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Abstract

I investigate the feasibility of retrieving cloud top droplet effective radius, optical thickness and cloud
top temperature of nocturnal marine stratocumulus clouds by inverting infrared satellite measurements
using an artificial neural network. For my study, I use the information contained in the three infrared chan-
nels centred at 3.7, 11.0 and 12.0 um of the Moderate Resolution Imaging Spectroradiometer (MODIS)
on-board NASA’s Terra satellite, as well as sea surface temperature. A database of simulated top-of-
atmosphere brightness temperatures of a range of cloud parameters is computed using a correlated-k
parameterisation which I have embedded in the radiative transfer package libRadtran. The database is
used to train feed-forward neural networks of different architecture to perform the inversion of the satel-
lite measurements for the cloud properties. I investigate the application of Bayesian methods to estimate
the retrieval uncertainties, and analyse the Jacobian of the networks in order to gain information about
the functional dependence of the retrieved parameters on the inputs. A high variability in the Jacobian
indicates that the nocturnal retrieval problem is /ill-posed. My experiments show that because the prob-
lem is ill-coﬁdi’cioned, it is very difficult to find a network that approximates the database of simulated
brightness temperatures well. Sea surface temperature proves to be a necessary input. I compare the
retrievals of a selected network architecture with in-situ cloud measurements taken during the second
Dynamics and Chemistry of Marine Stratocumulus experiment. The results show general agreement be-
tween retrievals and in-situ observations, although no collocated comparsions are possible because of a
time lag of five hours between both measurements. I establish that the uncertainty estimates are prone

to numerical problems and their results are questionable. I show that the Jacobian is a valuable tool in

evaluating the retrieval networks.
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Chapter 1

Introduction

Of paramount importance to a comprehensive understanding of the Earth’s climate and its
response to anthropogenic and natural variability is a knowledge, on a global sense, of cloud
properties that may be achieved through remote sensing and retrieval algorithms.
— King et al. (1997, Page 2)
Shallow boundary layer clouds play a critical role in the exchange qf energy and vs/;ater in our climate
syétem. They do not contribute as much to the greenhouse effect as do uppef level clouds, but due
to their high albedo!, they reflect a large portion of the incoming shortwave radiation back to space.
The radiative forcing that these clouds exert on the atmosphere is modulated by their macrophysical,
microphysical, and optical properties, and the way they interact with the climate system has been the
subject of intense research activity in the last decades (Stephens, 2005, and references therein). However,
despite this extensive research work, processes that are involved in cloud-atmosphere interaction and their
representation in general circulation models remain some of the primary uncertainties in global climate
modelling (Bony et al., 2006; Ringer et al., 2006; Williams and Tselioudis, 2007).
Accurate observations of clouds are a key component to solving the problems in this field. In this thesis
I address the retrieval of marine stratocumulus cloud properties from satellite measurements, specifically
during night time. These marine boundary layer clouds are common and cover large parts of the oceans
(Klein and Hartmann, 1993; Norris and Leovy, 1994). Their horizontal homogeneity and usually low
liquid water path put them amongst the simplest to treat. Nevertheless, in a recent retrieval comparison
exercise, Turner et al. (2007) pointed out that such thin liquid water clouds are surprisingly difficult
to observe. This is'particularly true for nocturnal observations, where no operational retrieval data are
available to date.
This introductory chapter will cover the fundamentals of the clouds and climate research field, present
information on marine stratocumulus clouds, and review relevant previous research work in the field of

‘satellite remote sensing. I conclude with an outline of the objectivés for this work which will be addressed

in the following chapters.

1A formal definition of the albedo will be given in section 1.3.
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Figure 1.1: Clouds play a complex role in the radiative energy balance of our planet. Reflecting
incoming shortwave radiation from space and trapping outgoing longwave radiation from the
earth’s surface and atmosphere, they impact the climate with both cooling and warming effects.
The magnitude of these radiative effects is dependent on macroscopic and microscopic cloud
properties, giving rise to complex interactions within the climate system (from Phillips and
Barry, 2002, courtesy of NASA Marshall Space Flight Center and Science@NASA).

1.1 Clouds and Climate

Cloud radiative forcing (CRF) is defined as the difference between the upwelling radiative flux at the
top of the atmosphere and what it would be if the clouds were absent. Figure 1.1 illustrates the most
important interactions between clouds and radiation. The largest contribution to the globally averaged
long wave CRF is made by high clouds in the upper levels of the troposphere. They are cold and thus
emit less radiation to space than the earth’s surface and atmosphere under clear skies. Clouds that are
optically thick, on the other hand, have the largest albedo, which makes them the largest contributor to
the short wave CRF.

In the global annual average, clouds exert a net cooling effect on the climate system in its present
state. The average top-of-atmosphere (TOA) short wave CRF is about -50 W/m? (the negative sign
indicates cooling), while the TOA long wave CRF accounts for a gain of approximately 30 W/m? — a net
cloud forcing of -20 W/m? (Wielicki et al., 1995). These values are large compared to the heating that
would result if the current COy concentration was doubled, which is estimated to be on the order of 4

W/m? (Wielicki et al., 1995).
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Because of their small scale variability in time and space, clouds are difficult to simulate in numerical
global climate and weather forecasting models. The processes governing cloud formation and dissipation
occur on spatial scales smaller than a general circulation model grid cell, so that the clouds and their
interaction with the atmosphere have to be parametrised. Since the phase change from the gaseous to
the liquid phase produces a nonlinear traﬁsition from transparent vapour to opaque water droplets,
parameterisations require detailed knowledge of the processes involved so as to capture the major effects
of the governing physics. An additional complication is that knowledge of grid cell mean cloud properties
does not uniquely determine knowledge of the CRF because of the nonlinear relationship between cloud
properties and albedo (Harshvardhan, 1982).

Especially of interest to the climate science community is the radiative feedback between clouds
and the evolving ocean and atmosphere. How do clouds react to a changing climate? Does a warmer
atmosphere induce more shallow clouds, which in turn would cool the climate? Given the magnitude of
the net CRF, small changes in cloud cover could already have a significant effect on the earth’s energy
balance. For instance, Hartmann et al. (1992), using one year of global satellite data, found the sensitivity
of the radiation balance to low clouds to be on the order of -0.6 W/m? per percent fractional cloud cover
in the annual average.

Cloud feedback processes depend on so many factors that they have long been identified as being
the largest source of uncertainty in climate change predictions; as Bony et al. (2006) note, with a larger
uncertainty than any other feedback. Despite intense research work in this area (see, for instance, the
review articles of Stephens (2005) and Bony et al. (2006)), recent comparisons among climate models
still show a large variability of the predicted change in global mean CRF if forcing factors such as a
doubling of the atmospheric CO; content or an increase in sea surface temperature (SST) are prescribed
(Ringer et al., 2006; Williams and Tselioudis, 2007). Figure 1.2 reproduces the results of a modelling
study conducted by Ringer et al. (2006). The change in CRF, as computed by the current generation of
climate models, varies not only in magnitude but also in sign — it is currently unclear whether clouds are
changing so as to amplify global warming or to counteract it.

Williams and Tselioudis (2007) investigated how different cloud regimes contribute to the cloud feed-
back uncertainty. For the six general circulation models (GCMs) they compared, they found that dif-
ferences in the radiative response of frontal clouds in the mid-latitudes and of stratocumulus clouds

in low-latitude regions cause the largest proportion of the variance in the global cloud response. Bony

and Dufresne (2005) also found low-latitude marine boundary layer clouds to be a major factor in the
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Figure 1.2: Cloud feedback processes represent a large uncertainty in climate modelling.
Macroscopic and microscopic cloud properties cannot be resolved explicitly in the large grid
cells of general circulation models, and different parameterisations lead to a large range of
different feedbacks — from global mean cooling to warming of atmospheric temperature. Shown
on the left is the global mean change in cloud radiative forcing (ACRF') in ten climate models
participating in the Cloud Feedback Model Intercomparison Project (CFMIP), normalised by
the radiative imbalance G resulting from a perturbation of the sea surface temperature in the
simulations by +2K (top: total cloud feedback; bottom: longwave and shortwave components
separated). On the right the forcing G is given by doubling the CO, content of the atmosphere,
and the models used are the ones submitted to the IPCC 4th Assessment Report (AR4).
ACRF/G = 1 means that the radiative forcing associated with cloud feedback is the same as
the original direct forcing G, i.e. the clouds double the forcing exerted by G. Note the large
differences in cloud feedback amongst the models (reprinted from Ringer et al., 2006, (©) 2006,
with permission from the American Geophysical Union).
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Figure 1.3: The annual cycle of (left) cloud amount and lower tropospheric stability (ex-
pressed as the potential temperature difference ©(700 hPa) - ©(sea level pressure)) and (right)
shortwave, longwave and net cloud forcings from a two-year ERBE (Earth Radiation Budget
Experiment) climatology in the region 20°-30°N and 120°-130°W off the coast of California
(reprinted from Klein and Hartmann, 1993, © 1993, with permission from the American Me-
teorological Society). '

disagreement of GCMs in cloud feedback predictions. Williams and Tselioudis (2007) note that the un-
certainty is already present in model simulations of current climate, before the introduction of additional
uncertainty from future climate forcing. This indicates that there is currently no consensus on how to

represent shallow boundary layer cloud processes in climate models.

1.2 Marine Stratocumulus Clouds and the Aerosol Indirect

Effect

1.2.1 Bulk Properties

The retrieval algorithm developed in this thesis focuses on the observation of marine stratocumulus
(Sc) clpuds. These clouds are so important to the climate problem because of their persistence and their
high albedo (typically ~0.6-0.8 compared to the underlying sea surface value of typically ~0.05 for water
(Driedonks and Duynkerke, 1989)). This causes a strong shortwave CRF especially in the low-latitude
regfons, where the incident solar radiation is very high. For example, off the coast of California, average
cloud amount reaches more than 65% during the summer months, accounting for a net CRF of up to -70
W/m? (Klein and Hartmann, 1993, their Figure 5b,d is reproduced in Figure 1.3).

Marine Sc particularly favour the eastern subtropical oceans, where cold surface waters from the

upwelling ocean currents produce boundary layer air temperatures that are cool compared to the warm,
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subsiding air aloft. The resulting strong temperature inversion caps the boundary layer and inhibits deep
convection. Strong radiative cooling at cloud top helps to maintain the shallow convection and thus the
cloud layer in the absence of strong sensible heat flux from the ocean surface (Klein and Hartmann,
1993). Recently, it has been recognised that drizzle also plays an important role in the dynamics of the
cloud layer. However, how exactly precipitation processes interact with the circulation is still subject to
ongoing research (e.g. Ackerman et al., 2004; Stevens et al., 2005; Savic-Jovcic and Stevens, 2007).

These complex physical processes, together with the clouds’ small geometrical thickness (typically a
few hundred metres) and the sharp capping inversion makes the representation of marine Sc in climate
models particularly difficult (Bretherton et al., 2004). They are also still a problem for weather forecasting
models, as a recent comparison of in-situ data taken during the second Dynamics and Chemistry of Marine
Stratocumulus (DYCOMS-II) field experiment (Stevens et al., 2003a) with numerical weather prediction
results shows (Stevens et al., 2007).

Several field experiments have been conducted during which in-situ and remotely sensed data of marine
Sc were taken in order to better comprehend the mechanisms involved in sustaining and dissipating this
type of cloud. Figures 1.4 and 1.5 give examples of typical vertical cloud profiles observed in marine
Sc. The data in Figure 1.4 were taken during FIRE, the First ISCCP (International Satellite Cloud
Climatology Programme) Regional Experiment (Albrecht et al., 1988), in precipitating Sc off the coast of
California. Cloud liquid water content and average droplet radius typically follow their adiabatic values?,
with liquid water content often becoming subadiabatic at the top of the clouds by entrainment of dry air
from aloft or by removal of droplets by precipitation (drizzle). The mean droplet concentration typically
stays approximately constant with height, and the geometrical thickness of the clouds observed in this
example is less than 300 m.

Figure 1.5 summarises the results compiled by Miles et al. (2000) from in-situ data reported in the
literature. The magnitude of average cloud top droplet radii ranges from about 4 to about 12 wm.3.
The effective radius, an area-weighted mean radius of the cloud droplets which is important in radiative
transfer applications (see section 1.3 and Chapter 2), is 5 to 15 um, a little larger than the mean droplet

3 in marine

radius. Mean droplet number concentrations range from less than 20 cm~2 to about 200 cm™
clouds. As a comparison, number concentrations typical of continental clouds are also shown. Due to
the higher aerosol content of continental air masses, which act as cloud condensation nuclei (CCN),

significantly higher concentrations can be observed over land.

2 Adiabatic refers to a well mixed cloud layer in which entropy and total water content (i.e. water vapour plus liquid
water) are constant with height.
3Note that Miles et al. (2000) use diameter to describe droplet sizes in their work, whereas I will use radius in this thesis.
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Figure 1.4: Example of in-situ measurements of microphysical cloud properties taken during
the First ISCCP (International Satellite Cloud Climatology Programme) Regional Experiment
(FIRE; Albrecht et al., 1988) in precipitating marine stratocumulus clouds off the coast of
California. Shown are data from two aircraft flights (left and right): in-situ measured liquid
water content (g, left side of each panel, solid line), adiabatic liquid water content (left side,
straight dashed line), in-situ measured and adiabatic volume-mean radius (ryo1, right side, solid
and dashed, respectively), and in-situ measured number concentration (N, right side, points).
¢ marks cloud-top and cloud-base (reprinted from Austin et al., 1995, ©) 1995, with permission
from the American Meteorological Society).
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Figure 1.5: Miles et al. (2000) collected observations of low-level stratiform clouds from
previously published studies in order to compare the results found by different authors. The
figures shown here illustrate typical ranges of mean and effective particle diameter (D, and
D.), cloud liquid water content (LWC) and particle number concentration (N;). On the left
profiles of both continental and marine clouds are plotted together versus the normalised cloud
height (h/h; = 0 marks cloud base, h/h; = 1 cloud top), whereas in the plots of the number
concentration on the right they are separated. Marine clouds typically have much smaller
number concentrations than continental clouds. This is due to fewer aerosols acting as cloud
condensation nuclei (CCN) over the oceans. Furthermore, N; can be regarded as approximately
constant with height within a cloud. Note that. the figures on the left use diameter to describe
cloud droplet size, whereas in this thesis radius is used (reprinted from Miles et al., 2000, ©
2000, with permission from the American Meteorological Society).
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Due to their occurrence in strong subsidence regions, marine Sc (;loud tops are usually found at low
altitudes of less than 1000 m (e.g. Driedonks and Duynkerke, 1989). Liquid water paths (LWP) are found
to be on the order of up to a few hundred g/m?, often well below 100 g/r.n2 (e.g. Bretherton et al., 2004;
Xu et al., 2005).

A distinctive feature of marine Sc decks is the occurrence of a pronounced diurnal cycle in cloud
amount and LWP. For instance, during the East Pacific Investigation of Climate (EPIC), Bretherton
et al. (2004) observed a rise of the inversion height (and thus cloud top height) of roughly 200 m each
night from an early afternoon minimum value. The cloud base showed little diurnal cycle, so that the
clouds were thinnest during the afternoon. Furthermore, cloud cover was almost 100% during nighttime,
but during the afternoon clouds were often broken. Such diurnal cycles in cloud amount were also found
by Rozendaal et al. (1995), who used low cloud fraction data inferred from infrared satellite channels in
the ISCCP dataset. Wood et al. (2002) analysed the LWP derived from microwave measurements from
the Tropical Rainfall Measuring Mission (TRMM) satellite. They found a strong diurnal cycle in LWP
of subtropical low cloud regions, which with an early morning peak was in phase with the cloud amount
cycle of Rozendaal et al. (1995). Similar results were found by Blaskovic et al. (1991).

The diurnal cycle of cloud thinning during the day and growth at night is mainly caused by solar
forcing. During the day, the shortwave radiation that is absorbed in the cloud layer largely offsets the
longwave radiative cooling from cloud top. This inhibits the turbulence in the layer, and the resulting
less well-mixed structure is both less efficient in transporting moisture upwards from the surface and
maintaining the cloud top by entrainment. Consequently, subsidence can advect the cloud top down-
wards, while it is also dried out. Typically, the cloud base is also lifted during the day. This leads to a
commensurately thinner cloud (Bretherton et al., 2004; Stevens et al., 2007).

Daily amplitudes of the variations reach 5-10% for cloud amount (Rozendaal et al., 1995) and 15-35%
for LWP (Wood et al., 2002), so that a correct representation of the diurnal cycle in GCMs is critical to

the accurate representation of low clouds in large scale models.

1.2.2 Aerosols

Intimately linked to low boundary layer clouds are the aerosol indirect effects (AIEs), important for
the estimation of the climate impact of anthropogenic aerosol emissions. Twomey (1974, 1977) proposed

that an increased aerosol concentration shifts the droplet size distribution towards smaller values by

providing more cloud condensation nuclei. If cloud liquid water content (LWC) is unchanged, more and
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commensurately smaller droplets are formed, which increase the albedo of the cloud (first AIE of Twomey
effect).

A second key hypothesis was introduced by Albrecht (1989). He s.uggested that smaller cloud droplets
suppress the formation of precipitation in the cloud.* This reduced cloud water sink would moisten the
atmospheric boundary layer (ABL), leading to a lower cloud base and a thicker cloud that could live
longer (second AIE or cloud lifetime effect). The effect oh the radiation budget is similar to the Twomey
effect — increasing cloud thickness increases the albedo, and clouds that persist over longer time spans
also have an increased albedo if we consider the time average.

Both effects are important in the context of anthropogenic emissions. For instance, an idealised cli-
mate sensitivity study conducted by Hu and Stamnes (2000) in\}estigated the sensitivity of the CRF
to microphysical properties of clouds. As an illustration, Figure 1.6 shows the dependence of shortwave
CRF on average cloud droplet radius for three different cloud thicknesses. If the average droplet size was
decreased by just one micrometer, the effect on the radiation budget could already be significant. The
figure also shows that thin clouds (given with a LWP of 50 g/m?), such as marine Sc, exhibit the largest
radiative sensitivity to microphysical changes.

However, the interactions between aerosols and clouds are complicated. Precipitation, including drizzle
that does not reach the ground, occurs and can influence the aerosol concentration via scavenging, which
in turn influences the cloud microphysics and cloud fraction (Stevens et al., 2005; Sharon et al., 2006).
Also, precipitation is known to stabilise the cloud layer (by cooling the subcloud layer and increasing static
stability), so less precipitation caused by the second AIE would increase turbulence and thus entrainment
of warm and dry air from aloft — counteracting the cloud thickening process (Wood, 2007).

In total, the aerosol indirect effects make the problem of accurately representing boundary layer cloud
processes in GCMs even more complicated, adding significantly to the already existing cloud feedback
uncertainty (Lohmann and Feichter, 2005). In fact, whether higher aerosol concentrations actually increase
the area-averaged albedo of a cloud deck and thus its CRF is discussed controversially in the literature.
Recently, studies suggested that processes might exist that could cancel the indirect effect completely,
leaving no effect of aerosols on the net radiative fluxes (Twohy et al., 2005; Wood, 2007; Xue et al., 2007).

A intriguing manifestation of the AIE are ship tracks (Hobbs et al., 2000; Durkee et al., 2000b,a).
They occur when elevated aerosol levels in the area of a ship plume lead to an enhanced reflectivity of the

cloud layer above the ship. The resulting “ship tracks” can often be observed on satellite imagery. Indeed,

4In ice-free clouds, large droplets are needed to form precipitation (via the collision/coalescence process). If the droplet
size distribution is shifted towards smaller values, the propensity of the cloud to form precipitation decreases.
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Figure 1.6: Example of the dependence of cloud radiative forcing on macroscopic and micro-
scopic cloud properties: the dependence of shortwave CRF at the tropopause (global annual
average, top) on average cloud droplet radius for three different cloud thicknesses, and its
change if the average droplet radius is decreased by 1 um (bottom) in an idealised climate
sensitivity study. To put the numbers into context, Wielicki et al. (1995) estimate the globally
averaged shortwave CRF to be on the order of -50 Wm™2; an instantaneous doubling of CO5
would result in a forcing of roughly 4 Wm~? (reprinted from Hu and Stamnes, 2000, © 2000,
with permission from Blackwell Publishing).
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Durkee et al. (2000a) found that ships that emit more aerosols on average produce ship tracks that are
brighter, wider, and longer-lived than ships with lower emissions. Here, I will use the phenomenon of ship

tracks to check the physical consistency of the retrieval method (Chapter 4).

1.3 Radiative Transfer Terminology

Before I discuss the motivation for this work and give an overview of the relevant existing literature,
it is useful to review some basic radiative transfer terminology. General references in which more detailed
information can be found are, for instance, Petty (2006) or Bohren and Clothiaux (2006).

The fluz density, or irradiance (sometimes abbreviated as fluz), is a measure of the total energy per

unit time and unit area transported by electromagnetic radiation through a flat surface:

energy (Joules)

(1.1)

"~ time (seconds) x area (m?)’

It is measured in Wm™2.

The radiance, or intensity, measures the directional energy transport:

I energy (Joules) . (1.2)

" time (seconds) x area (m?) x field of view (sr—1)

It is measured in Wm~2sr~!. The direction is given by solid angle with units steradian (sr). A steradian
is a “square radian”; solid angle is to “regular” angle as area is to length (Petty, 2006). An integration
of solid angle over one hemisphere yields 2, over an entire sphere 47.
Both flux and intensity can be expressed in monochromatic form, ie. per unit waveléngth, A (or,
alternatively, wave number, 1/\):
1

Ih= wavelength (zm)’ (13)

with units Wm™2sr~!um™1!.

When electromagnetic radiation is incident on a medium, part of it is absorbed, part reflected, and
part transmitted. The absorptivity (also absorptance) a, reflectivity (also reflectance) r and transmissivity
(also transmittance) t of a medium describe the corresponding fractions of the incident radiation and in
general depend on wavelength and direction of the incident radiation. The shortwave reflectivity of a

surface is also referred to as its (shortwave) albedo. Obviously, all three quantities range from zero to one,

12
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and

ax(8, ) +ra(8,9) +tr(6,4) = 1. . (1.4)
The transmissivity is described by Beer’s Law:

_Bis)

A= T = exp (—Phes), ' (1.5)
2,0

where s denotes distance along the direction of propagation, Iy o the intensity at position s = 0, Ix(s)
the intensity after distance s, and B\ . the extinction coefficient (m~'). It describes the rate of energy
attenuation per unit distance (1/Bx,e determines the distancé for energy to be attenuatéd to e~1 of its
original value).
Since all of the following equations correspond to the monochromatic case, I will drop the subscript
X for convenience. In equations that describe wavelength-integrated cases this will be explicitly stated.
Following Beer’s Law, in a direct beam with no sources of radiation, the intensity I falls off exponen-

tially with distance:
I(s) = Ipexp (—fes) . (1.6)

In this equation, the extinction coefficient describes the effects of two mechanisms for extinction; radiation
can be either absorbed by a medium, or be scattered out of its original direction of propagation. The

extinction coefficient is the sum of an absorption coefficient 8, and a scattering coefficient G;:

Be = Ba + Bs. (1.7)

The single scatter albedo & characterises the relative importance of scattering in the total extinction:
=B P (1.8)

In a purely absorbing medium, & would be zero, whereas in a purely scattering one it would be unity.
The dimensionless optical thickness of a cloud between z; and zz (in an atmosphere in which z

represents the vertical coordinate) indicates the opacity of the cloud for a given wavelength. It is defined

as the path-integrated extinction coefficient and hence expresses how much extinction occurs over the

geometrical thickness of the cloud:

(o, 2) = / ” 6.(2)dz. (1.9)
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As a rule of thumb, Bohren et al. (1995) found that at an approximate visible optical thickness of 10 one
can no longer see the sun through a cloud.
The water droplets found in a cloud are generally distributed over a range of sizes. The droplet size

distribution is described by
n(r)dr = number of droplets per unit volume with radii between r and r + dr, (1.10)

and it is important for determining the effective radius r.ys, which is defined as

n(r)r3 dr

Teff ey
/n(r)’r‘2dr

Two cloud parcels with identical liquid water content and r.s; have the same total droplet surface area,

(1.11)

independent of the actual droplet size distribution.
‘The absorption and scattering coefficients 8, and s can be written in terms of the droplet size (and

wavelength) dependent absorption and scattering cross sections o4(r) and o,(r) (m?):

Ba

/ oa(r)n(r)dr (1.12)
8, = / o (r)n(r)dr. (1.13)

o.(r) and o4(r) hence describe the absorption or scattering per particle. Water droplets largef than about
5 pm have a scattering cross section of o, = 2772 and an absorption cross section of o, ~ 0 at visible
wavelengths. It can be shown (Petty, 2006) that in this case the visible optical thickness is related to the

effective radius by
3LWP

) 1.14
2piress (114)

Tyis ~2

where p; is the density of liquid water and the liquid water path (g m~2) is given by

LWP = / qdz = / / n(r, z) [pz4—wr3] dr dz, (1.15)
0 0 0 3

with liquid water content g; (g m~3). Although (1.14) does not apply at absorbing wavelengths where o,
and o, vary with r and ), it is still the case that cloud reflectivity and emissivity (defined below) can be

written as a unique function of ref ¢, 7ys, temperature and X for all wavelengths.
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Finally, the intensity emitted by a medium is given by the Planck function and the emissivity e:
IA =E,\B)\(T), (1‘16)

where T is the temperaturevof the emitting material. The emissivity describes how efficient the medium

is emitting, and after Kirchhoff’s Law, the emissivity of a material is equal to its absorptivity:
ex(8,9) = ar (6, 8). (1.17)

The Planck function, dependent on the temperature of a medium, is given by

_ 2hc?
A3 (exp (k,?iT) - 1) 7

| where h = 6.626 x 10-34 Js~! is Planck’s constant, ¢ = 2.998 x 10% ms~! is the speed of light, and

| | Ba(T) (1.18)

kp = 1.381 x 10~2® J/K is Boltzmann’s constant. It gives the emission of a black body, an object that
absorbs all radiation that falls onto it- (ax = 1) and consequently also emits the maximum possible
radiation that a material with a given temperature can emit (ex = 1).
The brightness temperature Tp is often used as a substitute for describing the measured intensity in
remote sensing. It is the temperature a black body must have in order to emit the observed radiance at
| a given wavelength:

Ix = B\(TB). (1.19)

1.4 Motivation

Data that can shed light on the regional variations in cloud microphysical and optical propefties,
their diurnal cycle and the interaction of clouds, precipitation and aerosols is particularly important for
further progress in the accurate representation of stratocumulus clouds in climate and weather models
(Stevens et al., 2003a). Figure 1.7 summarises the options the scientific community has to observe clouds.
In-situ instruments carried byv aircraft can very accurately measure drop size distribution and liquid water
content, as well as the standard meteorological variables. While field campaigns such as DY COMS-II yield

valuable data, the aircraft flights are expensive, and it is not practical to use in-situ sampling to conduct
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in-situ

measurements

ground based
remote sensing

Figure 1.7: Observations of cloud microphysical and optical properties, their diurnal cycle
and the interaction of clouds, precipitation and aerosols are important for further progress in
the accurate representation of stratocumulus clouds in climate and weather models. Different
methods can be employed; active (radar, lidar) and passive (radiometers) remote sensing can be
used from the ground. Aircrafts or helicopter-based instrument-sondes are able to perform in-
situ measurements and directly measure particle size, number and the standard meteorological
parameters. However, for marine clouds, both ground based remote sensing (from ships) and in-
situ measurements are cost and labour expensive. Satellites provide an ideal means to remotely
sense data over large areas and long time spans. Most satellite-based approaches use passive
multispectral radiometer data, but data from active satellite instruments will also be available.

the long-term observations that are needed to understand how the climatology of marine Sc responds to
environmental change.

Remote sensing from surface and satellite based instruments can provide a long-term data record,
with surface instruments typically being able to achieve a higher temporal resolution but with a limited
spatial field of view. Also, it is difficult to deploy surface remote sensing instruments for long time spans
over sea, leaving satellites to be the major data source for large-area and climatic studies of marine Sc.

Remote sensing instruments infer cloud properties from radiation that is reflected, transmitted or
emitted by the cloud. While active instruments such as radar, sodar or lidar emit electromagnetic radi-
ation and infer the property of interest from the backscatter signal, passive sensors record the radiation

that originates from natural sources. Mathematical models of the radiative processes in the cloud and
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atmosphere are then employed to compute the intensity arriving at the sensor (i.e. for satellites, at the
top of the atmosphere) as a function (referred to below as the forward model) of the relevant cloud
parameters:

I704 = F(resss Ty Tetouds Tsurface, Overlying atmosphere, ...), (1.20)

‘where the intensity has been written as a vector in order to account for observations at several wave-
lengths. Other parameters, indicated by “...” in the above equation, could include subadiabaticity, cloud

inhomogeneity or partially filled pixels. The retrieval is then defined as the inversion of the function f,
¢ = F1ITO4 overlying atmosphere, ...), . (1.21)

where the vector @ = (Tess, Ty Teiouds Tsurfaces --.) contains the parameters to be determined.

Most satellites currently in orbit carry passive sensors, due to the high power consumption of acti\./e
technology. For instance, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments,
on-board the National Aeronautics and Space Administration’s (NASA) near-polar orbiting Terra and
Aqua satellites, measure in the visible and infrared wavelength range and provide four images daily for a
given location on earth. While an operational cloud product including droplet size and optical thickness
(a measure of how much radiation can pass through the cloud) is routinely retrieved from the daytime
measurements (King et al., 1997; Platnick et al., 2003)%, no such retrievals are available for nighttime
images.8” However, such retrievals would be useful for studies of marine Sc on the diurnal timescale.

