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Abstract

Ocean bottom magnetometer data from a siﬁe on the'Pacific
plate .above 3 my old lithosphere are inverted for electrical
conductivity .as a  ‘function of depth. Méghetotelluriq
,_impedances are calculated by the vertical gradient .method
using the fields at the OBM in conjuction with those measured
at the Victoria Geomagnetic Observatory. The approximations
involved are examined. Winnowing criteria are proposed which
isolate those impedances compatible with all the model and
source field assumptions. These then define the best possible
data set. A number of'inversion algorithms are applied to the
data and a wide range of acceptable conductivity profiles are
constructed. All profiles exhibit a uniform, relatively high
conductivity of about 0.2 S/m from the surface down to a depth
of 100 km. Exact and approximate bounds on the conductance are
calculated 1in an effort to quantify the non-uniqueness of the
diverse conductivity models. Profiles with a minimum of
structure are wused to calculate the partial melting and
temperature variations beneath the 3 my old site. All results
are compared with three other magnetotelluric analyses above
1,'30 and 72 my old 1lithosphere. The 3 my o¢ld datum is
discordant and does not fit the trends interpreted from the

other three studies.
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CHAPTER 1 THE OCEAN BOTTOM MAGNE‘TOTELLURIC METHOD
1.1 Introduction |

. Electromagnetic fields are induced 1in the earth by a
variety of natural sources. The worldwide occurrence of
lightning‘storms generates high frequency oscillations gteafer
than about 1 Hz. Below 1 Hz, midropulsatidns in the earth's
magnetic field cause variations over a wide band of periods
ranging from 1 to 600 s. At longer periods (minutes to days) .
magnetic storms resulting from the interaction of the solar
wind plasma with the magnetosphere dominate the spectrum. A
ring current forms at an altitude of from 2 to 10 earth radii
as oppositely charged particles spiral along magnetic field
lines 1in opposite directions. The quiet day solar variation
(Sq) derives from a large, stable current system concentrated
in the ionosphere near the magnetic poles. This occurs mainly
in response to solar heating with perturbations perpetrated by
the solar wind. Movements of the highly conducting ocean
generate additional fields which are 1important for this
particular ocean bottom experiment. Surface and internal
waves, turbulence, tides and currents all contribute to the
natural electromagnetic field observed on the ocean floor.
Larsen (1973), Filloux (1973) and Cox et al (1970) discuss
both ionospheric and oceanic sources and their relevance to
electromagnetic induction at sea.

The electromagnetic (EM) waves generated by all sources

reflect from and refract into the earth. The refracted waves
diffuse vertically downward for almost any angle of incidence

because of the high air/earth conductivity contrast. 1In



general, the earth attenuates short period oscillations more
. rapidly than long period ones and conductors attenuate the
fields more than resistive layers. A measure of the decay as a
function of frequency 1is the mégnetotelluricv impedance
Z2(e) = E(u)/H(Q) where E(u).and H(w) are orthogonal frequency
domain electric and magnetic fields, respectively (Cagniard,
1953). 1If, over an isotropic, hbrizontally layered (one
dimensional) earth, the impedance is known precisely at every
frequency then the conductivity-depth profile, o(z), is
determined exactly (Bailey, 1970). Thus, the variation of
penetration of EM waves as coded by 2Z(w) 1is the key to
unlocking the conductivity structure of a one dimensional
earth,.

Over a more complex two dimensional earth (¢(z,y) say)
the impedance becomes a 2x2 tensor relating the horizontal
electric and magnetic fields (see section 2.2). This is
because certain 2-D and 3-D models may cause currents to flow
parallel as well as perpendicﬁlar to. a primary inducing
magnetic field. The tensor formulation is advantageous since
in the principal axes frame of a 2-D structure the impedances
along and across strike do not depend on the source field
polarization. Section 2.4 describes rotation properties of the
tensor which determine the principal axes of the 2-D structure
and distinguish between 2-D and the very much more difficult
3-D models (Vozoff, 1972).

Unfortunately, for practical applications, constraints
imposed wupon e(z) by the MT method are not too restrictive.

The resolving power of MT data and the uniqueness of



constructed models are two problems which have as yet no
rigorous solutiohs. Qualitatively, it is known that high
fesolution is ‘achieved for conductive zones where thé fields
are rapidly attenuated. Resistive layers are more poorly
defined. Furthermofé; below_é certain depth even a long péfibd

datum 1is insensitive to high conductivity since the fields
have decayed to very small amplitudes (Parker, 1982). The
second problem of model uniqueness occurs because we can only
secure a finite number of inaccurate MT responses. Using these
data, any invérsion algorithm can return only a few of the
infinitely many conductivity profiles which fit the data
equally well. Within a particular routine there may be
parameters to vary which result in slightly different models.
However, a different inversion scheme 1is 1likely 'to return
models which are globally distinct and’which cannot be found
by the other algorithm (see Chapter 4). Thus, non—uniquenéss
prohibits over-interpretation of minute structures visible on
a single o(z) profile (Parker et al, 1983). Inferring what
structures are common to all models which fit the data is
difficult for non-linear inverse problems such as MT. Rather
than dealing with a profusion of ¢(z) curves there may be more
profit in quantifying the bounds on the average conductivity
between two depths or the range of conductance models allowed
by the data (Oldehburg, 1983). The conductance is simply the
integral of the conductivity from the .surface down to a
certain depth. The global bounds on the conductance presented
in section 4.4 give a measure of the resolution of the data as

a function of depth.



Electrical conductivity is an important property since it
is related to other geophysical quantities such as
temperature, partial melting -and petrblogy. These, in turn,
provide constraints on structural and dynamic models of the
earth's c:uSt and mantle. Results from ocean bottom
instruments placed above 1, 30 and 72 my old 1lithosphere by
Law and Greenhouse (1981) and Filloux (1967,1977) vary with
age in a way that is consistent with the theories of sea-floor
spreading. Data from these three sites were inverted and
compared by Oldenburg (1981) to reveal a correlation between
conductivity and 1lithospheric age also noted by Filloux
(1980). The pattern reported by Oldenburg (1981) was that for
increasing age the depth to a conductive region increased from
70 to 120 to 180 km, for these data sets. The conductivity
highs are well correlated with the seismic low velocity zone
and may be representative of a partially molten asthenosphere.
Results from the new study above 3 my old lithosphere disrupt
tﬁis coherent picture somewhat by persistently showing a
fairly uniform high conductivity zone from the surface down to
about 100 km depth. Subsequent analysis of the previous three
data séts using different inversion schemes has shown the
observed trends are not as strong as initially believed. But
even allowing for the high degree of non-uniqueness inherent
in the MT method it appears that the 3 my datum is strikingly

discordant (see section 5.1).

1.2 The Experiment

Several ocean bottom magnetometers (OBM's) were deployed



off Vancouver Islénd by L.K.Law during the summer of 1980. Law
and Greenhouée (1981) describe the instrument design. The one
used for this study was furthest from the coast in about 2760m
of water and above 3 .my old lithosphere (see Figure 1). It
recorded‘three-orthogonal componénts_ ofi the magneﬁiq_'field
from 23 July to _26 August‘1980. The sensors were flux gate
magnetometers accurate to 1 nT. Every minute fhe component
values were recorded on digital tape. Tilt meters within the
instrument package showed the OBM's horizontal axes to be
about one degree from level so no correction was made to the
recorded field values. However, a correction for the
orientation of the horizontal axes was made to align them with
geomagnetic north (H) and east (D). The relative amplitude of
the horizontal components during magnetically quiet times
determined this rotation angle as 20.6° clockwise.

An example of 4 days of rotated OBM data is shown in
Figure 2. The two horizontal channels (H and D) are plotted
below the wvertical channél (Z). The time on the horizontal
axis is in hours since 0701 23 July 1980 UT. The record is
dominated by the diurnal Sg variation with peak to peak
amplitudes of up to 100 nT on the D component. Superimposed on
these regular oscillations is a sudden commencement magnetic
storm beginning near hour 52.

Records from the Victoria Geomagnetic Observatory (VIC)
are reguired to calculate the sea-floor impedance (see section
2.5). There were two gaps in the VIC data which totalled 9
hours. These missing hours are filled by a signal most similar

to all 33 daily records. That common signal was found wusing



Figure 1.

Location map for the ocean bottom magnetometer (OBM) and the
Victoria Geomagnetic Observatory (VIC). Bathymetric contours
are in meters. The arrow near the OBM points towards the north.
magnetic pole.
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Figure 2.
Four days of the three component OBM data. D is geomagnetic
east, H is geomagnetic north and Z is vertically down.



the method described by Oldenburg, Scheuer and Levy (1982).
Each daily trace is decomposed into a linear ‘combination jof
the same orthonormal basis . functions. The common signal»is
then that linear combination of basis functions  which
- ﬁinihizes the error between it and all the recorded data. The
magnitude of a coefficient in the linear combination indicates
the relative importance of the associated basis function.
Small coefficients have basis functions which are weakly
correlated with the daily traces and may contain significant
amounts of noise. Large coefficients multiply basis functions
which dominate every trace and have large signal to noise
ratios. For' this application, one coefficient in the linear
combination is much larger than all the others combined. The
common signal is constructed from the principal component
basis function corresponding to this largest coefficient. Note
that 1f all basis functions are used then the method reduces
to a simple average of the daily records. The appropriate
parts of the principal component were inserted 1into the two
data gaps with a minimum of offset at the endpoints. Traces
recorded at VIC corresponding to those of Figure 2 are shown
in Figure 3. The reduced high frequency content at OBM
relative to VIC is caused by the strongly conducting, highly
attenuating ocean layer (see Figure 7).

