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ABSTRACT

Palynological ©biostratigraphy and maturation data are com-
bined to reconstruct the burial and thermal history of the
Orpheus Graben, offshore Nova Scotia.

Palynological analysis indicated that, 1) the age of
sediments in the Orpheus Graben range from Upper Triassic to
Turonian (Upber Cretaceous) with unconformities occurring in two
wélls, 2) recycled palynomorphs are ubiquitous in the wells
examined, but do not occur in large numbers, 3) the Jurassic

section is dominated by Classopollis, indicating an arid environ-

ment. The Cretaceous section 1is dominated by Cyathidites,

Taxodiaceapollinites, Gleicheniidites and bisaccate pollen
indicating wet tropical or sub-tropical conditions.

Maturation zones were determined primarily by spore colour
and correlation to vitrinite reflectance and pyrolysis data.
Thermally mature rocks occur as shallow as 500 m in one well.
The Dawson Canyon and Logan Canyon Formations contain the riches
0il prone source rock. Enhanced levels of maturity were found to
occur over salt structures.

Burial history diagrams are shown for all six wells drilled

in the Orpheus Graben as well as burial diagrams for a Dbasin
cross section through time. Two models of Tertiary subsidence
are considered, 1) with minimal Tertiary deposition, 2) with up

to 2000 m of Tertiary deposition.
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The temperature history of each well drilled in the Orpheus
Graben can be inferred by combining the Time-Temperature Index
and maturation data. Two temperature distributions are <consi-
dered, 1) a simple temperature history with geothermal gradients
twice the present and up to 2000 m of Tertiary deposition and, 2)
a complex Temperature history with geothermal gradients up to six
times the present with minimal Tertiary deposition. The complex -
temperature history yields Time-Temperature Index values that are
closer to the observed maturity.

The future exploration potential is discussed, with enhanced
exploration objectives suggested for the region fqrther eastward

along the axis of the Orpheus Graben,



iv

TABLE OF CONTENTS

Page

ABSTRACT ..... Ce e e e e e et e s et et e e e ii
TABLE OF CONTENTS ...¢veeeennnen . ceas e Ce et a s e e iv
LIST OF FIGURES ..... Ce s e e e et A vii
LIST OF TABLES ..ttt eetenneasan et e em e ce e X
LIST OF PLATES .ttt itettnresneeososncssnsnonnnoas et e e xi
ACKNOWLEDGEMENTS ...... i e s et et et Ce e s es e . xii
CHAPTER 1 GEOLOGY OF THE ORPHEUS GRABEN +vvviveeevennenn . 1
Regional Setting +.oueeerneeeecosoneosesoerossocsancans 1
PUrpose ..uiveietneenacans et et e e e c e et 4
Exploration HiStOTY cuueeeereeossosoocsososonesnocsssas 5
GEO0logY i veietier et teasoeeeretrsonssatesssssesenssanen 7
CHAPTER 2 PALYNOLOGY ........oiivniiinnieeinanennns e e ee e 13
Introduction ...... e et e e e ce et e 13
Methods ..o veeeeeesoetnoeeeeeasasosassasessscsnsnsosasess 13
Results and DiSCUSSION 44w ienoseeeeasoossssonosenoenss 16
Palynomorph Recovery ....ieiiieieieeeeeensnssonnnsas 24
Recycled PalynomoTrphs +.iiieeeeinnserooscsonecscncass 24
PaleoeCO0loBY toiiieeereenssensossossnosocenooncnnsas 30

CoNClUSIONS &t vttt e tounoeeceaoenosesaosnnssssosssassesaas 33



v
TABLE OF CONTENTS CONTINUED

| Page

CHAPTER 3 ORGANIC GEOCHEMISTRY «uvvvvunnneens e es e e 34

Introdﬁction C et e a st et ete s e e 34

MEethods vt iner ittt itoenssnonossssosnannssosonsssnsns 41

Thermal Maturity based upon Spore Colour .......... . 41

Vitrinite Reflectance ...veiieeeeeoosoroneasenoncennns 44

Pyrolysis .iveveeernoneas et ee e Ciereeeaa e e L4

Results and DiSCUSSION .+ttt eeueronesoossossnsnsonnasacsos 45

Maturation Data - T.A. L. .ttt teennennnennnannas 45

‘ - Vitrinite Reflectance .....ceceeeas 55

— Pyrolysis v.eiiiiioeitanacacntnnaenn 56

— Organic Matter ....eeeeornccaeasesa 57

- Pyrolysis and Organic Carbon ...... 58

Summary and ConclusSions ...ueeeeoeooessassasnsosssssssnas 60
CHAPTER 4 A. SUBSIDENCE AND THERMAL HISTORY OF THE

ORPHEUS GRABEN ..ttt iinennenoroesnocnnnoonss 62

IntrodUCLion i uieerenseosonssoeeassesssssenonasssonssoesns 62

MEthOdS v ivtineeneeeeeesoaoeossansassoasenssnnnnses e 63

Results and Discussion ...seeeees C et et e te s s 69

Burial History of Wells tuueeeerieeeenoeeeonssseanaans 69

Basin Subsidence ......... it e e s s e s et ae s en s s e ans 82

Temperature HisStoTy +uuieetoerteesotnossonnascennsnans 87

ConclusSions tuveereeeennoenooneos Gttt et e e e s e e 112



B.

TABLE OF CONTENTS CONTINUED

B. HYDROCARBON POTENTIAL OF THE ORPHEUS GRABEN .....cevev.
SUMMARY e et e et eee e eneeneeneeeeneeeeneennennes e
BIBLIOGRAPHY & ittt ittt ittt eneeoeesasesenasossnssncanncoanaansas
APPENDIX I Structural geology of each well ......c.civvuennn
"APPENDIX II Summary of stratigraphy .«....eeeereosoesooesas ..
APPENDIX III A. Summary of some spore-plant affinities ...

Partial 1list of reworked spores

vi

116
118
139
141

147



FIGURE

10.
11.
12.
13.

14.

LIST OF FIGURES

Tectonic elements of the Scotian Shelf
Orpheus Graben, showing well locations
basement fault patterns and the erosional

edge of the Cretaceous

Structural <cross-section of the j;-éb-ﬂa”

.Orpheus Graben

Summary of stratigraphy for the
Scotian Basin

Summary of palynological zonation for
the east coast of Canada

Microplankton distribution for T %;.Ca/ﬂ

Jason C-20

Spore and pollen distribution for
Jason C-20

Microplankton distribution for
Hercules G-15

Spore and pollen distribution for
Hercules G-15

Microplankton distribution for
Argo F-38

Spore and pollen distribution for
Argo F-38

Spore and pollen distribution for
Eurydice P-36

Number of palynomorphs counted per sample,
Jason C-20

Number of palynomorphs counted per sample,
Hercules G-15

vii

15

18

19

20

21

22

23

25

26



15.

16.

17.
18.

19.

19
19
19
19
19
19

20.

20
20
20
20
20

21.

21
21
21
21
21

22.
23,

24,

24
24
24
24
24

O A0 oD

o0 TP

© A0 TP

o o0 oD

LIST OF FIGURES CONTINUED

Number of palynomorphs counted ‘per sample,
Argo F-38

Number of palynomorphs counted per sample,
Eurydice P-38

Comparison of maturity scales
Location map - geochemical data
Maturation and geochemical data Jason C-20

Thermal Alteration Index
Vitrinite Reflectance %
Organic Matter Type

Percent Humic to Lipid Matter
Pyrolysable Hydrocarbons
Organic Carbon %

Maturation and geochemical data Hercules G-15

Thermal Alteration Index
Vitrinite Reflectance "%
Organic Matter Type

Percent Humic to Lipid Matter
Pyrolysable Hydrocarbons %

Maturation and geochemical data Argo F-38
Thermal Alteration Index
Vitrinite Reflectance 7%
Organic Matter Type
Ratio of Humic to Lipid Matter
Pyrolysable Hydrocarbons %

Thermal Alteration Index Crow F-52
Thermal Alteration Index Fox I-22

Maturation and geochemical data Eurydice P-36

Thermal Alteration Index
Vitrinite Reflectance 7%
Organic Matter Type

Percent Humic to Lipid Matter
Pyrolysable Hydrocarbons 7%

viii

27

28
38
40

46

47

48

49
50

51



25.

Isopleths of T.A.I. - Orpheus Graben
26 a. Burial history diagram Jason C-20
(slow Tertlary subs1dence)
26 b. " Hercules G-15
26 c. " " " Argo F-38
26 d. " " " Crow F-52
26 e. " " "+ Fox I-22
26 f. " " " Eurydice P-38
27 a. " " " Jason C-20
, (Tertiary dep081t10n with uplift)
27 b. " Hercules G-15
27 c. " " " Argo F-38
27 d. " " " Crow F-52
27 e. " " " Fox F-22
27 £. " " " Eurydice P-38
28 a. Orpheus Graben 200 Ma Subsidence History
28 b. " 144 Ma
28 c. " " 66 Ma
28 d. " " Present day
29 a. Slmple Temperature Hlstory Jason C-20
29 b. Hercules G-15
29 c. " " " Argo F-38
29 d. " " " Crow F-52
29 e. " " " Fox I-22
29 f. " " " Eurydice P-38
30 a. Complex Temperature Hlstory Jason C-20
30 b. Hercules G-15
30 c. " " " Argo F-38
30 d. " " " Crow F-52
30 e. " " " Fox I-22
30 f. " " " Eurydice P-38
31 a. Temperature Distribution - Graben
cross-section 200 Ma
(Simple Temperature History)
31 b. " " " 144 Ma
31 c. " " " 66 Ma
31 d. " " " Present
32  a. Temperature Distribution - Graben cross-section
(Complex Temperature Hlstory) 200 Ma
32b. " ‘ 144 Ma

LIST OF FIGURES CONTINUED

32c.

" " 1" 66 Ma

ix

Page
53

70
71
72
73
74
75

76
77
78
79
80
81

83
84
85
86

89
90
91
92
93
94

95
96
97
98
99
100

104

105
106
107

108
109
110



Table

Table

Table

Table

Table

Table

Table

IT.

ITI.

Iv.

V1.

VIT.

LIST OF TABLES

Summary of palynomorph recovery (includes
spores: pollen, microplankton),

Comparison of T.A.I. to Vitrinite Reflectance
with associated spore colours and maturation
zones.,

Comparison of depths to different maturity zones.

Values of n for different temperature intervals.

Correlation of T.T.I. to T.A.I. and vitrinite
reflectance.

Comparison of possible initial geothermal
gradients to present geothermal gradients.

Comparison of calculated T.T.I. to observed

maturity for two different temperature histories.

42
52

65
66
88

102



Plate

Plate

Plate

Plate

LIST OF PLATES

ooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooo

oooooooooo

x1i

Page
152

154



xii

ACKNOWLEDGEMENTS

I wish to thank Dr. G.E. Rouse for his encouragement, direc-
tion, support and advice throughout this project, Dr. R.L. Chase
and Dr. R.M. Bustin for useful discussions, and Dr. W.H. Mathews
and Dr. J.W. Murray for critical reading of the manuscript.

This thesis was supported by Shell Canada Resources Ltd. who
provided'drafting services, palynology slides, analytical organic
geochemistry data and well log data. My ‘appreciation also
extends to Shell Geologists, G.W. Graff (Manager, East Coast
Exploration), M.M. Given (Organic geochemistry), A.P. Audretsch
and F.R. Poeltl (Palynology), A.W. Rupp (Thesis Co-ordinator),

and R.L. McKellar (Geologist) for useful comments and discussion.



