concept will be ignored until 

Chapter 8. The decision of whedier a measurement should be taken is covered in detail in Chapter 8 

using the case history. 

W is quantified in this Chapter in terms of method 3 because it is easier to visualize how different factors 

affect W. Method 3 was presented in Section 2.4.2.3. Recall from equation (2.44) diat W was quantified 

by: 

W = E[E(Z(Aj)'IS)) - E(Z(ADIS))] (7.1) 



where, 

- is the prior best design 

- A Q ' is the posterior best design 

- Z(ADIS) is the objective function of Ap, but evaluated with additional sample information S 

- E(Z(Ao)) is the expected value of ZCAp). 

For the case of two sample outcomes, Ŝ v and S^w, the above equation can be rearranged to form: 

W = {E[Z(AD'ISW)] - E[Z(ADISW)]}P(SW) + (7.2) 

{E[Z(AD'ISNW)] - E[Z(ADISNW)]}P(SNW) 

The first set of terms on the right hand side of the above equation represents the contribution of to W . 

It is the product between the probability of sampling the window, PCS^v), and the difference between 

E[Z(AJ)'ISW)] and E[Z(Ai5lS^)]. Simdarly, the second term on die right hand side represents the 

contribution of to W . 

It is important to note diat conclusions drawn in this Chapter may not be exti-apolated to every design 

problem. Parameters which are numerical artifacts of the methodology have already been discussed in 

Chapter 6. The sensitivity study will be carried out using the two contamination scenarios presented 

below. 

7.2 T W O C O N T A M I N A T I O N S C E N A R I O S 

7.2.1 S C E N A R I O N U M B E R 1 



Scenario 1 is a layered system consisting of an unconfmed upper aquifer, an impermeable aquitard and a 

lower aquifer (Fig. 7-1 and 7-2). Groundwater contamination has been discovered in die unconfined 

aquifer. A municipal water supply well is located in the lower aquifer 400 m down gradient from the 

contamination. The well is pumping at a rate of 5 x 10"̂  m^s (79 US gal/min). The clay aquitard is 

known to exist at the water supply well, but its presence is uncertain elsewhere. 
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Figure 7-1: Plan view of contaminated aquifer system. 

If the contamination reaches the lower aquifer, then the municipal water supply well will be lost and an 

expensive remediation program wdl be necessary to protect furdier water supply wells. Failure is defined 

here as contamination reaching any part of the lower aquifer. The cost of failure is assumed to be $40 

million. A decision must be made whether to contain the contamination, A^ , widi pumping wells, or to 

provide no containment, Aj^^, and hope for die best. The containment will be long-term, but its net 



present cost is estimated to be $4 million. It is assumed to be 100% effective. No benefits are 

associated with either altemadve and there are no known costs associated with AJ^Q. The costs and 

benefits for die alternatives are summarized in Table 7-1. A discount rate of 10% is used in the analysis. 
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Figure 7-2: Cross section through contaminated aquifer system. 
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Alternative Known Known Costs Cost of Failure 
Benefits (millions $) (millions $) 

(millions $) 
Ac 0 4. 0 

A N C 0 0. 40. 

Table 7-1: Costs and benefits for the containment and no containment alternatives. 

The boundary conditions are shown in die cross section du-ough die aquifer/aquitard system (Fig. 7-2) 

and the hydrogeological parameters are summarized in Table 7-2. The correlation length, and 

estimated mean, mj, are 50 m and 0.03, respectively. The confidence in the prior estimate of mj is 

equivalent to 15 independent hard data. The boundary conditions are 100 m away from the zone of 

interest. Recall, that windows are only generated in the zone of interest. Note that the downward vertical 

gradient across the aquitard is local in nature because it is due entirely to die pumping well. 



Layer Parameter Value 
Unconfined Aquifer Kh 2 X 10-5 m/s 

Kv 2 x 10-5 m/s 
Tiiickness 20. m 
porosity 0.3 

Aquitard Kv 10-'" m/s 
Thickness 10. m 
porosity 0.4 

Confined Aquifer Kh 8 X 10-5 m/s 
Thickness 20. m 
porosity 0.3 

Table 7-2: Hydrogeological parameters used in Scenario 1. 

Two layers of nodes were used in the upper aquifer while one layer of nodes was used in the lower 

confined aquifer. The clay aquitard was accounted for using a leakage layer. The node spacing in both 

horizontal dkections is 25 m. The contamination source is represented by a series of particles released 

along an east/west horizontal Une in the middle of the upper aquifer. Numerical parameters used in die 

stochastic simulations are summarized in Table 7-3. 

The value of W is evaluated for a single borehole taken at point B, 50 m north and 25 m west of the 

municipal water supply well (Fig. 7-1). 

From the prior analysis, best design alternative is no containment, Aj^^^. Its expected objective function 

is E[Z(Af^Q] = -$2.45 million. The expected objective function for die containment alternative, 

E[Z(Ac)] = -$4 million. W is estimated to be $25 700. The prior probability of failure is 0.38 and die 

median failure time is 21.0 years. 

Parameter Value 
number of realizations per sam. outcome 
first aquitard block generated 
# of aquitard blocks 
starting seed 

100 
39 
768 

687453 

Table 7-3: Numerical parameters used in Scenario 1. 

7.2.2 CONTAMINATION SCENARIO 2: 



The second Scenario is idendcal to die first, except for the foUowing: no conditioning data are present, 

the well is absent, nij is estimated to be 0.01, and the boundary condition h4 on the south side of die 

lower aquifer has been reduced from 95 m to 90 m. Therefore, the vertical gradient is forced entirely by 

the lower boundary condition, rather than die pumping well. The definition of failure is still 

contamination of any part of die lower aquifer. 

From the prior analysis, E[Z{AQ)] = -$4 million and E[Z(Ai^c)] = -$3.01 mUlion. Therefore, the prior 

best design is again to have AJ^Q. The value of W for the same borehole as in the first scenario is 

estimated to be $55 600. The prior probabihty of failure is 0.28 and the median failure time is 17.4 

years. 

7.3. SENSITIVITY TO ECONOMIC PARAMETERS 

The sensitivity of W to die known cost of containment, the cost of failure, and the discount rate are 

studied below for scenario 1. 

7.3.1 KNOWN COST OF CONTAINMENT (SCENARIO 1) 

W can be very sensitive to the known cost of containment, C^ (Fig. 7-3). Attention is drawn to three 

points D, E, and F in Figure 7-3 where C^ equals $2.39, $2.45, and $5.27 mUlion, respectively. W is zero 

for Cj, below point D, but rises rapidly to a maximum of $60 000 at point E. W dien more gradually 

drops off to $0 at point F where C ,̂ = $5.27 mUlion. 

The significance of the three containment costs at D, E, and F can be visualized in Figure 7-4. Here, the 

expected prior objective functions of the two alternatives are shown in solid lines. The expected 



expected objective function of the posterior best design, E[E(Z(A]) ' ) ) ] , is shown in a dashed Une. Recall, 

that W is positive only if E [ E ( Z ( A Q ' ) ) ] is greater than the expected objective function of the prior best 

design, E[Z(Aj))]. W increases with this difference. 

The containment cost at point E represents where E(Z(Ac)) = E(Z(AJ^Q)) (Fig. 7-4). Below E, A^. is die 

best alternative, while above E, Aj^^ the best alternative. Point E also marks an instability in the data 

worth analysis. Any data worth analysis carried out near it can be unreliable. There will always be 

uncertainty in most parameters, such as C .̂. Therefore, if C ,̂ is estimated to be close to point E, it is 

possible that the true value of W could be dramatically different from its calculated value. 

This instability in W , at the point where E(Z(Ac)) = E(Z(Aj^(.)), will be seen for different parameters 

throughout this sensitivity study. 

o 

Known Costs for Containment (f) 

Figure 7-3: Sensitivity of W to the known cost of containment. 

For a positive W , the ttue cost of containment must lie between $2.45 mUlion (E) and $5.27 million (F). 



It is informative to graphically examine the effect of each sample outcome on the prior and posterior 

objecdve functions of die alternatives, and hence on W. The effect of sampling a window, Ŝ yr, is shown 

in Figure 7-5. Recall that determines that failure will occur with certainty. The prior and posterior 

objective functions are again shown in solid and dashed lines, respectively. Note that Z(Ac) is constant, 

therefore, E(Z(Aç)) = E(Z(AclSw))- For between E and F, Ŝ v results in a change in decision. A Q 

changes from Aj^j^ to A^. when the certainty of failure is determined. Sampling a window stops a poor 

design from being carried out. For C ,̂ greater than F and less than E , Ŝ ^ has no effect on Ap. 

Known Costs for Contoinnnent (S) 

Figure 7-4: The expected prior objective function of the two alternatives and the expected expected 
objecdve function of the posterior best design alternative versus known cost of containment. 



Known Costs for Containment ($) 

Figure 7-5: Tlie effect of sampling a window on the objecdve functions of the different alternatives. 

Similarly in Figure 7-6, S]sĵ , only results in a change in the prior design alternative for between D 

and E. For C ,̂ greater than E and less than D, Sj^^ has no effect on the prior design decision. 
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Figure 7-6: The effect of sampling no window on the objective functions of the different alternatives. 



Consequently, for C .̂ below D and above F, neither or affects A Q and W = $0. W > $0 for Cc 

between D and F. For C .̂ between D and E, only S^w affects A ^ , while for C^ between E and F, only 

affects A Q . Recall from Chapter 2, that a sample only has worth if its outcome results in a change in A Q . 

7.3.2 COST OF FAILURE (SCENARIO 1) 

The value of W exhibits a similar sensitivity to the cost of failure, Cf (Fig 7-7). W is very unstable at 

point E (Cf=$67 million) where A ^ changes (E(Z(Ac)) = E(Z(ANC)) (Fig. 7-8). For Cf between E and F 

(Cf=30.4 million) W drops from a maximum to zero with less than a 3% change in Cf. For Cf between D 

(Cf = $30.4 million) and E , W rises more slowly. For positive W , $30.4 million < Cf < $65.4 million. 

Figure 7-7: W versus cost of failure. 
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Figure 7-8: Tlie expected prior objecdve funcdon of die two altemadves and die expected expected 
objecdve funcdon of the posterior best design alternative versus cost of failure. 

7.3.3 DISCOUNT RATE (SCENARIO 1) 

The value of W is very sensitive to the discount rate (Fig 7-9). It rises from $0 at i=0.066 (D) to $110 

000 at i=0.0675 (E). It then gradually drops to zero at i=0.114. The maximum W at i=0.0675 (E) again 

represents an instability point for W where Ap changes (Fig. 7-10). For a positive W, the discount rate 

must lie between 0.0675 (E) and 0.114 (F). 
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Figure 7-9: W versus discount rate. 

Discount Rote (decinnal %) 

Figure 7-10: The expected prior objective function of the two alternatives and the expected expected 
objective function of the posterior best design alternative versus discount rate. 

The change in W with discount rate demonstiates an important point. Different parties may view 



discount rates differendy, and consequendy can get large differences in W. For example, an owner 

operator of a land fill will be interested in making a profit. Therefore, future cost could be discounted 

back into present day dollars by some acceptable market discount rate. At a discount rate of 0.1, W is 

$25 700. However, for an environmentalist, a future failure is just as important as present day failure. 

Therefore, an envh-onmentalist would be more inclined to use a discount rate of 0 and would evaluate W 

= $0. For a discount rate of 0, the best prior alternative is A^. under all circumstances. 

7.4 SENSITIVITY TO HYDROGEOLOGICAL PARAMETERS 

The sensitivity of W to the vertical hydraulic conducdvity (K^) of the clay aquitard, the horizontal 

hydraulic conductivity (K,,) of the lower aquifer, and the fixed boundary condition (h4) are studied using 

Scenario 2. 

7.4.1 VERTICAL HYDRAULIC CONDUCTIVITY OF AQUITARD (SCENARIO 2) 

The value of is quantified here in terms of a leakage coefficient, L^,, which is defined as K divided by 

the aquitard thickness. 

At low Lj,, W is relatively constant at over $55 000 (Fig. 7-11). However, W drops to $0 as L^, increases 

above 10"̂  1/s. As the aquitard becomes more permeable at high L^., contamination can peneû^ate the 

aquitard, regardless of the presence or absence of windows. This is shown by the prior probability of 

failure climbing to 1 at high L ,̂ (Fig. 7-11). When die probability of failure is 1, it is certain that die best 

design is Ac. and W is zero. 
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Figure 7-11: Tlie sensitivity of W and prior probability of failure to aquitard hydraulic conducdvity for 
Scenario 2. 

Therefore, for this case it is important to know if L^,, or , is above or below a threshold value. 

Knowing its actual value is less important. 

7.4.2 HORIZONTAL HYDRAULIC CONDUCTIVITY OF LOWER AQUIFER (SCENARIO 2) 

The horizontal hydraulic conducdvity of the lower aquifer has been quandfied in terms of die 

ttansmissivity, T, which is equal to the product of die hydraulic conducdvity times the aquifer diickness. 

