15105

APPLICATION OF K-Ar AND FISSION-TRACK DATING TO THE METALLOGENY OF PORPHYRY AND RELATED MINERAL DEPOSITS IN THE CANADIAN CORDILLERA
by

PETER ALLEN CHRISTOPHER
B.Sc., State University of New York at Fredonia, 1966
M.A., Dartmouth College, Hanover, New Hampshire, 1968

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
in the Department of

Geological Sciences

We accept this thesis as conforming to the required standard

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of

The University of British Columbia Vancouver 8, Canada

Date \qquad

ABSTRACT

This study evaluates the concept of metallogenic epochs as it applies to porphyry mineral deposits of the Canadian Cordillera, extends the study of the age of porphyry mineral deposits into northern British Columbia and the Yukon Territory, evaluates the usefulness of the fission-track dating method in determining the age and history of porphyry mineral deposits, and demonstrates the usefulness of an Ar^{40} total vs \%K isochron plot.

Samples were obtained from six areas in the Canadian Cordillera: the Syenite Range and Burwash Landing area in the Yukon Territory and Cassiar area, Adanac Property, Granisle Mine, and Copper Mountain area in British Columbia. Apatite was separated from the samples for use in fission-track analysis, and co-genetic biotite or hornblende was separated in order to obtain K-Ar checks on the fission-track ages.

A comparison of fifteen apatite fission-track ages with $\mathrm{K}-\mathrm{Ar}$ ages demonstrates that the apatite fission-track method can be used to age date porphyry mineral deposits, however the $\mathrm{K}-\mathrm{Ar}$ method is generally more suitable in terms of cost and reliability. Discordant apatite fission-track and biotite K-Ar ages obtained from the Copper Mountain area and Granisle Mine suggest that apparent apatite fission-track ages from highly altered rocks or thermally complex areas should be checked by using another dating method (e.g. K-Ar).

Radiometric dating of the Cassiar Molybdenum, Adanac, Mt. Reed and Mt. Haskin porphyry mineral deposits in northern British Columbia suggests that the Early Tertiary metallogenic epoch for porphyry depasits in central Rritish

Columbia and south-eastern Alaska, can be extended through northern British Columbia.

Post-Eocene intermittent subduction of the Juan de Fuca plate below Vancouver Island and transverse motion along the Fairweather-Queen Charlotte-Shakwak-Denali Fault system with subduction into the Aleutian Trench are consistent with present plate-tectonic theory and the distribution of postEocene calc-alkaline igneous rocks in the Canadian Cordillera. If porphyry mineral deposits form in calc-alkaline igneous rocks above active subduction zones, then the youngest porphyry deposits in the Canadian Cordillera should occur west of the Fairweather-Queen Charlotte-Shakwak-Denali fault system, on Vancouver Island and in the Cascade Mountains. The relatively young 26.2 m.y. biotite K-Ar age determined for the Burwash Creek porphyry west of the Shakwak Trench in the Yukon Territory is consistent with the evolution of porphyry mineral deposits above an active subduction zone.

Comparison of $\mathrm{K}-\mathrm{Ar}$ ages obtained for this study with published $\mathrm{K}-\mathrm{Ar}$ ages suggests that metallogenic epochs for porphyry mineral deposits in the Canadian Cordillera occurred at approximately $195 \mathrm{~m} . \mathrm{y}$. and $150 \pm 10 \mathrm{~m} . \mathrm{y}$. for deposits of the plutonic and volcanic porphyry classes; and at approximately $100 \mathrm{~m} . \mathrm{y} ., 80 \mathrm{~m} . \mathrm{y} ., 65 \mathrm{~m} . \mathrm{y} ., 50 \mathrm{~m} . \mathrm{y} ., 35-40 \mathrm{~m} . \mathrm{y}$. and $26 \mathrm{~m} . \mathrm{y}$. for deposits of the phallic porphyry class.

ACKNOWLEDGMENTS

Support for this study was provided through grants to Drs. A.J. Sinclair and W.H. White from the National Research Council of Canada and the Geological Survey of Canada. The writer was supported by teaching assistantships and a university fellowship from the University of British Columbia.

The writer appreciates the assistance and co-operation of mining companies involved in exploration in northern British Columbia and the Yukon Territory. G. Brett (Brettland Mines), R. Oddy (Imperial Oil), W. Sirola (Kerr Addison Mines), G. Lamont (Della Mines), and G. LeCheminant (Amax Exploration Inc.) were especially helpful.

Several geologists employed by the British Columbia Department of Mines and by the Geological Survey of Canada provided helpful discussions of the geological settings of porphyry deposits in the Canadian Cordillera. Dr. V.A. Preto and N.C. Carter (B.C. Dept. Mines) and Drs. H. Gabrielse and J.W.H. Monger (Geological Survey of Canada) were especially helpful.

The late Drs. J.A. Gower and W.H. White were instrumental in stimulating the writers interest in porphyry mineral deposits of the Canadian Coridillera. Their advice and encouragement contributed greatly to this study.

Drs. A.J. Sinclair, H.R. Wynne-Edwards, A.E. Soregaroli and W.F. Slawson made suggestions for improvement of the original manuscript. Drs. A.J. Sinclair and H.R. Wynne-Edwards supervised the study.

Geophysics helped with useful discussion and advice. Miss Yvonne Colasanti, Mr. G. Cargill, Mr. B. Ryan, and Mr. J. Blenkinsop were especially helpful. Mr. J.E. Harakal supervised the potassium and argon analyses.

CONTENTS

Page

1. INTRODUCTION
1.1 SCOPE 1
1.2 PORPHYRY MINERAL PROPERTIES STUDIED 3
2. POTASSIUM-ARGON DATING
2.1 INTRODUCTION 7
2.2. K-AR METHOD 8
2.3 GRAPHICAL INTERPRETATION OF K-AR DATA 11
2.4 APPLICATION OF ISOCHRON METHOD 14
2.4.1 Ar^{40} total vs $\% \mathrm{~K}$ Isochrons 17
Case I. Cape Breton Whole-Rock Samples Case II. Tulameen Complex Hornblende Samples
2.5 SUMMARY 21
2.6 EVALUATION OF ISOCHRON METHOD 22
3. FISSION TRACK DATING
3.1 INTRODUCTION 23
3.2 FISSION TRACK METHOD 24
3.2.1 Procedure 25
3.2.2 Flux Determination 27
3.3. EVALUATION OF FISSION TRACK METHOD 28
3.4 PRESENTATION OF DATA 32
3.5 DISCUSSION OF FISSION TRACK RESULTS 34
3.6 COMPARISON OF K-AR AND FISSION TRACK DATING TECHNIQUES 37
3.7 SUMMMARY AND CONCLUSIONS 40

Page

4. AREAS STUDIED

4.1 INTRODUCTION 42
4.2 SYENITE RANGE, YUKON TERRITORY 42
4.2.1 Introduction 42
4.2.2 General Geology and Geochronology 42
4.2.3 Radiometric dating 44
4.2.4 Discussion 44
4.3 CORK (BURWASH CREEK) Cu-Mo PROSPECT 45
4.3.1 Introduction 45
4.3.2 Potassium-Argon Results 48
4.3.3 Fission Track Results 48
4.3.4 Discussion 50
4.4 NORTHERN BRITISH COLUMBIA 51
4.4.1 Introduction 51
4.4.2 Cassiar Area 55Cassiar Molybdenum PropertyMt. Haskin Mo and Mt. Reed Mo-W PropertiesDiscussion
4.4.3 Atlin Area 58Adanac Mo Property
4.5 GRANISLE MINE, BABINE LAKE AREA, BRITISH COLUMBIA 60
4.5.1 Introduction 60
4.5.2 Potassium-Argon Dating 60
4.5.3 Fission Track Dating 62
4.5.4 Discussion 62

Page
4.6 COPPER MOUNTAIN AREA, BRITISH COLUMBIA 63
4.6.1 Introduction 63
4.6.2 General Geology 63
4.6.3 Fission Track Dating 66
4.6.4 Summary $\quad 68$
5. REVIEW OF METALLOGENY AND METALLOGENIC EPOCHS FOR PORPHYRY MINERAL

DEPOSITS OF THE CANADIAN CORDILLERA 69
5.1 INTRODUCTION 69
5.2 METALLOGENY AND METALLOGENIC EPOCHS 69
5.3 TECTONIC SETTING 71
5.4 AGE DATING AND METALLOGENIC EPOCHS 77
5.5 PLATE TECTONICS AND METALLOGENY OF PORPHYRY MINERAL DEPOSITS

85
6. CONCLUSIONS 88

REFERENCES 93
APPENDIX A. DESCRIPTION OF SAMPLES USED FOR K-Ar AND FISSION TRACK AGE DETERMINATIONS 104

APPENDIX B. POTASSIUM-ARGON DATING
B. 1 PROCEDURE 110
B. 2 PRECISION AND ACCURACY 110
B. 3 ATMOSPHERIC CONTAMINATION 112
B. 4 APPLICATION OF Ar 40 (rad.) vs \%K ISOCHRONS TO PUBLISHED DATA 112
B.4.1 Guichon Batholith 112
B.4.2 Topley Intrusions 116
B.4.3 Summary 116

APPENDIX C. FISSION TRACK DATING 118
C. 1 Introduction 118
Page
C. 2 Procedure 118
APPENDIX D. TABLE OF PUBLISHED K-Ar AGES REVIEWED FOR THIS
REPORT 132

LIST OF TABLES

		Page
Tàble 1-1	Classification of deposits studied.	6
2-1	Potassium-argon analytical data (ages obtained for this study).	9
2-2	Isotopic abundance of potassium and argon.	10
2-3	Analytical data and ages of Cape Breton whole rock samples.	18
$2-4$	Analytical data and ages of hornblende from Tulameen Complex.	18
3-1	Fission track analytical data and ages.	33
4-1	Fission-track and K-Ar ages obtained for granitic rocks in the Syenite Range, Yukon Territory.	45
4-2	Fission-track and K-Ar ages obtained for granitic rocks in the Burwash Landing area, Yukon Territory.	49
4-3	Fission-track and K-Ar ages obtained for granitic rocks in northern British Columbia.	54
4-4	Fission-track and $K-A r$ ages for granitic rocks in the Copper Mountain area, British Columbia.	68
B-1	Potassium-argon data for Guichon Creek Batholith.	113
B-2	Potassium-argon data for the Topley Intrusions.	114
$\mathrm{C}-1$	Frantz separation settings for desired mineral separation.	120
C-2	Etching techniques used for materials studied.	125
C-3	Etching conditions for fission-track counting.	124
D-1	Published K-Ar ages referred to in this report.	132

LIST OF FIGURES

		Page
Figure 1-1	Location map of areas studied.	5
2-1	Isochron plots for quartz latite porphyry near Burwash Creek, Yukon Territory.	15
2-2	Isochron plots for Mt. Reed and Mt. Haskin porphyries.	16
2-3	Total and corrected Ar^{40} vs \%K isochrons for whole-rock K-Ar data.	19
2-4	Comparison of Ar^{40} total isochron with Ar^{40} corrected isochron diagram for $\mathrm{K}-\mathrm{Ar}$ hornblende data from the Tulameen Complex, British Columbia.	20
3-1	Graphical comparison of apatite fission-track and biotite potassium-argon apparent ages.	35
3-2	Track-loss curves for epidote, sphene, and apatite.	38
4-1	General geology and geochronology of the Syenite Range, Yukon Territory.	43
4-2	General geology and geochronology in the Burwash Landing area, Yukon Territory.	47
4-3	General geology and geochronology of the Cork prospect.	. 47
4-4	General geology and geochronology in the Cassiar area, B.C., Mt. Haskin Mo property and Mt. Reed Mo-W property	
4-5	General geology and geochronology in the Atlin area and of the Adera Claims - Adanac Mo property.	53
4-6	Geochronology and general geology of the Granisle Mine pit.	61
4-7	General geology of the Copper Mountain area, British Columbia.	64
5-1a	Tectonic setting of porphyry mineral deposits in the Canadian Cordillera ($49-52^{\circ} \mathrm{N}$).	72
5-1b	Tectonic setting of porphyry mineral deposits in the Canadian Cordillera ($52-56^{\circ} \mathrm{N}$).	73
5-1c	Tectonic setting of porphyry mineral deposits in the Canadian Cordillera ($56-64^{\circ} \mathrm{N}$).	74

LIST OF PLATES

Plate 1	Microphotograph showing spontaneous fission-tracks in standard apatite sample Me/G-1.	128

$\begin{array}{lll}\text { Plate } 7 & \begin{array}{l}\text { Microphotograph showing central part of a recticle } \\ \text { used for measuring area from which track count } \\ \text { was obtained. }\end{array} & 130\end{array}$

1. INTRODUCTION

1.1 SCOPE

The purpose of this study is to investigate the age of porphyry mineral deposits in northern British Columbia and southwestern Yukon Territory, and wherever possible, to compare the relatively new fissiontrack method with the well-known potassium-argon method.

In addition to dating samples from northern British Columbia and the Yukon Territory, where only reconnaissance radiometric dating is available, samples previously dated by the potassium-argon method were obtained from the Copper Mountain area, Brenda Mine and Granisle Mine to compare apatite and (or) sphene fission track ages for these samples.

The isochron method is applied to potassium-argon data obtained for this study and published potassium-argon data from the Topley Intrusions and Guichon Batholith to evaluate the effect of excess initial argon on potassium-argon age determinations. A new Ar^{40} total vs \%K, method of plotting isochrons is presented and evaluated.

Finally, the concept of metallogenic epochs is evaluated for porphyry and related mineral deposits in the Canadian Cordillera in the light of the age determinations reported and the new global tectonics.

Six samples from the Burwash Landing area and six samples from the Cassiar area were collected by the writer during the 1969 field season. A sample from the Granisle Mine and ten samples from the Copper Mountain area were obtained from the British Columbia Department of Mines. A sample of coarse alaskite from the Adanac Mine was obtained from W. Sirola of Kerr Addison Mines and two samples of quartz monzonite from the Syenite Range were collected for the writer by C. Godwin and K. Dawson of Atlas Exploration.

Biotite, hornblende, apatite, sphene and zircon were separated from the samples for dating. A sphene concentrate from quartz diorite at Brenda Mines was provided by Dr. W.H. White. Fifteen biotite K-Ar ages, two hornblende $\mathrm{K}-\mathrm{Ar}$ ages and fifteen apatite fission-track ages were determined by the writer at the University of British Columbia in geochronology laboratories of the Departments of Geological Sciences and Geophysics.

Parts of this study have been published:
Christopher, P.A., White, W.H., and Harakal, J.E., 1972a. K-Ar dating of the 'Cork' (Burwash Creek) Cu-Mo prospect, Burwash Landing area, Yukon Territory. Can. J. Earth Sci., 9, pp. 918-921.

Age of molybdenum and tungsten mineralization in northern British Columbia. Can. J. Earth Sci., 9, pp. 1727-1734.

Christopher, P.A., 1972. Metallogenic epochs for "porphyry type" mineral deposits in the Canadian Cordillera (Abstr.). In Proceedings of the 9th. Annual Western Inter-University Geological Conference, Vancouver, B.C. p. 15. , 1973. Application of apatite fissiontrack dating to the study of porphyry mineral deposits. Can. J. Earth Sci., 10, May, in press.

1.2 PORPHYRY MINERAL PROPERTIES STUDIED

The term porphyry copper refers to large low-grade copper deposits that are spatially, temporally and genetically related to porphyritic intrusive rocks. Porphyry mineral deposits in the Canadian Cordillera include mineral deposits of copper, molybdenum and (or) tungsten with one or more of these metals of economic interest.

Sutherland Brown (1972) suggested that the porphyry deposits of the Canadian Cordillera have the following unifying characteristics:

1) Porphyry deposits consist of pervasive primary mineralization sparsely distributed in fracture or veinlet stockworks, breccias, or disseminations that are intimately related to porphyritic plutons.
2) Mineralization and alteration are distributed in porphyry or host in zonal patterns.
3) Plutons may be formed from magma of either granitic or syenitic affiliations.

Sutherland Brown used variation within these unifying characteristics to classify porphyry deposits as: 1) phallic, 2) volcanic and 3) plutonic porphyry deposits. The criteria used to classify a porphyry deposit are: 1) size and shape of pluton, 2) position and distribution of mineralization and alteration, 3) stage in orogenic cycle, and 4) age relationship of deposit and host. The first two criteria can be evaluated from careful empirical observation and routine laboratory investigation. The last two criteria require sophisticated isotopic analysis of samples of the intrusive and host rocks. These later criteria, the evaluation of the age and geologic setting of porphyry mineral deposits, were investigated during this study.

The $\mathrm{K}-\mathrm{Ar}$ method is extremely useful in age dating igneous rocks of Mesozoic and Cenozoic age. Porphyry mineral deposits in the Canadian Cordillera are of Mesozoic and Cenozoic age, and therefore, the $\mathrm{K}-\mathrm{Ar}$ method is suitable for dating the age of porphyry mineral deposits. The apatite fission-track method is also useful for dating Mesozoic and Cenozoic rocks, and this method of dating porphyry mineral deposits is evaluated in sections 3.3 and 3.5 .

Areas studied by K-Ar and fission-track dating methods are located on Figure 1-1. The Burwash Landing area, Syenite Range, Cassiar area, and Adanac property were selected to extend the dating of porphyry mineral deposits into northern British Columbia and the Yukon Territory, Samples previously dated by the biotite $\mathrm{K}-\mathrm{Ar}$ method were obtained from the Copper Mountain area (Preto et al., 1971) and the Granisle Mine (Carter, 1972b) to compare biotite $\mathrm{K}-\mathrm{Ar}$ ages with apatite fission-track ages. Table 1-1 is an application of Sutherland Brown's (1972) porphyry classication to the deposits studied.

Figure 1-1. Location map for areas studied.

Table 1-1. C1assification of deposits studied

Deposit	$\begin{gathered} \text { Tectonic } \\ \text { Be1t } \end{gathered}$	Shape	Pluton Composition	Age m.y.	Host Age	Mineralization	Stage	Type
Burwash Creek	Insular	$\begin{array}{r} 3000^{\prime} \\ \times 1000^{\prime} ? \end{array}$	$\begin{aligned} & \text { Qtz. } \\ & \text { latite } \end{aligned}$	26.2	Permian \& Triassic	Cu , Mo in stock and host	late	Phallic
Adanac	Intermontane	$\begin{array}{r} 6000^{\prime} \\ \times \quad 3500^{\prime} ? \end{array}$	Alaskite	62.0	Permo-Pennsylvanian \& Jurassic	Mo, W in stock	late	Phallic(?)
Mt. Haskin	Omineca	$\begin{array}{r} 4000^{\prime} \\ \times 4000^{\prime} \end{array}$	Granite porphyry	50.1	Cambrian	Mo in stock and host	late	Phallic
Mt. Reed	Omineca	$\begin{array}{r} 1000^{\prime} \\ \times 3000^{\prime} ? \end{array}$	Granite porphyry	49.5	Cambrian	Mo, W in stock and host	1ate	Phallic
Cassiar Molybdenum	Omineca	$\begin{array}{r} 2000^{\prime} \\ \times \quad 500^{\prime} \end{array}$	Latite	$\begin{aligned} & \text { less } \\ & 70.0 \end{aligned}$	Cretaceous $70.0 \mathrm{~m} . \mathrm{y}$.	Mo, Cu in stock and host	late	Phallic
Granisle	Intermontane	$\begin{array}{r} 2000^{\prime} \\ \times \quad 1500^{\prime} \end{array}$	Bio.-Feld. porphyry	51.2	Triassic \& Jurassic	Cu in stock and host	late	Phallic
Copper Ingerbelle	Intermontane	complex	Syenite to Diorite	193	Late Triassic	Cu in stock and host	early	Volcanic

2. POTASSIUM-ARGON DATING

2.1 INTRODUCTION

The K-Ar method has been reviewed by Hamilton (1965), Damon (1968), Dalrymple and Lanphere (1969) and York and Farquhar (1972). York and Farquhar (1972) and York (1970) reviewed recent developments in $\mathrm{K}-\mathrm{Ar}$ dating that include the K-Ar isochron method.

The problem of radiometric dating of porphyry mineral deposits in the Canadian Cordillera involves the dating of events that occurred during Mesozoic and Cenozoic time. The K-Ar method has been extensively used for this purpose because:

1) It is suitable for dating events that occurred during the time span being investigated.
2) Most porphyry deposits contain mineral or whole-rock samples suitable for K-Ar dating.
3) The precision and accuracy required is obtained at a reasonable cost.

K-Ar ages obtained for this study are used to extend the study of age of porphyry mineral deposits into northern British Columbia and the Yukon Territory and as a reference for comparing fission-track ages.

In this chapter the $K-A r$ data is presented and examined by using the isochron method and a new Ar^{40} total vs \% K isochron plot is suggested and evaluated. Application of the $\mathrm{Ar}^{40} \mathrm{rad}$. vs $\% \mathrm{~K}$ isochron method (section 2.3) to published K-Ar data from the Topley Intrusions and Guichon Batholith are presented in Appendix B.

2.2 K-Ar METHOD

The K-Ar method of dating depends upon the decay of K^{40} to Ar^{40}, both of which must be measured for an age to be calculated. Standard analytical techniques used for measuring potassium and argon have been described in detail by Hamilton (1965), Dalrymple and Lanphere (1969) and York and Farquhar (1972).

In the present study, biotite and hornblende apparent ages were determined in $K-A r$ laboratories operated jointly by the Departments of Geophysics and Geological Sciences, University of British Columbia, using procedures and equipment previously described (White et al., 1967). In addition to the normal procedure, the sample and entire fusion system were baked at $130^{\circ} \mathrm{C}$ for 16 hours which effectively eliminates atmospheric argon contamination in the system (Roddick and Farrar, 1971). Isotopic ages of the seventeen analyzed samples are plotted on Figures $4-1$ to $4-7$ and analytical data given in Table 2-1.

Isotopic abundances of potassium and atmospheric argon normally used for $\mathrm{K}-\mathrm{Ar}$ dating were determined by Neir (1950) and are listed in Table 2-2. The assumptions made in using isotopic values have been reviewed by Dalrymple and Lanphere (1969).
rable 2－1 Potassium－Argon Analytical Data（ages obtained for this study）

Spec men No．		cation	Unit	Rock Type	Mineral		$\frac{a^{40} \text { rad** }}{1^{40} \text { total }}$	$\begin{aligned} & \mathrm{A}^{40} \mathrm{rad} . \\ & \left(10^{-5} \mathrm{cc}\right. \\ & \mathrm{STP} / \mathrm{g}) \end{aligned}$	$=\frac{A^{40} \mathrm{rad}}{\mathrm{~K}^{40}}$	$\begin{aligned} & \frac{\mathrm{K}^{40}}{\mathrm{Ar}^{36}} \\ & \times 10^{5} \end{aligned}$	$\begin{aligned} & \frac{\mathrm{Ar}^{40}}{\mathrm{Ar}^{36}} \\ & \times 10^{3} \end{aligned}$	Apparent Age （ $\mathrm{m}, \mathrm{y}_{\mathrm{o}}$ ）
PC1	Lat． Long．	$\begin{aligned} & 61^{\circ} 22^{\prime} 18^{\prime \prime} \\ & 139^{\circ} 18^{\prime} 20^{\prime \prime} \end{aligned}$	Tertiary plus？	Qtz．latite porphyry	Biotite	7.06 ± 0.05	0.81	0.733	1.534	8.1274	1.535	26.0 ± 1.0
PC2	Lat． Long．	$\begin{aligned} & 61^{\circ} 22^{\prime} 17^{\prime \prime} \\ & 139^{\circ} 18^{\circ} 10^{\prime \prime} \end{aligned}$	Tertiary plug？	Qtz．latite porphyry	Biotite	6.75 ± 0.05	0.85	0.717	1.570	10.4016	1.915	26.7 ± 1.2
PC3	Lat． Long．	$\begin{aligned} & 61^{\circ} 22^{\prime} 30^{\prime \prime} \\ & 139^{\circ} 25^{\prime} 55^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { Tertiary } \\ & \text { plug? } \end{aligned}$	Qtz．latite porphyry	Biotite	7.44 ± 0.03	0.85	0.776	1.541	10.3722	1.885	26.2 ± 1.0
PCA	Lat． Long．	$\begin{aligned} & 61^{\circ} 22^{\prime} 30^{\prime \prime} \\ & 139^{\circ} 26^{\prime} 08^{\prime \prime} \end{aligned}$	```Tertiary plug?```	Qtz．latite porphyry	Biotite	7.30 ± 0.03	0.83	0.757	1.533	9.2347	1.704	26.0 ± 1.0
PC5	Lat． Long．	$\begin{aligned} & 61^{\circ} 22^{\prime} 00^{\prime \prime} \\ & 139^{\circ} 25^{\prime} 09^{\prime \prime} \end{aligned}$	Kluane Range In－ trusions	Gabbro	＇Hb1．	$0.404 \pm .001$	0.56	0.190	6.943	0.5344	0.6619	115 ± 4.0
PC6	Lat． Long．	$\begin{aligned} & 61^{\circ} 222^{\prime} 05^{\prime \prime} \\ & 139^{\circ} 25^{\prime} 09^{\prime \prime} \end{aligned}$	Kluane Range In－ trusions	Gabbro	нbl．	$0.379 \pm .002$	0.36	0.181	7.038	0.2343	0.4590	117 ± 4.0
PC7	Lat． Long．	$\begin{aligned} & 61^{\circ} 32^{\prime} 36^{\prime \prime} \\ & 138^{\circ} 32^{\circ} 38^{\prime \prime} \end{aligned}$	Ruby Range batholith	Blotite Granodiorite	Biotite	6.51 ± 0.02	0.75	1.357	3.081	2.7009	1.111	51．9士2．0
PC8	Lat． Long．	$\begin{aligned} & 61^{\circ} 32^{\prime} 36^{\prime \prime} \\ & 138^{\circ} 45^{\prime} 30^{\prime \prime} \end{aligned}$	Ruby Range batholith	Bio，－Hbl． Granodiorite	Biotite	7.24 ± 0.03	0.90	1.584	3.232	7.5150	2.711	54．5士2．0
PC9	Lat． Long．	$\begin{aligned} & 59^{\circ} 20^{\prime} 25^{\prime \prime} \\ & 129^{\circ} 30^{\prime} 22^{\prime \prime} \end{aligned}$	Mt．Haskin porphyry	Granite porphyry	Biotite	7.51 ± 0.02	0.93	1.508	2.944	11.8377	3.764	49.7 ± 1.5
PC10	Lat． Long．	$\begin{aligned} & 59^{\circ} 22^{\prime} 42^{\prime \prime} \\ & 129^{\circ} 30^{\prime} 39^{\prime \prime} \end{aligned}$	Mt．Haskin porphyry	Granite porphyry	Biotite	7.31 ± 0.01	0.93	1.483	2.996	11.9294	3.853	50．5\＄1．5
PC11	Lat． Long．	$\begin{aligned} & 59^{\circ} 17^{\prime} 58^{\prime \prime} \\ & 129^{\circ} 25^{\prime} 18^{\prime \prime} \end{aligned}$	Mt．Reed porphyry	Granite porphyry	Biotite	7.78 ± 0.05	0.84	1.521	2.888	5.0408	1.740	48．7土1．9
PC12	Lat． Long．	$\begin{aligned} & 59^{\circ} 18^{\circ} 00^{\prime \prime} \\ & 129^{\circ} 25^{\prime} 19^{\prime \prime} \end{aligned}$	Mt．Reed porphyry	Granite porphyry	Biotite	7．7540．03	0.89	1.491	2.979	8.0373	2.679	50.2 ± 1.6
PC13	Lat． Long．	$\begin{aligned} & 59^{\circ} 12^{\prime} 12^{\prime \prime} \\ & 129^{\circ} 50^{\prime} 23^{\prime \prime} \end{aligned}$	Cassiar batholith	Qtz． Monzonite	Biotite	6.52 ± 0.01	0.83	1.886	4.274	3.1785	1.644	71.7 ± 2.6
PC14	Lat． Long．	$\begin{aligned} & 59^{\circ} 13^{\prime} 29^{\prime \prime} \\ & 129^{\circ} 50^{\prime} 10^{\prime \prime} \end{aligned}$	Cassiar batholith	Qtz． Monzonite	Biotite	7.60 ± 0.03	0.85	2.093	4.068	4.1202	1.963	68.3 ± 2.7
PC15	Let． Long．	$\begin{aligned} & 59^{\circ} 42^{\prime} 30^{\prime \prime \prime} \\ & 133^{\circ} 23^{\prime} 24^{\prime \prime} \end{aligned}$	Mt．Leonard Boss	coarse Alaskite	Biotite （5Z Chl．）	5.16 ± 0.04	0.89	1.287	3.685	6.2809	2.597	62.0 ± 2.2
PC16	Lat． Long．	$\begin{aligned} & 63^{\circ} 58^{\prime} 10^{\prime \prime} \\ & 137^{\circ} 18^{\prime} 10^{\prime \prime} \end{aligned}$	Syenite Range In－ trusions	Qtz． Monzonite	Biotite	6.92 ± 0.03	0.94	2.391	5.104	8.0164	4.364	85.3 ± 2.7
PC17	Lat．	$63^{\circ} 57^{\prime} 55^{\prime \prime}$	Syenite Range In－ trusions	Qtz． Monzonite	Biotite	7.10 ± 0.03	0.96	2.576	5.361	11.0437	6.183	89.5 ² $^{\text {．} 7}$

[^0]Table 2-2. Isotopic abundance of potassium and atmospheric argon (Data from Neir, 1950).
Isotope Relative atomic abundance (per cent)

Ar^{40}	99.600
Ar^{38}	0.063
Ar^{36}	0.337

K^{41}
6.91 ± 0.04
K^{40}
0.0119 ± 0.0001
K^{39}
93.08 ± 0.04

In order to determine the absolute age of a single mineral or rock sample, it is necessary to assume that all argon in the rock or mineral is either radiogenic or argon with the present atmospheric ratio (i.e. Ar^{40} total $=\mathrm{Ar}^{40}$ rad. $+\mathrm{Ar}^{40}$ with Atm. ratio). Because the $\mathrm{Ar}^{40} / \mathrm{Ar}^{36}$ atmospheric ratio is 295.5 (Neir, 1950), the conventional method of correcting for 'atmospheric argon' is to assume that $\mathrm{Ar}^{40} \mathrm{rad} .=\mathrm{Ar}^{40}$ total -295.5 (Ar^{36}). However, subsequent workers have shown variation in the initial $\mathrm{Ar}^{40} / \mathrm{Ar}^{36}$ ratio and an alternative graphical approach to determine the initial argon ratio has been suggested. This method is outlined below.

2.3 GRAPHICAL INTERPRETATION OF K-Ar DATA

Investigation of argon content of biotite (Wanless, Stevens and Loveridge, 1969; Giletti, 1971), hornblende (Roddick and Farrar, 1971), pyroxene (Hart and Dodd, 1962), plagioclase feldspar (Laughlin, 1966; Livingston et al., 1967), and nepheline (Macintyre, York and Gittens, 1969) shows that excess initial Ar^{40} can occur in most datable minerals. Thus samples must be treated in a manner that does not assume that initial argon has the present atmospheric ratio if the $K-A r$ method is to be of use in establishing trends in age of intrusions and age of mineral deposits. The K-Ar isochron method (York et al., 1969; McDougall et al., 1969; Roddick and Farrar, 1971; Hayatsu and Carmichael, 1970) provides a method of determining the initial argon ratio.

The data necessary for determining isochron ages is essentially the same as the data needed for the conventional K-Ar age calculation. The isochron method requires that for each rock unit dated at least two and preferably a minimum of three analyses are available from phases or minerals differing by at least 50 per cent in potassium content. In addition to the added analyses required, the entire fusion system must be baked overnight at a temperature that will remove loosely held atmospheric argon, but will not cause loss of initial or radiogenic argon. The temperature required to clean samples properly has been empirically determined to be $130^{\circ} \mathrm{C}$ for 16 hours (Roddick, 1970; Roddick and Farrar, 1971).
$\mathrm{Ar}^{40} / \mathrm{Ar}^{36}$ vs $\mathrm{K}^{40} / \mathrm{Ar}^{36}$ and Ar^{40} radiogenic vs per cent potassium diagrams are plotted and the method of least squares (York, 1966) is used to fit the best straight line to the points. The lines produced are called isochrons and the slope of the line is used to calculate an isochron age.

The $\left(\mathrm{Ar}^{40} / \mathrm{Ar}^{36}\right)$ vs $\left(\mathrm{K}^{40} / \mathrm{Ar}^{36}\right)$ isochron equation is:

$$
\begin{equation*}
\frac{\left(A r^{40}\right)}{A r^{36}} T=\frac{\lambda e}{\lambda_{B}+\lambda e} \cdot\left(e^{\lambda t}-1\right) \frac{K^{40}}{A r^{36}}+\frac{\left(A r^{40}\right)}{A r^{36}} I \tag{2.1}
\end{equation*}
$$

Where

$$
\begin{aligned}
& \frac{\left(\mathrm{Ar}^{40}\right)}{\mathrm{Ar}^{36} \mathrm{~T}}= \text { the total } \mathrm{Ar}^{40} \text { to total } \mathrm{Ar}^{36} \text { ratio found } \\
& \text { in the mineral at present. } \\
& \frac{\left(\mathrm{Ar}^{40}\right)}{\mathrm{Ar}^{36} \mathrm{I}}= \text { the initial value of the ratio at } \mathrm{t}=0 . \\
& \frac{\left(\mathrm{K}^{40}\right)}{\mathrm{Ar}^{36}}= \text { present-day ratio of } \mathrm{K}^{40} \text { to } \mathrm{Ar}^{36} \text { in the } \\
& \text { mineral } \\
& \lambda= \lambda e+\lambda_{\beta} \\
& \lambda e= \text { decay constant for electron capture by } \\
& \mathrm{K}^{40}\left(0.585 \times 10^{-10} \mathrm{yr}^{-1}\right) . \\
& \lambda_{B}= \text { decay constant for beta emission by } \\
& K^{40}\left(4.72 \times 10^{-10} \mathrm{yr}^{-1}\right) .
\end{aligned}
$$

For equation 2.1 to be applicable to a set of samples, the samples must have: 1) the same age, 2) the same initial argon ratio and 3) essentially no atmospheric argon contamination.

The Ar^{40} rad. vs $\% \mathrm{~K}$ isochron equation is:
$A r^{40}$ rad. $=6.835 \times 10^{-4} \mathrm{~m}(\% \mathrm{~K})+\mathrm{Ar}^{36} \mathrm{i}(\mathrm{I}-295.5)(2.2)$

Where

$$
\begin{aligned}
& \mathrm{Ar}^{40} \mathrm{rad} .=\text { radiogenic argon } 40 \text { expressed in cc/gm } \\
& \text { at S.T.P. and calculated assuming } \\
& \left(\mathrm{Ar}^{40}{ }_{i}+\mathrm{Ar}^{40} \mathrm{Atm}_{.}\right) /\left(\mathrm{Ar}^{36}{ }_{i}+\mathrm{Ar}^{36} \dot{A} \mathrm{~A}_{\mathrm{tm}}\right)=295.5 \\
& m=\frac{\lambda e}{\lambda_{e}+\lambda_{\beta}}\left(e^{\lambda t-1}\right) \\
& \text { slope }=6.835 \times 10^{-4} \mathrm{~m} \text {, (Roddick, 1970, p. 59) } \\
& I=\text { initial } \mathrm{Ar}^{40} / \mathrm{Ar}^{36} \text { ratio, and } \\
& \mathrm{Ar}^{36}{ }_{i} ; \mathrm{Ar}^{40}{ }_{i}=\text { initial concentration. }
\end{aligned}
$$

For equation 2.2 to be applicable to a set of samples, the following criteria
must apply: 1) samples have the same age, 2) samples have the same initial argon ratio, and 3) samples have the same amount of initial argon. An exception to criterion three occurs when the initial argon ratio is 295.5 .

Roddick and Farrar (1971) refer to the Ar^{40} rad. vs \%K diagram as an initial argon diagram and Roddick (1970) suggested that: "Minerals having different crystal structures will probably incorporate different amounts of initial argon. Therefore, only the same type of minerals can be plotted on an initial argon diagram".

Because Ar^{40} rad. is calculated assuming ($\left.\mathrm{Ar}^{40} \mathrm{i}_{\mathrm{i}}+\mathrm{Ar}^{40} \mathrm{Atm}.\right) /\left(\mathrm{Ar}^{36_{i}}+\right.$ $\mathrm{Ar}^{36} \mathrm{Atm}$. $)=295.5$, the y -intercept of the $\mathrm{Ar}^{40} \mathrm{rad}$. vs \% K diagram is $\mathrm{Ar}^{36}{ }_{i}$ (I - 295.5) (Roddick and Farrar, 1971) and not initial Ar^{40} rad. as the Ar^{40} rad. vs \% K plot seems to suggest. A positive intercept occurs on the Ar^{40} axis when $I>295.5$ and a negative intercept occurs when $\mathrm{I}<295.5$.

Roddick and Farrar (1971) suggest that unlike the $\mathrm{Ar}^{40} / \mathrm{Ar}^{36}$ vs K^{40} / Ar^{36} isochron, the $\mathrm{Ar}^{40} \mathrm{rad}$. vs \% isochron yields the correct age of the mineral when atmospheric argon is present in the system. However, the presence of atmospheric argon in the system eliminated any possibility of obtaining quantitative information on the initial argon ratio and the initial concentration of argon in the sample.

The assumptions necessary for a complete $\mathrm{K}-\mathrm{Ar}$ isochron determination (both $\mathrm{Ar}^{40} / \mathrm{Ar}^{36}$ vs $\mathrm{K}^{40} / \mathrm{Ar}^{36}$ and $\mathrm{Ar}^{40} \mathrm{rad}$. vs $\% \mathrm{~K}$) are:

1) the baking procedure essentially eliminates atmospheric argon from the system, and
2) the absolute amount of $\mathrm{Ar}^{40}{ }_{i}=$ initial $\mathrm{Ar}^{40} / \mathrm{Ar}^{36}$ ratio and age of the samples are the same.

If these assumptions hold, then an Ar 40 total vs $\%$ K plot will be a valid
isochron plot.
The Ar^{40} total vs $\% \mathrm{~K}$ isochron equation is:
Ar^{40} total $=6.835 \times 10^{-4} \mathrm{~m}(\% \mathrm{~K})+\mathrm{Ar}^{4 \mathrm{O}_{1}}$

Where

$$
\begin{aligned}
\operatorname{Ar}^{40} \text { total } & =\text { total } \mathrm{Ar}^{40} \text { measured by mass spectrometry. } \\
\text { slope } & =6.835 \times 10^{-4} \mathrm{~m} \\
\mathrm{Ar}^{40} & =\text { initial } \mathrm{Ar}^{40} \text { in sample at } \mathrm{t}=0=\text { intercept on } y \text { axis. } .
\end{aligned}
$$

The y-intercept for this diagram yields the absolute amount of initial Ar^{40}.

2.4 APPLICATION OF ISOCHRON METHOD

Ages shown in table $2-1$ were calculated assuming that Ar^{40} total $=\mathrm{Ar}^{40}$ radiogenic $+\mathrm{Ar}^{40}$ with atmospheric ratio. Four samples from quartz latite porphyry near Burwash Creek (PC1 to PC4) and four samples from granite porphyry on the Mt. Reed and Mt. Haskin properties provided independent checks on the age of these units. Isochron plots were constructed for these samples to check the initial $\mathrm{Ar}^{40} / \mathrm{Ar}^{36}$ ratio and to compare isochron results with conventional determinations obtained using the assumed 295.5 initial argon ratio.

Isochron ages for these units have large uncertainties due to the small spread in potassium content of analyzed biotite concentrates. Isochron ages shown for samples PC1 to PC4 in Figure 2-1 and PC9 to PC13 in Figure 2-2 show much greater uncertainty than the respective mean ages of $26.2 \pm 0.3 \mathrm{~m} . \mathrm{y}$. and $49.8 \pm 0.7 \mathrm{~m} . \mathrm{y}$. for the samples. Initial argon ratios obtained for these samples both overlap the 295.5 value within the limits of error and therefore, the isochron result is consistent with the use of the 295.5 value.

Fig. Isochron plots for quartz latite porphyry 2-1 near Burwash Creek, Yukon Territory.

Fig. Isochron plots for Mt. Reed and Mt. Haskin porphyries. 2-2
2.4.1 Ar^{40} total vs \%K Isochrons

The Ar^{40} total vs \%K isochron approach was checked by using published data from Hayatsu and Carmichael (1970) and Roddick and Farrar (1971) that was unsuitable for Ar^{40} rad. vs \% K plots.

Case I Cape Breton Whole-Rock Samples

A recalculated isochron for whole-rock $\mathrm{K}-\mathrm{Ar}$ data obtained by Hayatsu and Carmichael (1970) is compared with a plot of total $\mathrm{Ar}^{40} \mathrm{vs} \% \mathrm{~K}$. Argon measurements have been converted from moles/gm. to CC.STP/gm. in order to allow comparison. Data is presented in Table 2-3 and the isochron plots are shown in Figure 2-3. Discordant whole-rock K-Ar data yielded a concordant Ar^{40} rad. vs $\% \mathrm{~K}$ isochron age of $391 \pm 5 \mathrm{~m} . \mathrm{y}$. for samples from Cape Breton Island, Nova Scotia (see Hayatsu and Carmichae1, 1970) with a positive intercept on the Y axis that indicated an initial Ar^{40} / Ar^{36} ratio greater than 295.5. An Ar^{40} total vs $\% \mathrm{~K}$ plot yields an isochron parallel to the Ar^{40} corrected vs $\% \mathrm{~K}$ plot and an isochron age of $391 \pm 7 \mathrm{~m} . \mathrm{y}$. The total Ar^{40} plot also has a positive intercept on the Ar^{40} axis and this value is the absolute amount of initial Ar^{40} plus a small increment of atmospheric Ar^{40} (less than 10%).

This example shows that an Ar^{40} total vs. \%K isochron can correct for discordant whole-rock K-Ar data and provides a one step method of obtaining the initial Ar^{40} content of a set of samples.

Case II Tulameen Complex Hornblende Samples
A recalculated isochron for hornblende K-Ar data obtained by Roddick and Farrar (1971) is compared with a plot of total Ar^{40}. Data is presented in Table 2-4 and the isochron plots are shown in Figure 2-4. Discordant hornblende K-Ar data yields a concordant $\mathrm{Ar}^{40} \mathrm{rad}$. vs \% K isochron

TABLE Analytion data and ages of Cape Breton whole rook samples (data from Hayatsu
$2-3$ Carmiohael, 1970). Units for Ar^{4} were converted from moles/gm to oc. STP/gm.

