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ABSTRACT 

A new and d i f f e r e n t approach to the solution of the normal 

equations of minimum entropy deconvolution (MED) i s developed,. 

This approach which uses singular value decomposition i n the 

i t e r a t i v e solution of the MED equations increases the si g n a l - t o -

noise r a t i o of the deconvolved output and enhances the 

resolution of MEC* 

The problem of deconvolution, and in p a r t i c u l a r wavelet 

estimation, i s formulated as a l i n e a r inverse problem. Both 

generalized l i n e a r inverse methods and Backus-Gilbert inversion 

are considered. The proposed wavelet estimation algorithm uses 

the MED output as a f i r s t approximation to the earth response. 

The approximated response and the observed seismograms serve as 

an input to the inversion schemes and the outputs are the 

estimated wavelets^ The remarkable performance of the l i n e a r 

inverse schemes f o r cases of highly noisy data i s demonstrated. 

A debubbling example i s used to show the completeness of 

the l i n e a r inverse schemes. F i r s t the wavelet estimation part 

was carried out and then the debubbling problem was formulated 

as a generalized l i n e a r inverse problem which was solved using 

the estimated wavelet* 

This work demonstrates the power of the l i n e a r inverse 

schemes when dealing with highly noisy data. 
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CHAPTER 1 

I n t r o d u c t o r y Remarks 

Seismic methods are commonly used t o a i d the study of the 

earth's i n t e r i o r . Employing the assumption of a l a y e r e d e a r t h , 

one uses the f a c t t h a t on p a s s i n g from one l a y e r t o another the 

energy of an e l a s t i c wave i s separated i n t o a t r a n s m i t t e d and 

r e f l e c t e d component. The amount of energy r e f l e c t e d or 

r e f r a c t e d i s b a s i c a l l y a f u n c t i o n of the angle of i n c i d e n c e o f 

the wave at the i n t e r f a c e and the a c o u s t i c impedance ( d e n s i t y 

times v e l o c i t y ) of both l a y e r s . A geophone placed on the 

e a r t h ' s s u r f a c e responds t o t h i s r e f l e c t e d and r e f r a c t e d energy 

and i t s output, a f t e r a m p l i f i c a t i o n , i s recorded (the 

seismogram). The task o f the s e i s m o l o g i s t i s t o i n t e r p r e t the 

seismogram. That i s , the s e i s m o l o g i s t i s l o o k i n g f o r the 

g e o l o g i c a l model of the subsurface which can be i n f e r r e d from 

the seismogram. 

To make t h i n g s c l e a r e r , c o n s i d e r the f o l l o w i n g example; 

Assume a t h r e e l a y e r model as shown i n F i g u r e 1 . For s i m p l i c i t y 

l e t these be l i q u i d l a y e r s (no shear waves), with d e n s i t y and 

v e l o c i t y as shown i n F i g u r e 1 , and the c o n d i t i o n ^ V j < > ^ s
v

a . 

Neglect the d i r e c t wave and assume t h a t only r e f l e c t e d energy 

corresponding t o the rays 1 and 2 i n F i g u r e 1 has been recorded 

on the seismogram. 

Define two time s e r i e s : 1 ) the source wavelet, which 

re p r e s e n t s the shape of the s i g n a l before i t was t r a n s f e r r e d 
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F i g u r e 1 

Three l i q u i d l a y e r model 

t h r o u g h t h e ground; 2) the i m p u l s e response s e r i e s . The l a t t e r 

i s a time s e r i e s which c o n s i s t s o f z e r o s everywhere e x c e p t f o r 

the t i m e s which c o r r e s p o n d e x a c t l y t o the a r r i v a l t i m e s o f 

r e f l e c t e d o r r e f r a c t e d energy. For t h e s e p a r t i c u l a r t i m e s , the 

i m p u l s e r e s p o n s e becomes a s p i k e w i t h an a m p l i t u d e which 

r e f l e c t s t h e energy l e f t i n the s i g n a l a f t e r t r a v e l l i n g t h e path 

s p e c i f i e d by the p a r t i c u l a r r a y . 

Assume t h a t the s o u r c e w a v e l e t i s a P i c k e r w a v e l e t , and 

u s i n g the model o f F i g u r e 1 , t h e c o r r e s p o n d i n g i m p u l s e response 

can be d e r i v e d . F i g u r e 2 shows t h i s time s e r i e s t o g e t h e r w i t h 
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the seismogram which i s the c o n v o l u t i o n of the impulse response 

and the source wavelet. I f ve assume v e r t i c a l i n c i d e n c e 

T 

i, 

ro 

Figure 2 

(a) Impulse response f o r the model of Figure 1. (b) Ricker 

wavelet as source waveform. (c) The seismogram (convolution of 

(a) and (b)). 

r e f l e c t i o n i n t h i s example, then the two-way r e f l e c t i o n 

t r a v e l t i m e s to the two l a y e r s are t,=2'h,/V, and 

t A = 2 h , /V, • 2 h i / V 4 . 

The example shows t h a t the impulse response s e r i e s r e f l e c t s 

the s u b s u r f a c e geology and hence i t i s the immediate t a r g e t of 

the s e i s m o l o g i s t . I f a seismogram i s assumed t o be the 
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c o n v o l u t i o n of a source wavelet with the e a r t h ' s response, then 

i d e n t i f y i n g and d e r i v i n g the impulse response f u n c t i o n i s termed 

"d e c o n v o l u t i o n " . 

This work i s devoted t o t h e de c o n v o l u t i o n problem i n 

ge n e r a l and, i n p a r t i c u l a r , to the debubbling problem. T h i s i s 

a s p e c i a l case of the g e n e r a l deconvolution problem which a r i s e s 

under p a r t i c u l a r p h y s i c a l c o n d i t i o n s . To s o l v e these problems, 

minimum entropy d e c o n v o l u t i o n and l i n e a r i n v e r s i o n t e c h n i q u e s 

are developed. 
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CHAPTER 2 

M i n i m u m E n t r o p y D e c o n v o l u t i o n U s i n g , M a t r i x S p e c t r a l 

D e c o m p o s i t i o n ^ 

I N T R O D U C T I O N 

The c o n c e p t o f m i n i m u m e n t r o p y d e c o n v c l u t i o n w h i c h was 

i n t r o d u c e d b y W i g g i n s (1977) p r e s e n t s a u s e f u l t o o l t o a i d 

s e i s m i c i n t e r p r e t a t i o n . T h i s d e c o n v o l u t i o n t e c h n i q u e s e a r c h e s 

f o r a f i l t e r F w h i c h , when c o n v o l v e d w i t h a n i n p u t s i g n a l X , 

w i l l c o n v e r t t h a t s i g n a l t o an o u t p u t Y w h i c h h a s a " s i m p l e " 

a p p e a r a n c e . 

(1) Y = X * F 

w h e r e * d e n o t e s c o n v o l u t i o n . 

W i g g i n s (1977) d e f i n e d " ' s i m p l e * t o mean t h a t e a c h d e s i r e d 

s i g n a l c o n s i s t o f a f e w l a r g e s p i k e s o f u n k n o w n s i g n o r l o c a t i o n 

s e p a r a t e d b y n e a r l y z e r o t e r m s " . A l t h o u g h i t i s a g o o d m e t h o d , 

MED p r o c e s s i n g t e n d s t o e n h a n c e l a r g e a m p l i t u d e i m p u l s e s 

c o m p a r e d t o s m a l l e r a m p l i t u d e o n e s a n d t h e r e b y c a u s e s seme l o s s 

o f v a l u a b l e i n f o r m a t i o n . A m o d i f i c a t i o n o f MED h a s b e e n 

p r o p o s e d b y Ooe. a n d U l r y c h (1979) who i n t r o d u c e d t h e e x p o n e n t i a l 

t r a n s f o r m a t i o n w i t h a m o d i f i e d s i m p l i c i t y n o r m . T h e y h a v e s h o w n 

t h a t t h e i r a p p r o a c h p r o v i d e s a b a l a n c e b e t w e e n t h e n o i s e 

s u p p r e s s i o n e f f e c t o f MED a n d t h e a b i l i t y t o r e c o v e r s m a l l 
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amplitude impulses. 

In t h i s work we take the o r i g i n a l version of MED (Wiggins 

1977) and improve i t s performance by using a d i f f e r e n t method of 

solving the normal equations. In p a r t i c u l a r we assume that the 

noisy components of the solution are mainly associated with the 

small eigenvalues of the autocorrelation matrix. We write the 

solution as a weighted summation of the eigenvectors of the 

autocorrelation matrix and r e j e c t those components of the 

solution which are associated with the smaller eigenvalues. 

THEORY 

Following the approach of Wiggins (1977), we write equation 

(1) i n i t s time series representation : 

(2) y . . * S r. • x. . . 

where i i s the trace index (i=1,, # /Ns), 

j i s the time index (j=1#w#* Nt) , 

Nf i s the length of the f i l t e r , 

Ns i s the number of trace segments, 

and Nt i s the number of time samples i n a trace. 

The varimax norm V given i n eguation (3) below i s a norm 

which measures the s i m p l i c i t y of a s i g n a l . The larger V i s the 

more "simple" i s the signal. For a detailed discussion on 

s i m p l i c i t y norms the reader i s referred to Harman (1960). 
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Since we are looking for the f i l t e r which w i l l maximize the 

varimax (simplest possible appearance of the output t r a c e ) ; we 

proceed by taking the gradient of V, set t i n g i t egual to zero 

and solving : 

0 " I §*; -

from eguation (2) we have: 

substituting eguation (5) into ( 4 ) we get: 
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•» * J 

which can be written in a matrix form as 

(7) A-r*£ 
where 

A i s a weighted autocorrelation matrix, 

G i s a weighted crosscorrelation vector, 

and F i s the vector of desired f i l t e r c o e f f i c i e n t s . 

Equation (7) i s highly nonlinear but i t can be solved by 

an i t e r a t i v e scheme. An i n i t i a l f i l t e r F" i s proposed and 

convolved with the input series to give Y°. Through eguations 

( 3 ) , (4a) and (6), the l a t t e r enables c a l c u l a t i o n of the 

weighted crosscorrelation G°, and the weighted autocorrelation 

matrix A°. Having G° and A°, we can solve for an updated 

f i l t e r F 1 . Then the procedure can be repeated u n t i l the varimax 

norm changes very l i t t l e with subseguent i t e r a t i o n s . Wiggins 

(1977) used the Levinson recursion algorithm f o r the solution of 

(7) in order to implement t h i s i t e r a t i v e procedure. 

In t h i s paper, we take a different approach. The set of 

eguations (7) i s solved by decomposition of matrix A into i t s 

spectral components (Lanczos 1961), and finding i t s inverse. 

For t h i s procedure A i s decomposed as shown below : 

(8) A s K A R r 

where R i s a matrix whose columns consist of the 

eigenvectors of matrix A. 



9 

A i s the diagonal matrix consisting of the 

eigenvalues of A i n decreasing order. A =diag £ * „ 0 ^ , . . 