CHAPTER 1 GEOQOLOGY OF THE
ORPHEUS GRABEN

Regional Setting:

The Scotian Shelf is the southernmost of three major conti-
nental shelves located off the east coast of Canada. The other
two are the Grand Banks, east of Newfoundland and, the Labrador
Shelf east of Labrador (Jansa and Wade, 1975a). + The Scotian
Shelf extends 1000 km northeastward fromAthe Northeast Channel,
separating the Scotian Shelf from the Georges Bank, to the
Laurentian Channel, separating the Scotian Shelf from the Grand
Banks. The Scotian Shelf dis up to 400 km in width. Figure 1
depicts the tectonic framework of the Scotian Shelf. The two
major tectonic elements are the LaHave Plétform, a region of
relatively thin sedimentary cover and the Scotian Basin, the
major depocentre (Jansa and Wade, 1975a). The Scotian Basin is
further divisible, on the basis of basement faulting into grabens
and half grabens (McIver, 1972). These sub-basins are the,
Sable, Abenaki, and the Orpheus (Given, 1977).

The study area of this thesis is the Orpheus Sub-basin,
located on the northeast corner of the Scotian Shelf between
latitudes 45° 20'N, and 45°40'N and longitudes 58°W and 61° W
(Fig.2). The Orpheus Sub-basin plunges east from Chedabucto Bay
on the Nova Scotian mainland to the Laurentian Channel (Jansa and

Wade, 1975a). Structurally the basin is a graben, bounded by the
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Canso Ridge to the south and the Scatarie Ridge to the north.
The graben is outlined by a discontinous series of subparallel
faults, detected in the Dbasement rocks by seismic methods.
Some of these faults curve into the basin (obtained from seismic
structure maps provided by Shell Canada Resources Ltd.).
Seismically, the Orpheus Graben is divisible into an east and
west region, separated by an area of weak seismic reflection and
a lack of major sedimentary structures. Sedimentary thicknesses

exceed 9000m (30000') along the axis of the graben.

Purpose

The wultimate objective of the thesis is to reconstruct the
subsidenceA and thermal history of each well and the graben as a
whole by combining the biostratigraphy with the maturation data.
To achieve this, the following immediate objectives were

established:

1.) The palynological biostratigraphy and zonation of four
wells, Argo F-38, Hercules G6G-15, Jason C-20 and
Eurydice P-38;

2.) significance of recycled palynomorphs;

3.) paleoecological reconstructions, based upon interpreta-
tion of palynomorph assemblages;

4.) maturation history of six wells from microscopic and
geochemical analysis;

5.) the character and richness of the organic matter using

microscopic and analytical methods.



Exploration History

Offshore drilling activity on the east coast of Canada began
in 1967 when Amoco Canada and Imperial 0il drilled Tors Cove D52
to 1453 m (4767') on the Grand Banks. On the Scotian Shelf,
drilling began a year later when Mobil 0il Canada completed Sable
Island No.l drilled to 4604 m (15105'). To September 1984
approximately 95 wells have been drilled offéhore Nova Scotia.

The Orpheus Graben was first tested in January 1971 when
Shell Canada Resources drilled Shell Argo F-38 (Fig. 2). Subse-
quently 5 more wells were drilled within the Orpheus Graben
(Fig.2): Shell Crow F-52, April 1971 on the Canso Ridge; Shell
Fox .I—22, May 1971 on the Canso Ridge; Shell Eurydice P-36,
October 1971; Union et al. Hercules G-15, August 19743 and Union
et al. Jason, July 1974, Objective reservoirs were considered to
be Jurassic limestones and dolomites and Jurassic-Cretaceous
sandstones. The objectives were situated over salt diapirs in the
graben whereas a basement high‘and stratigraphic pinchout pro-
vided possible traps on the Canso Ridge (Fig. 3). All six tests
failed to encounter hydrocarbons, resulting in the abandonment of
the Orpheus region as an active exploration area. The structural

geology for each well is summarized in Appendix I.
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Geology

McIver (1972), Jansa and Wade_(197Sa, 1975b), and Given
(1977), presented the most complete discussions of the strati-
graphy of +the Scotian Shelf. A more specific discussion of
stratigraphy was given by Eliuk (1978). A summary of the
stratigraphy ié preseﬁted in Fig 4. McIver (1972) first proposed
the stratigraphic nomenclature for the Mesozoic-Cenozoic section
on the Scotian Shelf, consisting of 12 formations and 3 groups.
Jansa and Wade (1975a) added the Eurydice Formation, while Given
(1977) cleared wup some of the stratigraphic problems and
established +the Mohican Fdrmation. The stratigraphy of the
Orpheus Graben is described in more detail in Appendix II.

‘The basement rocks of the Scotian Shelf are composed of the
Cambrian-Ordovician Meguma Group, a sericitic schist that was
originally a quartz metawacke turbidite sequence deposited as a
deep sea fan complex (Schenk, 1978) on a subsiding ocean crust.
The Meguma rocks have a source area to the southeast and are
inferred to have been deposited on the eastern side of the proto-
Atlantic Ocean, off the coast of Northwestern Africa (Schenk,
1971). During the Devonian Acadian Orogeny the Meguma rocks were
juxtaposed against the rocks of the Avalon Zone by transcurrent
faulting which follerd folding, faulting, and metamorphism in
the Uﬁper Silurian. The Glooscap fault system separates the

Meguma Group from the Avalon Zone (Schenk, 1978).
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Intrusion of granites into the Meguma Group occurred in the
Late? Devonian as a consequence of the Acadian Orogeny (Schenk,
1978; King et al., 1975). The collision between the North
American plate and African plate resulted in a dominant
northeast-southwest structural grain.  The associated fight
lateral shear (Uchupi et al., 1976) was reactivated later during
continental breakup.

Mississippian to Triassic strata have not been encountered
in any of the wells drilled on the Scotian Shelf, although
Carboniferous strata occur on the Grand Banks (Jansa and VWade,
1975a). This hiatus is probably related to the latest phase éf
the Hercynian Orogeny which continued intermittently from the
Carboniferous to the Permian (Jansa and Wade, 1975a; Sherwin,
1972).

Rifting on the Atlantic margin is considered to have begun
around 180 Ma. (McWhae, 1981; King et al;, 1975; Pitman, 1978;
Bélly and Snelson, 1980) although earlier dates, 190 Ma. (Royden
and Keen., 1980a) and later dates, 176 Ma. (Purcell et al.,
1979), 175 Ma. (Van Houten, 1977; Sclater et al., 1977) have been
cited. The breakup resulted in the development of the Triassic
Newark System (Uchupi_et al., 1976), a series of Triassic rift
valleys that extended from Florida to Nova Scotia, (Ballard and
Uchupi, 1972). A similar series of basins formed on the African

margin (Lehrner and De Ruiter, 1977).
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As the African Plate moved away from the North American
plate during and after the. Triassic, a northwest—southeast
transform faulted margin developed on the Atlantic margin. The
Orpheus Graben is a consequence of the rift induced reactivation
of the pre-existing structurally weak fault =zone between the
Meguma and Avalon platform. The Orpheus Graben probably connects
the northeast-southwest trending Triassic rift basins of the
American continental margin via the Glooscap fault system to the
Newfoundland fracture zone (Fig.1l), (Xing, 1975; Wilson and
Williams, 1979). The Newfoundland fracture zone defined the
northern limit of the Atlantic Ocean during the early Jurassic.

Early redbed sedimentation (Eurydice Formation) was probably
restricted to struc?urally low areas (McIver, 1972), following a
period of ©bevelling which may have peneplained the Dbasement
(Given, 1977). As rifting progressed, a western extension of the
Tethys invaded the Atlantic Basin. Restricted marine conditions
ensued, resulting in evaporite deposition of the Argo Formation.
Further widening of the basin destroyed the restricted marine
conditions in .the early Jurassic, allowing carbonates of the
Iroquois Formation to be deposited (Evans, 1978).

The Middle Jurassic transgression, following <continental
clastic deposition of'the Mohican Formation, produced a carbonate
" shelf complex facing a deep water basin, the Western Bank Group
(Given, 1977). The Canso Ridge was probably emergent until the

Middle Jurassic (Jansa and Wade, 1975a).
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By the wearly Cretaceous, the deltaic complex of the
Missisauga -Formation had prograded over the carbonates as a
regressive pulse resulting from the rejuvenation of continental
source areas (Given, 1977). The Avalon uplift was a result of
the separation of the Grand Banks from the European Plate dated
as early Cretaceous (Haworth, 1975; Jansa and Wade, 1975b); and
90 Ma (Bally and Snelson, 1980).

A marine transgression began in the Albian, resulting in the
deposition of shallow to marginal marine sand, silt and shale
sequences, the Logan Canyon Formation (Jansa and Wade, 1975b). A
restricted marine to non-marine shale, (Given, 1977), the Naskapi
Formation, in some places separates the Missisauga Formation from
the Logan Canyon (McIver, 1972). Deposition of the marginal
marine to inner neritic shales and mudstones (Dawson Canyon
Formation) followed by outer neritic to wupper bathyal chalk
deposition (Wyandot Formation) marked the transgressive culmina-
tion (Given, 1977). 1In the Orpheus Graben, deposition continued
as an alluvial plain environment from the Upper Jurassic to the
Cenomanian (Jansa and Wade, 1975b). °

Tertiary deposits consist of mudstones with increased sand
content in the upper half of the section, the Banquereau
Formation of McIver, (1972) indicating a shallowing of water
depth. The Wyandot and Banquereau Formations may be present in

the Orpheus Graben although sample cuttings and mechanical logs
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were not collected from the upper part of the wells to prove or
disprove this hypothesis (Hardy, 1975). Quaternary deposition

consisted of glaciomarine sediments.
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CHAPTER 2. PALYNOLOGY

Introduction:

Ditch-cutting and sidewall-core samples from four wells,
Argo F-38, Jason C-20, Hercules G-15 and Eurydice P-36, drilled
in the Orpheus Graben were analyzed palynologically. The oldest
sediments are probable Upper Triassic-Jurassic sediments in
Eurydice P-36; the youngest are Upper Cretaceous, Turonian, in
Argo F-38. Major Middle-Jurassic unconformities were found in
Eurydice P-36 and Hercules G-15.

The number of species of palynomorphs identified in each

well are:

#dinoflagellates fspores/pollen
Jason C-20 69 105
Hercules G-15 8 65
Argo F-38 59 102
Eurydice P-36 0 24

Methods:

The palynological slides for each of the wells in the
Orpheus Graben were provided by Shell Canada Resources Ltd. Most
slides‘ were 9 m to 30 m (30" to 100') composite samples from
ditch cuttings, although in some wells, sidewall core and conven-

tional core samples were available. Two hundred palynomorphs, if
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present, were counted per slide. Three hundred and eighty slides
were examined.

Each well was zoned and dated using microplankton
assemblages, first occurrences of species, or known palynological
ranges. The palynological zonation is based on Williams (1975),
Williams and Brideaux (1975), Bﬁjak and Williams (1977), Bujak
and Williams (1978), and Barss, Bujak and Williams (1979). A
summary of the assemblage zones and equivalent stages established
for the Scotian shelf are shown in Fig. 5. There are ten zones
in the Jurassic, . comprising one peak zone and nine assemblage
zones. In the Cretaceous there are eleven zones; two peak zones
and nine assemblage zones,

Identification of recycled palynomorphs was based upon the
palynomorph identification and generally darker colour and/or
evidence of erosion.