At high T, W is relatively insensitive to changes in T (Fig 7-12). As T decreases, W starts to decrease 

more rapidly and then becomes zero at T = 10-5 (mys). The reason for this decrease lies in die 

interaction between the downward vertical gradient across the aquitard and die transmissivity of the 

lower aquifer. At very low T, die lower aquifer can transmit littie water and there is litde leakage, and 

hence litde vertical gradient across the aquitard. With litde vertical gradient across the aquitard, diere is 

littie tendency for contamination to be pulled through it to the lower aquifer and for failure to occur, even 

if a window is present. Since fadure cannot occur it is certain that the best design is A^Q and W is zero. 



Transmissivity of Lower Aquifer (m**2/s) 

Figure 7-12: Tiie sensitivity of W and prior probability of failure to the transmissivity of die lower 
aquifer. 

However, as T increases, a cridcal point is reached (T = 10"'* m /̂s) when a significant vertical gradient 

across the aquitard is created and significant leakage can occur dirough a window. The prior probability 

of failure increases from 0 to 0.168 and die prior design alternative of A^c could now be in error. W 

then increases from $0 to $26 700. However, as T increases further, it has little affect on the prior 

probability of failure. At this point, the probability of failure is controUed predominandy by the presence 

or absence of windows in the aquitard and not by the vertical gradient. 

Therefore, it is more important to know whether T, or Kj,, is above or below a critical value rather than 

knowing its actoal value. However, for diis case, the ti-ansition to the critical value is not as sharp as was 

die case for die hydraulic conductivity of the aquitard. Alternatively, if a sttong vertical gradient is 

known to exist across the aquitard, knowledge of T, or K,,, of the lower aquifer may not be important, at 

least for the definition of failure used here. 

7.4.3 CONSTANT HEAD BOUNDARY CONDITION, h4, IN LOWER AQUIFER (SCENARIO 2) 



Several different boundary conditions could affect the flow model and the tiansport of contamination. 

The two Scenarios only account for a few of die possible boundary conditions. For example, the upper 

boundary could be a recharge boundary rather than a water table boundary and the vertical boundaries 

could be flow boundaries radier dian constant head boundaries. However, to simpUfy the situation, only 

the constant head boundary condition h4, will be investigated here. Al l odier boundary conditions are 

kept constant. 

The value of h4 was gradually reduced below the boundary condition, hj, on the aquifer above, increasing 

the downward vertical gradient across the south end of the aquitard. The value of W is plotted versus the 

difference in h3 and h4 (Fig. 7-13). The results are very similar to those encountered in the last section in 

the study of the hydraulic conductivity of the lower aquifer. At very low differences in head across the 

aquitard, UtUe vertical gradient exists, and failure does not occur. Consequendy, W equals $0. As the 

difference increases to 1 m, a critical vertical gradient is achieved and failure can occur. At a head 

difference of two meters W suddenly increases to approximately $8 (XX). W then increases more or less 

linearly with the difference in hydraulic head. 

Therefore, it is critical to know if the vertical gradient across die aquitard is above a critical value. Since 

W increases with the difference in hg and h4, if hg is known it can be important to know the actual value 

ofh4. 



h3 - h4 (m) 

Figure 7 - 1 3 : Tiie sensitivity of W to tiie constant iiead boundary condidon in lower aquifer. 

7 . 5 SENSITIVITY TO GEOSTATISTICAL PARAMETERS 

The sensitivity of W to the prior estimate of the mean, mj, the correlation length Xj, and the prior 

confidence in m[ are presented in this section using Scenario 1 and 2 . 

7 . 5 . 1 PRIOR ESTIMATE OF M E A N OF I(x) (SCENARIO 1 ) 

The value of W increases almost linearly with mj from $ 0 at mj = 0 to over $ 1 0 0 0 0 0 for mj = 0 . 1 5 (Fig. 

7 - 1 4 ) . Data worth is totally due to sampling a window, S^. S^ again switches A Q from Aj^^. to A,-. 

(Fig 7 - 1 6 ) . S f ^ makes no contribution to W for all tested because, A^Q is the best alternative 

regardless of die sample outcome (Fig. 7 - 1 5 ) . 



Figure 7-14: Sensitivity of W to tiie prior estimate of the mean. 
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Figure 7-15: Effect of sampling no window on the prior and posterior objecdve funcdon of the 
containment and no containment alternadves. 
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Figure 7-16: Effect of sampling a window on the prior and posterior objective functions of the 

containment and no containment alternatives. 

The reason for this increase can be visualized as follows. W from equation (7.2) is 

W = {E[Z(AD'ISW)] - E[Z(ADISW)]}P(SW) + 

{E[Z(AD'ISNW)] - E[Z(ADISNW)]1P(SNW) 

(7.3) 

The prior design decision is no containment, hence Aj , = AJ^Q. If a window is sampled, A^,' = A ^ and if 

no window is sampled then A Q ' = A^^Q. Therefore, the above equation can be rewritten as 

W = {E[Z(AclSw)] -E[Z(ANciSw)])P(Sw) + 

{E[Z(ANCISNW)] - E[Z(ANCISNW)]}P(SNW) 

(7.4) 

Note that die second difference term is zero, and the above equation simplifies to 



W = {E[Z(AclSw)] -E[Z(ANCISW)] )P(SW) (7.5) 

From Figure 7-16, one can see that the difference in E[Z(AclS^)] and E[Z(A]^clSxv)] is almost constant. 

Therefore, the increase in W with mj is caused by the increase in P(S^) with mj (Fig. 7 -17 ) . 

O 
cs-

•a 
c 

cn 

I s . 

CO 

o 

J3 
O 

O 

CL 

O 

o-
O. 00 0.05 0.10 0.15 

prior estimate of mean 

Figure 7-17: Probability of sampling a window versus die mean chance of a window. 

7.5.2 CORRELATION LENGTH of I(x) (SCENARIO 2) 

The value of W rises from $0 at = 40 m to over $50 000 at A., = 45 m (Fig. 7-18). W dien rises 

slighdy, but then slowly drops off as increases. As A,; increases, the realizations become increasingly 

constrained resulting in fewer windows. Consequendy, the prior probability of failure decreases (Fig. 7-

18). At low XJ, the probabihty of failure is so high that A -̂. is the only viable alternative, regardless of the 

outcome of the sampling program, and W = $0. At A,j = 45 m, die probability of failure is low enough 



that Aj) becomes A ĵç.. W jumps to over $50 000 because samphng a window wdl find that A^Q was a 

poor choice. 

For this case, it is more important to know whether A-j is above or below a cridcal threshold, rather than 

its actual value. 

The decrease in W with increasing Xj at higher values of A,j is conttadictory to what might have been 

expected. Intuitively, one would expect that W would increase with Xj. As A-j increases, information 

from the sample can be extrapolated over a larger area and the effect of the sample on the system 

increases. However, die ti-end in W has more factors affecting it dian simply A,i. It is worth noting, 

however, that in die case history described in Section 8.4.3, W increases with A,j. 

Correlation Length (m) 

Figure 7-18: Sensitivity of W and prior probability of failure to correlation length. 

7.5.3 CONFIDENCE IN THE PRIOR ESTIMATE OF MEAN (SCENARIO 1) 

Recall, that the prior confidence in mj is quantified by relating it to an equivalent number of prior 



independent hard measurements, n^. The value of W initially increases with increasing confidence in mj. 

or Ug, but then t)ecomes asymptotic for n^ greater than 15 (Fig 7-19). Therefore, for scenario 1 the 

confidence in the prior estimate of the mean is relatively unimportant. 
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Figure 7-19: Sensitivity of W to die prior confidence in the estimates of die geostatistical parameters. 

As with die correlation length, W reacts in an opposite manner to what might have been expected. As n^ 

increases, die measurement outcome has less affect on the updated estimate of die mean (Fig. 7-20). As 

the measurement has less effect on the updated mean, one would expect that W would decrease. This 

paradox is explained below. 
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Figure 7-20: The updated mean versus n^. 

Since W is completely due to S^, = Aj^^' and Aj)' = A^, given S^, equation (7.2) simplifies to 

W = (E[Z(AclSw)] -E[Z(ANCISW)]}P(SW) 

P(SYV) is controlled by the prior estimate of mj and and is independent of n^. Therefore, the increase in 

W is due completely to die difference between E[Z(ACISYV)] and E[Z(Aj^(-.ISw)], which decreases for 

increasing n^ (Fig. 7-21). 

E[Z(AclS^)] stays constant, but E[Z(Aj^(-.IS^)] decreases. The objective funcdon for A^^Q will have the 

following form since its known costs and known benefits are equal to zero: 

PfCf(t) 
(1 +iy 

(7.6) 

The cost of failure, Cf(t) is fixed and the probability of failure, Pf, remains constant at one. The only 



variable is the failure time, t. Therefore, the decrease in E[Z(Af^c''5w)l increasing n̂ . is due entirely 

to a corresponding increase in t with n^ (Fig. 7-21). 
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Figure 7-21: Effect of sampling a window on the objecdve functions 

The reason for this decrease in t lies in the interaction between the vertical gradient through the window 

and the velocity in the upper aquifer at which the flow approaches the window. At high n^, when the 

updated mean approaches its prior value of 0.03, only 3% of the aquitard blocks will represent windows. 

Leakage wdl be concentrated through a few windows. Consequendy, die vertical gradient through the 

windows will be strong. Therefore, the contaminant will be transported more quickly as it approaches 

towards and ti-avels through the window in die aquitard. At n^ =1, die updated mean is 0.515; dierefore, 

approximately 50% of die blocks will represent windows. Leakage through the aquitard is distributed 

through many windows; dierefore, the vertical gradient pulling contaminant towards and through the 

window is small. Hence contaminants wiU not travel as quickly towards and through the window. 

7.6 SENSITIVITY TO EXISTING HARD DATUM 



The sensitivity of the worth of a single borehole to an existing datum was studied for Scenario 1. The 

worth was calculated of single hard measurements taken on a 25 m spacing along an east west line 

dirough die hard datum located at the well. These results are shown in Figure 7-22. The well is located 

at 512.5 m. As expected, W is zero at die well, where the existing hard datum is located. There is no 

point in taking a measurement at a location where the aquitard is already known to exist with certainty. 

As die measurement gets further from die existing datum, uncertainty about the presence, or absence, of 

aquitard increases and hence, W increases. However, on eidier side W reaches a maximum about 50 m 

from the datum and then decreases to zero. As windows get further from the well the vertical gradient 

induced by the well through diem will decrease and failure is less likely to occur, accounting for the 

decrease in W. Note that the plot of W versus distance is not symmetric about the existing datum. This 

lack of symmetry is because the well does not lie in the middle of the path of contaminants, but off to the 

right hand side. 
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Figure 7-22: Effect of an existing hard datum on die worth of single borehole taken along an east-west 
line dirough die datum. 

7.7 SUMMARY OF CHAPTER 7 



Chapter 7 presents a sensitivity analysis of the worth of a single, hard measurement to economic, 

hydrogeological, and geostadsdcal parameters. The economic parameters include the cost of failure, the 

discount rate, and the known cost of containment. The hydrogeological parameters include a constant 

head boundary condition in lower aquifer, the vertical hydraulic conductivity of die aquitard, and the 

horizontal hydraulic conductivity of the lower aquifer. The geostatistical parameters include the 

correlation length, the mean, and the confidence in the estimate of the mean. 

The worth is much more sensitive to the economic parameters than to the geostatistical or to the 

hydrogeological parameters. For the hydrogeological parameter in general, it is much more important to 

know whether the value of the parameter is above or below some threshold value, rather than knowing its 

actual value. For the geostatistical parameters, the wordi is relatively insensitive to the correlation length 

and the confidence in the prior estimate of die mean, but is sensitive to die estimate of the mean. As die 

measurement point approaches an existing datum point, spatial correlation causes W to decrease until 

W=$0 where the measurement and existing datum coincide. 

The estimated worth of a measurement can be unstable when the objective function of the prior best 

design alternative is close in value to that of anodier prior design alternative. 

Different parties, which view discount rates differendy, may get very dtfferent estimates of W. 