. ^ w i t h ft,^*^... 

and E* i s the transpose of R. 

A i s a symmetric, positive d e f i n i t e , Toeplitz matrix.. The 

inverse of A i s given by : 

(9) A M««A"*ft T 

Substituting eguation (9) into (7) we obtain : 

do) J * «A"'* TS 

writing equation (10) i n summation notation we have 

N 

The e s s e n t i a l aspect of this method i s to l e t N take on 

dif f e r e n t values and then compare the d i f f e r e n t solutions for 

the following equation : 

d 2 ) y" = F%X 

That i s , we choose to retain only a cert a i n percentage of 

the eigenvalues of A, rejecting the smaller ones. For p r a c t i c a l 

purposes, we consider only those values of N which are between 
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0.2N^ to 0.8N^ where N̂ . i s the f i l t e r length. We consider 

only these values since the varimax does not converge for very 

small N and the solution of (12) looks very si m i l a r to the 

o r i g i n a l MED output for large N. When N=N^, the solution of 

(12) i s the same as the o r i g i n a l MED solution of Wiggins (1S77). 

In applying the method we l e t N (the number of 

eigenvalues used i n the solution) change over predetermined 

i n t e r v a l s , take the solution of (12) with the smallest N value 

as our reference, and plot the variance of a l l the other 

possible solutions versus N . By variance we mean here the 

sguare of the difference (Y* - Y*), where Y* i s the solution 

of (12) corresponding to the smallest N value used. The 

advantage of such a plot i s that i t t e l l s us how many possible 

solutions we have that are s i g n i f i c a n t l y d i f f e r e n t . For short 

f i l t e r lengths, i t i s probably best to plot a l l the output 

solutions Y and examxne how those solutions change as a 

function of N. 
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EXAMPLES 

The examples which follow use single channel traces. These 

are especially appropriate to our approach since matrix spectral 

decomposition i s expensive computationally. For single channel 

problems we may write eguation (6) as 

* J •> 

or 

A*- * = &* 

Since A* i s now independent of Y we w i l l have to f i n d the 

spectral components of A* only once with consequent saving of 

computer time. The examples discussed below were constructed i n 

such a way that a complete recovery of the generating spike 

sequence by the o r i g i n a l MED version was not possible, as w i l l 

be shown. 

Example A. 

The wavelet, spike t r a i n and the r e s u l t i n g trace with 2.5% 

added white noise i s shown i n Figure 1. The spacing of the 

spikes compared to the wavelet length makes t h i s example a 

p a r t i c u l a r l y d i f f i c u l t deconvolution problem. As stated in the 

l a s t section, i t i s often useful to plot the variance of a l l 

possible solutions versus N. Figure 2(a) shows such a plot but 
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i t i s not of much help i n t h i s p a r t i c u l a r example because the 

f i l t e r length i s short and the number of solution models i s 

small. 

As shown i n Figure 2(b) the o r i g i n a l version of MED was 

unable to recover the generating spike sequence. The spikes 

become increasingly v i s i b l e as we rej e c t more and more 

eigenvalues i n the construction of the f i l t e r solution (equation 

(11)). Note the development of the output from Figure 2(c) to 

Figure 2 (e). The l a t t e r does include a l l the input spikes shown 

in Figure 1(b) but i t i s evident that the high freguency content 

of the output decreases as more eigenvalues are dropped. 

As shown i n Chapter 3 , the inverse of the MED f i l t e r i s the 

wavelet i f i t i s assumed that the MED output i s the impulse 

response. We t r i e d to recover the wavelet by finding the 

inverse operator of the MED f i l t e r . For t h i s purpose we used 

the optimum spiking algorithm of T r e i t e l and Robinson (1966). 

The results are shown i n Figure 3 . The inverse of the MED 

f i l t e r of the o r i g i n a l version did not give an acceptable 

description of the input wavelet (compare Figure 3(a) with 

Figure 1(a)). This r e s u l t was not surprising i n view of the 

poor spike recovery of that f i l t e r . A s l i g h t improvment was 

achieved by inverting the MED f i l t e r with N=8 (Figure 3 ( b ) ) , but 

the estimated wavelet corresponding to the MED f i l t e r with N=5 

i s t o t a l l y unacceptable even though we may consider Y s to be our 

best output (compare Figure 2(e) with 1(b)). This i s e a s i l y 

understood i n view of the clear differences i n freguency content 

of the output sequences shown i n Figures 2(e) and 1(b). 
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\ i ( , — . p— , 
0.0 20.0 40.0 SO.O 80.0 100. 

TIME 
F i g u r e 1 

(a) The g e n e r a t i n g wavelet W of example A . 

(b) The s p i k e trace S from which the i n p u t t r a c e X of 
example A Was d e r i v e d . 

(c) The i n p u t t r a c e X that i s the r e s u l t of the 
c o n v o l u t i o n of W with S plus 2.5% White n o i s e : 

X=K*S + 2.5% white noise . 
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Figure 2 

(a) A plot of the variance versus N (the number of eigen

values used i n the so l u t i o n ! . The f i l t e r length i s 14. 

(b) The solution corresponding to N 14, which i s i d e n t i c a l 

with the o r i g i n a l MED solution of Wiggins (1977). 

(c) The solution corresponding to N 13. 

(d) The solution corresponding to N 8". 

( e ) The solution corresponding to N 5. 





I I 1 1 
0.0 20.0 40.0 60.0 
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Figure 3. 

(a) The inverse of the MED f i l t e r corresponding to 

(b) The inverse of the MED f i l t e r corresponding to N=8. 

(c) The inverse of the MED f i l t e r corresponding to N=5. 
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Example B. 

In t h i s example we used a somewhat more complicated wavelet 

(Figure 4(a)) to generate the synthetic input trace. This 

wavelet was convolved with the spike sequence of Figure 4(b) and 

25% white noise was added. The resultant input trace i s shown 

in Figure 4(c). Although there i s wavelet overlap i n t h i s 

example the main obstacle i s the high percentage of white ncise. 

The plot of the variance versus the number of eigenvalues 

used i n the construction of the MED f i l t e r (Figure 5(a)) proved 

useful i n t h i s example i n which we l e t N take the values 

N=15+2n, n=0,1,....r30. It i s clear from the plot that there 

are only three s i g n i f i c a n t l y d i f f e r e n t solutions to eguation 

(12) for t h i s example. These correspond to the f l a t regions 

between the pairs of arrows. 

As shown i n Figure 5(b), the o r i g i n a l MED solution did not 

give a complete recovery of the generating spike seguence. 

However as we rej e c t more and more eigenvalues i n the 

construction of the MED f i l t e r a cle a r improvement i s v i s i b l e . 

The output Y 2 9 (Figure 5(d)) does include a l l the generating 

spikes although i t s frequency content i s much lcwer than that of 

the generating spike sequence, as noted before. The r e l a t i v e 

amplitudes of the recovered sequence shown i n Figure 5(d), match 

very well with those of the input spike seguence shown i n Figure 

4(b) . 

Figure 6 shows the inverses of the f i l t e r s used to derive 

Figures 5(b), (c) and (d) . When compared with Figure 4(a), i t 

i s clear that the source wavelet was not reproduced. This i s 

due to two causes : (1) when large numbers of eigenvalues are 
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r -
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~1 I 

80.0 120.0 
T I M E 

ISO.O 
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F i g u r e 4 . 

(a) The i n p u t w a v e l e t H o f e x a m p l e B. 

(b) The g e n e r a t i n g s p i k e s e q u e n c e S o f e x a m p l e B . 

(c) The i n p u t t r a c e x i . e. t h e r e s u l t o f t h e 

c o n v o l u t i o n o f W w i t h S p l u s 25% w h i t e n o i s e ! 

X=W*S + 25% w h i t e n o i s e . 
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F i g u r e 5. 

(a) V a r i a n c e v e r s u s N. 

(b) The s o l u t i o n c o r r e s p o n d i n g to 11 = 75 ( t h e o r i g i n a l 

MED s o l u t i o n ) -

(c) The s o l u t i o n c o r r e s p o n d i n g to N=*)9-

(d) The s o l u t i o n c o r r e s p o n d i n g to N=29. 
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used, the exact spike seguence has not been reproduced; and (2) 

when small numbers of eigenvalues are used, the freguency 

content of the output i s much lower than that cf the true spike 

seguence (although Figure 5(d) c l e a r l y shows the impulse 

response) . 

CONCLUSION 

(a) Singular value decomposition applied to the i t e r a t i v e 

solution of the MED eguations increases the signal-to-noise 

r a t i o of the deconvolved output and enhances the resolution of 

the MED approach. 

(b) It i s commonly known that those eigenvectors associated 

with the small eigenvalues have more zero crossings than those 

which are associated with the large eigenvalues (Wiggins et a l 

1976). Hence we expect that for a smaller N we would get a 

lower freguency f i l t e r F and hence the output Y w i l l contain 

lower frequencies. This point i s readily observed i n examples A 

and B. 

(c) The minimum value of N i s determined by the varimax i n 

the sense that for F to be an acceptable f i l t e r , the varimax 

must converge. Then the smallest possible N i s the smallest N 

for which the varimax i n the i t e r a t i v e solution described above 

does converge . 

(d) The f i l t e r length i s of e s s e n t i a l importance i n MED 

problems. The best f i l t e r length for our MED algorithm i s the 

one that gives the most acceptable r e s u l t i n the o r i g i n a l MED 
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version. An approach to t h i s 

discussed by Olrych et a l (1979). 

(e) Inversion of the MED 

algorithm w i l l not i n general 

estimate. 

problem has recently been 

f i l t e r r e s u l t i n g from our 

give an acceptable wavelet 
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CHAPTER 3 

Wavelet Estimation as a Linear Inverse Problem 

INTRODUCTION 

The problem of wavelet estimation i s one of ess e n t i a l 

importance i n seismic deconvolution. It i s commonly assumed 

that a seismogram can be modelled as the convolution of a 

seismic wavelet with the earth response- Since the earth 

response r e f l e c t s the subsurface geology i t i s one of the icain 

targets of seismic data processing. Given a seismic wavelet, 

one may deconvolve the seismogram to get the earth's response. 

Variations of the deconvolution problem are common i n land and 

marine data processing. An example i s the debubbling problem 

(Wood et a l 1978) which we w i l l treat i n Chapter 4. Lines and 

Ulrych (1977) have summarized the current approaches to wavelet 

estimation. Such technigues include the Weiner-Levinson double 

inverse method and Wold-Kolmogorov f a c t o r i z a t i o n , both of which 

use the assumptions of an impulse response that i s a white noise 

seguence and of a minimum phase wavelet. A more recent approach 

- wavelet estimation by homomorphic deconvolution - does not use 

these assumptions. However, i t does assumes that the wavelet 

cepstrum i s read i l y separable from the cepstrum of the seismic 

trace. (The cepstrum i s defined as the inverse transform of the 

logarithm of the time sequence's Fourier transform.) 

