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Abstract 

This thesis investigates the hypothesis that ensemble methods and Kalman-filter (KF) 
post-processing can be utilized to improve near-surface real-time ozone forecasts. 

The ensemble approach combines multiple forecasts to yield ensemble-averaged and prob
abilistic predictions. In non-linear systems such as the atmosphere, it is well established that 
the ensemble approach provides a better estimate of future evolution than a deterministic 
forecast. This approach is extended here for ozone forecasts. 

K F post-processing is applied to remove ozone-forecast bias; i.e., systematic errors. In 
this dissertation, the filter is applied in a predictor mode to the raw ozone forecasts from the 
Community Multiscale A i r Quality (CMAQ) 3-D numerical model. 

A n ozone ensemble-forecast system based on a multi-model approach has been analyzed. 
Moreover, a new ensemble design for air-quality forecasts has been proposed, based on both 
meteorology and emission perturbations. Ozone ensemble-averaged and probabilistic forecasts 
resulting from these ensemble methods have been realized and tested (introducing a new 
reliability index). 

The following are the main findings of this thesis. A n ozone ensemble-forecast system 
based on a multi-model approach produces an ensemble-averaged prediction more skillful than 
a single-model approach. Ensemble-averaging is able to compensate for some of the predictive-
skill deficiencies in deterministic ozone forecasts, and for part of the initial-condition inaccu
racy. In the new ensemble air-quality forecast system proposed, the meteorology perturbation 
is important to capture ozone temporal and spatial distributions. The emission perturbation is 
needed to accurately predict the ozone concentration magnitude. The emission perturbations 
are more important than the meteorology ones to capture high (and rarely measured) ozone 
concentrations. 

The K F successfully removes part of the ozone-forecast bias caused by errors in the model. 
The combination of ensemble averaging (unsystematic-error removal) and Kalman filtering 
(systematic-error removal) results in the best ozone forecast. 

Ensemble and K F methods can indeed significantly improve near-surface ozone forecasts, 
even in the complex coastal mountain setting of the Lower Fraser Valley. There are no in 
trinsic limitations to these methods that would prevent their application in real time to other 
pollutants in other geographic settings. 
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C0(d.,sta.)max maximum 1-h average observed concentration at a monitoring station 

over one day 
C0(%> t )max maximum 1-h observed concentration at a monitoring station located at 

x over one day 
Cp(t, sta.) 1-h average predicted concentration at a monitoring station for hour t 
Cp(x,ti) predicted value at the monitoring station located at x for hour ti 
Cp(sta.) average of 1-h average predicted concentrations at a monitoring station 
Cp(d.,sta.)max maximum 1-h average predicted concentration at a monitoring station 

over one day 
Cp(x,t')max maximum 1-h predicted concentration at a monitoring station located at 

x over one day 
CALGRID California photochemical grid model 
C A R T classification and regression tree schemes 
CBM — IV carbon bond mechanism 
C C M E Canadian Council of Ministers of the Environment 
CMAQ models-3/community multiscale air quality model 
CRMSE centered root mean square error 
CRT control forecast member 
CTRL run with base emission scenario 
CTM Chemistry Transport Model 
CTMs Chemistry Transport Models 
C W S Canada wide standard 
CYVR Vancouver International Airport station 

E . 
E forecasts ensemble average 
ECMWF European Center for Medium-range Weather Forecasts 
EK ensemble-mean of the Kalman filter bias-corrected forecasts 



EMEP European monitoring and evaluation programme 
E P A Environmental Protection Agency 
ETEX European tracer experiment 
EURAD European air pollution dispersion model 

F 

FCT operational forecast data 

G 
GE gross error 
GEM generalized environmental multiscale model 
GVRD Greater Vancouver Regional District 

H 
H2O2 hydrogen peroxide 
HIRLAM high resolution limited area model 
HNO3 nitric acid 

HYSPLIT hybrid single-particle Lagrangian integrated trajectory model 

I 

ICs initial conditions 

K 
K Kalman-corrected forecast 
KEK Kalman filter bias-corrected ensemble-mean of the Kalman filter 

bias-corrected forecasts 
KF Kalman filter 
KFP Kalman filter predictor 

L 
LFV Lower Eraser Valley 
LLLV local leading Lyapunov vectors 
LOTOS long-term ozone simulation model 

M 
MC multiplicative bias correction 
MC2 Canadian mesoscale compressible model 
MCF meteorological complexity factor 
MEBI modified Euler backward iterative chemistry solver 
MM5 Penn State-NCAR mesoscale model 
MMT middle member of the ensemble trajectories 
MOS model output statistics 

N 
N number of hourly concentrations 



N number of ensemble members in the lagged-averaged forecast 
Nday number of days •• 
Nhour number of 1-h average concentrations 
N A A Q O s national ambient air quality objectives 
NAM North American mesoscale model 
NCAR National Center for Atmospheric Research 
NCEP National Centers for Environmental Prediction 
NMC National Meteorological Center 
NO nitric oxide 
NO2 nitrogen dioxide 
NOy total reactive nitrogen 
NOXN run with minus 50 % N O x 

NOXP run with plus 50 % N O x 

NOx nitrogen oxides 
NWP numerical weather prediction 

O 
O atomic oxygen 
02 molecular oxygen 
03 ozone 

OEFS • ozone enseble forecast system 

P 
p expected mean square error 
PDT Local Pacific Daylight Time 
ppb part per billion 
ppbv part per billion by volume 
PDF probability density function 
PFS probabilistic forecast system 

R 
r Lorenz model parameter 
rmsd root-mean-square deviation 
RMSE root mean square error 
REM3 regional Eulerian model 
ROC Relative Operating Characteristics 
ROGs reactive organic gases 
RPN Recherche en Prevision Numerique 
RTMOD real time model evaluation 

S 
SCIPUFF second order closure integrated puff 
SEAREX sea-air exchange experiments 
SEF global spectral model 
SMOKE Sparse Matrix Operator Kernel Emission 



SNAP severe nuclear accident program 
SO space overlap 
SSE system simulation experiment 
SV singular-vectors 

T 
t time 

U 
University of British Columbia 
unpaired peak predicition accuracy 
United States 
Coordinated Universal Time 

University of Wisconsin nonhydrostatic modeling systi 

V V phase space volume 
Vo phase space initial volume 
V O C s volatile organic compounds 

W 

W M O World Meteorological Organization 

X 
x cartesian coordinate 
x Kalman filter bias estimate 
xt true forecast bias at time t 

Y 
y Cartesian coordinate 
Ut forecast error at time t 

Z 
z Cartesian coordinate 
zt time series 

UBC 
UPPA 
US 
UTC 
UW - NMS 



Preface 

The goal of this dissertation is to improve our ability to predict the spatial and temporal 
distribution of ozone concentration. This goal has been achieved by applying ensemble and 
Kalman-filter methods to air-quality (AQ) forecasting. 

Some dynamical systems are called chaotic if they show divergent behavior, meaning that 
two different solutions starting from similar but not identical initial states would eventually 
diverge nonlinearly in solution space. The atmosphere exhibits this behavior, and is thus 
a chaotic system. As a consequence there is an upper limit in time on the predictive skill 
of weather forecasts. The ensemble approach is one method to represent the time evolution 
of the probability density function (PDF) describing the atmosphere's initial state and its 
uncertainty. This P D F can be represented by a limited set of points. The evolution of each 
of those points would be a member of the ensemble. Each of those members should ideally 
represent an equally likely evolution of the dynamical system. 

It has been found for numerical weather prediction (NWP) that the ensemble-mean is more 
accurate that an individual model realization, when verified for many cases. The ensemble 
technique yields similar benefits to A Q prediction, because there are similar model complexi
ties and constraints. Different A Q models can be better for different air-pollution episodes, in 
ways that cannot always be anticipated. Similar to N W P ensembles, A Q ensemble members 
can be created with different meteorological and/or emission inputs, parameterizations within 
a single model, numerics within a single model, and multiple models. Moreover, N W P ensem
bles have been very useful by providing information about the likelihood of possible future 
evolutions of the atmosphere. Similarly, A Q ensembles may be able to provide reliable proba
bilistic information about possible A Q scenarios. Given the nonlinear nature of photochemical 
reactions, an Ozone Ensemble Forecast System (OEFS), and the differences among the en
semble members, may rapidly account for the uncertainties associated with each component 
of the modeling process. 

The first chapter introduces chaos theory and reviews the state of research relevant to this 
dissertation. The remaining chapters except the last chapter consist of journal papers resulting 
from this dissertation research. Thus, these chapters have their own introduction, conclusions 
and references. These journal papers are cited on the first page of each chapter. Chapter 2 
investigates a multi-model approach to realize an O E F S . Chapter 3 introduces a new A Q 
ensemble design, combining meteorology and emission ( N 0 X ) perturbations. These successful 
experiments prompted the work described in Chapter 4, where also a V O C perturbation is 
tested. Also the effects of different horizontal spatial resolutions, emission perturbations, and 
driving N W P models on the ensemble performance are investigated. Chapter 5 explores the 
application of Kalman-filter postprocessing to A Q forecasts to remove their systematic ozone 



errors. Finally, conclusions and recommendations for future work are the subject of Chapter 6. 
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Chapter 1 

Background 

To understand the potential for ensemble air-quality (AQ) forecasts, one must first understand 

the factors that limit atmospheric predictability. Those factors are introduced and discussed 

in the next three sections, along with a description of the ensemble approach and its imple

mentation in weather and A Q forecasts. The fourth section describes the Kalman filter (KF) 

algorithm and discusses how it can be used to remove systematic errors in A Q forecasts. 

1.1 Chaos; Atmospheric Predictability 

1.1.1 Dynamical Systems 

A dynamical system is a system evolving from an initial to a future state following physical laws 

that can be expressed with mathematical equations. To predict the evolution of such system, 

one can integrate the equations, starting from an observed initial state. Unfortunately, often 

this initial state cannot be determined precisely, as for the atmosphere. 

In some cases, the evolution of a system can be anticipated without describing its initial 



state. This is the case of a dynamical system whose evolution is known to have a periodic 

behavior. For example ocean tides can accurately be predicted using the motions of sun, 

earth, and moon, and without knowing the initial spatial distributions of tide height. In other 

cases the evolution of a dynamical system cannot be predicted because there is an inexact or 

incomplete knowledge of its present state. 

Some systems show divergent behavior, meaning that two different solutions starting from 

close (but different) initial states would eventually diverge in the solution space. In those cases 

we don't know a priori which of the two solutions is closest to the true evolution of the system. 

Poincare (1897, as described in (Alligood et al., 1997)) first discovered that the motion of a 

three-body system is "sensitively dependent on the initial conditions", introducing for the first 

time a so-called chaotic systems. Lorenz (1963) studied the behavior of such systems. The 

numerical solution of a system of equations coupled with each other, and/or involving non

linear terms, can be very sensitive to the initial values of the independent variables describing 

the present state of the system. 

Regardless of how small is the distance in solution space between the initial states of two 

solutions of the same system, these solutions would eventually differ from each other as if they 

were randomly chosen. This implies that, for such a system of equations, there is an upper 

limit to their predictability; i.e., a limit in time after which one solution (the forecast) does not 

possess any useful information about the evolution of the other solution (the real weather). 

The phase-space of a dynamical system is the multi-dimensional space of independent 

variables. The number of those variables is the dimension of the phase-space. A point in the 

phase space is called state. The evolution of the system in time is a set of states that is called 

the trajectory, or orbit. A dynamical system shows a chaotic behavior if most trajectories in 



the phase-space exhibit sensitive dependence to initial conditions (Lorenz, 1993). A trajectory 

is characterized by sensitive dependence if most other trajectories that pass close to it at some 

point do not remain close to it later. 

The atmosphere shows this behavior, and is thus a chaotic system. We are not able to 

accurately measure the initial state of the atmosphere, due to instrumental errors and large 

gaps between observations sites. Moreover, we are able to solve only a simplified version of 

the equations describing the atmosphere, and those solutions are usually numerical approx

imations; i.e., they are sources of error as well. As a consequence there is an upper limit 

in time to the predictability of the weather. As Lorenz (1963) concluded in his milestone 

paper, "When our results concerning the instability of non-periodic flow are applied to the 

atmosphere, which is ostensibly non-periodic, they indicate that prediction of the sufficiently 

distant future is impossible by any method, unless the present conditions are known exactly. 

In view of the inevitable inaccuracy and incompleteness of weather observations, precise very-

long-range forecasting would seem to be non-existent". 

1.1.2 The Lorenz Model 

Lorenz (1963) introduced a three-variable simple model representing finite amplitude convec

tion, analogous to a tank of water with a heated bottom. Here a brief description of the model 

is given, and more details can be found in Lorenz (1993). The following equations represent 



this chaotic system: 

dx , . 
~dt = a { v ~ x ) 

dy 
— = rx — y — xz 
dt y 

(1.1) 

Where a, r and b are parameters, and where x is proportional to the intensity of the convection 

motion, y is proportional to the temperature difference between the updraft and downdraft, 

and z is proportional to the distortion of the vertical temperature profile from linearity (positive 

if the strongest gradient occurs nearby the boundaries). The parameter values (chosen from 

Lorenz, 1963) were a — 10, r = 28, and b = 8/3. 

A family of solutions can be defined by varying those parameter values. Here only one set 

of values are considered to give a classical example of a chaotic system. 

The system (1.1) is dissipative; i.e., the phase space volume contracts along a trajectory. 