The occurrence of reworked spores, the number of
palynomorphs counted per sample interval and the percentage of
spores and dinoflagellates per sample interval were also plotted.
For several species of spores and pollen, percent frequency
diagrams are used to illustrate possible paleoecological

relationships among the floras.
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LATE TRIASSIC

Maastrichtian Dinogymnium euclaensis Zone
Campanian Odontochina éperculata Zone
Santonian Cordosphaeridium truncigerum Zone
LATE
o Coniacian Oligosphaeridium pulcherrimm Zone
2
o Turonian Surculosphaeridium longifurcatum Zone
w
(6] Cenomanian Cleistosphaeridium polypes Zone
<
- AlbL Spinidinium cf. S. vestitum -[‘Eﬁ ggégegiggééges
w an Eucommiidites minor Zone
e Subtilisphaera perlucida-Systematophora schinde-
Q Aptian P y ph
) wolfii Zone
Barremian Doidyx anaphrissa Zone
EARLY -
Hauterivian Ctenidodintum elegantulum Zone
Valanginfan
Phoberocysta neocomica Zone
Berriasian
Portlandian Ctenidodinium panneum Zone
LATE Kirmeridgian Gonyaulacysta cladophora Zone
Oxfordian Conyaulacysta jurassica Zone
Callovian Valensiella vermiculata Zone
Q
72 Bathonian Gonyaulacysta filapicata Zone
¢? |MIDDLE
< Bajocian
g . Mancodinium semitabulatum Zone
= Aalenian
Toarcian Nannoceratopsis gracilis Zone
Pliensbachian
EARLY Fchiniltosporites cf. E. iliacoides Zone
Sinemurian
Cycadopites subgranulosus Zone
Hettangian

Classopollis meyeriana Zone

© o
df.]8]s
Slr/8]s
£/s/8/8
R/5/%/%
X
X
X | X
X
X | x| X
X
X X
X1 X[ X[ X
X
X |[x?

5 Summary of palynological zonation for the east

coast of Canada (after Barss et.al.,1979)

Right column,

observed in the well examined.

an 'X' indicates those zones



16

Results and Discussion

The palynomorph range <charts for the four wells are
presented on Figurés 6 to 12. Fach well, except for Eurydice P-
36 from which only spores were recovered, has two range charts,
.one for microplankton and one for spores and pollen. The
zonation 1is indicated on the figures with the stages on both the
horizontal and vertical scales. An 'X' denotes the presence of a
particular palynomorph at a particular depth, rather than
abundance. Some species were ~particularly abundant, and
percentage frequency diagrams were compiled for these species.

In the Orpheus Graben, many of the species used to define

zones by Barss et al. (1979) were present, though with some
exceptions.  Figure 5 compares zonation of Barss et al. (1979) to
the four wells din this study. Key species representing

Berriasian to Barremian and Toarcian to Bajocian stages were not
observed. The Berriasian to Barremian interval in the Orpheus'
Graben was non-marine due to the regressive Missisauga delta,' S0
dinoflagellates representing these stagés would probably not

occur. However the second Classopollis classoides peak observed

in Argo F-38 and Jason C-20 indicates a Lower Cretaceous age.

Chaloner (1962) noted a similiar double maxima for Classopollis.

The first maximum occurred in the Early Jurassic (Liassic), the
second in the early Cretaceous (Purbeckian-Berriasian) (Van

Eysinga, 1978).
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Deposition during the Toarcian to Bajocian éges in the
Orpheus Graben occurred under continental to fluvial deltaic
conditions. Again, the key dinoflagellates would not be expected
under those environmental conditions. Other characteristic
.palynomorphs that <could be used for dating this dinterval were

not observed.

Palynomorph Recovery: The number of palynomorphs (spores,

pollen, and microplankton) counted for each sample interval for
the four wells is plotted on Figures 13 to 16,  The recovery of

palynomorphs for each formation is summarized on Table T.

Recycled Palynomorphs: The identification of recycled palyno-
mofphs could be potentially valuable for indicating the presence
of host strata at depth or of presumably close stratigraphic
outliers, either nearshore; onshore, or offshore that could have
contribﬁted the recyclants by erosion and redeposition. The
recycled palynomorphs are plotted by Geologic Period of origin vs
depth on the right hand side of Figures 7, 9,. 11, and 12. The
number of recycled palynomorphs is low, constituting at best only
a few specimens per slide. A partial list of recycled spores is
given in Appendix III. The most common reworked spore was

Lycospora sp. (Carboniferous).
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Most intervals barren,

In shaley interbeds.

occassional spore rich intervals.

Generally more spores at base of formation than at top.

In upper part of section.

Variable

~

Table I Summary of Palynomorph Recovery
(includes: pollen, spores, microplankton)
Spores Poor Fair Good Excellent Microplankton
Pollen, ‘ Present
and 0-50 50-100 100-150 150+
Microplankton
Recovered
Formation
1
Furydice X X No
2
Argo X X No
3
Iroquois X No
Mohican X Very
Few
MicMac X * X X Yes
Upper
Carbonate X * X X Yes
Member of
MicMac
4
Missisauga X X Yes
Naskapi X Very
Few
Logan
Canyon X Yes
Dawson
Canyon X Yes
1
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Paleoecology

The occurrence of dinoflagellates probably indicates
marine or at least brackish conditions (although a few modern
fresh water dinoflagellates are- - known). The main marine
intervals are the following.

Argo F-38 Bathonian - Kimmeridgian stages,
Lower Cretaceous to Turonian.

Jason C-20 Bathonian stage to Jurassic-
Cretaceous boundary

Aptian stage to Upper Cretaceous

‘Hercules Aptian to Albian stages.

The percentage frequency diagrams indicate the vegetative
changes through time and can be used to reconstruct
paleocecological as Qell as paleoclimatic parameters. Appendix
ITTI shows spore species and possible plant affinities.

The percentage frequency diagrams can be divided into two
main zones: a Lower Jurassic - Lower Cretaceous palynoflora

dominated by Classopollis species; and a Cretaceous palynoflora

dominated by Cyathidites australis (Plate 3, Fig. 27.),

Taxodiaceaepollenites hiatus, Gleicheniidites senonicus (Plate 3,

Fig. 28), and bisaccates.

The Classopollis zone 1is dominated by the two species

Classopollis meyeriana (Plate 2, Fig. 13; Triassic - Lower
Jurassic) and Classopollis classoides (Lower Jurassic - Lower
Cretaceous). The change from Classopollis meyeriana to

Classopollis classoides is near the Eurydice Fm. - Argo Fm.




31

boundary. This change probably represents a successional change
in response to changing‘terrestrial climatic conditions, from the
arid desert environment at the time of the Eurydice Formafion
(Jansa and Wade, 1975b) to a more -harine, though still dry
environment, conducive to formation of evaporites during
development of the Argo Formation. S.K. Srivastava (1976)

concluded that Classopollis-producing plants were members of the

conifer fémily Cheirolepidaceae that occupied uplands slopes and
lowlands near the coast.

The occurrence of Cycadopites sp. (Plate 2, Fig.11,12) in

the Eurydice well and its absence in the other wells suggests

that the plants producing Cycadopites pollen may have preferred a

more inland terrestrial environment. Other spores occurring in
the Orpheus region during the Jurassic have affinites  to the
Pteridophyta and Coniferophyta (Appendix III1). In Argo F-38 and

Jason C-20 there is a second increase in Classopollis after the

main Classopollis =zone. Chaloner (1962) suggested that the

doublé maximum of Classopollis may have been caused by favourable

climatic conditions that occurred twice, or by maxima of two
distinct parent plants with nearly identical pollen.

The Cretaceous is marked by a large increase in the number
of spore and pollen species, most with affinities to the
Ptefidophyta (refer to Figures 7; 9, 11, 13 and Appendix III for
spore affinities). Four pollen and spore types dominate the

Cretaceous section Cyathidites australis, Taxodiaceaepollenites
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hiatus, Gleicheniidites senonicus and bisaccate pollen.

Taxodiaceaepollenites - producing trees (eg. Taxodium) probably

occupied the strand line in a swamp-like environment similar to
that suggested by Kedves (1960) for the Paleocene of Europe. In
the Orpheus Graben region there was probably an oscillation among

Cyathidites, Gleicheniidites, Taxodiaceaepollenites, and bisac-

cate pollen. The tree ferns representing Cyathidites probably
alternated with Taxodiaceaepollenites =~ producing trees in
dominance, in response to changes in sea level. Ferns producing

Gleicheniidites sp. probably occupied clear areas, based on the

report by Andrews and Pearsell (1941) of nearly pure stands of

Gleicheniidites coloradensis. Bisaccate ©pollen was probably

blown and/or rafted into the basin from upland locations. The
dominance of the schizacaeceous spores indicates that a well

developed pteridpophyte ecosystem existed during the Cretaceous

in the vicinity of the Orpheus Graben. Modern schizaeceous
spores are generally restricted to wetter tropical and
subtropical environments. The environment during the Cretaceous
was probably similar, with the schizaeceous ferns forming the

understory and also occupying clear areas with Gleicheniidites

sp. The appearance of pollen such as Vitreisporites (caytonian

seed ferns) and Eucommiidites (Coniferophyta) (Plate 4, Fig. 41)

may indicate the appearance of a specific environment for a short
duration, or be a response to changing regional climatic

conditions.
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CONCLUSIONS

Palynological analysis indicates that the age of sediments
in the Orpheus basin range from Upper Triassic to Turonian,’

with unconformities occurring in Eurydice P-38 and Hercules

G-15.
The number of palynomorphs recovered varies with the
formation. For example, the Iroquois, MicMac, Logan Canyon

and Dawson Canyon Formations, have consistently greater
numbers of palynomorphs.

Recycled palynomorphs are ubiquitous in the wells examined,

but do not occur in large numbers.

The Jurassic section is dominated by Classopollis species,

whereas the Cretaceous section is dominated by Cyathidites,

Taxodiaceapollinites, Gleicheniidites, and bisaccate pollen.

The Jurassic climate was probably arid, changing to wet

tropical or subtropical in the early Cretaceous.

Cretaceous Taxodiaceaepollenites pollen oscillated with

Cyathidites spores in a coastal environment with

schizaeceous and Gleicheniidites ferns forming the dominant

understory and open - area plants.
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CHAPTER 3 GEOCHEMISTRY

Introduction

The organic matter deposited in sediments and the level of
its thermal maturity are important factors which <control the
generation of hydrocarbons. If the maturation level and the type
and quantity of organic matter are identified, then it is
possible to determine those lithofacies in which hydrocarbon
generation has taken place.

Thermal maturation of organic matter is a function of two
factors: 1) the geothermal gradient and; 2) burial Thistory,
especially the maximum burial and the duration of this burial.
Thermal diagenesis will result in changes in the properties of

the organic matter that can be assessed by both visual and

analytical methods. For example, spores and pollen will become
darker, ©progressively changing in colour from yellow to brown to
black. The Thermal Alteration Index (T.A.I.) assigns numerical

values to the colour changes, permitting an assessment of the
level of organic maturity for a given horizon, Vitrinite
reflectance 1is a quantitative measure of the level of thermal
maturity. The reflectance of the maceral vitrinite increases
with dincreasing 1levels of coalification (thermal diagenesis).
Hence the measurement of the reflectance of vitrinite provides an
analytical measurement of thermal maturity that can be compared

to T.A.I.
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The pyrolysis techniques, gas chromatography and flame
ionization, are analytical techniques that characterize the type
of hydrocarbon, measure the level of maturity and provide an
estimate of the richness of the organic matter, ie., percentage
of organic carbon.

Organic matter is divisible into four basic groups of
macerals: Type I or Alginite: for example the alga

Botryococcus sp.

Type II or Exinite: for example, dinoflagellates,
spores, pollen, cuticle;

Type III or Vitrinite, which includes wood and
humic matter; and

Type IV or Inertinite, which includes fusinite and
semifusinite

The term, "amorphous matter", is assigned to

organic matter that lacks form.

The type of organic matter present will determine the type
of hydrocarbon that can be generated from a source rock at an
appropriate level of maturity. In a thermally mature zone a
source rock containing a high component of alginite is highly oil
prone; a source rock containing high exinite is also o0il prone,
with some gas possible; and a source rock with high amounts of
vitrinite is mostly gas prone with some condensate possible

(Tissot and Welte, 1978). Inertinite has minimal possibilities
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for dry gas generation. When amorphous matter is present, it is
often difficult to determine the original source of the amorphous
component, If the amorphous matter originates from algal matter
or exinite it will be o0il prone, but if the amorphous matter is a
result of degradation of vitrinitic matter then it will be gas
prone.