This work approaches the problem of wavelet estimation 
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using a combination of the techniques which are commonly applied 

in linear inversion and the method of minimum entropy 

deconvolution or MED (see Chapter 2 ) . The application of MED to 

an input trace X w i l l y i e l d an output which consists of: 

a. the spike sequence Y which i s the primary MED 

output and 

b. the MED f i l t e r (operator) F. 

The time series represented by X, Y and F are related to each 

other through the following eguation: 

(1) X*F=Y 

where * denotes convolution. 

Figure 1 gives an example of three time series which follow the 

r e l a t i o n described in equation (1) . 

By convolving both sides of equation (1) with F-1=Wr we 

get: 

X*F*W=Y*W 

or 

(2) W*Y=X 

If we assume that the time series Y i s a true representation of 

the earth response then from eguation (2) , W i s the wavelet. 

Eguation (2) indicates that i n order to find the wavelet we need 

to f i n d the inverse of the MED operator. 

One approach to doing t h i s i s to use the algorithm SPIKER 

given by Robinson (1967). This algorithm i s designed to fi n d 

the optimum inverse operator of a given time series ( T r e i t e l and 

Robinson 1966). It gives good res u l t s on noiseless traces as 

shown by Figure 1, (d) and (e). 

However, the wavelet also can be estimated by formulating 
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(a) The input trace X. (b) The KED f i l t e r F. (c) The spike 

sequence Y. (d) The recovered wavelet using SPIKER. (e) The 

input wavelet. 
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eguation (2) as a generalized l i n e a r inverse problem or solving 

the i n t e g r a l equivalent of eguation (2) using the Backus-Gilbert 

approach. We assume here that the spiked minimum entropy 

deconvolution output i s a f i r s t estimate of the earth response, 

and use i t together with the observed seismic trace to extract 

the wavelet. The generalized l i n e a r inverse approach i s a 

parametric method and the solution wavelet w i l l be represented 

by a set of parameters corresponding to discrete time values. 

In the Backus-Gilbert approach the earth response, the observed 

seismic trace, and the output wavelet are a l l continuous 

functions of time . Both technigues allow the user t c control 

the accuracy of the solution (see the section on P r a c t i c a l 

Notes), a property which i s very important when dealing with 

noisy data. In addition the Backus-Gilbert approach also allows 

us to incorporate boundary conditions into the problem. 

Since we assume that the MED output represents the earth 

response, the guality of the estimated wavelet depends on the 

quality of the computed impulse response ( i . e. MED output). 

However, we w i l l show i n example B that by using l i n e a r inverse 

methods a useful wavelet estimation can be extracted from 

seemingly useless MED output. 
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THEORY : CONVOLUTION AS A LINEAR INVERSE PROBLEM 

A. General Linear Inverse 

We w i l l present here only those aspects of the general 

l i n e a r inverse theory which are relevant to our problem. For 

additional d e t a i l s concerning t h i s approach, the reader i s 

referred to Wiggins (1972), Jackson (1972) or Wiggins et a l 

(1976). The generalized linear inverse development follows 

Wiggins et a l (1976). 

Writing the convolution i n t e g r a l i n i t s time series form, 

we have: 

Equation (3) i s a set of equations in which m unknown parameters 

W are related to n observations X . The matrix equivalent of (3) 

i s 

(H) X = A - W 

where 5 i s a vector of length n which contains the observations 

(input trace) ; W i s a vector of length m which contains the 

desired parameters (wavelet parameters) ; A i s an nxm matrix 

shown i n Figure 2; k i s the length of the spike sequence Y; and 

the r e l a t i o n n=m+k-1 holds. 

We may express the elements of A as 

(5) A(i,j) = Y(i-j+1) j = 1....m ; i=1. n 

with the condition that 
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A* 

0 0 

y. y. 0 

y, y< y. 

0 

0 
0 
0 

y< y*. y * , y * * 

0 y * y«:, y*. a 

0 o 

0 0 
0 0 
0 0 

y < . ^ i y 

y*-*».j yc 

0 y« 

F i g u r e 2 

The i n p u t m a t r i x A of equation (4). 

Y (i-j+1) = 0 for i-j+1 < 1 and i-j+1 > k 

The system i n equation (3) i s an overdetermined one ( i . e 

the number of equations i s l a r g e r then the number of unknowns) 

and i t can be s o l v e d by minimizing AX i n a l e a s t squares sense, 

where AX i s d e f i n e d by 

(6) A X i = Xi - X i 

X i r e f e r s t o the <• 
eft. ;1K 

X i r e f e r s to the 

o b s e r v a t i o n i n the i n p u t v e c t o r , and 

' ~ c a l c u l a t e d o b s e r v a t i o n . Using s i n g u l a r 

value decomposition (Lanczos 1961), A i s decomposed i n t o i t s row 

and column e i g e n v e c t o r s and the a s s o c i a t e d e i g e n v a l u e s . The 

g e n e r a l i z e d i n v e r s e o f A i s d e f i n e d as (Tnman et a l 1973): 
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<7> H^s A | Ul 
where 

UT i s the transpose of 0 which consists of q eigenvectors 

of length n associated with the column vectors of A ( i . e . the 

data eigenvectors). 

V consists of g eigenvectors of length m associated with 

the row vectors of A (i.e the parameter eigenvectors). 

A*' i s the inverse of A which consists of the g 

eigenvalues of A i n descending order. A =diag £ fc,^...« a n <^ 
q i s the rank of A. 

The solution to equation (4) i s then 

(8) W*=H-X 

W* i s the smallest solution (least euclidian length) that 

minimizes IAX J 2 . The r e l a t i o n of W* to W can be obtained by 

substituting equation (4) into (8) which gives 

(9) W*= (H • A) • W=R. ? 

The matrix E i s referred to as the resolution matrix (Inman et 

a l 1973). If q=m, E i s the i d e n t i t y matrix; but i f q<m, the 

resolution matrix i s no longer the i d e n t i t y matrix and %* i s a 

weighted summation of the parameter eigenvectors used to 

describe the wavelet. 

The calculated observations < X C A L are determined from 

(10) XCAt=A.W* 

W* w i l l not be egual to W except for an i d e a l case ; hence 

the vector AX = ( X°*S - X c A l ) w i l l not be the zero vector. As 

a matter of f a c t , i n noisy cases we are net interested i n 

reproducing the observations exactly since i f we do so the 
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errors i n the observations and/or the spike trace w i l l propagate 

d i r e c t l y into the solution (wavelet). The power of l i n e a r 

inversion i n t h i s p a r t i c u l a r problem i s that i t gives us the 

a b i l i t y to control the accuracy of the solution. For example, 

i n the case of a known noise l e v e l of ̂  % we are interested i n 

a l l the models (wavelets) i n which : 

(11) Max £ A X J ^ < <* % • Max £ X j ^ j=1 n 

Thus the exact solution i s c e r t a i n l y not the only solution that 

interests us and i t i s l i k e l y that i t w i l l not provide the best 

estimate of the wavelet . 

B. Backus-Gilbert Inversion 

The basic assumptions required for the generalized l i n e a r 

inverse problem - (1) MED output i s a true representation of the 

earth response, and (2) the seismogram can be modelled as a 

convolution of the earth response with the input wavelet - also 

are applicable to the Backus-Gilbert inversion. That i s , we 

assume that the observed seismic trace can be expressed d i r e c t l y 

by the convolution i n t e g r a l 

m 

(12) X(tj) = ^ W(t) Y(tj-t) dt 

where 

X(tj) i s the datum corresponding to time t j . 

W(t) i s the wavelet . 

Y (t j-t) i s the spike trace (MED output) ; Y i s ccmmonly 

referred to as the kernel. 

In the case where the functions X(t) and/or Y(t) i n 
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equation (12) contain a certain amount of noise, we have some 

f l e x i b i l i t y . Linear inverse theory allows us to choose a 

solution model W (t) which w i l l reproduce the data X(t) to within 

a desired standard deviation instead of solving (12) exactly. 

This a b i l i t y i s the key which enables us to treat high noise 

problems succesfully. 

Define W(t) such that : 

W(t) = W(t) t g (0,T) 

W(t) = 0 t j (Q,T) 

That i s , the wavelet has a f i n i t e length T. Using the 

d e f i n i t i o n of the wavelet we can rewrite equation (12) as 

T 

(13) X(Tj) = ̂ W(t) Y(Tj-t) dt 

9 

The solution to eguation (13) can be constructed by minimizing 

either 
t 

(14) (W(t) ,W(t))= ^(W(t))2 dt 

or 

I 
(15) (W« (t) ,W« (t))= ^ (dW(t) /dt) 2 dt 

OL 

The solutions which we get by (14) and (15) are commonly 

referred to as the smallest and the f l a t t e s t models, 

respectively. Since the f l a t t e s t model discriminates against 
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steep g r a d i e n t s , we expect i t w i l l ensure good behaviour of the 

model i n the r e g i o n of i n t e r e s t . 

1. S m a l l e s t Model 

The k e r n e l s of eguation (12) are generated by the MED 

output. Using the nomenclature Gj f o r the k e r n e l s we o b t a i n 

(16) G j ( t ) = Y(tj-t+1) 1 ^tj-t+1< T 

G j ( t ) = 0 1 >tj-t+1 and tj-t+1> T 

Since the k e r n e l s must be a t l e a s t piecewise-continuous to allow 

i n t e g r a t i o n , i t i s convenient t o assume t h a t Y i s c o n s t r u c t e d 

from a s e r i e s of box c a r s of width At (otherwise a s p l i n e curve 

f i t t i n g approximation should be used to give a proper continuous 

approximation of the MED o u t p u t ) . For example, suppose we have 

the MED output shown i n F i g u r e 3: 

Assume the wavelet i s of l e n g t h 4 (T=4) . 

Then 

G1 (t) =Y (1-t+1) t £ (0,4) 

G2 (t) =Y(2-t + 1) t t (0,4) 

G3 (t) =Y(3-t+1) t E(0,4) 

G4(t) =Y(4-t+1) t £(0,4) e t c . 

F i g u r e s 3 and 4 i l l u s t r a t e t h e r e l a t i o n between the k e r n e l s Gj 

and the MED output Y as s p e c i f i e d i n eguation (16). 

We assume t h a t the wavelet i s a l i n e a r combination of the 

k e r n e l s : 
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F i g u r e 3 
Example of MED output f o r 

s m a l l e s t model i n v e r s i o n . 
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1 2 5 H TIME 

F i g u r e 4 

The k e r n e l s o f the s m a l l e s t model i n v e r s i o n g e n e r a t e d 

from the MED output of F i g u r e 3 . 
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d7) _W(4L-5! 0,tu-y»i 
tai 

The c o e f f i c i e n t s J&£ must be found. 

Substitute (17) into (13) to get: 

( 
V T 

0 
The problem now i s reduced to the form: 

The inner product matrix /"* i s defined by : 
r 

(20) r i # j a ^ G(.«) *j<4). it 

For the above example we have 

H,* =0. 5=/^ ( etc. 