This can be seen from the divergence of the flow: 

A n original volume V contracts with time to the value Ve~(cr+b+1^>t. For example the atmo

sphere (with friction) is a dissipative system. The fact that the system is dissipative as shown 

by (1.2) implies the existence of a bounded globally attracting set of zero volume, or more 

generally, an attractor of dimension smaller than the dimension of the phase-space. 

A n attractor is a set of states (points in the phase-space), invariant under the dynamics. 

(1.2) 



A basin of attraction is a set of points in the phase-space such that initial conditions chosen in 

this set dynamically evolve to the attractor. Neighboring states in a given basin of attraction 

asymptotically approach the attractor in the course of the system evolution. The first portion 

of the trajectory (away from the attractor set) is called the transient. 

Lorenz (1965) extended his work by considering a 28 variable model. For the following 

discussion, Szunyogh et al. (1997) and P u et al. (1997) are also valuable references. Lorenz 

noticed that the errors tend to grow along selected directions in the phase-space. He observed 

how a hyper-sphere around a state, representing a small perturbation of the state in the 

phase-space, evolves in time following the system evolution. If the system is chaotic (two 

close trajectories will eventually diverge completely) the hyper-sphere will initially evolve in a 

hyper-ellipsoid, because at the beginning linear effects dominate the system evolution. Once 

non-linear effects start to become important, the hyper-ellipsoid becomes a "banana" shaped 

surface, and a few axes of the hyper-ellipsoid will start to grow more rapidly than others. While 

those axes will keep growing, the banana shaped surface will keep elongating and stretching 

along those axes directions. If the system is bounded, this surface will fold on itself several 

times, and eventually will converge into the zero volume attractor with an infinitely foliated 

structure (Kalnay, 2003). 

More precisely, along each axis the long-term average of stretching or contraction of the 

solution space is given by eXit where Aj are called the Lyapunov exponents of the i axis. The 

volume of the hyper-ellipsoid is proportional to V o e ~ ( A l + A 2 H where Vo is the volume of 

the initial hyper-sphere and n is the dimension of the phase-space. If the sum of the Lyapunov 

exponents is zero the system is Hamiltonian and it conserves its volume. For a dissipative 

system, the sum is positive. 



In a chaotic system, one or more exponents are positive. The axis associated with them 

will grow indefinitely, and will allow the separation of two trajectories initially close to each 

other. Moreover, if the system is bounded at least one of the Lyapunov exponents must be 

equal to zero. 

Lyapunov exponents give us information about global properties of flow evolution, and 

for the atmosphere its attractor is climatology. However for weather predictability, the main 

focus is on local space and short time stability properties of the flow. Thereby, local leading 

Lyapunov vectors (LLLV) or finite Lyapunov vectors can be defined (Trevisan and Legnani, 

1995), to indicate the direction in which the maximum error growth occurs, locally. L L L V 

can be viewed as the results of defining the Lyapunov exponents for a particular limited space 

region, and for a finite period of time. 

The concepts introduced by Lorenz (1965) lead to the development of the singular-vectors 

(SV) approach (Molteni and Palmer, 1993). A n error term is added to the linearized version 

of the system equations, and the solution of the resulting system can be seen as an error-

propagator matrix. The eigenvectors of this matrix multiplied by its transpose are called the 

singular-vectors, and their eigenvalues equal the square of the singular values of the matrix. 

Those vectors point to the directions of greater error growth, and the adjoint of the linear 

model will project the errors back onto the initial state. The singular vectors are extremely 

sensitive to the choice of norm and the time period over which they are applied (Errico and 

Vukicevic, 1992). 

A n advantage of L L L V over SV is the fact that they do not depend on the norm used to 

define them. Moreover SVs initially do not point to the attractor, but point to subspaces of 

the phase-space where solutions do not usually occur. A disadvantage is that L L L V s grow 



much slower than the SV, and initially they do not closely resemble the true error growth. 

The Lorenz's work had important implications for predictability of chaotic systems and 

ensemble forecasts as will be illustrated in the next section. The error growth of weather 

forecasts are highly dependent on the flow of the day, and is bigger along a few directions 

in phase space, while along others errors diminish. After a short time, there are only few 

dominant directions important to describe the error growth of a dynamical system. Since 

the error growth can be characterized with few Lyapunov exponents, only a few ensemble 

members with appropriate perturbations are needed to potentially estimate the dynamical 

system evolution better than a single deterministic prediction. 

1.2 Numerical Weather Prediction (NWP) Ensembles 

The first part of this section is a brief history of the evolution of N W P ensembles; namely, 

the use of multiple N W P forecasts to better estimate the future weather and the confidence of 

the prediction. This is followed by a description of the ensemble approaches used in the main 

operational forecast centers around the world. Last, a closer look at the more recent ensemble 

research efforts is given. 

1.2.1 N W P Ensemble History 

After Lorenz (1963, 1965), the scientific community started to consider the issue of limited 

predictability of any non-linear dynamical system with instabilities, such as the atmosphere. 

The smallest approximation in the forecast model or the tiniest error in initial conditions will 

lead to a total loss of skill in the weather forecast after a finite time. He estimated the weather 



predictability limit is two weeks, on average, and that the limit for any given day strongly 

depends on the instabilities associated with the flow of the day. 

The Lorenz work inevitably lead researchers to consider the stochastic nature of the atmo

sphere. Namely, one could follow the evolution in phase-space of a probability density function 

(PDF) describing the atmosphere's initial state and its uncertainty. Although a mathematical 

formulation of such system of equations can be formulated through the continuity equation 

for probability (Liouville equation, Ehrendorfer (1994)), a solution of it would imply an over 

simplification of the equations themselves, or would require an impossible computational effort. 

The ensemble approach comes from the necessity of representing the time evolution of the 

P D F describing atmospheric state. The P D F can reasonably be represented by a limited set 

of points. The evolution of each of those points would be a member of the ensemble. Each of 

those members should ideally represent an equally likely evolution of the dynamical system. 

Gleeson (1966, 1967) and Epstein (1969a) first clearly stated the necessity of a probabilis

tic prediction, as oppose to a deterministic one, in simulating atmospheric evolution. Their 

statement is based on the unquestionable fact that we can estimate the true value of the 

atmosphere in only a probabilistic fashion. 

In stochastic-dynamic forecasting, Epstein (1969b) derived a continuity equation for a P D F 

representing the model solution. He explicitly forecasted the first and second moments of a 

P D F related to a simplified version of the Navier-Stokes equations. He concluded that a 

stochastic prediction provides better forecasts than a deterministic one, and also gives useful 

information about the uncertainty. Unfortunately his approach is completely unfeasible for a 

model with millions of degrees of freedom. 

Leith (1974) proposed Monte Carlo forecasting, where a limited number of ensemble mem-



bers was.required to create the ensemble. He randomly created the perturbation of the starting 

analysis from which each ensemble member was initialized. He assumed a perfect model; i.e., 

assumed that the model can closely follow the evolution of the atmosphere if initialized cor

rectly. This is a deficiency of any ensemble that takes into account only the errors associated 

with the initial conditions. Nevertheless, he suggested that a Monte Carlo ensemble behaves 

similarly to a stochastic ensemble, but is computationally much cheaper. He also noticed that 

the ensemble average filters out the unpredictable small scales, and improves the forecast skill 

by leaving the bigger scales virtually unaltered. The loss of small-scale features related to av

eraging is still an open issue in the weather forecasting community (Kalnay, 2003). He finally 

suggested that a set of ensemble members as small as eight would lead to adequate accuracy 

in the forecast. 

After Leith (1974), and after the error estimates in Daley and Mayer (1986), many appli

cations of the Monte Carlo ensemble forecasts can be found in the literature (Errico and 

Baumhefner, 1987; Tribbia and Baumhefner, 1988; Mullen and Baumhefner, 1989, 1994). 

Those works show that the assumption of initial-state errors are limitations of the Monte 

Carlo approach, and that the magnitude of ensemble spread is not representative of the error 

growth, especially for short-range forecasts. 

Hoffman and Kalnay (1983) introduced the lagged-average forecast. The forecast ini 

tialized at the current initial time, t = 0, as well as forecasts from the previous times, 

t = —r, — 2 r , . . . , (N — l ) r are combined at a common valid time to form an ensemble. They 

weighted each member with its expected error, based on its "age". They estimated this error 

by parameterizing the observed error covariance growth. They found the lagged-average fore

cast to be slightly better than the Monte Carlo forecast, and they found higher correlation 



between error growth and ensemble spread (i.e., differences between the ensemble members) in 

their approach. These improvements were achieved because the lagged-average forecast per

turbations are not randomly chosen, but better capture the error of the day. In the literature 

a few other applications of this ensemble approach can be found, as for example in Dalcher 

et al. (1988). 

1.2.2 Operational Ensemble Forecasting and Recent Advances 

In the early 90's the US National Centers for Environmental Prediction (NCEP) and the 

European Center for Medium-Range Weather Forecasts ( E C M W F ) , implemented two new 

approaches. The common idea is that the perturbations to create the ensemble members should 

be focused mainly on the fastest-growing modes of the atmosphere. N C E P and E C M W F 

obtained similar perturbations, even though there are important differences. Similarities and 

differences of these two approaches are illustrated next. 

Toth and Kalnay (1993, 1997) introduced the breeding method. The idea is to build a 

cycle to "breed" the fast growing "errors of the day". A breeding cycle is introduced by 

random perturbations with a given size, measured with any norm. This random approach 

must be followed only in the first cycle. The model then is run from the original analysis 

(control run) and from the perturbed analysis for a fixed cycle length. At the end of each 

cycle, the control run is subtracted from the perturbed forecasts, and the resulting differences 

are scaled down to the same amplitude as the initial perturbation. Then they are added to 

the new analysis, and another forecast cycle is performed. The authors argued that those 

differences resemble the fastest growing errors, a desirable feature. They also suggest that this 

method creates perturbations only along those modes that dominate the forecast errors, as 



opposed to a random perturbation that will span mainly onto non-growing modes. Toth and 

Kalnay (1993) and Kalnay (2003) moreover argue that the breeding method is a nonlinear 

generalization of the process used to obtain the Lyapunov vectors. The nonlinear aspect of 

the breeding method filters out the Lyapunov vectors associated with energetically negligible 

and fast-growing instabilities as for example convection: A drawback is that the bred vectors 

depend on the initial random seed. 

Molteni and Palmer (1993) and Buizza (1997) describe a different approach used at E C M W F , 

where the perturbations rely on the SV properties. The SVs depend on the particular norm 

that is utilized, and also on the time over which the operator is applied. The errors can be 

projected back onto the initial state by applying the adjoint of the linear model. Since the 

SVs represent the axes of the ellipsoid picturing the initial error evolution in the phase-space, 

to create the perturbations their values are added and subtracted to the initial conditions. 

Those perturbations are finally scaled down to the magnitude of the analysis error estimate. 

Rabier et al. (1996) showed that the day-2 forecast error growth projects well into the space 

of dominant SVs. Using the information given by the SVs on the directions of the most rapid 

error growth in N W P models, localized SVs have been used to construct initial perturbations 

for the ensemble prediction system of E C M W F (Palmer, 1993; Molteni and Palmer, 1993; 

Ehrendorfer and Errico, 1995). 

Ensemble forecasts also provide information on the reliability of the forecast: if the ensem

ble members have large spread, this indicates that at least some of them do not represent the 

true evolution. The standard deviation of the ensemble members about the ensemble mean is 

called ensemble spread. The relationship between the ensemble spread and the forecast error 

is not yet well defined (Kalnay, 2003). Nevertheless, it often provides very useful information 



about ensemble skills. Greater spread suggests less confidence in the ensemble mean forecast. 

The most promising approach for limited-area (mesoscale) short-range forecasts is the 

multi-model ensemble approach (Krishnamurti et al., 1999; Hou et al., 2001; Toth, 2001; Wan-

dishin et al., 2001), where forecasts from different models form the ensemble members. The 

idea is not only to capture the uncertainties in the initial and boundary conditions, but to 

also acknowledge that the models contain many uncertainties in their formulation, numerics, 

parameterizations, and time and space discretization. 

Currently the Canadian ensemble system at the Recherche en Prevision Numerique (RPN) 

center is based on a system simulation experiment (SSE) (Houtekamer et al., 1996). In an 

SSE, it is considered that all elements of the forecast system, observations, analysis, and 

model are subject to uncertainty. The elements of the system are perturbed in different ways 

for different members of the ensemble. By considering uncertainty in both the analysis and 

the model, the R P N approach, in its current 16 member configuration, is a true multi-model 

ensemble: two completely different models, the older global spectral model (SEF) and the 

newer global version of the generalized environmental multiscale (GEM) model are used. 

1.3 Ozone 

1.3.1 Introduction 

Ozone (O3) is a reactive oxidant gas naturally produced in the atmosphere. Figure 1.1 shows 

a typical vertical O 3 profile. Stratospheric levels can reach 10,000 parts per billion (ppb), 

whereas background levels near the surface are only few tens of ppb. 

Stratospheric O 3 absorbs ultraviolet radiation emitted by the sun. In the last 30 years this 



Figure 1.1: Ozone typical vertical profile (source: http:/ /www.al.noaa.gov/WWWHD/pubdocs/ 
Assessment98). 

http://www.al.noaa.gov/WWWHD/pubdocs/


layer has partially depleted, partly caused by anthropogenically produced chlorine compounds 

(Molina and Roland, 1974; W M O , 1998). 