An example of one channel of the entire 33 day OBM data
set is given in Figure 4. Each subgraph is one day 1long, is
individually normalized, and begins at a time near local
midnight. Magnetic storms disturb the record over days 2 to 5

and 24 to 27.
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Figure 3.

Four days of data from VIC. Y 1is geomagnetic east, X is
geomagnetic north and V is vertically down.
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Figure 4.

The complete 33 day record of the OBM horizontal D channel.
Each day is individually normalized and begins about 1.5 hours
before local midnight.
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‘CHAPTER 2 THEORY OF THE MAGNETOTELLURIC METHOD

This chapter contains théory relevant to the MT method in
general and to this ocean bottom application in particular.
.Maxwell's_equations are used to derive the MT equations which
goverﬁA the diffusion of harmonic -electromagnetic waves into
the conducting earth. In section 2.1 and 2.3 the impedance at
the surface of a simple layered earth is derived. Its value is
obtained from a recursion formula in terms of the impedances
or reflection coefficients at lower levels. In . a two
dimensional earth a 2x2 1impedance tensor relates the
horizontal electric and magnetic fields (section 2.2). The
tensor formulation is more stable since the principal
impedances derived from it do not depend on the sensor
orientation or on the total field polarization. The rotational
properties of the tensor outlined 1in section 2.4 give the
principal directions of a 2-D earth and distinguish between
this and a more complex 3-D earth structure. The filtering
effect of the highly conducting ocean on the diffusing fields
is considered and exploited to calculate sea-floor impedances
from magnetic fields alone (section 2.5). Lastly, in sections
2.6 and 2.7, the plane wave and flat earth approximations are
examined and found to be valid for the period range wused in

this study.

2.1 MT Fields in a One Dimensional Earth
When the earth model is restricted to be composed of a
stack of uniform, horizontal, flat layers then it 1is termed

one dimensional since the conductivity varies only with depth.
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Figure 5. ,

The one dimensional model with notation used in this thesis.
Within layer j of thickness h; the conductivity 1is ¢;, the
parameter v ={iwwe; and Ay and By are the amplitudes®of the
downgoing and upgoi%g waves, respectively, at the level z;.
Layer n is a halfspace of infinite thickness. B,.; is equal %o
zero.
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An example of such an earth is illustratéd in Figure 5. If the
incident EM fields are plane waves and they are refracted to-
the vertical then simple diffusion equations pilot their
voyage into the earth. Furthermore, the impedance 2Z(o)
measured at the surface is compactly expreésed_ésAa'recurrénc;
relation in terms of.the.layer parameters.

We begin with the ubiquitous Maxwell equations

. curl E = -uwdH/dt
curl H = ¢(2)E + edE/Ot
div E =‘0
div H =0 (2.1)

where E is the electric field vector, H is the magnetic field
vector, ¥ is the magnetic permeability (assumed constant for
all layers and equal to the free space value wo=4rx10-7 H/m),
¢ 1s the dielectric constant (equal to 8.86x10-'%2 F/m), and
o(z) is the conductivity. Assuming the fields are quasi-
periodic, that 1is, E~exp(+iet) and H~exp(+iot), and all
transients have decayed away, we can wfite the first two

equations in (2.1) as

curl E = -ixaeH

curl H = o(2)E + iewE (2.2)
Because the product eo is very small compared to o(z) (Keller
and Frischknecht 1966, p212) the second term in the last
equation may be dropped. Moreover, the fields in a 1-D earth
do not change with coordinates x or y because of the
vertically diffusing plane wave assumption. Therefore,

derivatives with respect to x and y vanish and equations (2.2)

become
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dEy/dz = +ipeHx . dHy/dz = -¢Ex
' dEx/dz = -iwweHy 'dHx/dz = +¢Ey
0 = Hz | 0 = Ez (2.3)

Differential equations for each horizontal component of E and

H are found from equations (2.3) to be

d2Ex/dz? v2Ex d?Hx/dz? v 2Hx

d%Ey/dz?

r2Ey d%Hy/dz?

y 2Hy (2.4)
where 7%=ipws(z). Solutions to these diffusion equations all
have the same form within layers where +2? is constant. v

For a halfspace of constant conductivity we,, a typical
solution is

~yz+iet C+yztiet
Ex(z) = A e + B e

~where 1=(1+i)(uuao/2f%=(1+i)a and A and B are constants. The
solution is a linear combination of two independent decaying
waves, one travelling down (the first term) and the other
travelling up (the second term). For a halfspace there 1is no
upgoing wave since there are no sources within the earth and
there are no horizons to reflect the downgoing wave back
towards the surface. Therefore, in the linear combination
above, the coefficient B=0. The remaining term is

-8z i(wt-gz) -z -ipz
A e e = Ex(0)e e

which represents a wave decaying as it travels down into the
halfspace. The rate of éttenuation is governed by the
parameter g. At a depth z=1/g the wave has decayed to 1/e of
its surface amplitude Ex(0). Traditionally, 6=1/g is called
the skin depth. For a given halfspace conductivity e¢,, 6 1is

small for high frequencies and large for low frequencies.
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Hence, rproéressively. longerlvperibds sample progressively
_deeper‘iétructures;‘~Alternatively, for a;fixed'freQUenéy 0, 6
is smaller for largef_conducfivities. This impliés.rapid field
attenuétion‘within conducting layérs. ?or a fixed time t, the
phase ofv‘the electric field changes byAgn‘rédians from i£s
surface valueAwhen az=2n dr z=2n6. This disﬁahce is‘a'.measuré
of the wavelength of the diffusing field.‘

Within layer j of a more compiex,,layered 1-D earth we

write for z;2z2z;

3 }”‘
+iut+7'(zs—z) +iot-y; (z;-2)
Ex;(z) = A.e L + B;e LA (2.5)
1 . 3 i
where 7§ = (1+i)("063/2)% = (1+i)p$, and Ai and 'Bi are the

amplitudes of the downgoing and upgoing waves respectively as
they cross the level Z4 The corresponding solution for Hyi(z)

is found from equations (2.3) and (2.5) as

7 +tiot+y;(2;-2) +tiot-v; (2;-2)
Hyj(z) = =% [ae R Ty PV (2ue)
ipw
again for z-22223,l . The quantity of interest is the impedance

Zxy(z) which is the ratio of the electric to the magnetic
field and as such it is independent of changes in the incident

field strength.

To find the impedance at the surface of a 1-D earth, Zxy(0),
Ai and Bi must be calculated. Values for these constants are
found by considering Zxy at two levels within the same
r?=constant layer. The identity (Ai/BSY%=exp(ln(A3/Bi)ﬁ) is

useful in producing
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ipe
Zxy(z) = --- coth[(ln(Ai/B&)
1 .
1
within layer j. At the bottom of this layer z=zi»and

4

+ 73(23‘2)]

iﬂu L
;) = === coth[(1In(A,/B.)*]
T /P
)
At the top of the j'th layer z=z

Zxy(z

and

i1
ipoe L
Zxy(z,i.,) = ——- coth[ln(A./B;)* + y_ h.]
4 ) 773 i
3
where hi=23_z$" 1s the thickness of the j'th layer. Combining

these last two equations gives

ipe YiZXY(Zj)
ny(zi_,) = --- coth[coth“(- ——————— + y.h.] (2.8)
. 7 . 1
3

This shows that the impedance at the top of a layer may be
written in terms of the impedance at the bottom of that layer.
Furthermore, since the horizontal components of E and H are
continuous across layer boundaries, Zxy 1is continuous. So
Zxy(0) is found by stepping up recursively.through the model
layers beginning with the boundary condition at the top of the
basal halfspace

Z2xy(zpy) = iwe/7, (2.9)
since in equation (2.8) h,=« and coth(e~)=1. For a layer over

a halfspace let zr.=zo=0 and zi=z,=h1 in equation (2.8). Then

ipu . Z171
Zzxy(0) = --- coth[+,h, + coth"(—-——)] (2.10)
71 iyu

where Z,=Zxy(z;)=ise/7,. Keller and Frischknecht (1966) and
Kaufman -'and Keller (1981), for example, present the simple
extension of this formula for any number of layers over a

halfspace.
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Another useful equation for zxy(0) is obtaiﬁed by
recasting equation (2.8) in terms of a continued fraction of
reflection coefficients. This representation is cenﬁral to the
three inversion programmes of Parker and WhalerA(i981) and
that of Fischer et al (1981); Since ‘the impedance is

continuous across a layer interface we use equation (2.7) to

- write
v | : lpw Ai—’ +‘Bi"
~Zj_.(zi_,) = ZS(ZS—‘) = mmm S
Tin Ay T By
+y;h - ; h;
1pe A}e ! }+ Bie LA
73 Aie+73h3_ Ble"?'}hl

where h§=z%—z- This is rewritten as

e
++: h: -¥. h;

. AL 1Y : 3
Ao [R(rn)Ale + Ble RS

= B. [Ase + R(i—l)i B&e 3 1]

‘3—‘
where the reflection coefficient

R(i_ = e —e S = e m———————— (2.11)

131'

friky Ry
A;e + R%ﬂi Bse

Multiplying top and bottom by R(.5: and adding (1-1) to the
i

ﬂi
numerator gives, after another few steps,

+2v. h;
B:._, (1=1/R%_n; ) e H
Y R e | , (2.12)
A»')—l 7 +27']‘ hj
e /R<§_,§3 + BS/A}
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which is the desired continued fraction at last. From equation

(2.7), within layer j

1 - B,/A; e
3724 |
where Az=zs—z. The boundary condition is that B,_;=0 since
there is no reflected wave from the bottomless basal

halfspace. The final surface impedance is

Zxy(0) = -== -——--—=-mm oo (2.13)

For a wuniform halfspace B;=0, h;= e and Zxy(0)=iww/v; which
agrees with equation (2.9). For a layer over a halfspace B,=0

and from equation (2.12)

B, 1 1T - 1/R212 Y1 T 72
—_— = mm= e e ——— = R12 = ———————
A, R, /Ry, vy torg
Hence
—271h1
lpw 1+ R12e
Zxy(0) = === —==---mmmmm - (2.14)
71 ’271h1
1 - R-,ze

The foregoing discussion from eguation (2.5) onwards
calculated Zxy from Ex and Hy. There 1is an equivalent
development for 2yx derived from Ey and Hx. In fact Zyx=-Zxy

for the 1-D model assumed here.