Sample No.	Book Type	$\stackrel{K}{(\%)}$	$\begin{aligned} & 40_{\text {Ar }} \mathrm{total}^{4} \\ & \left(\pi 0^{-6} \mathrm{cc}\right. \\ & \text { STP/ } \mathrm{gm} .) \end{aligned}$	$\begin{gathered} 36_{\mathrm{Ar}}{ }^{* *} \\ \left(\mathrm{xrl}^{-13}\right. \\ \text { moles } \left./ \mathrm{gm}_{.}\right) \end{gathered}$		$\begin{gathered} A g e^{+} \\ \left(\underset{m}{ }, \mathrm{~F}_{0}\right) \end{gathered}$
CB-28	Basalt	0.066	3.611	2.39	2.148	680
17	Basalt	0.363	9.677	2.72	8.019	485
12	Red relsite	0.777	16.442	3.54	14.246	412
9	Crystal lithio turf	0.931	19.219	3.54	17.024	411
8	Greymacke	1.52	28.582	1.49	27.686	409
7	Red felsite (quartz keratophyre?)	0.040	3.237	2. 30	1.830	891
14	Greywacke	1.64	30.598	2.05	29.322	402
18	Greywacke	1.57	29.277	2.08	28.000	401
2	Amygdaloidal basalt	0.098	4.771	2.47	3.024	644
3	Basalt	0.270	6.406	1. 38	5.555	456
4	Basalt	0.261	6.406	2.43	5.533	455
5	Hed felsite	0.595	14.381	3.22	12.365	460

${ }^{40} \mathrm{Ar}$ spike.

- $36_{\text {ar }}$ spike subtracted.

Talues or constants used are $\lambda_{\beta}=0.566,40_{\mathrm{K} / \mathrm{K}}=1.18 \times 10^{-4}(4)$.
TABLE Analytical data and ages of hornblende from Tulameen Complex (data frpm Roddick
$2-4$
and Farrar, 1971). Ar total was calculated using the values for Ar 40 rad.
and percent atmospheric argon reported by Roddick and Farrar.

$\begin{gathered} \text { Sample } \\ \text { No. } \end{gathered}$	$\left(\frac{\mathrm{K}}{(\mathrm{~K}}\right)$	$\begin{aligned} & 40_{\mathrm{Ar}} \text { 耳otal* } \\ & \left(\times 10^{-6} \mathrm{cc}\right. \\ & \text { STP/gma } \end{aligned}$	$\begin{gathered} 40_{\mathrm{Ar}} \mathrm{Tad} \\ \left(\mathrm{xl} 0^{-6} \mathrm{CO}\right. \\ \left.\mathrm{STP} / \mathrm{gm}_{0}\right) \end{gathered}$	\% Atmes.	$\left({ }^{40} \mathrm{Ar} / 36 \mathrm{Ar}\right)_{T}$	Age and Error $\left(m_{1} y_{0}\right)$
2H-2	1.63	13.55	13.14	3.0	9803	191.5 ± 2.9
2H-3	1.63	23.61	13.15	3.5	8330	191.6 ± 2.9
5H-3	1.19	9.16	9.86	3.4	8631	196.6 ± 3.0
5H-4	1.19	10.22	9.99	3.8	7682	199.1 ± 3.0
8H-2	1.016	10.37	8.731	4.8	6152	203.5 ± 3.1

$\lambda_{\mathrm{e}}=0.584 \times 10^{-10} \cdot \mathrm{yr}^{-1} \lambda_{\beta}=4.72 \times 10^{-10} \mathrm{gr}^{-1}, 40_{\mathrm{K}}=1.22 \times 10^{-4} \mathrm{~g} / \mathrm{g} \mathrm{K}$.

- Calculated assuming $\left({ }^{40} \mathrm{Ar}_{\mathrm{I}}+{ }^{40} \mathrm{Ar}_{\mathrm{A}}\right) /\left({ }^{36} A r_{I}+{ }^{36} A r_{A}\right)=295.5$.

Fig. Total and corrected Ar^{40} vs \%K isochrons for whole-rock K-Ar
2-3 data. Corrected isochron is recalculated from Hayatsu and Carmichael's (1970) data.

Fig. Comparison of Ar^{40} total isochron with Ar^{40} corrected isochron 2-4 diagram for K-Ar hornblende data from the Tulameen Complex, British Columbia (data from Roddick and Farrar, 1971).
age of $175 \pm 3 \mathrm{~m} . \mathrm{y}$. for samples from the Tulameen Complex, British Columbia (see Roddick and Farrar, 1971) and an Ar 40 total vs \% plot yields an isochron parallel to the $\mathrm{Ar}^{40} \mathrm{rad}$. vs $\% \mathrm{~K}$ plot and an isochron age of 176 $\pm 4 \mathrm{~m} . \mathrm{y}$. The y -intercept for the Ar^{40} total isochron is the absolute amount of initial Ar^{40} plus a small increment of atmospheric Ar^{40}.

This example suggests that the total argon plot yields essentially the same results as the Ar^{40} rad. vs \% Klot , and that the absolute amount of initial Ar^{40} is obtained directly by using the Ar^{40} approach. Both plots yield $\mathrm{Ar}^{40}{ }_{i}$ values of $1.6 \times 10^{-6} \mathrm{CC} . \mathrm{STP} / \mathrm{gm}$. for the Tulameen hornblende samples, but the $A r^{40}$ total vs \% plot does not require the plotting of an $\mathrm{Ar}^{40} / \mathrm{Ar}^{36}$ vs $\mathrm{K}^{40} / \mathrm{Ar}^{36}$ isochron in order to obtain the $\mathrm{Ar}^{40}{ }_{i}$ value.

2.5 SUMMARY

Hayatsu and Carmichael (1970) and Roddick and Farrar (1971) have shown that the K-Ar isochron method corrects for excess initial Ar^{40} in a mineral sample. Since the isochron method can yield more meaningful ages, an attempt should be made to apply the method to K-Ar data.

At least three samples from a single igneous event are necessary in order to establish an isochron. Samples PC1 to PC4 and PC9 to PC13 were analyzed in a manner suitable for isochron determinations (Roddick and Farrar, 1971), but the narrow range of potassium values for the samples leads to isochron ages with large uncertainties (Figure 2-1 and 2-2).

Isochron plots of Ar^{40} total vs \% y yield the same age as Ar^{40} rad. vs $\% \mathrm{~K}$ plots, and in addition, the Ar^{40} total vs $\% \mathrm{~K}$ plot provides a one step approach to obtaining the absolute value of initial Ar^{40} (Figures 2-3 and 2-4).

2.6 EVALUATION OF ISOCHRON METHOD

The graphical approach to potassium-argon age dating provides a new approach to data treatment and interpretation. Advantages of the graphical approach are:

1) In order to obtain meaningful ages for minerals of low K content and (or) young age, the initial argon ratio of the minerals must be determined. In theory, the $\mathrm{Ar}^{40} / \mathrm{Ar}^{36}$ vs $\mathrm{K}^{40} / \mathrm{Ar}^{36}$ plot will yield the initial argon ratio of properly treated samples of related age and history.
2) Isochron plots are useful visual and interpretative aids, these diagrams emphasize irregularities and trends in $\mathrm{K}-\mathrm{Ar}$ data.
3) As information on initial argon accumulates, it will add to our understanding of the argon retentivity of various minerals and the origin of excess argon (Hayatsu and Carmichael 1970).
4) Provides a method of correcting for high initial argon ratios (e.g. Hayatsu and Carmichae1, 1970 and Roddick and Farrar, 1971). Disadvantages of the graphical approach are:
5) Several samples must be analyzed in order to determine the initial argon ratio.
6) Mineral samples that are from the same intrusive phase often contain similar potassium content and therefore are not suitable for isochron plots. (.e.g Samples PC1 to PC4 and samples PC9 to PC13 section 2. 4).
7) For an Ar^{40} vs $\% \mathrm{~K}$ plot to apply, samples must contain the same amount of excess argon. It is unlikely that this assumption will generally hold for more than one mineral phase.

3. FISSION TRACK DATING

3.1 INTRODUCTION

Recent work has established the feasibility of using the fissiontrack technique for dating common accessory minerals (Fleischer and Price, 1964a; Naeser, 1967b; Wagner, 1968; Christopher, 1969; Naeser and Dodge, 1969; Naeser and McKee, 1970); however, most of the studies to date have been carried out on samples that are from unaltered rocks that yield clean concentrates of datable major and accessory minerals. These studies have shown that the fission-track method can be used as a dating tool and does provide information on the age and crystallization history of a mineral or rock unit.

The Canadian Cordillera has been established as a porphyry copper and molybdenum mineral province (Sutherland Brown et al., 1971; Sutherland Brown, 1969a) with low grade (porphyry type) mineral deposits of the 'paramagmatic class' (White, Harakal and Carter, 1968). Most examples of porphyry copper deposits exhibit a characteristic sulfide and alteration zoning that was formed in an epizonal to mesozonal environment during Mesozoic and Cenozoic times (Lowell and Guilbert, 1970; Rose, 1970). Naeser (1967a) concluded that: "...apatite, because of its property of low temperature track annealing is a very sensitive temperature monitor. It is most useful in looking at events in the Mesozoic and Cenozoic, where effects of burial are minimal". Porphyry deposits of the Canadian Cordillera should provide an ideal setting for fission track age determinations on apatite.

In this chapter the fission-track method is reviewed, and the application of apatite fission-track dating to the study of porphyry mineral
deposits is evaluated by comparing apatite fission-track and $\mathrm{K}-\mathrm{Ar}$ ages for co-genetic minerals.

3.2 FISSION-TRACK METHOD

Following the discovery by K.A. Petrahak and G.N. Flervo in the U.S.S.R. in 1940 that uranium undergoes spontaneous fission, many scientists looked for tracks of radiation damage recorded in crystal structures. Fission-tracks were first detected in irradiated flakes of the mineral muscovite by Silk and Barnes (1959). The most direct method for observing tracks is to examine irradiated solids with an electron microscope at high magnification (50,000x). This method of observing fission-tracks limited their utility until the discovery of chemical etching techniques by P.B. Price and R.W. Walker (1962) permitted the study of fission-tracks with the optical microscope.

The discovery of etch techniques for revealing fission-tracks was followed by the development of the fission-track technique for dating minerals and glass (Price and Walker, 1963, p. 4847; Fleischer and Price, 1964a, p. 331 and 1964d. p. 1705). Spontaneous fission-tracks can be produced by the fission decay of $\mathrm{U}^{238}, \mathrm{U}^{235}$, and Th^{232}, but Price and Walker (1963) calculated that in most cases spontaneous fission of U^{238} is the only likely source of fission-tracks. Therefore, the parent material for the fission-track method is U^{238} and the daughter products of a spontaneous decay are represented by a damaged trail (fission-track). The increase in the spontaneous fission-track density is a measure of the build-up of the daughter products and the spontaneous fission-track density is directly related to the age and U^{238} content of a mineral or material.

The fission-track method has been applied to the dating of metamorphic and igneous events ranging in age from historic times to the Precambrian. Minerals suitable for fission-track dating include: biotite, hornblende, apatite, zircon, muscovite (Fleischer and Price, 1964b), sphene (Naeser, 1967b) and epidote (Naeser, Engels, and Dodge, 1970). Glass (Brill et al., 1964; Fleischer and Price, 1964 a and b) can also be dated and most plastics are excellent track detectors.

3.2.1 Procedure

The procedure for determining fission-track ages involves:
a) determining the spontaneous fission-track density on an etched interior surface of amineral.
b) using the calculated value for spontaneous fission decay constant $(\lambda \mathrm{F})$,
c) determining the U^{238} content.

An accurate, indirect determination of the U^{238} content can be made by exposing an annealed portion of the sample to a known dose of thermal neutrons (Fleischer et al., 1964). Thermal neutron induced fission takes place in U^{235}, but not in U^{238}, and therefore, the induced track density ($\rho \mathrm{i}$) will be a function of the thermal neutron flux, the cross section capture area of U^{235} for thermal neutrons, and the concentration of U^{235}. Once the values necessary for determination of the U^{235} content are obtained, the U^{238} content can be found by using the constant isotope ratio ($U^{235} /$ $\mathrm{U}^{238}=1 / 137.7$). From an induced track count, a spontaneous track count, and a flux determination, the age of amineral can be obtained from the following equation (Fleischer et al., 1965a, p. 389):

$$
A=\frac{1}{\lambda \mathrm{D}} \quad \operatorname{In}\left[1+\frac{(\rho s \lambda D \sigma I \phi)]}{\rho i \lambda F}\right.
$$

Where $A=$ age in years;
$\rho s=$ spontaneous track density (natural tracks from spontaneous decay of U^{238});
$\rho i=$ induced track density (tracks caused by neutron induced fission of U^{235});
$\lambda D=$ total decay constant for $\mathrm{U}^{238}\left(1.54 \times 10^{-10} \mathrm{yr}^{-1}\right)$;
$\sigma=$ thermal neutron cross section for fission of $\mathrm{U}^{235}\left(582 \times 10^{-24}\right.$ cm^{2});
$\phi=$ total thermal neutron dose (nvt);
$I=1 / 137.7=$ isotope ration $U^{235} / \mathrm{U}^{238}\left(7.26 \times 10^{-3}\right)$;
$\lambda F=$ fission decay constant for $\mathrm{U}^{238}\left(6.85 \times 10^{-17} \mathrm{yr}^{-1}\right)$
(Fleischer and Price, 1964a, p. 63).
By substituting values for the constants, the equation reduces to (Naeser, 1967b, p. 1523):

$$
A=6.49 \times 10 \quad \operatorname{In}\left[1+\left(9.45 \times 10^{-18} \frac{\rho \mathrm{~s}}{\rho \mathrm{i}}\right)\right] \mathrm{yr} .
$$

The various steps involved in a fission-track age determination are outlined in detail in Appendix C.

The reader is referred to descriptions of the analytical procedure presented by Lahoud et a1. (1966), Naeser (1967a and b) and Christopher (1969).

3.2.2 Flux Determination

The largest analytical uncertainty in determining a fission-track age generally involves the determination of the neutron flux obtained during sample irradiation. The reactor irradiation is used for determining uranium content of samples and a neutron flux in the order of 10^{15} to 10^{17} nvt* is required for the uranium determination. The most accurate method for determining the flux obtained during a reactor run is to include a calibrated standard with either a known uranium content or known fission-track age and count fission-tracks produced in the standard. A glass standard calibrated by Dr. C.W. Naeser of the United States Geological Survey to contain 0.4 ppm uranium was included in the reactor run along with standard apatite $\mathrm{Me} / \mathrm{G}-1$ that has concordant $120 \mathrm{~m} . \mathrm{y}$. biotite potassium-argon and $119 \mathrm{~m} . \mathrm{y}$. apatite fission-track ages.

Three independent checks were used to determine the flux obtained:

1) a flux of 1.31×10^{15} nvt was determined for the standard glass;
2) a flux of 1.31×10^{15} nvt was obtained by comparing track density produced in the U.B.C. reactor run with the track density of the same standard glass included in the Dartmouth reactor run 1 (Christopher 1968 and 1969); and
3) a flux of 1.30×10^{15} nvt was calibrated by using $120 \mathrm{~m} \cdot \mathrm{y}$. as the age of standard apatite Me/G-1.

Although the standard deviation of three independent checks of the flux is less than one per cent, an error of 5% was assigned to the 1.31 $\times 10^{15}$ nvt flux because of uncertainty in the track density produced in the standard.

3.3 EVALUATION OF THE FISSION TRACK METHOD

Several assumptions must be made in calculation of fission-track ages, many of which cannot be assigned an absolute error. Possible sources of error in each fission-track age include determination of (1) fossil track density, (ρs), (2) induced track density (ρi), and (3) neutron dose (ϕ). In addition, incomplete knowledge of the physical and geochemical properties of uranium may also be a source of error.

The ability to distinguish tracks from inclusions, dislocations, and other imperfections in crystals has been discussed by Fleischer and Price (1964 d). The five characteristics used in identification of fission-tracks are: 1) they form line defects, 2) they are straight, 3) they are randomly oriented, 4) they are of limited length (typically of the order of 5 to 20 mic crons or 5 to $20 \times 10^{-3} \mathrm{~mm}$), and 5) they can be caused to disappear by suitable heating (Fleischer and Price, 1964 d ; Wagner, 1968; Naeser and Faul, 1969). The spontaneous and induced track counts are substituted in the dating equation as a ratio, and therefore, consistent application of the above 5 criteria in the counting of both the natural and induced tracks will help eliminate counting error.

In natural mineral samples, the uranium isotope U^{238} is the only element for which spontaneous fission is significant. Spontaneous fission of U^{235} and Th^{232} also occur, but U^{235} would account for less than 0.5 per cent of the spontaneous fission tracks in a mineral and Th^{232} would make a 50 per cent contribution only in a substance in which it was approximately 100 ;000 time more abundant than uranium (Faul, 1966). Cosmic-ray interaction could produce radiation damage similar to fission-tracks, but the effect of the cosmic ray flux on buried terrestrial samples is considered to be negligible because of strong attenuation by rock or soil
(Price and Walker, 1963).
Uranium in nature is predominately composed of two radioactive isotopes U^{235} and U^{238}. These two isotopes have always been found to occur together in nature with the phases intimately mixed and in a fixed proportion ($U^{235} / \mathrm{U}^{238}=1 / 137.7 \pm 0.3$) (Senftle et al., 1957). U^{235} and U^{238} also decay by alpha emission with half lives of 7.13 x 10^{8} yrs. and 4.51×10^{9} yrs. respectively. Price and Walker (1963) calculated that the effect of parent reduction because of alpha decay is significant when the time involved is greater than approximately 10^{9} yrs. The value of the fission decay constant for U^{238} directly controls the accuracy of ages calculated by the fission-track method (Price and Walker, 1963). Fleischer and Price (1964 a and c) determined a weighted average value of $6.85 \pm 0.20 \times 10^{-17} \mathrm{yr}^{-1}$ for the decay constant for spontaneous fission of $U^{238}\left(\lambda_{F}\right)$. This average value was obtained by using two track counting methods that gave concordant results. The first value, $\lambda_{F}=6.9 \times 10^{-17} \mathrm{yr}^{-1}$, was obtained by requiring that ages of a large number of minerals determined by using the fission-track method agree with ages determined by decay of K^{40} and $\mathrm{Rb}{ }^{87}$. The second value, $\lambda_{F}=6.6 \pm 0.8 \times 10^{-17} \mathrm{yr}^{-1}$, was determined by counting fission-tracks recorded in mica SSTR held against a sheet of uranium foil for six months. Fleischer and Price's weighted average value for $\lambda_{\mathrm{F}}=6.85 \pm 0.20 \times 10^{-17}$ yr^{-1} is supported by a value of $\lambda \mathrm{F}=7.03 \pm 0.11 \times 10^{-17} \mathrm{yr}{ }^{-1}$ (Roberts et al., 1968) determined using standard mica SSTR against uranium foil, and a value of $6.8 \pm 0.6 \times 10^{-17} \mathrm{yr}^{-1}$ (Kleeman and Lovering, 1971) determined by accumulating fission fragment tracks in Lexan plastic held adjacent to
uranium metal for one year. Values for $\lambda_{\text {F }}$ ranging from 8.27 to 8.42 x $10^{-17} \mathrm{yr}^{-1}$ have been determined by Spadavecchia and Hahn (1967) and Galliker et al. (1970), using a 'spinner' apparatus. The larger values are not commonly used for fission-track dating and the weighted average value of $\lambda_{F}=6.85 \pm 0.20 \times 10^{-17} \mathrm{yr}^{-1}$ (Fleischer and Price, 1964 a and c) was used in this study.

A closed system for uranium is assumed. This assumption can be checked by careful observation of the position of natural and induced tracks in a substance. Irregularities in the uranium distribution are also detectable during fission-track counting. If extreme irregularities are found (e.g. sphene sample JH5 from Brenda Mine), the sample cannot be age dated by random counting methods.

The accuracy of the flux determination has been discussed by Fleischer, Price and Walker (1964). A value of $1.31 \pm 0.07 \times 10^{15}$ nvt was determined for the reactor run used for irradiating samples studied by the writer. Fleischer, Price and Walker (1964) showed that flux variation over a 5 cm length is about 10% and they estimated that the total error in the flux determination is about 15%. Samples used in this study were irradiated over a tube length of less than 2 centimeters and therefore flux variation should be about 3\%. Error in the flux determination is caused by uncertainty in the uranium content of the standard, variation of the flux within the reactor, counting error, and uncertainty in constants assigned to isotope ratios and capture cross sections.

Naeser (1967b) suggested that the number of tracks counted provided the major source of error in a fission-track age determination. If a minimum of 400 fossil and induced tracks are counted, the error for each
slide is $\pm 5 \%$, a value obtained by assuming a Poisson distribution. (i.e. the standard deviation of the track counts is the square root of the number of tracks counted).

Empirically, Naeser and Dodge (1969) determined that ± 10 per cent is a good estimate of the standard deviation of a fission-track age, assuming at least 250 counts of both fossil and induced tracks. For this study an error of ± 10 per cent is considered to be a good estimate of the standard deviation of a fission-track age when at least 400 counts of both fossil and induced tracks are obtained. When total counts are less than 400 , the standard deviation was calculated by taking the square root of the sum of the squares of the estimated error (10%) and the standard deviations of counting error for natural and induced tracks.

3.4 PRESENTATION OF DATA

Analytical data and the calculated fission-track ages measured on fifteen apatite concentrates from five localities (Figure 1-1) in the Canadian Cordillera are shown in Table 3-1. Analytical data for standard apatite samples $\mathrm{Me} / \mathrm{G}-1$ and $\mathrm{Me} / \mathrm{N}-1$ are also presented (see Christopher 1968 and 1969). K-Ar ages obtained at the University of British Columbia on co-genetic biotite are shown for comparison. The biotite $\mathrm{K}-\mathrm{Ar}$ ages are believed to represent the time at which the rock cooled to a temperature at which biotite retains argon (about $150^{\circ} \mathrm{C}$), and for high-level epizonal and mesozonal igneous bodies, the time of emplacement and time of setting of the biotite $\mathrm{K}-\mathrm{Ar}$ clock should be relatively close.

Seven sphene and two zircon samples were also prepared for fissiontrack dating but etched grain mounts revealed extreme irregularities in uranium content, and the sphene and zircon samples could not be dated by using random track counting methods. An alternate procedure for dating minerals with non-uniform uranium content has been described by Naeser (1967 a and b), but samples were not irradiated in a manner suitable for treating samples with non-uniform uranium content.

[^1]
3.5 DISCUSSION OF FISSION TRACK RESULTS

Figure 3-1 is a graphical comparison of the results obtained for biotite $\mathrm{K}-\mathrm{Ar}$ and apatite fission-track methods. It demonstrates that fission-track ages for apatite from the Burwash Landing area, Cassiar area and Syenite Range are consistent and in general concordant with K-Ar ages determined on co-genetic biotite; and that one sample from a mineralized potassic-zone vein at the Granisle Mine and four samples from the Copper Mountain area show discordant results.

Thin section investigation revealed that co-genetic minerals obtained from weakly altered (potassic zone) rocks give concordant results and that discordant results are obtained from strongly altered propylitic and potassic zone rocks. Alteration of apatite makes track distinguishing more difficult, thus eliminating the possibility of using several of the apatite concentrates prepared for this study from the Copper Mountain intrusions.

Thermal events have been suggested by Naeser (1967a), Naeser and McKee (1970), and Wagner and Reimer (1972) to explain apatite fissiontrack ages that are younger than the biotite $K-A r$ age for the sample. Annealing studies on apatite by Naeser (1967a), Naeser and Faul (1969) and Wagner (1968) show that fission-tracks in apatite are very sensitive to thermal events, and that a temperature of less than $75^{\circ} \mathrm{C}$ is necessary for complete track retention. Concordant apatite fission-track and biotite $\mathrm{K}-\mathrm{Ar}$ ages suggest that the rock unit cooled from greater than $150^{\circ} \mathrm{C}$ (Damon 1968) to less than $75^{\circ} \mathrm{C}$ (Naeser and Faul 1969; Wagner, 1968) within a length of time less than the experimental error of the techniques. An apatite fission-track age younger than a biotite $\mathrm{K}-\mathrm{Ar}$ age for a unit

Fig. Graphical comparison of apatite fission-track and biotite pottasium-3-1 argon apparent ages. Potassium-argon ages determined at the University of British Columbia have been shown to be accurate within 3 per cent (J. Harakal personal communication).
indicates that either slow cooling or mild reheating in the temperature range $150^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ annealed fission-tracks from apatite while argon was being retained by biotite. If apatite fission track ages are older than K-Ar ages on co-genetic biotite, the discrepancy is difficult to explain.

A mean apatite fission-track age of $111 \pm 7 \mathrm{~m} . \mathrm{y}$. from samples KA1, KA9, and KA10 from the Copper Mountain intrusions is considerably younger than the mean biotite K-Ar age of $195 \pm 2 \mathrm{~m} . \mathrm{y}$. for the samples. The consistently low ages obtained for apatite from the Copper Mountain intrusions suggest a thermal event that was strong enough to reset the apatite fission-track clocks but not the biotite $K-A r$ clocks. A temperature between $150^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$ associated with a Cretaceous thermal event would account for the difference in apparent apatite fission-track and biotite K-Ar ages.

Concordance of apatite fission-track and biotite or hornblende K-Ar ages increases the reliability of an absolute age determination. Samples from the Cassiar area, Syenite Range, and Burwash Landing area generally have concordant biotite $K-A r$ and apatite fission-track ages. These findings suggest that the apatite fission-track method is a suitable absolute age dating method for late Mesozoic and Cenozoic igneous events in the Cassiar area, Burwash Landing area and Syenite Range.

3.6 COMPARISON OF K-Ar AND FISSION-TRACK DATING TECHNIQUES

Apatite fission-track ages of samples dated in this study are both concordant and discordant with $\mathrm{K}-\mathrm{Ar}$ dates on co-genetic biotite or hornblende from the same sample. Young apatite fission-track ages have been attributed to the sensitive annealing character of fission-tracks in apatite (Naeser, 1967 a and b; Wagner, 1968; Christopher, 1969; Engels and Crowder, 1971). Apatite maintained at a temperature in excess of $50^{\circ} \mathrm{C}$ for a million years will lose 10 per cent of its tracks, and if the temperature is maintained in excess of $175^{\circ} \mathrm{C}$, all accumulated fissiontracks will be annealed (Naeser and Faul, 1969).

Each mineral suitable for fission-track dating has a different temperature range for track annealing (Fleischer et al., 1965b; Naeser and Fau1, 1969; Wagner, 1968). Figure 3-2 is a summary of annealing studies. In principle, dating a suite of minerals from the same site allows a thermal history to be constructed (e.g. Naeser, 1967 a and b; Engels and Crowder, 1971).

Lowering of $\mathrm{K}-\mathrm{Ar}$ ages can also be caused by heating, but for biotite and hornblende, the loss of argon does not begin until a temperature of approximately $150^{\circ} \mathrm{C}$ is reached (Damon, 1968). Hornblende is more resistant to argon loss than biotite, but for either mineral, essentially all argon will be retained when fission-tracks are being annealed from apatite at temperatures between 75 and $175^{\circ} \mathrm{C}$. K-Ar ages, obtained in conjunction with apatite or other fission-track ages, help resolve the thermal history of an area.

The simplicity of the apatite fission-track method is an appealing

Fig. Track-loss curves for epidote, sphene, and apatite (3-2). (from Naeser and Dodge, 1969).
feature. Because normal laboratory equipment is used for fissiontrack dating, the experimental costs are minimal. The main cost of a fission-track determination involves the thermal neutron irradiation. Neutron irradiation services are commerically available, and by including several samples in a reactor run, the cost per sample is less than ten dollars.

After obtaining mounted and polished thin sections for normal and irradiated sample portions, the time needed for making a fission-track age determination will depend upon the fission-track density. An apatite fission-track age determination should take between 2 and 6 hours (Naeser and McKee, 1970) if between 10 and 20 grains are examined. For this study, track counting time was between 4 and 8 hours. The time necessary for a complete $\mathrm{K}-\mathrm{Ar}$ analysis, including both potassium and argon analysis, is about 6 to 10 hours. In addition, the $\mathrm{K}-\mathrm{Ar}$ analysis must be spread over several days.

Because only a few grains of sample are necessary for a fissiontrack determination, the mineral separation time is short and mineral concentrates can be obtained as by-products of mica and amphibole mineral separations. Rocks that are poor in micas and amphiboles are not easily dated by $\mathrm{K}-\mathrm{Ar}$ and $\mathrm{Rb}-\mathrm{Sr}$ methods, but should be datable by the fissiontrack method.

For samples with less than 50% atmospheric argon contamination, the precision of replicate K-Ar age determinations in the University of British Columbia K-Ar laboratory is within 1% and the accuracy within 3% (J.A. Harakal, personal communication, 1972). The amount of analytical
uncertainty is greater for fission-track age determinations. Empirically, Naeser and Dodge (1969) have determined that $\pm 10 \%$ is a good estimate of 1 standard deviation in a fission-track age determination. Accuracy estimates for fission-track age determination cannot be made because of lack of interlaboratory comparison.

3.7 SUMMARY AND CONCLUSIONS

Fifteen apatite fission-track ages were obtained for apatite concentrates from six areas in British Columbia and the Yukon Territory. Apatite fission-track ages obtained from epizonal and mesozonal intrusions with porphyry mineral deposit affinity are consistent and generally concordant with biotite $K-A r$ ages where alteration is weak. Apatite samples from the Copper Mountain area and from the Granisle Mine were difficult to date using the fission-track method because of the altered nature of the apatite.

Three apatite fission-track ages from the Copper Mountain intrusions have a mean age of $111 \pm 7 \mathrm{~m} . \mathrm{y}$. This mean age is interpreted to reflect a heating event that is related to Early to Middle Cretaceous granitic intrusion. Because biotite $K-A r$ ages in the Copper Mountain area are affected only by contact thermal events, and apatite fission-track ages appear to be regionally reset, temperatures between the minimum annealing temperature of apatite (approximately $75^{\circ} \mathrm{C}$) and the minimum temperature for argon loss from biotite (approximately $150^{\circ} \mathrm{C}$) are suggested for a regional thermal event of Cretaceous age.

Without additional geologic and geochronologic evidence, apatite fission-track ages from the Copper Mountain area and the Granisle Mine give misleading results with resulting misinterpretation of thermal history. Therefore, in cases where alteration is involved or thermal events are suspected, apatite fission-track ages should be checked by using another more refractory mineral or another radiometric clock.

A comparison of fifteen apatite fission-track ages with $\mathrm{K}-\mathrm{Ar}$ ages (Figure 3-1) demonstrates that the apatite fission-track method can be used to age date porphyry mineral deposits, however the $\mathrm{K}-\mathrm{Ar}$ method is generally more suitable in terms of cost and reliability.

4. AREAS. STUDIED

4.1 INTRODUCTION

Areas studied are located on Figure 1-1. This chapter outlines the geologic setting and age of the areas studied. In addition the K-Ar and fission-track methods are compared for these areas.

4.2 SYENITE RANGE, YUKON TERRITORY

4.2.1 Introduction

Syenite Range is located about 60 miles southeast of Dawson City, Yukon Territory and 50 miles west-northwest of Mayo, Yukon Territory in the Yukon Plateau near the northeast flank of the Tintina Trench. Along the Tintina Trench and near its northeast flank are many bodies of course light grey granite commonly containing abundant feldspar phenocrysts (Bostock, 1948). These granitic bodies have been mapped by Bostock (1964) as Jurassic and (or) Cretaceous Coast Intrusions. The Syenite Range is composed of a composite stock of these coarse-grained granitic and syenitic rocks arranged in concentric zones with an outer zone of porphyritic syenite and a core of porphyritic granite (Bostock, 1948) .

4.2.2 General Geology and Geochronology

Figure 4-1 shows the general geology and geochronology of the Syenite Range. Granitic rocks that compose the Syenite Range intrude Paleozoic sedimentary rocks. Similar granitic rocks of Cretaceous age occur in the Mayo Lake, Scougale Creek and McQuesten Lake map areas (Green, 1971).

Figure 4-1. General geology and geochronology of the Syenite Range, Yukon Territory (geology after Bostock, 1964).

A Cretaceous age for granitic rocks of the Syenite Range is supported by field relationships and a number of radiometric age determinations. To the north and east of the Syenite Range, similar granitic rocks intrude the Keno Hill Quartzite of probab1e Early Cretaceous age (Green, 1971) and about 50 miles west of the Syenite Range in the Tintina Trench, similar granitic debris is present in Tertiary conglomerates (Green, 1972).

4.2.3 Radiometric Dating

Table 4-1 summarizes fission-track and K-Ar ages obtained for co-genetic biotite and apatite samples PC16 and PC17. Both rock samples contain about 5%, biotite that is weakly altered along cleavage edges and grain boundaries to chlorite. Biotite $\mathrm{K}-\mathrm{Ar}$ ages of $85.3 \pm$ 2.7.m.y. and $89.5 \pm 2.7 \mathrm{~m} . \mathrm{y}$. were obtained for specimens PC16 and PC17 respectively. These ages are similar to biotite $\mathrm{K}-\mathrm{Ar}$ ages of $85 \pm$ 7 m.y. (GSC 65-50) from a quartz monzonite stock about 25 miles south of the Syenite Range and $81 \pm 5 \mathrm{~m} . \mathrm{y}$. (GSC 65-49) from quartz porphyry in the Keno Hill area about 50 miles northeast of the Syenite Range.

An apatite fission-track age of $76 \pm 8 \mathrm{~m} . \mathrm{y}$. for sample PCl6 is concordant with the $85.3 \pm 2.7 \mathrm{~m} . \mathrm{y}$. biotite $\mathrm{K}-\mathrm{Ar}$ age for the sample. An apatite fission-track age of $121 \pm 16 \mathrm{~m} . \mathrm{y}$. for sample PC17 is discordant with the $89.5 \pm 2.7 \mathrm{~m} . \mathrm{y}$. biotite $\mathrm{K}-\mathrm{Ar}$ age for the sample. The large uncertainty for the apatite fission-track age ($16 \mathrm{~m} . \mathrm{y}$.) is caused by the small number (187) of spontaneous fission-tracks counted.

4.2.4 Conclusions

The biotite $\mathrm{K}-\mathrm{Ar}$ ages (85.3 ± 2.7 and $89.5 \pm 2.7 \mathrm{~m} . \mathrm{y}$.$) and apatite$ fission-track ages (76 ± 8 and $121 \pm 16 \mathrm{~m} . \mathrm{y}$.$) are mainly Late Cretaceous$ as defined in Wanless et al. (1972). These ages are in agreement with
others (Gabrielse, 1967, p. 286): obtained from an arc of relatively small granitic intrusions strung out along the northeast side of the Tintina Trench.

Table 4-1 Fission-track and K-Ar ages obtained for granitic rocks in the Syenite Range, Yukon Territory.

Sample Number	Unit	Rock Type	Mineral dated	Fission- track age* (m.y.)	K-Ar age** (m.y.)
PC16	Syenite Range intrusions	Qtz. monz.	apatite biotite	76 ± 8	

* Fission-track analyses by P.A. Christopher Constants used in model age calculations: λ for $\mathrm{U}^{238}=6.85 \times 10^{-17} \mathrm{yr}^{-1} ; \lambda \mathrm{D}$ for $\mathrm{U}^{238}=$ $1.54 \times 10^{-10} \mathrm{yr}^{-1} ; ~ \sigma$ for $\mathrm{U}^{235}=582 \times 10^{-24} \mathrm{~cm}^{2}$.
** Argon analyses by J.E. Harakal and P.A. Christopher using MS-10 mass spectrometer. Constants used in model age calculations: $\lambda_{e}=0.585$ $\mathrm{x} 10^{-10} \mathrm{yr}^{-1} ; \lambda_{\beta}=4.72 \times 10^{-10} \mathrm{yr}^{-1} ; 40 \mathrm{~K} / \mathrm{K}=1.181 \times 10^{-4}$.

4.3 CORK (BURWASH CREEK) Cu-Mo PROSPECT

4.3.1 Introduction

Eight $K-A r$ and four apatite fission-track ages were obtained from granitic and porphyritic textured intrusive rocks in the Burwash Landing area of southwestern Yukon Territory. Six of the samples were selected because of their spatial relationship to a porphyry $\mathrm{Cu}-\mathrm{Mo}$ prospect on Burwash Creek, and two samples were collected to check the age of the Ruby

Range batholith to the east of Burwash Landing.

Figures 4-2 and 4-3 show sample locations and outline the geology in the Burwash Landing area. The Cork property lies in the northern segment of the Insular tectonic belt (Sutherland Brown et al., 1971). The area is part of the St. Elias Fold Belt, and consists of an eugeosynclinal assemblage of sedimentary, volcanic and intrusive rocks with ages ranging from Devonian to Tertiary.

High level porphyritic intrusive rocks near Burwash Creek have been mapped as Tertiary age by Muller (1967) on the basis of their chemical and textural similarity to sills, dikes, and small stocks that cut Tertiary sediments in the St. Elias Fold Belt. The Cork Cu-Mo prospect occurs in and around a body of quartz latite porphyry that intrudes sedimentary and volcanic rocks of late Paleozoic (Cache Creek Group) and early Mesozoic age (Mush Lake Group). An unmineralized gabbroic stock, mapped as part of the Cretaceous (?) Kluane Range intrusions (Muller, 1967), occurs along the southern margin of the Cork property.

Shakwak Trench, a major transcurrent fault zone, separates mainly volcanic and sedimentary rocks of the St. Elias Mountains to the southwest (Insular Belt) from mainly granitic and metamorphic rocks of the Yukon Plateau to the northeast (Coast Crystalline Belt). The Yukon Complex and the Ruby Range batholith are the major components of the Coast Crystalline Belt in the Burwash Landing area. The Ruby Range batholith is considered by Muller(1967) as part of the Coast Intrusions. The age of the Ruby Range batholith cannot be determined directly by its relationship to fossiliferous beds (Muller, 1967). Biotite $\mathrm{K}-\mathrm{Ar}$ age determinations on quartz monzonite

LEGEND
［：G FELDSPAR PORPHYRY

HORNFELS
＋＋RUBY RANGE BATHOLITH
ICEFIELD RANGE INTRUSIONS
$\times 59-13$
58 M
G．S．C．SAMPLE LOCATION AND AGE（Lowden 1960）
kluane range intrusions
PPC 1
SAMPLE LOCATION
AND AGE IN M．Y． （this report）
MUSH LAKE GROUP
\square PERIDOTITE AND GABBRO
CACHE CREEK GROUP
WGX YUKON COMPLEX
Fig．4－2 General geology and geochronology in the Burwash Landing area，Yukon Territory． Geology after Muller（1967）．

Fig．4．3 General geology and geochronology of the Cork prospect（for legend see Fig．2－2）．
and granodiorite from the Ruby Range batholith have yielded early Tertiary and Jurassic ages (Lowden, 1960 ; 1961). A $58 \mathrm{~m} . \mathrm{y}$. biotite K-Ar age was obtained from gneissic biotite granodiorite east of Burwash Landing.

4.3.2 Potassium-Argon Results

Isotopic age of the 8 analyzed samples are plotted on Figures 4-2 and 4-3. Table 4-2 summarizes $\mathrm{K}-\mathrm{Ar}$ and apatite fission-track aged obtained for granitic rocks from the Burwash Landing area.

Specimens PC3 and PC4 were collected from a mineralized quartz latite porphyry stock located on the Cork property. Specimens PC1 and PC2 were collected from a chemically and texturally similar but unmineralized stock 3 miles east of the Cork property. These porphyritic rocks contain from 1 - 4\% biotite as phenocrysts with minor chlorite alteration along cleavage planes and crystal boundaries. Unaltered hornblende concentrates were obtained from gabbro specimens PC5 and PC6 from the Cork property, and unaltered biotite concentrates were obtained from granodiorite specimens PC7 and PC8 from the Ruby Range batholith.

4.3.3 Fission-Track Results

Apatite concentrates were obtained from samples PC1, PC2, PC3, and PC8. The $48.9 \pm 6.6 \mathrm{~m} . \mathrm{y}$. apatite fission-track age-determined for sample PC8 from the Ruby Range batholith is concordant with and provides support for the $54.5 \pm 2.0 \mathrm{~m} . \mathrm{y}$. biotite $\mathrm{K}-\mathrm{Ar}$ age determined for this sample. Apatite fission-track ages ranging from 42.4 to $46.6 \mathrm{~m} . \mathrm{y}$. (PC1 to PC3) were obtained for the porphyritic rocks near Burwash Creek. These age are

Table 4-2. Fission-track and K-Ar ages obtained for granitic rocks in the Burwash Landing area, Yukon Territory.

Sample Number	Unit	Rock Type	Mineral dated	Fissiontrack age* (m.y.)	K-Ar age** (m.y.)
PC1	Tertiary stock (?)	Qtz. latite porphyry	apatite biotite	42 ± 7	26.1 ± 1.0
PC2	Tertiary stock (?)	Qtz. latite porphyry	apatite apatite biotite	$\begin{aligned} & 54 \pm 6 \\ & 35 \pm 5 \end{aligned}$	26.7 ± 1.2
PC3	Tertiary stock (?)	Qtz. latite porphyry	apatite biotite	47 ± 5	26.2 ± 1.0
PC4	Tertiary stock (?)	Qtz. latite porphyry	biotite		26.0 ± 1.0
PC5	Kluane Range Intrusions	Gabbro	hb1.		115 ± 4.0
PC6	Kluane Range Intrusions	Gabbro	hbl.		117 ± 4.0
PC7	Ruby Range batholith	Bio. granodiorite	biotite		51.9 ± 2.0
PC8	Ruby Range batholith	$\begin{aligned} & \text { Bio.-Hb1. } \\ & \text { granodiorite } \end{aligned}$	$\begin{aligned} & \text { apatite } \\ & \text { bio. } \end{aligned}$	49 ± 7	54.5 ± 2.0

Note: Porphyritic latite sample CKD-1 from the Cork property has a K-Ar age of $26.2 \pm 0.4 \mathrm{~m} . \mathrm{y}$. and hornblende diorite sample JCD-1 from the Kluane Range intrusions on the Cork property has a $\mathrm{K}-\mathrm{Ar}$ age of 111.7 ± 2 m.y. (D.C. Way written communication, December 1972). Samples CKD-1 and JCD-1 were analysed by Dr. E. Farrar of the Department of Geological Sciences, Queen's University, Kingston, Ontario.

* Fission-track analyses by P.A. Christopher Constants used in model age calculations: λ_{F} for $\mathrm{U}^{238}=6.85 \times 10^{-17} \mathrm{yr}^{-1} ; \quad \lambda_{\mathrm{D}}$ for $\mathrm{U}^{238}=1.54$ $\mathrm{x} 10^{-10} \mathrm{yr}^{-1} ; \sigma$ for $\mathrm{U}^{235}=582 \times 10^{-24} \mathrm{~cm}^{2}$.
** Argon analyses by J.E. Harakal and P.A. Christopher using MS -10 mass spectrometer. Constants used in model age calculations: $\lambda_{\mathrm{e}}=0.585 \mathrm{x}$ $10^{-10} \mathrm{yr}^{-1} ; \quad \lambda_{\beta}=4.72 \times 10^{-10} \mathrm{yr}^{-1} ; \quad 40 \mathrm{~K} / \mathrm{K}=1.181 \times 10^{-4}$.
consistently older than the mean $26.2 \pm 0.3 \mathrm{~m} . \mathrm{y}$. biotite $\mathrm{K}-\mathrm{Ar}$ age determined for samples PCl to PC4, but both methods support the Tertiary age assigned to this unit by Muller (1967).