After c a l c u l a t i n g the inner product matrix, we f i n d i t s 

spectral components which are given by the following equation : 

(21) p * *ARr 

where 

A i s the diagonalized eigenvalue matrix; A =diag ^A t >5k A...^ 

with *,» 4>... -
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B i s the eigenvector matrix , and 

E T i s the transpose of E. 

To compute the model we use 

A / 

( 2 2 ) _wi;»_j&'jLT» ( R A Y X J . M ^ ^ ) ; 

""V b *̂ &^ 
, the basis functions, and o(j , the c o e f f i c i e n t s of the basis 

functions, are given below . 

(23) 

and 

(24) 

Since the kernels can be described by a sum of step functions 

the model also w i l l be a sum of step functions . 

2. F l a t t e s t Model 

To derive the " f l a t t e s t " model, the kernels (the MED output 

Y) are assumed to be a series of functions . In t h i s case, 

eguation (16) takes the form: 

(16a) 

0,t i s the d i g i t i z a t i o n i n t e r v a l of the MED output. Note the 
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difference i n the spike sequence representation. Here we use a 

J* function rather then the step function used i n the smallest 

model case. Integrating equation (15) by parts we get 

* r 

(25) X(Tj)=Hj (t) . W(t) - ^ H j ( t ) . W (t) • dt 

where 0 » 

(26) Hj (t) = I G j ( t ) . dt ; W«=dW/dt 

By the boundary conditions imposed by physical considerations, 

W(0)=W(T)=0, we have 
T 

Hj(t)«W(t) = 0 

and the new i n t e g r a l eguation i s 

T 

(27) -X(Tj)= ^Hj(t) W» (t) dt 

0 

We proceed by solving equation (27) exactly as we did i n the 

smallest model case except for the different representation of 

the kernels. 

A simple example may help to c l a r i f y the technigue. 

Suppose that we have the same MED output as before and assume 

that the wavelet length i s now T=5 (change of wavelet length i s 

needed because of the d i f f e r e n t kernel representation). Then 

the MED output Y, the f i r s t four functions Gj(t) (j=1..4) and 

the corresponding new kernels Hj(t) are shown i n Figure 5. 

We have made use of the fact that 

U> Li (28) \ a t n jit e i 
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Figure 5 

(a) An example of the d e l t a function representation of the 

MED output Y as was used i n the f l a t t e s t model i n v e r s i o n . 

(b) the smallest model kernels G generated from the spike 

sequence Y shown i n (a) and the corresponding f l a t t e s t model 

kernels H {G r e l a t e to Y through eguation 16(a), and H r e l a t e to 

G through eguation (26)). 
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Again we compute the inner product matrix by 

r 

(29) ^H.^Hyhli 

o 

For the above example we have: 

r , . = 5 . 

/ |̂  3.— f^fi etc* 
Having the inner product matrix we proceed to find i t s spectral 

components which are defined by eguation (21). Writing the 

solution i n terms of the c o e f f i c i e n t s oC; and the base 

functions and integrating to get the wavelet model we have: 

t i 

• i ' 

where the constant of integration i s defined by the boundary 

conditions. , the base functions, and 0(« , the 

c o e f f i c i e n t s of the base functions, are defined by eguations 

(23) and (24) , respectively (with H replacing G) . 
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C. P r a c t i c a l Notes 

(a) The MED output might have a p o l a r i t y which i s the 

reverse of the re a l spike sequence and hence the wavelet 

p o l a r i t y might also be reversed (Wiggins 1977). 

(b) The wavelet i s represented by the following 

expressions : 

1. Generalized l i n e a r inverse 

or following Wiggins et a l (1976) 

a 
(30) _w** ^ V 0 A ? V * ; 

2 . Backus-Gilbert inversion 

AJ 

u, 

What we are actually looking at are the d i f f e r e n t models W* 

corresponding to d i f f e r e n t values of Q i n the generalized 

l i n e a r inverse approach or N for the Backus-Gilbert inversion. 

(c) Since there are Q° models which can be generated 

by the generalized l i n e a r inverse method and N° models which 

can be generated by the Backus-Gilbert inversion (Q° i s the 

rank of A and N° i s the rank of P ) , we w i l l have to analyse 

many models. Fortunately those models can be grouped i n t o a 

small number of groups. The following methods enable a grouping 
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of the models without the necessity of examining every one of 

them. 

1. Generalized l i n e a r inverse: 

A plot of (Q°-Q) versus ftUiX^/AX^ (Q<> i s the 

rank of matrix A) , has an en echelon l i k e shape and allows an 

easy detection of the groups. The en echelon shape can be 

explained by eguation (30) which states that the solution model 

i s a l i n e a r combination of the parameter eigenvectors. It i s 

commcnly known that the more " r e l i a b l e " contributions to the 

solution come from those eigenvectors associated with the larger 

eigenvalues. Summation of these contributions forms the large 

amplitude part of the signal. Removal of those eigenvectors 

which are associated with the smaller eigenvalues w i l l not 

change s i g n i f i c a n t l y the shape of the derived signal. 

2. Backus-Gilbert inversion 

A plot of (NO-N) versus standard deviation also has an 

en echelon shape (N° i s the rank of the inner product matrix). 

(d) A l l the models are multiplied by a cosine b e l l to 

ensure zero values at both ends. 

(e) For good quality MED output we expect the best 

models to be those that use Q1 and N 1 terms i n the 

summations (30) and (31) respectively, since these include a l l 

the r e l i a b l e contributions i n the solution. Q 1 i s the 

pr a c t i c a l rank of A i n the generalized l i n e a r inverse and N1 

i s the p r a c t i c a l rank of the inner product matrix P i n the 

Backus-Gilbert inversion. The p r a c t i c a l rank i s determined by 

the number of eigenvalues which s a t i s f y the following condition 
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11 > K A T I O . 

F o r d o u b l e p r e c i s i o n c o m p u t e r c a l c u l a t i o n s we t a k e RATIO t o b e 

1 0 - 1 O . 

E X A M P L E S 

E x a m p l e A (Good q u a l i t y MED o u t p u t ) 

The i n p u t t r a c e X s h o w n i n F i g u r e 6 (a) i s a r e s u l t o f t h e 

c o n v o l u t i o n o f t h e w a v e l e t s h o w n i n F i g u r e 6 (c) a n d t h e s p i k e 

s e g u e n c e o f F i g u r e 6 ( b ) . T h i s t r a c e h a s b e e n c o n v o l v e d w i t h t h e 

MED f i l t e r a n d t h e r e s u l t a n t s p i k e t r a c e Y° i s s h o w n i n F i g u r e 

7. T h e s p i k e t r a c e Y° was t r u n c a t e d f r o m b o t h s i d e s s o t h a t 

i t s l e n g t h w i l l f o l l o w t h e r e l a t i o n " l e n g t h o f o b s e r v a t i o n s = 

l e n g t h o f s p i k e s e q u e n c e + l e n q t h o f w a v e l e t - 1" a n d t h e 

r e s u l t a n t t r a c e i s t h e s p i k e s e q u e n c e Y c h o s e n a s t h e p a r t o f 

t h e t r a c e b e t w e e n t h e a r r o w s i n F i g u r e 7. T r u n c a t i o n i s b a s e d 

on i n t e r p r e t a t i o n o f t h e n u m e r i c a l v a l u e s o f t h e t r a c e Y ° . I n 

t h i s e x a m p l e i t i s c l e a r w h e r e Y° s h o u l d be t r u n c a t e d , s i n c e 

i t i s d e s i r a b l e t h a t t h e s p i k e s i g n a l i n c l u d e s t h e l a r g e r s p i k e s 

o f t h e MED o u t p u t . N o t e t h a t Y ( t h e t r u n c a t e d t r a c e ) i n c l u d e s 

o n l y t h e s e c t i o n o f Y ° t h a t c o n t a i n s t h e m a j o r s p i k e s . T h a t 

i s , t h e i n t e r p r e t a t i o n h a s a s s u m e d t h a t s m a l l a m p l i t u d e ' b u m p s ' 

a r e n o i s e a n d c a n b e r e j e c t e d . 

U s i n g t h e i n v e r s i o n s c h e m e s d e s c r i b e d p r e v i o u s l y , w i t h t h e 

i n p u t X a n d Y a s s p e c i f i e d a b o v e , we g e t t h e r e s u l t s s h o w n 

i n F i g u r e 8. T h e i n v e r s e o p e r a t o r o f t h e MED f i l t e r ( F i g u r e 



TIME 

F i g u r e 6 
(a) The i n p u t t r a c e X which i s the c o n v o l u t i o n o f the s p i k e 

seguence shown i n (b) with the source wavelet shown i n ( c ) . 

(b) The g e n e r a t i n g s p i k e sequence. 

(c) The source wavelet. 
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The MED o u t p u t Y? That i s , t h e r e s u l t o f t h e c o n v o l u t i o n of 

t h e MED f i l t e r w i t h t r a c e X o f F i g u r e 6 ( a ) . Arrows mark", t h e 

s e c t i o n Y used i n t h e i n v e r s i o n schemes. 

fl(d)) i s an acceptable d e s c r i p t i o n of the generating wavelet 
although i t s s i d e lobes are exaggerated. T h i s wavelet 
e s t i m a t i o n i s l i m i t e d i n the sense that e r r o r s i n the MED f i l t e r 
propagate d i r e c t l y i n t o the estimated wavelet. The s o l u t i o n 
wavelet of the s m a l l e s t model scheme. Figure 0 ( c ) , does show the 
general f e a t u r e s of the generating wavelet, but i t a l s o i n c l u d e s 
an unacceptable amount of noise ( o s c i l l a t o r y parts i n both ends 
of the recovered s i g n a l ) . The f l a t t e s t model and the 
g e n e r a l i z e d l i n e a r i n v e r s e s o l u t i o n s F i g u r e 8(b) and (a), are 
good d e s c r i p t i o n s of the g e n e r a t i n g wavelet shown i n F i g u r e 



43 

6(c). 

Except for p o l a r i t y reversals, which r e s u l t from p o l a r i t y 

reversal of the MED output, the estimated wavelets shown i n 

Figure 8 are acceptable descriptions of the source wavelet. 

However, the correct amplitude r e l a t i o n of the small lobes which 

precede and follow the large amplitude part of the s i g n a l has 

been l o s t . The deviation of the estimated wavelets from the 

generating wavelet i s a r e s u l t of the small numerical noise that 

contaminates the estimated spike sequence (the MED output) . As 

mentioned i n the section P r a c t i c a l Notes, paragraph (e), we 

expect to get the best results when Q1 and N1 assume the 

value 5 9 , the assumed length of the wavelet. The generalized 

li n e a r inverse model (Figure 8 ( a ) ) , and the f l a t t e s t model 

(Figure 8 ( b ) ) , behaved i n t h i s manner but the smallest model 

(Figure 8(c)) did not. I t i s possible that either the smallest 

model scheme i s more sensitive to noise or that the box car 

representation of the kernels i s inadequate, or both. 