2.2 MT Fields in a Two Dimensional Earth
A hypothetical 2-D model is presented in Figure 6. In the

strike direction x there is no structural variation. Hence,
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Figure 6.
A two dimensional earth with strike direction x.
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for vertically diffusing plane waves derivatives with respect

to x vanish. The Maxwell equations (2.2) become

dEz/dy - OEy/dz = -ipweHX
dEX/d2 = -ipeHy
- JEx/dy = -iwwHz
dHz/dy - 2Hy/dz = ¢Ex
dHx/dz = ¢Ey
- OHx/dy = o¢Ez (2.15)

Usually the incident primary field will be elliptically
polarized 1in the x-y plane and will induce cbmplex secondary
fields because of the 1lateral inhomogeneities. A 1linear
impedance tensor, Z, relating the total electric and magnetic
fields admits all possible influences between components. The

linearity results from the linear Maxwell eqguations. Thus, we

assume
. Ex Z21 Z2 23\ [Hx
E =2 Hor [Ey| = |24 Z5 Z6||Hy
- Ez 27 28 729/ \Hz
Similarly, we postulate an admittance tensor Y where H = Y E.

Simplifications result from decomposing the primary field into
two . independent polarized fields. The first, E-polarization,
has the electric field vector along the strike direction.
Thus, E=(Ex,0,0) and H=(0,Hy,Hz). The second, H-polarization,
has the magnetic field vector parallel to strike with
E=(0,Ey,Ez) and H=(Hx,0,0). These two polarizations are
important because a primary field in either state 1induces a
secondary field in that same state via equations (2.15).
Therefore, the total field, primary plus secondary, decomposes
into E- and H-polarizations. The corresponding impedance

relationships are
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0

0

‘H-pol. 0

Ez

E-pol Ex o 22 73 0
) .. 25 76| |Hy
.. 28 29/ \Hz

[ (%)

where - .. indicates an unconstrained element. The 3x3 g-tenéor_.

collapses to a 2x2 form because 6f the following arguments.
According to the admittance tensor, Hz is a linear combination
of Ex, Ey, and Ez., But from Z these field components are, in
turn, a linear combination of Hx, Hy, and Hz. So we write
Hz = A Hx + B Hy

where A and B are complex constants. For E—polarization Hx=0
and so Hz=BHy. With Hz propocrtional to Hy the third column of
Z is incorporated into the second column. The resulting 3x2
matrix now has its second and third rows linearly dependent so

one row is discarded. Hence,

Ex ..; Zxy 0
E-pol ) = ( «)
_ 0 A Hy

A similar argument for H-polarization yields

S Y Iy

To completely specify all four elements of the 2x2 impedance

tensor the total field must be composed of EM waves of both

polarizations. In general then,
Ex 0 Zxy)[Hx
= . (2.16)
Ey Zyx O Hy
In reference frames which do not have axes parallel and

perpendicular to strike the diagonal elements are non-zero

(see section 2.4 for rotation properties of the impedance
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tensor).

2.3 Derivation of the Impedance Tensor fof 1-D Models

The heuristic arquments for a 2x2 Z given in :the
préceeding  section are - subportéd by a more rigorous
development following Loewenthal and Landisman (1973). These
authors derived from first principles the impedance tensor for
an anisotropic layered medium. In this section it is shown
(for 1-D isotropic models) that if a 2x2 Z is aséumed then
using just the electric and magnetic fields reasonable
expressions for each element are possible.

Equations (2.5) and (2.6) along with similar expressions
for Ey and Hx are put in matrix form and the exp(+iot) factor

is dropped. Thus,

+y; AZ 0 —y: AZ 0

Ex: (z) e ) Eix e ) E:x
! = +y. az)| Y ) + —yiazll Y] (2.17)

Ey; (2) 0 e Ely 0 e b Ely

3 3 ]
+9. AZ -v: AZ

ipe [HX;(2) 0 -e Etx 0 -e ¢ Eix
- 3 =| +9;AZ ) - -v.Az ) (2.18)

£ Hy&(z) e ! 0 E&y e A 0 Eiy

where Az=zl—z, ZXZZZZiq and A, and B; have been replaced by

1 3
Ei and EX which are the downgoing and upgoing electric field

amplitudes, respectively, at the level z,. Note that if E and

1

H are both written as a 2x2 tensor times a common vector C

then a 2x2 impedance tensor Z is found from the following. Let
E=W,C and H= (+/ive) W, C

where W, and W, are 2x2 tensors as yet wunknown. Rewrite the

second expression as C = (iwo/v) W, ' H and substitute into
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the first expression
E = (iwo/7) Wy W,"' H
Therefore,
ipe

= ——— 21 _W_2-1 ‘ . - ) . : , (2.19)
4 - - o - . e :

s

So the impedance tensor is éimply a combination of the tensors
which premultiply the common vector, C. In search of this
common vector we first recall that the impedance is continuous
across an interface so we write

Ei(zi) = gi"(zi)'ﬁi(zi |
Substitute equations (2.17) and (2.18) into this last

expression and note that Az=0

Bj(zj) = LE| * LE]
(z;) -t g ( )
i t2y) 7o 8By T B

where I is the 2x2 identity matrix and

(7

If we express E in terms of ga then the problem 1is solved

o

3
with C = EE' In fact, from the eguation for ES(ZS) above
E- = (I - 2A"') E%, (2.20)
where
.
A=12, (z;)G--% +1
= =’é 1 =iu0 =

Therefore,

e
N
]
-1
]
P)h.
[9]
1>
L]
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and from equation (2.19)
. iuu
. . = ——— 1 -
i\(zl) 3 (=
o L _
The'_impedance within the j'th layer is found by substituting

-1]-1

| kg

1) g

(kg

ga from equation (2.20) into equations (2.17) and (2.18).

+y.402 -7&AZ

Yrte (1-22 "] E =W E

m
—
N
A
]
~—
(1]

T
N
"

|

I R
lﬁ—h
e
o
o
I

[
®
o
-
1
N
T

'
o]

where Az=zi—z. Hence,
ipo

2.(z) = -== W; W, ziZZZZjﬂA

Example (1) A Halfspace
ive 0 1
Z2,(0) = ---
- 71 =1 0
which agrees with the previous results of Zxy=-Zyx, Zxx=Zyy=0
and equation (2.9).

Example (2) One Layer over a Halfspace

+y i hy ~v,h,
£1 = (e + R,ze L
+r,hy -74,h,
EZ = (e - R12e ) g and
‘27’1h1
iwe 1 + Ryje 0 ]
2,(0) = o= ———-2lilo o
B 71 -27,:h, 1 0
1 = Ryze

This 1is a generalization of equation (2.14) with R,, defined

as in equation (2.11),
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2.4 Impedance Tensor Invariants and Symmetries

Once all the tensor eléments'ére estimated (by techniéues
described in sections 3.2 and 3.3) it is-important to select
only those periods at which the téﬁsor is consistent with
certain theoretical constraints. iWhen ‘the éonstraints are
' violéted it indicates the presence of large amounts of noise
or a breakdown 1in one or more of +the source and model
assumptions. Other criteria for choosing periods compatible
with the assumptions are presented in section 3.4.

Many of the tensor properties arise from an arbitrary
rotation of the <coordinate axes about the vertical. In a
rotated frame the impedance tensor is
T

Z' =T ZT

where the superscript T indicates a transpose and
( cose sine)
-sine cosé

is the matrix which rotates the x-y axes of Figure 5 or 6

3

clockwise by 6>0. For any such similarity transformation

tr(2) = tr(z")

det(Z) = det(Z')

Zxy-2yx = Z'xy-Z'yx (2.21)
where the trace tr(Z)=Zxx+2Zyy, and det(Z) is the determinant
of the matrix. We have already seen in sections 2.1 and 2.3
that for 1-D models Zxx=2yy=0 and Zxy=-2Zyx. Section 2.2 showed
that in the principal axes frame of 2-D models Zxx=2yy=0, and
so for one or two dimensional models tr(2)=0 in any reference
frame. During the course of a coordinate rotation through 180°

the impedance tensor elements travel along ellipses in the
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complex plane (Eggers, 1982). The diagonal elements should
display two minima as the coordinate axes coincide with the
~principal directions of the 2-D earth. Thé off-diagonal
elements should have just a single minimum. Vozoff (1972)
shoﬁs that»the principal axes orientation over 2-D ‘séfuctufés'
is found directly by maximizing |Zxy|? + |Zyx|? with respect
to 6. This same angle also minimizes |Zxx|? + |Zyy|%?. A
combination of the first and third invariants in equation
(2.21) gives another rotational invariant called the skew

|Zxx + Zyy|

Combining the first and second invariants gives
Zxx + 1yy
IxX2yy -~ 2ZxXyZyx

These have been used to assess the 2-D assumption. (Vozoff,
1972) since $,=5,=0 for any 1-D or 2-D earth.

Another symmetry property discussed by Fischer (1975) is
that for 2-D models with a vertical plane of symmefry

Arg(Zxx) = Arg(Zyy) = Arg(Zxy+Zyx)
where Arg is the principal value of the argument of the
complex impedance. He states that this relationship as well as

§$,=0 must hold above these types of structures.