The reason for consistently older apatite fission-track ages is not clear. Older apatite fission-track apparent ages relative to biotite K-Ar apparent ages are difficult to explain because argon is retained in biotite at a temperature that will cause annealing of fission-tracks in apatite (Naeser, 1967a; Naeser and Faul, 1969). It is unlikely that secondary biotite could have formed without the annealing of primary apatite grains and the discrete biotite grains and books appear to be primary biotite. If weathering was important in lowering the $K-A r$ age, it is not indicated by the small deviation in the four biotite $K-A r$ apparent ages, in thin section examination of rocks, or microscopic examination of biotite concentrates. The most likely explanation for the discrepancy is a slight bias in counting which might result because of the extremely low spontaneous track density and the small spontaneous to induced track density ratio. A consistent bias could explain the older ages.

4.3.4 Discussion

The $26.2 \pm 0.3 \mathrm{~m} . \mathrm{y}$. mean biotite $\mathrm{K}-\mathrm{Ar}$ age determined for quartz latite porphyry (PC1 - PC4) is the best age for emplacement of this unit. Samples were analyzed in a manner suitable for isochron determinations (Roddick and Farrar, 1971), but the narrow range of potassium values for the samples leads to isochron ages with large uncertainties (see section 2.4).

The $115 \pm 4 \mathrm{~m} \cdot \mathrm{y}$. and $117 \pm 4 \mathrm{~m} \cdot \mathrm{y}$. hornblende $\mathrm{K}-\mathrm{Ar}$ ages determined for Kluane Range Intrusions on the Cork property agree with the Cretaceous age
assigned to this unit by Muller (1967). The $51.9 \pm 2.0 \mathrm{~m} . \mathrm{y}$. and 54.5 $\pm 2.0 \mathrm{~m} . \mathrm{y}$. biotite $\mathrm{K}-\mathrm{Ar}$ ages determined for the Ruby Range batholith are slightly younger than the Geologic Survey of Canada age of $58 \mathrm{~m} . \mathrm{y}$. (Lowdon, 1961).

Tertiary apatite fission-track ages determined for quartz latite porphyry near Burwash Creek and for one sample (PC8) from the Ruby Range batholith are consistent with biotite K-Ar ages and the Tertiary ages suggested for these units by Muller (1967).

Both mineralized and barren quartz latite porphyry near Burwash Creek yield ages which are identical within the limits of detection and precision of the K-Ar method. This agrees with the findings of White et al. (1968) that for many British Columbia porphyry mineral deposits, mineralization is an integral feature of a magmatic event.

The Cork prospect is in a large belt of Tertiary volcanic and intrusive rocks which extend through the St. Elias Mountains and adjacent Alaska Range (Muller, 1967 p. 102). This belt may contain other similar Tertiary porphyry type mineral deposits.

4.4. NORTHERN BRITISH COLUMBIA

4.4.1 Introduction

Seven biotite K-Ar ages and four apatite fission-track ages (Table 4-3) were determined for porphyritic intrusions in northern British Columbia (Figures $4-4$ and 4-5). Samples were selected because of their spatial and temporal relationship to Mo and Mo-W deposits in the Cassiar and Atlin areas. Sutherland Brown et al. (1971) suggested that an area extending from the Coast Crystalline Belt-Intermontane Belt boundary in the Atlin area across

Figure 4-4. General geology and geochronology in the Cassiar area, B.C. (after Gabrielse, 1963), Mt. Haskin Mo Property (after G. Lamont, 1971, unpublished mapping) and Mt. Reed Mo-W property (after P. Hirst, 1969, unpublished mapping).

Figure 4-5. General geology and geochronology in the Atlin Area (after Aitken, 1959) and of the Adera Claims - Adanac Mo property (after Sutherland Brown, 1969b).

Table 4-3. Fission-track and K-Ar ages of granitic rocks in northern British Columbia.

Sample	Unit	Rock	Mineral	Fission-	K-Ar age**
Number		Type	dated	track age*	(m.y.)
				(m.y.)	

PC9	Mt. Haskin porphyry	Granite porphyry	apatite apatite biotite	48 ± 6	
PC10	Mt. Haskin porphyry	Granite porphyry	biotite		49.7 ± 1.5
PC11	Mt. Reed porphyry	Granite porphyry	biotite		

ATLIN AREA
$\begin{array}{llll}\text { PC15 } & \begin{array}{l}\text { Mt. Leonard } \\ \text { Boss }\end{array} & \begin{array}{l}\text { coarse } \\ \text { Alaskite }\end{array} & \text { biotite }\end{array} \quad 62.0 \pm 2.2$

* Fission-track analyses by $\mathrm{P} \cdot \mathrm{A}$. Christopher ${ }^{\text {Constants used in model }}$ age calculations: λ_{F} for $\mathrm{U}^{238}=6.85 \mathrm{x} 10^{-17} \mathrm{yr}^{-1}$; λ for $\mathrm{U}^{238}=6.85$ $\times 10^{-17} \mathrm{yr}^{-1}$; $\lambda \mathrm{D}$ for $\mathrm{U}^{238}=1.54 \times 10^{-10} \mathrm{yr}^{-1}$; σ for $\mathrm{U}^{235}=582 \times 10^{-24}$ cm^{2}.
***Argon analyses by J.E. Harakal and P.A. Christopher using MS-10 mass spectrometer. Constants used in model age calculations: $\lambda_{\mathrm{e}}=0.585$ $\mathrm{x} 10^{-10} \mathrm{yr}^{-1} ; \lambda_{\beta}=4.72 \times 10^{-10} \mathrm{yr}^{-1} ; 40 \mathrm{~K} / \mathrm{K}=1.181 \times 10^{-4}$.
the Stikine Arch into the Omineca Belt in the Cassiar area contains one of the three major molybdenum concentrations in the Canadian Cordillera. The general geology of the Cassiar and Atlin areas is described below.

```
4.4.2 Cassiar Area *
The Cassiar Batholith (Figure 4-4) has a mean K-Ar age of 102 \pm3
``` m.y. Late Cretaceous igneous activity along the western margin of the Cassiar Batholith is indicated by mean ages of \(96 \pm 3 \mathrm{~m} . \mathrm{y}\). from the Seagull Batholith and \(76.5 \pm 4 \mathrm{~m} . \mathrm{y}\). from the Glundebery Batholith, and by K-Ar ages of \(78 \pm 4 \mathrm{~m} . \mathrm{y}\). from the Parallel Creek Batholith and \(71 \mathrm{~m} . \mathrm{y}\). from a quartz monzonite north of Dease Lake. Early Tertiary igneous activity to the west of the Cassiar Batholith is indicated by concordant K-Ar ages of \(48 \pm 4 \mathrm{~m} . \mathrm{y}\). on hornblende and \(46 \pm 2 \mathrm{~m} . \mathrm{y}\). on biotite from a small quartz diorite pluton that intrudes the Christmas Creek Batholith.

A young stock, that occurs within the Cassiar Batholith to the northwest of the area shown in Figure \(4-4\) has yielded biotite \(K-A r\) ages of \(58 \pm 3 \mathrm{~m} . \mathrm{y}\). and \(53 \pm 3 \mathrm{~m} . \mathrm{y}\). The Blue Light property, located in this young quartz monzonite body, contains tungsten and beryllium minerals (Mulligan, 1969).

A muscovite \(K-A r\) age of \(57 \mathrm{~m} . \mathrm{y}\). was obtained from granitized terrain exposed about 10 mi . northeast of Mt. Haskin in the Horse Ranch Range. Gabrielse (in Lowdon et al., 1963b) suggested that this age might date the emplacement of post-tectonic plutons and metamorphic rocks recrystallized to some extent at that time.

Because, the youngest rocks intruded by the Cassiar intrusions in the area shown in Figure 4-4, are of Devono-Mississippian age (Gabrielse, 1963),
time of intrusion cannot be dated accurately by stratigraphic methods.

Samples PC9 to PC14 (Figure 4-4) were collected from:
(1) a quartz monzonite porphyry stock that intruded Paleozoic sedimentary and volcanic rocks to the east of the Cassiar Batholith and
(2) small granite porphyry stocks, sills and dikes that intruded sedimentary and metasedimentary rocks of the Atan Group.

\section*{Cassiar Molybdenum Property}

The Cassiar Molybdenum property (Figure 4-4) occurs within a young quartz monzonite that cuts the Cassiar Batholith along its eastern border (Campbell, 1968). Stockwork and disseminated molybdenite are related spatially and probably genetically to a late, fine-grained phase of the young quartz monzonite.

Samples PC13 and PC14 were collected from the early, pre-mineralization phase of the quartz monzonite stock. Biotite concentrates from these samples contain less than \(2 \%\) chlorite as alteration along cleavage planes. Quartz monzonite samples PC13 and PC14 have consistent biotite \(\mathrm{K}-\mathrm{Ar}\) ages of \(71.7 \pm 2.6 \mathrm{~m} . \mathrm{y}\). and \(68.3 \pm 2.7 \mathrm{~m} . \mathrm{y}\).

\section*{Mt. Haskin Mo and Mt. Reed Mo-W Properties}

Granite porphyry intruded sedimentary and metasedimentary rocks of the Atan Group on both the Mt. Haskin Mo and Mt. Reed Mo-W properties (areas shown in detail on Figure 4-4). Stockwork and disseminated molybdenum and tungsten bearing minerals are found in both the granite porphyry and contact altered metasedimentary rocks. Mineralization is believed to be temporally related to the granite porphyry.

Granite porphyry samples PC9 and PC10 are from a small stock on the Mt. Haskin property and granite porphyry samples PC11 and PC12 are from a texturally and chemically similar stock on the Mt. Reed property. Biotite contents of samples PC9-PC12 range from 1 to \(4 \%\). Chlorite content of the analyzed biotite concentrates is less than \(5 \%\).

Granite porphyry samples PC9 to PC12 from Mt. Haskin Mo and Mt. Reed Mo-W properties have biotite \(\mathrm{K}-\mathrm{Ar}\) ages ranging from 48.7 to \(50.5 \mathrm{~m} . \mathrm{y}\). and a mean \(K-A r\) age of \(49.8 \pm 0.7 \mathrm{~m} . \mathrm{y}\). Reliable isochron ages could not be obtained from the granite porphyry (see section 2.4) because of the small differences in potassium content of the biotite concentrates PC9 to PC12.

\section*{Discussion}

Ages obtained for quartz monzonite and granite porphyry in the Cassiar area suggest that molybdenum and associated tungsten mineralization occurred after the emplacement of the Cassiar Batholith (102 \(\pm 3\). m.y.). The \(71.7 \pm 2.6 \mathrm{~m} . \mathrm{y}\). and \(68.3 \pm 2.7 \mathrm{~m} . \mathrm{y}\). ages obtained for a young phase of the Cassiar intrusions place an upper limit on the age of mineralization on the Cassiar Molybdenum property. Because both mineralized and barren granite porphyry samples from the Mt. Reed and Mt. Haskin properties yield the same age within analytical limits, mineralization on these properties is considered to be an integral part of an early. Tertiary magmatic event. The Late Cretaceous and early Tertiary ages obtained for quartz monzonite porphyry and granite porphyry phases of the Cassiar intrusions are consistent with a trend from older, more basic, granitic phases to younger, more acid, porphyritic bodies.

Apatite fission-track ages obtained from the Cassiar area are in good agreement with \(\mathrm{K}-\mathrm{Ar}\) ages for cogenetic biotite. Figure 3-1 demonstrates the \(\mathrm{K}-\mathrm{Ar}\) ages and apatite fission-track ages for samples PC8, PC12, PC13 and PC14 are the same within analytical limits. Because apatite fission-track and biotite \(\mathrm{K}-\mathrm{Ar}\) ages are concordant, the apatite fissiontrack method is considered to be useful in age dating Late Cretaceous and Tertiary units in the Cassiar area.

\subsection*{4.4.3. Atlin Area}

No radiometric ages are available for intrusive rocks in the Atlin area. Ages ranging from \(54 \mathrm{~m} . \mathrm{y}\). to \(70 \mathrm{~m} . \mathrm{y}\). were reported from the Bennett area to the west and adjacent parts of the Alaska Panhandle (Cristie in Lowdon et al., 1963a), and an age of \(69 \mathrm{~m} . \mathrm{y}\). was obtained from quartz monzonite in the Tulsequah area to the south. Souther (in Lowdon et al., 1963b) reported that discordant quartz monzonite stocks along the eastern contact of the Coast Crystalline Belt in western British Columbia and southeastern Yukon are part of the youngest phase of the Coast Intrusions.

More recently, K -Ar whole-rock and biotite ages ranging from 46.9 to \(52.8 \mathrm{~m} . \mathrm{y}\). were obtained from quartz monzonite of the East Marginal Pluton of the Coast Intrusions in the Juneau Ice Field area (Forbes and Engles, 1970). These data reinforce the early Tertiary K-Ar ages for granitic rocks along the eastern margin of the Coast Intrusions.

\section*{Adanac Mo Property}

Figure 4-5 shows the location and general geology of the Adanac area. The Adanac Mo property is on upper Ruby Creek, and molybdenum with minor
tungsten is found in granitic rocks that are part of the Mt. Leonard Boss mapped by Sutherland Brown (1969b). The Mt. Leonard Boss intrudes a sequence of rocks ranging in age from Permo-Pennsylvanian Cache Creek metavolcanic rocks to the Fourth of July Batholith which has been assigned a Jurassic (?) age (Aitken, 1959). Sutherland Brown (1969b) suggested that the midCretaceous (?) Mt. Leonard Boss is in all probability connected to the main Suprise Lake Batholith and that all phases of the stock are as closely related in age as they are in chemistry.

One sample (provided by W. Sirola) was available from the Mt. Leonard Boss. This sample contained about \(1 \%\) biotite with \(15 \%\) chlorite alteration. A biotite concentrate containing about \(5 \%\) chlorite was obtained from the sample. Low potassium content of the biotite (\(5.16 \pm 0.04 \%\)) is caused by chlorite alteration. A \(62.9 \pm 2.2 \mathrm{~m} . \mathrm{y}\). K-Ar age was obtained for the biotite concentrate.

The \(62.9 \pm 2.2 \mathrm{~m} . \mathrm{y}\). age for the alaskite phase of the Mt. Leonard Boss is consistent with the young age of discordant quartz monzonite stocks along the eastern contact of the Coast Crystalline Belt (Souther in Lowdon et al., 1963a; Forbes and Engles, 1970).

\subsection*{4.4.4 Conclusions}

Late Cretaceous and early Tertiary ages obtained for the Adanac Mo property, Cassiar Mo property, Mt. Haskin Mo property, and Mt. Reed Mo-W property, and early Tertiary ages reported for quartz monzonite and pegmatite associated with the Blue Light tungsten property (Wanless et al., 1970) Indicate a Late Cretaceous to early Tertiary metallogenic epoch for molybdenum and tungsten in northern British Columbia. The existence of a

Late Cretaceous to early Tertiary metallogenic epoch for porphyry mineral deposits has previously been suggested for central British Columbia (Carter, 1970; 1972a) and for southeastern A1aska (Reed and Lanphere, 1969).
4.5 GRANISLE MINE, BABINE LAKE AREA, BRITISH COLUMBIA

\subsection*{4.5.1 Introduction}

Copper deposits of the Babine Lake area are related to small, highlevel, subvolcanic porphyritic intrusions of early Tertiary age that intrude Mesozoic volcanic and sedimentary rocks of the Hazelton Group (see Carter, 1972b, Fig. 12, page 28; Carter, 1970). The intersection of northwesterly and northeasterly striking faults may have controlled emplacement of Tertiary intrusions. Porphyry copper deposits are associated with dykes and plugs of biotite-feldspar porphyry of quartz diorite composition. Biotite \(\mathrm{K}-\mathrm{Ar}\) ages obtained for 10 samples from porphyries have yielded a mean age of \(51.2 \pm 2 \mathrm{~m} . \mathrm{y}\). (Carter 1972b).

The Granisle Mine has been classified as an elaborate porphyry deposit (Sutherland Brown, 1969a) because of the several phases and pulses of biotite-feldspar porphyry that are spatially and temporally associated with copper mineralization. An oval zone of potassic alteration is roughly coincident with the ore zone and a number of north \(50^{\circ}\) east striking bornite-chalcopyrite-quartz-biotite-apatite veins occur in the potassic zone (Carter, 1972b).

\subsection*{4.5.2. Potassium-Argon Dating}

A mean biotite potassium-argon age of \(51.2 \pm 2 \mathrm{~m} . \mathrm{y}\). was determined for

Figure 4-6. Geochronology and general geology of the Granisle Mine pit (geology from Carter, 1972b).
three samples of biotite-feldspar porphyry and one sample (NC-69-8) of a quartz-chalcopyrite-bornite-apatite vein from the Granisle Mine (Carter, 1972b). Biotite from sample NC-69-8 has a K-Ar age of \(50.2 \pm 2.1 \mathrm{~m} . \mathrm{y}\). (N.C. Carter personal communication, 1972).

\subsection*{4.5.3 Fission-Track Dating}

Part of sample NC-69-8 was obtained from N.C. Carter to obtain apatite for a fission-track age determination. Apatite grain mounts used to determine the fission-track age revealed two generations of apatite; 1) minor very clear and relatively unaltered apatite, (selectively counted), and 2) highly altered grains containing fluid, chalcopyrite and altered silicate inclusions. Only a few useable grains could be obtained by scanning the grain mounts at low power. A fission-track age of \(29.6 \pm\) 4.1 m.y. obtained for this sample is discordant with the \(51.2 \pm 2 . \mathrm{m} . \mathrm{y}\). biotite K-Ar age, but the apatite fission-track age does reflect the young Tertiary age.

\subsection*{4.5.4 Discussion}

The \(50.2 \pm 2.1 \mathrm{~m} . \mathrm{y}\). biotite \(\mathrm{K}-\mathrm{Ar}\) age of sample \(\mathrm{NC}-69-8\) (Figure 4-6) is supported by mean \(K-A r\) ages of \(51.2 \pm 2 \mathrm{~m} . \mathrm{y}\). for four samples from the Granisle Mine and \(51.2 \pm 2 \mathrm{~m} . \mathrm{y}\). for ten \(\mathrm{K}-\mathrm{Ar}\) age for porphyries in the Babine Lake area (Carter, 1972b). The \(30 \pm 4 \mathrm{~m} . \mathrm{y}\). apatite fission-track age is young and could be a reset age, but alteration of apatite grains made track distinction difficult and the error in this determination may be larger than the counting error.

\section*{-4.6 COPPER MOUNTAIN AREA, BRITISH COLUMBIA}

\subsection*{4.6.1 Introduction}

The Copper Mountain and Ingerbelle mineral deposits, which are located on opposite sides of the Similkameen River, about 10 miles south of Princeton, British Columbia, occur in syenitic stocks and volcanic rocks of the Upper Triassic and Lower Jurassic Nicola Group. These 'syenitic' deposits have been classified on the basis of structure as complex porphyry deposits (Sutherland Brown, 1969a) and on the basis of the highlevel of emplacement of an associated and genetically related variable shaped pluton as volcanic porphyry deposits (Sutherland Brown, 1972). Copper deposits of the 'syenitic' volcanic porphyry class appear to be restricted to the intermontane tectonic belt of the Canadian Cordillera.

Comprehensive geologic reports on the geology of the Copper Mountain area by Dolmage (1934), Rice (1947), Fahrni (1951, 1962, 1966), Montgomery (1967) and Preto (1972a and b) and K-Ar age dating studies by Sinclair and White (1967) and Preto et al. (1971) support the geologic interpretation presented in Figure 4-7.

Table 4-4 is a listing of the apatite fission-track ages obtained for samples previously dated by the biotite \(\mathrm{K}-\mathrm{Ar}\) method.

\subsection*{4.6.2 General Geology}

Figure 4-7 shows the general geology of the Copper Mountain area and the location of the Ingerbelle and Copper Mountain mineral deposits. The oldest rocks in the area are part of the Upper Triassic Wolf Creek Formation of the Nicola Group (Rice, 1947). In the Copper Mountain area the Wolf Creek Formation is predominately andesite, tuff and volcanic clastic sediments

figure 2-7 GENERAL GEOLOGY OF THE COPPER MOUNTAIN AREA BRITISH COLUMBIA
\begin{tabular}{|c|c|c|c|}
\hline EXII: & Princeton group & & MONZONTTE \\
\hline & VERDE CREEK QTZ. MONZ. & & DIORITE \\
\hline & LOST HORSE INTRUSION & & NICOLA GROUP \\
\hline \[
{ }^{+}++_{+}^{+}++_{+}^{+}+1
\] & PERTHOSITE PEGMATITE & \[
\begin{array}{r}
\text { VP-69AK-1 } \\
-194 \pm 8 \\
\hline
\end{array}
\] & SAMPLE LOCATION AND AGE IN M.Y.(Preto \\
\hline \(\underbrace{\substack{C M-12-65 \\ 182 * 8}}\) & SAMPLE LOCATION AND AGE & N M.Y. (Sinclo & and White, 1968) \\
\hline
\end{tabular}
that generally display very mild metamorphism and deformation, except in the immediate vicinity of intrusive bodies (Preto, 1972b). A number of quartz-poor plutons, collectively known as the Copper Mountain intrusions (Montgomery, 1967) are spatially and genetically related to the mineral deposits. The largest, the Copper Mountain stock, is a concentrically differentiated intrusion, elliptical in plan and about 6.5 square miles in area. It ranges in composition from diorite at its outer edge through monzonite to syenite and perthosite pegmatite at the core (Montgomery, 1967). Preto et al. (1971) divide the Copper Mountain intrusions into the zoned Copper Mountain stock, the satellite Smelter Lakes and Voigt stocks, and the Lost Horse intrusions (Figure 4-7). Northeast of Copper Mountain, diorite of the Voigt stock and volcanic rocks of the Nicola Group are cut by a body of younger quartz monzonite that was named the Verde Creek granite by Dolmage (1934) and believed by Rice (1947) to be correlative with the Otter intrusions of Upper Cretaceous or younger age. \(\mathrm{K}-\mathrm{Ar}\) age dating by Preto et al. (1971) supports the Cretaceous age assigned to the Verde Creek body.

In the vicinity of the Copper Mountain and Ingerbelle mineral deposits alkali metasomatism has produced a distinctive mineral assemblage characteristic of copper deposits of the Nicola Belt. Alteration is most intense in the Lost Horse intrusions and bears a close spatial relationship to faults and fractures (Preto, 1972a). Successive stages of alteration recognized by Preto (1972a) are:
1) Development of biotite that has been partly destroyed by later alteration.
2) Development of albitic plagioclase and epidote that was accompanied by removal of biotite and of disseminated magnetite, and bleaching of pyroxene. Secondary sphene, apatite and pyroxene are locally developed.
3) Development of pink potash and plagioclase feldspar along fractures that was accompanied by sulfide-bearing pegmatite veins characterized by selvages of coarse biotite along the edges and bornite, chalcopyrite, potash feldspar, and calcite at the center.
4) Development of late scapolite veins that are most prominent in the Ingerbelle area.

Because biotite and apatite used for some of the age dating was developed during the alteration stages, the interpretation of radiometric ages would be tenuous without the detailed description of alteration provided by Preto (1972a and b).
4.6.3 Fission-Track Dating

Ten samples (VP69 (KAl to KA10)) from the Copper Mountain area that had previously been dated by the biotite \(K-A r\) method (Preto et al. 1971) were obtained from the British Columbia Department of Mines. Apatite concentrates were obtained from eight of the ten samples, but intense alteration of apatite grains eliminated the possiblity of using four of the eight apatite concentrates for fission-track dating. Sample KA4 from the Verde Creek quartz monzonite in the Copper Mountain area gave discordant \(101 \pm 4 \mathrm{~m} . \mathrm{y}\). biotite \(\mathrm{K}-\mathrm{Ar}\) and \(129 \pm 23 \mathrm{~m} . \mathrm{y}\). apatite fission-track apparent
ages. The minor discordance is attributed th the altered nature of the apatite grains.

Samples KA1, KA9 and KA10 from the Copper Mountain intrusions yield a mean apatite fission-track age of \(111 \pm 7 \mathrm{~m} \cdot \mathrm{y}\). and a mean blotite K-Ar age of \(195 \pm 2\) m.y. Blotite K-At ages for oamples KAl, KA9 and KAIO are in close agreement with mean biotite \(K-A r\) age of \(193 \pm 8 \mathrm{~m} . \mathrm{y}\). reported by Preto et al. (1971) for eleven samples from Copper Mountain. The Copper Mountain intrusions are believed to be co-magmatic with the Upper Triassic to Lower Jurassic Nicola volcanics, and since extensive \(K\)-Ar dating supports an Upper Triassic or earliest Lower Jurassic age for the Copper Mountain intrusions (Preto et al. 1971; Sinclair and White 1968), the Cretaceous apatite fission-track ages for the Copper Mountain intrusions probably represent reset ages or thermally lowered ages. A widespread Cretaceous thermal event in the Copper Mountain area is suggested by:
1) the average age of \(99.5 \pm 4 \mathrm{~m} . \mathrm{y}\). determined by Preto et al. (1971) for the Verde Creek quartz monzonite.
2) a \(104 \mathrm{~m} . \mathrm{y}\). age suggested for the major phases of the Eagle granodiorite lying to the west of Copper Mountain (Roddick and Farrar, 1972), and
3) an Early to Middle Cretaceous thermal event dated about 100 m.y. in northcentral Washington (Hibbard, 1971).

The consistent low ages obtained for apatite from the Copper Mountain intrusions suggest a thermal event that was strong enough to reset the apatite fission-track clocks but not the biotite K-Ar clocks. A temperature between
about \(75^{\circ} \mathrm{C}\) (Naeser and Faul, 1969; Wagner 1968) and \(150^{\circ} \mathrm{C}\) (Damon, 1968) associated with a Cretaceous thermal event would account for the difference in apparent fission-track and biotite \(\mathrm{K}-\mathrm{Ar}\) ages.

\subsection*{4.6.4 Summary}

A \(129 \pm 23 \mathrm{~m} . \mathrm{y}\). apatite fission-track age for the Verde Creek quartz monzonite supports the Cretaceous age for this unit. A mean apatite fission-track age of \(111 \pm 7 \mathrm{~m} . \mathrm{y}\). for samples KAl, KA9 and KA10 from the Copper Mountain intrusions reflect a heating event that is related to Early to Middle Cretaceous granitic intrusion.

Table 4-4. Fission-track and \(K-A r\) ages obtained for granitic rocks in the Copper Mountain area, British Columbia. (K-Ar ages are from Preto et al., 1971)
\begin{tabular}{lllll}
\hline \begin{tabular}{l}
Sample \\
Number
\end{tabular} & Unit & \begin{tabular}{c}
Mineral \\
dated
\end{tabular} & \begin{tabular}{c}
Fission- \\
track age \\
(m.y.)*
\end{tabular} & \begin{tabular}{c}
K-Ar age \\
(m.y.)
\end{tabular} \\
\hline KA1 & \begin{tabular}{l}
Lost Horse \\
intrusion
\end{tabular} & \begin{tabular}{l}
apatite \\
biotite
\end{tabular} & \(117 \pm 12\) & \(194 \pm 8\) \\
KA4 & \begin{tabular}{l}
Verde Creek \\
qtz. monz.
\end{tabular} & \begin{tabular}{l}
apatite \\
biotite
\end{tabular} & \(129 \pm 23\) & \(101 \pm 4\) \\
& \begin{tabular}{l}
Lost Horse \\
intrusion \\
(dike)
\end{tabular} & \begin{tabular}{l}
apatite \\
biotite
\end{tabular} & \(101 \pm 12\) & \(197 \pm 8\) \\
KA10 & \begin{tabular}{l}
Lost Horse \\
intrusion
\end{tabular} & \begin{tabular}{l}
apatite \\
apatite \\
biotite
\end{tabular} & \(101 \pm 13\) & 18 \\
\hline
\end{tabular}

\footnotetext{
* Fission-track analyses by P.A. Christopher. Constants used in model age calculations: \(\lambda_{F}\) for \(\mathrm{U}^{238}=6.85 \times \frac{10}{-17} \mathrm{yr}^{-1} ; \lambda_{D}\) for \(\mathrm{U}^{238}=\) \(1.54 \times 10^{-10} \mathrm{yr}^{-1} ; \sigma\) for \(\mathrm{U}^{235}=582 \times 10^{-24} \mathrm{~cm}^{2}\).
}

\section*{5. REVIEW OF METALLOGENY AND METALLOGENIC EPOCHS} FOR PORPHYRY MINERAL DEPOSITS OF THE CANADIAN CORDILLERA

\subsection*{5.1 Introduction}

In this chapter the K-Ar ages obtained for this study and published ages are used to place porphyry mineral deposits of the Canadian Cordillera in a tectonic-stratigraphic-lithologic framework; the concept of metallogenic epochs is evaluated for porphyry and related mineral deposits; and the concept of metallogenic epochs for porphyry deposits is examined in terms of global tectonics.

\subsection*{5.2 Metallogeny and Metallogenic Epochs}

Metallogeny is concerned with the genesis of mineral deposits and with their distribution in space and time. Metallogenic provinces and metallogenic epochs reflect an uneven distribution of various types of mineral deposits in space and time.

The first statement of the concept of metallogenic provinces and metallogenic epochs was presented by De Launay (1913). As the result of his regional studies of mineral deposits in France, De Launay suggested that each metallogenic province belongs to a definite regional type depending on the tectonics and that the nature of each province may be forecast, to a certain extent, by the knowledge of the latter. This is a very comprehensive and concise statement of the problem encountered by the geologist attempting to outine a genetic model for a metallogenic province.

Lindgren (1933) discussed the factor of time as it concerns the mineral deposits of a metallogenic province, and Petrascheck (1965) credits Lindgren
with the introduction of the concept of a metallogenic epoch. Lindgren's examples suggest that metallogenic epochs coincide with the major orogenic epochs in the earth's history. Turneaure (1955) used the term metallogenic epoch to designate periods during which mineralization was most pronounced. Petroscheck (1965) restricted metallogenic epochs to tectonic metallogenic intervals within a major tectonic unit (e.g. orogenic belt, shield area, or craton).

If the concept of a metallogenic epoch is to be of use in classification and exploration of mineral prospects, a metallogenic epoch must be applied to a stage or interval within a tectonic cycle. The idea of relating mineral deposits to stages of development of orogenic belts was developed in the U.S.S.R. by Bilibin (1955). Bilibin's initial work was concerned with endogenous (hypogene) mineral deposits. Semenov and Serpuklov (1957) added a study of exogenous (sedimentary and supergene) deposits to the regional metallogenic analysis.

In Canada, the application of a tectonic approach to the study and classification of ore deposits is more recent. C.J. Sullivan's (1948) paper entitled "Ore and Granitization" was an early step toward a tectonic cycle approach. Sullivan emphasized the composition of the stratigraphic column through which intrusions make their way upward. Sullivan's (1957) classification of metalliferous provinces and deposits stresses field association and a "source bed" approach is used in his classification.

McCartney and Potter (1962) and McCartney (1965) reviewed metallogeny of the Canadian Appalachians using Russian metallogenic concepts. In
these reviews the emphasis is on type of magmatic activity and related mineral deposits typical of successive stages of folded belt development. Sutherland Brown et al. (1971) related the general distribution of mineral deposits in the Canadian Cordillera to tectonic evolution.

Porphyry mineral deposits of the Canadian Cordillera fit into a generalized tectonic scheme (Figures \(5-1 a, b\) and \(c\)) that shows the distribution of porphyry mineral deposits in time and space within the Canadian Cordillera. A.Y. Bilibin (1955) and A.I. Semenov and V.I. Serpuklov (1957) applied a similar approach to mineral deposits in folded belts of the U.S.S.R., and W.D. McCartney and R.R. Potter (1962) applied the tectonic concepts developed in the U.S.S.R. to mineral deposits of the Canadian Appalachians. The classic geosyncline model (Stille, 1936 and Kay, 1951) used by these workers has been replaced by a plate-tectonic approach. The general idea of cyclic development of a mobile belt holds, but cyclic development should only apply to well-defined segments of recrystallized sial (Monger et al., 1972), segments with different metallogenic and tectonic development may now be contiguous belts. An hypothesis that can be applied to the metallogeny or tectonics of one part of a tectonic belt may not be valid once a major fault is crossed or an apparent unconformity is encountered in the stratigraphic section.

\subsection*{5.3 Tectonic Setting}

Sutherland Brown et al. (1971), Souther (1970), Wheeler (1970), Hodder and Hollister (1972) and Monger et al. (1972) have described the tectonics and (or) mineral deposits of the Canadian Cordillera in terms of five distinct geological and physiographical belts. These are (from east
- Figure 5-la. Tectonic setting of porphyry mineral deposits in the Canadian Cordillera (\(49-52^{\circ} \mathrm{N}\)).

oomere-strante cuns
- QUARTZ DIORITE - GRANITE CLANS
(2) GABBRO AND ULTRAMAFK ROCKS
- basic volcanics
- ISLAND ARC VOLCANISM
mainly andesite
\(\triangle \triangle\) CONTINENTAL VOLCANISM
AMAR PLATEAU\&VALLEY BASALT
(No LINkAGES Known between
TECTONIC BELTS (after MONGER et a,1972)
ANGLLAR UNCONFORMITY, NONCONFORMABLE or UNCONFORMABLE
R
NOT IN CONTACT. or FAULT CONTACT
If UPLIFT
if sursidence
-CONFORMABLE
ic ISLAND COPPER CU:Mo
Mep HEP Cu; Mo
Cf Catface Cu;Mo
MW MT. WASHINGTON Cu;MO
T TOFINO Mo
CC CORRIGAN CK. Cu: Mo
GD GREENDROP LK Cu:Mo
G GUICHON BATHOLTH Cu;MO
CM COPPER MOUNTAIN Cu
IM IRON MASK CU
m MAGGIE Cu: Mo
McB McBRIDE CK. Cu; Mo
LCk LOST CK. Mo
RM RED MOUNTAIN Mo
Ba Brenda Mo:Cu

Figure 5-1b. Tectonic setting of porphyry mineral deposits in the Canadian Cordillera \(\left(52-56^{\circ} \mathrm{N}\right)\).

Figure 5-1c. Tectonic setting of porphyry mineral deposits in the Canadian Cordillera \(\left(56-64^{\circ} \mathrm{N}\right)\).

to west):
(1) Eastern Marginal Belt,
(2) Omineca Belt,
(3) Intermontane Belt,
(4) Coast Crystalline Belt, and
(5) Insular Belt.

The terminology and belt configuration (Figure 5-2) used in this discussion follows Sutherland Brown et al. (1971). Because mineral deposits appear to be characteristic of individual belts, the configuration of belts shown in Figure 5-2 is applicable to a discussion of the distribution of endogenic mineral deposits in space and time.

Monger et al. (1972) suggested that from the record in the Canadian Cordillera the present configuration of five geologic belts was only obtained by late Mesozoic time. Clastic wedges shed from the Omineca Belt during the Caribooan Orogeny (Antler Orogeny in the western United States) indicate that the Omineca Belt existed as a positive feature by late Devonian time. All the present tectonic elements were in existence by late Triassic time and common stratigraphic units linked the northern parts of the Omineca, Intermontane and Coast Crystalline belts by Upper Triassic time (Monger et al., 1972).

In late Cretaceous and early Tertiary time the Canadian Cordillera represented a mobile belt similar to the present-day Andes (Monger et al., 1972) with great volumes of subaerial volcanic rocks. These volcanics represent the cover into which many small, calc-alkaline, epizonal,

Figure 5-2. Tectonic Map (from Sutherland Brown et al., 1971).
subvolcanic stocks and some alkaline epizonal stocks were emplaced. Following the mid-Eocene volcanic events, most of the four eastern belts were inverted from a mobile belt under compressional stress to a stable continent edge. Souther (1970) suggested that onset of relaxation by late Eocene time was accompanied by a complete change in the structural style, volcanism and plutonism indicated by:
1) structural trend switching from predominately west-northwesterly to northerly,
2) acid volcanism replacing andesitic island-arc volcanism,
3) block faulting replacing elongate grabens and,
4) high-level intrusions of granitic plutons and dikes.

Atwater (1970) suggested that intrusion and eruption of calc-alkaline magmas of predominately intermediate and silicic compositions should have existed above formerly active Benioff zones and should have ceased when subduction ceased. The \(25-30 \mathrm{~m} . \mathrm{y}\). paucity of volcanism between Late Eocene and Miocene time suggests a major change in the plate interactions.

\subsection*{5.4 Age Dating and Metallogenic Epochs}

The importance of isotopic age dating in establishing metallogenic epochs and concepts of metallogeny has been stressed by White (1966), White et al. (1968), and Livingston et al. (1968). Several authors (White et al., 1968; Livingston et al., 1968; Moore et al., 1968; Fyles et al., 1973) have demonstrated the close association of intrusion and mineral deposition in Cordilleran porphyry mineral deposits by showing that the ages of the mineral deposit and the host or associated intrusion are within the limits of detection of the \(K-A r\) method. The sub-volcanic setting for porphyry mineral
deposits has been suggested by White (1966), Carter (1970 and 1972b), Sutherland Brown et al. (1971), Northcote and Muller (1972) and others. Therefore, by obtaining the age of the porphyritic mineral deposit, the deposit can be placed in the proper 1ithologic-tectonic-stratigraphic environment.

The \(K-A r\) dating method has been extensively used for determining the apparent age of intrusive rock in the Canadian Cordillera. Since the early 1960s several hundred K-Ar determinations have been published. Published age determinations that form a basis for this review are listed in Appendix D. Age patterns for intrusive rocks are examined by plotting histograms (Figures 5-3 and 5-4) of K-Ar ages published after 1965 and ages obtained by Mathews (1964) that are in close agreement with fossil evidence. Many ages reported before 1965 have been found to be unreliable and therefore, ages reported before 1965 are not used in histogram plots.

Variation in apparent age of plutonic rocks is examined by plotting histograms for segments parallel to the north-westerly trend of the Canadian Cordillera (tectonic belts) and normal to the trend of the Canadian Cordillera (arbitrary segmenting by latitude). Figure 5-3 shows the variation of \(\mathrm{K}-\mathrm{Ar}\) ages for tectonic belts and Figure \(5-4\) shows variation of \(\mathrm{K}-\mathrm{Ar}\) ages for southern, central and northern segments of the Canadian Cordillera. The total plot of \(\mathrm{K}-\mathrm{Ar}\) ages has concentrations at about \(26 \mathrm{~m} . \mathrm{y}\). , \(50 \mathrm{~m} . \mathrm{y} ., 78 \mathrm{~m} . \mathrm{y} ., 98 \mathrm{~m} . \mathrm{y} ., 140 \mathrm{~m} . \mathrm{y}\). and \(198 \mathrm{~m} . \mathrm{y}\). but only the \(50 \mathrm{~m} . \mathrm{y}\). peak consistently appears in the various tectonic segments. Age plots appear to reflect both a geographic bias and a mineral deposit bias. The Late Triassic (Guichon Batholith and Copper Mountain intrusions), Late Jurassic

Figure 5-3. K-Ar age determinations for igneous rocks in the Canadian Cordillera. Dashed line represents total for tectonic belt.

Figure 5-4. K-Ar age determinations for igneous rocks in segments of the Canadian Cordillera between \(49-52^{\circ} \mathrm{N}, 52-56^{\circ} \mathrm{N}\) and \(56-64^{\circ} \mathrm{N}\).
(Topley Intrusions) and in part the Eocene peaks reflect vigorous collecting of samples that are from porphyry mineral deposits and the Isotopic Age Map of Canada (Wanless, 1969) shows concentrations of samples in south-central British Columbia, the Skeena Arch area and the Cassiar Mountains.

Gilluly (1973) suggested that, "taking the Cordillera as a whole, magmatism was roughly constant except for the apparent low about 115 to 125 m.y. ago". This low in number of \(\mathrm{K}-\mathrm{Ar}\) ages for igneous rocks is especially apparent in the Canadian Cordillera (Figure 5-4) and may represent a time of major change in either direction or rate of plate motion. Evolution of the continental margin from an Indonesian type island arc to an Andean type margin (Wheeler et al., 1972) occurred during early Cretaceous time and may be related to rebound of light sialic material consumed during early Mesozoic subduction. Gilluly's (1973) suggestion that episodic magmatism is a local phenomenon and that magmatism was roughly constant in the Cordillera, appears to hold for early Mesozoic time in the Canadian Cordillera but his suggestion is not supported by the low in early Cretaceous \(\mathrm{K}-\mathrm{Ar}\) ages or by the widespread pulse of Eocene igneous activity. The apparent early Cretaceous change in the pattern of \(\mathrm{K}-\mathrm{Ar}\) ages for igneous rocks may represent either a reduction in the effect of burial on the apparent \(\mathrm{K}-\mathrm{Ar}\) age of igneous rock emplacement or a more uniform history for the various tectonic belts that were completely linked by Cretaceous time (Monger et al., 1972).

Metallogenic epochs for porphyry mineral deposits are also examined by plotting a histogram (Figure 5-5). For porphyry deposits, the number of significant mineral deposits is plotted against the \(\mathrm{K}-\mathrm{Ar}\) age. Porphyry

Figure 5-5. K-Ar age of porphyry mineral deposits in the Canadian Cordillera. GD - Greendrop Lk.; BC - Burwash Ck.; CC - Corrigan Ck.; MW - Mt. Washington; S - Serb; RB - Red Bird; T Tofino Mo.; Bg - Berg; Cf - Catface; MH - Mt. Haskin; MR - Mt. Reed; Ad - Adanac; M - Maggie; Cs - Casino; GG - Glacier Gulch; LCK - Lost Ck.; BM - Boss Mtn.; E - Endako; B - Brenda; IC Island Copper; Lr - Lorraine; LC - Liard Copper; CM - Copper Mountain.

Figure 5-6. Triassic lavas and the Triassic and Jurassic porphyry deposits (from Sutherland Brown et al., 1971). IC - Island Copper; CM - Copper Mountain and Ingerbell; Ba - Brenda; HV - Highland Valley; CB - Cariboo Bell; E - Endako; Lr - Lorraine; Sk - Stikine Copper; GL - Gnat Lake.

Figure 5-7. Early Tertiary volcanic rocks and porphyry deposits (modified from Sutherland Brown et al. 1971). Cs - Casino; BC Burwash Creek; Ad - Adanac; BCM - British Columbia Molybdenum; Gi Granisle; GG - Glacier Gulch; Bg - Berg; Cf - Catface; GD - Greendrop Lake.
mineral deposits fit into several age groupings that show consistent metal content and geologic setting. K-Ar dating of porphyry mineral deposits indicates metallogenic epochs at about \(195 \mathrm{~m} . \mathrm{y}\). and \(150 \pm\) \(10 \mathrm{~m} . \mathrm{y}\). for deposits that fit in Sutherland Brown's plutonic and volcanic classes; and at about \(100 \mathrm{~m} . \mathrm{y} ., 80 \mathrm{~m} . \mathrm{y} ., 65 \mathrm{~m} . \mathrm{y} ., 50 \mathrm{~m} . \mathrm{y} ., 35-40 \mathrm{~m} . \mathrm{y}\). and \(26 \mathrm{~m} . \mathrm{y}\). for deposits that fit into Sutherland Brown's phallic class.