7.8 NOTATION 

Ac containment alternative 

prior best design alternative 

posterior best design alternative 

A, no containment alternative 



Cj. cost of containment 

Cf cost of failure 

h hydraulic head 

i discount rate 

hydrauhc conductivity in horizontal direction 

hydraulic conductivity in vertical direction 

Lg leakage coefficient 

mj estimate mean of l(x) 

Ug number of equivalent measurements 

Pf probability of failure 

outcome of sampling no window 

outcome of sampling a window 

t time 

T transmissivity 

W wordi of a sampling program 

Z objective function 

A, I correlation lengdi of indicator random variable I(x) 

HI mean of indicator random variable I(x) 



CHAPTERS: SAVANNAH RIVER SITE CASE HISTORY 

8.1 INTRODUCTION 

Chapter 8 uses the Savannah River Site (SRS) to demonstrate as realisdcally as possible how the 

framework developed in this thesis can be used to evaluate die worth of data in a hydrogeological design 

problem. The design problem utdized here is die closure of the H-Area seepage basins at the Savannah 

River Site (SRS). The SRS is a nuclear weapons production faciUty approximately 3 400 square km in 

size which is located in South Carolina on the Savannah River (Fig 8-1). The H-Area seepage basins are 

located in the General Separations Area (GSA) of the SRS (Fig. 8-2). The H-Area seepage basins are 

unlined eardi basins diat were used for the disposal of effluent water for nearly 30 years. The effluent 

contained dissolved tritium and other radioactive and nonradioactive species (Buss et al. 1987). The 

effluent would seep through the soil to die water table where it would then travel to nearby streams. 

Contaminants in the disposed effluent water were filtered by die soil as it infiltt-ated through the sod. 

Figure 8-1: Location map of die Savannah River Site (modified from Duffield et al., 1990). 



The seepage basins are presently no longer being used for waste disposal. However, if simply 

abandoned, they pose a potential long term threat to the local envh-onment and water supplies. It is 

possible that the contaminants remaining in the soil could be remobilized in die future by infiltrating 

precipitation. This remobilization could provide a contaminant source over the next several hundred 

years. To deal with this potential long term threat, various options were considered for the closure of the 

seepage basins. These options ranged from basically leaving die basins "as is" to removing all of the 

contaminated soil. 

The remobUized contaminants pose two environmental problems. Fu-sdy, they could be tiansported to 

Four Mile Creek (Fig. 8-2), which would cause it to become contaminated. Secondly, die contaminants 

could be tiansported through the aquitard discontinuities to lower aquifers, causing the contamination of 

clean aquifers. This case study will focus only on lower aquifers. The continuity of only one aquitard 

will be dealt with. 

The remainder of diis inttoduction will discuss die general GSA geology, physiography, and 

hydrogeology. Section 8.2 defines the base case, and presents all parameters needed by die framework to 

evaluate the worth of data. The prior analysis is carried out in Section 8.3. The preposterior analyses of 

hard, point data and soft, areal geophysical surveys are carried out in Sections 8.4 and 8.5, respectively. 

The case stody is presented here for demonstiation purposes only. It is not for determining the true 

closure design, which has aheady been invoked. The case study is as reaUstic as possible, but 

idealizations have been carried out to simplify the numerical modeling. In addition, values of certain 

parameters which are difficult to estimate, such as the cost of failure and the mean of I(x) have been set 

to be realistic, but also to force die worth of data to have a positive value. 

8.1.1 PHYSIOGRAPHY ANfD GEOLOGY 



The GSA is approximately 5.5 km by 3.7 km in dimension (Fig. 8-2). The surface topography is 

characterized by gently rolling hills. It is bounded on the north by Upper Three Runs Creek, on the south 

by Four Mile Creek and on die east by die McQueen Branch. 

Figure 8-2: H-Area seepage basins in the General Separations Area (modified fi-om Parizek and Root, 
1986) 

It is underlain by a thick sequence of unconsolidated sediments which form a layered system of aquifers 

and aquitards, that dip to the south east at 1.6 to 2 m per km. Sediments range in depth from 150 to 400 

m (Duffield et al. 1989). The sediments were deposited during periods of successive transgressions and 

regressions (Cooke, 1936, quoted by Parizek and Root, 1986). This dme period also included several 

periods of erosion. This study will focus on die sttatigraphic units which form die upper diree aquifers 

and upper two aquitards. Several types of nomenclature have been used to describe die stratigraphy of 

die SRS. The nomenclature used by Parizek and Root (1986) is used here. 

The Congaree Formation forms the lowermost aquifer studied (Fig. 8-3). It is about 30 m in thickness 

and consists of mosdy well sorted sand. The Congaree Formation is of marine origin and was deposited 



during a transgression (Price, 1989). Tlie Congaree is lx)unded from below by the EUenton Formation, 

which is a thick, areally extensive clay unit. The Green Clay was deposited on top of the Congaree as the 

ti^ansgression continued, forming an aquitard. The Green Clay is generally continuous throughout the 

GSA and it's diickness ranges from 0.3 to 6.1 m. It consists of a grey to green dense clay. Glauconite 

present within the Green Clay confirms diat it is of marine origin (Price, 1989). However, the Green 

Clay is not always green or a clay. It is typically recognized by a very fine grained material (Parizek and 

Root, 1986). The Green Clay is the aquitard of interest in this study. 

A regression then occurred during which the McBean Formation was deposited. It forms an aquifer; 

however, the lower part of the McBean is carbonaceous and fine grained and could act as a confining 

layer widi the Green Clay. Glauconite in die carbonaceous zone can make it appear Green. It consists of 

well sorted to clayey sand and ranges in diickness from 20 to 25 m. Siple (1967), quoted by Parizek and 

Root (1986), determined that the McBean is of marine origin. Clay and silt lenses are widely distiibuted 

throughout the McBean. 

The McBean Formation is bounded from above by the Tan Clay, which forms the uppermost aquitard. It 

is a discontinuous layer diat occurs diroughout the GSA. It's diickness ranges from between 0.3 and 3 m. 

The Congaree Formation, Green Clay, McBean Formation and Tan Clay were all deposited during the 

Eocene period from 49 to 35 million years ago. 

The Barnwell formation forms the uppermost aquifer. It consists of clayey to well sorted sand. 

Discontinuous clay and silt lenses occur throughout. It is about 30 m in thickness. The bottom of the 

Barnwell could have formed in a near shore marine environment. Nysti-om and Willoughby (1982), 

quoted by Parizek and Root (1986), reported broad scour features at die base of the Barnwell Formation. 

Parizek and Root (1986) suggest diat die deposition of die Tan Clay on diis irregular feature could 

account for its discontinuous nature. The Barnwell was formed during the Oligocène from 35 to 22 

million years ago. 
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Figure 8-3: Geologic cross section through the General Separations Area (modified from Parizek and 
Root, 1986). (The location of die cross section is shown in Figure 8-2.) 

A major potential cause of discontinuities in the Green Clay would be erosion by channeling (Price, 

1989). Channeling could occur during any post Eocene period of unconformity or alluvial action. 

Several such periods of alluvial action did occur. For example, the Barnwell is overlain by an 

unconformity and much alluvial activity occurred during the Late Tertiary periods. For a more detailed 

description of the site geology, refer to Parizek and Root (1986). 

8.1.2 HYDROGEOLOGY 

The water table is predominandy located in the Barnwell, but also in some parts of the McBean and 

Congaree near Upper Three Runs Creek (Fig. 8-3). In general, water enters the system through 

infilti-ation into die Barnwell. The diree bounding creeks form discharge zones. The hydrauhc head 

distribution in the Barnwell and McBean is strongly influenced by all three creeks. In the Congaree, only 

Upper Three Runs Creek has an influence on the hydraulic head distiibution. 

The vertical hydraulic gradient is downward across bodi die Tan Clay and die Green Clay. Groundwater 

flows from the Barnwell either laterally to discharge in the smrounding creeks or vertically across the 



Tan Clay into the McBean. The groundwater in the McBean predominandy moves laterally towards the 

three creeks. However, some groundwater will penetrate the Green Clay and pass into the Congaree. 

In general, the Tan Clay does not appear to be a significant confining layer or to gready affect the 

hydrogeological system. Hydrogeological modeling studies by Parizek and Root (1986) and a 

comparative study of hydrographs from the McBean and Barnwell suggest that the two formations act as 

one hydrostratigraphic unit. The Tan Clay best acts as a confining layer in H-Area where the hydraulic 

head difference across die aquitard is up to 5 m. The Green Clay acts as a very sttong confining layer. 

The hydraulic head difference across die Green Clay is as high as 25 m. Parizek and Root (1986) report 

that diis head difference is persistent throughout the GSA and, dierefore, it is unlikely diat die Green Clay 

is extensively discontinuous. However, Duffield et al. (1989) found that small discontinuities in the 

Green Clay in the GSA could be difficult to detect with hydraulic head data because the perturbations 

that they created in the hydraulic head field were small. 

Groundwater in the Congaree comes from leakage dirough die Green Clay and from horizontal flow from 

off site towards the soudi east. Groundwater in die Congaree flows laterally north west where it 

discharges into Upper Three Runs Creek. The leakage across die Green Clay is probably not great 

(Parizek and Root, 1986). The Congaree is bounded from below by die Ellenton Formation, which is a 

thick, areally extensive aquitard. The Ellenton Formation is assumed to be completely impermeable in 

this diesis. 

The clay and silt lenses in the Barnwell and the McBean will cause the hydraulic conductivity to be 

anisotiopic. 

Groundwater flow velocities in both the Barnwell and the McBean are up to 100 m/yr. Therefore, the 

assumption of advective tiansport dominating dispersive tiansport will be valid. The dominance of 

advective transport over dispersive tiansport was discussed in Chapter 5. 



For a more detailed description of the site hydrogeology, refer to Parizek and Root (1986). 

8.2 SET UP OF BASE CASE 

Section 8.2 sets up the base case, or the basic modeled system. Setting up the modeled system requires: 

(a) determining the closure design alternatives, (b) determining how to model contaminant tiansport near 

the H-Area seepage basins, (c) analyzing available Green Clay data, and (d) evaluating the geostatistical 

parameters using the available Green Clay data. 

8.2.1 ALTERNATIVE CLOSURE DESIGNS 

Three design alternatives were considered for closure: (a) low permeability clay cap, (b) no clay cap (or 

no action), and (c) waste removal and low permeability clay cap (Killian et al. 1987). For simplicity, this 

diesis will only deal with the first two alternatives. In the low permeabihty clay cap option, A^c, the 

basins would be back filled with soil and compacted. A low permeabUity cap would then be placed on 

the top to reduce infiltration. The basins would be fenced off and maintenance would be carried out for 

30 years. Maintenance would consist of mowing grass in the basins, checking for soil erosion, and 

monitoring groundwater. This alternative is assumed to be 100% efficient in stopping die contaminant 

source. The basins were closed with diis option. 

In the no clay cap alternative, Aj^^-., the basins would fenced off and maintenance similar to the A ^ ^ 

alternative would be carried out. With this alternative the seepage basins represent an active source of 

contamination. Therefore, failure, or contamination of the lower aquifer can only occur for Aĵ ç.-



The total estimated costs in fourth quarter 1985 dollars for A^c. and AJ^Q are $22.8, and $3.3, 

respectively (Killian et al., 1987). The benefits of all altemadves are zero (that is they do not lead to any 

direct income to the decision maker). Unless stated otherwise, all monetary values used in Chapter 8 are 

in fourth quarter 1985 dollars. 

Preventing contamination of the Congaree is important for several reasons. Firsdy, under existing 

regulations, if contamination occurs, it will have to be cleaned up. Secondly, contamination will result in 

regulatory penalties and bad publicity for the SRS. The critical factor in preventing contamination of the 

Congaree is the continuity of the Green Clay. 

The author is unaware of any study that has direcdy estimated the cost of contamination of die Congaree 

by the H-Area seepage basins, and determining a cost of failure is difficult. The easiest of the above cost 

factors to estimate will be regulatory penalties. However, even these may not be that sti-aight forward to 

estimate because fadure may not happen for several years and it then may not be detected for several 

more years. The penalties wdl be dependent upon future laws which may be different than those now in 

effect. 

Clean up costs are difficult to estimate. Again, since fadure may happen a number of years into the 

future, the clean up costs will be highly dependent upon future, unknown clean up standards and 

techniques. Based on present clean up standards and techniques, the clean up costs wdl be very 

expensive. Clean up costs at some contamination sites have reached over $100 million. However, it is 

suggested here that this is an absolute maximum of any possible clean up cost for two reasons. 

Firsdy, present clean up standards are unrealistically stiict. For example, under some legislation the 

contaminated aquifer must be cleaned up to drinking water standards. Practice has shown diat in most 

cases, this is an impossible goal. In the future, clean up standards will likely be relaxed. Secondly, much 



of the past clean up costs have been spent on litigation rather than the actual clean up. It is also likely in 

the future as legislation improves, that these costs will be reduced. 

The costs associated with bad publicity are extremely difficult, if not impossible to quantify. 

Therefore, since the cost of failure is unknown and very difficult to estimate, and this case study is 

presented for demonstiation purposes only, two costs of failure will be assessed, and diese will be 

arbitiarily set at $70 million and $45 million. These values were chosen after some preliminary 

sensitivity analyses of the case history were carried out. The $70 million cost of failure was chosen to 

force data to have a large stable positive net worth. Recall from Chapter 7 that if the prior best design 

alternative is unstable, the estimated W is unstable. The $45 million cost of failure still gives a positive 

net worth, but it is less stable. From the sensitivity analysis carried out in Section 8.4.2.2, a cost of 

failure of approximately $35 milhon results is a net data worth of $0. 