2.5 Impedances from Magnetic Fields Alone

The OBM used for this study recorded only magnetic field
components so that more information is required to calculate
the MT impedances. That information (with a few

approximations) is provided by the records of the Victoria
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Geomagnetic Observatoryv (VIC). We assume that VIC is on the
ocean surface directly above OBM and use_the vertical gradient
method aescribed byASchmucker (1970), Poehls and von Herzen
(1976) .and Law and Greenhouse (1981). To find the impedance on
the sea-floor wusing this technique we need to'éssume'1)'the
fields at the surface above OBM are adequately represented by
the fields at VIC, 2) there are no magnetic fields induced by
the homogeneous, isotropic ocean and 3) the structure below
OBM and VIC is 1-D.

The first assumption, which transports VIC to above OBM,
reqguires that the source fields remain uniform over the 350 km
separating OBM from VIC. In addition, the difference between
the oceanic and continental environments must not affect the
fields significantly. Comparison of records from stations
separated by several hundreds of kilometers reveals that.the
fields are indeed quite uniform over these distances. Chave et
al (1981) give an approximate expression for the source field
horizontal scale length which for the periods considered here
is much larger than the OBM—VIC separation. Law and Greenhouse
(1981) argue that the effects of changing source ,and
conductivity structures counteract each other.

The second assumption of an immobile, uniform ocean is
tenable at periods other than tidal periods. Larsen (1968) and
Cox et al (1970) discuss EM fields inauced by oceanic motions.
There are several tidal spectral 1lines clustered around
periods of 12 and 24 hours which are a§oided in this analysis.

The third assumption, that of a 1-D structure, is never

true but it must be made in order to derive an impedance from
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magnetic fields alone. All the.inversion techniques used here
require a 1-D earth anyway, so the approximation is invoked
sooner rather than later.

The magnetic fields measured at the two océan levels are,

from equation (2.6) (exp(+iot), H-polarization),

71 +y4,2, “7r12, +iet
Hy(0) = --- (A,e - B,e ) e
ive
74 +igt
HY(Z1) = == (A1 = B1) e
' ike

L
with »,=(1+i)(see/2)%*, =3.3 S/m (an average for the ocean)

and z,=2760 m. Solving for the unknown constants yields

~iet ~7r12,
ine e (Hy(0) - Hy(z,)e )
A, = === e~
71 2Sinh 7121
-iaet tri2,
ive e (Hy(0) - Hy(z,)e )
By = === e

71 2sinh 7,2z,

The sea-floor impedance from equation (2.7) is

Zxy(z;) = == -=-----
rv Ay - B,
Therefore
ivw cosh 7,2z, 1/Ry
Zxy(z4) = === ——----—m——mme e (2.22)
7 sinh 7,2z,
where Ry=Hy(z,)/Hy(0). For E-polarization and exp(+iat)
i[JO COSh Y424 ~ 1/RX
Zyx(zy) = #=== —---mo—mmmeo o (2.23)
7 sinh 7,2,
where Rx=Hx(z,)/Hx(0). For 1-D models we expect Zxy=-Zyx.

Comparing equations (2,22) and (2.23) we see that this is true
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since the horizontal magnetic ceﬁponents Hx and Hy are -
affected in exactly the same way over {-D‘ medels as they
diffuse from the sea surface to the sea-floor. Thus, R=Rx=Ry.
Because of the fllterlng effect of the ocean ‘the OBM s
flelds are attenuated and phase lagged with respect to VIC.‘
This constrains |R| to be 1ess than unity and the phase of R,
¢R, to be less than zero degrees. Figure 7 shows |R| and ¢R
for an ocean with ¢=3.3 S/m and z,=2760 m above a range of
earth structures. As the halfspace earth model becomes less
conductive the attenuation of the fields between sea-surface
and sea-floor increases (curves a through f). This is due to a
destructive interference of the downgoing wave with the
upgoing wave reflected from the sea bottom. The reflection

coefficient

'6'1 - m
Ry = —---——"—=~
o1 *+ los

approaches unity as ¢, approaches zero and so the net field in
the ocean is very small. As the earth conducfivity increases
towards that of the ocean, R,, approaches zero and |R| falls
off with period according to the simple skin depth decay
exp(-z,/6) where 6=(2/uuc,)k. For ¢;>¢, the reflection
coefficient 1is negative and the incident and reflected waves
interfere constructively to keep |R| near unity over a broad
range of periods. Two three layer models (curves g and h) have
more variable |R| curves but they still lie within intuitive
bounds and approach the halfspace curves at short and 1long
periods. In contrast, the ¢R fanctions for the multilayer

earth models plotted in Figure 7B are more sensitive to the
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Figure 7.

The ocean filter. The magnitude of the ratio R of a sea-floor
magnetic field component to the corresponding sea-surface
magnetic component is shown in A. The phase of this ratio is
shown in B. All <curves are calculated assuming an ocean
thickness of 2670 m and conductivity ¢=3.3 S/m. Curves a
through f are derived from suboceanic halfspace models of
conductivity 10, 1, 0.1, 0.01, 0.001t and 0.0001  S/m,
respectively. Curve g results from a two layer over a
halfspace suboceanic model with ¢,=0.01, ¢,=0.001, ¢3;=0.1 S/m,
h;=h,=50 km. Curve h is from a similar model with ¢;=0.001,
6,=0.1, ¢3=0.01 S/m, h;=h,=50 km.
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details of 1layering. the general trend, however, .is that the

phase lag increases as the suboceanic conductivity decreases.

2.6 Plane Wave Assumption

| In this section we consider the validity of the bléne
wave <approximation to the source fields. The most probable
origin of the fields is in the highly conducting E-layer of"
the ionosphere at an altitude of about 110 km. The currents
are not uniformly distributed around the earth  but
concentrated 1in auroral and equatorial electrojets. One model
that tries to account for non-uniform source fields is that of
a line current at some height ﬁ above a 1-D earth (Hermance
and Peltier, 1970). Such a current flowing in the y direction
leads to a generalization of one of equations (2.4) as

3Ey/9x? + 3%Ey/dz? = iuswe(z)Ey

Assume Ey(x,z)=X(x) Z(z) and use separation of variables to

obtain
X(x) = A cos(mx) + B sin(mx)
z2(z) = C exp(kz) + D exp(-kz)

where -m? is the separation constant, k?=(ipwes(z) + m?) and A,
B, C, and D are constants. The electric field is

Ey(x,z) = [Acos(mx) + Bsin(mx) ][Cexp(kz) + Dexp(-kz)] (2.24)
The horizontal magnetic field Hy is derived from this using
one of the Maxwell equations (2.2). Note that for plane waves
the horizontal wavenumber m=0 and equation (2.24) reduces to
an expression similar to those in section 2.1. The total field
at the earth's surface 1is formed by an appropriate

superposition of solutions for all wavenumbers O<m<eco., If the
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source model is generalized from a line cu%rent £ov a sheet
current then: Peltier and Hermance (1971)ish6w howra liﬁeér’
combination 6f line curreﬁt solutions is.méde to repreﬁeﬁﬁ_thé
sheet currenti distribution. These authors derive_ integral
equations - for the fields due ‘to }a sheet current with a
Gaussian distribution 110 km above a 1-D earfh. The -standard
deviation of the distribution is taken as 240 km. They find
that the agreement between non-uniform and plane wave source
impedénces is affected by observer position' and earth
conductivify. We discuss these two parameters in turn.

Direétly beneath the Gaussian electrojet the agreement is
good, being generally within experimental error until periods
greater than several hours. The plane wave approximation
becomes worse as the observer moves laterally from under the
electrojet. At a horizontal distance) of 2.5 to 3 standard
deviations the misfit reaches a maximum. Still larger
distances reverse this. trend and improve the agreement once
again; The OBM site used in this study was located in the mid-
latitudes (éeomagnetic coordinates) perhaps 2000 km from the
core of auroral electrojets and even further from equatorial
electrdjets. Therefore, on the basis of position, the plane
wave approximation is valid.

The second factor influencing the accuracy of the plane
wave approximation to the Gaussian eiectrojet source 1is the
earth conductivity. Beneath this extended source there will be
large deviations from plane wave theory when the earth is very
resistive such as is found in continental areas. But the earth

is expected to become very conductive at large depths because
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of the high temperatures thefe; Peltieru éna Hermance (1971)
show - that ‘for these :typesr 6f ﬁodeis the agreement is muéh
improved. For active, oceanic areas such as in our study'vthe-f‘
high temperatures and hencelhighbéohductivities are close to
the:%uffaée.>Therefore,lon the basiszéf_‘eéf£h vconductivity,_

the plane wave approximation is still reasonably valid.

2.7 Sphericity of the Earth

Plane waves propagating vertically downwards in a 1-D
earth behave differently if the one dimension is changed from
a Cartesian depth 2z to a spherical polar radius r;' A
discussion of the flat earth approximation is given by Kaufman
and Keller, 1981, Chapter 6. They show that sphericity becomes
important as the wavelendth x, or skin depth 6, of the field
approaches the radius of the earth, a. Thus the impedances of
the flat and spherical earth aré very close when a/6 > 10
where 6= [p,T/un. Combining these appréximate relations gives

pT < 445
for periods T in hours and an earth of constant resistivity
p 0-m. Periods up to 10 hours are acceptable if the major
field attenuatibn occurs in a region with p of the order of 45
f-m. A rigorous analysis of the conversion from a spherical to
a flat earth 1is given by Weidelt (1972). For the periods
considered in this study an earth flattening transformation is

not required.
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CHAPTER 3 DATA REDUCTION

| The methods of fransforming the data to the frequency
domain are examined in. section 3.1. Once in the frequency
dohain the scalar and tensor transfer functions between the
éOBM and VIC horizontal fields are calculéﬁed (sectidns 3.2 and
.3.3). Great care 1is taken to compute error bars that have a
firm statistical basis. Winnowing criteria are proposed in
section 3.4 to facilitate selection of the best possible data
set. Finally, some details of the OBM analysis are presented

(section 3.5).