The spike trace can be treated further by setting 

Yi 0 . 1 

(32) Yj = 
0 lyj < o.i 

This s p e c i f i c a t i o n i s j u s t i f i e d by the assumption that the small 

values i n the MED output are actually ncise which has been 

generated by the MED algorithm. The v a l i d i t y of t h i s assumption 

can be checked by synthetic examples. Comparison of Figure 6(b) 
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F i g u r e 8 

(a) The estimated wavelet using general l i n e a r inverse 

approach 
(b) the estimated wavelet using the f l a t t e s t model ( N = 5 9 ) . 
(c) the smallest model wavelet with N=10. 

(d) The wavelet produced by i n v e r t i n g the MED f i l t e r -

Note that the derived wavelets have reversed p o l a r i t y compared 

with the input wavelet of Figure 6(c) (see P r a c t i c a l Notes ( a ) ) . 
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with Figure 7 shows that the MED output does include some small 

•bumps' which were not included i n the generating spike 

sequence. Equation (32) excludes those 'bumps' from the input 

spike sequence Y. 

The spike trace Y as defined i n equation (32) and trace 

X of Figure 6(a) are processed with the inversion procedures. 

The results are shown i n Figure 9. The smallest model wavelet 

Figure 9(a) does not reproduce the source wavelet to within the 

expected standard. For t h i s reason, we w i l l not show ad d i t i o n a l 

examples using the smallest model calcu l a t i o n s . Note that the 

models of Figure 9(b) and (c) reproduce the o r i g i n a l wavelet 

very well. 

The exact reproduction of the input wavelet by the f l a t t e s t 

model (Figure 9(b)), and the generalized l i n e a r inverse model 

(Figure 9 (c)), i s expected, since i n t h i s p a r t i c u l a r example 

eguation (32) converts the problem to an almost noiseless one. 
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(a) The smallest model wavelet (with N=10). 

(b) the f l a t t e s t model wavelet (with N=59). 

(c) the general l i n e a r inverse model wavelet (with Q=60). 
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Example B (Low q u a l i t y MED output) 

This example was designed to demonstrate the performance of 

the different approaches i n cases of low q u a l i t y spike traces. 

We w i l l show that the l i n e a r inversion schemes are capable of 

extracting useful information out of seemingly meaningless spike 

traces. 

In Figure 10(a) and (b) we show the input trace X, 

b a s i c a l l y the one shown in Figure 6(a) plus 2.5 % white noise, 

and -the "spike" trace Y<> which i s the re s u l t of the 

convolution of the MED f i l t e r with X. In t h i s case, the MED 

operator f a i l e d to f u l f i l l i t s function of simplifying the 

observations and deriving the correct spike sequence. Compare 

Figure 10(b) to Figure 6(b), the l a t t e r showing the spike 

sequence that has been used to generate t h i s example. 

F i r s t Y° i s truncated to obtain Y (the arrows i n Figure 

10(b) mark the truncation). In t h i s example, i t i s not easy to 

determine which part of Y° should be used and we simply cheese 

Y to be that section of Y° which includes the large spike at 

i t s center. Traces X and Y described above form the input for 

the inversion schemes. The results are shown i n Figure 12 and 

13. 

Since the spike input trace i n t h i s example i s of low 

guality ( i . e. contaminated by errors), we den't expect that 

the model that w i l l give the smallest standard deviation w i l l be 

our best model. In f a c t , the model which w i l l reproduce the 

observations exactly w i l l necessarily include erroneous 

components which are due to the errors in the spike sequence. 

In order to decrease the weight of the errors i n the spike 
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F i g u r e 10 
(a) The input trace X of example B. This trace i s 

b a s i c a l l y the one shown i n Figure 6(a) plus 2.5% white noise. 
o 

(b) The M ED output Y used in example B. This trace i s the 

convolution of the tr a c e i n (a) and tne MED f i l t e r . Arrows mark, 

the section used i n the i n v e r s i o n . 
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Figure 11 

(a) A p l o t o f s t a n d a r d d e v i a t i o n v e r s u s (N°-N) f o r t h e 

f l a t t e s t n o d e l . 

(b) A p l o t o f s t a n d a r d d e v i a t i o n v e r s u s (Q°-Q) f o r t h e 

g e n e r a l l i n e a r i n v e r s e p r o b l e m . * 

(c) A p l o t of (Q°-Q) v e r s u s Max £lAX,-lj shows t h e same g e n e r a l 

b e h a v i o r as i s n o t i c e d i n ( b ) . 
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sequence we have to allow some 'errors' i n the reproduced 

observations. Hence we w i l l have to use the.plots of standard 

deviation, and maximum error, in order to analyse the d i f f e r e n t 

possible models (see section P r a c t i c a l Notes, paragraph (c)). 

In Figure 11(a), the standard deviation for the f l a t t e s t model 

versus (N°-N) i s plotted. In t h i s example N1 (practical rank 

of P ) i s 55. Note the f l a t region corresponding to 45<N°-

N<90. The significance of t h i s region i s that a l l models i n 

which 10<N<55 reproduce the observations to within the same 

standard deviation and hence they can be represented by two 

models, one for each end of t h i s region. 

A plot of the standard deviation and the maximum error 

versus Q°-Q (Figures 11(b) and (c)) for the generalized l i n e a r 

inverse model shows a f l a t region corresponding to Q°-Q<16. 

Here we w i l l represent a l l those models i n which 40<Q<56 by cne 

model, corresponding to the center of t h i s f l a t region. 

The solution wavelets that represent the d i f f e r e n t groups 

are shown in Figure 12 f o r the generalized l i n e a r inverse and 

Figure 13 for the f l a t t e s t model solutions. Note the s i m i l a r i t y 

i n the general features of the d i f f e r e n t models. The f l a t t e s t 

model solution corresponding to N=10 (Figure 13(b)) i s the best 

estimated wavelet. This i s an excellent estimation considering 

the quality of the input spike sequence. Compare Fiqures 13 (b) 

and 6 (c), and consider the fact that we used the spike sequence 

shown in Figure 10(b) which poorly resembles the true spike 

seguence of Figure 6(b). 

Note that the large amplitude part of the signal does not 

change much from one model to another. This type of behavior 
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has been discussed in the P r a c t i c a l Notes, paragraph (c). 

Example C (Synthetic seismogram) 

In the following example we w i l l show that the assumption 

that a seismogram can be modelled as the convolution of a 

wavelet with the earth's response where the response function i s 

represented by the MED output, i s useable. This assumption 

enables a representative wavelet to be computed. 

A synthetic seismogram using generalized ray theory 

(Wiggins and Helmberger 1974) has been computed from the model 

shown i n Figure 14. The following rays were considered : 

1. Leaving the source as a P wave and received as a P 

wave ; a r r i v a l time 0.745 sec; r e l a t i v e amplitude 0.33. 

2. Leaving the source as P and received as S ; a r r i v a l 

time 0.928 sec for the reflected energy and 0.927 sec for the 

refracted energy; r e l a t i v e amplitude for the combined response 

i s 0..385. 

3. Leaving the source as a S wave and received as S ; 

a r r i v a l time 1.119 sec; r e l a t i v e amplitude 1.0. 

4. Leaving the source as P, r e f l e c t i n g frcm surface B, 

r e f l e c t i n g from surface A, bouncing again frcm surface B and 

received as P ; a r r i v a l time 1.374 sec; r e l a t i v e amplitude 0.09. 

Figure 15(a) shows the synthetic trace computed from these 

ray paths. The model was constructed such that i t w i l l show 

strong interference. In such a case, the MED algorithm cannot 
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The r e s u l t s o f t h e g e n e r a l l i n e a r i n v e r s i o n : 

(a) The model c o r r e s p o n d s t o Q=4«J (Q°-Q=12), s t a n d a r d 
d e v i a t i o n s . 1 and Max =0. 22. 

(b) The model c o r r e s p o n d s t o Q= 36 (Q°-Q=20), s t a n d a r d 

d e v i a t i o n = 0 . 13 and ,1ax ̂ /iX,/^ =0. 32. 

(c) The model c o r r e s p o n d i n g t o Q=32 (Q°-Q=24), s t a n d a r d 

d e v i a t i o n s . 1 5 and Max ^J4X;|^ =0. 42. 
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The r e s u l t s of t h e f l a t t e s t n o d e l i n v e r s i o n : 
s 

(a) The model which corresponds to N=45 ( N ° - N = 5 5 ) , Standard 
deviatiou=0. 0 1. 

(bv) -the model which corresponds to N=10 ( N ° - N = 9 0 ) # standard 
deviation=0. 0 1. ' 
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H A L F S P A C E 

- SOURCE 

SURFACE 6 

O— RECEIVE/? 

Figure 14 

The model from which the synthetic seismogram of Figure 15(a) 

was generated. 

a c h i e v e a c o n p l e t e r e c o v e r y o f t h e r e f l e c t i v i t y s e q u e n c e . The 

s o u r c e v a v e l e t and t h e r e c o v e r e d r e f l e c t i v i t y s e q u e n c e a r e shown 

i n F i g u r e s 15(b) and (c) , r e s p e c t i v e l y . E x a m i n i n g t h e r e c o v e r e d 

r e f l e c t i v i t y s e q u e n c e we f i n d t h a t t h e s p i k e o f r e l a t i v e 

a m p l i t u d e 0.2 w h i c h a p p e a r s a t a b o u t 14 t i m e u n i t s i s n o i s e 

g e n e r a t e d by t h e MED a l g o r i t h m . S i n c e ve g e n e r a l l y do n o t h a v e 

t h i s i n f o r m a t i o n , we i n c l u d e t h a t s p i k e i n o u r i n p u t s p i k e t r a c e 

Y. The s p i k e s w h i c h c o r r e s p o n d t o t h e r a y s s p e c i f i e d a b o v e a r e 

w e l l l o c a t e d b u t c o n t a i n s e r i o u s a m p l i t u d e d i s c r e p a n c i e s . The 

MED o u t p u t Y° was t r u n c a t e d from b o t h ends a s i n d i c a t e d by t h e 
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Figure 15 

(a) The input trace X which i s the synthetic seismogram of the 
model i n Figure 1/+.̂  ( b ) The source wavelet. ( c ) The MED 
output, the trace Y, which i s the r e s u l t of the convolution of the 
MED f i l t e r with X. Arrows mark the section used i n the i n v e r s i o n . 
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arrows in Figure 15(c). The resultant spike trace Y and the 

input trace X (Figure 15(a)) served as input to the l i n e a r 

inversion schemes. 

A plot of the standard deviation versus N°-N for the 

f l a t t e s t model was calculated and i s plotted i n Figure 16(a). 

In t h i s example the p r a c t i c a l rank of the inner product matrix 

i s 36, and N°=58. Note the f l a t region corresponding t c 22<N°-

N<46. Since a l l those models which corresponds to 36>N>12 

reproduce the observations to within the same standard 

deviation, we w i l l represent a l l those models by two models 

corresponding to the ends of the region. These are shown i n 

Figure 17(a) and (b). 