One reason that no operational retrievals of nocturnal cloud properties are available is that solar
radiation carries several orders or magnitude more energy than radiation emitted by terrestrial sources.
The sun hence represents a source of very easily detectable photons, and the absence of emission of
terrestrial sources in the visible wavelength range means that cloud temperature is not a confounding
variable. The higher intensity allows for smaller pixel sizes, too. For instance, while near and thermal
infrared signals are recorded at a 1-km resolution by the MODIS sensors, the visible channels have a 250-
m resolution. Furthermore, most information on cloud microphysical and optical properties are carried

by wavelengths in the visible and near infrared. While the reflected sunlight at visible channels is highly

5 Available from http://ladsweb.nascom.nasa.gov/data/.

67T his is also true for other instrument data, such as from the Advanced Very High Resolution Radiometer (AVHRR).

7In 2006, NASA launched the CloudSat and CALIPSO satellites within the so-called A-Train — a series of satellites
equipped with special cloud remote sensing instrumentation, flying in formation with the Aqua satellite in order to provide
near-simultaneous measurements. The satellites are equipped with an active radar and a lidar instrument, respectively,
which operate independently of the available sunlight. However, the lidar instrument will mainly focus on upper level clouds
(i-e. cirrus), and the radar on vertical profiles of LWC and precipitation — droplet size, for instance, will not be part of the
retrieval product (Stephens et al., 2002; Vaughan et al., 2004)
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sensitive to cloud optical thickness, near infrared channels provide information about cloud particle size
(e.g. King et al., 1997).

However, a similar, although weaker, dependence can also be found at non-visible wavelengths. Radia-
tive transfer calculations by Baum et al. (1994) showed that a combination of the three near infrared and
thermal channels of the Advanced Very High Resolution Radiometer (AVHRR) could be used to infer
cloud droplet size, optical thickness and cloud temperature. Attempts to construct a retrieval scheme
from such measurements (Minnis et al., 1995; Heck et al., 1999; Pérez et al., 2000; Gonzalez et al., 2002;
Pérez et al., 2002) were partly successful, but suffered from high computational cost and included only
simple sensitivity analyses in order to estimate the uncertainty on the retrievals. In particular, the com-
putational time needed to retrieve an individual pixel in an image was on the order of seconds®, which,
again, is not suited to build a climatology build on a large number of satellite images. Also, ambiguities
in the inverse mapping were a problem (i.e. different droplet size and optical thickness combinations can
lead to the same set of emitted radiances), further complicating the uncertainty estimation and restricting
the quantitative usefulness of the retrievals (Pérez et al., 2000; Gonzalez et al., 2002).

Towards these ends, a retrieval algorithm both fast enough to process large datasets and able to
~ provide reliable error estimates on the retrieved values could prove quite useful, and its non-existence

motivates this study.

1.5 Overview and Theory of Existing Retrieval Algorithms

1.5.1 Daytime Methods

Retrieval techniques to extract boundary layer liquid water cloud properties from satellite measure-
ments have been developed since the 1980s (Afking and Childs, 1985; Twomey and Cocks, 1989; Nakajima
and King, 1990; Nakajima et al., 1991; Platnick and Twomesr, 1994; Han et al., 1994; Platnick and Valero,
1995; Nakajima and Nakajma, 1995; Kawamoto et al., 2001), although interest in inferring cloud cover
characteristics from satellite images can be traced back to Arking (1964). Since reflected solar radiation
is observed by the sensors, and the reflectivity mainly depends on cloud optical thickness and effective
radius, these two parameters are commonly retrieved. |

The underlying principle is illustrated in Figure 1.8. Liquid water clouds are composed of spherical

water droplets whose scattering properties can be described by Mie theory (Mie, 1908). Figure 1.8a shows

8on a 933 MHz Pentium III machine; P.H. Austin, 2005, per. comm.
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the dependence of the single scatter albedo @ (1.8) on wavelength for three different droplet sizes. In the
visible wavelength range, & is very close to unity for all particle sizes, and no radiation is absorbed in
the cloud. The reflectance of a cloud layer, i.e. its albedo, is determined by the amount of radiation that
is scattered back into space, i.e. by the number of photons that leave the cloud at its top after various
scattering events. Since water droplets tend to scatter visible radiation mainly in the forward direction®,
it needs strong and a large number of scattering events for a high albedo.

If all extinction is due to scattering, an optically thicker cloud will have a larger albedo. Since &
depends only weakly on particle size in the visible wavelength range, the optical thickness of a cloud can
well be inferred from the measured reflectance (Figure 1.8b, the curve for @ = 1).

Figure 1.8a shows that for wavelengths in the near and thermal infrared, the single scatter albedo
becomes dependent on particle size. Furthermore, for sufficiently low & and sufficiently thick clouds,
the cloud albedo becomes independent of = (illustrated in Figure 1.8b for & = 0.9), leaving the major
dependence on the effective droplet radius r.sr. For thin clouds, the retrieved optical thickness from
the visible wavelengths can be used to eliminate the optical depth dependénce. Typically, near infrared
channels centred at 2.1 um (Nakajima and King, 1990) or 3.7 um {Nakajima and Nakajma, 1995) are
used to retrieve particle size information.

To infer the values of cloud optical depth and effective radius from the satellite measurements, a
radiative transfer model is employed to compute a database of reflected intensities, the lookup table
(LUT). Radiances that. would be expected at the satellite sensor are computed using simplified models of
the cloud layer and the atmosphere. For instance, the operational MODIS retrieval (King et al., 1997),
based on the work of Nakajima and King (1990), uses a simple model of horizontally and vertically
uniform clouds whose only parameters are rers and 7. For the atmosphere, absorption by water vapour 4
or trace gases (mainly infrared) or scattering at aerosols (visible) has to be considered. Also, emittance
of cloud droplets in the near infrared bands plays a role in the observed intensities. It is often removed
by utilising further thermal bands for estimates of cloud temperature.

The components of cloud, atmosphere, and radiative transfer model together are called the forward
model. Since the forward model is too complex to be inverted analytically, it is run for a variety of cloud
parameters to build a LUT. The determination of the cloud proberties is then done by “looking up”

the measured intensities in the database — the difference between observed and computed radiances is

9More details will be discussed in Chapter 2.
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Figure 1.8: Example of how radiative effects are dependent on microphysical properties of
a cloud. (a) Dependence of the single scatter albedo @ (the fraction of radiation extinguished
along a ray of radiation that is due to scattering effects) on wavelength for three different cloud
droplet sizes (5, 10 and 20 pm). (b) Idealised albedo, (c) transmittance and (d) absorptance of
a plane parallel layer cloud in dependence on cloud optical thickness 7 for different values of
@. Especially note the different & for the satellite channels measuring at 3.7, 11 and 12 pm in
(a). The resulting differing albedo, transmittance and absorptance can be exploited for remote
sensing of droplet size and optical depth (reprinted from Petty, 2006, © 2006, with permission
from Sundog Publishing).
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represented by a cost function (also referred to as error surface)

COST = (IF557** — Izo%"* )2, (1.22)

which is minimised numerigally.

The above mentioned studies all utilise these fundamental techniques, differing in the wavelength of
the employed channels or the minimisation algorithm used. Also, forward models were refined in later
publications, for instance the treatment of water vapour (Kawamoto et al., 2001), or the cloud model,
which now is often assumed to be adiabatic rather than vertically uniform (Brenguier et al., 2000).

An important assumption in most retrieval schemes is the plane-parallel approximation, which treats
the cloud layer within a pixel as horizontally homogeneous. While this might seem to be an oversim-
plification for mahy realistic clouds, it is often a good approximation for stratiform clouds at scales of
about 1 km (the resolution of the MODIS channels) and considerably simplifies the radiative transfer
calculations (Petty, 2006). The cloud parameters are then retrieved on a pixel-by-pixel basis, implying
that the observed radiances are determined entirely by the properties of the clouds within the pixel of
interest (independent pixel approximation, IPA).

Hence, care has to be exercised as to only apply the retrieval scheme to pixels that are fully covered by
cloud — a requirement that can be problematic for regions of broken cloud. Unfortunately, precipitation
produces inhomogeneities at scales of about 1 km (Stevens et al., 2005; Sharon et al., 2006). This poses
obvious problems for remote sensing studies of the aerosol indirect effect; research showed a considerable
error is introduced into the retrieval if inhomogeneities exist in the cloud layer, especially in the presence

of broken clouds on the subpixel scale {Faure et al., 2001b,a,c, 2002; Kato et al., 2006; Iwabuchi, 2007).

1.5.2 Nighttime Methods

At night, the dependence of the radiative fields on cloud optical thickness and effective radius is
slightly more complicated. Since radiation in the visible wavelengths is not availablel?, the retrieval has
to rely entirely on near and thermal infrared signals, resulting in the lack of the relatively independent
optical thickness information in the visible range. Research work in this area dates back to Hunt (1973),
whose work showed a difference in the sensitivity of cloud emissivity to changes in particle size between

several wavelengths in the near and thermal infrared. Most follow-up studies in the 1970s and 1980,

10 Although new highly sensitive radiometers are being developed that will be able to measure visible light reflected by
the clouds from the moon (Lee et al., 20086).
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however, were focused on cirrus clouds rather than shallow liquid water clouds (Minnis et al., 1995, and
references therein). D’Entremont (1986) used the 3.7, 11 and 12 pm channels of the AVHRR instrument
to determine fractional cloud amount and cloud top height for low and mid-level clouds, and Lin and
Coakley (1993) and Luo et al. (1994) developed a method based on the 11 and 12 um emissivities in
order to determine fractional cloud cover and an effective particle radius for single layered clouds.

Baum et al. (1994) eventually found that the combination of the AVHRR channels at 3.7, 11 and 12 um
may be used for a simultaneous retrieval of cloud temperature, optical thickness and effective radius. At
these wavelengths, the emitted radiation of a cloud depends on both effective radius and optical thickness,
and additionally also on temperature. Figure 1.8a shows the strong dependence of & on particle size for
wavelengths larger than about 2 um. Since, after Kirchhoff’s Law, the emissivity of a droplet is equal to its
absorptivity, the value of 1-& gives an idea of how cloud emission as well as absorption depend on 7.y f.“
The cloud top radiance at a certain wavelength then becomes a complex function of cloud temperature
(determining the black body emission), particle size, the thickness of the cloud (determining how many
scattering or absorption/emission events occur), and, for clouds thin enough to allow for transmission,
surface temperature (assuming a surface emissivity = 1). Of course, cloud inhomogeneities add further
complexity.

Despite this complexity, the differences in the dependence of cloud droplet scattering, absorption and
emission properties on wavelength can be exploited for the retrieval. While the objective of Baum et al.
(1994) was to detect multilevel cloud situations, Minnis et al. (1995) and Heck et al. (1999) report on
a nighttime retrieval algorithm within the Clouds and the Earth’s Radiant Energy System (CERES)
programme. They use a very simple radiative transfer approach, parametrising the forward model by an
efficiently computable function that incorporates cloud optical depth and the emissivity dependence on
effective .radius, and minimise the sum-of-square error between the model and observations.

Pérez et al. (2000) also include surface temperature information, retrieved from clear sky pixels in the
vicinity of the clouds, in their retrieval method to determine effective radius and cloud top temperature
of nocturnal marine stratocumulus clouds. Their forward model consists of a vertically uniform, plane-
parallel cloud over a sea surface. Emission and absorption effects of the atmosphere above the cloud are
neglected. Following Baum et al. (1994), Pérez et al. (2000) employ brightness temperature differences
(BTD) between the satellite channels to express the varying behaviour of the cloud radiative properties

with wavelength, and extensively study the behaviour of the forward model when 7, r.fy, and temperature

1ndeed, although making the retrieval of particle size possible at nighttime, this dependence becomes a problem in the
removal of the thermal contribution to the near infrared channels during daytime. '
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Figure 1.9: Physical basis for the remote sensing methods used by Heck et al. (1999), Pérez
et al. (2000), Baum et al. (2003) and Cerdefia et al. (2007): plotted is the brightness temperature
difference (BTD) between AVHRR channels 3 and 4 (3.7 and 11.0 pm), as measured at the
top of the atmosphere, versus the brightness temperature for channel 4. The curves are based
on radiative transfer computations for horizontally and vertically homogeneous clouds with
varying particle radius and optical thickness (left) and temperature (right). By creating such
curves with a radiative transfer model and comparing them to the brightness temperatures
measured by the satellite, it is possible to infer information about the cloud properties that
caused the satellite measurements (reprinted from Pérez et al., 2000, © 2000, with permission
from Elsevier).

are varied.!?

Figure 1.9 shows the BTD between the 3.7 pm and 11 pm channels of the AVHRR instrument
(channels 3 and 4, respectively), henceforth abbreviated with BTD(3.7-11), versus the 11 pm brightness
temperature (BT) for vertically uniform clouds with (a) a fixed cloud top temperature of 285 K and
several effective radii and optical depths, and (b) a fixed radius of 8 pm and varying cloud temperature.
The curves span an area of possible solutions of the forward model, and if some parameters can be fixed
the remaining ones can readily be inferred from these diagrams. Similar diagrams exist for the BTD
between 11 and 12 pm (BTD(11-12) in the following).

Yet two issues complicate the retrieval. One problem for nocturnal retri.evals is the saturation of cloud
emission with optical depth. For thin clouds a number of photons from the s.urface and all levels within
the cloud layer are able to reach the satellite without absorption. For thicker clouds absorption will

effectively remove all photons from lower levels in the cloud layer before they reach cloud top — leaving

12The intensities in the cost function (1.22) now become brightness temperatures and brightness temperature differences.
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the cloud top radiance to be governed only by the upper cloud (of course, the absorption is wavelength
dependentj. Figure 1.8d illustrates the phenomenon. For an & of 0.9, the emissivity of the cloud, equal
to its absorptance, quickly reaches an asymptotic limit. A convergence for larger optical depths is also
visible in the BTD diagrams of Figure 1.9. However, since most marine Sc have optical thicknesses of less
that 10 (Xu et al., 2005; Rossow and Schiffer, 1999), the saturation problem does not pose a significant
constraint.

Also problematic are ambiguities in the forward model. As noted by Pérez et al. (2000), some sets
of measured brightness temperatures can be caused by several clouds having differing optical properties.

This, of course, makes the unique retrieval of the cloud parameters impossible. Pérez et al. (2000) find

that the effect is larger on BTD(3.7-11), but also occurs for BTD(11-12), especially for effective radii in

the range of 4-7 um.

The minimisation technique used by Pérez et al. (2000) is similar to the one used by Nakajima and
King (1990) and King et al. (1997), who first retrieve optical depth from the visible wavelengths in order
to transform the optimisation with respect to r.s into a one-dimensional problem. Noting the complexity
of the hypersurface of the cost function (with equivalently deep minima that resemble the ambiguities),
Pérez et al. (2000) also split the retrieval into two parts. First, cloud top temperature is recovered from the
BTD(11-12) signal. Fixing the atmospheric profile using the inferred surface and cloud top temperatures,
they then run the forward model again for a range of effectiv‘e radii. This produces a one-dimensional
minimisation problem with respect to 7.z, which is easier to solve for multiple solutions.

The retrieval result then consists of a cloud top temperature, together with a list of possible effective
radii. Pérez et al. (2000) compare the retrieval results to time-averaged in-situ measurements performlad
on the Canary Islands, and find that satellite and in-situ observed 7.7 agree within 1.25 pum.

Gonzélez et al. (2002) report on a modified version of Pérez et al. (2000). They eliminate the ambi-
guities due to effective radius by building a LUT in which, for situations where multiple solutions exist,
they only store the median radius. The discarded solutions are used to compute a confidence interval
around the central value, which they find to be as large as 7 um for large r.fs in thin clouds. The cost
function then possesses a unique global minimum, which they find with a genetic algorithm in order to
avoid multiple local minima. In addition to cloud temperature and effective radius, they also retrieve
optical depth values.

Pérez et al. (2002) adapt the retrieval to channels from the MODIS instrument. Instead of using BT's

at 3.7, 11 and 12 pm, they employ the 3.7, 3.9, 8.5 and 11 um channels {plus surface temperature).
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Furthermore, atmospheric contributions to the top-of-atmosphere (TOA) BTs are included this time,
assuming a known atmospheric profile from a different source. The error surface is minimised with a
scatter search algorithm.

Baum et al. (2003) also extend the Baum et al. (1994) work to the MODIS instrument. Their objective
is again to recognise situations in which high level cirrus overlays low boundary layer clouds. Including
the 8.5 pm channel in their computations, they note that the BTD(8.5-11) (BTD between 8.5 and 11
pm) shows a strong dependence on cloud top temperature but not on particle radius.

- Apart from the expensive minimisation techniques employed in the outlined nighttime retrieval meth-
ods, the procedures also suffer from the problem of computing a meaningful uncertainty estimate. Pérez
et al. (2000), as well as Gonzdlez et al. (2002), perform a sensitivity analysis of their retrievals with
respect to errors in the observed brightness temperatures. They find that a variation of + 2 K in the
observed BT of cloudy pixels leads to variations in 7.¢ of more than 3 um, variations of & 0.5 K in the
clear sky BTs lead to errors in 7.ss of less than 0.5 um (Pérez et al., 2000). Gonzdlez et al. (2002) note
that the sensitivities of retrieved cloud parameters to input BTs are largest in the case of thin clouds.
They also discuss the effect of the ambiguities in effective radius and the error in the presence of broken
clouds on the subpixel scale (neglecting nonlinear effects).

However, these sensitivity analyses cannot provide more than an idea of the general magnitude of
the uncertainty. They also do not include the effects of assumptions made in the forward model or the
accuracy of the numerical inversion. Indeed, Pincus et al. (1995), for the case of optical depth retrievals,
report on the difficulty of obtaining a good uncertainty estimate. In order to obtain an accurate error
estimate for an individual retrieval or for an average over a population of retrievals, additional inversions

with perturbed input variables would have to be performed, which increases the computational cost.

1.5.3 Artificial Neural Networks

An interesting development to tackle the high computational cost of the inverse procedure is the use
of artificial neural networks {ANNs). The theory of ANNs as a tool for statistical data modelling has
been developed since the 1950s (e.g. Rosenblatt, 1958), but they were not uséd much in the atmospheric
sciences until the 1990s (e.g. McCann, 1992; Hsieh and Tang, 1998). General references to ANNs are the
books by Bishop (1995, 2006).

Inspired from the bidlogical archetype of the human brain, an ANN imitates the concept of intercon-

nected nodes, the neurons, that can “fire” in order to pass on information if certain input conditions are
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Figure 1.10: Schematic diagram of a feed-forward network with two layers of adaptive weights

w%) and wj(.2,2 . The input neurons on the left are labelled with z;. The information propagates
in a forward direction through the hidden neurons z; to the output neurons y;. In addition to
the input and hidden neurons, there are two bias parameters with a fixed input (activation) of

xo = 1 and zy = 1, respectively.

met. In particular, a neuron in an ANN computes the sum over all of its input values and returns the
value of an activation function of that sum. This activation function can be an arbitrary function, but
usually a sigmoidal function is used that returns 1 if a certain threshold is reached and 0 otherwise. The
connéctions between the individual neurons are weighted, and by adjusting these weights, the ANN can
“learn” a certain behaviour.

Artificial neural networks have been widely used for both classification and regression problems
(Bishop, 1995). There are many different types of ANNs, but the important one for this study and
the works cited here is the multilayer perceptron (MLP).1® Its architecture is schematically illustrated
in Figure 1.10. Its neurons are grouped into several layers, one input layer, one output layer, and one to
several hidden layers.! Each neuron in the input layer corresponds to an input variable, and each neuron
in the output layer to an output. The number of hidden layers and neurons in them is variable and has
to be determined individually for each case.

In order to learn a behaviour, the network has to be trained with a training dataset tha§ includes

input values as well as their corresponding target values. The weights are then modified until, for all

131 will not give a more detailed description of multilayer perceptrons in this thesis, a thorough introduction to many
aspects concerning neural networks can be found in Bishop (1995), a shorter review in Bishop (1994).

14The numbering of the layers can be confusing. A “two-layer-perceptron” refers to a network with two layers of adaptive
weights, that is only one layer of hidden neurons. “Two hidden layers”, however, refer to two layers of hidden neurons and
hence three layers of adaptive weights. '
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input values, the outputs of the ANN equal the target values to a sufficient accuracy.

An important property of such ANNs is that, given a large enough number of hidden neurons and
weights, they are able to approximate any arbitrary smooth function (e.g. Bishop, 1995). This makes
them ideally suited for nonlinear regression problems in which little is known about the shape of the
cost function. Furthermore, once the training process is completed, the computétion of the output values
includes only a few summations and evaluations of the activation functions, which makes a trained ANN
very fast. Of course, there are also disadvantages, as it can be difficult to determine the number of hidden
neurons or to find a good set of weights (Bishop, 1995, more specific problems arising in the atmospheric
sciences are outlined by Hsieh and Tang (1998)).

In the context of atmospheric satellite remote sensing, somé work has been done that employs ANNs.
For instance, Krasnopolsky et al. (1995) and Krasnopolsky et al. (2000) used ANNs to retrieve surface
wind speeds over the ocean from microwave measu.rements. Aires et al. (2001) determined surface tem-
perature, water vapour content and cloud liquid water path, also from microwave observations, and Aires
et al. (2002) retrieved atmospheric and surface temperature from infrared measurements.

Faure et al. (2001c) applied ANNs to daytime retrievals of cloud parameters. In their work, they
investigated the feasibility of simultaneously retrieving cloud optical thickness, effective radius, a relative
cloud inhomogeneity and fractional cloud cover of inhomogeneous clouds from observations at 0.6, 1.6, 2.1
and 3.7 um. They used a three dimensional Monte Carlo radiative transfer model to account for nonlinear
effects due to the cloud inhomogeneities to build a database of 3000 clouds. An ANN with two hidden
layers, 10 neurons in each layer, was trained from this database in order to model the inverse function.
Faure et al. (2001c¢) concluded that a retrieval of inhomogeneous clouds using an ANN is feasible.

The study was extended by Cornet et al. (2004) to combine daytime observations available at different
resolutions. In order to account for the increased complexity of the problem, they employed a combination
of several ANNs and applied the method to MODIS data (Cornet et al., 2005). However, they did not
compare their results to in-situ observations.

Schiiller et al. (2003, 2005) also used ANNSs for daytime retrievals of droplet number concentration,
geometrical thickness and liquid water path of shallow convective clouds, but they did not give many
details on the architecture they used.

Motivated by the high computational efficiency of an ANN-approximated inverse function, Cerdefia

et al. (2004) continued the work of Pérez et al. (2000) and Gonzalez et al. (2002), becoming the first

to apply ANNs to nocturnal cloud property retrievals. In their study, they empirically explored several
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network architectures with differing numbers of hidden layers and neurons, and found that two layers
with 100 neurons in the first and 20 neurons in the second layer yielded the best results. The ANNs
were trained using a database of 20,000 data points, with an additional 10,000 independent points for
validation. Cerdefa et al. (2004) compare two forwards models, one employing the vertically uniform
cloud model, and the other an adiabatic profile with vertically increasing liquid water content (more
details in Chapter 2). Analysing the same data as Pérez et al. (2000) and Gonzélez et al. (2002), the
ANN retrieved effective radii agreed within 2 um with the in-situ observed values, with the adiabatic
cloud model yielding slightly improved results.

Cerdena et al. (2007) extended the retrieval method to the daytime case and also further investigated
the network architecture. Utilising genetic algorithms, they were able to improve the network design to
a network containing 20 neurons in the first and 5 neurons in the second hidden layer, yielding similar
results as their first, more expensive architecture. They also presented a sensitivity analysis, similar to
the one conducted by Pérez et al. (2000), by perturbing the input brightness temperatures by 0.5 K and
noting the effect on the retrieved parameters for thin (7 < 2) as well as thick (7 > 8) clouds. For thin
clouds, such perturbations can lead to errors of up to over 4 um in r.s5, 4 K in cloud temperature (1),
and 0.6 in 7. For thick clouds, errors are smaller in r.f; and 7', but larger for 7.

However, in the Cerdena et al. (2007) work, the problem of estimating an accurate error interval for
given inputs remains. Furthermore, they do not discuss the effect of an uncertainty in the neural network
fit on the outputs (i.e. the uncertainty of having found the best set of weights during the training process),
which can also be significant (Aires et al., 2004a).

Indeed, there exist both analytical methods to compute the Jacobian (i.e. the sensitivity) of a network
for a given input and to compute the output uncertainty due to the network fit. MacKay (1992a,b, 1995)
developed a Bayesian framework for neural network training that besides of making the training process
more stable allows for an estimation of the uncertainties in the network predictions that are due to the
network fit and to noise in the training data. Aires (2004); Aires et al. (2004a,b) generalised this concept
to the multidimensional case and demonstrated its application in the context of their previous microwave
remote sensing problem (Aires et al., 2001).

The Jacobian is very important for the validation of the network fit. Since for the inverse problem, we
do not know the shape of the function to model, we can only verify the ANN by comparing its predictions
to independent test data or by controlling the physical consistency of the Jacobian. This means that the

output variables should be dependent on the expected input variables. For instance, during nighttime,
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we expect the effective radius output to be sensitive mainly to the BTD(3.7-11) signal (cf. Figure 1.9),
while cloud top temperature should depend mainly on the thermal signals at 11 or 12 um. This can even
be done in a quantitative way by numerically estimating sensitivities at certain points in the LUT and
comparing them to the ANN predicted values.

However, inverse problems are often ill-conditioned. That means that there exist several differing
functional mappings that approximate the training data equally well, but not necessarily represent the
true function that generated the data — the training data are simply not precise enough to unambiguously
specify the correct function. In the case a bad mapping is afterwards applied to input data that was not
part of the training dataset, the prediction may be far from the actual value. The network is then said
to generalise badly (Bishop, 1995). While this problem is difficult to avoid, additional care should be
exercised when using ANNs for ill-conditioned problems. Aires et al. (2004b) describe an approach to
estimate the variability of the Jacobian due to the uncertainty in the network fit. This variability is a

good indicator of how unstable the training process was and thus how ill-conditioned the problem is.

1.6 Objectives

A neural network can potentially provide a fast retrieval algorithm for determining nocturnal cloud
properties that might be able to overcome the performance problem encountered in classical retrieval
approaches. Furthermore, the application of the methods developed by MacKay and Aires et al. could be
very beneficial for understanding the “black-box nature“ of ANNs and in order to improve the retrieval
quality. I will extend the promising Cerdefia et al. (2007) results to a different network architecture, a
different satellite sensor and different in-situ data. My focus lies on the uncertainty in the retrieval, and
what we can learn from its sensitivities.

In pafticular, the objectives for this thesis can be outlined as follows. The goal is to set up a retrieval
method capable of determining cloud effective radius, cloud top temperature and cloud optical thickness
from nocturnal measurements of the MODIS instrument. In-situ data for evaluation purposes are available
from the DYCOMS-II field campaign, and the method should be able to provide error bars on the results.

The individual steps include:

o The Aires (2004); Aires et al. (2004a,b) method will be implemented and it will be investigated if it

is suitable for the given problem. Apart from obtaining an uncertainty estimate of the network fit,

the hope is that ambiguities in the training database will cause a larger uncertainty in the retrieval.
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e A forward model will be developed that is capable of computing top-of-atmosphere brightness tem-
peratures for the relevant near and thermal infrared MODIS channels for varying cloud parameters.
A LUT (LUT will be used synonymously for database from here on) has to be computed using this

model.

o The implemented methods will be applied to the retrieval problem. ANNs have to be trained from
the computed LUT, different network architectures have to be explored and the results have to be
evaluated. For this thesis, the goal is to retrieve one scene from the DYCOMS-II field campaign (so
that several parameters including the atmospheric profile can be prescribed in order to simplify the

problem) and to evaluate the results using the in-situ data.

o Finally, the uncertainties and sensitivities of the retrieval will be analysed and their usefulness

investigated.

This thesis is meant to build a basis for further research. If the retrieval of the test case proves
successful, future work can be performed on evaluating further scenes, with an eventual goal of creating
a general method that could be used "operationally“ for any arbitrary scene.

The remainder of this document is structured as follows. In Chapter 2, the radiative transfer model
will be described. The employed cloud model will be discussed, as well as radiative transfer techniques
for computing the TOA brightness temperatures. A short section will be devoted to the effects of the
overlying atmosphere. In Chapter 3 I discuss neural network techniques. The Aires method will be derived,
and its implementation will be applied to simple test cases. The behaviour of the method for these cases
will be analysed and its applicability to the remote sensing problem discussed. The training of ANNs frc;m
the LUT and the retrieval of the test scene is the topic of Chapter 4. Issues concerning the retrieval setup
will be discussed, and the results of sensitivity and uncertainty estimates are presented. A discussion of
the usefulness of the estimated variables is given, and the thesis concludes with a summary of the work

in Chapter 5.
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Chapter 2

Radiative Transfer and Development

of the Forward Model

In this chapter I will describe the design of the forward model that is used for the case study. The scene
of July 11, 2001, was chosen for the retrieval, and the in-situ aircraft measurements used in this chapter
are taken from DYCOMS-II research flight II (RF02), which took place on that day. The DYCOMS-II
campaign will briefly be introduced in section 2.1. Next, [ will introduce the radiative tr‘ansfer equation
(RTE) that mathematically describes the propagation of radiation through the atmosphere and discuss
how it can be solved. For the radiative transfer calculations, cloud model and droplet size distribution
are needed. Using the RF02 data, I will demonstrate the adequacy of the adiabatic approximation for
the cloud model and show that the size distribution can be described by a modified gamma distribution
(sectiohs 2.2 and 2.3).