3.1 Taking Transforms

A critical step in the analysis is to transform the high
quality data of, for example, Figure 4 to equally high quality
frequency domain data. The daily records are dominated by the
Sq variation. Its effects are most pronounced near local noon
and are minimal near local midnight when the induced currents
are decaying very gradually. The Sg signal imposes constraints
on the record 1length selected for transformation to the
frequency domain. Since the fast Fourier transforﬁ assumes a
periodic extension there should be no discontinuity between
the initial and final time domain field values. If there is a
jump, spurious frequencies will leak 1into the transform
domain. To minimize the offset we break the record into
multiples of 24 hours as in Figure 4. There are two advantages
of segmenting the data 1in this way. Firstly, the tidal
spectrum has many lines clustered around 12 and 24 hours. The

energy 1in these lines can spread out into adjacent periods if
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the record length is not an éxéct ‘multiple of the tidal
period. Data seéments whiCh_'are:mﬁltiples of 24 hours will
help minimize the spreading. A better plan would be to notch
out -all the ‘known tidal lines or to femove them by a least
sQuaresvfit to their knowh pefiods.éséboﬁdlf, «well—detefmined
Foufier .coefficients, with many degfees.of freedom,,ére found
by stacking the segment transforms as well és smoothihg them
with a spectral window.

The next étep in the analysis seeks to remove any long
period trends from the data and also to match the endpoints to
reduce transform ringing. One alternative 1is to remove the
mean and taper with a cosine bell typically of halfwidth ten
percent of the series length. This method fails to deal with
long period trends. Furthermore, tapering corresponds to a
frequency domain convolution and any broad smoothing of the
steep 1/f natural electromagnetic spectrum will overemphasize
longer. periods. A second alternative 1is to remove a least
.squares linear trend and taper. Because of the Sq waveform,
such a trend removal often leaves the series with a larger
endpoint offset than initially present. The third alternative
is the one used in this analysis. A ramp between the first
series point and the last is subtracted. This annihilates all
wraparound offsets while at the same time removes a reasonable
estimate of the long period trend. The method 1is faulty for
segments which have rapid changes near their ends but because
they all are chosen to begin near local midnight this is not a
problem. Most ramps have slopes less than 1 nT/hr.

After the transforms are stacked they are smoothed with a
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Parzen window. Prsperties_ of speétfal windows aré fuily .
discussed hby Jenkins and Watts (1968). The Parzén,windbw is
preferred 6vér thaf of Bartlett or Tukey bécause’it has small
sidelobes ‘and"givés non-negative spectral estimates. The
“degrees of freedom (dof) fbr thfs window‘are 3.71T/M where T
is the seriés duration and M is the time corresponding to the
maximum lag 6f the time domain window.

Each‘Fourier coefficient begins with 2 dof, one each for
its real and imaginary part. Smoothing with a Parzen window
gives each estimate 3.71T/M dof. Stacking n segments results
in a total of 3.71nT/M dof. Many degrees of freedom reduce the
spectral vestimate error but increase the bias. A balance must
be found between these two competing effects to give accurate
impedances close to their true values. Details of the choices

made in this study are presented in section 3.5.

3.2 Scalar Ratio Estimates

As mentioned 1in section 2.5 the OBM recorded only
magnetic field components. However, by taking the ratio of the
OBM fields to those measured at VIC approximate MT impedances
are found via the vertical gradient method. Without electric
fields, then, we must put our effort into finding stable
estimates for the once removed ratio R rather than finding the
sea-floor impedance Z(z,) directly. Equations (2.22) and
(2.23) are then used to give the impedance. Ratios are found
from either scalar models such as considered in this section
or from the tensor models of section 3.3.

The scalar model is
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D(w) R(ew) Y(o) + e, ()

H(o)

R(w) X(a) + e, (o)

where D(w) and H(w) are the horizontal fields at OBM, Y(e) and
X(w) are the corresponding fields at VIC, e,(w) and e;(e¢) are
white noise errors and R(w) is the transfer function -to be
found. A straightforward estimate of R = D/Y suffers severely
from widely varying Fourier coefficients and the errors e;. A
better estimate is found by assuming R is constant over a band
of adjacent periods and from day to day at a single period.
Then there are many equations for a single complex number R.
Several solutions are possible. For instance, considering only

the east-west fields, we write

Ry = --- Ry = <D/Y>
<Y>

where < > indicates an average over days and/or periods and *
indicates a complex conjugate. Ratios R, and Rg have been
tested on synthetic examples and are not as stable as the
others. They yield estimates of R further from the true value
(bias) and wundergo much more variation. R, and R; are
complimentary since the first overestimates and the second
underestimates R in the presence of incoherent noise. To show
this write |

D = D, + D,

Y=Y + ¥,
where the subscript s refers to the true signal and the

subscript n refers to noise. Then
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<DD*> = <(D, + D, ) (D¥ + D¥)>

= <D,D¥> + <D,D¥>

since <D D¥>=0 for incoherent noise = D,. Similarly,

<YY*> ‘<Y$Y§> + <Y, T*> and

<DY*>

]

<D,Y¥*>

assuming D, and Y, are also incoherent. Therefore

<DD*> <D D¥> + <D,D¥> <D,D¥> <D,D¥>
Ry = ————~ = e = m————- [1 + === ]
<YD*> <Y D¥> <Y, D¥> <D, D¥*>
and
<DY*> <D Y¥> <D Y¥*> <Y, ¥Y¥*>
R, = ==-=-=-~ = e ——————— = —————— [1 + —=———- 3
<YY*> <Y5Y;k> + <Y,\Y;’\<> <YSYS*> <Ys Y;">

Thus, D noise power will bias R, upwards and Y noise power
will bias R, downwards. Some sort of average of R; and R,
would reduce the bias in the estimate. R; provides that
average since it is the geometric mean of R, and R,. The phase
of R; 1is obtained from the cross spectrum <DY*> which is the
phase of both R, and R,.

The errors in the scalar.ratio estimates are found using
the theory of frequency domain response functions described by
Jenkins and Watts, 1968, p429 and Bendat and Piersol, 1971,
p199. These authors show how the smoothed power spectrum of
the noise may be written approximately as

<ee*> = <&&*> + <yy*> |R-R|?
where <é&*> is the smoothed power spectrum of the residual
noise

& =D - Ry
and R = <DY*>/<YY*> is the estimate of R which minimizes the

A

l,-norm of e. If the smoothing generates n degrees of freedom
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and e'e'* represents the true noise power ‘then

n<ee*> n<@é*>  n<YY*>

is distributed as chi-squared with n degrees of freedom.
Hence, .byi‘tHe ZadditiVe property of x? variables the two

statistically independent terms on the right hand side of the
previous equation are distributed as x? with degrees of
freedom that sum to n. The first term on the right 1is only
different from the term on the left in that it is based on e
instead of e. Two additional constraints are placed on &, ohe
each by the real and imaginary part of R. Therefore, the first
term on the right is distributed as x%.,. This leaves the
second term on the right distributed as «x2,. The F-

distribution goverﬁs the ratio of two x? variables with
distributed as F,,,nz. Therefore,
________ |§-R|2

is distributed as F,,n-;. Since

<88*> = <(D-RY) (D*~R*Y*)>

<DD*> (1 - +2DY)

where the squared coherence

<DY*><YD*>
y2DY = ~——m—————-

we write
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is distributed as F,,n-2. The (1-6) confidence;interval for
the transfer function R is then

.\ 2 <DD*>

|R-R|? < --- (1-22DY) ----- f£2,n-2(1-6) = k?

n-2 <YY*>

" where f,,n.,(1-6) is the 100(1-6) percentage point of an P-
distribution with 2 and n-2 degrees of freedom. Individual |R|
and ¢R confidence intervals are approximated by (Jenkins and
Watts, 1968, p434)

| IRl - IR| | =k

A

sin|eR - #R| < k/|R

3.3 Tensor Ratio Estimates

- The scalar ratio model assumes that there is no
correlation between D and X or H and Y. This is never quite
true. The tensor ratio model allows more general field
relationships of the form

D(aw)

Riy;(e) ¥Y(o) + Ryz(0) X(0) + e ()

H(e) R;:(w) Y(w) + Ry,(0) X(a) + e,(0) (3.1)
Consider only the first equation involving the east-west OBM
field. Assuming that the transfer functions are constant over
adjacent periods and from day to day at a single period we
write
D

= Ry Y, + Ry2X

. . . + e .
3 3 v
j=1,...N days and/or periods. We need the many days and
periods to determine the two unknown parameters R,; and R,
because otherwise there is just one eguation in two wunknowns.