However, this thesis focuses on tropospheric O 3 , which is increasing primarily because 

of increased fossil-fuel combustion by people (WMO, 1986, 1990). Ozone-rich photochemical 

smog is the result of chemical interactions of nitric oxide (NO), nitrogen dioxide ( N O 2 ) , and 

reactive organic gases (ROGs) - also called volatile organic compounds (VOCs), and sunlight. 

Often NO and N O 2 are classified together as N O x . 

Typically, N O x and ROGs are emitted from vehicular and stationary combustion sources. 

ROGs become free radicals via chemical reactions. The radicals or O 3 (via N O x titration) can 

transform NO into N O 2 . Finally molecular oxygen (O2) reacts with atomic oxygen (O) to 

form ozone. Pollutants can be divided into primary and secondary: the former are gases and 

particles that are directly emitted into the atmosphere from surface or elevated sources (e.g., 

NO) , and the latter are created chemically (e.g., O 3 ) or physically within the atmosphere. 

A detailed description of the chemical transformations involved in tropospheric O 3 formation 

can be found in Jacobson (1999) and Seinfeld and Pandis (1998). 

The chemical pathway summarized above can be described with a set of nonlinear equations 

representing the chemical reactions. The O 3 production depends on the concentration of 

primary pollutants that lead to its formation. Those pollutants have lifetimes that may differ 

significantly from one another. Ozone, once formed, can reside in the atmosphere a month 

or longer, but is often titrated by contact with the earth's surface. This leads to seasonal, 

synoptic, diurnal, and subdiurnal variations of ozone concentration at the surface and aloft 

(Hogrefe et al., 2001). 

Meteorology is an important factor affecting photochemical pollution creation, transport, 



and deposition. Sunlight allows photochemical reactions, and its intensity directly governs 

photolysis rates. Local and mesoscale flows mainly determine the distribution of pollutants: 

sea and land breezes, katabatic and anabatic winds, and valley flows. They all can play an 

important role in the development of air quality. Moreover specific synoptic conditions usually 

are necessary for photochemical pollution episodes to happen in different locations. High-

pressure systems at the surface and aloft, surface thermal lows, subsidence and entrainrnent 

in the Atmospheric Boundary Layer (ABL) , and stagnation conditions all may affect the 

composition of the air we breathe. 

Tropospheric O3 has been recognized as an harmful gaseous pollutant for many years. 

Oxidant pollutants can affect negatively the human respiratory system (for example, Horvath 

and McKee, 1994; Brauer and Brook, 1995). O3 exposure reduces lung function, and aggra

vates existing respiratory diseases, such as asthma. The degree of adverse respiratory effects 

produced by O 3 depends on several factors, including concentration and duration of exposure, 

climate characteristics, individual sensitivity, and preexisting respiratory diseases. 

O3 is one of the most damaging air pollutants to plants. O3 can be advected by the wind 

across great distances to cause damage to plants far from its origin. The extent of plant damage 

depends on the concentration of O3, the duration of exposure, and plant sensitivity. Acute 

damage has been observed to both deciduous trees and conifers (Runeckles, 2002). Finally, 

ozone can also damage materials. For example rubber and plastic products deteriorate quicker 

if exposed to high ozone concentrations (Brown et al., 2001). 



1.3.2 Ozone Forecasts 

Tropospheric O3 has been designated a "criteria pollutant" since 1970, and health standards 

have been set since then in many countries. Those standards try to account for the natural 

variability of O3, and for rare events. For example in Canada, the National Ambient A i r 

Quality Objectives (NAAQOs) set the maximum 1-hour average concentrations to 82 ppb. 

From 2010, a new Canada Wide Standard (CWS) will be set to 65 ppb for the 4th highest 

8-hour averaged concentration during a span of three consecutive years ( C C M E , 2000). In the 

US, the 1997 Clear Air Act Revision (EPA, 1997) set the O3 8-hour averaged standards to 85 

ppb for the 3rd highest reading over four years. 

The discovery of ozone's harmful effects on humans and vegetation led to two outcomes: 

the necessity of issuing A Q forecasts; and the need to limit and control adverse anthropogenic 

emissions. Although O 3 formation is extremely complex, its maximum concentration is well 

correlated to weather parameters, and its variations can be described with fewer meteorological 

predictors. For these reasons, different attempts have been made to design simple ways to 

predict O3 maxima at a specific location or over a prescribed spatial domain. Statistical 

approaches include multiple-regression analysis (Ryan, 1994), nonlinear regression (Hubbard 

and Cobourn, 1997), neural networks (Ruiz-Suarez and Mayora-Ibarra, 1995), classification 

and regression tree schemes (CART) (Burrows et al., 1995), and hybrid approaches (Liu and 

Johnson, 2002). A comprehensive discussion of these techniques and their forecast skills can 

be found in E P A (2003). The statistical approaches have limited, if any, description of physical 

and chemical processes; they usually predict only the maximum concentration, and they have 

difficulties in anticipating rare events. Moreover they can be applied only over areas with large 



data availability, and this limits their applicability mainly over metropolitan areas (EPA, 2003). 

Ainslie (2004) proposed a scaling-level model for ozone photochemistry, where a dimen

sional analysis was used to categorize the relevant variables in different dimensionless groups. 

The relationship between the groups can be parameterized with a simple expression. The 

model appeared to capture the ozone dependency on meteorological conditions and precursor 

concentrations, resulting in a useful screening tool. 

To better account for all the processes and variables involved in O 3 formation, a complex 

3-D modeling system is needed. For regional A Q forecasts, such a system should include a 

mesoscale model to produce the meteorological fields, an emission inventory processor, and 

a chemistry and transport model. With such a system the population can be alerted about 

impending air-quality degradation in urban, rural, and remote areas. Such forecasts provide 

much more detailed spatial and temporal information, allowing better decisions regarding 

daily activities. Daily A Q forecasts can give insights into peculiarities of pollutant behavior in 

specific regions, such as winter valley particulate matter down-transport, tropopause folding, 

and gravity-wave breaking over the Fraser Valley and South West British Columbia (Hacker 

et al., 2001). A Q forecasts can be useful for prescribed forest fires and agricultural field burning 

to minimize smoke impact on the local population and on regional haze (e.g., Achtemeier et al., 

2005). Moreover, 3-D A Q models can be used to plan long-term emission controls to reduce 

the impact of pollution on population (e.g., Jonson et al., 2001). 

Dabberdt and Miller (2000) confirm the need for an operational A Q forecast system, and 

recommend the use of probabilistic approaches as is already used in weather forecasts. The 

first experiences in this direction are described in Delle Monache et al. (2004), McHenry et al. 

(2004) and Vaughan et al. (2004). Finally the need for A Q probabilistic forecasts, which are 



the subject of this thesis, have been promoted also by the U.S. Weather and Research Program 

and its Prospectus Development Team on Air Quality Forecasting (Dabberdt et al., 2003). 

1.3.3 Ensemble Trajectory Modeling 

This section reviews ensemble dispersion studies, where air parcel paths, also called trajectory 

(not to be confused with the definition given in Section 1.1), are modeled. Most studies 

estimate trajectory errors by simulations that verify for the same period. They share the basic 

premise that deterministic model prediction cannot reliably represent pollutant trajectories. 

In early work, Merrill et al. (1985) computed isentropic trajectories using data from the 

1979 Pacific Sea-Air Exchange ( S E A R E X ) experiments. They computed trajectories kine-

matically using grid-point values of geopotential height and wind provided by E C M W F . The 

authors assert that single trajectories are of limited usefulness, because of the uncertainties 

in their calculations and in the data. Therefore, they computed an ensemble of trajectories 

with nine to 19 ensemble members by perturbing the initial conditions. They recognized that 

trajectory-calculation precision was affected by: the assumption of adiabatic flow, the exclu

sion of precipitation and particle gravitational setting, and the data void in remote areas of 

the Pacific Ocean. Those factors forced them to consider a probabilistic approach. 

They also tested the trajectory sensitivity to the meteorological analysis. For a few cases, 

they used both E C M W F and National Meteorological Center (NMC) global analyses, where 

the latter had coarser resolution. They realized that trajectories can be sensitive to differences 

in meteorological inputs. Moreover, for different trajectories that verify for the same period 

and domain, they associated the ensemble spread to information on the intrinsic predictability 

of the flow. 



Stohl et al. (1995) identified interpolation errors as a major problem in trajectory compu

tation. To estimate those errors, they suggested creating an ensemble of trajectories by adding 

random errors at each time step to a reference trajectory. 

Similarly Kah l (1996) studied the relationship between errors in predicted trajectories 

and the instability associated with the meteorology. He defined a meteorological complexity 

factor (MCF) to forecast model-trajectory errors. M C F is the average distance between the 

trajectories and a reference trajectory. He assumed that trajectory uncertainty could be 

predicted as a function of the M C F . The weakness of this approach is that the magnitude 

of the M C F depends critically on the integration time step. 

He computed M C F using results from 22 published studies. He also used a Monte Carlo 

simulation to compute 144,000 different trajectories by superimposing random perturbations 

upon the wind field used to compute the reference trajectory. The author found that the error 

growth may be unstable with respect to small perturbations in the wind field. This behavior 

closely resembles the description of a chaotic system. The author concluded by encouraging 

as future development " . . . a methodology for predicting the confidence which one may place 

in individual trajectory calculations...". One methodology could certainly be the ensemble 

approach. 

Baumann and Stohl (1997) analyzed a 4-day record of gas balloon tracks during an inter

national long-distance ballooning competition. They compared the balloon trajectories using 

E C M W F meteorological analyses, and they ran a modified version of the model F L E X T R A 

(Stohl et al., 1995), taking into account balloon ascent and descent. In addition to a reference 

trajectory they calculated 100 ensemble trajectories. They started the ensemble trajectories 

from a 100 km radius circle around the reference starting position, which was the grid reso-



lution of their meteorological data. To consider interpolation errors they also perturbed the 

horizontal wind field, by adding normally distributed random errors to the reference field. The 

authors recognized that those ensembles did not account for the errors embedded in the wind 

analysis. Moreover, they did not account for uncertainties in the vertical wind. Nevertheless, 

they concluded that their ensemble usually enveloped the balloon tracks, indicating that the 

errors neglected from their ensemble approach were small. The ensemble provided useful infor

mation about the computed trajectory uncertainties. The authors noticed a good qualitative 

correlation between the uncertainties and the ensemble-member spread. 

Stull et al. (1997) considered the potential benefit of ensemble A Q dispersion modeling, 

analogous to the benefit for weather ensembles. They perturbated the weather analysis for the 

Global Spectral Model of N C E P to generate a set of equally-likely initial conditions to initial

ize two weather mesoscale models, the Canadian Mesoscale Compressible Model (MC2) and 

University of Wisconsin Nonhydrostatic Modeling system (UW-NMS) . The authors speculated 

about trajectory behavior, forecast confidence and predictability. 

Straume et al. (1998) used a Lagrangian dispersion model, the Severe Nuclear Accident 

Program (SNAP). Ensemble meteorological forecasts produced by E C M W F (where the ensem

ble perturbations are calculated using singular vectors) were used as input to study starting-

analysis error growth associated with atmospheric instabilities (Section (1.2.1)). 

The 32 ensemble members plus the control forecast were processed with the High Resolution 

Limited Area Model ( H I R L A M ) . The 33 E C M W F forecasts output data every 12 hours for 

five vertical layers. H I R L A M transformed this data into a data set with values every six hours 

onto 32 vertical layers. 

Straume et al. (1998) compared their simulation results with the European Tracer Exper-



iment ( E T E X ) , which includes measurements of two tracers released in France during south

westerly flow in October and November 1994 (Nodop et al., 1998). The tracers were measured 

over a period of 72 hours for both releases. 

The ensemble members and the control forecast were used as inputs to the S N A P model, 

to realize 33 dispersion simulations for the same domain and time period. To estimate the 

weather predictability, Straume et al. (1998) computed the root-mean-square deviation (rmsd) 

of the computed concentrations from the control forecast. Because of the strong dependence of 

this value upon the geographical area (due to some grid points containing zero tracer concen

trations) the authors argue that those deviations are qualitative measurements of uncertainties 

of the meteorological input. The rmsd grows from 0 to 4 % or less for the first three days, and 

reaches an average value of 7 % after 72 hours from the release. The authors also computed 

the centroid position for both the modeled and measured dispersion, and found an uncertainty 

of the model between 10 and 20 %, with a distance between the two centroids between 20 

and 90 km for the first 21 hours, and a maximum of 300 km after 48 hours. Even though the 

modeled and measured puff arrivals were significantly correlated, the authors found an average 

of 6 hours delay of the model puff arrival at the stations compared to what was measured. 

The puff durations were not correlated. 

Dabberdt and Miller (2000) simulated an actual three hour accidental release of oleum in 

the city of Richmond, in the San Francisco Bay Area. They ran a non-steady-state puff-type 

dispersion model driven by a diagnostic mass-consistent wind field model. They argue about 

the utility of a probabilistic approach, particularly in cases of accidental releases, when there 

are scarce meteorological measurements, and scarce background concentration data. 

The authors generated 162 ensemble members by perturbating the stability classes, the 



wind speed and direction, the source strength, and the plume rise. They clearly showed how 

the information that can be extracted from the ensemble could help the decision makers in 

taking the most appropriate and feasible actions. 