The costs and benefits associated with the three alternatives are summarized in Table 8-1. A discount 

rate of 0.10 is used in the analysis. A discussion on the choice of different discount rates is presented by 

Massmann and Freeze (1987a and 1987b). 

8.2.2 MODELING OF CONTAMINANT TRANSPORT NEAR H-AREA SEEPAGE BASINS 

Root (1987) and Parizek and Root (1986) carried out comprehensive hydrogeological studies of die GSA. 

Odier studies include: Duffield et al. (1990), Duffield et al. (1989), and Duffield et al. (1987). 

Alternative Benefits Known Costs Cost of Failure 
(million $) (million $) (million $) 

Acc 0 22.8 0 
0 3.3 70 

Table 8-1: Summary of cost and benefits associated with the no action and waste removal alternatives. 



Ideally, die flow widiin die endre GSA should be modeled because of die presence of die du-ee bounding 

creeks makes die boundary condidons on all sides easy to define . However, it is impractical to model 

such a large area because of the number of Monte-Carlo reahzations needed for the data wordi analysis. 

Therefore, flow in a much smaller region around the H-Area seepage basins will be modeled instead (Fig. 

8-4). Steady state flow conditions are assumed. 

Figure 8-4: Area where flow and transport are modeled around the H-Area seepage basins. 

The Tan clay was not included in die numerical model of die site hydrogeology. The Tan Clay has a 

very weak influence on the hydrologie system (see Section 8.1.2) and it is very discontinuous and does 

not prevent contamination from entering the McBean Formation. Yet, it is almost as thick as die Green 

clay and its vertical hydraulic conductivity was estimated by Parizek and Root (1986) and Duffield et al. 



(1987) to be of the same order of magnitude as the Green Clay. Therefore, if it were included as a 

continuous layer, it would exert an artificially stiong influence on the vertical movement of groundwater 

and prevent contamination from entering the McBean Formation. Alternatively, it could be included as 

a distinct layer with discontinuities placed in it. However, it is not known where these discontinuities 

are; therefore, this approach was rejected. 

However, leaving out the Tan Clay completely will artificially increase the vertical ttansport of 

contaminants. Contamination is generally ti^ansported horizontally in the Barnwell and upper part of die 

McBean (Duffield at al. 1989). To maintain ttansport in the upper portions of the system, die vertical 

hydrauhc conductivity of the Green Clay was arbittarily decreased by a factor of two from that estimated 

by Parizek and Root (1986). 

Al l vertical boundaries on the edges of the flow region are defined as constant head boundaries. Since 

the Tan Clay is assumed to not be present, die vertical boundary conditions in the McBean and the 

Barnwell will be identical. However, those in the Congaree will be different because of the presence of 

the Green Clay. 

The southern and eastern boundaries in die McBean and Barnwell are placed along Four Mde Creek and 

the unnamed creek, respectively. The western boundary was placed so that approximately 50% of it 

overlapped with another unnamed creek. The northern boundary was placed approximately 600 m north 

of the main seepage basin. The hydraulic head along all boundaries was set equal to the elevation of the 

1982 water table, presented by Parizek and Root (1986). 

In die Congaree, all vertical boundaries are placed along die edges of die modeled flow region. The 

values on the constant head boundaries are set by interpolation from a 1982 contour map of hydraulic 

head in the Congaree presented by Parizek and Root (1986). 



The water table represents the upper boundary of the hydrogeological system. The recharge to the water 

table was estimated by Parizek and Root (1986) to be 38.1 cm/yr. Ideally, widi die clay cap alternative, 

inflation will be reduced over die seepage basins, creating a depression in die water table. However, 

for simplicity this change in boundary condition for the clay cap alternative will be ignored. The bottom 

of die Congaree is assumed to be impermeable. 

The only two hydrogeological studies of die GSA presented in enough detail to sufficiendy follow die 

important modeling steps are Parizek and Root (1986) and Duffield et al. (1987). (Root (1987) and 

Parizek and Root (1986) present equivalent hydrogeological information.) Parizek and Root (1986) 

modeled the same system of aquifers and aquitards modeled here. Duffield et al. (1987) included the 

aquifer and aquitard below the Congaree in their modeling study. The modeling carried out in this thesis 

will closely follow diat of Parizek and Root (1986) radier than Duffield et al. (1989) because of die 

greater similarity of the system modeled and the more comprehensive nature of the presentation. 

The same layering of nodes used by Parizek and Root (1986) will be used in this thesis. The Barnwell 

will be represented by a single layer of nodes, while the McBean will be represented by two layers of 

nodes to account for vertical gradients. The Green Clay is represented as a leakage layer, and die 

Congaree is represented by a single layer of nodes. This density of nodes should be sufficient to model 

the groundwater velocities as accurately as needed here. More layers are used here than are used in the 

particle tiacking study carried out by Duffield et al. (1987) in the same area. 

A nodal spacing of 29 m has been used in die horizontal discretizations of die aquifer and aquitard units. 

Therefore, the aquitard has been discretized into 29 m square blocks. This discretization corresponds to 

60 columns and 50 rows. The effect of the density of discretization on the worth of data is investigated in 

Section 8.4.2.1. 



The hydraulic parameters used in diis thesis for die hydrostradgraphic units are summarized in Table 8-2. 

Except the hydraulic conductivity of die Green Clay, all of die values were taken direcdy from die results 

of a steady state calibration by Root (1986). Recall that die hydraulic conductivity of the Green Clay was 

reduced by a factor of two. Root's calibration was carried out by trial and error. The calibration was 

carried out by matching the calculated hydraulic head widi maps of hydraulic head in the diree aquifers 

diat were produced from 150 measurements. 

The contaminant source is represented by 33 particles spaced along a line centered in each of the four 

seepage basins. The particles are all initiaUy released from an elevation corresponding to 99% of die 

saturated thickness of the Barnwell. The flow solution and the padis of contaminant particles tracked are 

shown in Figure 8-5, for the case where no windows are present in the Green Clay. 

hydrosttatigraphic unit parameter Estimate 
Barnwell Kh 8.8 X 10-6 (m/s) 

Kv 7.4 X 10-8 (m/s) 
porosity 0.2 

Upper McBean Kh 1.8 X 10-5 (m/s) 
Kv 1.5 X lO-'' (m/s) 

porosity 0.2 
Lower McBean Kh 8.8 X 10-6 (m/s) 

Kv 7.4 X 10-8 (m/s) 
porosity 0.2 

Green Clay Kv 1.75 X 10-10 (m/s) 
porosity 0.4 

Congaree Kh 2.2 X 10-'* (m/s) 
Kv 2.2 X 10-5 (m/s) 

porosity 0.2 

Table 8-2: Hydraulic parameters of hydrosti-atigraphic units used in die base case. 

Windows will be generated in the Green Clay up to 50 m from the fixed boundary conditions in the 

McBean and Barnwell. 

8.2.3 GREEN C L A Y DATA BASE 



This thesis will utilize the same Green Clay data base presented by Parizek and Root (1986). It consists 

of 147 boreholes which penetrated the Green Clay horizon. They are summarized in Appendbc 1. Al l of 

the boreholes had lithologie logs available while 47 boreholes also had geophysical logs. More Recent 

boreholes have been taken, but they will not be used because their results are not readily available. The 

boreholes have been split into both hard and soft data. 

The hard data comprises the 47 boreholes which have geophysical logs. The geophysical logs include 

gamma ray, self potential, and resistivity logs. These boreholes are defined as hard data because the 

gamma ray signature of the Green Clay is relatively consistent and widespread throughout the GSA 

(Parizek and Root 1986) and is easy to pick out (Aaland, 1989). Al l of these boreholes found Green Clay 

present. The data points are mosdy concenti^ted near H-Area, but a few are spread throughout the GSA; 

however, only one is located near the H-Area seepage basins (Fig. 8-6). 

The soft data comprises the remaining 100 boreholes which have only lithologie logs. These data are 

defined as soft because often only a percentage of the core was recovered in many boreholes (Parizek and 

Root, 1986). The quality of the logging and the amount of core recovered varied over time with earlier 

boreholes having poorer core recovery and a poorer quality of logging than the later boreholes. However, 

for simplicity, this variation is ignored. Thirty four of diese boreholes (34%) did not encounter the Green 

Clay. Their locations are again concentrated in particular areas of interest, but some locations are 

scattered throughout the GSA (Fig. 8-7). It is worth noting diat boreholes diat did not encounter the 

Green Clay are generally located widiin 1(X) m of a borehole that definitely did encounter die Green 

Clay. 
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Figure 8-5: Contours of iiydraulic liead in Barnwell Formation and paths of pardcles of contamination 
near the H Area seepage basins. (Contour interval is 1 m.) 

The Green Clay data base has been split into two categories. The 147 boreholes taken du-ough out the 

GSA wiU be referred to as global data. They are used to estimate and A,j. (The estimation of Hj and 

is covered in the next Section.) A subset of the global data (14 soft and 1 hard) are located within the 

region where flow and transport are modeled (Fig. 8-8). These are referred to as local data. The aquitard 

realizations are conditioned on local data only. 

Recall from Chapter 4 that die reliability, or quality, of the soft data is quantified by 

Pl = P(Is(x) = lll(x) = 1) = P(Sw I Window is present) 

P2 = P(Is(x) = lll(x) = 0) = P(SY^ I No window is present) 



+ 

Figure 8-6: Locations of global hard data. 

where pj represents die probability that the lithologie log will indicate a window given that a window is 

really present. In other words, pj represents the probability that the sample outcome is correct. In this 

thesis it is assumed diat Pi =1. The value of pj represents die probability that die lidiologic log indicates 

a window is present, while in reality Green Clay is present. In odier word, P2 represents the probability 

diat die sample outcome is wrong. Here, P2 is estimated from die lidiologic logs of die 47 hard data. Of 

all the hard data sampled, 18, or 38%, of these lithologie logs report a window even though the 

geophysical logs indicate aquitard; dierefore, P2 = 0.38. Hence, it is expected diat 38% of the soft data 

will show a window when aquitard is actually present. 
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Figure 8-7: Locations of global soft data. 

Figure 8-8: Local hard and soft data used to condition aquitard realizations. 



It is likely that none of the soft data truly sampled a window. Since, P2 = 0.38, it is expected that 38% of 

the lithologie logs will indicate a window even when Green Clay is actually present If some lithologie 

logs are truly finding windows, then it would be expected that more than 38% of the logs would indicate 

windows. However, only 34% of the hthologic logs alone indicate windows, which is below the 

expected 38%. Furthermore, all of the lidiologic logs of the hard data which indicate a window are 

apparendy wrong. It is assumed diat leakage will not occur through existing boreholes. 

8.2.4 INFERENCE OF GEOSTATISTICAL PARAMETERS 

Recall from Section 4.3.3 that the mean will be estimated by Bayesian updating, while the correlation 

length must be estimated by non Bayesian mediods. The Bayesian estimation of [Xj is dependent upon Xj; 

therefore, A-j must be estimated fh-st. However, the estimation of presents a problem because it cannot 

be direcdy estimated from the data. This problem and the method used to circumvent it are discussed in 

die next Section. 

8.2.4.1 Inference of Correlation Length. 

The correlation length cannot be direcdy estimated for either the hard or soft data. Al l of the hard data 

encounter aquitard; therefore, there is no variability in the data and a covariance function cannot be 

calculated. The soft data does have variability in the data; however, as discussed in Section 8.4, all of the 

encountered windows are probably due to false sample outcomes. Therefore, the variability is likely due 

to false sample outcomes, rather dian representing any true variability in the aquitard. A covariance 

function based on these data would be completely misleading as to the true spatial variability of the 

Green Clay. 



In lieu of data to estimate the correlation length, it will be arbittarily assumed that is equal to 200 m. 

It assumed that the correlation will be large since the Green Clay was deposited in a marine environment. 

Fortunately, as will be shown in Section 8.4.2.3, the worth of a sample is relatively insensitive to the 

correlation lengdi. 

8.2.4.2 Inference of Mean and Variance 

There are three sources of information available to estimate die mean: geological intuition, global soft 

data and global hard data. The mean will be first estimated based on geological intuition. A combined 

estimate using all of the information will be obtained by updating the geologically based estimate in two 

separate steps, one for die soft data and one for die hard data, using equation (4.55) which is presented 

below: 

where 

- H ' = [u^ S I J I J I u]"̂  or the weight of the prior data 

- H = u^Sij"^], or the weight of the sample data 

- mj' is the prior mean 

- mj is the sample mean 

- mj" is die updated mean 

- Pl and P2 represent the precision of the measurement. 

It is believed that the Green Clay was deposited over 35 million years ago. Since then, unconformities 

and periods of alluvial action have occurred which could have eroded a discontinuity in the Green Clay. 

Upper Three Runs Creek is a present day example of channeling creating a discontinuity in the Green 

Clay. Therefore, based on the geology alone, it could be estimated that 5% of the Green Clay under the 

m (8.1) 



GSA has been eroded by channeling in die past 35 mdlion years. Therefore, die geological estimate of 

the mean, mj', is 0.05. The confidence in the prior estimate is assumed equivalent to five independent 

hard measurements. 