The question of which MODIS channels are best suited for the retrieval is discussed in section 2.4.
The radiances measured by the sensor at these channels are always average radiances over a wavelength
interval, since the instrument cannot measure at individual wavelengths. Hence, the forward model must
be able to compute such interval-averaged intensities. I will introduce the correlated-k approximation as
an efficient way to calculate gaseous absorption over these intervals. |

The forward mod.el also requires specification of absorption and emission by gaseous atmospheric
constituents including water vapour and carbon dioxide above the cloud. This is discussed in section 2.5.

The radiative transfer package libRadtran (Mayer and Kylling, 2005) is employed to compute cloud
top radiances. In section 2.6, the setup of the forward model including libRadtran will be described, and I
conclude the chapter by demonstrating that the forward médel is able to reproduce the BTD relationships
of Baum et al. (1994) and Pérez et al. (2000).
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Chapter 2. Radiative Transfer and Development of the Forward Model

2.1 DYCOMS-II Data

The DYCOMS-II field campaign took place from July 7, 2001, to July 28, 2001. During nine nights,
research flights collected extensive in-situ datasets in the nocturnal Sc cloud layer over the east Pacific
ocean off tlie coast of California, approximately 350-400 km west southwest of San Diego. The campaign
and the available data are described by Stevens et al. (2003a,b). While the major objective of the cam-
paign was to perform measurements to advance understanding of entrainment and drizzle processes, the
collected data are also very useful for this remote sensing study.

During seven nights, circles with an approximate diameter of 60 km (30 min) were flown at sev-
eral heights in the boundary layer {subcloud and cloud layer). Additionally, frequent vertical profiles
were taken. Data useful for this study includes the measurements taken during vertical profiling and
in horizontally advected circles flown just below cloud top and above cloud base. Besides the standard
meteorological measurements of temperature, humidity, pressure and wind speed, data of liquid water
content, droplet concentration and droplet sizes were taken (a complete list can be found in Stevens et al.
(2003b)).

The ground speed of the airplane was about 100 ms~! and measurements relevant for this work were
taken every second. To ensure comparability with the MODIS data, I have averaged the DYCOMS-II
data over 10 s intervals in order to yield measurements on the 1 km scale. The measured droplet size
distributions allowed for the computation of effective radius and mean radius. _

For this thesis, the flights of July 11 and July 13 (RF02 and RF03 in the DYCOMS-II literature) were
chosen. Satellite images of both scenes contain a number of ship tracks that provide contrasting droplet
sizes which can be used to check the physical consistency of the retrieval. While the July 11 case will
serve as the retrieval example in Chapter 4, data from both nights are used in this chapter for evaluating

the cloud model. The actual satellite images from the MODIS sensor will be introduced in Chapter 4.

2.2 Scattering and DropletVSpectra

2.2.1 Radiative Transfer Equation

Figure 2.1 illustrates the processes that influence radiation propagating along a line-of-sight as it passes
through the atmosphere. As discussed in section 1.3, energy can be lost by absorption and scattering out
of the direction of propagation, while emission and scattering into the beam represent sources of energy.

The change in intensity across an infinitesimal volume hence is the sum of a sink term describing
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scattering in

scattering out emission

absorption

Figure 2.1: Processes that influence radiation as it passes through the atmosphere.

extiection by absorption aed scattering, and source terms representing emission and scattering!®:
dl = dlpy + dlemit + dlseqt- (2.1)
The extinction term is described by Beer’s Law (1.6):
dlert = —fBelds, (2.2)

where ds represents an infinitesimal path length along the direction of propagation.

Emission is given by the emissivity of the medium times the Planck function (1.16):
Al emir = BuB(T)ds. (2.3)

Here, Kirchhoff ’e Law (1.17) has been used to express the emissivity in term of the absorption coefficient.
The scattering source term, however, is more complicated. The scattering phase function p(Q’ , fl) ex-
presses the idea that radiation from any direction Q passing through an infinitesimal volume can con-
tribute scattered radiation to our direction of interest §2. Furthermore, dls.,; must be proportional to

the scattering coefficient G, which describes how much scattering occurs:
Al = 2 [ @, 1)V s (2.4)
An Jar

The scattering phase function can be interpreted as a probability density. p(fl' , fl) gives the probability

that a photon from direction §¥ is scattered into direction 2. Hence, p(’, 2)I(€¥') described the gain in

15Note that I am still omitting the subscript A. All equations given here correspond to the monochromatic case.

33



Chapter 2. Radiative Transfer and Development of the Forward Model

intensity in direction §2 due to scattered radiation from direction €Y. In order to compute the total energy
gain due to scattered radiation, contributions from all directions are summed in the integral, where the
factor of 47 arises from the spherical integration to ensure that the integral over the phase function is
one.

Putting the extinction and source terms into (2.1), the radiative transfer equation becomes

dl = —f.1ds + B, Bds + f—; A ) (¥, Q) I(§Y)dSY ds. (2.5)
In this form, it has .a general three-diménsional character, i.e. the direction vectors 2 can be expressed
in any coordinate system, and the infinitesimal path length ds can be in any direction.

The most general approach to solve the radiative transfer problem numerically is the Monte Carlo
method (e.g. Bohren and Clothiaux, 2006). It allows for arbitrary three-dimensional scenes by éimulating
the propagation of a large number of photons through the medium. The path of each photons is traced
from its original source (e.g. the sun) until it leaves the defined scene (e.g. at the top of the atmosphere).
While this method is very flexible and allows for inhomogeneities in the cloud layer, it is computationally
very expensive and currently not suited to compute the TOA radiances for a large number of clouds, as
needed for a LUT.

For the reasons- discussed in Chapter 1, the plane parallel approximation is a good assumption for
large parts of marine Sc on the scale of the MODIS pixels (1 km). In order to keep the forward problem
as simple as possible and at the same time computationally tractable, I decided to construct the LUT
for plane parallel clouds. In fact, most analytic solutions and approximations to the radiative transfer
equation have been developed for the plane parallel case (Petty, 2006).

In a plane parallel atmosphere, all relevant parameters (i.e. 8,, 8s, T, ress; cf. section 1.3) are only
dependent on height. Since the important aspect for radiation is how much absorbing, emitting and
scattering atmosphere it must traverse, it is convenient to express the vertical coordinate in terms of
the optical properties of the atmosphere rather than in geometrical units. The extinction optical depth
is defined as the optical thickness of the atmosphere between the top of the atmosphere and a level at

height 2:16
T(z)z/ Be(2)dz2'. (2.6)

At the top of the atmosphere, 7 = 0. Furthermore, directions are usually expressed in terms of zenith

168ome authors use optical depth synonymous for optical thickness when referring to the cloud optical thickness; in order
to avoid confusion I will use optical depth for the vertical coordinate in the RTE and optical thickness for the cloud property.
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angle 6 (measured from directly overhead; § = 0 is overhead, and 6 = 7/2 is the horizoﬁ), and azimuth
angle ¢ (measured counterclockwise from a reference point on the horizon).

The infinitesimal path length ds in (2.5) can now be expressed as

dz
ds = —, 2.7
p 2.7)

where 1 = cosf. From (2.6) it follows that dr = —8. dz = —f uds. Dividing (2.5) by this new height

increment, the radiative transfer equation becomes

#df (1, ®)

~ 27 1
o = lwé)-(1-w)B - %/0 /_1p(ﬂ’,¢’;u,¢)1(u’,¢')du’d¢’- (2.8)

The problem of computing the TOA radiances “seen” by the satellite sensor now becomes the problem
of solving this RTE.

A common simplification in order to solve the RTE is to divide the zenith angle into discrete intervals,
so-called streams. The simplest of these methods is the two-stream method, which divides the intensity
field into only two directions; upwelling and downwelling. Hence, it assumes that the‘intensity is ap-
proximately constant in each hemisphere. The multi—.stream code DISORT (Stamnes et al., 1988, 2000)
generalises this concept to an arbitrarily large number of discrete angles, so that it becomes possible to
accurately compute radiances for pixels that are not directly underneath the satéllite. The code is well

- documented and already part of the radiative transfer package libRadtran. It will be used for the forward

model computations in this thesis.

2.2.2 Droplet Size Distribution and its Phase Function

A big simplification for liquid water clouds is that the water droplets can be treated as spherical
droplets, which makes the computation of the phase function with Mie theory (Mie, 1908) possible. In
contrast, the non-spherical character of ice particles makes the computation of the phase function for ice
clouds much more difficult (Mayer and Kylling, 2005). Mie theory employs Maxwell’s equations to derive
a three-dimensional wave equation for electromagnetic radiation, which is solved for boundary conditions
at the surface of a sphere (Petty, 2006). ’

For spherical particles, the phase function only depends on the angle ©® between the original direction

€ and the scattered direction € of a photon. Since cos © = Q. Q, it is common to write the phase

function as p(cos ©).
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For remote sensing applications it is of interest to model the mean scattering effects of the entire
cloud dropiet size distribution. A common assumption is to model this distribution as a modified gamma

distribution. It is given by (Miles et al., 2000)

N r \Yem 1 —7r
)= —— (=) e (=), 2.9
gar(r) ['(vgam) <TN> 2y O (TN) 29)

where I'(2) = fooo fz‘le'tdt is the gamma function (e.g. Weisstein, 2007), vgom the shape parameter, and
TN = Teff/(Vgam + 2) a scaling parameter.

Location and width of the distribution are given by reff and vgam. The larger vgam becomes, the
narrower the distribution will be. In many studies that employ Mie theory for computing the scattering
properties of the cloud layer, the shape parameter is not discussed at all (for instance, in Pérez et al.
(2000) or Cerdefa et al. (2007)). It is common, however, to assume vgam to.be constant (Miles et al.,
2000). For instance, the precalculated Mie tables for the AVHRR sensor, as available on the libRadtran
homepage!”, use a value of 7.

Arduini et al. (2005) investigated the sensitivity of daytime retrieved continental cloud properties to
droplet size distribution width. They found that the shape of the size distribution can have a significant
effect on retrieved properties, therefore, the shape parameter must be representative of the cloud regime
to be observed.

Miles et al. (2000) compared the droplet size distributions of both marine and continental stratocu-
mulus clouds that were reported from different measurement campaigns in the literature. From more
than 40 observations, they found a mean shape parameter of 8.6 for marine clouds, however, the observed
values varied from less tha.n 3 to over 40.

In order to avoid errors arising frdm an unrepresentative size distribution, I computed the best fit
gamma distribution to the DYCOMS-II measured droplet size spectra. The shape parameter was deter-

mined from equations (3a) and (3b) in Miles et al. (2000):

- 2""uol
Vgam =

(2.10)

Teff — Twol

Here, .5y is the effective radius as computed from (1.11), and rye is the volume mean radius. It is

7http://www.libradtran.org/
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computed from the measured spectra via (cf. section 1.3)

1/3
/n(r)dr

Figure 2.2a shows a size distribution measured at cloud top during the July 11 flight. The effective

(2.11)

radius is 11.6 pm, and the best fit gamma distribution has a shape parameter of 33.5, significantly
narrower than the average value of 8.6 found by Miles et al. (2000). Indeed, the average shape parameter
encountered at this day was 26, the distribution of which is also plotted in the figure (see section 4.1 for
more details).

~ Not all measured distributions were well represented by a modified gamma distribution. In fact,
Miles et al. (2000) note that Sc droplet size distributions are frequently bimodal. An example of such
a distribution, measured close to cloud base on July 13, is shown in Figure 2.2b. Here, the best fit
distribution computed from (2.10) has a shape parameter of 10.4.

Since Vgam Is not a variable parameter in my retrieval algorithm, it has to be set to a fixed value
as representative of the scene as possible. For the specific test case discussed in Chapter 4 (and also for
the remaining DYCOMS-II cases), it is possible to analyse the in-situ data prior to building the LUT.
Hence, a representative mean value can be found. For future applications of the method that require
independence of the LUT of the scene to be retrieved, sensitivity tests should be conducted in order to
investigate the impact of a fixed gamma distribution shape parameter on the retrieved values.

Figure 2.3a shows the phase functions of droplet size distributions with effective radii of 2, 11.5 and
25 pm and a shape parameter of 26 for radiation at A = 3.7 um. In Figure 2.3b, the phase function for
the 11.5 um distribution (as in Figure 2.2a) is reproduced in a polar plot (note the logarithmic scale in
both figures). The functions were computed using Mie code included in K.F. Evans SHDOM (Spherical
Harmonic Discrete Ordinate Method, another radiative transfer model) distribution (Evans, 1998).

A distinct feature worth mentioning is the strong forward scattering peak. It becomes more pronounced
with increasing r.ss, which means that for this cloud a large amount of the scattered photons will be
scattered into the forward direction (this is also true at visible wavelengths, the reason why sunlight
penetrates even thick clouds). Also, more photons are scattered into the backwards direction than to the

sides. The small peak at about cos©® = —0.8 becomes more pronounced in the visible wavelength range,

where it is seen as the rainbow.
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Figure 2.2: In-situ measured spectra of cloud droplet sizes from the Jul 11th and Jul 13th
flights, together with best-fit gamma distributions for (a) a unimodal distribution and (b) a
bimodal distribution. Solid black lines mark the in-situ data, dashed lines are the best fit dis-
tributions. The average shape parameter on both days was approximately 26, this distribution
is shown by the dotted line.
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phase function
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Figure 2.3: (a) Phase functions of cloud distributions following a gamma distribution with a
shape parameter of 26. Shown are functions for effective radii of 2, 11.5 and 25 um. © represents
the scattering angle, cos(©) = 1 is forward scattering. (b) Polar view of the phase function for

11.5 pm, also with a logarithmic scale.
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2.3 Adiabatic Cloud Model

In order to estimate the effect of the vertical stratification in the cloud layer on forward radiative
transfer calculations, Brenguier et al. (2000) compared the vertically uniform (VU) cloud model (employed
by Minnis et al. (1995); Heck et al. (1999); Pérez et al. (2000); Gonzélez et al. (2002) or Pérez et al.
(2002)) to an adiabatic stratified (AS) one. They found that the adiabatic stratified model in general is
the more accurate choice. First, in-situ data analysed by Brenguier et al. (2000) of marine and continental
Sc taken during the Second Aerosol Characterisation Experiment (ACE-2) showed a close-to-adiabatic
stratification. Second, by comparing the radiative properties of clouds represented by a vertically uniform
model and by the adiabatic stratified one, they found that in order to achieve radiative equivalence, the
effective radius of the VU model had to be 80% - 100% of the cloud top 7.5y of the AS model, the actual
value depending strongly on cloud geometrical thickness and droplet concentration. These results mean
that the effective radius retrieved by a scheme employing a VU model is not necessarily representative
of the actual cloud top refy, since the VU model provides no way to retrieve cloud geometrical thickness
or droplet concentration. By employing the AS model, on the other hand, it is possible to retrieve
droplet concentration via the adiabatic relationships betweben the thermodynamic variables. This could
be especially useful for monitoring of the aerosol indirect effect.

Indeed, the vertical profiles measured during the DYCOMS-II campaign closely resemble adiabatic
profiles. Figure 2.4 shows in-situ data taken during RF02 (July 11), together with the vertical profile of
an idealised adiabatic cloud. A

When cloud droplet number concentration, humidity, temperature and pressure are prescribed at
a reference level, it is straightforward to compute an adiabatic cloud profile using the thermodynamic
equations. As thermodynamic variables I use the moist static energy h,, (e.g. Wallace and Hobbs, 2006)
and the total specific humidity gr (i.e. water vapour plus liquid water). In this thesis, “adiabatic profile”
refers to a profile in which h,, and ¢r are constant. If ¢, denotes the specific heat of dry air at constant
pressure (J K~1), g the earth’s gravitational acceleration (m s~2), L, the latent heat of evaporation (J

kg~!) and ¢, the specific humidity (g kg~!) (Curry and Webster, 1999; Wallace and Hobbs, 2006), h, is

given by

hm =T + g2 + Lyg. (2.12)
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Figure 2.4: Vertical profile of cloud properties from the idealised ‘adiabatic cloud model,
together with in-situ measurements from the July 11 DYCOMS-II flight. The adiabatic cloud
has a cloud top effective radius of 10.7 um, a cloud top temperature of 284.8 K and a droplet
concentration of N = 110 cm~3. Volume mean radius is converted to effective radius with k
= 0.8. Note that in order to fit the observed liquid water content the droplet concentration is
overestimated in the adiabatic model (compare to Figure 2.6).
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Following the findings of Miles et al. (2000), the total droplet concentration (cm™3)
o0
N = / n(r)dr (213)
O .

is also assumed to be constant in my model.

The above equations result in linear temperature profiles following
T(2) =Tspc —T 2, (2.14)

where I" represents the dry adiabatic lapserate ' =T'y = 10 K km ™! below cloud base and the saturated
adiabatic lapse rate I' = I'; within the cloud. I’y varies with temperature and pressure, for marine Sc a
value of T’y &~ 6 K km ™! is representative (Curry and Webster, 1999).

Below cloud base, no condensation occurs, so that the specific humidity remains constant with height:

gv(z) = const. ‘ (2.15)

Within the cloud, g, follows the saturation specific humidity ¢s:

9:(2) = ¢s(T>p), (2.16)

where g, is dependent on both temperature and pressure and can be obtained from the Clausius-Clapeyron
equation (see Curry and Webster, 1999, for further details).

The liquid water content can be determined by subtracting the saturation water vapour content (the
saturation specific humidity expressed in g m~3) from the total water content (given by the specific

humidity below cloud base). ¢; also follows an almost linear profile within the cloud:
q(h) = Cy h, (2.17)

where h denotes the height above cloud base, and the moist adiabatic condensate coefficient C,, varies
from about 1 to 2.5 x 102 g m~3 m~!, depending slightly on temperature (Brenguier et al., 2000).
In my model, cloud top and surface pressure, cloud top temperature, cloud top liquid water content

and droplet concentration are prescribed. From the latter two, the volume mean radius 7,4 is computed,
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given the relationship

i
Q@ = gwplrgolN. ‘ ‘ (2.18)

In order to compute the effective radius from the volume mean radius or vice versa, an assumption

" about the droplet size distribution has to be made. If the distribution is' modelled as a modified gamma

distribution as discussed in the previous section, (2.10) can be used for the conversion. More common in
the literature, however, is to employ the k-value parameterisation suggested by Martin et al. (1994).
Martin et al. (1994) analysed in-situ ﬁleasurements from marine and continental Sc of several field
campaigns. In their data, the clouds were relatively homogeneous and entrainment played a minor role.
For these cases, they proposed to parameterise the effective radius in terms of the volume mean radius

and a dimensionless constant & following
reps =k Y31yl . (2.19)

In maritime airmasses, Martin et al. (1994) found an average value of k& = 0.80 + 0.07 (one standard
deviation). |

Measured values of Pawlowska and Brenguier (2000) during ACE-2 confirm the estimates made by
Martin et al. (1994), however, they also show a strong Variability of k with height, with values at cloud
base ranging from as low as 0.4 to up to 1, while values at cloud top where more constant around 0.8 to
1 (Figure 2.5).

Combining (2.10) and (2.19), the relationship between k-value and v4qm becomes

Vgam = 2 (k—1/3 - 1')—1 . | (2.20)

A distinct problem in Figure 2.4 is that the droplet concentration is overestimated by about 30 cm—3

in order to fit the observed liquid water path and droplet sizes. Also; the slope of the liquid water content
line seems slightly overestimated. This problem is due to subadiabatic regions in the cloud. For instance,
as discussed in section 1.2, entrainment of dry air from above the inversion often causes subadiabaticity.
The cloud column caLn hence be adiabatic in the lower part and subadiabatic in its upper part. |
Brenguiér et al. (2000) emphasise that the AS model still is an idealised representation of the actual

cloud. They note that the adiabaticity should be taken as a maximum reference for the actual cloud

" microphysics at all levels. However, they also point out that the variety of possible profiles is too large

for a simple parameterisation, and hence suggest the AS model as a simple and relatively accurate
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Figure 2.5: Measurements of k value versus height in marine stratocumulus clouds. The k
value varies widely from values as low as 0.4 to almost 1, with a larger variability at cloud
base (reprinted from Pawlowska and Brenguier, 2000, (© 2000, with permission from Blackwell

Publishing).

compromise solution.

For comparison, Figure 2.6 shows the same data as Figure 2.4, but this time with a subadiabatic

profile using 75% of the adiabatic values. This time, both droplet concentration and liquid water content

are well-fit.

In their investigation of radiative equivalence between the VU and AS models, Brenguier et al. (2000)
found that a major difference between the two models is the dependence of optical thickness on cloud geo-

metrical thickness. Equation (1.9) introduced the optical thickness as the integrated extinction coefficient

between cloud base 2zt and cloud top 2iop:

r= [ " B (2.21)

Zbot

If the extinction cross section o, = o4 + o5 (cf. 1.12 and 1.13) is written in terms of the eztinction

efficiency Qez: = 0./ (27r?), the extinction coefficient of a droplet size distribution is given by
5, = / n(r) [Qeat(r)mr?] dr. (2.22)

The extinction efficiency can be interpreted as how effective a particle can attenuate radiation with respect

to its size, and is a complex function of the size parameter z, and hence particle size and wavelength.

In order to compute the optical thickness in the AS model, it is necessary to express (2.21) in terms
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Figure 2.6: The same as Figure 2.4, but with a subadiabatic liquid water content of 75% of ’
the adiabatic value.

of the available thermodynamic variables. By combining.(2.11), (2.13) and (2.18), we can write the liquid

water content as a function of the particle size distribution:
. A ' '
q = /n(r) [pl—gr:%} dr. (2.23)

This enables us to express 7 in terms of the droplet radius and ¢;:

Zop 3, | Ztop n(r) [Qezt(r)ﬂ'T(Z)z] dr | .
= /Zb(;t q—lﬂ(—z—) qz(z)dz = /zm // - [pl4?7rr(z)3] - qi(z)dz. (2.24)

For cloud droplet sizes in the visible wavelength range, the extinction efficiency Q..+ is approximately
constant at a value of two (e.g. Petty, 2006, Figures 12.4 - 12.6), so that it can be pulled out of (2.24).

The integrals can then be written as the effective radius:

. Ztop
T R 3Qezt/ @ (2) dz (2.25)
o Terf(2)

4p




Chapter 2. Radiative Transfer and Development of the Forward Model

(e.g. Nakajima et al., 1991), which reduces to (1.14) for Q.;: = 2 and constant ress. For a VU model,
the integral over height can be approximated by a multiplication of the integrand by cloud geometrical
thickness AH, whereas in the AS case it has to be explicitly computed.

In the infrared wavelength range, however, Qe;; and thus the optical thickness. of the cloud become
a function of both cloud geometrical thickness and particle size distribution (Petty, 2006). Thus, there
no longer is a simple relationship between 7, LWP and r.s¢. For simplicity, I will use the visible opti-
cal thickness in my forward model. This has the advantage that the optical thickness retrieved by my

algorithm can be compared with the preceding and subsequent operational daytime MODIS retrievals.

2.4 Choice of Channels and Correlated-k

The MODIS instrument offers a total of 36 channels in the visible and infrared spectrum (Barnés et al.,
1998), 16 of which cover the infrared spectrum from 3.7 to 14.1 um. Not all of these channels are suited
for remote sensing of cloud properties. As discussed in Chapter 1, the radiative properties of the cloud
droplets in the infrared strongly depend on particle size. Hence, the employed channels should maximise
these differences. However, it is also desirable for the satellite sensor to measure photons arriving directly
from the cloud. This means that the impact of the atmosphere above the cloud on the radiation arriving
at the satellite should be as small as possible.

Figure 2.7 shows how the transmittance of a typical midlatitude summer atmosphere varies with
wavelength. The bottom panel displays the total transmittance, while in the panels above, the effects of
individual atmospheric components are shown. The four channels at approximately 3.7 (MODIS number
20}, 8.5 (29), 11 (31) and 12 pm (32), as used in previous studies (cf. Chapter 1), are highlighted. They
are located at wavelengths at which the total transmittance is large. Other MODIS channels are located,
for instance, at approximately 4.5 or 9.7 yum. While these channels provide data for other applications,
the atmosphere at these wavelengths is too opaque for remote sensing of cloud properties. Hence, channels
20, 29, 31 and 32 are indeed best suited for the remote sensing of cloud properties at night.

The second panel from the bottom shows that most of the absorption that occurs above cloud top is
due to water vapour. It should thus be considered in the retrieval method. I will discuss in section 2.5
how the effect of water vapour can be accounted for.

The forward model must account for the band width of the chosen channels in the radiative transfer
model. This requirement arises from the fact that the MODIS channels are not monochromatic, but

cover finite wavelength intervals. Hence, the “monochromatic” radiances measured by the instrument are
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Figure 2.7: Dependence of atmospheric transmittance on wavelength for a typical midlatitude
summer atmosphere. Highlighted in grey are the four MODIS channels relevant in this study
(reprinted from Petty, 2006, © 2006, with permission from Sundog Publishing).
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spectral-mean radiances.

In order to compute spectral-mean radiances with the radiative transfer model, the wavelength depen-
dent absorption of the different mﬁlecular species listed in Figure 2.7 has to be taken into consideration.
For an extact solution, an integration over many individually computed monochromatic radiances has
to be performed, which can be computationally expensive. The correlated-k procedure (e.g. Fu and Liou,
1992; Kratz, 1995) provides a way to reduce the computational cost by several orders of magnitude while
maintaining a high accuracy and is used in this thesis.

The concept of correlated-k can be explained by considering the simplified problem of computing the
spectral-mean transmission of an atmospheric layer, due to only molecular absorption.!® When the ab-
sorption coefficient of an atmospheric constituent is plotted against wavelength, the absorption spectrum
in general is very complex. For example, Figure 2.8a shows a spectrum of COg at a pressure of 507 hPa.
The distinct peaks in the spectrum are called absorption lines, they can be explained by quantum theory
(e.g. Petty, 2006) and their height and width are dependent on both temperature and pressure. In the
spectral interval of a satellite channel, there can be thousands of such lines, especially if the effects of
different molecular species are overlapping.

First consider a single absorbing species. Let the spectral interval width of a channei be AX = Ag— Ay,
and the mass path of the absorbing constituent be denoted by uw. The mass path is the total mass of
the species in a column, measured in kg m~2. It is then convenient to introduce the mass absorption

coefficient!®

ky = Pra (2.26)
)

where p is the density of the constituent. The spectral-mean transmittance follows from the integration
of Beer’s Law over wavelength:

1 [
tax(u,p,T) = AN A exp [(—kx(p, T) u] d. (2.27)
1

Here, p denotes pressure and T temperature.
The fundamental idea of correlated-k stems from the fact that in order to approximate the integral in
(2.27) numerically, it is not important in which order the individual lines are arranged in the spectrum,

as long as the area underneath the curve stays the same. Figure 2.8 illustrates this idea. If the complex

18The layer concept is relevant in as far as that DISORT and other RTE solvers divide the atmosphere into discrete
layers. ’
19Do not confuse the mass absorption coefficient “k” used in correlated-k with the k-value used in the conversion of 7,4}

to Tesf.
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Figure 2.8: Illustration of the fundamental idea of correlated-k. (a) Absorption spectrum (k-
coefficients) of CO3 at a pressure of 507 hPa. (b) Inverse cumulative probability function k(g),
that represents the reordered k-coefficients from (a). For a numerical integration, the function
in (b) requires much less quadrature points than the function in (a) (reprinted from Mlawer
et al., 1997, © 1997, with permission from the American Geophysical Union).

spectrum of the absorption coefficient in Figure 2.8a is integrated numerically, a large number of quadra-
ture points is needed in order to obtain a reasonable accuracy.?? However, by reordering the absorption
lines in ascending order (Figure 2.8b), we get a function that is much easier to integrate, yet covers the
same area.

The reordering of the lines can be done by computing the inverse cumulative probability distribution
k(g) of the absorption coefficients. The cumulative probability function g(k) = fok p(k')dk’ is the integral
of the probabilities p(k’) for all mass absorption coefficients k&’ between 0 and k, so that its inverse k(g)
gives the upper bound of the (g x 100)% smallest ks. For instance, 60% of all k-values in the spectral

interval of the channel are smaller than k(g = 0.6). Equation (2.27) can then be written as

tA,\(u,p,T):/O exp [—kq(p, T) u] dg. (2.28)

For the numerical integration, the integral is approximated by a finite sum:

N
taa(u,p, T) ~ > wiexp [k, (p, T)u], (2:29)
i=1

with quadrature weights w; and quadrature points g;. For a function shaped as in Figure 2.8b, much

20Calculations of all individual lines are called line-by-line calculations.
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less quadrature points are needed than for one shaped as in 2.8a, and it is hence computationally more
efficient.

The method of reordering the absorption coefficients is called the k-distribution method. Since the ks
are simply reordered and no approximation is made, it is exact. However, in a typical atmospheric layer
pressure and temperature will vary with height, and since the ks are dependent on pand T (2.28) is only
exact for vertically homogeneous léyers (homogeneous mass paths). Nevertheless, the same equation is
used to approximate the transmissivity of inhomogeneous mass paths. The assumption that is made in
the correlated-k method is that for any p, T found in the atmosphere, any particular absorption coefficient
k(p,T) will always have the same cumulative probability. Thus, the absorption coefficients at different
pressure and temperature levels are correlated with each other. In other words, the shape of k(g) is
assumed to be constant, but the magnitudes of the ks are scaled with p and T (e.g. Petty, 2006).