Increasing levels of maturity will cause <changes in the
generated hydrocarbons. If o0il was generated initially,
progressive increase in depth of burial and temperature will
cause it to first break down into wet gas and condensate, and
then into dry gas (Tissot and Welte, 1978). (0il prone organic
matter will generate hydrocérbons at lower levels of thermal
diagenesis than gas prone organic matter, Tissot and Welte, 1978;
Snowdon and Powell, 1982). The interval between the limits at
which o0il first ©begins to be generated and no longer can be
generated (the oil deadline), is called the o0il window (Pusey,
1973). The gas deadline is reached when gas can no longer be
generated or preserved.

For the Scotian Basin, several authorsv have completed
studies of the characteristics of the organic matter, though not
specifically in the Orpheus Graben (Robbins and Rhodehamel, 1976 ;
Hacquebard, 1974; Bujak et al., 1977a, 1977b; Casssou et al.,
1977; Purcell et al., 1977; Powell and Snowdon, 1979; Royden and

Keen, 1980; Powell, 1982).
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A Shell Technical Report (1972) suggested that for the
platform area of the Scotian Basin most of the section 1is
immature, with a Level of Maturity (L.0.M.) of 10 (Vitrinite
reflectance = 0.837%7) being reached in only the deeper tests.
(see Figure 17 for comparison of the various maturity scales the
onset of maturity occurs at a vitrinite reflectance of 0.5%). No
depths to maturity were given.

Geothermal gradients were used by Robbins and Rhodehamel
(1976) to predict the petroleum potential of the Scotian Basin.
Approximate geothermal gradients were given for 35 wells
including 4 drilled in the Orpheus Graben. For Argo F-38 and

Eurydice P-36 the gradient was 14.4°C/Km, (0.8°F/100) for Crow F-

© [+]

52 5.4 C/Km (0.3°F/100'), and for Fox I-22 25.2° C/Km (1.4°
F/100"). The average geothermal gradient for the Scotian Basin

was 21.6°C/Km (1.2°F/100') with the onset of maturity at 2400 m

(7874"). The optimum depth for petroleum occurrence was 3650 m

(11975").

Hacquebard (1974) produced a composite coalification curve
for the Maritimes based upon vitrinite reflectance. The depth to
the 0il window, between vitrinite reflectance 0.57% to. 1.0%Z. was
2450 m (8000') to 4000 m. (13100'").

Bujak et al., (1977a; 1977b) discussed the organic type and
thermal maturity using the thermal alteration index (T.A.I.) for

the east coast of Canada. They concluded that the onset of o0il

generation was deeper than suggested by Robbins and Rhodehamel
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(1976), and that the organic type generally had poor hydrocarbon
generative potential. One well, Primrose N-50 (Fig. 18), drilled
on a salt diapir, had an anomalously higher T.A.I. indicating
maturation at a shallower depth.

Cassou et al. (1977) studied the maturation and subsidence
history for a number of wells on the east coast, including six on
the Scotian Shelf. The top of the o0il window for the six Scotian
Shelf wells ranged from 1200 m (4000') to 2600 m (8500'), with an
average depth of 1900 m (6200'). The age of the sediments at the
top of the o0il window was Lower Cretaceous. They correlated the
montmorillite - illite transition with basement ‘subsidence and to
the top of the o0il window.

Using four different maturation indicators: spore colour,
light gas analysis, C-15 extract data and the 65° C 1isothern,
Purcell et al. (1979) calculated the depth to maturity for nine
wells in the Sable and Abenaki Basins (Fig. 18). Light gas
analysis (when Cl - C4 exceeds 507 of wet gases) indicated a
maturity at 2200 m (7200') a depth similar to that of the 65° C
isotherm. Spore colour indicated '"marginally mature" at an
average of 3500 m (11500') and "fully mature” at 4600 m (15100').
Gas chromatography produced slightly deeper maturation =zones.
The conclusion was that the oﬁset of maturation began at a depth
of 2200 m (7200'), with the "fully mature" zone about 2000 m
deeper. The avefage geothermal gradient for the 9 wells was 2.35°

C/100 m (1.3°F/100").



58

44

A \
CATARLE RIDSE % |
ORPHEUS c_i’ﬁAg\Eﬁ[\ <N

CANSO RIDGE \ v
\ \ ,-.;“""‘1'
o "‘/55\“ \\ R N
p(\/suﬂ , h
wh
-~ ,-_’
- Ll . .
~ ¥ Shell Primrose N-50 —44
e ?\' '_&SABLE Se M
av SuB-BAS/IN
W « -7 I 1
Vo -~ v .- r J
» , G - \
e i HNEF T T \N o |
- ’7&\‘ e“ e~ - Rs
\ 7’ O\"’ﬁ‘ hs l,. ﬂ A {
me e Ll 4"/ ar~=’ T\P\ -~ 7 j\-’
5GO0 TS o
z v 7 T Fs s
\i\l 4 - o 0&22?3‘ ) \i I‘L\‘-‘:i Ntld Ridg®
Q,?’ i’ ;= ~ b “NEWFQUNDLAND F.Z.
4 / .
/—’I 000/" .
N~ - -~ o 100 200 Siq4
_ L 1 i 0 300km
o KILOMETERS .. T
| ~-~ N ot
66 62 58
Fig. 18 Location of Shell Primrose N-50

0¥



41

The matﬁrity zones of Purcell et al (1979) were given
vitrinite reflectance values 0.5%7 R. for 2200 m (7200")
marginally mature, and fully mature 0.7% R. at 4200 m (13800")
by Powell and Snowdon (1979).

Royden and Keen (1980) calculated- the strétigraphic
paleotemperature distribution for the Scotian Basin for various
times. Paleotemperature estimates obtained by their modelling
predicted vitrinite reflectance values higher than those
measured.

The maturity of the Verril Canyon Formation, the basinward
equivalént of the Missisauga Formation and Abenaki Formation, was
determined by Powell (1982). Along the shelf edge, the basal

parts of the Cretaceous section were mature for o0il generation.
Methods

Thermal Maturity based upon Spore Colour

The Thermal Alteration Index ranges from 1 to 5 but in
reality is only useful between 2.0 to 4.0, Below 2.0 the colour
changes are too subtle to discern, while above 4.0 the spores are
black. Numerous T.A.I. scales are available (Fig. 17). For this
study a modified versidn of the Jones and Edison (1978) T.A.I.
scale was used (Table II), since their scale has been correlated
to both maturity zones and vitrinite reflectance values (Waples,

1980).
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Table II
Comparison of T.A.I. to Vitrinite Reflectance
with Associated Spore Colours and Maturation Zones
Thermal Vitrinite Spore Maturation Zone
Alteration Reflectance Colour
Index (%)
2.25 0.40 yellow
2.5 0.50 yellow with onset of oil
orange generation
2.75 0.77 brown orange
2.9 = peak o0il
generation
3.0 1,15 red brown
3.25 1.33 dark red brown 0il deadline,
wet gas and
condensate
3.5 1.50 dark brown
3.75 2.25 brown black dry gas
4.0 4.0 black gas deadline
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There is general agreement on the values for these zones,
except for the onéet of 0il generation. Waples (1980), Dow
(1977) and Gretner and Curtis (1982), place the top of the oil
Window at a vitrinite reflectance of 0.65%. while Vassovich et
al. (1969), Bostick (1979) Middleton (1982) and others place it
at 0.57%. Some consider that hydrocarbons can be generated at
vitrinite reflectances as low as 0.3% (Cannon and Cassou, 1980)
or 0.457 (Snowdon and Powell, 1982) from some types of kerogen.

Since colour determination is subjective, 1t is dimportant
for each operator to standardize the procedure to produce
consistent and repeatable results. Following spore
identification, in this investigation, the colour was noted and
placed within dincrements 0.25, for example 2.5 to 2.75 or
assigned a plus/minus value, for example, 3.0 + 0.12. Thé limits
of human colour berception prevent finer subdivisions. The
colours assigned were checked against the verbal colour
descriptions, given above, and against a Shell Canada Resources
Ltd. colour chart. The lightest coloured part of the spore wall
was used for colour determination, except for a T.A.I. of 2.5
where the presence of an orange tinge would determine the onset
of hydrocarbon generation. Consistency was further ensured by
using the same spore species for the same stratigraphic intervals

in all six wells. Classopollis sp. was used for the Jurassic and

Lower Cretaceous sections, whereas Cyathidites australis was used

in the Cretaceous section. For sections where none of the above
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spores were present, _T.A.I. values were assigned to other spores
and pollen, provided they were not fecycled and did not Thave
overly thick or thin exines. |

The macerals present for each interval were placed by visual
identification into one of four groups. 1) amorphous, 2)
exinite, 3) vitrinite, 4) inertinite. A percentage value, based
upon the area occupied by each maceral, was assigned each maceral

group by reference to percent estimation charts.

Vitrinite Reflectance

The number of vitrinite reflectance véiues obtained are
proportional to the amount of vitrinite contained in the sample.
For most samples, dinsufficient vitrinite was present to provide
an accﬁrate reading. For the Orpheus Gfaben, concentration of
the wvitrinite by physical separation of the organic matter was
necessary. The samples were mounted and polished so no scratches
were visible at 750X magnification. Standard procedures were

followed throughout the rest of the determination.

Pyrolysis - Gas Chromatography, Flame Ionization

The gas "chromatography and flame ionization techniques
employed by Shell Canada Resources are proprietary and cannot be

discussed.
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RESULTS AND DISCUSSION

The geochemical and maturation data are presented for each
well on Figures 19 to 24, Curves were drawn on a best fit basis
provided there was enough data. Shell Canada provided the

vitrinite and pyrolysis analysis data.

Maturation Data

Thermal Alteration Index

The T.A.I. profiles for each.well show a gradual change 1in
spore colour with depth indicating an increase in thermal
maturity. The individual values are not as important as the
profile for determining maturation =zones. Tabie IIT is a
compilation of the depth to different maturation levels based
upon spore colour,

The depth to a given maturation zone is not consistent over
the basin. The onset of o0il generation, T.A.I.=2.5 can be as
shallow as 500 m (1600') in Argo F-38 to 1150 m (3800') in Crow
F-52. For peak o0il generation, the depth varies from 900 m
(2950') 1in Hercules to 2100 m (6900') in Argo. Figure 25 is a
structural cross section of the Orpheus Graben with isopleths of
T.A.I. values, showing variation in depth to given T.A.I. values.
One noteworthy feature is that near salt diapirs the T.A.I.
values are elevated. Enhanced 1levels of maturity over salt

structures has also been documented on the Scotian Shelf by
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COMPARISON OF DEPTHS TO DIFFERENT MATURITY ZONES

52

Well Name T.A.I. (and Equivalent Vitrinite Reflectance
Values %)
2.5 (0.5%) 2.9 (1.0%) 3.25 (1.3%)

Eurydice 800 m (2600') 1550 m (5100") 2100 m (6900")
Fox 550 m (1800") - -
Crow 1100 m (3600") - -
Argo 500 m (1650"'") 2100 m (6900") 2600 m (8550")
Hercules - 900 m (2950")
Jason 800 m (2600"') 1750 m (5750") 2250 m (7400")
Where 2.5 = onset of o0il generation

2.9 = peak o0il generation

3.25 = 0il deadline
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Rashid and McAlary (1977), who suggested that idincrease in
maturity was a response to the thermal and pressure effects of
the salt structure. Keen (1983) modeled the temperature history
of .two salt diapirs on the Scotian Shelf and concluded that the
thermal effects within the salt itself were not enough to cause a
significant increase in maturity. Rather, Keen postulated that
the migration of hot fluids up the sides and across the top of
the diapir would most likely cause a significant dincrease in
thermal maturity. Another opinion was expressed by Powell and
Snowdon (1979) and Gretner (1981) who suggested that the high
thermal conductivity of salt would focus the geothermal heat
towards the highs in the structure. =~ In addition, the overlying
sediments may insulate the top of the salt causing an increase in
temperature. This last opinion may in fact account for slight
increase 1in spore <colour at or near the top of the salt in
Eurydice P-36 (Fig. 24a).