Updating die geological estimate widi the 100 global soft data yields: 

^ „ _(105.26)(0.05) +(132.116)(0) 

• " l - 105.26+132.116 ^ -̂̂ ^ 

= 0.0222 

Note that the unbiased estimate of die sample mean based on soft data alone is 0 and diat the weight of 

the soft data, H, is 132.1 compared to the weight, H ' = 105.3 for geological intuition. 

The second updating step using the 47 global hard data yields: 

_(0.0222)(237.38)-H (336.18X0) 
" " l - 237.38 + 336.18 

= 0.0092 

Note, that die sample mean based on die hard data alone is zero and that die weight of the hard data 

alone, H, is 336.2 which is three times the weight of the soft data alone and over three times the weight 

of the geological estimate. 

The overall updated mean, mj'", is 0.0092. The updated estimate of die variance is 

a2"' = 0.0092 (1 - 0.0092) 

= 0.00912 



The geostatistical parameters used in the base case are summarized in Table 8-3. 

Parameter description 
mean 
variance 
correlation length 
confid. in geol. est. of mean 

0.0092 
0.00912 
200 m 
5 ind. samples 

Table 8-3: Summary of geostatistical parameters used in base case. 

8.3 PRIOR ANALYSIS 

A prior analysis is carried out using the base case set up in Section 8.2. Recall from Section 6.4 that the 

prior analysis is calculated using the same realizations generated for the preposterior analysis. One 

hundred realizations are used for each sample outcome in die preposterior analysis; therefore, a total of 

200 realizations are used in the prior analysis. 

A decision free illustiating the prior analysis is shown in Figure 8-9 for Cf = $70 million. AJ^Q is the best 

alternative with an expected objective function of -$11.296 million. The expected objective function for 

Ac is -$22.8 million. The prior probability of failure is 0.226. The expected regret of the clay cap 

alternative is $3.79 million; therefore, no more dian approximately $3.79 milhon should be spent on any 

exploration program. Note that the expected regret of the prior best design alternative is equal to the 

expected value of perfect information, EVPI. 

When Cf = $45 million, the clay is still the best alternative with an objective function of -$8.44 million. 

The expected objective function for the clay cap alternative is still -$22.8 million. The prior probability 

of failure is still 0.226, but the expected regret of die clay cap alternative is $1.19 million. No more dian 

approximately $1.19 million should be spent on any exploration program. 



ECZ(Ac)] = - $ 2 2 800 
E[Re9(Ac)]=$12 600 

Note : AU d o l l a r s 
a r e in t h o u s a n d s 

P(fai l )= 0.226 

E[Z(A^C^^ = -^11 296 
E[Re9(A,^c^^=^3 790 

Figure 8-9: Decision ttee used in prior analysis, where Cost of failure = $70 million. 

Note that reducing Cf from $70 million to $45 million has reduced the estimate of maximum expenditure 

for an exploration program by over three dmes. Cf could be very difficult to estimate. Failure can 

happen decades into die future; therefore, the cost of failure is dependent upon many future factors which 

are unknown at present, such as legislation and clean up techniques. Therefore, the estimated maximum 

expenditure is highly uncertain. 

8.4 PREPOSTERIOR ANALYSIS OF HARD DATA 

Section 8.4 presents die preposterior analysis of hard data. This analysis includes estimating data wordi 

for bodi Cf = $70 and $45 million. For simphcity, Cf = $70 million and Cf = $45 mdlion, will be referred 

to as Cf7 and Cf4, respectively. The framework is used in Section 8.4.1 to determine whether a single 

hard measurement is cost effective, or in other words should it be taken. The robusmess of this decision 

is studied in Section 8.4.2. In Section 8.4.3, die framework is used to prioritize sampling locations and to 

determine the maximum area around the seepage basins where hard measurements should be taken. 

Finally, in Section 8.4.4, the worth patterns of multiple hard measurements is studied. It is assumed in 

this Chapter that a hard measurement is idendcal to existing hard data and consists of a borehole and 



geophysical logs including: gamma ray, self potential, and resisdvity. The preposterior analysis of a soft 

geophysical survey that covers a large area is carried out in Secdon 8.5. 

8.4.1 SINGLE HARD MEASUREMENT 

The framework is used in diis Section to determine whether a single hard measurement should be taken at 

point B, approximately 300 m soudi of die seepage basins (Fig. 8-10). A decision tiee for the 

preposterior analysis of this measurement is shown in Figure 8-11, for . The expected expected 

objective function of the posterior best design alternative is 

E [ E ( Z ( A D ' ) ) ] = E(Z(AD'1SW))P(SW) + E(Z(AD ' ISNW))P(SNW) (8.4) 

= (-S22 800 000)(0.00730) + (-$11 034 000)(0.99270) 

= -$11 119 892 

Therefore, W from equation (2.30) is 

W = E [ E ( Z ( A D ' ) ) ] - E ( Z ( A D ) ) (8.5) 

= -$11 119 892-(-$11 296 000) 

= $176100 

For Cf4 , W is reduced to $62 400. 
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Figure 8-10: Location of hard measurement taken at point B. 
We are really interested in the net worth, W„g( of the hard measurement, where W„gj is defined as the 

difference between W and the cost of taking the measurement. It represents whether the measurement is 

cost-effective or not. It is assumed that if the measurement, or borehole, is taken, a monitoring well will 

also be installed. The cost of installing a monitoring well at die SRS in 1989 dollars is approximately 

$420/m. This cost includes drilling, materials, and oversight by a state registered geologist. The depth to 

the Green Clay at point B is approximately 33m, but it is assumed that the borehole will be drilled a 

further 20 m into the Congaree to ensure that the Green Clay horizon is penetiated and to get a sampling 

point for the hydraulic head towards the lower half of the Congaree Formation. Therefore the total cost 

of die borehole and monitoring well is 22 260 ($420/m x 53 m) 1989 dollars. 

o - future sample point 
J i I I I I I 
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Figure 8-11: Decision tree used in preposterior analysis of hard measurement taken at point B, for cost of 
failure = $70 million. 

The cost of taking die geophysical logs in one borehole 50 m deep at the beginning of 1992 will be on the 

order of $700 (Sperling, 1992). When all costs are discounted back at die annual rate of inflation, the 

total cost of die hard datum is approximately 20 000 diird quarter 1985 dollars. Hence, for Q.^ W„g( is 

approximately $156 100 (=$176 100 - $20 000) in diird quarter 1985 dollars. For Cf4, W„gt is reduced to 

$42 400 (=$62 400 - $20 000). Note diat die cost of die data wordi analysis is assumed to be zero. 

8.4.2 SENSITIVITY OF NET WORTH OF HARD SINGLE HARD MEASUREMENT TAKEN AT 

POINT B TO PARAMETERS SET UP IN BASE CASE. 



In Section 8.4.1, it was determined that die hard measurement taken at point B was cost effective, or 

hence, that it should be taken. For this data worth analysis to be carried out, values had to be assumed for 

all parameters in the base case (Section 8.2). These included geostatistical parameters, hydrogeological 

parameters, economic parameters, and numerical artifacts of the SIS algorithm. Errors, or variations, in 

estimates of these parameters will cause variations in the estimated net worth of die measurement. 

The purpose of the this Section is two fold. First, and foremost, it is to test die robusmess of the decision 

made in the last Section that die measurement is cost effective. Recall that for the measurement to be 

cost effective, W„gj > $0. The second reason is to get an idea of how large these variations in W„g( can 

be. Both of these purposes are accomplished by carrying out a sensitivity of W„gt of the measurement 

taken at point B to parameters set up in the base case. These parameters include: economic and 

geostatistical parameters, and numerical artifacts of die SIS mediodology. The sensitivity of W to 

hydrogeological parameters will not be studied. Recall from Chapter 7 that the following two conditions 

are important with respect to the hydrogeology: 

(1) The aquitard is impermeable enough to prevent major vertical migration of contamination, 

except where windows are present. 

(2) The vertical gradient across die aquitard is sufficient to draw contamination through a 

window, if present, to the lower aquifer. 

The GSA hydrogeology is well understood; therefore, both of these conditions are known to be tine 

(Refer to Section 8.1). Therefore, for simplicity it was decided not to carry out a sensitivity analysis for 

the hydrogeological parameters. 

8.4.2.1 Numerical Artifacts 



Parameters which are numerical artifacts of the SIS methodology include the number of blocks into 

which the aquitard has been discredzed, the starting seed, die number of die first aquitard block 

generated, and die number of realizadons generated. 

The sensitivity of the net wordi to aquitard discretization was studied by carrying out the preposterior 

analysis using five different densities of aquitard discretization, or finite difference mesh (Table 8-4). 

Recall, each finite difference cell represents one aquitard block. 

grid size aquitard block 
dimension 

(m) 
40x33 43 
50x42 35 
60x50 29 
70x59 25 
80x67 21 

Table 8-4: Aquitard discretizations used in evaluating net worth of hard measurement taken at point B. 

For C0 as the aquitard block size changes, W„g( fluctiiates randomly and very slighdy about its mean 

value (Fig. 8-12) with a standard deviation of $3 820. This standard deviation is only 2.6% of die mean 

of $151 040. For Cf^ the fluctuations are similar with a standard deviation of $2017. This standard 

deviation corresponds to only 3.4% of the mean of $58 900. Note, that a block size of 29 m is used in die 

base case. 
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Figure 8-12: Sensitivity of net worth to aquitard block discretization. 

For both C^; and Cf^, W„gj has very litde sensitivity to the starting seed, the number of die fkst aquitard 

block generated, or die number of reahzations. For all cases, it fluctuates randomly and slighdy about its 

mean value. The standard deviations of die fluctuations are $835, $3 147, and $3 121 for the number of 

realizations, the starting seed, and die number of the fh-st aquitard block generated, respectively. The 

standard deviation of the total random error from all of the numerical artifacts in W„g( from equation 

(6.15) is 

«'w.. = ( i c T w . . ' ) i ^ (8.6) 
i=i 

=($3 8202 + $8352 + $3 1472 + $3 1212 )i/2 

= $5 910 

Therefore, die standard deviation of die total random error is only 3.4% of W^̂ ^ of $156 400 evaluated 

for die hard datum taken at point B. For 0^4, die standard deviations of die fluctuations are $474, $1917, 



and $1968 for die number of realizadons generated, the starting seed, and the number of the first aquitard 

block generated. The total standard deviation is $3441 which is only 12.3% of die W„et of $42 000. 

In summary, for both costs of failure, parameters which are numerical artifacts will only have a small 

effect on W„gj of the measurement taken at point B and hence will not affect whether it is cost-effective 

or not. 

8.4.2.2 Economic Parameters 

The value of W„et is almost equally sensitive to the discount rate for both costs of failure (Fig. 8-13). As 

die discount rate increases, W„ej decreases. The bounds over which the measurement is cost-effective is 

wide for bodi cost of failure. For C^^, die discount rate must increase to 0.15, while for C^j, it must 

increase to greater than 0.15, before the measurement is no longer cost-effective. 

Errors of more than a few percent in the discount rate are unlikely; therefore, W„gj will have a positive 

value for all lUcely discount rates. Therefore, for the example carried out here, the discount rate is not a 

critical parameter in determining whedier die measurement is cost-effective or not. However, as Cf 

decreases, it will become more important. 

Turning now to the cost of failure, W„gj is zero for Cf < $35 million, but dien increases linearly with Cf 

(Fig. 8-14). Cf could be a critical parameter in determining whedier die datum is cost-effective. A 50% 

decrease in die base case Cf of $70 miUion would result in W„g, = $0. Unfortunately, a 50% error in the 

estimated Cf is possible since as discussed in Section 8.3, it is very hard to estimate. 
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Figure 8-13: Sensitivity of net wortli to tlie discount rate. 
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Figure 8-14: Sensitivity of net worth to cost of failure. 



With respect to the known cost of failure, W^^ has a similar sensitivity to the cost of the clay cap, C,,,,. 

for both Cfj and Cf^ (Fig. 8-15). For C^j, die measurement is cost-effective for Ĉ .̂ , between $15 million 

and $40 million. The estimated base case value of C^^ is $22.3 million. Therefore, an underestimate of 

50% or an over estimate of 100% is necessary to reduce the Wng( to zero. For Cf^, C^^ has a greater 

impact on the measurement's cost-effectiveness. The measurement is cost-effective for C^^ between $10 

and $29 million. The base case value of now only has to increase by 30% to make the measurement 

no longer cost-effective. 

The value of C^^ will be much easier to estimate than Cf because the time horizon of construction will be 

much shorter and will involve many fewer uncertainties. Therefore, for high Cf, C^^ will likely have 

litde impact on the cost-effectiveness of the measurement. However, this impact will grow as the cost of 

failure decreases. 

Figure 8-15: Sensitivity of net worth to known cost of lay cap alternative. 