Plots of the maximum error and standard deviation (Figure 

16(b) and (c)) for the generalized l i n e a r inverse procedure also 

have been prepared.. In Figure 16(b), we can distinguish two 

regions where the maximum error i s approximately constant: Q°-

Q<12 and 12<0_o-Q<26. In Figure 16 (c) the d i s t i n c t regions 

where the standard deviation changes comparatively slowly are: 

Q0-Q<19 and 19<Q0-Q<26. 

Since the regions determined from Figures 16(b) and (c) do 

not coincide, we w i l l have to represent the generalized l i n e a r 

inverse models by three models corresponding to the di f f e r e n t 

regions given above. These representative models are shown i n 

Figure 17(c) to ( f ) . 

The models shown i n Figures 17(a) and (c) correspond to the 

f l a t t e s t model with N=34, and the generalized l i n e a r inverse 

model with Q=33, respectively. These are models which are 

composed of nearly a l l positive values and hence are unphysical 
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(a) A p l o t of N°-N versus standard deviation f o r 

the f l a t t e s t model. 

(b) A p l o t of Q° - Q versus Hax^/AV-/^, f o r the 

general l i n e a r inverse. 

(c) A p l o t of Q°-Q versus standard deviation , for the 

general l i n e a r inverse. 
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(a) The f l a t t e s t model with N=34. (b) The f l a t t e s t model with 

N-16. (c) The general l i n e a r inverse model with Q-33. (d) The 

general l i n e a r inverse model wdth Q=21. (e) The general l i n e a r 

inverse raodel with Q*15. (f) The general l i n e a r inverse model 

with Q^7. (g) The input wavelet reversed i n p o l a r i t y . 



59 

because we expect the wavelet to include positive and negative 

values. That i s , we expect tensional stresses to fellow 

compressional stresses or positive displacements to be followed 

by negative ones. Therefore these models are abandoned on 

physical grounds. 

The remaining model wavelets shown i n Figure 17 describe 

the source wavelet of Figure 15(b) with varying degrees of 

accuracy. A l l of these models provide a consistent description 

of the general features of the source wavelet i n the region 7 to 

21 time units. However the wavelet of (e) which i s the general 

l i n e a r inverse model with Q=15 and the wavelet of (f) 

corresponds to the drop i n Max£|4Xi|^ i n Figure 16(b) (Q=7) , 

represent the true wavelet more closely and either could be 

chosen as an appropriate representation. 

CONCLUSION 

In t h i s chapter we have shown that the l i n e a r inversion 

schemes are capable of extracting a great deal of information 

from a wide variety of input data. We concentrated p a r t i c u l a r l y 

on seemingly unreliable data since that i s where we could show 

the f u l l power of the l i n e a r inverse technigues. 

The smallest model inversion has proved i n f e r i o r for t h i s 

p articular problem, probably because we represented the spike 

sequence Y as a series of box cars. 

The f l a t t e s t model approach performed s l i g h t l y better on 

example B, while the general l i n e a r inverse scheme gave somewhat 
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better r e s u l t s i n example C. Both techniques determined the 

main features of the input wavelet (in the case of example C, 

the region between time units 10 to 20 i n the solution models). 

Since two integrations are involved i n the Backus-Gilbert 

f l a t t e s t model c a l c u l a t i o n , we expect that the error w i l l be 

smoothed out. This w i l l happen only i f the spike input Y i s a 

"high freguency" trace ; i n other words only i f the wavelet 

length i s large compared to the dominant period i n the spike 

trace. I t i s probable that the f l a t t e s t model didn't perform as 

well i n example C, because of the predominant lew frequency of 

the spike trace Y of that example. Past experience with MED 

output shows that, in general, we can expect the dominant period 

i n the MED output to be small compared to the wavelet length. 

Hence we can expect substantial smoothing of the error i n the 

f l a t t e s t model scheme. 

Since the generalized l i n e a r inverse i s a parametric 

approach i t does not require continuous representation for the 

MED output. Also i t does not involve integrations and hence 

seems to be computationaly simpler. However, the method 

reguires decomposition of an nXm matrix which needs more 

computer time then the square matrix decomposition reguired by 

the Backus-Gilbert approach. For Q equal to the p r a c t i c a l rank 

of A and N equal to the p r a c t i c a l rank of /"* , the models 

generated by the generalized l i n e a r inverse and f l a t t e s t model 

are almost i d e n t i c a l . 

We demonstrated the importance of the plots of maximum 

error and standard deviation versus the number of eigenvalues 

not used in the solution , and showed how such plots can be used 
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to reduce the p r a c t i c a l number of models. At t h i s time, i t i s 

not possible to suggest an a n a l y t i c a l way to enable the user to 

choose the best model out of the given group's representative 

set. The user w i l l have to t r y each group's representative 

model as a possible estimated wavelet. 

However, one might get some i n d i c a t i o n on the quality of 

the estimated wavelet, by formulating a new l i n e a r inverse 

problem of the form: 

x=w**s 

where * denotes convolution and 

X i s the observation vector, 
— Ok. 
Wl i s the • estimated wavelet vector, and 
_ • . * i 

S* i s the . ( recovered spike sequence. 

Then one solves for the spike sequence SA. Having the set 

of spike sequences S 1 one calculates the associated set of 

varimaxes V . The "best" estimated wavelet i s the one which i s 
« 

associated with the highest varimax trace S*. 
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CHAPTEB 4 

Debubblinq as a Generalized Linear Inverse Problem 

INTRODUCTION 

The bubble pulse problem i s common to many marine energy 

sources and has been discussed in d e t a i l by Kramer et a l (1S68). 

The problem i s caused by successive o s c i l l a t i o n s of the gas 

bubble generated by the energy source. Each cycle of the 

o s c i l l a t i n g bubble corresponds to a signal propagating outward. 

The source wavelet as recorded on a seismic trace i s then a 

t r a i n of the wavelets generated by the i n d i v i d u a l cycles. The 

number of pulses and the i r periods are primarily a function of 

detonation depth and energy released during creation of the 

bubble. The length of the compound wavelet depends on the 

number of expand-collapse cycles of substantial energy generated 

by the bubble, u n t i l i t has completely collapsed inward or 

vented remaining energy to the atmosphere. Duration of the 

compound wavelet often exceeds 0.5 sec. . This excesive length 

creates severe interference problems and causes masking of 

events, e s p e c i a l l y on those parts of seismograms following large 

amplitude r e f l e c t i o n s . 

The aim of debubbling schemes i s to eliminate the bubble 

puls€ e f f e c t s , and to compress the compound wavelet signature to 

one that i s simple and of short duration. Mateker ( 1 9 7 1 ) 

suggested a debubbling scheme which shapes the recorded source 
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wavelet into a pulse at the time of the i n i t i a l pulse. This 

process can be ca r r i e d out through the use of the Weiner shaping 

f i l t e r s . Recently, Wood et a l (1978) suggested two clos e l y 

related methods. The f i r s t can be described by the following 

stages : 

1. Crosscorrelate the data and the known source 

signature. The resultant trace has a better signal tc noise 

r a t i o , and i t s wavelet i s the autocorrelation of the source 

signature. The new wavelet i s a zero phase one. 

2. Using Weiner f i l t e r s ( T r e i t e l and Robinson, 1 966), 

shape the autocorrelated source wavelet i n t o a short duration 

desired s i g n a l . When shaping the autocorrelated wavelet use the 

fact that i t i s a zero phase wavelet, one of the advantages of 

the crosscorrelation of step 1. 

3. Apply the shaping f i l t e r of step 2 to the 

crosscorrelated data. 

The second i s s i m i l a r and can be described b r i e f l y as follows: 

1. Crosscorrelation of the known source signature 

with the data (as in step 1 above). 

2. Compute the zero delay Weiner inverse f i l t e r of 

the wavelet and apply i t to the data. 

3. Crosscorrelate the zero delay Weiner inverse 

f i l t e r of step 2 with the data. 

As seen from the above discussion, currently used 

debubbling methods employ Weiner shaping f i l t e r s i n their 

algorithms. These depend c r i t i c a l l y on the choice of the length 

of the f i l t e r (an unknown parameter), and cannot overcome 

problems which a r i s e due to errors i n the recorded wavelet. 
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In t h i s work, a new and diff e r e n t approach to the 

debubbling problem i s presented. I t makes use cf the 

th e o r e t i c a l concepts embodied i n generalized l i n e a r inversion 

(Wiggins et a l 1976; also see Chapter 3). This technigue i s 

applied f i r s t to an estimation of the wavelet and secondly to 

the debubbling of the seismic trace using the estimated wavelet. 

Debubbling as a generalized l i n e a r inverse problem i s 

described by the following steps, and shown schematically i n the 

flow diagram of Figure 1. 

1. Apply minimum entropy deconvolution (Wiggins 1977; also 

see Chapter 2) to the observed data to get the deconvolved spike 

trace. 

2. Ose the deconvolved spike trace and the data as an 

input to the generalized l i n e a r inverse procedure to compute the 

estimated bubble pulse wavelet. 

3. Use the information acquired i n steps 1 and 2 to 

construct the compound source signature ( i . e . the i n i t i a l pulse 

plus appropriate bubble o s c i l l a t i o n s ) . 

4. Use the compound source signature and the observed data 

as input to the generalized l i n e a r inverse scheme to determine 

the estimated earth impulse response. 
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Figure 1 

1. Data. 

2. MED. 

3. Deconvolved spike 

t r a c e . 

4 . Generalized l i n e a r 

inverse. 

5. Estimated wavelet. 

6. Construction of the 

compound signature. 

7 . Debubbled trace 
Flow diagram of the proposed 

debubbling procedure. 

SOURCE S I A TUT? 7=: ESTIMATION AND DE3U3BLING 

The assumption that a seismogram can be modelled as the 
convolution of the earth's impulse response with a source 
wavelet provides the b a s i s f o r t h i s work. Mathematically the 
statement i s 

X=S*w • (1) 

where 7. i s the observed seismogram, 
S i s the earth impulse response and 
W i s the source wavelet. 

In summation n o t a t i o n equation (1) takes the form 
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AM 

j=1 n, n i s the length of the observed data; 

k=1.,. ...m, m i s the length of the wavelet; and 

the r e l a t i o n n=l+m-1 must hold, where 1 i s the length 

of the earth's impulse response. 

Having the observed data (the seismogram) and either the 

source signature or an estimate of the earth's response, one can 

solve for the unknown time series. For the sake of the 

discussion l e t us assume that we have the seismogram X and an 

estimate of the source signature W. Writing eguation (2) i n i t s 

matrix form we get : 

X=A*S (3) 

where 

A( i , j) =W ( i - j + 1) j=1 1 ; i=1....n (4) 

with 

W(i-j + 1)=0 for i - j + 1<0 and i - j + 1>m 

Eguation (3) represents an overdetermined system i n which 

n>l, i . e. the number of eguations i s larger then the number 
t 

of unknowns. We solve t h i s system of eguations by minimizing 

the error vector AX=X° a s- X C A L i n a l e a s t squares sense. For 

a more detailed discussion the reader i s referred to Chapter 3. 

The least squares solution of (3) i s given by : 
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or i n summation notation 

A.. 

where 

0 T i s the transpose of U which consists of g eigenvectors 

of length n associated with the columns of A; these vectors are 

commonly referred to as the data eigenvectors. 