Therefore, this 1is now an overdetermined parametric linear

inverse problem. In matrix form the preceeding eqguation
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becomes

D=AR*+e

where D=(D,,D;,...D,)" , R=(Ry1,R,z) , e=(e;,e;,...e,) and

Y1 x1
A=Y, X,

. X,

We want our parameter R to minimizelthe 1l,-norm error ||e||?.
Let t denote the cémplex conjugate transpose.

llell? = et

+

The minimum occurs when AtAR = AfD. These are called the

|
|

= (D-AR)¥(D-AR)

I
jw)
10

- RTATD - DYAR + RTATAR

normal eqﬁations. The corresponding least squares parameter
estimate is |
R = (AtA)-'ATD
which is also knowh in. inverse theory as the smallest model.
Written in full the normal equations are
<Yy*> <xy¥*>\[R,, <DY*>
<<YX*> <XX*>)(R,2) ) (<DX*>

and the parameter estimates are

<DY*><XX*>-<DX*><XY*>

<YY*><EXX*><YX*><XY*>
(3.2)
<YY*><DX*>_<YX*><DY*>
R12 = T T oo T e
<YY*><XX*>-<YX*¥><XY*>
For the north-south OBM field we have
<HY*><XX*>—<HX*><XY*>
R21 = ST ossToeTEeT T T T
<YY*><XX*>—<YX*><XY*>
(3.3)
<YY*><HX*>—<YX*><HY*>
Rzz E ittt

<YY*><XX*>—<YX*><XY*>
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Cbnfidence intervals' for the pair of parémeters Ry, énd
R1; o:”Rzz and R,, can be found using-the samé method as for
scalar ratios. However, this techniéue solves‘for the joint
confidence limits of all the paraméfers.'PeQersenf(1982) takes
_ a_differeht épproach éhd‘derives Cénfideaceiintervals for éach
parameter separately. He shows how small déviations from the
least squares solution R result in a change in the.value of
Q=|]e||? from its minimum Q,. The ratio (n-4)(0-00)/Q0 is
distributed as F,,,_s. The confidence intervals for the real

~and imaginary parts of R,, are equal and equal to

Sqrt[ ——————————————— f1,“—u(1—6)} = k1 (3.4)

and for the limits on the real and imaginary parts of R,, we
have
1 1-72D.YX <DD*>
sgrt[--- --=-——-—- -==--- fiin-4(1-6)] = Kk, (3.5)
n-4 1-72YX <XX*> '
where f,,n-4(1-6) is the 100(1-6) percentage point of the F-
distribution with 1 and n-4 degrees of freedom, »%YX is the
squared coherence of the VIC horizontal field and
<YY*>|<DX*>|2+<xx*>|<DY*>|2—2Re[<XY*><DX*><YD*>]
<DD*>(<YY*><XX*>—|<YX*>|2)
is the multiple squared coherence of the OBM D channel on the

horizontal VIC channels. Approximate confidence intervals for

the magnitude and phase are

A
| IRy = [Ria] | < ky
| |Ri2| = |Rya| | S ks
. A A
Sln|¢R11 - ¢R11| = k1/|R11|

IA

. A A
sin|¢Ry, - #R; | k2/|R12|
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with similar expressions for the confidence limits of R,, and

Ra1.

‘3.4 Winnowing Ratio Estimates

Calculating=scalar'or tensor ratios as described tin: thé=<
preceeding.‘two sections generatés se?eral hundred complex
numbers all vying for the attention of the interpreter and
hoping for promoﬁion to sea-floor impedances for use in model
construction.’Only a few ratio estimates are required at
periods spaced roughly logarithmically. This section describes
some criteria used to extract the best possible data set which
must be compatible with the assumptions made concerning the
source fields and the earth. An interactive computer programme
was written to apply any combination of the winnowing criteria
with any rejection level to the wvast number of R(w). The
:algorithm acts like the sieve of Erastothenes to allow a few
prime candidates to fall through the mesh and be wused for

model construction.

3.4.1 Ocean Filter

As demonstrated in section 2.5 and Figure 7 the ocean
filter attenuates and phase lags OBM fields with respect to
those at VIC. These effects require |R|<! and ¢R<0°. For
periods T<0.1 hr the attenuation is severe and so estimates
may fall prey to noise. Also these periods are liable to be
influenced by near-surface inhomogeneities. Hence, a short
period cutoff of T=0.1 hr is estéblished. With T>0.1 hr and

plausible suboceanic models a further rough limit on the phase
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of R is set as

-90° < ¢R < 0°

3.4.2 Vérticai Eield~

For é T4D-éarth'and ﬁlahe incident EM ﬁavééithe: Qertical
field is identically zero. Over 2-D models the vertical field
is a linear combination of the horizontall fields. To avoid
contradicting our 1-D assumption we select péfiods at‘which
the vertical field is relatively small and incoherent with

respect'to the horizontal fields. That is, we require
————— << 1 ———-- << and 72Z.DH << 1

where Z 1is the vertical OBM field and »2Z.DH is the multiple
squared coherence of Z on D and H. These conditions are
similar to reqguiring that the tipper, as described by Vozoff

(1972), be small and highly variable.

3.4.3 Ratio Errors

To .constrain the conductivity models as much as possible
we select ratio estimates with small erfors. The confidence
limit formulae for tensor ratios, equations (3.4) and (3.5),
show that small ratio errors result from +2D.YX and 72H.¥X
near unity. High coherencies occur when the model in equation
(3.1) 1is a good description of +the true situation at a
particular period with very little residual incoherent noise.
In addition, #2YX must be small. If it is not then not only do
the errors become large but the denominator in the expressions

for R‘X in equations (3.2) and (3.3) approaches zero and leads
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to very biased estimates.

3.4.4 Dispersion Relationé énd Inequalities

Weidelt (1972) and Fischer and Schhegg (1980) describe
dispersion relations and inequalities | betﬁéen apparént
resistivities and phasés which must be sétisfied over 1-D
models. These constraints are not immediately applicable since
they require a large number of accurately known responses.
This 1is definitely not the case for practical MT data. Linear
inverse theory which is designed to operate with a finite
number of 1inaccurate data could be used to predict a phase
curve from a more reliably determined apparent resistivity

curve or vice versa. This approach was not used here.

Figure 8 shows some of the winnowing- criteria as
functions of period. Graph A is the squared coherency of the
VIC horizontal field, 72YX. At periods near 10 hours the curve
surges up to very. high values. Ratios calculated near here
will be heavily biased upwards and will have 1large errors.
Graph B is the multiple squared coherence of an OBM channel on
the VIC horizontal channels, ¥?D.YX. This curve should be near
unity. Two deep notches at one half and one hour period plus a
fall off at very short periods indicate regions to avoid.
Graph C plots the relative magnitude of the OBM vertical field
<2Z2*>/<DD*> and suggests a rather narrow range of acceptable
periods. Graph D shows the coherency between the OBM vertical
and horizontal channels, »2Z.DH. Again periods near one half,

one and ten hours should be avoided.
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Figure 8.

Winnowing criteria as functions of period. The squared
coherence of the horizontal VIC field 1is shown in A. The
multiple sqguared coherence of the OBM D channel on the VIC
horizontal channels is shown in B. The magnitude of the
vertical OBM field relative to one€ of its horizontal fields is
shown in C. The multiple squared coherency between the OBM
vertical and horizontal channels is shown in D. All curves are
calculated from spectra with 136 degrees of freedom.
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3.5 OBM Data Reduction‘

This section descfibeg éome'specific details of the OBM
data analysis up to the seleétion of apparent resistivity and.
phase data for use in model cdnstfuctioﬂ. | | | |

First of. all, the relativé' magnitudeé’ ;f ‘the ”OBQ% ;
horizontal field componehts during magnetiéally quiet tihes
are used to rotate the data into the geomagnetic coordinate
system (the same as at VIC). The rotation angle is 20.6°
clockwise.

Following the discussion of section 3.1 the total record
is broken wup into multiples of 24 hours. Several different
data groupings are used. Many degrees of freedom are possible
when 33 one-day segments are stacked and smoothed. However, a
better selection of longer period Fourier coefficients which
avoid the major tidal harmonics at 4, 6, 8, 12 and 24 hr is
provided by stacking segments of, say, 72 hours duration. For
this study 31 one-day, 16 two-day, 11 three-day, 8 four-day, 4
eight—daj and 3 eleven-day non-overlapping segments are
selected for analysis. The transforms within each group are
stacked and smoothed by a Parzen window with T/M=2.5, 2.5,
3.3, 4, 5 and 5 respectively. The resulting degrees of freedom
are 287, 148, 136, 119, 74 and 56 respectively. Smoothed
tensor ratios calculated from these different data groupings
are similar. Periods where they disagree dramatically are
avoided. Ratio estimates at shorter periods are selected from
the one-day stack since it has the most degrees of freedom.
Above T=3 hr the choice becomes very limited so estimates are

selected from the two-day grouping, and so on. All choices are
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made on the basis of the Kwinnowing criteria outliﬁed in
section 3.4. At .periéds greatef than 7 hr ragios‘from any
groupiﬁg have difficulty passing the winnowing tests. When
standards are relaxed 'iﬁpedances derived from these longer
‘period responses, particularly the phases, are badly misfit by
the modeiling routiﬁes. Hence, the maximum period is
reluctantly taken to be T=5.5 hours.

The tensor ratio estimates are rotated into the reference
frame which maximizes the diagonal elements (R;,; and R;,) at
the expense of the off-diagonal elements (R,, and R;y)
following the procedure of Everett and Hyndman (1967) and
Banks (1973).

Confidence 1limits found for the wunrotated diagonal
elements are used for the rotated diagonal elements.
Impedances are calculated using eguation (2.22). The errors in
the magnitude and phase of the impedance are derived from a
brute force method. The ratios R are perturbed by Gaussian
noise and the variance of the resulting (assumed Gaussian)
distribution of impedances is calculated.

The east-west OBM field gives impedances Zxy which pass
the winnowing criteria and are successfully modelled by all
the 1-D inversion schemes. On the other hand, the north-south
OBM field produces unstable Zyx estimates which are not well
fit. Hence, only 1Ixy is used for model construction. It was
expected that the reverse would be true sincé Zyx values are
based on magnetic fields perpendicular to the strike of the
very two dimensional continental slope. Electric fields are

then along strike and the apparent resistivities are less

m
i
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susceptible to errors (Vozoff, 1972). However, all apparent
resistivities are very low whether they afe derived from‘ny‘
or Zyx or the scalar transfer functién analysis.

