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Abstract 

Unexploded Ordnance (UXO) discrimination is achieved by extracting parameters from geophys

ical data that reflect characteristics of the target that generated the measured signal. Model-based 

parameters are estimated through data inversion, where the optimal parameters are those that pro

duce acceptable agreement between observed and predicted data and satisfy any prior information 

we have of the target. These parameters are then used as inputs to statistical classification methods 

to determine the likelihood that the target is, or is not, a UXO. The task of accurately recovering 

model parameters is more difficult when sensor data are contaminated with geological noise origi

nating from magnetic soils. In regions of highly magnetic soil, magnetometry and electromagnetic 

sensors often detect large anomalies that are of geologic, rather than of metallic origin. In this thesis 

I investigate different methods of recovering the dipole polarization tensor from time domain elec

tromagnetic (TEM) data. The different data inversion methods are characterized by the amount of a 

priori information used. Different a priori information considered include target location and depth 

estimated from other data sets, and knowledge of the different types of UXO that can be expected 

at the site. In the first part of this thesis, I assume that the influence of background geology can 

be removed through a data pre-processing procedures such that the UXO can be assumed to sit in 

free space. In the second part of this thesis we take a closer look at the influence of viscous rem

nant magnetization on electromagnetic data. Several software and hardware based approaches are 

proposed for improving detection and discrimination of UXO in geologically magnetic areas. 
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Chapter 1 

Introduction 

An explosive ordnance is a munition that is either launched or fired with the intent of detonation 

at a specified target. An unexploded ordnance (UXO) is an explosive ordnance that, because of a 

malfunction, remains undetonated 1.1. As a result, the ordnance can be found at the ground surface, 

partially buried, or buried at a depth of up to 8 m beneath the surface. UXO are found in post-

conflict areas and military training areas. Post-conflict areas contaminated with UXO have led to 

numerous casualties and economic difficulties (Landmine Action, 2002). Within these post-conflict 

areas, poorly marked or abandoned firing ranges present a particular threat to safety due to higher 

concentrations of UXO (Moyes, 2005). Military training within the United States of America has 

led to approximately 10 million acres of UXO-contaminated land with an estimated cleanup cost 

exceeding the tens of billions of dollars (Defense Science Board, 2003). The remediation of UXO-

contaminated land has been made a high priority by the United States Department of Defense in 

37mm 

• 
I 

Figure 1.1: Some typical UXO. 
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order to either maintain safe usage for continuing military operations or to permit land transfer to 

the private sector (MacDonald et al., 2004). Approximately 200 million dollars per year is spent 

by the United States of America Department of Defense on the UXO cleanup problem (Defense 

Science Board, 2003). 

The remediation of UXO contaminated sites can be described as a three step process: (1) de

tection, (2) discrimination, and (3) excavation (Figure 1.2). In the context of the UXO remediation 
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> Historical records 
>• "Footprint Reduction" 
> Wide Area Assessment 

• Passive (i.e. magnetometer) sensors 
>• Active electromagnetic sensors 
> Positioning information (GPS, IMU) 

> Removal of sensor related data artifacts 
•• Generation of data maps 
> Target picking 

>• Data-Based Features 
>• Inversion of data for parameters of a 

physics-based model 

> "Rule-based" methods 
> Statistical Classification (Support Vector 

Machines, Neural Networks, etc.) 

Figure 1.2: The basic steps to detecting and discriminating UXO. 

problem, detection is the process of determining the location of subsurface metallic targets that are 

potentially UXO. Since many UXO contaminated sites can be in the order of thousands of acres, a 

preliminary site assessment is generally carried out to delineate boundaries of UXO contamination 

such that ground based geophysical detection surveys can be more efficiently fielded. This process 

of "Footprint Reduction" is achieved through the examination historical records and airborne sur

veys. Synthetic aperture radar (SAR), light detection and ranging (LiDAR), and high resolution 

ortho-photography are remote sensing technologies capable of detecting surface ordnance indica

tors such as craters, tire tracks, or metal debris. Aircraft equipped with geophysical sensors can 

provide a coarse level of subsurface detection. In particular, low-flying (i.e., within a few meters 
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Chapter 1. Introduction 

of the ground) helicopters equipped with magnetometers successfully detect large caches of buried 

ordnance or very large single targets (Nelson et al., 2005). 

While airborne systems can delineate regions of high UXO contamination (such as bombing 

targets), ground based geophysical surveys are required to detect isolated, smaller and deeper tar

gets. Magnetic and electromagnetic surveys are the standard geophysical techniques used for UXO 

remediation. Electromagnetics and magnetometry have proven to be successful in detecting UXO 

in recent UXO remediation projects and UXO technology demonstrations. Magnetometry is a pas

sive detection system. The high magnetic susceptibility of a ferrous target causes distortions to the 

Earth's field which are measured by a magnetometer (Figure 1.3). In general, the magnetometer is 

far enough away from the target such that the secondary field can be approximated well by a dipole. 

Magnetometry is a valuable geophysical tool for UXO detection due to the ease of data acquisition 

and its ability to detect relatively deep targets. However, magnetic data can have large false alarm 

rates due to geological noise, and there is an inherent non-uniqueness when trying to determine the 

orientation, size and shape of a target (Billings, 2004). 

Electromagnetic induction (EMI) sensors detect a buried target by illuminating the subsurface 

with a time varying primary field. If the buried target is conductive, eddy currents will be induced 

in the target, and subsequently decay. These currents produce a secondary magnetic field which is 

then sensed by a receiver coil. In contrast to magnetometry, electromagnetic induction surveys are 

relatively immune to geologic noise and are more diagnostic for target shape and size but have a 

reduced depth of investigation. 

"Mag and Flag" is the traditional method of UXO detection. This technique uses analog, hand

held metal detectors to sweep UXO-contaminated land. The term "Mag" is used because the tra

ditional metal detectors for this purpose were magnetometers. Locations where the detector has 

signalled the presence of a metallic item are flagged for excavation. Therefore "Mag and Flag" is 

strictly a detection technique, and has no ability to discriminate between UXO and non-UXO items. 

Several factors make "Mag and Flag" an inefficient technique for UXO remediation. Detection 

performance is limited by the ability of the operator. Human factors, such as fatigue, heat, motiva

tion and hunger, can negatively impact the quality of collected data and the ability to recognize the 

presence of buried targets. There is also limited quality control of the "Mag and Flag" procedure 

since a data maps of the survey area are not produced and, therefore, it is not possible to confidently 
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(a) An array of magnetometers being used (b) A magnetometer array mounted on a helicopter. Helicopter magne
to collect data at Chevellier Ranch, Mon- tometer surveys for UXO detection are flown as close to 1 m above the 
tana. surface and at a speed of approximately 80 km/hour. 
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(c) Magnetometer data collected over the Former Lowry Bombing range test plot. Distances 
are in meters, and the units of the measurement are nano-Teslas. These data were collected 
by a magnetometer array with a sensor spacing of 0.30 m. The image was created by using 
minimum curvature gridding. 

Figure 1.3: Examples of magnetometer systems and magnetometer data. 
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Figure 1.4: Examples of some scrap targets excavated during a UXO remediation project at the 
Former Camp Croft Army Training Facility Spartanburg, South Carolina. 

assess the UXO contamination at site. Secondly, UXO contaminated areas are, generally, also con

taminated with large amounts of metallic non-UXO items such as fragments of exploded ordnance 

(Figure 1.4) or debris from troop activities (Figure 1.5). In many areas the ratio of metallic non-

UXO items to UXO can exceed 100:1. The largest cost of UXO remediation is excavation, due to 

the potential explosive or chemical hazard that each excavation presents (Defense Science Board, 

2003). Practical and cost-effective strategies for remediation require both detection and algorithms 

for discriminating between UXO and non-UXO. The need for improved detection and discrimina

tion has led to an increased emphasis in the use of digital geophysics and data processing. 

Figure 1.6 contains photos of some electromagnetic induction detectors currently being used 

for UXO detection. There are two types of electromagnetic sensors: time domain (or pulse induc

tion) electromagnetic (TEM) detectors and frequency domain (or continuous wave) electromagnetic 

(FEM) detectors. Time domain sensors operate by illuminating the subsurface with a finite pulse 

primary field. Once the primary field has been terminated, a receiver measures the time decay of 

the secondary field (Figure 1.7(a) and (b)). The rate of decay is a function of the material properties 

and shape of the buried target. Frequency domain methods incorporate a transmitter that produces a 

continuous, periodic (for example, sinusoidal) primary field. A receiver continuously measures the 

secondary field, with the amplitude and phase of the received signal providing target information 

(Figure 1.7(c) and (d)). 

Ground penetrating radar (GPR) is a high frequency electromagnetic geophysical technique that 
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Figure 1.5: A pop can excavated during cleanup activities with the Montana Army National Guard 
at Limestone Hills in Helena, Montana. 

has been considered for UXO detection (Figure 1.8). GPR is an electromagnetic detection technique 

that operates at higher frequencies than EMI sensors, and therefore its physics is governed by the 

EM wave equation. A polarized pulse propagates into the subsurface. The pulse subsequently re

flects off of discontinuities in electromagnetic properties and returns to the surface. The time delay 

and amplitude of the reflected pulse is measured at the surface. GPR has the ability to accurately 

determine depth and location of targets, and to delineate multiple targets. GPR's high sensitivity 

to soils and subsurface structure degrades its performance in production settings, limiting its use. 

Research has yet to produce a GPR system (detection and processing) suitable for reliable UXO 

detection and discrimination. However, GPR's strengths has led to research for incorporating GPR 

into multisensor systems, in particular for the very near-surface detection requirements of land

mine detection (for example the United States Army Handheld Standoff Mine Detection System 

(HSTAMIDS)). 

Once a geophysical data survey is completed, a number of processing steps are applied to the 

data such that accurate maps of the survey data are created. Generating accurate maps of the sur

vey involves the careful integration of sensor position information (for example Global Positioning 

Systems (GPS) and Inertial Measurement Units (IMU)) with sensor measurements, and removal of 

sensor related data artifacts such as instrument drift and spikes. These data maps provide a record of 

the spatial coverage of the survey. If the signal due to background geology is insignificant, or it can 
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(a) The Geonics EM61 Mark II TEM Sensor being cali- (b) The Geonics EM63 Mark TEM Sensor collecting data 
brated at Kaho'olawe Island, Hawaii, U.S. at the Yuma Proving Grounds, Nevada, U.S. 

(c) The Minelabs F14A TEM Sensor being used during (d) The Geophex GEM-3 FEM Sensor collecting data at 
target validation work at Limestone Hills, Montana, U.S. Chevallier Ranch, Montana, U.S. 

Figure 1.6: Photos of some electromagnetic induction detectors currently being used for UXO de
tection. 
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(a) First time channel (0.18 ms) of Geonics EM63 Data 
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(c) Geophex GEM-3 data. The imaginary component of the data at 2490 (<*) Frequency sounding measured by the 
Hz is plotted. Geophex GEM-3 sensor positioned over a 

SCAR. 

Figure 1.7: Examples of electromagnetic induction sensor data. These data were acquired over the 
Former Lowry Bombing and Gunnery Range test plot. The soundings in (b) and (d) 
were measured over a Sub-Caliber Aircraft Rocket (SCAR) Body. 
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(a) GPR instrument ( b ) D a t a from 

Figure 1.8: Ground penetrating radar, (a) Photo of a 250 MHz Noggin Smart Cart manufactured 
by Sensors and Software, (b) A cross-section of data collected at Camp Lejeune. The 
hyperbolas in the left circle indicate a single target, while the data in the right circle 
show a the presence of multiple scatterers. 

be removed through filtering, the processed data are then used to generate target lists. These target 

lists identify anomalies within the data map that the interpreter believes are potentially from UXO. 

In general, an initial target list is generated automatically by identifying anomalies whose maximum 

amplitude or energy exceeds a threshold level chosen by the interpreter. The threshold level is gen

erally chosen with the objective of maximizing the detection of buried ordnance expected at a site 

without including anomalies from sensor noise or smaller items (such as fragments from exploded 

ordnance). Target picking is often refined by visual inspection. 

Discrimination is the process of determining, for each anomaly in the target list, the likelihood 

of it being a UXO. The objective is to minimize the number of false positives and, therefore, un

necessary excavations. UXO discrimination is achieved by extracting parameters from geophysical 

data that reflect characteristics of the target that generated the measured signal. These parameters 

come in two forms: (1) data-based parameters that are directly inferred from the data, such as am

plitude and energy and (2) model-based parameters that are variables of a mathematical forward 

model (such as the dipole model) that can reproduce the data. Data and model based parameters 

can then be used as input to statistical classification methods (such as support vector machines and 
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neural networks) to determine the likelihood that the target is a UXO. The parameters are related 

to the physical properties of an object are and we refer to them as physics-based forward models. 

Model-based parameters are recovered from inversion of the geophysical data. The optimal param

eter set minimizes a data misfit function (such as a least squares measure) and satisfies any prior 

information we have of the target. 

The choice of forward modeling method has a large impact on inversion, and therefore discrim

ination, performance. The ideal forward model can accurately reproduce the data with a minimum 

number of parameters, while being computationally efficient. The response of a compact metallic 

target to a electromagnetic field can be computed through solutions of Maxwell's equations. Nu

merical solutions of Maxwell's equations, under continual development, are promising (e.g. Haber 

et al. (2000); Carin (2000); Hiptmair (1998); Shubitidze et al. (2002a)); however, the computational 

time requirements for obtaining a solution still make them impractical for use as part of a rigorous 

inversion procedure. The dipolar nature of the electromagnetic responses of compact metallic ob

jects measured with sensor/target geometries typical for UXO surveys (Casey and Baertlein, 1999; 

Grimm et al., 1997) has lead to a number of techniques for estimating the elements of the magnetic 

polarization tensor that define the induced dipole strength. These dipole model based techniques 

have shown great promise for discrimination (Bell et al., 2001b; Zhang et al., 2003; Pasion and 

Oldenburg, 2001a). The magnetic polarization tensor's components are functions of the size, shape, 

and material properties of the buried target of interest and therefore provide a model vector from 

which the target characteristics can be inferred. Target identification is then achieved by including 

the recovered model parameters as part of feature vectors that are input into statistical classification 

algorithms (Billings, 2004; Collins et al., 2001; Beran, 2005). 

The success of dipole model based discrimination algorithms depends on the accuracy of the 

dipole model, and ability of the data to constrain the inversion for the dipole parameters. Inversion 

algorithms that incorporate inaccurate models will have biased parameter estimates, even when 

using noise free data. In the case of dipole models, non-dipole components in the data will bias the 

estimates. When plotting a target's recovered parameters from inaccurate models in feature space, 

the parameter bias results in a greater spread in the target's parameter cluster. More complex models 

have the ability to model more subtle features within the data. However, parameter estimate variance 

can increase with model complexity, and, therefore, data fidelity must be able to support their use. 

10 
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If data are unable to constrain parameters, a priori information must be included in the inversion. In 

many cases sensor data are unable to constrain the inversion such that the true polarization tensor 

can not be recovered (Pasion et al., 2004; Bell, 2005). Poor data quality, due to a low signal 

to noise ratio or survey design (for example, poor spatial coverage and inadequate illumination 

of both axial and transverse excitations), make the use of parameter estimation difficult. In such 

cases, a priori information can be introduced when searching model, or feature, space. Examples 

of a priori information include target location estimates from processing previously acquired data 

sets (for example, magnetics (Zhang et al., 2003; Pasion et al., 2003) or ground penetrating radar 

(Shamatava et al., 2004)), and restricting the model type to be rod-like targets. A further restriction 

in model space would be to assign higher probabilities to encountering different targets. A simple 

implementation of this concept is to develop a list of candidate UXO likely to be encountered during 

a survey, then to determine, for each member of the library, the likelihood of generating the anomaly. 

The task of discriminating UXO from non-UXO items is more difficult when sensor data is con

taminated with geological noise originating from magnetic soils. The magnetic properties of soils 

are mainly due to the presence of iron. The magnetic character of the soil is dominated by the pres

ence of ferrimagnetic minerals such as maghaemite (aFe204) and magnetite (Fe304). Maghaemite 

is considered the most important of the minerals within archaeological remote sensing circles (for 

example Scollar et al. (1990)). Magnetite is the most magnetic of the iron oxides, and is the most 

important mineral when considering the effects of magnetic soils on EM measurements. Hydrated 

iron oxides such as muscovite, dolomite, lepidocrocite, and geothite are weakly paramagnetic, and 

are less important in the context of UXO detection. 

Electromagnetic sensors are sensitive to the presence of magnetite and especially when the soils 

have magnetic viscosity. Electromagnetic sensors illuminate the subsurface with a time or frequency 

varying primary field. Suppose that we apply a magnetic field H to an area containing magnetic 

soil. The magnetization vector of the soils will try to adjust to align itself with the exciting field. 

At the instant the magnetic field is applied there is an immediate change in magnetization and, pos

sibly, an additional time dependent change in magnetization. This time dependent phenomenon is 

referred to as magnetic viscosity or magnetic after-effect. A time constant r is used to character

ize the time for the magnetization vector to rotate from its minimum energy orientation prior to 

application of the field, to its new orientation. For a sample of magnetic grains which has a large 
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range of relaxation times that are distributed uniformly over their spectrum, the magnetic moment 

of the soil sample will decay logarithmically. The time derivative of the decaying magnetic field 

produced by the decaying magnetization decays as r - 1 . This decay have been observed in ar

chaeological prospecting (Colani and Aitken, 1966), TEM surveys carried out over laeteritic soils 

for mineral exploration (Buselli, 1982), and also in TEM surveys carried out on Kaho'olawe Island, 

Hawaii (Ware, 2001). 

Figure 1.9 contains an example of the effect that magnetic soil can have when detecting UXO us

ing time domain electromagnetic sensor data. A study consisting of electromagnetic data collection 

and soil sampling was completed on the island of Kaho'olawe, Hawaii (Li et al., 2005, 2006). The 

presence of viscous remnant magnetic soils due to the weathered basalt parent material produces a 

background response that is comparable to that of a UXO in free space. In addition, movement of 

the sensor produce anomalies of the same spatial wavelength of UXO. 

Thesis Outline 

Pasion (1999) suggested that a buried target's dipole polarization tensor could be extracted from 

multi-channel time domain electromagnetic data, and the decay characteristics of the polarization 

tensor could be diagnostic of the targets size and shape. In this thesis I further develop the dipole 

modelling and inversion methodologies described in Pasion (1999) for application to real-world 

UXO remediation projects. During this research we focussed on developing practical strategies for 

interpreting TEM data for improved target detection and discrimination. As a result, every attempt 

was made to include results using real sensor data from both test stands and from field surveys. 

Chapter 2 ("An Approximate Forward Model For TEM Data ") reviews parameterizations of the 

time dependent dipole polarization tensor for modelling the time domain electromagnetic response 

of axi-symmetric targets. Analysis of TEM data collected during a visit to the Engineer Research 

Development Center in Vicksburg, MS, USA are used to assess the validity of this model. 

Chapters 3 to 5 considers different techniques for inverting TEM data for parameters of the ap

proximate dipole model. These approaches are distinguished by the amount of a priori information 

that we consider during the parameter estimation. We first invert data with no prior information in 

Chapter 3 ( "Inversion of Time Domain Electromagnetic Data "). In Chapter 4 ( " Joint and Cooper-
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(a) Field Site on Kaho'olawe Island, Hawaii 

(b) A soil pit dug at approximately the center of the site. The plot 
to the right indicate the magnetic susceptibility measured by two 
different susceptibility meters (at two different frequencies of mea
surement). 

X(m) 

(c) The first time channel of EM63 data acquired by Naeva 
Geophysics over a seeded test plot. The circles represent lo
cations of UXO and the squares mark location of other metal
lic scrap. 

Figure 1.9: Example of detecting UXO in a magnetic setting. 
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ative Inversion of Time Domain Electromagnetic Data "), we invert data with positional information 

being provided through the processing of previously acquired magnetics data. In Chapter 5 ("Appli

cation of a Simple Library Method for Identifying UXO "), we consider a scenario where we have a 

library of possible UXO. We then determine which library member is most likely to have produced 

the anomaly. 

The success of inversion techniques is largely dependent on data quality. That is, the inversion 

of data that have a lower signal to noise ratio, poorer spatial coverage, or less accurate sensor 

positioning information will be less likely to provide accurate parameter estimations. Indeed, if 

the data quality is low enough, we should not attempt an inversion for dipole parameters. Chapter 

6 ("Establishing data quality requirements for inversion and discrimination using simulations") 

considers the data quality requirements for inverting TEM data. Simulations of a single time channel 

of Geonics EM61 Mark 2 TEM data are inverted, and relationships between the spread of the cluster 

classes and data quality are established. 

The effects of magnetic soils on UXO detection and discrimination are considered in Chapters 

7 to 8. Chapter 7 ("Detection of UXO in Magnetic Environments") studies why magnetic soils 

can produce such a significant response in electromagnetic sensors. Field examples from the island 

of Kaho'olawe, Hawaii, U.S.A. and landmine test lanes in Oberjettenberg, Germany and Benko-

vac, Croatia are used to demonstrate this effect. Chapter 8 ("Processing of Electromagnetic data 

in Magnetic Geology ") investigates different methods of processing data collected in magnetic en

vironments. The processing techniques of this chapter exploit the different spatial, temporal, and 

spectral differences of viscous remnant magnetic soil and compact metallic responses. Appendix B 

( "A Differential Electromagnetics Approach for detecting UXO in Magnetic Geology ") describes 

application of the soil fitting procedures of Chapter 8 to multiple transmitter pulse lengths. The 

method of illuminating the subsurface with transmitter pulse lengths suggested by Candy (1996) is 

tested using data from a specially designed Geonics EM61 Mark 2 TEM sensor. 

A conclusion chapter summarizes the work in this thesis and its contributions to UXO remedia

tion technology. 
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Chapter 2 

An Approximate Forward Model For 

Time Domain Electromagnetic Data 

2.1 Introduction 

Time domain electromagnetic metal detectors are one of the primary geophysical survey instruments 

used in UXO detection. Figures 2.1 and 2.2 show examples of TEM data measured by a Geonics 

EM63 TEM sensor on the USACE-ERDC UXO test stand in Vicksburg, MS. Figure 2.1 contains 

data collected over a horizontal 155 mm M4831A1 projectile where the Geonics EM63 transmitter 

loop was 1 m above the ordnance. This particular 155 mm projectile is 870 mm long and weighs 

47 kg. Figure 2.2 contains data collected over a horizontal BDU-28 submunition at a depth of 24.5 

cm from the Geonics EM63 transmitter loop. The BDU-28 weighs 785 gm, and has a length of 95 

mm and diameter of 70 mm. In both Figures 2.1 and 2.2, subfigure (a) contains plan view images of 

the data (in mV) for 4 of the 26 time channels that are measured by the Geonics EM63. Data were 

collected at points indicated by the white dots in the upper left plot (i.e., the plot for time channel 

1). The images were created by using minimum curvature gridding to interpolate between these 

collection points. Subfigure (b) plots the 26 measured time decays at the four locations indicated by 

the symbols plotted in the images of (a). 

In order to invert measured TEM data for the physical parameters of the target, it is necessary 

to have a forward model to describe the TEM response for a buried metallic object. Numerical 

solutions of Maxwell's equations, under continual development, are promising (e.g. Haber et al. 

(2000); Carin (2000); Ffiptmair (1998); Shubitidze et al. (2002a)); however, the computational time 

requirements for obtaining a solution still make them impractical for use as part of a rigorous in

version procedure. Our approach, therefore, is to use an approximate forward modelling that can 

adequately reproduce the measured electromagnetic anomaly in a minimal amount of time. The 
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challenge of this approach is to develop the simplest model (i.e. a model with a minimum number 

of parameters) while still being to accurately reproduce the features of TEM data. 

(a) Plan view of data. (b) Soundings for stations indicated by white symbols. 

Figure 2.1: Geonics EM63 data collected over a 155 mm projectile at the USACE-ERDC teststand 
in Vicksburg, MS. The transition from a single peak at early times to a double peak at 
later times is characteristic of a horizontal, rod-like target. 

2.2 Developing an Approximate Forward Model 

The development of the approximate forward modelling is presented in four steps. We begin with 

the response of a sphere, so that the magnetic polarization dyadic M is introduced. This dyadic 

is then altered so that it is applicable to an axi-symmetric body. This generates the "two-dipole" 

model mathematically. Next, we introduce a parameterization for the time decays of each of the 

two dipoles, and finally, we combine everything to generate our approximate forward modelling. 

2.2.1 Response of a Spherical Body 

Consider a permeable and conducting sphere of radius a illuminated by a uniform primary field 

B p . At a time t = 0 the primary field is terminated, and eddy currents are induced in the sphere; 

they subsequently decay because of the finite conductivity of the sphere. The secondary field Bs 
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Channel 1.1 = 0.18 ms Channel 10, t= 0.72 ms 

Channel 20, t = 7.07 ms 

0.5 0 0.5 
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(a) Plan view of data. By t = 25.14 ms the signal due to the (b) Soundings for stations indicated by white symbols. 
BDU 28 is smaller than the sensor noise. 

Figure 2.2: Geonics EM63 data collected over a BDU-28 submunition at the USACE-ERDC test-
stand in Vicksburg, MS. 

generated by the decaying currents is dipolar: 

B 5 ( U = ^ m ( t ) . ( 3 r r - l ) (2.1) 

where ji0 is the magnetic permeability of free space, m (t) is the dipole moment induced at the 

center of the sphere at time t, r is the distance between the observation point and the sphere center, 

r is the unit vector pointing from the sphere center to the observation point P, and I is the identity 

dyadic. The dipole moment is 
9-7T _ _ 

(2.2) m(t) = — B p L B (t) 
Po 

where 

L B ( t ) = 6aVE 2 ;X P ("*/,T ) 

S <?f + (Mr - 1) (Pr 
+ 2) 

(2.3) 

where r = cr/xa 2/^ and /xr = /x/ / i 0 is the relative permeability (Kaufman and Keller, 1985). In 

general, the magnetic permeability of highly permeable materials is a function of many parameters, 

including the strength of the incident magnetic field, temperature, and magnetic history. The many 

different types of steel produced have a wide range of magnetic permeabilities. In addition, the 
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H = 150 n 

Late Time -
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— sphere response 
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10 10" 10 10 
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(a) Non-Permeable Sphere (b) Permeable Sphere 

Figure 2.3: (a) The time decay behaviour of the magnetic flux density B. (b) The time decay 
behaviour of the time derivative of the magnetic field dB / dt. Both B-field and dB/dt 
responses are normalized such that at t = 0.0001ms the response is unity. 

physical condition (for example, level of corrosion) of a target could affect the effective magnetic 

permeability. However, calculated TEM responses assuming a constant permeability of p,r = 150 

for steel and [xr = 1 for aluminum compared well with laboratory TEM measurements of steel and 

aluminum targets (Pasion, 1999). Therefore we feel that equations 2.1 to 2.3 are suitable for the 

analysis that follows here. The values qs are roots to the transcendental equation 

tan qs 

(Ur - 1) qs 

qj + (flr - 1) ' 
(2.4) 

Figure 2.3 shows the dB/dt response for both a magnetically permeable (e.g., steel) and nonper-

meable (e.g., aluminum) sphere with a radius of 2.5 cm and a conductivity of 3.54 xlO 6 S/m. The 

magnetic sphere has a permeability of p,r = 150. At early time both permeable and non-permeable 

spheres have a characteristic decay o f t - 1 / 2 . At late time the sphere response is exponential. The 

largest time constant r in the summation of equation (2.3) determines the onset of the late time 

exponential behaviour, and is referred to as the fundamental time constant: 

T 0 -
CTLlrH0a 

(2.5) 

18 



Chapter 2. An Approximate Forward Model For TEM Data 

where qi is determined by solving the transcendental equation 2.4 with s = 1. Figure 2.4 plots 

values of qi as a function of the sphere permeability. The fundamental time constant for a non-

4.6 

4.4 

4.2 

3.8 

3.6 

3.4 

3.2 

3 

- q 1(H r = ~) = 4.4934 

[ 
q 1 ( n r = i) = t 

• 1 1 1 1 1 1 1 

20 40 60 80 100 120 140 160 180 

Figure 2.4: First solution (s = 1) of the sphere transcendental equation (Equation 2.4) as a function 
of magnetic permeability. 

permeable sphere is 

T 0 (/xr = 1) = — — (2.6) 

The value of q\ approaches 4.4934 as \xT approaches infinity. Therefore for highly permeable 

spheres 

T0 (fj,r — OO) = afj,0a 
\2* (2.7) 

(4.4934)̂  

The blue lines in Figure 2.3 represent fits to the function exp(—t/r0), where r 0 = 0.29 ms for the 

non-permeable sphere and rQ = 20.6 ms for the permeable sphere. 

For permeable spheres there exists an intermediate time stage during which the response decays 

as £~ 3 / 2 . An additional time constant T\ for permeable spheres defines the transition from the £ - 1 / 2 

early time decay to the £ - 3 / 2 intermediate decay: 

n - T0 

(2.8) 

(Bell et al., 2001a; Smith et al, 2004). Weichman (2004) refers to T\ as the magnetic crossover 

time. Weichman (2004) derives the expressions for r 0 and T\ for general compact permeable and 
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conductive targets. Steel targets will typically have magnetic permeabilities greater than 100 and, 

therefore have magnetic crossover times that are approximately four orders of magnitude less than 

their fundamental time constant, i.e., T\/TQ = O ( lO - 4 ) . For the example of Figure 2.3, T\ = 

0.0185. Since typical time domain systems begin measurement after 0.1 ms, this early time regime 

will be rarely seen in most cases (for examples see EM63 data soundings of Figures 2.1 and 2.2). 

Equation (2.1) reveals that the secondary B-field of a sphere in a uniform primary field is equiv

alent to the B-field of a single magnetic dipole located at the center of the sphere and oriented 

parallel to the primary field. For convenience, we write the relationship between the induced dipole 

and the primary field as m = M • B p , where M is the magnetic polarizability dyadic. For a sphere, 

M = ^ L B ( t ) I = ^ 
Po Mo 

LB (t) 0 0 

0 L B (t) 0 

0 0 LB (t) 

(2.9) 

Baum (1999) details the characteristics of the magnetic polarizability dyadic and notes that the triple 

degeneracy of the magnetic polarizability dyadic reflects the symmetry of the sphere. 

The sphere solution possesses several characteristics that we retain in the formulation of our 

approximate solution for an axi-symmetric target. Firstly, the secondary field resulting from the 

induced currents generated in a sphere, illuminated by a uniform, step-off primary field, is dipolar 

at all points outside the sphere. We will also represent the secondary field for more general shapes 

as a dipolar field (see equation 2.1). A dipolar field approximation is reasonable for any observation 

point far enough away from any localized current distribution (Jackson, 1975), and it has been 

reported that for observation points greater than one to two times the target length, a dipolar field 

assumption is adequate (Casey and Baertlein, 1999; Grimm et al., 1997). Indeed, higher-order 

multipoles induced in a target will decay at early times (Grimm et al., 1997). 

Secondly, the induced dipole moment in the center of a sphere is given by the dyadic product 

M • B p . This form indicates that the induced dipole is proportional to the projection of the primary 

field along the direction of the induced dipole. The components of M scale the strengths of the 

dipoles. The magnetic polarizability dyadic, in the case of the sphere, contains the function LB (t) 

that contains all the information about the time decay of the sphere and it depends upon the material 

properties, shape, and size of the target. Our hypothesis is that more general metallic shapes can also 

20 



Chapter 2. An Approximate Forward Model For TEM Data 

be approximately modelled with an induced dipole equal to the dyadic product M • B p . However, 

choosing the right functional form of M will be crucial. 

2.2.2 Approximating the Magnetic Polarizability Dyadic for an Axi-Symmetric 

Body 

Analytic expressions for M for the time domain response of a permeable and conducting nonspher-

ical axi-symmetric body are not available. Therefore, we base our form of M on the magnetostatic 

polarizability for a spheroid. Recall that, for the time domain response of a sphere, the structure of 

M is identical to the structure of the magnetostatic polarizability dyadic of a sphere. The analytic 

solution for the magnetostatic response of a magnetic prolate spheroid is equivalent to the field of a 

magnetic dipole induced at the spheroid center (Das et al., 1990): 

^spheroid = m! + m 2 

= h [(z' • B?) z'] + k2 '[(y' • B*) y' + (x' • & ) x'] = 

k2 0 0 

0 k2 0 

0 0 kx 

B p , 
(2.10) 

where k\ and k2 are the polarizability constants, which are functions of the conductivity, perme

ability, shape, and size. Equation 2.10 reveals that the total induced dipole can be written as the 

sum of two orthogonal dipoles mi and rri2. The first dipole moment mi is parallel to the major 

axis of the spheroid, and its strength is proportional to the product of the primary field along that 

direction and the polarizability k\. The second dipole moment is perpendicular to the major axis, 

and its magnitude is proportional to the component of the primary field along that direction and 

the polarizability k2. A consequence of ki and k2 being functions of the spheroid's shape and size 

is that the orientation of the effective dipole will not be solely determined by the direction of the 

primary field, as is the case for a sphere. In addition, the orientation of msphermd will be influenced 

by the aspect ratio of the spheroid. 

The polarization dyadic in Equation 2.10 suggests a magnetic polarization dyadic for the TEM 
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problem of the form 

L2 (t) 0 0 

M = 0 L2 (t) 0 (2.11) 

0 0 L i (*) 

where we have simply replaced k\ and k2 in Equation 2.10 with the dipole decay functions L\ (t) 

and L2 (t). The resultant induced dipole moment for this definition of the magnetic polarization 

dyadic is then 

For modelling frequency domain data, we can simply replace the time dependent functions with the 

frequency dependent functions L\ (u) and L2 (to). 

The approximate forward model represents the TEM response of an axi-symmetric target with 

two orthogonal dipoles. The first dipole is parallel to the symmetry axis of the target, and the second 

dipole is perpendicular to the symmetry axis. These dipoles decay independently according to the 

decay laws L\ (t) and L2 (t), respectively. The dipole strengths are proportional the projection of 

the primary field onto the respective dipole directions. 

The dipole model produces TEM responses that are consistent with those observed field mea

surements of UXO. As Figures 2.1 and 2.2 demonstrate, the shape anomaly of the measured re

sponse for compact targets can change with time. This observed field behavior can be duplicated by 

letting the axial and transverse dipoles decay independently of each other. By assigning a different 

decay characteristic (governed by its decay parameters) to each dipole, the relative contribution by 

each dipole to the secondary field can vary with time. The data examples of Figures 2.1 and 2.2 are 

for horizontal ordnance. The anomaly changes from a single peak at earlier times to a double peaked 

anomaly at late times. The early time single peak is due to both axial transverse mode contributing. 

At later times the transverse mode decayed away, leaving the axial excitation being the dominate 

mode. The horizontally oriented axial mode produces a characteristic double peaked anomaly. 

m (i) = m i (t) + m 2 (t) 
(2.12) 

= Lx (t) [(z' • B*) z'] + L2 (t) [(y' • B") y> + (x' • B") x'] . 
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2.2.3 Parameterizing L (t) 

The time decay for a conductive body of arbitrary size and shape in an insulating medium illumi

nated by a step-off primary field is determined by the sum of exponentials (Kaufman, 1994). Carin 

et al. (2001) described the time domain impulse response of an axi-symmetric target as an infinite 

sum of exponentials, 

Li (t) = mi (0) 5 (t) + ^ ̂ 2 u (*)mife exp (2-13> 

L2 (t) = m 2 (0) Ht) + -^J2U(*)M2FC E X P ( - w 2 f e i ) (2.14) 
k 

where m 2 (0) and m p (0) represent the dipole contributions of ferrous targets. While it is possible 

to model the TEM response with a number of exponents (Snyder et al., 1999), the inverse problem 

to determine the weights and time constants is potentially difficult (Istratov and Vyvenko, 1999). 

Therefore, our approach is to parameterize L (t) with a simple empirical function denned by a 

minimum number of parameters, while still being to replicate all the features of the TEM decay. 

Since the time decay for a sphere is determined by the sum of exponentials, and is a subset of 

the class of axi-symmetric targets, the form for L (t) should, at least, be able to duplicate the time 

decay features observed for the sphere. Several parametric forms for L (t) have been considered 

(Bell et al., 2001a; Smith et al., 2004; Pasion, 1999; Benavides and Everett, 2006). An example 

of a simple parameterization that can replicate the early, intermediate and late time stages of the 

permeable sphere decay is 

where j3 >.l/2. At early times, L (i) = (k/d) t~ll2 (see Figure 2.5). At intermediate times the 

decay will have a power law behavior of kt~@. The transition between early and intermediate times 

(i.e. the magnetic crossover time) occurs at 

r i = 1/2). (2.16) 

At late time the decay will be exponential with a time constant of 7 . For the case of a sphere, 

f3 — 3/2, and the magnetic crossover time is T\ — a. Figure 2.6 compares the fit of equation 2.15 
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Figure 2.5: Some examples of parameterizations that model the three decay stages observed for a 
sphere. 

to modelled sphere data. 

The three stages observed for the sphere response was been observed in measured polarization 

decays of UXO targets (Pasion, 1999). The decays were recorded from 0.01 ms to 100 ms with a 

Geonics PROTEM47 time domain sensor using a 40 m square transmitter loop. We observed that 

when there was a transition from early to intermediate time stages, the magnetic crossover time T\ 

was less than 0.1 ms. The fundamental time constants r 0 were less than 100 ms, and had a median 

of approximately 10 ms. In this paper we analyze data from a Geonics EM63 time domain sensor. 

The Geonics EM63 measures the time domain response from 0.18 ms to 25 ms, and therefore we 

only have to model a power law decay followed by the late stage exponential decay. Therefore, we 

can set a = 0 without affecting our ability to fit the data, and arrive at the expression 

This form for the &R/dt decay law was suggested to us in a personal communication from J.D. 

McNeill. 

L(t) = kt~pexp(-t/i) • (2.17) 
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H = 150 n 

sphere response 
predicted data 

(a) TEM response of a non-permeable sphere (b) TEM response of a permeable sphere 

Figure 2.6: Time domain responses for a magnetically (a) non-permeable and (b) permeable sphere. 
The solid lines are responses evaluated from Equation (2.15). The agreement supports 
the validity of (2.15) as a representation of the time domain responses. 

Pasion (1999) suggested a form of the decay law for the B-field is 

L (t) = k(t + a ) _ / 3 exp ( - i / 7 ) . (2.18) 

The parameter k controls the magnitude of the modelled response. The three parameters a, (3, and 

7, control the duration and characteristics of the three different stages of the time decay curve. The 

duration of the relatively flat early time stage is proportional to the parameter a. The linear decrease 

of response observed during the intermediate time stage is determined by t~@. The exponential 

decay characterizing the late time stage is controlled by the parameter 7. Figures 2.7(a) and (c) 

demonstrate the ability to reproduce the secondary B-field for a non-permeable and permeable 

sphere, respectively. 

The time derivative dB/dt, measured directly with most TEM receivers, can also be modelled 

with Equation 2.18. Figure 2.7(b) and (d) plot the dB/dt curves for a non-permeable and permeable 

sphere, respectively. The early time behaviour for the nonpermeable sphere follows a t~1/2 decay, 

and these curves are different from those of B in Figures 2.7(a) and (c). Nevertheless, the curves 

are still represented by early time turn-overs, and power-law and exponential decays that can be 

accommodated by Equation 2.18. The suitability is demonstrated by the fit between the laboratory 
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measured response and a predicted response obtained by evaluating Equation 2.18. 

Pasion (1999) demonstrated how the decay parameters in 2.18 are related to the size and shape 

of the target. Figure 2.8 suggests that the value of 3 obtained for a sphere may be diagnostic in 

detemiining whether the sphere is permeable or non-permeable. For a steel sphere (pr = 150), 

we see, for spheres with radii between 5 to 15 cm, that 3 falls between 1.11 and 1.35, while for a 

non-permeable sphere (pr = 1), 3 has a value of approximately 0.5, which corresponds to the early 

time t~1/2 behavior that Kaufman (1994) predicted for a non-permeable sphere. 

The recovered k values for targets ranging from a steel plate to a steel rod are shown in Fig

ure 2.9(a), and the calculated fc-ratios are shown in Figure 2.9(b). For a steel plate, the fc-ratio 

k\/k2 < 1. For a steel bar the A;-ratio k\/k2 > 1. The recovered k values for aluminum targets are 

shown in Figure 2.9(c). The opposite orientation effect was observed for an aluminum rod, that is 

fo/fo < 1 (Figure 2.9(d)). 

In addition to the relative strength of the dipoles being shape dependent, the slope of the time 

decay response during the intermediate time stage is dependent upon the target shape. This effect 

was seen in steel targets only. The steepness of the response during the intermediate time stage is 

reflected in the parameter 3. The recovered 3 values for targets ranging from a steel plate to a steel 

rod are shown in Figure 2.10(a), and 3 values for aluminum targets are shown in Figure 2.10(c). A 

dipole that decays at a greater rate will have a larger 3. The rate of decay of the dB/dt response is 

greater when the plane of a steel plate is perpendicular to the primary field (axial excitation), than 

when the plane of a steel plate is parallel to the primary field (transverse excitation). Thus, for a 

steel plate, 3\/32 > 1. In the case of a rod, the dB/dt response decays faster (and thus 3 is larger) 

when the main axis of the rod is perpendicular to the primary field (transverse excitation). In the 

case of a steel rod ft /ft < 1 (Figure 2.10(b)). 

For aluminum targets the response shape looks essentially the same for each of the targets. The 

dB/dt response exhibits a power law decay of £ - 1 / 2 and is exponential at later times. The decay 

curves for aluminum targets are essentially the same regardless of target shape, and therefore there 

is no relationship between the ftratio and the aspect ratio (Figure 2.10(d)). 

Additional tests by Beran (2005) confirmed the relationships between the parameters in 2.18 

and the target size and shape by using data synthetically generated with the Method of Auxiliary 

Sources (MAS) code (Shubitidze et al., 2002a) code. In the following section, we generically denote 
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Figure 2.7: The time decay behaviour of the magnetic flux density B is plotted for (a) a non-
permeable and (c) a permeable sphere. The time decay behaviour of the time derivative 
of the magnetic field <9B / dt is plotted in (b) and (d) for a non-permeable and permeable 
sphere, respectively. The responses are normalized to be equal to one at 10 - 4 ms. The 
solid lines are responses evaluated from eq. (2.18) between 0.01 ms and 100 ms, which 
is generally the time range of interest for TEM UXO sensor. The agreement supports 
the validity of (2.18) for modelling the time domain response. 
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Figure 2.8: The behaviour of parameter 3 for various size spheres (radius = 5, 10, and 15 cm) with 
varying permeability p. Panel (a) contains results of recovering 3 by fitting the <9B /dt 
data. Panel (b) contains results of recovering 3 by fitting the B-field. 

the TEM response as £ (r, t) where £ can be the magnetic field or its time derivative. The time 

dependent decay of £ is given by Equation 2.18. 

2.2.4 The Approximate Forward Model 

With the above background, we can write an approximate expression for the secondary field re

sponse of an axi-symmetric target. First, let us switch from the body-fixed (primed) coordinate 

system to a space-fixed coordinate system, which is more amenable to the definitions of target and 

sensor location of a typical field survey (Figure 2.11). A vector v' in the body-fixed coordinate 

system is related to a vector v in the space-fixed coordinate system via the Euler rotation tensor 

A (<f>, 6, ip) by (Arfken, 1985) 

v' = A v , (2.19) 
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Figure 2.9: Relating the aspect ratio of a steel target with the ratio ki/k2. Plot (a) contains the re
covered k parameter from fitting the measured dB/dt response of steel axi-symmetric 
targets. Plot (b) illustrates the relationship between the k\/k2 ratio derived from dB/dt 
data and the shape of a steel target. Plot (c) contains the recovered k parameter from 
fitting the measured dB/dt response of aluminum axi-symmetric targets. Plot (d) il
lustrates the relationship between the k\/k2 ratio and the shape of an aluminum target. 
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Figure 2.10: Relating the aspect ratio of a steel target with the ratio ft/ft. Plot (a) contains 
the recovered 3 parameter from fitting the measured dB/dt response of steel axi-
symmetric targets. Plot (b) illustrates the relationship between the ft j82 ratio derived 
from dB/dt data and the shape of a steel target. Plot (c) contains the recovered 3 
parameter from fitting the measured dB/dt response of aluminum axi-symmetric tar
gets. Plot (d) illustrates the relationship between the ft /ft ratio and the shape of an 
aluminum target. 
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Figure 2.11: The field (unprimed) co-ordinate system for a buried target. The unit vectors x, y, 
and z define the field co-ordinate system, and x', y', and z' define the body-fixed 
co-ordinate system. 

where we adopt the "x-convention" rotation matrix: 

A = 

cos ip cos 9 cos <j> — s i n ip s in <j> cos ip cos 9 s in 4> + s i n ip cos <f> — cos ip s i n 9 

— s i n if) cos 9 cos <f> — cos ip s i n 0 — s i n ^ cos # s in <p + cos cos <p s i n t/> s i n 9 

s in f5 cos 0 s i n 9 s i n ^ cos 9 
(2.20) 

where f? is the angle between the symmetry axis of the target (z' in Figure 2.11) and the vertical axis 

in the space-fixed coordinate system (z in Figure 2.11), and <f> is the angle between the projection of 

z' onto the horizontal plane and x. The angle ip represent a rotation about the body-fixed z' axis. 

The approximate forward modelling is written by substituting the definition of the induced 

dipole of Equation 2.12 into the expression for a dipole field (Equation 2.1), and carrying out the 

dyadic product. Let us consider a target whose center is located at R in the space-fixed coordinate 

system. The secondary response £ (r, t), measured at a receiver/transmitter location r and at a time 

t after the termination of the primary field, is then the sum of the responses of the three orthogonal 

dipoles: 

$, (r, t) = h (r, t) + £ 2 (r, t) + £ 3 (r, t), (2.21) 

where 
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and 

mi (t) =Li (t) (z'-B*) z', 

m 2 (i) =L 2 (t) (y'-B^)y', 

m 3 (t) =L3 (t) (x' • BP) x'. 

(2.23) 

(2.24) 

(2.25) 

The unit vectors are given by Equation 2.20. 

If we assume axial symmetry, the rotation about z' can be set to ip = 0 and the Euler rotation 

tensor can be written: 
r 

cos 9 cos <f> cos 9 sin <p — sin 9 

A = - sin cp cos (p 0 (2.26) 

sin 9 cos <j> sin # sin <p cos # 
The secondary response £ (r, £), is then the sum of the responses of two orthogonal dipoles: 

£(r,*) = £i ( r , < ) + £ 2 (r,t), (2.27) 

where 

m i (t) =Li (t) (z'.BT)z', 

m 2(t) =L 2(i) [(x' .B p )x'+(y' .B p )y'] , 

(2.28) 

(2.29) 

are the dipole parallel and perpendicular to the axis of symmetry. The unit vectors are given by 

Equation 2.26. 

In this thesis, I use three representations of the polarization tensor elements Li (t): 

1. Instantaneous Amplitude: For this representation, we do not parameterize Lj (t). Instead, the 

amplitude at each measured time tj is a model parameter 

(2.30) 

For N inverted time channels, the ith polarization decay is described by a parameter vector 
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Pi of length TY 

p<=[Lj, Ll •••Lf]. (2.31) 

2. Pasion (1999): As was discussed in Section 2.2.3, the parameterized form of the decay law 

suggested by Pasion (1999) is 

Li (t) = ki(t + Q i ) _ A exp (-t/7i). (2.32) 

The parameter vector for this representation is 

P i = [h, OH, Pu 7J] (2.33) 

3. McNeill: As was suggested by J.D. McNeill (Personal Communication): 

Li (t) = ki t~pi exp (-t/7i) (2-3 4) 

The parameter vector for the McNeill representation is 

P i = [h, Pi, 7i] • (2-35) 

In summary, the approximate response of a buried metallic object can be model as three or

thogonal dipoles (Equation 2.21) or, for the case of axi-symmetric targets, two orthogonal dipoles 

(Equation 2.27). When two polarizations model the response, the representative model vector is 

m = [X, Y, Z, <f>, 9, P l , p 2 ], (2.36) 

where X and Y denote the surface projection of the centroid of the body, and Z is the depth of 

the object below the surface. The orientation of the target is described by the angles 9 and <f). 