V consists of g eigenvectors of length 1 associated with 

the row vectors of A; these are commonly referred to as the 

parameter eigenvectors. 

A"' i s the inverse of A which consists of the q 

eigenvalues of A in descending order. A = d i a g w h e r e q 

i s the rank of A. 

Equation (6) states that the desired earth response i s a 

weighted summation of the parameter eigenvectors. It i s 

advantageous to use equation (6) as our solution, p a r t i c u l a r i l y 

when one i s dealing with noisy data or when the estimated source 

signature i s contaminated by noise. In both cases one could 

choose to r e j e c t the smaller and less r e l i a b l e eigenvalues 

before proceeding with the c a l c u l a t i o n s (see Chapter 3). This 

i s e a s i l y done by l e t t i n g Q i n equation (6) assume smaller and 

smaller values. I t i s clear that the euclidian length of the 

error vector AX grows as we reject more and more of the 

smaller eigenvalues, but at the same time we eliminate the l e s s 

(5) 

(6) 
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r e l i a b l e components of the solution. A useful t o o l i n the 

analysis of the d i f f e r e n t solutions (corresponding to d i f f e r e n t 

Q values) i s the plot of the standard deviation (|4X|Z) versus 

the number of eigenvalues rejected (see Chapter 3 ) . 

In the alternative case where one has the seismogram X and 

the estimated earth response S, the only change i n the above 

eguations occurs i n the d e f i n i t i o n of A. Then A i s given by : 

A ( i , j) =S ( i - j + 1) j = 1. m ; i = 1 n (7) 

where 

S(i-j+1)=0 for i-j+1<0 and i-j+1>l . 

Eguations (5) and (6) s t i l l hold with W replacing S. 

The flow diagram of Figure 1 outlines the procedure which 

i s followed to obtain a debubbled seismic trace. Let us examine 

the various steps. 

Having the f i e l d trace, we aim f i r s t at an intermediate 

target - estimation of the wavelet. To estimate the wavelet we 

require a rough estimate of the earth's response. To f i n d that 

estimate we apply MED to the data. This leads to step 1 i n the 

computation procedure. 

1. Apply minimum entropy deconvolution (Wiggins 1977 ; 

also see Chapter 2) to the f i e l d data. The MED output serves as 

a f i r s t approximation to the earth's impulse response. 

A troublesome point i n step 1 concerns the choice of the 

length of the MED f i l t e r . Long MED f i l t e r s tend to compress 

much of the energy i n a trace into one large spike, t h i s 
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o v e r s p i k j. ng b e i n g an u n d e s i r a b l e f e a t u r e . S h o r t M E D f i l t e r s 

w i l l r e c o g n i z e o n l y t h e b a s i c b u b b l e p u l s e s i g n a t u r e as t h e 

s o u r c e s i g n a t u r e and h e n c e e a c h e v e n t w i l l be r e p r e s e n t e d by t h e 

s p i k e s a s s o c i a t e d w i t h t h a t s i g n a t u r e . F i g •ire 2 i l l u s t r a t e s t h e 

l a t t e r s t a t e m e n t . M l t h e s h o r t MED f i l t e r h as done i s t o 

" s p i k e up" t h e a p p e a r a n c e o f the b u b b l e w a v e t r a i n . However, 

t h i s s i t u a t i o n i s p r e f e r r e d t o one i n which i n f o r m a t i o n m i g h t be 

l o s t . Then i n g e n e r a l a s h o r t M E D f i l t e r i s u s e d . 

Figure 2 

(a) Primary bubble pulse signature. (b) Compound wavelet 

signature (bubble pulse o s c i l l a t i o n s ) . (c) The output of the 

convolution of a short MED f i l t e r with the compound wavelet. 

H a v i n g a r o u g h e s t i m a t e o f t h e e a r t h ' s r e s p o n s e we a r e now 

i n a p o s i t i o n t o c o n t i n u e t o s t e p 2 - e s t i m a t i n g t h e w a v e l e t . 

2. U s i n g t h e o b s e r v e d d a t a X and t h e s h o r t f i l t e r MED 

o u t p u t 5 a s an i n p u t t o t h e g e n e r a l i z e d l i n e a r i n v e r s e method, 

we e s t i m a t e t h e b a s i c b u b b l e p u l s e s i g n a t u r e W . 
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Note that i n stage 2 we prefer to use a short MED f i l t e r 

since a long f i l t e r w i l l overspike the data and w i l l cause a 

s i g n i f i c a n t loss of information. The use of a short MED f i l t e r 

r e s u l t s i n an estimated wavelet signature corresponding to one 

in d i v i d u a l basic bubble waveform. As described i n step 3, t h i s 

wavelet serves as the basic form from which the bubble pulse 

wave t r a i n i s constructed. 

3. Examine the MED output and the observed data and 

ide n t i f y those events which have been generated by the bubble 

pulse. Bubble pulse events on a T-X diagram do not show 

d i f f e r e n t i a l moveout as the distance changes- One then looks 

for p a r a l l e l hyperbolas corresponding to the primary and the 

bubble pulses as sketched in Figure 3. Reflection events w i l l 

show d i f f e r e n t i a l moveout re l a t i v e to the bubble o s c i l l a t i o n s . 

On a T-X diagram they w i l l appear as converging hyperbolas as 

shown in Figure 4. 

Using the MED output and the data one can measure the 

bubble periods A T ; and estimate the r e l a t i v e amplitudes. 

Accurate estimation of the bubble pulse periods ATj i s 

important; however, r e l a t i v e amplitude estimates are not as 

important and w i l l not influence c r i t i c a l l y the re s u l t s . From 

the bubble o s c i l l a t i o n periods, the corresponding r e l a t i v e 

amplitudes, and the basic pulse wavelet, the r e p e t i t i v e bubble 

pulse wave t r a i n can be constructed. This leads to step 4. 

4. Using the observed data X and the compound wavelet 

signature W as an input to the generalized l i n e a r inverse 

scheme, we obtain an estimate of the earth's impulse response. 

This response does not include any of the secondary bubble 
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. . I , . ^ 
' X, X, x 

Figure 3 - Bubble pulse events do not show d i f f e r e n t i a l 

moveout - the branches corresponding to such events w i l l be 

p a r a l l e l . 

T 

Figure 4 - R e f l e c t i o n events on a T-X diagram show d i f f e r e n t i a l 

moveout. 
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o s c i l l a t i o n s ; the o r i g i n a l complex bubble pulse signature 

collapses to a single 'spike 1 i n the earth response. Note that 

step 4 i s simply the reverse of step 2. 

EXAME1ES 

A. Synthetic Seismogram 

The f i r s t example that w i l l be shown demonstrates only step 

4,. Steps 1 and 2 were discussed i n d e t a i l i n Chapters 2 and 3, 

and step 3 w i l l be demonstrated i n the next example. 

Synthetic seismograms for the simple model shown i n Figure 

5 have been generated using generalized ray theory (Wiggins and 

Helmterger 1974). This model i s a s i m p l i f i c a t i o n of a s i t u a t i o n 

one may encounter when exploring the depth of the sediments i n a 

deep water region. Model c h a r a c t e r i s t i c s are summarized i n 

Table I. 

TABLE I 

Model ch a r a c t e r i s i c s for c a l c u l a t i o n of synthetic 

seismograms. 

Thickness Depth P -vel o c i t y Density 

(km) (km) (km/sec) (gm/cm3) 

Water 1.5 1.5 1.5 1. 0 

Sediment 0.75 2. 25 3.0 2.0 

Basalt half half 6.0 3. Q 

layer space space 
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In t h i s example, the primary P r e f l e c t i o n s with 

v e r t i c a l t r a v e l times of 2 sec for the sea bottom r e f l e c t i o n and 

2.5 sec for the r e f l e c t i o n from the base of the sediments w i l l 

be considered. The compound wavelet which has been used (Figure 

6) was constructed to simulate an energy source which sends out 

a primary signal followed by two bubble pulses. Relative 

amplitudes and the corresponding bubble periods are shown i n 

Figure 6. Total length of the compound wavelet i s 0^6 sec. 

These wavelet c h a r a c t e r i s t i c s were chosen because of the 

s i m i l a r i t y with the expected c h a r a c t e r i s t i c s of the f i e l d 

example to be described next. 

Eight synthetic traces were generated corresponding to 

offsets between 0.2 km and 1.6 km with receiver separation of 

0.2 km. The traces were normalized such that the largest 

amplitude i n each trace was unity (Figure 7 ) . Relative 

amplitudes for r e f l e c t i o n s from the base of the sediments range 

from 0.22 for the near v e r t i c a l r e f l e c t i o n s to 0.1 f o r the 

widest angle r e f l e c t i o n s . Numerical noise l e v e l i n the 

synthetic seismograms increases with the o f f s e t as a re s u l t of 

longer c a l c u l a t i o n i n t e r v a l s . Note that the type cf behavior 

shown i n Figures 3 and 4 i s c l e a r l y observed i n t h i s synthetic 

example. In p a r t i c u l a r , the r e f l e c t i o n from the base of the 

sediments i s hidden by the bubble pulse events on traces 1 to 4 

while i t can be observed from traces 5 to 8. 

The synthetic seismograms of Figure 7 and the bubble 

o s c i l l a t i o n wavelet of Figure 6 formed the input to the 

generalized l i n e a r inverse scheme as discussed i n step 4. The 

debubbled seismograms determined from application of the inverse 
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Figure 5 - The l a y e r model used in the construction of the 

synthetic seisnogram. 

Figure 6 - Signature of the compound source wavelet used t o 

generate the synthetic seismogram. 



Figure 7 - Synthetic seismogram (generalized ray theory) 

based on the model of Figure 5. The source wavelet i s shown i n 

Figure 6. 
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procedure to each trace i s shown in Figure 8. Two major e f f e c t s 

are noted. F i r s t , the extended bubble pulse o s c i l l a t i o n wave 

tr a i n has been reduced to just one pulse, and further t h i s pulse 

has been compressed to have a greater ' s p i k e - l i k e 1 character. 

Also, as the numerical noise l e v e l increases, the solution 

becomes more o s c i l l a t o r y as evidenced by traces 7 and 8. On 

these traces, the r e f l e c t i o n from the base of the sediments 

shows only marginally above the background noise l e v e l . 

Considering that the r a t i o of the smaller amplitude 

r e f l e c t i o n to the larger one i n traces 7 and 8 i s about one to 

ten and that these traces include noise with a maximum amplitude 

of about 50% of the smaller r e f l e c t i o n amplitude, the r e s u l t s of 

Figure 8 form a good output. 

B. FIELD EXAMPLE 

Clowes et a l (1978) and Thorleifson (1978) have described a 

marine deep seismic sounding program carried out i n Winona 

Basin, a deep water (2 km) sedimentary basin located west of 

northern Vancouver Island, B r i t i s h Columbia. Signals from six 

i n d i v i d u a l hydrophones separated by 90m and suspended at 45m 

depth from a 600m cable t r a i l e d behind the receiving ship were 

recorded d i g i t a l l y while the shooting ship detonated explosive 

charges ranging i n size from 2.2 kg to 200 kg at distances from 

less then 1 to 95 km. Clowes (1977) has described the system i n 
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d e t a i l . 