Frequently the absorption within a spectral interval arises from overlapping lines of two or more
molecular species. The standard procedure in this situation (Kratz, 1995) is to assume the spectral
features of the species to be uncorrelated. The mean transmittance for a combination of two constituents

with mass paths u; and us can then be expressed as a double summation:

N M
tar(ui,ug,p, T) & > > {wiexp [—ki(p, T) w1]} {w; exp (—k;j(p, T) uz]} . (2.30)

=1 j=1

Kratz (1995) computed optimised k-coefficients for the five AVHRR channels. He later applied the
same technique to several of the MODIS channels (Kratz, 2001). Table 2.1 lists the MODIS channels
centred at 3.7, 8.5, 11 and 12 pm, together with the spectral intervals taken into consideration in the
correlated-k routines, and the atmospheric constituents that contribute to the absorption in each channel.

The number of k-coefficients required for the integration is as low as one to five, depénding on the gas.

Table 2.1: Spectral intervals (as considered in the Kratz (2001) correlated-k routines) of
the four MODIS channels implemented in the forward model, the atmospheric constituents
whose absorptivity is accounted for, and the number of k-coefficients required for the spectral
integration of each species.

channel centre wavelength (um) wavelength interval (pm) considered gases (no. of ks)
20 3.748 3.656 - 3.839 H,O (4), CO, (1), CH, (1)
29 8.553 8.333 - 8.772 H,O (5), O3 (1), CHy (1), N2O (2)
31 11.010 10.526 - 11.494 H,0 (5), CO; (1)
32 11.920 11.404 - 12346 H,0 (5), CO; (1)

The Kratz (2001) MODIS routines were not part of libRadtran at the time the work on this thesis
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was conducted. I thus implemented the corresponding functions into the model in order to compute the

spectral-mean intensities for the desired channels.

2.5 The Overlying Atmosphere

Figure 2.7 showed that most of the absorption above cloud top is due to water vapour. As discussed
in Chapter 1, marine Sc often appear under conditions of strong subsidence in subtropical regions. This
generally implies a low water vapour content of the free atmosphere, nevertheless, it should be investigated
how large the impact of the existing water vapour is and how it can be accounted for in the forward model.

The way the overlying atmosphere (referred to below as OA) is treated in the existing literature varies,
but most studies (Pérez et al., 2000; Gonzélez et al., 2002; Cerdeiia et al., 2007) ignore absorption above
cloud top, arguing that the subsiding air is mostly dry and that most of the atmospheric water vapour is
éontained in the boundary layer air — so that its effects are already contained in the observed clear sky
brightness temperatures (which are used to fix parameters of the cloud model, cf. section 1.5.2).2! The
other possibility (Pérez et al., 2002) is to compute the bulk absorption effects from a given water vapour
path observed from an independent source (e.g. microwave soundings or reanalyses of weather forecast
models).

In order to estimate the impact of the OA for my retrieval scene, I computed absorption and emission
effects from radiosonde water vapour and temperature profiles measured by the closest operational mete-
orological sounding station in San Diego.?? Two soundings daily were available, the nighttime soundings
of July 11 (RF02) and July 13 (RF03) are plotted in Figure 2.9.

The moisture profiles {middle panels) in fact show a very dry atmosphere above the subsidence
inversion, especially for July 11. Using adapted versions of the Kratz (2001) correlated-k routines, I
computed emissivity and transmissivity for each layer defined in the sounding data (left and middle
panels), as well the profile of the upwelling radiances (right panels). Since the scattering effects of gaseous
particles are negligible for infrared wavelengths (Petty, 2006), scattering was not considered. Trace gas
concentrations of 350 ppm for COs, 1.75 ppm for CHy and 0.31 ppm for NoO were assumed for the
computations, and the O3 profile was taken from the US standard atmosphere compiled by Anderson
et al. (1986).

For all channels, the transmissivity of the dry atmosphere encountered on July 11 is close to 1 km™!

21 This, of course, assumes that the boundary layer water vapour path of the utilised cloud free pixels equals that of the
observed cloudy pixels. ‘
22The data are freely available at http://weather.uwyo.edu/upperair/sounding.html.
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Figure 2.9: Atmospheric soundings from San Diego from (top) July 11, 2001, and (bottom) July 13, 2001. Shown are [left] temperature
profile (thick) and corresponding emissivity of the atmosphere in the wavenumber ranges of the four MODIS channels 20, 29, 31 and
32; [middle] humidity (thick) and transmissivity for the channels; and [right] radiance profiles. No scattering has been considered for the
computation of the radiances. Channels are marked as solid—channel 20, dashed-channel 29, dash-dotted—channel 31, dotted—channel 32.
Channel 20 radiances and emissivities have been multiplied by 102 for better display (bottom scale; top scale for the remaining channels).
See text for more details.
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at all layers. Influenced most by the OA is channel 29. On July 13, there is a iayer of increased humidity
between 800 hPé and 600 hPa, where the layer transmissivity varies between 0.9 and 1 km~! for channels
20, 31 and 32, and between 0.8 and 1 km~! for channel 29. However, the attenuation of radiation by
‘absorption is partly countered by emission, so that the total differences between the radiances at the
inversion and the top of the atmosphere are small. On both days, the intensities changed by less that
2% for channel 20, less than 3.5% for channel 29 and less than 0.5% for channels 31 and 32. While
these effects do not contribute much to the observed TOA radiances, they represent a potential and - if
known — unnecessary source of uncertainty in the retrieval, hence, I decided to account for atmospheric
transmission and emission above cloud top in the forward model.

The simplest, but also most computer time consuming approach to account for the OA in the forward
model is to feed the entire sounding profile into the radiative transfer model. However, it is undesirable to
make the LUT dependent on a specific atmosphere. Also, at most locations over the ocean, no radiosonde
soundings are available in the vicinity of the retrieval scene. Rather, it is often possible to infer estimates
of total LWP from an independent source as mentioned above. Alternatively, it might be feasible to add
a total transmissivity t* and average emitted intensity B* of the OA as retrievable parameters to the
algorithm.. In order to keep my method flexible, I decided to account for OA effects by adding these
two parameters to the forward model. Using this approach, the cloud top radiances can be computed
independently from the OA, the impact of which can be added afterwards.

In my case, t* and B* can easily be computed from the available atmospheric soundings. In the

absence of scattering, the RTE (2.8) can be written as Schwarzschild’s equation:
. N -
IT(00) = IT(0)t* + / B(2)W1(2)dz, (2.31)
0

where IT(c0) denotes the upwelling intensity at the top of the atmosphere, IT(0) the upwelling atmosphere

at cloud top (the bottom of the OA), and WT(z) the weighting function, defined by

dt(z, 00) _ Ba(2)
dz

Wi(z) = t(z, 00). (2.32)

By introducing the weighted average Planck function (Petty, 2006)

1
1—¢*

*_

/00 B(2)W1(z)dz, (2.33)
0 -
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and computing the total transmittance as the product of all individual layer transmissivities, the TOA

intensity can be conveniently written as a function of cloud top radiance, t* and B*:
IT(c0) = IT(0)t* + B*(1 — t*). (2.34)

In the above equations, the OA is effectively treated as a single homogeneous layer with transmittance
t* and emitted intensity B*. Unfortunately, both parameters are wavelength dependent, so that they have
to be computed for each channel. While this poses no constraint if the atmospheric profiles are known
in advance, it adds additional parameters to the retrieval if they were to be inferred from the satellite
observations. However, even in this case, it seems feasible to map ¢t* and B* of one channel to all other

channels employed in the algorithm. This idea is left for future work.

2.6 Forward Model

2.6.1 Radiative Transfer Model: libRadtran

The radiative transfer package libRadtran, described by Mayer and Kylling (2005), contains a number
of tools for radiative transfer calculations in the earth’s atmosphere. Particularly important for this thesis
is its ability to read in arbitrary atmospheric and cloud profiles, as well as precomputed phase functioAns,
and to solve the RTE using DISORT.?? The package comes with the Kratz (1995) AVHRR correlated-k
routines implemented, but, as mentioned above, I had to add the corresponding code for the MODIS
channels (Kratz, 2001).

Clouds are included in the radiative transfer calculations by specifying vertical profiles of height, liquid
water content and effective radius. Phase functions are read in from tables producéd by the Mie code
included in SHDOM (Evans, 1998), the same that was used to produce the examples in Figure 2.3. In Mie
theory, the solution to the electromagnetic wave equation (cf. section 2.2) is expressed as a finite series
of Legendre polynomials (e.g. Petty, 2006), so that the phase functions are listed in the Mie tables in
terms of Legendre coefficients. These coefficients are directly used by DISORT for the numerical solution
of (2.8).

The atmosphere is divided into discrete layers, for each of which the radiative transfer problem is
solved. Absorption coefficients and single scatter albedos are computed from the Kratz (2001) routines,

while the phase function is assumed to be constant over the spectral interval of the channel. DISORT is

23The complete software package, however, is capable of much more; see Mayer and Kylling (2005) for details.
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called once for each k-coefficient, and the resulting intensities are summed using the weights w; in (2.29)

to compute the channel integrated intensities.

2.6.2 Design of the Forward Model

I implemented a system based on Python?? scripts that automatically computes a number of adiabatic
cloud profiles and calls libRadtran in order to generate a LUT. The cloud profiles can be computed from
either randomly chosen cloud properties drawn from a givén interval or from discrete values.

The forward model requires the four variable input parameters effective radius reys, total droplet
number concentration N, cloud top pressure p.; and cloud top terﬁperature T, (either intervals or discrete
values), as well as the fixed inputs surface pressure p,y., gamma distribution shape parameter vya,, for
computing the Mie properties of the cloud droplets, k-value for the conversion of 7, to Tess25 and the
number of datapoints that should be computed (if discrete values of the first four parameters are given,
this input is not applicable). The system is able to run in parallel mode, so that the generation of large
LUTSs can be performed in reasonable time. For instance, the generation of 96,000 datapoints. requires
about 8 hours on a cluster of 32 2-GHz processors.

After the input parameters are read in, liquid water content ¢; is computed from 7.5y and N using
(2.18) and (2.19). The specific humidity ¢, is obtained from (2.16) by using T and p;. Since libRadtran
uses height as a vertical coordinate, the hydrostatic equation (e.g. Curry and Webster, 1999) is used to
réelate pressure and height in the cloud model, so that Ts. can be computed ffom (2.12). The atmospheric
and cloud variables are then integrated using a defined step-size (e.g. 0.2 hPa) from the surface to cloud
top. Both cloud (z, refs, qi) and atmospheric (2, p, T, specific humidity ¢, and trace gases) profiles
are passed to libRadtran, where for this study, the same trace gas concentrations were used as for the
overlying atmosphere in section 2.5. libRadtran is then run to compute the cloud top radiances. The
cloud visible optical thickness is computed using (2.25), with Qeze = 2.

If desired, the effects of the OA can be accounted for using the procedure described in section 2.5.
Precomputed t* and B* as well as radiosonde soundings can be used. As a last step, the TOA intensities
are converted to brightness temperatures using the inverse of (1.18). Since the Planck function also varies
over the spectral intervals of the channels, the channel-mean BT can either be approximated at the
channel-centre wavelength, or a correction formula suggested by van Delst (2005) can be used in order

to account for the polychromaticity of the channels.

24The free programming language Python can be obtained at http://www.python.org/.
25 pgam and k are held separate in order to facilitate sensitivity studies and to avoid time consuming re-computations of
the Mie properties for small changes of k.

55



http://www.python.org/

Chapter 2. Radiative Transfer and Development of the Forward Model

For all computations, the satellite is assumed to be di'rectly above the cloud (i.e. TOA BTs are
computed for nadir view), no satellite zenith angle is considered.

Figure 2.10 shows two vertical profiles of channel 20 (3.7 pm), 31 (11 pm) and 32 (12 pm) brightness
temperatures for an optically thin (7 ~ 3.8) and an optically thick (7 ~ 43) cloud. The plots illustrate
how the attenuation of radiation within the cloud layer is simulated by the forward model. As discussed
in Chapter 1, the surface signal still influences the cloud top radiances for the thin cloud case, while
for the other case, the cloud emits as a black body in channels 31 and 32. The point at which the BTs
of all three channels coincide with the actual temperature is clearly visible. At this. point, all photons
propagating upwards through the cloud that entered the cloud at its bottom are extinguished, and the
cloud emits as a black body with its actual temperature T'. The intensities observed at cloud top are only
determined by emission in this upper part of the cloud (cf. section 1.5.2).

Figure 2.11 shows the BTD(3.7-11) and BTD(11-12) signals, each with the 11 um BT as reference.
As in Pérez et al. (2000), cloud top temperature is fixed at 285 K. Since in my forward model, cloud
top pressure is a fixed parameter as well (in the given case at 900 hPa), the surface temperatures as
computed from the adiabatic lapse rates depend on the cloud geometrical thickness and hence differ for
the individual clouds. Thus, the curves do not converge in a single point on the right side, as they do in
Figure 1.9.

My model is able to reproduce the relationships found by Baum et al. (1994) and Pérez et al. (2000).
As expected and discussed in Chapter 1, the changes in BT with changing optical thickness become
smaller for larger.7. In contrast to the VU cloud model, the maximum optical thickness in the AS model
depends on r.ss. Consequently, clouds with small effecfive radii cannot become as optically thick as in
the Baum et al. (1994) and Pérez et al. (2000) studies, where both parameters were independent (cf.
Figure 1.9). As noted in Chapter 1, if T,; and p.: are known, refs and 7 could in principle already be
retrieved manually from the plots in Figure 2.11.

The characteristic of my AS model that surface temperature is obtained from the adiabatic lapse rates
is particularly pronounced is the case of constant r.;p, N and T but varying p;. As shown in Figure
2.12, changes in cloud top pressure can cause large differences in the BTD signals. In Chapter 4, I will
fix cloud top pressure in the LUT in order to simplify the retrieval problem. It will hence be important
to evaluate the sensitivity of the retrieval to changes in cloud top pressure (or more accurately, to the

pressure difference between cloud top and sea surface) in order to estimate the impact of slightly varying

cloud top heights in the scene to the retrieval accuracy. I will come back to this topic in section 4.4.
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Figure 2.10: Vertical brightness temperature profiles through a thin cloud (left) and a thick
cloud (right). Shown are the brightness temperatures of MODIS channel 20 (3.7 pm; thin
solid line), channel 31 (11 pm; thin dashed line) and channel 32 (12 pm; thin dash-dotted
line), as well as temperature (I') and potential temperature (0). For the thick cloud, the
brightness temperatures of channels 31 and 32 are similar to the temperature of the cloud (i.e.
the cloud emits as a black body in this wavelength range), whereas for the thin cloud, the
surface temperature still influences the signal.
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Figure 2.11: Droplet size and cloud optical thickness influence radiation at the different
MODIS channels to a different extend. Shown is the dependence of brightness temperature
(BT) and BT difference (BTD) on varying effective radius and optical thickness for a cloud
top temperature of 285 K and a cloud top pressure of 900 hPa. Symbols from left to right:
optical thickness of 0.5, 1, 1.5, 2, 3, 5, 8. Note that clouds with a small effective radius cannot
become as thick as clouds with a larger refy in the adiabatic cloud model (compare to the
vertically uniform model of Pérez et al. (2000)).
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vergence points in the figures (surface temperature) are warmer for higher cloud tops.




Chapter 3

Nonlinear Regression with Neural
Networks and Uncertainty

Estimation

The forward model I developed in the previous chapter maps given cloud properties to satellite
observations computed by the radiative transfer model. From a set of such forward computations, the
unknown inverse function has to be inferred in order to determine the cloud parameters from the observed
satellite data. This poses a nonlinear multiple regression problem, which, as proposed in Chapter 1, I will
tackle with artificial neural networks and the Bayesian framework suggested by MacKay (1992a,b) and
Aires (2004); Aires et al. (2004a,b).

My objective for this chapter is to describe this approach and to discuss its applicability to my remote
sensing problem. For simplicity, the original MacKay (1992a,b) publications, as well as the book by
Bishop (1995) and the review paper by MacKay (1995), only discuss networks with one output variable
and hence only one output uncertainty. For multidimensional mappings, MacKay (1995) suggests the use
of full covariance matrices to describe the output uncertainties, but does not elaborate on this idea. Aires
(2004); Aires et al. (2004a,b) point out the importance of uncertainty estimates for multidimensional
mappings that arise in atmospheric inverse problems, and expand the original MacKay (1992a,b) method
to networks having multiple input and output variables.

In this chapter, [ will first formulate the regression problem in a general cohtext (section 3.1); This
introduction (mainly based on the book by Bishop (1995)) is useful in order to understand the problems
that arise in neural network training for which the Bayesian framework provides some remedy. I will then
derive the theoretical foundation of how the uncertainﬁy in the network prediction and the Jacobian can
be estimated (sections 3.2 - 3.5). The derivation will be illustrated by an application of the method to a

" simple problem, which will demonstrate important benefits but also highlight problems.
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I implemented the Aires method by extending the NETLAB toolbox by Nabney (2002), a set of routines
implemented in Matlab?®. Some information about the implementation is given in section 3.6; in section

3.7 I discuss the usefulness of the method for my remote sensing problem.

3.1 The Nonlinear Regression Problem

Consider the problem of nonlinear regression on noisy data, for which MacKay and Aires et al. derive
their methods. The data consist of a dataset S = {X, D} with input data X = {z!,z?, .,xN} and
target (or observed) data D = {tl, t?, . tN}. x™ and t™ denote vectors that contain all input and target
variables, respectively. We assume the inputs X to be exact, while the target data D are noisy.

Strictly speaking, for the inverse problem, we deal with the opposite case; the input data — the satellite
measurements — are noisy, whereas the target data — the inputs to the forward model — are known exactly

at the time the dataset S is generated. I will come back to this issue shortly.

3.1.1 Error Functions and Overfitting

Once the dataset S has been observed, we wish to gain information about the function or relation
which generated the targets from the inputs. Since the target data are noisy, they are composed of two
parts — the underlying generator, representing the physical relationship we wish to capture, and the noise.

Let M denote a statistical model for §. M will be a neural. network shortly, but first consider a

polynomial of order K:

K
y(z) = wo + w1z + ... + wgzX :ija:j. (3.1)
Jj=1

This model maps an input variable z to an output variable y, the prediction. The exact form of the model
function depends on the order of the polynomial and the values of the parameters w;. Hence, following
Bishop (1995), I write y = y(z; w) (where all parameters w; are grouped into one parameter vector w).

A standard way to find the best possible model architecture for a given S is to consider the errors
between the model predictions y™ and the desired values, the targets, ™ for the N data pairs in S. In
order to obtain a good fit, the differences y™ — t™ should be as small as possible, which can be achieved

by minimising the sum-of-squares error (cf. the cost function (1.22))

N
B= 3 fylhw) -y | (3.2)
n=1

26http://www.mathworks.com/
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Figure 3.1: Left: a dataset S, from which we would like to infer information about the
underlying generator, i.e. the function from which the values were generated. Right: the sine
function from which the data were produced. However, if the shape of the generating function
is not known, it is difficult to judge different models based only on their sum-of-squares error
(compare Figure 3.2).

However, will the model with the smallest error E best represent the underlying generator of the data?
In fact, this often is not the case. The phenomenon is known as overfitting in the literature, and describes
the problem of fitting the noise rather than the generating function. Its major effect is that models that
fit the training data S too well do not generalise well. In this case the model, being presented with an
input value which is not part of the training dataset, predicts a value far from the desired one.

Figures 3.1 and 3.2 illustrate the problem. In the left panel of Figure 3.1, eleven datapoints are
plotted, which are generated by adding random noise to the sine function depicted in the right panel.
Figure 3.2 shows two polynomials fitted to the data, in the left panel a cubic polynomial, in the right
panel a polynomial of order ten. Since the underlying generator of the data is known, we easily judge that
the cubic polynomial is a better representation of the original sine function. The sum-of-squares error,
however, is much smaller for the higher order polynomial, sinée it f)erfectly fits the training data. If we
knew nothing about the original function, how could we judge which model is best?2”

The same p;*oblem arises if neural networks are used instead of polynomials. For simplicity of the
derivation and implementation, I restrict myself to a two-layer perceptron (i.e. one layer of hidden units)
as used by Aires et al. As discussed by, for instance, Bishop (1995), this network is already capable of
approximating arbitrary functions.

Mathematically, an ANN such as the one depicted in Figure 1.10 computes the output values from the

L

following equations. The inputs z; are weighted by the parameters w; ; of the first layer, then summed

27Concluding that less complex models (i.e. lower degree) are better is also misleading — consider, for example, a linear
polynomial for the given case.
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Figure 3.2: Left: a cubic polynomial (solid line) fitted to the data from Figure 3.1, together
with the generating sine function (dashed). Right: a polynomial of order ten, also plotted with
the generating sine function. It is easily seen by eye that the cubic polynomial represents the
sine function better, however, the sum-of-squares error is smaller for the right polynomial. This
phenomenon is known as overfitting.

for each hidden neuron and transformed by an activation function g(-) to give the hidden values
d
1=0

The same equation is applied to the hidden values, which yields the output values
M
~ 2
Yk =9 Z'w](',)zzj , (3.4)
e

where §(-) denotes the activation of the output units. In the architecture considered here, g(-) is a
sigmoidal function, whereas §(-) is a simple linear function (necessary to obtain output values other than

zero and one). Combining (3.3) and (3.4) gives the complete network function

M d
Yo =g waz X g (wa})z) . (3.5)
j=0 i=0

As for the polynomial in (3.1), the goal is to find a set of weights w so that (3.5) becomes the best
possible representation of the generator of the dataset S. Also, as in the polynomial example, a trade-off
between model complexity and a small error between predicted outputs and target data has to be found
in order to find a model that generalises the data well.

The problem of finding a model that is neither too complex nor too simple is known as Occam’s
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razor (after William of Occam, 1285-1349; see Bishop (1995)). Assessing the representativeness of the
model and controlling its complexity is an important part of assessing the uncertainty inherent in the

predictions.

3.1.2 Controlling Model Complexity and Network Training

Finding the optimal set of weights in (3.5) involves finding the minimum of an error surface in weight
space, such as defined by (3.2). Obviously, the number of weights in an ANN architecture rapidly increases
with the number of hidden units. Hence, the error surface is of a high dimensionality and typically has
local minima.

The neural network error function is similarly to the cost function (1.22) between computed and
observed radiances in the retrieval methods described in section 1.5 too complex to be minimised analyt-
ically. Instead, several numerical algorithms exist to perform the minimisation. Overviews of commonly
‘used algorithms and their functionality are given by, for instance, Bishop (1995) and Press et al. (2007).
In this work, I used the scaled conjugate gradients algorithm, as implemented by Nabney (2002) in the
NETLAB toolbox.

Obviously, both the number of adaptive parameters (i.e, weights) in a network architecture and the
type of the error function determine the complexity of the error surface. Common problems arise in
specifying the error surface in a way so that the global minimum does not correspond to a state of
overfitting and in actually finding this global minimum - numerical minimisation algorithms often get
stuck in local minima, depending on the initial point where the search for the global minimum started.

Bishop (1995) points out two principal approaches to controlling the complexity of the model. The
first, called structural stabilisation, involves controlling the number of adaptive parameters in the network.
The second, reqularisation, adds a penalty term to the error function (3.2) to counteract overfitting by
avoiding strongly fluctuating mappings such as the example in the right panel of Figure 3.2.

The simplest approach to network structure optimisation (and, as Bishop (1995) points out, still
thé most widely adopted approach in practise) is to perform an exhaustive search through a restricted
class of architectures (i.e. varying number of hidden units). Obviously, such a search requires a large
computational effort. Nevertheless, due to the lack of easy-to-use alternatives (cf. Bishop, 1995, Chapter
9), I will follow this approach as well.

The optimisation of model complexity is performed with respect to a given training dataset. The sim-

plest approach to comparing the generalisation performance of different network architectures is evaluate
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the error function for an independent validation dataset. A common approach is to split the original
dataset S into two parts, one used for training and one for validation (typically two-thirds are used for
training and one-third for validation). After the models have been compared, the one with the smallest
validation error can be selected.

As for controlling the complexity of the model by regularisation, I will show in sections 3.2 and 3.3
that the Bayesian approach provides a natural framework for both regularising the training process and

estimating the uncertainty of the network predictions.

3.1.3 Describing Uncertainty

The idea of the Bayesian approach is that instead of finding the single weights vector w™ that minimises
an error function E and represents the most probable solution to the regression problem, we compute
an entire distribution of weights. By examining this.distribution, we can see how “certain” it is that the
training process has found the generator of the data; if the distribution is wide, it is uncertain, if it is
narrow, it is certain. Since the distribution of the weights is inferred from the training data, it is usually

written as

p(w|D). | * (3.6)

In order to simplify the notation and to follow the notation of Bishop, the dataset is only denoted by D.
Implicitly, however, the distribution depends on the entire dataset, including the input values (written
as p(w|D, X)).28

The certainty in the network outputs is also restricted by the noise on the data. If we were, for example,
to model the long-term generator of hourly-averaged windspeed given a dataset S composed of minute-
by-minute measurements there would be intrinsic noise caused by turbulence on the measurements that
would not be part of the generator.

Obviously, apart from describing this noise with a probability distribution, we cannot make statements
about exactly where the value of the generator lies within a noisé interval. The noise distribution

i

p(t|z, w) (3.7)

281n section 3.2 I will show how so-called prior information about the weights distribution can be inserted into the
training process that leads to the weights distribution (3.6). Research showed that weight values close to zero lead to
smoother network mappings than large weights (Bishop, 1995, Section 10.1.2). This can be achieved by favouring small
weights by using a special prior, a process is known as regularisation in the literature. Regularisation is an important tool
to control the complexity of the model. However, it does not solve the problem of how many weights and hidden nodes
the architecture should contain. In the evidence framework (MacKay, 1992a; Bishop, 1995, Section 10.6), the Bayesian
approach provides the tools for comparing different architectures (e.g. different numbers of weights) of networks based on
the training data. This topic, however, is outside the scope of my thesis and will not be discussed further.
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gives the probability of observing a specific target ¢, given an input = and the most likely generator
function represented by a network with weights w.

To come back to the issue that the target data in the forward model are not noisy, this problem in fact
turns out to be a flaw in the application of the method to the retrieval problem. However, from the studies
of Pérez et al. (2000) and Gonzdlez et al. (2002), we expect the forward model to contain ambiguities.
One can reason that these ambiguities could be interpreted as noise on the target data. Furthermore, the
noise in the input data (the satellite observations) can be accounted for with the network Jacobian. This
issue will be further discussed in the remainder of this thesis.

Given the two sources of uncertainty described by the weights distributic;n and the noisé distribution,

the total uncertainty of the network predictions can be calculated from

p(tz, D) = / p(t|z, w)p(w|D)duw, (38)

where the noise distribution has been integrated over all likely generators w. This distribution describes
the probability that a target ¢ will be observed if an input vector x is given and the general behaviour of
the target data is specified by the training dataset D.

When I first studied the derivation of the network outputs distribution (3.8), it appeared confusing
to me that the uncertainty in the network outputs, denoted by y, is expressed as a distribution of the
targets t. However, since we have no information about the generator of the data except the dataset S, it
is best to make predictions about new data that would likely be observed for a new input. The network
prediction y describes the mean of the posterior target distribution, and hence the location of the most
probable data value to be observed. The shape and width of p(¢|x, w), however, describe the cértainty
that a data value we would observe in reality would actually be the most probable value — hence, the
distribution width can be interpreted directly as error bars on the network prediction y. The weights
distribution p(w|D) additionally describes our degree of belief in the ability of the network w to model
the generator, thereby further widening the distribution of possibly observed data values.

The network Jacobian represents another important tool to analyse the model. It is defined as the
derivative of the network outputs with respect to its inputs, dy/dz;. For instance, the Jacobian provides
a mechanism to estimate the impact of errors associated with the inputs on outputs errors. Furthermore,
the Jacobian provides a good tool to answer questions concerning the complexity and adequateness of
the mapping — to what extend does the output change when the input is changed? Is this the behaviour

we expect the solution to have? Is the model sensitive to the inputs we expect it to be sensitive to given
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our knowledge of the préblem? This information can make the ANN much more transparent than a
“black-box network” would be. |

Using the weights distribution, it is also possible to estimate a Jacobian distribution. As mentioned in
Chapter 1, such an estimate of the variability in the Jacobian is a useful indicator of how ill-conditioned
the regression problem in question is. Aires et al. (2004b) point out that inverse problems are often ill-
posed; similar output statistics of the network can be obtained by a variety of different network parameters
(i.e. weights). A possible reason is redundant information in the input variables, caused, for instance, by
correlated inputs. Imagine, for example, a network with one output and two highly correlated inputs.
The output might physically be dependent on the magnitude of one of the two inputs as we}l as their
difference. In this case, the training algorithm cannot decide which input carries the information, and
separate training runs could yield different results in terms of the ANN weights. The Jacobian would be
fundamentally different between the networks. In one case the output variable could be mainly sensitive
to the first input and to a lesser extend to the second, while in the other case it could get most of its
information from the second input and represent the dependence on the input difference with an opposite
sign dependence on the other input. The output statistics for the training data might be similarly good
for all networks, but the ability to generalise to new inputs could vary considerably. In particular, if we
know little about the problem and are interested in interpreting the network Jacobians as actual physical
Jacobians (so that we can learn on which inputs the output depends), such a high variability in the
Jacobian is problematic and we should be careful about assuming that the network represented by the
most probable weights vector models the real generator. If, however, the variability in the Jacobian is
small, we might expect that a “good” mapping has been found.

In the following sections, I will show how the weights distribution, output uncertainties and variability
in the Jacobian can be obtained. To illustrate some important aspects, I will use a simple example function

- a mapping from two input to two output variables, given by

vi(zy,xp) = 422 +sin (2mzy) (3.9)

yg(.’rl,fl)g) = COS(27T.’E1)+.’)32. : ‘(3.10)

A two-layer network with six hidden units has been trained from a dataset generated from these equations
by adding normally distributed noise with a standard deviation of 0.1 to output 1 and 0.05 to output
2. I will show examples that originate from two training runs — a long run and a short run —, resulting

in different posterior weights distributions and consequently different output uncertainties and Jacobian
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variabilities.