The remaining parameters describe the decay characteristics of the two dipoles: pi describe the 

dipole parallel to the axis of symmetry (mi), and p 2 describe the dipole perpendicular to the axis 

of symmetry ( m 2 ) . 
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When three polarizations are required to model the response, the model vector is 

m = [X, Y, Zt <f>, 6, rp, P l , p 2 , p 3 ] , (2.37) 

where an additional angle ip is required to describe the rotation about the z axis, and three sets of 

decay parameters (pi, p 2 , and p 3) describe the decay of the three polarizations. Thus, the inversion 

for the model m will immediately give estimates of target location and orientation. Information 

on the shape, size, and material parameters of the target may later be inferred from the remaining 

parameters. 
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2.3 Some Characteristics of the Dipole Model 

2.3.1 The Relationship Between a Horizontal Loop Tx and the Transverse and 

Axial 

In the next chapter different data inversion strategies for determining the polarizations are consid

ered. The ability to resolve the different polarization components is directly related to the ability 

of the transmitter loop to illuminate both polarizations. The optimal sensor for this purpose would 

generate a primary field that illuminates the target at a number of angles. This can be accomplished 

through multiple transmitter loops. Although such mstrumentation are under development (for ex

ample, Gasperikova et al., 2006), most sensors use a horizontal loop transmitter. Due to symmetry, 

the primary field will be vertical directly beneath the center of the loop, with the horizontal compo

nent of the primary field increasing when moving away from directly beneath the loop. Illumination 

of the target from multiple angles is achieved by spatially scanning a region above the target. Away 

from the transmitter loop the signal-to-noise ratio of the signal will decrease significantly, thereby 

limiting the ability to illuminate the target. 

Figure 2.12 demonstrates how the axial, transverse, and total dipole moment changes as a func

tion of target position and orientation relative to a 1 m x 1 m square, horizontal loop transmitter. The 

length and direction of the induced dipoles in Figure 2.12 (as well as Figures 2.14 and 2.15) were 

calculated using the polarizations for a 105 mm projectile. Directly over a horizontal target (x = 0.0 

m), only the transverse component (L 2 (t) and m 2 (£) in Equation 2.29) contribute to the measured 

signal. For this case, the transverse dipole (represented by the blue arrow in Figure 2.12(a), 3rd 

drawing from the top) is parallel to the induced dipole (represented the red arrow in Figure 2.12(b), 

3rd drawing from the top). The axial component of the dipole is excited when the transmitter is po

sitioned away from the target. The axial and transverse dipole contribute additively to the response. 

Figure 2.13 shows the amount of signal due to each polarization at the first time channel of EM63 

data for a horizontal 105 mm projectile at a depth of 1 m. The polarization values used to calculate 

the response were estimated using data from the USACE-ERDC test stand in Vicksburg, MS. The 

polarizations at the first time channel are L\ (t = 0.18ms) = 134.3 and L 2 (t — 0.18ms) = 78.1 

for the axial and transverse components, respectively. 

Figure 2.13(a) shows, in plan view, the forward modelled data with its contributions from the 
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(a) Axial (Red) and Transverse (Blue) (b) Induced Dipole 
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Figure 2.12: The strength of the induced transverse and axial dipoles for a horizontal, rod-like 
target. The relative strength of the polarization values are L\jLi = 1.72. 
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Measured Signal Transverse polarization Axial polarization 
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(a) Plan view of data at the first time channel (t = 0.18 ms) 

Measured Signal Transverse polarization Axial polarization 
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(b) Plan view of data at time channel 20 (t = 7.1 ms) 

Time Channel 1: dip angle • 90 Time Channel 20: dip angle = 90 

x (m) x (m) 

(c) profile view (d) profile view 

Figure 2.13: Synthetically generated EM63 data for a horizontal 105 mm projectile at a depth of 
1 m. The polarizations at the first time channel are L\ (t = 0.18ms) — 134.3 and 
L 2 (t = 0.18ms) = 78.1 for the axial and transverse components, respectively. The 
white contour line in (a) represents the estimated standard deviation for noise, from 
a EM63 survey carried out at the Sky Research UXO Test Site. There is no white 
contour line in (b) because, for t = 7.1 ms the signal is smaller than the estimated 
standard deviation of the noise, (c) and (d) compare the relative contributions of the 
axial and transverse polarizations to the measured signal along a line y = 0m. 
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transverse and axial polarizations for the first time channel. The white contour drawn at 2.07 mV 

represents the estimated standard deviation for noise. The noise statistic estimate was obtained 

using data from an EM63 survey carried out on the Sky Research UXO Test Site. Along a line 

x = 0, the projection of the primary field along the axial direction (z • B p ) is zero, and thus the only 

contribution to the signal is due to the transverse component. The contribution of axial component 

makes the anomaly longer along the length of the target. 

For many ordnance, the transverse component will have a smaller time constant than the ax

ial component. In that case, the late time data will be dominated by the axial component. At 

later time (Figure 2.13(b)) the ratio between the axial and transverse components strength is larger 

(Li/I 2 (* = 0.18ms) = 1.72, compared to Lx/L2{t = 7.07ms) = 5.81/0.61 = 9.52). Therefore, 

the contribution of the axial component is greater at later times, and we observe the characteris

tic double-peak anomaly of a horizontal target (as shown in Figures 2.1 and 2.2). Figure 2.13(c) 

compares the transverse and axial polarizations along a profile taken at y = 0 m. 

The least favorable orientation for resolving both polarizations with a horizontal loop transmitter 

is for a vertical target (Figure 2.14). The relationship between the polarization excitations and the 

transmitter position is the reverse of the horizontal case. The contribution of the transverse excitation 

to the measured secondary field will be smaller than for the previously considered horizontal target, 

because the axial polarization will generally be larger than the transverse polarization, and the only 

way to excite the transverse component is with the cart away from the target, where the signal 

to noise ratio can be small. Figure 2.16 compares the contributions of the transverse and axial 

polarizations to the signal from a vertical 105 mm projectile whose center is located at a depth of 1 

m below the surface. The transmitter loop is assumed to be 0.4 m above the ground. Indeed, for a 

deep enough and small enough target, the signal due to the transverse polarization can be less than 

the noise level of the mstrument. For such a case, the ability to identify the target through a data 

inversion for polarization parameters will be more difficult (Pasion et al., 2004). 

2.3.2 The Similarity Between Rod and Plate Responses 

In Section 2.3.1 we observed how the response of a target is dependent on the transmitter, receiver, 

and target geometry. In particular, the response of a rod-like target can be similar to the response of 

a plate-like target that is rotated 90 degrees (Figure 2.17). This ambiguity leads to a local minimum 
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(a) Axial (Red) and Transverse (Blue) 
Polarizations 

(b) Induced Dipole 

-1.00 m 

x = 0.00 m x = 0.00 m 

Figure 2.14: Excitation of a vertical UXO. Relative contributions of the axial (red) and transverse 
(blue) polarizations are indicated in (a). Excitation of the transverse component occurs 
when the transmitter loop is positioned away from the target, such that the primary 
field has a horizontal component. The total induced dipole moment is plotted in (b). 
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(a) Axial (Red) and Transverse (Blue) 
Polarizations 

(b) Induced Dipole 
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Figure 2.15: Excitation of a UXO oriented with a 45 degree dip. Relative contributions of the axial 
(red) and transverse (blue) polarizations are indicated in (a). The total induced dipole 
moment is plotted in (b). 
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Figure 2.16: Synthetically generated EM63 data for a vertical 105 mm projectile at a depth of 1 
m. The polarizations at the first time channel are L\(t = 0.18ms) = 134.3 and 
L 2(£ = 0.18ms) = 78.1 for the axial and transverse components, respectively. The 
white contour line in (a) represents the estimated standard deviation for noise, from a 
EM63 survey carried out at the Sky Research UXO Test Site. 
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Axial Polarization 

Transverse Polarization 

Figure 2.17: Plate and rod geometry for examples in Figures 2.18 to 2.19. 

at the plate solution when minimizing noisy data from a rod (Pasion et al., 2004). 

To explain why this local minimum might occur, let us consider the first time channel data from 

a 105 mm projectile (Li (<i) = 134.3 and L 2 (h) — 78.1). Let us consider a plate-like target 

whose polarization parameters at the first time channel is the reverse of the 105 mm projectile, i.e., 

L i (h) = 78.1 and L2 (tx) = 134.3. 

The response of the plate and rod oriented as illustrated in Figure 2.17 are compared in Fig

ure 2.18. We consider the first time channel of data. The top panels of Figures 2.18(a) and (b) 

indicate that the response of the two different targets are very similar. A plot of the difference be

tween the two responses is in Figure 2.19. The response of the rod or plate is identical directly 

above the target, since the primary field is vertical when the sensor is positioned directly above the 

target and L\od = lF^ate. Differences in the rod and plate response occur away from directly above 

the target when horizontal components of the primary field illuminate the target. The signal to noise 

decreases as the sensor moves away from the target, and at some distance from the target data from 

a rod will be indistinguishable from the data from a plate-like target. 

Figure 2.20 compares the plate and rod response over data profiles at y — 0 and x = 0. Along 

a line y = 0 the response of the plate will be identical to the response of the rod. As symmetry 

suggests, the response of the rod along x — 0 is identical to the rod response along y = 0. The 

plate response along x = 0 is different, since there is no contribution from its axial component, 

since the axial component is perpendicular to the primary field along this line. The difference 

between the rod and plate response along this line is due to a dipole whose strength is proportional 

to (y • B p ) Lp

2

late. 

The above comparison of rod and plate responses is an example of how inadequate signal to 
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(a) A plate-like target (Li (ti) = 78.1 and L 2 (*i) = 134.3) 
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(b) (Li (ti) = 134.3 andZ-2 (h) = 78.1) 

Figure 2.18: Comparison of the response for (a) a plate-like target whose normal is horizontal and 
(b) a vertical rod-like target. Since the primary field is predominantly vertical, the 
response of the plate-like target is mainly due to the polarization induced in the plane 
of the plate (i.e., the transverse polarization) and the response of the rod is mainly 
due to the polarization along the rod (i.e. axial polarization). The white contour line 
indicates the noise level of the EM63 at the first time channel. 
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Plate Model data Rod Model data Plate data - Rod Data 

£ 0 

Figure 2.19: Comparison of the rod and plate data. The right panel shows that the difference be
tween the plate and rod data is of the same order as the standard deviation of the EM63 
noise (cr = 2.07 mV). 
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Figure 2.20: Profiles of the data in Figure 2.18. The data profile along y = 0 m over either the plate 
(panel (c)) or rod (panel (c)) is the same. The data profile along x — 0 m is wider over 
the plate (panels (b)) than the rod (panel (d)). 
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noise and spatial coverage of the data will lead to ambiguities in the measured data, and thus an 

inability to robustly recover model parameters through inversion. 

2.4 Conclusion 

Our general approach to the processing of EM data is to invert data for model parameters that are 

representative of the physical characteristics of the target. The parameters can subsequently be used 

as inputs to classification algorithms. A critical component of this process is the selection of the 

forward model. An ideal forward model is one that: (1) can accurately reproduce sensor data, (2) 

whose parameters are representative of the physical characteristics of the target, (3) is simple (i.e., 

has a minimum number of parameters) and (4) can compute the sensor data in a minimal amount of 

time. 

In this chapter, we presented a dipole model for representing the secondary response of a com

pact metallic target. The development of the model originates from the analytic solutions of sphere 

responses, and is extended through an analogy with the magnetostatic dipole response of a spheroid. 

We showed that the dipole model is capable of accurately modelling data for sensor/target geome

tries typically found in UXO surveys. A parameterization for the temporal response of the dipole 

polarization elements was chosen such that the three decay stages of a sphere can be modelled. 

These parameters are representative of the physical characteristics, i.e., shape and material proper

ties, of the target. The chapter concludes with an investigation into some of the ambiguities of the 

dipole parameters with certain target shape and orientation combinations. 
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Chapter 3 

Inversion of Time Domain 

Electromagnetic Data 

The previous chapter described an approximate forward modelling procedure for the time domain 

electromagnetic response of a compact, conductive (and possibly permeable), axi-symmetric target. 

We also showed that the values of the decay parameters are a function of the shape and size of the 

target. Therefore, accurate determination of the decay parameters by inverting the sensor data will 

produce a feature vector that can be used to aid discrimination. 

The inverse problem is a two part procedure: parameter estimation and inference. Parameter 

estimation describes the procedure to determine appropriate model parameter vectors by combining 

prior information about the model vector and the ability of the model vector to predict the data col

lected in a TEM survey. Inference establishes the reliability of our recovered parameter estimates. 

This chapter begins by outlining the basic equations and techniques of both parameter estimation 

and inference. The chapter concludes with different examples of inverting for polarization tensor 

components from Geonics EM63 TEM sensor data. 

3.1 Formulation of the Inverse Problem 

3.1.1 Inversion Methodology 

In this thesis, the Bayesian framework is used to formulate the inverse problem. The Bayesian 

framework was been previously described numerous times (for examples see Tarantola, 1987; Ul-

rych et al., 2001; Menke, 1989). Therefore a brief overview of the Bayesian framework is presented 

here. The solution to the inverse problem is the combination of the information known about the 

model parameters m prior to the experiment and the ability of our physical forward model F to 

reproduce the experimental data. The prior information is represented as the probability distribu-
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tion p (m). The ability of the model to reproduce the experimental data dODS is described in the 

conditional probability density of the experimental data p (doos\m). The prior and the conditional 

probability density (also called the likelihood function) of the experimental data are combined via 

Bayes theorem to form the a posteriori conditional probability density p (m|d0&s) of the model: 

P(m|d o 6 s) = — (3.1) 
P {dobs) 

where p (doos) is the marginal probability density of the experimental data. Equation (3.1) shows 

how the prior and the experiment data are combined, and therefore is a mathematical expression 

of the inversion philosophy. That is, if we can regard the prior p (m) as the probability density 

assigned to m prior to experiment, then the a posteriori conditional probability density p (m|d0&a) 

is the probability density we ascribe to m after collecting the data. The a posteriori conditional 

probability density encapsulates all the information we have on the model parameters and the model 

that maximizes it is usually regarded as the solution to the inverse problem. 

Characterizing Data Statistics 

The likelihood function p (doos |m) gives an indication of the misfit between predicted and observed 

data, and therefore depends on both the measurement errors and modelling errors. For this work we 

will assume that the errors follow a Gaussian distribution: 

'(27T) 
-N 

p ( d o f t s | m ) = V^r^ e x p 
1 (dobs - F [m])T V71 [dobs - F [m]) 
2 

(3.2) 

where F is the forward modelling operator and Vd is the covariance matrix of the data errors. 

This assumption is motivated by the ease in which the resulting inverse problem can be formulated 

and by the central limit theorem's assertion that as the number of error sources approach infinity, 

the distribution of errors approaches the normal distribution (provided the the distribution of error 

sources have finite variance). We recognize that real field data have errors unaccounted for in the 

forward modelling operator (for example inaccurate sensor positioning, "spikes" in the data and 

sensor drift) that can lead to non-Gaussian error distributions. Incorrect characterization of the data 

statistics can bias the values of the recovered parameters and also invalidate the parameter variance 

analysis (Billings et al., 2003). 
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Representing the Prior Information 

We can incorporate information about the model parameters through the specification of the prior 

p (m). Discussed below are two variants which are important for our work. 

Case I: Bounds on the parameters are known. Here we are provided with the maximum and 

minimum values that a parameter can achieve. Consider an individual parameter mj. If the only a 

priori information we have of rrij are the lower and upper bounds m^ and m^, then a probability 

density function that is uniform on the interval mf,mV is used. The prior is then 

Pb (mj) = { 
const, if < m7- < mf, 

3 3 (3.3) 
i otherwise. 

The joint probability for all of the parameters is 

np 

P(m) = JJp6(mj). (3.4) 

The posterior probability density function (pdf) is thus equal to zero outside the supplied bounds. 

Case II: Prior pdf s are available For some parameters we may have more information. For 

instance, marginal pdf's can be obtained from the magnetics inversion. Billings et al. (2004) showed 

that location estimates from magnetics data were well approximated by a Gaussian distribution. For 

these parameters we characterize the functionals by the exponential 

p9 (mj) = cexp ( - / (mj - rrij)), (3.5) 

where the Gaussian prior of mj is centered on a prior model rHj with a standard deviation O j , such 

that 

/ (mj - mj) = ^ 2 (mj - rtijf . 

The joint pdf is again obtained by multiplying the individual pdfs as in equation (3.4). 
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Summarizing the Posterior Information 

The a posteriori conditional probability density defines the distribution of models posterior to the 

collection of the data. A distribution is commonly characterized by its moments. Therefore, the 

posterior mean model for the ith parameter is calculated by computing the first-order moment 

of the posterior 

("ii) = / rrii p (m\d) dm. (3.6) 

If the posterior is Gaussian or "bell shaped", then the mean would be equal to the maximum p (m|d) 

model. The covariance matrix is the second-order moment of the estimate calculated about its mean: 

[ V m L = / mimjp(m | d) dm - (rrij) (rrij). (3.7) 
JM 

The diagonals of V m are the posterior variances of the model parameters, and the off diagonal 

elements give information on the trade-off between model parameters. Of course, the concepts of 

mean and covariance matrix are most useful if p (m|d) has a single peak. If there are multiple peaks 

in the a posteriori pdf then the marginal pdf is more useful property. The marginal distribution for a 

parameter is the pdf irrespective of the remaining parameters. The marginal distribution is calculated 

by 
r r np 

M(mi)= / . . . / p ( m|d ) J J d m f c (3.8) 
J J fc=i 

where there are np parameters. 

If we seek a single model, then it is natural to choose the model which is most likely to occur. 

We estimate a value of m that maximizes the log of the a posteriori conditional probability density 

m* = argmax{log(p(m|do6s))}. (3.9) 
m 

The solution to the inverse problem can then be cast as the optimization problem 

minimize 0 (m) = £ ^ (™i - + \\\V~l/2 (d°bs - ^(m)) f 

J j (3.10) 

subject to mf < m» < 
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where j represents the index of parameters whose Gaussian pdf's are known, and i represents model 

parameters which have upper and lower bounds. We note that if we have no prior information about 

the parameters, then the maximum likelihood solution is that which maximizes p (d0j,s|m), that is, 

minimize 0(m) = ^ l | V ^ _ 1 / 2 (dobs - .F(m)) | | 2 . (3.11) 

3.2 Defining the Objective Function 

Previously, I noted that the solution to the inverse problem could be cast as an optimization problem. 

If we assume only uniform priors, our problem is then to minimize a data misfit function subject to 

box constraints: 

</> (m) = i || V~1/2 (dobs - T (m)) || 2 subject to m f < m * < m f , (3.12) 

where i represents model parameters which have upper and lower bounds. Finding a model that 

minimizes equation (3.12) involves defining a data covariance Vd, the data vector d o 6 s and the for

ward model T (m). In this section we define these different components of the objective function. 

3.2.1 Defining the Data Covariance Matrix 

The relation between a datum dj and the model m can be expressed as 

dj = Tj (m) + ej, where j = 1,2,3,... N, (3.13) 

where Tj is the forward mapping, ej is the error on the jth datum, and there are N data. 

The source of data errors can generally be categorized as either modeling errors, natural, or 

cultural errors. Modeling errors include any discrepancy between the approximate forward map

ping and an exact forward model. There are, essentially, two sources of modelling error. The first 

is any inaccuracy in the functional form of the forward mapping. When inverting for the dipole 

polarization, higher order multi-poles act as correlated noise that has the potential to bias the re

covered parameters. The second source of modeling errors are due to uncertainties in the modeling 

parameters that are not included in the model vector m. Uncertainties in sensor positioning and ori-
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entation fall under this category. The data uncertainty resulting from these errors is approximately 

proportional to the signal strength. 

The remaining error types are baseline errors. These are random errors that are present in 

sensor data even when the sensor is not in the presence of any conducting material. Efferso et al. 

(1999) examined the effect of AM and VLF transmitters on TEM measurements. They observed, 

for their particular TEM instrument, a standard deviation for the voltage signal that exhibited a 

1/t proportionality when AM transmitter noise is log-gated and stacked. Munkholm and Auken 

(1996) showed that log-gated and stacked white noise maps onto the TEM response as errors with 

a standard deviation exhibiting a l/Vi decay. 

Error estimates appear in the inverse problem through the data covariance matrix. For ease of 

notation we can rewrite the objective function as 

* ( m ) = ^ | | V - 1 / 2 ( d ^ - ^ ( m ) ) ||2 

= ^ R ( m ) T R ( m ) ( 3 1 4 ) 

1 N 

( m ) 2 

=i 

where 

R = V ~ 1 / 2 ( d o 6 s - ^ ( m ) ) (3.15) 

is the residual vector and (m) is the ith component of the function R . The data covariance 
—1/2 

matrix V d adjusts the relative contribution of each r j to the objective function, and therefore 

controls how closely each datum is fit by the predicted data. The data covariance matrix plays 

a very important and practical role in the minimization of the data misfit objective function as it 

provides us with a way to deal with the large dynamic range (typically several orders of magnitude) 

of TEM data. We assume independently distributed Gaussian errors, and use the following data 

covariance matrix: 

- < 
Si + €j 

(3.16) 
if i = j 
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where 5{ is a percentage of the ith datum 

d{ = % error x iobs (3.17) 

and ej is a base level error that is present in the ith datum in the absence of a target. 

Defining the percent error component 8, 

Simulations can show that Gaussian errors in the position and orientation can produce non-Gaussian, 

position dependent data errors. Figure 3.1 contains simulated data for the first time channel of the 

Geonics EM63 instrument acquired directly above a vertical 81 mm mortar at a depth of 30 cm. 

Directly above the target, the value of the first time channel of data is 529.86 mV. Figures 3.1(a) 

plots the histogram, and best fit Gaussian distribution, for voltages when there is a 2 cm error in the 

reported sensor height. The distribution is skewed due to the nonlinear spatial decay of the signal 

as a function of height above the target. The distributions for a sensor location error of 2 cm (Fig

ure 3.1(b)) and orientation error of 2 degrees (Figure 3.1(c)) are one-sided due to the geometry of 

the problem. Above a vertical target, the maximum value occurs when the transmitter loop is hori

zontal, and directly above the target. When modelling data assuming the error from Figures 3.1(a), 

(b), and (c), we see that the most significant contributor to the error is the height. Figure 3.2 contains 

a result when repeating the simulations, but moving the observation to (x, y, z) = (0.5,0.5,0.3) m. 

Away from the vertical anomaly, the sensor location (x, y) and orientation error have the same level 

of data uncertainty as the height. 

The above example suggest that the uncertainty of the data is location and model dependent. 

When simulating data collected over a vertical 81 mm mortar at a depth of 30 cm, we found small 

position errors (2 cm standard deviation) and orientation errors (2 degree standard deviation in pitch, 

roll, and yaw) result in a nearly Gaussian error that is approximately 15 percent of the data value 

(Figure 3.3). The spatial variability of the percent error is not very significant. We note that there 

are situations when filtering of the position and orientation data can be applied to reduce the amount 

of data uncertainty. For example, if we know that the sensor motion is smooth, a simple low-pass 

filtering can be applied the position and orientation data. 
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Figure 3.1: Error simulation results. Geonics EM63 first time channel data from a vertical 81 mm 
target is simulated. The sensor is positioned at (x,y,z) = (0,0,0.3) m, and the 81 mm 
mortar is located at (0,0,-0.3) m. When there are no errors in sensor positioning and 
orientation, the signal is 529.86 mV. Histograms (a) to (c) summarize contributions to 
the data spread from errors in the sensor height, location and orientation errors. Plot (d) 
shows the result when all errors are included. Directly over a target, the height variation 
contributes most to the signal errors. 
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(a) Sensor height (h) error: ah = 2 cm (b) ) Sensor location (x,y) error: ox = 2 cm, <rn = y cm 
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(c) Sensor orientation error: a p i t C h — (Troll — 

(Tazimuth = 2 degrees. 
(d) All errors from (a),(b), and (c) combined 

Figure 3.2: Error simulation results. Geonics EM63 first time channel data from a vertical 81 mm 
target is simulated. The sensor is positioned at (x,y,z) = (0.5,0.5,0.3) m, and the 81 mm 
mortar is located at (0,0,-0.3) m. When there are no errors in sensor positioning and 
orientation, the 30.22 mV. Panels (a) to (c) summarize contributions to the data spread 
from errors in the sensor height, location and orientation errors. Plot (d) shows the 
result when all errors are included. The errors are nearly normal. 
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(a) Percent error over a vertical 81 mm mortar. 

Data Standard Deviation Percent Error 

Data: No uncertainty 

(b) Percent error over a horizontal 81 mm mortar. 
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(c) Percent error over a 81 mm mortar with a 45 degree dip. 

Figure 3.3: Spatial dependence of percent error over 81 mm mortar buried at a depth of 30 cm. 
Sensor height and location uncertainties are Gaussian with a standard deviation of 2 
cm. Sensor orientation have Gaussian Errors of 2 degrees. This example shows that 
the error introduced through position and orientation uncertainty is dependent on the 
relative position of the sensor and target. 
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Denning the baseline error component 

One strategy for determining the base line error is to select a section of data within a grid that 

has no targets, and calculate the data statistics for each time channel within that grid. A single 

value represents the baseline error for the entire grid . Figure 3.4 shows a calculated noise floor for 

Former Lowry Bombing and Gunnery Range (FLBGR) Grid 1914 and the theoretical 1/y/i decay 

due to Gaussian input noise. The estimated noise floor (black line in Figure 3.4) was obtained by 

Estimated Noise 

Figure 3.4: Calculated and theoretical noise floor for Geonics EM63 data collected on Grid 1914. 
Data over validated 50 calibre bullets, and 20 mm and 37 mm projectiles are also plot
ted. 

selecting soundings where no targets are present, and fitting a Gaussian model for each of the 26 

time channels. A 1/t function was fit to the estimated noise to obtain the green line in Figure 3.4. 

We have found that noise characteristics often change with survey event. For example, Fig

ure 3.5 plots the fifth time channel of data for FLBGR Grid 2114. The northerly portion of Grid 

2114, from approximately 88 to 105 m, is less noisy than the southerly portion of the data. Also, 

a geologic artifact runs diagonally to the southeast corner to the grid. Figure 3.6 demonstrates how 

the noise estimate will change as a function of where the data is sampled. At the time of writing 

this chapter, our research group had already developed and implemented into the software package 

UXOLab a method of estimating a spatially varying background noise. 
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Figure 3.5: Gridded image of time channel 5 of Geonics EM63 data collected on the 2114 Grid. 

3.2.2 Forming the Data Vector dobs 

Anomalies are inverted for parameters of an approximate forward model that approximates the 

response of a single target in free space. Sensor drift, background geology, and nearby targets are 

non-random errors in the data that bias the estimated polarization parameters. Detrending the data 

and masking the individual anomalies help to reduce these effects. 

Detrending Data 

It is common practice to apply a low pass filter to data to reduce instrument drift, dc offsets, and 

geologic responses from the data. We study the effectiveness of filtering the background response 

in Chapter 8. Median filters are commonly applied along lines of data. Figure 3.7 contains EM61 

Mark 2 data acquired on FLBGR Grid K15. The data were filtered using an approximately 20 m 

window. In this case the window was too large to reject the geologic feature that looks like an 

upside-down horseshoe. Once the geologic feature was observed, the data were reinverted using a 

7 m long filter which was more effective. 
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Figure 3.6: Comparison of Geonics EM63 data noise in two areas of Grid 2114 at FLBGR. Data 
from the first time channel are displayed. Masks indicating less noisy and more noisy 
areas of the grid are shown as red rectangles in (a) and (b), respectively. Although these 
masked areas include targets, it is clear that the width of the noisy distribution is higher 
in the (d). 
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Figure 3.7: Filtered EM61 Sky Array data acquired over Grid K15. A median filter with a 20 m 
filtering window was unable to remove the geologic anomaly. 

Defining the Data to be Inverted 1: Spatial coverage Once data anomalies are to be inverted, a 

mask is defined that represents the spatial limits of the data to be inverted. The masking procedure 

helps ensure that signal from adjacent anomalies does not affect inversion results. In addition, from 

a practical standpoint, inverting the minimum number of data reduces the computational time. 

When processing data from the FLBGR, we defined a default circular mask with 2 m radius 

and centered on the selected target location (for example, Figure 3.8(a) anomaly 72). An automated 

correction to remove overlaps is then performed (for example, Figure 3.8(a) anomaly 159 and 66). 

The anomaly mask must be manually redrawn in cases where the automated mask contains signal 

energy from an adjacent target. As an example, consider anomaly 257 in Figure 3.8(b). To the NE 

of the target, there is a smaller anomaly that is not included in the inversion target list. Therefore, the 

mask overlap removal does not exclude the small anomaly. As a result, the data processor manually 

redrew that mask to exclude the small anomaly. Re-drawing masks represents a significant amount 

of the effort during the quality control process. 
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(a) Default masking for well separated targets. (b) Manually defined masks for closely spaced targets 

Figure 3.8: Examples of data masking applied to anomalies from grid L14. Data were collected 
using the Sky Research Inc. Geonics EM61 array. 

Defining the Data to be Inverted 2: Time Channels Figure 3.4 compares anomalies from 50 

calibre bullets, 20 mm, and 37 mm targets to the base-level noise of the survey. For these targets 

it is clear that at later times the signal from the target will sit within the base level noise of the 

instrument. Inverting these late time channels is of little help in constraining the dipole parameters. 

We generally set a minimum signal to noise ratio for a time channel to be included in the inversion. 

3.2.3 Defining the Forward Model T [m] 

Determining if a double-peaked anomaly should be inverted as a single target or a pair of tar

gets Visual examination of spatial anomaly pattern can be misleading for determining the number 

of objects. A horizontal target with a dominant axial polarization (as is the case with rod-like UXO) 

can lead to an anomaly with a pair of peaks. The peak separation is a function of the target depth 

and transmitter loop size. When processing anomalies, we are faced with deciding if the anomaly is 

best fit with a single target, or with a pair of targets. For the case of a pair of targets we segmented 

the anomaly into two separate anomalies, and inverted each masked portion of the anomaly with a 

single dipole model. 

A visual comparison of the two results determined which model should be used. Figure 3.9 

demonstrates this process using anomalies 257 and 51 from Figure 3.8(b). After inverting 51 and 

257 individually, the anomaly was inverted as a single target. For this anomaly, it was decided that 
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a single target was the best interpretation. Although, the misfit and correlation coefficient helped to 

make this decision, the data processor largely makes the decision through experience of looking at 

many different anomalies. 

Determining if a single target should be inverted for 2 or 3 unique polarizations A 3 x 3 

magnetic polarizability tensor characterizes the induced dipole of a metal target, in the principal 

reference frame, it has three orthogonal polarizations and degenerates to two polarizations for a 

rationally symmetric or body-of-revolution (BOR) target that is widely assumed in EMI processing. 

A target that can be characterized by 3 unique polarization tensor components does not have a 

symmetry axis, and is not likely intact UXO. In Section 3.6 we demonstrate how inversion of a low 

signal-to-noise ratio anomaly from an axi-symmetric target can result in two transverse components 

that are not equal. Obviously, this result is undesirable as three distinct polarizations are an indicator 

of non-UXO targets. 

Determining the parameterization for the polarization decay There are a number of different 

techniques for parameterization of the temporal behavior of the polarization tensor. One common 

approach is to solve for the polarization value at each time channel. Other approaches involve 

parameterizing each polarization, such that the information contained in each polarization can be 

summarized by only a few parameters (instead of measuring the polarization at each of the 26 time 

channels of the EM63, the polarization is summarized by 3 or 4 parameters). These parameteri-

zations are generally inspired by the different decay regimes observed in compact targets. At very 

early times, the decay of the voltage will follow a i - 1 / 2 decay, followed by a steeper power law 

decay ( £ - 3 / 2 for a sphere). At the late stage of the response decays exponentially. Depending on 

the locations of the TEM sensor time gates and the noise levels of the data, the early and late time 

stages may not be seen in sensor data, and therefore model parameters describing these features will 

be poorly constrained upon inversion. 

3.3 Estimating Dipole Parameters Using a Local Search Algorithm 

Production-setting UXO data processing often requires investigating several thousands of anomalies 

at a single site. The full characterization of the probability distribution for models and the evaluation 
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(a) Default inversion of Anomaly 257. 
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(b) Inversion of Anomaly 51 when 257 is included 

Figure 3.9: An example of determining if an anomaly should be inverted as two separate targets. 
Anomalies 51 and 257 were initially inverted as two separate targets, (a) shows the 
result when inverting 257. (b) shows the result when the two anomalies are inverted as 
a single target. 
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of the Bayesian integrals for the mean, covariance and marginals (i.e., equations 3.6 to 3.8) requires 

sampling many points in model space and numerous forward-model evaluations. The global meth

ods required for this task are instructive for understanding the structure of the inverse problem and 

does not have problems with local minima. However, computation time required for the numer

ous forward model evaluations does not make global methods feasible for processing the numerous 

anomalies to be investigated in a production setting. Therefore, we use local methods to calculate 

the maximum a posteriori estimate m*, via equation (3.9). In this thesis, we consider uniform pri

ors such that the inverse problem is to determine m* by minimizing a data misfit objective function 

where model parameters are subject to box constraints. 

Pasion (1999) used a Newton's method code to solve an unconstrained minimization problem for 

determining dipole parameters. The basic Newton method formulation involves making an initial 

guess of the model parameters, then repeatedly improving on this guess until the data predicted 

by our guess matches as closely as possible to the actual observed data. The basic steps of an 

unconstrained minimization algorithm are: 

1. Choose a starting model m 0 

2. Compute a search direction Sm. The search direction indicates the direction in which to 

perturb the current guess. The search direction is chosen to be the Newton step that minimizes 

the local quadratic model about the current iterate m .̂ 

3. Compute a step length A. The step length indicates how much the current guess should 

be perturbed in order to decrease the objective function. Because the local quadratic model 

about the current iterate is only approximate, the minimum of the model will not necessarily 

reduce the actual objective function. A positive scalar A is chosen such that tp (m^ + A<5m) < 

4> (mfc). The step length A is found by a line search. 

4. Update estimate of model. Set mfc+i = + A<5m. 

5. Test for convergence. If the updated guess nifc+i is adequate, then the algorithm is termi

nated. Otherwise, return to step 2. 

Typical stopping criteria include the gradient of the objective function being zero and the algorithm 

having "stalled" i.e., successive iterations produce only small relative changes in the model. Prac-
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tical convergence criteria for numerical optimization are well established (for example, Dennis and 

Schnabel, 1983). 

The effectiveness of local search algorithms improves when the model parameters are well 

scaled (for example, see Dennis and Schnabel, 1983; Gill et al., 1981). The goal of scaling is to 

ensure that each parameter is of equal importance during the optimization. The dipole model pa

rameters can vary by several orders of magnitude, and thus scaling can be an important part of the 

optimization problem. We use a diagonal matrix W m to linearly transform the model parameters. 

The values of the diagonal are chosen to be the inverse of a vector of typical values, i.e. 

[ W m ] , , = (3.18) 

where mt?p are typical values of the model vector m. A new model vector m — W m m is defined. 

If the typical values of the model ( m - y p ) are chosen carefully, the elements of the transformed model 

vector m will, approximately, be of the same order. 

In this thesis we will be enforcing constraints on the parameters. Therefore, for the examples 

in this thesis, we use the function Matlab functions lsqnonlin and f mincon (Mathworks, 2002). 

The function lsqnonlin is an implementation of the interior-reflective Newton method described 

in Coleman and Li (1994, 1996), and can be used to solve box-constrained least squares minimiza

tion. 

The function f mincon is used in cases where linear constraints are applied to the model. The 

function f mincon solves the following problem 

minimize 4>(m) (3.19) 

subject to ceq (m) = 0 (3.20) 

c (m)<0 (3.21) 

A e < ? m - b (3.22) 

A m < b (3.23) 

m f < mi < m f , (3.24) 
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where (3.20) and (3.21) apply non-linear inequality and equality constraints, respectively. Linear 

equality constraints are defined by (3.22). Non-linear constraints and linear equality constraints are 

not used in this thesis. Linear inequality constraints are included by defining the matrix A and 

vector b in (3.23). 

We use linear constraints in a number of ways. When inverting for the instantaneous amplitude 

model (Equation (2.30)) we use a linear constraint to ensure that the polarization is monotonically 

decreasing. To demonstrate how this requirement is implemented, consider the two-polarization 

instantaneous amplitude model. If the axial and transverse polarization curves L\ (t) and L2 (t) are 

defined at three times (t — t\, t2, and £3), the model vector is 

m = [X, Y, Z, 6, </>, Ll (ti), Ll (t2), Lx (t3), L2 (h), L2 (i 2), L2 (i3)]. (3.25) 

Monotonically decreasing estimated polarizations (i.e., L\ (ti) > L\ (t2) > L\ (t3) and L2 (*i) > 

L2 (t2) > L2 (t3)) are enforced by using (3.23) with 

A = 

0 0 0 0 0 - 1 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

1 0 0 0 0 

- 1 1 0 0 0 

0 0 - 1 1 0 

0 0 0 -1 1 

(3.26) 

and b is an eleven element column vector of zeros. 

Linear constraints are also used when we want to determine the best rod-like model that fits 

the data. In cases where the data quality is very low, this strategy may be of interest. Pasion et al. 

(2004) showed that when inverting a two-polarization model (Equation 2.27) there is local minimum 

resulting in anomalies from rod-like targets being fit by plate-like target that are rotated by 90 

degrees. Therefore, for the two-polarization inversions, we sometimes bias inversion results towards 

an axi-symmetric rod-like target by inverting for a model where the axial polarization is larger than 

the transverse polarization (i.e., L\ (ti) > L2 (ti), L\ (t2) > L2 (t2), and L\ (t3) > L2 (t3)). The 
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appropriate constraint is then 

0 0 0 0 0 1 0 0 1 0 0 

A = 0 0 0 0 0 0 -1 0 0 1 0 (3.27) 

0 0 0 0 0 0 0 - 1 0 0 1 

with b again an eleven element column vector of zeros. If box constraints are the only constraints 

required, the function lsqnonlin, rather than f mincon, is used to solve the least-squares prob

lem. The function lsqnonlin is preferred because it is designed specifically for the least-squares 

problem, and therefore can take advantage of the specific structure of the least-squares objective 

function (see Dennis and Schnabel, 1983, Chapter 10 for a discussion of the least-squares objective 

function structure). 

Local optimization algorithms do not guarantee convergence to a global minimum. With local 

optimization algorithms at best we can hope that our model will lie close to the model that globally 

minimizes our objective function. We recognize that, with a poor choice of starting parameters, 

the algorithm might get trapped in a local minimum. We address the problem of local minima by 

choosing multiple starting models. We define a number of depths and orientations. For each com

bination of depth and orientation, we perform a linear inverse problem to calculate the polarization 

tensor at the first time channel by fixing the depth and orientation. Some number of combinations 

of orientation and depth with the smallest misfits are then chosen for inversion. We then select from 

all of the solutions, the one which has the smallest value of $ (m). 

3.4 Analysis for Interpreting Local Search Parameter Estimates 

Once the model parameters m* which minimizes the objective function $ (m) have been obtained, 

we must still examine the reliability and precision of the estimated parameters. Measurements are 

random and data are noisy. Thus it is not sufficient to obtain a set of model parameter estimates 

m* and claim that these parameters are the best estimates of the unknown parameters m+. The 

parameters that may best describe one measurement may indeed be different than the parameters 

obtained from a second measurement on the same sample UXO. 
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3.4.1 Parameter variance for the unconstrained case 

For an unconstrained problem, the gradient of the objective function is zero at a minimum, i.e., 

V$(m*,d*obs) = 0. (3.28) 

The objective function $ ( m ) is written as 3> ( m * , d * 6 5 ) to explicitly state the dependence of the 

objective function on the observed data. If the observed data were slightly perturbed, the location 

of the minimum would also be slightly perturbed. The gradient at this shifted minimum would then 

be zero: 

V $ ( m , + <5m„ d*obs + 5d*obs) = 0. (3.29) 

The gradient can then be expanded as a Taylor Series about the solution such that 

V $ ( m , + 8m*, d*obs + 8d*obs) = V $ ( m „ d^) + 

V^(m*,d* h JrJm* + 9 V$(m*,d*obs) ddobs 

Sdobs + H.O.T. (3.30) 

where H.O.T. represent the higher-order terms. When the objective function $ (m) is the sum of 

squares, the gradient of <P ( m ) is 

V $ ( m „ ) w J T ( ^ [ m ] -d^), (3.31) 

where the Jacobian J is defined as 

Jij(m) = 7 r ! - i (3.32) 
om.j 

and i = 1,..., N indexes the data, and j — 1,..., M indexes the model parameters. The variable 

Ti was introduced in equation 3.14. Therefore the derivative of V $ with respect to dobs is simply 

the Jacobian matrix J * T . Using equation 3.29 in equation 3.30 and retaining only first-order terms, 

we get 

5m* » H * - 1 J * T r J d o 6 s (3.33) 

where H* is the Hessian matrix evaluated at the minimum of $ (i.e., H* = V 2 $ (m*). 
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The model covariance matrix V M is defined as the expected value of 5m*5m*T 

V M = E (o"m*dm*T) . (3.34) 

Substitution of equation 3.33 gives 

V M = E ( H ' ^ J ^ J J U M L J ' H - 1 ) (3.35) 

The Hessian and Jacobian in the above expressions are evaluated at m = m*, and are therefore 

constants. As a result they can be taken outside of the expectation value expression, and 

V M - H ' ^ J ^ V d r H * - 1 , (3.36) 

where 

V D = E (5dobs5dT

obs) (3.37) 

is the covariance matrix of the data. In the case when the observations all have normally distributed 

and uncorrelated. errors, the data covariance matrix reduces to a diagonal matrix. 

3.4.2 Calculating the Parameter Covariance Matrix when there are constrained 

parameters 

Upper and lower constraints are often applied when inverting certain parameters. These "box" 

constraints represent minimum and maximum extents of a uniform a priori distribution of the pa

rameters. When a parameter equals a constraint (i.e., the constraint is active), its variance is not 

estimated. The variances of the remaining parameters are calculated in a manner similar to the 

previous section, with Lagrange multipliers being introduced to account for the constrained param

eters. 

Let the vector g (m) represent all the equality constraints, including those inequality constraints 

active at the final model. The Lagrangian is given by 

£ ( m , A ) = $ ( m ) - ^ A i f t ( m ) , (3.38) 
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where A — [ A i , A f c ] T is the vector of Lagrange coefficients. Setting the gradient of the La-

grangian to zero gives 

V $ ( m ) = Vg ( m ) • A. (3.39) 

This equation must be satisfied at m = m*. By carrying out the sensitivity analysis demonstrated in 

the unconstrained case, it is straightforward to show that the covariance matrix for the constrained 

optimization problem is 

V m = P A - 1 J T V d J A - 1 P T , (3.40) 

where 

A = H* - £ \ d2

9i 

<9m<9m' 
(3.41) 

and 

P . I - A - ( * \ 
. dm I 

is a projection matrix, where 
dg_ 
dm 

dm \ dm ) 

dgi 

dg_ 
dm 

For linear constraints A = H, and the model covariance matrix is then 

(3.42) 

(3.43) 

V m = P H * - 1 J T V d J H * _ 1 P i . - 1 D T (3.44) 

3.5 Unconstrained inversion of TEM data over a 105 mm Projectile 

We now invert a TEM field data set acquired at the ERDC UXO test site in Vicksburg, Mississippi 

(Figure 3.10). The Geonics EM63 instrument used for the survey is a multi-time channel time 

domain unit consisting of a 1 m x 1 m square transmitter coil and a single coaxial horizontal 

circular receiver loop mounted on a two-wheel trailer. Measured voltages are averaged over 26 

geometrically spaced time gates, spanning the range 0.18 ms to 25.14 ms. 

A 105 mm projectile is placed in the ground with its center at 2.0 m East, 1.83 m North and at 

a depth of 0.44 m from the surface. The projectile was placed horizontal (6 = 90 °), with its tip 

pointing to the North (cj> — 0°). Once the target was placed in the ground, it was not covered in 

soil. The survey consisted of a 2 m x 2 m grid centered on the target, containing 5 lines running 
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(c) Buried 105 mm projectile. For this measurement soil was not replaced in the hole. A small 
piece of plywood was placed over the hole to prevent the Geonics EM63 from falling in. 

Figure 3.10: Data collection setup for the example of Section 3.5. 
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North-South separated at 50 cm line spacing, with stations located at 5 cm intervals along each 

line. A measured signal of less than 1 mV is assumed to be indistinguishable from the noise. The 

resulting data set contains 1882 total data points. 

3.5.1 Application of a Local Search Algorithm 

The inversion is carried out with the data assigned a standard deviation of five percent and a base 

level error of e = 1 mV. The first stage of the time decay evident in Figure 2.5 is not observed in 

the time window recorded by the EM63. Therefore, we invert these data by using parameterizing 

the polarization decays with Equation 2.34, i.e., L; (£) = exp (t/ji), where i = 1,2 for the 

axial and transverse polarizations, respectively. The observed and predicted data are compared in 

Figures 3.11 and 3.12. We remind the reader that only the measured data, and not the values of 

the image obtained from interpolating the measured data, are included in the objective function. 

Figure 3.12 shows a plan view comparison for five of the 26 time channels. At early times the 

anomaly has a single peak located approximately above the UXO center. This peak splits into two 

distinct peaks at late time. The recovered model predicts data that reflects this behavior. Figure 3.11 

compares the decay curve measured at four stations on the survey. 

The recovered location and orientation parameters are listed in Table 3.1. The recovered easting 

of 2.04 m differs from the true value of 2.00 m by 4 cm. The recovered northing of 1.78 m differs 

from the true value of 1.83 cm by 6 cm, thus placing the inducing dipole closer to the projectile tail. 

These errors are of the same magnitude as can be expected in spotting the station location in the 

field survey. In addition, the buried 105 mm projectile has a copper rotating band near the tail of the 

projectile. It has been suggested that the presence of the rotating band will shift the location of the 

induced dipole from the target center towards the tail (Miller, 2000). The recovered burial depth of 

0.45 m is 1 cm deeper than the expected depth of 0.44 m. The orientation parameters 9 and 0 are 

well recovered. 

The recovered decay parameters are listed in Table 3.1 and the diagnostics applied to these pa

rameters are listed in Table 3.2. In Pasion (1999), the average of the /3 parameters, ft = (Pi + {32) /2, 

was shown to be diagnostic of the magnetic permeability. The value of /3 = 0.89(> 0.8) indi

cates that the target is likely to be magnetically permeable. The ratios k\/k2 — 2.69(> 1) and 

0i/P2 = 0.67(< 1) indicate, for a magnetically permeable target, that the TEM response is likely 

71 



Chapter 3. Inversion of Time Domain Electromagnetic Data 

Figure 3.11: The observed and predicted decay curves for four stations in the 105 mm projectile 
UXO field data set inversion. The predicted decay of the vertical component of the 
measured voltages are represented by the solid lines, and the symbols represent the 
Geonics EM63 field measurements. 