Seismograms from 2.2 kg shots were detonated at 7m and 

recorded at distances up to about 6 km to form s u b - c r i t i c a l 

incidence r e f l e c t i o n p r o f i l e s . Thorleifson (1978) has described 

the interpretation of seme of these. Six traces from one shot 

have been extracted from one p r o f i l e and are shown i n Figure 9. 

For the purposes of t h i s study, these traces have been 

normalized such that the maximum amplitude i n each trace has a 

r e l a t i v e amplitude of 1.0. The data are bandpass f i l t e r e d from 

5 to 3C hz. 

The most prominent a r r i v a l s are the water bottom r e f l e c t i o n 

with i t s associated bubble o s c i l l a t i o n s as indicated on the 

figure by W, W1 and W2. By car e f u l l y looking at d i f f e r e n t i a l 

moveout between d i f f e r e n t phases f o r many correlatable cycles, 

Thorleifson (1978) was able to identi f y some primary r e f l e c t i o n s 

from within the sediments of Winona Basin. His i d e n t i f i c a t i o n 

of these events i s shown by the l e t t e r s A, B and C on Figure 9. 

We note that the bubble pulse wave t r a i n shows the 

ch a r a c t e r i s t i c s described i n Figure 3, while the primary 

r e f l e c t i o n s show those depicted i n Figure 4. 

From Figure 9, i t i s clear that the source wavelet with 

bubble o s c i l l a t i o n s can be constructed from the primary pulse 

followed by two bubble pulses. The f i r s t step i n our 

debubbling-pulse compression procedure i s to estimate the basic 

bubble pulse signature in every trace. We do not expect only 

one basic bubble signature to hold for the d i f f e r e n t traces 

since each of these corresponds to d i f f e r e n t angles of 

incidence. The phase s h i f t problem might be circumvented by use 
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F i g u r e 9 - S i x t r a c e s from a r e f l e c t i o n p r o f i l e recorded o f f 

Vancouver I s l a n d . Traces are at d i s t a n c e s from 1.0 to 1.5 km. 

Each t r a c e i s n ormalized t o u n i t amplitude. 
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Figure 10 — Output traces from the single channel minimum 

entropy deconvolution procedure applied to the seismogram of 

Figure 9 . 
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of the envelopes of the analytic s i g n a l (Clayton et a l 1976). 

However, i n t h i s work we prefer to calculate the actual wavelets 

from which the i n d i v i d u a l traces are generated. 

Applying the "short" length MED f i l t e r to the data shown i n 

Figure 9, one gets the spiked outputs of Figure 10 which serves 

as a f i r s t approximation to the earth's response. Because phase 

s h i f t s are expected, different MED f i l t e r s were applied to 

dif f e r e n t traces. The parts of the spiked traces marked by 

arrows i n Figure 10 with the corresponding parts of the data 

traces marked by arrows i n Figure 9 were used to estimate the 

basic bubble signatures of Figure 11 as discussed i n step 2. 

Di s t i n c t differences are e a s i l y observed between the di f f e r e n t 

bubble pulse signatures. Note i n p a r t i c u l a r the wavelet 

associated with the f i f t h trace corrresponding to offset of 1.4 

km. 

The basic bubble pulse signatures shown i n Figure 11, 

together with the periods and amplitude information acquired 

from the MED output and the o r i g i n a l data, are used to construct 

the compound wavelets as discussed i n step 3. The bubble 

periods were estimated to be 0.26 sec for the f i r s t bubble 

pulse, and 0.22 sec f o r the second with basic pulse signature 

length of 0.12 sec. The t o t a l compound signature length i s 0.6 

sec, and the r e l a t i v e amplitudes that were used are: 1.0 f o r the 

primary pulse, 1.0 to 0.8 f o r the f i r s t bubble pulse and about 

0.7 for the second. As mentioned e a r l i e r , the r e l a t i v e 

amplitude does not carry as much weight as the estimated bubble 

period, and w i l l not af f e c t the solution as c r i t i c a l l y . The 

compound bubble pulse wavetrain for trace 1 i s shown i n Figure 
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l 1 1 > 

0 0 0-2 D.M 0.6 
T I K E S E C . 

Figure 1 1 - (a) The basic bubble signatures associated with the 

d i f f e r e n t t r a c e s . Note i n p a r t i c u l a r the phase s h i f t e d wavelet 

associated with the 5 t r a c e . (b) Source wavelet for trace 1 . 
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11(b). The remaining 5 compound wavelets have s i m i l a r 

appearance a f t e r the construction which used the basic wavelets 

of Figure 11 (a). 

The compound wavelet signatures can be used together with 

the desired section of the recorded data, as described in- step 

4, i n order to get the generalized l i n e a r inverse outputs 

i . e . the desired earth's response. The computed debubbled 

traces are shown in Figure 12. 

It i s easy to i d e n t i f y the f i v e r e f l e c t i o n events which 

dominate the section; these are marked i n Figure 12 by W for the 

water bottom r e f l e c t i o n , A°, A, B, and C. 

Figure 12 i s a considerable improvement over the observed 

data shown i n Figure 9. The ambiguity concerning the 

authenticity of some events has been removed and the output 

traces are considerably more spiky. In p a r t i c u l a r , one can now 

observe without any d i f f i c u l t y the events marked by A° and A 

which were completely or p a r t i a l l y masked by the bubble pulses. 

There are some differences i n the l e v e l of performance of 

the scheme for the d i f f e r e n t traces. For example, consider 

event C. Traces 1,4,5,and 6 are of better quality then traces 2 

and 3. However, for the most part, the events marked on Figure 

12 are clear and continuous. 

In the solution of t h i s example, we did not r e j e c t any of 

the smaller eigenvalues, since at each stage cf the operation we 

f e l t that the degree of r e l i a b i l i t y of our r e s u l t s was high. 

Convolution of the estimated wavelets with the estimated impulse 

responses gave calculated seismograms which d i f f e r from the 

f i e l d seismograms by a standard deviation of 0.15 to 0.20 when 
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F i g u r e 12 - The estimated impulse response set (debubbled 

seismograms) c a l c u l a t e d by the g e n e r a l i z e d l i n e a r i n v e r s e scheme. 

The p o l a r i t y r e v e r s a l of the output response i n the f i f t h t r a c e 

(offset, i s about 1.4 km) i s due t o the phase s h i f t e d wavelet. 

R e f l e c t i o n events are marked b y W, A°, A, B and C. 
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normalized to a maximum amplitude of 1. We f e e l that such a 

standard deviation i s acceptable and the debubbled traces are a 

better representation of the earth's response function, thereby 

enabling a better interpretation. 

CONCLUSION 

The generalized l i n e a r inverse scheme has been shown to be 

a useful t o o l for wavelet estimation and debubbling. We 

estimated the wavelet and used t h i s estimate i n cur debubbling-

signature compression procedure. 

An attempt to deconvolve a trace given an error-

contaminated wavelet by using Weiner f i l t e r s or by d i v i d i n g the 

trace's Fourier transform by that of the given wavelet w i l l 

often re s u l t i n erroneous outputs. We believe that the method 

described i n t h i s work increases the processor's a b i l i t y to deal 

with noisy wavelets. 

An important advantage of the generalized l i n e a r inverse 

scheme i s that one does not (and can not) solve for the impulse 

response exactly. Rather, one gets the l e a s t sguares solution. 

Since a l l of the eguations i n the deconvolution problem are 

weighted egually, the presence of errors i n some of them w i l l 

not necessarily re s u l t i n erroneous solutions. Furthermore, 

using the properties discussed in Chapter 3, we are able to 

solve the deconvolution problem to within a prespecified 

standard deviation, provided that t h i s standard deviation i s 
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consistent with the given problem (one cannot get out of the 

data more then i t has). The smallest standard deviation 

(S.D)min i s achieved when a l l the eigenvalues are kept i n the 

solution of eguation (6). However, i f (S.D) min i s small 

compared to the estimated noise l e v e l , the mechanism of small 

eigenvalues rejec t i o n can be used. This mechanism allows us to 

solve problems with highly noisy observations, or highly ncisy 

wavelets (see Chapter 3) . 

The proposed scheme treats debubbling and signature 

compression i n one step and thus reduces the r i s k of accumulated 

error. (Although the singular value decomposition process i s a 

time consuming one, i t seems to be reasonably stable). 

Since the wavelet signature within the same trace i s time 

dependent, one may expect that an inverse f i l t e r , calculated for 

a ce r t a i n time i n t e r v a l , may not perform acceptably i n another 

time i n t e r v a l along the trace. The generalized l i n e a r inverse 

scheme i s more f l e x i b l e to errors i n the wavelet and hence we 

expect that given a ce r t a i n wavelet, the inversion scheme w i l l 

be able to be used successfully over a longer time i n t e r v a l . 

An important consideration i n our scheme i s the singular 

value decomposition process, which i s a time consuming one and 

hence increases the cost of the inversion. In order to reduce 

the size of the problem, one has to increase the d i g i t i z a t i o n 

i n t e r v a l , which i n turn might reduce the solution's guality. 

However, i n many cases the data are d i g i t i z e d at smaller 

i n t e r v a l s than what i s r e a l l y necessary. In such cases, 

increasing the d i g i t i z a t i o n i n t e r v a l w i l l r e s u l t i n considerable 

saving without any reduction i n solution quality. In the f i e l d 
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example d i s c r i b e d above, we i n c r e a s e d the d i g i t i z a t i o n i n t e r v a l 

from 0.0032 sec to 0.0096 sec, i n c l u d e d 2.0 sec of observed data 

with a 0.6 sec wavelet and obtained a response output of l e n g t h 

1.4 sec. Even with t h i s data decimation, a matrix of the c r d e r 

of 200 by 140 had to be i n v e r t e d . 

Our work and others (D.W. Oldenberg, p e r s o n a l 

comunication, 1979), suggests l i n e a r i n v e r s e methods may be 

q u i t e s u c c e s s f u l i n t r e a t i n g d e c o n v o l u t i o n problems i n which 

nois e i s p r e v a l e n t . Then, i n cases where r e g u l a r time s e r i e s 

a n a l y s i s technigues do not g i v e a c c e p t a b l e r e s u l t s , the more 

co m p u t a t i o n a l l y expensive i n v e r s i o n a l g o r i t h m s could be a p p l i e d . 

In t h i s study we have approached the debubbling procedure 

as a g e n e r a l i z e d l i n e a r i n v e r s e problem. As d i s c u s s e d i n 

Chapter 3, an a l t e r n a t i v e approach i n which the problem can be 

formulated i s the B a c k u s - G i l b e r t technique. The a p p l i c a t i o n of 

t h i s procedure might g i v e even b e t t e r r e s u l t s than those shown 

i n t h i s study. 
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