Galmarini et al. (2001) developed a Real Time Model Evaluation (RTMOD) procedure, 

whose aim is to improve the ability to simulate long-range dispersion processes for nuclear 

emergency applications (Bellasio et al., 1999). Their ensemble is formed by more than 20 

models run by different organizations around the world to predict the transport and deposition 

of radioactive releases in the atmosphere. They tested ensemble performance by comparing 

the model prediction against each other and against observations during the E T E X experi

ment (Nodop et al., 1998). The ensemble is created by perturbating the initial conditions, 

and by using multiple models, where the uncertainties of all the dispersion modeling process 

are somewhat taken into account. Wi th the ensemble, the authors could estimate forecast 

uncertainty, and could indicate which parts of the domain are more likely to be exposed to 

the dispersed contaminant. Moreover, the ensemble gives clues on the reliability of this infor

mation. The authors argued that such a multi-model system could be useful for operational 

decision-makers, and for modelers to check systematic model errors and general tendencies in 

their prediction. 

Straume (2001) extended the earlier work of Straume et al. (1998), by further evaluating 

the H I R L A M model. The author found that the ensemble members close to the control 

forecast, as measured with one statistical parameter, were not necessarily close if a different 

parameter was used. She computed the bias, the Pearson correlation coefficient, the figure of 

merit in space, the absolute horizontal transport deviation, and the relative horizontal transport 

deviation. She also compared the S N A P results with 34 dispersion models that participated 



in the E T E X experiment, arguing that the errors in the meteorological input fields and in 

the model formulation are important throughout the simulation period, whereas the analysis 

error starts to be important only after the first day of simulation. The ensemble mean was 

more reliable than the control forecast in predicting the arrival of the contaminant at a given 

location, but was less reliable in predicting non-arrival events. Moreover, the ensemble mean 

predicted the puff trajectory better than the control forecast. Finally, the author noted that 

the selection of ensembles that are based upon singular vectors, which show the greatest growth 

at longer times, might not be the most appropriate for shorter-range-dispersion forecasts. 

Scheele and Siegmund (2001) used the E C M W F wind data for the period 4 to 28 Apri l 1998 

to estimate the uncertainty in the trajectory of a transported air parcel, using the ensemble 

approach. They investigated how the accuracy of the forecasted trajectory is related to the 

ensemble spread and to other ensemble properties. They defined the middle member of the 

ensemble trajectories (MMT) , the operational forecast data (FCT) , the control forecast member 

(CRT), and the bias of FCT (BIA), as the root-mean-square distance of the F C T from the 

members of the ensemble. 

Their results show a "modest but significantly positive" correlation between M M T and 

BIA , particularly at the beginning of the run. Also the difference between F C T and C R T is 

large, because of the different resolutions at which they are computed. The authors argue 

that for this reason the F C T uncertainty can be computed, but its actual position cannot. 

Nevertheless, the possible positions can be computed by adding the uncertainty, estimated 

with the ensemble, to the F C T , because a higher spatial and temporal resolution F C T is more 

accurate than M M T , especially when B I A is large. However, after two days of simulations 

they found that the contrary is true. 



Warner et al. (2002) simulated an hypothetical dispersion of a toxic gas near A l Muthanna, 

Iraq, during the 1991 Gulf War. They tested an ensemble created by coupling the Penn State-

N C A R Mesoscale Model (MM5) with the Second Order Closure integrated Puff (SCIPUFF) 

Lagrangian dispersion model. The authors created 12 ensemble members by running M M 5 

with different boundary-layer parameterizations, different surface physics, and different large-

scale analyses used as a first guess and for the lateral boundary conditions. They found that the 

uncertainties in the dynamic meteorological model can be quantified, using the ensemble dosage 

probabilities, in a much more efficient way than with a single deterministic forecast. Moreover 

Warner et al. (2002) used the ensemble fields to generate the wind-field variances, which 

were then used directly in the dispersion model to compute the air concentration probability 

function. 

Draxler (2003) used the same approach as Baumann and Stohl (1997), to study the sen

sitivity of dispersion to trajectory errors. The dispersion model was a modified version of 

the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) . The mete

orological input field was provided by the N C E P National Center for Atmospheric Research 

reanalysis project. The ensemble results were compared to measurements done over a period 

of three months, during the Across North America Tracer Experiment ( A N A T E X ; Draxler 

et al. (1991)). In building their ensemble system the author assumed that the errors in the 

plume position are mainly dependent on the error in the particle trajectories. The 27 ensem

ble members were calculated by offsetting the meteorological fields by ±1 grid point in the 

horizontal and ±250 m in the vertical direction. The rationale behind this approach is that 

the meteorological field depends strongly on the limited spatial and temporal resolution used 

in the analysis, and that only processes larger than the actual grid size can be described and 



resolved. 

Draxler found that the cumulative distribution of the ensemble probabilities was similar 

to one of the concentration measurements, but he also found that the distribution of those 

probabilities was not uniform. This is not a desirable feature of an ensemble, where, ideally, 

each member should be equally likely. The author argued that this could be attributed to the 

sensitivity of the release height. He also found that the ensemble accounts for approximately 

41 % to 47 % of the variability of the measurement data, and this can be attributed to the 

fact that not all the errors embedded in this dispersion modeling processes and in the data 

are accounted for with this specific ensemble design. 

Delle Monache and Stull (2003) analyzed for the first time the benefit of the ensemble 

approach in studies involving not only the pollutant transport, but also the associated pho

tochemical reactions. Their ensemble was composed of four Chemistry Transport Models 

( C T M ) . Details on this study are given in Chapter 2. 

In Galmarini et al. (2004a) the ensemble approach and its application to long-range trans

port and dispersion studies is rigorously presented. The authors introduce ad-hoc statistical 

treatments and parameters that nicely summarize the extensive information provided by an 

ensemble system. They also prove the superior forecast skills of the ensemble when com

pared to any single deterministic forecast representing an ensemble member. The parameters 

they introduce are space overlap (SO), agreement in threshold level (ATL) and agreement in 

percentile level (APL) . 

Following this study, Galmarini et al. (2004b) used the data collected during the E T E X 

experiment (Nodop et al., 1998) to quantitatively estimate the concepts and parameters in 

troduced in Part I of their coupled papers. They tested a multi-model ensemble dispersion 



system, by considering several operational long-range transport and dispersion models (run in 

various European centers, in the US, and Canada) used to support decision making in case of 

accidental releases. The parameters they proposed were shown to be well suited for long-range 

transport and dispersion models. The median member of the forecast ensemble exhibited the 

best forecast skill . This differs from most ensemble weather forecasts, where the ensemble 

average is usually used. Finally the authors speculated that those parameters could also be 

applied to short-range dispersion and weather fields. 

1.4 Systematic-Error Removal 

Three-dimensional, coupled, N W P and A Q models do not usually make perfect forecasts in 

spite of their high level of physical detail and spatial resolution. For N W P models, statistical 

postprocessing known generally as model output statistics (MOS) had been used for many 

decades by the large government forecast centers to improve the raw N W P output. One such 

M O S method is called Kalman filtering (KF) , which is a recursive algorithm to estimate a 

signal from noisy measurements (Homleid, 1995; Roeger et al., 2003). 

Details of the K F method are given in Chapter 5. In summary, it uses a predictor-corrector 

approach to estimate future forecasts biases from past biases. When this future bias is com

bined with a N W P forecast of future weather, the result removes a large portion of the sys

tematic error of the forecast, and can also remove a small portion of random error. In short, 

it yields a much more accurate forecast. 

It will be shown in this dissertation that the K F is also very effective at improving the 

accuracy of A Q forecasts. 



1.5 Research Goals and Activities 

The ultimate goal of this research is to improve real-time short-term forecasts of tropospheric 

pollutants such as ozone measured at near-surface receptor sites. 

This research is based on the hypothesis that the ensemble technique and Kalman-filter 

postprocessing can be transferred to A Q modeling, and can potentially yield similar benefits as 

for N W P . The method is 3-D mesoscale N W P modeling coupled with 3-D chemical numerical 

modeling. The procedure is to run these models using real emission inventories for real ozone 

episodes, and to calibrate and verify the results against actual near-surface ozone observations. 

To accomplish these goals, the following research work is conducted: 

• The realization and test of an A Q ensemble built on a previous photochemical model 

intercomparison study (see Chapter 2). This preliminary work demonstrated the value of 

ensemble A Q forecasts, and opened the door for the subsequent, more-detailed research 

that followed. 

• The realization and test of a new A Q ensemble design, created by perturbating the 

input fields that most affect the uncertainty of the A Q photochemical models; i.e., the 

meteorological and the emissions fields (see Chapters 3 and 4). 

• The realization and test of probabilistic forecasts resulting from ensemble methods (see 

Chapter 4). 

• The realization and test of a new way to remove A Q forecasts systematic errors, based 

on the KF-predictor algorithm (see Chapter 5). 

• Investigation of possible generalizations deduced from the results of the AQ-ensembles 



and K F corrections implemented and tested during this research (see Chapti 
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Chapter 2 

A n Ensemble Air-quality Forecast 

Over Western Europe During an 

Ozone Episode 

2.1 Introduction 

1 Ensemble forecasting of the weather has been increasingly evaluated over the past decade, 

and found to provide better accuracy than any single Numerical Weather Prediction (NWP) 

model (Wobus and Kalnay, 1995; Molteni et al., 1996; Du et al., 1997; Hamill and Colucci, 

1997; Toth and Kalnay, 1997; Stensrud et al., 1998; Krishnamurti et al., 1999; Evans et al., 

2000; Kalnay, 2003). Transfer of this technique to air-quality (AQ) modeling can potentially 

1A version of this chapter has been published. Delle Monache, L . , and R . Stul l , 2003: A n ensemble air-
quality forecast over western Europe during an ozone episode, Atmospheric Environment, 37, 3469-3474. 
Published as "Fast Track", i.e., "...for papers that contain important and topical results whose significance 
merits fast publication." . 



yield similar benefits. This note briefly reviews ensemble methods for N W P , and evaluates 

one method applied to A Q modeling. 

N W P models are extremely complex computer codes that approximate with finite differ

ences the nonlinear interaction among dynamic, thermodynamic, radiative, cloud microphys-

ical, turbulent, and many other processes. Different models verify best on different days, 

usually in ways that cannot be anticipated. Sometimes one model is better because of its 

physical parameterizations, other times because of the underlying discretization methods, and 

other times because of different initial conditions. 

But when output from different N W P models, or from different realizations of the same 

model, are considered together as an ensemble, it is found that their ensemble average is 

usually more accurate that any individual model realization. More specifically, the ensemble 

average is not the most accurate every day. But when verified for many cases, the ensemble 

average is the most accurate for more of the days than any other single ensemble member 

(Kalnay, 2003). 

Modern photochemical A Q models are equally large and complex sets of computer code 

that describe hundreds to thousands of chemical reactions, plume rise from myriads of sources, 

dispersion induced by different turbulence mechanisms, and transport in boundary layers of 

varying stratification and in complex terrain. To make matters worse, the A Q models are often 

driven by N W P models, which introduce their own signature and imperfections. Different A Q 

models are better for different air-pollution episodes, also in ways that cannot always be 

anticipated. Sometimes one model might be better because of its choice of chemical reactions 

or rate constants, other times because of the turbulence and boundary-layer description, and 

other times because of more representative emission or meteorological inputs (Hass et al., 1997; 



Russell and Dennis, 2000). 

For N W P , ensembles have been created with different inputs (Toth and Kalnay, 1993; 

Molteni et al.j 1996; Wandishin et al., 2001) (initial conditions, boundary conditions), differ

ent parameterizations within a single model (Stensrud et al., 1998) (physics packages, param

eter values), different numerics within a single model (Thomas et al., 2002) (finite difference 

approximations and solvers, grid resolutions, compiler optimizations), and different models 

(Hou et al., 2001; Wandishin et al., 2001). This has been done in order to allow the ensem

ble to take into account different sources of uncertainties. For A Q , the ensemble-mean can 

be created similarly with different inputs (background concentrations, emissions inventories, 

meteorology), different parameterizations within a single model (chemistry mechanisms, rate 

constants, advection and dispersion packages), different numerics within a single model (finite 

difference approximations and solvers, grid resolutions, compiler optimizations), and different 

models. 

For both N W P and A Q , the different models usually include differences in numerics and 

parameterizations. In this Chapter the multi-model (each model having different initial and 

boundary conditions) approach is tested, based on a reanalysis of the intercomparison study 

done by Hass et al. (1997). Using predicted ozone time series of concentrations from four mod

els, an ensemble-mean is computed and tested against the observations, and its performance 

is compared with the performance of each single model. 

2.2 Data 

Hass et al. (1997) intercompared four photochemical dispersion models: the European Monitor-



ing and Evaluation Programme (EMEP) model (Simpson, 1993), the European A i r Pollution 

Dispersion ( E U R A D ) model'(Hass et al., 1993), the Long-Term Ozone Simulation (LOTOS) 

model (Builtjes, 1991) and the Regional Eulerian Model with three different chemistry schemes 

(REM3) (Stern, 1994). E M E P is a one-layer Lagrangian photochemical model. E U R A D is 

a comprehensive, multi-layer Eulerian model. L O T O S and R E M 3 are three-layer Eulerian 

models, but R E M 3 also includes three different chemistry schemes. 

These models have different computational domains (with different horizontal and vertical 

resolution), different initial and boundary conditions (for both emissions and meteorological 

fields), and different model formulations (different advection schemes and chemical mecha

nisms) . 

Each model also uses different emission data. The differences can be of the order of two 

( E U R A D - L O T O S for the biogenic VOCs) or three (REM3-LOTOS for terpene). Moreover, 

the way the models split the V O C amount into anthropogenic and biogenic categories are 

significantly different. Also there are large differences in the importance terpene assumed in 

the four models. 