Porphyry mineral deposits are distributed throughout the four western tectonic belts. Porphyry copper deposits are associated with Triassic to Miocene intrusions and volcanic rocks (Figures 5-6 and 5-7) of the Insular and Intermontane belts and porphyry molybdenum and tungsten deposits are associated with Jurassic to Eocene intrusions into metasedimentary and sedimentary rocks of the Coast Crystalline Belt, Intermontane Belt and Omineca Belt. The \(50 \mathrm{~m} . \mathrm{y}\). metallogenic epoch is the only mineralizing event that has been documented and is significant in the four western tectonic belts.

Porphyry deposits of the plutonic and volcanic classes have received the most attention from exploration and research projects because they are the major producers and contain the major proven reserves of copper and molybdenum in the Canadian Cordillera.

\subsection*{5.5. PLATE TECTONICS AND METALLOGENY OF PORPHYRY MINERAL DEPOSITS}

The relationship of porphyry mineral deposits to paleo-Benioff zones has been discussed on a global basis by Sillitoe (1972 a and b), Guild (1971 and 1972), and Mitchell and Garson (1972). These authors generally conclude that porphyry copper deposits are derived from materials regenerated in subduction zones and emplaced at high levels in the crust with stocks of
calc-alkaline affinity. An eastern migration of intrusive centers has been suggested for western South America (Farrar et al., 1970; Ruiz et al., 1965) and Sillitoe (1972) suggests that the age of porphyry deposits show a similar age distribution in the Cordillera of the United States and Mexico. Age patterns for porphyry mineral deposits in the Canadian Cordillera do not show a simple trend. Deposits range in age from Jurassic (Island Copper) to Miocene (Burwash Creek) in the Insular belt and from Triassic (Copper Mountain, Bethlehem, Lornex, Stikine Copper etc.) to Eocene (B.C. Molybdenum, Granisle, Bell etc.) in the Intermontane Belt.

The age pattern of mineral deposits does support a basic difference between the pattern of development of porphyry deposits in the Intermontane and Insular belts. Triassic 'syenitic' volcanic porphyry deposits are restricted to the Intermontane belt and porphyry deposits of the volcanic class are associated with a middle Jurassic island arc assemblage (Bonanza Group) on Vancouver Island. Post-Eocene porphyry deposits are restricted to the Insular tectonic belt and Cascade Mountains and in particular to areas that appear to be affected by post-Eocene subduction. Atwater (1970) and Grow and Atwater (1970) suggest post-Eocene underthrusting of the Faràllon Plate and Kula Plate below Vancouver Island and the Aleutian Arc respectively. The timing and direction of underthrusting of these plates is supported by the young age of the Mt. Washington and Corrigan Creek porphyry deposits on Vancouver Island (Carson, 1969), the Greendrop Lake property in the Cascades, and the Burwash Creek porphyry deposit southwest of the Shakwak Trench in the Yukon Territory. Widespread Eocene igneous
activity in the Canadian Cordillera suggests that subduction was occuring along the western margin of the continent until about \(45 \mathrm{~m} . \mathrm{y}\). PostEocene transform motion from north of Vancouver Island to the Aleutian Trench would explain the distribution of igneous activity and the presence of younger porphyry mineral deposits on Vancouver Island, in the Cascade Mountains and in the St. Elias Fold Belt.

\section*{6. CONCLUSIONS}

The following conclusions are based on fission-track and \(\mathrm{K}-\mathrm{Ar}\) dating of intrusive rocks from the Syenite Range and Burwash Landing area in the Yukon Territory and from the Cassiar area, Adanac property, Granisle Mine and Copper Mountain area in British Columbia; and on a review of published K-Ar ages for igneous rocks in the Canadian Cordillera.
1. A \(26 \pm 0.3 \mathrm{~m} . \mathrm{y}\). mean \(\mathrm{K}-\mathrm{Ar}\) age was determined for four biotite concentrates from quartz latite porphyry near Burwash Creek, Yukon Territory. This apparent age for mineralized porphyry represents the youngest documented porphyry prospect in the Canadian Cordillera.
2. The \(115 \pm 4 \mathrm{~m} . \mathrm{y}\). and \(117 \pm 4 \mathrm{~m} . \mathrm{y}\). hornblende \(\mathrm{K}-\mathrm{Ar}\) ages determined for Kluane Range intrusions on the Cork (Burwash Creek) property agree with the Cretaceous age assigned to this unit by Muller (1967).
3. The \(51.9 \pm 2.0 \mathrm{~m} . \mathrm{y}\). and \(54.5 \pm 2.0 \mathrm{~m} . \mathrm{y}\). biotite \(\mathrm{K}-\mathrm{Ar}\) ages determined for the Ruby Range batholith east of Burwash Landing agree with a previous 58 m.y. K-Ar age (Muller in Lowdon, 1960) for a marginal phase of the batholith. Mu1ler (in Lowdon, 1960, p. 9) described the \(58 \mathrm{~m} . \mathrm{y}\). age as unexpected, but concordant biotite \(\mathrm{K}-\mathrm{Ar}\) and apatite fission-track ages of \(54.5 \pm 2.0 \mathrm{~m} . \mathrm{y}\). and \(48.9 \pm 6.6 \mathrm{~m} . \mathrm{y}\). respectively for granodiorite sample PC8 provides convincing support for the early Tertiary apparent age for at least
part of the Ruby Range batholith.
4. Granite porphyry on the Mt. Haskin Mo and Mt. Reed Mo-W properties east of Cassiar, British Columbia has four biotite K -Ar ages ranging from 48.7 to 50.5 m.y. and a mean biotite \(K-A r\) age of \(49.8 \pm 0.7 \mathrm{~m} . \mathrm{y}\). Apatite fission-track ages of \(48 \pm 6 \mathrm{~m} . \mathrm{y}\), and \(60 \pm\) \(8 \mathrm{~m} . \mathrm{y}\). for granite porphyry sample PC9 from the Mt. Haskin property and an apatite fission-track age of \(54 \pm 7 \mathrm{~m} . \mathrm{y}\). for granite porphyry sample PC12 from the Mt. Reed property provide an internal check on the K -Ar age of these bodies.
5. Mineralized and barren quartz latite porphyry near Burwash Creek and mineralized and barren granite porphyry from the Mt. Reed and Mt. Haskin properties yield ages that are identical within the limits of precision of the K-Ar method. This agrees with the findings of White et. al. (1968) that for many British Columbia porphyry deposits, mineralization is an integral feature of a magmatic event. On radiometric evidence these porphyry deposits fit into the paramagmatic class of mineral deposits suggested by White.
6. Biotite \(K-A r\) ages of \(71.7 \pm 2.6 \mathrm{~m} . \mathrm{y}\). and \(68.3 \pm 2.7\) m.y. obtained from a young phase of the Cassiar intrusions, place an upper limit on the age of the molybdenum mineralization on the Cassiar Molybdenum property.
7. A \(62.0 \pm 2.2 \mathrm{~m} . \mathrm{y}\). age, determined for a biotite concentrate from the coarse alaskite phase of the Mt. Leonard Boss, dates the molybdenum mineralization on the Adanac property.
8. Late Cretaceous and Early Tertiary ages obtained for the Adanac Mo property, Cassiar Molybdenum property, Mt. Haskin Mo property, and Mt. Reed Mo-W property and Early Tertiary ages reported for quartz monzonite and pegmatite associated with the Blue Light tungsten property (Wanless et al., 1970) indicate that the Early Tertiary metallogenic epoch, documented in central British Columbia and southeastern Alaska, can be extended through northern British Columbia.
9. Apatite fission-track ages from the Burwash Landing area, Cassiar area and Syenite Range are consistent and in general concordant with K - Ar ages determined on co-genetic biotite. These results suggest that the apatite fission-track method is a suitable method for dating late Mesozoic and Cenozoic igneous and metamorphic events in the Burwash Landing area, Cassiar area and Syenite Range.
10. One sample from a mineralized potassic-zone vein at the Granisle Mine has respectively \(30 \pm 4 \mathrm{~m} . \mathrm{y}\). and \(50.2 \pm 2.1 \mathrm{~m} . \mathrm{y}\). apatite fission-track and biotite K-Ar ages. Discordant results is attributed to the altered nature of the apatite.
11. Apatite fission-track ages from the Copper Mountain intrusions are consistently younger than \(\mathrm{K}-\mathrm{Ar}\) ages on co-genetic biotite. The fission-track ages are interpreted to reflect a heating event that is related to Early to Middle Cretaceous granitic intrusions. Because biotite K-Ar ages are affected only by contact events, and apatite fission-track ages appear to be regionally reset, temperatures below approximately \(150^{\circ} \mathrm{C}\) are suggested for a thermal event of Cretaceous age.
12. Without additional geologic and geochronologic evidence, apatite fission-track ages from the Copper Mountain area and the Granisle Mine give misleading results with resulting misinterpretation of the thermal history. Therefore, in cases where alteration or thermal events are involved, apatite fission-track ages should be checked by using another more refractory mineral for fission-track dating or another radiometric clock.
13. Porphyry mineral deposits in the Canadian Cordillera fit into several classes that show consistent metal content, geologic setting, and age. K-Ar apparent ages support metallogenic epochs for porphyry mineral deposits at approximately \(190 \mathrm{~m} . \mathrm{y}\). and \(150 \pm 10 \mathrm{~m} . \mathrm{y}\). for deposits that fit into Sutherland Brown's plutonic and volc̣anic cilasses; and at approximately 100 m.y., \(80 \mathrm{~m} . \mathrm{y} ., 65 \mathrm{~m} . \mathrm{y} ., 50 \mathrm{~m} . \mathrm{y} .\), 35-40 m.y. and 26 m.y. for deposits that fit into Sutherland

Brown's phallic class.
14. The age and distribution of the various classes of porphyry mineral deposits in the Canadian Cordillera are compatible with Monger et al. (1972) platetectonic model for the evolution of the Canadian Cordillera, but do not suggest a simple pattern of eastern migration of intrusive centers that has been suggested for western South America (Farrar et al., 1970; Ruizet al., 1965) and for porphyry mineral deposits of the Cordillera of the United States and Mexico (Sillitoe, 1972b).

\section*{REFERENCES}

Aitken, J.D., 1959. At1in map-area, British Columbia. Geol. Surv. Can. Mem. 307.

Atwater, T., 1970'. Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geol. Soc. America Bull., 81, No. 12, pp. 3513-3536.

Baadsgaard, H., Folinsbee, R.E., and Lipson, J., 1961a. Potassiumargon dates of biotites from Cordilleran granites. Geol. Soc. America Bull., 72, pp. 689-702.
, 1961b. Caledonian
or Acadian granites of northern Yukon Territory. in Geology of the Arctic, Vol. 1, G.O. Raasch, Ed., pp. 458-465.

Bilibin, Yu. A., 1955. Metallogenic provinces and metallogenic epochs translated from Russian to English by E. Alexandrov, 1968. Geol. Bull. 1, Queens College New York, 35 p.

Blanchflower, J.D., 1971. Isotopic dating of copper mineralization at Alwin and Valley properties, Highland Valley, southcentral British Columbia. Unpublished B.Sc. Thesis, Dept. of Geology, U.B.C., 83 p.

Bostock, H.S., 1964. Geology, McQuesten, Yukon Territory. Geol. Surv. Can., Map 1143A.
> , 1968. McQuesten, Yukon Territory. Geol. Surv. Can., Paper 48-25.

Brill, R.M., Fleischer, R.L., Price, P.B., and Walker, R.M., 1964. The fission-track dating of man-made glasses: Preliminary Results. Jour. Glass Studies, 6, pp. 151-155.

Campbell, D.D., 1968. Cassiar Molybdenum Property, Cassiar, B.C. Unpublished assessment Report No. 1700, on file with Min. Branch B.C. Dept. Mines and Pet. Res.

Carson, D.J.T., 1969. Tertiary mineral deposits of Vancouver Island. Can. Inst. Min. Met. Bull., 62, May, pp. 511-520.
, Muller, J.E., Wanless, R.K., and Stevens, R.D., 1971. Age of the contact metasomatic copper and iron deposits, Vancouver and Texada Islands, British Columbia. Geol. Surv. Can., Paper 71-36.

Carter, N.C., 1970. Copper and molybdenum porphyry deposits in central British Columbia. Cdn. Min. Jour., 91, No. 4, pp. 74-76.
deposits, Babine Lake Area, B.C. (Abstr.) G.A.C. symposium on faults, fractures, lineaments, and related mineralization in the Canadian Cordillera.
, 1972b. Granisle. In Excursion A09-C09, Copper and Molybdenum Deposits of the Western Cordillera (C.S. Ney and A. Sutherland Brown (Eds.)), pp. 27-36.

Christopher, P.A., 1968. Fission-track ages of younger intrusions in southern Maine. Unpublished M.A. Thesis, Geology Dept., Dartmouth College, 45 p.
, 1969. Fission-track ages of younger intrusions in southern Maine, Geol. Soc. America Bull. 80, pp. 1809-1814. , 1972. Metallogenic epochs for "porphyry type" mineral deposits in the Canadian Cordillera (Abstr.). In proceedings of the 9 th. Annual Western Inter-University Geological Conference, Vancouver, B.C. p. 15.
, 1973. Application of apatite fission-track dating
to the study of porphyry mineral deposits. Can. J. Earth Sci., 10, May, in press.
of the 'Cork' (Burwash Creek) Cu-Mo prospect', Burwash Landing area, Yukon Territory. Can. J. Earth Sci., 9, pp. 918-921.
molybdenum and tungsten mineralization in northern British Columbia. Can. J. Earth Sci., 9, pp. 1727-1734.

Church, B.N., 1970. The geology of the White Lake Basin, in Geology, Exploration and Mining in B.C., B.C. Dept. of Mines \& Pet. Res., pp. 396-402.

Dalrymple, G.B., and Lanphere, M.A., 1969. Potassium-argon dating. W.H. Freeman \& Co., San Francisco, 258 p.

Damon, P.E., 1968. Potassium-argon dating of igneous and metamorphic rocks with application to Basin Ranges of Arizona and Sonora. In Radiometric dating for geologists (E.I. Hamilton and R.M. Farquhar (Eds.)), Interscience Publishers, New York, pp. 1-71.

DeLaunay, L., 1913. Gites Mineraux. Paris.
Dolmage, V., 1934. Geology and ore deposits of Copper Mountain, British Columbia. Geol. Surv. Can., Mem. 171.

Engels, J.C., and Crowder, D.F., 1971. Late Cretaceous fission-track and potassium-argon ages of the Mount Stuart Granodiorite and Becker Peak Stock, North Cascades, Washington. U.S. Geol. Surv. Prof. Paper \(750-\mathrm{D}, \mathrm{pp} . \mathrm{D} 39-\mathrm{D} 43\).

Fahrni, K.C., 1951. Geology of Copper Mountain. Can. Inst. Min. Met. Bull., 44, No. 469, pp. 317-324.
, 1962. Post production geology at Copper Mountain. Western Miner and Oil Review, 35, No. 2, pp. 53-54.
, 1966. Geological relations at Copper Mountain, Phoenix and Granisle Mines. In Tectonic History and Mineral Deposits of the Western Cordillera, Can. Inst. Min. Met., Spec. Vol. No. 8, pp. 315-320.

Farrar, E., Clark, A.H., Haynes, S.J., Quirt, G.S., Conn, H., and Zentilli, M., 1970. K-Ar evidence for the post-Paleozoic migration of granitic intrusion foci in the Andes of Northern Chile. Earth Planet. Sci. Letters, 10, pp. 60-66.

Faul, H., 1966. Ages of Rocks, Planets, and Stars. New York: McGraw-Hill Book Co., 109 p.

Fleischer, R.L., and Price, P.B., 1964a. Glass dating by fission fragment tracks. Jour. Geophys. Res., 69, pp. 331-339.
, 1964b. Fission track evidence for the simultaneous origin of tectites and other natural glasses. Geochim. Cosmochim. Acta, 28, pp. 755-760.
, 1964c. Decay constant for spontaneous fission of U238. Physical Review, 133, pp. 63-64.
, 1964d. Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochim. Cosmochim. Acta, 28, pp. 1705-1714.
, and Walker, R.M., 1964. Neutron flux measurement by fission-tracks in solids. General Electric Research Laboratory Report No. 64-R.L.-383M, Schenectady, N.Y. 5 p. pp. 1497-1502.

Forbes, R.B., and Engels, J.C., 1970. \(\mathrm{K}^{40} / \mathrm{Ar}^{40}\) age relations of the Coast Range Batholith and related rocks of the Juneau Ice Field Area, Alaska. Geol. Soc. America Bull., 81, pp. 579-584.

Fyles, J.T., Harakal, J.E., and White, W.H., 1973. The age of sulfide mineralization at Rossland, British Columbia. Econ. Geol., 68, pp. 23-33.

Gabrielse, H., 1963. McDame map-area, Cassiar District, British Columbia. Geol. Surv. Can. Mem. 319
, 1967. Tectonic evolution of the northern Canadian Cordillera. Can. J. Earth Sci., 4, pp. 271-298.

Galliker, D., Hugentobler, E., and Hahn, B., 1970. Spontane Kerrspaltung von \({ }^{238}\) U und \({ }^{241}\) Am. Helv. Phys. Acta, 43, pp. 593-606.

Giletti, B.J., 1971. Discordant isotopic ages and excess argon in biotites. Earth Planet. Sci. Letters, 10, pp. 157-164.

Gilluly, J., 1973. Steady plate motion and episodic orogeny and magmatism. Geol. Soc. America Bull., 84, pp. 499-514.

Green, L.H., 1971. Geology of Mayo Lake, Scougale Creek and McQuesten Lake map-areas, Yukon Territory. Geol. Surv. Can., Mem. 357. , 1972. Geology of Nash Creek, Larsen Creek and Dawson mapareas, Yukon Territory. Geol. Surv. Can. Mem. 364.

Grow, J.A., and Atwater, T., 1970. Mid-Tertiary tectonic transition in the Aleutian Arc. Geol. Soc. America Bull., 81, No. 12, pp. 37153722.

Guild, P.W., 1971. Metallogeny: a key to exploration. Mining Engineering, January, pp. 69-72.
, 1972. Metallogeny and the new global tectonics. 24th Int. Geol. Congress, Montreal, Canada, section 4, pp. 17-24.

Hamilton, E.I., 1965. Applied Geochronology. Academic Press, London and New York, 267 p.

Hart, R.S., and Dodd, R.T., 1962. Excess radiogenic argon in pyroxenes. Jour. Geophys. Res., 67, p. 2998.

Hayatsu, A., and Carmichael, 1970. K-Ar isochron method and initial argon ratios. Earth Planet. Sci. Letters, 8, pp. 71-76.

Hibbard, M.J., 1971. Evolution of a plutonic complex; Okanagan Range, Washington. Geol. Soc. Amer. Bull., 82, No. 11, pp. 3013-3048.

Hills, L.V., and Baadsgaard, H., 1967. K-Ar dating of some Lower Tertiary strata in B.C. Bull. Can. Pet. Geol., 15, No. 2, pp. 138149.

Hodder, R.W., and Hollister, V.F., 1972. Structural features of porphyry copper deposits and the tectonic evolution of continents. Can. Inst. Min. Met. Bull., 65, February, pp. 41-44.

Kay, M., 1951. North American geosynclines. Geol. Soc. America Mem. 48, 143 p.

Kleeman, J.D., and Lovering, J.F., 1971. A determination of the decay constant for spontaneous fission of natural uranium using fission-track accumulation. Geochimica. Cosmochimica Acta, 35, pp. 637-640.

Koo, J.H., 1968. Geology and mineralization in the Lorraine property area, Ominica Mining Division, British Columbia. Unpublished M.Sc. Thesis, Dept. of Geology, U.B.C.

Lahoud, J.A., Miller, D.S., and Friedman, G.M., 1966. Relationship between depositional environment and uranium concentrations of Molluskan shells. Jour. Sed. Pet., 36, pp. 541-547.

Laughlin, A.W., 1969. Excess radiogenic argon in pegmatite minerals. Trans. Amer. Geophys. Union, 74, pp. 6684-6690.

Lindgren, W., 1933. Mineral Deposits. 4th Ed., New York, 930 p.
Livingston, D.E., Damon, P.E. Mauger, R.L., Bennett, R., and Laugh1in, A.W., 1967. Ar \({ }^{40}\) in cogenetic feldspar-mica mineral assemblages. Jour. Geophys. Res., 72, pp. 1361-1375.

Livingston, D.E, Mauger, R.L., and Damon, P.E., 1968. Geochronology of the emplacement, enrichment and preservation of the Arizona porphyry copper deposits. Econ. Geol., 63, No. 1, pp. 30-36.

Lowdon, J.A., 1960. Age determinations by the Geological Survey of Canada, Rep. 1 - Isotopic ages. Geol. Surv. Can., Paper 60-17.
1961. Age determinations by the Geological Survey of Canada, Rep. 2 - Isotopic ages. Geol. Surv. Can., Paper 61-17.
1973. Age determinations by the Geological Survey of Canada, Rep. 4 - Isotopic ages. Geol. Surv. Can., Paper 63-17.

Lowdon, J.A., Stockwell, Tipper, C.H., and Wanless, R.K., 1963. Age determinations and geological studies (including isotopic ages Rep. 3). Geol. Surv. Can., Paper 62-17.

Lowell, J.D., and Guilbert, J.M., 1970. Lateral and vertical alterationmineralization zoning in porphyry ore deposits. Econ. Geol. 65, No. 4, pp. 373-408.

McCartney, W.D., 1965. Metallogeny of post-Precambrian geosynclines. Geol. Surv. Can., Paper 65-6, pp. 19-23.

McCartney, W.D., and Potter, R.R., 1962. Mineralization as related to structural deformation, igneous activity and sedimentation in folded geosynclines. Can. Min. Jour., April, pp. 83-87.

McDougall, I., and Stipp, J.J., 1969. Potassium-argon isochrons (Abstr.). Trans. Amer. Geophys. Union, 50, No. 4, p. 330.

MacDougall, D., 1971. Deep sea drilling - Age and composition of an Atlantic basaltic intrusion. Science, 171, No. 3977, pp. 1244-1245.

McMillian, W.J., 1970. Maggie Mine. in Geology, Exploration and Mining in B.C., B.C. Dept. of Mines \& Pet. Res., pp. 324-325.

McTaggart, K.C., and Thompson, R.M., 1967. Geology of part of the northern Cascades in southern British Columbia. Can. J. Earth Sci., 4, pp. 1191-1228.

Macintyre, R.M., York, D., and Gittens, J., 1969. The K-Ar characteristics of nepheline. Earth Planet. Sci. Letters, 7, pp. 125-131.

Mathews, W.H., 1964. Potassium-argon age determinations of Cenozoic volcanic rocks from British Columbia. Geol. Soc. America Bull. 75, pp. 465-468.
, 1968. Guidebook for geological field trips in southwestern British Columbia. Dept. of Geology, U.B.C., Report No. 6.

Mitchell, A.H.G., and Garson, M.S., 1972. Relationship of porphyry copper and circum-Pacific tin deposits to paleo-Benioff zones. Trans. IMM, 181, Bull. 783, pp. B-10-B-25.

Monger, J.W.H., Souther, J.G., and Gabrielse, H., 1972. Evolution of the Canadian Cordillera: a plate-tectonic model. Amer. J. Sci., 272, pp. 577-602.

Montgomery, J.H., 1967. Petrology, structure, and origin of the Copper Mountain intrusions near Princeton, British Columbia. Unpublished Ph.D. Thesis, Dept. of Geology, U.B.C.

Moore, W.J., Lanphere, M.A., and Obradovich, J.D., 1968. Chronology of intrusion, volcanism, and ore deposition at Bingham, Utah. Econ. Geol., 63, pp. 612-621.

Muller, J.E., 1967. Kluane Lake map-area, Yukon Territory, Geol. Surv. Can., Mem. 340.

Muller, J.E., and Carson, D.J.T., 1969. Geology and mineral possibilities of Vancouver Island. Can. Min. Jour., 90, No. 5, pp. 66-70.

Mulligan, R., 1969. Metallogeny of the region adjacent to the northern part of the Cassiar Batholith, Yukon Territory and British Columbia. Geol. Surv. Can., Paper 68-70.

Naeser, C.W., 1967a. Fission-track age relationships in a contact zone, Eldora, Colorado. Unpublished Ph.D. Thesis, Dept. of Geology, Southern Methodist University.
\(\qquad\) , 1967b. The use of apatite and sphene for fission-track age determinations. Geol. Soc. America Bull., 78, pp. 1523-1526.
, 1969. Etching fission-tracks in zircons. Science, 165, No. 3891, p. 388.

Naeser, C.W., and Faul, H., 1969. Fission-track annealing in apatite and sphene. Jour. Geophys. Res., 74, pp. 705-710.

Naeser, C.W., and Dodge, F.C.W., 1969. Fission-track ages of accessory minerals from granitic rocks of the central Sierra Nevada Batholith, California. Geol. Soc. America Bull., 80, No. 11, pp. 2201-2211.

Naeser, C.W., and McKee, E.H., 1970. Fission-track and K-Ar ages of Tertiary ash-flow tuffs, north-central Nevado. Geol. Soc. America Bull., 81, pp. 3375-3383.

Naeser, C.W., Engels, J.C., and Dodge, F.C.W., 1970. Fission-track annealing and age determination of epidote minerals. Jour. Geophys. Res., 75, No. 8, pp. 1579-1584.

Nguyen, K.K., Sinclair, A.J., and Libby, W.G., 1968. Age of the northern part of the Nelson batholith. Can. J. Earth Sci., 5, pp. 955-957.

Nier, A.O., 1950. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev., 77, p. 789.

Northcote, K.E., 1969. Geology and geochronology of the Guichon Creek batholith. B.C. Dept. Mines \& Pet. Res., Bull. No. 56.

Northcote, K.E., and Muller, J.E., 1972. Volcanism, plutonism and mineralization: Vancouver Island. Can. Inst. Min. Met. Bull. 65, No. 726, pp. 49-57.

Oriel, W.M., 1972. Detailed bedrock geology of the Brenda CopperMolybdenum Mine, Peachland, British Columbia. Unpublished M.Sc. Thesis, Dept. of Geology, U.B.C.

Petrascheck, W.E., 1965. Typical features of metallogenic provinces. Econ. Geo1., 60, pp. 1620-1634.

Phillips, M.P., and Godwin, C.I., 1970. Geology and rotary drilling at the Casino Silver Mines property. Western Miner, 43, pp. 43-49.

Preto, V.A.G., White, W.H., and Harakal, J.E., 1971. Further potassium-argon age dating at Copper Mountain, B.C. Can. Inst. Min. Met. Bull., 64, No. 708, pp. 58-61.

Preto, V.A.G., 1972a. Copper Mountain (and Ingerbelle). In Excursion A09-C09, Copper and Molybdenum Deposits of the western Cordillera (C.S. Ney and A. Sutherland Brown (Eds.)), pp. 69-76.
, 1972b. Geology of Copper Mountain. B.C. Dept. of Mines \& Pet. Res., Bull. 59.

Price, P.B., and Walker, R.M., 1962. Chemical etching of chargedparticle tracks in solids. Jour. Appl. Phys., 78, pp. 3407-3412. , 1963. Fossil tracks of charged particles in mica and the age of minerals. Jour. Geophys. Res., 68, pp. 4847-4862.

Rapson, J.E., 1963. Age and aspects of metamorphism associated with the Ice River Complex, B.C. Bull. Can. Pet. Geol., 11, No. 2, pp. 116-124.

Reed, B.L., and Lanphere, M.A., 1969. Age and chemistry of Mesozoic and Tertiary plutonic rocks in south-central Alaska. Geol. Soc. America Bull., 80, pp. 23-43.

Reimer, G.M., Storzer, D., and Wagner, G.A., 1970. Geometry factor in fission-track counting. Earth Planet. Sci. Letters, 9, pp. 401-404.

Rice, H.M.A., 1960. Geology and mineral deposits of the Princeton maparea, British Columbia. Geo1. Surv. Can. Mem. 243, 136 p.

Richards, T., 1971. Plutonic rocks between Hope, B.C., and the 49 th Parallel, Unpublished Ph.D. Thesis, Dept. of Geology, U.B.C.

Richards, T., and White, W.H., 1970. K-Ar ages of plutonic rocks between Hope, British Columbia, and the 49th parallel. Can. J. Earth Sci., 7, No. 5, pp. 1203-1207.

Roberts, J.H. Gold, R., and Armani, R.J., 1968. Spontaneous-fission decay constant of uranium-238. Phys. Rev., 174, pp. 1482-1484.

Roddick, J.C., 1970. The geochronology of the Tulameen and Hedley Complexes, British Columbia. Unpublished M.Sc. Thesis, Dept. of Geology, Queen's Univ., Kingston, Ontario.

Roddick, J.C., and Farrar, E., 1971. High initial argon ratios in hornblendes. Earth Planet. Sci. Letters, 12, pp. 208-214. , 1972. Potassium-argon ages of the Eagle Granodiorite, southern British Columbia. Can. J. Earth Sci., 9, pp. 596-599.

Rose, A.W., 1970. Zonal relations of wallrock alteration and sulfide distribution at porphyry copper deposits. Econ. Geol., 65, pp. 920-936.

Rosenblum, S., 1958. Magnetic susceptibility of minerals in the Franz isodynamic magnetic separator. Am. Min., 43, p. 171.

Ruiz, F.C., Aguirre, L., Corvalan, J., Klohn, E., and Levi, B., 1965. Geologia y yacimientos metaliferos de Chile. Santiago, Chile, Inst. Invest. Geologicas, 385 p.

Semenov, A.I., and Serpuklov, V.I., 1957. General principle of regional metallogenetic analysis and methods of compiling metallogenetic maps of folded regions. Dept. of Geology and Conservation of Resources; U.S.S.R. Issue 22, Central Series, printed in Moscow, pp. 5-20.

Senftle, F.E., Stieff, L., Cuttitta, F., and Kuroda, P.K., 1957. Comparison of the isotopic abundance of U235 and U238 and the radium activity ratios in Colorado Plateau uranium ores. Geochim. et Cosmochim. Acta, 11, pp. 189-193.

Silk, E.C.H., and Barnes, R.S., 1959. Examination of fission fragment tracks with an electron microscope. Phil. Mag., 4, pp. 970-972.

Sillitoe, R.H., 1972a. A plate tectonic model for the origin of porphyry copper deposits. Econ. Geol. 67, pp. 184-197. , 1972b. Relation of metal provinces in western America and the subduction of oceanic lithosphere. Geol. Soc. America Bull., 83, pp. 813-818.

Sinclair, A.J., and White, W.H., 1968. Age of mineralization and postore hydrothermal alteration at Copper Mountain, B.C. Can. Min. Met. Bull., 61, No. 673, pp. 633-636.

Souther, J.G., 1970. Volcanism and its relationship to recent crustal movements in the Canadian Cordillera. In Symposium on recent crustal movements, Ottawa, Canada, 1969, Papers; Can. J. Earth Sci., 7, No. 2, pp. 553-568.

Spadavecchia, A., and Hahn, B., 1967. Die Rotationskammer und einige Anwendungen. Helvetica Physica Acta, 40, pp. 1063-1079.

Stille, Hans, 1936. Present tectonic state of the earth. Am. Assoc. Petrol. Geol. Bull., 20, pp. 849-880.

Sullivan, J.C., 1948. Ore and granitization. Econ. Geol., 43, pp. 471-498.
, 1957. The classification of metalliferous provinces and deposits. Trans. Can. Inst. Min. Met., 60, pp. 333-335.

Sutherland Brown, A., 1969a. Mineralization in British Columbia and the copper and molybdenum deposits. Can. Min. Met. Bull., 62, No. 681, pp. 26-40.
, 1969b. Geology of the Adera Claims. B.C. Min. of Mines and Pet. Res., Ann. Rept., pp. 29-35.
1972. Morphology and classification of porphyry deposits of the Canadian Cordillera. (Abstr.) In proceedings of the 9 th annual Western Inter-University Geological Conference, Vancouver, B.C. Oct. 27 and 28.

Sutherland Brown, A., Cathro, R.J., Panteleyev, A., and Ney, C.S., 1971. Metallogeny of the Canadian Cordillera. Can. Inst. Min. Met. Bull., 64, pp. 37-61.

Turneaure, F.S., 1955. Metallogenic provinces and epochs. Econ. Geol. 50 th Anniversary Volume, pp. 38-98.

Wagner, G.A., 1968. Fission-track dating of apatites. Earth Planet, Sci. Letters, 4, pp. 411-415.

Wagner, G.A., and Reimer, G.M., 1972. Fission-track tectonics: the tectonic interpretation of fission-track apatite ages. Earth Planet. Sci. Letters, 14, pp. 263-268.

Wanless, R.K., 1969. Isotopic age map of Canada. Geo1. Surv. Can. map 1256A.

Wanless, R.K., Stevens, R.D., and Loveridge, W.D., s1969. Excess radiogenic argon in biotites. Earth Planet. Sci. Letters, 7, pp. 167-168.

Wanless, R.K., Stevens, R.D., Lachance, G.R., and Rimsaite, R.Y.H., 1965. Age determinations and geological studies. Part 1 Isotopic Ages, Report 5. Geol. Surv. Can. Paper 64-17.
, and \(\qquad\) ,
1966. Age determinations and geological studies, \(\mathrm{K}-\mathrm{Ar}\) isotopic ages, Report 6. Geol. Surv. Can. Paper 65-17.
, and Edmonds, C.M., 1967. Age determinations and geological studies, \(K-A r\) isotopic ages, Report 7. Geol. Surv. Can. Paper 66-17.
1968. Age determinations and geological studies, K-Ar isotopic ages, Report 8, Geol. Surv. Can. Paper 67-2, Part A.
1972. Age determinations and geological studies, K-Ar isotopic ages, Report 10. Geol. Surv. Can. Paper 71-2.

Wheeler, J.O., 1970. Summary and discussion. In Structure of the Southern Canadian Cordillera. Geol. Assoc. Can., Special Paper No. 6, pp. 155-166.

Wheeler, J.O., Aitken, J.D., Berry, M.J., Gabrielse, H., Hutchinson, W.W., Jacoby, W.R., Monger, J.W.H., Niblett, E.R., Norris, D.K., Price, R.A., and Stacey, R.A., 1972. The Cordilleran Structural Province. In Variations in Tectonic Styles in Canada (R.A. Price and R.J.W. Douglas (Eds.)), Geol. Assoc. Can., Special Paper 2., pp. 1-82.

White, W.H., 1966. Summary of tectonic history of B.C. In Tectonic history and mineral deposits of the western Cordillera. C.I.M.M. Spec. Volume No. 8, pp. 185-189.

White, W.H., Erickson, G.P., Northcote, K.E., and Harakal, J.E., 1967. Isotopic dating of the Guichon batholith, B.C. Can. J. Earth Sci., 4, pp. 677-690.

White, W.H., Harakal, J.E., and Carter, N.C., 1968. Potassium-argon ages of some ore deposits in British Columbia. Can. Inst. Min. Met. Bul1., 61, pp. 1326-1334.

White, W.H., Sinclair, A.J., Harakal, J.E., and Dawson, K.M., 1970. Potassium-argon ages of Topley Intrusions near Endako, British Columbia. Can. J. Earth Sci., 7, No. 4, pp. 1172-1178.

Wilkening, L., Lal, D., and Reid, A.M., 1971. The evolution of the Kapoeta Howardite based on fossil track studies. Earth Planet. Sci. Letters, 10, pp. 334-340.

York, D., 1966, Least squares fitting of a straight line. Can. J. Phys., 44, p. 1079.
, 1970. Recent developments in potassium-argon dating. Comments Earth Sci. - Geophysics, 1, No. 2, pp. 47-54.

York, D., Macintyre, R.M., and Gittins, 1969. Excess radiogenic Ar \({ }^{40}\) in cancrinite and sodalite. Earth Planet. Sci. Letters, 7, pp. 25-28.

York, D., and Farquhar, R.M., 1972. The earth's age and geochronology. Pergamon Press, Toronto, 178 p.

\author{
APPENDIX A - DESCRIPTION OF SAMPLES USED FOR K-AR AND FISSION TRACK AGE DETERMINATIONS \\ Burwash Creek, Yukon Territory (Fig. 4-2 \& 4-3)
}

\section*{PC1 Quartz Latite Porphyry}

Sample is from recent road cut in barren, quartz-feldspar-biotite porphyry located three miles each of the Cork property. The rock contains \(40 \%\) phenocrysts that are \(65 \%\) plagioclase feldspar (zoned \(\mathrm{An}_{30^{-}}\) An 38), \(20 \%\) quartz, \(6 \%\) biotite, \(3 \%\) amphibole and \(5 \%\) carbonate in a microgranular matrix of plagioclase, quartz and \(k\)-feldspar. Accessories are apatite, zircon and limonite after magnetite.

\section*{Alteration}

Biotite is generally fresh but some grains show weak chlorite alteration along edges and limonite replacing magnetite inclusions. Amphibole is pseudomorphicly replaced by tremolite and iron oxide. Carbonate replaces cores of plagioclase phenocrysts and occurs along microfractures.

\section*{PC2 Quartz Late Porphyry}

Sample is from recent cut about \(500^{\prime}\) east of PC1. The sample is similar in texture and mineralogy to PCl , but altered plagioclase phenocrysts have chlorite cores rimmed by carbonate and amphibole is replaced by carbonate, tremolite and iron oxides.

\section*{PC3 Quartz Latite Porphyry}

Sample is from a recent cut near the West Fork of Johnson's Creek in the mineralized zone on the Cork property. Hand specimen contains molybdenite, pyrite and chalcopyrite in quartz veinlets and along "dry" fractures. The rock contains \(20 \%\) phenocrysts that are \(85 \%\) plagioclase
(about \(\mathrm{An}_{25}\)), \(11 \%\) quartz "eyes", \(3 \%\) biotite, and \(1 \%\) amphibole in a microgranular matrix of plagioclase, k-feldspar, quartz and biotite. Accessories are iron-oxide, sphene, epidote and apatite.

\section*{Alteration}

Biotite is altered to chlorite in the matrix but the biotite phenocrysts show only weak chlorite alteration along cleavage planes. Amphibole is altered to carbonate and chlorite.

\section*{PC4 Quartz Latite Porphyry}

Sample is from barren quartz-feldspar-biotite porphyry from recent cut on the Cork property. The sample is similar in mineralogy and texture to PC1 and PC2 with \(1 \%\) biotite as phenocrysts altering to chlorite along cleavage planes.

\section*{PC5 Gabbro}

Sample is from barren gabbro along Johnson's Creek. Hypidiomorphic granular textured rock containing plagioclase (\(60 \% \mathrm{An}_{60}\)) , hornblende (\(18 \%\)), orthopyroxene (\(3 \%\) hypersthene), clinopyroxene (\(13 \%\) augitic), magnetite (5\%) and apatite (tr).

\section*{PC6 Gabbro}

Sample is from the Cork property \(500^{\prime}\) south of PC5. Hypidiomorphic granular textured rock containing plagioclase (\(60 \%-\mathrm{An}_{60}\)), hornblende (20\%), pyroxene (\(8 \%\) mainly augitic), magnetite (5\%), and apatite (tr). Ch1orite and carbonate (1\%) occurs as alteration along fractures.

Ruby Range Batholith, Yukon Territory (Fig. 4-2)

\section*{PC7 Biotite Granodiorite}

Medium grained, hypidiomorphic granular textured rock contains \(36 \%\)
plagioclase \(\left(\operatorname{An}_{20}\right), 38 \%\) orthoclase, \(19 \%\) quartz, \(6 \%\) biotite and accessory apatite and sphene. Biotite shows minor alteration to chlorite along cleavage planes and edges.

PC8 Biotite - Hornblende Granodiorite
Medium grained, hypidiomorphic granular textured rock contains 58\% plagioclase (An38), \(10 \%\) orthoclase, \(18 \%\) quartz, \(8 \%\) biotite, \(4 \%\) hornblende, \(2 \%\) sphene and accessory apatite and magnetite. Biotite shows minor alteration to chlorite along cleavage planes and edges and plagioclase cores show minor alteration to sericite.

Mount Haskin, British Columbia (Fig. 4-4)
PC9 Granite Porphyry (ref. Gabrielse 1963, p. 94)
Mineralized sample'is from outcrop along southern edge of small "stock" on Mt. Haskin Mo property. The rock contains \(60 \%\) phenocrysts that are \(45 \%\) orthoclase, \(25 \%\) quartz, \(22 \%\) plagioclase (zoned albite) and \(3 \%\) biotite in a micro-crystalline groundmass of K -feldspar-plagioclase-quartz-biotite. Apatite, zircon and pyrite occur as accessory minerals, and the hand specimen is cut by \(1 / 4^{\prime \prime}\) molybdenite bearing quartz vein. Biotite contains inclusions of apatite and zircon and is altered to chlorite. PC10 Granite Porphyry

Sample of barren drill core (hole DM 68-16) is from northern edge of small "stock" on Mt. Haskin Mo property. The rock contains \(35 \%\) phenocrysts that are \(40 \%\) orthoclase, \(40 \%\) quartz, \(16 \%\) plagioclase (zoned oligoclase), and \(4 \%\) biotite in a microcrystalline groundmass of K -feldspar-quartzplagioclase. Garnet occurs as an accessory mineral. A quartz vein and
quartz-carbonate-K-feldspar coatings along hairline fractures compose 20\% of the thin section. Biotite phenocrysts are fresh, but a finer, felted secondary biotite, that is associated with fractures, is altered to chlorite.

Mt. Reed, British Columbia (Fig. 4-4)

\section*{PCll Granite Porphyry}

Sample is from a barren "stock" on the Mt. Reed Mo-W property. The rock contains \(60 \%\) phenocrysts that are \(70 \%\) orthoclase, \(20 \%\) quartz and \(10 \%\) albite in a phaneritic groundmass of \(K\)-feldspar-albite-quartzbiotite. Sphene, apatite and magnetite occur as accessory minerals. Biotite shows \(5 \%\) alteration to chlorite along cleavage planes and edges.

\section*{PC12 Granite Porphyry}

Sample is from the central mineralized part of the small "stock" on the Mt. Reed Mo-W property. The specimen contains \(80 \%\) phenocrysts that are \(50 \%\) orthoclase, \(25 \%\) quartz, \(20 \%\) albite and \(5 \%\) biotite in a microcystalline groundmass of quartz-K-feldspar-plagioclase-biotite. Apatite, sphene, and magnetite occur as accessory minerals. Biotite. shows minor chlorite alteration along edges.
```

Cassiar Area, British Columbia (Fig. 4-5)
(young phase of Cassiar Intrusions that
cuts Cassiar Batholith)

```

\section*{PC13 Quartz Monzonite}

Medium grained, hypidiomorphic granular rock contains \(32 \%\) plagioclase (\(\mathrm{An}_{30}\), 30\% K-feldspar-(microperthite), \(30 \%\) quartz, and \(8 \%\) biotite. Apatite, sphene and magnetite occur as accessory minerals. Biotite is \(10 \%\) altered
to green biotite and chlorite.