Local Analysis NA-Bayes Analysis 
Known Recovered Standard Recovered Standard 

Parameter values Parameters Deviation Parameters Mean Deviation 
Northing x (m) 1.83 1.78 0.001 1.78 1.78 0.004 
Easting y(m) 2.00 2.05 0.001 2.04 2.04 0.02 
Depth z (m) 0.44 0.45 0.001 0.47 0.47 0.01 
(j> (degrees) 0 9.71 0.29 9.4 9.5 1.5 
6 (degrees) 90 85.0 0.19 84.2 84.3 0.8 

h (69.6) 74.2 0.75 76.7 76.7 1.5 
Pi (0.64) 0.71 0.016 0.72 0.72 0.02 
Ti (20.4) 22.7 2.6 26.7 26.6 0.6 
k2 

(20.1) 27.6 0.56 29.4 29.1 1.0 
(1.08) 1.06 0.024 1.08 1.08 0.01 

72 (7.59) 5.73 0.63 6.74 6.8 1.0 

Table 3.1: Comparison of recovered model parameters from the local analysis and parameters de
rived from the Neighbourhood Algorithm (NA-Bayes) (Sambridge, 1999a,b). 
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Figure 3.12: Plan view plots of the observed and predicted data for 5 of the 26 time channels in 
the 105 mm projectile UXO field data set inversion. The predicted data provide a 
reasonable match to the TEM response measured by the Geonics EM63. 

73 



Chapter 3. Inversion of Time Domain Electromagnetic Data 

to be from a rod-like target. 

Local Analysis 
Recovered Parameters 

NA-Bayes 
Recovered Parameters 

NA-Bayes 
Standard Deviation 

(A + /%)/2 0.89 0.90 .05 
ki/k2 2.69 2.64 0.2 

0.67 0.67 0.1 

Table 3.2: Comparison of NA-Bayes and local analysis. 

When inverting data, multiple starting models can improve the chances that the optimization 

algorithm will find the global, rather than a local, minimum of the objective function. Table 3.3 

contains an example of recovered parameter results when using a very good starting model, and a 

very poor starting model. Application of our standard diagnostics are calculated and compared in 

Table 3.4. The model recovered by the poor starting model is characteristic of a plate-like target, 

Good Starting Model Poor Starting Model 
Known Recovered Recovered 

Parameter values m 0 Parameters m 0 Parameters 
Northing x (m) 1.83 2.0 1.78 0.001 3.0 1.79 0.001 
Easting y (m) 2.00 2.0 2.05 0.001 3.0 2.09 0.001 
Depth z (m) 0.44 0.52 0.45 0.001 1.57 0.31 0.003 
phi (degrees) 0 -45 9.71 0.29 0 -101.7 0.58 

theta (degrees) 90 45 85.0 0.19 0 14.5 0.19 
(69.6) 88.9 74.2 0.75 1 11.1 0.87 

0i (0.64) 0.8 0.71 0.016 1 0.87 0.096 
7i (20.4) 4.7 22.7 2.6 1 1.72 0.027 
k2 (20.1) 22.2 27.6 0.56 1 27.28 0.33 
02 (1.08) 1.15 1.06 0.024 1 0.98 0.013 
72 (7.59) 3.13 5.73 0.63 1 75.44 25.80 

Table 3.3: Comparison of two different starting models. 

Good Starting 
Model 

Poor Starting 
Model 

0=(0i + 02) /2 0.89 0.92 
ki/k2 2.69 0.41 
01/02 0.67 0.89 

Table 3.4: Comparison of NA-Bayes and local analysis. 

that is closer to the surface than the true target location, and is rotated 90 degrees from the true 
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orientation. The existence of this type of local minimum was noted in Chapter 2 and in simulations 

of single channel EM61 MK2 data (Pasion et al., 2004). 

3.5.2 Application of a Global Search Algorithm 

The local minimum encountered in the previous example motivates the use of a global optimiza

tion algorithm. We use the Neighborhood Algorithm (Sambridge, 1999a,b) to sample model space 

and evaluate the Bayesian integrals for the mean, covariance and marginal probabilities for the 105 

mm projectile example. The Neighbourhood Algorithm uses a geometric approach for searching 

model space. For a suite of sampling points, nearest neighbour regions, or Voronoi cells, are con

structed that partition model space. A pair of tuning parameters then control the numbers of cells 

to resample, and how many samples to generate within these cells. The success of this method 

relies on the ability to sample carefully in the regions of good fit. Monte Carlo integration uses 

the sample to numerically evaluate the integrals for the mean, covariance and marginal probabilities 

(Equations 3.6, 3.7, and 3.8, respectively). 

Figure 3.13 contains plots of the 1-D marginal distributions for the location and orientation. 

The 1-D marginals for the dipole polarization decay parameters are plotted in Figure 3.14. Two-D 

marginal distributions for parameter pairs (x, y), (k\, k2), and (/?]_, (32) are plotted in Figure 3.15. 

Confidence regions of 60, 90, and 99 percent are indicated by contours. These plots indicate that we 

have greater than 99 percent confidence that the target is rod-like (i.e., ki/k2 > 1 and (3i/P2 < 1). 

The marginal distributions of the diagnostic parameters are plotted in Figure 3.16, again confirming 

the rod-like interpretation. 

Tables 3.1 and 3.2 compare the results of the Neighbourhood algorithm with the local methods. 

The results are comparable to the local method when the better starting model was used. The 

linearized estimates of the standard deviations are generally smaller than those obtained through the 

NA Bayes analysis. 
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X Y depth 

1.8 1.9 2 2.1 1.65 1.7 1.75 1.8 1.85 1.9 1.95 0.3 0.4 0.5 0.6 0.7 
m m m 

(a) X location (b) Y location (c) Depth 

-20 0 20 40 60 4o 6 0 80 100 120 
degrees degrees 

(d) Azimuth (e) Dip 

Figure 3.13: ID marginals for position and orientation obtained using the Neighbourhood Algo
rithm. 
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1 0 2 0 3 0 4 0 5 0 6 0 ° - 8 0 9 1 1 - 1 1 2 1 3 

(d) Dipole 2: k2 (e) D i P o l e 2 : #2 
3 4 5 6 7 8 9 1 0 

(f) Dipole 2: 7 2 

Figure 3.14: 1-D Marginal distributions for the dipole polarization decay parameters. 

I I I I I I I I I I I I I I I I I I I I u- I I I j I I I I I I I I I I I I I I j I I I I j ! 2 CF I I I I I ' I 1 

k1 bl 

Figure 3.15: 2-D Marginals calculated using the Neighbourhood Algorithm. Confidence regions of 
60 (green contour), 90 (blue contour), and 99 (red contour) percent are indicated. 
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0 1 2 3 4 5 6 0 . 4 0 . 6 0 . 8 1 1 . 2 0 . 7 0 . 8 0 . 9 1 1 . 1 

(a) An/fa (b)/3i/A (c)(/?i+A)/2 

Figure 3.16: 1-D Marginal distributions for the dipole polarization decay parameters. 
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3.6 A Comparison of Two and Three Polarization Inversions 

In Chapter 2 we presented two variations of the dipole model: the two-polarization model and 

the three-polarization model. The two polarization model contains two unique elements of the 

dipole polarization tensor, and is suitable for axi-symmetric targets such as most UXO. The three 

polarization model contains three unique elements of the dipole polarization tensor and thus models 

non-axial symmetric targets, such as some scrap, better (that is, with a lower data misfit) than the 

two polarization model. The discrimination of non-axially symmetric targets becomes dependent 

on the choice of model. When using the three-polarization model, a non-axial symmetric target 

is characterized by three unique polarization tensors (i.e., Lx ^ Ly ^ Lz). When using a two-

polarization model, large data misfits may indicate that the target is not axially symmetric. 

In the buried 105 mm projectile example of Section 3.5, we inverted for the model parameters 

of the two-polarization model. This choice of model was arbitrary. When inverting field data as part 

of a real-world ordnance cleanup project what model should we choose? Although it is desirable 

to have a model that can fit data as well as possible, variances in recovered model parameters in

crease with model complexity. In particular, if we are inverting data over a UXO we do not want 

to have a situation where the data quality is not high enough to resolve the three components of the 

three-polarization model well. Such a situation may lead to a false-negative characterization of the 

target. There are several standard techniques for model selection. These include Akaike Informa

tion Criterion (AIC), Schwarz Criterion (also known as the Bayesian Information Criterion (BIC)), 

Minimum Description Length (MDL), and Likelihood ratio tests (LRT). These techniques, although 

established through different means, essentially reward models that fit data while penalizing model 

complexity. 

In this section we compare fitting TEM data with three-polarization elements (Lx, Ly, and Lz) 

of the tensor or two unique elements (Lx = Ly and Lz), which represents an axial-symmetric 

target. In principle, if the data collected over an axially symmetric, rod-like target are of high 

enough quality, an inversion that attempts to recover three-polarizations should recover two of the 

polarization elements as being equal. In this section I invert data from a number of different targets, 

both UXO and non-UXO, for both the two and three-polarization models. I compare data misfits, 

the recovered parameters and their variances for both the two and three-polarization models. 
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3.6.1 Fitting Cued interrogation style Geonics EM63 T E M data from a 3.5 inch 

Rocket 

In the summer of 2006, geophysical data were collected at the Marine Corps Base Camp Lejeune 

in North Carolina. "Cued interrogation" style data were collected with the Geonics EM63 (Fig

ure 3.17). Figure 3.18 shows an example of inverting Geonics EM63 data collected over a horizon-

Figure 3.17: "Cued interrogation" style data collection at Marine Corps Base Camp Lejeune in 
North Carolina. 

tal 3.5 inch rocket without fins. The rocket was placed in a shallow pit in the ground, and an EM63 

sensor traversed the area at a slow, controlled pace to maximize the S/N of the measured anomaly. 

The inversion results in Figure 3.18 are for three-polarizations parameterized by Equation 2.30. The 

data were also inverted using two and three-polarization models that were parameterized using equa

tions 2.30, 2.32, and 2.34. The resulting polarization curves are plotted in Figure 3.19. Inversion 

of the data, regardless of the number of polarizations and the parameterization of the polarizations, 

reveal a single, dominant, axial polarization. For the three-polarization models, the transverse po

larizations are equal (i.e., Lx = Ly) and less than the axial polarization, thereby suggesting an 

axi-symmetric target. The transverse polarizations for both the two and three-polarization models 

are similar. The inversion results are what we hope to expect for any inverted anomaly. 
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(a) The first time channel of data is plotted. 
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(b) The fit to a sounding directly over the target. The black dots in the upper left panel 
indicate uninverted channels due to low signal to noise ratios. 

Figure 3.18: A data fit result when inverting for a three polarization dipole model from Geonics 
EM63 data collected over a 3.5 inch rocket. Both figures are screen outputs from 
UXOLab. 
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Figure 3.19: Comparison of recovered axial (L\ (t)) and transverse (L2 (t)) polarizations when 
inverting data over a 3.5 inch rocket. 

3.6.2 Fitting T E M data from an array of Geonics EM61 Mark 2 sensors 

Data were collected by the Sky Research, Inc 5 sensor EM61 array at the Former Lowry Bombing 

and Gunnery Range (FLBGR) test plot (Figure 3.20). These data were subsequently inverted using 

both a two-polarization and three-polarization model. Since the Geonics EM61 Mark 2 only has four 

time channels, we will not parameterize the polarization decay and, instead, use the instantaneous 

amplitude (Equation 2.30). In the next three examples we will look at the data fits of (1) a horizontal 

Sub-Caliber Aircraft Rocket (SCAR), (2) OE scrap which is not axisymmetric, and (3) a vertical 37 

mm projectile. 

Data Fit over a Sub-Caliber Aircraft Rocket (SCAR) Body 

The first example will be for the body section (i.e., no fins or nose) of a SCAR buried a depth of 60 

cm and oriented horizontally (Figure 3.21). The SCAR is oriented in an optimal way for resolving 

both the axial and transverse polarizations (see arguments in Chapter 2). 

First time channel data fits for the SCAR are found in Figure 3.22(a) (three-polarization model) 

and Figure 3.22(b) (two-polarization model). The fit to the data is quantified by the correlation co

efficient (CorrCoeff) and a normalized misfit $/N, where $ is the weighted least-squares objective 
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Figure 3.21: A SCAR without a nose and tail buried horizontally at a depth of 60 cm in the FLBGR 
UXO test plot. 
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(b) Two-polarization model fit 

Figure 3.22: Data fit for the first time channel of the Sky Research Geonics EM61 Mark 2 Array 
collected over the SCAR of Figure 3.21. 

8 4 



Chapter 3. Inversion of Time Domain Electromagnetic Data 

function and N is the number of data. Both inversions recover the location and depth parameters 

accurately, and the quality of fit is approximately the same. Table 3.5 summarizes the recovered 

two-polarization and three-polarization model parameters and their variance. The recovered axial 

Two-polarizations Three-polarizations 
LX — Ly Lz Ex 

Ly Lz 

tl 56.1±0.6 243.9±3.8 51.3±3.5 61.6±4.7 246.6±1.5 
h 35.6±0.5 192.0±2.7 32.4±17.8 39.3±13.3 194.2±0.5 
h 18.7±0.3 139.4±2.0 17.3±1.2 20.3±0.7 140.8±0.5 
U 7.4±0.4 88.7±1.1 6.5±0.7 8.3±0.1 89.8±0.2 

Table 3.5: Comparison of three and two polarization inversions of data collected over the SCAR in 
Figure 3.21. 

and transverse polarizations and their variances are nearly the same for both the three and two polar

ization models. For this example, we can conclude that the data quality was high enough to support 

successful parameter estimation using either model type. 
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Data lit over OE Scrap 

The next example is OE scrap (23 lbs) from a 100 lb bomb buried at a foot (Figure 3.23). The scrap 

Figure 3.23: Photo of a piece of OE scrap from a 100 lb bomb buried at a depth of 30 cm. 

is clearly not axially symmetric, and thus we would expect the three-polarization model to have 

a better fit than the two-polarization model. Figures 3.24(a) and (b) verify the improved fit when 

including an additional polarization. 

Table 3.6 lists the recovered model parameters and their respective variances. When using the 

Two polarizations Three polarizations 
LX Ly Lz Lx 

Ly Lz 

tl 982.9±70.7 992.8±150.2 757.0±3.9 602.8±0.3 910.3±0.8 

h 531.8±29.2 671.2±86.0 510.8±0.2 320.0±0.2 506.5±0.3 

h 185.2±4.2 329.0±11.5 251.2±0.7 107.5±0.2 185.4±1.2 

u 31.2±2.1 96.4±13.2 73.43±0.08 16.9±0.1 34.7±0.1 

Table 3.6: Comparison of two and three-polarization inversions of data collected over the OE scrap 
in Figure 3.23. 

two-polarization model, the variances (or model uncertainties) are much greater, suggesting that we 

should "trust" the model recovered by the two-polarization inversion less than the model recovered 

by the three-polarization model, even though the fit appears to be adequate. 
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Figure 3.24: Data fit for the first time channel of the Sky Research Geonics EM61 Mark 2 Array 
collected over the OE scrap in Figure3.23. 
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Data Fit over a Vertical 37 mm Projectile 

The final example is over data measured above a vertical 37 mm projectile buried at depth of one 

foot. From the arguments in Chapter 2, the projectile is positioned in the least advantageous ori

entation to resolve the transverse components. The quality of data fits are nearly the same (Fig

ures 3.25(a) and (b)). For the first two time channels, the recovered data parameters are nearly 

the same. However, for the final two time channels, the axial polarizations recovered by the three-

polarization model indicate a non axially symmetric target. The data are unable to accurately con

strain these parameters due to the lower signal to noise ratio for these later time channels. 

2-polarizations 3-polarizations 
LX Ly Lz Lx Ly Lz 

h 19.3±1.7 33.4±0.4 18.45±0.04 19.44±0.06 44.7±0.6 
12.6±0.8 24.5±0.9 11.2±0.3 12.67±0.07 32.8±0.7 
9.1±0.5 14.6±0.7 5.96±0.02 12.2±0.2 19.0±0.1 

u 4.2±0.2 8.1±0.5 2.71±0.02 5.19±0.03 10.69±0.05 

Table 3.7: Comparison of 2 and 3 polarization inversions of data collected over a buried 37 mm 
projectile. 

3.6.3 Summary 

The results from this section were presented to illustrate the differences when inverting two or three 

unique polarizations. Three Geonics EM61 anomalies were inverted in this section: 

1. SCAR rocket body: An anomaly from a rod-like target with sufficient data quality such that 

three-polarization inversion correctly recovered a pair of transverse polarization tensors that 

are similar. 

2. OE Scrap: An anomaly from a piece of scrap without axial symmetry with sufficient data 

quality such that the inversion with three polarizations produce a lower misfit and lower model 

variances than the inversion with only two polarizations. 

3. 37 mm projectile: An anomaly from a rod-like target without sufficient data quality to cor

rectly recover unique transverse polarization components when inverting for three-polarization 

tensors. 
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(b) Two-polarization model fit 

Figure 3.25: Data fit for the first time channel of the Sky Research Geonics EM61 Mark 2 Array 
collected over a vertical 37 mm projectile buried at a depth of one foot. 
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In the case of the 37 mm projectile, the recovered three polarization model did not reflect the axi-

symmetric character of the target. For this anomaly, it may be a better strategy to invert for the 

simpler two-polarization dipole model. 

Some work has to be completed which characterizes the data quality required in order for all 

three polarizations to be constrained. In addition, a model selection criteria that provide a systematic 

way of incorporating misfit, variance and model selection criteria should be included in processing. 

In previous applications of processing EM63 and EM61 data (Billings, 2007) on live site data, we 

have used a simple and conservative approach to decide if either two or three distinct polarizations 

should be used. Both a two and three-polarization model was inverted, and the data misfit was 

recorded. If the data misfit of the three polarization inversion was less than 0.85 times the misfit of 

the two polarization inversion, we use the three polarization model. 

3.7 Conclusion 

This chapter described our basic methodology for estimating polarization tensor parameters from 

sensor data. The objective of inversion is to characterize the a posteriori distribution of models. The 

global methods used to fully characterize the probability density function and evaluate the Bayesian 

integrals require numerous evaluations of the forward model, and are impractical for processing 

numerous anomalies. Therefore, our objectives is to use local methods to calculate the maximum 

a posteriori estimate. Linearized analysis of the misfit provides estimates for the model parameter 

variances. We have found that linearized estimates underestimates the results from the global analy

sis. Prior to inversion, several important pre-processing steps are required. These include estimating 

the noise of the data set, selecting anomalies, and developing a suite of starting models. Data ac

quired over a 105 mm projectile was used to demonstrate the inversion procedure. Both local and 

global methods were used with similar results. Application of the local method using a poor starting 

point demonstrated the importance of using a suite of starting models to avoid the problem of local 

minima. 

The chapter concludes with a comparison of two and three polarization inversion results. An 

example using EM61 Mark 2 data showed that, when using a three polarization model, the ability 

to correctly recover unique transverse polarization components when inverting an anomaly from 
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a rod-like is limited by data quality. A model selection criteria that provide a systematic way of 

incorporating misfit, variance and model selection criteria should be included in processing. 
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Chapter 4 

Joint and Cooperative Inversion of Time 

Domain Electromagnetic Data 

Magnetics and electromagnetic surveys are the primary techniques used for UXO remediation 

projects. Magnetometry is a valuable geophysical tool for UXO detection because of the ease of 

data acquisition and its ability to detect relatively deep targets. However, magnetics data can have 

large false alarm rates due to geological noise, and there is an inherent non-uniqueness when trying 

to determine the orientation, size and shape of a target. Electromagnetic surveys, on the other hand, 

are relatively immune to geologic noise and are more diagnostic for target shape and size but have a 

reduced depth of investigation. In this section we aim to improve discrimination ability by develop

ing an interpretation method that takes advantage of the strengths of both techniques. We consider 

two different approaches to the problem: (1) Interpreting the data sets cooperatively, and (2) in

terpreting the data sets jointly. For cooperative inversion, information from the inversion of one 

type of data is used as a constraint for inverting another. In joint inversion, target model parameters 

common to the forward solution of both types of data are identified and the model parameters from 

all the survey data are recovered simultaneously. We compare the confidence with which we can 

discriminate UXO from non-UXO targets when applying these different approaches to results from 

individual inversions. In this section we focus on the details of the joint and cooperative inversion 

methodologies. 

4.1 Introduction 

Electromagnetic and magnetic surveys are the standard geophysical techniques used for UXO reme

diation. Electromagnetic detection of a buried target is accomplished by illuminating the subsurface 

with a time varying primary field. If the buried target is conductive, eddy currents will be induced 
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in the target, and subsequently decay. These currents produce a secondary magnetic field which is 

then sensed by a receiver coil at the surface. Magnetometry is a passive detection system. The high 

magnetic susceptibility of a ferrous target causes distortions to the Earth's field which are measured 

by a magnetometer. Electromagnetics and magnetometry have proven to be successful in detecting 

UXO in recent UXO remediation projects and UXO technology demonstrations. 

The dipolar nature of the electromagnetic responses of compact metallic objects measured with 

sensor/target geometries typical for UXO surveys has lead to a number of techniques for estimat

ing the elements of the magnetic polarization tensor that define the induced dipole moment. The 

magnetic polarization tensor's components are functions of the size, shape, location, orientation and 

material properties of the buried target of interest and therefore provide a model vector from which 

the target characteristics can be inferred. The accuracy with which the polarization tensor can be 

recovered depends on the noise levels of the induction sensor, the amount of geologic noise in the 

inverted data, and accurate accounting of survey parameters such as sensor orientation and location. 

As an illustration of the difficulty of UXO discrimination in conditions of lower signal-to-noise 

and poor spatial coverage, consider the recovery of the polarization tensor components from a pair 

of synthetic data sets generated from a Stokes mortar. Figure 4.1(a) is a photo of a Stokes mortar 

and the measured dipole decay parameters of the mortar are listed in Figure 4.1(b). The dipole 

polarization decay parameters were calculated from data collected in at the USACE ERDC UXO 

test site (Appendix A). The TEM response is computed for a Stokes mortar buried at depths of 60 

cm and 100 cm and oriented 30 degrees from horizontal. The TEM responses at 1.105 ms measured 

on a line parallel to the strike of the mortar are compared in Figure 4.1c. 

We assume that the TEM sensor has a noise floor of 0.5 mV. When the mortar is buried at a depth 

of 60 cm, the large signal-to-noise ratio results in an accurate recovery of the dipole parameters 

(Table 4.1), and an accurate prediction of the observed data (Figures 4.2(a) and 4.2(b)). The signal 

from a mortar buried at 100 cm is much weaker and, as Figure 4.3c demonstrates, a significant 

portion of the data lies within the noise level of the sensor. Inversion of these data result in recovered 

model parameters that accurately reproduce the data (Figure 4.3(a middle panels and Figure 4.3(b) 

green line) but are not the parameters of the Stokes mortar (Table 4.1). Location and orientation 

were not correctly recovered. With the data located on the right side of the survey obscured by the 

sensor noise, the inversion attempted to place the location of the target at the center of the data peak. 
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I 

fcl 43.9 
0.02 

0i 0.73 
7i 9.1 

k2 4.9 
Oil 0.001 
02 1.09 
72 10.8 

(a) Photo of a Stokes Mortar (b) Polarization tensor parameters used for 
forward modelling 

1mV 

(c) Dipole response (in mV) at 1.105 ms of a Stokes Mortar located 
at depths of 60 and 100 cm. 

Figure 4 . 1 : Photo and decay constants of a particular Stokes Mortar and the TEM response at 1.105 
ms measured parallel to the length of the Stokes Mortar for two depths of burial. 
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Location 
X,Y(m) 

Depth 
(m) 

Azimuth 
(degrees) 

Dip 
(degrees) *i k2 

ki/k2 Interpretation 
A (0,0) 1.0 90.0 60.0 43.9 4.9 8.96 rod-like 
B (-0.01,0.00) 0.60 90.0 59.9 43.28 4.91 8.81 rod-like 
C (-0.38,0.05) 0.86 -16.7 62.7 7.86 11.57 0.68 plate-like 
D (0.01,0.00) 0.99 89.3 62.3 39.77 6.08 6.54 rod-like 

Table 4.1: Comparison of the recovered model parameters for: (B) a Stokes mortar at a depth of 60 
cm, (C) a Stokes mortar at a depth of 100 cm, unconstrained location, and (D) a Stokes 
mortar at a depth of 100 cm, with location constrained to ± 5 cm of the real location. 
Row (A) lists the correct parameters. 

The non-uniqueness demonstrated in this unsuccessful inversion can be reduced by accurate 

knowledge of the target location. If we constrain the data to within ± 5 cm of the real target location 

the recovered parameters and location of the target are successfully obtained (Figure 4.3(a)). 

The magnetostatic secondary field response of typical UXO can also be well approximated with 

a dipole. The magnetostatic polarization tensor for the dipole induced in a magnetic spheroid is 

well known (McFee, 1989) and enables one to forward model the magnetic dipole response of a 

spheroid of arbitrary size, shape, orientation, and location. However, inverting magnetics data di

rectly for the size, shape, and orientation of the best fitting spheroid is not possible due to inherent 

non-uniqueness (Billings et al., 2002). That is, for a spheroid at a particular orientation there exists 

an infinite number of spheroids that could produce the same dipole moment (Figure 4.4). Ordnance 

discrimination using magnetostatic data has been achieved by recognizing that intact ordnance tend 

to become demagnetized after impact while shrapnel tend to have a significant component of rem

nant magnetization. A level of discrimination is achieved by classifying targets as scrap when the 

direction of magnetization deviates from the direction of the Earth's field by a large amount (Billings 

et al., 2002; Nelson et al., 1998; Lathrop et al., 1999). Billings et al. (2002) demonstrated identifi

cation ability when the different ordnance types expected in the survey area are known. A ranking 

scheme was developed by assuming that a particular target type is more likely when it requires less 

remnant magnetization to fit the measured dipole moment. 

To summarize, it is not possible to get unambiguous shape information from magnetometer data 

alone, and TEM data can have difficulty in generalizing this information when data are incomplete 

and/or noisy. This motivates the research to combine information from these two surveys. 

It has been recognized that the performance of EM interpretation algorithms improve when lo-
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cation information from magnetics is used as a constraint. Cooperative inversion has been applied 

to interpret magnetometry data and single time channel TEM data (for example Nelson and Mc

Donald (1999)) as well as magnetometry data and multi-frequency EM data (for example Collins 

et al. (2001)). 

The objective of this research is to improve our ability to discriminate between UXO and non-

UXO items by developing interpretation methods which take advantage of the strengths and over

come some shortcomings of both techniques. In this section we consider interpreting magnetics 

and electromagnetics data sets jointly and cooperatively. In both cases the ability of the magnetics 

method to accurately determine an items location is used to stabilize the inversion of TEM data, 

and the ability of TEM to determine the orientation of a buried target is used to reduce magnetics' 

implicit non-uniqueness such that the target shape and size can be inferred from the magnetics' data. 

Examples will be given for multiple time channel time domain electromagnetics and magnetics data 

sets. 
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Observed, 0.180 ms Predicted, 0.180 ms 

y, 
Observed, 1.105ms Predicted, 1.105 ms 

(a) Synthetically generated "observed" data (left) and predicted 
(right) data from parameters recovered from an inversion. 

Y(m) 

(b) Observed data at t = 0.180 ms and t = 1.105 
ms, and along lines x = -0.5 m and x = 0.5 m. 

Figure 4.2: Inversion of TEM data for a Stokes mortar at a depth of 60 cm. The signal-to-noise 
ratio is large, allowing for accurate parameter recovery without constraints placed on 
the location. 

Predicted Data 
IrWde Constraints Narrow Constraints 

on Location on Location 

SBfM 

• * 

(a) Comparison of observed data and data predicted from the 
recovered polarization tensor. Location of the Stokes mortar 
is indicated by a star. When the location is unconstrained the 
inversion recovers a location, indicated by the circle, coinci
dent with the peak of the signal (middle panels). 

Y(m) 

(b) Observed data at t = 0.180 ms and t = 1.105 
ms, and along lines x = -0.5 m and x = 0.5 m. 
The green lines represent predicted data for an 
inversion with location unconstrained. Blue lines 
represent data predicted for an inversion with lo
cation constrained. 

Figure 4.3: Comparison of the data fit for a Stokes mortar at a depth of 100 cm. Without constraints 
on the target location, it is possible to recover parameters unrepresentative of the target 
yet able to reproduce the observed data. 
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0 1 2 3 4 5 6 0 1 2 3 4 5 6 
Aspect ratio Aspect ratio 

(a) Spheroid dimensions that can produce the same in- (b) Spheroid aspect ratio and angle from the Earth's field 
duced dipole. that can produce the same induced dipole. Constraining 

the angle at which the ordnance of the target lies will re
duce the ambiguity of the spheroid solution. 

Diameter Aspect Angle 
(mm) Ratio (degrees) 

A 82 5 40.5 
B 138 5 84.0 
C 138 2.82 57.2 
D 327 0.06 53.4 
E 327 0.31 33.4 

(c) Spheroid dimensions, and their angles relative to the Earth's field, that produce the same 
dipole moment as a 105 mm projectile at 45° inclination. 

Figure 4.4: Spheroid dimensions that can produce the same dipole as a 105 mm shell at 45 degrees 
inclination to the Earth's field. 
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4.2 Dipole modelling of T E M and Magnetics Data 

In order to invert measured TEM and magnetics data for the physical parameters of the target, it is 

necessary to have forward models to describe the TEM and magnetic response for a buried metallic 

object. We restrict our forward model to axi-symmetric metallic targets, since this geometric subset 

adequately describes all UXO and much of the buried metallic scrap encountered in a remediation 

survey. We also assume negligible contribution of the host medium to the measured signal. 

4.2.1 Magnetic Forward Modelling 

Spheroids have been used to approximate the magnetostatic response of ordnance by several au

thors (Butler et al., 1998; McFee, 1989; Altshuler, 1996). The magnetic field induced in a spheroid 

by the Earth's field can be decomposed into a multipole expansion. The dipole term of the field is 

where f is the unit vector from the field measurement point and the spheroid center, I, and m is the 

induced dipole moment. The quadrapole term of the multipole expansion is zero due to the symme

try of the spheroid. The next non-zero term is the octopole moment which, for distances from the 

target that exceed a few body lengths, is negligible. Therefore, for many of the geometries encoun

tered in UXO surveys, the response of a spheroid is accurately modelled by the dipole moment. The 

induced dipole moment can be written as 

where V is the spheroid volume, A is the Euler rotation tensor, hp

Mag is the Earth's field, and FMag 

is the magnetostatic polarization tensor. The spheroid shape information is contained in the mag

netostatic polarization tensor. We refer the reader to McFee (1989) for the functional relationship 

between the magnetostatic polarization tensor and the aspect ratio e and spheroid diameter a . 

(4.1) 

= — A T F M a f f A • b? 
Po 

Magi (4.2) 
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4.2.2 Time Domain E M Forward Modelling 

In the time domain electromagnetic induction method a time-varying magnetic field is used to il

luminate a conducting target. This primary field induces surface currents on the target which then 

generate a secondary magnetic field that can be sensed above ground. With time, the surface cur

rents diffuse inward or decay due to Ohmic dissipation of eddy currents, and the observed secondary 

field consequently decays. The rate of decay, and the spatial behaviour of the secondary field, are 

determined by the target's conductivity, magnetic permeability, shape, and size. 

The electromagnetic response of the target will be primarily dipolar (Casey and Baertlein, 1999; 

Grimm et al., 1997) for the target/sensor geometries of UXO surveys. The induced dipole has the 

same form as the magnetostatic dipole of equation (4.2) 

mEM (t) = —ATFEM (t) A • hp

EM, (4.3) 
Mo 

where A is the Euler rotation tensor, bp

EM is the primary field generated by the sensor transmitter 

loop, and FEM is the electromagnetic polarization tensor. The target's shape, size, and material 

properties (i.e., conductivity and magnetic susceptibility) are contained in FEM. The primary field 

in the TEM case (b^M) will vary with transmitter/receiver location. In a typical survey, TEM 

soundings will be acquired at a number of different locations at the surface and the target will have 

been illuminated from several angles. As a result, the inherent ambiguity of the magnetic method is 

avoided. The polarization tensor FEM (t) for an axi-symmetric target has the form 

(t) 

L2 (t) 0 0 

0 L2 (t) 0 

0 0 L i (t) 

(4.4) 

The analytic expressions for the time domain response are restricted to a metallic sphere, and even 

an expression for a permeable and conducting non-spherical axi-symmetric body is not available. 

Our approach, therefore, is to use an approximate forward model that can adequately reproduce the 

measured electromagnetic anomaly with minimal computational effort. In Pasion and Oldenburg 
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(2001a) the following form for polarization tensor elements was suggested: 

Li = kt(t + cti)-pi exp (-t/7i). (4.5) 

The validity of this reduced modelling was verified through a series of empirical tests (Pasion and 

Oldenburg, 2001b). 

4.3 Cooperative Inversion of T E M and Magnetics Data 

We formulate the cooperative inversion of TEM and magnetics as a three part procedure. Firstly the 

magnetic data are inverted to yield the best-fit magnetic dipole rh.Mo.g- The recovered location of 

the dipole and the variance on the location are used as a priori information in the inversion of the 

TEM data. This results in an improved recovery of parameter values from which to perform TEM 

discrimination. In addition, the orientation of the item is obtained. This is the information required 

to obtain shape/size information from the magnetic data. 

We demonstrate the cooperative inversion procedure using the Stokes mortar example of Fig

ure 4.3. The mortar is located at a depth of 100 cm (Z = 1.00 m) and located at the center of the 

survey ((X, Y) = (0,0) cm). Synthetic Geonics EM63 TEM data were generated. The time chan

nels range from 0.180 ms to 25 ms. Two noise components were added to the forward modelled 

response to make the TEM synthetic data set more realistic. First, a 5% random Gaussian noise was 

added. Second, the sensor noise floor was emulated by adding an additional Gaussian noise with a 

standard deviation of 0.5 mV. Synthetic magnetic data were generated by representing the Stokes 

mortar with a spheroid with an eccentricity of e = 4.5 and radius a = 0.046 m (volume 0.0018m3). 

A normal error with standard deviation of 2cm was added to the station location of the magnetic 

measurements. For both the TEM and magnetics data, stations were separated at 10 cm on lines 

separated by 50 cm. 

4.3.1 Inversion of Magnetics Data 

The first step of the cooperative inversion is to determine the dipole moment m m a s = ( m x , rny, rhz) 

that produces the best fit to the observed magnetic data, and the location R = (X, Y, Z) of the best-
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Raw Data Model Fit 

Parameter Recovered 
X(m) 0.01 ± 0.004 
Y(m) -0.01 ±0.004 
Z(m) 1.00 ±0.005 
Moment (Am2) 0.5879 ± 0.0058 
Azimuth (degrees) 86.3 ± 0.5 
Dip (degrees) -38.5 ± 0.4 
Angle from Earth's 
field (degrees) 48.4 ± 0.3 

(a) Comparison of Observed Data and Predicted data for the 
Magnetics inversion 

(b) Recovered magnetic Dipole and Location 

Figure 4.5: Results from the magnetics inversion step of the cooperative inversion. The black dots 
in (a) indicate sensor locations at which data are collected. 

fit dipole. We define a model vector 

m = [X, Y, Z, mx,fhy,mz, b], (4 . 6 ) 

where the parameter b is a dc offset that is included to account for regional shifts in the data set. 

The parameters are recovered by solving equation 3.11. Variance estimates of the parameters are 

obtained by local error analysis (Pasion, 1999). Figure 4.5(a) compares the observed synthetic 

data and response predicted by the recovered parameters. The recovered parameters are listed in 

Figure 4.5(b). 

4.3.2 Inversion of T E M Data with Location Constraint 

The second step is to use the location information from the magnetics inversion to help stabilize 

the TEM inversion. The inversion methodology outlined in the previous step is applied to TEM 

data collected over the same target. The objective of this step is to obtain the following 13 model 

parameter vector 

mEM — [X,Y,Z,<p,8, fci,ai,/?i,7i,fc2,a2,/?2,72] > ( 4 - 7 ) 

where the location (X, Y, Z) is constrained by the recovered magnetics location. We define a uni

form prior centered on the recovered magnetics location and with a width equal to twice the esti

mated standard deviation. The TEM dipole parameters are constrained to be positive and have upper 
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bounds that are large enough to allow for the largest target expected in a typical survey. Figure 4.6 

summarizes the cooperative inversion result. Figure 4.6(a) compares the data fit, and the table in 

Figure 4.6(b) compares the recovered and expected parameters. The location and orientation have 

Parameter Expected Recovered 
X(m) 0.00 0.01 ± 0.00 
Y(m) 0.00 -0.01 ± 0.00 
Z(m) 1.00 0.98 ± 0.00 
Azimuth 90 89.7 ± 0.9 
Dip 60 63.2 ± 0.7 

fci 43.9 41.76 ± 1.54 
Oil 0.02 0.02 ± 0.04 
Pi 0.73 0.78±0.08 
7i 9.1 40.0 (constraint) 

k2 
4.9 6.40 ± 1.49 

Oil 0.001 0.01 ± 0 . 1 
02 1.09 0.96 ± 0.34 
72 10.8 8.89 ± 2 1 . 3 7 

-1 0 1 
(a) Comparison of Observed Data and Predicted data for the (b) Recovered magnetic Dipole and Location 
TEM inversion 

Figure 4.6: Results from the TEM inversion step of the cooperative inversion. 

been accurately recovered. The 7 parameters are poorly recovered because they are constrained by 

the late time response which, for this example, is contaminated by the noise. The k parameters are 

accurately recovered and their values would be appropriate for characterizing the target. 

4.3.3 Estimation of Shape and Size from Magnetics Data 

The relationship between the size and shape of the best fit spheroid that can produce the observed 

dipole moment has been previously established (Billings et al., 2002). The functional relationship 

of the ordnance orientation and the induced dipole moment is 

m = 
m 

m 

_L 

6/j0 

(F2 - Fi ) cos 0 sinO 

F2 cos2 9 + Fi sin2 6 
(4.8) 

where we choose a coordinate with axes parallel and perpendicular to the Earth's field (Billings 

et al., 2002). Without any additional information there are two known components of the dipole 

(we obtained dipole magnitude and angle from Earth's field from the magnetics inversion, thereby 
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allowing us to calculate m 1- and mil). We need to find three unknown parameters of the spheroid 

(a, e, 6). We need a constraint on the orientation in order to uniquely determine the demagnetization 

factors F2 and F\, and therefore the aspect ratio and size of the best fit spheroid. 

When the orientation is obtained from the TEM inversion (azimuth 89.7° and dip = 63.2°) 

the recovered spheroid is 80 mm in diameter and has an aspect ratio of 5.5 (i.e., length = 44 cm, 

volume = 0.0015 m3). The spheroid used to forward model the data (i.e., diameter = 90 mm, aspect 

ratio = 4.5, volume = 0.0018 m3) is slightly longer and skinnier than the recovered spheroid but 

has approximately the same volume. Figure 4.7(a) shows some of the possible spheroids that can 

generate the magnetic dipole, and how knowledge of the orientation enables us to select a single 

spheroid. The solid line represents a suite of possible spheroids and the dotted line represents the 

ordnance orientation (relative to the Earth's field) recovered from the TEM inversion. The above 

method for determining the dimensions of the object will generally work well in the absence of 

any remanent magnetization. When remanence is present a modified method of identification using 

magnetics is to: (1) generate a list of possible ordnance, (2) determine the range of dipole moments 

that can be induced in each ordnance by varying the relative angle of the ordnance with the Earth's 

field, and (3) find which target requires the least amount of additional magnetization to reproduce 

the magnetic dipole recovered in the magnetics inversion. Figure 4.7(b) shows the possible induced 

dipole moments for a number of ordnance. Each ordnance item sweeps out an arc as its orientation is 

varied. The recovered dipole moment is plotted as a black star. Without knowledge of the orientation 

of each ordnance, the ordnance items can be ranked according to distance the recovered moment to 

the ordnance respective arcs. Knowledge of the ordnance orientation reduces each arc to a single 

point (indicated by a symbol on each arc), thereby refining our discrimination ability. 

4.4 Joint Inversion of T E M and Magnetics Data 

In both TEM and magnetostatic forward modelling, the response is approximated by the dipole 

produced by a spheroid. Ideally the joint inversion procedure would be to recover the location, 

orientation, and spheroid properties that can best reproduce the TEM and magnetostatic dipoles. 

The model vector in this ideal case would be 

m = [X, Y, Z, </>, 9, a, e, p, a, mREM], (4.9) 
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80 

551 1 1 ' ' ' ' ' ' ' 1 
4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 

Aspect ratio 

(a) Constraining spheroid size and shape with the orientation from the 
TEM inversion. 

o 

(b) Comparing the possible dipole moments oriented between 0 and 
90 degrees from a collection of ordnance. 

Figure 4.7: Using orientation information for constraining the recovered spheroid shape. 

105 



Chapter 4. Joint and Cooperative Inversion of Time Domain Electromagnetic Data 

where (X, Y, Z) is the location, <j> and 6 represent the orientation, and mREM is the remanent 

magnetization of the target. The spheroid is characterized by a semi-major axis a, an eccentricity 

e, the magnetic permeability p,, and the conductivity o. However, the TEM forward model does 

not allow the model parameters to be written as explicit functions of the spheroid dimensions and 

material properties. Therefore the only parameters common to both the TEM and magnetostatic 

forward modelling will be the location and orientation. Consequently, the model parameter vector 

which we seek to recover in the joint inversion procedure is 

m = [X, Y, Z, </>, 6, F i , F2, fci, ai , A , 7 1 , * 2 , <*2, fo, 72] (4.10) 

We invert for the magnetostatic polarization tensor components Fi and F2 (or equivalently the 

demagnetization factors) instead of the spheroid eccentricity and size, because the objective function 

is a much simpler function of F\ and F2 than the spheroid dimensions a and e. 

The magnetics and electromagnetic surveys are independent geophysical experiments. The ap

plication of Bayes theorem for independent probability density functions gives 

. p(m)p(d™a°\m)p(dEM\m) 
V\™\*obs ,dobs ) - p ( d o b s ) , (4.11) 

where we have defined a new observed data vector as dobs = (d^9, dE

b

M^j . We again choose to 

maximize the log of the a posteriori probability density 

m = argmaX{log (p (m\d%»,d™))} (4.12) 

= argmax{log (p(m)) + log (p ( d l a s | m ) ) + log (p (d^|m))}. (4.13) 

When assuming normally distributed errors in the data, the maximization of equation (4.13) is 

equivalent to minimizing the following objective function: 

$ (m) =a\\Vr9-1/2
 (FMa9 [m] - d™9) \? + (1 - «) WV^2 {?Tem [m] - dT

obT) ||2 

(4.14) 

=a $ M a 9 (m) + (1 - a) $ B M (m), (4.15) 
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subject to constraints. The parameter a is introduced since we often only have knowledge of the 

relative difference in errors and not the absolute errors of each data set. The parameter a controls 

the relative degree to which we fit the misfit of the magnetics data and the TEM. If we know the 

value of the data errors for both data sets and can use an accurate value for the data covariance 

matrices then the expected value for the least squares data misfit is equal to the number of data. The 

value of a that would make the magnetics and TEM objective functions equal at solution would be 

jyEM 
a ~" J\[EM + _/V"Ma<?' ( 4 - i 6 ) 

In general, it is not possible to accurately specify the variance of the data and modelling errors of 

the sensor data. Here, we estimate the value of the magnetics and TEM data misfit at the solution 

by inverting the data sets individually and using the final misfits as estimates. The value of a is then 

estimated as 
®EM (mem) 

where m j m and mma9 are the models recovered from inversion of TEM and magnetics data sets 

individually. We recognize that there will be situations where we may have poor estimates for the 

target misfit of the objective functions and a more rigorous exploration of the weighting parameter 

a is required. 

The parameters recovered from application of this joint inversion methodology to the synthetic 

data set are listed in Figure 4.8. As was the case in the cooperative inversion, the low signal-to-noise 

in the late time channels does not allow for reliable recovery of the 7 parameters. 

4.5 Field Data Example 

We demonstrate the cooperative inversion methodology on magnetics and TEM data collected over 

the calibration grid at the Yuma Proving Grounds UXO Standardized Test Site. Magnetics data 

were collected using a G-Tek Ltd. TM4 magnetometer array. The array consists of four Geometries 

G-822 cesium vapour magnetometer and was configured with a sensor separation of 25 cm and 

position of 30 cm above the ground. TEM data were collected using a Geonics EM63 sensor. The 

Geonics EM63 measured the time decay of the targets at 26 time channels. The first and last time 
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rrii Expected Recovered 
X(m) 0.00 0.0 
Y(m) 0.00 0.0 
Z(m) 1.00 1.0 
Azimuth 90 90.0 
Dip 60 61.6 

(a) Location and Orientation 

rrii Expected Recovered 
21667 22435 

Fi 3065 3356 

(b) Magnetostatic polarization tensor components multiplied 
by volume. 

rrii Expected Recovered 
43.9 40.60 

Oil 0.02 0.02 
0i 0.73 0.78 
7i 9.1 40.0 (constraint) 
fc2 

4.9 6.44 
012 0.001 0.01 
02 1.09 0.97 
72 10.8 8.33 

(c) TEM Dipole parameters 

Figure 4.8: Parameters recovered by joint inversion. The recovered value for 71 falls on the con
straint of 40. 
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channels are centered at 0.18 ms and 25 ms, respectively. Lines of EM63 data were collected at 

a spacing of 0.5 m. Any position and orientation difficulties associated with cart pulled sensors 

operating on rough terrain were negligible due to the level and smooth ground surface. 

An image of the median filtered magnetics data is shown in Figure 4.9(a). An image of the first 

channel (t = 0.18 ms) of lag corrected and median filtered TEM data is shown in Figure 4.9(b). A 

comparison of Figures 4.9(a) and (b) reveals that the TEM data were less sensitive to the magnetic 

geologic material than the magnetics data. In particular, the large magnetic anomaly in the lower-

right section of the anomaly did not produce a response in the TEM data. The relative insensitivity 

of the TEM data to the geology motivated us to perform target picking on the TEM data set. A 

target list was automatically generated by setting a threshold on the first channel TEM data. The 

final picks are overlayed on the magnetics and TEM images. 

The cooperative inversion procedure involves inverting the magnetics data for the location of the 

target, and using the location information to constrain the inversion of the TEM data. Cooperative 

inversion was carried out for targets whose magnetics data contained sufficient signal strength and 

low enough geologic noise to enable accurate determination of the target's magnetic dipole moment. 

We review the steps of this procedure using data from a 105 mm M456 Heat projectile. The 105 

mm is buried at (X,Y)=(12 m, 2 m) at a depth of 0.8 m with long axis horizontal. The data fit and 

recovered dipole moment parameters from inverting the magnetics data are shown in Figure 4.10. 

Figure 4.11 shows the recovered dipole parameters and data fit, for the time channel centered 

at 7.07 ms, when inverting the TEM data both with and without using the estimate of the depth 

from the magnetics inversion as a constraint. Each location constraint is provided as a value x 

with a standard deviation e. The parameter p in the constrained inversion is required to lie in the 

range x — e < p < x + e. In both cases the recovered model is able to accurately reproduce the 

observed data. Both inversions correctly predicted a horizontal target (the recovered dip reported 

in Figure 4.11 is measured from the vertical axis) and the horizontal location of the model is the 

same. However, the depth of the object from the unconstrained inversion differs from that of the 

constrained inversion. This example highlights the inability of TEM data alone to constrain the 

depth of the target. There is a trade-off between the depth of the dipole and the k parameters; the 

co-operative inversion recovered a dipole (k\ = 32.2, k2 = 12.9) at approximately the correct 

depth (depth = 0.79 m), while the unconstrained inversion places a stronger dipole (k-y — 47.2, 
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Channel: ch1 

25 

20 

15 

10 

0 5 10 15 20 25 30 35 
X 

(a) Magnetics data. 
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(b) First channel of Geonics EM63 data. 