The meteorological fields driving the four models are different. E M E P and L O T O S are 

driven by the Numerical Weather Prediction model of Gronas and Hellevik (1982), and both 

take the mixing heights from observation. E U R A D is driven by the M M 5 model (Grell et al., 

1994), nudged by large-scale analysis from the European Center for Medium Weather Fore

casts. The R E M 3 meteorological field is derived entirely from observations. Thus, the differ

ences between the resulting meteorological fields are quite large. There are also differences 

in how the models consider the interactions between the meteorology and the chemistry. For 

example, to compute chemical-reaction rates, E M E P uses an average boundary-layer temper-



ature, whereas the other models use the layer-average temperature for each layer within the 

boundary layer. 

Hass et al. (1997) selected a case-study episode that covered the six-day time period of 31 

July through 5 August, 1990. This was a hot summer period with high ozone concentrations 

(up to 140 pbbv) in northwestern and central Europe. A high-pressure ridge formed on 31 

July over the North Sea, resulting in dry warm continental air over western Europe. This 

synoptic system moved toward Denmark on 2 August, and then to Poland on 4 August. The 

ozone episode ended after a frontal passage between 4-5 August. Further details about the 

models and the ozone episode, as well as about the emission data, can be found in Hass et al. 

(1997). 

We verify the four model predictions, and the ensemble-mean against the observed ozone 

concentrations at five different sites. The sites are Sibton (United Kingdom), Kollumerwaard 

(The Netherlands), Waldhof (Germany), Lindenberg (Germany) and Roervick (Sweden). The 

ensemble is computed as a simple, unweighted average over outputs from the four models. 

2.3 Results 

Figure 2.1 shows the ozone time series as predicted by the models and as observed at Sibton 

(U.K.) , from 31 July to 5 August 1990. This is an example where the ensemble-mean concen

tration benefits from the spread of the predicted concentrations with respect to the observed 

values. The ensemble average is overall the best forecast, except the fourth day of the episode, 

when all the models considerably under-predict the observed ozone concentration. Table 2.1 

shows, for each station, the following statistics: 



S i b t o n , 0 3 

150 

July 31 - August 05, 1999 

Figure 2.1: Observed, modeled, and ensemble-mean ozone concentration (ppbv) for the episode 
at the site Sibton (U.K.) . 



normalized gross error (GE) (herein "gross error", for hourly observed values of O3 > 60 ppbv) 

Cp(x,ti) — C0{x,ti)\ 
C0(x, ti) 

(2.1) 

and 

unpaired peak prediction accuracy (UPPA) 

UPPA = 
Gp(x, t ), 

max 
-C0(x,t'). max (2.2) 

C0(x,t'). 
max 

where N is the number of hourly concentrations over the episode, CQ(x,ti) is the observed 

value at the monitoring station located at x for hour ti , Cp(x,t{) is the predicted value at 

1-h predicted concentration at a specific monitoring station over one day. 

These two statistical parameters are included in the US Environment Protection Agency 

guidelines (EPA, 1997) to analyze historical ozone episodes using photochemical grid models. 

The E P A acceptable performance upper limit values are + 35 % for gross-error, and ± 20 % 

for unpaired peak prediction accuracy. In Table 2.1 the bold values are the ones that satisfy 

those criteria. 

The gross-error values satisfy the E P A criteria in every case. The ensemble gives consis

tently the best or the second-best forecasts over the six monitoring stations. The second-best 

overall performance in terms of gross-error are given by both R E M 3 and L O T O S , while E U 

R A D and E M E P have somewhat poorer performance. Performances from all the models are 

quite erratic compared to the smoother behavior of the ensemble, suggesting that the ensemble 

the monitoring station located at x for hour ti, C0(x,t ) 
max is the maximum 1-h observed 

concentration at a specific monitoring station over one day, and Cp{x,t!)i 
max is the maximum 



Table 2.1: Model ozone-performance statistics [gross error (GE) and unpaired peak prediction 
accuracy (UPPA)] for 31 July to 5 August episode, at the sites Sibton (UK) , Kollumerwaard 
(the Netherlands), Waldhof (Germany), Lindenberg(Germany) and Roervik (Sweden). Values 
in bold are within the E P A acceptable performance criteria. 

Station Model G E (%) U P P A (%) Station Model G E (%) 
31 July 1 Aug. 2 Aug. 3 Aug. 4 Aug. 5 Aug. 

Sibton E U R A D 17 -13 10 -28 -6 -1 -19 
R E M 3 15 8 11 12 -21 -25 -7 
E M E P 29 -6 28 23 -23 11 -9 
L O T O S 22 -6 7 11 -26 -19 0 
Ensemble 16 -9 6 3 -22 -9 -2 

Kollumerw. E U R A D 24 -12 -19 -29 3 25 -10 
R E M 3 20 24 28 12 10 5 -41 
E M E P 22 18 20 -24 -12 -8 123 
L O T O S 21 18 22 23 -24 -24 22 
Ensemble 13 11 9 -19 -6 -7 42 

Waldhof E U R A D 17 -9 1 0 -10 -31 -9 
R E M 3 10 2 41 35 22 -3 -39 
E M E P 20 3 11 1 -10 -25 6 
L O T O S 22 -7 16 7 -7 -35 3 
Ensemble 13 -5 15 8 -3 -29 -11 

Lindenberg E U R A D 17 -6 36 40 25 6 18 
R E M 3 28 28 97 97 67 45 -5 
E M E P 19 -10 13 43 42 15 15 
L O T O S 11 -19 31 51 33 4 5 
Ensemble 13 -6 39 54 39 12 7 

Roervik E U R A D 22 8 12 14 10 33 13 
R E M 3 24 23 10 2 -5 -43 26 
E M E P 15 35 -2 4 -1 -5 13 
L O T O S 19 19 13 25 -9 -35 39 
Ensemble 16 19 5 8 -5 -35 25 



might be able to take into account most of the uncertainties by filtering out the unpredictable 

components. 

The unpaired peak accuracy for the six-day episode and over the five stations shows good 

performance of both E U R A D and the ensemble, both having 73 % of the unpaired peak 

accuracy values within the E P A acceptance criteria. They are followed by E M E P with 66 %, 

L O T O S with 53 %, and R E M 3 with 43 %. A similar ranking is obtained when only observed 

peak ozone values above 60 ppbv are considered (not shown here). 

2.4 Discussion 

The case study investigated here suggests that a photochemical-model ensemble average can 

give a better result than a single model deterministic forecast. Because the limited size of 

the data set available, and most importantly because of the limited spatial separation among 

the stations relative to the coarse grid spacing of the models domains, these results are not 

spatially independent and cannot be generalized until further investigations are made. 

Ideally the ensemble should be composed of state-of-the-art photochemical models that are 

run starting from the best possible emissions scenario, as well as with the best possible mete

orological fields. The meteorological fields can be indeed different for different photochemical 

models, since each of them is obtained differently (from different mesoscale models, and then 

different starting analyses, map projections, domain grids, etc.). Moreover, the different model 

formulations, i.e., the different advection and turbulence transport schemes and the different 

chemical mechanisms implemented in each model, should assure a good ensemble spread, which 

is desirable to define likely bounds of possible pollutant-concentration fields. The uncertainty 



in each of those components is partially averaged out by the ensemble approach. 

The ensemble tested in this study has many of those desirable features. For example, the 

differences between the emission data of each model (sometimes of the order of two or three), in 

both the initial and boundary conditions, can take in account the uncertainty in the emissions 

estimates (a factor of three or more), and is the dominant limitation in photochemical model 

performance (Russell and Dennis, 2000). As shown clearly by Hass et al. (1997) with backward 

trajectories, the difference in the modeled meteorological fields will strongly influence the final 

concentrations, and the ensemble might account for those uncertainties as well. 

For N W P ensembles, errors typically grow linearly at first, and nonlinearly later (Kalnay, 

2003). However, the linear period might me reduced in A Q ensembles because of the strongly 

nonlinear nature of many chemical reactions. For this reason, the differences among A Q 

ensemble members may account for. the uncertainties associated with each component of the 

A Q process more rapidly than what is observed for N W P ensembles. 

Because not all of the photochemical models used N W P meteorological fields as input for 

this study, it is not clear if the benefit of the ensemble accrued because of the ensemble of 

photochemical air-pollution forecasts, or because of the ensemble of input meteorological fields. 

The benefit of using a N W P ensemble for the meteorological input has been proven in other 

ensemble applications for air-quality forecasts, namely for transport and dispersion without 

the chemical processes (Stull et al., 1997; Straume et al., 1998; Dabberdt and Miller, 2000; 

Galmarini et al., 2001; Straume, 2001; Warner et al., 2002). 

Another aspect that emphasizes the utility of the ensemble approach, is the fact that the 

model grids used in this study are completely different in both resolution and location. Again, 

these differences lead to different parcel trajectories, and this would allow the ensemble to take 



into account the uncertainties related to the different but plausible choices of the grid location 

and resolution adopted from each of the models that form the ensemble. 

Once an ensemble forecasting system is implemented sufficiently long at a specific site, the 

ensemble-mean capabilities might be improved by taking into account the past performances of 

each single model in conditions similar to present conditions. Namely, one can by performing 

a weighted ensemble-mean, give more importance to the forecasts that historically perform 

better than the others. This approach has not been tested here due to the small size of the 

data set available. 

Ensemble forecasting can also provide probabilistic forecasts based on the spread of the 

ensemble members. For instance, the probability that ozone concentration can be greater 

than a specific threshold on a specific site, can be easily computed as the ratio of the ensemble 

members that satisfy this condition, over the others that do not. 
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Chapter 3 

Ozone Ensemble Forecasts. A New 

Ensemble Design 

3.1 Introduction 

1 The harmful effects of tropospheric ozone on humans (Horvath and McKee, 1994; Brauer and 

Brook, 1995), vegetation (Runeckles, 2002) and materials (Brown et al., 2001) motivate the is

suance of air-quality (AQ) forecasts, and the need to limit and control anthropogenic emissions 

of ozone precursors. To alert the population about impending A Q degradation, Dabberdt and 

Miller (2000) discussed the need for an operational A Q forecast system. The first experiences 

with this kind of system are described in Delle Monache et al. (2004), McHenry et al. (2004) 

and Vaughan et al. (2004). A probabilistic approach to A Q forecasting is recommended by 

the U.S. Weather Research Program and its Prospectus Development Team on Air-Quality 

1A version of this chapter has been accepted for publication. Delle Monache, L . , X . Deng, Y . Zhou, and 
R . B . Stul l , 2005: Ozone ensemble forecasts. Part I: a new ensemble design, manuscript accepted in November 
2005 to be published in the Journal of Geophysical B.esearch. 



Forecasting (Dabberdt et al., 2003) due to the chaotic nature of the atmosphere. 

Some dynamical systems are called chaotic if they show divergent behavior, meaning that 

two different solutions starting from similar but not identical initial states would eventually 

diverge nonlinearly in solution space (Lorenz, 1963). In such cases we don't know a priori 

which of the two solutions is closest to the true evolution of the system. 

The atmosphere exhibits this behavior, and is thus a chaotic system. We are not able to 

accurately measure the initial state of the atmosphere, due to instrumentation errors and large 

gaps between observation sites. Moreover, we are able to solve only a simplified version of the 

equations describing the atmosphere, and those solutions are usually numerical approxima

tions; i.e., they are sources of error as well. As a consequence, there is an upper limit in time 

on the predictive skill of weather forecasts. The ensemble approach is one method to repre

sent the time evolution of the probability density function (PDF) describing the atmosphere's 

initial state and its uncertainty. Practically, the P D F can be represented by a limited set of 

points (e.g., Leith, 1974). The evolution of each of those points would be a member of the 

ensemble. Each of those members should ideally represent an equally likely evolution of the 

dynamical system. 

It has been found for numerical weather prediction (NWP) that the ensemble-mean is more 

accurate that an individual model realization, when verified for many cases. N W P ensembles 

have been created using different model input values (Toth and Kalnay, 1993; Molteni et al., 

1996; Wandishin et al., 2001), different parameterizations within a single model (Stensrud 

et al., 1998), different numerical schemes (Thomas et al., 2002), and different models (Hou 

et al., 2001; Wandishin et al., 2001). This allows the ensemble to take into account different 

sources of uncertainty. 



The ensemble technique can yield similar benefits to A Q prediction, because there are 

similar model complexities and constraints. Different A Q models can be better for different 

air-pollution episodes, in ways that cannot always be anticipated. Similar to N W P ensembles, 

A Q ensemble members can be created with different meteorological and/or emission inputs, 

different parameterizations within a single model, different numerics within a single model, 

and different models. 

For N W P ensembles, errors typically grow linearly at first, and nonlinearly later. However, 

the linear period might be reduced in A Q ensembles because of the strongly nonlinear nature 

of many chemical reactions. For this reason, the differences among A Q ensemble members 

may account for the uncertainties associated with each component of the A Q process more 

rapidly than what is observed for N W P ensembles. 

In Chapter 2 it has been discussed the benefit of the ensemble approach in studies in 

volving not only pollutant transport, but also the associated photochemical reactions. Their 

ensemble was composed of four Chemistry Transport Models (CTMs), and was tested for a 

6-day summer period over five monitoring stations in northwestern and central Europe. The 

ensemble approach presented in that study showed promising results, performing better than 

the models individually, including good performance for ozone peak-value prediction. 