3.2 Distribution of the Neural Network Weights

In this section I will present and in places elaborate on the Aires (2004) derivation of the posterior
network weights distribution, p(w|D), and demonstrate how neural network training can be formulated

in the Bayesian framework.

3.2.1 Derivation

Using Bayes’ theorem, p(w|D) can be written as

p(Djw) p(w)
plw|D) = —/—/——=——+. 3.11
(wlD) = E=2 e
The density p(D|w) is called the likelihood of the data and indicates how likely the observation of the
dataset D is in the light of a given model (here represented by a set of weights). p(w) is called the
weights prior. This density represents all information about the weights that is available before the data
is observed. Finally, the denominator p(D) is a normalisation factor to ensure that the integral over
29

p(w|D) is one: _
§(D) = [ p(Dlw)p(w)duw. (3.12)

In order to find the mapping that best represents the generator of the data, the maximum of the posterior
distribution p(w|D) has to be found (following Aires, I will write w* for this maximum). Therefore,
expressions for p(D|w) and p(w) are needed.

The first assumption that is made is that the target data are composed of a smooth function h and

an additive noise component € (Bishop, 1995, Chapter 6):
t=h(x)+e (8.13)
The noise € is assumed to follow a Gaussian distribution, which I write as a multivariate Gaussian with -

zero mean (zero mean because it is the noise around the generator value):

1 1 T -1
p(e) - (27T)c/2 |Cin|1/2 exp <—§ € C‘in ’ €> . . (314)

29Note that again, the explicit dependence on the input data X has been omitted in the notation.
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Ci" denotes the covariance matrix of this intrinsic noise on the data; ¢ denotes the number of network
outputs (cmp. Figure 1.10). The generator function k(x) is the function that we would like to model
with the neural network, therefore I replace h(z) = y(z;w). Combining (3.13) and (3.14) yields the

distribution of the target variables:

pltle, w) = W exp (—é (vlzsw) = Cn™ (w(aiw) - 1) (19)

Assuming that all datapoints of the dataset are drawn independently from this distribution, the proba-

bility density of the entire dataset becomes

N

0h) = Lot | @10
1 1 - n\T n
T @R ICa (”5 ;(E )" Ain € > (3.17)

where I have used €™ = t"™ —y™ and replaced A;,, = C,-n‘l. The matrix A;, is called a hyperparameter in
the context of Bayesian learning, since it is a parameter that controls the distribution of other parameters
(the network weights). I will explain its function in the next paragraph. In analogy to the conventional
maximum likelihood approach (Bishop, 1995, Chapter 6), the sum in the exponential is called the data

error function
N

Epw)= < Z(e")T A - €7 (3.18)

In order to find an expression for the weights prior p(w), Aires (2004) assumes that the weights follow a

Gaussian distribution as well:

plw) = o exp (T Arow) = g exp (~Buw (w). (319)

For convenience and following Aires (2004), I have grouped all normalisation factors into a single constant

~ Zw. The parameter A, = C,. lis the inverse of the covariance matrix C, of the weights and the second

hyperparameter that occurs in the context of Bayesian neural network learning.

Analogous to the data error function, the weights error function is defined as
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In the form given by (3.19), the prior distribution has zero mean, thereby expressing that the weights are
expected to be centred around zero. The use of such a prior weights distribution regularises the training
process (cf. subsection 3.1.2); smooth network mappings, which usually generalise better than strongly
fluctuating functions, can be achieved by favouring small weights (Bishop, 1995, Section 10.1.2). If the
weights are large, then Ew will be large and p(w) will be small; for small weights p(w) will be large.
Hence, by setting A, correspondingly, we can prefer small weights over largé ones. Bishop points out
that priors other than Gaussian can be considered as well. In this work, however, I wi.ll only consider the
Aires (2004) approach.

Given the expressions for p(D|w) and p(w), the posterior distribution of the weights (3.11) becomes

N
1 1 1 1 ,
p(w|D) = 7 oxXp (—5 g (€T - Ay - e") exp (—EwT A, ‘w> = exp (-Ep - Ew), (3.21)
n=1

where I have again used the shorthand notation Z for the normalisation factors. This expression could
be maximised, however since many standard algorithms exist to minimise a function rather than to
maximise it (Bishop, 1995, Chapter 7) it is more convenient to minimise the negative logarithm of (3.21).
The logarithm removes the exponential, and because of its monotonicity the location of the minimum
remains unchanged. Since the normalisation constant Z also does not affect the position of the minimum,
we are left with minimising the total error function®°

E(w) = Ep(w) + Bw(w) = = S ()T - An - €* + %'wT A, w. (3.22)
Conventional (i.e. non-Bayesian) network learning can be regarded as a special case of this Bayesian
framework; if we have no information about the weights prior and assume it to be a uniform distributioh
(p(w) = const.), then Ew = 0. If we furthermore assume independent output variables (all off-diagonal
elements of A;, are zero) which have the same variance (all diagonal elements of A;, set to 02), then o2
becomes a constant factor in (3.22) and can be omitted, leaving E to be a sum-of-squares error function

as in the example of polynomial curve fitting:
1 N ¢ , .
E(w) =3 SO {ur(a™ w) — 7). (3.23)

n=1k=1

A problem with maximising the posterior weights distribution is that the hyperparameters A;, and A,

30This is analogous to the principle of maximum likelihood; Bishop (1995, Chapter 2).
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are usually not known beforehand. I will discuss how they can be estimated in section 3.4.

3.2.2 The Meaning of the Hyperparameters

MacKay (1992a, 1995) and Bishop (1995) introduce the Bayesian framework with only scalars 8 and
« as hyperparameters instead of the matrices A;, and A,. For simplicity, they only use one output,
thereby reducing A;, to a single element 3. The weights are assumed to be independent, making A, a
. )31

diagonal matrix. In the simplest form, the variance of all weights is the same (1/c)*". The error function

(3.22) then becomes

Eaﬁ (w) =

MIQ

N
Z y(a™; w) — "} 4+ = Zw (3.24)

If the intrinsic noise on the target data is small, then 8 will be large, and small deviations of the network
predictions from the target will result in a large “penalty”. If the noise is large, § will be small and larger
differences will be tolerated. Setting the ratio a/8 becomes importaﬁt under the aspect of the size of the
training dataset. While the first term in (3.24) grows with i.ncreasing numbers IV of datapoints in the
dataset, the second term does not. Hence, the ratio of both hyperparameters controls the importance of
the weights prior and the size of the dataset form which it will become insignificant.

The matrix hyperparameters A;, and A, used by Aires (2004) generalise this concept to interdepen-
dent weights and outputs, respectively. Using A;, instead of 3 allows for more outputs and also incor-
porates the correlation structure of the errors in the individual variables. (Remember that C;,, = At
does not represent the covariance matrix of the outputs, but of the errors in the outputs (the noise).)
This way, mapping errors for variables with small noise are penalised stronger than those for targets with
larger intrinsic noise.

In order to understand A,., it is important to keep in mind that the prior p(w) is a Gaussian distribu-
tion with zero mean. This means that, similar to the scalar hyperparameter case, we expect the weights
to be small. The major difference to the scalar case is that we assign different inverse variances (diagonal
elements of A, if the weights are independent) to different weights, hence controlling individually how
much the weights are penalised for being large. This may be useful since the magnitudes of weights in

different layers of a network can have fundamentally different ranges (MacKay, 1995; Aifes, 2004).

31MacKay (1995, Section 3.2) notes that the weights of a two-layer perceptron will usually fall into three or more distinct
classes, depending on the structure of the inputs. For a good regularisation performance, he suggests the use of different
hyperparameters « for these different classes.
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3.2:3 Gaussian Approximation to the Posterior Distribution

Although (3.21) is an exact equation for a given noise model and prior, it is useful to approximéte the
posterior with a Gaussian distribution in order to make it analytically tracktable when used in integrals
such as (3.8) (Bishop, 1995, Section 10.1.7). This can be obtained by performing a second-order Taylor

expansion of the total error function (3.22) around its minimum w* (i.e. the maximum of p(w|D)):
E(w) = E(w*) + b7 - Aw + %AwT H Aw, (3.25)
where Aw = w — w™. b denotes the gradient of F at w™,
b= VEW)|wew =0, (3.26)

which vanishes because w* marks the minimum of E. H is the Hessian matrix of E (second derivative)
with respect to the weights, and it will play an important role in the remaining parts of this thesis.
Looking at (3.22), we can see that H is composed of two parts, the data Hessian Hp and the weights

hyperparameter A,.32:

o
I

VVE(W)|yerw* = VVED(W)|wews + Ar (3.27)

Il

Hp + A,. (3.28)
Using the approximated error function (3.25), (3.21) becomes

p(w|D) = %exp <—E(w*) - %AwT H. Aw) , (3.29)

and, including the constant exp (—E(w=+)) in the normalisation factor Z,

1 1 -
p(w|D) = 7 eXp <—§AwT -H - Aw) . (3.30)

. . C s . . . . |
The posterior weights distribution thus becomes a Gaussian with mean w* and covariance matrix H .
The information contained in this covariance matrix can be immediately used to give error bars on the

most probable weights vector w*, an example of which is shown in Figure 3.3.

. 32Note that if we use no prior information about the weights (i.e. p(w) = const.), E = Ep and H = Hp. This case
corresponds to ANN training without regularisation. .
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weight value

Figure 3.3: Distribution of the first weight wy; of the neural network used for the example
given by equations (3.9) and (3.10) after a short training run (grey histogram, the network has
not gained much certainty about the weight value yet) and after a longer training run (black
histogram, the distribution has narrowed considerably). '

3.3 Output Uncertainties

In the previous section, both terms under the integral in (3.8) — the noise model of the target variables
(3.15) and the Gaussian approximation to the posterior weights distribution (3.30) — have been derived.
Using these results, the derivation of the distribution of the network outputs is straightforward (Aires .

et al., 2004a):

p(t2.D) = [ pltlw, w)p(w|D)dw | (3.31)

. v/exp (—%(t—y)T-Ain - (t—y)) exp <—%Aw?-ﬁ-‘Aw> dw.  (3.32)

All normalisation factors have been omitted in the notation in (3.32), instead, the - . sign has been
used to indicate the missing normalisation. This integral can be evaluated by assuming that the posterior
distribution of the weights, (3.30), is narrow enough to approximate the network function y(:z:;"w) by its

linear expansion around the optimal weights value w™:

y(z;w) = y(z;w*) + GT Aw, . (3.33)
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where the W x ¢ matrix G represents the gradient of the network function (c is the number of network
outputs): .
G = Vy(z; W)|i==- (3.34)

Hence, (3.32) becomes

p(t|x, D) /exp <—% (t —y(z; w™) — G’TAw)T - Ain - (t —y(z; w*) — GTAw)> .

1 ~
exp (—EA'wT -H - Aw) dw. (3.35)
Writing €* = t — y(x; w*) for simplicity, expanding the product and rearranging yields
1 T . *
p(t|z, D) o exp —5€ - A €% ) -
/ exp (e*T - Ain - (GTAw) — %(GTAw)T Ain - (GTAw) — %AwT CH- Aw> dw, (3.36)

where the first factor is independent of w and has hence been pulled out of the integral. Using the matrix

identity (AB)T = BT AT and further rearianging leads to

p(t|z, D) o exp (—%G*T A - e*> .

/exp ((E*T - Ain GT) Aw — %AwT (G cAin - GT + I:I) Aw) dw. (3.37)
Bishop (1995, Appendix B) shows that Gaussian integrals with a linear term evaluate to
1
/exp (LT'w - EwT . 'w> dw = (2m)V/? |A|_1/2 exp (%LT “A- L> . (3.38)

Setting L = eT . Ajpp-GTand A =G - Ay, - GT + H, the integral in (3.37) becomes

- —1/2
/exp(...)dwz(27r)W/2‘G-A,~n~GT+H) .

exp <% (e*T Au - GT>T. (G A - GT +ﬁ1) : (E*T - Ain - G’T)> . (3.39)
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Omitting the constant factor and rearranging (3.37) again gives

-1
p(t|z, D) o exp (—-;—E*T “Ain - e*) exp (—%E*T [—AinGT : (G CAin - GT + H) . G’Ain] e*)
(3.40)

and further

p(t|x, D) x

exp <—% (t - y(z; w*)T [Ain - A GT . (G A GT 4 fI) - GAin} (t— y(m; w*))> . (3.41)

Thus, the target variables follow a multivariate Gaussian distribution with mean y(x; w*) and covariance

matrix

-1 -1
Co = |:Ai'n, - AinGT . (G N P GT + H) . GA-”,,} . (3,42)

The expression for the covariance matrix can be simplified by multiplying by [G (I +H _lGAinGT> G} X

o [G (I+ ITIGAMGT) G] ' fo sive
Co=Cin+GTHA'G, (3.43)

where C;,, = Ain_l has been used.

Equation (3.43) is the main result of this derivation (Aires et al., 2004a). It shows that the uncertainty
in the neural network predictions is composed of two parts; the intrinsic noise contained in the training
data, represented by its covariance matrix Cj,,, and a term GTH _1G that represents the impact of the
uncertainty of the posterior weights distribution on the predictions — a result that is expected from (3.8).
Unless we have situation dependent (= input dependent) information about intrinsic noise on the data,
C;,. will be constant. The neural prediction term, however, is situation dependent through the gradient
G (the Hessian is not dependent on the input data).

We can determine the error bars on a network prediction by taking the standard deviation from the
covariance matrix Cy. Figures 3.4, 3.5 and 3.6 illustrate the results that can be obtained for the example
defined at the end of section 3.1. Williams et al. (1995) show that the weights uncertainty term GTH —lG

is approximately proportional to the inverse training data density3, and note that consequently in high-

33They can prove the result for generalised linear regression models (models of the form y(z) = 377, w;é;(x), where
¢; are basis functions), and note that empirical studies provide evidence that the result also holds for multi-layer networks
— especially for networks with linear output activations trained with a least-squares error function (as in our case), which
“is effectively a generalised linear regression model with adaptive basis functions” (Williams et al., 1995, Section 5).
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data-density regions, the contribution of this term will become insignificant compared to the noise term

Co — a result that I will discuss in section 3.7.

3.4 Hyperparameter Re-Estimation

With the results from the previous sections, we have to know the values of the hyperparameters A;,
and A, in advance. However, using the complete structure of A, in the training process requires a good
knowledge of the network mapping, which usually is not available a priori. Similarly, information about
the noise distribution in the target data will also not be available in most cases. Therefore, how can the
hyperparameters be estimated? Aires et al. (2004a) suggest the following — omit both hyperparameters
in an initial learning stage, then estimate them from the trained network and re-train the network with
the new values.

In the case of Aj;,, Aires et al. suggest use of (3.43). The approximation they make is to assume
the intrinsic noise to be constant throughout the training data. Then an average covariance matrix Ci;y,
can be computed from the training dataset D by determiniﬁg the covariance matrix of the output errors
Cy from the (e*)" of the training datapoints, and by using an average of the neural prediction term
GTH _1G’ over the training dataset. From these two matrices, an average C;, can be computed, and
A,y is obtained by inversion:

Cin = (Co) — (GTH™' @), (3.44)

where the averages have been denoted by ().

Unfortunately, Aires et al. do not give details on how to re-estimate A,.. Thgir papers suggest use
of the posterior weights distribution of one training run as the pfior distribution in the consecutive run.
This, however, would destroy the intended regularisation mechanism — the prior (3.19) is intentionally
chosen to be a Gaussian with zero mean in order to keep the weight values small. The posterior (3.30),
in contrast, is a Gaussian with mean w* # 0. Thus, using this distribution as a prior for the consecutive
training run would pull the weights towards the already found minimum, not encourage them to be
small®*. This also becomes clear when considering the following:

In order to accommodate the mean w™, (3.20) would have to be changed to

Ew (w)® = % (w- (w*)ﬁ—l))T LA, (w = (wh) D) (3.45)

34 Although MacKay (1992b) points out that using weight decays with non-zero means would just correspond to using a
different model — whose performance could be compared to a zero-mean regulariser within the evidence framework (MacKay,
1992a).
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Target T2

0.4 0.
Input X1

(a) Long training run.

(b) Short training run.

Figure 3.4: Section through the functional surface of the example given by (3.9) and (3.10)
at X, = 0.3. Plotted are datapoints from the training dataset (grey), the network prediction
(solid line) and error bars (dotted lines). Panel (a) shows the error prediction after the long
training run (the narrow weight distribution in Figure 3.3), while panel (b) displays the same
prediction for the network trained only a short time (the broad distribution in Figure 3.3). The
broader weights distribution is noticeably reflected in larger error bars.
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Figure 3.5: Scatterplots of the estimated error (one standard deviation) vs. the actual error for
both output variables of the example given in (3.9) and (3.10), for the long training run shown
in Figure 3.8 (also see Figure 3.4a). The narrow weights distribution (cmp. Figure 3.3) causes
the network term in (3.43) to be much smaller than the intrinsic noise C;,. Consequently, the
estimated error is almost identical to the noise on the data, which is correctly estimated to
have a standard deviation of 0.1 and 0.05, respectively. Hence, the predicted error does not
show significant input dependence, it can only be stated that the true error will be smaller
than the estimated error in at least 68.2% of all cases. In fact, for the given example, 68.5%

of the true errors are smaller than the predicted ones for output variable 1 (68.0% for variable
2).
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Figure 3.6: The same as Figure 3.5, but for the short training run leading to the broad
weights distribution in Figure 3.3 and the larger error bars in Figure 3.4b. Note that this time,
the network dependent term in (3.43) is much larger, due to the broader weights distribution,
resulting in a more input dependent error (in panel (a) 67.5% of the predicted errors are smaller
than the actual error; in panel (b) 75.4%).

78




Chapter 3. Nonlinear Regression with Neural Networks and Uncertainty Estimation

1)

where () refers to the i-th re-estimation iteration. Since VV Ew (w)|y=(w=y» = A, 1 does not change

when (3.45) is used instead of (3.20), A, is re-estimated following

A0 = ﬁ(i)

=Hp® + 4,07, S (3.46)
Since H, Hp and A, are the inverses of covariance matrices, which are positive definite (Aires, 2004),
they are also positive definite. This means that at least the diagonal elements of these matrices are
positive (Weisstein, 2007). Hence, the diagonal elements of A} would become larger and larger with each
training iteration.

This makes sense; larger diagonal elements of A, approximately®® mean a smaller variance of the
weights, hence the weights distribution is more sharply peaked. If the optimisation algorithm has found a
minimum w* in a first training run, and in a éecond training run is “told” that this minimum is very likely
(even if it was not a very good minimum), then it will further increase the certainty in that minimum by
decreasing the variance. Furthermore, by increasing the diagonal elements in A,., the importance of the
data is decreased, until they eventually are insignificant compared to the weights prior. This, however,
will only inbcrease the chance of remaining stuck in a local minimum found in the first training run.

However, since we are using a zero-mean regulariser, we wish to get a new estimation of how strongly
the weights should be pulled towards zero, which eventually should lead to a compromise between a
mapping that fits the data well and a guard against overfitting. A method to re-estimate an A, for a
zero-mean Gaussian is needed, something that Airés et al. do not derive.

The approach I use is to adapt the re-estimation technique suggested by Aires et al. (2004a) for A;n,
but to use the so-called evidence procedure (MacKay, 1992a) in order to re-estimate a modified version
of A,. However, in order to use the evidence procedure in the form derived by MacKay, A, can only

contain diagonal elements. Hence, correlations between the weights will be ignored below.

3.4.1 Evidence Procedure for A,.

The evidence procedure has been derived by MacKay (1992a) in order to re-estimate the scalar
hyperpararﬁeters a and B from the data during the network learning stage. Nabney (2002) shows how
the approach can be generalised to multiple « for different groups of weights, up-to an individual « for
every weight — which corresponds to having a diagonal A, in (3.20).

When in addition to the network weights the values of the hyperparameters are inferred from the

35if no covariances exist exactly




Chapter 3. Nonlinear Regression with Neural Networks and Uncertainty Estimation

data, the result can be expressed by the joint probability distribution p(w, o, 8|D). The correct Bayesian
treatment (Bishop, 1995, Section 10.4) to get the posterior distribution of the weights p(w|D) from this

joint distribution would be to integrate over all possible values of o and §:

//p(w,a,ﬂ|D)dad,8 | (3.47)
| [ vtwla.5.D) st 61D) dad. (3.48)

p(w|D)

The evidence procedure, however, makes the approximation that the density p(«, 8| D) is sharply peaked

around the most probable values aM¥ and SMP, reducing (3.48) to

p(w|D) = p(w|aP, §MP, D) / / p(a, B|D) dadp.  (3.49)

=1

In order to find o™¥® and pMF | the posterior distribution

pla piD) = L2 D) 0) (3.50)

has to be maximised. The prior p(a, ) is assumed to be uniform in the evidence procedure, so that it
does not affect the maximum of p(e, 8|D)3¢. The normalisation factor p(D) (the integral of the numerator
over a and f3) also does not affect the maximum, hence only p(DJa, 8) — known as the evidence of the
hyperparameters — has to be maximised.

This term can be written as an integral of the data likelihood over all possible weights w:

p(Dla B) = / p(Dlw, o, B) plawler, B) duw. (3.51)

Since the hyperparameters are given, the factors p(D|w, a, 8) and p(w|a, 3) of the integrand are given

by (3.17) and (3.19) (exchange the matrix hyperparameters with the scalar ones), leading to

p(D|a, B) = % /exp (~E°‘ﬁ(w)) dw, (3.52)

where (3.24) has been used because of the scalar hyperparameters. The Gaussian integral in (3.52) is

363uch a prior is said to be an improper prior, since it does not have a finite integral and cannot be normalised.
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given by

_ | -1/2
| (3.53)

[ exp (B (w)) dw = exp (~E°(w) (2n)*" | B

(see Bishop (1995, Appendix B) for the evaluation of Gaussian integrals). Together with terms from the

normalisation factor Z, the logarithm of the evidence (3.52) is then given by

~ w N N
Hl + ?loga—i- —2—log,8— Elog(%r).

o Jé) N 1
logp(Dlev, ) = =5 »_(w})* = 5 > {u(@™w) ~ 1} ~ S log
i=1 n=1
' (3.54)
In order to optimise this log evidence with respect to a (the corresponding approach for S will not be
considered here), the partial derivative %(log p(D|a, B)) has to be computed. Bishop (1995, p. 410) shows
that
o - ~
—log ‘H‘ =u (A7), (3.55)
where the approximation has been made that the eigenvalues of H do not depend on a. (T have skipped

the eigenvalue step here, see Bishop (1995, Section 10.4) for further details.) Hence,

w

9 (log p(Dles B)) = -li(w*y—lu (B + 52 (3.56)
B+ CPEIBPI T Ty 2 T %’ '

Equating (3.56) to zero yields the expression

W —atr (IZI—l)

S )2 (337

If groups of weights are assigned different hyperparameters, this equation can be adjusted correspondingly,

down to an individual « for each weight:

Lo (ﬁ—1>ii

oo (3.58)

Q; =

In order to optimise «, the ANN training is first started with an initial (random) value of . Once the

training algorithm has found a minimum, « is re-estimated from (3.58):

Qe = (3.59)

Of course, the optimisation of the hyperparameters by iterative re-estimation — valid for both re-

31
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estiméting A;,, with the Aires et al. (2004a) approach and A, with the evidence procedure — is computa-
tionally expensive, since the network has to be re-trained several times, ideally until the hyperparameters
stabilise. Figure 3.7 illustrates how they develop during the long training run of the example used in this

chapter.

3.5 The Jacobian Matrix

The Jacobian matrix is not a part of the Bayesian framework described in the previous sections. It

represents the first derivative of the network outputs y with respect to the inputs x and is defined as

_ Ouk
Jie = 5o (3.60)

Aires et al. (2004b) suggest that the variability in the Jacobian can be determined by computing a
distribution of Jacobians from the posterior weights distribution given by (3.30). Their approach, and the
one adopted in this study, is to use Monte Carlo techniques to sample from the weights distribution, then
to construct a Jacobian distribution from these samples. Aires et al. use R = 1000 samples from (3.30),
compute the Jacobian for each weights sample, and compute mean and variance from all these Jacobians.
This, of course, assumes a Gaussian distribution for the Jacobian as well; although the histogram of the
Jacobians itself could be used as a PDF (probability density function) representation.

The Jacobian, as deﬁned>in (3.60), is input dependent, hence its distribution can be computed for
individual inputs.?” For the purpose of identifying ill-posed problems Aires et al. (2004b) propose to
compute an average Jacobian over the training dataset and to interpret its variability. This approach
applied to the example given by (3.9) and (3.10) yields the results listed in Table 3.1. Indeed, the wider
weights distribution results in a larger variability in the Jacobian.

If a problem has been identified as ill-posed, they suggest a principal component decomposition of
the input and output data. They apply this approach to a remote sensing problem with many correlated
inputs and use it to reduce the number of inputs and to exploit the decorrelated structure of the principal
components. However, if the number of inputs is small from the beginning, it is usually not desired to
further decrease their number. Bishop (1995, Section 8.2) discusses a similar approach, which decorrelates

the inputs and is known as whitening in the literature. It will become important in chapter 4.

37 A property that will prove useful in chapter 4, where the Jacobian provides information about whether a network is
modelling the “right” function.
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Figure 3.7: Development of the covariance matrices Cg and Cjy, (panel (a)) and the hyperpa-
rameters A, (panel (b)) and A, (panel (c)) during the training run shown in Figure 3.8. After
a few re-estimation iterations, the estimated intrinsic noise stabilises at the correct variance
values of 0.01 and 0.0025, respectively, leading to a stabilisation in the data hyperparameter
A;,.. Notable is that the uncertainty in the neural prediction, given by the difference between
Cp and C;,, quickly becomes smaller. Most elements of A, stay in the range between 0 and
100, however, some weights are more strongly penalised for getting large. After approximately
eight iterations, A, has stabilised as well.
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Table 3.1: Jacobian matrices and their uncertainty (one standard deviation) of the two net-
works trained to model the example function given by (3.9) and (3.10). Left: the Jacobian
of the network with the narrow weights distribution (long training run) shown in Figure 3.3;
right: the Jacobian of the network with the broad weights distribution (short training run) in
Figure 3.3. Note how the width of the weights distribution is reflected in the uncertainty of the
Jacobian, and how the only shortly trained network models a significantly different dependence
of output 1 to input 2 — a dependence that is also most uncertain in the long trained network
and indicates a problematic input.

oy1/ dya/ - oy/ dya/

Oz; 4.00£0.02 -0.04x001 ' dr1 3.83+0.50 0.01+£0.87
Oxy —0.024+043 1.00+0.05 Oxry —1.52x037 0.77+0.34

3.6 Implementation Issues

The NETLAB toolbox by Nabney (2002) is implemented in MATLAB and provides many functions for
neural networks. The toolbox comes with the ability to handle two-layer MLP with a Bayesian module
that implements the scalar hyperparameter approach of MacKay (1992b). Since NETLAB is very well
documented and already provides many functions needed for the Aires et al. algorithm, I chose it as a
basis for my implementation.

Algorithm 3.1 below summarises the algorithm discussed in the previous sections in a schematic
outline. The initial hyperparameters Ain©® and 4,9 will usually be set to the identity matrix I and
a1, respectively, where o is some constant that controls the degree of regularisation in the first training
run. If no regularisation is desired, A, can be set to zero. The loop in lines 2 to 9 trains the network
and re-estimates the hyperparameters. It is repeated until some termination criterion has been reached,
which can be either a stabilisation of the hyperparameters or simply a maximum number of iterations.

In line 3, the error surface of equation (3.22) is minimised with one of the optimisation algorithms
provided by NETLAB, for instance, conjugate gradients. Afterwards all input data is propagated through
the network, and the covariance matrix Cp is computed from the errors of the predictions compared to
the targets. In the following step, the gradient of the outputs with respect to the weights G' and the

.Hessian His computed, which together with Cyp are used to estimate Cj;,, and A;,. Eventually, A, is
re-estimated with the evidence procedure described in section 3.4.
While details about the implementation are given in Appendix A, a few important issites are mentioned

in subsections 3.6.1 and 3.6.2.
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Algorithm 3.1: Bayesian Neural Network Training with Matrix Hyperparameter Re-Estimation.