\section*{PC14 Quartz Monzonite}

Medium grained, hypidiomorphic granular rock contains \(35 \%\) quartz, \(30 \%\) plagioclase \(\left(\operatorname{An}_{30}\right)\), and \(24 \%\) K-feldspar (microperthite). Sphene (1\%), apatite (1/2\%), zircon (tr) and magnetite (tr) occur as accessory minerals. Biotite is \(10 \%\) altered to chlorite along cleavage planes and edges.

\section*{Adera Claims - Adanac Mo Property} Atlin Area, British Columbia (Fig. 4-5)

PC15 Coarse Alaskite (ref. Sutherland Brown 1969, pp. 29-35
Coarse grained, hypidiomorphic granular rock contains \(30 \% \mathrm{~K}\)-feldspar (perthite), \(38 \%\) quartz, \(27 \%\) plagioclase (zoned oligoclase), \(2 \%\) carbonate, \(1 \%\) biotite and \(1 \%\) allamite. Molybdenite, pyrite, zircon, sphene and apatite occur as accessory minerals. Biotite is \(20 \%\) altered to chlorite.
Syenite Range, Yukon Territory (Fig. 4-1)

\section*{PC16 Quartz Monzonite}

Coarse-grained, hypidiomorphic granular rock contains up to 3/4" crystals of \(\mathrm{K}-\mathrm{feldspar}\) (\(40 \%\)) in finer-grained, phaneritic quartz (15\%), plagioclase \(\left(\operatorname{An}_{28}-30 \%\right)\), hornblende (7\%), biotite (5\%), sphene (1\%), apatite (1\%) and accessory zircon, fluorite, magnetite and allanite.

\section*{Alteration}

Biotite shows minor chlorite alteration and contains inclusions of apatite, sphene, quartz and other accessories. Hornblende shows stronger alteration to chlorite, carbonate, epidote and biotite.

PC17 Quartz Monzonite
Although this specimen was obtained from the margin of a small stock, mapped by Bostock (1948) as zoned from a granite core (PC16) to a syenite outer rim, the specimen is texturally and mineralogically similar to sample PC16. Samples PC16 and PC17 were collected by K. Dawson and C. Godwin.

Copper Mountain, B.C. (Fig. 4-7)

KA1 to KAll

Samples KAl to KAll inclusive were obtained from Dr. V. Preto. Specimens and K-Ar ages obtained on biotite concentrates are described by Preto et al. (1971).

Granisle, Central British Columbia (Fig. 4-6)
NC-69-8 Sulfide Rich Vein
This sample is from a biotite (25 to \(50 \%\) altered to chl.)-quartz-feldspar-apatite-bornite-chalcopyrite vein that was exposed in the Granisle open-pit in 1969. N. Carter collected the sample and has obtained a K-Ar biotite age of \(50.2 \pm 2.1 \mathrm{~m} . \mathrm{y}\). for this sample (N. Carter personal communication).

Brenda Mines, Southern British Columbia

JH5-68 Quartz Diorite (ref. Oriel 1972)

This sample is from the speckled quartz diorite phase of the Brenda stock. Dr. W.H. White provided a \(90 \%\) sphene concentrate from this sample. Concordant ages of \(174 \pm 7 \mathrm{~m} . \mathrm{y}\). on biotite and \(177 \pm 7 \mathrm{~m} . \mathrm{y}\). on hornblende have been obtained for this sample (J. Harakal personal communication).

\section*{B. 1 PROCEDURE}

Biotite and hornblende potassium-argon ages were determined in laboratories of the Department of Geology, University of British Columbia, using procedures and equipment previously described (White et al. 1967, p. 683; Northcote 1969, pp. 61-65). In addition to the normal procedure, the sample and entire fusion system were baked at \(130^{\circ} \mathrm{C}\) for 16 hours which effectively eliminates atmospheric argon contamination in the fusion system (Roddick and Farrar 1971).

Analytical data and \(\mathrm{K}-\mathrm{Ar}\) isotopic ages are given in Table 2-1.

\section*{B. 2 PRECISION AND ACCURACY}

The precision and accuracy of the potassium-argon age determinations must be continually monitored to determine reliability of potassium-argon model ages. Interlaboratory standard mineral and rock samples are analyzed in the U.B.C. potassium-argon laboratory to establish the accuracy of the equipment and replicate analyses of minerals are used to determine the precision of the equipment (see White et al. 1967, and Northcote, 1969). J. Harakal runs periodic checks on the \(\mathrm{Ar}^{40} / \mathrm{Ar}^{36}\) ratio of atmospheric argon and on the argon isotope ratios in the spike system as measured on the U.B.C. MS-10 mass spectrometer. For samples containing less than \(50 \%\) atmospheric argon contamination, U.B.C. results are internally consistent within \(1 \%\) and a limit of error in an age determination (accuracy) is within \(3 \%\) of the calculated age (J. Harakal, personal comm. June 1972).

Figure Estimated precision for determining the \({ }^{40} \mathrm{Ar} / 40_{\mathrm{K}}\) \((B-1)\). ratio as afunction of the atmospheric correction (from Damon, 1968).

\section*{B. 3 ATMOSPHERIC CONTAMINATION}

The atmospheric argon correction often introduces the largest error in the precision of the calculated age. The percentage standard deviation in a potassium-argon age as a function of the fraction of radiometric argon is shown in Figure B-1. This diagram demonstrates the effect of subtracting a large percentage of atmospheric argon from the total \(\mathrm{Ar}^{40}\) measured. Error increases rapidly once atmospheric contamination reaches about \(70 \%\) and therefore, the baking procedure described above should be used even if samples are not likely to be suitable for isochron determinations.
B. 4 APPLICATION OF Ar \({ }^{40}\) (RAD.) VS \%K ISOCHRONS TO PUBLISHED DATA

K-Ar data (Table B-2) from the Topley Intrusions and (Table B-1) from the Guichon Batholith was evaluated using \(\mathrm{Ar}^{40}\) radiogenic vs \%K diagrams. Plotting of \(\mathrm{Ar}^{40} / \mathrm{Ar}^{36}\) vs \(\mathrm{K}^{40} / \mathrm{Ar}^{36}\) diagrams is not attempted because the fusion system had not been baked prior to each analysis.

\section*{B.4.1 Guichon Batholith}

Figure \(\mathrm{B}-2 \mathrm{a}\) contains a plot of \(\mathrm{Ar}^{40} \mathrm{rad}\). vs \(\% \mathrm{~K}\) data for 18 biotite samples from the Guichon Batholith. A mean of the individual K-Ar ages of \(199 \pm 4\) is in good agreement with the isochron age of \(196 \pm 5 \mathrm{~m} . \mathrm{y}\). and the intercept near zero suggests that the use of the present atmospheric \(\mathrm{Ar}^{40} / \mathrm{Ar}^{36}\) ratio in the correction for initial argon is reasonable. Figure \(\mathrm{B}-2 \mathrm{~b}\) is a plot of \(\mathrm{Ar}^{40}\) rad. vs \%K data for 6 biotite samples from the Witches Brook phase of the Guichon Batholith. The isochron age of \(189 \pm\) \(9 \mathrm{~m} . \mathrm{y}\). for the Witches Brook phase is consistent with the composite isochron age and with the mean biotite \(K-A r\) age of \(199+5 \mathrm{~m} . \mathrm{y}\). for the Witches Brook
\(\begin{array}{ll}\text { TABIE Potassium-argon data for Guichon Creek Batholith (Northoote. 1969, White } \\ \text { B-1 } & \text { et al. } 1967 \text { Blanchflower, 1971). }\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sample No (Isochron No.) & & Rock Unit & Mineral analyzed* & \(\mathrm{K} \pm \mathrm{s}(\%) * *\) & \[
\frac{40}{A^{4} * *}
\] & \[
\begin{aligned}
& 40 \mathrm{Ar***} \\
& \left(10^{-5} \mathrm{co}\right. \\
& S T P / \mathrm{gm})
\end{aligned}
\] & \[
\begin{aligned}
& \text { Apparent } \\
& \text { Age**** } \\
& \text { (m•y.) }
\end{aligned}
\] \\
\hline K64-102 & (1) & Witches Brook & Blotite & \[
\begin{aligned}
& 4.91 \pm 0.03 \\
& 4.91 \pm 0.03
\end{aligned}
\] & \[
\begin{aligned}
& 0.87 \\
& 0.91
\end{aligned}
\] & \[
\begin{aligned}
& 4.055 \\
& 4.077
\end{aligned}
\] & \[
\begin{aligned}
& 198 \pm 8 \\
& 199 \pm 8
\end{aligned}
\] \\
\hline K64-105-1 & (2) & Witches Brook & Biotite & \(6.53 \pm 0.04\) & 0.90 & 5.442 & \(198 \pm 8\) \\
\hline K63-171 & (3) & Witches Brook & Biotite & \(6.59 \pm 0.06\) & 0.75 & 5.263 & 192£ 8 \\
\hline K64-203 & (4) & Witches Brook & Blotite & \[
\begin{aligned}
& 4.42 \pm 0.02 \\
& 4.42 \pm 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.64 \\
& 0.79
\end{aligned}
\] & \[
\begin{aligned}
& 3.759 \\
& 3.750
\end{aligned}
\] & \[
\begin{aligned}
& 203 \pm 8 \\
& 203 \pm 8
\end{aligned}
\] \\
\hline K64-17 & (5) & Witches Brook & Biotite & \(3.59 \pm 0.02\) & 0.74 & 3.093 & \(206 \pm 8\) \\
\hline K63-222 & (6) & Witohes Brook & Blotite & \(7.16 \pm 0.01\) & 0.87 & 5.903 & \(198 \pm 8\) \\
\hline K63-223 & (7) & Guichon & Biotite & \(5.77 \pm 0.02\) & 0.87 & 4.689 & 195+8 \\
\hline GD12 & (8) & Guichon & \[
\begin{aligned}
& \text { Biotite } \\
& \text { Hb. (alt.) }
\end{aligned}
\] & \[
\begin{aligned}
& 5.56 \pm 0.01 \\
& 0.424 \pm 0.004
\end{aligned}
\] & \[
\begin{aligned}
& 0.83 \\
& 0.60
\end{aligned}
\] & \[
\begin{aligned}
& 4.663 \\
& 0.3629
\end{aligned}
\] & \[
\begin{aligned}
& 201 \pm 8 \\
& 205 \pm 8
\end{aligned}
\] \\
\hline K64-116a & (9) & Chataway & Blotite & \(5.24 \pm 0.04\) & 0.77 & 4.358 & 199 +8 \\
\hline K63-220 & (10) & Chataway-Leroy & Blotite & \[
\begin{aligned}
& 5.20 \pm 0.02 \\
& 5.20 \pm 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.92 \\
& 0.30
\end{aligned}
\] & \[
\begin{aligned}
& 4.325 \\
& 5.390
\end{aligned}
\] & \[
\begin{aligned}
& 199 \pm 8 \\
& 201 \pm 10
\end{aligned}
\] \\
\hline K63-37 & (11) & Leroy & Biotite & \[
\begin{aligned}
& 6.42 \pm 0.03 \\
& 6.42 \pm 0.03
\end{aligned}
\] & \[
\begin{aligned}
& 0.78 \\
& 0.85
\end{aligned}
\] & \[
\begin{aligned}
& 5.385 \\
& 3.795
\end{aligned}
\] & \[
\begin{aligned}
& 201 \pm 8 \\
& 202 \pm 8
\end{aligned}
\] \\
\hline K64-101 & (12) & Leroy & Blotite & \(5.16 \pm 0.05\) & 0.90 & 4.295 & \(199 \pm 8\) \\
\hline K63-13 & (13) & Hybrid & Biotite & \[
\begin{aligned}
& 4.49 \pm 0.02 \\
& 4.49 \pm 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.91 \\
& 0.52
\end{aligned}
\] & \[
\begin{aligned}
& 3.716 \\
& 5.776
\end{aligned}
\] & \[
\begin{aligned}
& 198 \pm 8 \\
& 206 \pm 8
\end{aligned}
\] \\
\hline K64-156a & (14) & Hybrid. & Blotite & \(6.73 \pm 0.01\) & 0.93 & 5.659 & 198ゅ8 \\
\hline 464-98-1 & (15) & Gump Lake & Biotite & \[
\begin{aligned}
& 5.95 \pm 0.01 \\
& 5.95 \pm 0.01
\end{aligned}
\] & \[
\begin{aligned}
& 0.37 \\
& 0.91
\end{aligned}
\] & \[
\begin{aligned}
& 4.817 \\
& 4.919
\end{aligned}
\] & \[
\begin{aligned}
& 194 \pm 10 \\
& 198 \pm 8
\end{aligned}
\] \\
\hline K63-187 & (16) & Bethsalda & Blotite & \[
\begin{aligned}
& 4.48 \pm 0.02 \\
& 4.48 \pm 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.80 \\
& 0.88
\end{aligned}
\] & \[
\begin{aligned}
& 3.573 \\
& 3.648
\end{aligned}
\] & \[
\begin{aligned}
& 192 \pm 8 \\
& 195 \pm 8
\end{aligned}
\] \\
\hline K63-231 & (17) & Bethsaida & B1otite & \(5.86 \pm 0.07\) & 0.86 & 5.044 & \(205 \pm 8\) \\
\hline K63-240 & (18) & Brecola & Blotite & \(5.60 \pm 0.01\) & 0.84 & 4.643 & 199+8 \\
\hline K63-115 & (19) & Bethlehem & Biotite & \(5.90 \pm 0.07\) & 0.90 & 4.307 & 195さ8 \\
\hline GD-10 & (20) & P3 Porphyry & Hb. (alt.) & \(0.292 \pm 0.002\) & 0.53 & 0.2432 & \(199 \pm 8\) \\
\hline GD-102 & (21) & P3 Porphyry & Hb. (alt.) & \[
\begin{aligned}
& 0.140 \pm 0.001 \\
& 0.140 \pm 0.001
\end{aligned}
\] & \[
\begin{aligned}
& 0.24 \\
& 0.39
\end{aligned}
\] & \[
\begin{aligned}
& 0.09845 \\
& 0.09879
\end{aligned}
\] & \[
\begin{aligned}
& 170 \pm 12 \\
& 171 \pm 12
\end{aligned}
\] \\
\hline K64-186a & (22) & Bethlehem & Blotite & \[
\begin{aligned}
& 1.87 \pm 0.01 \\
& 1.87 \pm 0.01
\end{aligned}
\] & \[
\begin{aligned}
& 0.83 \\
& 0.27
\end{aligned}
\] & \[
\begin{aligned}
& 1.644 \\
& 1.634
\end{aligned}
\] & \[
\begin{aligned}
& 210+12 \\
& 212 \pm 12
\end{aligned}
\] \\
\hline GD-5 & (23) & Dacite Porphyry & Blotite & \(5.56 \pm 0.03\) & 0.50 & 4.717 & 203+8 \\
\hline GD-11a & (24) & Bethlehem & Hb. (alt.) & \(0.161 \pm 0.00\) & 0.44 & 0.1305 & \(194 \pm 10\) \\
\hline GD-4 & (25) & Guichon & Hb. (alt.) & \(0.169 \pm 0.001\) & 0.60 & 0.1474 & 208 +8 \\
\hline K63-114 & (26) & Volcanio aike & Biotite & \[
\begin{aligned}
& 6.99 \pm 0.02 \\
& 6.99 \pm 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.88 \\
& 0.83
\end{aligned}
\] & \[
\begin{aligned}
& 1.389 \\
& 1.433
\end{aligned}
\] & \[
\begin{aligned}
& 49 \pm 3 \\
& 51 \pm 3
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
. Hb.(alt.) = altered hornblende
* Potassium analyses by Wm. H. White. J. E. Harakal and others using KY and KY-3 flame photometers. s-standard deviation of quadruplicate analyses.
** Argon analyses by J. E. Harakal and others using MS-10 mass spectrometer.
*** Constants used in mpdel age calculations: \(\lambda e^{=}=0.585 \times 10^{-10 y-1,} \lambda_{\beta}=4.72 \times 10^{-10 y} y^{-1}\);
\(40 \mathrm{~K} / \mathrm{K}=2.181 \times 10^{-4}\).
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { TABLE } \\
\mathbf{B - 2}
\end{array}
\] & \begin{tabular}{l}
Potassium-ar \\
et al.: 1968
\end{tabular} & on data for the & Topley Intru & ns (from Wh & te et a & , a & White \\
\hline Sample No. (Isochron No.) & Rook unit & Type & Mineral analyzed & \(K \pm 8(8) *\) & \[
\frac{40_{A r}}{\text { Total } 40_{A r}}
\] & \[
\begin{aligned}
& 40_{\mathrm{Ar}} \mathrm{*} * \\
& \left(10^{-5} 00\right. \\
& \text { STP/gm) }
\end{aligned}
\] & \[
\begin{gathered}
\text { Apparent } \\
\text { Age****} \\
\left(\pi_{\bullet} \mathrm{Y}_{\bullet}\right)
\end{gathered}
\] \\
\hline T66-15 (1) & Endako & Qtz. Monzonite & Biotite & \(5.67 \pm 0.07\) & 0.82 & 3.328 & \(143 \pm 6\) \\
\hline T66-14 (2) & Endaio & Qtz. Monzonite & Blotite & \(6.46 \pm 0.03\) & 0.85 & 3.748 & \(141 \pm 5\) \\
\hline T65-3 (3) & Endaiko & Qtz. Monzonite & Biotite & \(5.81 \pm 0.04\) & 0.70 & 3.318 & \(140 \pm 6\) \\
\hline 766-21 (4) & N1thi & Qtz. Monzonite & Biotite & \(5.13 \pm 0.04\) & 0.89 & 2.974 & \(141 \pm 6\) \\
\hline T66-20 (5) & Nith1 & Qtz. Monzonite & Biotite & \(5.80 \pm 0.03\) & 0.78 & 3.281 & \(138 \pm 5\) \\
\hline T66-25 (6) & Glenamnon & Qtz. Monzonite & Biotite & \(4.58 \pm 0.03\) & 0.75 & 2.639 & \(140 \pm 6\) \\
\hline T67-29 (7) & Glenannon & Qtz. Monzonite & Blotite & \[
\begin{aligned}
& 4.39 \pm 0.02 \\
& 4.39 \pm 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.65 \\
& 0.87
\end{aligned}
\] & \[
\begin{aligned}
& 2.419 \\
& 2.423
\end{aligned}
\] & \[
\begin{aligned}
& 134 \pm 5 \\
& 135 \pm 5
\end{aligned}
\] \\
\hline T66-10 (8) & Tatin & Qtz. Monzonite & Biotite & \(5.69 \pm 0.04\) & 0.73 & 3.327 & \(142 \pm 6\) \\
\hline T66-27 (9) & Tatin & Qtz. Konzonite & Blotite & \(6.59 \pm 0.02\) & 0.65 & 3.687 & \(136 \pm 5\) \\
\hline T66-18 (10) & Casey & Qtz. Monzonite & Biotite & \(5.46 \pm 0.03\) & 0.80 & 3.118 & \(139 \pm 5\) \\
\hline T66-26 (11) & Casey & Qtz. Monzonite & Biotite & \(6.34 \pm 0.06\) & 0.68.. & 3.558 & \(137 \pm 6\) \\
\hline T67-31 (12) & Francois & Granite & Biotite & \(6.06 \pm 0.03\) & 0.80 & 3.408 & 137士5 \\
\hline 267-30 (13) & Francola & Qtz. Monzonite & Biotite & \(5.31 \pm 0.05\) & 0.76 & 2.993 & \(137 \pm 6\) \\
\hline T66-16 (14) & Stellako & Qtz. Monzonite & B1otite & \(4.99 \pm 0.03\) & 0.65 & 2.804 & \(137 \pm 5\) \\
\hline T65-2 (15) & Stellako & Qtz. Monzonite & B1otite & \(3.70 \pm 0.03\) & 0.57 & 2.063 & \(136 \pm 5\) \\
\hline 266-11 (16) & Triangle & Qtz. Monzonite & Blotite & \[
\begin{aligned}
& 6.22 \pm 0.01 \\
& 6.22 \pm 0.01
\end{aligned}
\] & \[
\begin{aligned}
& 0.85 \\
& 0: 78
\end{aligned}
\] & \[
\begin{aligned}
& 3.393 \\
& 3.403
\end{aligned}
\] & \[
\begin{aligned}
& 133 \pm 5 \\
& 133 \pm 5
\end{aligned}
\] \\
\hline 265-4 (17) & Casey & Qtz. Monzonite & B2otite & \(7.054 \pm 0.026\) & 0.85 & 4.099 & \(141 \pm 5\) \\
\hline T66-23 (18) & Casey & Qtz.-Biotite dike & Biotite & \(7.03 \pm 0.06\) & 0.58 & 4.012 & \(139 \pm 6\) \\
\hline T65-6 (19) & & Qtz. Monzonite & Blotite & \(6.903 \pm 0.025\) & 0.88 & 3.961 & 140 +5 \\
\hline T66-12 (20) & & Qtz. Monzonite & Biotite & \(6.94 \pm 0.03\) & 0.82 & 4.064 & \(142 \pm 5\) \\
\hline T66-13 (21) & & B10. with qtz.moly vein & Biotite & \(6.53 \pm 0.02\) & 0.74 & 3.808 & 14245 \\
\hline T68-33 (22) & Simon Bay & Diorite & Hb. & 1.21 \(\pm 0.01\) & 0.62 & 0.7745 & 155士8 \\
\hline T68-33 (23) & Simon Bay & Diorite & Biotite & \(3.72 \pm 0.07\) & 0.86 & 2.221 & 145 \(\ddagger 8\) \\
\hline T68-33 (24) & Simon Bay & Diorite & Plagioclase & \(1.78 \pm 0.01\) & 0.70 & 1.007 & \(138 \pm 6\) \\
\hline T66-22 (25) & Simon Bay & Qtz. Monzonite & Biotite & \[
\begin{aligned}
& 6.76 \pm 0.105 \\
& 6.76 \pm 0.105
\end{aligned}
\] & \[
\begin{aligned}
& 0.78 \\
& 0.85
\end{aligned}
\] & \[
\begin{aligned}
& 4 \cdot 313 \\
& 4 \cdot 317
\end{aligned}
\] & \[
\begin{aligned}
& 155 \pm 6 \\
& 155 \pm 6
\end{aligned}
\] \\
\hline T66-28 (26) & Late dike & Dacite & Biotite & \[
\begin{aligned}
& 6.25 \pm 0.04 \\
& 6.25 \pm 0.04
\end{aligned}
\] & \[
\begin{aligned}
& 0.58 \\
& 0.65
\end{aligned}
\] & \[
\begin{aligned}
& 1.264 \\
& 1.277
\end{aligned}
\] & \[
\begin{aligned}
& 50 \pm 2 \\
& 51 \pm 2
\end{aligned}
\] \\
\hline T65-1 (27) & Praser & Qtz. Monzonite & Biotite & \[
\begin{aligned}
& 5.23 \pm 0.02 \\
& 5.23 \pm 0.02
\end{aligned}
\] & \[
\begin{aligned}
& 0.58 \\
& 0.40
\end{aligned}
\] & \[
\begin{aligned}
& 2.424 \\
& 2.385
\end{aligned}
\] & \[
\begin{aligned}
& 114 \pm 4 \\
& 312 \pm 4
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
* Potassium analyses by Wm. H. White, T. Bichards, and I. Semple uaing KY and KY-3 flame photometers, s-standard deviation of quadruplicate analyses.
** Argon analyses by J. E. Harakal using MS-10 mass spectrometer.
\({ }^{* * *}\) conatants used in mpdel age caloulations: \(\lambda_{X}=0.585 \times 10^{-10} y^{-1}, \lambda_{\beta}=4.72 \times 10^{-10} y^{-1}\).
}

Fig. a. Isochron plots for data from the Guichon Batholith, Topley Intrusions.
b. Isochron plot for the Hitches Brook Phase of the Guichon Batholith.
phase of the batholith.

\section*{B.4.2 Topley Intrusions}

K-Ar data for the Topley Intrusions near Endako, British Columbia has been interpreted by White et al. (1970) to indicate either one protracted perhaps intermittent magmatic event culminating in early Late Jurassic or three separate and unrelated events. Isochron plots of the Topley data were attempted in order to evaluate the two alternatives. The Triangle, Stellako, Francois, Casey, Tatin, Glenannon, Nithi and Endako phases of the Topley Intrusions have biotite \(\mathrm{K}-\mathrm{Ar}\) ages ranging from 133 m.y. to \(143 \mathrm{~m} . \mathrm{y}\). and a mean age of \(138 \pm 3 \mathrm{~m} . \mathrm{y}\). The Simon Bay phase has a 155 m.y. age for biotite from sample \(\mathrm{T} 66-22\) and from sample T68-33 discordant ages of 155,145 and \(138 \mathrm{~m} . \mathrm{y}\). The Topley isochron shown in Figure B-2a is from data (Table B-2) used to obtain the \(138 \pm 3\) m.y. mean age and the isochron age of \(144 \pm 4 \mathrm{~m} . \mathrm{y}\). is consistent with the mean age. Hornblende, biotite and plagioclase data for sample T68-33 plots on an isochron that is parallel to the Topley isochron and has an isochron age of \(143 \pm 10 \mathrm{~m} . \mathrm{y}\).

For both the Topley isochron and sample T 68 - 33 isochron, the isochron age and mean age of the conventional \(\mathrm{K}-\mathrm{Ar}\) determinations are consistent. Since the isochron and mean ages overlap, the isochron plots cannot be used to distinguish between continuous igneous activity or an intrusive pulse model.
B.4.3 Summary

Application of \(\mathrm{Ar}^{40}\) (rad) vs \% K isochron plots to data from the Topley Intrusions and Guichon Batholith supports the conventional age
determinations. In both cases the mean age of the conventional determinations is consistent with the isochron age. For both the Topley Intrusions and the Guichon Batholith the initial argon ratio is essentially the same as the present-day value (\(\operatorname{Ar}^{40} / \operatorname{Ar}^{36}=295.5\)).

APPENDIX C - FISSION TRACK DATING

\section*{C. 1 INTRODUCTION}

Fission track dating provides a method for using normal laboratory equipment for determining the age of nonconductors. Once polished section mounts are obtained, track counting and age determination takes only a few hours for materials with suitable age to uranium ratios. Unfortunately, in this study pre-counting steps consumed a majority of the time.
C. 2 PROCEDURE

Fission track dating involves:
(a) determining the spontaneous fission track density (\(\rho s\)) on an etched interior surface of a mineral or other nonconductor,
(b) using the calculated value for fission decay of \(\mathrm{U}^{238}\left(\lambda_{\mathrm{F}}\right)\), and
(c) determining the \(\mathrm{U}^{238}\) content.

Step 1. MINERAL SEPARATION
Concentrates of the mineral to be used for fission track dating are obtained using standard mineral separation methods (see flow sheet Fig. C-1 and Table C-1). Care must be taken during mineral separation and subsequent steps to ensure that tracks are not annealed by heating.

Step 2. DIVISION OF SAMPLE

The mineral concentrates (65-95\%) pure are split to obtain two portions. One portion is'used to obtain the spontaneous (natural) track density, and this sample is saved till Step 6.

Figure C-1 Flowsheet for mineral separating

TABLE C-1 FRANTZ SEPARATION SETTINGS FOR DESIRED MINERAL SEPARATION (ROSENBLUM, 1958, p. 171)
\begin{tabular}{lcccc}
\hline \multicolumn{1}{c}{ Mineral } & Cross tilt & Flow tilt & Current amps & Fraction used \\
\hline \begin{tabular}{l}
Magnetite \\
Ilmenite \\
Pyrrhotite
\end{tabular} & \(18^{\circ}\) & \("\) & \(25^{\circ}\) & less 0.2 \\
\begin{tabular}{l}
Hornblende \\
Pyroxene
\end{tabular} & \("\) & \("\) & \("\) & heavies \\
Biotite & \("\) & \("\) & \("\) & \("\) \\
Sphene & \("\) & \("\) & \(0.2-0.5\) & \("\) \\
Zircon & \("\) & \("\) & \("\) & \("\) \\
\begin{tabular}{l}
Molybdenite \\
Pyrite
\end{tabular} & \("\) & \("\) & 0 & lights \\
Fluorite & \("\) & \("\) & greater 1.2 & heavies \\
Apatite & \("\) & \("\) & \("\) & \("\) \\
\hline
\end{tabular}

Step 3. PREPARATION OF SAMPLES FOR IRRADIATION
The second portion obtained from the split is placed in a porcelain crucible. This portion of each sample was annealed in an electric oven for 24 hours at \(650 \pm 25^{\circ} \mathrm{C}\). Naeser (1967 p. 54) determined that annealing for one hour at \(350^{\circ} \mathrm{C}\) and \(625^{\circ} \mathrm{C}\) for apatite and sphene respectively will cause \(100 \%\) track destruction. Therefore it is assumed that all spontaneous tracks were destroyed in the annealing procedure used by the writer.

Annealed apatite and sphene samples weighing between 0.01 and 0.2 gm . (minimum of 100 grains but generally several hundred) were next wrapped in high purity aluminum foil (provided by Mr. F.T. Murphy of AECL).

Glass standards* weighing between 0.1 and 0.2 gm . (\(1 \mathrm{~mm} \times 5 \mathrm{~mm} \times 5 \mathrm{~mm}\))

\footnotetext{
* Standard glass used to calibrate UBC reactor run 1 was provided by Dr. Charles Naeser of the U.S. Geological Survey.
}
were prepared in two different ways. One standard was in aluminum foil. A second standard was cleaned in a sequence of reagent grade solutions, including \(50 \%\) ammonium hydroxide, acetone benzene and rinsed in deionized water, and then wrapped in a plastic detector which has been cleaned in reagent grade nitric acid, and rinsed in deionized water (Lahoud et al., 1966). The sample with the plastic detector was also wrapped in aluminum foil.

Step 4. SAMPLE IRRADIATION
Wrapped mineral samples and glass standards were placed in an aluminum capsule. The capsule was sealed and irradiated by Atomic Energy of Canada Limited in the self-serve unit of a NTX Reactor. A flux of \(1.2 \times 10^{15}\) nvt was requested and a cobalt tag included in the run was calibrated by the laboratory to have received a flux of 1.05 x \(10^{15} \mathrm{nvt}\left(1.35 \times 10^{12} \mathrm{n} / \mathrm{cm}^{2} / \mathrm{sec}\right.\) for 13 minutes).

\section*{Step 5. FLUX DETERMINATION}

Mr. F.T. Murphy of AECL (personal communication) suggested that the flux determined using the cobalt tag should be within \(5 \%\) of the actual value, but Dr. C.W. Naeser (personal communication) has found that standards containing known uranium contents provided a more accurate determination. Three separate determinations provide independent support for a flux value of \(1.31 \times 10^{15}\) nvt \(\pm 5 \%\). These determinations include:
(1) count of induced tracks produced in standard glass included in the reactor run,
(2) comparison of the ratio of tracks/area in the standard glass included in the U.B.C. reactor run with the ratio of tracks/area in a piece of the same
> standard glass included in the Dartmouth reactor run 1 (flux of \(1.46 \times 10^{15}\) nvt was calculated by Dr. C.W. Naeser for the Dartmouth reactor run) and
> (3) count of induced tracks/area produced in standard apatite Mc/G-1 that has amean fission track apatite age of \(120 \mathrm{~m} . \mathrm{y}\). and a concordant biotite \(\mathrm{K}-\mathrm{Ar}\) age of \(120 \mathrm{~m} . \mathrm{y}\). (Christopher 1968).

Step 6. MOUNTING AND POLISHING

In order to handle \(28-100\) mesh mineral grains during fission track analysis, it is necessary for them to be mounted. The sample preparation procedure described by Naeser (1967, pp. 75-76 and 1967b, p. 1524) was used as a guide in preparing mounts.

At least 100 grains from each mineral concentrate are placed on a teflon sheet. The grains are then covered with a few drops of freshly mixed epoxy resin, and a labelled glass microscope slide is placed on top of the resin. The thickness of the epoxy wafer is gauged by placing a 0.1 to \(0.5 \bar{m} m\) spacer at each end of the slide. Placing an iron weight on each mount eliminates bubbles from the mounts and produces an epoxy wafer of uniform thickness. After allowing the resin to dry for about 12 hours, the mounted sections are removed from the teflon sheet.

The mineral grains in the epoxy wafer must be polished to expose a fresh smooth interior surface. The grinding and polishing employed standard manual methods. An attempt was made to produce identical mounts of natural and irradiated mineral samples. Lack of a mechanical method for producing polished thin sections is considered to be one of the major problems in
application of the fission track method. After spending over two hours (average) per polished section, variability in sections is considered to be one of the major sources of error.

The glass standard is mounted and polished in the same manner as the mineral grains. Other laboratories (Rensselaer and General-Electric) have used fracturing methods for preparing the glass standard.

Step 7. ETCHING

Two slides of each mineral concentrate must be used to obtain an age. One slide is made from the natural mineral concentrate (Plates 1 and 3). A second slide is made from the annealed and irradiated portion (Plates 2 and 4). The two slides are placed back to back and dipped in an appropriate etchant (see Tables C-2 and C-3). For minerals with variable composition (e.g. apatite, epidote or micas), the etching has to be done In steps and the tracks examined at intervals to obtain the proper etch time.

The track density in the glass before irradiation is essentially zero, and therefore only the irradiated glass standard is mounted, polished to expose an interior surface and etched (Plates 5 and 6). A Makrofol KG plastic detector (polycarhonate) was also used to detect induced fission in the glass. Unfortunately the plastic detector was over etched.

Step 8. COUNTING TRACKS

Track densities for etched apatite and sphene samples were determined by observation using a polarized-light-microscope at about 1500x (magnification obtained from Zeiss 100 x oil immersion objective, 12.5 x eyepiece and 1.25 x

TABLE C-3. ETCHING CONDITIONS FOR FISSION-TRACK COUNTING.

setting on an optivar magnification changer). Track densities for etched glass standards were determined by observation using a reflectedlight microscope at about \(1000 x\) (magnification obtained from a Zeiss \(40 x\) objective, \(12.5 x\) eyepiece and \(2.0 x\) setting on an optivar magnification changer). Tracks are counted in the field of view covered by a square reticle (Plate 7). The number of fields counted varied with the track density. Since the counting error decreases with increase in the number of tracks counted, a minimum of 400 counts is desirable. The standard deviation of the track counts is taken as the square root of the number of tracks counted (Naeser 1967b). This formula yields a counting error of \(\pm 5 \%\) for 400 counts.

TABLE C-2 ETCHING TECHNIQUES USED FOR MATERIALS STUDIED
\begin{tabular}{|c|c|c|c|c|c|}
\hline Material & Etchant & Etch Time & Temp. & Reference & Comments \\
\hline Apatite & 65-70\% & 5-30 sec. & \(23^{\circ} \mathrm{C}\) & \begin{tabular}{l}
Fleischer and \\
Price, 1964d
\end{tabular} & Time varies with composition \\
\hline \begin{tabular}{l}
Glass slide \\
(standard)
\end{tabular} & 48\% HF & 5 sec. & \(23^{\circ} \mathrm{C}\) & " & \\
\hline Sphene & \[
\begin{aligned}
& 6: 3: 2: 1 \\
& \mathrm{H}_{2} \mathrm{O}: \mathrm{HCL}: \\
& \mathrm{HNO}_{3}: \mathrm{HF}
\end{aligned}
\] & 1-5 min. & \(20^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \text { Naeser et al. } \\
& 1970
\end{aligned}
\] & \\
\hline Zircon & 100M.
\[
\mathrm{NaOH}
\] & \(4-6 \mathrm{hrs}\). & \(220^{\circ} \mathrm{C}\) & \begin{tabular}{l}
Naeser and \\
McKee, 1970
\end{tabular} & \\
\hline \[
\begin{aligned}
& \text { Makrofol } \\
& \text { (K6) }
\end{aligned}
\] & \[
\begin{aligned}
& 6 \mathrm{~N} \\
& \mathrm{NaOH}
\end{aligned}
\] & 2-2-1/2 h & \(23^{\circ} \mathrm{C}\) & Lahoud et al. 1966 & \\
\hline
\end{tabular}

\section*{Step 9. URANIUM DETERMINATION}

By using a ratio of spontaneous tracks to induced tracks, the
determination of absolute uranium content can be bypassed in the age calculation. Lahoud et al. (1966) suggest that the fission-track method is \(10,000 x\) more sensitive than other analytical methods of determining uranium content. In theory, it is possible to determine concentrations as low as \(10^{-5} \mathrm{ppb}\). The only limitation on the sensitivity is the effect of extremely large neutron doses on the sample and the availability of standards for determining the flux.

In order to calculate the uranium concentration in a mineral phase, it is necessary to know the induced track density and the neutron dose which produced the tracks. The formula is (Naeser 1967a):
\[
C\left(p p m U^{238}\right)=F \rho_{\mathbf{i}} / \phi N_{V} \sigma I R_{0}
\]
where
\[
\mathrm{F}=\frac{238 \text { (atomic weight of } \mathrm{U}^{238} \text {) } \times \text { No. atoms in }}{\text { mineral formula } \times 10^{6}} \text { molecular weight of mineral } ;
\]
\(\rho i=\) induced track density:
\(\mathrm{I}=\mathrm{U}^{235} / \mathrm{U}^{238},\left(7.26 \times 10^{-3}\right) ;\)
\(\sigma=\) thermal neutron cross section for fission of \(\mathrm{U}^{235}\) (\(5.83 \times 10^{-22} \mathrm{~cm}^{2}\));
\(\mathrm{N}_{\mathrm{V}}=\) number of atoms per \(\mathrm{cm}^{3}\) of sample;
\(R_{0}=\) average fission fragment range (either \(8 \times 10^{-4}\)
if new surface is exposed and etched after irradiation, or \(4 \times 10^{-4} \mathrm{~cm}\) if an old surface is used.

By substituting values for constants, the equation reduces to:
\[
C=\frac{3.61 \times 10^{10} \rho_{i}}{\phi}
\]
for apatite when
\[
\begin{aligned}
\mathrm{F} & =9.80 \times 10^{6} \text { and } \\
\mathrm{N}_{\mathrm{V}} & =0.8010 \times 10^{23} \text { atoms } / \mathrm{cc}
\end{aligned}
\]
and to:
\[
C=\frac{3.33 \times 10^{10} \rho_{i}}{\phi}
\]
for sphene when
\[
\begin{aligned}
\mathrm{F} & =9.71 \times 10^{6} \text { and } \\
\mathrm{N}_{\mathrm{V}} & =.8603 \times 10^{23} \text { atoms } / \mathrm{cc} .
\end{aligned}
\]

Plate 1. Microphotograph showing spontaneous (natural) fissiontracks in standard apatite sample Me/G-1. Apatite from this sample has a spontaneous track density of \(8.73 \pm\) \(1.12 \times 10^{5}\) tracks \(/ \mathrm{cm}^{2}\) and a uranium content of \(15.5 \pm\) 1.9 ppm . Scale 1 inch \(=22\) microns

Plate 2. Microphotograph showing induced tracks in standard apatite Me/G-1. Annealed apatite grains were exposed to a thermal neutron flux of \(1.535 \times 10^{15}\). The induced track density produced was about \(6.96 \times 10^{5}\) tracks \(/ \mathrm{cm}^{2}\). Scale 1 inch \(=\) 22 microns.

Plate 3. Microphotograph showing spontaneous (natural) fission-tracks in sphene sample JH5. Cracks in sphene grains cause counting problems but can generally be distinguished from tracks of uniform size and characteristic shape. Scale 1 inch \(=15\) microns.

Plate 4. Microphotograph showing faint induced fission-tracks in sphene sample JH5. Lines which cross entire plate are scratches produced during polishing. Scale 1 inch \(=15\) microns.

(4)

Plate 5. Microphotograph showing induced fission-tracks produced in standard glass used to calibrate U.B.C. reactor run. Glass contains 0.4 ppm uranium and was radiated to a flux of \(1.31 \times 10^{15}\) nvt. Scale 1 inch \(=22\) microns.

Plate 6. Microphotograph showing induced fission-tracks produced in standard glass used to calibrate a reactor run. Glass contains 0.44 ppm uranium and was irradiated to a flux of \(8 \times 10^{16}\) nvt (flux determined by S. Barr). Scale 1 inch \(=22\) microns.

Plate 7. Microphotograph showing central part of a reticle used for measuring area from which track count was obtained. Scale 1 inch = 15 microns.

\section*{APPENDIX D}

TABLE OP PUBLISHED K-AT AGES REVIEWFD POR THIS REPORT
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{12} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { GSC67-9 } \\
& \text { GSC } 67-10
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \mathrm{Hb} \\
& \mathrm{~B} 10
\end{aligned}
\]} & \multicolumn{5}{|l|}{EARLI TERTIARY AGES - WEST OF CASSIAR BATHOLITH} \\
\hline & & & \(48 \pm 4\) & Quartz & unnamed & \(59^{\circ} 23^{\circ} 45^{\prime \prime} \mathrm{N}\) & GSC Paper 69-2A, pp. 8-9 \\
\hline & & & \(46 \pm 2\) & diorite & & \(132^{\circ} 40^{\circ} 30^{\prime \prime} \mathrm{W}\). & \\
\hline 14 & GSC70-19 & B10 & \(58 \pm 18\) & \[
\begin{aligned}
& \text { Quartz } \\
& \text { diorite }
\end{aligned}
\] & Mount Mchaster Stock & \[
\begin{aligned}
& 59^{\circ} 22^{\circ} \mathrm{N} \\
& 133^{\circ} 12^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 71-2, p. 14 \\
\hline
\end{tabular}

EARLY TERTIARY AGES - BODY INTRUDES CASSIAR BATHOLITH
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 15 & GSC67-1 & Musc & \(58 \pm 3\) & Quartz monzonite & unnared stook? & \[
\begin{aligned}
& 59^{\circ} 39^{\circ} \mathrm{N} . \\
& 130^{\circ} 20.5^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 69-2A, p. 6 \\
\hline 16 & Gsc67-2 & Musc & \(53 \pm 3\) & Pegmatite & * & \[
\begin{aligned}
& 59^{\circ} 39^{\circ} \mathrm{N} . \\
& 130^{\circ} 27.5^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 69-2A, P. 6 \\
\hline
\end{tabular}

EARLY TERTIARY AGE - EAST OP CASSIAB BATEOLITH

- See reference.