The final data with one standard deviation error bars are
presented in Figdre 9. The apparent resistivities of_Figu}e éA
are calculated from pa=|Zxy|?/we. They all are sufprisingly
small, 1lying between 5 and 10 0-m (¢=0.2 and 0.1 S/m).
Different conventions and MT response functions require the
phases to be in different guadrants. For convenience, they are
plotted in Figure 9B in the first guadrant which is equivalent
to the 1lead of the electric over the magnetig field. A phase
less than 45° implies a more resistive substratum while a

phase greater than 45° suggests a more conductive substratum.
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The final data calculated from the vertical gradient method
impedances. Apparent resistivities are shown in A while the
phases are shown in B. The phase can lie in any guadrant and
is plotted here in the first, for convenience.
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-CHAPTER 4 iNVERSION OF IMPEDANCES FOR CONDUCTiVIY

| The.limitedvnﬁmber of imprecise data shown in Figure -9 do
not uniquely specify a pafticular conductivity versus depth
profile. } Non—uniquehess -is a difficulty common to all
geophysical déta*sets. It is esbeéialiy.vSCUte for ‘the ‘non-
linear MT analfsi§ since no theory yet exists to‘asseSs the
nén—uniduenesg in a similar manner that unique Backus-Gilbert
averages quantiff linear inverse problems (Backus and Gilbert,
1970). One way of grappling with non-uniqueness is to use the
data.to construct some of the 1infinitely many acceptable
conductivity models. By using different inversion algorithms
it is hoped that most dark corners of model space will be
illuminated and that no other significantly different models
will exist which satisfy the data to within their errors.

One inversion routine (section 4;1) constructs models
composed of delta functions of conductance. Such models are
geophysically unreasonable but fit the data more precisely
than any other model type. If this minimum misfit is still
unacceptably large then the data set is incompatible with the
1-D assumption and new responses must be found. This programme
acts as a global winnowing criterion which rejects entire data
sets. In a manner similar to other inversion routines it can
also identify spurious, badly determined responses even though
fhe misfit error is distributed thfoughout the data.

Four inversion routines used here generate inﬁuitively
satisfying simple models. Simple is defined as either a small
number of constant conductivity layers (section 4.2) or a

smoothly varying continuous conductivity function (section
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4.3). The first definition is expected to apply near the
surface where discontinuities are more iikely.to occuf. The
second definition 1is more applicable to' the deep. earth
structure ~where changes are more gradual. The final routine
(sectioﬁ:4.4)vattempts ﬁo‘quantify'the'nonfuniquenessv allowedl
by the data by finding models which maximize or minimize the
integrated conductivity between specified depths. Thus, global
bounds on the average conductivity or on the conductance are
calculated.

The misfit criterion we use is based on the chi-squared
distribution

x? =:§ |ci—c(uj)|2/si

=1

where <4 is a dummy variable representing the measured
response at 04 c(ui) is the response calculated from the
constructed model, s& is the standard deviation of c& and N is
twice the number of periods since at each period we can have
éi in real and imaginary parts or as magnitudes and phases. In
practice, the difference in the x? misfit 1is small for
different representations of the MT response (complex
impedances, apparent resistivities and phases). We make the
hypothesis that the constructed model accurately représents
the real earth structure. Even when this assumption is true x?
does not equal zero because of random errors in the data, Ci'
In fact, the expected value of x? is N. Large values of x?>>N
or small values of x2<<N have a low probability of resulting
merely from random misfit errors to the data points.
Therefore, for x? in these ranges we must reject our original

hypothesis of model and true earth equivalence. Hence, we
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define acceptable models as those which have x? within the
(approximate) 95 percent confidence interval

N - 2J2N' € x2 < N + 22N

14.1‘Best Fitting Models .

Parker (1980) and Parker and Whaler (1981) describe how
D* models consisting of delta functions of conductance
minimize the misfit to the data. D* models of the OBM data of
12 apparent resistivities and 12 phases have x? equal to about
20. Hence the data set is compatible with the 1-D assumption
and more geophysically reasonable models exist which fit the

data.

4.2 Layered Models
4.2.1 A Layer‘over a Halfspace

Fischer et al (1981) describe a technigue for
constructing layered conductivity models. The method is
basically a repeated application of the layer over a halfspace
impedance formula given by eguation (2.14). The surface
conductivity is a variable parameter. Once it 1is fixed the
shortest period datum 1is wused to find the thickness of the
surface layer and the underlying conductivity assuming the
second layer is a halfspace. The next longest period
determines’ the thickness of the second layer and the
conductivity of the third, and so on. If a period has a skin
depth which is not greater than some factor times the model
depth so far <constructed then it 1is deleted and.the next

longest period tried. This test assures that the field has
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penetratéd significantly into the underlying structure and
preventé generation of insignifiéantﬁthin layers. All periods
are used, however, in calculating the x? misfit of the modéi
to the data. Four such acceptable F models are shown in Figure
fOA.'While the details of the overlapping'lines are:_obscured
fhe general trend is clear. Surface conductivities are about
0.1t to 0.2 S/m and a more resistive zone is indicated between
50 and 100 km depth. Below this point the models vary a great
deal. This fact as well as other arguments suggest that the

data cannot resolve structures below about 120 km.

4.2.2 Constant weh? Layers

Parker (1980) and Parker and Whaler (1981) discuss what
they term H* models which have constant d?=useh? layers. At the
surface of such a model the MT responses may be written in
terms of a partial fraction expansidn. Parameters of the
expansion are found which minimize the x? misfit for a given
d?. The layer conductivities and thicknesses are theﬁ found by
recursion through an equivalent continued fraction
representation, similar in form to equation (2.12). Small
values of d? produce very thin, very high conductivity layers.
In fact, as d? approaches zero the x? misfit drops to the
minimum found by D* and the 1layers become like delta
functions. More reasonable values for d? yield models with
thicker layers of more uniform conductivity. Five H® models
are shown 1in Figure 10B. As with the F models, the surface
conductivity is between 0.1 and 0.2 S/m and a resistive =zone

is indicated between 50 and 100 km depth. At depths below 120
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Figure 10.

Acceptable conductivity models based on the data of Figure 9.
F and H*' layered models are shown in A and B, respectively. S
and C?* smooth models are shown in C and D, respectively. Some
curves fit the data more precisely than others but all have a
x? misfit less than 38 which is the upper 1limit of the 95
percent confidence interval.



(W) Hld3a

(W) HLd3g

69

00!

00¢

oot

00¢Z

o
(]
'
()

2- 01

SIGMR (S/M)
o =

] o
—

+H W80

( Ol

SIGMA (S/M)

——
o o

I
Suub

1 Ol

001

00¢c

001

00¢

SIGMA (S/M)

= o = =
& L -
i N o
8y
- = -
] M
>
(ST ST ey T
SIGMA (S/M)
o o = =
b L -

O

B W E I

1




60

km the conductivity varies by two orders of magnitude and is

not to be believed.

4.3 Smooth Models
4.3.1 Linearized Inversion

Oldenburg (1979) describes a method of constructing
smooth conductivity profiles. The non-linear MT equation is
transformed into a linear equation relating small changes 1in
the model to small changes in the responses. Smooth
perturbations to a starting model are found which reduce the

x2

misfit between the measured responses and those calculated
from the new perturbed model. The process 1is repeated until
convergence 1s attained, usually within 5 iterations. Three S
models are shown in Figure 10C. Again, surface conductivities
are near 0.1 to 0.2 S/m.iThere is some indication of a narrow
region of increased conductivity near 10 km not present on
models from other algorithms. The resistive zone between 50
and 100 km is still prbminent. Below 120 km each profile
returns to the conductivity of the halfspace starting model
that generated it. Thus, the data are powerless to alter the
structure below about 120 km. Further confirmation that the
high conductivities at these depths are not justified by the
data 1is provided by the following test. Oldenburg's algorithm
can construct models from only apparent resistivities;—phases
are not reguired. Seventeen apparent resistivities at periods
ranging from 0.2 to 27 hours are iﬁverted. Without the 1long
period phases models are found which fit the data. All the

models have nearly uniform conductivities of 0.07 S/m with no
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highly conductive regions at depth. Therefore, we do not
believe structure below 120 km based on just the originalﬂ12
complex data.
4.3.2 Gel'fand—LevitéH Invension-“ “»‘ | éf

Parker (1980) and Parkér and Whaler (1981) discuss an
inversion scheme based on the techniques of Gel'fand and
Levitan (1955). As for H* models the responses are written as
a partial fraction expansion. The spectral function of this
expansion is manipulated by the Gel'fand-Levitan method to
give another function which is part of a Schrodinger equation.
This does not seem very progressive until it is discovered
that the MT equation can be transformed 1into a Schrodinger
equation. In this rather involved fashion, infinitely
differentiable conductivity pfofiles are constructed. The
surface conductivity, e¢o, 15 the parameter for thié algorithm,
Large values of ¢, produce small x? misfits and modeis which
resemble smoothed delta functions. Small values of ¢, increase
the misfit error and give more uniform conductivity profiles.
Four such CC2* profiles are shown in Figure 10D. Very little
variation from ¢, is present in the top 100 km. The curves
diverge somewhat near 150 km but this has been shown to be

beyond the depth of resolution of the data.