Input: Training dataset S = {X, D}, initial hyperparameters A;,0 A0,
Result: Maximum of posterior weights distribution w™*, hyperparamaters A;,, and A, covariance

s e . . . . . L. . ~—1
matrix of intrinsic noise Cj,, and covariance matrix of posterior weights distribution H .
Ay — Ar(o); Ay — Ain(o);

1

2 repeat

3 Train network (minimise error function (3.22)) with A;, and A, in order to find w*;

4 Estimate covariance matrix Co = covariance(t(x) — y(x; w*)) from target data and network
predictions; _

5 Compute gradient G = Vy(z; w)|wew* (3.34) and Hessian H = VVE(w)|yy=p (3.27);

6 Compute the approximate covariance matrix of the intrinsic noise Ci,, = (Co) — (GTH _1G)
(3.44);

7 Set A;, = Cin_l;

8 Re-estimate A, with the evidence procedure, (3.59); :

o until hyperparameters have stabilised or mazimum number of iterations has been reached ;

Developmeht of training and test MSE ‘ Devélopment of ANN weights
0.02 —training] 5t
0.015 - - -test
z 5
< 0.01 . = 0
~o . 2
0.005 hON
\\ _5
0 e . . .
0 5 10 0 5 10
Iteration Iteration

(a) (b)

Figure 3.8: (a) Development of the mean-square-error (MSE) of the training dataset and of a
test dataset without added noise of the example given by (3.9) and (3.10) during a training run
with 10 hyperparameter re-estimation iterations (corresponding to the narrow weight distri-
bution in Figure 3.3). The stabilisation of the test MSE close to zero after iteration 4 is a sign
that no overfitting is taking place; in the case of overfitting, the training MSE would further
decrease while the test MSE would increase (the network prediction would not model the true
function anymore). (b) Development of the weight values during the training. After iteration
6 the values hardly change anymore. The regularisation effect of A, causes all weights to stay
of order unity.
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Figure 3.9: Scatterplot of the network predictions for both outputs of the example given in
(3.9) and (3.10) vs. the target data. Panels (a) and (b) show plots of the training data (with
noise), panels (c) and (d) show plots of the test data (no noise). Whereas panels (a) and (b)
reflect the intrinsic noise in the training data, panels (c) and (d) illustrate the good gener-
alisation performance of the network; if overfitting had occurred during the training process,
predictions of the test data would unlikely match the targets.
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3.6.1 Normalisation of Input and Output Variables

As Bishop (1995, Section 8.2) points out, rescaling input. and output variables is useful if different
variables have typical values that differ significantly. In atmospheric remote sensing, for instance, particle
size and temperature would have very different value ranges. In such cases, pre-processing can have a
significant effect on the generalisation performance of the network; after normélising input and output
variables to be of order unity, it is expected that fhe weights will also be of order unity and hence be
small (Bishop, 1995, Chapter 8).

A simple method to achieve similar values of order unity for all variables is to apply a linear rescaling

by subtracting the mean of the variable and normalising by its standard deviation:

PP = L (3.61)

where v can be either input or output variable.
Whitening, the more sophisticated linear rescaling method mentioned in section 3.5, decorrelates the

variables in addition to normalising them. With whitening, the rescaled variables ¥ are computed using
" = A7V2UT (2" — %) (3.62)

(Bishop, 1995, Section 8.2). Here, A denotes a diagonal matrix containing the eigenvalues of the covariance

matrix 3 of the variables v;, and U contains the eigenvectors of X.

3.6.2 Regularisation of the Hessian

While working with the implementation of the Aires et al. algorithm, I encountered a severe difficulty,
which has already been discussed by Aires (2004) — the positive definite character of the Hessian. As the
covariance matrix of a Gaussian distribution, the Hessian has to be positive definite. This means that all
its eigenvalues have to be strictly positive, and that vT Hv > 0 for any non-zero vector v (Bishop, 2006).
Aires (2004) points out that for the local quadratic approximation (3.30) to be valid, the optimal weights
vector w* must be at a real minimum of the error surface, otherwise the positive definite character is
not guaranteed. This is obviously a problem, since every traiﬁingl algorithm can only approximate this
minimum. Furthermore, as Aires states, the possibly large size of the Hessian (W x W, with W being the
total number of weights in the network) has the consequence that its estimation needs to be done with a

large enough dataset, otherwise the eigenvalues could become very small or even-negative, also violating
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the positive definiteness of H.

A solution to this problem suggested by Aires (2004) is to add a diagonal regularisation matrix3® AT to
the Hessian, where X is a small scalar and I is the identity matrix. If A is large enough, this approach will
result in a positive definite matrix. However, the addition will also result in a bias in quantities estimated
from the regularised matrix (Rigdon, 1997). Using a combination of criteria to measure condition number
and positive definiteness, Aires (2004) obtains A = 12 for his example. My own experiments, however,
showed that A needs to assume values larger than 10,000 in certain cases, so that the original character
of the Hessian is considerably altéred.

Another possibility, mentioned in passing by Nabney (2002), is to use an eigenvalue decomposition,
which, for the given case, is closely related to the truncated singular value decomposition (e.g. Hansen,
1994). If the matrix H is not positive definite, then one or more of its eigenvalues will be negative.
Nabney (2002, Section 9.4.2) decomposes the data Hessian Hp into its eigenvalues and eigenvectors, sets

all negative eigenvalues to zero and reconstructs the matrix:
Hp =VAVT, (3.63)

where V contains the eigenvectors of Hp and A the modified eigenvalues. If the matrix Hp is at least
positive semi-definite (i.e. eigenvalues can also be zero) and Hermitian (which all real symmetric matrices
are), the eigenvalue decomposition is equivalent to the singular value decomposition and the eigenvalues
coincide with the singular values (Abdi, 2007, Section 2). Since the reconstructed Hp still has zero
eigenvalues, Nabney further adds the weights hyperparameter A, in order to reconstruct the full Hessian
H. Since in Nabney’s case A, is a diagonal matrix, his procedure is a combination of an eigenvalue

decomposition and the method proposed by Aires.

3.7 Usefulness of the Aires et al. Method

The figures given in this chapter so far show that the Aires et al. method yields the expected results for
the example given by equations (3.9) and (3.10); the hyperparameters stabilise as expected after several

re-estimation iterations (Figure 3.7), the network converges (Figures 3.8 and 3.9), and the network with

38Do not confuse the meaning of regularisation used here with the meaning of the word used for the weights term in
the error function. Regularisation for neural network training denotes adding a weight penalty term to the error function
in order to encourage small network weights. Regularisation of the Hessian here describes methods to make the Hessian
(and its inverse) positive definite. Note that the term regularisation of matrices is also often used in the context of matrix
inversion or the solution of linear systems, in this case a matrix is singular or close to singular and has to be regularised in
order to make it invertible with the available numerical precision.
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Figure 3.10: Demonstration of the input dependence of the error estimation given in (3.43).
Shown is the one-dimensional generator function y(z) = sin(3wz) + z? (dashed line), from
which 100 datapoints were created by adding Gaussian noise with a standard deviation of 0.1
in the intervals [0.15..0.4] and [0.9..1.0]. The network prediction (solid line) is shown together
with error bars at one standard deviation. Note the larger error bars in the regions where no
training data existed, reflecting the inverse dependence of the estimated error on the train-
ing data density. (Example generated with the original NETLAB implementation with scalar
hyperparameters.) ’

the broader weights distribution (Figure 3.3} produces larger error bars (Figure 3.4). However, in many
examples, I found the performance of the error estimation to be unsatisfactory, and several problems and
open questions require further investigation. Figures (3.10) to (3.14) illustrate some of the problems and
failures I encountered while testing my implementation.

A serious problem is the actual size of the error bars. As mentioned in sections 3.3 and 3.4, Aires et al.
assume the intrinsic noise on the data to be constant throughout the dataset, and Williams et al. (1995)
show that the uncertainty due to the neural network weights is approximately proportional to the inverse
data density. Especially in the examples given by Bishop (1995, Figure 10.9) and Nabney (2002, Figure
9.4), the error bars increase significantly in regions where no training data is given. However, I found that
for many other functions such good results seem to be difficult to obtain. Furthermore, Williams et al.
(1995) found that the neural uncertainty contribution of a network trained from a very dénse dataset
will become insignificant compared to the noise term. For instance, Figure 3.10 shows a simple example
of a network trained from a dataset including 100 datapoints in two distinct intervals. As expected,
the error bars in the middle section, where no training data was given, are larger than in the sections

where data was available. Consequently, the true generator function is still within the error interval of
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Figure 3.11: Same as Figure 3.10, but with a training dataset consisting of 10,000 datapoints.
This example demonstrates how the estimated error bars depend on the factors such as the
size of the training dataset, an effect that is not desired in the given case.
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Figure 3.12: The same example as in Figure 3.4, but the network has only been trained with
data in the interval X; = [0.15..0.4] (plotted in grey, however, are the entire training data).
Again, the error bars diverge where no training data was present, however, the divergence is

much too weak to indicate the actual error — a problem that I encountered in many cases and
which emphasises how difficult it can be to interpret the error bars.
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Figure 3.13: Limitations of the error estimation — a simple two-layer perceptron is not able to
model a mapping that contains ambiguities, such as the mapping shown here (dashed line). We
would hope that at least the error bars could reflect the problematic areas by becoming larger
in the ambiguous regions, however, this is not the case. Furthermore, the lower data density
in the non-ambiguous regions acts as a counter-productive effect. (One-dimensional example
generated with the original NETLAB implementation with scalar hyperparameters.)
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Figure 3.14: The errors in Figures 3.5 and 3.6 were predicted using a Hessian regularised with
the eigenvalue decomposition described in section 3.6. Shown here is the error predicted by the
same network as in Figure 3.6, but using non-regularised Hessian. Note the striking difference
between computations performed with a regularised and a non-regularised Hessian.
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the network prediction. However, if the same problem is repeated with 10,000 datapoints (Figure 3.11),
then the network uncertainty term suddenly becomes very small — including the interval where no data
were present. In this case, the true function is outside of the error bars of the prediction, and we are
confronted with the counter-intuitive result that more observations lead to a worse result.

Figure 3.12 shows a variation of the two-dimensional example used in the previous sections. It displays
the same section through the functional surface as Figure 3.4, but this time the network has been trained
only with data in a narrow interval. As expected, the error bars diverge in the part where no training
data was present, however, they are much too small to indicate the true error to the actual function.

Another problem is the presence of ambiguities in the training data. A simple two-layer network
architecture is not able to model such ambiguities (Bishop, 1995), but as I pointed out in Chapter 1, the
hope is that the error bars reflect these regions through a larger uncertainty. However, I was not able to
achieve this result. On the contrary, regions where ambiguities exist actually have a higher data density
than regions where only one functional value is present, leading to the possibility that the error bars are
even smaller in the ambiguous parts (Figure 3.13).

This investigation also raises several questions concerning the regularisation of the Hessian — how
large is the influence of the regularisation on the training algorithm and on the error bars? Which is the
better regularisation method, and how much information is destroyed by performing the regularisation?
Figure 3.14 shows the errors from Figure 3.6, but computed using the non-regularised Hessian — the
neural uncertainty term almost vanishes. In other examples, I also encountered negative errors due to
a non positive definite inverse Hessian. The problem is made worse by the fact that the Hessian is
estimated from a large dataset. Since it represents the second derivative of the error with respect to the
weights, estimating it from different datasets should not significantly change the Hessian. Usually it will
be estimated from the training dataset. However, if the size of the dataset is changed, or the Hessién
is estimated from only a part of it, the negative eigenvalues can slightly change, resulting in a different
regularisation and hence different error bars. Also unclear is the effect of the regularised Hessian on the
Jacobian variability estimates.

The numerical accuracy of the implementation also becomes a problem in the light of the issue that the
method has been devised for noisy target data. Hence, if the intrinsic noise variance of the training data
becomes small and the network prediction is good enough so that the covariance matrix of the errors Cy

. ~ —1 .
has very small elements, the average neural uncertainty term GTH ™ G has to be even smaller in order

to re-estimate Cj, with the help of (3.44). Given the regularisation issue, however, I often encountered
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the case that neural uncertainty term was larger than Cp, leading to negative variances in C,,, which
obviously does not make sense. As a simple workaround, the GTH _IG term can be omitted in such
cases, re-estimating Cj,, by setting it to the Cg values, however, such an approach is likely to generate
further uncertainties and 'problems.

Unfortunately, the noise on the target data in my inverse problem is small, and consequently, I was
confronted with this problem during the application of the method to the actual retrieval problem. I will
come back to this topic in chapter 4.

For future investigations, it would be interesting to follow the suggestions of MacKay (1995) and
compare the performance of the training algorithm using a full diagonal A,. with an individual hyperpa-
rameter for each weight to its performance when only a few scalar hyperparameters for distinct groups of
weights are used. For some test runs I observed large fluctuations of sofne elements of A,, and it might
be worth testing whether suppressing such fluctuations can influence the training performance.

In conclusion, it seems to require a'iot of skill and experience with neural networks in order to train a
network well and to interpret the results of the error estimation correctly. Given the training déta density
dependent magnitude of the error bars and the inability of the method to recognise ambiguities, the
usefulness of the uncertainty estimates for the retrieval problem is limited. This is especially true when
considering the numerical problems in the implementation. Nevertheless, the obtained uncertainties will
give a general idea of the certainty in the neural network fit.

The Jacobian and its variability, on the other hand, provide powerful tools to analyse a network.

Hence, at least this part of the uncertainty estimation framework should provide useful results for the

retrieval ANNS.




Chapter 4

Retrieval, Results and Evaluation

In the previous chapters, I presented the theory and design of the forward model and the neural
network techniques to be used in the retrieval algorithm. In this chapter, I will report on the application
of these methods to the actual retrieval. The satellite images of the July 11, 2001, scene as well as the
corresponding LUT setup will be described in section 4.1.

Not all pixels observed by the satellite were overcast. In section 4.2, I discuss the operational MODIS A
cloud mask product and report on problems I encountered with a number of pixels classified as overcast,
but exhibiting BTD values outside the expected range.

The design of the neural network is the topic of sections 4.3 and 4.4. I also discuss how the Jacobian
can be used to analyse the retrieval performance of a given network architecture, present the sensiti{/ity
of the retrievals to cloud top pressure (cf. section 2.6) and check on their physiéal plausibility.

Good results were obtained with a network architecture containing 15 neurons in the hidden layer
that used the brightness temperatures of channels 20 (3.7 ym) and 31 (11 pm), the BTD of channel 31
to 32 (12 um) and surface temperature as inputs. This network’s results will be evaluated in section 4.5
by comparison with the DYCOMS-II in-situ data and an analysis of its Jacobian. I conclude this chapterr

with a discussion of my findings in section 4.6.

4.1 Retrieval Setup

4.1.1 The Test Scene

The satellite image of the test scene was taken by the MODIS instrument aboard NASA’s Terra
satellite at 6:25 UTC on July 11th, 2001,%° corresponding to a local time of 11:25pm PDT (Pacific Daylight
Time). Figure 4.1 shows the BTD(3.7-11), as well as the 11 pm brightness temperature (hereafter BT'(11))
images. The black circles in the BTD(3.7-11) image mark the flight track during this night. The satellite

39In 2001, only the Terra satellite was operational. Hence, no image from Aqua, which would have been approximately
six hours later, was available.
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overpass did not coincide with the in-situ measurements, wﬁich were taken approximately five hours after
the MODIS irhages were recorded. A mean wind speed of about 8 ms~! from the north-west (310°N) was
observed during the flight (Stevens et al., 2003b), so that the clouds within the dashed rectangle shown
in Figure 4.1 (top) have likely been advected into the flight area. They will serve for comparison with the
" in-situ data.

The scene contains two ship tracks, discernible in the BTD(3.7-11), but not in the BT(11) image. This
can be explained by noting the much smaller single scatter albedo in the thermal infrared in Figure 1.8.
This means that the thermal cloud top radiances are mainly a function of cloud emission, and the impact
of the scattering term in (2.8) becomes small. Since the LWP of the cloud stays constant across the ship
tracks, the emission does not change. As noted in Chapter 2, the ship tracks will be used to check on the

physical consistency of the retrieval.

4.1.2 Lookup Table Setup

As discussed in Chapter 2, the forward model requires the input of four variable (refr, N, pet, Tet)
and three fixed (psfe, Vgam, k-value) parameters. These parameters were obtained from the in-situ mea-
surements. During RF02, cloud top effective radii ranged from approximately 8 to 16 um and droplet
number concentrations varied between 25 and 115 cm™3. Cloud top temperature in the flight area varied
only slightly between 284 and 285 K, and a fairly constant cloud top pressure of 939.5 hPa was observed
(not shown). In order to account for a potentially larger variability in the entire satellite scene, the LUT
was generated with effective radii ranging from 3 to 23 pm, cloud top temperatures varying between 280
to 288.5 K, and droplet concentrations ranging from 20 to 200 cm~3. Cloud top pressure was fixed at the
observed value of 939.5 hPa, as was the surface pressure at 1016.8 hPa.

In order to find representative values for k-value and vga.m (cf. section 2.3), I created statistics of the
droplet size disﬁributions that were encountered during the ﬁight. Figure 4.2 shows scatterplots of k-value
(obtained from equation (2.19)) versus height. As noted in section 2.1, the data obtained during RF02
cover only cloud top and bottom. The k-values that are found cover ranges similar to those found by
Pawlowska and Brenguier (2000) during ACE-2 (Figure 2.5). A similar picture was obtained from the
RF03 data (right panel).

Figure 4.3 displays histograms of both k-value and v4qm inferred from the RF0O2 measurements. Since
the radiative transfer through the entire cloud is simulated, I decided to take k as the average of cloud

top and bottom values. From the distributions shown, I chose a k of 0.8. This corresponds roughly to
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Figure 4.1: (Top) Brightness temperature difference (BTD) between channel 20 (3.7 pm)
and channel 31 (11 pm) at 6:25 UTC on July 11th, 2001. The ship tracks have a smaller
BTD than their environment, as expected from Figure 2.11. The black circles mark the flight
track during this night. The in-situ measurements were taken approximately five hours after
the satellite overpass, so that the clouds within the dashed rectangle have likely been advected
into the flight area and will serve for comparison. (Bottom) The same for channel 31 brightness
temperature. Note that the shiptracks are not discernible in this channel.
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Figure 4.2: k-value vs. height as inferred from the DY COMS-II in-situ measurements of (left)
July 11 and (right) July 13, 2001.
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Figure 4.3: Histograms of (left) vgqm and (right) k-value as inferred from the DYCOMS-II
in-situ measurements of July 11, 2001. The black histograms represent cloud top values, the
white ones cloud base values.
Vgam & 26, which I used to compute the Mie tables. Note that these values are considerably larger than
the average values found by Miles et al. (2000).
The optical properties of the overlying atmosphere were computed from the San Diego sounding
displayed in Figure 2.9. The sounding was recorded at 12:00 UTC, also about five hours after the satellite

overpass.

4.2 Cloud Mask

In order to confirm the accurateness of the forward computations, it is important to test how the com-

puted brightness temperatures compare to the observations. If the forward model represents a reasonable
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approximation to the actual clouds, the observed BT /BTD values should lie well inside the ranges defined
by the LUT. However, if BT/BTD values outside the defined ranges are encountered, the corresponding
pixels have to be flagged as “irretrievable”, since the inverse function is not defined for such cases. 40

It is likely that some pixels in the scene will contain clear sky or broken clouds. Multiple scattering
from cloud sides and inhomogeneous mixtures of cloud and clear sky mean that I expect some pixelsv
in these broken regimes to exhibit radiances not reproducible with the plane parallel forward model. A
scatterplot of the forward model computations, overlain with the MODIS observations indeed showed

a large number of outliers (not shown). Hence, the operational MODIS cloud mask product (Ackerman

et al., 1998) was employed to filter the satellite image for fully cloud covered pixels.

4.2.1 MODIS Cloud Mask and Irretrievable Pixels

A simple way to discriminate cloudy from clear sky pixels and the approach used in the studies of |
Pérez et al. (2000), Gonzilez et al. (2002) and Cerdefia et al. (2007) is the spatial coherence method
proposed by Coakley and Bretherton (1982). The algorithm uses information from neighbouring pixels
to assess the spatial homogeneity in the observations. By computing mean BT and standard deviation
from small clusters of pixels (e.g. 2-by-2), homogeheous (i.e. low standard deviation) areas with cold
temperatures are classified as cloudy a‘nd homogeneous areas with warm temperatures as clear.

Since Coakley and Bretherton (1982), several other methods have been proposed to recognise cloudy
pixels in satellite images (Ackerman et al., 1998, and references therein). The operational MODIS cloud
mask product combines several of these methods into one product, selecting amongst a variety of tests
optimised for different underlying surfaces (i.e. water, different land surfaces, ice) and employing several
of the available visible (daytime) and infrared (at day and night) channels. A description can be found
in Ackerman et al. (1998).

The top panel of Figure 4.4 shows a map of the cloud mask for the July 11 scene. The image pixels
are classified into four categories: cloudy, uncertain clear, probably clear, and confident clear.

Application of the cloud mask to the scene significantly reduced the number of points outside the
LUT-defined BT/BTD range. However, after I eliminated all pixels that were not classified as cloudy,
the brightness temperature difference diagrams still contained many outliers (Figure 4.5). As noted in
section 1.5, Baum et al. (2003) also employed the 8.5 pm signal (MODIS channel 29) in their work. As an

unfortunate result, the observed brightness temperatures for channel 29 were entirely outside of the range

40Note that the neural network will still retrieve some values for such undefined inputs, so that it is important to remove
the corresponding pixels from the scene in order to avoid unphysical retrievals.
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Figure 4.4: (Top) MODIS cloud mask product for the scene. All black pixels are classified as
cloudy, the orange (grey in black and white) pixels are uncertain clear, and the white pixels
are probably clear. (Bottom) Cloud mask derived from the BT/BTD range in the LUT (all
observations that are outside the LUT-defined BT/BTD region in Figure 4.5 are marked as
dark red). Note that the MODIS cloud mask has “grown”; are the additional pixels broken
clouds?
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computed by my forward model (Figure 4.6). Currently, [ can only conclude that there is an error in the
forward model, and consequently I will drop channe} 29 from the retrieval scheme. It would, however, be
désirable to investigate the cause of the failure and to include the 8.5 pm information in future retrieval
designs.

Yet what causes the large number of outliers in the remaining channels 20 (3.7 um), 31 (11 ym) and
32 (12 pm) brightness temperatures? The bottom panel of Figure 4.4 shows the scene with all pixels
outside the LUT-defined BT/BTD range removed. The cloud mask basically grows — this could be an

. indication of more broken or otherwise inhomogeneous clouds at the edges of the clear areas.

4.2.2 Possible Failure Mechanisms

There are several possibilities for the failure of the forward model to match the observed brightness
temperatures. Besides inhomogeneous clouds, it is possible that other assumptions in the forward model
do not match the real clouds accurately enough. For instance, the anomalous pixels could contain suba-
diabatic clouds or clouds with a significantly different cloud top height. Effective radii, droplet number
concentrations and temperatures outside the in the LUT ranges seem unlikely. The majority of thé “r-
retrievable” pixels in Figure 4.5 exhibit both a larger BTD(3.7-11) and BTD(11-12) signal than defined
by the LUT, while the BT(11) signal is well inside the computed range. Warmer or colder cloud tem-
peratures would cause the location of the failing points on the BT(11) axis to fall outside the computed
range. Larger 7.5 than defined would cause a larger BTD(3.7-11) signal, but at the same time a smaller
BTD(11-12) observation (cf. Figure 2.11). Since droplet concentration is not a direct input into libRad-
tran (cf. section 2.6), changing droplet concentrations would influence 7.y and 7, the latter of which
would merely displace the BT /BTD points within the defined raﬁges (cf. Figure 2.11).

Another possibility is that the structure of the overlying atmosphere changed with time and location,
so that the sounding recorded at San Diego is not representative for the entire scene. This could also
include the presence of thin high level clouds (cirrus).

In order to investigate the problem of the irretrievable pixels, I analysed the 'pixels along a test line
in an area that included clouds within the LUT-defined BT/BTD range, pixels classified as cloudy by
thé MODIS cloud mask, but outside the defined BT/BTD range, and pixels classified as clear sky by the .
MODIS cloud mask. The line is shown in the bottom panel of Figure 4.4. The capital letters A and C
mark pixels within the LUT-defined BT/BTD range, and B marks a clear sky pixel.

I first tested for broken clouds. Luo et al. (1994) showed that broken clouds exhibit a characteristic
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Figure 4.5: LUT (grey) and MODIS cloud mask filtered scene brightness temperatures. Many

pixels are still outside of the BT range contained in the LUT. These pixels are not defined if a
retrieval network is trained with the LUT data, hence they have to be flagged as “irretrievable”.
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Figure 4.6: The same as Figure 4.5, but for the brightness temperature difference between
channels 29 and 31 (8.5 and 11 pm). Channel 29 BTs are 1-5 K cooler than the MODIS
measurements. Channel 29 hence could not be used for the retrievals.

pattern when the observed 11 um radiances (not brightness temperatures) are plotted against the 12
pum radiances. In particular, if a given area contains clear sky pixels, broken clouds and fully overcast
pixels, the entire set of observations resembles a continuous curve in the diagram between cloudy and
clear pixels. Figure 4.7 shows an 11 versus 12 um radiance plot for the sections from A to B (left panel)
and from B to C (right panel). The section between B and C clearly contains broken clouds. This area
already contains many pixels classified as “uncertain clear” by the MODIS cloud mask product, so that
I conclude that inhomogeneities on the sub-pixel scale are likely to be responsible for the failures.

The other section between A and B, however, does not show the characteristic broken cloud signature
in the radiance plot. Yet a larger number of the pixels along this line are irretrievable. In order to extend
the analysis, I examined the observed BTD(3.7-11) and BTD(11-12) signals (Figure 4.8). Similar to the
radiance plot in Figure 4.7, the observed values cluster around the cloudy and clear foot. The elevated
BTD(3.7-11) signal places almost all points outside of the LUT-defined BT/BTD range (with point A
just at the edge), however, the pixels clustering around the cloudy BTD(11-12) signal are all well inside
the computed range.

A higher cloud top seems to be an unlikely cause of such a behaviour. As noted in Chapter 2, the
differences in the BTD signals due to varying cloud top pressure in the forward model are mainly due to
the change in sea surface temperature produced by the new adiabatic profile (cf. Figure 2.12). However,

the existence of a much warmer Ty, between A and B compared to B and C seems unlikely. Also, both
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Figure 4.7: 11 pm versus 12 pum radiance plots after Luo et al. (1994) for the observations
along the line shown in Figure 4.4. Left panel: the section from A to B, right panel: from B
to C. The solid lines connect the observed radiances at A and B (left) and B and C (right),
respectively, and are only shown as references to the point clouds. The observations between
points B and C follow a typical signature of broken clouds.
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Figure 4.8: BTD(3.7-11) and BTD(11-12) signals of the pixels between points A and B as
shown in Figure 4.4. As in the radiance plot in Figure 4.7, the observed values cluster around
the cloudy and clear foot. It is possible that this behaviour is caused by thin overlying cirrus
clouds.

104



Chapter 4. Retrieval, Results and Evaluation

BTD(3.7-11) and BTD(11-12) would be impacted by such a change.#! Other causes for an increased pe
could be equally thick, but elevated clouds, or geometrically thicker clouds. The first possibility would
not change the optical properties of the cloud, and the second mechanism would merely lead to increased
T and 7eff. -

Baum et al. (1994) and Baum et al. (2003) showed that overlying cirrus clouds lead to an increase
in both the BTD(3.7-11) and BTD(11-12) signal's. They also showed that thin cirrus has relatively small
impact én the BTD(11-12) signal, making thin cirrus a likelly cause of the lookup table failure along
AB. However, in order to give this presumption more confidence, further investigations would have to be
conducted. Also, possible effects of subadiabatic clouds should be examined in the future. For this thesis,

I will continue to work with those pixels that fall within the LUT-defined BT/BTD range.

4.3 Network Training

4.3.1 Network Architecture

As described in Chapter 3, I restricted myself to the two-layer perceptron design. Cerdena et al.
(2007) found that a three-layer architecture exhibited a better generalisation performance in their study,
however, since a two-layer network should already be able to model arbitrary functions (cf. Chapter 3),
the generalisation of the software to three-layer architectures was not a priority of my work.

With respect to the inputs, decisions to be made included whether to provide the satellite observations
as radiances or as brightness temperafures to the network, the inclusion of sea surface temperature as
input, and how the inputs should be preprocessed. Another difficult problem was selecting a good number
of hidden neurons. Aires (2004) used a two-layer perceptron with 30 neurons in the hidden layer in their
example of microwave remote sensing, and as noted in Chapter 1, Cerdefia et al. (2007) employed 20
neurons in the first and five neurons in the second layer. Motivated by these values, the number of hidden
neurons in my architectures will be of the same order of magnitude.

It did not seem feasible within the timeframe of this Master’s thesis to systematically train, analyse
and compare a large ﬁﬁmber of different network architectures in order to find the best possible one.
Instead, after some preliminary try-outs, I selected some architectures that I will present in more detail

in this chapter. These networks yielded the most interesting results. The methods applied to analyse these

41The data in Figure 2.12, computed with a similar cloud top temperature as encountered in the July 11 scene, also
showed that a relatively large increase in pet is necessary in order to increase the BTD(3.7-11) signal (40 hPa between the
solid and dotted curve in Figure 2.12). Also, the resulting relative change in the BTD(11-12) signal is stronger than in the
BTD(3.7-11) signal.
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networks, however, can readily be used for any other network architecturés to beé employed in future work. -
The authors of all works presented in Chapter 1 that investigated the nocturnal retrieval case employed
satellite observations in the form of brightness temperatures, while the daytime retrieval techniques in
general use radiances. In fact, my tests showeci that networks using radiances as inputs were unable
to approximate the inverse function (possibly because channel differences provide the most information
about cloud optical properties — I did not investigate the use of radiance differences as inputs). Therefore,
and in order to stay consistent with the published literature, I chose to use brightness temperatures
instead of radiances as inputs (this also facilitates the analysis of the networks in sections 4.4 and 4.5).
Unfortunately, the training process generally was unstable, as I will discuss in section 4.4. Training of
networks of a given architecture led to very different resul_ts when the weights were initialised differently at
the beginning of the training process — a property that I attribute to the inverse problem being ill-posed
(cf. chapter 3). This is also reflected in a large variability in the Jacobian (see the following section).
Consequently, my goal for this thésis is not to find the best possible architecture, but to show that the
method is working in principle and to demonstrate the use of the Jacobian and other tools to compare

architectures and to evaluate the performance of a given network.

4.3.2 Failure of the Aires et al. Hyperparameter Re-Estimation

The estimation of the matrix hyperparameter A;, also often failed during network training. As
discussed in section 3.7, the neural uncertainty term GTH G in general was L;irger than the error
covariance matrix Cp, leading to negative variances in Cj,. The problem was encountered with both
regularisation methods described in section 3.6.