TABLE (oont'd) Published K-Ar ages referred to in this report.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Report } \\
& \text { No. }
\end{aligned}
\] & Refer
Number
Mineral & \begin{tabular}{l}
ce \\
nd ated
\end{tabular} & \[
\begin{gathered}
\text { Age } \\
\text { in m. } \mathrm{y} .
\end{gathered}
\] & Hook Type & Unit & Location & Referenoe \\
\hline \multicolumn{8}{|c|}{NOME LAKE AND SIMPSON PEAK Batholiths, NORTHERN B.C.} \\
\hline \[
\begin{aligned}
& 18 \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{Gsc} 67-3 \\
& \operatorname{GSC} 67-4
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Elb} \\
& \text { B10 }
\end{aligned}
\] & \[
\begin{aligned}
& 181 \pm 14 \\
& 165 \pm 8
\end{aligned}
\] & Quartz monzonite & \begin{tabular}{l}
S1mpson \\
Peak \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 59^{\circ} 44^{\circ} \mathrm{N} \\
& 131^{\circ} 26^{\circ} 45^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 69-2A, pp. 6-7 \\
\hline . 21 & \[
\begin{aligned}
& \operatorname{GSc} 67-5 \\
& \text { GSc } 67-6
\end{aligned}
\] & Hb
\(\mathrm{B10}\) & \[
\begin{aligned}
& 183 \pm 9 \\
& 183 \pm 8
\end{aligned}
\] & Quartz monzonite & Nome Lake Bathollth & \[
\begin{aligned}
& 59^{\circ} 37^{\prime} \mathrm{N} . \\
& 130^{\circ} 53.5^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 69-2A, p. 7 \\
\hline
\end{tabular}

PLATE CREEK STOCK, NORTHERN B.C.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 22 & GSC70-23 & Hb & \(184 \pm 10\) & Quarte diorite & Plate Stock & \[
\begin{gathered}
\text { Creek } 59^{\circ} 53^{\circ} \mathrm{N} . \\
130^{\circ} 4^{\prime} 5^{\prime} \mathrm{W} .
\end{gathered}
\] & GSC Paper 71-2, p. 16 \\
\hline 23 & GSC67-11 & Hb & \(159 \pm 10\) & Quartz diorite & \begin{tabular}{l}
Plate \\
Creek \\
Stock
\end{tabular} & \[
\begin{aligned}
& 59^{\circ} 52^{\prime} 30^{\prime \prime} \mathrm{W} \\
& 130^{\circ} 4^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 69-2A, p. 9 \\
\hline
\end{tabular}

PARALIEL CREEK, KLINKET AND TUYA BATHOLITHS, NORTHERN B.C.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 24 & GSC70-24 & B10 & \(87 \pm 4\) & Quartz monzonite & \begin{tabular}{l}
Klinket \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 59^{\circ} 28^{\prime} N_{6} \\
& 131^{\circ} 13^{\prime} W_{0}
\end{aligned}
\] & GSC Paper 71-2, pp. 16-17 \\
\hline 25 & GSc67-13 & Bio & \(92 \pm 5\) & Granite & \begin{tabular}{l}
Tuya \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 59^{\circ} 04 \cdot 3^{\prime} \mathrm{N} \\
& 130^{\circ} 43^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 69-2A. P. 10 \\
\hline 6 & GSC67-14 & Bio & \(78 \pm 4\) & Granite & \begin{tabular}{l}
Parallel \\
Creek \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 59^{\circ} 13.5^{\prime} \mathrm{N} . \\
& 130^{\circ} 23.5^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 69-2A, p. 10 \\
\hline
\end{tabular}

CHRISTMAS CREEK BATHOLITH, NORTHERN B.C.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 26 & GSC70-20 & Hb & 177t9 & Quartz diorite & Chriatmas Creek Bathol1th & \[
\begin{aligned}
& 59^{\circ} 18^{\circ} \mathrm{N} \\
& 131^{\circ} 40.5^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 71-2. p. 15 \\
\hline \[
\begin{aligned}
& 27 \\
& 28
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC67-7 } \\
& \text { GSC } 67-8
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hb} \\
& \text { B10 }
\end{aligned}
\] & \[
\begin{aligned}
& 128 \pm 6 \\
& 56 \pm 3
\end{aligned}
\] & Quartz diorite & \begin{tabular}{l}
Christmas Creek \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 59^{\circ} 22^{\circ} 30^{\prime \prime N} . \\
& 131^{\circ} 44^{\circ} \mathrm{W.} .
\end{aligned}
\] & GSC Paper 69-2A, pp. 7-8 \\
\hline \[
\begin{aligned}
& 29 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSc66-2 } \\
& \text { GSC66-3 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hb} \\
& \mathrm{B1O}
\end{aligned}
\] & \[
\begin{aligned}
& 146 \pm 17 \\
& 73 \pm 5
\end{aligned}
\] & Quartz diorite & Christmas Creek Batholith & \[
\begin{aligned}
& 59^{\circ} 16^{\circ} \mathrm{N} . \\
& 131^{\circ} 29^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 67-2A, pp. 11-12 \\
\hline
\end{tabular}

HOTAILUH BATHOLITH, NOBTHERN BRITISH COLUMBIA
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
31
\] & \[
\begin{aligned}
& \text { GSC70-27 } \\
& \text { GSC70-28 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hb} \\
& \text { B10 }
\end{aligned}
\] & \[
\begin{aligned}
& 147 \pm 8 \\
& 139 \pm 6
\end{aligned}
\] & Granodiorite & Eotailuh Batholith & \[
\begin{aligned}
& 58^{\circ} 09.6^{\circ} \mathrm{N} \\
& 129^{\circ} 51.9^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 71-2, pp. 17-18 \\
\hline 33 & GSC70-29 & Hb
Hb & \[
\begin{aligned}
& 166 \pm 8 \\
& 157 \pm 11
\end{aligned}
\] & Granite & \begin{tabular}{l}
Hotailuh \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 58^{\circ} 08^{\prime} 30^{\prime \prime} \mathrm{N}_{1} \\
& 129^{\circ} 52^{\circ} 00^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 71-2, p. 18 \\
\hline 34 & csc62-71 & B10 & 193 & & & & GSC Paper 63-17, pp. 45-46 \\
\hline 35 & GSC70-30 & [b & 155士8 & Quart 2 monzonite & \begin{tabular}{l}
Eotailuh \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 58^{\circ} 10.5^{\circ} \mathrm{N} . \\
& 129^{\circ} 38.5^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 71-2, p. 19 \\
\hline \[
\begin{aligned}
& 36 \\
& 37
\end{aligned}
\] & \[
\begin{aligned}
& \text { Gsc70-31 } \\
& \text { GSC70-32 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Hb } \\
& \text { Bio }
\end{aligned}
\] & \[
\begin{aligned}
& 163 \pm 9 \\
& 163 \pm 7
\end{aligned}
\] & Quartz monzonite/ anodiorite & \begin{tabular}{l}
Hotailuh \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 58^{\circ} 07.5^{\circ} \mathrm{N} . \\
& 129^{\circ} 30^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 71-2, p. 19 \\
\hline 38 & GSC70-33 & \[
\begin{aligned}
& \mathrm{Hb} \\
& \mathrm{Hb}
\end{aligned}
\] & \[
\begin{aligned}
& 215 \pm 11 \\
& 215 \pm 11
\end{aligned}
\] & Monzonite/ quartz monzonite & Hotailuh Batholith & \[
\begin{aligned}
& 58^{\circ} 10^{\circ} \mathrm{N} \\
& 129^{\circ} 39^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 71-2, p. 20 \\
\hline 39 & \(\csc 70-34\) & \[
\begin{aligned}
& \mathrm{Hb} \\
& \mathrm{Hb}
\end{aligned}
\] & \[
\begin{aligned}
& 217 \pm 11 \\
& 217 \pm 11
\end{aligned}
\] & Diorite & \begin{tabular}{l}
Hotailuh \\
Bathollth
\end{tabular} & \(58004.5{ }^{\circ} \mathrm{N}\) & GSC Paper 71-2, p. 20 \\
\hline \[
\begin{aligned}
& 40 \\
& 42
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC70-25 } \\
& \text { GSC } 70-26
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hb} \\
& \text { BLO }
\end{aligned}
\] & \[
\begin{aligned}
& 161 \pm 8 \\
& 141 \pm 7
\end{aligned}
\] & Quartz monzonite & Hotailuh Batholith? & \[
\begin{aligned}
& 58^{\circ} 15.5^{\prime} \mathrm{N} \\
& 130^{\circ} 15.5^{\prime} \mathrm{W} .
\end{aligned}
\] & gsc Paper 71-2, p. 17 \\
\hline
\end{tabular}

\footnotetext{
* See reference.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\mathrm{D}-1}{\text { TABLE }}
\] & (cont & d) Pubil & shed K-Ar & ages refers & red to in this & s report. & \\
\hline \[
\begin{aligned}
& \text { Report } \\
& \text { No. }
\end{aligned}
\] & Kerere
Number
Mineral & \[
\begin{aligned}
& \text { noe } \\
& \text { and } \\
& \text { Dated }
\end{aligned}
\] & \[
\underset{\text { in } \mathrm{m}, \mathrm{y} .}{\mathrm{Age}}
\] & Rook Type & Un1t & Looation & Reference \\
\hline \multicolumn{8}{|c|}{early cretaceous stock, northern b.c.} \\
\hline 42 & GSC70-21 & \[
\begin{aligned}
& \mathrm{Hb} \\
& \mathrm{Bb}
\end{aligned}
\] & \[
\begin{aligned}
& 112 \pm 28 \\
& 120 \pm 26
\end{aligned}
\] & Blotite quartz diorite & \begin{tabular}{l}
Tachilta \\
Lake \\
stock
\end{tabular} & \[
\begin{aligned}
& .58^{\circ} 38.5^{\circ} \mathrm{N} . \\
& 130^{6} 56^{\circ} \mathrm{W} .
\end{aligned}
\] & . GSC Paper 71-2, p. 15 \\
\hline \multirow[t]{2}{*}{43} & \multirow[t]{2}{*}{GSC70-22} & \multirow[t]{2}{*}{Bio} & \(137 \pm 6\) & \[
\begin{aligned}
& \text { Hornblende } \\
& \text { quartz } \\
& \text { diorite }
\end{aligned}
\] & Tachilta Lake stock & & GSC Paper 71-2. pp. 15-16 \\
\hline & & & \multicolumn{4}{|c|}{Hogem batholith, NORTHERN b.C.} & \\
\hline 44 & GSC70-11 & B10 & 122土6 & Grant te & \begin{tabular}{l}
Hogem \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 56^{\circ} 20^{\prime} 113^{\prime} \mathrm{N} . \\
& 125^{\circ} 49^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 71-2, p. 11 \\
\hline \multirow[t]{2}{*}{45} & \multirow[t]{2}{*}{K65-1} & Bio & \(170 \pm 8\) & Syenite & \begin{tabular}{l}
Hogem \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 55^{\circ} 56^{1} \mathrm{~N} . \\
& \text { l25 } \\
& \text { Lorraine }
\end{aligned}
\] & White et al. 1968; Koo, 1968 \\
\hline & & \multicolumn{6}{|l|}{Late certaceous and early tertiary ages COAST INTRUSIONS, NORTHERN B.C. AND SOUTHEASTERN ALASKA} \\
\hline 46 & Gsc61-39 & B10 & 54 gran & Biotite nodiorite & \begin{tabular}{l}
Coast \\
Intrusions
\end{tabular} & \[
\begin{aligned}
& 59^{\circ} 44^{\circ} \mathrm{N} . \\
& 13^{\circ} 59^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 62-17. p. 23-24 \\
\hline 47 & Gsc61-38 & Bio & 65 gran & Biotite nodiorite & - & \[
\begin{aligned}
& 59^{\circ} 47^{\prime} 30^{\prime \prime N} \mathrm{~N} . \\
& 135^{\circ} 00^{\circ} 30^{\prime \prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 62-17. p. 23 \\
\hline 48 & GSc61-46 & B10 & 65 & Granite & - & \[
\begin{aligned}
& 59^{\circ} 34^{\prime} \mathrm{N} . \\
& 135^{\circ} 11^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 62-17. p. 29 \\
\hline 49 & GSC61-47 & B10 & 70 gran & Biotite nodiorite & * & \[
\begin{aligned}
& 59^{\circ} 30^{\circ} 30^{\prime \prime} \mathrm{N} . \\
& 135^{\circ} 13^{\circ} 30^{\prime \mathrm{w}} .
\end{aligned}
\] & GSC Paper 62-17. p. 29 \\
\hline 50 & GSC60-26 & Bio & 61 & Granite & - & \[
\begin{aligned}
& 59^{\circ} 37^{\circ} \mathrm{N} . \\
& 135^{6} 08^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 61-17, p. 15-16 \\
\hline 51 & GSC60-27 & B10 & 68 & B1otite & - & \[
\begin{aligned}
& 59^{\circ} 50^{\circ} 30^{\prime \prime} \mathrm{N} . \\
& 135^{\circ} 00^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 61-17, p. 16 \\
\hline 52 & GSC62-75 & Bio & 69 & Quartz monzonite & * & \[
\begin{aligned}
& 58^{\circ} 34 \cdot 244^{\prime N} . \\
& 133^{\circ} 28^{\circ} 00^{\prime \prime W} .
\end{aligned}
\] & GSC Paper 63-17. p. 49 \\
\hline 53 & Gsc66-6 & Bio & \(44 \pm 2\) & Granodiorit & e & \begin{tabular}{l}
mouth or \\
Scud R1ver
\end{tabular} & White et al. 1968 \\
\hline 54 & GSC60-34 & B1o & 30 & Quartz diorite & * & \[
\begin{aligned}
& 59^{\circ} 18^{\circ} \mathrm{N} . \\
& 135^{\circ} 20^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 61-17. p. 20 \\
\hline & & EAR & aly tertiar & y ages - Eas & AST MARGINAL & PLUTON (ALASK & \\
\hline 55 & PKS-1 & B10 & \(48.7 \pm 1.8\) & Monzonite & \[
\begin{gathered}
\text { Mast } \\
\text { Marginal } \\
\text { Pluton }
\end{gathered}
\] & \[
\begin{aligned}
& 58^{\circ} 44^{\prime} \mathrm{N} . \\
& 133^{\circ} 51^{\prime} \mathrm{W} .
\end{aligned}
\] & Porbes and Engels, 1970 \\
\hline 56 & PHS-2 & B10 & \(52.8 \pm 2.6\) & Quartz monzonite & " & \[
\begin{aligned}
& 58^{\circ} 43^{\prime} 30^{\prime \prime N} . \\
& 133^{\circ} 52^{\circ} 30^{\prime \prime} \mathrm{H} .
\end{aligned}
\] & \\
\hline 57 & EN-2 & Whole B & \(51.1 \pm 1.5\) & Quartz monzonite & " & \[
\begin{aligned}
& 58^{\circ} 43^{\circ} \mathrm{N} . \\
& 133^{\circ} 55^{\prime} \mathrm{H} .
\end{aligned}
\] & \\
\hline 58 & EN-3 & Whole R & \(46.9 \pm 1.4\) & Quartz monzonite & * & \[
\begin{aligned}
& 58^{\circ} 4^{\prime} 3^{\prime} . \\
& 133^{\circ} 58^{\circ} \mathrm{W} .
\end{aligned}
\] & \\
\hline 59 & EN-4 & Bio & 49.641.4 & Quartz monzonite & * & \[
\begin{aligned}
& 58^{\circ} 41^{\prime} \mathrm{N} . \\
& 133^{\circ} 59^{\prime} \mathrm{W} .
\end{aligned}
\] & \\
\hline 60 & EN-5 & Whole R & \(51.0 \pm 1.0\) & Quart 2 monzonite & " & \[
\begin{aligned}
& 58^{\circ} 40^{\circ} 30^{11 \mathrm{NE}} \\
& 134^{\circ} 04^{\circ} \mathrm{H.}
\end{aligned}
\] & \\
\hline 61 & EN-6 & Bio & \(47.0 \pm 1.6\) & Quartz monzonite & " & \[
\begin{aligned}
& 58^{\circ} 39^{\circ} \mathrm{N} . \\
& 13^{\circ} 18^{\circ} \mathrm{W} .
\end{aligned}
\] & \\
\hline
\end{tabular}

\footnotetext{
- See reference.
}

> WOLVERINE COMPLEX, NORTHERN B.c.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 77 & Gsc70-14 & Mubo & \(47 \pm 3\) & Granite & Yolverine & \(56^{\circ} 23^{\prime} \mathrm{N}\) & SC Paper 72-2. p. 12 \\
\hline 78 & GSC70-15 & B10 & \(43 \pm 3\) & & Complex & \(125^{\circ} 21.5^{\circ} \mathrm{W}\). & (Paper 71-2. p. 12 \\
\hline
\end{tabular}

INGENIKA GROUP, NORTERRN B.C.
\begin{tabular}{llllllll}
79 & GSC70-12 & Musc & \(128 \pm 6\) & Soh1st & Ingenika & \(56^{\circ} 23^{\circ} \mathrm{N}\). & GSC Paper 71-2, pp. \(11-12\) \\
80 & GSC70-13 & Bio & \(124 \pm 6\) & & Group & \(125^{\circ} 21.5^{\circ} \mathrm{W}\). &
\end{tabular}

\footnotetext{
* Bee reference.
}

TABLE (oont'd) Published K-Ar ages referred to in this report.
D-1

AGES SOUTHWEST OF TINTINA TRENCH, YUKON TERRITORY (NASINA SERIES, YUKON GBOUP, BRICK CBEEK SCHIST)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 87 & GSC66-60 & Hb & \(199 \pm 34\) & Granitic cobble in conglom. & Laberge Group & \[
\begin{aligned}
& 61^{\circ} 37^{\prime} \mathrm{N} . \\
& 135^{\circ} 53^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 67-2A, pp. 55-56 \\
\hline 88 & GSc59-9 & Muso & 214 & Schist & * & \[
\begin{aligned}
& 60-61^{\circ} N_{8} . \\
& 132-134_{\mathrm{W}} .
\end{aligned}
\] & GSC Paper 60-17. p. 7 \\
\hline 89 & GSC59-11 & Bio & 140 & Sch1st & Yukon Group & \[
\begin{aligned}
& 61^{\circ} 17^{\circ} \mathrm{N} \\
& 138^{\circ} 07^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 60-17. p. 8 \\
\hline 90 & GSC61-41 & Bio & 147 & Schist & Yukon Group & \[
\begin{aligned}
& 61^{0} 1^{1} 4^{\prime} N_{0} \\
& 136^{\circ} 57^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 62-17. pp. 25-26 \\
\hline 91 & GSC61-42 & Muso & 222 & Sch1st & Yukon Group & \[
\begin{aligned}
& 60^{\circ} 00^{\prime} 30^{\circ} \mathrm{N} \\
& 132^{\circ} 08^{\prime} 20^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 62-17, pp. 26-27 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 92 & GSC60-33 & Musc & 138 & Sch4st & Klondike schist & \[
\begin{aligned}
& 63^{\circ} 54^{\prime} \mathrm{N} \\
& 13^{\circ} 52^{\prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 61-17. p. 19 \\
\hline 93 & GSC61-40 & Muse & 175 & Schist & Kondike schist & \[
\begin{aligned}
& 64^{\circ} 07^{\prime} \mathrm{N} . \\
& 140^{\circ} 48^{\prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 62-17. p. 25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 94 & GSC62-82 & B10 & 202 & Granodiorite & Pelly gnelss & \[
\begin{aligned}
& 64^{\circ} 02 \cdot 00^{\prime \prime} \mathrm{N} \\
& 140^{\circ} 23^{\circ} 20^{\mathrm{m}} \mathrm{~W}
\end{aligned}
\] & GSC Paper 63-17. pp. 53-54 \\
\hline \[
\begin{aligned}
& 95 \\
& 96
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC64-24 } \\
& \text { GSC64-25 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { B10 } \\
& \text { Hb }
\end{aligned}
\] & \[
\begin{aligned}
& 187 \\
& 261
\end{aligned}
\] & Gneiss & \[
\begin{aligned}
& \text { Pelly } \\
& \text { gnelss }
\end{aligned}
\] & \[
\begin{aligned}
& 62^{\circ} 532^{\circ}{ }^{\circ} \mathrm{N} \\
& 138^{\circ} 51^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 65-17, p. 22 \\
\hline \[
\begin{aligned}
& 9 ? \\
& 98
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC64-26 } \\
& \text { GSC64-27 }
\end{aligned}
\] & Musc B10 & \[
\begin{aligned}
& 178 \\
& 182
\end{aligned}
\] & Granitic gnelss & \[
\begin{aligned}
& \text { Pelly } \\
& \text { gnelss }
\end{aligned}
\] & \[
\begin{aligned}
& 63^{\circ} 06^{\prime} 45^{\prime \prime} \mathrm{N} \\
& 139^{\circ} 29^{\circ} 30^{\prime \prime} \mathrm{H}
\end{aligned}
\] & GSC Paper 65-17. pp. 23-25 \\
\hline
\end{tabular}

\section*{- See referenot.}

1 This sample is not included in mean age sinoe Poole (1972) considers the age to be young.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\mathrm{D}-1}{\text { TABLE }}
\] & (oont & d) & Ished K- & r ages roferr & ed to in \(t\) & a report. & \\
\hline \[
\begin{aligned}
& \text { Report } \\
& \text { No. }
\end{aligned}
\] & Refere
Number
Minergl & oe nd gted & \[
\begin{gathered}
\text { Ago } \\
\text { in } \mathrm{m}_{\mathrm{o}} \mathrm{y}
\end{gathered}
\] & Hook Type & Un1t & Location & Reference \\
\hline \multicolumn{8}{|c|}{GRANITIC ROCKS} \\
\hline 99 & GSC59-10 & Blo & 223 & Granodiorite & * & \[
\begin{aligned}
& 60^{\circ} 53^{\prime} \mathrm{N} . \\
& 135^{\circ} 33^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Prper 60-17. pp. 7-8 \\
\hline 100 & GSC 59-12 & B10 & 176 & Quartz monzonite & * & \[
\begin{aligned}
& 61^{\circ} 21^{\prime} N_{8} \\
& 138^{\circ} 03^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 60-17. pp. 8-9 \\
\hline 101 & 6SC59-13 & B10 & 58 & Granodiorite & Yukon Group & \[
\begin{aligned}
& 61^{\circ} 25^{\prime} \mathrm{N} . \\
& 138^{\circ} 45^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 60-17, p. 9 \\
\hline 102 & GSC60-31 & B10 & 65 & Quart \(z\) monzonlte & Ruby Range Batholith & \[
\begin{aligned}
& 61^{\circ} 05^{\prime} \mathrm{N} . \\
& 136^{\circ} 59^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 61-17. pp. 18-19 \\
\hline 103 & csc60-32 & Bio & 58 & Granodiorite & Ruby Range Batholith & \[
\begin{aligned}
& 61^{\circ} 01^{\circ} \mathrm{N} \\
& 138^{\circ} 08^{\circ} \mathrm{H}
\end{aligned}
\] & GSC Paper 61-17. pp. 18-19 \\
\hline \multicolumn{8}{|c|}{NORTH-BIG SAIMON RIVER CRYSTALLINE BELT} \\
\hline 104 & GSc65-34 & B10 & \(90 \pm 6\) & Quartz monzonite & \begin{tabular}{l}
Big Salmon \\
R. Crystal \\
line Belt
\end{tabular} & \[
\begin{aligned}
& 61^{\circ} 35^{\circ} 30^{\prime \prime N} \mathrm{~N} . \\
& 133^{6} 26^{\circ} 30^{\prime \prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17. pp. 35-36 \\
\hline 105 & GSc65-35 & B10 & \(90 \pm 6\) & Granite & * & \[
\begin{aligned}
& 61^{\circ} 46^{\circ} \mathrm{N}_{.} \\
& 133^{\circ} 26^{\prime} 30^{\prime \prime} \mathrm{w} .
\end{aligned}
\] & GSC Paper 66-17. pp. 35-36 \\
\hline 106 & GSC65-36 & B10 & \(91 \pm 5\) & Schist & " & \[
\begin{aligned}
& 61^{\circ} 40^{\circ} \mathrm{N} . \\
& 133^{\circ} 20^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17. pp. 36-37 \\
\hline 107 & GSc65-37 & Amph & ole83 26 & Gneiss & * & \[
\begin{aligned}
& 61^{\circ} 41^{\circ} \mathrm{N} \\
& 133^{\circ} 2^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17, pp. 37-38 \\
\hline
\end{tabular}

SELHYN BASIN NEAR YUKON TERRITORY - MACKENZIE TERRITORY BOUNDARY
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 111 \\
& 112
\end{aligned}
\] & \[
\begin{aligned}
& \text { Gsc67-65 } \\
& \text { GSc } 67-66
\end{aligned}
\] & \[
\begin{aligned}
& \text { Eb } \\
& \text { Bio }
\end{aligned}
\] & \[
\begin{aligned}
& 80 \pm 5 \\
& 87 \pm 4
\end{aligned}
\] & Quartz monzonite & * & \[
\begin{aligned}
& 62^{\circ} 51^{\prime} 25^{\prime N} N_{6} \\
& 128^{\circ} 49^{\prime} 30^{*} \mathrm{~W}
\end{aligned}
\] & GSC Paper 69-2A, p. 37 \\
\hline 113 & GSC67-49 & B10 & \(88 \pm 4\) & Schist & * & \[
\begin{aligned}
& 61^{\circ} 39^{\prime} 40^{\prime \prime} N . \\
& 128^{6} 3^{\prime} 00^{\prime \prime} W^{2}
\end{aligned}
\] & GSC Paper 69-2A, pp. 28-29 \\
\hline 214 & GSC62-88 & B10 & 110 & Quartz monzonite & \begin{tabular}{l}
Pyramid \\
Mtn. stock
\end{tabular} & \[
\begin{aligned}
& 61^{\circ} 53^{\circ} 03^{\prime \prime N} \\
& 127^{\circ} 58^{\circ} 52^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 63-17. p. 58 \\
\hline 115 & AK 125 & Bio & 96 & Granodiorite & \begin{tabular}{l}
Itsi \\
Kountains \\
pluton
\end{tabular} & \[
\begin{aligned}
& 65^{\circ} 55^{\circ} \mathrm{N} \\
& 130^{\circ} 10^{\prime} \mathrm{W}
\end{aligned}
\] & Beadsgasrd et al.. 1961 \(a\) and \(b\) \\
\hline 116 & AK 107 & B1o & 94 & Quartz monzonlte & Nahanni & \(62^{\circ} 05^{\prime}{ }^{\prime}\) & \[
\begin{aligned}
& \text { Baadsgaard et al., 1961b. } \\
& \text { pp. } 458-465
\end{aligned}
\] \\
\hline 117 & GSC65-45 & B10 & \(99 \pm 5\) & 8ohsst & * & \[
\begin{aligned}
& 61^{\circ} 23^{\prime} N . \\
& 130^{\circ} 33^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17. pp. 43-44 \\
\hline
\end{tabular}

\footnotetext{
- See reference.
}
\(\underset{\mathrm{D}-1}{\mathrm{TABLE}}\) (oont'd) published \(\mathrm{K}-\mathrm{Ar}\) Rges reforrad to in this report.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Raport } \\
& \text { No. }
\end{aligned}
\] & Rereren
Number
Mineral & Age
and
Dated & Rook Type & Unit & Location & Reference \\
\hline \multicolumn{7}{|c|}{NORTHERN YUKON TERRITORY} \\
\hline 118 & GSC63-15 & B10 \(265 \pm 12\) & \[
\begin{aligned}
& \text { Porphyritio } \\
& \text { granite }
\end{aligned}
\] & 01d Crow Batholith & \[
\begin{aligned}
& 67^{\circ} 42^{\prime} \mathrm{N} \\
& 140^{\circ} 42^{\prime} \mathrm{W}
\end{aligned}
\] & ```
GSC Paper 64-17 (Part 1).
p. 22
``` \\
\hline 119 & AK 108 & 220 & & Old Crow Bathollth & \[
\begin{aligned}
& 67^{\circ} 44^{\prime} \mathrm{N} . \\
& 139^{\circ} 50^{\circ} \mathrm{W} .
\end{aligned}
\] & Baadsgaard et al., 1961b, pp. \(458-465\) \\
\hline 120 & GSC63-15 & B10 \(370 \pm 16\) & \[
\begin{aligned}
& \text { Porphyritio } \\
& \text { granite }
\end{aligned}
\] & \begin{tabular}{l}
Mount \\
Filton st
\end{tabular} & \[
\begin{gathered}
67^{\circ} 42^{\circ} \mathrm{N} \\
\mathrm{k} \quad 140^{\circ} 42^{\circ} \mathrm{W}
\end{gathered}
\] & ```
GSC Paper 64-17 (Partl),
p. 22-23
``` \\
\hline 121 & AK 51 & Bio 353 & Quartz monzonite & \(\cdots\) & \[
\begin{aligned}
& 68^{\circ} 30^{\circ} \mathrm{N} \\
& 138^{6} 01^{\prime} \mathrm{W}
\end{aligned}
\] & Baadsgaard, et al., 1961a, pp. 689-702 \\
\hline 122 & GSC63-16 & HD 355 & Porphyritic granite & \begin{tabular}{l}
Mount \\
Sedgwiok stock
\end{tabular} & \[
\begin{aligned}
& 68^{\circ} 55^{\circ} \mathrm{N} \\
& 139^{\circ} 07^{\circ} \mathrm{W}
\end{aligned}
\] & ```
GSC Paper 64-17 (Part 1),
p. }2
``` \\
\hline 123 & AK 110 & \[
\text { (ohloritic) }_{\text {Bio }}^{95}
\] & Porphyritic granite & \(\cdots\) & \[
\begin{aligned}
& 68^{\circ} 51^{\prime} \mathrm{N} . \\
& 139^{\circ} 07^{\prime} \mathrm{W} .
\end{aligned}
\] & ```
Baadsgaard et al., 196lb,
pp. 458-465
``` \\
\hline 124 & GSC65-51 & Whole R 237士47 & Basalt & * & \[
\begin{aligned}
& 69^{\circ} 81^{\prime} N_{0} \\
& 141^{\circ} 05^{\prime} W_{0}
\end{aligned}
\] & GSC Paper 66-17, p. 49 \\
\hline 125 & AK 105 & Whole R 312 & Syenite dike & * & \[
\begin{aligned}
& 65^{\circ} 19^{\circ} \mathrm{N} . \\
& 130^{\circ} 48^{\circ} \mathrm{W} . \\
& \text { of Mackenzie) }
\end{aligned}
\] & Baadsgaard et al.. 1961b,
\[
\text { pp. } 458-465
\] \\
\hline
\end{tabular}

KENO, HIIL AREA, YUKON TERRITORY
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 126 & GSc65-46 & Musc & \(84 \pm 8\) & Schist \(\quad \mathrm{G}\) & Yukon Group & \[
\begin{aligned}
& 63^{\circ} 55^{\circ} 15^{\prime \prime} \mathrm{N} . \\
& 135^{\circ} 26^{\circ} \mathrm{H} \\
& \text { (Galena Hill) }
\end{aligned}
\] & GSC Paper 66-17. P. 44 \\
\hline 127 & GSC65-47 & Muse & \(93 \pm 12\) & Schist \(\quad\) G & Yukon Group & \[
\begin{aligned}
& 64^{\circ} 11^{\circ} \mathrm{N} . \\
& 135^{\circ} 21^{\prime} \cdot 30^{\prime \mathrm{W}} .
\end{aligned}
\] & GSC Paper 66-17. p. 45 \\
\hline 128 & GSC65-48 & Musc & \(101 \pm 6\) & Schist \({ }_{\text {G }}\) & Yukon Group & \[
\begin{aligned}
& 63^{\circ} 47^{\circ} 30^{\prime \prime N}{ }_{c} \\
& 135^{\circ} 41^{\circ} 45^{\prime \prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17. pp. 45-46 \\
\hline 129 & Gsc70-47 & Muso & \[
\begin{aligned}
& 64 \pm 3 \\
& 70 \pm 3
\end{aligned}
\] & Schist I & Yukon Group & \[
\begin{aligned}
& 63^{\circ} 23^{\prime} \mathrm{N} \\
& 136^{\circ} 40^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 71-2, p. 29 \\
\hline 130 & GSC65-49 & B10 & \(81 \pm 5\) & Quartz porphyry & * & \[
\begin{aligned}
& 63^{\circ} 51^{\prime} 05^{\prime N} \mathrm{~N} . \\
& 135^{\circ} 51^{\circ} 20^{\prime *} .
\end{aligned}
\] & GSC Paper 66-17, p. 47 \\
\hline 131 & GSc65-50 & B10 & \(85 \pm 7\) & Quartz monzonite & * & \[
\begin{aligned}
& 63^{\circ} 29^{\circ} \mathrm{N} . \\
& 136^{\circ} 58^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17, pp. 47-48 \\
\hline 132 & Gsc62-78 & B10 & 102 & Quartz monzonite & * & \[
\begin{aligned}
& 64^{\circ} 01^{\circ} 50^{\prime \prime} \mathrm{N} \\
& 135^{\circ} 25^{\circ} 50^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 63-17. p. 51 \\
\hline 133 & GSC62-80 & Bio & 106 & Granodiorite & * & \[
\begin{aligned}
& 64^{\circ} 022^{\circ} \mathrm{N} \\
& 135^{\circ} 50^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 63-17, p. 52 \\
\hline 134 & GSC62-81 & B10 & 81 & Porphyritic quartz diorite & * & \begin{tabular}{l}
\[
63^{\circ} 53^{\prime} 55^{\prime \prime} \mathrm{N}
\] \\
\(13^{6} 46^{\circ} 15^{\prime \prime}\).
\end{tabular} & GSC Paper 63-17. pp. 52-53 \\
\hline
\end{tabular}

TOMBSTONE STOCK (SIMILAR AGE BODIES)
NORTH OF TINTINA TRENCH, YUKON TERRITORY
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 135 \\
& 136
\end{aligned}
\] & \[
\begin{aligned}
& \text { Gsc66-58 } \\
& \text { Gsc66-59 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{B1O} \\
& \mathrm{Bb}
\end{aligned}
\] & \[
\begin{aligned}
& 91 \pm 5 \\
& 80 \pm 13
\end{aligned}
\] & Quartz monzonite & Tombstone stock & \[
\begin{aligned}
& 64^{\circ} 27^{\prime} 13^{\prime \prime} N_{.} \\
& 13^{\circ} 33^{\circ} 00^{\prime \prime}{ }^{2}
\end{aligned}
\] & GSC Paper 67-2A, pp. 54-55 \\
\hline 137 & GSC62-79 & Bio & 234 & B10reldspar porphyry & * & \(64^{\circ} 09^{\prime} 25^{\circ} \mathrm{N}\). \(137^{\circ} 40^{\circ} 00^{\prime \prime} \mathrm{W}\). & GSC Paper 63-17. p. 51 \\
\hline
\end{tabular}