I 

43.15 

29.45 

15.75 

2.05 

-11.64 

-25.34 
-39.04 
-50.00 

I 

36.42 

31.04 

25.67 

20.30 

14.93 

9.55 

4.18 
0.00 

Figure 4.9: Magnetics and TEM data collected over the Yuma Proving Ground Calibration Grid. 
Picked targets are plotted as white circles. 
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Figure 4.10: Magnetic data fit and recovered magnetics dipole parameters when inverting the 105 
mm M456 Heat target. 
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k2 = 23.4) deeper (depth = 0.96 m). The change in A; values has the potential to alter one of our 

primary diagnostics: if the ratio k\ / k2 > 1 then the object is interpreted as rod-like. Here we obtain 

2.5 and 2.03 respectively for the constrained and unconstrained inversion. Remaining polarization 

tensor parameters (a, 0, and 7 ) control the decay of the induced dipole and are similar for both 

inversions. In the constrained inversion the final value of the parameter is sometimes equal to one 

of the bounds. When this occurs we no longer have a good way to estimate uncertainties and we 

output the uncertainty as n/a. 

By using the location information from the magnetics inversion we more accurately recover 

the TEM dipole polarization tensor parameters of the target. As an example, we can consider the 

inversion results for the steel spheres that are used to make the edges of the calibration grid. When 

we invert these spheres and plot them on a parameter plot we expect the points to be tightly clustered 

since all the spheres in the grid are similar in size and material properties. Figure 4.12(a) shows that 

by cooperatively inverting the data the recovered k parameters cluster much more tightly on a k\ vs. 

k2 parameter plot than when the TEM data are inverted without the magnetic data. Improvement in 

clustering of the 0 parameters is not achieved by the cooperative inversion (Figure 4.12(b)). 

Figure 4.13 contains parameter plots including 5 of the target types (155mm, 105mm, 60mm, 

40mm, and M75) in the calibration grid. The small number of anomalies for each target type make 

it difficult to draw a definite conclusion on the ability of cooperative inversion to more tightly cluster 

the parameters. Regardless of the few target anomalies, there appears to be marginal improvement 

of the clustering in the k\ vs. k2 parameter plot when the TEM is co-operatively inverted. There is 

no improvement in 0 parameter clustering. 

4.6 Conclusion 

In this chapter we considered two approaches to interpreting magnetics and TEM data sets: coop

erative inversion and joint inversion. Both approaches utilize the ability of magnetics to accurately 

locate buried targets and the ability of TEM to recover the orientation of the target. Knowledge of 

the orientation of the target is required in order to uniquely determine the size and shape of the best 

fit spheroid. The accuracy of size and shape estimates of the spheroid depends on the amount of 

remnant magnetization in the target since we assume there is no remnant magnetization during the 
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Y = 1.89±0.014 m 
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Dipole 1: 

k = 47.16 ±0.157 

a • 0.02 ± 0.0004 

0 = 0.73 ±0.081 

7= 15.87±0.14 

Successful Fit 

(a) Inversion of TEM data with no location constraints 
Observed Predicted 

Azimuth = -5.7 ± 0.87 

Dip • 87.4 ± 0.40 

Dipole 2: 

k = 23.42 ± 1.267 

a = 0.02 ± 0.0005 

B= 1.04 ±0.004 

y= 9.02 ±0.01 
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Two-Dipole Inversion 

CorrCoeff = 0.9748 

X = 12.01 ±n/am 

Y = 1.89 ± 0.006 m 

Depth - 0.79 ± n/a m 

Dipole 1: 

k = 32.24 ±0.292 

a = 0.02 ± 0.0002 

p = 0.77 ± 0.056 

y= 14.88 ±0.06 

Azimuth = -6.1 ±0.03 

Dip = 88.6 ±0.31 

Dipole 2: 

k= 12.90 ±0.264 

a = 0.02 ± 0.0002 

P = 1.04 ±0.102 

y= 8.32 ±0.33 

Successful Fit 

(b) Cooperatively inverted TEM data 

Figure 4.11: TEM data fit and recovered dipole parameters when inverting the 105 mm M456 heat 
TEM data. 
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Figure 4.12: Recovered A; and 3 values when inverting spheres buried in the calibration grid. 

calculation. Successful application of either the joint or cooperative inversion technique requires 

good absolute positioning of both the TEM and magnetic sensor data. 

These techniques are demonstrated using synthetic magnetics and TEM data sets collected over 

a Stokes mortar. After demonstrating that individual inversions of the simulated data sets provided 

limited information on the buried target, we showed that both joint and cooperative inversions were 

able to estimate the size and shape of the buried target. 

The cooperative inversion technique was demonstrated on data collected at the Yuma Proving 

Ground UXO Standardized Test Site Calibration Grid. Although more tests of the respective al

gorithms need to be conducted to assess performance in a field setting, the joint and cooperative 

inversion techniques have the potential to improve the current characterization and identification 

ability. 
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Figure 4.13: Recovered k and ft parameters when inverting TEM data anomalies from 155mm, 
105mm, 60mm, 40mm, and M75 targets in the calibration grid. 
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Chapter 5 

Application of a Simple Library Method 

for Identifying UXO 

5.1 Introduction 

The success of dipole model based discrimination algorithms depends on the accuracy with which 

the axial and transverse components of the polarization tensor can be estimated. In many cases the 

data are unable to constrain the inversion and hence the true polarization tensor could not be recov

ered (Pasion et al., 2004; Bell, 2005). Poor data quality, due to a low signal to noise ratio or survey 

design (for example, poor spatial coverage and inadequate illumination of both axial and transverse 

excitations), make the use of parameter estimation difficult. In such cases, a priori information can 

be introduced when searching model, or feature, space. Examples of a priori information include 

target location estimates from processing previously acquired data sets (for example, magnetics 

(Zhang et al., 2003; Pasion et al., 2003) or ground penetrating radar (Shamatava et al., 2004)), and 

restricting the model type to be rod-like targets. A further restriction in model space would be to as

sign higher probabilities to encountering specific targets. A simple implementation of this concept 

is to develop a list of candidate UXO likely to be encountered during a survey, then to determine, 

for each member of the library, the likelihood of generating the anomaly. Norton et al. (2001) and 

Riggs et al. (2001) use a frequency domain sounding collected at a single location for determining 

the optimal target from a library. For a single sounding, the measured response is a linear function 

of the dipole polarization tensor. Therefore these techniques are very fast, but do not utilize the 

additional information provided by utilizing data acquired a number of points spatially distributed 

on the surface above the target. 

In this chapter we apply a simple library based technique to time domain electromagnetic data 

for the identification of UXO. High-quality test-stand data acquired over a collection of UXO are 
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inverted for polarization tensors. The polarization tensors are functions of the target only and, there

fore, are used to characterize each member of the library. A simple matching scheme has been used 

to estimate the target type from measured TEM anomalies from this library of polarization tensors. 

For each polarization tensor within the library, a template is generated. The template is defined as 

the data predicted by the polarization tensor that best fits the observed data. Generating this tem

plate requires solving a non-linear inverse problem for the orientation and location of a target. Each 

of the data templates are then compared to the observed data. To determine if the anomaly is likely 

generated by one of the targets we can either find the template with the minimum error (for example, 

least squares) or the maximum correlation to the observed data. By not inverting for model param

eters directly, we reduce trade-offs between polarization tensor values and orientation and position 

that can occur. This method is not meant to replace parametric inversion, but rather provides an ad

ditional analysis tool when working with data that does not support inverting for model parameters 

directly. 

5.2 Method 

The objective of our template matching analysis is to determine, from a list of M targets, the target 

that is most likely to have generated the observed data d o b s . Each target in our list is characterized 

by its polarization tensor, which we represent by the vector pj. For each polarization tensor in 

our library, we determine the location r-j and orientation, represented by angles 6i and fa, at which 

we can best fit the observed data d o b s by obtaining the maximum likelihood solution. The data 

predicted by this recovered model, d p r e d = F[ri, 6{, fa, p;] — .F[m;], is referred to as the template 

for target i. The target template d f r e d most similar to the observed data d o b s is selected as the most 

likely target. 

There are several similarity measures with which we can compare the target templates with the 

observed data. Intuitively, these include measures of maximum correlation or minimum error. There 

are several ways with which to define the minimum error. Riggs et al. (2001) outlines the derivation 

of the minimum least squares from a generalized likelihood ratio test (GLRT) with Gaussian data 
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statistics. The likelihood ratio test for two targets is given by 

p(dobs\Pi) t a r ^ n P ( P 2 ) ( C Q I - C I I ) 
P(d06s|p2) ta^et2 P ( P i ) (C12 - C22) 

where C,j is the cost of classifying the target as pi when the target is P2, and p (p,) is the prior 

probability. The GLRT is obtained by substituting the maximum likelihood estimate into (5.1). If 

we consider two targets with equal prior probability of producing the anomaly, and assuming that an 

incorrect classification produces the same cost, then r) = 1. By taking the logarithm of the resulting 

expression, our decision criterion is to simply select the target that has the smallest least squares 

error 

v - l / 2 / j o b s _ F [ r u A | | 2
 t a r | e t l n y - l / 2 / j o b s _ F [ r 2 ) p 2 ) A | | 2 ( 5 2 ) 

v ' target2 v ' 

where r-j, f?j, and fa are the position and orientation that produces the best fits the observed data for 

the model pj. For multiple candidate targets we simply choose the target with smallest least squares 

misfit. 

Application of the above algorithm to survey data requires establishing two thresholds. First, a 

minimum level of data quality must be established, since our confidence in identifying the correct 

target decreases with data quality. For data sets acquired with the same survey parameters (such 

as station density) for the entire data set, the critical measure of data quality is the signal to noise 

ratio. A second threshold to establish is a maximum misfit at which an anomaly can be labeled as a 

target within our library. Since the ability to distinguish differences between the observed data and 

the template data will depend on the quality of data, the minimum correlation threshold will also 

be dependent on the signal to noise ratio of the target. These thresholds can be established with 

training data or, if the survey noise can be accurately modeled, through simulations. 

5.3 Results and Analysis 

5.3.1 Development of a Target Library From Test Stand Data 

Our UXO library consists 14 different targets: eleven items from the Aberdeen Test Center (ATC) 

Standardized UXO set and three ordnance from the Montana Army National Guard (MTARNG) 
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(Table 5.1). These items represent a cross section ordnance size from large to small and also include 

a few examples of sub-munitions. The ATC items were manufactured as inert UXO and have never 

been fired. The MTARNG items were fired and recovered from the Limestone Hills in Montana. 

Table 5.1: Description of UXO in our target library. 
Length Diameter Weight 

Type Description (cm) (cm) (lbs) 
ATC 20 mm 20 mm M55 7.5 2.0 0.25 
ATC 40 mm 40 mm M385 8.0 4.0 0.55 
ATC M42 submunition 6.2 4.0 0.35 
ATC BLU-26 submunition 6.6 6.6 0.95 
ATC BDU-28 submunition 9.7 6.7 1.70 
ATCMK118 MK118rockeye 34.4 5.0 1.35 
ATC 60 mm 60 mm M49A3 24.3 6.0 2.90 
ATC 81 mm 81 mm M3 74 48.0 8.1 8.75 
ATC M230 2.75" rockeye 76.1 7.5 18.20 
ATC 105 mm M456 heat rd 64.0 10.5 19.65 
ATC 155 mm 155mmM483Al 87.0 15.5 56.45 
MTANG 76 mm artillary 22.0 7.6 13.50 
MTANG81 mm mortar 27.3 8.1 6.00 
MTANG 96 mm artillary 25.0 9.0 22.50 

Geonics EM63 sensor time domain data were collected over each item at the U.S. Army En

gineer Research and Development Center (ERDC) test stand facility in Vicksburg, MS. Each item 

was measured at three orientations and two depths. The test stand makes it possible to collect geo

physical data with highly repeatable positional information. It also enables us to collect data in 

an environment free of background geologic responses with the ordnance placed at an accurately 

known position and orientation relative to the geophysical sensor. The sensor is mounted on a 

robotic arm that is controlled an external computer. Noise levels of the instrument were decreased 

by stacking multiple time domain decays at each sounding location. 

The polarization tensors, represented by the set of decay parameters defined in equation 2.34, 

were determined by solving 3.11 for each set of data. Model constraints restricting the depth to 

within 10 cm of the true depth and orientation to within 5 degrees of the true orientation were 

implemented when inverting for the decay parameters. Figure 5.1 shows how the different targets 

separate within the (fci, k2) feature space. Each target is well grouped in this space, with some 

overlap. A rectangular box is drawn around each cluster. If the dipole model exactly described 
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Figure 5.1: Comparison of k\ and k2 parameters derived from ERDC test stand data. Solid symbols 
represent results from inverting blind test data for the polarization tensor. 
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the response of each UXO, and if the data could constrain each inversion parameter, then each 

cluster would collapse to a single point in parameter space. We reduce the number of polarization 

tensors for each target in our library to a single polarization by using the median value of each decay 

parameter. Figure 5.2 plots the representative polarizations L\(t) and Z^CO for each target within 

the library. 

Axial Polarization Transverse Polarization 

Time (ms) 

A T C 20 mm 
o A T C 40 mm 
x A T C 60 mm 
+ MN 76 mm 
* A T C 81 mm 
• MN 81 mm 
0 MN 90 mm 
V A T C 105 mm 
A A T C 155 mm 
< A T C 2.75 in 

A T C bDU 28 

ft A T C bLU 26 

• A T C M42 
• A T C M K 1 1 8 

Figure 5.2: Axial (L\(t)) and transverse (L,2(t)) polarization curves for targets within our library. 

5.3.2 Application of the Library method to data collected at the Sky Research 

Ashland Test Plot Data 

The library method was tested using data collected at the Sky Research UXO test plot in Ashland, 

Oregon (Figure 5.3). The test plot was seeded with a set of ordnance that included items from the 

ATC standardized test set, items from the MTARNG, as well as fragments of UXO. Multi-target and 

clutter scenarios are simulated within the test plot. The blind test, consisting of identifying the target 

present for ten anomalies within the test plot, was used to demonstrate the identification potential of 

the library procedure. This test represents the simplest identification problem for the library method 

since (1) each target was a member of the ordnance library and (2) each target anomaly was isolated 

(i.e., no overlapping signals due to nearby metal objects). 

The library method was tested using dynamic and static collected data. Analysis of the statically 

collected data is carried out in Chapter 8. Dynamic data collection describes a typical detection 

survey data acquisition where an area is covered by a series of data transects. The Geonics EM63 
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data were obtained with 0.5 m line spacing. A differential GPS was used for recording positioning. 

Long spatial wavelength background signal was removed from the data using a high pass filter. 

In order to minimize equation (3.11), an estimate of the data covariance matrix Vj, is required. 

For our data inversion we assume that the data errors are uncorrelated, and that the diagonal com

ponents of the covariance matrix are defined as [V^2] u = 5% x d°bs + o-j, where CTJ is the standard 

deviation of the noise. The noise analysis in Walker et al. (2005a) is used for estimating <7j. Fig

ure 5.4 plots the signal to noise ratio for each time channel of the ten anomalies in the blind test. 

For each anomaly, only time channels with a signal to noise ratio greater than 5 were inverted. Data 

less than twice the standard deviation were not included in the inversion. 
Dynamic Data Collection Static Data Collection 

10 15 
Time Channel 

10 15 
Time Channel 

40mm M385 * MK118Rockeye V M456 Heat Rd 
o BDU-28 submunition • 2.75 inch rocket BLU-26 submunition 
x 81mm M374 mortar 0 2.75 inch rocket > 60mm M493A 
+ M42 submunition 

Figure 5.4: Comparison of signal noise ratio for data anomalies acquired statically and dynami
cally. The ten targets represent the targets in the blind test. 

Figures 5.5 and 5.6 demonstrate the library technique on ATC M230 2.75 inch rocket data. The 

least squares solution was computed for each target in the library, and then the targets are ranked by 

their least squares misfit to the observed data. Figure 5.5 plots the fifteenth time channel of data of 

the observed data and the predicted data from the three targets that best fit the data. The quality of 

fit is quantified by the least squares misfit divided by the number of data N. Figure 5.6 shows the 

quality of fit of a TEM sounding measured directly above the target. 

Results from applying the library technique to the dynamically collected data are summarized 
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cell 67 — 2.75 inch rocket 1: ATC 2.75 in,̂ )/N = 8.47 

Y(m) -2.50 -2.46 X ( m ) 

2: ATC 81 mm,<|>/N = 13.58 

-2.50 -2.46 

2.39 

40-

20-

0; 
2.50 

-0.00 
2.39 

-0.04 
-2.50 -2.46 

3: ATC 105 mm,<̂ /N = 13.72 

2.39 2.39 

Figure 5.5: Application of the library method to dynamically collected data measured over an ATC 
M230 2.75 inch rocket. The upper left panel contains the fifteenth time channel of 
observed data. The remaining panels represent the three most likely targets, ranked 
according to the normalized misfit 4>/N. 
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Figure 5.6: Application of the library method to dynamically collected data measured over an ATC 
M230 2.75 inch rocket. The best fit soundings observed at a point directly over the 
rocket is plotted. 
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in Table 5.2. A list of the library targets, sorted by each target's ability to fit the data, is formed 

Actual Estimated Target List Normalized Signal to 
Target Target Rank Misfit ((f)/N) Noise 
ATC 40 mm M3 85 ATC MK118 rockeye 3 0.8 241.0 
ATC BDU-28 submunition ATC MK118 rockeye 2 2.7 3007.1 
ATC 81 mm M374 ATC 81 mm M374 1 6.1 13046.7 
ATC M42 submunition ATC M42 submunition 1 0.7 203.9 
ATCMK118rockeye ATC MK118 rockeye 1 0.6 243.1 
ATC M230 2.75" rockeye ATC M230 2.75" rockeye 1 8.5 50953.6 
ATC M230 2.75" rockeye ATC M230 2.75" rockeye 1 18.4 98099.4 
ATC 105 mm M456 heat rd ATC 105 mm M456 heat rd 1 8.9 69888.7 
ATC BLU-26 submunition ATC BLU-26 submunition 1 1.2 2011.4 
ATC 60 mm M49A3 ATC 60 mm M49A3 1 4.1 14548.1 

Table 5.2: Blind test results when inverting dynamically acquired data. 

for each anomaly. The column labeled "Target Rank" indicates where the actual target was ranked 

by the algorithm. The column "Signal to Noise" is the sum of the signal to noise ratios calculated 

at each of the 26 time channels. The algorithm correctly identified 8 of 10 targets. The algorithm 

incorrectly classified the 40 mm as a MK118 Rockeye. This result is likely due to the anomaly 

from the 40 mm has a low signal to noise ratio (see Figure 5.4). The algorithm incorrectly classified 

BDU28 the anomaly as an MK118 Rockeye, while ranking the BDU28 as the second most likely 

target. Incorrect classification of the BDU28 may be due to similarities of the BDU28 and MK118 

polarization tensors. Figure 5.1 shows an overlap of their respective A; clusters. 

For comparison purposes, the dynamically acquired data was also inverted for the polarization 

tensor. Figure 5.1 compares the recovered k values (plotted with solid symbols), with the k param

eter clusters derived from the ERDC test stand data. If we define identification according to the 

cluster closest to the recovered parameter, then the inversion would have correctly identified three 

of the ten targets. Due to the noise levels of the data, parametric inversion on this dynamically 

collected data set is less successful than using the template approach. 

Following the blind test, the library procedure was further tested by processing the remaining 

anomalies from the dynamically acquired test plot. The remaining anomalies include single isolated 

targets both belonging and not belonging to our library, and target anomalies obscured by responses 

from nearby sources. Table 5.3 summarizes the results of applying the method to the single, isolated 

test plot targets that are also members of the library. There are 41 anomalies from single, isolated 
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targets. Of these 41 anomalies, 29 were correctly identified, 6 of the anomalies had the correct target 

ranked second, and 3 of the anomalies had the correct target ranked third. Misclassified targets are 

generally due to low signal to noise ratios. 

Cell Actual 
Target Rank cP/N SNR 

56A ATC 20 mm 7 1.1 176.7 
56B ATC 20 mm 1 2.4 2423.7 
56C ATC 20 mm 3 0.8 241.0 
57A ATC BDU 28 2 0.8 491.3 
57B ATC BDU 28 2 2.7 3007.1 
57C ATC BDU 28 4 2.2 2124.3 
60 ATC 81 mm 1 6.1 13046.7 
61 ATC 81 mm 2 1.1 2433.1 
62 ATC 81 mm 1 7.2 57351.1 
63 ATC 2.75 in 1 4.1 23445.1 
64A ATC 40 mm 3 0.8 533.6 
64B ATC 40 mm 2 1.4 939.5 
64C ATC M42 1 0.7 203.9 
64D ATC M42 1 1.4 768.7 
65A ATC MK118 1 0.6 243.1 
65B ATCMK118 3 0.6 503.3 
65C ATCMK118 1 1.4 4158.5 
65D ATC 60 mm 1 1.8 4602.7 
67 ATC 2.75 in 1 8.5 50953.6 
68 ATC 2.75 in 1 18.4 98099.4 

Cell Actual 
Target Rank HN SNR 

69 ATC 105 mm 2 3.3 1395.2 
70 ATC 105 mm 2 4.2 10556.9 
71 ATC 105 mm 1 8.9 69888.7 
72A ATC M42 1 2.0 3022.0 
72B ATC bLU 26 1 1.2 2011.4 
72C ATC bLU 26 1 4.3 3839.7 
72D ATC bLU 26 1 2.3 2120.3 
73A ATC 60 mm 1 8.1 63828.2 
73B ATC 60 mm 1 4.1 14548.1 
75 ATC 155 mm 1 6.5 17542.9 
76 ATC 155 mm 1 8.2 74554.2 
77 ATC 155 mm 1 16.0 347888.0 
78 MN 76 mm 2.7 3073.5 
79 MN 76 mm 1 1.9 15164.6 
80 MN 76 mm 1 5.6 50001.3 
81 MN 81 mm 1 8.5 3269.2 
82 MN 81 mm 1 8.2 44246.4 
83 MN 81 mm 1 4.5 32537.6 
84 MN90 mm 1 3.7 7038.2 
86 MN90mm 4 4.9 64553.1 
87 MN 90 mm 1 6.9 50964.7 

Table 5.3: Blind test results when inverting static data. 

In order for the library method to be an attractive technique for processing TEM data, we must be 

able to identify anomalies due to targets not included in our target library. Figure 5.7 has an example 

of fitting non-UXO scrap. The secondary anomaly in the data, to the right of the main peak, was 

assumed to be from an adjacent target and, therefore, not included in the data fitting. The metallic 

scrap is a fragment from a 105 mm white phosphorous round, and is not included in our library of 

targets. The normalized misfit is larger than most of the fits in Table 5.3, indicating that none of 

the templates from our library fits the data well. This suggests that a threshold on the normalized 

misfit could be established for classifying the target as a member of our library. However, the 

misfit is sensitive to non-dipolar features in the noise. For example, cell 68 containing a 2.75 
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cell 58A — Montana white phosphorous frag 1: MN 81 mm, ())/N = 22.63 

-2.50 -2.41 -2.50 -2.41 

Figure 5.7: Fitting results when applying the library matching to a metal scrap not included in the 
library. The normalized misfit is higher than when fitting targets within the library. 
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inch rocket, has nearly the same normalized misfit due to signal at late time not being accurately 

modeled (Figure 5.8). There are not enough targets in this example to establish a reliable threshold. 

Application of this method to real world UXO applications should be preceded with careful noise 

analysis of the data and Monte Carlo studies for establishing a useful threshold for classification. 

1 0 ' 

> 
£ i o 1 

CD 
CO c o 
Q . 
CO 
CD 

D i 
CO 
CO 

10u 

L U 

10 —— Observed Data (cell 68 — 2.75 inch rocket) 
-e- Rank = 1. ATC 2.75 in 

Rank = 2. ATC 60 mm 
Rank = 3. ATC 81 mm 

1 0 1 0 
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Figure 5.8: Application of the library method to cell 68 containing a 2.75 inch rocket. Even though 
the anomaly was correctly identified, the feature in the data at late time result in an 
atypically large misfit. 

5.4 Fitting both dipole and soil parameters simultaneously 

In this section, the statically collected data, representing a "cued interrogation" style of data acquisi

tion, is processed. Static data were collected by placing a Geonics EM63 sensor without wheels on 

a portable test stand positioned over the target (Figure 5.3(b)). The test stand was used to increase 

positioning accuracy and to reduce instrument noise by stacking multiple TEM soundings. Data 

were collected over a 1.8 m square area with measurements on a uniform grid with 30 cm station 

spacing. When placed on the stand, the transmitter coil of the EM63 was located 15 cm from the 

ground. By being closer to the ground and being placed on a platform, the signal to noise ratio of 

the data is improved (Figure 5.4). However, the close proximity of the transmitter coil to the ground 
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produced a significant soil response. Since the data were collected over 1.8 m square areas, a high 

pass filter could not be used to remove the background response. Therefore when solving for the 

least squares misfit (equation 5.2) of each library target, a background soil model was included and 

the least squares problem is 

where F[m] represents a dipole forward model, and the soil model is represented by A/t. The A/t 

soil model is suitable for laterally uniform viscous remnant magnetic soil. This form of the soil 

model is explained in Chapter 7. Therefore, for each target in the library we solve for three location 

parameters, two orientation angles, and an amplitude of the background soil response. Similar to 

the dynamic case, data less than twice the standard deviation of the noise were not included in the 

inversion. 

Results from applying the library technique to the statically collected data are summarized in 

Table 5.4. The algorithm correctly identified nine of the ten targets. The only misclassified anomaly 

was from a MK118 Rockeye. The algorithm classified the target as BDU28 submunition, while 

determining the MK118 Rockeye to be the fourth most likely library target. The data fit for this 

case is good as is demonstrated by Figure 5.9 and the low normalized misfit (Table 5.4). The 

incorrect identification of the MK118 Rockeye may be related to a tradeoff between the parameter 

modeling the relatively large background soil signal in the data (approximately 20 mV in the first 

time channel) and the polarization tensor (Figure 5.10). In addition, the anomaly was only partially 

sampled due to the test stand not being centered on the target, therefore less data is available to 

constrain the result. 

5.5 Application to Field Data from Camp Lejeune, North Carolina 

The library method was applied to Geonics EM63 data collected at the Marine Corps Base Camp 

Lejeune in North Carolina. Figure 5.11 contains a grayscale image of the gridded first channel 

of data. Red crosses indicate anomalies that were picked, and blue triangles represent locations 

at which there were groundtruth. Of the picked anomalies, 86 were excavated and verified (Fig

ure 5.12). The 86 verified targets consisted of 15 UXO and 71 non-UXO, which included junk, OE 

minimize (5.3) 
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Channel 1: Observed Data Channel 1: Predicted Data Channel 1: Residual 

Y(m) -0.91 -0.93 X (m) " ° - 9 1 - 0 9 3 -0.91 -0.93 

(a) Channel 1 

Channel 10: Observed Data Channel 10: Predicted Data Channel 10: Residual 

Y ( m ) -0.91 -0.93 X ( m ) -0.91 -0.93 -0.91 -0.93 

(b) Channel 10 

Figure 5.9: Data misfit when applying the library method to data statically collected over an ATC 
MK118. The algorithm incorrectly classified this target. 
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Actual Estimated Target List Normalized Signal to 
Target Target Rank Misfit (<f>/N) Noise 
ATC 40 mm M385 ATC 40 mm M385 1 1.5 9596.3 
ATC BDU-28 submunition ATC BDU-28 submunition 1 1.1 100591.2 
ATC 81 mm M374 ATC 81 mm M374 1 3.1 201625.7 
ATC M42 submunition ATC M42 submunition 1 0.9 6931.8 
ATC MK118 rockeye ATC M230 2.75" rockeye 1.1 11010.5 
ATC M230 2.75" rockeye ATC M230 2.75" rockeye 1 3.6 1972452.7 
ATC M230 2.75" rockeye ATC M230 2.75" rockeye 1 2.3 2382358.6 
ATC 105 mm M456 heat rd ATC 105 mm M456 heat rd 1 4.6 2135632.3 
ATC BLU-26 submunition ATC BLU-26 submunition 1 1.0 27950.4 
ATC 60 mm M49A3 ATC 60 mm M49A3 1 1.2 619430.8 

Table 5.4: Blind test results when inverting static data. 

(X,Y) = (528337.54, 4670984.51) 
102 p—. .— . .— 

Time (ms) 

Figure 5.10: Data misfit for a sounding taken directly over an ATC MK118. The estimated soil 
noise is of approximately the same order as the data, possibly causing the difficulty in 
correctly identifying the target. 
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Figure 5.11: First channel of Geonics EM63 data collected on the Grid A l at the Marine Corps 
Base Camp Lejeune in North Carolina. The red crosses are picked anomalies. 

scrap, and adapters. The adapters are cylindrical pieces of aluminum that were discharged from 

guns when firing one of the ordnance types at the site. The adapters were the bulk of the non-UXO 

targets, and successful discrimination on this grid requires accurate classifying of anomalies due to 

adapters. This grid represented the optimal situation for discrimination since (1) the scrap consists 

of mainly a single target type, (2) since the adapter is aluminum, the decay characteristics of the 

main source of scrap will be very different from the steel UXO, and (3) the polarization tensor for 

this target could easily be determined through a few measurements. 

The template matching algorithm was applied to data collected over Grid A l . The polarization 

library of consists of 6 items: ATC 40 mm, Montana 90 mm, Lejeune 3.5 inch rocket, Lejeune 

105 mm, ATC 105 mm, and the Lejeune Adapter. The polarization tensors of the Lejeune items 

were derived from measurements made over a test pit at the site (Figure 3.17. The 86 anomalies 

with groimd-truth were inverted. A dig list created by (1) classifying all anomalies whose best fit 

with the Adapter polarization to be non-UXO, and (2) sorting remaining anomalies by their misfit, 

such that those anomalies that could be well fit by one of the ordnance items in the library would 

be highly ranked. The receiver operator characteristic (ROC) curve of Figure 5.11 summarizes the 

performance of the fingerprint algorithm. A prioritized dig-list based on the fingerprint algorithm 
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Figure 5.13: Receiver Operator Characteristic curve for the fingerprinting method applied to Grid 
A l . 
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would have resulted in all of the 15 UXO being recovered with only 11 scrap being excavated. The 

low false alarm rate can be attributed to the ability to correctly classify the numerous adapters. The 

UXO with the lowest priority for excavation are indicated by red arrows in Figure 5.13. These three 

targets had poorer misfits than the other UXO due to not being in the library of polarizations (BLU 

26 and 2.75 inch rocket) or due to the target being an overlapping anomaly/multi-target case. 

5.6 Conclusion 

In this chapter we applied a simple library based technique for processing time domain electromag

netic data. This technique avoids direct inversion for polarization tensor parameters, making it more 

feasible for cases where sensor data quality might not be sufficient to support confident estimation 

of model parameters. The performance of the algorithm is limited by the data quality and the dif

ferences of polarization tensors for different targets. Targets with similar polarization tensors would 

be indistinguishable with this algorithm. 

This library based technique can be applied to any type of electromagnetic sensor. Indeed, the 

performance of the technique would improve if the data were able to sense each of the three stages 

of the time decay, since the magnetic crossover time, the power law decay, and the fundamental time 

constant each contain information on the shape and material properties of the target. If the data were 

sensitive to non-dipole features of the response, non-dipole type models could be implemented. If 

these models had parameters that reflect the target shape features that produce higher order poles, 

there would likely be a greater separation within parameter space (compared to dipole polarization 

models) and better performance of the library technique. 

Geonics EM63 data acquired in dynamic and static modes were used to test this technique. 

A blind test demonstrated an ability to accurately identify single targets when the target was a 

member of the UXO library. Misidentification of single targets was due to either low signal to noise 

ratios of data anomalies or because different items had similar polarization tensors. In cases where 

there was a significant background signal due to magnetic ground, the library technique showed 

improved performance by simultaneously solving for the best fit background soil model with the 

dipole parameters. 

The library technique was applied to data collected at Marine Corps Base Camp Lejeune in 
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North Carolina. The method produced a a prioritized dig-list that resulted in all of the 15 UXO 

being recovered with only 11 scrap being excavated. The low false alarm rate can be attributed to 

having the most prevalent non-UXO target being part of the target library. 

This summarizes some preliminary tests of the library method. Before this method can be 

implemented in a practical setting, tests are required to determine robustness to noise and other data 

quality factors, such as positional accuracy and spatial data coverage. Work is required to determine 

an optimal measure for determining whether we can classify an anomaly as coming from a target 

that is not a member of the library. A series of Monte Carlo style simulations should be carried out 

in order to investigate these questions. 
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Chapter 6 

Establishing Data Quality Requirements 

for Inversion and Discrimination Using 

Simulations 

The general approach to the interpretation of TEM data involves three steps: (1) detection, (2) inver

sion, and (3) discrimination. Detection involves identifying anomalies of interest within the TEM 

data. Inversion is the estimation of parameters that characterize the size, shape, and material proper

ties of the target that produced the anomaly. In the case of TEM, the parameters most often inverted 

for are the elements of the magnetic polarization tensor of the induced electromagnetic dipole. A 

dipole's magnetic polarization tensor is a good candidate for inversion since the electromagnetic re

sponse measured by current sensors is primarily dipolar, and the elements of the tensor are functions 

of the size, shape, and material properties. Discrimination describes the process of determining the 

likelihood that a UXO produced the anomaly. A feature vector is defined which includes (but is not 

restricted to) the estimated parameters obtained from inversion. Physics-based or statistics based 

discrimination rules are developed that can be applied to the feature vectors of observed anomalies. 

Discrimination performance is dependant on the ability to accurately determine a target's po

larization parameters. The accuracy of the inverted polarization parameters depends directly on 

the quality of the TEM sensor data. Advanced discrimination routines utilizing parameters of a 

dipole model have been successfully demonstrated at a number of geophysical prove-out sites and 

demonstrations. However, surveying conditions at these seeded sites are atypical of field condi

tions. Not surprisingly, the transition of advanced discrimination techniques to real-world field sites 

have produced mixed, and often poor, results. Indeed, there have been instances of hospitable field 

conditions where data quality was still insufficient for implementation of advanced discrimination 
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techniques. 

In order for inversion and characterization to become an effective and integral component of 

data processing strategies, the data must be of sufficiently high fidelity to support advanced discrim

ination. In this chapter we use Monte Carlo analysis to determine how variations in data noise and 

variations in survey parameters affect the ability to recover magnetic polarization tensor parameters 

from TEM data anomalies of single, isolated targets. In addition to identifying existing TEM data 

sets where inversion can be reliably applied, an understanding of data quality requirements will aid 

geophysicists in designing surveys that balance the cost of surveys with the savings achieved by 

having a reduced false alarm rate. 

This chapter is drawn from the report Guidelines On Data Quality Requirements for Advanced 

Discrimination of UXO (Pasion et al., 2004). In the interest of space, additional supporting plots 

and figures that can be found in that report were not included here. 

6.1 Factors affecting data quality 

We define data quality in terms of the amount of information about the target that can be derived 

from the data. Factors that affect data quality include the choice of electromagnetic sensor, the 

method of mobilizing the sensor, the method for obtaining positional information, and survey de

sign. 

Choice of T E M sensor Sensor specific noise sources include the inherent instrument noise (i.e. 

noise measured in a static, target free setting) and motion related mechanical vibration noise. The 

design of transmitter, receiver and associated electronics can vary greatly across different models of 

TEM sensors. As a result the noise characteristics can be quite different for each sensor. Recently, 

EM sensors have been designed with the ability to change the direction of the illuminating field in 

an attempt to better illuminate the different polarizations of the target. In addition, sensors are now 

available with multiple receivers to measure the multiple components of the secondary field. These 

developments provide improvements in data quality. 

Survey Design There are generally two modes of data collection: line data and cued interrogation. 

Line data is collected by a sensor platform moving along a series of lines. Line data is the most 

138 



Chapter 6. Establishing Data Quality Requirements for Inversion Using Simulations 

commonly collected type of data due to the ease and efficiency of covering a survey area. Cued 

interrogation involves resurveying a target with a small grid of data. Data can then be acquired in 

a static mode, thereby improving positional information and reducing (or eliminating) vibration or 

motion induced noise. 

Recording of positional information Sensor position and orientation are required for accurate 

modelling of data. Global Positioning System (GPS) and Robotic Total Station (RTS) are popular 

technologies for recording position, but they are not accurate and there is still random positioning 

error at each location. Dynamic platforms for sensors, such as wheeled carts, introduce additional 

positioning error due to the movement of the GPS antennas and RTS prisms relative to the sensor. If 

positioning is recorded via a cotton thread or wheel odometer, a more systematic error in positioning, 

where entire lines can shift, can be introduced. 

Non-UXO signal sources During an EM survey, there are a number of signal sources that are not 

due to UXO. Examples include signal from power lines and the presence of geologic noise. These 

signals are listed as noise sources since they are not included in the forward modelling. Pre-inversion 

data processing is applied to reduce the effects of these noise sources on interpretation. 

6.1.1 Signal to Noise Ratio 

There are many different types of noise and each has its own mathematical representation. One of 

the most common ways of describing noise is to assume that it is random and can be represented by 

Gaussian statistics, iV(0, <J), that is unbiased noise with a standard deviation o. 

The random noise sources are quantified with the signal to noise ratio 

(6.1) 

where the signal energy E„ for N observations of sensor data c i ° 6 s , n = 1..7Y, is 

(6.2) 
n = l 
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Figure 6.1: Comparison of different signal to noise ratios for a channel of EM61-MK2 data. 

If all data are contaminated by the same level of noise, the expected noise energy will be 

< En >= Na1 (6.3) 

Figures 6.1 and 6.2 compare a channel of synthetically generated EM61-MK2 data with different 

signal to noise ratios. Figure 6.1(a) is an image of the noise-free data that was generated assuming 

a target located 0.5 m below the plane of a transmitter/receiver pair. The red circle represents the 

amount of data that contains 97.5 percent of the signal energy, and the white dots mark the station 

locations. Figures 6.1(b) to (e) plot images of the data with signal to noise ratios of 100, 20, 10, and 

2. Figure 6.2 plots profiles of the noisy data over the noise-free data. 

Figure 6.3 compares the signal strength and background noise level for the first channel of EM63 

data collected at the Yuma Proving Ground calibration grid. The data were collected on lines with 

0.5 m spacing. We concentrate upon four regions. The first, labelled "Noise", is a region where 

the signal is assumed to be only noise, that is, there are no targets. The other regions (Signals 1, 2, 

and 3) are different size targets. A profile plot of a noise signal and Signals 1 and 2 are shown in 

Figure 6.3(b). By applying equations 6.1 to 6.3, Signals 1, 2, and 3 have SNR's of 150, 3, and 7750, 
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respectively. 

Figure 6.4 plots the first time channel of EM61-MK2 collected at the PIG discrimination test site 

at the Former Lowry Bombing Range. Data were collected on a uniform grid with station spacing 

of 0.61 m (2 feet). Unlike the Yuma proving ground data example, the instrument was stationary at 

each station location. 

6.1.2 Errors due to inaccurate sensor positioning 

Incorrect sensor positioning information introduce errors in the interpretation because it prevents 

accurate modelling of the data. Let us consider data collected on a grid with a line spacing of 0.5 

m and a station spacing of 0.25 m, and over a target location 1 m from the plane of the sensor 

(Figure 6.5(a)). Figures 6.5(b) and (c) demonstrate how misrepresentation of the positional infor

mation can affect this data. Panel (b) was calculated with a random positional error with a standard 

deviation of 5 cm. Random positional error at each station would be encountered when using GPS 

or RTS for positioning. Panel (c) was calculated with a random positional error of 5 cm applied to 

all the data on each line. 
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Channel: ch1 
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(a) Targets examined for signal to noise example 
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(b) Comparison of signal and background noise. Data values are plotted 
as a function of data point number. 

Figure 6.3: (a) Data examples, (b) Comparison of signal strength to background noise. Signal 3 is 
not included since its amplitude is much larger than the Signals 1 and 2, and the noise. 
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Figure 6.4: Comparisons of different signal to noise ratios for a channel of EM61-MK2 data. The 
different color profiles represent the North-South lines. 
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6.2 Survey Design Parameters that Affect Detection 

The focus of this Chapter is to define data requirements for discrimination. However, before dis

crimination techniques can be applied, target anomalies have to be detected from the sensor data. 

Anomaly detection requires a significant number of adjacent data points with a recorded value that 

is higher than the background noise. Therefore the density with which sensor data are collected 

is dependent upon the minimum size of anomaly expected in the survey. The observed size of an 

anomaly (areal extent and amplitude) depends upon size and configuration of the transmitter and 

receiver as well as on the details of the ordnance item (physical properties, depth of burial, and 

orientation). Modelling of target anomalies for different variations of target/sensor geometries and 

SNRs is used to investigate the effect of these variations on anomaly size, and therefore the mini

mum data density required for detection. 

6.2.1 Receiver Loop Size 

The time varying change of the secondary field B induces an EMF, e, in the receiver loop according 

to Faraday's law: 

where S is the surface of the loop, and dS is normal to the surface of the loop. The component of the 

B-field normal to the surface is integrated over the surface of the loop and the time rate of change 

of this flux generates a voltage in the loop. As a result of this integration, the measured voltage 

in the loop represents a smoothed version of the target's dipolar secondary field, and the amount 

of smoothing is proportional to the size of the loop. As the loop size is reduced to infinitesimal 

proportions, the measured response is representative of the secondary field at the receiver location. 

The effects of different receiver coil sizes is substantial. Figure 6.6 shows images and profiles 

of the measured field over a vertical rod-like object located at 0.5 m below the coil. Configuration 

#1 involves integrating over a 1 m x 1 m coil and therefore has a broader, higher amplitude peak 

than the coil for configuration #4 which integrates over a much smaller area of 0.5 m x 0.5 m. 

Configuration #2 is the coil size of the EM61MK2 sensor. The response is asymmetric and has 

more smearing of spatial detail along the longer 1 m coil direction compared to the 0.5 m direction. 

The differences in the response for the different coils are considerably reduced when the target lies at 

(6.4) 
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a depth of 1 m (Figure 6.7). This is due to the half-width of the anomaly becoming larger relative to 

the coil dimensions so that the response measured in the coil more closely reflects the true variation 

in the secondary magnetic field. 

For the remaining tests and modelling presented here, we will assume EM61-MK2 dimension 

loops oriented such that the 0.5 m edge of the loop is parallel to the direction of travel. 

6.2.2 Target depth and orientation 

The location and orientation of a target will affect the anomaly size. Consider the case of a horizon

tal transmitter loop moving over a buried rod-like target. For rod-like targets, the axial polarization 

of the target (whose strength is represented by k\ in equation (6.5)) is larger than the transverse 

polarization (whose strength is represented by k2). When the transmitter loop passes directly over a 

vertical target, the axial (k{) polarization will be excited since the field beneath a loop is predomi

nantly along the axis of the loop. Excitation of the transverse (k2) component will be excited when 

the transmitter loop is not directly over the target. When the target is horizontal, the transverse 

polarization will be excited when directly beneath the transmitter, and the axial polarization will be 

excited when the transmitter is not directly over the target. Since the axial polarization is stronger 

than the transverse polarization for rod-like targets (i.e., k\ > k2), the footprint of a horizontal tar

get will be larger as a result of the comparatively larger excitation that occurs for the off-centered 

data. A vertical target will have a larger magnitude directly over the target, but off-centered data 

will have a small magnitude due to the smaller transverse polarization. Figure 6.8 demonstrates that 

the anomaly will be smaller if a rod-like target is vertical rather than horizontal. These concepts 

were also discussed earlier in Chapter 2. 

Deeper targets produce wider anomalies. Figure 6.9 plots the profile view of a vertical target 

with ak\jk2 ratio of 5 for a number of depths below the plane of the transmitter and receiver. In the 

previous analysis of orientation effects on the anomaly, we saw that horizontal targets will produce 

anomalies with a larger spatial footprint. The profiles are normalized to unity at the maximum value 

of the anomaly. As the distance from the receiver increases, the anomaly radius increases. 
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6.2.3 Determining a maximum line spacing for detection 

In order to establish station density guidelines for detection, we model the dipole response and 

calculate the anomaly radius for different target depths and signal levels. The anomaly radius is 

defined as the radius of the largest circle that contains only data that are larger than twice the standard 

deviation of the noise. Figures 6.10 and 6.11 demonstrate the relationship between signal noise, 

target depth, and the expected anomaly size. We remind the reader that the depth is defined relative 

to the horizontal plane in which the receiver moves. As the signal to noise ratio decreases, the size 

of the anomaly that sits above the background noise also decreases. 

The maximum line spacing for reliable detection is constrained by vertical targets close to the 

surface. Therefore Figures 6.10(b) and 6.11(b) are the most useful figures for deciding data densities 

for detection. In order to use these figures, some knowledge of the targets that might be found in the 

survey and the noise level of the sensor are required to determine the SNRs of targets in the survey. 

Knowledge of the targets in a typical survey will allow a survey designer to determine the minimum 

signal to noise ratio that can be expected, and thus the radius of smallest anomaly. Once this radius 

is established, a line spacing can be chosen that ensures the sensor will sample every anomaly that 

sits above the survey noise level. 

148 



Chapter 6. Establishing Data Quality Requirements for Inversion Using Simulations 
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Figure 6.6: Images and profiles of the measured response for each coil configuration for a vertically 
oriented object at 0.5 m depth. 
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Figure 6.7: Images and profiles of the measured response for each coil configuration for a vertically 
oriented object at 1.0 m depth. 
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Figure 6.10: The anomaly radius for an (a) horizontal and (b) vertical target as a function of depth 
for different signal to noise ratios. 

Figure 6.11: The anomaly radius for an (a) horizontal and (b) vertical target as a function of depth 
for different signal to noise ratios. 
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6.3 Data Requirements for Discrimination 

A buried target, UXO or scrap, will produce a data anomaly if located within the measurement 

range of the instrument. In order to determine the nature of the unknown buried target, we need 

to define feature vectors that are derived from the anomaly and formulate decision rules. These 

decision rules are based on feature vectors derived from data from known targets (training data). 

The decision rules can take the form of boundaries in feature space that separate classes of targets. 

The region in which feature vectors recovered from inversion of data anomalies then define the class 

to which the unknown target belong. Therefore, effective discrimination requires: 

1. Definition of feature vectors for different classes that separate in feature space 

2. Adequate training data to produce classification rules 

3. Accurate recovery of feature vectors from data 

In this section we study the ability to accurately recover feature vectors from data of varying quality. 

In particular we will use simulations to study the accuracy of recovered parameters. Each simulation 

involves inverting synthetically generated noisy data. We study the spread of inverted parameters 

from numerous simulations to determine the sensitivity of the dipole model parameters to variations 

in SNR, data coverage, and inaccuracy of positional information. 

The survey design problem for TEM is similar in concept to that for magnetics but quantitative 

analysis is more difficult. Magnetic data are summarized in a single map, whereas there is a map 

of data for each time in a TEM survey. There are also more parameters to be determined in TEM 

inversion and the parameters can be related to the data in a very non-linear way. 

To make the problem tractable, and at the same time extract some general conclusions that are 

applicable to TEM surveys using different instruments, we proceed as follows. We restrict ourselves 

to a single time channel. We use an approximate forward model that can adequately reproduce the 

measured electromagnetic anomaly with minimal computational effort. For a single time channel, 

we can rewrite the magnetic polarization tensor as 

k2 
0 0 

F = 0 k2 
0 (6.5) 

0 0 ki 
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The parameter vector is then m = [X, Y, Z, <f>, 6, k\, k2], where (X, Y) is the location of the target, 

Z is the depth of the target (relative to the receiver), ( 0 , 6 ) are angles that define the orientation of 

the target, and k\ and k2 represent the axial and transverse polarizations of the target. 

6.3.1 Monte Carlo analysis 

The sensitivity of the inversion procedure to data noise, sensor position inaccuracies, and data cov

erage are studied using a Monte Carlo analysis. Data were synthetically generated, with signal or 

positional noise added, for different target depths and data acquisition parameters. 