Another successful implementation of the ensemble approach can be found in Galmarini 

et al. (2004b), where the authors describe an application to long-range transport and dispersion 

studies. They used the data collected during the E T E X experiment (Nodop et al. , 1998) to 

quantitatively estimate the concepts and parameters introduced in Part I of their coupled 

papers (Galmarini et al., 2004a). They tested a multi-model ensemble dispersion system by 

considering several operational long-range transport and dispersion models used to support 



decision making in case of accidental releases. The median member of the forecast ensemble 

exhibited the best forecast skill. 

McKeen et al. (2005) present results for a multi-model (i.e., seven CTMs) Ozone Ensem

ble Forecast System (OEFS), statistically evaluated for 53 days (summer 2004), against 340 

monitoring stations over eastern U.S. and southern Canada. The high correlation coefficients 

and low root-mean-square-error (RMSE) points to the ensemble mean as the preferred forecast 

when compared to any individual model. 

Recently O'Neill and Lamb (2005) presented an interesting intercomparison of the Com

munity Multiscale Air Quality Model (CMAQ) (Byun and Ching, 1991) with the California 

Photochemical Grid Model (CALGRID) (Carmichael et al., 1992). They tested an ensemble 

averaged prediction based on the two C T M models run with different meteorology and chem

ical mechanisms. They found the ensemble skillful for the 8-hour averaged forecasts, while 

with the 1-hour predictions the ensemble mean did not necessarily showed more skill than the 

single deterministic runs. However, the standard deviation about the 1-hour mean forecast 

provides a useful measure of overall model uncertainty. 

A new O E F S is presented here using predicted ozone concentrations from 12 different 

ensemble members. A n ensemble-mean is computed (as a linear average of the ensemble-

member predicted hourly concentrations) and tested against observations from five different 

stations over the Lower Eraser Valley (LFV) , British Columbia (BC), Canada (see Figure 3.1). 

This is a region where ozone modeling is particularly challenging, because of the complex 

coastal mountain setting (McKendry and Ludgren, 2000). OEFS performance is compared 

with the performance of each single forecast for a 5-day period (11-15 August 2004). 

Galmarini et al. (2004b) showed that the ensemble-median (the median of the ensemble-
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Figure 3.1: The Lower Eraser Valley is a floodplain spanning the ozone stations of Vancouver 
International Airport ( C Y V R ) , Langley, Abbotsford, Chilliwack, and Hope. The triangular 
valley is widest near C Y V R along the coast of the Georgia Strait, and tapers to a narrow 
gorge between steep mountain walls near Hope. Shading (vertical bar at right) indicates 
terrain elevation above sea level. 

member predicted hourly concentrations) has better forecast skill than the ensemble-mean. 

For ensembles with many members that all capture likely forecast outcomes, one would expect 

statistically that the ensemble mean and median member should be nearly identical. However, 

if some ensemble members are distant outliers because of any number of model or initial-

condition errors, then they would not contribute to a realistic estimate of the probability 

distribution of realistic forecast outcomes. This is a particular problem if there is a cluster of 

outliers. For such cases the ensemble average is unduly biased by the outliers, allowing the one 



median ensemble member to give the best forecast. In this study the ensemble mean resulted 

in a more skillful forecast than the ensemble median, implying that we did not have a problem 

with unphysical or unrepresentative outliers. 

For situations where ensemble outliers might be problem, there are some solutions. One is 

to build a record of error variances for each member based on past forecasts, and then weight 

each member inversely with its error to compute a weighted ensemble mean. Another is to 

reduce their systematic errors (Chapter 5), and then combine these corrected forecasts into an 

uniformly-weighted average. 

Section 3.2 describes the case study and the data, while a detailed description of the OEFS 

is given in Section 3.3. Section 3.4 presents the results and their analysis, and a discussion 

followed by the conclusions can be found in the last section. 

3.2 Case Study and Data 

The L F V lies across the western edge of the Canada/US border (Figure 3.1). The main 

metropolitan area is located at the northwest end of the valley, where the Greater Vancouver 

region has a population slightly greater than two million people. The valley is triangular-

shaped, oriented approximately west-to-east, with the Strait of Georgia on the west side, 

the Coast Mountains to the north, and the Cascade Mountains range limiting the valley's 

southeastern side. 

The synoptic conditions observed during the period 11-15 August 2004 were typical of 

conditions that lead to high ground-level, ozone concentrations in the L F V , as described by 

McKendry (1994). Those conditions are associated with a northward progressing low-level 



thermal trough, extending from California northward through Oregon and Washington State 

reaching the southern part of B C . A n associated stationary upper-level ridge was situated 

across southern B C . The upper-level ridge started to weaken on 14 August, allowing clouds 

to spread over the L F V on 15 August, leading to lower observed ozone concentrations at four 

stations out of five. Over the L F V , sea-breeze circulations combine with valley and slope 

flows to make ozone modeling (that includes photochemistry) quite challenging (McKendry 

and Ludgren, 2000). 

This study uses hourly observed ozone concentrations from five stations across the L F V : 

Vancouver International Airport (CYVR) (urban), Langley (suburban), Abbotsford (urban), 

Chilliwack (suburban), and Hope (rural) (Figure 3.1). These stations span the L F V from west 

to east, and being apart one from each other more than 12 km, they fall in different grid cells 

for all the forecasts. The observed ozone hourly concentrations for the period 11-15 August 

2004 vary considerably from west to east. This reflects the easterly advection of ozone and 

its precursors by the sea-breeze circulation, leading to higher concentrations further inland. 

Thus, at C Y V R the values are low (peak value always below 50 ppbv) and close to typical 

background summer values, due to its proximity to the coast. At Langley (further inland), 

the observed maxima for the 5-day period are between 60 and 70 ppbv, with the lower peak 

value observed on 15 August. Ozone maximum values between 60 and 80 ppbv are observed 

at Abbotsford, while at Chilliwack the observed peak is above 70 ppbv except on 15 August. 

The ozone concentrations at Hope (furthest inland) exceed 82 ppbv (the Canadian National 

Ambient Air Quality Objective for maximum 1-h average concentration) during the first four 

days (with values between 85 and 90 ppbv). At all five stations, the nighttime values are 

very low (< 15 ppbv). Secondary nocturnal maxima ozone concentrations are observed at all 



stations as discussed by Salmond and McKendry (2002). 

Studies of ozone photochemistry in the L F V (Ainslie, 2004, with a scaling-level model as 

described in Section 1.3.2) show that the present and projected A Q is in a regime affected 

roughly equally by N O x and V O C emissions (Figure 3.2). Namely, in a maximum-ozone-

concentration isopleth plot as a function of N O x and V O C emissions, the state of the L F V 

is above the ridgeline of ozone relative maxima. Those results (specific to the L F V ) , are 

considered in building the ensemble design presented in the next session. 

3.3 Ensemble Design 

At the University of British Columbia (UBC), the Mesoscale Compressible Community (MC2) 

N W P model (Benoit et al., 1997) and the Penn State /NCAR mesoscale (MM5) model (Grell 

et al., 1994) have been running daily for several years (http://weather.eos.ubc.ca/wxfcst/). 

M C 2 is a fully compressible, non-hydrostatic model using semi-implicit semi-Lagrangian tech

niques. The model is initialized using the National Centers for Environmental Prediction 

(NCEP) North American Mesoscale (NAM) model at 108-km grid spacing. One-way nesting 

is applied to produce model output at horizontal grid spacing of 108, 36, 12, 4, and 2 km. 

M M 5 is a fully compressible, non-hydrostatic, primitive-equation meteorological model that 

uses a terrain-following sigma (non-dimensionalized pressure) vertical coordinate. The M M 5 

model is initialized from the same analysis and for the same five nested grids as M C 2 , but 

with 2-way nesting. 

Both M C 2 and M M 5 produce meteorological fields that are used in this study to drive the 

U.S. Environmental Protection Agency (EPA) Models-3 /CMAQ Chemistry Transport Model 

http://weather.eos.ubc.ca/wxfcst/
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(CTM) (Byun and Ching, 1991). C M A Q has been run at U B C daily real-time for two and a 

half years (Delle Monache et al., 2004). The C B M - I V chemical mechanism (Gery et al., 1989), 

and the Modified Euler Backward Iterative (MEBI) chemistry solver (Huang and Chang, 

2001) are used. The emissions used as input to C M A Q are prepared using the Sparse Matrix 

Operator Kernel Emission (SMOKE) system (Coats, 1996). The boundary conditions are a 

time-invariant vertical concentration profile for the coarser domain (based on typical summer

time background ozone concentrations in the L F V ) , while the finer grids are initialized each 

day with the previous day's-prediction. 

Ideally, for the ensemble to be a skillful forecast, the ensemble members should span all 

the uncertainties associated with different phases of the modeling process: initial conditions 

and boundary conditions, meteorological and emission fields, numerics, chemical mechanisms, 

etc. Unfortunately, to consider all those modeling aspects would require an ensemble with 

an unfeasibly large number of ensemble members. For this reason, we present an O E F S that 

considers only the uncertainties associated with the meteorological and emission fields. These 

fields are considered to cause the main uncertainties in photochemical modeling (Russell and 

Dennis, 2000). For example, NOa; emission estimates can be in error by a factor of two or 

more (Hanna et al., 2001). 

A related question is what ensemble size and perturbed attributes are necessary for captur

ing most of the forecast uncertainty, based on ensemble-mean metrics. We demonstrate here 

that a limited-size ensemble with only meteorology and emission perturbations can indeed 

yield an ensemble average that is better than individual members, on average. 

A flowchart of the O E F S tested in this Chapter is shown in Figure 3.3. C M A Q is run 

with a 12-km horizontal resolution domain covering southern B C , Washington State, and the 
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northern portion of Oregon, with a nested 4-km resolution domain covering southwestern B C 

and northwestern Washington State. Both domains are centered over the L F V . M C 2 and 

M M 5 provide the meteorological inputs for C M A Q , for the 12 and 4-km domains. Moreover, 

for each of the four possible meteorological input combinations, C M A Q is run with three 

emission scenarios: a control run ( C T R L ) , a run with 50 % more N O x (NOXP) , and a run 

with 50 % less N O x (NOXN) (also see Figure 3.2). These scenarios were chosen because 

N O x emissions are mainly anthropogenic (Jacobson, 1999) and strongly influence ground-level 

ozone concentrations (Steyn et al., 1997). This leads to a system with 12 ensemble members 

(01, 02, 12), as shown in Figure 3.3. A n example (Abbotsford, 11-15 August) of the 

ensemble members (black lines) and their ensemble-mean (thick black line) temporal evolution, 

compared with the observed ozone concentrations (circles), can be found in Figure 3.4. 

Since the six 12-km resolution ensemble members are run for 48 hours, the second half of 

the (N - l)th forecast day can be added to the Nth forecast day ensemble forecast. Figure 3.5 

depicts the resulting 18-member OEFS tested in this study, built as a lagged-averaged ozone 

ensemble (see Section 3.4.4). 

3.4 Results and Analysis 

3.4.1 Verification Statistics 

The forecast skill of each ensemble member and the ensemble-mean has been evaluated using 

the following statistical parameters: 
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Figure 3.4: The 12 ensemble members (black lines) and the ensemble-mean (thick black line) 
predictions, along with the observations (circles), at Abbotsford, 11-15 August 2004. 
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Pearson product-moment coefficient of linear correlation (herein "correlation"): 

Y^~{UT[C0(t, station) — C0(station)][Cp(t, station) — Cp(station)] 
cor Testation) 

Ylt=rT [C0(t, station) - C0(station)]2 Y,t=rr [Cp(t,station) - Cv(station)f 
(3.1) 

normalized gross error (herein "gross error", for hourly observed values of O3 > 30 ppbv): 

gross error(station) = - ± - V \ ^ station) - C0{tstaUon)\ 
' Nhour £^ CD(t, station) y ' 

t=i 

root mean square error (RMSE): 

RMSE(station) 
- . ̂ Vh. OUT 

a [Cp(t, station) — C0(t, station)]2 (3-3) 
\ ™ ho' lour t = 1 

unpaired peak prediction accuracy (UPPA) : 

UPPA = -1— \Cp(day> StaU°n)max ~ Go(day> Stati0n)max\ ,3 ^ 
Nda,y C0(day, station)max 

where N^our is the number of 1-h average concentrations over the 5-day period, Nday is the 

number of days, C0(t, station) is the 1-h average observed concentration at a monitoring sta

tion for hour t, Cp(t, station) is the 1-h average predicted concentration at a monitoring station 

for hour t, C0(station) is the average of 1-h average observed concentrations at a monitoring 

station over the 5-day period, Cp(station) is the average of 1-h average predicted concentra

tions at a monitoring station over the 5-day period, C0(day, station)max is the maximum 1-h 

average observed concentration at a monitoring station over one day, and Cp(day, station)max 



is the maximum 1-h average predicted concentration at a monitoring station over one day. 

The gross error and U P P A are included in the U.S. E P A guidelines (EPA, 1991) to analyze 

historical ozone episodes using photochemical grid models. The E P A acceptable performance 

upper-limit values are + 35 % for gross error, and ± 20 % for unpaired peak prediction 

accuracy. U P P A is computed here as an average (over the five days available) of the absolute 

value of the normalized difference between the predicted and observed maximum at each 

station (Equation 3.4). Thus, U P P A is non-negative; hence, only the + 20 % acceptance 

performance upper limit is used in the next sections. 