The value of W„g( has an identical sensitivity to the known cost of the no clay cap alternative, C^^ for 

bodi Cf7 and Cf4. The measurement is cost-effective for < $10 million, for bodi costs of failure. 

Therefore, C„j, must at least tiiple before the measurement is no longer cost-effective. The value of C, 

should be easy to estimate. Therefore, uncertainty in C„g is unldcely to affect die measurement's cost-

effectiveness. 
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Figure 8-16: Sensitivity of net worth to known cost of no clay cap alternative. 

8.4.2.3 Geostatistical Parameters 

The sensitivity of W„g, to the geological estimate of the mean, mj, is shown in Figure 8-17, for both costs 

of failure. The measurement is cost-effective for 0 < mj < 0.16 for Cf; and for all values of mj tested for 

Cf4. Therefore, there is a large margin of error over which the net worth will maintain a positive value 

and measurements will be cost-effective. However, it is impossible to estimate possible errors in the 



geological estimate of the mean because of a lack of available data. The geological estimate of the mean 

could potentially be a critical parameter in determining whether the measurement is duly cost-effective. 

Figure 8-17: Sensitivity of net worth to geological estimate of mean. 

The value of W„gt is relatively insenstive to for bodi costs of failure. W^ ĵ > $0, and hence the 

measurement is cost-effective for 60 m < < 250 m for C^j and 20 m < Xj < 300 m for Cf4 (Fig. 8-18). 

Correlation lengths greater than 250 m become difficult to study because becomes a significant 

percentage of the domain and the generated realizations do not reproduce die statistical parameters used 

to generate them. The correlation length for this case study and likely for many others, is difficult to 

measure because of a lack of information. Nevertheless, it seems to be potentially a less critical 

parameter than other parameters such as the cost of failure and mj. Correlation lengths greater then 60 m 

are likely for an aquitard formed in a deep marine environment such as the Green Clay. 



Figure 8-18: Sensitivity of net worth to correlation length. 

The sensitivity of W„g( to the confidence in the geological esdmate of the mean is shown in Figure 8-19, 

for both Cf7 and C^^. Note that die confidence is quandfied in terms of an equivalent number, n^, of 

independent hard data. The measurement is cost-effective for 1< n^ <29 for Cfy and 1< n^ <30 for Cf^. 

Those bounds correspond to weights of 21.05 and 589.5 for the prior geological mean compared to a 

wight of 336.2 for the 40 existing hard data. It is extremely unlikely that die weight of the geological 

mean is greater dian diat of 40 hard data points, or equal to zero. Therefore, die net worth will be 

positive, and the datum cost-effective, for all likely values of the prior confidence in the geological 

estimate of the mean. 

Note that at n^ = 0, W„et = $20 000. At n^ = 0, die estimate of die mean is based completely on die 

sample data which estimates a mean value of zero. A mean value of zero allows no windows to occur 

and hence does not allow for failure to occur. If failure cannot occur, W=$0. 



Figure 8-19: Sensitivity of net worth to confidence in prior estimate of mean. 

8.4.3 NET WORTH OF SINGLE, HARD MEASUREMENT TAKEN AT DIFFERENT LOCATIONS 

In Section 8.4.1 it was determined that a hard measurement taken at point B was cost effective. Section 

8.4.2 studied die robustness of this decision. In Section 8.4.3, die framework will be used to make two 

more realistic and useful data worth decisions. The first is sequentially locating measurement points and 

the second is determining the maximum size of a grid of measurement points. The former question is 

more important because sampling programs are much more Idcely to be carried out in sequential stages of 

a few measurements at a time, radier dian many measurements taken simultaneously on a large grid. 

Bodi of diese decisions can be made by estimating W^^j at a large number of points around die seepage 

basins and contouring the results. A contour map of W„g, is shown in Figure 8-20 for Cf^. It is assumed 



that the cost of taking a hard measurement is constant throughout the region of study. The net worth is a 

maximum of approximately $50 000 in the south east comer between the seepage basins and two creeks. 

The maximum occurs in this area because it is the most probable location for die contaminant plume. 

Refer to Figure 8-5 for the most probable contaminant plume locations. 

distance (nn) 
Figure 8-20: Contour map of net worth of a single, hard measurement taken at different locations for cost 
of failure = $45 million. (Numbers are in thousands of dollars.) 

The value of W„g, decreases towards the west and nordi of the seepage basins because of both the 

conditioning effect of existing soft data and the reduced likelihood of a window causing a failure. 

Windows towards the north and west are less likely to cause failure because they are further from the 

likely path of contaminant plumes. 

The stiong effect of an existing hard datum on W„gj is shown by the depression in the north east comer 

where W„gj is reduced to -$20 000. The value of W^^j decreases as the sampling location approaches the 



existing datum because of tlie correlation effect. The much weaker correlation effect of existing soft data 

on W„gt is shown by soft data at points A and B west of the seepage basins. 

Note that hard measurements taken on the opposite side of Four Mile Creek and the unnamed creek in the 

south east comer of the map have a net wordi of up to $40 000, even though the creeks prevent 

contamination from reaching any window located there. However, because of spatial correlation, a 

window there may extend across die creeks, allowing failure to occur. Therefore, sampling outside of die 

zone of where failure can occur can have significant value. 

A sequential sampling program could be easily designed as foUows. In die first step, a contour map of 

W„m would be created. In the second step, the measurement would be located where W„çj was a 

maximum. After the measurement was taken, a new contour map would be produced to locate the next 

measurement location. Samphng would continue as long as the maximum W„gj > $0. The robustness of 

a decision to take a measurement could be tested by carrying out a sensitivity analysis of measurement's 

Wnet to base case parameters. 

The contour map can be used as well to determine the maximum limits of a zone over which a grid of 

measurement points can be taken. For C^^, this zone is bounded by the $0 W„gj contour to the west and 

north-west, Four Mile Creek to the south and die unnamed creek to the east A small portion of the 

zone's north end is off die map. However, the exact boundaries of diis zone are uncertain. A contour 

map of Wng, is shown in Figure 8-20, for Cfj. It is very similar to diat for C^^, except diat W„g, has 

increased in value and the area where measurements are cost-effective has increased. Note that a hard 

measurement now is cost-effective at every location in the region of study, except at the existing hard 

datum. Therefore, the zone in which hard measurements are cost-effective is variable and depends on the 

base case parameters, such as the cost of failure. Note, however, diat die location of die maximum W„g,, 

and hence the highest priority measurement location, has not changed. 



Figure 8-21: Contour map of net worth of a single, hard measurement taken at different locations for cost 
of failure =$70 million. (Numbers are in thousands of dollars.) 

8.4.4 PATTERNS OF MULTIPLE, HARD MEASUREMENTS 

Section 8.4.4 evaluates the worth of patterns of multiple hard measurements. Three patterns of 1,2,3,4, 

and 5 measurements taken on 29,145, and 290 m spacing are used. These patterns are shown in Figures 

8- 22 to 8-24. The data are collected in the order of the numbers marking the measurement points. Note 

that point 1 is the same for all three patterns. The patterns were picked where W^^j at the individual 

measittement points was reasonably constant. 



BIS t2l5 
distance (m) 

Figure 8-22: Pattem of liard measurement taken on a 29 m spacing. 
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Figure 8-23: Pattem of hard measurement taken on a 145 m spacing. 

The pattems were resdicted to a maximum of five data l)ecause of die CPU dme involved in carrying out 

die data worth analysis. Recall diat 100 x 2" realizadons are needed to esdmate the worth of the pattem, 

where n is the number of measurements in the proposed pattem. Therefore, 3200 realizadons are 

required to evaluate the worth of a pattem of five measurements. 
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Figure 8-24: Pattern of hard measurement taken on a 290 m spacing. 

The value of W„gj for die patterns are shown in Figure 8-25, for C^j. W„^^ initially increases with the 

number of measurements in the pattern. The greater the separation distance between the adjacent 

measurement, the greater the initial increase. This behavior is because the more independent die data, 

the greater their Wnet. However, for the 29 m spacing pattern, W„g( reaches a maximum at 3 

measurements and then starts to decline. A similar behavior is shown for the 145 m spacing pattern 

where a maximum is being approached at five measurements. This maximum is at a greater number of 

measurement than the 29 m spacing pattern because of the greater separation distance and mdependence 

of the measurements. The value of W„et continually increases over the five measurements for the 290 m 

spacing. Note that all patterns are cost-effective. 

The net wordi for the patterns are shown in Figure 8-26, for C^^. Note diat W^^^ for all patterns has been 

reduced below diat for Cf;. The value of W^^f for the pattern on a 29 m spacing continually decreases as 

die number of measurements increases and becomes negative for greater dian five measurements. For die 

patterns on die 145 m spacing, W„gj initially increases and reaches a maximum at four measurement and 



then starts to decrease. The measurements on the 290 m spacing are almost independent; therefore, W, 

increases continuously between one and five measurements. Note, diat all pattems except five 

measurement on the 29 m spacing are cost-effective. 
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Figure 8-25: Net worth of multiple hard measurements taken at spacings of 29,145, and 290 m versus 
number of measurements taken, for cost of fadure = $70 million 

The most cost effective pattern was the five measurements with the 290 m spacing. With the 290 m 

spacing, no limit was found for die optimum number of measurements. The measurements are 

independent enough that their net worth increases with the number of measurements. However at smaller 

spacing, or with much existing data, spatial dependence will become important. Under these conditions, 

the net worth wdl increase with the number of measurements, reach a maximum and then start to 

decrease. Hence there will be an optimum number of measurements, which may be as small as one. 
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Figure 8-26: Net worth of multiple hard measurements taken at spacings of 29 145 and 290 m versus 
number of measurements taken, for cost of failure =$45 million. 

The framework could be easily used to design sequential sampling programs involving mulUple 

measurements. In the fkst step, a contour map of the net worth for a single measurement would be 

produced and the location of the maximum net worth found. In the second step, the measurements would 

be located in the region of the maximum net wordi. The optimum number and spacing of the 

measurements would then be determined. Once die measurements were taken, a new contour map would 

be created to pick out the next measurement locations. Measurements would be taken as long as the 

maximum net worth was > $0. The robusmess of a decision to take a pattern of measurements could be 

tested by carrying out a sensitivity analysis of the measurements' W„g, to base case parameters. 

8.5 PREPOSTERIOR ANALYSIS OF SOFT, AREAL SURVEY 

Section 8.5 evaluates die worth of a soft, areal survey. The assumptions behind the mediodology used 

here are discussed in Section 6.5. It will be assumed that a reflection seismic survey will be carried out. 



Based on cost alone, a radar survey would Idcely be the measurement of choice for delineadng shallow 

stradgraphy. However, a radar survey would unldcely be feasible because it would probably not be able 

to map the so-adgraphy down to die 30 m depdi of die Green Clay. Groundwater, die Tan Clay, and clay 

lenses in the Barnwell and McBean Formations would likely attenuate the radar too much (Knoll, 1992). 

It is assumed that the smallest discontinuity wiU represent a 29 m square. An absolute minimum of two 

measurements, or geophones, on a line across a window would be required to sample it (Cross, 1992). To 

be conservative, it is assumed that geophones will be placed on a square grid every five meters to ensure 

that an adequate number of sampling points fall widiin any potential window. The analysis wdl be 

carried out here for a cost of failure of $45 million. 

Recall that die survey covers die entire area where windows can result in a fadure which causes a change 

in A Q . This area is marked by the $1 000 contour of the total wordi of a single hard measurement and 

Four Mile Creek and the unnamed discharge creek (Fig. 8-27). (Measurement points to the west of the 

$1000 contour are actually equal to $0.) Its exact size is not known because part of it is off the north end 

of the map; however, it will be estimated here that the entire area is approximately equal to a 1.3 x 1.3 

km square. It is assumed that the total cost of carrying out a seismic survey on a square grid with a five 

meter spacing over this area is on the order of $200 000. Road access, type of geology, and odier factors 

are ignored in this estimate. A more detailed cost estimate would requked for an in depth analysis. 

When discounted back to 1985 at die rate of inflation, die cost of die survey is approximately $163 000. 

Note from Section 8.4, that the area of the survey, and hence total cost, is a function of the cost of failure. 

The foUowing likelihood functions for the survey are assumed: 

P(Sw,INWfd) = 0. 

(8.7) 



Figure 8-27: Contour plot of total worth for single, hard, point measurements taken throughout die 
region of study, for cost of failure =$45 million. (All numbers are in thousands of dollars.) 

where Wjj represents a window is present which will cause a failure which will alter the prior best design 

and NWf J represents no window is present which will alter the prior best design. In other words, 

P(SFIF ) = 0.2 (8.8) 

P(SplNF) = 0. 

where F denotes failure and NF, no failure. 

The decision tree used in die prior and the preposterior analysis is shown in Figure 8-28. Note that the 

decision d-ee now resembles die decision tree used for die univariate case presented in Chapter 2. 
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Figure 8-28: Decision tree used in preposterior analysis of soft geophysical survey. 