Survey design variations Data were synthetically generated using the TEM dipole of equa

tion 4.3. We consider two different survey acquisition modes: uniform grid surveys and line surveys. 

We model uniform survey grids with station spacing of 0.25, 0.5, 0.75, and 1.00 m. Line survey data 

was simulated using line spacings of 0.25, 0.5, 0.75, and 1.00 m, with along line station separation 

ranging from 0.10, 0.25, 0.5, 0.75 and 1.00 m. 

There were three different position errors tested: 

1. Random position errors: For these errors a random position error was added to the true posi

tion at each station location. Normally distributed errors with standard deviations of 0.02 and 

0.05 m were added to the sensor locations. 

2. Error on the sensor height: Normally distributed errors with standard deviations of 0.02,0.05, 

and 0.10 m were added to the sensor heights when modelling the data. 

3. Shifts of a line of data: A shift in the position of the entire line of data was added for this set 

of simulations. The amount of shift considered had standard deviations of 0.02, 0.05, 0.10 m. 

Target variations 

Target depths of 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 m were modelled, where the target depth is 

defined as the distance from the plane of the transmitter/receiver pair to the center of the target. 

The location of the target was randomly chosen within a square with sides equal to the line spacing 

(Figure 6.12). The polarizations ki and k2 are a function of the size and shape of a target (see 

Figure 2.9). There are three different targets that are modelled in this study: (1) k\ — 2 and k2 = 1, 
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dY • 
dX 

Figure 6.12: Location of target was chosen to be within a square with sides equal to the line spacing 
as indicated by the grey box. The line and station spacing is indicated by dX and 
dY, respectively. The orange rectangle represents the orientation relative to the line 
direction of the EM61-MK2's 1 m x 0.5 m receiver/transmitter. 

(2) fci = 5 and k2 — 1, (2) k\ — 10 and fa = 1. A target with a ratio ki/k2 — 5 corresponds to 

a target with an aspect ratio of approximately 4:1, which corresponds to many UXO. The modelled 

secondary field is a linear function of Abi and k2, such that the results from this Chapter can be 

applied to targets by scaling. 

Inversion Simulations 

The sensitivity of the estimated fci and k2 polarization values as a function of the survey type, target 

type, and data noise is studied by performing a number of simulations. For each survey specification 

(line spacing, station spacing, positional accuracy), target specification (depth and target type), and 

signal to noise ratio, the following procedure is used: 

1. Determine the true model. The true model is the location (X, Y), depth (Z), orientation 

(9, <fi), and target type (fci, k2). The depth and target type remains the same for each set of 

simulations. The orientation is randomly generated, and the ordnance location is randomly 

chosen within a square with sides equal to the line spacing (Figure 6.12). 

2. Simulate data. Data were simulated using equations (4.3), and (6.5). For this study we use 

transmitter and receiver sizes of the EM61MK2 sensor. The forward modelled data are then 

used to determine the radius of a circle that would capture 97.5% of the energy. If there 

are less than 9 stations that fall within the circle of data, we assume that no solution can be 

obtained and we return to Step 1. 
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3. Add noise to data. Gaussian noise is added to the data. The standard deviation of the noise is 

calculated using the predetermined signal to noise ratio and equations (6.1) to (6.3). 

4. Add positional uncertainty to station locations. Positional errors are added as described on 

page 154. 

5. Invert noisy data for orientation and polarization factors. For each data set we assume that 

the location and depth of the target is known. Therefore, each data set was inverted for a 

model vector m = [<f>, 9, kx,k2], where (<fi, 9) are angles that define the orientation of the 

target, and k\ and k2 represent the axial and transverse polarizations of the target. The data 

were fit by minimizing a least squares objective function using a local optimization algorithm. 

A number of rod-like targets at a number of orientations, are used as starting models for the 

inversion. 

6. Return to Step 1. 

These steps are repeated 750 times. I found that 750 iterations of the above procedure was 

enough to characterize the parameter distributions. That is, additional iterations did not change the 

shape of the parameter histograms and the standard deviations of the parameter distributions. 

Difficulties 

For many surveys the data quality is insufficient to constrain the model parameters. An obvious 

example would be the case when the signal is below the noise level of the instrument. A second 

example would be when line spacing is large enough such that anomalies will have poor spatial 

sampling, or even be missed altogether. In both cases the data are non-informative, and inversion 

will produce spurious results. 

We want to minimize the inclusion of these spurious results in our analysis. We can define an 

inversion result as being "successful" when: (1) there are more than 8 data to be inverted whose 

amplitude is greater than 2o, where a is the standard deviation of the background noise, (2) the 

Matlab optimization algorithm is able to minimize the objective function (i.e., the optimization 

function does not return an indication that a solution could not be found) and (3) the data are able 

to constrain the recovered polarization parameters (k\ and k2) within their minimum and maximum 
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bounds. For a set of simulations, we define a "percent success" as the number of times these three 

criteria are satisfied divided by the total numbers of simulations. Figure 6.13 demonstrates how 

SNR and data coverage affect the ability of the inversion algorithm to return a successful result. 

The plots indicate that for larger line spacings, there is an increased chance that inversion will not 

produce a "successful" result since there is a lack of data coverage. The plots also reflect how 

shallower targets (with their smaller anomaly size) and target anomalies with a low SNR produce 

more cases of data with insufficient information for inversion. 

Even when there is adequate data to provide an inversion result, it is possible that the recovered 

result is inaccurate due to the inability of the data to constrain the object's EM parameters. One 

source of non-uniqueness in the model parameters is due to shape of the primary field. The way 

with which a sensor illuminates the target is defined by the orientation and size of the transmitter. 

Figure 6.14 plots the shape of the primary field beneath a horizontal 1 m x 1 m loop located at a 

height of 40 cm over the surface. The field directly beneath the center of the loop is vertical. In 

order to illuminate a buried target with a non-vertical field requires obtaining soundings with the 

transmitter not directly over the target. However, the strength of the field is weaker away the center 

of the instrument and thus noise level of the instrument limits the distance at which target signal can 

be detected. Successful recovery of the polarization tensor elements require exciting and measuring 

both the transverse and axial polarizations of the target. 

The limited view of the target provided by horizontal loop instruments (such as the EM61-MK2 

sensor), can lead to ambiguities in the recovered model parameters. Figures 6.15 and 6.16 demon

strate the ambiguity for a target buried 0.50 m beneath the plane of the sensor loop. Figure 6.15 

plots the A; parameters for a target with kx = 5 and k2 = 1. When the line spacing is 0.25, the 

recovered parameters are well constrained. However, when the line spacing is increased to 0.5, a 

small number of the simulated data sets can be well fit by a plate-like target with parameters of 

ki ftt 1 and k2 « 5 and oriented such that the axis of symmetry (defined by z, in Figure 2.11) is 

rotated 90 degrees into the plane of the transverse excitation. This ambiguity, and also the spread 

of the parameters, increases when the SNR decreases. The ambiguity is much worse when the k\ 

and k2 are less distinct, i.e. when the target has an aspect ratio closer to unity. Figure 6.16 plots the 

k parameters for a target with k\ = 2 and k2 — 1. There is a very distinct cluster at k\ « 1 and 

k2 « 2. For noisier data, it is safer to constrain the solution to rod-like targets. The constrained 
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(b) Target at depth (from sensor) of 1.25 m. 

Figure 6.13: Influence of line spacing, station spacing, target depth and signal to noise ratio on 
success rate for inversion. 
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Figure 6.14: The primary field shape beneath a lm x lm transmitter loop. 
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Figure 6.15: An example of ambiguities in the recovered model parameters. In this example 
ki/k2 — 5. 
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Figure 6.16: An example of ambiguities in the recovered model parameters. In this example 
ki/k-2 = 2 . 
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(a) dx, dy = 0.25 m, Accurate Position 
71 • • 

(b) dx, dy = 0.5 m, Accurate position 
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Figure 6.17: Example of the spread in k\ and k2 parameters for two different targets (ki = 5, k2 = 
1, blue dots; and kx = ifj, k2 = 1, red dots). As position errors and station spacing 
increases, the absolute deviation of the k\ and k2 parameters also increase. 

inversion is obtained simply by applying a linear constraint to the k\ and k2 (i.e. k\ — k2 > 0). For 

this study, we simply choose the larger k parameter to be fei, and the smaller k parameter to be k2. 

An example of simulation results 

As an example of simulation results let us consider two targets. One target has parameters of k\ — 5 

and k2 = 1, and the second target has parameters k\ = 10 and k2 = 1. Both targets are at a depth of 

0.5 m from the transmitter/receiver loop. The recovered k\ and k2 parameters from data collected 

on uniform grids of = dy — 0.25 m and dx — dy — 0.50 m are plotted in Figure 6.17. The 

SNR for both targets is 100. The red dots represent inversion results for a target with k\ = 5 and 

k2 — 1, and blue dots represent inversion results for a target with k\ = 10 and k2 = 1. Green 
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ki — 5, k2 = 1 
dX = dY = 0.25m dX = dY = 0.50m 

Aifci Ak2 Ak2 

Accurate 
Positioning 0.10 0.09 0.31 0.21 
cr - 0.05 m 0.30 0.23 0.92 0.37 

Table 6.1: Summary of average absolute deviations for k\ = 5 and k2 = 1 results of Figure 6.17 

ki = 10, k2 = 1 
= dY = 0.25m dX = dY = 0.50m 

Ak2 Aifcx Afc2 

Accurate 
Positioning 0.15 0.20 0.93 0.55 
cr = 0.05 m 0.58 0.47 1.90 0.83 

Table 6.2: Summary of average absolute deviations for k\ = 10 and k2 = 1 results of Figure 6.17 

rectangles are centered on the true parameters and have dimensions of (2A/ci) x (2Ak2). Panels 

(a) and (b) show the spread of parameters when the sensor position is accurately known. Panels (c) 

and (d) demonstrate how the spread of parameters increase when the method of determining sensor 

position has a normally distributed uncertainty with a standard deviation of 0.05 m. 

The spread for each of a recovered parameter mi is quantified by the average absolute deviation 

i N 

where Af is the number of simulations, and rrv\ is the recovered parameter from the jth simulation 

for the ith recovered parameter. 

The average absolute deviations for the example in Figure (6.17) are summarized in Tables (6.1) 

and (6.2). For this example, inaccurate knowledge of the sensor location would not affect greatly 

the ability to distinguish the two target types provided that the station spacing is 0.25 m (Fig

ures 6.17(a) and (c)). However, when the station spacing is 0.5 m and the sensor location has a 

positional error of 0.05 m, we see that the data coverage is not sufficient enough to ensure good 

separation in the classes for the recovered parameters (Figures 6.17(b) and (d)). The probability of 

misclassification clearly increases with poorer data density. 
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6.3.2 Results 

Due to the large number of plots that make up the results, I refer the reader to the report "Guidelines 

On Data Quality Requirements for Advanced Discrimination of UXO" (Pasion et al., 2004). In 

the aforementioned report, the simulation results of the different survey setups are summarized in 

Figures B.l to B.45. Figures B.l to B.15 have no positional error. Figures B.19 to B.45 have random 

error on each position. Figures B.46 to B.93 have random error on each line. Figures B.94 to B.135 

have random error on the height at each station. Each page consists of 8 plots. The four rows of 

plots per page correspond to the four different line spacings (0.25,0.5, 0.75, and 1.00 m) considered 

in the simulations. The left column of plots are the relative deviation of spread of k-\_ and the right 

column of plots are the relative deviation of spread of k2. The relative deviation is defined as 

6.3.3 Utilizing simulation results 

The objective of this study was to provide guidance when planning EM surveys. However, generat

ing specific guidelines for EM data acquisition is difficult due to the numerous variations in survey 

design, target types, instrumentation, and noise. Our simulations represent a simplification of the 

general EM problem. We have restricted our simulations to the inversion of a single channel of 

Geonics EM61Mk2 data for orientation values and polarization values. Even with these simplifica

tions, there are still numerous measurement variations that we considered. 

One possible way of determining minimum requirements for EM survey design is to define a 

Figure of Merit that summarizes the data quality, and relate this number to the spread in recovered 

parameters. For the case of accurate positioning, the Figure of Merit would reflect the SNR of the 

anomaly and the data coverage. One possible definition of a Figure of Merit is 

where dx represents the line spacing, R is the radius of the anomaly, and dy is the station spacing. 

The term max [0,1 — dx/R] is a function that reflects the spatial density with which data is collected 

over the target. The minimum value of 0 indicates poor sampling, while the maximum value of 1 

(6.7) 

(6.8) 
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Figure 6.18: A plot of the relationship between the Figure of Merit, £, and the square root of the 
sum of squares of the average relative deviations for a target with k\ = 5 and k2 = 1. 

indicates station separation approaching 0. The fourth power was arbitrarily chosen. The term 

\Jdx/dy reflects how uniformly the sensor samples the anomaly. Dense sampling along lines (i.e. 

dx <C dy) is less desirable than uniformly sampling (dx « dy). 

Figure 6.18 plots the relationship between the Figure of Merit defined in (6.8), and the square 

root of the sum of squares of the average relative deviation (denned in Equation 6.7). Figure 6.18 

includes results from simulations where there are no positional errors, and for targets with k\ — 5 

and k2 = 1. Clearly, as the Figure of Merit increases, there is reduction in the spread of parameters. 

Figure 6.19 plots only points from Figure 6.18 where the line spacing is 0.5 m. The plot shows how 

the different SNR's and depths relate to the Figure of Merit and parameter spread. The three points 

on the line segment correspond to station spacings of dy = 0.5,0.25,0.1 m. 

There are different ways this plot could be used. As a first example, consider the goal of recov-

164 



Chapter 6. Establishing Data Quality Requirements for Inversion Using Simulations 
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Figure 6.19: A plot of the relationship between the Figure of Merit, £, and the square root of the 
sum of squares of the average relative deviations for a target with k\ — 5 and k2 — 1. 
Only simulations with a line spacing of 0.5 m are plotted. 
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ering parameters for a target (with ki/k2 — 5) such that the average relative deviation for each is 

0.25. The square root of the sum of squares of the average relative deviations would be 0.35. From 

Figure 6.18, we see that in order to achieve the desired spread in parameters, the Figure of Merit 

must be greater than approximately 15. From the graph, we see that anomalies with an SNR of 10 

or 2 will not recover the parameters with the desired average relative deviation. For given estimates 

of SNR and anomaly radius, a line and station spacing can be chosen that will allow us to recover 

parameters within our desired accuracy. Alternatively, once the station and line spacing is set, we 

can use the Figure of Merit to determine which anomalies can be reliably interpreted. Anomalies 

that do not meet the Figure of Merit standard with the available data, could be re-surveyed in a cued 

interrogation sense where the SNR would be decreased and the data density could be increased. 

Figure 6.20 demonstrates the relationship between Figure of Merit and the parameter spread for 

all the target types simulated in this analysis. The target with ki/k2 = 10 corresponds to the most 

elongated target. Since the transverse polarization of this target is the most difficult to resolve (due 

to its much smaller size relative to the axial polarization), the spread in the recovered polarization 

parameters will be greater. 

6.4 Conclusion 

A Monte Carlo methodology was used for TEM data. The EM situation is complex because: 

1. Multi-time channels are recorded, and the number varies with the sensor (e.g. EM63, EM61MK2, 

etc.). 

2. There are different ways to establish a relationship between the UXO and data. (e.g. dipole 

models, more rigorous numerical electromagnetic modelling,etc). Even if we choose to adopt 

a dipole model, then various scenarios are possible. If data at many time channels are obtained 

then all parameters of the dipole model can be estimated. Alternatively, each time channel 

can be inverted separately to yield amplitudes of the representative dipole polarizations. 

3. There are different choices for selecting features for discrimination. For example, one can 

choose the magnitude of k\, k2 (strengths of the axial and transverse dipole polarizations) or 

their ratio. 
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Figure 6.20: A plot of the relationship between the Figure of Merit, £, and the square root of the sum 
of squares of the average relative deviation for all targets simulated in this analysis. 
For the simulations in this plot there were no sensor positioning errors. 
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4. System noise, orientation errors, cultural noise are generally more complicated for EM mea

surements. 

Attempts to account for all realistic scenarios encompassed by the above items leads to con

sideration of too many variables. For any field survey there is only a subset of the above possible 

scenarios that are important. Once these are identified, then Monte Carlo simulations can be gener

ated to quantify the importance of various acquisition parameters or signal/noise ratios. The ideal 

goal would be to assess how specific choices of the above scenarios affect the final receiver operating 

characteristic (ROC) curves. 

We conclude that it would be more useful to develop software to simulate various realistic 

scenarios regarding: 

1. Acquisition parameters and uncertainties; 

2. Specific ordnance items and their depth ranges; 

3. Specifics of the instrumentation (frequency domain, time domain, number of channels); 

4. Choice of parameterization for forward modelling; 

5. Choice of which features (inversion parameters, ratios of parameters etc) are to be used in 

discrimination. 

The results presented in this Chapter represent analysis of a single time channel of Geonics 

EM61MK2 data. Therefore, these results can immediately help determine design parameters for 

EM61MK2 data collection surveys. In addition, these results can be used to help establish which 

anomalies within an EM61MK2 survey are candidates for inversion and discrimination, and which 

anomalies may require higher quality data from a follow-up cued interrogation survey. 
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Chapter 7 

Detection of Unexploded Ordnance in 

Magnetic Environments 

This chapter is organized into three parts. First, we review the theory of viscous remanent magne

tization and derive expressions for the time dependent magnetization for a collection of single do

main magnetic grains. Second, we review complex susceptibility models for single domain grains, 

and utilize these models in simulating responses of a loop on a magnetic viscous half-space. The 

modelling allows us to investigate the relative contributions of magnetic viscosity and eddy current 

induction on the half-space response. We also compare the magnitude and character of half-space 

and spheroid responses. In the final part of the chapter, a pair of field examples are used to illus

trate the effect of magnetic viscosity on electromagnetic measurements. For the first example we 

consider time domain electromagnetic data acquired on seeded test plots on Kaho'olawe Island, 

Hawaii 7.1. Due to basalt-derived magnetic soils, 30% of identified anomalies later turned out to be 

from geology (Putnam, 2001). Figure 7.2 contains an image of the first channel of Geonics EM63 

time domain electromagnetic data collected over a Kaho'olawe test grid. 

The second example we consider is from the International Test and Evaluation Program for 

Humanitarian Demining (ITEP). ITEP constructed landmine testing lanes to study the effect of 

Figure 7.1: Seeded UXO test grid located on Kaho'olawe Island, Hawaii. 
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X(m) 

Figure 7.2: Geonics EM63 data acquired on Kaho'olawe island, Hawaii. 

X (m) X (m) 

(a) In-Phase (b) Quadrature 

Figure 7.3: GEM data acquired on Kaho'olawe island, Hawaii. 

different soil types on the response of typical metal detectors used for humanitarian demining. Ta

ble 7.1 summarize the susceptibility measurements of three of the lanes. The ground reference 

height (GRH) refers to the maximum height at which a calibrated Scheibel pulse induction sen

sor is sensitive to the background soil, and is therefore a crude measure of the background soil 

noise (Miiller et al., 2003). The ITEP trials demonstrated that it is the change in the magnetic 

susceptibility with frequency, and not the magnitude, of the susceptibility that is the important pa

rameter determining the electromagnetic response of the soil host. In this chapter, we show that 

magnetic viscosity from non-interacting single domain grains can quantitatively explain the results 

observed at Oberjettenberg, Germany and Benkovac, Croatia. 
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Sample X9S0Hz A X GRH (cm) 
Oberjettenberg 
Benkovac 

3000 ± 500 
154 ± 1 3 

5.6 ± 7 
25.5 

4.5 
19.0 

Table 7.1: Frequency dependent susceptibilities and ground reference heights (GRH) for a pair of 
landmine test lanes in Oberjettenberg, Germany and Benkovac, Croatia. The column 
titled A% contains the difference in susceptibility measured by the Bartington MS2D 
meter. 

7.1 Magnetic Properties of Soils 

The magnetic properties of soils are mainly due to the presence of iron. Hydrated iron oxides such 

as muscovite, dolomite, lepidocrocite, and geothite are weakly paramagnetic, and play a minor 

role in determining the magnetic character of the soil. The most important determinants of the 

magnetic character are the ferrimagnetic minerals, maghaemite (aFe204) and magnetite (Fe304). 

Maghaemite is the most important of the minerals for archaeological prospecting applications as 

fire pits and ovens that heat the soil can result in a conversion of minerals to maghaemite (Scollar 

et al., 1990). Magnetite is the most magnetic of the iron oxides, and is the most important mineral 

when considering the effects of magnetic soils on EM measurements. 

Ferrimagnetic minerals are characterized by anti-parallel alignment of unequal magnetic mo

ments which result in a permanent magnetic moment. When these minerals are exposed to a mag

netic field, there is a corresponding change in magnetization. Viscous remanent magnetization, or 

magnetic after-effect, refers to the non-instantaneous nature of magnetization change. The viscous 

remanent magnetic behavior is correlated with magnetic grain size. Very small magnetic grains 

cannot retain a coherent alignment of atomic moments; they are superparamagnetic. This behavior 

occurs for magnetite grains with radii of the order of 250 angstrom or less as they are unable to 

accommodate a complete domain (Dunlop and Ozdemir, 1997). Grains that are large enough to 

accommodate a single domain of magnetization are referred to as "single domain" grains and are 

very stable carriers of magnetization. The magnetization of the single domain can rotate under the 

influence of an applied magnetic field, large stress, or an elevated temperature. Larger grains may 

have more than one domain, and are referred to as "multi-domain" grains. If the grain exhibits 

both single-domain and multi-domain behavior the grain is a "pseudo-single-domain" grain. The 

magnetization of multi-domain grains changes in the presence of an applied field by the growth of 
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some domains, at the expense of others, via the motion of domain walls. For large applied fields the 

magnetization within the domains may rotate. Although domain wall movement is a frequency de

pendent process (Klein and Santamarina, 2000), it is an effectively instantaneous behavior relative 

to our frequency range of interest. Thus it does not contribute to the viscous part of the magnetiza

tion that we model. Measurements taken on a multi-domain grain sample of magnetite have shown 

no measurable variation of susceptibility with frequency and no quadrature susceptibility (Bhatal 

and Stacey, 1969). 

7.2 Viscous Remanent Magnetization of a Collection of Single 

Domain Grains 

Suppose that we apply a magnetic field if to a magnetic material at a time t = 0. The magnetization 

vector will try to adjust to align itself with the exciting field. At the instant the magnetic field is 

applied there is an immediate change in magnetization M j , which we refer to as instantaneous 

magnetization. The time dependent change of magnetization is represented by Mn (t). A time 

constant r is used to characterize the time for the magnetization vector to rotate from its minimum 

energy orientation prior to t = 0, to its new orientation. 

Neel (1949) developed a simple theory to describe the magnetization of an ensemble of non-

interacting single domain grains. The magnetization vector will rotate to a new orientation if the 

total available energy provided by the inducing field exceeds an energy barrier AE = KV, where 

K is the anisotropy constant for the domain's composition and lattice, and V is the volume of 

that domain. In strong fields the magnetization takes place almost immediately after application 

of the field. In weak fields the energy provided by the field may not be sufficient to provide an 

instantaneous change in magnetization. Instead, thermal vibrations kT, where k is the Boltzmann 

constant and T is temperature, gradually provide the energy for the magnetization change. The 

relaxation time is given by 

(7.1) 

where AE is the height of the energy barrier for a rotation in magnetization, and TQ « 10~9 is 

the atomic reorganization time (Dunlop and Ozdemir, 1997). The exponential form of equation 7.1 

demonstrates the sensitivity of relaxation times to grain sizes and also to temperature. When the 
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particle size becomes small enough, the thermal energy will become sufficient to spontaneously 

switch the magnetic moments immediately. 

Let us consider a situation where field H has been instantly switched off at t = 0, and the 

equilibrium magnetization is zero. The resulting decay of the magnetization is 

M(t) = HXoF(t) (7.2) 

where Xo is the susceptibility and F(t) is the after-affect function. With a single relaxation time, the 

after-effect function F (t) = exp (—t/r). When the relaxation times are distributed with the weight 

function /(r) the after-effect function becomes 

POO 

F(t)= / / ( r ) e x P ( - V r ) d 7 
Jo 

(7.3) 

Thus, it is evident that the distribution of the relaxation times will be critical in determining the 

behavior of the system. If we assume a uniform distribution of energy barriers between finite limits, 

then we have a log-uniform distribution for the time constants. The log-uniform distribution is 

G(lnr)=< 
T i < r < r 2 , 

In ( T I / T 2 ) 

0 otherwise. 

The appropriate distribution function is obtained through a change in variables: 

dr 
G(lnr) = / (r) 

d(lnT) 
= rf(r) 

Therefore, the distribution function is 

(7.4) 

(7.5) 

/(r) = T l 0 g ( T 2 / T l ) 
for T l < T < T 2 (7.6) 

and zero everywhere else, where T\ is the lower and r 2 is the upper time-constant in the system. 

The weight function in (7.6) has a log-uniform distribution of time constants (/(logr)d(logr) = 

const). 
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Combining equations (7.2)-(7.6) gives the time dependent magnetization as 

M(() _ r °M-±iiT (7.7) 
V ' log T 2 M ) Jn T log(r 2 /ri) J r i 

Assuming T2 » T\, then within the range I /Y2 << £ << 1/TI , it follows that 

M ( t ) " i ^ ^ ) ( " 7 - l o g i - l o g T 2 ) ( 7 - 8 ) 

where 7 « 0.577 is the Euler constant. Most metal detectors measure dH/dt so that the sensor 

reading is proportional to the change in the ferrite magnetization over-time. Within the same range 

where the log t behavior is evident in the if-field, 

dt l 0 g ( T 2 / T i ) t 

Consequently, the time derivative of the decaying magnetic field produced by the magnetization 

decays as t~l. This t - 1 decay has been observed in archaeological prospecting (Colani and Aitken, 

1966), time domain electromagnetic (TEM) surveys carried out over laeteritic soils for mineral ex

ploration (Buselli, 1982), and also in TEM surveys carried out on Kaho'olawe Island, Hawaii (Ware, 

2003). 

7.3 The Magnetic Susceptibility of a Collection of Single Domain 

Grains 

If the acquisition and decay of magnetization is not instantaneous, then a complex frequency-

dependent susceptibility is required to explain the behavior of a system exhibiting viscous magne

tization. The frequency dependent susceptibility is the one-sided Fourier transform of the impulse 

response (equivalent to the derivative of the step-off after-affect function), 

X M = _ /°° e x p(-ia;i)dt (7-10) 
Xo Jo d t 
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(Fannin and Charles, 1995). An elementary Fourier integral can be used to show that for a single 

relaxation time the complex susceptibility model is 

X(w) = 7 T ? - (7-H) 
1 + IU)T 

This model is the well known Debye model (Debye, 1928). 

In more general terms, if the relaxation times are distributed with the weight function / ( r ) then 

the complex susceptibility model becomes 

J0 1 + IUT 

Assuming a log-uniform distribution of time constants (Fannin and Charles, 1995; Lee, 1983) the 

complex susceptibility becomes 

X^) = x J l - r ^ T - J o g ( 1 - ± ^ ) ) (7.13) 
V log(T 2 /Ti) V 1 + W T 2 / / 

Within a certain range of frequencies determined by the end-member time constants, the in-phase 

susceptibility will vary linearly with the logarithm of the frequency while the quadrature suscepti

bility is constant with frequency. Furthermore, for r 2 » T\ the slope of the in-phase and value of 

the quadrature susceptibility are related by 

0 logo; 7t log(r 2 /ri) 

From analysis of a wide range of soils, (Dabas et al., 1992) found that most could be explained with 

the above susceptibility model. However, there were some soils that did not fit the model so well, 

which may indicate that a log-uniform distribution of time constants may not always be appropriate. 

The Cole-Cole frequency distribution has also been used to represent magnetic susceptibil

ity (for example Olhoeft and Strangway, 1974; Dabas et al., 1992). The Cole-Cole model for 

magnetic susceptibility is 

*<"> = * ~ + i +

X ( ^ - « - ( 7 ' 1 5 ) 

where Xoo is the susceptibility as frequency approaches infinity (therefore characterizing the instan-
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taneous magnetization) and \o is the susceptibility as frequency approaches zero. The imaginary 

part of the susceptibility is zero in the limits of zero and infinite frequency. The value of a con

trols the distribution of relaxation times. The limits of a are a = 0 for a single Debye relaxation 

mechanism and a = 1 for an infinitely broad distribution of relaxation times. The time constant r c 

controls the location of the peak of the imaginary part of the susceptibility, with the peak occurring 

at u = 1 / r c . For a large a the Cole-Cole model yields a straight line for the real part and a constant 

negative value for the imaginary part, thus it is similar to our model in equation 7.15 

It has been suggested that a Log-Normal distribution would best describe the distribution of 

time constants (Cross, 2006). Figure 7.4 compares the Cole-Cole, Log-Uniform, and Log-Normal 

distributions. Clearly, the log-normal distribution can be well approximated by a Cole-Cole model 

with the appropriate parameters. Figure 7.4(a) plots the Log-Uniform, or Frohlich, distribution of 

Frohlich 
— Cole-Colo 

lofl-normal 

— Frohlich 
Cole-Cole 

Imaginary 

(a) Comparison of a Log-Uniform (or Frohlich) time (b) Comparison of the resulting magnetic susceptibility 
constant distribution to the Cole-Cole and Log-Normal from the distributions in (a). For the Cole-Cole model 
distributions. we assume that x°o = 0. 

Figure 7.4: Comparison of the Log-Uniform (or Frohlich) distribution and the Cole-Cole distribu

tion. 

Equation 7.4 with bounding, time constant values of n = 10~6 and r 2 = 106. The expression for 

the log distribution of the Cole-Cole model is 

sin (na) 
G ( l n T ) ~ 2TT cosh ((1 - a) In (r 0/r)) - cos {ira) 

(7.16) 

(see, for example, Fannin and Charles (1995)). If we assume, that Xoo = 0, r 0 = 1, and a - 0.83, 

we obtain the distribution plotted in blue in Figure 7.4(a). 
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Low Frequency High Frequency 
Sample (0.46 kHz) (4.6 kHz) 
7462-2728A-6" 3554 3311 
7462-2728A-24" 3022 2771 
7462-2728B-6" 1046 1001 
7468-2734AP-6" 1726 1630 
7468-2734AP-18" 1529 1448 
7468-2734BP-12" 2807 2634 
7468-2734BP-24" 1920 1807 
7468-2734AB-6" 845 805 
7468-2734BB-8" 1795 1707 

Table 7.2: Susceptibility measurements (xlO 5 S.I.) at the Seagull Site. 

The different time constant distributions produce different magnetic susceptibilities. Figure 7.4(b) 

compares the resulting magnetic susceptibilities from the Log-Uniform and Cole-Cole distributions 

of Figure 7.4(a). The continuous and smooth time constant distribution of the Cole-Cole model 

produces a smoother susceptibility model. 

A model for the frequency dependent susceptibility of soils is required to investigate magnetic 

noise problems through forward modelling. For the modelling examples of this paper we will use 

magnetic susceptibility measurements taken on soil samples from Kaho'olawe Island, Hawaii. The 

Bartington MS2B susceptibility meter was used for the measurements. The MS2B measures the 

susceptibility of a 30 ml sample at 4.6 and 0.46 kHz. Table 7.2 lists measurements of the magnetic 

susceptibility for soil samples at the Seagull site on Kaho'olawe. These measurements provide us 

with the real part of the complex susceptibility at two frequencies. Given this limited informa

tion of the soil's magnetic characteristics, we need to make some assumptions before generating 

a susceptibility model. First, we assume that the two measuring frequencies are within the fre

quency range where the in-phase component decreases linearly with the logarithm of frequency 

(r-f1 < u « ^i -1)- Second, we assume that all the frequencies of interest fall within this range 

of frequencies. With these two assumptions, we can model the real part of the susceptibility as a 

straight line. Furthermore, we can use equation 7.14 to predict the quadrature component of the 

susceptibility from the slope of the in-phase component. Figure 7.5 shows the susceptibility model 

assumed for soil sample 7468-2734AP-6". 

In addition to the log-uniform distribution model for the soil susceptibility, we also plot in 

figure 7.5 the best fit Cole-Cole model. To obtain a unique model, we assume that the peak of 
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0.0151 

— log-uniform real 
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Figure 7.5: Frequency dependent susceptibility models for sample 7468-2734AP-6". 

the imaginary part of the susceptibility is located between the two measurement frequencies of the 

MS2B (i.e. r = 1.08 x 10 - 4). We also assume no instantaneous magnetization (i.e. Xoo = 0). For 

the soils sample of figure 7.5, xo = 5441 x 10~5 S.I. and a = 0.94. The large value of a indicates 

a broad distribution of time constants. 

Complex susceptibility measurements of a number of soil samples from the Navy UXO QA grid 

were carried out using a LakeShore Cryotronics AC Susceptometer at the University of Minnesota's 

Institute for Rock Magnetism (IRM) (Li et al., 2005). Figure 7.6 contains a typical measurement for 

the Kaho'olawe soil samples. The susceptibility of the Kaho'olawe soil samples exhibit a strongly 

frequency-dependent real component and a much smaller, and nearly constant, imaginary compo

nent. The best fit log-uniform time constant susceptibility model of equation 7.13 is plotted as a 

solid line. 

7.4 Modelling the Electromagnetic Response of Viscous Remanent 

SoU 

7.4.1 The Electromagnetic Response of a 1-D Layered Earth 

In order to examine the effect of viscous remanently magnetized soils on EM sensors, we consider 

the response of a half-space with the frequency dependent susceptibility of Figure 7.5. Forward 

modelling in ID is solved in the frequency domain using a propagation matrix formalism (Far-

quharson et al., 2003). Let us consider a circular transmitter loop of radius a, carrying a current 
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(a) A soil pit dug at approximately the center of the site. The plot to the right indicate the magnetic 
susceptibility measured by Bartington MS2D (blue line, 0.958 kHz) and MS2F (green line, 0.58 
kHz) susceptibility meters. 

.-5 Kaho'olawe Soil Pit B 
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(b) Susceptibility measurement of a surface soil sample from Kaho'olawe Navy QA grid. The 
measured susceptibility values are fit assuming a log-uniform time constant susceptibility model. 

Figure 7.6: Susceptibility analysis of a soil pit in Grid 2E at Kaho'olawe. 
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I, and at a height h above a 1-D layered earth. At an observation point z above the ground and a 

radial distance p from the axis of circular transmitter loop, the radial component HP and the vertical 

component HZ of the H-field are 

-u0(z+h) _ ^21 u0(z-h) 

p 
e-u0{z+h) _j_ t_^_eUo{z-h) 

AJi (Aa) Ji (Ap) dA 

A2 

Ji (Aa) J 0 (Ap) dA 

(7.17) 

(7.18) 

where uQ = ^X2 - k2, k0 is the wave number of the air, and JQ and Ji are the zeroth and first order 

Bessel functions, respectively. P 2 i and" -Pn are elements of the matrix P: 

where 

M i = 

P = M 1 j iM j 

j = 2 

2 ^ + /iiuo j 2 

I (-[ _ iffiuiA I fl + 

(7.19) 

M ^ 2 ( 1 _ ft-l«j) — 2 t i i _ i t • j - i y - i 

\ 
) 

M 0 « 1 \ 
)\ 

V 
A 2 u , _ i t • j - l i j - i 

(7.20) 

(7.21) 

The thickness of the jth layer is i , , and Pj is the magnetic permeability of the layer. 

In this study we will consider measurements of the secondary field at the center of the trans

mitting loop. The fields at the center of the transmitter loop are calculated by setting p = 0 and 

z = —h. These substitutions give 

HP(LU) = 0 (7.22) 

A 2 j_ + -^21 c-2u0h 

Pll ' . U0 

-Ji (Aa) dA (7.23) 

Therefore, as the symmetry of the 1-D would also suggest, there is no horizontal component to the 

H-field response at the center of the transmitter loop. The time domain solution is obtained by 

calculating Fourier transformations of the frequency response for a causal step turn-off. 
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7.4.2 The Effect of Magnetic Susceptibility on the Electromagnetic Response 

Figure 7.7 shows the modelled electromagnetic response at the center of a circular transmitter loop 

of radius a = 25 m and carrying a current of 1 A placed on the surface of a half-space. This ar

rangement is typical of large loop electromagnetic soundings carried out in exploration geophysics. 

We consider three half-space conductivities (cr =0.01, 0.1 and 1.0 S/m). The smaller conductivity 

is applicable to the soils on Kaho'olawe Island, Hawaii, while 1.0 S/m represents a soil with a very 

high conductivity. In each model we use the susceptibility of sample 7468-2734AP-6" (figure 7.5). 

Figure 7.7(a) shows the time domain response to a step-off transmitter current. In general, the 

time-domain response consists of three stages. At the earliest times the eddy currents are distributed 

on the surface of the half-space and the dHz/dt response is flat. This corresponds to the so called 

inductive limit. At intermediate times, the current starts to move downwards and spreads out, with 

the dHz/dt response at the center of the loop decaying as 

3HZ / C T 3 / V / 2 G 2 5/2 , ™ 

•ar = - 2 6 ^ - * ^ ( 7- 2 4 ) 

This intermediate time response is referred to as the ground effect (Ward and Hohmann, 1991) 

and has a characteristic decay of i - 5 / 2 . The ground effect extends later into time with higher 

conductivity soils, higher susceptibility soils, or larger loop size. The third stage is the late-time 

response which is dominated by the magnetic viscosity and displays the characteristic 1/t decay 

derived in equation 7.9. 

The secondary H-field frequency domain response for the three half-space models are plotted 

in Figure 7.7(b). At high frequencies the secondary H-field asymptotes to the half-space inductive 

limit. At the inductive limit currents are induced on the surface of the half-space to cancel the 

primary field, thus producing a secondary field that is (1) the negative of the primary field (Hz = 

—I'/(2a) at the loop center) and (2) in-phase with the primary field (i.e. no imaginary component). 

The low frequency response corresponds to the resistive limit. At the center of a circular loop 

on a half-space this can be determined by taking the low frequency limit of equation 7.23: 

lim Hz = -j-( —*— ) . (7.25) 
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time (s) 

(a) Time domain response. 

frequency (Hz) 

(b) Frequency Domain Response 

Figure 7.7: Forward modelled electromagnetic responses for half-spaces with magnetic viscosity 
and conductivities of a =0.01, 0.1 and 1.0 S/m. 
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It is clear from equation 7.25 that for a non-magnetic half-space (x = 0), both real and imaginary 

components asymptote to zero at low frequencies. The resistive limit response of half-space with 

a non-frequency dependent, non-complex magnetic susceptibility (X(u>) = Xo) has a non-zero real 

component and is in-phase with the primary field (i.e. no imaginary component). For the case 

of a viscous magnetic earth, characterized by a complex, frequency dependent susceptibility, the 

real component of the field has a positive asymptote and the imaginary component has a negative 

asymptote. The resistive limit characteristics are seen more clearly in Figure 7.8, where the response 

of a half-space with conductivity of 0.1 S/m is plotted. 

Figures 7.8 and 7.9 show the electromagnetic responses that occur for (1) no magnetic viscosity 

(X = 0, the conductive response) and (2) no eddy currents (cr = 0, the magnetic response). Note 

that the oscillations at early time for the magnetic response are artifacts of the filter we used convert 

to the time domain. The full modelling results, which include both the eddy current and magnetic 

viscosity response are plotted as solid black lines. At low frequencies and, correspondingly, late 

times the full modelled response is dominated by the magnetic response. At high frequencies and 

early times the full modelled response is dominated by the eddy current response. Figure 7.9(b) 

shows that for smaller loop sizes (in this case, a = 0.5 m) that the ground response is not evident 

within the plotted time range. The dependence of loop size and amplitude of ground response is 

reported in equation 7.24. 

When the independently computed conductive and magnetic viscosity responses are added to

gether, the time-decay is almost exactly the same as the full modelling results which incorporated 

the eddy current plus magnetic viscosity response. Therefore we conclude that there is no appre

ciable interaction between the eddy-current response and the magnetic relaxation; at the most the 

interaction is a second order effect. Since the geometry dependent eddy current response does not 

appreciably interact with ferrite response, the decay will always be l/t regardless of the spatial 

distribution of magnetic soil. The amplitude of the l/t response will change with variations in the 

ferrite concentration. 
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Magnetic Response 
• Conductive Response 
• Modelled Response 

Magnetic + Conductive 

10 10' 10 
frequency (Hz) 

(a) Frequency domain response: Real component 

10" 10' 10 
frequency (Hz) 

(b) Frequency Domain Response: Imaginary component 

Figure 7.8: Forward modelled frequency domain electromagnetic responses to a step-off transmit
ter current for a half-spaces with magnetic viscosity and a conductivity of a =0.1 S/m. 
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Time (s) 

(a) Time domain response, a = 25 m 

103 

Time (s) 

(b) Time Domain Response, a = 0.5 m 

Figure 7.9: Forward modelled time domain electromagnetic responses to a step-off transmitter cur
rent for half-spaces with magnetic viscosity and a conductivity of cr =0.1 S/m. 
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7.4.3 Comparing the Electromagnetic Response of a Steel Object and Viscous 

Remanent Magnetic Soils 

In landmine and UXO detection applications, electromagnetic sensors are used for detecting steel 

targets. In Figures 7.10 and 7.11, we compare the EM response of soils exhibiting viscous remnant 

magnetization (VRM) with the EM response of a steel spheroid in the frequency and time domain, 

respectively. We consider a horizontal loop transmitter with a diameter of 50 cm located 40 cm 

above a half-space with a conductivity of 0.01 S/m and a susceptibility of sample 7468-2734AP-6" 

(Figure 7.5). The responses for a spheroid with a length of 24 cm and a width 6 cm are calculated 

using the method of auxiliary moments (MAS) methodology (Shubitidze et al, 2002b). We assume 

that the spheroid sits in a uniform primary field in free space (cr = 0 S/m and p, = p0) and the center 

of the spheroid is located 70 cm below the measuring point. We assume that the steel conductivity 

is a = 1 x 106 S/m and magnetic permeability is \i = 250/zo. The in-phase part of the response 

12 

H10 

A Spheroid - Vertical 
O Spheroid - Horizontal 
B Half-space 

2 -

i - \\ A Spheroid - Vertical 
O Spheroid - Horizontal 
O Half-space 

3 k 17 

Frequency (Hz) 

(a) The real, or in-phase, component of the frequency(b) The imaginary, or quadrature, component of the 
response. frequency response. 

Figure 7.10: Comparing the frequency domain responses of a steel spheroid and a complex suscep
tibility half-space . 

(Figure 7.10(a)) is greater for the half-space than either the vertical or horizontal spheroids. At low 

frequencies the electromagnetic response approaches the magnetostatic limit for the half-space and 

spheroid. Although the magnetic susceptibility of the spheroid is much greater than for the half-

space, the half-space response is greater than the spheroid due to the volume of magnetic material 

making a contribution to the secondary field. The differences in the quadrature response of the 
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half-space and spheroid can be observed in Figure 7.10(b). At low frequency the imaginary part 

of the spheroid response is zero while the soil response, due to its complex susceptibility, is non

zero. Within the frequency range of typical UXO detection electromagnetic induction sensors, the 

complex susceptible soil response is flat, while the spheroid response exhibits a resonance peak. The 

resonance peak of the half-space occurs at a much higher frequency than the steel spheroid. This 

characteristic has been exploited for detection using frequency domain sensors of metallic targets 

within magnetic soil (Wright et al., 2001; Huang and Won, 2004). 

The time decay response for the half-space and spheroid are compared in Figure 7.11. The l/t 

time decay of VRM soils is similar in magnitude to the steel spheroids. Unlike the half-space, the 

spheroid response does not follow a power law decay for the entirety of the time range. The response 

of the half-space is greater than the horizontal spheroid at all time channels. The response of the 

half-space is greater than the vertical spheroid at early and late times, with the spheroid having a 

larger response at intermediate times. 

Figure 7.11: Forward modelled time domain electromagnetic responses of a steel spheroid and a 
complex susceptibility half-space. 

7.5 Application to ITEP Landmine Test Lanes 

The International Test and Evaluation Program for Humanitarian Demining (ITEP) constructed 

landmine testing lanes to study the effect of different soil types on the response of typical metal 

detectors used for humanitarian demining. ITEP have considered a simple, empirical method for 

quantifying the amount of signal noise from the soil host (Muller et al., 2003). In this method a 
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metal detector without soil compensation is calibrated and a signal sensitivity is set such that the 

sensor responds to a predefined minimum signal. The maximum height at which the sensor re

ports a signal, referred to as the ground reference height, is then an indicator of the background 

soil noise. A Schiebel time domain pulse induction metal detector was used for the ground height 

measurement. 

We investigate the relationship between ground reference height and susceptibility change by 

considering data collected from a pair of test lanes in trials performed at Benkovac, Croatia and 

Oberjettenberg, Germany. The Benkovac test lane contained red, bauxite soil which was classi

fied as being uncooperative (i.e. the background soil produced a large background signal). The 

Oberjettenberg test lane soil consists of magnetite mixed with coarse sand, and has a relatively 

low background signal. The change in magnetic susceptibility of each lane was measured using a 

Bartington MS2B susceptibility meter. A susceptibility measurement was obtained with the MS2D 

susceptibility probe was used to determine the susceptibility at 980 Hz. Table 7.1 summarizes the 

susceptibility measurements of the lanes and the ground height measurement. 

The Benkovac lane has a larger ground reference height (and therefore a larger magnetic soil sig

nal) than the Oberjettenberg lane, even though the absolute susceptibility of the Oberjettenberg lane 

(X980Hz = 3000 ± 500 x 10_5SI) is much greater than the absolute susceptibility of the Benkovac 

lane (x9S0Hz — 154 ± 13 x 10_5SI). We can see how the change in susceptibility with frequency 

affects the magnitude of the measured response, and therefore the ground reference height mea

surement by modelling the susceptibility of each lane as a complex, frequency dependent quantity 

(figure 7.12). It is clear from figure 7.12 that the amplitude of l/t characteristic soil decay of the 

Benkovac test lanes is much greater than the amplitude for the Oberjettenberg decay, indicating the 

less cooperative nature of the soil with larger Ax-

To simulate the ground reference height test we calculate the signal as a function of sensor height 

above the surface at 45 microseconds after the transmitter step off. Figure 7.13(a) shows that, for 

the Benkovac and Oberjettenberg soils, the height at which a sensor measures a defined response 

magnitude is indicative of the soil noise. We generalize this result in Figure 7.13(b) by plotting 

the ground reference height as a function of A x for a number of soils varying in susceptibility 

magnitude. There exists a one-to-one relationship between the ground reference height and the 

change of susceptibility. This relationship is nearly independent of the magnitude in susceptibility. 
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a Benkovac: % = 154, Ax = 25.5 
i \t T Ob«rJ«tt«nburg: % = 3000, A%=6 

101 • Obarjettanburg: % = 3000, Ax = 0 

Time (s) 

Figure 7.12: Forward modelled time domain electromagnetic responses for half-space models with 
susceptibility models based on soil susceptibility measurements of Oberjettenberg and 
Benkovac landmine test lanes. 
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(a) The modelled time domain response at 45 mi-(b) Relationship between the ground reference height 
croseconds. and the change in susceptibility. 

Figure 7.13: Comparison of the Benkovac and Oberjettenberg soil responses as a function of sensor 
height. 
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The A x measurements and ground reference heights reported in Table 7.1 approximately match the 

modelled ground reference heights of Figure 7.13. 