We selected this set of statistics for the following reasons. We choose correlation to get an 

indirect indication of the differences between the predicted and measured ozone time series at 

a specific location. The closer the correlation is to one, the better is the correspondence of 

timing of ozone maxima and minima between the two signals. R M S E (measured in ppbv) gives 

important information about the skill in predicting the magnitude of ozone concentration, even 

though alone it does not draw a complete picture of a forecast value. It is very useful also for 

understanding ensemble averaging effects, because it can be decomposed into systematic and 

unsystematic components as discussed in detail in Section 3.4.2. 

The gross-error statistic has been considered in this analysis because it is included in the 

U.S. E P A guidelines (EPA, 1991). Also, being computed for hourly observed values of O3 > 

30 ppbv, it gives useful information about the forecast skill for higher concentration values, 

which are important for health-related issues. It gives information about the error magnitude 

(as R M S E ) , but as a portion of the observed ozone concentration (i.e., is measured in %). 

U P P A (%) is also used because it measures the ability of the forecasts to predict the ozone 

peak maximum on a given day. Peak concentrations have been in the past the main concern 



for public health. However, in recent years over midlatitudes of the Northern Hemisphere, 

a rising trend of background ozone concentrations has been observed, while peak values are 

steadily decreasing (Vingarzan, 2004). 

3.4.2 12-member OEFS Results 

The performance of the OEFS presented in Section 3.3 has been tested by computing the 

statistical parameters introduced in Section 3.4.1, using the data described in Section 3.2. 

Correlation 

Figure 3.6 shows the results for the correlation between the observed hourly ozone concentra

tion and the predicted concentrations from the 12 ensemble members and the ensemble-mean. 

Those values are computed for the 5-day period from 11 to 15 August 2004, and at five different 

stations: C Y V R , Langley, Abbotsford, Chilliwack and Hope. 

Generally, correlation values tend to be lower moving towards the east side of the L F V , 

with all the forecasts having their poorest performance at Hope. Indeed Hope is located in a 

very steep narrow valley (less than 4 km wide), which none of the models are able to resolve. 

Because the 12 km runs do not see this valley, in the afternoon the ozone plume is advected 

past Hope (instead of being trapped there), resulting in decreasing values (after the plume 

passage) while in reality the concentration is increasing. Also, during the nighttime return 

flow (a land breeze, going back westward) is established, causing the 12 km run to bring back 

the plume, and resulting in increasing predicted concentrations when the observed ozone is 

decreasing. This causes negative correlation values for the 12 km runs, as shown in Figure 3.6. 

Thus, the ensembles using finer resolution runs have better correlation values at Hope and 
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Figure 3.6: Correlation values between observed and predicted ozone 1-h average concentra
tions are plotted at five stations [Vancouver International Airport ( C Y V R ) , Langley, Abbots
ford, Chilliwack, and Hope], for the 12-member Ozone Ensemble Forecast System (01, 02, • • •, 
12) and the ensemble-mean (E-mean), for the 5-day period 11-15 August 2004. Values are 
within the interval [—1, 1], with correlation = 1 being the best possible value. 



Table 3.1: Ranking for correlation of the 12 ensemble members (01, 02, • • •, 12) and the 
ensemble-mean (E-mean) at the Vancouver International Airport ( C Y V R ) , Langley, Abbots
ford, Chilliwack and Hope stations. The lowest sum of rankings indicates the best overall 
performance. 

01 02 03 04 05 06 07 08 09 10 11 12 Ensemble-mean 
C Y V R 5 10 6 12 11 13 3 1 2 8 7 9 4 

Langley 4 12 11 6 8 13 5 9 2 7 3 10 1 
Abbotsford 10 11 12 2 6 13 3 5 7 8 4 9 1 
Chilliwack 11 13 10 8 6 12 3 1 4 7 5 9 2 

Hope 13 12 11 10 8 9 2 1 3 6 5 7 4 
Ranking Sum 33 58 50 38 39 60 16 17 18 36 24 44 12 

Chilliwack (particularly with M C 2 ; i.e., forecasts 07, 08 and 09), where the topography is 

most complex. Spatial resolutions even finer than 4 km would be needed to better capture 

these topographic effects. 

C Y V R is located adjacent to the water in the Georgia Strait, and the meteorological 

models have difficulty capturing accurately the thermally driven sea-breeze flows generated by 

the water/land discontinuity. At this location the finer resolution runs tends to have better 

correlation with the observation (again, particularly with MC2) , probably because they better 

represent the complex coastline and the associated land-use data. The ensemble-mean has the 

best performance at Langley and Abbotsford, and is second best at Chilliwack. 

Table 3.1 shows for each station the ranking (from 1 to 13) of each ensemble member and 

the ensemble-mean, where the best (highest) correlation value has a ranking of 1, and the 

worst (lowest) has 13. Overall the ensemble-mean has the best ranking as measured by the 

lowest sum of rankings. The only ensemble members with similar (but worse) skill are 07, 08, 

and 09, with members 08 having a number of first rankings. 

The ensemble-mean has mediocre skill at C Y V R and Hope because both stations are 

located in areas where all the individual ensemble members have difficulties, as explained 



01 02 03 04 05 06 07 08 09 10 11 12 Ensemble-mein 
C Y V R 1 5 4 6 9 2 13 11 12 7 10 3 8 

Langley 2 7 12 5 4 8 13 11 10 6 9 3 1 
Abbotsford 2 5 11 3 4 10 13 12 9 6 8 7 1 
Chilliwack 9 8 1 5 7 11 12 13 10 4 6 3 2 

Hope 11 12 10 6 7 13 1 2 9 5 3 8 4 
Ranking Sum 25 37 38 25 31 44 52 49 50 28 36 24 16 

above. The correlation values are significantly improved (closer to one) with Kalman-filter 

(KF) post-processing, as shown in Chapter 5. 

Gross error 

The gross-error results are shown in Figure 3.7, and the rankings are summarized in Table 3.2. 

Overall the ensemble-mean is the best for these cases when compared to each ensemble member, 

as indicated by the ranking sum. Forecast 08 for the correlation has similar performances to 

the ensemble-mean, but has large gross error (very poor skill), except at Hope where it ranks 

second. Note that the 4-km MC2-driven ensemble members (07, 08 and 09) at C Y V R , Langley 

and Abbotsford have relatively poor skill using the gross-error metric, but have much better 

performance using the correlation metric. 

The ensemble-mean is well within the 35 % E P A acceptance value at Langley, Abbotsford 

and Chilliwack. At C Y V R and Hope the ensemble-mean has the highest gross-error values, 

confirming the difficulties for all the ensemble members at those two locations. In Chapter 5 

it is shown that application of the K F post-processing improves (brings closer to zero) the 

gross-error performance of most forecasts, with an improvement up to 20 %. 
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Figure 3.7: Similar to Figure 3.6, but for gross-error values (%). The continuous line is the 
E P A acceptance value (+ 35 %). Values are within the interval [0, + oo], with a perfect 
forecast having gross error = 0. 
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Figure 3.8: Similar to Figure 3.6, but for root mean square error (RMSE) values (ppbv). 
Values are within the interval [0, + oo], with a perfect forecast when R M S E = 0. 

R M S E 

The R M S E results are shown in Figure 3.8 and summarized in Table 3.3. In general, the 

values of this statistical parameter are between 20 and 30 ppbv. However, the K F correction 

presented in Chapter 5 shows substantial improvements up to 20-25 %, with values often 

between 10 and 20 ppbv. Nevertheless, the ensemble mean is the best. Forecast 03 ranks 

first at C Y V R and Abbotsford, but still is worse than the ensemble-mean at three stations 

(Langley, Chilliwack and Hope). Forecast 03 is one of the worst for the correlation metric, and 



01 02 03 04 05 06 07 08 09 10 11 12 Ensemble-mean 
C Y V R 2 5 1 9 11 3 13 8 12 7 10 6 4 

Langley 1 10 4 6 7 3 13 11 12 8 9 5 2 
Abbotsford 4 11 1 7 6 3 13 12 10 8 9 5 2 
Chilliwack 13 10 6 9 2 7 5 8 1 11 12 4 3 

Hope 12 8 11 13 9 7 2 3 1 6 10 4 5 
Ranking Sum 32 44 23 44 35 23 46 42 36 40 50 24 16 

worse than average for gross error. Ag ;ain, the ranking sum shows that the ensemble mean is 

the best. 

R M S E can be separated in different components. One decomposition was proposed by 

Willmott (1981). First, an estimate of concentration C*(t, station) is defined as follows: 

C*(t, station) = a + bC0(t, station) (3-5) 

where a and b are the least-square regression coefficients of Cp(t, station) and CD(t, station) 

(the predicted and observed ozone concentrations, respectively, as defined in Section 3.4.1). 

Then the following two quantities can be defined: 

RMSEs(station) 
^ '"our 

* — ^ [C*{t, station) - C0(t, station)]2 (3.6) 
lour t = 1 

RMSEu(station) = , ] T [C*(t, station) - Cp(t, station)}2 (3.7) 

where RMSEs(station) is the R M S E systematic component, while RMSEu(station) is the 

unsystematic one. RMSES indicates the portion of error that depends on errors in the model, 

while RMSEU depends on random errors, on errors resulting by a model skill deficiency in 



predicting a specific situation, and on initial-condition errors. The following relates R M S E to 

its components: 

RMSE2 = RMSES
2 + RMSEU

2 (3.8) 

Ensemble averaging is expected to reduce some of the unsystematic component of the error 

(i.e., RMSEU), while the systematic component (RMSES) should be little affected by the 

averaging process. In fact, since RMSES reflects errors in the model affecting each individual 

forecast similarly, it should not be reduced (when compared with the ensemble members) for 

the ensemble mean. 

Figure 3.9 shows the R M S E systematic (bottom bar) and unsystematic components (top 

bar). C Y V R (and to a lesser extent Langley) shows among the highest RMSEU values, indi

cating an intrinsic lack of predictive skill at this location, as already discussed in Section 3.4.2. 

Mart i l l i and Steyn (2004) discuss the effects of the superimposed valley, slope, and thermal 

flows over the L F V . Often the pollution plume is transported during night over the Georgia 

Strait waters as a result of the combination of several transport processes. This makes it very 

challenging for the models to accurately predict the spatial and temporal evolution of ozone 

concentration in near-water locations, such as C Y V R , where the over-strait pool of pollutants 

can be re-advected over land by the daytime sea breeze. The 12-km runs (forecasts 01-06) 

have their highest systematic error at Hope. A l l these forecasts poorly reproduce the real 

topography at this location, and this leads to systematic misrepresentations of ozone temporal 

and spatial distributions. Conversely, the 4-km runs have their highest systematic error at 

C Y V R (in particular for M C 2 driven runs; ensemble members 07-09), where their ability to 

capture complex terrain more accurately than the 12-km runs is not an advantage, since at 
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Figure 3.9: Similar to Figure 3.8, but segregating the root-mean-square-error into its system
atic (bottom bar) and unsystematic components (top bar). The sum of these components 
squared equals the square the root-mean-square-error (Equation 3.8). 

C Y V R the terrain is flat. 

Overall, the ensemble mean has among the lowest RMSEU when compared with the other 

forecasts, being the second best after forecast 12 (MM5, at 4 km, with N O X N ) and before 

forecast 04 (MM5, at 12 km, N O X P ) . The ensemble mean has the lowest RMSEU at Hope, 

the second best at Abbotsford, the third at Chilliwack, the fourth at Langley and the sixth at 

C Y V R . Conversely, the ensemble mean RMSES is never the lowest and is always close to the 

average RMSES of the individual forecasts. This confirms the usefulness of ensemble averag-
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Figure 3.10: Similar to Figure 3.6, but for unpaired peak prediction accuracy (UPPA) values 
(%). The continuous lines are the E P A acceptance values (+ 20 %). Values are within the 
interval [0, + oo], with a perfect peak forecast when U P P A = 0. 

ing: it is able to remove part of the unpredictable components of the physical and chemical 

processes involved in the ozone fate, resulting in a more skillful forecast when compared to 

any deterministic ensemble member. 

U P P A 

Figure 3.10 shows the U P P A results. At C Y V R , forecasts 07, 08 and 09 largely overestimate 

the observed ozone peak concentration, even though they have at this station a high correlation 



01 02 03 04 05 06 07 08 09 10 11 12 Ensemble-mean 
C Y V R 3 9 2 5 7 1 13 12 11 8 10 l~ " 6 

Langley 7 3 12 5 4 10 13 9 11 1 2 8 6 
Abbotsford 6 9 10 3 2 11 12 13 8 4 5 7 1 
Chilliwack 9 11 12 2 8 13 6 4 10 3 1 7 5 

Hope 6 10 8 5 7 13 4 1 12 3 2 9 11 
Ranking Sum 31 42 44 20 28 48 48 39 52 19 20 35 29 

value (close to 0.8). The U P P A rankings in Table 3.4 are computed using absolute values, 

so that under and over-prediction of the observed peak concentrations have the same weight 

when the ranking is computed. For this parameter the ensemble-mean is the best only at 

Abbotsford when compared with the 12 individual ensemble members. It has a slightly better 

than average performance at C Y V R , Langley at Chilliwack, and it has poor performance at 

Hope. A possible reason for the poor average performance (i.e., high ranking sum) of the 

ensemble mean with U P P A (observed in this study), is that ensemble averaging might lead to 

excessive smoothing of the peak values. 

Except at C Y V R , forecasts 10 and 11 (MM5, at 4 km, with C T R L and N O X P ) have good 

forecast skill for U P P A , while for all other statistical parameters they are average or worse 

than average. In Chapter 5 is shown that application of the K F post-processing modestly 

improves (brings closer to zero) the U P P A performance. 