From the prior analysis, the prior probability of failure, PCF), is 0.266 and the expected objecdve 

funcdons for the two altemadves are 

E(Z(AcclFailure)) = -$22.8 million 

E(Z(AcclNo Failure)) = -$22.8 million 

E(Z(ANclFailure)) = -$25.938 miUion 

E ( Z ( A N C I N O Fadure)) = -$3.2759 million. 



The prior best design altemadve is A ^ ^ ^ with an expected objecdve funcdon of -$8.4401 million 

((0.226)(-$25.938 miUion) + (0.774)(-$3.2759 million)). 

The updated probabdity of fadure, P(FISp), from Bayes' equation, given that a window/fadure is sampled, 

is 

P(FISp) = 
P(SplF)P(F) 

P(SF) 
(8.9) 

where 

P(Sp) =P(SplF)P(F) + (P(SNplNF)P(NF) 

= (0.2)(0.226) + (0)(1 - 0.226) 

= 0.45 

(8.10) 

Therefore, 
_(0 .2 ) (0 .226)_ 

PCFISp) - 0.045 - ^ 

and 

P(FISNP)= 
P(SNF1F)P(F) 

P(SNF) 
_(0.8)(0.226) 

(1-0.045) " - ^ ^ ^ 

(8.11) 

The expected expected objective function for the best posterior design is 

E [ E ( Z ( A D ' ) ) ] = E(Z(AD'ISP))P(SP) + E(Z(AD'ISNP))P(SNF) (8.12) 

= (-$22 800 000)(0.045) + (-$7 581 700)(0.955) 



= -$8 266 524 

Therefore, the worth of the soft, areal survey is 

W =E[E(Z(AD') ) ] - E ( Z ( A D ) ) (8.13) 

= -$8 266 524 - (-$8 440 100) 

= $0,173 million 

Therefore, W^^j is $13 000 ($173 000 - $163 000) and the geophysical survey is cost-effective. However, 

as noted in Section 6.5, W„gj for the survey is highly uncertain; therefore, our major concern is not 

estimating W„gt. but calculating die break even, or minimum precision, P(SplF ), needed to make the 

survey cost-effective. It is assumed that P(SplNF ) will remain equal to zero. To calculate die break even 

precision, die above calculations were repeated for P(SplF ) between zero and one (Fig. 8-29). The break 

even P(SplF ) is approximately, 0.14. The seismic survey will be cost-effective if P(SplF ) > 0.14. This 

estimate could be potentially very valuable, because while it may be difficult to estimate die exact 

precision of survey, it will be much simpler to estimate if die precision if above some minimum bound, 

particular the one in this case which is so low. 

Besides evaluating die cost-effectiveness of a seismic survey or a pattern of hard, point measurements, 

one is concerned with which is die more cost effect measurement program. For example, should a soft, 

areal geophysical survey be carried out, or should a pattern of five hard, point measurements be taken? 

This question is tackled below where the W„g( values of patterns of hard, point measurements taken on 

the 290 m spacing are compared to die W„gt value of die seismic survey (Fig. 8-30). W„et for die survey 

equals W^g, for one hard measurement at approximately P(SplF ) = 0.19. Therefore, if P(SplF) > 0.19, die 

survey is die best option and if P(SplF) < 0.19, die single, hard measurement is the best option. Similarly 

for five hard measurements, if P(SplF ) > 0.23, the survey is die best option and if P(SplF ) < 0.23, the five 

hard measurements are the best option. 



Figure 8-29: Net worth of the geophysical survey vs the probability of sampling a window that wdl cause 
failure, given that a window that will cause fadure exists. 

8.6 SUMMARY OF CHAPTER 8 



The closure design of die H-Area seepage basins located at the Savannah River Site was used as a case 

study for die framework. The two altemadve closure designs considered were to either (a) put a clay cap 

on the basins or (b) put no clay cap on the basins. The clay cap altemadve is assumed to be 100% 

effective in preventing any contamination from leaving the seepage basins, while the no clay cap 

altemadve is assumed to result in the seepage basins being an active source of contamination. Therefore, 

failure can only result for the no clay cap alternative. The cost of failure for the no clay cap alternative is 

not known; therefore, the data wordi analyses are carried out with two assumed costs of failure of $45 

million and $70 million. These costs of failure were arbitiarily selected to force measurements to have a 

positive worth. The cost of failure of $45 mdlion results in a more unstable prior best design altemative. 

The framework was first used to evaluate the net worth of a single, hard, point measurement. It was 

found to be cost effective for both costs of failure. A sensitivity analysis was carried out to determine the 

robustness of diis decision. The sensitivity analyses included numerical parameters, economic 

parameters, geostatistical parameters, and numerical artifacts of the SIS algorithm. In general, none of 

the parameters tested had a serious effect on die cost effectiveness of die measurement. At lower costs of 

failure, when the prior best design altemative becomes more unstable, the effect of these parameters on 

Wne( increases. 

The net worth of pattems of up to five hard, point measurements at sample spacings of 29,145, and 

290 m were studied. The most cost effective pattem was die five measurements widi die 290 m spacing. 

With die 290 m spacing, no limit was found for die optimum number of measurements. The 

measurements are independent enough that their net worth increases with the number of measurements. 

However at small spacings, or with much existing data, spatial dependence becomes important. Under 

these conditions, the net worth will increase with die number of measurements, reach a maximum and 

then start to decrease. Hence there will be an optimum number of measurements, which may be as small 

as one. 



The framework could be easUy used to design sequendal sampling programs involving single or multiple 

measurements. In the first step a contour map of die net worth for a single measurement would be 

produced and the location of the maximum net worth found. In the second step, the measurement(s) 

would be located in the region of the maximum net worth. In die case of multiple measurements, the 

optimum number and spacing of the measurements would then be determined. Once the measurement(s) 

was taken, a new contour map would be created to pick out the next measurement location(s). 

Measurements would only be taken as long as the maximum net worth was > $0. The robusmess of a 

decision to take a measurement(s) can be tested by carrying out a sensitivity analysis of W„m of the 

measurement(s) to base case parameters. 

Contour plots of W^^, could also be used to map out the maximum area over which a grid of point 

measurements could be cost effective. However, this area is uncertain because it is a function of die cost 

of failure and other base case parameters. 

The fi-amework was found to be effective in determining the cost effectiveness of a geophysical survey 

covering a large area because only die break even precisions (pj and pj) had to be estimated, radier dian 

the exact precision. For the example survey used here, it was estimated that the break even precision, 

P(SplF) (i.e. Pl), was only 0.14. Similarly, the framework also is potentially very useful for determining 

the most cost effective sampling technique. In the case study, the net worth of pattems of hard, point 

measurements were compared to the net worth of an areal, soft seismic survey. The seismic survey only 

needed a precision of P(SplF) > 0.23 for it to be more cost effective than five hard measurements taken 

290 m apart. 

8.7 NOTATION 



A^Q clay cap alternative 

Ap prior best design altemadve 

Ap' posterior best design altemadve 

A^Q no clay cap alternative 

Cgj. cost of clay cap altemative 

cost of no clay cap altemative 

Cf cost of failure 

Cf4 cost of failure of $45 million 

Cfj cost of failure of $70 million 

F failure 

H ' weight of prior data 

Hj weight of sample data 

Kj, hydrauhc conductivity in horizontal direction 

hydraulic conductivity in vertical direction 

mj estimate of die mean of I(x) 

mj' prior estimate of die mean of I(x) 

mj" updated estimate of the mean of I(x) 

Ug equivalent prior number of measurements 

NF no failure 

Pi probability of sampling a window, given diat one is present 

P2 probability of sampling a window, given that one is not present 

Sp outcome of sampling failure 

Sjyjp outcome of sampling no failure 

outcome of sampling no window 

^NWfj outcome of sampling NWfj 

outcome of sampling a window 

outcome of sampling Wfj 



W worth of data 

Wfj window exists which causes failure and changes the prior best design altemadve 

NWf J no window exists which will cause a failure which will alter the prior best design altemadve 

^aei "et worth of data 

correlation lengdi of indicator random variable I(x) 

| i i mean of indicator random variable I(x) 

aj-̂  variance of indicator random variable l(x) 

Oj^'" updated variance of indicator random variable I(x) 

•̂ Wnet̂  variance of net worth 

^Wnet:^ variance of net worth caused by parameter i 



CHAPTER 9: SUMMARY AND CONCLUSIONS 

The objective of this thesis is to develop a Bayesian decision framework for answering data worth 

questions pertaining to hydrogeological design in heterogeneous geological environments. Previous 

Bayesian methods dealt only with homogeneous systems. The framework is developed specifically for 

aiding hydrogeologists, dealing with groundwater contamination, in the design of exploration programs 

searching for aquitard discontinuities. The framework can be valuable in carrying out cost effective 

remediation: It provides the site engineer with a tool not only for spending site exploration resources 

more efficientiy, but also for deciding when enough information has been collected. 

The framework consists of two basic modules: a geostatisdcal indicator (SIS) algorithm for simulating 

aquitard heterogeneity and a numerical model for simulating contaminant transport. Bayesian decision 

analysis ties the two modules together. The Bayesian nature of the framework also provides a 

mediodology for incorporating a conceptual understanding of the local geology widi quantitative 

information. Indicator geostatistics allows the handling of (a) hard, point measurements (which are 

precise, but are probably few and expensive), (b) soft, point measurements (which are imprecise, but are 

probably cheaper and more numerous), and (c) hydrogeological parameters which behave in space as 

non-Gaussian random variables. 

It is assumed that die SIS algoridim correcdy reproduces the essential characteristics of die local geology. 

If it does not, dien die data worth analyses could be affected. Nevertheless, it is felt diat the SIS 

algorithm is the best method available for handling geological heterogeneity. Finding mediods of 

realistically and numerically representing geological heterogeneity is a current research problem. As 

improved mediods are found, diey could be incorporated into die framework. 



Many parameters which must be estimated to carry out data worth analyses. For hard measurements, 

these include geostadsdcal parameters, hydrogeological parameters, economic parameters, and 

numerical artifacts of the SIS algorithm. The analyses of soft geophysical surveys are also dependent 

upon the survey's precision. The sensitivity of die worth of a single, hard measurement to these 

parameters was studied using the Savannah River Site case history and two generic design examples. 

The worth was found to be most sensitive to the economic parameters, in particular to the discount rate 

and the cost of failure. For the hydrogeological parameters in general, it is much more important to know 

whedier the value of the parameter is above or below some threshold value, rather than to know its actual 

value. For the geostatistical parameters, die worth is relatively insensitive to die correlation lengdi and 

the confidence in the prior estimate of the mean, but is sensitive to the estimate of the mean. The worth 

is relatively insensitive to the numerical artifacts of the SIS algorithm. 

Sensitivity results indicate that the framework can be robust in determining the cost effectiveness of a 

measurement program. However, data worth analyses can be unstable when die objective function of die 

prior best design alternative is close in value to that of another prior design altemative. 

In addition, the sensitivity analyses indicate that die perspective of the decision maker can have a major 

impact on the worth of a sampling program. For example, the owner/operator of a waste disposal site 

interested in making a rate of retum on an investment will evaluate a very different measurement worth 

than an environmentalist interested in die long-term preservation of die environment. The source of this 

difference will come primarily from the assumed discount rate, and the perceptions of die cost associated 

with failure. 

For the Savannah River case history, die net wordi of pattems of up to five hard, point measurements at 

spacings of 29,145, and 290 m were studied. The most cost effective pattem was the five measurements 

with the 290 m spacing. With the 290 m spacing, no limit was found for the optimum number of 

measurements. The measurements are almost independent; therefore, dieir net wordi increases widi the 



number of measurements. However at smaller spacing, or with many existing data, spadal dependence 

can become important. Under these condidons, the net worth will increase with the number of 

measurements, reach a maximum and then start to decrease. Hence, the analysis predicts an opdmum 

number of measurements, which may be as small as one. 

The framework could be easdy used to design sequential sampling programs involving single or multiple 

measurements. In the first step a contour map of the net worth for a single measurement would be 

produced and die location of die maximum net worth found. In the second step, the measurement(s) 

would be located in the region of the maximum net wordi. In die case of multiple measurements, the 

optimum number and spacing of the measurements would be determined. Once the measurement(s) was 

taken, a new contour map would be created to pick out the next measurement location(s). Measurements 

would be only taken as long as the maximum net worth is > $0. The robusmess of a decision to take a 

measurement(s) can be tested by carrying out a sensitivity analysis of the measurement's net worth to 

base case parameters. These include geostatistical, economic, and hydrogeological parameters and 

numerical artifacts of the SIS algoridim. 