7.6 Conclusion 

This chapter demonstrated that the theory of viscous remnant magnetization can be used to explain 

the characteristics of electromagnetic sensor data acquired in magnetic settings. Magnetic suscep

tibility models based on magnetic particles with a log-uniform distribution of time constants are 

considered. We generated complex susceptibility models from measurements under the assumption 

that, within the frequency range of electromagnetic sensors used for UXO detection, the complex 

susceptibility has a constant imaginary component and a real component that decreases linearly 

with the logarithm of frequency. Recent multi-frequency measurements of the complex susceptibil

ity have confirmed this characteristic (Li et al., 2005). Forward modelling of susceptibility models 

derived from Bartington MS2B measurements of Kaho'olawe soil have shown good quantitative 

agreement with measured data. A complex and frequency dependent magnetic susceptibility model 

is required to represent the magnetic characteristic of a viscous remanent magnetized subsurface. 

Our modelling helped explain results observed in field data sets acquire in Kaho'olawe and in test 

lanes built by ITER 
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Processing of Data Acquired in 

Magnetic Settings 

Detection and identification of UXO at sites with large geologic background signals can be very 

difficult. Figures 7.2 and 7.3 contain images of TEM and FEM data collected on the island of 

Kaho'olawe. The large frequency dependent component of susceptibility of Kaho'olawe soils pro

duce background responses of the same order of magnitude of UXO. 

Consider a target buried in a halfspace. The measured sensor data can be written as 

dobs = -p ifarge^ host} + n o i s e > (g.i) 

where dobs is the observed sensor data and T [target, host] represent the forward model that is 

function of the target and host. If the response of the target and host are approximately additive, we 

can write 

dobs = jrbg r / w s t i + jrt \ t a r g e t - \ + n o i s e 

(8.2) 
= db9 + dtar9et + noise 

where db9 = Tb9 [host] is the response due to the background host, dtar9et = [target] is the 

response due to the target, Jrint [target, host] represents the interaction between target and host. In 

most cases T1 [target] is chosen to be a dipole model representation of the target. 

A method of simultaneous estimating the parameters for the target and host was presented in 

Chapter 5. However, the most common approach to processing is to develop filtering techniques 

such that the background response dbg can be estimated, and subsequently subtracted from the data. 

These filtering methods assume that the geologic, and therefore electromagnetic, properties of the 

host material are spatially slowly varying, while the anomalies of compact targets have a relatively 
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smaller spatial wavelength. The filtered data is then inverted with the physical model [target] 

for the UXO response in free space. One of the major difficulties with this approach is the accuracy 

with which the background response dbg = Thg [host] can be estimated. In particular, movement 

of the transmitter and receiver relative to magnetic ground can produce significant small wavelength 

anomalies in the data (Walker et al., 2005b; Foley et al., 2005). High pass filters will have limited 

success in these cases. Our preferred approach to processing these data is to estimate a smoothly 

varying background geology, that is subsequently removed from the data. This approach requires 

accurate sensor positioning and orientation information to model the small wavelength variations. 

Techniques for processing data collected at remediation sites with large geologic background 

signals are considered in this chapter. A number of synthetic data will be used to demonstrate 

filtering, target picking, and parameter estimation of data collected in a magnetic geology setting. 

The objective is to determine what type of information can be recovered from electromagnetic data 

collected in regions with highly magnetic geology. 

8.1 The Electromagnetic Response of a Viscous Remnant Magnetic 

Halfspace 

In the previous chapter we outlined the equations for modelling the response over a layered earth. 

Let us consider a circular transmitter loop of radius a, carrying a current I, and at a height h above 

a 1-D layered earth. At an observation point at the center of the transmitter loop, the vertical 

component Hz and the radial component Hp of the H-field are 

where u0 = ^X2 - k2

0, kQ is the wave number of the air, and Jx is the first order Bessel function. 

P2i and Pn are elements of the propagation matrix P. 

For a half-space we can write 

Hp (u>) = 0 (8.3) 

(8.4) 

•oo 
M m o - / x o m e - 2 « 0 h ^jl{Xa)dX 1 + (8.5) 
PIUQ + jUnUi j u0 
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If we make the quasi-static assumption and assume a non conductive half-space, then uQ — u\ — A. 

The field is then 
, x  I a r 1 Mi - Mo c-2u0h 

Mi + Mo 
AJi (Aa) dA (8.6) 

We first split the equation into a couple of terms: 

In t°° 
e-2hX\Ji{\a)d\+-£ / XJ1(Xa)d\ 

2 Jn 
(8.7) 

and with the integrals carried out analytically, we obtain 

Hz (w) = — 
2 \2 + X a2 + {2h)' 

Ia 
13/2 + 2 

(8.8) 

The second term in Equation 8.8 is equal to the primary field. Therefore, the secondary field is 

2 \2 + X a2 + (2hY 
3/2 

(8.9) 

In cases where x < 2, 

Hi (w) « 4 3/2 xH (8.10) 
a 2 + (2h)2 

Therefore the resistive limit response is approximately proportional to the susceptibility. If we 

represent the magnetic susceptibility with equation 7.13 and assume that r 2 » TI , then the field can 

be written as 

^ ( l - l n M - , | ) (8.11) 

The corresponding result in the time domain can be obtained by taking the sine transform of the 

imaginary component of the secondary field. The step-off response of the time derivative of the H 

field is 

= 9 [H(u)] sin {ut)dw (8.12) 
Ot TT J0 
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Substitution of the imaginary component of Equation 7.13 into equation 8.12 gives 

[°° [tan-1 (UT2) - tan" 1 (wr i ) l sin (ut) du (8.13) 
2 / V 1 ) Jo 

dH _ _2I_ 
dt TT4 

a 2 + (2hY 

where a log-normal distribution of time constants is assumed. The sine transform identity 

I-e^ = I" tan"1 (^) sin (wx) dx (8.14) 
2co Jq \bJ 

can be rewritten as 
/>oo 

— e - t ' b = / t a n - i (w 0) S i n dy. 
2t 7o 

(8.15) 

Therefore the step-off response can be written 

dH _ _I_ (P_ 
d t 4 f a 2 + (2/1)' 

3 / 2 l n ( T 2 / r i ) t V / 
(8.16) 

For t < r 2 and t » n , 

c7i 

Xo 
3/2 In ( r 2 / T ! ) t 

(8.17) 
4 l a 2 + (2hf 

Equations 8.11 and 8.17 will be used as soil models. 

For constant sensor height and orientation, the measured time domain response and frequency 

domain response are proportional to G (\) = Xo/ log ( T 2 / T I ) . Therefore, in areas of low conductiv

ity soil, electromagnetic sensors act as viscous remnant susceptibility meters. To demonstrate this, 

we can compare susceptibility measurements with sensor data collected on Kaho'olawe. As part of 

SERDP project MM-1414 (Li et al., 2005), surface soil samples were collected from Grid 2E and 

their susceptibility measured with a Bartington MS2B susceptibility meter. Comparisons of the sus

ceptibility measurements and sensor data are shown in Figure 8.1. Figure 8.1(a) is a gridded image 

of the difference in the susceptibility AX measured by the Bartington MS2B susceptibility meter at 

frequencies of 4.7 kHz and 0.47 kHz. If we assume the susceptibility model of equation 7.13, we 

can show that the 
Xo 

log ( T 2 / T I ) 
log (0A7kHz/A.7kHz). (8.18) 
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Bartington MS2B - A x 

(a) Bartington MS2B susceptibility measurements 
(Ax)- White circles indicate sampling points. 

1470 kHz) 

Figure 8.1: Comparison of Bartington MS2B susceptibility measurements with electromagnetic 
sensor data. Data collected on the Kaho'olawe Grid 2E are presented. 
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EM63 and quadrature component GEM3 data are plotted in Figure 8.1(b) and (c), respectively. 

Clearly the three images of Figure 8.1 are similar to within a scaling factor. 

In the frequency domain, the response is proportional to the susceptibility (Equation 8.10) and 

not the susceptibility difference. Bartington MS2D measurements were taken on Grid 2E. The 

Bartington MS2D is a portable susceptibility meter that measures the modulus of the complex sus

ceptibility at frequency / — 0.98 kHz. Figure 8.2 compares measurements from Kaho'olawe Grid 

2E made by the Bartington MS2D sensor with the amplitude of the GEM3 data at 1470 Hz. Both the 

GEM3 and Bartington measurements identify an increase in signal in the lower right portion of the 

grid that was not evident in Figure 8.1. This increase in signal is not seen in the susceptibility and 

sensor data of Figure 8.1 since the increase is likely due to an increase in the static susceptibility. 

(a) Bartington MS2D measurements (b) Geophex GEM3 magnitude FEM data 

Figure 8.2: Comparison of Bartington MS2D susceptibility measurements with the inphase compo
nent of GEM3 data. The MS2D measures the phasor sum of the complex susceptibility 
at / = 0.98 kHz. 

8.2 The Effect of Height Variations on the Sensor Response 

We can use equations 8.10 and 8.17 to demonstrate the importance of sensor height accuracy. In 

both the frequency and time domain, the magnitude of the background response is scaled by the 

function 

Scale Factor (SF) = — 
a 2 + (2hY 

13/2 
(8.19) 
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Figure 8.3 plots this function for a loop with radius a=0.5m, normalized by the value at h = 0.3 m. 

Changes in height of only a few centimeters can change the signal by tens of percent. This formula 

can be used to study the effect of sensor height on the measured data. 

2 

0.5' ' ' ' 1 

0.2 0.25 0.3 0.35 0.4 
Transmitter Height (m) 

Figure 8.3: Scale factor normalized so the response is unity for a loop of radius a = 0.5 m and 
height h = 0.3 m. 

Example 1: A Simulation of VRM geologic background response due to height variations 

To demonstrate the importance of measuring the height of the sensor accurately, we forward model 

simulated height measurements. For this example we simulate heights based on the measurements 

made during a Geonics EM63 survey carried out on the FLBGR. Figure 8.4 has photographs of the 

GPO site. The site is relatively flat, but there are small "clumps" of dirt and grass that causes height 

and orientation variations in the EM63 cart. 

The height of the sensor was measured using a Trimble RTS laser positioning system. Fig

ure 8.5(a) shows the elevation measured during the survey, indicating the slight decease in elevation 

from the Northwest to Southeast corner (as is seen in Figure 8.4). The long wavelength elevation 

information is obtained through the application of a Butterworth filter (Figure 8.5(b)), and the short 

wavelength variations are obtained by subtracting the long wavelength component from the raw 

data. 

A new elevation dataset is constructed by estimating the power spectra of the detrended eleva-

197 



Chapter 8. Processing of Electromagnetic Data Acquired in Magnetic Settings 

(a) View of GPO towards the southeast corner. (b) Close up of ground 

Figure 8 . 4 : On the left is a photograph of the FLBGR GPO looking southeast. The elevation of 
the grid decreases as we move from the Northwest corner to the Southeast corner. The 
photo on the right shows the small scale topography 

Elevation_BWreg_wc1_red24 

Easting - 527600 

(a) Measured elevation 

Easting - 527600 

(b) Low-pass filtered elevation values 

Elevation_BWdata_wc1_red24 

-10 
Easting - 527600 

1827.55 

1826.98 

(c) Detrended elevation 

Figure 8 . 5 : Elevation data measured using an RTS at the FLBGR. The bottom plot portrays small 
scale height variations that will be used for simulating height variations in our synthetic 
modeling.4 All elevations are in meters. 
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tion, and adding a random phase to the FFT (Sinex, 2006). An inverse FFT produces elevation data 

with the same power spectrum as the measured elevation data. Figure 8.6 shows an example of the 

correlated random number procedure. We assumed that the error had a standard deviation of 2 cm. 

The bottom image of Figure 8.6 contains the corresponding response expressed as a percentage of 

the uniform VRM background. The bottom image was constructed by assuming a mean cart height 

of 30 cm. 

Simulated Heights 
Simulated Height 2000 > 1 > > 1 •-

(a) Height simulations and calculated response (b) Distribution of simulated height and response 

Figure 8.6: Simulated height values ((a), top) and the corresponding response expressed as a per
cent of the uniform VRM background response ((a), bottom). Heights are simulated 
using correlated random numbers generated from the power spectra estimated from 
Geonics EM63 height data. The distribution of simulated heights and corresponding 
response are plotted in (b). 

Example 2: Examining the relationship between height errors and data variances 

Figure 8.7 shows how different height errors translate to uncertainties in a channel of the measured 

sounding. For small changes in height the relationship between data error and height variation is 

approximately linear. A random height uncertainty of 2 cm (which will be assumed in these initial 

tests) produces a data uncertainty of 10 percent. However, the relationship becomes non-linear as 
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height variations increase. This is a reflection that the value measured by the sensor increases rapidly 

as the sensor gets closer to the ground. As the standard deviation of the height error increases, the 

uncertainty in the measured data is no longer adequately described by a Gaussian. The associated 

probability density for the errors will be non-symmetric. This example highlights the importance 

of filtering the measured height to help reduce the random uncertainty in height. However, filtering 

may not be possible in cases where cart data are acquired where there is significant small wavelength 

topography, such as small holes and bumps. In such cases, there will be small wavelength features 

in the data that reflect the height variations of the sensor. 

(a) Height uncertainty = 1 cm 

• a h • 0.02 m 
]j — 0.6, CT = 10.7 

0 10 
Percent Error 

(b) Height uncertainty = 2 cm 

(c) Height uncertainty = 5 cm (d) Height uncertainty = 10 cm 

Figure 8.7: Effect of height errors on sensor data acquired over VRM soils. The red line indicates 
a best fit Gaussian. For large height errors the histogram for data errors is asymmetric 
and even a biased Gaussian is a poor representation. 
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Example 3: Examining the relationship between sensor height and orientation on VRM 

response 

A series of tests were carried out to investigate the effect of micro-topography and coil orientation on 

TEM data collected on Kaho'olawe island. These tests were a part of investigations MM-1414 "Im

proving Detection and Discrimination of UXO in Magnetic Environments " and UX-1355 "UXO 

Target Detection and Discrimination with Electromagnetic Differential Illumination", both funded 

by the Strategic Environmental Research and Development Program (SERDP). The results of these 

tests are summarized in Walker et al. (2005b) and Foley et al. (2005). 

Both a coil tilt test and a coil height test were performed with a Geonics EM61 MK2 sensor 

in a highly magnetic area of Kaho'olawe. During the tilt test, data were collected with the coil 

at seven tilt angles (Figure 8.8). At the largest angle, the edge of the EM61 transmitter coil was 

(a) Photo of Geonics EM61 Mark2 tilt (b) Measured data 
test. The tilt angle is indicated by 0. 

Figure 8.8: Tilt test carried out on Kaho'olawe Island using a Geonics EM61 Mark 2. 

in contact with the ground. Tilting the coil 10 degrees forward results in an amplitude increase 

of approximately 30 mV. The height test varied the height of a horizontal Geonics EM61 with the 

ground (Figure 8.9). This was repeated for eleven heights ranging from 0 (EM61 coils resting on 

the ground) to 64 cm. As an example of how dramatic the effect of coil height can be, a coil posi

tioned at 36 cm instead of the normal survey height of 40 cm, will have an amplitude increase of 

approximately 80 mV. The height test measurements were modelled using viscous remnant mag

netic halfspace. The modelled behaviour of the signal with height (the blue curve in Figure 8.9) 

diverges from the measured response as the coil is closer to the ground. This may be due to the 

response of the coil being approximated using the field at the center of the receiver loop rather than 

explicitly integrating the flux over the loop. The effect of loop height is much more dramatic than 
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(a) Photo of Geonics EM61 Mark2 tilt (b) Measured (red dots) and modelled (blue line) height test data. 
test. The height of the coil indicated by 
h. 

Figure 8.9: Height test carried out on Kaho'olawe Island using a Geonics EM61 Mark 2. 

sensor orientation differences. 

8.3 The Additivity of Background and Target Responses 

Throughout this thesis we assume that the response of a target in a halfspace can be approximated 

well by adding the response of the target in free space and the response of the halfspace. The extent 

to which the additive assumption is appropriate can only be rigorously tested through the numerical 

modelling of Maxwell's equations. We can use the methodology of Das (2006) to estimate the first 

order effects of the background host on the target response. Das (2006) studies the effect of the 

background host material on the response function (for example see Grant and West, 1965) of a 

sphere, by (1) taking into account how the host material alters the primary field that illuminates the 

sphere and (2) taking into account how the host material alters the secondary field generated by the 

sphere that is measured at the receiver coil. 

Figure 8.10 demonstrates how the polarization tensor for a sphere would change for 3 differ

ent scenarios: (1) A non conductive background host with a magnetic susceptibility model based on 

Kaho'olawe sample 7468-2734BP-12" from Table 7.2 (X (/ = 0.46kHz) = 0.02807, x(f = 4.6kHz) 

0.02634), (2) A non conductive background host with a static susceptibility of x — 0.1, and (3) A 

non-magnetic host with a halfspace conductivity of 0.01 S/m. For these results a sphere with a ra-
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Receiver 
Radius = 0.25 m 

Transmitter 
Radius = 0.5 m 

Sensor height = 0.25 m 

Sphere Depth = 0.2 m 

• < W 1 x 1 ° 6 S/m 

(a) Geometry of the test. The diameter of the sphere is assumed to be 5 
cm, with a conductivity of 1 x 106 S/m, and a magnetic permeability of 
Ll = 100/io-

Figure 8.10: Studying the effect of a conductive or magnetic background halfspace on the dipole 
polarization tensor of a sphere using the formulation of Das (2006). Deviations from 
the sphere in free space polarization indicate non-additive interactions with the back
ground host. Although there are some differences in the spectral (frequency domain) 
response, the time domain response is not significantly altered. 
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dius of 5 cm is placed at a depth of 0.2 m. The height of the co-axial transmitter and receiver loops 

is 0.25, and the radius of the transmitter and receiver loops are 0.5 m and 0.25 m, respectively. 

Frequency domain response of the sphere's polarization tensor in free space and in the three 

different background geologies are plotted in Figure 8.10(b). The curves for the complex susceptible 

magnetic, static susceptible magnetic and conductive background cases represent the response of 

the sphere in the background host with the response of the halfspace subtracted. If the background 

response and sphere response were truly additive, each of the four different lines in Figure 8.10(b) 

would be equal. At lower frequencies the polarization tensor for sphere is affected by the presence 

of magnetic materials, while at higher frequencies, the response is altered more by the presence of a 

conductive background. These spectral responses are transformed to the time domain via a Fourier 

transform. Although there are some changes in the spectral (frequency domain) response, the time 

domain response is not significantly altered. 

8.4 Estimating the response of the background geology 

Our general approach to processing electromagnetic data is to invert data for model parameters m 

that are representative of the physical characteristics of the target. Since our forward modeling 

function T (m) is for a dipole in free space, we must estimate and remove the response due to 

geology. We assume that the response of the background geology and target response is additive 

dobs = dbg + garget + ( g 2 Q ) 

The background response d^g is estimated by fitting a soil model at each station to obtain G(x)-

A low pass filter is applied to G(x), and the predicted soil response dog is subtracted from dODS to 

obtain the target data dtarget-

This approach relies on the assumption that the small wavelength components in the data are 

due to compact targets, and not the geology. However, even if the magnetic properties of the soil 

are slowly varying, variations in cart height due to topography and topography itself, can add a 

significant high frequency component to the data. Therefore, our preferred approach is to estimate 
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a soil model from the data. 

Vsoti (t) — R (orientation, height) G (x) f (t) (8-21) 

where G(x) — X o / h i (T2/T1) for a half-space, and f (t) = 1/t for a step-off response. The 

function G (x) is assumed to be spatially smooth, while the function R can have high frequency 

spatial variations due to sensor position and orientation variations. If we assume a half-space model 

for the soil, then a single parameter that is a function of the low frequency magnetic susceptibility 

and upper and lower limits of the soil decay time constants characterizes the response at each station 

location. We estimate this parameter such that it is laterally smooth. This is achieved by fitting each 

sounding independently, then applying a low pass filter to the G (x), i.e. the susceptibility spatial 

distribution, rather than to the data directly. 

The tilt and height tests illustrate that even small changes in coil orientation and the distance 

between the coil and a highly magnetic sub-surface can produce significant amplitude variations. 

Therefore, the amount of processing carried out on data is dependent on the accuracy of the sensor 

positioning and orientation. If the positioning and orientation of the sensor is sufficient to model the 

high spatial frequency components of the background response, then the approach of subtracting a 

background signal followed by parameter estimation can be considered. Otherwise, the background 

noise that can be encountered would likely limit the amount of target information that could be 

extracted from the data. In such a case, the data processing should focus on improving target detec

tion and reducing false negatives due to soil, rather than determining shape and size characteristics 

through inversion. 

Figure 8.11 summarizes a procedure for processing data that incorporates background subtrac

tion. Once data have been collected, the data are then pre-processed to remove sensor related data 

artifacts (e.g. sensor drift), and to integrate positioning information. These data can then be used 

to estimate a soil susceptibility model. Estimation of a soil susceptibility is complicated by the 

presence of dipole signals due to compact metallic objects and the quality of sensor position and 

orientation information. The data predicted by the soil susceptibility can then be subtracted from 

the pre-processed data: 

Good Sensor Position Orientation Information: In this case, the small spatial wavelength 
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Assign low 
priority to anomaly 

E s t i m a t e t h e s p a t i a l I 
variability of j 

i m a g n e t i c s u s c p e t i b i l i t y i 

H i g h s p a t i a l f r e q u e n c y 
(short w a v e l e n g t h ) n o i s e 
d u e to s e n s o r m o v e m e n t 

will pollute t h e d a t a 
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C o m p a r e a n o m a l i e s 
with p r o p e r t e s of t h e 
E M r e s p o n s e of s o i l 

y e s 
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as high priority 

yes 

Label anomaly < 
soil related 

Figure 8.11: Processing EMI data in a magnetic setting. 

signal due to sensor motion can be predicted. The anomalies in the background-subtracted 

data are then inverted for dipole parameters. The resulting dipole parameters can then be 

incorporated into a feature vector for statistical classification. 

Poor Sensor Position and Orientation Information: In this case we would likely have to 

assume a constat elevation and orientation for the transmitter and receiver coils. The anoma

lies in the background-subtracted data may have a large amount of high spatial frequency 

(short wavelength) noise due to the unmodelled sensor motion. For this case, the objective 

should be simply to minimize the number of targets due to soil. 
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8.5 Testing EMI Processing Methods using simulated T E M Data 

In this section I outline the generation of simulated data sets that I will later use to investigate differ

ent processing techniques applied to electromagnetic data. These simulations are also included in 

the Strategic Environmental Research and Development Program (SERDP) funded project "Improv

ing UXO Detection and Discrimination in Magnetic Environments (SERDP Project MM-1414)" we 

are using data inversion simulations to quantify the effectiveness of different processing techniques 

applied to frequency domain and time domain electromagnetic data contaminated by magnetic ge

ologic noise (Li et al., 2005, 2006). The project is a joint research effort involving the University 

of British Columbia Geophysical Inversion Facility, the Colorado School of Mines, New Mexico 

Tech, and Michigan State University. 

Objective of our simulations include 

1. Assessing our ability of spatial filtering, used in conjunction with soil models, to estimate 

background geologic response, and 

2. Determining how the variance of class clusters in feature space is affected by filtering tech

niques, target geometries, and magnetic susceptibility characteristics. 

These simulations will help us optimize the processing methods for data sets with significant geo

logic noise. 

Due to the different possible survey modes, target types and geometries, and geologic signal 

variation characteristics, there are numerous data set types that can be modeled. A number of 

different survey parameters will be varied: 

• Target type: Targets from the ATC standardized test set will be modeled. Dipole models will 

be used to approximate the EM response, with polarization parameters being derived from 

data acquired on the ERDC UXO test stand. Figure 8.12 has pictures of some of the different 

ordnance that will be studied. These are overlaid on a feature space plot containing parameters 

that describe the polarization tensor magnitude. Within each grid, targets are placed at depths 

of 0.25 and 0.5 m. The targets are randomly oriented. 

• Background Geology: For all the simulated data sets, we will assume that the response of a 

UXO in a magnetic soil is the sum of the individual responses. 
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O O <3P 
20 mm 

10" 
10" 10" 10 10 10° 

Figure 8.12: Example of recovered values for different targets. Parameters were estimated 
through inversions of Geonics EM63 data that were acquired on the USACE 
ERDC test stand in Vicksburg, MS. 
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• Sensor Type: We are simulating data from multi-channel EMI sensors, since we want to ex

ploit the time and frequency domain characteristics of soils to improve detection. In particular 

we are focusing on the Geophex GEM3 and Geonics EM63 sensor. 

• Survey Geometry: Data will be modeled on 70 m square grids. For our initial simulations we 

focus on single sensors acquiring data along survey lines. We assume the commonly adopted 

survey acquisition parameters of 50 cm for line spacing and 10 cm along line for the station 

spacing. A sensor height of 30 cm is assumed. 

In this chapter, processing is applied to data simulated Geonics EM63 data for a 40 mm projec

tile and 60 mm mortar (see Figure 8.12 for photos). The 40 mm projectile is buried at a depth of 25 

cm and the 60 mm mortar is buried at a depth of 50 cm. 

8.5.1 Simulated Noise 

The inverse problem for estimating dipole parameters can be cast as an optimization problem. The 

mathematical background for this was presented in Chapter 3. Here we briefly present some essen

tial points. For the data of this study we only consider uniform priors such that our problem is to 

minimize a data misfit function subject to box constraints: 

minimize <f> (m) = i || V~1/2 (dobs - T (m)) fsubject to mf <rrii< mf (8.22) 

where % represents model parameters which have upper and lower bounds. Finding a model that 

minimizes the above equation involves defining a data covariance vector Vd, the data vector d o 6 s , 

the forward modeling function T (m), the constraints m\ and mf, and a numerical optimization 

procedure. The data vector d o b s is typically contaminated with noise: 

d° b s = ddipoie + ej (8.23) 

where e; is the noise on the ith datum. 

The source of data errors can generally be categorized as being components of the data that can 

not be modeled with the dipole forward modeling function F(m). The components of ei include 

modeling errors, sensor noise from natural and cultural sources, and processing artifacts. As 
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increases, the variance of the recovered parameters m increases. For example, for deeper targets the 

relative value of the data error compared to the target signal increases, and the ability to constrain the 

model parameters decreases. The choice of the least squares objective function is optimal when the 

errors et are Gaussian. Biased components of e; will reduce the quality of the estimates of m. The 

relationship between the data error bias and estimated values of m requires numerical simulations. 

A couple of examples of where biased components could be introduced include using a dipole 

model where the target response contains significant multipole components, and when background 

removal filtering produces data artifacts. In this section we describe how the noise is included in the 

simulated data. 

8.5.2 Baseline noise 

We define baseline noise to be the random signal produced in the sensor in the absence of nearby 

conductive bodies. There are numerous sources of EMI noise (for example Nabighian and Macnae 

(1991)). Efferso et al. (1999) examined the effect of A M and very low frequency (VLF) electro

magnetic transmitters on TEM measurements. They observed for their particular TEM instrument 

that the standard deviation voltage signal exhibits a l/t proportionality when A M transmitter noise 

is log-gated and stacked. Munkholm and Auken (1996) showed that log-gated and stacked white 

noise maps onto the TEM response as errors with a standard deviation exhibiting al/y/t decay. 

Figure 8.13 shows a calculated noise floor (in green) for a grid of Geonics EM63 data acquired at 

FLBGR and the theoretical decay due to Gaussian input noise. The magnitude of the noise 

was estimated by calculating data statistics from regions on the grid where there were no UXO 

anomalies. For these simulations, we assume that the baseline error can be characterized by a single 

standard deviation for the entire grid (although past experience has shown that the magnitude of the 

baseline noise can vary as a function of Geonics EM63 survey event). Figure 8.13 plots realizations 

of the synthetic noise as a function of time channel. 

8.5.3 Sensor Position Uncertainty 

Sensor position and orientation are generally recorded with some combination of GPS, robotic total 

station, and IMU sensor. Inaccurate position and orientation information are sources of modeling 

error. For these simulations we assume that the pitch, roll and yaw can be measured to within an 
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Baseline Noise 

(a) Calculated and theoretical noise floor for Grid 1914 at 
FLBGR. The calculated noise floor was based on Geonics 
EM63 data collected over areas where there were no UXO 
anomalies. Data over validated 50 calibre bullets, and 20 
mm and 37 mm projectiles are also plotted. 

Time (ms) 

(b) Simulated baseline noise for the Geonics EM63. The 
standard deviation of the noise for each time channel is 
the same as the noise from data acquired at FLBGR. At 
each time channel the realizations shown in the Figure 
are represented by a Gaussian probability. The dark and 
dashed lines respectively correspond to 1 and 2 standard 
deviations. 

Figure 8.13: Baseline noise for magnetic soil simulations. 

accuracy of 2 degrees. We assume the position errors are normally distributed with 2 cm standard 

deviation in northing, easting, and height. Our past tests have shown that the sensor data are more 

sensitive to sensor height variations than to position and orientation errors. 

8.5.4 Simulating the Magnetic Background Signal 

We assume that there are two components of the background geologic response: (1) A long wave

length variation due to changes in magnetic susceptibility associated with geologic and/or weather

ing features, and (2) Short wavelength variations due to topography and sensor motion relative to 

the surface. 

For the long wavelength variation, we assume that susceptibility decreases smoothly from a 

maximum at the South (y= 0 m) end of the grid to a minimum at the North (y = 70 m) end of 

the grid (Figure 8.14). There are three different magnitudes of background response considered. 

Background responses of 100 mV, 50 mV, and 20 mV in the first time channel are constructed. The 

response at the North end of the grid is one-half the value of the response at the South end of the 

grid. The time decay of the background response has al/t magnitude. 
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Figure 8.14: Variation of geologic background responses along a North/South line. The back
ground response with a maximum of 50 mV and minimum of 25 mV is used for 
the examples of this chapter. 

Smaller wavelength variations in the background response are assumed to be from either cart 

positioning (i.e., height and orientation) or from small topographic features, such as surface depres

sions (e.g. potholes) or small mounds of soil. For this first set of simulations, the recorded height 

has a 2 cm standard deviation noise added to the nominal height 30 cm. A shorter wavelength 

background response is simulated by using correlated random numbers (Sinex, 2006). The smaller 

wavelength variations in the background response are simulated from the estimated power spectra 

of Kaho'olawe test plot data. The standard deviation of the small wavelength background response 

is set to be 15 percent of the background response. 

8.5.5 Examples of Simulated Data Sets 

In this chapter, simulated data from a 40 mm M385 projectile and a 60 mm mortar are used to 

demonstrate filtering and inversion. Figure 8.15(a) shows the first channel of modeled data from a 

40 mm projectile buried at a depth of 25 cm and randomly oriented at 36 locations in a rectangular 

grid. The free-space response of the 40 mm projectiles has a maximum first time channel value 

of 15 mV (Figure 8.15, upper left). The long wavelength background response decreases from a 

maximum of 50 mV at the South end of the grid, to a minimum of 25 mV at the North end of 

the grid. The standard deviation of the correlated noise is defined to be 15 percent of the long 

wavelength regional response. Fifteen percent corresponds to a height variation of approximately 3 

cm. The spatial characteristics of the modeled response are based on Geonics EM63 data acquired 
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(a) ATC 40 mm M385 simulated data 
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(b) ATC 60 mm mortar simulated data 
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Figure 8.15: Data simulated for a 40 mm buried at a depth of 50 cm. The first time channel of 
data is plotted. UXO are placed at all points on the grid in the upper left plot. The 
simulated soil response is shown in the top right, and simulated survey data are shown 
at the bottom. 

on Kaho'olawe. A radial power spectra was estimated for a region within a Kaho'olawe grid with a 

background of approximately 50 mV. The total soil (i.e., non-target) response is plotted in the upper 

right of Figure 8.15. The total signal is plotted in the bottom image of Figure 8.15. The responses of 

the 40 mm projectiles are not easily identified in the total signal. The 40 mm projectile has a weak 

small amplitude signal due to its small size, aluminum construction and, of course, its distance from 

the sensor. 

The different components of simulated data for a 60 mm mortar buried at 50 cm in a background 

that has a maximum response of 50 mV in the first time channel is shown in Figure 8.15(b). 
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8.6 Picking Targets in highly magnetic soils 

The goal of target picking is to generate a list of survey locations at which there is a high probability 

that a target is present. The data can be written as 

dobs = garget + n o i s g (g 2 4 ) 

In this case, we define the noise to be the random baseline noise of the instrument and the spatially 

correlated signal from topography and sensor movement. Since we are not fitting the data with 

a model, modeling error is not considered a noise source. Fundamentally, target picking labels a 

survey location as a potential target when the sensor data dobs exceeds some threshold level. The 

choice of threshold depends on the characteristics of the noise and the target signal. 

Target picking is an example of signal detection theory and hypothesis testing. The null hypoth

esis Ho is that the signal is due to noise. The alternative hypothesis Hi is that the signal is from 

a buried target. Let p (X\HQ) be the pdf of x under Ho, i.e., the pdf of the noise. The variable x 

is some test statistic of the data (which can be the data itself). Let p (x\Hi) be the pdf of x under 

Hi, i.e. the pdf of the target. For a threshold level r , the probability of false alarm PFA and the 

probability of detection Pp is defined as 

PFA = P[X>T;H0} (8.25) 

PD = P[X>T;HI], (8.26) 

where the test statistic is x. The definitions of PD and PFA are expressed graphically for the ex

ample of a 40 mm projectile buried at a depth of 25 cm in a background geology whose mean 

response in the first time channel is 20 mV in Figure 8.16(a). The curves in Figure 8.16 were gener

ated through simulations and fitting the experimental histograms with log-normal distributions. The 

ability to detect the 40 mm projectile is characterized by the width and separation of the two pdfs. 

As the depth of the target decreases, the signal-to-noise ratio of the anomaly will increase. The 

anomalies for these shallower targets will have a poorer fit to the soil model and the soil and target 

distributions will have greater separation. The ability to discriminate is summarized with a receiver 

operator characteristic (ROC) curve (Figure 8.16(b)). An ROC curve is constructed by plotting the 
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Test Statistic (Soil Misfit) Proability of False Alarm (P p A ) 

(a) The pdf for a depth of 25 cm. (b) ROC curve for different target depths 

Figure 8.16: Soil fitting results for data simulated for a 40 mm projectile in a background geology 
whose mean response in the first time channel is 20 mV. 

PFA against the as a function of the test statistic. As we vary the soil misfit test statistic, a 

smooth curve is traced. It is clear that as depth decreases, the ability to discriminate improves. For 

a depth of 20 cm, it is possible to define an operating point such that all the 40 mm projectiles can 

be identified without detecting soil. 

In general, types of targets to be found in a survey are not known ahead of time and, thus, 

p(x\Hi) is generally unknown. In this case, the natural approach is to simply sort prospective 

targets by there probability of false alarm. For the single time channel case, this means picking 

points on a map where the measured data exceeds some threshold and sorting those values by the 

amplitude. 

Target picking using a single channel of data 

To study target picking using a single time channel case, let us use the first time channel of the 

synthetic data sets (Figures 8.15(a) and (b)). We assume that the sensor height is 30 cm and the 

transmitter is horizontal, such that R is constant. Due to the spatially varying long wavelength 

background response we must either (1) define a spatially varying threshold must be defined, or (2) 

remove the background response through filtering. We choose to remove the background response 

for these example. 
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Figure 8.17 demonstrates the application of a simple low pass Butterworth filter to the image 

of gridded raw first time channel data image, and the subsequent picking based on the filtered 

image. Each image contain 10 cm square pixels. The gridded raw data are shown in each of 

the aforementioned figures upper left panel, with the low pass image plotted in the top right panel. 

Targets are picked using the image of high passed data, and the results are plotted in the bottom right 

. corner. The criteria for labelling an anomaly are: (1) the pixel value is greater than a threshold of 10 

mV and (2) there are at least 3 connected pixels that exceeds the threshold. The small wavelength 

variations due to cart motion and topography are often picked. The number of non-UXO target 

picks increases in the South end of the grid, where the magnitude of the VRM is the highest. 

Target picking using the misfit to a soil model 

With only a single time channel of data, we cannot use the characteristic temporal or frequency 

response of soil to reduce the number of geologic related peaks. Here we use the Geonics EM63 

with potentially 26 time channels of data. If we fit a soil model to the data picks, we would expect 

that the misfit would be larger when the anomalies are due to UXO. The fitting procedure involves 

solving for a soil model that minimizes the least squares misfit between the measured sounding and 

soil response. The soil response is given by a characteristic soil decay multiplied by an amplitude 

A, i.e., Fsoil = Af (t). Figures 8.18 and 8.18 shows the misfit of the 40 mm and 60 mm data sets 

to the soil response. The soil misfit image is much more useful for target picking than using simply 

a single time channel of data. 

From these results, we can conclude that target picking can be improved by using the soil misfit 

as a test statistic. Simulations can be used to study the effectiveness of this strategy for a given 

target and background response. Let us consider data simulated for a 40 mm projectile buried at 

a depth of 25 cm and in a background geology whose mean response is 20 mV, and has a short 

wavelength background noise with the same correlation lengths of Kaho'olawe data. The standard 

deviation of the short wavelength noise is 15 percent of the long wavelength response (i.e., 3 mV). 

Soundings with and without a target present are fit with a soil model, and are then used to esti

mate the pdf for soundings from soil (p (4>\ Ho)) and pdf for soundings from the 40 mm projectile 

(p (4>;H\)). Figure 8.20 compares both soil and 40 mm misfit distributions as a function of the 

misfit (Figure 8.20(a)) and the log of the misfit (Figure 8.20(b)). The log normal distribution is a 
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(b) ATC 60 mm mortar 

Figure 8.17: Target Picking results for a 40 mm projectile and 60 mm mortar buried in a magnetic 
background. For both data sets a 3 pixels must exceed the picking threshold of 10 mV 
to be picked. Target picking using the high pass filter results in many false positives 
due to large magnitude of the spatially correlated background response. 
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(a) The amplitude of the soil response is plotted in the top right image, with the 
misfit and log-misfit to the soil response plotted in the bottom two plots. 

Time Channel 1 

(b) Comparison of the first time channel raw data with the soil misfit 
along the line Easting = 10 m. The red triangles indicate the location of 
targets. 

Figure 8.18: Soil fitting results for the 40 mm projectile data. At each location, the sounding data 
from the EM63 is inverted to find a best fitting soil model. It is clear the magnitude of 
the 40 mm response is similar to the soil response, and that the fitting of a soil model 
provides limited advantages for target picking purposes. 
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(a) The amplitude of the soil response is plotted in the top right image, with the 
misfit and log-misfit to the soil response plotted in the bottom two plots. 
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(b) Comparison of the first time channel raw data with the soil misfit 
along the line Easting = 10 m. The red triangles indicate the location of 
targets. 

Figure 8.19: Soil fitting results for the 60 mm mortar data. At each location, the sounding data 
from the EM63 is inverted to find a best fitting soil model. The 60 mm mortar is a 
much larger target than the 40 mm projectile, and therefore is much easier to detect 
in the raw data. The soil misfit has very distinct anomalies over each of the buried 60 
mm. 
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(a) Soil misfit <j> 
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Figure 8.20: Soil target histograms for a ATC 40 mm projectile buried at a depth of 25 cm. The 
long wavelength background response is 20 mV. 
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good representation of the pdf of the soil misfit. The experimental cumulative distribution function 

(i.e. the cdf obtained by binning and summing the soil misfit) and the theoretical log normal cdf are 

compared in Figure 8.21. 
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Figure 8.21: The pdf and cumulative distribution for a 40 mm buried at a depth of 25 cm in a 
magnetic background that has a response of 20 mV in the first time channel. The 
quantities p* and a* are the mean and standard deviation of log ((f)). 

The ability to accurately pick targets depends on the separation and widths of the soil and 40 

mm pdfs. As the overlap of the pdfs for soil and target misfits decreases, so does the probability of 

false negatives and misses. For a given geologic setting (and therefore soil pdf) the effectiveness of 

target picking relies on (1) the similarity of the target response to the soil model and (2) the signal 

strength. The main influence on signal strength is the depth of the target. Figure 8.22 compares the 

pdfs for a 40 mm at depths of 25 cm and 50 cm. The pdf for the 40 mm at 50 cm is very similar to 

the pdf of the soil, thereby indicating that using the soil misfit for detecting this target will not be 

successful. The ROC curve for a number of different 40 mm depths are plotted in Figure 8.16(b). 

The ROC curve is diagnostic of the performance of a classifier as a tradeoff between the probability 

of false alarm and probability of detection. The ROC curve shows that a 40 mm at 50 cm has a ROC 

curve that nearly follows the line PFA = PD, which indicates that when the 40 mm is at 50 cm 

deciding whether a anomaly is due to soil or a target with soil misfit will not perform much better 
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(a) Soil misfit distributions for depth of 25 cm. 
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(b) Soil misfit distributions for depth of 50 cm. 

Figure 8.22: Soil target histograms for a ATC 40 mm projectile buried at a depth of (a) 25 cm and 
(b) 50 cm. The long wavelength background response is 20 mV. The pdf for the soil 
and target nearly overlap when the 40 mm is 50 cm deep. 
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than simply flipping a coin. In contrast, a 40 mm at 20 cm has the perfect rock curve, with no false 

alarms prior to picking every all the targets. 
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8.7 The accuracy of filtering when estimating the background 

response 

Since our forward modeling function T ( m ) is for a dipole in free space, we must estimate and 

remove the response due to geology. We assume that the response of the background geology and 

target response is additive 

The background response db9 is estimated by fitting the soil model of equation 8.17 at each station 

to obtain G(x)- A low pass filter is applied to C7(x), and the predicted soil response db9 is subtracted 

from d o 6 s to obtain the target data d t a r s e t . The inverse problem is then to minimize the data misfit 

In this section we filter the data sets of Figure 8.15. Results are shown in Figure 8.23. A simple 

Butterworth filter is used to estimate the background response. The low amplitude signal from the 

40 mm projectile, and the similarity between the spatial wavelength of the background response and 

target anomaly result in a very poor recovery of the target anomalies. Filtering the 60 mm projectile 

data produces better results. 

We quantify the ability to recover the true target data by calculating the difference between the 

estimated and true target data (Figure 8.24). We call this value the"absolute error" (as opposed 

to a relative, or percent error). The "absolute error" for the first time channel of data is shown in 

Figure 8.24. Data from a 5 m square region about each target is used for the calculation. The three 

histograms of Figure 8.24 show: (a) the distribution of the error for targets in the region when the 

average background response is 25 mV (y > 4 5 ) , (b) the error distribution for targets in the region 

where the average background response is 50 mV (y < 25m), and (c) the error for all the targets 

within the 70 m grid. The histograms confirm that the error is greater in areas where the magnetic 

background response is larger. In addition, there is a slight negative bias in the "absolute error" 

distribution, suggesting that we are underestimating the contribution of the background response. 

d o b s = db9 + d t a r 9 e t + noise (8.27) 

* = \\\Vd~1/2
 ( d ^ e t - ^ ( m ) ) | | 2 

(8.28) 
1 
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Figure 8.23: Estimation of target signals through high-pass filtering of the data. Filtering results 
along the line Easting = 10 m are plotted. 
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(a) A 40 mm projectile buried at a depth of 25 cm. 
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(b) A 60 mm mortar buried at a depth of 50 cm. 

Figure 8.24: Accuracy of estimating target anomalies by subtracting a smoothly varying back
ground response. Absolute error is defined as the estimated background minus the 
true target data. Data are within a 5 m square centered on the target. 

226 



Chapter 8. Processing of Electromagnetic Data Acquired in Magnetic Settings 

8.8 The effect of V R M noise on recovered model parameters 

The success of dipole model based discrimination algorithms depends on the ability of the data to 

constrain the inversion for the dipole parameters. To demonstrate this process we process synthetic 

data collected over a 60 mm mortar. We compare results from inverting: (a) synthetically generated 

data for 60 mm mortars buried in a non-magnetic background and (b) data with a background geol

ogy. The synthetic data set is 70 m square, with a long wavelength background geologic response 

that decreases smoothly from 50 mV at the south end of the grid, and 25 mV at the north end of the 

grid. Correlated noise is added in the same manner as the examples presented earlier. The 60 mm 

mortars are buried at a depth of 50 cm. 

The background geology was estimated by using a low pass Butterworth filter. The background 

response is subsequently subtracted from the observations (Figure 8.25). Data within a 1.5 m cir-

Raw Data Filtered Data 

0 20 40 60 0 20 40 60 
Easting (m) Easting (m) 

Figure 8.25: Data set with magnetic geology (left) and with the magnetic geology filtered and sub
tracted (right). 

cle radius centered about the picked targets were inverted for the dipole polarization tensor. The 

axial and transverse components are parameterized with the function L(t) = kt~@ exp (—1/7). 

The dipole parameters are obtained through the parameter estimation techniques of Chapter 3. Fig

ures 8.26(a) and (b) shows the data fit for a 60 mm mortar in a non-magnetic background and 

magnetic background, respectively. In the non-magnetic background case, the residual appears ran

dom. The magnetic background case was taken in a part of the grid where the mean background 

response is 50 mV. When inverting this anomaly, the residual shows background noise that appears 
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spatially correlated. 

Observed Predicted Residual 

(a) Example of an inversion of data with a non-magnetic background 
Observed Predicted Residual 

g -]Q ]-\ 12 9 1 0 1 1 1 2
 9 10 11 12 

(b) Example of inversion of data with magnetic background filtered. 

Figure 8.26: Inversion of synthetically generated 60 mm mortar data. The white lines in (b) indicate 
the synthetically generated cart locations. 

Table 8.1 lists the recovered parameters for the data fits in Figure 8.26. The inversion of data 

without a magnetic background host clearly recovers the 60 mm parameters more accurately than 

the inversion of data where a magnetic background response was removed via filtering. In particu

lar the depth derived from the filtered data is shallow, resulting in low estimates of the polarization 

magnitudes kx and k2. Inversion results for all the targets are plotted in Figures 8.27 to 8.29. Param

eters derived from the non-magnetic background data are plotted using blue circles and parameters 

derived from the filtered magnetic background are data plotted using red triangles. The true values 

are indicated by a green box. Some observations: 

• The SNR for both data sets was not high enough to constrain the estimated depth. Figure 8.27 

plots the estimated depth vs. fci, i.e., the magnitude of the axial polarization. It is clear that 

there is a trade-off between the depth and the magnitude of the axial polarization. 

• The non-magnetic background data produces a cluster near the true polarization amplitudes 
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Table 8.1: Comparing recovered parameters for data in Figure 8.26. 
Non-Magnetic Magnetic Background 
Background Filtered 

Known Recovered Standard Recovered Standard 
Parameter values Parameters Deviation Parameters Deviation 

Northing x (m) 9.96 9.93 0.02 10.02 0.01 
Easting y(m) 9.73 9.77 0.02 9.73 0.02 
Depth z (m) 0.50 0.51 0.03 0.05 0.02 
4> (degrees) - -1.0 65.2 6.3 4.2 
9 (degrees) - 4.9 3.4 127.6 2.5 

h 11.17 11.28 2.23 0.40 0.41 
Pi 0.58 0.61 0.02 0.30 0.70 
7i 3.21 3.44 0.33 1.24 1.25 
k2 

1.83 1.26 0.24 0.37 0.03 
02 1.08 1.24 0.12 0.78 0.03 
72 2.89 16.33 44.76 12.65 4.34 
CorrCoeff 0.945 0.873 

9/N 0.857 0.888 
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Figure 8.27: Magnitude of the axial polarization (fci) and depth. 
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ki and k2 values (Figure 8.28(a)). Accurate estimation of the polarization amplitudes are not 

possible with the filtered data. 
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(a) Magnitude of the axial (fci) and transverse (fo) polariza
tions. 
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(b) Example of inversion of data with magnetic background 
filtered. 

Figure 8.28: Inversion of synthetically generated 60 mm mortar data. 

• Although the amplitude of the axial polarization is not well constrained by the filtered mag

netic data, the decay parameters 71 and (3\ are relatively well constrained (Figure 8.28(b)), 

will likely be the best derived parameters for identification. 

• Figure 8.29 shows the recovered polarization curves, confirming that the filtered magnetic 

background data are unable to estimate the amplitude of the axial components while correctly 
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estimating its decay characteristics, and the transverse components of the data are poorly 

constrained. 