A volcanic unit occurs in 3 wells, Argo (1366 m - 1376 m,
4481'~4514'), Hercules (757.5 m - 776 m, 2485'-2546"') and Jason
(1366 m - 1376 m, 4481' - 4514'), The ﬁaturation profile is not
deflected above the volcanic unit, but immediately below it
there is a notable darkening of spore colour. Below the volcanic
unit in Hercules G-15 there is an increase in T.A.I. to 3.0 from
2.75 (Fig. 20a), in Argo an increase to 3.0 - 3.25 from 2.5 (Fig.
2la), and din Jason there is an increase in T.A.I. to 3.0 from

2.75 (Fig. 19a). The volcanic unit was probably a surface flow.
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Only the wunderlying rock would then have been affected by the
heat. Dow (1977) illustrated a similar effect, wusing vitrinite
reflective values from a well in the Delaware Basin in Texas.
Dow (1977) found that contact metamorphism affects maturity of
the  rock above and below the dyke to a maximum of 2X the
thickness of the dintrusive.

Enhanced thermal maturity resulting from proximity to
crystalline ©basement rocks probably accounts for the more rapid
increase 1in maturity near the basement-sediment contact.for Fox
I—22; Crow F-52 and Argo F-38. This is probably a result of the
difference in thermal conductivity between the basement

crystalline rocks and the overlying sediments.

Vitrinite Reflectance:

Only a few vitrinite reflective values were obtained
(provided by Shell), so it was not possible to reconstruct a
maturation profile based upon vitrinite reflectance. The main

reason for this is a general paucity of vitrinite contained in
the samples from the wells. The vitrinite values that were
obtained came from the Missisauga or Logan Canyon formations, at
the top of the section. The vitrinite reflectance results are
similar to the equivalent T.A.I. values, although the vitrinite
tends to indicate a less mature condition. The same vitrinite
values were obtained from samples spaced up to 1000 m (3280")

apart in some wells. In Argo F-38 (Fig. 21b) a sample at 1598 m
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(5243') was 0.147 lower in reflectance than the other two values
at 1478 m (4849') and 734 m (2408"). These results could result

from <caving, misidentification of macerals, oxidation of

macerals, or variation in composition of macerals,. The two
decimal accuracy of vitrinite reflectance measurements is

deceptive since the vitrinite value is an average of several
measurements (Jones and Edison, 1978). During the course of
palynological examination it was noted that in some samples the
palynomorphs were obviously caved-in from above. It would be
impossible to determine the amounts of macerals that also
resulted from caving-in. A solution to this problem would be to
use sidewall cores for vitrinite reflectance, but the problem of

dearth of vitrinite would remain.

Pyrolysis

In Eurydice P-36, enough pyrolysis data were available to
produce a curve.by linear regression through those data points
obviously not based on caved material (Fig. 24b). Comparison of
the T.A.I. <curve (Fig. 24a) to the pyrolysis curve for Eurydice

P-36 (Fig. 24b) shows that the same maturation zones occur at

similar depths. The onset of o0il generation, T.A.I= 2.5
vitrinite reflectance = 0.5%, occurs at the same depth, 800 m
(2600"); peak oil generation T.A.I.= 2.9, vitrinite reflectance

=1.0%Z is at approximately 1600 m (5250'); whereas the oil
deadline T.A.I. = 3.25, vitrinite reflectance =1.3 occurs at 2200

m (7200').
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Organic Matter

The distribution of maceral +types for the four wells
indicates the types of organic material present in each
formation, (Figures 19¢, 20c, 2lc, 24c). Overall there does not
appear to be an overly rich interval. Vitrinite and dinertinite
domiﬁate, with local abundances of exinite and amorphous matter.
In some cases the area under a peak is a result of a relatively
thick sample interval rather than from concentration in
particular horizons. The type of organic matter is related to
depositional environment, which is illustrated in the Orpheus
Graben.  For example, the organic matter in the red beds of the
Eurydice VFormation Fig. 2lc, 24c, 1is primarily inertinite.
Again, the pure salt intervals of the overlying Argo Formation

contain largely vitrinite and dinertinite, with exinite-rich

intervals confined to the shaley interbeds. The Iroquois
dolomite, formed during a transgressive phase, contains
significant amounts of exinite with some vitrinite rich
intervals. The Mohican Formation (Fig.,. 2lc) consists of

continental <clastics accompanied by relatively high amounts of
inertiﬁite. From the Bathonian to the Kimmeridgian a slow
regional trangression occurred, which is reflected in the
increased numbers of dinoflagellate cysts deposited during this
interval. The MicMac Formation, deposited in a coastal plain
environment, contains higher amounts of exinite and amorphous

matter which peak at the top of the MicMac Formation.
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The early Cretaceous Missisauga and Logan Canyon Formations
are largely alluvial ©plain deposits. - The lower part of the
Missisauga Formation is dominated by vitrinite and inertinite.
The slow regional transgression which began in the Aptian
resulted in 1increased amounts of exinite and amorphous matter
being incorporated into the upper Missisauga, Logan Canyon and
Dawson Canyon Formations.

The Geological Survey of Canada Open File 714 (Barss et al.,
1980) <contains similar though more general diagrams for the
Eurydice, Hercules and Argo wells. The results are similar in
that the same units tend to have comparable increases and

decreases in types of organic matter.

Pyrolysis and Organic Carbon

Comparison of the percent lipid-humic (Fig., 19d, 19e, 204,
20e, 21d, 2le, 24d, 24e) and pyrolysable hydrocarbons to the
maceral analysis (Fig.  19c, 20c, 21c¢, 24c¢) yieldéd some
comparable results, but lack of data for the analytical technique
hindered direct comparison.. For Jason C-20, a percent organic
carbon profile (Fig. 19f) was plotted from Geological Survey of
Canada Open File 694. The percent organic carbon is over 6% in
the lower Logan Canyon Formation, then tapers off to less than 17
at the Dbase of the Missisauga Formation. In the MicMac,

carbonate member of the MicMac, and Mohican Formations, organic
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carbon is as high as 37%. The minimum amount of organic <carbon
neeeded for a a rock to be a source rock for hydrocarbons is 0.5%
organic carbon (Tissot and Welte, 1978; Hunt, 1979).

Comparison of the organic matter, specifically exinite
peaks, to the percent organic carbon peéks shows that the exinite
peaks generally mirror the percent organic carbon profile, al-

though some peaks do not correlate.
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SUMMARY AND CONCLUSTIONS

1, The formations can be classified by the organic matter
they contain.  For example the Furydice, the Argo and lower part
of the Missisauga Formations, are characterized by large
inertinite and vitrinite components. The Iroquois and MicMac
Formations contain higher amounts of =exinite and amorphous
matter.

The 1lower parts of the Dawson Canyon and Logan Canyon
Formations contain the highest amounts of exinite and amorphous
matter and could be a good oil-prone source rocks. However, for
the wells in this survey, the Dawson Canyon is thermally immature
and the Logan Canyon marginally mature; hence there is 1little
probability of hydrocarbon generation. In the thermally mature
zones of the MicMac Formation there are greater amounts of oil-
prone organic matter rather than gas-prone organic matter, which

could have acted as source for oil. In the mature zones
vitrinite and inertinite are most common, so gas would be the
hydrocarbon most likely to have been generated.

2. The Thermal Alteration Index is a wuseful tool to
determine maturation zones in the absence of other maturation
indicators. The advantages are that it is a quick technique, and
can detect recycling and down-hole caving of organic matter. The
disadvantages are that it 1is subjective, and requires

standardization of procedures to ensure meaningful results.
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3. Over salt features enhanced levels of maturity occur.
The result is that in the Orpheus Graben more mature rocks occur
at shallower depths than the rest of the Scotian Shelf.

4, Maturation based on pyrolysis provides a check for
maturity determination based upon spore colour. In the Orpheus
wells, the depths to equivalent maturity zones are similar. The
mature zones begin as shallow as 500 m depth, with peak o0il
generation beginning at 900 m in one well,

5. Used together, spore colour, vitrinite reflectance, and
pyrolysis «can serve as checks on each other and can prevent

erroneous interpretations.
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CHAPTER 4

A. SUBSIDENCE AND THERMAL HISTORY OF THE
ORPHEUS GRABEN

Introduction

The maturation profile of a wéll, obtained from spore
colour, vitrinite vreflectance or‘other methods, is partly a
reflection va the thermal history that the well has undergone.
The highest temperatures reached will affect the organic matter
the most, The changes 1in the organic matter resulting from
elevated temperatures are irreversiﬁle, so that a decrease in the
geothermal gradient will nbt be recorded.

In this chapter, the subsidence history for the six wells in
the Orpheus region is reconstructed, and probable geothermal
history for each well determineh by combining maturation profiles

with the Lopatin method as refined by Waples (1980). The Lopatin

method determines the maturity by combining the effects of

temperature and time to produce a Time-Temperature Index
(T.T.I.). Waples (1980) has correlated the temperature time
index to other indicators of maturation. For the Scotian Shelf,
possible temperature distributions through ‘time have been

determined wusing theoretical methods by Keen (1979) and Royden
and  Keen (1980). Issler (1984), recalibrated the Time-

Temperature Index for the Scotian Shelf.
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Methods

To calculate the Temperature-Time Index, the burial history
and the temperature history or maturity must be known. The
burial history was determined for the six wells by combining the
palynologic zonation with the absolute time scale of Palmer
(1983), and time-depth plots were constructed. For uniformity of
construction, the Triassic-Jurassic boundary is assumed to be the
onset of subsidence. For those wells that did not reach basement
(Meguma Group), depth to basement is estimated from seismic
profiies. Paleobathymetry was not plotted since sedimentation in
the Orpheus region occurred under either continental or shallow
marine conditions (Given, 1977; Jansa and Wade, 1975b).

Once the tiﬁe—depth plots are complete, a subsurface
temperature grid 1is specified. If the present day geothermal
gradient for a well is assumed to have remained constant through
time, the temperature grid then consists of a series of equally
spaced 1lines of <constant depth (Waples, 1980). Since the
Lopatin method assumes that the rate of chemical reaction
approximately doubles for évery 10°C increase 1in temperature, the

most convenient spacing of isotherms is 10°C.
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The Time-Temperature Index dis calculated using the

expresssion:

n max
' n
T.T.I. = E : 2 Tn (Waples, 1980)
n min
where n = initial temperature - 100
10
n max,
= highest and lowest temperature intervals
n min, encountered.
2 = represents a doubling of the reaction rate with
every 10 C increase in temperature.

Tn = amount of time (Ma) spent in each 10 C interval.

Table IV shows the n values for different temperaturé
intervals. The maturity is obtained by summing the product of Zn
and the amount of time (in millions of years) spent in each 10 C
temperature interval. Table V (Waples, 1980) shows the
correlations among T.T.I., T.A.I. and vitrinite reflectance.