Aires (2004) pointed out that the estimation of the Hessian H from the training dataset has to be
done with a large enough number of datapoints in order to avoid numerical problems. However, increasing
the number of samples in the LUT from initially 30,000 (20,000 for training and 10,000 for validation)
to 96,000 (64,000 and 32,000, respectively) did not improve the situation (for comparison, Aires (2004)
used 15,000 samples for training and 5,000 for testing, and Cerdefia et al. (2007) 20,000 and 10,000,
respectively). -

The true cause of the failures currently remains unclear. Further research is needed to clarify whether
the modification of the Hessian due to the regularisation is the important factor, or whether the noise
level on the target data in the LUT is too small to be treated with the Aires e£ al. method. As noted in

section 3.1, there is no noise on the target data except for the expected ambiguities. However, as I did
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not investigate the actual magnitude of such ambiguities, I cannot rule out the possibility that they are
small.

Due to these problems I eventually decided to train the networks with the original scéla.r hyperpa-
rameter approach implemented in NETLAB (cf. section 3.2). Using the LUT containing 96,000 datapoints
and the Nabney (2002) eigenvalue regularisation (cf. section 3.6), I was able to estimate a C;, from the
trained network in some cases, although often this strategy failed as well. However, the estimation of the
Hessian and the network gradient were always possible, so that the variability‘of the Jacobian as well as

the neural uncertainty term GTH ™G could be computed.

4.3.3 Input Preprocessing

As discussed in Chapter 3 and expected from the findings of Aires et al. (2004b), correlations among
the input variables were a problem. The observed brightness temperatures of the three employed channels
were all correlated amongst each other with (linear) correlation coefficients larger than 0.8. This lead to
widely varying Jacobians, and it was practically impqssible to obtain a network fit that approximated the
lookup table well. The input data were thus decorrelated and normalised with the whitening procedure

described in Chapter 3, leading to better results.

4.4 Network Architecture: Inputs and Hidden Neurons

4.4.1 Brightness Temperature Differences

Despite the input preprocessing, it appeared to be difficult for the ANNs to infer the brightness
temperature differences from the BT inputs. Especially the close correspondence between the 11 and 12
pm channels seemed to have a negative effect on the stability of the training process. In fact, I was not
able to produce a reasonable fit to the LUT with networks that used BT(11) and BT(12) (12 um BT)
as inputs. To analyse the problem, [ computed the Jacobians of individual points in the LUT in order to
compare the sensitivities to expected values. Figure 4.9 shows the BT/BTD diagrams of a subset of the
July 11 LUT. In addition to the cloud top pressure, cloud top temperature is also held constant at 285
K. The effective radius varies in steps of two microns from 4 pum to 12 um, as in Figure 2.11.

Since all variables are connected with each other in a nonlinear way, it is difficult to assess Jacobian
values visually from the plots in Figure 4.9. Of course, it is possible to compute finite difference deriva-

tives from the LUT. However, finding the required datapoints for a sensitivity estimation constitutes a
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Figure 4.9: Subset of the July 11 LUT. In addition to the cloud top pressure (939.5 hPa), the
cloud top temperature is also held constant at 285 K. Compare visually obtained estimates of

the Jacobian for r.s¢ ~ 8um and BT(11) ~ 288 K to the computed values in Tables 4.1, 4.2

and 4.3. The symbols correspond to the optical thicknesses defined in Figure 2.11.

108




Chapter 4. Retrieval, Results and Evaluation

multidimensional optimisation problem itself. Computing the derivative of an output to a given input,
at least two points have to be found for which the other three inputs are constant. Even with 96,000
datapoints, this was not possible to a good enough accuracy (solving this problem, for instance, with
larger LUTs and interpolation could constitute an important part of future research in this area).

I thus restricted myself to order-of-magnitude estimates from Figure 4.9 where possible. For instance,
for an effective radius of 8 um, if BT(11) is held constant at 288 K, 8r.ss/0BT(3.7) =~ 2.5um/K.
Similarly, 8r.sf/8BT(12) ~ 18um/K. Cloud optical thickness decreases slightly with increasing BT(3.7),
and increases with increasing BT(12) (87/0BT(3.7) ~ —0.5K " and 87/0BT(12) is positive). If all cloud
parameters are held constant, an increase in surface temperature will lead to a similar increase in cloud top
temperature (cf. Figure 2.9). Since the cloud in question is thin (7 = 1.3), the surface temperature signal
is expected to be “visible” through the cloud, so that 87.:/3Tsf. ~ 1. Likewise, T, should depend on
BT(11) and BT(12); for thicker clouds, these two inputs almost entirely determine cloud top temperature
(cf. section 4.1 and Figure 2.9).

Table 4.1 shows the Jacobian estimated with the entire LUT trained network at the discussed coor-
dinates of ¢ ~ 8um and BT(11) ~ 288 K. The ANN contained 30 neurons in the hidden layer, and in
addition to BT(3.7), BT(11) and BT(12) also used surface temperature as an input (the T fe input will
be discussed shortly). The variability was obtained by computing the Jacobians of 10,000 samples from

the weights distribution, as described in section 3.5.

Table 4.1: Point estimate of the Jacobian of a network containing 30 neurons in the hidden
layer and using BT(3.7), BT(11), BT(12) and T,y. as inputs. Note the large variability of
the Jacobian, indicating an ill-posed problem. Furthermore, the dependences on BT(11) and
BT(12) are large and of opposite sign.

Oress [ — [wm/K] 0T/ — [K/K] or/—[K™'|

OBT(3.7) 0.22+4.72 —0.07+£158 —1.10+9.83
oBT(11) —20.16 £+ 20.92 —0.78+£7.38 —-4.83+34.53
OBT(12) 19.11 £ 21.67 0.75 £+ 8.30 556 £ 37.12

Oy 1.18+3.37 1.09+£1.27 0.47+6.05

Two features are particularly noticeable. First, there is a large variability in the computed values (i.e.
uncertain network fit), especially in the dependences on BT(11) and BT(12). Second, the dependences on
these two channels are large and of opposite sign. Since BT(11) and BT(12) are so highly correlated, this
behaviour models the dependence on the differences between the two channels (since BT(11) and BT(12)

will always change by approximately the same value). However, the large values make the retrieval very
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sensitive to noise in the inputs, and there is no reason why they could not be much smaller or of the same
sign but slightly different magnitude.

Large and opposite sign sensitivities for at least one output could be observed for all ANNs trained
with BT(11) and BT(12) inputs (although the magnitude of the dependences and variability varied,
depending on the minimum that was found in the weights error surface), and the performance of the

networks was very sensitive to the initialisation of the weights and the number of hidden neurons. In

an attempt to make the training process more stable, I replaced the BT(12) input with the BTD(11-12)

signal, which indeed improved the training performance. It is worth noting that a similar replacement of
the BT(3.7) input by the BTD(3.7-11) signal did not lead to comparable improvements.

The empirical Jacobian reported by Cerdena et al. (2007) (cf. Chapter 1) shows the same behaviour of
opposite signs, but with smaller magnitudes (although they compute a scene-averaged Jacobian, whose
values should not be compared with the point estimate given in Table 4.1). Their network seems to
perform well (although no results are given in the paper); hence I conclude that in general it is possible
for the ANN to model the correct dependences from the “raw” BT inputs, but that using the BTD(ll—lZ‘)

input improves the stability in the training process.

4.4.2 Three Input Networks

A different question was whether surface temperature, as used in all previous studies, is a necessary
input. Pérez et al. (2000) argued that T, is necessary in order to compute the upwelling cloud base
radiation, and Cerdefa et al. (2007) added that the effects of water vapour in the atmosphere can be

accounted for by using clear sky BTs of all input channels. I prescribe the optical properties of the

overlying atmosphere and the effects of subcloud water vapour are connected with the cloud parameters

through the adiabatic model. However, it is true that three variables are not enough to uniquely specify
an adiabatic cloud in my forward model. If cloud top pressure is held constant, four more parameters
are needed to compute a profile (for instance, cloud top T, r.fs, liquid water content and either surface
pressure or temperature). Nevertheless, since surface temperature does not belong to the direct satellite
measurements, it was worth testing the behaviour of the networks if no Ty, input is used.

The retrieval attempts using three inputs were not successful. Figure 4.10 shows scafter plots of the
target variables in the LUT (cloud top 7esf, T and 7) versus ANN predictions, for both a three input
network and a four input input network that made use of T} fcl. Such scatter plots provide a good way

for visualising whether the network is able to approximate the target data in the training or validation
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database. If the network predictions are perfect, the plbts will take the shape of a straight line. The wider
the scatter around this line, the worse is the fit. Obviously, intrinsic noise on the target data also creates
scatter.

The plots in Figure 4.10 lead to the conclusion that the three input network is not able to produce
good predicti.ons of ress and T, only 7 is predicted reasonably well. The ANN that produced the displayed
results had 30 neurons in the hidden layer, but varying this number did not improve the performance.

Nevertheless, in order to ensure that the wide scatter is not caused by ambiguities in the LUT and
that the four input network possibly overfits the data, I applied the three input ANN to the actual scene.
The retrieval results of cloud top temperature and cloud optical thickness are shown in Figure 4.11.
While the optical thickness retrieval shows the expected signature of optically thicker clouds along the
ship tracks, the tracks are also discernible in the temperature retrieval, exhibiting a higher temperature
than their environment. This is not the expected physical behaviour — the aerosol particles contained in
the ship exhaust should not influence the cloud temperature. Furthermore, many of the retrieved droplet
sizes were negative (not shown).

A curious feature of all trained networks is that they are able to retrieve optically very thick clouds
from the LUT. Due to the saturation effect discussed in section 1.5 I had expected that target optical
thicknesses above a certain threshold would be retrieved as the threshold value. It is currently unclear
if there actually is enough information in the input data to infer the large optical thicknesses or if the
networks are overfitting in this case. Since the scene of July 11, 2001, does not contain clouds with
(retrieved) 7 larger than about 6, no anomalies can be found in the retrieval (cf. section 4.5). However,

this behaviour should be further investigated in the future.

4.4.3 Four Input Networks

The scatter_plots of the four input network in Figure 4.10 showed that including Ty, as an input
significantly improves the ability of the network to fit the lookup table well. In contrast to Cerdena et al.
(2007), I used the actual surface temperature as a single input, not the clear sky brightness temperatures
of all three employed channels. Using Tss. as an input at first seems to be a significant restriction to

" the usefulness of the retrieval, since clear sky pixels are not always available in the near vicinity of
the clouds whose pfoperties are to be retrieved. However, sea surface temperature retrievals are also
possible from microwave imagers such as the Advanced Microwave Scanning Radiometer for the Earth

Observing System (AMSR-E; Kawanishi et al., 2003) on-board the Aqua satellite (which also carries the
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Figure 4.10: Training performance of a three input network (left column) employing the
BT(3.7), BT(11) and BTD(11-12) signals, compared to a four input network (right column)
additionally making use of surface temperature. The scatter plots show the target data, as
contained in the validation database, plotted against the corresponding network predictions.
It is clearly visible that three inputs are not enough to approximate the inverse function.
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Figure 4.11: Retrievals of cloud top temperature (top) and visible cloud optical thickness
(bottom) of the three input network from which the scatter plots on the left side of Figure 4.10
were produced. The ship tracks are discernible in the T,; retrieval, which is not the expected
physical behaviour.
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Figure 4.12: Mean-square-error of the validation dataset for the four input ANN (BT(3.7),
BT(11), BTD(11-12), Tss.) in dependence of the number of hidden neurons. The networks were
trained with four hyperparameter re-estimation cycles, each |Wi‘ch 1500 optimisation steps.

éecond MODIS instrument). Such retrievals are largely iﬁdependegt of cloud cover, since clouds are semi-
transparent in the microwave. For this study, I used the Ts¢. measurements taken during the DY COMS-11
research flight. On July 11, 2001, the surface temperature was approximately 19°C.

The next open question was how many hidden neurons are needed to approximate the inverse function
well without adding too many degrees of freedom to the training process. As mentioned above, the work
by Aires (2004) and Cerdeiia et al. (2007) suggested that a number on the order of 30 neurons should be
sufficient. T thus trained a number of ANNs with different numbers of hidden neurons ranging from five
to 100, and compared the MSE of the validation data. Figure 4.12 shows the decrease of the error with
an increasing number of hidden neurons..

However, the curve is deceptive — the conclusion that a 100 hidden neurons network performs better in
the retrieval than a 15 hidden neurons network proved wrong. In fact, from all networks that were trained
the most physical plausible results were obtained from the one containing 15 neurons in the hidden layer,
~ although its MSE was higher than that of other networks. As noted in section 3.1, models of a higher
complexity (i.e. a larger number of hidden neurons) are more susceptible to overfitting. However, the
Bayesian regularisation in the training pro.cess should effectively prevent overfitting to noise in the target
data (cf. section 3.2), and as noted above, there seems to be little noise in the LUT. Instead, I assume
that the described behaviour, too, has to be attributed to the ill-conditioning of the inverse problem — if

a network contains more hidden neurons, there exist more possibilities to map the inputs to the target
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data. More possible mappings also mean a larger number of possible dependences, hence it becomes more
likely that a physically incorrect dependence is modelled. It is th”us especially in this case important to
find a network with a good degree of complexity (cf. section 3.1).

In order to investigate the problem, I selected two networks — 15 and 30 neurons in the hidden layer,
referred to as 15N and 30N hereafter — and analysed some of their properties.4? Although 30N produced
a better fit to the LUT (lower MSE), the retrieval of the July 11 scene yielded many unphysical results
(for instance, negative optical thicknesses).

Tables 4.2 and 4.3 show point estimates of the Jacobian at refs = 8um and BT(11) ~ 288 K, as
in Table 4.1, for 15N and 30N. The most striking difference is the much larger variability in the 30N
Jacobian, indicating that a less well-defined minimum in the weights error surface has been found. This
increases the probability of an incorrect mapping. Furthermore, while the sensitivities of r.ss to the four
inputs are similar for both networks (and at least Oresr/ 8BT(3.:7) is in the expected range), those of
T.; and 7 are different. For instance, as expected, 15N retrieves a good part of the T, output from the
BT(11) signal. 30N, on the other hand, infers cloud top temperature almost exclusively from the surface

temperature input (since the variation in BTD(11-12) is so small).

Table 4.2: The same as Table 4.1, but for a network containing 15 neurons in the hidden layer
and using BT(3.7), BT(11), BTD(11-12) and Ty, as inputs (referred to as 15N in the text).

Ores [ — lpwm/K] 0T/ —|K/K] or/—I[K™]

&BT(3.7) 204+1.03 —04240.75 —0.78+1.26
&BT(11) —3.36+£1.22 045+1.34 0374150
&BTD(11-12) —6.47+£3.30 —3.324234 5314417
OTese 1.35 4+ 0.36 1.04+061  0.49+0.41

Table 4.3: The same as Table 4.1, but for a network containing 30 neurons in the hidden layer
and using BT(3.7), BT(11), BTD(11-12) and Ty, as inputs (referred to as 30N in the text).

Oress [ — lpm/K] 0T/ —|K/K] or/—[K™}|

&BT(3.7) 1934432  —015+146 —2.05+10.33
8BT(11) ~3.194+5.90 007+253  1.80+16.08
&BTD(11-12) ~71141501  —1.20£7.21 —11.96 £ 38.32
OTsse , 1.34 4 2.60 1.084+1.20 0.50 & 7.71

Since, as noted above, I do not have further independent estimates available for comparison, I cannot

42The networks discussed here were trained with three hyperparameter re-estimation cycles with 1500 optimisation steps
each, unlike the networks that were used to produce Figure 4.12.
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judge how reasonable the remaining sensitivities are. In order to gain more insight into the response of
the two networks, I analysed the sensitivity of the retrieval to changes in cloud top pressure (or to the
pressure difference between cloud top and sea surface, cf. section 2.6). This is important because of the
sensitivity of the computed brightness temperature differences to changes in cloud top pressure in the
forward model, as discussed in section 2.6. Since p.: is fixed in the LUT, it is necessary to know about
the retrieval response to changes in this parameter. Of course, in the forward model, changes in p.; will
cause changes in the other cloud properties through the adiabatic assumption. It is hence quite possible
that for a cloud with a different p.; encountered in the scene a cloud of similar thickness, particle size
and temperature, but different cloud top pressure is contained in the LUT and the desired parameters
can be retrieved correctly. Nevertheless, a sensitivity analysis can provide further insight.

This sensitivity of the retrieval to changes in p.: cannot be determined with the Jacobian, since cloud
top pressure is not an input variable. I thus repeated the forward model runs that produced the subset
of the training LUT plotted in Figure 4.9, but this time the cloud top pressure was changed by % 5 hPa.
Figures 4.13 and 4.14 show scatter plots of the forward propagation of these datasets through 15N and
30N, in both cases compared to the results obtained with the original LUT, fixed at a cloud top pressure
of 939.5 hPa.

While the sensitivity of effective radius and cloud top temperature is relatively small and of similar
magnitude for both networks (& 2 pm for r.;y and + 0.5 K for T¢;), the retrieved optical thickness
of the 30N network changes drastically with changes in cloud top pressure (up to + 4) — in contrast
to 15N, where the 7 retrieval is much less sensitive. Indeed, for higher cloud tops (decreased pc;), 30N
infers negative optical thicknesses for thin clouds. This behaviour might be a possible mechanism for the
unphysical 30N retrievals.

Of course, the point estimates of the Jacobian presented in Tables 4.1, 4.2 and 4.3 can only be used
to evaluate the sensitivity of the retrieval in the selected area of the LUT. Histograms of the Jacobian,
on the other hand, can provide information on the range in which the sensitivity varies over the entire
LUT or a given scene. Figure 4.15 shows such histograms of the 15N Jacobian over the database from
which Figure 4.9 was created. As expected from Figure 4.9, the sensitivities vary significantly, with the
larger magnitudes likely corresponding to the thick and fhin clouds.

A possible application of the Jacobian histograms could be to identify pixels for which the retrieving
network exhibits an unreasonably large sensitivity. The retrieval could thus be further constrained to

pixels for which the sensitivity is in the expected range.
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Figure 4.13: Sensitivity of 15N predictions if cloud top pressure (fixed in the LUT) is varied by
+ 5 hPa. In the right column, predictions of the unperturbed subset of the training LUT plotted
in Figure 4.9 are shown. The left column shows the same network-predicted cloud parameters
from LUT subsets in which p.; was perturbed by +5 hPa (grey) and -5 hPa (black). See text
for more details.
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Figure 4.14: The same as Figure 4.13, but for the 30N network.

118




Chapter 4. Retrieval, Results and Evaluation
illlllllllll I|||| i I|,..;. il “l R ¥
-15 -1 -05 0 30 -20 -10
[um]) / d(BT20 [KD d(T [K]) / d(BT20 [K]) d(t) / d(BT20 [K])

lmllmm.llllllu.dl

-60 40 =20 0
d(r [p.m])/d(BT31 [K])

.d(T [K]) / d(BT31 [K])

“l'll.l'llllllll.l-l [——
0 20 40 60
d(t) / d(BT31 [K])

—150 -100 —50
d(r [pm])/d(BTD3l 32 [K])

d(T [K]) / d(BTD31-32 [K])

N i ||
600 —400 -200 0
d(t)/ d(BTD31-32 [K])

llll. N PR

20 40 6
e (Mm]) / d(T  [K])

l ull |Il|||||||||.l.,.._
0

d(T [K]) /d(T, [K])

|.. T, = ll.llllll"l
—40 -30 -20 -10
&1 T, KD
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4.5 Retrieval Evaluation, Jacobian and Uncertainty

4.5.1 Comparison with In-Situ Data

As discussed in the previous section, the 15N network yielded the best retrieval performance. In this
section, I will analyse the retrieval by comparing the results to the RF02 in-situ data (cf. section 2.1)
and by checking the physical plausibility. Figure 4.16 shows a map of the retrieved r.;; values, along
with a histogram of the cloud top measurements from RIF02 and a histogram of the retrieved values in
the area. Since the in-situ measurements were taken about five hours after the satellite overpass, the
measured values have been advected and are plotted over the clouds that likely have been observed from
the aircraft.

By comparing against advected data I assumed that the clouds in question did not change over the
five hours. Also, I assumed that the wind speed and direction at cloud level were constant at the values
measured from the aircraft at the time the in-situ measurements were taken. While the cloud layer is
both extensive and horizontally homogeneous (so that changes in wind speed and direction still advect
clouds with similar characteristics), changes due to the diurnal cycle and precipitation are possible. The
cloud top was likely lower earlier in the diurnal cycle when the MODIS image was taken (cf. section 1.2),
however, the in the LUT employed cloud top pressure is probably underestimated (I used the aircraft
altitude just below cloud top), thereby offsetting this change to some extend. Precipitation, on the other
hand, was significant during RF02 (Stevens et al., 2003a, Figure 6), hence, it represents a possible source
of uncertainty.

As noted in section 2.1, the DYCOMS-II data were averaged over 10 s intervals in order to yield
measurements on the 1 km scale of the MODIS pixels. Due to the time lag between satellite and in-situ
observations and the uncertainty in the advection, no collocated observations were possible. I hence chose
distributions of the retrieved parameters within the box shown in Figure 4.16 and in-situ measured values
from the cloud top flight tracks of RF02 as the means for comparison. Unfortunately, the selected area
contains a large number of “irretrievable” pixels.

The range of the retrieved effective radii corresponds well to the range of the in-situ measured values,
both ranging from about 8 um to about 16 pum (Figure 4.16b,c). The shape of the distribution, however,
does not agree as well. Whereas the retrieved effective radius peaks at both about 9.5 and 13 pm, the
aircraft measured values are more uniformly distributed, with several small peaks and one larger peak

located at 11 pum. A possible cause for these discrepancies are changes in the structure of the cloud
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layer between the satellite and in-situ observations as described above. Also, pixels in the vicinity of
“irretrievable” pixels might still be influenced by the mechanisms that cause the anomalous pixels, e.g.
overlying cirrus. Furthermore, sea surface temperature was assumed to be constant in the scene. As I
will show at the end of this section, the uncertainty in the neural inversion (GTI~{ -IG’, cf. section 3.3)
is on the order of 2 um in the selected area; however, as discussed below, the usefulness of this value is
questionable.

Nevertheless, the retrieved values look physically plausible. The ship tracks are clearly discernible with
a decreased particle radius of about 2 pm smaller than particle sizes in the environment of the tracks,
which is in the expected range (Schreier et al., 2006). The radii retrieved for the remaining scene also
look reasonable for marine stratocumulus (values ranging from 5 to 15 pm, some structure present, but
no abrupt changes).

Similar results are obtained for cloud top temperature, shown in Figure 4.17. As expected, the ship
tracks are not discernible in the temperature retrieval. Instead, the cloud deck has temperatures varying
only slightly between values of about 284 K and 286 K, with smooth transitions and no abrupt changes.
The range of the retrieved temperature agrees well with the in-situ measurements, and for this variable
the shape of the distribution also agrees well.

The optical thickness of the clouds can only be judged by physical plausibility, since values of 7 cannot
be inferred from the in-situ measurements along the horizontal flight legs. As Figure 4.18 shows, values
of 7 vary from less than 1 to about 5, all reasonable values for marine Sc. The ship tracks are thicker by

about one to two compared to their environment, and the majority of the clouds are thin (7 < 2).

4.5.2 Jacobian

In section 4.3, I introduced the application of point estimates of the Jacobian to compare the ANN
sensitivities with independent estimates. However, the information in the Jacobian can also be used in
different ways to analyse the retrieval network. As noted in section 1.5, Aires et al. (2004b) investigated
whether a PCA (principal component analysis) preprocessing of the input data can reduce the variability
in the Jacobian. To obtain a variability representative of the entire retrieval scene, they computed an
average Jacobian and its variability from all pixels contained in the scene. Furthermore, they normalised
this mean Jacobian by the standard deviations of the input data (over the retrieval scene) to gain
information about the relative importance of the individual inputs. They argue that the normalised

Jacobian can be used to refine the inversion procedure by identifying inputs that do not contribute
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Figure 4.16: Retrieved effective radii for the test scene and comparison of retrieved (15N
network) and aircraft measured values. The ship tracks are discernible with smaller droplet
sizes than their environment. In-situ measurements of two cloud top flights have been advected
and overlain on the retrieved data. Due to the uncertainty in the advection and the large
number of irretrievable pixels in the flight area the histogram of in-situ data is compared to a
histogram of the surrounding retrieved values.
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Figure 4.17: The same as Figure 4.16, but for cloud top temperature.
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Figure 4.18: The same as Figure 4.16, but for cloud optical thickness. Note that for the
optical thickness no in-situ measurements were available.

significantly to the outputs (which could consequently be eliminated).

Table 4.4 shows the average Jacobian of the July 11, 2001, scene. The values are similar to those
found for the point estimate in Table 4.2. On average, the dependence of r.fs to BT(11) is smaller than
in Table 4.2, 87/0BT(11) is larger and Orefs/0Tsc and 07/90T 5. are very small. Cloud top temperature

is similarly dependent on both Tis. and BT(11).

Table 4.4: Average Jacobian of the July 11, 2001, scene and its variability (15N network).
Oress/ — [wm/K] 0T/ — [K/K] o1/ —[K™]

OBT(3.7) 1474132  —022+056 —0.94+1.53
8BT(11) ~1.23+1.37 0.56+£0.80  1.07+1.69
OBTD(11-12) 7754611  -239+232 —524+7.86
8Firs —0.16 + 0.54 062+043 —0.0440.82

The normalised mean Jacobian is listed in Table 4.5. The standard deviations of BT(3.7), BT(11)
and BTD(11-12) were obtained from the satellite data, while that of Ts. was estimated from the RF02
measurements. The normalisation leads to some interesting results. Effective radius is indeed mainly
determined by the BT(3.7) signal, while its dependence on BTD(11-12) becomes more relative. Cloud

top temperature still is equally dependent on both BT(11) and T'y., which also contribute most to this
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output (BTD(11-12) is less significant). Tss. contributes very little to both r.;s and 7, so that this input

likely is mainly needed for a correct T, retrieval (cf. Figure 4.11).

Table 4.5: The same as in Table 4.4, but normalised by the standard deviation of the inputs.
This allows for a better judgement of the importance of the individual inputs. The standard
deviation of the surface temperature input has been estimated from the DY COMS-II measure-
ments.

Oresr/ — [pm] 8T/ —I[K] or/—[1]

OBT(3.7) 2.36 -0.35 ~151
&BT(11) ~1.82 0.91 1.74
&BTD(11-12) ~1.34 —0.42 —0.92
8Ty s -0.20 0.78 —0.04

When inferring information about the importance of individual inputs from an averaged Jacobian,
it is important that the average indeed is representative of the scene. To verify the representativeness
of the Jacobian given in Tables 4.4 and 4.5, [ computed histograms of the individual sensitivities of all
pixels in the scene, as was done for the LUT subset in Figure 4.15. The histograms for the July 11 scene
are displayed in Figure 4.19. The average Jacobian values correspond well with the most often occurring
sensitivities, so that the relative Jacobian in Table 4.5 indeed gives a good idea of the information content
of the individual inputs.

The last useful representation of the Jacobian that shall be discussed in this thesis is its spatial distri-
bution, as shown in Figures 4.20 and 4.21 for effective radius and cloud top temperature, respectively. The
spatial distributions of 8ress/IBT(3.7) and dr.;; /GBTD(11-12) in Figure 4.20 show a coherent picture.
The absolute magnitudes of both sensitivities decrease across the ship tracks, which is expected from
Figure 4.9 due to the increased space between the curves for clouds with effective radii of approximately
10 x and optical thicknesses of about 3. Similarly, the sensitivities for the thin clouds in the area that
served for comparison with the in-situ data exhibit a much larger absolute magnitude — consistent with
the converging lines in Figure 4.9 for thin clouds.

A curious feature is that the negative dependence of T, on BT(3.7) decreases in magnitude with
increasing 7 (Figure 4.21, cf. Figure 4.18). At 7 ~ 3.5, the dependence becomes positive. At the same
time, the positive 8T,;/BT(11) decreases with increasing 7. This sensitivity is largest for thin clouds.
This behaviour can likely be attributed to the transition between thin clouds that influence the surface-
emitted radiation very little and thick clouds that emit approximately as black bodies in the thermal

infrared.

125



Chapter 4.

Retrieval, Results and Evaluation

;Lm]) / d(BT20 [KD

—O 5 0.5 =2 -1 0 1
d(T [K]) / d(BT20 [KD) d(t) / d(BT20 [K])

[Hm]) / d(BT31 [K])

...,,,|||||l!| |.~ ..mlllmll..

0 0.5 1 0 05 1 1.5 2
d(T [K]) / d(BT31 [K]) d(t) / d(BT31 [K])

=20 -10 0
d(l’cﬂ_ [um]) / d(BTD31-32 [K])

-4 2 0

-10 =5 0
d(T [K]) / d(BTD31-32 [K]) d(t) / d(BTD31-32 [K])

0 1
d(rcff [um)) / (T, [K])

,--I lll-.,_ lllh ,,,,, —
04 06 08 1 12 —0.2
d(T [K]) 7 d(T [KD d(m) / d(T [K])

Figure 4.19: Histograms of the 15N Jacobian of the July 11, 2001, scene. The average values
as listed in Table 4.4 are highlighted by the black lines.
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Figure 4.20: Spatial distribution of the sensitivity of the effective radius retrieval to changes
in BT(3.7) (top panel) and BTD(11-12) (bottom panel) on July 11, 2001 (15N network).
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Figure 4.21: The same as Figure 4.20, but for the sensitivity of cloud top temperature to

changes in BT(3.7) (top panel) and BT(11) (bottom panel).
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Since p.; was held constant in the LUT, the dependence of T¢; on Tis. should be approximately 1
for very thin clouds (r < 1) — the cloud layer has little impact on the radiances, and due to the linear
temperature decrease with height changes in T, lead to immediate changes in T¢;. The sea surface also
approximately emits as a black body in the infrared (cf. the subcloud layer in Figure 2.10), thus the
dependence of T,; on BT(11) is also expected to be close to 1. Indeed, the sensitivity of T¢; on Ty, is
also largest for thin clouds (not shown).