4.4 Conductance Bounds
To summarize all the models from the four inversion
algorithms the conductance curves are calculated. The

conductance at a depth 2z 1is simply the integral of the
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conductivity from the surface to level z. All sixteen
conductivity pfofiles presented .in Figure 10 are integrated in
this Qay. At any particular depth the maximum and minimum
conductance is ynotéd and the resulting .bound  curves are
plotted in Figurg 11. True, global bounds which maximize and
minimize the ‘cénductance ‘at several depths are also shown, -
These points are found using the linear programming technigues
described by Oldenburg (1983). As expected they 1lie outside
the approximate curves calculated on the basis of just 16
different models. The approximation to the true bounds in
Figure 11 is good down to a depth of about 80 km. The
agré;ment implies that the conductances of the constructed
models are representative of the true diversity of
conductances permitted by the data 1in this .region. The
approximation breaks down at greater depths where the
conductivity profiles, dissimilar though they are, fail to
adequately explore the space of acceptable conductances. A
minimum bound at a depth of 115 km was not found due to
convergence problems. Indications were, however, that the
bound point did not lie close to the approximate curve.

The conductance bound curves derived from either method
indicate well and poorly defined regions. Where the bounds are
close, the data have the power to constrain the total
conductance down to that depth. Wide bounds, however, indicate
where the data have less influence and admit large
conductivity and conductance variations. The OBM conductance
bounds are narrow down to about 50 km. Between 50 and 120 km

they gradually increase as resolution decreases (note the
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logarithmic scale). Underlying, extremely wide bounds confirm

the earlier proposition that resolution is lost below 120 km.
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Figure 11,

Conductance bounds. Approximate upper and lower bounds on the
conductance calculated from the 16 acceptable models in Figure
10 are plotted as lines. True, global bounds at several depths
are plotted as squares.
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CHAPTER 5 CONCLUSIONS
5.1 OBM Results Compared with Othef Studies

There are a growing number of,oéean bottom MT aﬁalyses
for sites on £he Pacific platé. Three in parficular have been
.amalgamated into:a‘pic£ufe consistent wifh theories of seé—
floor spréading. Oldenburg (1981) combined results from
stations JDF, CAL and NCP above 1, 30 and 72 my old
lithosphere, respectively. Several interesting trends were
obse;ved. Firstly, the distinct conductive =zone visible in
models for all three sites began at deeper depths as the
lithospheric age increased. The sharp rise in cénductivity was
intérpreted as the boundary between the <cold, resistive
iithosphere and‘the hot, conductive asthenosphere. An increase
in depth with age is expected since the lithosphere thickens
with age. Secondly, a partial melting 1interpretation of the
conductivity high showed the melt fraction decreased with
increasing age and was correlated with the seismic low
velocity =zone interpreted from Rayleigh wave dispersion data.
These relationships suggest that the conductive zone 1is the
core of a partially molten asthenosphere. Finally,
temperatures, too, generally decreased with increasing age 1in
accordance with a thickening lithosphere. A new analysis by
Parker, Oldenburg and Whittall (1983) confirms that these
trends exist but that they are not as strong as initially
believed due to the surprisingly large non-uniqueness of the
MT method. Therefore, an additional analysis on another age
lithosphere would be most helpful in ratifying or refuting the

general pattern outlined above. This was one of the
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Figure 12,

Minimum structure conductivity models for four Pacific plate
ocean bottom stations. From A through D the sites were above
1, 3, 30 and 72 my o0ld lithosphere. The OBM models of 12B are
clearly distinct from those of the other sites.
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motivations for recofding the OBM data on 3 my old
lithosphere, an agé intermediate between JDF and CAL. |

Models constructed by different inversion schemes?fof'all
four stations are plotted . in Figu;e~_12.. In the hope of
capturing- tﬁe essential‘eérth feafures;'models‘with a minimum
of structure are selected from the infinity of acceptable
profiles. Curves for JDF, CAL and NCP.(Figures 12A, 12C, 12D)
all have the same basic form. They are gquite resistive;'near
the surface and have a conductive zone beginning between 40
and 80 km. Below this depth some models indicate a decrease in
conductivity while others maintain a fairly constant level.
The OBM profiles are quite distinct (Figure 12B). They all
have a roughly uniform conductivity centered on about 0.2 S/m
until 120 km depth where resolution is lost. There are no
major conductive or resistive zones such‘as are found for the
other three sites.

To find the melt fraction and temperature profiles we use
the pyrolite plﬁs 0.1 percent water petrology of Ringwood
(1975) as well as his f(T,P) function which relates the melt
fraction, f, to theA temperature, T, and pressure, P, One
further equation which expresses the minimum f in terms of the
melt, solid and bulk conductivities is borrowed from Shankland
and Waff (1977). Results for the OBM data are presented in
Figure 13. Below the first few kilometers of sediments where
the pyroiite petrology is expected to hold the melt fraction
1s about 0.12 (Figure 13B). This drops fairly smoothly to 0.03
by 120 km as less and less melt is required to account for the

observed bulk conductivity. One model gives an extremely high
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Figure 13.

A partial melting and temperature interpretation of the OBM
minimum structure models. The minimum structure models from
the four 1inversion routines are plotted in A. The minimum
percentages of melt required to account for the observed bulk
rock conductivities are shown in B. The corresponding
temperature profiles are shown in C.
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Figure 14.

Partial melting and temperature interpretations
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f at 200 km but this 1is beyond the data resolution. the
temperature curves in ?igure 13C trend linearly from 1200°C
near the surface to 1400°C at 120 km. The almost constant
conductivity OBM models of Figure 13A generate Qquite
featureless: melt fraction and témperaturé profiles. vIn
contrast, results from the other three sites, shown in Figure
14, are more structured. There, the varying conductivities
produce melt fractions < 5 percent within definite zones and
temperature curves which are generally reduced ‘from OBM
levels.

A full geologic interpretation which draws together
results from all four data sets is beyond the scope of this
thesis. A coherent analysis of the three previous data sets
hag already been made by Oldenburg (1981). The discordant,
high conductivities below the OBM sité may be explained, in
part, by the 7 km of conductive sediments (¢=0.3 to 1.0 S/m)
in the region (L.K. Law, personnal communication). One
additional survey taken above 10 my lithosphere in August 1982
has yet to be analysed and may shift the interpretation
balance to confirm the OBM site structure or certify it as
anomalous. Hence, until this analysis 1is complete it 1is
premature and perhaps unwise to go through great contortions

to accomodate the apparently anomalous OBM results.

5.2 Suggestions for Future Work
Ocean bottom measurements of the electric as well as the
magnetic field obviate the major problems with this analysis.

No longer is the once removed ratio R the quantity in demand
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51nce.the sea-floor 1mpedance is calculated dlrectly from E(o)
and H(e). All of the approx1mat10ns accompanylng the vertlcal
Igradient method, such as 1—D structure and the transport of
VIC to above OBM, are citcumvented. Thus, ehe link'iﬁ the
chain of approximatioﬁs,andvaesﬁmptionetieAdeleted and we are
closer to a direct measure of the ~earth's conductivity.
Moreover, the impedance tensor rotation properties are
available to | distinguish' between one, t&o and three
dimensional earth structures .enabling approptiate inversion
algorithms to be selected. Complete five component
(Ex,Ey,Hx ,Hy,Hz) ocean bottom MT instruments exist and have
been wused successfully. Unfortunately, the one deployed for
this experiment ended up a few days later on the Washington
coast looking as if it had been mauled by a trawler.

Choosing a more 'normal' land station for replacement of
sea-surface fields |is advisable failing a successful
deployment of a five component instrument., VIC is surrounded
bi a complex pattern of straits and inlets which must make its
records somewhat anomalous. Other geomagnetic observatories
located near the coast of Oregon, for example, may yield fewer
spurious ratio estimates.

Long data series of perhaps two or three months are
essential for many reasons. Such extended records considerably
increase the available degrees of freedom. Stacking and
smoothing then gives stable iﬁpedance values with smaller
error bars. The estimates are not only stable statistically
but physically as well since they are based on a wider range

of source field polarizations and angles of approach. Such
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accurate data is’ important since it limits the vast non-
uniquenesé of acceptable conductivity models. Long time.seriés
also have more chance of producing long period responses which
pass the winnowing criteria and hence provide resolution down .
‘to several hundred kilometers. o | ' | M:éf“

The resolution provided by MT responses and the
uniqueness of éohstructed models' are acute problems.
Interesting features present on one model are absent from
another. It is critical to find a way of quantifying the
resolution and inferring just what structure the data truly
require. Parker (1982) provides an analytic method of finding
-the maximum depth which the data can resolve. Oldenburg (1983)
calculates bounds on the conductance down to a certain depth
or on the average conductivity'within a particular region. A
complete appraisal theory for non-linear inverse problems has
‘'yet to be unveiled.

1f the impedances indicate a. two or three dimensional
structure then the interﬁretation should be made in terms of
these types of models. The process is not so easy, however.
Two dimensional inversion programmes exist, ‘but the non-
uniqueness must be even worse than the very considerable 1-D
non-uniqueness. As for the 1-D case, some effort must be made
to assess the variability of possible 2-D models.

One way to limit acceptable conductivity profiles 1is to
incorporate results from other geophysical surveys. Structures
delineated by the different methods help to constrain the
possible earth models and define a most probable one. Gravity

data could be used although it is a very non-unigue technigue
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itself and the connection between density and Eonductivity is
not precise. Deep'seismic.soundings down to the Moho and below
could identify major geologic wunits which correlate with
conductivity anomalies. Heat flow is lihkea Qith conductivity
sincé large values of either afise from elevated teméeratures.
High heét flow measurements.in the OEM area would réinforce'
the case for the interpreted high conductivities.

Finally, the natural source MT method suffers from .an
incomplete knowledge of the source mechanisms and the fields
they generate. Many technigues must be used to ensure that the
impedances are not calculated on the basis of pathological
sources. Tests of the validity of the plane wave assumption
still depend on simplified source models. Theoretical and
practical work on artificial controlled sources for MT should
provide a substantial improvement in measured impedances and a

better understanding of the earth's electrical conductivity.
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