Isslers (1984) recalibration of the Time—Temperéture Index
was not used. in this study. The data are based upon 15 wells
drilled in the Scotian Basin, and are specific to the Scotian
Basin, These 15 wells ére at or near their burial and thermal
maximums (Issler, 1984). The Orpheus Graben has' undergone

different burial and thermal histories; hence Waples' (1980) more

general T.T.I. values were used.
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TABLE IV
VALUES OF n FOR DIFFERENT TEMPERATURE INTERVALS
(AFTER WAPLES 1980)
HYPOTHETICAL CALCULATION OF TIME
TEMPERATURE INDEX
(SHELL FOX I-22 MICMAC FORMATION)
TEMPERATURE n
INTERVAL °C n 2 T(m.y.) T.T.I.
40-50 -6 0.0156 12 0.19
50-60 -5 0.0313 10 + 7 0.53
60-70 -4 0.0625 10 0.63
70-80 -3 0.1250
80-90 -2 0.25 T.T.I.=1.35
90-100 -1 0.50
100-110 0 1.00
110-120 1 2.00
120-130 2 4.00
130-140 3 8.00
140-150 4 16.00
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CORRELATION OF TIME TEMPERATURE INDEX TO

T.A.I. AND VITRINITE REFLECTANCE (AFTER WAPLES, 1980)

Time-Temperature-

Thermal Alteration

Vitrinite Reflectance

Index

<1
3
10
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110
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180
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23000
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If the temperature history is not known, but the organic
maturity is, then the thermal history can be modeled to determine
the temperature distribution through time that will best fit the
observed maturity.

Modelling the temperature history of this subsiding Dbasin
requires that a model of passive continental margin formation be
specified. Three models have been proposed to explain subsidihg

basins, (Middleton and Falvey, 1983):

1) cooling of the lithosphere before and after breakup
(Sleep, 1971; Turcotte and Ahern, 1977);

2) extension of the lithosphere with cooling (Mdckenzie,
1978);

3) deep crustal metamorphism and cooling (Falvey, 1974).

For the east coast of North America, extension with subsequent
attenuation of the lithosphere (Royden and Keen, 1980; Hellinger
and Sclater, 1983; Sawyer et al., 1982) is considered to be the
most likely mechanism for rifting and continental breakup. The
extension model predicts that thinning of the lithosphere creates
a thermal anomaly by the passive wupwelling of the hof
asthenosphere <close to the surface (Sawyer et al., 1982). The
result is that the geothermal gradient becomes steeper, with a
broad based thermal anomaly occurring under the shelf (Hellinger
and Sclater, 1983), The thermal anomaly may cause changes in

elevation before and during rifting. Following rifting thermal
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decay occurs (cooling), the lithosphere thickens and subsidence
begins. Sediment loading will enhance subsidence.

It is essential to know the time of the onset of rifting,
fhe duration of rifting and the rate of thermal decay to the
present in order to model the temperature history of the basin.
The onset of rifting along the Wéstern Atlantic is considered to
be at 190 Ma. by Royden and Keen (1980), whereas Sawyer et al.
(1982) sﬁggested 200 Ma. Rifting continued for 25 Ma. according
to SaWyer et al. (1982), or 15-20 Ma. (Royden and Keen, 1980).
The dinitiation of rifting can be taken as the peak thermal point
(Middleton and Falvey, 1983). For the Baltimore Canyon, south of
the Scotian Shelf, Sawyer et al. (1982) suggested thermal
subsidence began about 175 Ma. with thermal-equilibrium being
established by the end of the Jurassic (ca 140 Ma). Royden and
Keen (1980) suggested thé most rapid chénges in temberature
occﬁrfed in the jurassic‘and Cretaceous.

For the temperature modeling in this paper the onset of
rifting is considered to be 200 Ma., (with an associated thermal
peak) and thermal decay beginning after 20-30 Ma. By the early
Tertiary, the thermal gradients would probably have been similar
to thoserpresently measured in the Orpheus Graben (20 C/km, 1.1
F/100'). Surface temperature is assumed to be 10 C.

The observed maturity is plotted on the depth of burial
diagram along with the present day geothermal gradient. The

temperature distribution through time is modeled by calculation
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of the T.T.I. for specific¢ maturation horizons in the context of
the thermal model. Once the thermai and burial history of each
well has been determined, then the thermal and burial history for
the basin can be plottgd for different periods of time.

Several factors vwill affect the spacing and location of
isotherms. Conductivity contrasts between the basement and
overlying sediments and between the salt and overlying sediments
should affect the spacing of isotherms. In the salt, isotherms
are interpreted to be farther apart. In sediments overlying the
salt, a thermal anomaly will occur so the isotherms will be
spaced closér together. The high thermal diffusity of salt may

postpone thermal decay.

RESULTS AND DISCUSSION

Burial History of Wells

The burial histories for the wells drilled in the Orpheus
Graben are presented in Figures 26 a-f and 27 a-f. Except for
Eurydice ©P-38 and Hercules G-15 where salt movement has <created
an unconformity, deposition was continuous. The Eurydice and
Hercules wells are situated on the axis of the basin over the
thickest part of the salt. Diapirism in the middle Jurassic
exhumed the Iroquois Formation allowing a localized wunconformity

to occur in these two wells.
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Initial subsidence in the Orpheus Graben was rapid during
the late Triassic and early Jurassic. From the early Jurassic to
the Albian, the rate of subsidence decreased slightly. The more
rapid subsidence characterizing the Albian to the Cenomanian was
probably a response to the separation of the Grand Banks from the
European Plate, which occurred at the same time. Since Tertiary
rocks were not encountered in any of the wells drilled idin the
Orpheus Graben two depth of burial models are possible for the
Tertiary. Figures 26 a-f depict a minimal amount of Tertiary
deposition, resulting in slow subsidence. Figures 27 a-f show
deposition of 2000 m of Tertiary strata that were then wuplifted
and eroded by the Pleistocene. (The 2000 m thickness of Tertiary
is obtained by adding together the maximum thicknesses of the
four Tertiary formations encountered in Scotian Shelf edge wells,
farther seaward). Actual Tertiary deposition probably falls

between these two models.

Basin Subsidénce

Subsidence in the Orpheus Graben is shown at four different
periods in Figures 28 a-d. By 200 Ma. a significant amount of
subsidence had occurred in the axis of the Dbasin. The Canso
Ridge was exposed at this time, probably shedding sediments into

the salt.
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By 144 Ma., diapirs and salt ridges had become prominent at
Eurydice and Hercules (Fig. 28b). Sedimentation patterns were
probably affected by salt diapirs. Through a combination of
erosion and subsidence, the Canso Ridge had become covered by
sediments of the MicMac Formation..

From 144 Ma. to the present (Fig. 28 b-d) general subsidence
occurred, accompanied by faulting over the diapiric structures.
The amount of subsidence occurring during the Tertiary would

depend upon which geological model is used.

Temperature History

Two possible temperature distributions were considered for
the six wells drilled in the Orpheus region: 1.) A simple
temperature history with double the initial geothermal gradient
(Figures 29 a-f), with rapid Tertiary subsidence and uplift,
and 2.) a complex temperature history (initial high geothermal
gradients) with slow Tertiary subsidence (Figures 30 a-f).

For the «complex temperature history an initial geothermal
gradient was determined. Different geothermal gradients were
tested for each well by calculating the T.T.I. for those
gradients and comparing the result with the observed maturity,
Table VI compares the initial geothermal gradients for the
complex temperature history that best fit.the observed maturity,
and the simple temperature history to the ©present geothermal
gradients. (Present geothermal gradients provided by Shell Canada

Resources Ltd.)
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TABLE VI

COMPARISON OF POSSIBLE INITIAL GEOTHERMAL GRADIENTS
TO THE PRESENT GEOTHERMAL GRADIENTS

Well Present Complex Temperature Simple Thermal
geothermal History calculated History

gradient " initial geothermal initial geo-

gradient thermal gradient

Jason C-20 30° C/km 120°C/km 60" C/km
Hercules G-15  45°C/km 120°C/km 90°C/km
Argo F-38 20°C/km 1007 C/km 407 C/km
Crow F-52 22° C/km 120° C/km 44°C/km
Fox I-20 447 C/km 150°C/km 887 C/km

Eurydice P-38 20° C/km 70° C/km 40° C/km
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The - initial geothermal gradient is dependent on how the
basin cooled. Different thermal models will have a different
temperature distribution through time.

Table VII compares the calculated T.T.I. to the observed
maturity for the two temperature histories. When the simple
temperature history from increased Tertiary burial (Figures 29 a-
f) is wused to calculate the Time-Temperature Index, the
calculated maturity (T.A.I.) is lesser than the observed maturity
(exéept for Fox I-22). Hence, increased depth of burial in the
Tertiary cannot account for the observed maturity in Eurydice,
Crow, Argo, Hercules and Jason.

The proposed complex temperature history (Figures 30 a-f)
provides T.T.I. values that are closer to observed maturity, for
some strata (See Table VI). However, the calculated T.T.I. for
the Cretaceous tends to be slightly less thermally mature than is
observed. The amount of time spent in the hottest temperature
interval appears to have influenced the Time-Temperature Index
the most.

Jason (Fig. 30a), Argo (Fig. 30c), Hercules (Fig.30b) and
Eurydice (Fig. 30f) all show that the femperature decay was
probably influenced by the Argo salt, which tended to elevate and
prolong the 1length of time an isotherm occupied a particular
horizon. Fox and Crow, both relatively shallow wélls over the
Canso Ridge, exhibit temperature distributions influenced by

proximity to basement. This is reflected in the maturation



TABLE VII

COMPARISON OF CALCULATED T.T.I.

Well

Jason

Hercules

Argo

Crow

Fox

Eurydice

*Model I

*¥Model IIT

TO OBSERVED MATURITY

Model Formation

I* Argo
MicMac

II* Argo
MicMac

I Argo
MicMac

11 Argo
MicMac

I Eurydice
Argo
MicMac

I1 Eurydicé
Argo
MicMac

I Eurydice

II Eurydice

I MicMac

I1 MicMac

I Eurydice
Argo

II Eurydice

- Simple Temperature history,

“in Ter

- Complex
deposit

Argo

tiary.

Temperature

ion,

“FOR TWO TEMPERATURE HISTORYS
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history,

Calculated Observed Maturity
T.T.I. (T.A.I.) T.A.I. (T.T.I.)
62 (2.8-2.9) 3.25 (170)
10 (2.6) 2.75 (30)
170 (3.25) 3.25 (170)
36 (2.75-2.8) 2.75 (30)
41 (2.8) 3.0 (110)
10 (2.6) 2.75 (30)
44 (2.8) 3.0 (110)
immature 2.75 (30)

<1 (2.25)
28 (2.75) 3.5 (300)
immature. 2.9 (75).
<1 (2.25)
immature 2.7 (20)
<1 (2.25)
320 (3.5) 3.5 (300)
43 (2.8) 2.9 (75)
1.3 immature 2.7 (20)
2.6 (2.5) 2.75 (30)
7 (2.6) 2.75 (30)
18 (2.7) 2.6 (10)
1.2 immature 2.6 (10)
18 (2.7) 3.25 (170)
immature 2.5 (3)
164 (3.2) 3.25 (170)
2 (2.4) 2.5 (3)
subsidence and uplift

Tertiary
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curves by a more rapid increase in maturation within 200 m of
basement. The sedimentary rocks immediately overlying the more
thermally conductive basement rocks may have served as a thermal
insulator, —resulting 1in enhanced temperatures at and near the
basement sediment interface.

Figures 31 a-d and 32 a-c show the depositional and
temperature history of the basin at 200 Ma., 144 Ma., 66 Ma. and
the present respectively for both simple and complex temperature
histories. The salt diapirs and the basement-sediment interface
are the major dinfluences on the temperature distribution.
Comparison of the isomaturation lines (Fig. 25) to temperature
distribution over the basin (Fig. 31d) shows a similar influence
by the diapirs especially over the Hercules diapir. The peak oil
generating temperatures, 90°C to 110°C occur in salt for Argo F-
38, Eurydice, P-38, Hercules G-15, and Jason C-20. The more
organically rich Cretaceous has experienced lower temperatures,
The dinitial stages of hydrocarbon generation would be expected
to have occurred in the Cretaceous.

Comparison of T.T.I. to a maturation profile shows that to
reach a higher level of maturity, either a short period of time
at a high temperature or a longer period of time  at a lower
temperature is required.