If the clouds have reached an optical thickness large enough to emit approximately as black bodies
at 11 uym (e.g. 7 =~ 43 in the right panel of Figure 2.10), 8T,;/0BT(11) is again expected to be about
1. In between, however, BT(11) is influenced through absorption in the cloud. Independently of T¢;, the
optically thicker the cloud, the smaller BT(11) as the cold cloud top becomes more opaque (cf. the left
panel of Figure 2.10, with 7 &~ 4). Similar effects are expected to impact the BT(3.7) signal.

While I cannot verify this argumentation from the BT/BTD diagrams computed from my LUT (cloud
top temperature is fixed in all plots), the corresponding plot by Pérez et al. (2000) in Figure 1.9b confirms
the dependence of T,; on BT(11) for thick clouds (note that the surface temperature is constant in this
plot). This example shows how valuable the Jacobian is in interpreting the behaviour of the retrieval ANN.
Since the creation of diagrams similar to Figure 4.9 but for varying T¢; is straightforward, I recommend

a more detailed analysis of the spatial distribution of the Jacobian in the future.

4.5.3 Uncertainty

Although the estimation of the intrinsic noise covariance matrix C;,, failed during the training process,
the neural uncertainty term GT H~'G could still be computed and provides an estimate of the uncertainty
in the retrieval due to the weights distribution. Figure 4.22 shows maps of the uncertainty (standard
deviation computed from the variance in the diagonal elements of the matrix) for effective radius and
cloud optical thickness. The uncertainty in r, s¢ (7) ranges from less than 1 pm (1) in the area of the
ship tracks to more than 2 um (4) in the upper left corner of the scene.

However, based on my findings in Chapter 3, I question the usefulness of these uncertainty estimates.
The larger uncertainty in the upper left corner of the scene is correlated with neither of the retrievals —
there are no significantly larger or smaller effective radii, warmer or colder or optically thicker or thinner
clouds in this area than in the remainder of the scene. As discussed in section 3.7, ambiguities in the LUT
cannot be recognised by the neural network. Hence, the only reason for the increased uncertainty would

be a lower data density of the type of clouds occurring in the area in question in the LUT — possibly
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the setup of my forward model caused the cloud type in the upper left corner of the scene to be more
sparsely represented in the LUT compared to the other clouds in the scene. Further research is needed

to clarify the meaning of the uncertainties.

4.6 Further Developments

In this chapter, I analysed the retrieval results of the 15N network because it yielded the most
plausible retrieval performance. As noted, it did not produce the smallest MSE. Given the instabilities
in the training process, it is likely that the same network architecture, trained from a different weights
initialisation would not perform as well. I hence attribute the relatively good results to “luck” rather than
a well functioning method. It is likely that a network containing a larger number of hidden units could
also approximate the inverse function correctly. Possibly such a network would produce a smaller MSE
and exhibit an improved retrieval performance. However, given that the inverse problem is very ill-posed,
more hidden neurons imply that it becomes more difficult to find the correct mapping.

Due to the various problems I encountered, I was not able to give ultimate answers to the questions
that arose in this thesis. Instead, the work that I presented should be taken as a first step to find a good
and reliable network architecture suited for the given inverse problem. I demonstrated the high potential
of neural networks for application in remote sensing, and explored several techniques that can be used to
construct a stable retrieval scheme. However, my work also showed the need for further investigations.

Given the results presented in this chapter, I propose, in roughly descending order of importance, to

continue work in the following areas:

Stabilisation of the Jacobian In order to make the training process less dependent on the network
architecture and the initialisation of the weight values, it is necessary to decrease the variability
in the Jacobian and make the problem less ill-conditioned. The PCA approach suggested by Aires
et al. (2004b) is not useful for this problem, since it involves reducing the number of inputs — feasible

only if a large number of inputs are involved.

Krasnopolsky (2007) notes alternative methods that aim at obtaining a Jacobian with a low uncer-
tainty for data assimilation purposes, such as training a separate ANN to represent the Jacobian.
However, while such methods might be able to provide a good estimate of the physical Jacobian,
they say nothing about the Jacobian of the retrieval network. In his work, Krasnopolsky (2007)

suggests an approach based on ensembles of ANNs. Several networks of the same architecture are
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Figure 4.22: Spatial distribution of the uncertainty in the effective radius (top panel) and
optical thickness (bottom panel) retrievals, as computed from the neural uncertainty term
GTH™'G.
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trained using differently perturbed initial conditions for the ANN weights, so that each network will
likely exhibit different weight values after the training. The average of all networks is then used to

predict the outputs and estimate the Jacobians.

Of course, such an approach implies increased computational effort for the network training. How-
ever, since the number of inputs cannot be reduced in my retrieval problem, the method could lead

to improvements.

Optimisation of the Network Architecture Once the Jacobian is more stable, the network architec-
ture can be optimised. This can be continued to be done by training a restricted class of architectures
and comparing both their validation MSE and retrieval performance. For comparison, it might be
worthwhile to test whether three-layer networks, such as employed by Cerdefia et al. (2007), perform
better than the two-layer architectures used in this thesis. An alternative for ﬁnding the optimal
number of hidden units would be to adopt the genetic algorithm approach proposed by Cerdena

et al. (2007). Also, Bishop (1995, Chapters 9 and 10) discusses further model selection tools.

In my work, I restricted the number of training cycles during network training due to the high
computational cost. However, if a stabilised Jacobian allows for a more structured exploratibn of
different network architectures it should be ensured that the training process is long enough to find

the global minimum in the weights error surface.

Retrieval Evaluation The retrieval evaluation can be extended and improved in several ways. First,
it would be desirable to compute accurate point estimates of the physical Jacobian from the LUT,
as discussed in section 4.4. This would significantly increase the usefulness of ANN-estimated point

Jacobians.

Next, the comparison. of retrieved and in-situ observed values by means of histograms is not very
satisfactory. More work should be invested into applying the retrieval to other scenes — possibly in
which satellite overpass and in-situ measurements are closer together. The DYCOMS-II campaign
provides further scenes, as does the EPIC campaign (Bretherton et al., 2004). In addition to the
in-situ data, the ANN retrievals could also be compared to precedent and subsequent daytime

retrievals from independent sources (e.g. the operational MODIS product).

Also, it would be useful to know precisely what caused the irretrievable pixels. If computed correctly
in the forward model, the 8.5 um channel could help to identify high clouds (Baum et al., 2003),

and the operational MODIS algorithms also provide information about cloud height (Ackerman
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et al., 1998).

For comparing the obtained retrieval results with those of other nighttime retrieval schemes (e.g.
Cerdena et al., 2007) and for estimating the true impact of the cloud layer on the upwelling thermal
flux, it would be desirable to implement the computation of the 11 pm optical thickness into the

forward model.

Sensitivities to Assumptions in the Forward Model It is also important to explore the sensitivi-
ties of >the retrieval to the assumptioné made in the forward model. A sensitivity study to k-value
and Vgem (cf. sections 2.2 and 2.3) is difficult, since in érder to determine the precise effects, for each
new value a new LUT would have to be computed in the current setup, and a new network would
have to be trained. However, it would be possible to compute the changes in the computed TOA
BTs due to changing k and vgam, and to estimate the impact on the retrieval via the Jacobian. The
same is valid for the sensitivity of the retrieval to subadiabatic clouds, and the impact on TOA BTs

caused by broken cloud regimes should also be investigated.

In my forward model, I assumed that the satellite is directly above the cloud (cf. section 2.6). In
many cases, this might not be a good assumption (in fact, I did not check whether it was fulfilled in
the July 11 case). Hence, if a sensitivity analysis shows a large impact of a slanted radiation path
on the BTs observed by the satellite, the satellite zenith angle should be considered in the forward

model.

Overlying Atmosphere In order to make the retrieval independent of a prescribed overlying atmo-
sphere, the optical properties of the OA could be introduced as variable parameters t* and B*, such
as suggested in section 2.5. Given the ease of including additional inputs into the ANN architecture,
an alternative could be to obtain independent estimates of the water vapour path in the atmosphere
(cf. section 2.5) and use it as an additional input. The network could then automatically infer the
bulk absorption effects. Also, it could be investigated how much information is gained if the bright-
ness temperatures of the clear sky pixeis are obtained for all channels, such as done by Pérez et al.

(2000) and Cerdeiia et al. (2007).

Uncertainties and Ambiguities It would be interesting to check whether the type of cloud in the
upper left region of the scene is actually underrepresented in the LUT, as discussed in section 4.5.
This information could help to refine the forward model so that the data density is similar for all

types of clouds.
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It is unsatisfying that the Aires et al. (2004a) method is not able to recognise ambiguous situa-
tions. Another analysis of the LUT should be performed to estimate the actual magnitude of the
occurring ambiguities and to determine the regimes in which they occur (for instance, thin clouds
vs. thick clouds). In order to incorporate the uncertainty due to ambiguities into the retrieval, I
propose the following. First, if we consider the ambiguities as being a part of the intrinsic noise, we
could discretise the input space and compute localised noise matrices C/,, (where ’ indicates the
localisation). By assuming that the network mapping is correct, the covariance matrix of the errors
C} in the selected input area could be used to approximate C,, (thereby either ignoring the neural

. . . . . . 1
uncertainty term, or, if stable enough, considering localised versions of GTH G as well).

An alternative could be to employ a different network architecture known as mizture models (Bishop,
1995, Chapter 6). Mixture models are able to compute multimodel output distributions; they are
therefore not restricted by the Gaussian assumption as the Aires et al. (2004a) method (cf. sectioh
3.3). While this could represent an approach with a high potential to improve some of the difficulties
encountered in my work, the Bayesian methods applied in this thesis could not be directly applied

to mixture models. Hence, this approach would require an increased effort.

A comprehensive uncertainty estimate requires the combination of the errors of all contributing
sources. If the above problems are solved, such an estimate can be obtained by combining network
uncertainty, ambiguities, uncertainties due to assumptions in the forward model and instrument

noise of the MODIS instrument, which can be converted to output error with the Jacobian.

Aires et al. Implementation Finally, Chapter 3 raised many questions concerning the implementation

-and application of the Aires et al. (2004a) method. Whether we can improve the unsatisfying need

to regularise the Hessian and whether the problems with the hyperparameter re-estimation can be

solved are issues that should also be addressed in the future.
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Summary

In this thesis I have investigated the feasibility of retrieving cloud top effective radius, cloud optical
thickness and cloud top temperature of nocturnal marine stratocumulus clouds by inverting infrared
satellite measurements using an artificial neural network.

In Chapter 1, I described the scientific context of my work. Marine Sc play a critical role in the
exchange of energy and water in our climate system. However, processes that are involved in cloud-
atmosphere interaction and their representation in general circulation models remain some of the primary
uncertainties in global climate modelling. Observational data that can shed light on regional variations in
cloud microphysical and optical properties, their diurnal cycle and the interaction of clouds, precipitation
and aerosols is important for further progress in the accurate representation of marine Sc in climate and
weather models.

A few studies have investigated the nocturnal retrieval problem and shown that it is possible to infer
cloud properties from the information contained in the infrared channels centred at 3.7, 8.5, 11.0 and
12.0 pum. However, problems with the standard optimisatioﬁ approach to these retrievals include high
computational cost and a lack of consistent error estimates. The aim of this study was to use neural
networks to design a retrieval method that is both fast and able to give such uncertainty estimates.
The fundamental idea behind this approach is to approximate the inverse of the forward function that
describes the dependence of top-of-atmosphere radiances on cloud parameters with a neural network
architecture that is capable of solving nonlinear regression problems.

Cerdena et al. (2007) were the first to use neural networks to invert nocturnal measurements of
the AVHRR instrument. The objective of this study was to extend their approach by investigating
the applicability of methods proposed by Aires (2004) and Aires et al. (2004a,b) — allowing for the
estimation of uncertainties and sensitivities — to the problem, to apply the retrieval scheme to noctufnal
measurements of the higher resolution MODIS instrument, and to compare the retrieved values to in-
situ measurements obtained during the DYCOMS-II field campaign off the coast of California. My focus

lay on the uncertainty in the retrieval, and on what we can learn from retrieval sensitivities. My initial
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work included the construction of a forward model capable of computing top-of-atmosphere brightness
temperatures for varying cloud parameters and the implementation of the Aires et al. method.

The topic of Chapter 2 was the theory and implementation of the forward model. The scene of July
11, 2001, was chosen for the retrieval, and the in-situ aircraft measurements obtained on that day were
used for the development of the forward model and the evaluation of the retrieval performance. The
scene contains a number of ship tracks that provide contrasting droplet sizes which were used to check
the physical consistency of the retrieval.

The clouds were modelled as adiabatic plane parallel cloud layers in the forward model and the droplet
size distribution was described by a modified gamma distribution. Comparisons of idealised adiabatic
profiles and size distributions with in-situ measured data showed good agreement. The radiative transfer
model libRadtran (Mayer and Kylling, 2005), which incorporates the multiple scattering code DISORT
(Stamnes et al., 1988) to solve the radiative transfer equation, was used to compute cloud top radiances.
To account for the spectral intervals of the MODIS instrument channels, I implemented correlated-k
code developed by Kratz (2001) into libRadtran. Gaseous absorption and emission above cloud top were
accounted for by incorporating average transmission and emission properties of the atmosphere obtained
from radiosonde soundings. The forward model proved capable of reproducing relationships between cloud
top brightness temperature differences and cloud parameters that were previously described by Baum
et al. (1994) and Pérez et al. (2000).

In Chapter 3, I further explored theory and implementation of the method proposed by Aires (2004)
and Aires et al. (2004a,b). The method ideally provides estimates of the uncertainty arising from both
the neural network fit to the inverse function and the intrinsic noise inherent in the data, as well as the
variability in the Jacobian that is due to the network fit. The Jacobian, describing the sensitivities of
the outputs with respect to the inputs, is particularly important for analysing the dependences of the
network fit in order to ensure that the network models the “correct” function. Its variability indicates
how ill-conditioned the regression problem is, a common problem with inverse problems that makes it
difficult to find a good approximation to the inverse function.

Unfortunately, I encountered several difficulties with the Aires et al. method that limited its usefulness
for the retrieval problem. Initial tests with simple examples showed questionable results, with uncertainty
intervals often not including the true value. For instance, the method was not able to recognise ambigu-
ities that were expected to occur in the lookup table. Furthermore, numerical problems involved in the

estimation of the Hessian matrix of the network in some cases led to a failure in the estimation of the
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uncertainty due to the intrinsic noise in the data and questionable results for the uncertainty due to the
network fit. The estimation of the Jacobian and its variability, however, proved promising.

In Chapter 4, I applied the methods described in Chapters 2 and 3 to the retrieval scene. A lookup
table consisting of 96,000 cloud profiles with varying effective radius, droplet number concentration and
temperature was computed. Parameter ranges were obtained from the in-situ measurements, and, for
simplicity, cloud top and surface pressure were held constant at the observed values. An average droplet
size distribution width representative of the night was determined from the measurements. The brightness
temperatures and cloud parameters in the lookup table weré used to train different architectures of
neural networks. I explored several configurations with different inputs and numbers of hidden units in
the network and compared their results based on training error, sensitivities and physical plausibility. I
restricted myself to network architectures containing one layer of hidden neurons.

The major results of the retrieval investigations can be summarised as follows:

o Comparison of the computed brightness temperatures to those observed by MODIS showed that a
large number of observations were outside the computed range. Many of these “irretrievable pixels”
could be attributed to broken clouds and clear sky pixels; for the remaining pixels I found indications

of overlying cirrus clouds.

o Unfortunately, the computations of the 8.5 um brightness temperatures did not agree with the
observations. An error in the forward model seemed to be the likely cause, hence, the corresponding

channel could not be used in the retrieval.

e The uncertainty estimation of Aires et al. (2004a) failed for all networks trained from the lookup
table. It is possible that there was only little intrinsic noise in the lookup table, which could have
amplified the numerical problems noted above. While I was able to obtain uncertainty estimates

due to the network fit with a regularised Hessian, I question the usefulness of the obtained values.

e The brightness temperatures at 3.7, 11 and 12 um alone were not sufficient for retrieving effective
radius, cloud optical thickness and cloud temperature. All networks employing only these inputs

showed unphysical results in at least one output variable.

e The Jacobian and its variability proved to be a valuable tool for analysing the networks. Point
estimates of the network Jacobian were compared with estimations of the physical Jacobian obtained
from the lookup table, the average Jacobian of the satellite scene gave information about the average

information content of the network inputs and the ill-conditioning of the problem, and maps of
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the Jacobian showed the spatial distribution of the sensitivities and were interpreted for physical

plausibility.

¢ Obtaining a good network fit to the inverse function proved to be a highly ill-conditioned problem.
This led to a very unstable learning process and the high variability in the Jacobian made it difficult

to find a network modelling the expected dependences.

e Almost all network architectures exhibited unphysical behaviour in at least one output variable.
This included networks employing sea surface temperature as an additional input to the satel-
lite observations and networks employing brightness temperature differences instead of brightness

temperatures as inputs.

o A network that predicted reasonable results employed the brightness temperatures at 3.7 and 11
um, the brightness temperature difference between 11 and 12 um and sea surface temperature as
inputs and included 15 units in the hidden layer. Satellite image and in-situ measurements were
recorded with a five hour difference; histograms of advected cloud properties with histograms of
the in-situ measurements showed good agreement of cloud top temperaturé, ranges of observed and
retrieved effective radii also agreed well. Retrievals of all three retrieved parameters were physically

plausible, as was the Jacobian.

I have demonstrated that if is feasible to use artificial neural networks for the retrieval of nocturnal
marine stratocumulus properties. My results are promising in as far as that despite the difficulties I
encountered a good agreement between retrieved and observed data was obtained. In particular the
Jacobian proved to be a very valuable tool that has not been employed in the investigations of other
authors. However, further refinements and analysis of the method are required. I discussed open questions
and suggested areas for continuing work in the conclusions of Chapter 4.

In conclusion, I believe that it is essential to improve the ill-conditioning of the inverse problem
in order to achieve a more stable training f)rocess and improved retrieval results. My work provides a

foundation for future work, but further research is required to provide a reliable, stable method that can

provide accurate uncertainty estimates.
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Appendix A

Implementation of the Aires et al.

Method in Matlab

A.1 Modified Netlab Functions

Table A.1 lists all NETLAB functions that were modified for this study. About half of the functions
implementing MLPs in NETLAB had to be modified in order to accommodate the matrix hyperparameters
A;n and A,., and some additional functions were implemented as well. However, only the most important

changes and implementation details will be discussed in this appendix.

A.2 Main Loop: mlatrain

The implementation of Algorithm 3.1 in mlatrain is straightforward. Following the NETLAB design,
the network is stored in a structure net (cf. Nabney, 2002). It is trained using the generic NETLAB

function netopt:
net = netopt(net, options, x, t, 'scg');

The covariance matrix Cp is computed from the network predictions (evaluated with mlafwd) and the

target variables by using the MATLAB function cov:

y = mlafwd(net, x);
epsilon =y — t;
CO = cov(epsilon)

~ . - 1
Next, G and H are computed using mladeriv and mlahess, and (GTH G) is evaluated:

G = mladeriv(mnet, x);

[hess, hdata] = mlahess(net, x, t);
invhess = inv(hess);

GHGavg zeros (net .nout );

for n = 1 : ndata
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Table A.1: List of NETLAB functions that were adapted or created in order to accommodate
the matrix hyperparameters A;, and A, (cf. Nabney, 2002, Table 5.1).

original function new function function changes
mlp mla create two-layer MLP scalar  hyperparameters
have been replaced by the
matrix ones
mlpbkp mlabkp backpropagate error gra- none
dient through network
mlpderiv mladeriv evaluate derivatives of none
network outputs with ‘
respect to weights
mlperr mlaerr evaluate error function implementation of (3.22)
instead of (3.24)
mlpfwd mlafwd forward propagation none
mlpgrad mlagrad evaluate error gradient full backpropagation with
matrix hyperparameters
mlphdotv mlahdotv evaluate the product of R{ -}-algorithm has been
the Hessian with a vector  adapted to the new error
function
mlphess mlahess evaluate the Hessian ma- use full covariance matrix
trix A, instead of
mlppak mlapak combine weights and bi- none
ases into one parameter
vector
mlpunpak mlaunpak separate parameter vector none
into weight and bias ma-
trices
— mlatrain implementation of Algo- —
rithm 3.1
— mlarescale normalise input or target —
variables
— mlareverserescale undo the rescaling of —
mlarescale
— mlajacob evaluate the Jacobian ma- —
trix
— mlajacobcheck verify the Jacobian matrix —

mlajacobuncertainty

with finite differences
compute the uncertainty
in the Jacobian matrix
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Gn = squeeze(G(n, :, :));
GHG = Gn’ * invhess * Gn;
GHGavg = GHGavg + GHG;
end
GHGavg = GHGavg / ndata;

Finally, the hyperparameters are re-estimated following equations (3.44) and (3.59):

Cin = CO0 — GHGavg;

net.Ain = inv(Cin);
w = netpak(net);
nevalpha = (ones(net.nwts, 1) — diag(net.Ar).xdiag(invhess)) ./ w’."2;

net.Ar = diag(newalpha);

A.3 Gradient Computation with Backpropagation: mlagrad

The derivative of the error function with respect to the weights is needed by the optimisation algorithm
and is computed in mlagrad. The function is based on the method of error back-propagation (Bishop,
1995, Section 4.8). In short, the total error function is decomposed into error terms of the individual

patterns of the training dataset, so that

OF _ 5 aEf. : A

The error E™ depends on the weight w;; through the summed input a; = >, wj;2; to unit j, hence we

can write
where the notation
5 = 86’3: (A3)

has been introduced and a; = Y, wj;2; has been differentiated to give da;/0w;; = z;. Since the inputs

z; to a particular unit are known, the s have to be computed. For the output units,

OE™
S=9 A4
e =3(a0 5 (A.4)

(since yx = g(ax)), whereas Bishop (1995) shows that for the hidden units

§;=g'(a;) Y wk;6k. (A.5)
k
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Since the error derivatives of the hidden units depend on the ds of the output units, the algorithm is
called back-propagation.
The derivative of the output activation function in our case is §’(ay) = 1 for the output units, since

§ is a linear function. For the in NETLAB implemented sum-of-squares error function (3.23),

X3 1 ¢ n 3
Er =) k-1, (A.6)
k=1
the output Js evaluate to
5k=3yk 2'2"2‘(yk—tk)=yk—tk- (A7)

However, for the Aires error function (3.22),

n_l n_ gn\T A n n L T
) —2(y ") A (¥ t)+2Nw A, w v (A.8)

(where the weights term has been divided by N to express its contribution to the error of a single pattern

n), the derivative with respect to the weights becomes

OE" _ 0Fp da;  10Bw

= . A9
a’w]'i 8aj Bwﬁ N awj,‘ ( )
The weights term can be evaluated directly to give
oE 7]
Voo = {we AT w,} = A, (A.10)

ow, ow,

where all weights are considered to be a vector with a single index. The data term is computed with

back-propagation, leading to the output ds

_ BEB _ 8 1 n n ki n n
o = Buc _ Our {5 (ye —tx) A (' — 1) (A.11)
= AP (yr —17). (A.12)

Here, the property that A;, is symmetric has been used.

The above equations can be implemented in a few lines in MATLAB:

delout = (y — t) * net.Ain;
gdata = mlabkp(net, x, z, delout);
v = mlapak(net);
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gprior = w * net.Ar;
g = gdata 4 gprior;

First, all §; are computed with (A.12). Then the data term of the error gradient is computed with

back-propagation (mlabkp) and the weights term (A.10) is added.

A.4 The Hessian with the Pearlmutter R{-}-Algorithm:
mlahess, mlahdotv

Nabney (2002) uses an algorithm derived by Pearlmutter (1994) to compute the Hessian matrix of
the network. The idea is to use an efficient algorithm to compute the product v7 H of a vector v with
the Hessian, and to evaluate the full Hessian by using a sequence of unit vectors that each pick out one

column of H. Pearlmutter uses the notation R{-} for the operator vTV, so that
vTH =+TV (VE) = R{VE}. (A.13)

His derivation, a summary of which can be found in Bishop (1995, Section 4.10.7), leads to two expressions

for the derivative of the error function with respect to the first and second layer weights, respectively:

R{aﬁi} — R{S;}a (A.14)
R{aaj;} — {6}z + Rz}, (A.15)

where the s are the standard back-propagation expressions given by (A.4) and (A.53). As was the case

for mlagrad, the NETLAB implementation had to be adapted to the new §;. Using (A.12),

R{&} = R{AL(w—t)} (A.16)
= R{Afu}-R{ALt} (A.17)
=0
= R{AP}u+ AUR {w} (A18)
=0
= ARR{u}. (A.19)
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Together with the results

R {aj} = Z VjiZy (A20)
R{z} = g'(a;)R{as} (A.21)
Riye} =

Zwij{Zj} + ZUijj (AQQ)

R {6;} 9" (a;)R{a;} > wii0k + g’ (a;) Y vk;0k + g’ (a5) Y wi;R {6k} (A.23)
k k k

(see Bishop, 1995, Section 4.10.7), the algorithm is implemented in mlahdotv. Again, all dzs in (A.19)

can be evaluated in one vector:
rdel = ry * net.Ain;

In mlahess, the data Hessian part of the total Hessian given by (3.27) is evaluated using mlahdotv, then

the weights part A, is added:

for v = eye(net .nuts);
hdata(find(v),:) = mlahdotv(met, x, t, v);
end

h = hdata + net.Ar;

A.5 The Jacobian and its Distribution: mlajacob,
mlajacobuncertainty

As Nabney (2002, Chapter 5) notes, the Jacobian matrix for a two layer MLP can be computed with
Oy M

Jki = %— = Zwkj (1 - 2]2) Wi, (A24)
1 J=1

which is based on a tanh hidden unit activation function. The implementation of (A.24) in mlajacob is
straightforward. Following Nabney’s radial basis functions implementation (Nabney, 2002, Section 6.4.2),

I used the shortcut ¥j; = (1 — 212) wj;, leading to

[y, z, a] = mlafwd(net, x);

for n = l:ndata
Psi = (ones(net.nin, 1)*(1—z(n, :)."2)).*net.wl;
jac(n, :, :) = Psi #% net.w2;

end
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Note that the function returns a three dimensional array which contains the Jacobian for each individual
input pattern.

The Aires et al. (2004b) technique to estimate the variability in the Jacobian (see section 3.5) is
implemented in mlajacobuncertainty. Samples from the weights distribution are generated with the
MATLAB STATISTICS TOOLBOX function mvnrnd, which returns random samples from a multivariate
Gaussian distribution (here, according to (3.30), the most probable weights vector w™ is used as the

. . . . =1 . .
mean of the distribution and the inverse Hessian H ~ is the covariance matrix):

invH = inv(H)
wnp = mlapak{net);
wsamples = mvnrnd(wmp, invH, nsamples);

For each of these weights samples, the Jacobian is computed and averaged over all input patterns =™:

mjac = zeros(nsamples , net.nin, net.nout );
for i = l:nsamples

neti = mlaunpak(net, wsamples(i,:));

jac = mlajacob(neti, x);

mjac(i, :, :) = squeeze(mean{jac));
end

Eventually, the mean and standard deviation of all mean Jacobians are computed and returned:

meanjac = squeeze (mean(mjac ));
stdjac = squeeze (std(mjac)));

A.6 Normalisation of Input and Output Variables

The functions mlarescale and mlareverserescale implement the normalisation methods mentioned
in section 3.6.1. mlarescale implements the simple linear rescaling (3.61):
nrm.mean = mean(D);
nrm.norm = std(D);

RD = D — (ones(ndata, 1)*nrm.mean);
RD = RD ./ (ones(ndata, 1)*nrm.norm);

All variables v]* are passed as a matrix D and processed all at once.

Whitening, the more sophisticated linear rescaling method (3.62), is also implemented in mlarescale:

nrm.mean = mean(D);

nrm.sig = cov(D);

[evU, evlL] = eig(nrm.sig);
nrm.evU = evU;

nrm.evL = evL;
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RD = D — (ones(ndata, 1)*nrm.mean);
RD (evL"(—.5) * evU’ % RD’)’;

The corresponding code to reverse both these rescaling methods is implemented in mlareverserescale.

A.7 Implementation Difficulties: Regularisation of the Hessian
and Numerical Symmetry

While working with the implementation of the Aires et al. algorithm, I encountered two difficulties.
One of them has been discussed in section 3.6.2, the positive definite character of the Hessian. The Nabney

(2002) method is implemented at the corresponding places in the mla* routines:

[hess, hdata] = mlahess(net, x, t);
[evec, evl] = eig(hdata);
evl = evl .x (evl > 0);
hdata = evec * evl x evec
hess = hdata + net.Ar;

»

Another problem I encountered while working with my implementation is that the Hessian matrices
that are computed (and consequently their inverses) are not completely numerically symmetric, as would
be expected. This means that due to numerical inaccuracies in MATLAB, the elements h;; of the Hes-
sian follow h;; = hji + €, with € being a small vperturbation. Such small errors can amplify consider-
ably when the matrices are multiplied with other matrices. Furthermore, the function mvnrnd used in
mlajacobuncertainty expects a numerically symmetric covariance matrix. However, the issue is easily

resolved by copying one half of the matrix into the other half where needed.
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