\footnotetext{
- Bee reference.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\underset{D-1}{\text { TABLE }}
\] & Coont & \[
\text { (d) } P u l
\] & Lahed K-A & Ar ages refer & od to in th & report. & \\
\hline \[
\begin{aligned}
& \text { Report } \\
& \text { No. }
\end{aligned}
\] & \multicolumn{2}{|l|}{Referenae Number and Mineral Dated} & \[
\begin{gathered}
\mathrm{AgO}_{\mathrm{m}} \mathrm{y} .
\end{gathered}
\] & Rook Type & Unit & Looation & Reference \\
\hline \multicolumn{8}{|c|}{ANVIL AREA, YUKON TERRITORY} \\
\hline 138 & GSC61-43 & B10 & 100 & Porphyritic \(\because\) daoite & * & \[
\begin{aligned}
& 62^{\circ} 31^{\prime} N \\
& 131^{\circ} 51^{\prime} W^{\prime}
\end{aligned}
\] & GSC Paper 62-27, p. 27 \\
\hline 139 & GSC61-44 & B10 & 117 & Porphyritio daoite & * & \[
\begin{aligned}
& 62^{\circ} 27^{\prime} \mathrm{N} . \\
& 132^{2} 18^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 62-17, p. 27 \\
\hline 140 & GSC65-44 & B10 & \(86 \pm 6\) & Dacite & \[
\begin{aligned}
& \text { Tay } \\
& \text { Formation }
\end{aligned}
\] & \[
\begin{aligned}
& 62^{\circ} 15^{\prime} 30^{\prime \prime} N \\
& 132^{\circ} 03^{\circ} 30^{\prime \prime} W
\end{aligned}
\] & GSC Paper 65-17. pp. 42-43 \\
\hline \multicolumn{8}{|c|}{MOUNT SELOUS PLUTON} \\
\hline 141 & GSc65-38 & Bio & \(83 \pm 7\) & Quartz monzonite & Mount Selous Pluton & \[
\begin{aligned}
& 62^{\circ} 57^{\prime} \mathrm{N} \\
& 132^{\circ} 30^{\prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 66-17. p. 38 \\
\hline 142 & GSC65-39 & B10 & \(81 \pm 10\) & Granodiorite & * & \[
\begin{aligned}
& 62^{0} 5^{\prime} N . \\
& 132^{\prime} 7^{\prime}{ }^{\prime} \text {. }
\end{aligned}
\] & GSC Paper 66-17. p. 9 \\
\hline 143 & GSc65-40 & Bio & \(74 \pm 7\) & Quartz monzonite & & \[
\begin{aligned}
& 62^{\circ} 56^{\circ} \mathrm{N} \\
& 132^{\circ} 27^{\prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 66-17. pp. 38-40 \\
\hline 144 & GSC65-41 & Bio & \(90 \pm 5\) & Quartz monzonite & \begin{tabular}{l}
Anvil \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 62^{\circ} 27^{\circ} \mathrm{N} . \\
& 133^{\circ} 27^{\circ} 30^{\prime \prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17. p. 40 \\
\hline 145 & \[
\begin{aligned}
& \text { GSC65-42 } \\
& \text { GSc65-43 }
\end{aligned}
\] & Muso
B10 & \[
\begin{aligned}
& 79 \pm 6 \\
& 87 \pm 5
\end{aligned}
\] & Quartz monzonite & \begin{tabular}{l}
Anvil \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 62^{\circ} 17^{\circ} \mathrm{N} . \\
& 133^{\circ} 03^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17. pp. 40-42 \\
\hline \[
\begin{aligned}
& 147 \\
& 148
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{Gsc} 67 \\
& \operatorname{GSc} 67-48
\end{aligned}
\] & \[
\begin{aligned}
& \text { Muse } \\
& \text { Bio }
\end{aligned}
\] & \[
\begin{aligned}
& 99+5 \\
& 93 \pm 4
\end{aligned}
\] & Schist me & thermal tamorphosed ontact zone & \[
\begin{aligned}
& 62^{\circ} 22^{\circ} \mathrm{N}_{8} \\
& 133^{\circ} 23^{\prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 69-2A, pp. 27-28 \\
\hline \[
\begin{aligned}
& 149 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC70-45 } \\
& \text { GSC70-46 }
\end{aligned}
\] & Musc Bio & \[
\begin{aligned}
& 94 \pm 5 \\
& 94 \pm 5
\end{aligned}
\] & Granodiorite (sheared) & \begin{tabular}{l}
Anvil \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 62^{\circ} 17.5^{\prime} \mathrm{N} \\
& 133^{\circ} 16.5^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 71-2, pp. 28-29 \\
\hline \multicolumn{8}{|c|}{INSULAR BELT (\(\left.51^{\circ}-56^{\circ} \mathrm{N}_{\text {. }}\right)\) - QUEEN CHARLOTTE ISLANDS, B.C.} \\
\hline & & & JURASSIC & AGES (SYNTECT & TONIC AND POS & ST-TECTONIC? \({ }^{\text {(}}\) & \\
\hline 151 & GSC70-1 & Hb & \(143 \pm^{8}\) & Granodiorite (gneissic) & \begin{tabular}{l}
Kano \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 53^{\circ} 17.5^{\circ} \mathrm{N} . \\
& 132^{\circ} 38^{\circ} .5^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 71-2, p. 6 \\
\hline 152 & GSC67-20 & Eb & 142土14 & Quartz diorite & San Christoval Batholith & \[
\begin{aligned}
& 52^{\circ} 34^{\prime} \cdot 30^{\circ} \mathrm{N} \\
& 131^{\circ} 40^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 69-2A, p. 13 \\
\hline 253 & Gsc70-3 & Hb & 156+10 & Quartz diorite & Chinukudl piuton & \[
\begin{aligned}
& 53^{\circ} 19^{\circ} \mathrm{N} . \\
& 131^{\circ} 58^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 71-2, p. 7 \\
\hline 154 & GSC66-14 & Hb & \(142 \pm 37\) & Granodiorite & \begin{tabular}{l}
Burnaby \\
Island \\
pluton
\end{tabular} & \[
\begin{aligned}
& 52^{\circ} 22^{\circ} \mathrm{N} . \\
& 131^{\circ} 15^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 67-2A, p. 19 \\
\hline \multicolumn{8}{|c|}{MID-TERTIARY (POST-TECTONIC)} \\
\hline 155 & GSc70-2 & B10 & \(30 \pm 3\) & Granodiorite & \begin{tabular}{l}
Central \\
Kano \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 53^{\circ} 13^{\circ} \mathrm{N} . \\
& 132^{\circ} 29^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 71-2, pp. 6-7 \\
\hline 156
157 & \[
\begin{aligned}
& \text { GSC } 67-16 \\
& \text { GSC } 67-17
\end{aligned}
\] & B10 & \[
\begin{aligned}
& 26 \pm 6 \\
& 29 \pm 2
\end{aligned}
\] & Granodiorite & \(\cdots\) & \[
\begin{aligned}
& 53^{\circ} 17^{\circ} \mathrm{N} . \\
& 132^{\circ} 26^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 69-2A, pp. 11-12 \\
\hline 158
159 & \[
\begin{aligned}
& \text { GSC } 67-18 \\
& \text { GSC } 67-19
\end{aligned}
\] & \[
\begin{aligned}
& \text { Eb } \\
& \text { Bio }
\end{aligned}
\] & \[
\begin{aligned}
& 38 \pm 2 \\
& 39 \pm 2
\end{aligned}
\] & Granite & \begin{tabular}{l}
Pocket \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 52^{\circ} 34^{\circ} \mathrm{N} . \\
& 131^{\circ} 4^{\circ} 8^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 69-2A, pp. 12-13 \\
\hline
\end{tabular}
tertiary actidic volcanic rocks
160 AK 378 B10 \(62 \pm 3\) Porphyry Massett \(53^{\circ} 24.2^{\circ} \quad\) Mathews, 1964, pp. \(465-468\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { TABLE } \\
\mathrm{D-1}
\end{gathered}
\] & (oont'd & d) Pub & lished K- & ages referred & to in th & report. & \\
\hline \[
\begin{aligned}
& \text { Report } \\
& \text { No. }
\end{aligned}
\] & \multicolumn{2}{|l|}{Reference
Number and
Mineral Dated} & \[
\underset{\operatorname{in} \mathrm{m}_{\bullet} \mathrm{y}}{\mathrm{Age}}
\] & Rock Type & UnIt & Location & Reference \\
\hline \multicolumn{8}{|c|}{COAST CRYSTALLINE BELT OF BRITISH COLUMBIA BETWEEN LATITUDES \(52 .{ }^{\circ} \mathrm{N}\) to \(56^{\circ} \mathrm{N}\)} \\
\hline \[
\begin{aligned}
& 161 \\
& 162
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC } 66-11 \\
& \text { GSC66-12 }
\end{aligned}
\] & Hb B10 & \[
\begin{aligned}
& 133 \pm 22 \\
& 139 \pm 7
\end{aligned}
\] & Quartz diorite & * & \[
\begin{aligned}
& 53^{\circ} 09^{\prime} \mathrm{N} \\
& 129^{\circ} 35^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 67-2A, p. 16 \\
\hline 163 & GSc67-24 & B10 & 104!4 & Quartz diorite & 4 & \[
\begin{aligned}
& 53^{\circ} 15^{\circ} \mathrm{N} \\
& 129^{\circ} 35^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 69-2A, P. 15 \\
\hline 164 & GSC67-23 & B10 & \(115 \pm 6\) & Quartz monzonite & & \[
\begin{aligned}
& 53^{\circ} 03^{\circ} \mathrm{N} \\
& 129^{\circ} 27^{\circ} \mathrm{K} .
\end{aligned}
\] & GSC Paper 69-2A, pp. 14-15 \\
\hline \[
\begin{aligned}
& 165 \\
& 266
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC64-5 } \\
& \text { GSC } 64-6
\end{aligned}
\] & Bio & \[
\begin{aligned}
& 103 \pm 6 \\
& 211 \pm 6
\end{aligned}
\] & Granodiocite & * & \[
\begin{aligned}
& 53^{\circ} 31^{\circ} \mathrm{N} \\
& 130^{\circ} 01^{\circ} \mathrm{H}
\end{aligned}
\] & GSC Paper 65-17. pp. 10-11 \\
\hline \[
\begin{aligned}
& 167 \\
& 168
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC } 66-17 \\
& \text { GSC } 66-16
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{B10} \\
& \mathrm{Hb}
\end{aligned}
\] & \[
\begin{aligned}
& 88 \pm 5 \\
& 87 \pm 11
\end{aligned}
\] & Granodiorite & * & \[
\begin{aligned}
& 52^{\circ} 34^{\circ} \mathrm{N} \\
& 128^{\circ} 4^{\circ} \mathrm{H}
\end{aligned}
\] & GSC Paper 67-2A, p. 20 \\
\hline 269 & GSc67-21 & Bio & \(84 \pm 4\) & Granodiorite & \[
\begin{aligned}
& \text { Melville } \\
& \text { Isi. stock }
\end{aligned}
\] & \[
\begin{aligned}
& 54^{\circ} 24^{\circ} \mathrm{N} . \\
& 130^{\circ} 44^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 69-2A, pp. 13-14 \\
\hline \[
\begin{aligned}
& 170 \\
& 171
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{Gsc} 66-4 \\
& \csc 66-5
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{B1O} \\
& \mathrm{Hb}
\end{aligned}
\] & \[
\begin{aligned}
& 96 \pm 5 \\
& 201 \pm 15
\end{aligned}
\] & Granodiorite & * & \[
\begin{aligned}
& 54^{\circ} 29^{\circ} \mathrm{N} . \\
& 130^{\circ} 57^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 67-2A, p. 12 \\
\hline 172 & GSC67-26 & B10 & \(109 \pm 5\) & Granodiorite & * & \[
\begin{aligned}
& 52^{\circ} 45^{\circ} 30^{\prime \prime} \mathrm{N} \\
& 129^{\circ} 22^{\circ} 30^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 69-2A, pp. 16-17 \\
\hline \[
\begin{aligned}
& 173 \\
& 174
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC } 67-27 \\
& \text { GSC } 67-28
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Kb} \\
& \mathrm{Bio}
\end{aligned}
\] & \[
\begin{aligned}
& 100 \pm 6 \\
& 90 \pm 4
\end{aligned}
\] & Gabbro & * & \[
\begin{aligned}
& 52^{\circ} 06^{\circ} 30^{\prime \prime} \mathrm{N} \\
& 128^{\circ} 17^{\circ} 00^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 69-2A, p. 17 \\
\hline 175 & \[
\begin{aligned}
& \text { Gsc 67-29 } \\
& \text { GSc } 67-30
\end{aligned}
\] & \[
\begin{aligned}
& \text { Eb } \\
& \text { Bio }
\end{aligned}
\] & \[
\begin{aligned}
& 87 \pm 5 \\
& 81 \pm 4
\end{aligned}
\] & Andesite & * & \[
\begin{aligned}
& 52^{\circ} 13^{\circ} 00^{\prime \prime} \mathrm{N} \\
& 127^{\circ} 50^{\prime} 30^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 69-2A, pp. 17-18 \\
\hline 177 & Gsc64-11 & B10 & \(67 \pm 5\) & Quartz diorite & * & \[
\begin{aligned}
& 53^{\circ} 28^{\circ} \mathrm{N} \\
& 128^{\circ} 51^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 65-17. pp. 13-14 \\
\hline \[
\begin{aligned}
& 178 \\
& 179
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC66-13 } \\
& \text { GSc } 66-12
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{B1O} \\
& \mathrm{Bb}
\end{aligned}
\] & \[
\begin{aligned}
& 70 \pm 4 \\
& 87 \pm 15
\end{aligned}
\] & Granodiorite & \begin{tabular}{l}
Ecstall \\
Pluton
\end{tabular} & \[
\begin{aligned}
& 53^{\circ} 41^{\circ} \mathrm{N} \\
& 129^{\circ} 30^{\circ} \mathrm{W}
\end{aligned}
\] & gSC Paper 67-2A, p. 17-18 \\
\hline \[
\begin{aligned}
& 180 \\
& 181
\end{aligned}
\] & \[
\begin{aligned}
& \csc 67-33 \\
& \csc 67-34
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hb} \\
& \text { B10 }
\end{aligned}
\] & \[
\begin{aligned}
& 79+5 \\
& 75 \pm 5
\end{aligned}
\] & Granodiorite & * & \[
\begin{aligned}
& 52^{\circ} 10^{\prime} \mathrm{N} \\
& 128^{\circ} 00^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 69-2A, pp. 20-21 \\
\hline 182 & Gsc65-31 & B10 & \(64 \pm 8\) & \[
\begin{aligned}
& \text { Quartz } \\
& \text { diorite }
\end{aligned}
\] & * & \[
\begin{aligned}
& 54^{\circ} 13^{\prime} \mathrm{N} \\
& 130^{\circ} 04^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 66-17, pp. 32-33 \\
\hline 183 & \[
\begin{gathered}
\csc 64-8 \\
-(-4+
\end{gathered}
\] & \[
\begin{array}{r}
\text { Bio } \\
+14 \text { me }
\end{array}
\] & \[
\text { h) }{ }^{77 \pm 5}
\] & Quartz diorite & * & \[
\begin{aligned}
& 52^{\circ} 32^{\prime} \mathrm{N} . \\
& 128^{\circ} 02^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 65-17, p. 11 \\
\hline 184 & \[
\frac{\csc 64-7}{(-100}
\] & \[
\begin{array}{r}
B 10 \\
10+150 .
\end{array}
\] & \[
e s h)^{77 \pm 5}
\] & Quartz diorite & \# & \[
\begin{aligned}
& 52^{\circ} 32^{\circ} \mathrm{N} . \\
& 128^{\circ} 01^{\circ} 55^{\prime \prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 65-17, pp. 11-12 \\
\hline 185 & GSC67-25 & B10 & \(49 \pm 4\) & \[
\begin{aligned}
& \text { Quartz } \\
& \text { diorite }
\end{aligned}
\] & * & \[
\begin{aligned}
& 53^{\circ} 16^{\circ} \mathrm{N} \\
& 128^{\circ} 16^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 69-2A, p. 26 \\
\hline 186 & GSc \(64-12\) & B10 & \(48 \pm 5\) & Biotite schist & * & \[
\begin{aligned}
& 53^{\circ} 38^{\circ} \mathrm{N} \\
& 128^{\circ} 52^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 65-17. p. 14 \\
\hline 187 & Gsc66-15 & B10 & \(47 \pm 4\) & Granodiorite & * & \[
\begin{aligned}
& 54^{\circ} 54^{\circ} \mathrm{N} . \\
& 129^{\circ} 25^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 67-2A, pp. 19-20 \\
\hline \[
\begin{aligned}
& 188 \\
& 189
\end{aligned}
\] & \[
\begin{aligned}
& \text { Gsc 66-9 } \\
& \text { Gsc } 66-8
\end{aligned}
\] & B10
Bb & \[
\begin{aligned}
& 44 \pm 5 \\
& 49 \pm 7
\end{aligned}
\] & \[
\begin{aligned}
& \text { Quartz } \\
& \text { diorite }
\end{aligned}
\] & Quottoon Pluton & \[
\begin{aligned}
& 54^{\circ} 35^{\circ} \mathrm{N} \\
& 130^{\circ} 1^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 67-2A, p. 15 \\
\hline \[
\begin{array}{r}
190 \\
191
\end{array}
\] & \[
\begin{aligned}
& \csc 66-6 \\
& \csc 66-7
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{B1O} \\
& \mathrm{Bb}
\end{aligned}
\] & \[
\begin{aligned}
& 50 \pm 5 \\
& 48 \pm 9
\end{aligned}
\] & Quartz diorite & Quottoon Pluton & \[
\begin{aligned}
& 54^{\circ} 21^{\circ} \mathrm{N} . \\
& 129^{\circ} 52^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 67-2A, pp. 13-14 \\
\hline 192 & csc65-29 & B10 & \(43 \pm 5\) & Quartz diorite & * & \(54^{\circ} 17^{\circ} \mathrm{N}\) 。 & GSC Paper 66-17, pp. 30-31 \\
\hline 193 & CSC65-30 & B10 & \(44 \pm 4\) & Granodiorlte & \begin{tabular}{l}
Alastair \\
Lake \\
Pluton
\end{tabular} & \[
\begin{aligned}
& 54^{\circ} 05^{\circ} \mathrm{N} . \\
& 129^{\circ} 01^{\prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 66-17. pp. 31-32 \\
\hline 194 & Gsc65-32 & B10 & \(46 \pm 10\) & Granodiorlte & * & \[
\begin{aligned}
& 54^{\circ} 38^{\prime} \mathrm{N} . \\
& 129^{\circ} 02^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17, pp. 33-34 \\
\hline
\end{tabular}

GLAGIER GULCH MOLYBDENUM DRPOSIT - SMITHERS, B. C.

- Bee reference.

\footnotetext{
* Bee reference.
}

MALTON COMPLEX
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 242 \\
& 243
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC70-16 } \\
& \text { GSC70-17 }
\end{aligned}
\] & \begin{tabular}{l}
Muse \\
B10
\end{tabular} & \[
\begin{aligned}
& 60 \pm 3 \\
& 66 \pm 3
\end{aligned}
\] & chips of gneiss and ech1st & Malton gneiss \\
\hline 244 & Gsc70-18 & Bio & \(57 \pm 3\) & Granite & Malton gne18s \\
\hline 245 & Gsc67-43 & Bio & \[
\begin{aligned}
& 53 \pm 4 \\
& 59 \pm 5
\end{aligned}
\] & Gneiss & Malton gneiss \\
\hline 246 & GSC67-44 & \#b & 214512 & . & . \\
\hline 247 & GSC65-24 & B10 & \(72 \pm 5\) & Gneiss & \\
\hline
\end{tabular}
\(55^{\circ} 25^{\circ} \mathrm{N}\). \(118^{\circ} 42^{\prime} \mathrm{W}\).
\(52^{\circ} 22.5^{\circ} \mathrm{N}\). GSC Paper 71-2, p. 13-14
\(118^{\circ} 38.5^{\prime} \mathrm{W}\).
\(52^{\circ} 36 \cdot 00^{\mathrm{N}} \mathrm{N}_{-} \quad\) GSC Paper 69-2A, p. 25
GSC Paper 69-2A, p. 26
GSC Paper 66-17, pp. 26-27
gsc Paper 69-2A, p. 24

GSC Paper 69-2A, pp. 24-25

MISINCHINKA SCHIST

PRINCE GEORGE QUESNEL AREA*
\begin{tabular}{llll}
252 & \(\operatorname{GSc} 66-21\) & B1o & \(105 \pm 6\) \\
253 & \(\operatorname{GSc} 66-22\) & B10 & \(98 \pm 5\) \\
254 & \(\operatorname{GSc} 66-23\) & B10 & \(104 \pm 5\) \\
255 & \(\operatorname{Gsc} 66-24\) & B10 & \(107 \pm 6\) \\
256 & \(\csc 66-25\) & Hb & \(176 \pm 20\) \\
257 & \(\csc 66-26\) & B10 & \(106 \pm 6\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Gran1te boulder & \[
\begin{aligned}
& 53^{\circ} 42^{\prime} \mathrm{N}, \\
& 122^{\circ} 41^{\circ} \mathrm{W} .
\end{aligned}
\] \\
\hline Quartz monzonite & \[
\begin{aligned}
& 53^{\circ} 41^{\prime} \mathrm{N} . \\
& 122^{\circ} 41^{\prime} \mathrm{W} .
\end{aligned}
\] \\
\hline Quartz monzonite & \[
\begin{aligned}
& 53^{\circ} 18^{\circ} \mathrm{N} . \\
& 122^{\circ} 22^{\circ} \mathrm{W} .
\end{aligned}
\] \\
\hline Quartz monzonite & \[
\begin{aligned}
& 53^{\circ} 25^{\prime} \mathrm{N} . \\
& 122^{\circ} 1^{\prime} 4^{\prime} \mathrm{K} .
\end{aligned}
\] \\
\hline Granite & \[
\begin{aligned}
& 53^{\circ} 444{ }^{\prime} \mathrm{N} . \\
& 122^{\circ} 20^{\circ} \mathrm{W} .
\end{aligned}
\] \\
\hline Granodiorite & \(52^{\circ} 04^{\prime} \mathrm{N}\). \\
\hline
\end{tabular}

GSC Paper 67-2A, pp. 23-24 GSC Paper 67-2A, pp. 23-24
gSC Paper 67-2A, p. 24
GSC Paper 67-2A, p. 24-25
GSC Papor 67-2A, pp. 25-26

GSC Paper 67-2A, P. 26

\footnotetext{
- See reference.
}

\footnotetext{
- See referenoe.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { TABIE } \\
\mathrm{D}-1
\end{array}
\] & (oont'd &) Pu & shed K & r agee referre & d to in thi & \(s\) report. & \\
\hline \[
\begin{aligned}
& \text { Beport } \\
& \text { No. }
\end{aligned}
\] & \multicolumn{2}{|l|}{Foference Number and Mineral Dated} & \[
\begin{gathered}
\text { Age } \\
\text { in m. }
\end{gathered}
\] & Rook Type & Unit & Location & Rererenoe \\
\hline 297 & \[
\begin{array}{r}
16 a \\
b
\end{array}
\] & \[
\begin{aligned}
& \text { Bio } \\
& \text { B10 }
\end{aligned}
\] & \[
\begin{aligned}
& 24 \pm 1 \\
& 24 \pm 1
\end{aligned}
\] & \begin{tabular}{l}
Quartz \\
diorite
\end{tabular} & Hicks Stock & * & Richards \& White, 1970, p. 1206 \\
\hline 298 & 17 & B10 & \(21 \pm 1\) & Granophyre & Mount Barr Batholith & \[
\begin{aligned}
& 49^{\circ} 19^{\circ} \mathrm{N} \\
& 121^{\circ} 27^{\prime} \mathrm{W}
\end{aligned}
\] & \(\cdots\) \\
\hline 299 & 18 & B10 & \(18 \pm 1\) & Grano diorite & Mount Barr Batholith & \[
\begin{aligned}
& 49^{\circ} 14^{\circ} \mathrm{N} \\
& 121^{\circ} 35^{\circ} \mathrm{K}
\end{aligned}
\] & \(\cdots\) \\
\hline 300 & 19 & 810 & \(16+1\) & Quartz monzonite & Mount Barr Batholith & \[
\begin{aligned}
& 49^{\circ} 15^{\prime} \mathrm{N} \\
& 121^{\circ} 33^{\circ} \mathrm{W} .
\end{aligned}
\] & . \(\quad\) \\
\hline 301 & AK-31 & B10 & 18 & Quartz diorite & Mount Barr Batholith & \[
\begin{aligned}
& 49^{\circ} 15^{\circ} \mathrm{N} \\
& 121^{\circ} 40^{\circ} \mathrm{W}
\end{aligned}
\] & Baadsgasrd, 1961 \\
\hline 302 & AK-45 & B10 & 18 & Quartz diorite & \begin{tabular}{l}
Mount Barr \\
Batholith,
\end{tabular} & \[
\begin{aligned}
& 49^{\circ} 14^{\circ} \mathrm{N} . \\
& 121^{\circ} 40^{\circ} \mathrm{W} .
\end{aligned}
\] & - " \\
\hline 303 & & Bio & 32 & & Chilliwack Batholith & \[
\begin{aligned}
& 48^{\circ} 38^{\prime} \mathrm{N} . \\
& 121^{\circ} 0^{2} 1^{\circ} \mathrm{W} .
\end{aligned}
\] & UBC Guidebook, 1968 \\
\hline 304 & & B10 & 23 & Granodiorite & * & \[
\begin{aligned}
& 49^{\circ} 20^{\prime} \mathrm{N} \\
& 121^{\circ} 38^{\circ} \mathrm{W} .
\end{aligned}
\] & Bichards, 1971 \\
\hline 305 & - & & 20 & Quartz diorite & Cascade Pass stock & \[
\begin{aligned}
& 49^{\circ} 30^{\prime} \mathrm{N} . \\
& 121^{\circ} 02^{\prime} \mathrm{W}
\end{aligned}
\] & Misch, 1966 \\
\hline 306 & GSC65-8 & B10 & \(39 \pm 4\) & Granite & * - & \[
\begin{aligned}
& 49^{\circ} 30^{\circ} 30^{\prime \prime} \mathrm{N} . \\
& 121^{\circ} 10^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17, p. 11 \\
\hline \multirow[t]{2}{*}{307} & GSc65-26 & B10 & \(40 \pm 5\) & Dacite & * & \[
\begin{aligned}
& 51^{\circ} 23^{\prime} \mathrm{N} . \\
& 120^{\circ} 58^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17, p. 28 \\
\hline & \(\therefore\) & & \multicolumn{4}{|c|}{HELL"S GATE STOCK} & \\
\hline 308 & AK-24 & Bio & 35 & Granodiorite & \[
\begin{aligned}
& \text { Hell's } \\
& \text { Gate }
\end{aligned}
\] & \[
\begin{aligned}
& 49^{\circ} 47^{\prime} \mathrm{N} . \\
& 121^{\circ} 27^{\circ} \mathrm{W} .
\end{aligned}
\] & Baadsgaard, 1961 \\
\hline \multirow[t]{2}{*}{309} & \multirow[t]{2}{*}{GSC70-1736} & \multirow[t]{2}{*}{} & 40 & & \[
\begin{aligned}
& \text { Hell's } \\
& \text { Gate }
\end{aligned}
\] & \[
\begin{aligned}
& 49^{\circ} 46^{\prime} \mathrm{N} . \\
& 121^{\circ} 26^{\circ} \mathrm{W} .
\end{aligned}
\] & \multirow[t]{2}{*}{reported by Richards, 1971} \\
\hline & & & \multicolumn{4}{|c|}{HOPE PLUTONIC COMPLEX} & \\
\hline \multirow[t]{3}{*}{310} & 9 & \multirow[t]{3}{*}{Hb} & \(35 \pm 2\) & Quartz diorite & \[
\begin{aligned}
& \text { Silver } \\
& \text { Creek Stock }
\end{aligned}
\] & \[
\begin{aligned}
& 49^{\circ} 23^{\prime} N_{0} \\
& 121^{\circ} 20^{\prime} \mathrm{W} .
\end{aligned}
\] & ```
Blchards & White, 1970,
 p. }120
``` \\
\hline & & & - &  & - & & \\
\hline & & & & YALE IN & TTRUSIONS & & \\
\hline 311 & 8 & Bio & \(35 \pm 2\) & Quartz diorite & \[
\begin{aligned}
& .0 g 11 \mathrm{vie} \\
& \text { Stock }
\end{aligned}
\] & \[
\begin{aligned}
& 49^{\circ} 20^{\prime} \mathrm{N} . \\
& 121^{\circ} 27^{\prime} \mathrm{K} .
\end{aligned}
\] & \[
\begin{aligned}
& \text { Bichards \& White, 1970, } \\
& \text { P. } 1206
\end{aligned}
\] \\
\hline 312 & 7 & B10 & \(41 \pm 2\) & Quart \(z\) monzonite & Coquinalla Stock & \[
\begin{aligned}
& 49^{\circ} 22^{\prime} \mathrm{N} . \\
& 121^{\circ} 22^{\prime} \mathrm{W} .
\end{aligned}
\] & \(\cdots\) \\
\hline \multirow[t]{2}{*}{313} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 4 a \\
& b
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Bio } \\
& \text { B10 }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 59 \pm 3 \\
& 59 \pm 3
\end{aligned}
\]} & Granodiorite & \begin{tabular}{l}
Berkey \\
Creek
\end{tabular} & \[
\begin{aligned}
& 49^{\circ} 19^{\prime} N_{.} \\
& 121^{\circ} 21^{\prime} \mathrm{W} .
\end{aligned}
\] & \(\cdots\) \\
\hline & & & & ER RIDGE MICA-E & CORNBIENDR P & ERIDOTITE & \\
\hline 314 & 6 & Hb & \(44 \pm 3\) & Hbite & Skagit Mica Peridotite & \[
\begin{aligned}
& 49^{\circ} 01^{\circ} \mathrm{N} \\
& 121^{\circ} 1^{\circ} \mathrm{W}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Eichards.\& White, 1970, } \\
& \text { p. } 1206
\end{aligned}
\] \\
\hline . & & & & & & & . \\
\hline 315 * & 68c70-1737 & 810 & 44 & & . & \[
\begin{aligned}
& 49^{\circ} 46^{\prime} \mathrm{N} . \\
& 221^{\circ} 26^{\circ} \mathrm{W} .
\end{aligned}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\underset{D-1}{T A B L E}
\] & (oont'd) & ) Pub & blished K & Ar ages rofery & to in th & report. & \\
\hline \[
\begin{gathered}
\text { Report } \\
\text { No. }
\end{gathered}
\] & Refereno
Number an
NDeral_Da & \begin{tabular}{l}
0 \\
nd ated
\end{tabular} & \[
\begin{gathered}
\text { Age } \\
\text { in } \mathrm{m}_{\cdot} \mathrm{F} .
\end{gathered}
\] & Rook Type & Un1t & Location & Reference \\
\hline 316 & Gsc70-1728 & Bio & 70 & & & \[
\begin{aligned}
& 49^{\circ} 50^{\prime} \mathrm{N} . \\
& 121^{\circ} 41^{\prime} \mathrm{W} .
\end{aligned}
\] & unpublished \\
\hline 317 & GSC70-1731 & & 72 & & & \[
\begin{aligned}
& 49^{\circ} 55^{\circ} \mathrm{N} . \\
& 121^{\circ} 3^{\circ} \mathrm{W} .
\end{aligned}
\] & - \\
\hline 328 & 6sc70-1734 & & 73 & & & \[
\begin{aligned}
& 49^{\circ} 4^{\prime} 1^{\prime} \mathrm{N} . \\
& 121^{\circ} 29^{\prime} \mathrm{W} .
\end{aligned}
\] & * \\
\hline 319 & GSC70-1735 & B10 & 74 & & & \[
\begin{aligned}
& 49^{\circ} 41^{\circ} \mathrm{N} . \\
& 121^{\circ} 29^{\circ} \mathrm{W} .
\end{aligned}
\] & " \\
\hline \[
\begin{aligned}
& 320 \\
& 322
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{Hb} \\
& \mathrm{BiO}_{0}
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & Quartz diorite & * & \[
\begin{aligned}
& 49^{\circ} 23^{\prime} \mathrm{N} . \\
& 122^{\circ} 28^{\circ} \mathrm{W} .
\end{aligned}
\] & Richards, 1971 \\
\hline 322 & & Bio & 82 & Quartz diorite & * & \[
\begin{aligned}
& { }^{49^{\circ} 22^{\prime} \mathrm{N} .} \\
& 121^{\circ} 29^{\circ} \mathrm{W} .
\end{aligned}
\] & Richards, 1971 \\
\hline 323 & 6sc65-10 & B10 & \(84 \pm 6\) & Granodiorite & Dewdney Creek Group & \[
\begin{aligned}
& 49^{\circ}{ }^{4} 2^{\prime} \mathrm{N} . \\
& 121^{\circ} 05^{\circ} \mathrm{H} .
\end{aligned}
\] & GSC Paper 66-17, pp. 13-14 \\
\hline 324 & GSC65-9 & Bio & \(98 \pm 6\) & Granodiorite & * & \[
\begin{aligned}
& 49^{\circ} 16.45^{\prime \prime N} . \\
& 120^{\circ} 46^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17, pp. 12-13 \\
\hline 325 & & B10 & 92 & Granodiorite & * & \[
\begin{aligned}
& 49^{\circ} 14^{\circ} \mathrm{N} . \\
& 123^{\circ} 08^{\circ} \mathrm{W} .
\end{aligned}
\] & White, 1968 \\
\hline 326 & & B10 & 95 & Quartz diorite & * & \[
\begin{aligned}
& 49^{\circ} 51^{\circ} \mathrm{N} . \\
& 123^{\circ} 11^{\circ} \mathrm{W} .
\end{aligned}
\] & " \\
\hline 327 & & Hb & 97 & Quartz diorite & * & \[
\begin{aligned}
& 49^{\circ} 4^{\circ} \mathrm{N}_{8} \\
& 123^{\circ} 06^{\circ} \mathrm{W} .
\end{aligned}
\] & - . \\
\hline 328 & KA-126 & Bio & 97 & Granodiorite & * & \[
\begin{aligned}
& 49^{\circ} 22^{\circ} \mathrm{N} . \\
& 123^{\circ} 16^{\circ} \mathrm{W} .
\end{aligned}
\] & Baadsgaard, 1961 \\
\hline 329 & & B10 & 102 & \begin{tabular}{l}
Quartz \\
diorite
\end{tabular} & * & \[
\begin{aligned}
& 49^{\circ} 22^{\circ} \mathrm{N} . \\
& 121^{\circ} 34^{\circ} \mathrm{W} .
\end{aligned}
\] & Richards, 1971 \\
\hline 330 & GSC66-47 & B10 & \(111 \pm 5\) & Quartzose Phyllite & Miette Group & \[
\begin{aligned}
& 52^{0} 32^{\circ} 34^{* N} \mathrm{~N} . \\
& 118^{\circ} 42^{\circ} 56^{*} \mathrm{~W}
\end{aligned}
\] & GSC Paper 67-2A, p. 43-44 \\
\hline 330 & & B1o & 158 & \begin{tabular}{l}
Quartz \\
diorite
\end{tabular} & & \[
\begin{aligned}
& 49^{\circ} 5^{4} \cdot \mathrm{~N} . \\
& 123^{\circ} 07^{\prime} \mathrm{W} .
\end{aligned}
\] & White, 2968 \\
\hline & & . & & spuzzum & intrusions & & \\
\hline 332 & \[
{ }_{1 a}
\] & \[
\begin{aligned}
& \text { B10 } \\
& \text { B10 }
\end{aligned}
\] & \[
\begin{aligned}
& 103 \pm 5 \\
& 103 \pm 5
\end{aligned}
\] & Quartz diorite & & * & \[
\begin{aligned}
& \text { Richards \& White, 1970, } \\
& \text { P. } 1206
\end{aligned}
\] \\
\hline 333 & 2 a & B10 & 79+4 & Quartz diorite & & * & - \\
\hline 334 & 3 & B10 & \(77 \pm 3\) & Quartz diorite & & * & * - \\
\hline \[
\begin{aligned}
& 335 \\
& 336
\end{aligned}
\] & * & \[
\begin{aligned}
& \text { Hb } \\
& \text { B10 }
\end{aligned}
\] & \[
\begin{aligned}
& 76 \\
& 76
\end{aligned}
\] & Quartz diorite & & \[
\begin{aligned}
& 49^{\circ} 36^{\circ} \mathrm{N} . \\
& 121^{\circ} 27^{\circ} \mathrm{W} .
\end{aligned}
\] & McTaggart \& Thompson. (1967) \\
\hline 337 & & B10 & 253 & * & \begin{tabular}{l}
Orcas \\
Island
\end{tabular} & \[
\begin{aligned}
& 48^{\circ} 39^{\prime} \mathrm{N} . \\
& 12 \mathrm{~B}^{0} 1^{\circ} \mathrm{W} .
\end{aligned}
\] & UBC Guidebook, 1968 \\
\hline 338 & & Hhole & - 258 & \(\checkmark *\) & Vedder Mountain & \[
\begin{aligned}
& 49^{\circ} 04^{\circ} \mathrm{N} . \\
& 122^{\circ} 03^{\prime} \mathrm{H} .
\end{aligned}
\] & Ross in UBC Guidebook. 1968 \\
\hline
\end{tabular}
* See reference.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\mathrm{D}-1}{\text { TABLS }}
\] & (oon & t'd) Publ & blished & ages referr & to in this & report. & \\
\hline \[
\begin{aligned}
& \text { Report } \\
& \text { No. }
\end{aligned}
\] & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Heference } \\
\text { Number and } \\
\text { Mineral Dated }
\end{gathered}
\]} & \[
\begin{gathered}
\text { Age } \\
\text { in } \mathrm{m}_{\bullet} \mathrm{y} .
\end{gathered}
\] & Rook Type & Un1t & Location & Reference \\
\hline \multicolumn{8}{|c|}{INTERMONTANS BELT \(-52^{\circ}-49^{\circ}\)} \\
\hline \multicolumn{8}{|c|}{tertiary ages} \\
\hline 339 & \multicolumn{2}{|l|}{AK-116} & \(20 \pm 2\) & Basalt & * & \[
\begin{aligned}
& 50^{\circ} 58.5^{\prime} \mathrm{N} . \\
& 120^{\circ} 58^{\circ} 8^{\circ} \mathrm{W} .
\end{aligned}
\] & Mathews, 1964 \\
\hline 340 & \multicolumn{2}{|l|}{AK-268} & 12土2 & Basalt & * & \[
\begin{aligned}
& 51^{\circ} 54.9^{\circ} \mathrm{N} . \\
& 123^{\circ} 01.9^{\circ} \mathrm{W} .
\end{aligned}
\] & * \\
\hline 341 & \multicolumn{2}{|l|}{AK-100} & 13土2 & Basalt & * & \[
\begin{aligned}
& 51^{\circ} 53.2^{\prime} \mathrm{N} . \\
& 122^{8} 49^{\circ} 5^{\circ} \mathrm{W} .
\end{aligned}
\] & - \\
\hline 342 & Gsc65-26 & 6 Bio & \(40 \pm 5\) & Dacite & * & \[
\begin{aligned}
& 51^{\circ} 23^{\circ} \mathrm{N} . \\
& 120^{\circ} 58^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66-17, pp. 28-29 \\
\hline 343 & \multirow[t]{2}{*}{AK-117} & B10 & \(45 \pm 2\) & Trachyte & Kamloops Group & \[
\begin{aligned}
& 50^{\circ} 43^{\circ} \mathrm{N} . \\
& 120^{\circ} 49^{\prime} \mathrm{W} .
\end{aligned}
\] & Mathers, 1964 \\
\hline 344 & & \multirow[t]{2}{*}{Bio} & 46 & \begin{tabular}{l}
Quartz \\
diorite
\end{tabular} & Castle Peak Stock & \[
\begin{aligned}
& 48^{\circ} 59^{\prime} \mathrm{N} . \\
& 120^{\circ} 52^{\prime} \mathrm{H} .
\end{aligned}
\] & GSC Paper 67-2A, p. 39 \\
\hline 345 & \multirow[t]{2}{*}{AK-149} & & \(47 \pm 2\) & Breceia & Kamloops
Group & \[
\begin{aligned}
& 50^{\circ} 08.3^{\circ} \mathrm{N} . \\
& 119^{\circ} 37.5^{\circ} \mathrm{W} .
\end{aligned}
\] & Mathews, 1964 \\
\hline 346 & & Bio & 47 & Basalt & * & \[
\begin{aligned}
& 49^{\circ} 29^{\circ} \mathrm{N} . \\
& 120^{\circ} 46^{\circ} \mathrm{W} .
\end{aligned}
\] & UBC Guidebook, 1968 (map) \\
\hline 347 & \multirow[t]{2}{*}{AK-99} & B10 & \(48 \pm 2\) & Volcanic
ash & Princeton Group & \[
\begin{aligned}
& 49^{\circ} 27^{\prime} \mathrm{N}_{6} \\
& 120^{\circ} 32^{\prime} \mathrm{W} .
\end{aligned}
\] & Mathews, 1964 \\
\hline 348 & & Bio & 49 & Basalt & * & \[
\begin{aligned}
& 50^{\circ} 48^{\prime} \mathrm{N} . \\
& 121^{\circ} 10^{\prime} \mathrm{W} .
\end{aligned}
\] & Mathews, 1964 \\
\hline 349 & AK-118 & B10 & \(49 \pm 2\) & Dolerite & \[
\begin{aligned}
& \text { Kamloops } \\
& \text { Group }
\end{aligned}
\] & \[
\begin{aligned}
& 50^{\circ} 44^{\prime} \mathrm{N} . \\
& 120^{\circ} 33^{\prime} \mathrm{W} .
\end{aligned}
\] & - \\
\hline 350 & & B10 & 50 & * & * & \[
\begin{aligned}
& 49^{\circ} 26^{\prime} \mathrm{N} \\
& 120^{\circ} 30^{\circ} \mathrm{W}
\end{aligned}
\] & UBC Guidebook, 1968 (map) \\
\hline 351 & & B10 & 50 & & * & \[
\begin{aligned}
& 49^{\circ} 1^{\prime} 4^{\circ} \mathrm{N} \\
& 120^{\circ} 36^{\prime} \mathrm{W}
\end{aligned}
\] & - \\
\hline 352 & \multicolumn{2}{|l|}{GSC69-1444 Bio} & 64 & * & & \[
\begin{aligned}
& 51^{\mathrm{o}_{2}} 8^{\circ} \mathrm{o}^{\mathrm{N}} \mathrm{~N}_{\mathrm{C}}
\end{aligned}
\] & unpubllshed \\
\hline 353 & AK-625 & Andesine & 50 & Hornblendeandesite & * & Sunday Summ1t & Hills \& Baadsgaard, 1967 \\
\hline 354 & АК-626 & \#b & 48 & Andesite & * & * & - . \\
\hline 355 & AK-627 & Hb & 52 & Andesite & * & - & - \\
\hline 356 & AK-628 & B10 & 50 & Ash & * & Micabee & - \\
\hline 357 A & AK-629 & Andesine & 48 & Ash & * & " & - \\
\hline 358 & AK-631 & Glass : shards & 22 & Bentonite & * & Quilchena & - \({ }^{\prime}\) \\
\hline 359 & AK-632 & B10 & 50 & Rhyolite Lava & * & Allenby & - \\
\hline 360 & AK-633 & Andesine & 49 & - & * & " & - . \\
\hline 361 & AK-634 & \[
\underset{(\text { fine })}{\text { Banidine }}
\] & 47 & \begin{tabular}{l}
Lap1111 \\
Tuff
\end{tabular} & * & Sunday Creek & - \\
\hline 362 & AK-635 & Sanidine (coarse) & 50 & \[
\begin{aligned}
& \text { Lapilli } \\
& \text { Tuff }
\end{aligned}
\] & * & Sunday Creek & * \\
\hline 363 & AK-636 & Andesine & 51 & Ash & * & Mcabee & * \\
\hline 364 & AK-637 & B10 & 57
56 & ABh & * . & \(\cdots\) & * \\
\hline 365 & AK-638 & Sanidine & \[
\begin{aligned}
& 67 \\
& 56
\end{aligned}
\] & Ash & * & " & * \\
\hline - Bee & referen & nce. & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\mathrm{D}-1}{\mathrm{TABIE}}
\] & （oont＇ & ＇d）Publ & blished K－A & Ar ages referre & ed to in th & report． & \\
\hline \[
\begin{aligned}
& \text { Report } \\
& \text { No. }
\end{aligned}
\] & \multicolumn{2}{|l|}{Heference Number and Mineral Dated} & \[
\frac{A g e}{\mathrm{in}_{\bullet} \mathrm{y}}
\] & Rook Type & Unit & Looation & Reference \\
\hline 366 & AK－640 & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { 0l1go- } 51 \\
& \text { olage }
\end{aligned}
\]} & Ash & ＊ & Battle Blurf & E111s \＆Baadsgaard， 1967 \\
\hline 367 & AK－641 S & Sanidine & 50 & Ash & ＊ & ＊ & ＂ \\
\hline 368 & AK－642 & B10 & 50 & Ash & ＊ & ． & ＂ \\
\hline 369 & AK－656 & B10 & 48 & Ash & ＊ & － & ＂ \\
\hline 370 & AK－643 & B1o & 47 & Bentonite & & Collins Gulch & \\
\hline 371 & AK－630 S & Sanidine & 79＊ & Bentonite & ＊ & Quilchena & ＂ \\
\hline \multirow[t]{2}{*}{372} & \(\csc 67-42\) & Eb & \(73 \pm 4\) & Granodiorite & China Head Mtn． stock & \[
\begin{aligned}
& 51^{\circ} 10^{\circ} \mathrm{N}, \\
& 122^{\circ} 23^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 69－2A，p． 25 \\
\hline & \multicolumn{7}{|c|}{MAGGIE MINE（Cu－Mo Porphyry）} \\
\hline \multirow[t]{2}{*}{373} & \multirow[t]{2}{*}{M16} & \multirow[t]{2}{*}{Whole R} & R 61．2土2 & Blotite porphyry & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 50^{\circ} 52.3-55.5^{\circ} \mathrm{N}, \mathrm{McMi111an}, 1970 \text {, (G.E.M.) } \\
& 121^{0} 23.1-23.7^{\circ} \mathrm{H} . \operatorname{pp.} 324-3250 \\
& \text { (Magg1e) }
\end{aligned}
\]} \\
\hline & & & \multicolumn{5}{|l|}{Unmineralized volcanic strata that unconformably overlie mineralized Nicola rocks－Craigmont} \\
\hline \[
\begin{aligned}
& 374 \\
& 375
\end{aligned}
\] & Gsc61－29 & B10 & \[
\begin{aligned}
& 80 \\
& (108) *
\end{aligned}
\] & Lava． & ＊ & \[
\begin{aligned}
& 50^{\circ} 12^{\prime} \mathrm{N} . \\
& 120^{\circ} 55^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 62－17，p． 19 unpublished \\
\hline 376 & GSC65－27 & B1O & \(100 \pm 6\) & Quartz diorite & boulder in conglomerat & \[
\begin{gathered}
51^{\circ} 11^{\circ} \mathrm{N} . \\
\text { cel } 22^{\circ} 35^{\prime} \mathrm{W} .
\end{gathered}
\] & GSC Paper 66－17，p． 29 \\
\hline 377 & Gsc65－25 & Bio & \(166 \pm 11\) & \begin{tabular}{l}
Quartz \\
diorite
\end{tabular} & & \[
\begin{aligned}
& 51^{\circ}{ }^{\circ} 15^{\prime} \mathrm{N} . \\
& 120^{\circ} 5^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 66－17，p． 28 \\
\hline 378 & csc65－23 & B10 & \(105 \pm 9\) & Quartz monzonite & ＊ & \[
\begin{aligned}
& 51^{\circ} 41^{\circ} 20^{\prime \prime} \mathrm{N} . \\
& 120^{\circ} 07^{\prime} 25^{\prime \prime \mathrm{W}} .
\end{aligned}
\] & GSC Paper 66－17．p． 26 \\
\hline \multicolumn{8}{|c|}{Eagle granodiorite} \\
\hline 379 & GSc65－9 & 810 & \(98 \pm 6\) & Granodiorite & ＊ & \[
\begin{aligned}
& 49^{\circ} 16 \cdot 45^{\mathrm{W}} \mathrm{~N} . \\
& 120^{\circ} 46 \cdot \mathrm{~W} .
\end{aligned}
\] & GSC Paper 66－17，pp．12－13 \\
\hline 380 & Gsc62－56 & B10 & 143 & Granodiorite & ＊ & \[
\begin{aligned}
& 49^{\circ} 31^{\circ} N . \\
& 120^{\circ} 55^{\circ} \mathrm{W} .
\end{aligned}
\] & cse Paper 63－17，p． 38 \\
\hline 381 & \[
\underset{b}{E-I_{a}}
\] & \[
\begin{array}{ll}
810 & 1 \\
810 & 1
\end{array}
\] & \[
\begin{aligned}
& 103 \pm 1.6 \\
& 106.2 \pm 1.7
\end{aligned}
\] & ＂ & ＊ & ＊ & Hoddick， 1970 \\
\hline 382 & \[
\begin{array}{r}
E-2-1 \\
2
\end{array}
\] & \[
\begin{array}{ll}
\text { B10 } \\
810 & 9
\end{array}
\] & \[
\begin{aligned}
& 99.1 \pm 1.6 \\
& 96.4 \pm 1.5
\end{aligned}
\] & ＊ & ＊ & ＊ & ＊ \\
\hline 383 E & E－3 & \begin{tabular}{l}
Kияс ？ \\
Muso 7
\end{tabular} & \[
\begin{aligned}
& 71.7 \pm 1.2 \\
& 71.8 \pm 1.2
\end{aligned}
\] & Pegmatite & ＊ & ＊ & ＊ \\
\hline 384 & E－4 & B10 8 & \(85.4 \pm 1.4\) & Granodiorite & ＊ & ＊ & ＊ \\
\hline 385 & E－5 & B10 1 & 102．士1．6 & ＊ & ＊ & ＊ & ． \\
\hline 386 & E－6 & H6 2 & 204．5土1．7 & ＂ & ＊ & ＊ & ＊ \\
\hline 387 & E－7 & Bro 1 & 106．2£1．7 & ＂ & ＊ & ＊ & ＊ \\
\hline
\end{tabular}

TABIE（oont＇d）Published K－Ar ages referred to in this report． D－1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Report No． & Referen
Number e
Mineral & oe nd ated & \[
\begin{gathered}
\text { Ago } \\
\text { in } \mathrm{m}_{4} \mathrm{y}
\end{gathered}
\] & Rock Type & Unit & Location & Referenoe \\
\hline 388 & E－8－I & Hb
Bio & \[
\begin{aligned}
& 111.4 \pm 1.8 \\
& 111.7 \pm 1.7 \\
& 112.1 \pm 1.8
\end{aligned}
\] & Granodiorite & ＊ & ＊ & Roddick， 1970 \\
\hline 389 & \[
\begin{aligned}
& \text { GSc65-22 } \\
& (\text { see } 378 \text { ) }
\end{aligned}
\] & Bio & \(140 \pm 9\) & Quartz monzonite & ＊ & \[
\begin{aligned}
& 51^{\circ} 49^{\prime} \mathrm{N} \\
& 120^{\circ} 03^{\circ} 30^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 66－17，p． 25 \\
\hline 390 & GSC65－25 & Bio & \(166 \pm 11\) & Quartz diorite & ＊ & \[
\begin{aligned}
& 51^{\circ} 15^{\prime} \mathrm{N} \\
& 120^{\circ} 58^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 66－17，p． 28 \\
\hline
\end{tabular}

391 GSC66－41 B1O \(176 \pm 8\)
\(\begin{array}{ll}\text { Pegmatite Iron Mask } & \begin{array}{ll}50^{\circ} 35^{\prime} \mathrm{N}_{6} \\ 120^{\circ} 21^{\prime} \mathrm{W}\end{array} \quad \text { GSC Paper 67－2A，p．} 39\end{array}\)
（Fargo Mineral Claim）


\section*{hediey compiex}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 399 & \[
\begin{aligned}
& \mathrm{H}-6 \\
& \mathrm{~B}-6 a
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hb} \\
& \mathrm{Hb}
\end{aligned}
\] & \[
\begin{aligned}
& 170.7 \pm 2.7 \\
& 179.5 \pm 3.7
\end{aligned}
\] & Diorite & \begin{tabular}{l}
Hedley \\
Complex
\end{tabular} & ＊ & Roddick， 1970 \\
\hline 400 & H－8 & Hb & 183．2士2．9 & Diorite & ＊ & ＊ & ＊ \\
\hline 401 & E－111 & Hb & 170．8さ2．6 & Diorite & \(\cdots\) & ＊ & ＊ \\
\hline 402 & \(\mathrm{H}-12 \mathrm{H}\) & H6 & 176．2土2．9 & Diorite & ＊ & ＊ & \(\cdots\) \\
\hline 403 & H－12． & Hb & 188．3士 3.0 & Gabbro & \(\cdots\) & ＊ & － \\
\hline 404 & H－14 & Hb & 190．2士3．0 & Diorite & ＊ & ＊ & \(\cdots\) \\
\hline \multicolumn{8}{|c|}{TULAMEEN COMPLEX} \\
\hline 405 & Gsc62－55 & B10 & 186 & Pyroxenite & Tulameen & \[
\begin{aligned}
& 49^{\circ} 34^{\circ} \mathrm{N} \\
& 120^{\circ} 5^{\circ} \mathrm{H}
\end{aligned}
\] & GSC Paper 63－17．p． 38 \\
\hline 406 & T－1a & B10 & \(68.0 \pm 1.2\) & Pyroxenite & \(\cdots\) & \(*\) & Roddick， 1970 ． \\
\hline 407 & 18 & B10 & \(81.9 \pm 1.3\) & Pyroxenite & \(\cdots\) & \(*\) & Hoddick \＆Farrar， 1971 \\
\hline 405a & c8c62－57 & Hb & 286 & Pyroxenite & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 26^{\circ} \mathrm{N} \\
& 120^{\circ} 48^{\circ} \mathrm{H}
\end{aligned}
\] & GSC Paper 63－17．p． 39 \\
\hline
\end{tabular}
＊Bee reference．

TABIE（oont＇d）Published K－Ar ages reforred to in this report．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Heport No． & \[
\begin{array}{r}
\mathrm{Re} \\
\text { Num } \\
\text { Mine }
\end{array}
\] & \begin{tabular}{l}
erence \\
or and \\
al Dated
\end{tabular} & \[
\begin{gathered}
\text { Age } \\
\text { in }_{0} \mathrm{y}
\end{gathered}
\] & Rock Type & Unit & Loastion & Reference \\
\hline \[
408
\] & \[
\begin{array}{r}
2 \mathrm{H}-1 \\
2 \\
3
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Hb} \\
& \mathrm{Hb} \\
& \mathrm{Hb}
\end{aligned}
\] & \[
\begin{aligned}
& 192.5 \pm 2.9 \\
& 191.5 \pm 2.9 \\
& 191.6 \pm 2.9
\end{aligned}
\] & Diorite & Tulatieen & ＊ & Roddiok \＆Farrar， 1971 \\
\hline 409 & \(3 B\) & B10 & \(127.4 \pm 2.0\) & Diorite & ＊ & ＊ & ＂ \\
\hline 410 & \[
\begin{array}{r}
5 \mathrm{H}-1 \\
2 \\
3 \\
4
\end{array}
\] & \[
\begin{array}{r}
\mathrm{Hb} \\
\mathrm{Mb} \\
\mathrm{Hb} \\
\mathrm{Hb}
\end{array}
\] & \[
\begin{aligned}
& 201.5 \pm 3.0 \\
& 200.4 \pm 3.0 \\
& 196.6 \pm 3.0 \\
& 199.1 \pm 3.0
\end{aligned}
\] & \[
\begin{gathered}
\text { Hornblen- } \\
\text { dite }
\end{gathered}
\] & ＊ & ＊ & \(\cdots\) \\
\hline 411 & 7W & Whole R & 178．1 \(\pm 7.2\) & Amphibolite & ＊ & ＊ & \(\cdots\) \\
\hline 412 & 8B & B10 & 151．5 \(\pm 2.3\) & Hb clinopy－ roxenite & ＂ & \(*\) & ＊ \\
\hline 413 & 8W & Whole R & 198．2＋3．2 & & ＊ & ＊ & \(\cdots\) \\
\hline 414 & 8P & Pyrox & 922．3士13．2 & Hb clinopy－ roxenite & \(\cdots\) & ＊ & \(\cdots\) \\
\hline 415 & \[
\begin{array}{r}
8 \mathrm{H}-1 \\
-2
\end{array}
\] & \[
\begin{aligned}
& \mathrm{Bb} \\
& \mathrm{Hb}
\end{aligned}
\] & \[
\begin{aligned}
& 206.4 \pm 3.1 \\
& 203.5 \pm 3.2
\end{aligned}
\] & － & ＊ & ＊ & － \\
\hline 416 & 9H & Hb & 209．6＋3．5 & ＊ & \(\cdots\) & ＊ & \(\cdots\) \\
\hline 417 & 108 & Bio & 171．5さ2．6 & Pyroxenite & \(\cdots\) & ＊ & ＊ \\
\hline
\end{tabular}

418 CM－ore－65 Bio \(194 \pm 7\)

419 CM－F20a－65 B1O \(199 \pm 7\)

420 CM－ALP－65 Bio \(194 \pm 8\)
421 CK－E2a－65 Bio \(\begin{array}{rr}151 \pm 6 \\ \text { Clino } & 150 \pm 9 \\ \text { pyroxene }\end{array}\)
422 CM－12－65 B10 182土8
423 VP－69KA－1 B10 194士8

424 VP－69KA－2 Bio \(197 \pm 8\)

425 VP－69KA－3 Bio \(200 \pm 8\)
426 VP－69KA－4 B10 101士4
427 vP－69KA－5 B10 \(98 \pm 4\)
428 VP－69KA－6 B10 181 \(\pm 7\)
429 VP－69KA－7 Bio 194！？
430 VP－69KA－8 B2O \(194 \pm 8\)
431 VP－69KA－9 BLO 197さ8
432 VP－69KA－10 Bio 195t8

433 VP－69KA－13 Bio \(189 \pm 8\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{COPPER MOUNTAIN，B．C．} \\
\hline Blotite veinlet with chalcopyrite & Wolf Creek & \[
\begin{aligned}
& 49^{\circ} 19^{\prime} \mathrm{N} \\
& 120^{\circ} 32^{\prime} \mathrm{W}
\end{aligned}
\] & Sinclair \＆White， 1968 \\
\hline Monzonite & Copper Mtn． Stock & \(\cdots\) & ＊ \\
\hline Monzonite & ＊ & － & \(\cdots\) \\
\hline \begin{tabular}{l}
Diorite \\
hydrothermaliy altered
\end{tabular} & －＊ & ＊ & ＊ \\
\hline Gabbro & － & \(\cdots\) & －＂ \\
\hline Latite porphyry & Lost Horse & \[
\begin{aligned}
& 49^{\circ} 19^{\prime} \mathrm{N}_{6} \\
& 120^{\circ} 32^{\prime} \mathrm{W}
\end{aligned}
\] & Preto et al．， 2971 \\
\hline Diorite & Smelter Lakes & ＊ & ＊ \\
\hline Diorite & ＊ & \(\cdots\) & ＂ \\
\hline Quartz monzonite & Verde Creek & ＊ & \(\cdots\) \\
\hline Quartz monzonite & Verde Greek & ＊ & ＊ \\
\hline Diorite & Voigt & \(\cdots\) & ＊ \\
\hline Diorite & Voigt & \(\cdots\) & \(\cdots\) \\
\hline Micromonzonite porphyry & Lost Horse & － & \(\cdots\) \\
\hline Latite porphyry & Lost Horse dike & \(\cdots\) & \(\cdots\) \\
\hline Micromonzonite porphyry & Lost Eoree & \(\cdots\) & ＊ \\
\hline Biotite－sulphide pegmatite vein & & \(\cdots\) & \(\cdots\) \\
\hline
\end{tabular}
－Bee reference．


* See reference.
* Values considered to be high (see reference).
\(\underset{\mathrm{D}-1}{\mathrm{TaBLP}}\) (oont'd) Published K-Ar ages referred to in this repart.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Report } \\
\text { No. } \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
\text { Ref } \\
\text { Numb } \\
\text { Miner }
\end{array}
\] & & \[
\begin{gathered}
\text { Age } \\
\text { in } \mathrm{m} . \mathrm{y} .
\end{gathered}
\] & Rook Type & Un1t & Looation & Reference \\
\hline \multicolumn{8}{|c|}{OMINICA BELT \(-52^{\circ}=49^{\circ} \mathrm{N}\)} \\
\hline \multicolumn{8}{|c|}{TERTIARY AGES} \\
\hline 456 & AK-25 & B10 & 36 & Granite & Cascade & \[
\begin{aligned}
& 49^{\circ} 01^{\circ} \mathrm{N} \\
& 118^{\circ} 18^{\circ} \mathrm{W}
\end{aligned}
\] & Baadsgaard, et al., 1961 \\
\hline 457 & \(A K-27\) & B10 & \[
\begin{aligned}
& 55 \\
& 56
\end{aligned}
\] & Granite & \begin{tabular}{l}
Nelson(?) \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 50^{\circ} 00^{\prime} \mathrm{N} . \\
& 218^{\circ} 06^{\circ} \mathrm{W} .
\end{aligned}
\] & * \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{CORYELL} \\
\hline 458 & AK-28 & B10 & 54 & Syenite Cor & Coryell & \[
\begin{aligned}
& 49^{\circ} 03^{\prime} \mathrm{N} . \\
& 118^{\circ} 03^{\circ} \mathrm{W} .
\end{aligned}
\] & \(\cdots\) \\
\hline 459 & AK-26 & Bio & 58 & Syenite & * & \[
\begin{aligned}
& 49^{\circ} 0^{\prime} 4^{\circ} \mathrm{N} . \\
& 17^{\circ} 58^{\prime} \mathrm{W} .
\end{aligned}
\] & \(\cdots\) \\
\hline 460 & GSc60-20 & Bio & 27 & Leuorosyenite & - & \[
\begin{aligned}
& 49^{\circ} 24^{\circ} N^{\prime} \\
& 11^{\circ} 02^{\prime} 30^{\prime \prime} W .
\end{aligned}
\] & GSC Paper 61-17. pp. 12-13 \\
\hline 461 & GSc61-13 & B10 & 32 & Granite & * & \[
\begin{aligned}
& 49^{\circ} 50^{\prime} 30^{\prime \prime} N \\
& 117^{\circ} 56^{\prime} 30^{\prime \prime} W
\end{aligned}
\] & gSC Paper 62-17, p. 11 \\
\hline 462 & GSC61-12 & B10 & 53 & Granite & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 49^{\circ} 15^{\prime N} \mathrm{~N} \\
& 117^{\circ} 56^{\prime} 20^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 62-17. p. 10 \\
\hline 463 & CX70-17 & B10 & \(50.6 \pm 1.5\) & Monzonite & * & \[
\begin{aligned}
& 49^{\circ} 05^{\prime} \mathrm{N} . \\
& 117^{\circ} 15^{\circ} \mathrm{W} .
\end{aligned}
\] & Macdonald, 1972; in preparation \\
\hline 464 & CX70-21 & Bio & \(49.5 \pm 1.5\) & Lamprophyre dike & - & \[
\begin{aligned}
& 49^{\circ} 05^{\prime} \mathrm{N} . \\
& 117^{\circ} 15^{\prime} \mathrm{W}_{0}
\end{aligned}
\] & \(\cdots\) \\
\hline 465 & E70-1 & B10 & \(48.9 \pm 1.4\) & Monzonite & \(\cdots\) & * & Pyles, et al., 197 \(\therefore\) : \\
\hline 466 & 770-5 & B10 & \(49.0 \pm 1.5\) & Monzonite & \(\cdots\) & * & - \\
\hline 467 & E70-18 & B10 & 48.3土1.4 & Byenite & * & - & - \\
\hline
\end{tabular}


\footnotetext{
Bee reforence.
}

TABLE (oont'd) Published K-Ar ages referred to in this report.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Report } \\
\text { No. }
\end{gathered}
\] & Her
Numb
Minej & & \[
\frac{\mathrm{Ag} \theta}{\ln \mathrm{~m}, \mathrm{y}}
\] & Rock Type & Unit & Looation & Reference \\
\hline 480 & R70-6 & \[
\begin{aligned}
& \text { B10 } \\
& \text { B10 }
\end{aligned}
\] & \[
\begin{aligned}
& 89.7 \pm 2.8 \\
& 90.8 \pm 2.0
\end{aligned}
\] & Monzonite & Rossland Monzonite & * & Fyles, et al. 1973. \\
\hline 481 & R71-1 & Bio & \(58.8 \pm 1.8\) & Monzonite & Rossland Monzonite & * & * \\
\hline
\end{tabular}

POST-TECTONIC INTRUSIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 482 & \(\csc 66-46\) & B10 & \(46 \pm 3\) & Quartz monzonite & * & \[
\begin{aligned}
& 49^{\circ} 07^{\circ} 24.4^{n} \mathrm{~N} \\
& 118^{\circ} 23^{\prime} 14^{\prime N} W_{0}
\end{aligned}
\] & GSC Paper 67-2A, & \[
\text { pp. } 44.45
\] \\
\hline 483 & Gsc \(66-45\) & Bio & \(39 \pm 5\) & Quartz monzonite & * & \[
\begin{aligned}
& 49^{\circ} 02^{\prime} 49 \cdot 3^{\prime \prime} \\
& 118^{\circ} 21^{\circ} 43^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 67-2A, & pp. 42-42 \\
\hline 484 & GSc63-1 & \[
\begin{aligned}
& \text { Phlogo- } \\
& \text { pite }
\end{aligned}
\] & \(41 \pm 10\) & Lamprophyre & * & \[
\begin{aligned}
& 51^{\circ} 17^{\prime} \mathrm{N}_{6} \\
& 118^{\circ} 28^{\circ} \mathrm{W}
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC Paper 64-17, } \\
& \text { p. } 11
\end{aligned}
\] & (Pt. 1), \\
\hline 485 & Gsc63-7 & B10 & \(56 \pm 8\) & Granite & * & \[
\begin{aligned}
& 50^{\circ} 00^{\prime} \mathrm{N} \\
& 123^{\circ} 58^{\prime} \mathrm{W}
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC Paper 64-17. } \\
& \text { p. } 16
\end{aligned}
\] & (Pt. I), \\
\hline
\end{tabular}
tertiany volcanics
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 486 & F69-203 & Whole R & \(51.6 \pm 1.7\) & Latite & OK Volcanic & * & Fyles, et al., 1973. \\
\hline 487 & AK-112 & Bio & \(49 \pm 2\) & Ash & Midway & \[
\begin{aligned}
& 49^{\circ} 03.8^{\circ} \mathrm{N} . \\
& 118^{\circ} 58.4^{\circ} \mathrm{W} .
\end{aligned}
\] & Mathews, 1964 \\
\hline 488 & AK-150 & Bio & \(48 \pm 2\) & Pulaskite porphyry & \begin{tabular}{l}
Kettle \\
River
\end{tabular} & \[
\begin{aligned}
& 49^{\circ} 02.8^{\circ} \mathrm{N}_{6} \\
& 118^{\circ} 53.1^{\circ} \mathrm{W}
\end{aligned}
\] & - \(\quad\) \\
\hline 489 & AK-151 & B10 & \(46 \pm 2\) & Dacite & Kettle Biver & \begin{tabular}{l}
\(49^{\circ} 48^{\circ} \mathrm{N}\) \\
119006.1'W.
\end{tabular} & * \\
\hline 490 & * & Bio & \(51.6 \pm 1.8\) & (KIt & \begin{tabular}{l}
Marron \\
Formation \\
ey Lake membe
\end{tabular} & East of Yellow Lake* r) & ```
Church, 1970, in (GEM),
    p. }39
``` \\
\hline
\end{tabular}