The process of modeling the temperature history to fit
observed maturation data 1is dependent upon the predetermined

limits that will influence the temperature distribution. By
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specifying “the thermal characteristics of a rifting model and
taking into account conductivity contrasts, subjectivity in the
temperature distribution can be minimized. The method of
temperature modeling ©presented here is an attempt intended to
provide a technique for studies in other basins. More refined
methods <can be expected when the relationships among time-
temperature distribution, vitrinite reflectance, and spore colour

are better defined.
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CONCLUSTIONS

The temperature history of the Orpheus Graben can be inferred
by combining the Time Temperature Index and maturation data.
If a simple temperature history is specified for the Orpheus
Graben the T.T.I. 1is too low for the observed maturity. If
a more complex temperature distribution is specified, the
calculated T.T.I. is closer to the observed maturity.

The observed maturity indicates that the initial geothermal
gradients were higher than the present geothermal gradients.
The <critical hydrocarbon generating temperature occurred in
the salt. Except for thermal anomalies developed over
salt structures, the overlying sediments experienced

temperatures too low for o0il generation.
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B. HYDROCARBON POTENTIAL OF THE ORPHEUS GRABEN

Drilling in the Orpheus Graben centred on three structure
types: 1) faulted anticlines over salt structures; 2) basement
highs and; 3) structural and stratigraphic traps on the flanks
of the basement highs. Failure to‘encounter commercial hydrocar-
bon accumulations was a result of geologic and thermal
environments not being conducive to hydrocarbon generation and
accumulation.

Potential source rocks occur in the Iroquois, Mohican,
Micmac, Logan’Canyon and Dawson Canyon Formations. The richer

source rocks occur in the marine intervals, specifically in the

Upper Jurassic and Middle Cretaceous. As the Jurassic source
rocks are humic, gas would most likely be generated. However,
Middle Jurassic salt tectonism may have influenced bottom

topography forming small anoxic basins that could accumulate and
preserve 0il prone material such as algal remains.

The time temperature relations suggest that the oil
generation stage of maturity was reached in Jurassic strata, but
migration pathways may not have existed to allow hydrocarbons to
accumulate; There are localized zones of enhanced maturity over
salt structures but their areal extent may not have been
sufficiently large to generate suffiéient hydrocarbons to fill a
large reservoir. The o0il prone organic matter in the Dawson and
Logan Canyon formations occurs in the marginally mature zone, so

that only small quantities of hydrocarbons would be generated.
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Since no traps are known to occur in association with these two
formations, no hydrocarbon accumulation should be expected.

To summarize, hydrécarbons were not encountered in the
Orpheus Graben because the space - time relationships of source
rocks, migration pathways, .and traps were not conducive to
hydrocarbon generation and accumulation. Herver, comparison of
the North Sea Graben System to the Orpheus Graben suggests
potential exploration objectives that could be considered for the
Orpheus Graben.

The North Sea Graben Syétem is a result of Triassic rifting
on a foundered continental cfust. The stratigfaphy is similar
to that of the Orpheus Graben in that Triassic redbeds and
evaporites are - present in the southern part of the North Sea.
The Jurassic contains shallow marine clastics (Zeigler, 1982).
In the Orpheus graben a similar redbed, evaporite, shallow marine

clastic section occurs, although it is younger than that in the

North Sea. The major source rock of the North Sea is an
organically rich deep - water Kimmeridgian shale which has no
known equivalent on the Scotian shelf. The Lower Cretaceous of

the northern: North Sea is largely deep marine shale, whereas

carbonates comprise the Upper Cretaceous (Zeigler, 1980).

In the North Sea, several structural and depositional
environments trap hydrocarbons: 1) anticlines over salt
structures: eg. Ekofisk (Van den Bark and Thomas, 1980); 2)

Paleocene submarine fans: weg. Frigg Gas Field (Heritier et al.,
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1980), and Forties 0il Field (Hill and Wood, 1980); and 3)
Jurassic sands structurally draped over basement fault blocks
(The fault blocks were tilted after the deposition of tﬁe
Jurassic sands); eg. Staffjord and Brent 0il Fields (Kirk, 1980),
Beatrice 0il Field (Lindsey et al., 1980), Piper 0il Field
(Maher, 1980), Ninian O0il Field (Albright et al., 1980).

If future exploration is undertaken in the Orpheus Graben
consideration should be given to targets eastward along ‘the axis
of the graben. from the original exploration area. A more marine
environment, that-‘could have provided richer 0oil ©prone source
rocksl may have occurred in the late Jurassic .and Cretaceous
farther east in the Orpheus Graben.

From the subsidence data of Chapter 4 it is clear that the
major period of subsidence occurred in the Jurassic. It is
reasonable to assume that basement block faulting, wﬁich could
provide traps for hydrocarbon accumulation developed along the
margin and axis of the Orpheus Graben. If a thick Tertiary
section exists it is possible that Cretaceoué and Jurassic source
rocks could be in the o0il generating zone of thermal maturity and
could have generated hydrocarbons for -accumﬁlation in traps

within the sands of the Missisauga Formation.
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SUMMARY

Jurassic - The suture separating the Avalon platform from the
Meguma platform was reactivated during the early Jurassic,
resulting- in the formation of the Orpheus Graben. Initial
deposition consisted of a red‘bed—evéporite sequence formed under
hot arid conditions. Basin subsidence was rapid and geothermal
gradients were high. A marine phase began in the middle Jurassic
and culminated in the Upper Jurassic with the deposition of
carbonates of the Abenaki Formation. Salt diapirism began in the
Middle Jurassic, and in some locations (eg. Hercules) salt
reached the surface, creating local reef environments. The flora

during the Jurassic consisted of Classopollis pollen-producing

plants occupying the uplands and near-coast environments, with

Cycadopites pollen-producing plants further inland. The

dominance of a single plant type is reflected in the organic
matter deposited at the time; an abundance of humic matter with
local <concentrations of exinite. During the Middle to Upper
Jurassic marine phase, however, there may have been small anoxic
basins that could have had local accumulations of algal organic
matter. By the end of the Jurassic, thermal cooling had lowered
the geothermal gradient, although elevated temperature conditions

probably existed over salt structures.
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Cretaceous - Sedimentation during the Early Cretaceous consisted

of a regressive deltaic sequence (the Missisauga Formation likely
the fluvial portion that is in the Orpheus region) which graded
upward into restricted marine shales and sands (the Dawson Canyon
Formation), in the Albian. A'&arine phase began in the Aptian
and continued wuntil the Upper Cretaceous, culminating in the
déposition of shales and mudstones of the Dawson Canyon Forma-
tion. During the Albian a second phase of increased subsidence
occurred, related to the separation of the Grand Banks ~ from
Europe. Thermal cooling continued, reducing 'the geothermal
gradient to its present value. The organic matter, primarily
humic in the Lower Cretaceous progressively, became richer with a
higher exinite and amorphous component in the Upper Cretaceous.

During the Cretaceous the flora changed from a Classopollis

dominated flora, to a flora dominated by plants producing

Taxodiaceaepollenites pollen, and Cyathidites and other fern

spores indicative of a subtropical to tropical environment.
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APPENDIX I

Structural Geology of each well based upon Shell Canada Resources

Ltd. reports.

Shell Argo F-38: The Argo structure is a faulted anticline
overlying salt, with primary objectives in the Cretaceous
and Jurassic sandstones.

Shell Crow F-52: The Crow Well tested stratigraphic and

structural traps flanking a plunging anticlinal ridge (Canso
Ridge) with objectives in the Cretaceous and Jurassic
sandstones.

Shell Fox I-22: The Fox well tested Jurassic and Cretaceous

stratigraphic and structural objectives in a thinning and
flanking sedimentary wedge associated with the regional

culmination of the Canso ridge.

Shell Eurydice P-36: The Furydice structure is an anticline
iocated in the western portion of the Orpheus Basin over a
basement horst block. Objectives wefe the Cretaceous and
Jurassic sandstones and limestones.

Union et al Hercules G-15: This well was located on the flank of

a salt diapir, to test stratigraphic and structural traps in
the Jurassic and Cretaceous sandstones and limestones.

Union t al Jason C-20; The Jason structure overlies the up-

thrown side of a fault block and associated salt pillow.
Stratigraphic and structural objectives were in the Jurassic

and Cretaceous sandstones and limestones.
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-APPENDIX I

Summary of Stratigraphy,. from well logs

BASEMENT: Argo F-38, 3331.5m (10930') - quartzite
' Crow F-52, 1504m (4935') - granite
Fox 1-22, 784m (2572")

Eurydiée Formation:

- sericitic schist

Eurydice P-36 - type section between 2392.7m

Argo Formation:

Iroquois Formation:

- 2965.1m  (7850"'" - 9728")
underlying the Argo Salt

. (Jansa and Wade, 1975a)
orange to red brown
anhydritic siltstones - and
shales

F-38 3112m 3331.5m

10930') - as above

Argo (10210'

Crow F-52 conglomerate and arkosic
sandstone underlying Iroquois
Formation, may be equivalent

to Eurydice Formation

Type section Argo F-38, 2304.3m - 3112.0m
(7560'-10210"') massive white halite with a few
shale and anhydrite interbeds.

Hercules G-15, 1054.6m (3460"')

Jason C-20, 2449 .4m (8036')

Furydice P-36, .798.6m (2620'). In Eurydice P-

36, the Argo is divisible into 2 units, an
interbedded, red brown to olive shale and
halite 798.6m - 1932.4m (2620' - 6340') and a
massive halite section 1932.4m - 2392.7m
(6340' - 7850"').

Eurydice P-36, 538m - 798.6 (1765' - 2620"')

varicoloured to red massive anhydritic mud-
stone, capped by a microsucrosic anhydritic

dolomite, possible  updip clastic facies of
Iroquois Formation (Unpublished Shell
Technical Report, 1975)
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Crow F-52, 1376.2m - 1402.1m (4515' - 4600"')
Argo F-38, 2212.8m - 2304.3m (7260' - 7560")
Jason (C-20, 2406.1m - 2449.4m (7894' -
8036') - argillaceous anhydritic dolomite
with mudstone interbeds. The Iroquois is

divisible idinto 3 units (unpublished Shell
Technical Report, 1973), an upper unit of
microcrystalline dolomite siltstone shale

and sandstone; a middle unit of massive
microcrystalline dolomite and oolitic
grainstone and a lower unit of orange red
shale with siltstone and anhydrite,. Given

(1977) considered the upper unit to
represent deposition in a restricted marine
environment, locally on supratidal flats,
while the middle unit represented a higher
energy regimen.

Hercules G-15, 911.4m - 1054.6m (2990' -
3460') massive dolomite overlying green to
brown shale. :

Mohican Formation: Argo F-38, 2104.6m - 2212.8m (6905' - 7260")
interbedded sequence of arkosic sand, red to
brown argillaceous mudstone and shale with
occasional dolomite or limestone beds. The
Mohican Formation was defined by Given
(1977) for the "texturally less mature sands
that tended to be poorly sorted and

dolomitic, with locally inter-bedded
varicoloured shale, '"conformably overlying
the Iroquois and underlying the Scatarie
Member of the Abenaki Formation, or Mohawk

Formation.