The framework was found to be effective in determining the cost effectiveness of a geophysical survey 

covering a large area because only the break even precision needed to be estimated, rather than the exact 

precision. The break even precision is die precision at which die net worth = $0. In die case study, the 

geophysical survey was cost effective if the probability of its locating a window in the area sampled, 

given that one existed, was > 0.14. For similar reasons, the framework was also found to be effective in 

comparing the cost effectiveness of geophysical surveys and pattems of hard point measurement. In die 

case study, die seismic survey needed only a precision of P(SplF) > 0.23 to be more cost effective than 

five hard measurements taken 290 m apart. 

Consequendy, die developed framework was found to be effective in making data worth decisions 

involving exploration programs searching for aquitard continuity. This accompUshment represents the 



; 
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major contribution of this thesis. The present applicability of the framework to answering real data worth 

question should be tested by back analyzing sampling programs at real groundwater contamination sites 

where many data have been collected. 

A second contribution of diis diesis lies in combining geological understanding widi quantitative data to 

gain a geostatistical description of sand/shale heterogeneity. This combination is important because the 

environment of deposition contains much information about the heterogeneity. The case study 

demonsttated how the inclusion of geological intuition can be critical in correcdy carrying out a data 

wordi analysis. Analysis based on existing quantitative data alone is handicapped because if no windows 

have been previously found, then the probability of a window existing is zero. However, it is known that 

alluvial action over die last several million years could have created a window; Upper Three Runs Creek 

is an existing example. Consequendy, ignoring the geological information would have resulted in the 

incorrect conclusion that data have zero worth and may have resulted in a poor design decision. 

Application is not stiaightforward at this time because of the lack of a quantitative relationship between 

heterogeneity and environment of deposition, but research at other centers is apparendy progressing in 

this dh-ection. 

A third contribution is the handling of die effect of uncertainty of aquitard continuity on the prediction of 

contaminant tiansport. A final contribution lies in the adaptability of the framework to handle other 

types of data worth questions. The framework provides a foundation for addressing new data worth 

questions not only in hydrogeology, but also in other disciplines such as mining and petioleum reservoir 

engineering. 
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APPENDIX 1: GREEN CLAY DATA BASE 

THICK - thickness of Green Clay (m) 
GCTOP - top elevation of Green Clay (m) 
GCBOT - bottom elevation of Green Clay (m) 
GLOG - G =geophysical log available. 
GC - Y = Green Clay indicated on hdiologic logs 

- N = Green Clay not indicated on lidiologic logs 
DH - difference in head across green clay (m) 



Borehole Co-ordinate THICK GC GCTOP GCBOT GLOG DH 
E N (m) (m) (m) (m) 

BGC-IA 57196 73551 0.9 Y 36.3 35.4 
BGC-2A 55887 74350 2.4 Y 41.3 38.9 

BH-1 64590 76000 3.9 N 47.7 43.7 G 
BH-10 65000 74000 3.3 Y 46.3 43.0 G 
BH-11 65199 74301 1.6 Y 45.9 44.3 G 
BH-12 65998 74001 3.3 Y 48.0 44.7 G 
BH-13 64002 72999 3.3 N 47.0 43.7 G 
BH-14 65018 72993 2.3 N 43.5 41.2 G 
BH-15 66008 72992 1.4 Y 46.5 45.0 G 
BH-159 64380 73866 3.9 N 43.3 39.4 G 
BH-16 64592 72504 3.3 Y 43.5 40.3 G 
BH-160 64438 74365 3.3 Y 45.8 42.6 
BH-18 65165 75035 4.9 Y 48.2 43.4 
BH-2 64000 74999 3.3 N 45.9 42.7 G 

BH-20 65175 75025 1.6 Y 48.2 46.6 G 
BH-22 64880 75115 0.0 N 43.8 43.8 
BH-23 65050 75115 6.6 Y 43.8 37.2 21.3 
BH-24 64600 73693 3.0 N 43.3 40.4 G 
BH-25 64675 75035 3.3 Y 46.0 42.7 
BH-29 64880 74940 0.0 N 43.3 43.3 
BH-3 64601 75008 3.3 N 44.8 41.5 G 

BH-31 65050 74940 1.6 Y 49.4 47.8 
BH-32 64520 74840 0.0 N 44.7 44.7 
BH-33 64675 74840 3.3 Y 42.6 39.3 
BH-37 64520 74660 0.0 N 43.4 43.4 
BH-38 64590 74745 0.7 Y 46.6 46.0 
BH-39 64675 74660 0.0 N 46.0 46.0 
BH-4 65305 75106 1.6 Y 47.2 45.6 G 21.3 

BH-41 64880 74775 3.3 Y 42.7 39.4 
BH-42 65050 74775 4.9 Y 43.4 38.5 
BH-45 64880 74610 0.0 N 43.5 43.5 
BH-46 62894 73662 2.1 N 44.9 42.8 G 
BH-47 65050 74610 3.6 Y 45.4 41.8 G 
BH-48 65505 74590 3.8 Y 48.6 44.8 17.4 
BH-49 65640 74590 3.8 Y 48.5 44.8 
BH-5 66001 75001 3.8 Y 44.3 40.5 G 
BH-50 65790 74590 1.6 Y 45.3 43.7 17.1 
BH-54 64188 73869 3.3 N 43.0 39.7 G 
BH-55 64520 74420 1.5 Y 43.4 41.9 G 
BH-56 64675 74465 1.4 Y 46.1 44.8 
BH-57 64880 74440 3.3 Y 46.0 42.7 
BH-58 65050 74440 3.3 Y 42.0 38.7 
BH-6 64586 74500 1.5 Y 46.4 44.9 G 
BH-62 64190 74024 3.0 N 42.6 39.7 G 
BH-63 65640 74459 3.3 Y 48.7 45.4 G 
BH-64 65790 74405 1.6 Y 44.8 43.2 17.4 



Borehole Co-ordinate THICK GC GCTOP GCBOT GLOG DH 
E N (m) (m) (m) (m) 

BH-66 64378 74025 1.6 Y 45.7 44.1 G 
BH-69 64765 74245 0.0 N 46.2 46.2 23.3 
BH-7 63015 73995 2.6 Y 42.9 40.3 G 

BH-72 65502 74332 1.6 Y 44.5 42.8 G 
BH-73 65705 74340 0.0 N 43.0 43.0 
BH-77 64520 74165 0.0 N 44.2 44.2 
BH-78 64771 74088 3.3 Y 45.6 42.3 
BH-8 63995 73994 2.5 N 43.4 40.9 G 

BH-80 64465 73990 0.0 N 44.3 44.3 
BH-81 64765 73955 2.0 N 44.1 42.1 G 
BH-83 64259 74365 2.0 N 43.6 41.6 G 
BH-84 64253 74256 1.6 N 40.8 39.1 G 
BH-85 64440 74256 0.0 N 44.2 44.2 

BH-G6L1 64362 74334 0.0 N 42.8 42.8 
BH-86L2 64367 74292 1.6 N 44.1 42.5 G 

BH-89 64465 73820 3.3 Y 43.9 40.6 
BH-9 64601 74011 0.0 N 43.0 43.0 

BH-90 64591 73851 3.3 Y 44.4 41.1 G 
BH-92 64765 73785 3.3 Y 42.3 39.0 
BH-98 64465 73620 0.0 N 43.3 43.3 22.3 
DH-2 62090 71760 0.0 N 39.5 39.5 
DH-3 61520 71629 0.0 N 37.8 37.8 
DH-4 53190 77000 0.0 N 40.0 40.0 
DH-5 52650 77335 0.0 N 40.3 40.3 
F-10 53472 78985 0.0 N 42.7 42.7 
F-11 54200 78400 0.0 N 42.7 42.7 
F-13 53480 78275 2.6 Y 43.9 41.2 
F-14 53480 79270 1.6 Y 45.9 44.2 
F-28 53660 78657 0.0 N 42.7 42.7 
F-6 53549 79843 0.0 N 42.7 42.7 
F-8 53400 78475 1.6 Y 44.1 42.5 
F-9 53400 79480 0.0 N 42.7 42.7 

FC-IA 53115 79665 3.6 Y 48.9 45.3 22.3 
FC-2A 55424 79244 3.3 Y 48.6 45.3 21.0 
FC-3A 57620 78727 0.7 Y 51.2 50.5 18.4 
FC-4A 53897 82243 0.3 Y 42.3 42.0 G 4.3 
FC-5A 54672 87988 1.6 N 53.0 51.3 G 
FF-4 52942 76922 0.0 N 42.7 42.7 
FU-1 53475 79121 0.0 N 42.7 42.7 
FU-2 53478 78648 5.7 Y 46.8 41.0 
FU-3 54390 78320 0.0 N 42.7 42.7 

H-35D 58548 71918 3.3 Y 38.1 34.8 G 
HC-IA 61867 71755 0.7 Y 40.4 39.7 G 24.6 

HC-lOA 61531 75815 1.3 Y 41.3 40.0 G 14.8 
H C - l l A 62147 74519 1.0 Y 44.6 43.6 G 
HC-13A 63610 73394 1.0 Y 41.1 40.1 G 



Borehole Co-ordinate THICK GC GCTOP GCBOT GLOG DH 
E N (m) (m) (m) (m) 

HC-14A 60658 67560 1.6 Y 38.2 36.6 G 
HC-16A 65462 72596 1.8 Y 43.0 41.2 G 19.4 
HC-17A 61700 73200 0.7 Y 42.0 41.3 
HC-18A 63409 71560 1.0 Y 37.4 36.4 
HC-2A 61866 71794 2.6 Y 41.6 38.9 G 26.2 
HC-3A 62266 74742 3.0 Y 39.2 36.3 G 24.9 
HC-7A 66992 74352 0.7 Y 46.6 45.9 G 
HC-8A 59990 77492 1.0 Y 50.2 49.2 G 13.8 
HC-9A 64084 75135 1.5 Y 44.0 42.4 G 22.3 
PDM-5 54695 74819 0.7 Y 42.7 42.0 

PWAA-17 54826 72978 0.3 Y 40.4 40.0 
PWCC-13 54387 73057 0.7 Y 42.3 41.7 
PWCC-25 55350 72350 2.3 Y 40.7 38.4 
PWEE-9 53941 73132 1.0 Y 40.0 39.0 
PWM--1 54210 75182 1.0 Y 41.7 40.7 
PWM--4 53968 75360 1.0 Y 41.3 40.4 
PWM-1 54370 75063 1.0 Y 41.7 40.7 

PWM-13 55338 74344 2.0 Y 42.3 40.4 
PWM-17 55660 74106 2.0 Y 41.7 39.7 
PWM-5 54695 74819 0.3 Y 41.7 41.3 
PWM-9 55016 74582 0.7 Y 41.0 40.4 
PWQ-3 54300 74614 1.0 Y 40.0 39.0 
PWQ-5 54457 74498 2.3 Y 39.7 37.4 
PWQ-7 54619 74378 1.0 Y 41.3 40.4 
PWQ-9 54779 74260 1.0 Y 41.7 40.7 
PWU-17 55184 73463 0.7 Y 39.7 39.0 
PWU-5P 54219 74176 2.0 Y 41.0 39.0 
PWW-5 54106 74010 0.0 N 39.4 39.4 

PWW-5P 54106 74010 0.0 N 39.4 39.4 
PWY-21 55268 72903 0.3 Y 41.0 40.7 
SDS-12A 66610 77742 3.3 N 50.7 47.4 G 16.4 
SDS-7A 67681 76515 1.3 N 44.0 42.7 G 12.1 
12H-11 61150 72100 1.3 Y 42.7 41.3 
12H-18 62473 71310 0.0 N 41.0 41.0 
12H-19 62473 71270 0.0 N 41.0 41.0 
12H-20 62498 70975 2.6 Y 40.0 37.4 

12H-21U 62636 70966 1.3 Y 39.8 38.5 
12H-22U 62730 70956 3.3 Y 39.4 36.1 
12H-23 62850 70956 0.0 N 39.4 39.4 

12H-27U 62794 70945 3.3 Y 40.6 37.3 
12H-3 62708 71300 1.0 Y 40.7 39.7 

12H-30 62900 70956 1.2 Y 39.4 38.2 
12H-39 62670 70826 0.0 N 39.4 39.4 

12H-40U 62740 70832 0.0 Y 39.4 39.4 
14F-1 52800 76720 1.6 Y 43.3 41.7 



Borehole Co-ordinate THICK GC GCTOP GCBOT GLOG DH 
E N (m) (m) (m) (m) 

14F-2 52786 76814 2.3 Y 44.3 42.0 
14F-3U 52786 76940 1.3 Y 43.3 42.0 
14F-4 52786 77072 1.6 Y 43.6 42.0 
14F-6 52600 76694 1.6 Y 42.7 41.0 

14F-7U 52600 76816 0.0 N 42.7 42.7 
14F-8 52600 76940 1.6 Y 44.3 42.7 
14F-9 52600 77072 1.6 Y 41.7 40.0 

55F-1U 52332 77072 0.0 N 41.0 41.0 
55F-2 52332 76696 1.6 Y 42.0 40.4 
55F-3 52332 76940 1.6 Y 41.7 40.0 

55F-4U 52332 76816 0.3 Y 38.4 38.1 