OKANAGAN
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 491 & W65-6 & Muse & 139+5 & Granite & Okanagan & * & White et al., 1968 \\
\hline 492 & W65-5 & Musc & \(144 \pm 6\) & Granite & * & * & - \\
\hline 493 & 165-7 & Sericite & \(140 \pm 6\) & Footwall alteration & \(\cdots\) & * & - \\
\hline 494 & W65-4 & B10 & \(82 \pm 3\) & Granite & * & * & \(\cdots\) \\
\hline 495 & 166-7 & B10 & 99+4 & Granite & * & * & \(\cdots\) \\
\hline 496 & W65-3 & Bio & 118士4 & Granite & " & * & * \\
\hline 497 & W67-1 & Serioite & \(114 \pm 5\) & \(\cdots\) & * & * & * \\
\hline
\end{tabular}

NELSON BATHOLITH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 498 \\
& 499
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC66-50 } \\
& \text { GSG63-10 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hb} \\
& \text { Bio }
\end{aligned}
\] & \[
\begin{aligned}
& 141 \pm 16 \\
& 123 \pm 20
\end{aligned}
\] & \[
\begin{aligned}
& \text { Quartz } \\
& \text { diorite }
\end{aligned}
\] & Ruby Stock & \[
\begin{aligned}
& 50^{\circ} 04^{\circ} 57.5^{\prime \prime} \mathrm{N} . \\
& 117^{\circ} 43^{\circ} 59^{\prime \prime \mathrm{W}}
\end{aligned}
\] & GSC Paper & 67-2A, pp. 46-47 \\
\hline 500. & G8C66-51 & Hb & \(236 \pm 14\) & Granodiorite & Nelson & \[
\begin{aligned}
& 49^{\circ} 47.0^{\circ} \mathrm{N}_{0} \\
& 117^{\circ} 22.4^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper & 67-2A, p. 47 \\
\hline 501 & GSC66-52 & Bb & \(146 \pm 10\) & Granodiorite (porphyritio) & Nelson & \[
\begin{aligned}
& 49^{\circ} 49^{\prime} \mathrm{N} . \\
& 217^{\circ} 12^{\circ} \mathrm{H} .
\end{aligned}
\] & GSC Paper & 67-2A, pp. 47-48 \\
\hline 502 & c8c66-53 & Hb & \(141 \pm 24\) & \(\cdots\) & Nelson & \[
\begin{aligned}
& 49^{\circ} 46.4^{\circ} \mathrm{N} \\
& 117^{\circ} 04.5^{\circ} \mathrm{W}
\end{aligned}
\] & G8C Paper & 67-2A, p. 48 \\
\hline 503 & GSC62-27 & Bio & 159 & , * . & Nelson & * & csc Paper & 67-2A, p. 20 \\
\hline 504 & \[
\begin{aligned}
& \csc 66-54 \\
& \csc 62-5
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Hb} \\
& \mathrm{B1O}
\end{aligned}
\] & \[
\begin{aligned}
& 152 \pm 10 \\
& 128
\end{aligned}
\] & Granodiorite & Porcupine stock & \[
\begin{aligned}
& 49^{\circ} 15^{\circ} \mathrm{N} \\
& 117^{\circ} 05^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper G8C Paper & \[
\begin{aligned}
& 67-2 \mathrm{~A}, \mathrm{pp}, 48-49 \\
& 63-17, \mathrm{pp}, 7-8
\end{aligned}
\] \\
\hline
\end{tabular}
* Bee reference.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { TABLE } \\
D-1
\end{array}
\] & （oont＇ & d） Pu & 11 shed K & Ar ages refer & ed to in thi & s meport： & \\
\hline heport No． & Refere
Number
Mineral & nco and Dated & \[
\begin{gathered}
\text { Age } \\
\text { in } \mathrm{m} . \mathrm{y} .
\end{gathered}
\] & Rock Type & Unit & Looation & Reference \\
\hline 505 & GSc62－5 & B1o & 128 & Granodiorite & Porcupine stook & \[
\begin{aligned}
& 49^{\circ} 15^{\circ} \mathrm{N} \\
& 117^{\circ} 05^{\prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 63－17，pp．7－8 \\
\hline 506 & C & Bio & \(150 \pm 6\) & Quartz sonzonite & Nelson & \[
\begin{aligned}
& 49^{\circ} 53^{\circ} 45^{\circ} \mathrm{N} \\
& 117^{\circ} 14^{\prime} 23^{\circ} \mathrm{W}
\end{aligned}
\] & Nguyen，et al．． 1968 \\
\hline 507 & D & 810 & 169士6 & Lamprophyre & Dike（outs Nelson） & \[
\begin{aligned}
& 49^{\circ} 53^{-49^{n} N_{0}} \\
& 117^{\circ} 14^{\circ} 23^{n} W_{0}
\end{aligned}
\] & － \\
\hline 508 & K & Hb & \(161 \pm 6\) & Quartz monzonite & Mt．Carlyle stook & \[
\begin{aligned}
& 49^{\circ} 5^{\prime} 5^{\prime \prime} 8^{\prime \prime} N \\
& 117^{\circ} 04^{\circ} 18^{\prime \prime} W
\end{aligned}
\] & ＂ \\
\hline 509 & L－236 & B10 & \(135 \pm 5\) & Hornfels & Zenolith in Nelson Batholith & \[
\begin{aligned}
& 49^{\circ} 5^{\prime} 20^{\prime \prime} N_{.} \\
& 117^{6} 06^{\circ} 57^{\prime \prime} W
\end{aligned}
\] & \(\cdots\) \\
\hline 510 & R－11 & B10 & \(120 \pm 5\) & Granodiorite （porphyritic） & Nelson & \[
\begin{aligned}
& 49^{\circ} 53^{\circ} 15^{\prime \prime} N \\
& 117^{\circ} 6^{\circ} 25^{\prime \prime} \mathrm{W}
\end{aligned}
\] & － \\
\hline 511 & R－12 & B10 & \(146 \pm 5\) & Quartz diorite & ＊ & \[
\begin{aligned}
& 49^{\circ} 52^{\prime} \cdot 56^{n N} \mathrm{~N} . \\
& 117^{\circ} 6^{\prime} 38^{\prime N W}
\end{aligned}
\] & ＊ \\
\hline 512 & R－13 & B10 & \(230 \pm 5\) & Granodiorite （porphyritic） & ＂ & \[
\begin{aligned}
& 49^{\circ} 43^{\prime} 58^{\prime \prime} \mathrm{N} \\
& 117^{\circ} 9^{\circ} 45^{\circ \prime} \mathrm{W}
\end{aligned}
\] & ＊ \\
\hline 513 & S & Eb & 150才5 & Quartz monzonite & ＊ & \[
\begin{aligned}
& 49^{\circ} 57^{\prime} 29^{\prime N} \mathrm{~N}_{.} \\
& 17^{\circ} 21^{\prime} 16^{\prime \mathrm{W}}
\end{aligned}
\] & ＊ \\
\hline 514 & GSc61－17 & B10 & 131. & Granodiorite & － & \(49^{\circ} 51^{\circ} 30^{\prime \prime} \mathrm{N}\) \(117^{\circ} 02^{14} 48^{\mathrm{W}} \mathrm{W}\) ． & GSC Paper 62－17．p． 13 \\
\hline 515 & cSc62－27 & 810 & 159 & Granodiorite & \(\cdots\) & \begin{tabular}{l}
\(49^{\circ} 46^{\circ} 24^{\prime \prime} \mathrm{N}\). \\
\(117^{\circ} 04^{\circ} 30^{\prime \prime} \mathrm{W}\) ．
\end{tabular} & GSC Paper 63－17．p． 20 \\
\hline 516 & GSC 62－29 & B10 & 163 & Granodiorite & \(\cdots\) & \begin{tabular}{l}
\(49^{\circ} 46^{\circ} 54^{\mathrm{m}} \mathrm{N}\). \\
\(117^{\circ} 20^{\circ} 18^{\circ} \mathrm{W}\) ．
\end{tabular} & GSC Paper 63－17，p． 21 \\
\hline 517 & GSc62－26 & B10 & 165 & Granodiorite & ＂ & \(49^{\circ} 45^{\prime \prime} 48^{\prime \prime} \mathrm{N}\). \(117^{\circ} 13^{\circ} 30^{\prime \prime} \mathrm{W}\) 。 & GSC Paper 63－17．p． 20 \\
\hline 518 & GSC62－28 & B10 & 171 ＊ & Granodiorite & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 47^{\circ} \mathrm{N} \\
& 117^{\circ} 22^{\circ} 24^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 63－17，pp．20－21 \\
\hline 519 & GSc62－30 & Bio & 171 & Granodiorite & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 56^{\circ} \mathrm{N} \\
& 117^{\circ} 08^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 63－17．p． 21 \\
\hline & & & AGES PR & EVIOUSLY ASSIGI & NED TO NELSON & BATHOLITH & \\
\hline 520 & GSC60－21 & B10 & 49 & Quartz monzonite & Nelson & \[
\begin{aligned}
& 49^{\circ} 42^{\prime} \mathrm{N} . \\
& 117^{\circ} 19^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 61－17，p． 13 \\
\hline 521 & GSC60－22 & B10 & 55 & Granodiorite （porphyritic） & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 36^{\circ} \mathrm{N} . \\
& 117^{\circ} 15^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 61－17．pp．13－14 \\
\hline 522 & GSC62－32 & B10 & 63 & Granodiorite & \(\cdots\) & \begin{tabular}{l}
\(49^{\circ} 29^{\circ} 18^{\prime \prime} \mathrm{N}\) ． \\
\(117^{\circ} 20^{\prime} 30^{\text {＂W．}}\)
\end{tabular} & GSC Paper 63－17．pp．22－23 \\
\hline 523 & GSC59－1 & B10 & 86 & Granodiorite & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 29^{\prime} \mathrm{N} \\
& 117^{\circ} 20^{\prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 60－17．p． 5 \\
\hline 524 & G8C62－31 & B10 & 105 & Leucogranite & ＊ & \[
\begin{aligned}
& 49^{\circ} 36^{\prime} 36^{\prime \prime N} N . \\
& 127^{\circ} 07^{\circ} 54^{\prime \prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 63－17．p． 22 \\
\hline
\end{tabular}

POST TECTONIC INTRUSIONS（see \(482-485\) and reference）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 525 & csc 64－22 & B10 & \(52 \pm 6\) & Syenite & ＊ & \[
\begin{aligned}
& 51^{\circ} 55.5^{\circ} \mathrm{N} \\
& 118^{\mathrm{O}} 10.5^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 65－17．p． 20 \\
\hline 526 & GSC64－15 & Bio & \(96 \pm 5\) & Quartz monzonite & ＊ & \[
\begin{aligned}
& 51^{\circ} 27^{\prime} \mathrm{N} . \\
& 119^{\circ} 56^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 65－17，p． 16 \\
\hline 527 & GSC64－16 & B10 & \(80 \pm 6\) & Granodiorite & ＊ & \[
\begin{aligned}
& 51^{\circ} 17^{\prime} 20^{\prime \prime} \mathrm{N} \\
& 119^{\circ} 29^{\prime} 40^{\prime \prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 65－17，pp．16－17 \\
\hline
\end{tabular}

\footnotetext{
－See referenoe．
}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { TABLE } \\
\mathrm{D}-1
\end{gathered}
\] & (oont' \({ }^{\text {(}}\) & d) Pubi & l1shed & ar ages refe & do to in t & s roport. & \\
\hline \[
\begin{aligned}
& \text { Heport } \\
& \text { No. }
\end{aligned}
\] & Rereren
Number
Mineral & ence and Dated & \[
\begin{gathered}
\mathrm{Age} \\
\ln \mathrm{~m} \cdot \mathrm{y} .
\end{gathered}
\] & Rook Type & Unit & Looation & Reference \\
\hline 548 & GSc59-7 & B10 & 340 & Syenite & Ice River & \[
\begin{aligned}
& 51^{\circ} 12^{\prime} \mathrm{N} . \\
& 116^{\circ} 29^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 60-17. pp. 6-7 \\
\hline 549 & GSC59-8 & B10 & 330 & * & * & \[
\begin{aligned}
& 51^{\circ} 12^{\prime} \mathrm{N} . \\
& 116^{\circ} 29^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 60-17. p. 7 \\
\hline 550 & Pyro & roxenite & 392 & Biotite pyroxenite & * & * & Rapson, 1963. pp. 116-124 \\
\hline 551 & & Bio & 336 & \begin{tabular}{l}
Blotite \\
pegmatite
\end{tabular} & * & * & " \\
\hline 552 & & B10 & 327 & \[
\begin{aligned}
& \text { Kinette } \\
& \text { Bill }
\end{aligned}
\] & * & * & \(\cdots\) \\
\hline & & & & - TOBY & STOCK & & \\
\hline 553 & GSC66-49 & Hb & \(162 \pm 8\) & Granodiorite & Toby & \[
\begin{aligned}
& 50^{\circ} 13^{\prime} \mathrm{N} . \\
& 116^{\circ} 3^{\prime} \mathrm{W} .
\end{aligned}
\] & GSC Paper 67-2A, pp. 45-46 \\
\hline 554 & GSC62-14 & B10 & 179 & Granodiorite gnelss & Toby & \[
\begin{aligned}
& 50^{\circ} 11^{4} \mathrm{~N} \\
& 116^{\circ} 3^{\circ} \mathrm{K}
\end{aligned}
\] & GSC Paper 63-17. pp. 12-13 \\
\hline 555 & GSc62-13 & Bio & 232 & Granodiorite & Toby & \[
\begin{aligned}
& 50^{\circ} 12^{\prime} 36^{\prime \prime} N \\
& 116^{\circ} 33^{\circ} 24^{\mathrm{m}} \mathrm{~W}
\end{aligned}
\] & GSC Paper 63-17. pp. 13-14 \\
\hline & & & & ADAMANT & BATHOLITH & & \\
\hline . 556 & GSC64-23 & Whole R & 97+12 & Monzonite & \begin{tabular}{l}
Adamant \\
pluton
\end{tabular} & \[
\begin{aligned}
& 51^{\circ} 44^{\circ} \mathrm{N} \\
& 117^{\circ} 55^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 65-17. pp. 20-21 \\
\hline 557 & GSC61-24 & B10 & 90 & Granodiorite & Adamant & \[
\begin{aligned}
& 51^{\circ} 46^{\circ} 8^{n} N . \\
& 117^{\circ} 5^{\circ} 20^{\prime \prime} W .
\end{aligned}
\] & GSC Paper 62-17. pp. 16-17 \\
\hline \(558 \%\) & \[
\begin{gathered}
\text { Gsc62-24 } \\
\mathrm{fe}
\end{gathered}
\] & \[
\stackrel{\mathrm{K}}{\text { eldspar }}
\] & 92 & Granodiorite & Adamant & \[
\begin{aligned}
& 510^{\circ} 44^{\prime} 30^{\prime \prime N} \\
& 118^{\circ} 44^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 63-17. pp. 18-19 \\
\hline 559 & GSC61-22 & B10 & 131 & Pegmatite & Adamant & \[
\begin{aligned}
& 51^{\circ} 42^{\circ} 40^{\prime \prime} \mathrm{N} \\
& 117^{\circ} 50^{\circ} 30^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 62-17. P. 15 \\
\hline 560
561 & \[
\begin{aligned}
& \text { GSC 61-23 } \\
& \text { GSC62-25 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { B10 } \\
& \text { Hb }
\end{aligned}
\] & 200
116 & Granodiorite & Adamant & \[
\begin{aligned}
& 51^{\circ} 4^{\circ} 6^{\prime \prime \prime} \mathrm{N}_{0} \\
& 117^{\circ} 51^{\circ} 30^{\prime W} .
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC Paper 62-17, pp. 15-16 } \\
& \text { GSC Paper 63-17, p. } 19
\end{aligned}
\] \\
\hline 562 & Gsc61-21 & B10 & 281 & Granodiorite & Adamant & \[
\begin{aligned}
& 51^{\circ} 42 \cdot 40^{\prime \prime} \mathrm{N} \\
& 317^{\circ} 50^{\circ} 30^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 62-17. P. 15 \\
\hline & & & & WHITE CREE & EK BATHOLITH & & \\
\hline 563 & GSC60-3 & Bio & 28 & Quartz monzonite & White Creek & \[
\begin{aligned}
& 49^{\circ} 53^{\circ} \mathrm{N} . \\
& 116^{\circ} 22^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 61-17. p. 6 \\
\hline 564 & GSC60-4 & Bio & 29 & Quartz monzonite & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 50^{\circ} \mathrm{N} \\
& 116^{\circ} 17^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 61-17. pp. 6-7 \\
\hline 565 & GSc60-5 & B10 & 56 & Mafic-rich inclusion & & \[
\begin{aligned}
& 49^{\circ} 48^{\circ} N_{0} \\
& 116^{\circ} 16^{\circ} W_{0}
\end{aligned}
\] & GSC Paper 61-17. p. 7 \\
\hline 566 & Gsc60-6 & B10 & 60 & Quartz monzonite & * & \[
\begin{aligned}
& 49^{\circ} 51^{\circ} \mathrm{N} \\
& 116^{\circ} 14^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper 61-17. p. 7 \\
\hline 567 & Gsc61-9 & B10 & 73 & Granodiorite & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 48^{\circ} 33^{\prime \prime} \mathrm{N}_{6} \\
& 116^{\circ} 13^{\circ} 10^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 62-17, p. 9 \\
\hline 568 & G8c60-7 & B10 & 79 & Granodiorita & * & \[
\begin{aligned}
& 49^{\circ} 48^{\circ} \mathrm{N} . \\
& 11^{\circ} 13^{\circ} \mathrm{H} .
\end{aligned}
\] & GSC Paper 61-17, pp. 7-8 \\
\hline \[
\begin{aligned}
& 569 \\
& 570
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC61-11 } \\
& \text { GSC61-10 }
\end{aligned}
\] & Muse
B10 & \[
\begin{aligned}
& 80 \\
& 82
\end{aligned}
\] & Quartz monzonite & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 51^{\circ} 10^{\prime \prime} \mathrm{N} \\
& 116^{\circ} 16^{\circ} 40^{\prime \prime} \mathrm{W}
\end{aligned}
\] & \[
\text { GSC Paper 62-17, p. } 10
\] \\
\hline 571 & G8c62-2 & Bio & 226 & Metadiorite & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 47^{\circ} 18^{4} N \\
& 116^{\circ} 18^{\circ} 54^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 63-17, p. 5 \\
\hline
\end{tabular}

\footnotetext{
* Bee reference.
}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & BATTLE & BATHOLITH & & \\
\hline \[
\begin{aligned}
& 580 \\
& 581
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSc62-21 } \\
& \text { GSC62-20 }
\end{aligned}
\] & Musc Bio & \[
\begin{aligned}
& 91 \\
& 92
\end{aligned}
\] & Quartz monzonite & \begin{tabular}{l}
Battle \\
Batholith
\end{tabular} & \[
\begin{aligned}
& 51^{\circ} 03^{\prime} \mathrm{N} . \\
& 117^{\circ} 30^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 63-17, P. 17 \\
\hline 582 & GSC62-19 & Bio & 94 & Qusrtz monzonite & \(\cdots\) & \[
\begin{aligned}
& 51^{\circ} 03^{\prime} \mathrm{N} . \\
& 11^{\circ} 30^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 63-17. p. 16 \\
\hline 583 & GSC62-22 & Musc & 120 & Pegmatite & * & \[
\begin{aligned}
& 51^{\circ} 03^{\prime} \mathrm{N} \\
& 217^{\circ} 30^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 63-17, ppa7-18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & BUGABOO & BATHOLITH & & \\
\hline 584 & GSC61-20 & B10 & 100 & Granodiorite & Bugaboo Batholith & \[
\begin{aligned}
& 50^{\circ} 44^{\prime} 6^{\prime \prime} \mathrm{N} \\
& 116^{\circ} 55^{\circ} 30^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 62-17. p. 14 \\
\hline \[
\begin{aligned}
& 585 \\
& 586
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC62-17 } \\
& \text { GSc62-18 }
\end{aligned}
\] & B10 Musc & \[
\begin{aligned}
& 132 \\
& 138
\end{aligned}
\] & Quart 2 monzonite & \(\cdots\) & \[
\begin{aligned}
& 50^{\circ} 45^{\circ} 36^{\prime \prime} \mathrm{N} . \\
& 116^{\circ} 49^{\circ} 6^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 63-17. p. 15 \({ }_{\text {\% }}\) (15-16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 587 & csc61-18 & B1o & 227 & Granodiorite & \begin{tabular}{l}
Glacier \\
Creek
\end{tabular} & \[
\begin{aligned}
& 50^{\circ} 23^{\circ} 12^{\prime \prime} \mathrm{N} \\
& 116^{\circ} 47^{\circ} 49^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 62-17, p. 13 \\
\hline 588 & GSC62-15 & Bio & 145 & Granodiorite & \(\cdots\) & \[
\begin{aligned}
& 50^{\circ} 23^{\prime} 12^{n} \mathrm{~N} \\
& 116^{\circ} 4^{\circ} 42^{\prime W} \mathrm{~W}
\end{aligned}
\] & GSC Paper 63-17, p. 13 \\
\hline
\end{tabular}

8HUSWAP METAMORPEIC COMPIEX (After Gabrielse \& Reesor, 1964)
.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 589. & csc 59-5 & \(810^{\circ}\) & 11 & Granitegneiss & Valhalla & \[
\begin{aligned}
& 49^{\circ} 57^{\prime} \mathrm{N} . \\
& 117^{6} 41^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 60-12, p. 6 \\
\hline 590 & csc59-4 & B10 & 13 & Granodiorite gneiss & * & \[
\begin{aligned}
& 49^{\circ} 51^{\circ} \mathrm{N} . \\
& 127^{\circ} 37^{\prime} 30^{\prime W} .
\end{aligned}
\] & GSC Paper 60-17. p. 6 \\
\hline 591 & GSc60-8 & B40 & 15 & Granitegneiss & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 57^{\circ} \mathrm{N} \\
& 117^{\circ} 35^{\prime} 10^{\mathrm{ow}}
\end{aligned}
\] & gSC Paper 61-17, p. 8 \\
\hline 592 & GSC59-6 & B10 & 16 & Granodiorite gneies & \(\cdots\) & \[
\begin{aligned}
& 49^{\circ} 51^{\circ} 30^{\prime \prime N} . \\
& 117^{6} 37^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper 60-17. p. 6 \\
\hline 593 & 6sc 60-9 & B1o & 25 & Granitic gneisa & * & \[
\begin{aligned}
& 49^{\circ} 52^{\circ} 30^{\prime \prime} \mathrm{N} \\
& 117^{\circ} 41^{\circ} 15^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper 61-17, p. 8 \\
\hline
\end{tabular}

\footnotetext{
* See referenoe.
}

\footnotetext{
* Sea reference.
}

METAMORPHIC ROCKS NORTH AND SOUTH OF ADAMANT BATHOLITH
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 634 \\
& 635
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{Gsc} 62-49 \\
& \operatorname{Gsc} 62-50
\end{aligned}
\] & \begin{tabular}{l}
B10 \\
Musc
\end{tabular} & \[
\begin{aligned}
& 73 \\
& 72
\end{aligned}
\] & Schist & * & \[
\begin{aligned}
& 51^{\circ} 5^{4} \cdot 10^{\prime \prime \prime} \mathrm{N} . \\
& 117^{5} 56^{\circ} 8^{\prime \prime} \mathrm{W}^{2} .
\end{aligned}
\] & GSC Paper & 63-17. & p. 34 \\
\hline 636 & csc61-28 & Musc & 107 & Pegmatite & * & \[
\begin{aligned}
& 51^{\circ} 48^{\circ} \mathrm{N} . \\
& 117^{\circ} 57^{\circ} \mathrm{W} .
\end{aligned}
\] & GSC Paper & 62-17. & p. 18 \\
\hline \[
\begin{aligned}
& 637 \\
& 638
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC62-51 } \\
& \operatorname{GSC} 62-52
\end{aligned}
\] & Bio Musc & \[
\begin{aligned}
& 119 \\
& 124
\end{aligned}
\] & Schist & * & \[
\begin{aligned}
& 51^{\circ} 34^{\circ} 55^{\prime \prime} \mathrm{N} \\
& 117^{\circ} 38^{\circ} 4^{\prime \prime} \mathrm{W}
\end{aligned}
\] & GSC Paper & 63-17. & p. 35 \\
\hline \[
\begin{aligned}
& 639 \\
& 640
\end{aligned}
\] & \[
\begin{aligned}
& \operatorname{Gsc} 62-53 \\
& \operatorname{Gsc} 62-54
\end{aligned}
\] & B10
Musc & \[
\begin{aligned}
& 146 \\
& 205
\end{aligned}
\] & Schist & * & \[
\begin{aligned}
& 51^{\circ} 34^{\prime} 5^{\prime \prime} N \\
& 117^{\circ} 33^{\circ} 30^{\circ} \mathrm{W}
\end{aligned}
\] & GSC Paper & 63-17. & \[
\begin{aligned}
& \text { p. } 36 \\
& \text { pp. } 37-38
\end{aligned}
\] \\
\hline
\end{tabular}

UNDIFFERENTIATED NETAMORPEICS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 642 & GSC64-18 & \[
\begin{aligned}
& \text { Phio- } \\
& \text { gopite }
\end{aligned}
\] & \(51 \pm 10\) & Marble & \begin{tabular}{l}
Chancellor \\
Formation
\end{tabular} & \[
\begin{aligned}
& 51^{\circ} 5^{\circ} \mathrm{N} . \\
& 118^{\circ} ._{1.5} \mathrm{~W} .
\end{aligned}
\] & GSC Paper 65-17, p. 18 \\
\hline \[
\begin{aligned}
& 642 \\
& 643
\end{aligned}
\] & \[
\begin{aligned}
& \text { GSC64-19 } \\
& \text { GSC } 64-20
\end{aligned}
\] & Bio Muse & \[
\begin{aligned}
& 58 \pm 6 \\
& 67 \pm 10
\end{aligned}
\] & Quartzite & * & \[
\begin{aligned}
& 51^{\circ} 4^{\circ} 7^{\circ} \mathrm{N} . \\
& 217^{\circ} 43^{\circ} \mathrm{H} .
\end{aligned}
\] & GSC Paper 65-17. p. 18 \\
\hline
\end{tabular}
```


[^0]:    ＊Potansium analyses by P．Christopher，J．E．Harakal and V．Bobik using KY and KY－3 flame photometers，s－standerd deviation of quadruplicate analyses．
    ＊＊Axgon analyses by J．E．Harakal and P．Christopher using MS－10 mass spectrometer．
    

[^1]:    * Ages determined by the writer at Dartmouth College (Christopher 1968 and 1969).
    * Ages determined at Dartmouth college (personal communication J.B. Lyons 1971).