WESTERN BANK GROUP

Abenaki Formation; The Abenaki Formation is divisible dinto
four members (Eliuk 1978), ghe Scatarie, Misaine, Baccaro and
Artimon. In the Orpheus Graben, the Abenaki equivalents are two
carbonate members that occur in the MicMac Formation. The

Scatarie marks the beginning of the middle to late Jurassic
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marine trangression. The anhydritic. limestone and dolomite of
Argo F-38, 2060.4m - 2104.3m (6760' - 6905') is probably the
equivalent to the Scatarie (Eliuk, 1978). The middle member of

the Abenaki Formation, the Misinaine shale is not present in the
Orpheus Graben. Eliuk (1978) considers the Baccaro, a relatively
pure, oolitic grainstone, to be the primary Abenaki unit. On
near shore ridges, tongues of the Baccaro interfinger with the
MicMac Formation (Eliuk 1978). The time equivalent deposits in
the Orpheus Graben are oolitic to algal mat carbonates formed in

lagoonal to shallow marine conditions:

Jason C-20, 2084.8m - 2164.7m (6840' -~ 7102') oolitic
packstone
Hercules G-15, 832.7m - 911.4m (2732' - 2990') cyclic

limestone with algal mat limestone alternating with oolitic
to oncolitic lime packstone, Eliuk (1978) also interpreted
this to represent a condensed section due to salt diapirism.
The initial environment was supratidal grading to subtidal,

Argo F-38, 1627.6m - 1673.4m (5340"'" - 5490') pellitic
limestone with occasional oolites :
Crow F-52, 1130.8m - 1176.5m (3710' - 3860') - grainstone
MicMac Formation: Jason C-20, 1815.1m - 2406.1m (5955' - 7894"'),
variegated shales with sandstone interbeds
Hercules G-15, 774.2m - 911.4m (2540' - 2990'")
- bentonitic siltstones and quartzose

sandstones

Argo F-38, 1530.1m - 2104.6m (5020' - 6905")

- greyish green shales with the ‘'occasional
coaly sectiorms

Crow F-52, 998.2m -.1376.2m (3275' - 4515'")

- silty mudstone grading to a quartzose
sandstone near the base

‘Fox I-22, 658.4m - 783.9m (2160' - 2572'")

- shale with sandstone and coaly beds
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The MicMac Formation underlies the Missisauga Formation of
the Nova Scotia Group (defined below), and is in part the lateral
time equivalent to the Baccaro Member of the Abenaki Formation.
The common lithologies of the MicMac include medium to dark brown
to olive grey silty shales, oftenvcalcareous (McIver, 1972). The
upper contact was placed at the base of the lowermost massive
sandstone of the overlying Missisauga Formation. The MicMac
represents an influx of sediment from the north and ﬁorthwest
either as a coastal plain environment or shallow marine nearshore
(Jansa and Wade, 1975a). In the Orpheus Graben, deposition was
primarily of a continental and fluvial deltaic nature.

Nova Scotia Grbup: The three formations that form the Nova

Scotia Group are the Missisauga, Naskapi and the Logan Canyon
Formations (McIver, 1972). These represent the Sable TIsland
Delta, a regressive sequence that covered the carbonate facies
(Given, 1977) during the Late Jurassic and Early Cretaceous.
Jansa and Wade (1975) relate the_Sable Island delta to the Avalon
uplift. The upper contact of the Missisauga Formation is either
the Naskapi shale (where present) or the top-most massive sand
unit (McIver, 1972). The Logan Canyon Formation overlies the
Missisauga and Naskapi formations (MclIver, 1972) and consists of

continental to restricted marine sands and shales (Given, 1977).

Argo F-38 - Missisauga Formation - 1121.7m - 1530.1m - (3680'

- 5020"), massive arkosic sandstone with
occasional variegated shale beds
Naskapi Formation - 1079m - 1121.6m (3540' -

3680"), shale
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Logan Canyon - 487.7m - 1079.0m (1600' - 3540'),
interbedded quartzose to arkosic sandstone with
shale and mudstone

Jason C-20 - Missisauga Formation - 1178.4m - 1815.1m (3866
- 5955") massive quartzose sandstone and shaley
sandstone and coaly interbeds
Logan Canyon Formation - 641.3m - 1178.4m
(2104' - 3866') massive mudstone, siltstone
with quartzose sandstone and coaly interbeds

Where the Missisauga and Logan Canyon cannot - be
distinguished, the term Nova Scotia Group is used (McIver 1972)

Hercules G-15, 317m = - 774.2m (1040' - 2540")

Crow F-52, 335.3m - 998.2m (1100' - 3275')
Fox I1-22, 289.6m - 658.4m (950' - 2160")
Eurydice P-36, 289.6m - 538.0m (950' - 1765")

A volcanic unit is present in Argo 1024.1m (3360'), Hercules
757.7m (2486'), Jason 1366.7m (4484"'),

Dawson Canyon Formation - Jason C-20, 262.1m - 641.3m (860’

—21047)

Argo F-38, 281.0m - 487.7m (922' -
1600")

Hercules G-15, 289.6m - 317.0m
(950" - 10407)

Fox I-22, 121.9m - 335.3m (400' -
1100")

The Dawson Canyon Formation overlies and is partly a lateral

equivalent to the Logan Canyon (Given, 1977), and represents a
transgressive marine phase. Mudstone and shale are the common
lithologies. The upper contact of the Dawson Canyon Formation

was not observed in any of the wells.
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APPENDIX TIIT
A. SUMMARY OF SOME SPORE-PLANT AFFINITIES

B. PARTIAL LIST OF REWORKED SPORES
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APPENDIX III

A. Summary of Some Spore-Plant Affinites

Jurassic

Araucariacites sp. - Coniferophyta, Araucariaceae

Alisporites sp. - Coniferophyta, Podocarpaceae, Tschudy and

Scott, 1969

Baculatisporites sp. - Pteridophyta, Osmundaceae, Tschudy and

Scott, 1969

Callialasporites Sp. - (Tsugaepollenites) Coniferophyta,

Podocarpaceae, Taylor, 1981

Classopollis SP. - Coniferophyta Cheirolepidaceae, with

affinities to Araucariaceae, Voltziaceae
Gnetaceae, S.K. Srivastava, 1976

Couperisporites sp. ~ Hepaticae, Tschudy and Scott, 1969

Densoisporites sp. - Lycophyta, Lycopodiales, Selaginellales,

Dettman, 1963

Laevigatosporites sp. - Pteridophyta, Polypodiaceae, KXremp and

Kawasaki, 1972

Leptolepidites sp. - Pteridophyta, Kremp and Kawasaki, 1972
Podocarpidites sp. -~ Coniferophyta, Podocarpaceae
Verrucosisporites sp. - Pteridophyta, Taylor, 1981

Cycadopites sp. - Cycadophyté, Bennettitales, Cycadales, Tschudy

and Scott, 1969
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Neoraistrickia sp. - Similar to modern Selaginella, Dettman, 1963

Osmundacidites sp. - Pteridophyta, Osmundaceae

Hepaticae, Tschudy and Scott, 1969

Rouseisporites sp.

Stereisporites sp. - similar to Sphagnum, Dettman, 1963

Todisporites sp. - Pteridophyta, Osmundanceae, Tschudy and Scott,
1963
Tsugaepolleniteé sp. - Tsuga (hemlock) - Coniferophyta, Potonie;
p.2, 1958,
Vitreisporites sp. - Pteridospermophyta, Caytoniales, Taylor,
1981
Gleicheniidites sp. - Pteridophyta; Gléicheniaceae, Taylor, 1981

Cyathidites sp. - Pteridophyta, Cyatheaceae, Taylor, 1981

Taxodiaceaepollenites sp. - Coniferophyta, Taxodiaceae, Tschudy

and Scott, 1969

-Upper Cretaceous

Aequitriradites sp. - Hepaticae, Dettman, 1963

Appendicisporites sp. - Pteridophyta, Schizaeaceae, Tschudy and

Scott, 1969

Cirratriradites sp. - Lycophyta, Selaginellales, Taylor, 1981

Ephedripites sp. - Gnetales, Taylor, 1981

Ericipites sp. - Ericaceae, Tschudy and Scott, 1969
Parvisaccites sp. - Coniferophyta, Tschudy and Scott, 1969
Rugubivesiculites sp. - Coniferophyta, Podocarpaceae?, Tschudy

and Scott, 1969
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Lower Cretaceous, Albian-Aptian

Acanthotriletes sp. - Pteridophya, Kemp, 1972

Appendicisporites sp. - Pteridophyta, Schizaeaceae, Tshudy and

Scott, 1969

Baculatisporites sp. - Pteridophyta, Osmundaceae, Dettman, 1963

Ceratosporites sp. - Lycophyta, Lycopodiales, Tschudy and Scott,
1969

Cicatricosisporites sp. - Pteridophyta Schizaeaceae (Pelletieria,

Schizaeopsis), Tschudy and Scott, 1969

Concavissimisporites sp. - Pteridophyta, Schizaeaceae, Cyatheae-
ceae (Cyathea, " Dicksonia), Dettman,
1963

Deltoidospora sp. - Pteridophyta leeicheniaceae, Matoniaceae,

Cyatheaceae, Tschudy and Scott, 1969

Densoisporites sp. - Lycophyta, Lycopodiales, Selaginellales,

Dettman, 1963

Eucommiidites sp. - Coniferophyta - Gnetales?, Doyle, et al.,
1975

Foveosporites sp. - Lycophyta, Lycopodiales, Dettman, 1963

Klukisporites sp. — Pteridophyta, Schizaeaceae (Klukia,

Stachypleris), Dettman, 1963

Lycopodiumsporites sp} -~ Lycophyta, Lycopodiales?

Matonisporites sp. - Pteridophyta, Matoniaceae (Phlebopteris?),

Tschudy and Scott, 1969

Sequoiapollenites sp. - Coniferophyta, Taxodiaceae, Tschudy -and

Scott, 1969
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B. Reworked Spores

Krauselisporites sp.

Murospora sp.

Waltzispora albertensis

Leiotriletes sp.

Dictyotriletes sp.

Punctatisporites sp.

Lycospora sp.

Verrucosisporites sp.
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PLATE 1

All figures at 1000X unless otherwise stated

Figure.l. C(Ctenidodinium pannéum
2. Systematophora sp.
3. Conyaﬁiacysta sp. 500X
4. Meiourogonyaulax4sp.
5. Lanterna sportula
6. Pareodinia ceratophora
7. Valensiella vermiculata
" 8. Callialasporites turbatus
9. éaZZiaZaSporites trilobatus 500X
10. Eahinitoepitee ef. iliacotides
11. Cycadbpitesvsubgranulosus
12. Cycadopites sp.

13. Classopollis meyeriana
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PLATE 2

All figures at 1000X unless otherwise stated

Figuré 14. Chatangiella victoriesis 400X
.15. Diconodinium glabrum
16; Alterbia acum@nata
17.'Cleistosphaefidium polypes 400X
-lé. CchonepheZium distinctum 400X
19. Cyclonephelium'vannophorum 400X -
20. Dinogymnium acuminatum
21. Cribroperidinium sp. 400X
22. Spinidinium vestituﬁ
23. Pareodinia kondratjévii
24. Spiniferites ramosus
25. Pterospermopsis australiensis

26. cf. Hemicystodinium sp.
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PLATE 3

All figures at 1000X unless otherwise stated

Figure 27. Cyafhidites auétralié
28. Gleicheniidites senonicus 400X
29. Deltoidospora juncta | |
30. Liliactdites dividuﬁs
31. Stereisporites antiquasporites
32. RotdSpbra rugulata
33. Matoniéporifes sp.
34, LiZiaéidftes ?eroréticulatus
35. AppendiciSporites‘potohaCenSis 400X
36. Cicdtricésisporites hallet
37. Cicatricososporites auritus
38. Ceratatosporites equdlis
39. Ericipifes s?.

40. Laeviatosporites ovatus
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PLATE 4
All figures at 1000X unless otherwise stated

Figure 4l. Eucommiidites minor
42. Kraeuselisporites sp.
43, Undulatisporites qusﬁlatus
44. Pfugipollenites lucidus
45. Cqstatoperforésporites'sp.
46. Trilobosporites humilis
47. Densoisporites microrugulatds 500X
48. Leptolepidites verrucatus
'49. Leptolepidites minor
50. Leptolepidites magor
51. Klukisporites:sp.

52. Osmundacidites wellmanit
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