Axial Polarization Transverse Polarization 

Time (ms) Time (ms) 

Figure 8.29: Recovered polarizations when inverting the 60 mm mortar data. The amplitude of the 
axial polarization is poorly constrained by the filtered data. Neither the amplitude nor 
decay behavior of the transverse polarization is well constrained by the filtered data. 
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8.9 Processing of data collected on Kaho'olawe Island, Hawaii 

Geophysical data were collected on the island of Kaho'olawe, Hawaii as part of an Environmental 

Security Technology Certification Program (ESTCP) project to determine the effectiveness of EMI 

sensors fielded in areas with a large background geologic response (Cargile et al., 2004). Ordnance 

and ordnance related scrap were emplaced in a number of test plots. In this section we will apply 

target picking techniques on Geonics EM63 time domain and Geophex GEM3 frequency domain 

electromagnetic data collected over ESTCP Grid 2D and 2E (Table 8.2). 

Table 8.2: Ground truth for Grids 2D and 2E. 
Label Target Name X(m) Y(m) Depth (m) 

1 Grid stake 0.00 0.00 0.00 
2 Small Frag 29.04 1.36 0.15 
3 2.75 ROCKET WARHEAD 56.17 3.70 0.38 
4 MK-82 P. B. W/CON FINS 9.72 4.32 1.22 
5 Large Frag 49.92 5.15 0.65 
6 LAAW 54.15 5.52 0.13 
7 Small Frag 4.58 5.70 0.10 
8 Small Frag 22.31 5.82 0.10 
9 81 mm Mortar 40.96 8.56 0.35 
10 Med Frag 35.79 8.79 0.35 
11 Large Frag 13.69 9.20 0.90 
12 MK 76 P.B. (BDU 33) 23.32 10.20 0.71 
13 Med Frag 48.35 10.56 0.20 
14 5" HE PRACTICE 43.08 12.31 0.91 
15 MK-3 PRACTICE BOMB 15.96 12.75 0.23 
16 MK-81 P. B. W/S.E. FINS 7.92 12.77 1.02 
17 20 MM 36.36 13.45 0.15 
18 Large Frag 53.41 15.64 0.55 
19 2.75" ILLUM 20.96 16.04 0.15 
20 60 MM 12.63 16.21 0.20 
21 SMAW ROCKET 4.40 20.86 0.76 
22 Large Frag 10.15 20.94 0.70 
23 MK 76 P.B. (BDU 33-(NOSE) 56.52 23.60 0.23 
24 60 MM 28.32 26.63 0.15 
25 Grid stake 60.07 30.02 0.00 
26 Grid stake 30.09 30.03 0.00 
27 Grid stake 0.08 30.04 0.00 
28 Grid stake 30.00 0.00 0.00 
29 Grid stake 60.00 0.00 0.00 
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8.9.1 Geonics EM63 T E M data 

Naeva Geophysics, Inc. collected Geonics EM63 data at the ESTCP test site. Data on Grids 2D and 

2E were collected on 60 m long, east-west lines with a linespacing of 50 cm. Data were collected in 

three 10 m wide sections. Before and after each section data were collected with the EM63 sensor 

elevated such that an in air measurement could be recorded, and sensor drift could be estimated and 

removed. 

Sensor positioning were recorded with a GPS unit. Sensor orientation and height information 

were not provided with the data we received. For this analysis, we assume that the transmitter loop 

is at a height of 40 cm, and we assume that the loop is perfectly horizontal. Since we do not have 

accurate height and orientation information will not attempt to estimate the background response 

through the use of a low pass filter. 

Figure 8.30 contains a plot of the sensor response for the first and tenth time gates, centered at 

£=0.18 ms and £=0.72 ms respectively. The weathering characteristics of the area results in a zone of 

high susceptibility that runs diagonally from the lower left to the upper right corners of the gridded 

data images (Li et al., 2005). The high susceptibility causes background responses of greater than 

300 mV in the first time channel of the EM63 data. The lowest level of background responses are 

approximately 50 mV in the lower right corner of the grid. 

A soil model is fit to each of the soundings recorded within the grids. The fitting procedure 

involves solving for a soil model that minimizes the least squares misfit between the measured 

sounding and soil response. The soil response is given by a characteristic soil decay multiplied by 

an amplitude A, i.e. Tsml — Af (£). Therefore, the fitting involves solving for a single amplitude 

parameter A, Figure 8.31 contains gridded images of the best fit amplitude A and misfit 4>. The 

different sections of data being joined at y = 10 m and y = 20 m produce overlapping lines which 

result in some gridding artifacts. Several of the anomalies in the soil misfit image correspond to 

buried items (see Figure 8.34 for locations of known buried items). Anomalies not corresponding 

to emplaced items may be due to a buried metallic target, since it is possible that the site was not 

completely cleared of metal prior to preparing the test site. 

Although it appears that several of the anomalies in Figure 8.31 correspond to emplaced items, 

we will not use the image for target picking purposes. Instead, our approach is to determine, for 

each sounding within the grid, the probability that the signal is due to soil (i.e. the null hypothesis). 
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Figure 8.30: The first and tenth time channel of Geonics EM63 data collected over Grid 2D and 2E 
on Kaho'olawe Island, Hawaii. 
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Soil Model Amplitude 
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Figure 8.31: The soil model amplitude A and misfit <p for Geonics EM63 data collected on 
Kaho'olawe. 
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Since we do not have prior knowledge of the target types in the grid, we do not have an estimate 

of the pdf for the target misfits. Therefore we base our picks on the probability of false alarm 

PFA- Calculating PFA requires an estimate of the statistics of the soil misfit for the data set. The 

estimated probability density function and corresponding cumulative distribution function allows us 

to estimate the probability of false alarm PFA for each sounding. That is, if a sounding has a soil 

misfit that is unlikely to belong to the distribution of soil misfits, then it will be classified as a target. 

Figure 8.32 contains plots of the misfit distributions. The upper plot shows a histogram of the 
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Figure 8.32: Values of misfits when fitting Geonics EM63 soundings in Grids 2D and 2E with a 
soil model. 

raw misfit values and the lower plot shows a histogram of the log of the misfit values. Values of 

misfit greater than 250 are considered to be non-soil and are therefore not included when calculating 

the distribution statistics. Similar to the synthetic data results, the distribution of misfit values 

are well modelled with a log normal distribution. The mean of log (4>) is 3.24 and its standard 

deviation is 0.85. The red lines plotted on the histograms are distributions with this mean and 

standard deviation. The estimated cumulative distribution function is plotted in Figure 8.33. For 

each sounding a best fit soil model is calculated, and the misfit of the soil model is used to calculate 

probability of false alarm 
roo 

PFA= P (X) dx=l-cdf (</>) (8.29) 
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Figure 8.33: Estimated probability density function and cumulative density function for the soil 
misfit of the Kaho'olawe EM63 data. 

Figure 8.34(a) plots results of target picking according to PFA- Grey dots mark locations of each 

sounding and the emplaced items, listed in Table 8.2, are indicated by circles (fragments and scrap 

items) and squares (ordnance items or corner grid stakes). Two thresholds for PFA are plotted; 

soundings with P F A < 0.005 are identified by blue circles, and soundings with PFA < 0.001 are 

identified by red stars. A good target picking algorithm would be able to identify all the known 

targets (i.e. minimizing false negatives), with a minimal number of picked targets resulting from 

non-metallic items (i.e. false positives). It is difficult to determine the number of false positives in 

this example, since there are possibly targets present that were not cleared prior to preparing the test 

site. Indeed, when I visited Kaho'olawe, I found that there were pieces of metal present in areas 

that were classified as cleared. 

In any case, let us compare the picked targets with the locations of the known emplaced items. 

Setting a threshold of PFA < 0.005 results in correctly locating all but 3 items: Targets 4, 17, and 

21. Target 21 is a Shoulder launched Multi-purpose Assault Weapon (SMAW) Rocket. A SMAW 

rocket has a diameter of 84 mm. This particular rocket was reported to be buried at 76 cm which, 

due to its size, would be difficult to detect. Target 17 is a 20 mm projectile at a depth of 15 cm. 

Missing the 20 mm projectile is not unexpected, as the spatial size of the anomaly and the anomaly 

magnitude would be quite small. Target 4 is listed as a MK-82 at a depth of 1.22 m. Although 1.22 
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Figure 8.34: Target picking results when using the PFA- Sounding locations are indicated by gray 
dots. Gray circles indicate emplaced non-UXO items such as frag, while gray squares 
indicate emplaced UXO items. 

m is considered to be at the limit of detection depth for a Geonics EM63 sensor, the MK-82 is a type 

of 500 lb bomb that is 2.21 m long and 10.75 inches (221 mm) in diameter. There are a few reasons 

why the target picking might not of been able to identify the MK-82. It is possible that the anomaly 

within a couple of meters to the northwest of the groundtruth location is due to the buried MK-82. 

In addition, the MK-82 buried may be corroded, and thus have a weak signal. A final possibility 

is that the measured decays of the MK-82 may be similar to the characteristic soil decay. As the 

EM63 moves above a non-spherically symmetric target, the axial and transverse components will 

be "illuminated" at different angles by the primary field. This results in the observed decay (which 

is a linear combination of the target's axial and transverse polarizations) varying with position. 

However, if the signal-to-noise ratio of an anomaly is too low to allow for the collection of data at 

a number of locations, then the response might not change appreciably. If this response happens to 

be similar to the soil, the target will not be identified using a soil model misfit. This mechanism 

for false negatives is unavoidable. Responsible application of this method requires modelling the 

soil misfit for targets that may be encountered in a survey, and then generating receiver operator 

characteristic curves to quantify the success of the method. 

When using PFA < 0.005 as a threshold, we see that there are a number of false positives. 

Decreasing the threshold to 0.001 (red stars) reduces the number of false positives to 7, but also 

increases the number of misses. In particular, targets 11 and 18 are no longer picked when the 

threshold is decreased. For these data, rather than decreasing the threshold to reduce false positives, 
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it would be a better idea to recognize that targets generally have more than one sounding in which 

the soil misfit is large. If we look at the false positives for the PFA < 0.005 target list, we see that 

majority of them are isolated soundings. Removing target picks associated with isolated soundings 

having a poor misfit reduces the number of false positives (Figure 8.35). However, requiring more 
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10 20 TTÔ  40 50 

Measuring Points 
• P < 0.005, Non-isolated 

Easting (m) 

Figure 8.35: Target picking results when choosing anomalies whose PFA < 0.005. Target picks 
where there is only a single sounding has a misfit falling below the threshold are 
removed from the list. 

than one sounding to define a target results in Targets 9, 11, and 22 no longer being picked as 

targets. Targets 11 and 22 are deep fragments (90 and 70 cm depth, respectively). Target 9 is an 81 

mm mortar buried at a depth of 35 cm. Target 9 has a single sounding with a misfit that falls below 

both the PFA < 0.005 and P F A < 0.001 thresholds. 

Comparing our target picking results to the known emplaced items have shown that using the 

misfit of a soil model can be effective in improving detection when processing multiple time channel 

TEM data. 
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8.9.2 Geophex GEM3 Frequency Domain Electromagnetic Data 

Frequency domain electromagnetic data were collected at Kaho'olawe using the Geophex GEM-3 

sensor 8.36. The GEM-3 consists of a co-axial transmitter and receiver loops that simultaneously 

collects the frequency domain response at frequencies determined by the operator (Won et al., 1997). 

For the ESTCP demonstration the GEM-3 was mounted on a wheeled cart, and configured to collect 

Figure 8.36: A photo of Alex Oren from Geophex Ltd. collecting data at the Kaho'olawe UXO test 
site. Data were collected with cart mounted version of the GEM-3. A i m circular 
transmitter loop was used for the demonstration. 

data at 10 frequencies located at 90, 150, 390, 750, 1470, 2970, 5910, 11910, 23850 and 47940 Hz. 

A i m circular transmitter loop was used. Data were collected by Geophex Ltd. and they provided 

us with sensor drift collected data from grid 2E. Grid 2E was surveyed in 3 parts. Each section was 

10 m wide, with lines running in a north-south direction with a line spacing of 0.5 m. 

Gridded images of the inphase (real) and quadrature (imaginary) components of the fifth fre

quency (1470 Hz) data are plotted in Figures 8.37(a) and (b), respectively. Compact anomalies due 

to several of the emplaced ordnance items can be observed in the quadrature component of the data. 

However, the high susceptibility zone that runs diagonally from the lower left to the upper right 

corners of the grid dominate the sensor response. Figures 8.37(c) and (d) show the long wavelength 

component of the data estimated using a 2D median filter. Subtraction of this background response 

produces the detrended versions of the data (Figures 8.37(e) and (f)). As was the case with the time 
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In Phase: 1470 Hz Quadrature: 1470 Hz 
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X(m) 

(a) In Phase (Real) data for / = 1470 Hz 

Background, In Phase: 1470 Hz 

• 

I 
(c) Median filter estimate of the in phase data for / 
1470 Hz 

Detrended In Phase: 1470 Hz 

(b) Quadrature (Imaginary) data for / = 1470 Hz 

Background, Quadrature: 1470 Hz 

1500 £. 15 

(d) Median filter estimate of the quadrature data for 
/ = 1470 Hz 

Detrended Quadrature: 1470 Hz 

(e) Detrended in phase data (f) Detrended quadrature data 

Figure 8.37: Geophex GEM3 data collected over grid 2E at Kaho'olawe. 
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domain case, the detrended data contain numerous soil related small wavelength anomalies due to 

sensor movement and topography. 

We process the GEM3 data by fitting a soil model. We fit the inphase and quadrature compo

nents of each FEM sounding with the following soil model: 

Hreal = m i I n ( w ) + m 2 (8.30) 

Himag _ ^ (g 3 1 ) 

Therefore, we have a two element model vector m = [ m i , m 2 ] T which we estimate through mini

mizing a least squares objective function 

(f)=^[m1,m2}-dobs\\2 (8.32) 

where dobs = [Hreal, Hima9]T. The lowest two frequencies (/ = 90 and 150 Hz) and the highest 

frequency (/ = 47940 Hz) are not included in the data vector due to the noise in these data. The 

gridded image of the log of the soil misfit (log (<£)) is plotted in Figure 8.38. Figure 8.38 clearly 

Log(misfit) 

0 5 10 15 20 25 30 
Easting (m) 

Figure 8.38: The calculated log of the misfit from fitting the model of equation 8.31 to the GEM3 
data. The three separate survey events are clearly seen. 

shows the three separate surveys that make up the Grid 2E data. The noise characteristics of the 
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instrument is clearly different for each survey. The middle section of data is clearly distinguished 

by its relatively lower misfit. The rightmost section of data (x > 20 m), has a misfit that is correlated 

with the amplitude of the soil response. 

We will use the soil misfit results of Figure 8.38 in two ways: (1) Estimate the probability of 

false alarm for each sounding (as we did with the time domain data), and (2) Remove the long 

wavelength components of the soil misfit, and pick from the gridded image of the detrended data. 

Target picking by calculating the probability of false alarm: Since the soil misfit distributions 

for the GEM data are different for each of the three sections (Figure 8.39), we calculate a unique 

soil misfit distribution for each section. Figure 8.39 contains the histograms for the soil misfit in 

each of the three surveys. The histograms are fit with log normal distributions, and their respective 

Figure 8.39: Histograms of the 3 surveys that make up the Grid 2E dataset. 

cumulative distributions are computed (Figure 8.40). Figure 8.41 shows target picking results with 

two threshold values: PFA < 0.001 and PFA < 0.005. The picked targets correspond well with 

the ground truth. Target 17, a 20 mm projectile buried at a depth of 15 cm, was the only non-scrap 

emplaced item undetected by this method. Due to its small size, Target 17 was also missed when 
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Figure 8.40: Probability density functions and cumulative density functions for the soil misfit of 
the three surveys of Grid 2E. 

30 r 

2 5 

20 

£ 1 5 

i 
o 

250 

1 0 

I 

1 2 ° i G 

1 < ® 

mi 

0 L 
1 0 1 5 2 0 2 5 

Easting (m) 

-29 i 

Measuring Points 
o P < 0.005 

• f r P < 0.001 

Figure 8.41: Target picking results when using PFA for detection. The positions of the GEM3 
sensor are indicated by grey points. 
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Median Filtered Log(misfit) 

(a) Gridded image of median filtered log of the soil misfit. (b) Histogram of the filtered log of the soil misfit 

Figure 8.42: Results from median filtering data from Figure 8.38. 

the target picking technique was applied to the Geonics EM63 data. Target 5 was undetected, but, 

after taking a closer look at the GEM3 sounding positions in the vicinity of the target, the miss may 

be due to inadequate spatial coverage. Target 9 (81 mm) is clearly identified by the picking method, 

although it was missed when processing the EM63 data. 

Target picking from the log-misfit image: An alternative to examining the soil misfit for each 

sounding is to work with the gridded image of the soil misfit. We will work with the log of the 

misfit. Due to the different dc offsets of the soil misfit for the three survey sections making up Grid 

2E, we apply an along line median filter for each survey sections. A 2D filter was not used due to 

the relatively narrow width of the data swath. Gridding the high-passed results produces the image 

in Figure 8.42(a). A pixel size of 0.125 m was chosen for the gridding. In order to determine a 

reasonable threshold for log (cf>), we histogram the log of the misfits (Figure 8.42(b)). 

Figure 8.43(a) contains gridded images where pixels with values less than or equal to unity are 

colored gray. Targets are chosen to be those anomalies that have at least 9 connected pixels that 

exceed the threshold log ((f)) > 1 (Figure 8.43(b)). The performance of target picking from the soil 

misfit image is, in this example, approximately equivalent to using PFA of each sounding. 
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Log(misfit): Threshold = 1 

10 15 20 
Easting (m) 

(a) Anomalies in the image of Figure 8.42 that are greater than unity, i.e. 
In (<t>) > 1. 

Target Picking: thresh = 1, no. pixels = 9 . . 
30, • • - r - • 

10 15 20 
Easting (m) 

(b) Anomalies that have more than nine pixels greater than unity. 

Figure 8.43: Target picking using the median filtered version of the log of the soil misfit 4>. A target 
is defined when a log (4>) anomaly has three pixels greater than one. 
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8.10 Improving detection and identification by using horizontal 

components of the secondary field 

As the symmetry of the 1-D model would also suggest, there are no horizontal components to the 

H-field response at the center of a transmitter loop (see equations 8.3 and 8.4). This is an important 

point because it shows, for the case where the fields are measured along the axis of the transmitter 

loop, that the effects of magnetic susceptibility will appear only in the vertical component. Fig

ure 8.44 plots the horizontal and vertical components from a field data set acquired using the Zonge 

NanoTEM time domain sensor. The magnetic ground on the right portion of the survey is clearly 

detectable in the vertical component of the data, but is less evident in the horizontal component. 

In this section we present a method that first uses the horizontal component of the secondary field. 

Vertical Component 
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Figure 8.44: Field TEM data collected by the Zonge NanoTEM. The magnetic materials at the right 
hand portion of the survey are less evident in the horizontal component. 

As our modelling suggests, the presence of magnetic soils will produce a t~l signal in the vertical 

component of the measured secondary field. The difficulty in removing this signal lies in identify

ing whether the measured response arises only from the soil or from a combination of soil and a 

metallic target. The absence of the soil signal in the horizontal components suggest that they can be 

used as part of a pre-processing step to help determine where and how we should attempt to remove 

the soil signal in the vertical component. One possible (and simple) way of doing this would be to 
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1. Calculate the horizontal component of the data at the first time channel: 

dh (h) = y/tPAtJ + qih) (8.33) 

2. At each sounding, if dh is less than some threshold value (e.g. dh < 2mV) then identify this 

station as unlikely to contain signal from a target. We can proceed to fit At'1 to the data at 

this station and subtract from the data. 

3. At soundings where dh is greater than the threshold, we can then subtract AH~l where is 

determined from interpolation of the A values from the previous step. 

8.10.1 Application to Synthetic Data 

Although 3-component sensors have been developed by Geonics Inc. (EM61-3D) and Zonge Engi

neering (NanoTEM), testing of either sensor has been limited. Field data, in particular data acquired 

over magnetic soils, are not readily available. Therefore, to investigate the effects of the magnetic 

soils we must generate synthetic data sets. We assume that the secondary field is a linear sum of the 

response of the buried metallic target, the response of the magnetic soil and Gaussian noise. We use 

the conclusion, arrived at earlier, that the magnetic soils affect only the vertical component of the 

receiver if the receiver is on the axis of the transmitter. 

The buried target response is calculated by using the decaying two-dipole approximation out

lined in Pasion and Oldenburg (2001a). For the examples in this chapter, we will forward model 

the response for the Stokes mortar of Figure 8.45. Data will be generated for a 4 m x 4 m survey 

Dipole 1 Dipole 2 
k2 11 4.9 
q 2 0.001 
§2 1-09 
j2~\\ 10.8 

Figure 8.45: Photo and Decay Constants for a Stokes mortar. 

area, with lines collected at 0.5 m separation, and soundings collected every 10 cm along each line. 

The mortar is placed at (X, Y) =(2m, 2m) and at a depth of 40 cm. The target is oriented such that 

(6, (j>) =(30 degrees, 70 degrees). 
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To model horizontal variation of magnetic soils we assume that the magnetic soil response is 

Fsoil = A (x, y) f (8.34) 

where the amplitude A (x, y) can vary across the survey area. Figure 8.46 contains data collected 

on Kaho'olawe with a Geonics EM63 TEM sensor. From the plotted decay curves, we see that the 

basaltic soils produces a response of approximately lOOmV at the first time channel (180 psec). The 

amplitude A (x, y) is defined as 

A(x,y) = - 1 + tanh [ 2 ( x - - (8.35) 

where k is chosen such that at the first time channel the background soil response is 50 mV at 

Y = 0m and increases to 100 mV at Y — 4m. 

7462.2728A-6 
7462-2728S-* 
7468-2734AM 
7468-2734BP-12 
7537-2754AB-6 
7537-2754BP-24 

Figure 8.46: Geonics EM63 TEM data collected on Kaho'olawe island. Overlaid on the data are 
modelled responses of two layer models. 

Finally noise with a standard deviation of 5% of the data plus 0.5 mV are added to the sum of 

the basalt response and the dipole response. Figure 8.47 plots the synthetic data at t = 180/xsec. 
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Figure 8.47: First time channel of synthetic data. 

8.10.2 Inversion Results 

The synthetic data were inverted for the 13 parameters of the two dipole model. Three data sets 

we considered are: (1) Stokes mortar without magnetic soil response, (2) Stokes mortar with the 

magnetic soils noise model, and (3) Stokes mortar with a magnetic soil background, where the data 

has been pre-processed using the horizontal components to remove the response from the vertical 

components. The results of inverting the data sets are shown in Table 8.3. The inversion was 

successful in recovering the location, orientation, and dipole parameters without the magnetic soil 

signal, and when the data was pre-processed as described in the previous section. The inversion of 

the un-preprocessed data set that contained the magnetic soil signal, was not successful in recovering 

the dipole decay parameters. 

8.10.3 Summary 

One-D forward modelling of this susceptibility model reveals that the horizontal components of 

data measured along the axis of a transmitter loop are not sensitive to magnetic soils provided that 

the subsurface properties can be adequately represented by a ID layered model. As a consequence, 

when inverting the three component sensor data collected over a target buried in magnetic soil, 
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Real No w/ Basalt Basalt 
Params Basalt Model Removed 

X 2 2.00 2.08 2.02 
Y 2 2.00 2.00 1.98 
depth 0.4 0.40 0.58 0.42 
<$> 30 29.9 41.1 38.2 
6 70 70.0 74.2 69.3 
ki 43.9 45.35 125.69 47.45 
Oil 0.02 0.02 0.00 0.02 
Pi 0.73 0.73 0.71 0.72 
7i 9.1 9.17 29.31 9.04 
k2 

4.9 4.96 26.05 6.62 
Oil 0.001 0.02 0.00 0.02 
P2 1.09 1.16 0.80 1.04 
72 10.8 12.69 29.23 15.06 

Table 8.3: Inversion Results for a Stokes Mortar buried in a background of magnetic soils. 

the information provided by the horizontal components of data may: (1) improve detection, (2) be 

exploited in developing processing routines to aid in the removal of the magnetic soil response in 

the vertical component of data, and (3) help constrain the inversion to more reliably recover dipole 

model parameters. 

8.11 Conclusion 

The most common approach to processing is to: (1) develop a target list based on a property of 

the data, (2) develop filtering techniques such that the background response can be estimated, and 

subsequently subtracted from the data, and (3) the spatially filtered data is then inverted with the 

physical model for the UXO response in free space. In this chapter, we looked at different aspects of 

processing electromagnetic data collected in regions with highly magnetic geology. Synthetic data 

sets were generated to help study the effectiveness of filtering, target picking, and inversion. 

We showed that sensor height changes of only a few centimeters can change the measured 

soil signal by tens of percent. Therefore, in regions where there is a significant VRM response, 

accurate sensor positioning and orientation information are required to model the measured data. 

The standard high pass filter approach will have limited success due to the high spatial frequency 

components of the data introduced by the sensor movement and small scale topography. Instead of 

251 



Chapter 8. Processing of Electromagnetic Data Acquired in Magnetic Settings 

filtering the data directly, an improved approach would be to include sensor position information in 

estimates of the soil properties. These soil properties can then be filtered if the assumption that the 

soil properties of the host medium is smooth is valid. 

In general, TEM data is not collected with accurate sensor position and orientation information. 

Sensor movement then leads to the numerous anomalies that are similar to those from UXO. When 

the number of soil anomalies make the target picking directly from the data ineffective, the misfit of 

the measured time or frequency sounding to a soil model is a potential diagnostic for determining 

if a sounding is from soil or metal. The use of the soil model misfit was shown to be effective for 

picking targets in Geonics EM63 and Geophex GEM3 data acquired on Kaho'olawe. 

An analysis of how noise due to the background response affects dipole inversion parameters. 

Data collected at magnetic sites with very accurate sensor motion information was not available 

when writing this chapter. Therefore our analysis focussed on the effects of not including the sensor 

motion information into the processing. Inversion of synthetic data showed that not included includ

ing this information leads to inaccurate recovery of the polarization tensor magnitude. The decay 

characteristics of the axial polarization tensor appears to be better constrained than the amplitude. 

The transverse component is not recovered well. 

The final example of this chapter showed that an estimate of the background response could be 

improved with the use of horizontal component data. Target picking on the horizontal component 

can be an effective in highly magnetic soil since no spatial filtering is required. The effectiveness 

of using the horizontal component is limited by the smaller signal to noise ratio of the horizontal 

component. 

252 



Chapter 9 

Conclusions 

Remediation of UXO contaminated sites is a multi-stage process consisting of detection, discrim

ination, and excavation. In the traditional "Mag and Flag" approach, analog metal detectors are 

used to locate the presence of metallic objects and a flag is placed at each detection location for 

excavation. The integration of digital geophysics and the application of geophysical data processing 

techniques into the UXO remediation process has led to the development of discrimination tech

niques. Indeed, at sites where digital geophysical data can be acquired, it is no longer considered 

sufficient to provide EOD technicians with a list of possible UXO for excavation. Geophysicists 

are expected to apply data processing techniques that can prioritize the target list by estimating, for 

each target, the likelihood of it being a UXO. Being able to recognize which anomalies are not likely 

UXO reduces the number of UXO excavations and, therefore, reduces the cost of UXO remediation. 

UXO discrimination is achieved by extracting parameters from geophysical data that reflect 

characteristics of the target that generated the measured signal. These parameters come in two 

forms: (1) data-based parameters that are based solely on the data, such as amplitude and energy 

(2) model-based parameters which are inputs to a mathematical forward model (such as the dipole 

model) that can reproduce the data. Data and model based parameters can then be used as input 

to statistical classification methods (such as support vector machines and neural networks) to deter

mine the likelihood that the target is, or is not, a UXO. 

The focus of this thesis was the extraction of physics-based model parameters from time domain 

electromagnetic data. Pasion (1999) suggested that a buried target's dipole polarization tensor could 

be extracted from multi-channel time domain electromagnetic data, and the decay characteristics 

of the polarization tensor could be diagnostic of the targets size and shape. We believe that the 

dipole model strikes a reasonable balance between model complexity and accuracy for the majority 

of geometries encountered in UXO remediation, without being computationally intensive. In this 

thesis we further developed the dipole modelling and inversion methodologies described in Pasion 
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(1999) for application to real-world UXO remediation projects. 

An understanding of the dipole model was developed in this thesis (Chapter 2). We examined 

how sensor geometry illuminates the axial and transverse components of the dipole model, and how 

these components contribute to the measured dipole field. The axial and transverse components of 

the dipole polarization tensor decay with time, and we define a parameterization for the axial and 

transverse decay that are related to the conductivity, permeability, shape, and size of the buried ob

ject. The suitability of these parameterizations have been confirmed through the fitting of numerous 

TEM data anomalies measured over UXO. 

Several different inversion techniques for estimating dipole parameters were developed for TEM 

sensor data (Chapters 3 to 5). Inversion was first carried out on high qualify data sets acquired by 

slowly moving the Geonics EM63 sensor, thereby minimizing survey errors and additive noise. With 

the exception of cued interrogation surveys, these survey conditions are not typical of UXO surveys. 

The anomalies acquired in this manner were characterized by high signal to noise ratios, excellent 

position and orientation information for the sensor, and excellent spatial coverage. Unconstrained 

minimization was carried out using both local Newton-type methods and the global Neighbourhood 

Algorithm method of Sambridge (1999a). The local and global approaches produced similarly good 

results for the estimated parameters, although variances for local approaches were smaller than 

those from global methods. These successful inversions allowed us to proceed to more realistic, and 

challenging, data sets. 

There are two main difficulties with field data: (1) field data are collected in a dynamic mode, 

which reduces signal to noise ratio data and decreases the accuracy sensor position and orientation 

information, and (2) filtering designed to remove non-target signal such sensor drift and geology can 

often leave artifacts in field data. Recognizing that lower signal to noise data will often be unable 

to constrain parameters, we considered two types of a priori information that could be included in 

the inversion. In Chapter 4 we tested joint and cooperative inversion techniques where position 

information from magnetics data was used to constrain TEM inversions. Examples showed that the 

addition of target position information reduced the variance of target cluster classes. Obviously, the 

success of jointly and cooperatively inversion is sensitive to the ability to co-register the multiple 

data sets. Knowledge of the different types of UXO expected at a site was the second type of prior 

information considered. This type of prior information led to the implementation of a fingerprinting 
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style discrimination approach in which a generalized likelihood ratio test (GLRT) determined the 

most likely UXO to generate the target anomaly (Chapter 5). Future refinements could include the 

cost of misclassifying a UXO, or include prior probabilities of different target types into the GLRT 

formulation. In the GLRT approach, targets are ranked according to their misfit. The fingerprinting 

approach is most effective in cases where one of the members of the target library represents targets 

that should not be excavated. 

There exists instances where a combination of target types, signal to noise ratio, and survey 

parameters do not support data inversion. We investigated the ability to constrain dipole parameters 

using Monte Carlo type simulations (Chapter 6). Numerous synthetic data sets with different noise, 

survey parameters and target types were generated and inverted. Relationships between the spread 

of recovered parameters and survey characteristics were established for a single channel of Geonics 

EM61-MK2. A figure of merit that quantifies these relationships was proposed. 

If the host material in which the UXO is buried is conductive or magnetic, then the EM signals 

will be altered as they travel from the transmitter to the target and from the target back to the receiver. 

If these effects are significant, but not accounted for, the performance of the inversion algorithms 

will be degraded. In particular, soils that display viscous remnant magnetization are problematic 

(Chapter 7). In such circumstances, there are two options. We can either include the effects of 

the magnetic soils in the forward modelling and inversion, or we can attempt to remove the soil 

properties, with the application of various filters, and then invert the processed data. 

Two data processing strategies for electromagnetic data acquired magnetic geology are explored 

in this thesis: (1) Improve estimates of the background geologic signal, which are then subtracted 

from the data (Chapter 8), and (2) Use a forward model that includes the geologic response (Chapter 

5). The first technique is most commonly used in current UXO data processing. For single time 

channel data the most common procedure is to apply a low pass filter to the data to estimate the soil 

response. This approach relies on the assumption that the small wavelength components in the data 

are due to compact targets, and not the geology. However, even if the magnetic properties of the 

soil are slowly varying, variations in cart height due to topography and topography itself, can add a 

significant high frequency component to the data. Therefore, our preferred approach is to estimate 

a soil model from the data. Our soil model consists of a single parameter at each spatial location 

that is a function of the low frequency magnetic susceptibility and upper and lower limits of the soil 
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decay time constants. We estimate this parameter such that it is laterally smooth. This is achieved 

by fitting each sounding independently, then applying a low pass filter to the soil. In regions of large 

background geologic signal it is important to include sensor height and orientation information to 

model the high frequency signal due to sensor movement. Without height and orientation informa

tion a significant high frequency noise will remain in the data, and dipole parameter estimates will 

not be accurate. 

Much of the work in this thesis has been implemented in the software package UXOLab, first 

developed at the University of British Columbia by the University of British Columbia Geophysical 

Inversion Facility. UXOLab enables users to import sensor data, perform pre-inversion processing 

steps such as simple filtering and target detection, estimate dipole parameters and apply statisti

cal discrimination algorithms. The unconstrained, linearly constrained, cooperative, and library 

methods for estimating dipole parameters have been implemented in UXOLab. These TEM inver

sion techniques developed in this thesis are currently being tested as part of a number of research 

projects funded by Environmental Security Technology Certification Program (ESTCP), in partic

ular, Practical Discrimination Strategies for Application to Live Sites, ESTCP MM-0504 (Billings, 

2007). 
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Appendix A 

Comparison of the Dipole Model and 

Data collected at the U.S. Army 

Engineer Research and Development 

Center (ERDC) 

In Chapter 2 an approximate forward model was proposed for the TEM response of a buried axi-

symmetric metallic target. In this forward model, the secondary field is approximated by a pair 

of orthogonal and independently decaying dipoles, whose strengths are proportional to the projec

tion of the primary field onto their direction. The decay of each dipole moment is governed by 

the magnetic polarization tensor M . The magnetic polarizability tensor is independent of trans

mitter/receiver/target geometry and is a function of the physical characteristics of the target alone. 

In our previous work we outlined a technique for exploiting M as a tool for characterizing the 

shape of target as either rod-like or plate-like, and if the target is ferrous or nonferrous (Pasion, 

1999). These results can only be applied with confidence for measurement configurations where the 

forward modelling is applicable. 

This appendix summarizes a series of tests designed to verify that the magnetic polarization 

tensor is indeed independent of transmitter/receiver/target geometry. Each test follows the same 

procedure. First, the target is measured in two orientations: with the axis of symmetry parallel 

to the primary field and then perpendicular to the primary field. These measurements allow us 

to extract the target's two characteristic decay curves L\ (t) and L2 (t) that define the magnetic 

polarization tensor. Equipped with M , we can then predict the TEM response for various locations 

and orientations and compare these results with measured data. In this section we evaluate the 
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accuracy of these predictions. 

This appendix is part of the report "Locating and Characterizing Unexploded Ordnance Using 

Time Domain Electromagnetic Induction" (Pasion and Oldenburg, 2001b) which summarized the 

data acquisition at the U.S. Army Engineer Research and Development Center and their subsequent 

processing. In the interest of space, we do not present the majority of Geonics EM63 data and any 

of inversion results here. 

A.l TEM Data Collection at the U.S. Army Engineer Research and 

Development Center (ERDC) Unexploded Ordnance (UXO) Test 

Site 

Between April 5 and April 21,2000,1 carried out a series of TEM measurements at the Engineering 

Research Development Centre in Vicksburg, Mississippi. The Geonics EM63 TEM sensor was used 

for all the data collection in this investigation. The EM63 is a multi-time channel time domain unit 

consisting of a 1 x 1 m square transmitter coil and a co-axial, horizontal 50cm diameter receiver 

coil mounted on a two-wheel trailer. More information about the EM63 sensor can be found in 

"EM63 Full Time Domain Electromagnetic UXO Detector: Operating Instructions" (2000). 

A. 1.1 Plan Measurements 

A series of surveys were conducted over single targets seeded at the WES UXO test site (Fig

ure A.l). A 4m x 4m square centered at (18m N, 24mE) was chosen for the surveys. Prior to 

seeding the individual targets, EM63 and EM61-HH surveys were carried out to ensure that the area 

was "quiet", i.e. to ensure the area did not contain metallic scrap. The borders of the 4m x 4m 

square were marked with string to indicate the extent of the survey area. Lines for each survey were 

run in a N - S direction with a line spacing of 50cm. The location of the sensor was measured 

more accurately by marking survey lines at lm spacing with string and by dropping a plumb line 

from the center of the receiver/transmitter loop pair. The EM63 was set to record a time decay curve 

at 10cm intervals triggered by the odometer in the EM63 trailer wheels. 

Targets measured in this survey setup included several UXO (37 mm projectile, 60 mm mortar, 

81 mm mortar, stokes mortar, 105 mm mortar projectile, 155 mm projectile) and a variety of scrap 
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items excavated during a UXO remediation project at Camp Croft, Maryland. These targets were 

placed at approximately the center of the grid (2mN, 2mE), and at depths up to 75cm. In all cases 

the strike of the target was parallel to the line direction. In order to save time, the soil, removed 

when digging a hole for the target, was not replaced over the target. A wooden plank was placed 

over the hole in which the object was laid. Targets were generally measured in three orientations: 

horizontal, vertical, and an intermediate angle. 
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Mass Length Width 

Target (kg) (cm) /Thickness (cm) 

155 mm 60 15.5 

105 mm 14.05 21 10.5 

Stokes Mortar 3.55 36 16 

81 mm (no fins) 3.3 26 8.1 

Rusted Mortar 2.85 36 29 

60 mm 1.352 26 6 

37 mm 0.839 11.4 3.6 

Disk 0.88 8 (diameter) 2.2 thick 

Scrap 1 0.08 13 (diameter) ~2 thick 

Scrap 2 0.026 6.4 6.3 

Scrap 3 0.055 11 6.4 

Scrap 4 0.091 19.4 2.5 

Scrap 5 0.172 16.5 3 

Scrap 6 0.256 21 4.8 

Scrap 7 0.069 12.5 2 

Scrap 8 0.075 7 3 

Scrap 9 19 9 

Scrap 10 0.032 5 3.5 

Scrap 12 0.186 9.6 4.4 

Rocket Fins 

(Scrap 13) 0.83 21.4 6.5 

Blown Mortar 

(Scrap 14) 0.939 16 7 

Scrap 15 0.431 16 5.6 
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A.1.2 Decay Measurements 

A controlled set of experiments was carried out to carefully examine how the secondary field of a 

target decays as a function of depth and orientation. For these experiments we required measure

ments with the EM63 transmitter/receiver coil directly above the center of various targets positioned 

at several depths and orientations. 

In order to accurately and quickly position each target, Jose Llopis at WES designed and built a 

target holder (Figure A.2(a)). The jig was made of wood and glue, contained no metallic materials, 

and could orient each target at 15 degree increments from vertical to horizontal. The size of the 

jig made it difficult to bury. Therefore the jig was only partially buried and 2x6 planks were used 

to adjust the height between the EM63 and the target (Figure A.2(b)). The height of the planks 

was varied by changing the number of cinder blocks used to elevate the planks. The majority of 

measurements were taken at two sensor heights: Z ~ 50cm and Z ~ 100cm from the center of the 

receiver to the center of the target, where Z is the vertical distance from the center of the target to 

the center of the receiver loop. Additional measurements with Z ~ 75cm were made on a subset of 

the targets. TEM soundings were recorded for several UXO items ranging from a 37 mm projectile 

to a 105 mm, as well as several scrap items. Samples soundings are plotted in Figure A.3. 

Several of the smaller, non-UXO items did not produce a significant response when placed in 

the jig. Therefore, they were measured using the setup of Figure A.4(a). Each target was placed 

in two orientations and at ground level. To facilitate the collection of cleaner data, a pair of 6x2 

inch planks was placed on the ground to provide a level surface for the EM63 to be pulled along. 

The measured voltage curves for scrap targets 1 to 8 are plotted in Figures A.4(b) and (c). The 

line profiles for the first time channel (t = 180/is) and the tenth time channel (t = 0.72msec) are 

plotted in Figure A.5. 

A. 1.3 Analysis 

Obtaining the Polarizability Tensor 

Constructing the polarizability tensor M requires obtaining the dipole decay functions L\ (t) and 

L 2 (t). The decay functions can be isolated by making two measurements: (1) primary field Bp 

parallel to the z' axis of symmetry, and (2) primary field perpendicular to the z' axis of symmetry. 

262 



Appendix A. Comparison of the Dipole Model and Data collected at the USACE ERDC 

Figure A . l : 4m x 4m area on which a series of EM63 surveys were taken over different targets at 
several depths and orientations. 

Figure A.2: (a) Photograph of the wooden target holder for EM63 measurements. A 105mm pro
jectile is standing beside the jig. (b) Measurement procedure when using the jig. 
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a) 10s b) 
Scrap 5 - Vertical 
Scrap 5 - Horizontal 
Steel Disk - Flat 
Steel Disk - On Edge 
Predicted Response 

Figure A.3: (a) Measurement of a 60 mm and 81 mm in jig. (b) Measurement of Scrap 5 and a 
Steel Disk. Unfilled symbols (e.g. 'o ' ) indicate negative data that has its absolute value 
plotted. Predicted response is obtained by fitting the measurement with Equation A. 1. 

Figure A.6 illustrates the arrangement of the EM63 and target that we used to obtain the decay 

functions. In this geometry, the measured voltage is then: 

V (t) = nBF^p2 [Lx it) cos2 6 + L2 (t) sin 2 6] (A.1) 

where Z is the distance between the center of the receiver loop and the center of the target, and K 

is a constant that depends on the size of the receiver and transmitter loops, the number of turns in 

each loop, and the transmitter current. 

When the target's z' axis of symmetry is parallel to the inducing field (0 = 0 degrees, Fig

ure A.6a), only the mj (t) dipole is excited, and the measured voltage is 

V{1 (t) = * ^ 2 L l (t) 2K 
Bp(Z) 

Z 3 
h (i + a i ) _ A e - ' / 7 1 (A.2) 

and when the target's z' axis of symmetry is perpendicular to the inducing field (f? = 90 deg, Figure A.6b), 

then only the m2 (t) dipole is excited and the observed voltage is: 

V± (t) = « ^ 2 L 2 (t) = 2K 
BP(Z) 

Z3 k2 (t + OL2)-fhe-t''* (A.3) 

The voltage curves recorded by the EM63 for the parallel and perpendicular responses can be 

obtained by using a scaled down version of the inversion algorithm to recover the decay parameters 
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Time (ms) TInw (mt) 

Figure A.4: (a) Photograph of setup used to measure response of smaller scrap targets, (b) Voltage 
decay measurements for scrap targets 1 to 4. (c) Voltage decay measurements for scrap 
targets 5 to 8. Unfilled symbols (e.g. 'o ') indicate negative data that has its absolute 
value plotted. 
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Figure A.5: Measured response of scrap targets 1 to 8 along a line. Panel (a) and (b) plot the 
response along a line for the first time channel (t = 0.18msec). Panel(c) and (d) plot 
the response along a line for the tenth time channel (t = 0.72msec). Each target is 
located at station 0cm. 
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(Pasion 1999). Figures A.6c and d give the result of this procedure applied to a 105 mm projectile 

and scrap 14. As expected for a rod-like target the L\ component of the polarization tensor has a 

greater magnitude than the L2 component. Figure A.7 has the recovered L\ (t) and L2 (t) for the 

targets placed in the jig. Several of the curves have been extended by a "dash-dot" line that indicates 

an extrapolated portion of L\ (t) and L2 (t). 

The accuracy of this procedure to obtain L\ (t) and L2 (t) will depend on experimental error and 

model error. Possible experimental errors include: (1) inaccurate measurement of Z; (2) inaccurate 

placement of the target beneath the receiver loop, i.e., the center of the target must be placed along 

the vertical axis passing through the center of the loop; (3) tilting of the EM63 trailer such that the 

primary field isn't vertical. Modelling errors describe instances where assumptions of the forward 

model are violated, such as: (1) uniformity of the primary field in the volume of the target; (2) 

representing the response as a point dipole; and (3) absence of fore-aft symmetry. 

Test 1: Reproducing the Time Sounding at Intermediate Orientation 

Once we determine the parameters of the magnetic polarization tensor, we can forward model the 

parameters to obtain the TEM response for any location, depth, and orientation. In this test we in

vestigate how accurately we could predict the decay of the secondary field at an arbitrary orientation 

for a recovered magnetic polarization tensor. 

Equation A. 1 describes the measured voltage in a receiver coil directly above a target illumi

nated by a purely vertical primary field. Using Equation A. l and the decay functions L\ (t) and 

L2 (t) obtained in the analysis of the previous section, we predict the voltage response and compare 

it to measurements using the EM63. The set of measurements we use for comparison were those 

obtained using the target holder. Figures A.8 and A.9 compare the measured responses at different 

angles and the response predicted by the forward model for an 81 mm mortar without fins. Fig

ure A.8 has the measured voltage curves at different heights from the sensor. L\ (t) and L2 (t), 

obtained by fitting these curves with Equations A.2 and A.3, are then forward modelled and plotted 

in Figure A.9. The top two panels of Figure A.9 demonstrate the procedure on an 81 mm mortar 

(without fins) located approximately 55 cm beneath the receiver loop. At this distance (equivalent 

to approximately 10 cm below the surface) we see that the representation is only moderately good 

at reproducing the data at the different angles. When we repeat the procedure for data collected 
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approximately 100cm beneath the receiver, we see that the model does a better job of predicting the 

data. This is not surprising, since we would expect the modelling of a compact metallic object as 

a dipole to become more applicable as we move further from the source/receiver loop. Figure 21 

demonstrates the procedure for predicting the measured voltage decay curves for Scrap 5 using the 

dipole model. 

Test 2: Reproducing the spatial behavior 

In our second test, we focus on how accurately we could predict the spatial response of a target 

using the dipole model. For this investigation we first use a target's magnetic polarization tensor, 

obtained in the manner described in the previous section, to predict the secondary field over a survey 

line that passes directly over the target. In each case, the survey line is co-aligned with the target. 

This predicted response is then compared with the measured response. 

In Figures A. l 1 to A. 19, the predicted and measured responses along a line are plotted for sev

eral targets in three orientations: vertical, horizontal, and at an intermediate dip angle. At intermedi

ate angles the target dips toward the end of the line (i.e., dips downward to the right in Figures A. l 1 

to A. 19). Figures A. 11 to A. 19 indicate the model is successful in predicting the response along 

each survey line. 
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(a) EM63 and target geometry used to obtain L i (t). (b) EM63 and target geometry used to obtain L2 (t). 

105 mm Scrap 14 

Time (ms) Time (ms) 
(c) L\ (t) and L2 (t) curves for a 105 mm projectile. (d) L\ (t) and Li (t) curves for Scrap 14. 

Figure A.6: Arrangement of EM63 and target for obtaining decay functions. 
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0.18 

0.18 

Time (ms) 
L2(t) 

25.1 

105 mm 
Stokes 
Rusted Mortar 
81 mm 
60 mm 
37 mm 
Scrap 14 
Scrap 5 
Steel Disk 
2.75 inch rocket fins 

25.1 
Time (ms) 

Figure A . 7 : L\ (t) and L2 (t) decay functions for different targets. 
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0.180 1.0 10.0 25.14 
T i m e (ms) 

Figure A.8: Measured voltage curves for a 81 mm Mortar without fins at different heights from 
the sensor. Unfilled symbols (e.g. '•') indicate negative data that have absolute value 
plotted. These curves were inverted to obtain L\ (t) and L2 (t). Clearly, the decay 
nature of the signal changes when the mortar is brought close to the sensor. The re
sulting L i (t) and L2 (i) curves are used to predict the decay at intermediate angles in 
Figure A.9. 
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Z ~ 55 cm Z - 55 cm 

0.180 1.0 10.0 25.14 0.180 1.0 10.0 25.14 
Time (ms) Time (ms) 

Figure A.9: Predicting the measured voltage decay curves for an 81 mm mortar without fins at 
different orientations 6. Unfilled symbols (e.g., '•') indicate negative data that have 
absolute value plotted. The L\ (t) and L2 (t) decay curves recovered from measure
ments with Z=60 cm and Z=52 cm (Figure A.8), respectively, are used to predict the 
voltage curves in the top two panels. The L\ (t) and L2 (t) decay curves recovered 
from measurements with Z=102 cm and Z=95 cm, respectively, are used to predict 
the voltage curves in the bottom two panels. The prediction of the measured curves is 
more successful when the target is farther away from the sensors. 
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Figure A.10: Predicting the measured voltage decay curve for Scrap 5 using the dipole model. 

Figure A.11: Geonics EM63 data acquired over a 60 mm mortar: 6 = 0 deg (vertical), Z=73> cm. 
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• A • time channel 9 
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Figure A.12: Geonics EM63 data acquired over a 60 mm mortar: 9 — 90 deg (horizontal), Z=73 
cm. 

100 200 
Station (cm) 

100 200 300 
Station (cm) 

Figure A.13: Geonics EM63 data acquired over a 60 mm mortar: 9 = 40 deg, Z=75 cm. 
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0 100 200 300 400 0 100 200 300 400 
Station (cm) Station (cm) 

Figure A.16: Geonics EM63 data acquired over an 81 mm mortar: 6 = 43 degrees, Z=74 cm. 
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Figure A.17: Geonics EM63 data acquired over a Stokes mortar: 9 = 0 deg (vertical), Z=73 cm. 

0 100 200 300 400 0 100 200 300 400 
Station (cm) Station (cm) 

0 100 200 300 400 0 100 200 300 400 
Station (cm) Station (cm) 

Figure A.18: Geonics EM63 data acquired over a Stokes mortar: 8 — 90 deg (horizontal), Z=73 
cm. 
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Figure A . 1 9 : Geonics EM63 data acquired over a Stokes mortar: 6 = 54 deg, Z=73 cm. 
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Appendix B 

A Differential Electromagnetics 

Approach for Detecting UXO in 

Magnetic Geology 

B.l Introduction 

In this appendix, we study the effectiveness of varying the transmitter waveform characteristics ap

plied to an EM61-MK2 sensor. This study is motivated by several practical and theoretical reasons. 

Although the Minelabs F14A sensor is effective in detecting small targets in a VRM soil setting, 

it has problems seeing larger deep targets. In addition, it is difficult to perform advanced process

ing, in particular inversion, on Minelabs F14A data due to proprietary on-board data processing. 

The EM61-MK2 is the most common EM tool used in UXO remediation. It has a greater depth of 

investigation than the Minelabs F14A, and is a much lighter, field ready alternative to the EM63. 

Although the EM61-MK2 only has four channels, the addition of multiple pulse widths provides ad

ditional data that will enhance the differences between a metal target decay to a soil decay. We study 

soil and metal TEM responses and show how these responses differ as a function of the transmitter 

waveform. We investigate how size variations in the buried metal targets affect the effectiveness of 

the differential illumination technique. 

This appendix is part of the report "UXO Target Detection and Discrimination with Electromag

netic Differential Illumination" (Foley et al., 2005). 
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B.2 The T E M Response of V R M soils and Metallic Objects 

Our analysis in Chapter 7 showed that rate of change of the secondary magnetic field due to a VRM 

soil with a collection of grains with time constants distributed log-uniformly between T\ and T2 is 

g^ o c lH*° 1 (BI) 
dt a log ( T 2 / T l ) i ( a A ) 

The theory of the TEM response of metal targets is well understood. Similar to the response of 

VRM soils, the response of a compact metal target can be expressed as a function of time constants. 

Kaufman (1994) derived a general form for the field caused by currents induced in a confined 

conductor. By assuming quasi-static fields, the secondary field produced by currents in a confined 

conductor can be written as 

Hj (t, p) = ( H p • l) ^ dni (p) exp — ) (B.2) 
n=l ^ T " / 

where jfYj (t,p) is the secondary field in the 1 direction, observed at a point p, and at a time t 

following the termination of the primary field. The coefficients dn^ (p) depend on the target location, 

size and shape, and upon the geometry of the primary field. The time constants r„ are also dependent 

on the permeability, size and shape of the target, but not the target location and geometry of the 

primary field. The largest time constant, T\, determines the onset of the late time, exponential stage 

of the decay and is referred to as the diffusion time constant of the conductor. The form of the time 

constant is T\ — L2po/-K2 where L is a target diameter, p, is the target's magnetic permeability, 

and a is the target conductivity. Prior to the late time stage, the cumulative effect of the summed 

exponentials produces a power law decay. The power law behavior has been verified experimentally 

and theoretically. Measurements have shown that a combination of a power law and exponential, 

V(t) — kt~^exp(—t/r), can be used to model the decay observed within the time range of the 

Geonics EM63 sensor (Pasion and Oldenburg, 2001b). The power law exponent 3 is a function of 

the shape of the target, and we have observed 3 values ranging from 1/2 to 3/2 for metallic targets. 

Equations B.l and B.2 assume a step-off transmitter field. For an arbitrary waveform g(t) that 

turns off at time t = 0, the measured response is obtained by convolution of the waveform with the 
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impulse response 
dH (t) 

J — OO 

„ ^(t-t')dtl (B.3) 
dt J_„*^' dt 

where dH1 (t) /dt is the time derivative of the impulse response. Appendix D lists the form of the 

VRM decay for a finite pulse and a ramp on pulse for log-uniform distribution of time constants. 

For this chapter, we will study the effectiveness of varying the transmitter waveform characteristics 

applied to an EM61-MK2 time domain electromagnetic sensor. The waveforms that we will be 

considered consists of an exponential current increase followed by a linear ramp off: 

9 it) 

{t+Tq+Tb) 
Tx 1 — exp 

[1 - exp (-TJTX)} 

, if - ( T a + T6) <t< -Tb 

t , i f - T 6 < i < 0 

(B.4) 

where T a is the length of the exponential charge up, Tx is the time constant of the transmitter loop, 

and Tb is the length of the turn-off ramp. Convolving the impulse response with the exponential 

increase/linear ramp off waveform gives: 

dM(t) 
dt 

-Xo 

In ( T 2 / T I ) 
(Ei ( t ^ \ _ E i ( t ± ^ ± T k ] ] + - l z i 

V T* J ) K ' » ( ^ ) (B.5) 

where Ei is the exponential integral and a — 1 — exp (—Ta/Tx). We note that the expression 

for a finite length pulse can be obtained by taking the limit as Tb —> 0 (i.e. ignoring the ramp-off 

part of the transmitter waveform) and Tx —> 0 (i.e. assuming an instantaneous current turn-on). 

The expression for a ramp on current can be obtained from (B.5) by taking the limit as Tb —> 0 and 

assuming Tx is large enough relative to Ta and t such that the transmitter waveform is approximately 

a ramp on. In such a case, we can apply expansions ex w 1 + x and Ei(x) « 7 + ln(x) + x. 
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(a) Plastic casing EM61 MK2 electronics unit. (b) Electronics for the EM61 MK2. The chip with red 
mark controls on the charge-up times of the transmitter 

Figure B.l: Electronics for the modified EM61 MK2 sensor. 

B.3 Soil Compensation Processing Applied to Variable Transmitter 

Waveform T E M Data 

B.3.1 Instrumentation 

Data from a Geonics EM61MK2 will be used in this chapter. The EM61MK2 was chosen for this 

project since it is one of the most common EM instruments used for UXO remediation projects. 

The design of the EM61 is such that a single electronics chip controls the transmitter waveform 

characteristics and the receiver times (Figure B.l). Since it was not possible to transmit different 

charge-up times using a single chip, Geonics produced four chips, each with a different transmitter 

waveform and receiving times. The on times of the chips were 10ms, 4ms, 2ms and 1ms. The 

1 ms chip, was not used in this study due to its inability to produce a stable signal. The different 

transmitter waveforms, with their specific on-times and measurement times are shown in Figure B.2. 

The modified chips represent the largest possible range of on-times and measurement windows 

for the EM61MK2 sensor. The turn-on for each of the waveforms has the same exponential time 

constant of 3.46 ms and approximately the same linear ramp slope. 

Figure B.3 illustrates how the transmitter waveforms described in Figure B.2 alters the V (t) = 

l/t step-off soil response and the V (t) = kt~@ exp(—t/r) step-off metallic target response. For 

this example, the metallic response is calculated using time constants of r = 0.1, 1, and 10 ms, and 

a power law with 8 = 1/2. In evaluating (B.3) we differentiate V (t) to get the impulse response. 

In order to compare the changing decay characteristics due to the different waveforms, the metal 
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1 

0.8 
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— 10 ms waveform 
— 4 ms waveform 
— 2 ms waveform 
— 1 ms waveform 
• 10 ms gate centers 
o 4 ms gate centers 
A 2 ms gate centers 
* 1 ms gate centers 

-15 -10 

(a) Waveforms and measurement gate centers for the different chips. 

-5 
Time (ms) 

Charge 
Time 

Ramp 
Length tl t2 t3 t4 

10 0.178 0.190 0.540 1.415 3.600 
4 0.121 0.247 0.597 1.472 3.657 
2 0.093 0.267 0.617 1.492 3.677 
1 0.032 0.328 0.678 1.553 3.738 

(b) Timing details for the different chips (all times in milliseconds) 

Figure B.2: Transmitter waveforms for the four Geonics EM61MKII chips. 

and soil responses are normalized to unity at 1ms. 

Figure B.3 indicates that a target's time constant size, relative to the transmitter on-time, controls 

how the target decay varies with the length of transmitter on-times. Targets with small time constants 

are less sensitive to changes in transmitter on-time. The target with r = 0.1 ms has the same decay 

for each waveform since the transmitter on-times for each waveform is greater than 0.1 ms. Targets 

with larger time constants demonstrate increased sensitivity to the changes in on-time. The response 

of VRM soil response is also sensitive to the changes in transmitter on-time since the VRM soil 

response is due to a collection of magnetic grains with a log-uniform distribution of time constants. 

The smaller change of the TEM response for short time constant targets illuminated by differ

ent on-times compared to the larger changes in the soil response, suggests that variable waveform 

instrument responses could be effective for detecting small targets in a magnetic soil background. 

However, time constants for steel targets are large relative to the transmitter on-times that we are 

considering. For example, due to the large magnetic permeability of steel (> 200po), a steel sphere 

with a diameter of 5 cm has a time constant of 40ms. 
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(a) t = 10 ms (d) VRM Soil 

Figure B.3: The effect of different waveforms on different time constant targets. The grey area 
represents the measurement range of the standard EM61Mk2 TEM sensor. 
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B.3.2 Soil Model Fitting 

Fitting measured data to a soil model is a simple way of determining which soundings are back

ground responses and which soundings have a contribution from the presence of a metal body. If 

the observed sounding can be well fit with the response of the soil, then the measured response 

is likely from the background soil only. If we assume that the magnitude of the soil and metal 

target responses are independent, we can write the measured sounding from a particular chip as 

V(t) = ocS(t) + T(t), where V(t) is the observed decay, S(t) is the characteristic soil response, 

and T(t) is the response due to a metal target. The coefficient a is included because any observed 

soil response will be a multiplicative factor of S(t). Since the coefficient a is a function of the soil 

characteristics, it is independent of the sensor characteristics (i.e. it will be the same for all chips). 

There are two potential problems in fitting a soil model and analyzing a data misfit. Firstly, if 

the background soil response aS (t) is large relative to the target response, then there is a potential 

of obtaining a good fit to the data. In order to avoid this problem, an estimated soil response is 

subtracted from the data prior to fitting. A second potential problem would be if the decay of T(t) 

is similar to the soil decay. We noted earlier that the variable waveform has the potential to alleviate 

this problem, but this would not be possible here due to the transmitter waveforms used in this study 

and the size of targets that can be detected by our sensor. However, the hope is that sampling 4 

points of the decay curve will be sufficient in observing differences in soil and metal decays. 

The fitting of the soil model represents the simplest of inverse problems: determine a single 

parameter by fitting multiple data. We define data vector where the TEM decays are normalized by 

the first time channel: 

the 2, 4, and 10 ms waveforms. We fit the data vector with a normalized soil model, with elements 

the soil model element by element, and then taking the median of the quotients. To quantify the fit 

we use a least squares measure of the misfit 

d= V*{ti) , (B.6) 

where V1 (tj) = Vi (tj) /Vi (ti) for time channels j = 1..4, and i = 1,2,3 representing data from 

S% (tj), multiplied by a parameter 3. A coefficient 3 is determined by dividing the data vector by 

(B.7) 
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where N = 3 if we use all of the three different chips for fitting. 

B.3.3 Differential Analysis 

As we saw in Figure B.3, short time constant targets have a small change in response with different 

on times, while the large time constant targets and VRM soil have a large change in response with 

different on times. Soil fitting does not attempt to take advantage of this differential effect. Soil 

fitting uses measurements from additional waveforms only as extra data when calculating the misfit 

to the characteristic VRM response. An example of a procedure that uses the differential effect for 

reducing soil anomalies is: 

1. Measure the TEM response from one waveform. 

2. Assume the measured response is from soil, then use the measured response to predict the 

response from a waveform with a different on-time. 

3. Compare the predicted response with the observed response. If the observed response matches 

well with the predicted response, then the sounding is likely from soil. 

The success of this procedure depends entirely on the time constant of the target. Short time con

stant targets would have the largest misfit between the observed data (which would have a small 

differential effect) and the predicted data (which would model the data as having the large differen

tial effect of soil). However, relative to our measurement times, most targets of interest would have 

a large time constant that would make the differential effect minimal. 

This technique is difficult to implement with our equipment due to the sensitivity of the signal 

to the relative position between sensor and the ground and our need to perform different surveys for 

each different waveform. It is impossible to ensure perfectly repeatable sensor position and orienta

tion. The changes in sensor position and orientation would produce changes in data amplitude, and 

compromise our ability to model the data. However, we should point out that we are, at this point, 

only conducting a feasibility study whereby the differential measurements are collected on consec

utive passes. Ideally, the data would all be collected in a single pass by varying the transmitter 

characteristics on neighboring measurements. 
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B.3.4 Kaho'olawe Island Navy QA Grid Data 

In Chapter 8 we demonstrated that small sensor movements produced large changes in the measured 

voltage in the hostile soil environment of Kaho'olawe Island. In order to compare relative differ

ences in signal due to transmitter waveform changes, we needed to minimize changes in sensor 

location and orientation when repeating measurements with different chips. For single soundings, 

marks were painted on the ground for accurate placement of the sensor. To replicate a multiple line 

grid survey, we placed wooden planks on the ground to provide an easily repeatable wheel path 

for the EM61MK2 cart (Figure B.4). The planks also minimized sensor orientation changes due 

to topographic variations. Differences in line paths over successive surveys were within a few 

(a) The plank grid (b) Close up of the rivulet that runs 
through the grid. 

Figure B.4: Photographs of the detailed grid of planks established to investigate coil orientation 
within Grid 2E. 

centimeters. The data from the different chips surveys were linearly interpolated to the same station 

locations. 

Two sets of data were acquired at the Navy QA grid on Kaho'olawe. The first set was collected 

along the planks with each of the 10, 4, and 2 ms chips (Figures B.6(a)-(c)). This background mea

surement show the large background signal due to the soil and the large variations in signal simply 

due to the topography within the survey area. The surveys were then repeated with a small nut (Fig

ure B.5(a)) placed on the surface at (X, Y) = (0.56,2.32)m and a 90 mm projectile (Figure B.5(b)) 

placed on the surface at (X, Y) = (2.92,1.81)m (Figures B.6(d)-(f)). Since the 90 mm target was 
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(a) Photo of steel nut (b) Photo of 90 mm uxo 

Figure B.5: Targets measured in plank survey, (a) Photo of the steel nut placed on the surface, (b) 
Photo of the 90 mm projectile placed on the surface. 

(a) 10 ms Chip: Background (b) 4 ms Chip: Background (c) 2 ms Chip: Background 

0 1 2 3 0 1 2 3 0 1 2 3 

(d) 10 ms Chip: Targets Included (e) 4 ms Chip: Targets Included (i) 2 ms Chip: Targets Included 

0 1 2 3 0 1 2 3 0 1 2 3 
X(m) 

Figure B.6: The first channel of TEM data interpolated to common locations. The steel nut and 90 
mm projectile locations are indicated by the ' • ' and ' A ' symbols, respectively. 
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0 1 2 3 0 1 2 3 0 1 2 3 

(d) 10 ms Chip: Targets Included (e) 10 and 4 ms Chips: Targets Included (f) 10, 4. and 2 ms Chips: Targets Included 

0 1 2 3 0 1 2 3 0 1 2 3 

X(m) 

Figure B.7: Misfit comparison, 

placed on the surface, its anomaly dominates the gridded data. 

Soil Fitting Results 

Figures B.7 to B.9 plots the soil modelling misfit on the data with, and without, metal targets placed 

on the surface. We compare fitting results using: (1) data from the 10 ms chip only, (2) data from 

the 10 ms and the 4 ms chip, and (3) data from the 10 ms, 4 ms, and 2 ms chips to fit the soil 

model. Regardless of how many chips we use in the fitting, the misfit provides a clear indicator of 

the presence of metal targets. Although we would expect that using data from all the chips would 

best detect the metal targets, the higher noise levels of the 2 ms chip degrades the performance when 

using all the chips. 

Figure B.8 compares the characteristic soil model with soundings recorded with and without 

a metal target present, at the location of the bolt and the location of the 90 mm. The observed 

soundings of the background soil (Figure B.8(a) and (b)) fits the 10 ms and 4 ms data quite well, but 
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1 2 3 4 1 2 3 4 
Tlm« Channel Tim* Channel 

(a) Soil decay at the nut location (b) Soil decay at the 90 mm location 

1 2 3 4 1 2 3 4 
Tkna Channel Tkn« Channel 

(c) Soil and nut decay comparison (d) Soil and 90 mm decay comparison 

Figure B.8: Decay comparisons. 
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(a) Raw Data: 4 ms Chip x 1Q-3 (b) Misfit: 10 ms Chip 

0 1 2 3 4 0 1 2 3 4 
Y (m) Y (m) 

Figure B.9: Line 2 misfit comparison. 

the noise level of the 2 ms data makes it difficult to fit. The inability to fit the observed decay with 

a soil model is clear when a metal target is present. 

An indication of potential advantages of using soil model fitting rather than raw data for detec

tion can be obtained by looking at line profiles. Figure B.9 compares the misfit calculated along the 

second line of data (X « 0.5). The red lines indicate data with the nut present and the blue lines are 

fit without the nut. Panel (a) contains the raw data. The large jump in amplitude at the beginning 

and end of each line is due to the EM61MK2 cart rolling onto and off of the planks. The dip in am

plitude at approximately Y = 3 m is due to a small rivulet. Panels (b) to (c) plot the misfit along the 

line. The steel nut appears clearly, even when including the noisy 2ms data in the fitting procedure. 

The misfit plots are insensitive to the changes in the raw data due to topography. Figure B.10 plots 

the data from the 4 ms chip and the misfit using the 10 ms and 4 ms data. The misfit is shown on a 

scale similar to figure B.9. The large variation due to topography is not reflected in the misfit plot. 

This emphasizes the utility of the misfit as a means of reducing the amount of geologic anomalies 
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Line 5: Background Only 

Figure B.10: Line 5 signal/misfit comparison. 

chosen as potential targets. 
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Differential Analysis Results 

The procedure outlined in Section B.3.3 was applied to data collected on the planks. The data 

collected with the 10 ms chip were used to predict the data from the 4 and 2 ms chips. Figures B.l 1 

and B.12 compare the observed data (left column), predicted data (middle column), and residual 

(right column) for data collected with the 4 ms over the planks with no targets emplaced. The 

residual is denned as 

where j — 1..4 represents the time channel. The 4 ms and 2 ms data predicted from the 10 ms 

data closely matches the measured data when there is only soil response (no metal targets). The 

observed 2 ms data are much noisier than the predicted 2 ms data since the 10 ms chip is less noisy 

than the 2 ms chip. 

The comparison of the predicted and observed data when metal targets are emplaced is shown in 

Figures B.13 and B.14. The 4 and 2 ms data are again accurately predicted by the 10 ms chip data, 

indicating that there is little observed differential effect. Figures B.l5 and B.l6 clearly demonstrates 

this by comparing the predicted and observed data along the lines containing the emplaced nut and 

The observed and predicted decays directly over the nut and UXO (Figure B.l7) are nearly the 

same, indicating that the soil and targets had the same change in response to the different waveforms. 

The difference between predicted and observed data is quantified by a misfit function: 

The logarithm of the data in used order to account for the (potentially) large change in magnitude in 

a single decay. Figure B.l8 plots the misfit for the 4 ms and 2 ms chip data both with and without 

the emplaced targets. The nut does not produce an anomaly in the gridded misfit, and the UXO does 

not produce a distinct anomaly in the gridded misfit. We conclude that there is minimal differential 

effect recorded in the data. 

(B.8) 

UXO. 

misfit = [log (V°bs (*,•)) - log (V^ed {tjj) (B.9) 
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(a) Raw, tl (b) Predicted, tl (c) Residual, tl 

(g) Raw,t3 (h) Predicted, t3 (i) Residual, t3 

X(m) 

Figure B. l l : Comparison of 4ms chip raw data and the 4ms data predicted from the 10 ms chip 
data. The bolt and UXO are not present for this data. 
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(a) Raw, tl (b) Predicted, tl (c) Residual, tl 

0 1 2 3 0 1 2 3 0 1 2 3 

(d) Raw, t2 (e) Predicted, t2 (f) Residual, t2 

0 1 2 3 0 1 2 3 0 1 2 3 

(g) Raw,t3 (h) Predicted, t3 (i) Residual, t3 

0 1 2 3 0 1 2 3 0 1 2 3 

(j) Raw, t4 (k) Predicted, t4 (1) Residual, t4 

0 1 2 3 0 1 2 3 0 1 2 3 
X(m) 

Figure B.12: Comparison of 2ms chip raw data and the 2ms data predicted from the 10 ms chip 
data. The bolt and UXO are not present for this data. 
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(a) Raw.tl (b) Predicted, tl (c) Residual, tl 

0 1 2 3 

(a) Raw, t3 

0 1 2 3 

(b) Predicted, t3 

0 1 2 3 

(c) Residual, t3 

Figure B.13: Comparison of 4ms chip raw data and the 4ms data predicted from the 10 ms chip 
data. The bolt and UXO are present for this data. 
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(a) Raw, tl 

1 2 3 

(a) Raw, t2 
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Figure B.14: Comparison of 2ms chip raw data and the 2ms data predicted from the 10 ms chip 
data. The bolt and UXO are present for this data. 
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(a) 4 ms, tl: Background 

> 

o 

> 

420 
400 
380 
360 
340 
320 
300 

—— Raw Data 
— Modelled Data f 

1 2 3 4 
Y(m) 

(c) 4 ms, tl: with bolt 
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Figure B.15: Comparison of 4ms chip raw data and the 4ms data predicted from the 10 ms chip 
data. The bolt and UXO are not present for this data. 
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(d) 2 ms, tl: with uxo 

Figure B.16: Comparison of 4ms chip raw data and the 4ms data predicted from the 10 ms chip 
data. The bolt and UXO are present for this data. 

Time Decays over the Nut Time Decays over the uxo 

-A- Raw Data: 2 ms chip •A - Predicted Data: 4 ms chip ••A- Predicted Data: 2 mschip 

(a) Soil decay at the nut location (b) Soil decay at the 90 mm location 

Figure B.17: Decay comparisons. 
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(a) 10 ms Chip 

10° 10° 
Time (ms) Time (ms) 

Figure B.19: Comparison of background soil signal strengths at Kaho'olawe and Waimea. 

B.3.5 Waimea Geophysical Proveout at the Former Waikaloa Maneuver Area 

Modified EM61MK2 data were collected at the Waimea GPO. The site has a much smaller back

ground magnetic geologic response than Kaho'olawe. Figure B.19 compares decays measured on 

the Waimea GPO, with a decay measured in the area of the Navy QA with the highest background 

magnetic response and with a decay measured in the areas with the lowest response. The small 

wavelength data anomalies and noise due to sensor orientation and position changes will be smaller 

in magnitude compared to Kaho'olawe. 

We will focus on modified EM61MK2 data collected on a 30 m x 6.5 m section of the Waimea 

GPO. Within this area there are 18 emplaced UXO targets. Data for the 10, 4, and 2 ms chips 

are plotted in Figures B.20 to B.22. Unlike the Kaho'olawe plank data, the Waimea data were 

collected on a large enough survey area such that we can apply a 2D median filter to remove the 

long wavelength background signal. Figure B.23 demonstrates the effect of a median filter with a 5 

m square window on the first time channel of the 10 ms chip data. The middle panel contains the 

median values which show that the background response ranges from 52 to 70 mV in the first time 
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X(m) 

Figure B.20: Waimea raw data 10 ms. White circles indicate emplaced items. 

channel of the 10 ms chip data (compared to greater than 300 mV measured on Kaho'olawe). The 

detrended data for each of the chips are plotted in Figures B.24 to B.26; Each of the detrended data 

sets clearly show the majority of the emplaced UXO. 

We can use the data collected away from the known UXO to determine the background noise 

levels of the detrended data. Figures B.27 to B.29 contain histograms of the background noise 

levels. Once data above the noise are identified, the usual course of action is to use a target picking 

algorithm to determine the presence of anomalies. The selected anomalies can then be inverted 

for model parameters to determine the identification of the target. For this example, we proceed 

in the same manner as the Kaho'olawe plank data and compare the data above the noise to a soil 

model (Figures B.30 to B.32). By plotting the misfit to a soil model nearly all the non-uxo related 

anomalies have been eliminated. The misfit calculated from the 10 ms chip was able to produce a 

misfit at all but three of the UXO. Due to noise, the processed 2 ms chip data was not as effective in 

detecting the emplaced targets. 

Let us label the left row of targets 1 to 9, with label number increasing with y. If we look at 
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X(m) 

Figure B.21: Waimea raw data 4 ms. White circles indicate emplaced items. 

the four emplaced targets at the top of the row, we notice that targets 6, 7, and 8 produce distinct 

anomalies in the detrended data, while target 9 produces a very weak anomaly. When proceeding 

with the soil fitting analysis and gridding the misfit, target 9 does not produce an anomaly and target 

6 produces a weak, incoherent response. To see why this is let us look at the soundings over targets 6 

to 9 (Figure B.33. The soundings measured by both the 10 ms and 4 ms chips indicate that the decay 

of targets 7 and 8 is slower than the background soil response, and therefore produces a significant 

misfit to the soil model. Target 9 does not produce an appreciable misfit since its response is nearly 

identical to the background when measured by the 10 ms chip, and the response is in the noise of the 

data when measured by the 4 ms chip. Target 6, which had an appreciable anomaly in the detrended 

data, has only a weak anomaly in the soil misfit map because its decay nearly matches the decay of 

the soil. If we decided to reduce the number of picks in the detrended data set by selecting targets 

based on the misfit map we would possibly have omitted target 6, which would have produced a 

false negative result. 
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0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 
X(m) 

Figure B.22: Waimea raw data 2 ms. White circles indicate emplaced items. 

(a) Amplitude (b) median values (c) demedian 

X(m) 

Figure B.23: Waimea detrending example on the 10 ms chip data. 
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X(m) 

Figure B.24: Detrended Waimea data from the 10 ms chip. 

B.4 Conclusion 

In this appendx, we presented analysis of multi-waveform TEM data. Modelling was used to deter

mine how a measured decay curve is altered by changing the length of the transmitter on-time. As 

expected, we saw that the response of targets with time constants less than transmitter on-times is 

less sensitive to the length of the on-time than the response of targets with larger time constants. We 

showed that the time constants of typical UXO targets would need to be large to have a differential 

effect when measuring data from different waveforms. The lack of a differential effect was evident 

when analysing the field data from Kaho'olawe and the Waimea GPO on the Waikaloa Maneuver 

Area. When soil model fitting was applied to the data, the inability of the soil model to fit the 

observed data proved to be a good indicator of the presence of metal. However, we saw instances 

where the target response was close to the background response. In such a case, false negatives may 

occur when using the soil misfit as a means of detection. 
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0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 
X(m) 

Figure B.25: Detrended Waimea data from the 4 ms chip. 

306 



Appendix B. A Differential EMI Approach for Detecting UXO in Magnetic Geology 

(a) Channel 1 (b) Channel 2 (c) Channel 3 (d) Channel 4 

Figure B.26: Detrended Waimea data from the 2 ms chip. 

Ch1: mean =-1.0244, o = 2.0453 Ch 2: mean = -0.3974, a = 0.98946 

Response (mV) 

Ch3: mean = -0.10418,0 = 0.52182 

Response (mV) 

Ch 4: mean = -0.070458, o = 0.40837 
200 r 

Response (mV) Response (mV) 

Figure B.27: Waimea Soil Histogram for the 10 ms chip data. 
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Ch 1: mean = -0.24995, o = 2.0618 Ch2: mean = -0.15726, a = 1.0568 

Response (mV) 

Ch3: mean = -0.085141, o = 0.54503 

Response (mV) 

Ch4: mean = -0.0047232, o = 0.44316 

Response (mV) Response (mV) 

Figure B.28: Waimea Soil Histogram for the 4 ms chip data. 

Ch1: mean = -1.4143,o-= 9.2034 Ch 2: mean = -0.37293, o = 7.1695 
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Figure B.29: Waimea Soil Histogram for the 2 ms chip data. 
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(a) 10ms, Ch 1 (b) Data above noise 
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Figure B.30: (a) Raw 10 ms chip data for the first time channel, (b) Data greater than twice the 
standard deviation of the background noise, (c) The soil misfit calculated for the data 
above the background noise. 
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Figure B.31: (b) Raw 4 ms chip data for the first time channel, (b) Data greater than twice the 
standard deviation of the background noise, (c) The soil misfit calculated for the data 
above the background noise. 
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(a) 2ms, Ch 1 (b) Data above noise (c) Misfit 

X(ltl) 

Figure B.32: (a) Raw 2 ms chip data for the first time channel, (b) Data greater than twice the 
standard deviation of the background noise, (c) The soil misfit calculated for the data 
above the background noise. 

Time (ms) 
(a) Soil decay for the 10 ms chip 

X=1.5m: 4 ms chip, detrended data 

10° Time (ms) 
(b) Soil decay for the 4 ms chip 

Figure B.33: Decay comparisons. 
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Appendix C 

The Effect of Transmitter waveform on 

the TEM Response 

Chapter 2 proposed parameterizations for the decay of the polarization to a step-off response. In 

a typical TEM system, a the waveform consists of a series of bipolar or unipolar pulses, with the 

secondary field being measured in the off-time between pulses. The Geonics EM63 and Geonics 

EM61 sensors are examples of this type of pulse TEM systems. The inductance of the transmitter 

loop does not allow for an instantaneous introduction or removal of current. The step-on of the 

transmitter current is exponential, with a time constant proportional to the inductance and inversely 

proportional to the resistance. In order to turn off the primary field quickly, the transmitter current is 

turned off using a linear ramp (Figure C.l). In this appendix we study how the transmitter waveform 

affects the measured signal. In particular, we would like to determine if the parameterizations we 

propose for the step-off response can be used for modelling responses due to transmitter waveforms 

like those in Figure C.l . 

The first property of the transmitter waveform that we study is the pulse length. Consider a single 

rectangular pulse with a width of At (Figure C.l(b)): 

C.l Effect of Tx pulse length 

(C.l) 
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• H(t) H(t) 

(a) Step-off 

-*t 
At 

(b) Finite rectangular pulse ("boxcar") 

(c) A TEM sensor exponential on/ramp off transmitter 
pulse. 

Figure C. l : Examples of TEM transmitter waveforms (a) A step-off waveform (b) A single rectan
gular pulse (c) A typical exponential on/ramp off transmitter pulse commonly used in 
TEM sensors that measure in the off-time. Ta is the length of the exponential increase 
in transmitter current and T0 is the length of the linear turn-off ramp. 

Let us consider a test step-off response 

L(t) = y exp ( - -
t \ 7 

(C.2) 

This function is simply equation 2.17, with k = f3 = 1. To obtain the response due to a transmitter 

waveform g (t), we convolve the impulse response L1 (t) — —dL/dt with the waveform: 

L9 (t) = f g (t') L1 (t - t') dt1 (C.3) 
J—oo 

Substitution of the impulse response and rectangular pulse waveform into equation C.3 gives 

L9 (t) = Hx r i ( *M - exp — 
.* V 7 / . 

1 / t + At 
t + At 6 X P I ~ 

(CA) 

As expected, equation C.4 shows that for a large At relative to the target time constant 7, the 

single pulse response will have approximately the same form as the step-off response. Figure C.2 

demonstrates how the pulse lengths affect the time decay function when a target has a time constant 
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7 = 5 ms. 

y= 10 ms 

10~2 10"' 10° 101 102 

Time (ms) 

Figure C.2: Effect of pulse length on the time decay function L (t) of equation C.2, where 7 — 10 
ms. 

We can not expect to accurately estimate the true time constant of a target, when the time 

constant is greater than the pulse length. 

C.2 Effect of Tx Pulse Ramp off 

In order to turn off the primary field quickly, the transmitter current is turned off using a linear ramp. 

In order to study how the linear ramp affects the TEM signal, consider the following waveform g (t): 

9(t)={ 
Hi if t < -At 

Hi 
(C.5) 

- —-t for-At <t <0 
At 

The length of the ramp is At. Examples of linear ramp waveforms are plotted in figure C.3(a). 

We use two step-off functions to help study the effect of the linear ramp. The first step-off 

function we consider is L\ (t) = l/t. Substitution of the impulse response and equation C.5 gives 

L{ (t) = Hx±-t [In (t + At) - In (*)] = In ( l + ( C 6 ) 

The second function we consider is L2 (t) — 1/Vi, which is the early time behaviour for non-
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permeable conductive items. The response due to a linear-ramp off waveform is 

L\ (i) = H1j^t (yi~+~Al - Vt) (C.7) 

We note that for small A i , and therefore a very fast ramp, equations C.6 and C.7 have the form of 

the derivative of In (t) and Vi, respectively. If we take the limit of A i —> 0, then 

lim LUt) = Hi- (C.8) 
At-o 1 w i v ' 

and 

lim L% (t) = H1^F (C.9) 

which are the step-off responses. Equation C.6 shows that for larger A i and smaller i (i.e. early 

times) the response will deviate from the step-off response. At later times the response transitions 

to the step-off response (Figure C.3). An erroneous early time transition might be assumed if the 

measurement time is early, and the ramp is large. In such cases, parameterizations that estimate the 

magnetic crossover may have inaccurate estimates. 

C.3 Effect of Tx Pulse time constant 

A standard transmitter coil has an exponential charge up due to the resistance and inductance of the 

coil. The expression for an exponential on and step off current is 

1 - exp I - t + A t ) , i f - A i < i < 0 
9®=' V T (C.IO) 

0 , otherwise 

where t is the time constant of the transmitter current. A signal that has a step-off response of C.2, 

will have the following response to Equation C.IO: 

L9 (i) = #i 7 exp 
t V 7 

exp (—i) 
1 - exp (Ai/r) 

t + At 

Ei 

exp 
i + A i \ 1-exp ( -Ai / r ) 

7 l - e x p ( - A i ( i - l ) ) 

(i + Ai) ( 1 - - + Ei (C.ll) 
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1 4 . Step Off A t = 50 n s At= 100 |is 
1-2 -| At = 200ns 

1.21 1 ' 1 

-1 -0.5 0 0.5 Time (ms) 
(a) Example of ramp-off waveforms 

Time {ms) Time (ms) 

(b) Ramp-off responses for a target with a step-off re-(c) Ramp-off responses for a target with a step-off re
sponse of L (t) = l/t. sponse of L (t) = l/yji. 

Figure C.3: Responses due to different lengths of linear turn-off. A linear ramp will change the 
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Appendix C. The Effect of Transmitter waveform on the TEM Response 

As expected, equation C.l 1 simplifies to equation C.4 in the limit that r -> 0. Figure C.4 shows the 

effect of the transmitter current time constant on the response. Clearly the time constant has very 

A t = 10 ms, y= 10 ms 

Time (ms) Time (ms) 

(a) Waveforms for testing the effect of the exponential on(b) Effect of different exponential-on time constants r on 
time constants. The on-time is A = 35 ms. the response. The pulse on-time is A = 10 ms. 

Figure C.4: Examples of how the step-off response affected by the exponential time constant r of 
the waveform pulse. The time constant of the waveform has less impact on the signal. 

little impact. 

C.4 Effect of Previous pulses 

The waveform of pulse induction systems consists of a series of bipolar or unipolar pulses. Targets 

that have time constants of the order of the length of time between these pulses are sensitive to 

multiple pulses. Figures C.5 and C.6 demonstrate this effect for a pair of bipolar and unipolar 

pulses, respectively. For the bipolar pulse example, an on time of 30 ms and a 50 percent duty cycle 

waveform is convolved with the impulse response of the step-off test function of Equation C.2. For 

the unipolar example a 25 percent duty cycle waveform with an on time of 15 ms is modelled. The 

influence of a previous pulse is very small for both cases. For the bipolar pulse example, the effect 

of the previous pulse is a reduction in the signal at late times. There is an increase in the signal for 

unipolar pulses. These effects are seen only for longer time constant targets. 
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10" 
• step off 
- one pulse 
- two pulses 

10" 
- step off 
- one pulse 
- two pulses 

10" 10" 
Time (ms) 

10' 10" 10" 
Time (ms) 

10' 

Figure C.5: Effect of a pair of bipolar pulses on a step-off response. The on time for these pulses 
is 30 ms and the waveform has a 50 percent duty cycle. Targets with time constants of 
(b) r = 10 ms, (c) r = 100 ms, and (d) r = 1000. 

317 



Appendix C. The Effect of Transmitter waveform on the TEM Response 

10" 

10 

10"' 

(a) Unipolar Waveform 

-50 0 
Time (ms) 

(c) y= 100 ms 

- step off 
• one pulse 
- two pulses 

10u 

Time (ms) 
10' 

10= 

10u 

10 

103 

10 

10" 

(b)y = 10 ms 

• step off 
• one pulse 
• two pulses 

10u 

Time (ms) 
(d)y= 1000 ms 

• step off 
• one pulse 
- two pulses 

10u 

Time (ms) 
10' 

Figure C.6: Effect of a pair of unipolar pulses on a step-off response. The on time for these pulses 
is 15 ms and the waveform has a 25 percent duty cycle. 
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C.5 Response due to the EM63 and EM61 pulse 

The majority of data examples in this thesis are from the EM61-MK2 sensor and EM63 time domain 

electromagnetic sensor. The waveforms are an exponential current increase followed by a linear 

ramp off: 

9(t) = { 

(t + Tg+Tb) 
Tx 1 — exp 

[ l - e x p C - T a / T * ) ] 

, i f - ( T a + Tft) <t< -Tb 

t , i f - r 6 < * < 0 

(C.12) 

where T a is the length of the exponential charge up, Tx is the time constant of the transmitter loop, 

and Tb is the length of the turn-off ramp. 

A signal that has a step-off response of C.2, will have the following response to Equation C.12: 

L9 (t) = 
-1 

1 - exp (-TJTX) Tx 

exp 
(t + Ta + Tb) 

Ei it + Tb) + Ei (t + Ta + Tb) 
7 

1 
Ei I -

7 
-Ei 

+ 
t + Tb 

7 
(C.13) 

Figure C.7 plots the responses described by C.13 for a target with a time constant of 10 ms. There 

- s t e p off 
- e x p on/ramp off 

E M 6 3 t i m e s 

10 10 

- s t e p off 
- e x p on/ramp off 

E M 6 1 t i m e s 

10 10 
T i m e (ms) 

(a) Effect of a single Geonics EM63 pulse (b) Effect of a single Geonics EM61 pulse 

Figure C.7: Effect of a single Geonics EM63 and EM61 pulse on a step off response. 
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is a minor change in the response at early time. 

C.6 Summary 

The transmitter waveforms of TEM sensors will impact the measured decay of the target. In this 

section, the impact of the transmitter waveform was studied by convolving the impulse response 

with different transmitter waveforms. We found that for the parameterizations we propose for the 

step-off response can be used for modelling responses due to transmitter waveforms we would 

expect from a Geonics EM63, which is the sensor used to collect most of the data presented in 

thesis. 
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Appendix D 

The magnetization decay for different 

waveforms 

In this appendix we derive the expressions for the magnetization due to a collection of non-interacting 

single domain grains. We assume that the distribution of time constants are log-uniformly dis

tributed. We derive expressions for a finite width pulse and ramp-on pulse D.l. 

>H(t) \H(t) ^H(t) 

(a) Step-off At 

(b) Finite pulse 

Figure D.l: Waveforms 

At 
(c) Ramp on 

D . l The Magnetization decay M (t) for Finite width pulse 

The magnetization of a step off field H can be written as 

M(t)-M0 = HXoF(t) (D.l) 

where Xo is the DC susceptibility, and F (t) is the after effect function. In the following treatment, 

we assume that M0 = 0 and the aftereffect function for a single relaxation time can be represented 

as F (t) = exp (i/r). The impulse response for a single relaxation time is then 

*(t) = ^ = i « p ( t / r ) (D.2) 
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Substitution of equation D.2 into (D.l) gives 

T J—oo 

HXo f° 

dt' 

— [ exp ( —- ) exp ( — ) dt1 exp ( — ) / exp ( — | dt' 
T J-At \r J \ T J T \ T J J _ A t \ T J 

HXo f-t 
exp — r V r 

t' 
r e x p I — 

r 

l O HXo f-t 
exp — 

- A t 
1 — exp 

-At 
(D.3) 

HXo 
exp 

-t 
exp 

- (t + At) 

We then integrate over a uniform log distribution of time constants. Substitution of the appropriate 

distribution function is 
1 1 

(D.4) / ( T ) = T i 
r l n ( T 2 / T I ) 

for T i < r < TI, and integrating gives 

HXo Ml (t) = 
In ( T 2 / T I ) 

HXo 
In ( r 2 / r i ) 

X e x pbj-y T 1

 e x p 

f - ) - Ex (-) - Ex V-r2y \TiJ V T 2 

- (t + At) 
T 

(t + At) 
+ Ex 

(t + At) 
T2 

(D.5) 

where E\ is the exponential integral. Asymptotic and series expansions of the exponential integral 

are used to evaluate D.5. The asymptotic expansion of Ex is 

_ , , e~z ( 1 2 6 
Ex (Z = 1 - - + - - 3 + . • • 

z \ z z* z6 

The asymptotic expansion is suitable for large z. The series expansion of E\ is 

Ex(z) = -7-ln(z)-j:{-^-r 

n = l 

(D.6) 

(D.7) 

where 7 is the Euler constant 7 = 0.577 The series expansion is suitable for small z. 
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Since t <C T 2 , E\ it/r^) is evaluated with the series expansion: 

£ i ( - ) = - 7 - l n ( -
J2J \T2 

( - 1 ) ( i / r 2 ) + ( - l ) 2 ( i / r 2 ) 2 

1 2 2! 

7 _ l n i ) + ± _ i y i + . . . 

i - 7 - I n (— 
\ T 2 

Since t » T\, E\ (t/ ri) is evaluated with the asymptotic expansion: 

o 

(D.8) 

(T) 1 - ( T ) + S ( T ) ' (D.9) 

Substitution of D.8 and D.9 the into D.5 leads to an expression of the magnetization decay due to a 

finite pulse: 

Mpulse ^ 

In ( T 2 / T I ) 

HXQ 

In ( T 2 / T I ) 

- 7 - l n - -
, r 2 

[In (t + A i ) - In (*)] 

—7 — In 
t + At 

T2 

(D.10) 

D.2 The dM/dt response for a finite width pulse 

Most metal detectors measure the time derivative of the secondary magnetic field, such that the 

sensor response is proportional to the change in the ferrite magnetization over time. The impulse 

of the dM/dt response requires two derivative (one to get the impulse and the second to get the 

derivative): 

~ e x p ( - - M (D.ll) 
d2F (t) 

dt2
 T 

Therefore, the impulse response for the derivative of the magnetization is 

dM1
 HXO 

dt 
t 

exp rl \ T 
(D.12) 
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Following the same steps as in the previous section, we convolve to determine the response: 

dM HXo f° _,̂ „__r (t-t'r 
dt I J-OO 

= j - / ex] 
' J-At 

HXo 

exp dt' 

(t-f) 
dt' = exp J° exp (^j dt' 

HXo 
exp 

-t 

r exp 

exp 

t' Hxo 
At 

(t + At) 

2 e X P , T \ T 
1 — exp 

-At 
(D.B) 

We now integrate D.13 over a log-uniform distribution, and apply the same assumptions (i.e. t S> T\ 

and t <C Ti) to obtain the final expression: 

dM 
~~dT 

Hxo \l f-t 
• -. ; r - exp 
l n ( r 2 / r i ) \t \T 

(t + At) exp 
(t + At) T2 

J T l (D.14) 

l n ( T 2 / T l ) [t t + At\ 

D.3 The dM/dt response for a ramp-on response 

Candy (1996) derived the expression for the time derivative of magnetization for a ramp-on re

sponse. The ramp-on waveform can be written as 

g (t') = H{t' + A) (D.15) 

Convolving the impulse response with the waveform gives 

dH = HXo 

dt 

y° (t'+ At) exp (^J^j dt' 

For convenience, we split the integral into two terms: 

dH HXoA, f° f~(t-t')\ Mf , Hxo f° +l 

— = —T-At / exp dt H I t exp 
dt T 2 J _ A T \ T J T J _ A T 

= h + h 

(D.16) 

- ( * - o dt' 
(D.17) 
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The integral Ii was solved earlier (without the — At) when deriving the dH/dt field from a box-car 

pulse: 

h = HXoAt 
1 f - t \ 1 / - ( i + At) 
— exp — exp 
r \ T I T V T 

Solving I2: 

(DAS) 

_HXo f° , 
exp 

- A t 

HXo f-t 

~ (t ~ f) ' ^ e X p ( ± ) / \ < e x p ( 0 R F F < 

„ exp 
T \ T 

-|0 

J - A t 

t\ A i / - ( t + A i ) \ / - ( t + At) 
e x p 1 v j - T E X P I — ; — J - e x p (—;— 

(D.19) 

Putting i i and I2 together: 

dM At f-t 

-t\ At 
exp I — -| exp 

T I r 

At / - ( t + At) 
— exp '-
• T \ T 

(t + At) + exp 
- (i + At) 

= HXo 

At f - t \ f - t \ (-(t + At) 
- exp f - j - exp I - j + exp I 

(D.20) 

Now integrate over the time constants 

dM 

dt l n ( r 2 / r i ) 

fT2 1 
exp I — I dr / ; M T ) 

JTI T 

dr+ 

exp [ (* + A t ) ) dr] (D.21) 
T 

These integrals have been evaluated earlier. Therefore the expression for the time derivative of the 

magnetization is 

dM 

dt l n ( r 2 / r i ) 
[Ai j exp (-t/r 2) - j exp (-t/n) 

i 
E 1 [ - ) - E 1 

T2 
+ # 1 

(t + At) 
T2 

(t + At) 
(D.22) 
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Similar to section D.l, we use approximations for the exponential integral 

dM 
dt ln(r 2/Ti) 

At ( j - 0 ) - [ ( -7 - In it/r2)) - 0] + [ ( -7 - In ((* + At) /r2)) - 0] 

At 
In (r2/n) L t 

+ In (t) - In (t + At) 

In (r2/ri) 
. . , At\ At' 
l n ( 1 + T j - T 

(D.23) 
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