3.4.3 1 1 - m e m b e r OEFS R e s u l t s 

Since the previous analysis shows that different ensemble members contribute differently to 

the ensemble-mean performance, we eliminate each individual member in turn from the 12-

member ensemble, and re-compute the four statistical parameters for the 5-day period and 



five stations, for the resulting 11-member ensemble. This way, one can gauge the effect of each 

single ensemble member on the ensemble-mean. 

Figure 3.11 shows the median (over the five stations) of the correlation of the 11-member 

ensemble-mean, where each bar represents the correlation value for the ensemble-mean without 

the one corresponding ensemble member indicated in the label below the bar. Superimposed 

as a dashed line is the correlation value for the full 12-member ensemble. If the value shown 

is below the dashed line, it implies that the ensemble-mean without that specific member has 

worse performance, and vice versa. 

First, all the correlation values are between 0.7 and 0.8, regardless of which forecast is 

removed from the ensemble. The forecasts with M C 2 at 4 km (07, 08 and 09) removed give 

generally worse correlation values, and the contrary is true for the runs with M M 5 at 4 km 

(10, 11, and 12). In other words, the ensemble average is better if M C 2 at 4 km is included. 

Also, all the runs without M M 5 at 12 km give better correlation, while the runs with M C 2 at 

12 km improve the correlation two times out of three. 

Figure 3.12 shows a similar analysis, but for the gross error. A l l the values are close to 19 

ppbv without any evident trend, except that for all the runs at 12 km, N O X N is better than 

N O X P , which are both better than the C T R L run. 

Similar results for R M S E are shown in Figure 3.13. If the value is below the dashed 

line, it implies that the ensemble-mean without that specific member has better performance. 

Here the differences are more pronounced, with maximum difference (of about 10 %) between 

the value of the ensemble-mean without forecast 03 and the one without forecast 05. The 

only ensemble members that positively contribute to the R M S E ensemble-mean value (i.e., 

increasing R M S E when removed, which is equivalent to reducing errors when included in the 
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Figure 3.11: Median (over the five stations) of the correlation of the 11-member ensemble-
mean, given for the 5-day period 11-15 August 2004. Each bar represents the correlation value 
for the ensemble-mean without the corresponding ensemble member (the label below the bar). 
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Figure 3.13: Similar to Figure 3.11, but for the root mean square error (RMSE) . Values are 
within the interval [0, + oo], with a perfect forecast when R M S E = 0. 

ensemble) are forecasts 01, 03, 06, and barely 08, while removing the others from the ensemble 

results in a better R M S E ensemble-mean. 

U P P A results are shown in Figure 3.14. The values are between 19.5 and 22.5 %, meaning 

that none of the models change dramatically this statistical parameter when excluded from 

the ensemble. Notably, when the 4-km runs (for both M M 5 and MC2) with the C T R L and 

N O X P emission run (forecasts 07, 08, 10, and 11) are removed separately from the ensemble, 

the U P P A gets worse. The only other forecast that makes U P P A better (i.e., U P P A is worse if 

removed) is forecast 04 (MM5, 12-km, C T R L run). A l l the other forecasts make this statistical 
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Figure 3.14: Similar to Figure 3.11, but for the unpaired peak prediction accuracy (UPPA) . 
Values are within the interval [0, + oo], with a perfect peak forecast when U P P A — 0. 

parameter worse when they are retained, when they contribute to the ensemble. 

3.4.4 18-member OEFS Results 

Hoffman and Kalnay (1983) introduced the lagged-average weather forecast. The forecasts 

initialized at the current initial time, t = 0, as well as forecast from the previous times, 

t — —r, —2T, • • • , (N — l ) r are combined at a common valid time to form an ensemble. They 

tested this approach using a primitive-equation N W P model to represent the true atmospheric 

evolution, and a quasi-geostrophic N W P model as the forecast. They found the lagged-average 



Table 3.5: Correlation, gross error (%), root mean square error (RMSE) (ppbv), and unpaired 
peak prediction accuracy (UPPA) (%) for a 12-member (12-ens) and an 18-member (18-ens) 
Ozone Ensemble Forecast System, are listed at five stations [Vancouver International Airport 
( C Y V R ) , Langley, Abbotsford, Chilliwack, and Hope], for the 5-day period 11-15 August 2004. 

Correlation Gross Error (%) R M S E (ppbv) U P P A (%) 
12-ens 18-ens 12-ens 18-ens 12-ens 18-ens 12-ens 18-ens 

C Y V R 0.74 0.72 44 37 24 23 39 35 
Langley 0.84 0.85 15 15 17 17 ' 13 13 

Abbotsford 0.91 0.90 12 11 19 19 11 13 
chilliwack 0.71 0.72 18 19 25 26 20 21 

Hope 0.23 0.06 24 25 28 29 29 31 

forecast to be slightly better than a Monte Carlo forecast (introduced assuming a perfect model 

by Leith (1974)), and they found higher correlation between error growth and ensemble spread 

in their approach. These improvements were because the lagged-average forecast perturbations 

are not randomly chosen, but better capture the error of the day. In the literature some other 

applications of this ensemble approach can be found, as for example in Dalcher et al. (1988). 

In our study, we tested a lagged-averaged ozone ensemble. Each of the six 12-km resolution 

ensemble members is run for more than 48 hours. This allows the expansion of the 12-member 

O E F S to an 18-member O E F S , by adding the second half of the six 12-km "yesterday" forecasts 

to the "today" ensemble forecast, as shown in Figure 3.5. 

Table 3.5 shows the results of the 12-member and 18-member O E F S , for the same statistical 

parameters as in the previous subsections, and for the same 5-day period and the same stations. 

Only in few occasions is the 18-member O E F S slightly better than the 12-member one, as for 

example for the gross error and U P P A at C Y V R . In general the two ensemble systems have very 

similar forecast skill, meaning that the computation effort of adding the six lagged members 

to the original system does not provide valuable results. 



Ideally, each ensemble member should give an equally likely time evolution and space 

distribution of ozone concentration, and they should all give equally good estimates of truth. 

The ensemble members should thus be "independent", in the sense that none of them should 

rely on other members for their realizations. This is not the case when nested grids are used, 

as for 12-member OEFS presented in this study. Namely, C M A Q domains are linked using 

a 1-way nesting approach (similarly for M C 2 , but M M 5 runs are implemented with 2-way 

nesting), all the 4 km runs cannot be considered independent of the runs where the driving 

meteorology is their 12 km coarser domain. Moreover, the fact that the addition of six lagged 

members leave the OEFS performances substantially unvaried, suggests that no independent 

information on errors is added with those members. 

3.5 Discussion 

3.5.1 Taylor Diagrams 

A concise way to display and study the results is to use a Taylor diagram (Taylor, 2001). It 

can be used to create a multi-statistic plot of correlation, centered R M S E ( C R M S E : R M S E 

computed after the average is removed from the time series), and standard deviation. This 

is done for each forecast, for the ensemble-mean, and for the observations. C R M S E is the 

distance on the diagram between the point representing the forecast and the one representing 

the observations. 

At the Vancouver International Airport (Figure 3.15), the ensemble has the best perfor

mance, as indicated by being closest to the observations. Forecasts 07, 08, and 09 (MC2, 4-km) 

are the worst, being the farthest. At Langley (Figure 3.16) the ensemble-mean is the closest, 



Correlation Coefficient 

Standard Deviation (ppbv) 

Figure 3.15: Taylors diagram is plotted for Vancouver International Airport ( C Y V R ) . The az-
imuthal position gives the correlation, while the radial distance from the origin is proportional 
to the standard deviation (ppbv). The circle represents the observations, and the square is 
the ensemble-mean. The numbers correspond to the ensemble-member indices. The distance 

. between the observation and a given point is proportional to the centered root mean square 
error (CRMSE) between the observations and the forecast having the correlation and standard 
deviation of the given point. The dashed line indicates the ensemble-mean C R M S E centered 
over the point representing the observation. 
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Figure 3.16: Taylor diagram for Langley (similar to Figure 3.15). 

while forecasts 07 and 08 are the worst, and 09 has an average performance. At Abbotsford 

(Figure 3.17) 07 is the best, with 09 and the ensemble-mean having similar distance from the 

observations and being the second closest. At Chilliwack (Figure 3.18) the ensemble-mean 

and 09 have again the same distance from the observations, and 08 and 07 are closest and 

the second closest, respectively. Finally at Hope (Figure 3.19) forecasts 07, 08, and 09 are all 

closer to the observations than the ensemble-mean. 

The ensemble-mean forecast is not the best at every location and for any given observed 

ozone concentration. However, overall it is indeed the most skillful forecast when tested against 
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Figure 3.17: Taylor diagram for Abbotsford (similar to Figure 3.15). 
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Figure 3.18: Taylor diagram for Chilliwack (similar to Figure 3.15). 
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Figure 3.19: Taylor diagram for Hope (similar to Figure 3.15). 



observations, and compared to any other individual ensemble member. The key point in favor 

of the ensemble-mean is that it is not possible to establish a priori which specific ensemble 

member will outperform the ensemble-mean in any specific situation. 

3.5.2 Meteorology versus Emission Perturbations 

Ensemble members 01, 04, 07 and 10 (MC2 and M M 5 control runs at 12 km, and M C 2 and 

M M 5 control runs at 4 km) are the control runs, where the non-perturbed emission data 

are used. Namely, only the meteorology is perturbed. Any one of those control runs can be 

compared with runs driven by the same meteorological field but with an emission perturbation 

(plus or minus 50 % N O x ) . This means comparing ensemble member 01 with 02 and 03, 04 

with 05 and 06, 07 with 08 and 09, and 10 with 11 and 12. This methodology allows one to 

infer information about the contribution to the ensemble performance of meteorology versus 

emission perturbations. 

The control runs have good correlation statistics relative to the runs driven by the same 

meteorology but with emission perturbations. This could reflect the importance of meteorology 

perturbations in capturing the ozone temporal and spatial distributions. However, by looking 

at R M S E , the emission-perturbation runs seem to produce better (i.e., lower) R M S E values 

overall when compared with the control runs. Thus, emission perturbations are needed to 

better predict ozone-concentration magnitude. 

The analysis above suggests that both perturbations are needed to have a skillful forecast. 

This is another reason why the ensemble average is the best. However, further investigations 

using other case studies could help to test this hypothesis. 



3.5.3 Spread versus Skill 

The standard deviation of the ensemble members about the ensemble mean is called spread. 

The relationship between ensemble spread and forecast error is not yet well defined (Kalnay, 

2003). Nevertheless, it often provides very useful information about ensemble skill. Ensemble 

weather forecasts often provide information on the reliability of the forecast: if the ensemble 

members have large spread, this implies less confidence in the forecast. 

In this study no correlation or relationship between ozone ensemble spread and forecast 

error has been found. This is caused by a lack of accuracy of one or more aspects of the 

modeling process, which creates similar errors in the forecasts for specific circumstances. For 

instance overnight most of the forecasts are close to each other resulting in a small spread, 

as shown in Figure 3.20 at Langley, for the 5-day period 11-15 August 2004 (shaded areas 

represent nighttime periods). At the same time those forecasts are far from the observations, 

and this results in an ensemble where there is small spread with large errors. In this case, the 

correlation that the ensemble skill and spread may have in other parts of the day is partially 

mitigated by what occurs in those specific circumstances. 

3.6 Summary and Conclusions 

A new Ozone Ensemble Forecast System (OEFS) has been tested. Twelve ensemble members 

are obtained by driving U.S. Environmental Protection Agency (EPA) Models-3/Community 

Multiscale A i r Quality Model (CMAQ) with two mesoscale models, the Mesoscale Compress

ible Community (MC2) model and the Penn State /NCAR mesoscale (MM5) model, each run 

at two resolutions, 12 and 4-km. C M A Q is run for three emission scenarios for each of the 



12:00 00:00 12:00 00:00 12:00 00:00 
Time (hours, PDT) 

12:00 00:00 12:00 

Figure 3.20: Spread (standard deviation of the ensemble members about the ensemble mean 
(E-mean)) and E-mean absolute error (absolute values of the difference between E-mean and 
observations (Obs)) at Langley, for the 5-day period 11-15 August 2004. Shaded areas repre
sent nighttime periods. Local Pacific Daylight Time (PDT) is U T C - 7 h. 



four available meteorological fields: a control run, 50 % more N O x , and 50 % less NO^. 

The performance of the ensemble-mean and 12 different forecasts is compared with the 

individual forecasts and tested against observations for a 5-day period (11-15 August, 2004), 

over five monitoring stations in the Lower Fraser Valley (LFV) , British Columbia (BC). In 

summary, for the locations and days used to test this new O E F S , one finds strong evidence 

for the following: 

• The ensemble-mean is usually the best A Q forecast if ranked using correlation, gross 

error, or R M S E . 

• The ensemble-mean has an average performance with U P P A . One possible reason could 

be that ensemble averaging could cause excessive smoothing of the peak values. 

• The ensemble-niean forecast is not the best at every location and for any given observed 

ozone concentration. However, it is indeed the most skillful forecast when tested against 

observations, and compared to any other ensemble member, since it is able to remove 

part of the unpredictable components of the individual deterministic forecasts. 

• The ranking sum is useful for comparing overall performance. 

• Sporadically (in space and time) there are few ensemble members that have better perfor

mance than the ensemble-mean when the forecasts are ranked based on a particular sta

tistical parameter. The key point in favor of the ensemble-mean is that it is not possible 

to establish a priori which specific ensemble member will outperform the ensemble-mean 

in any specific situation. 

• Meteorology perturbations could be important to better capture the ozone temporal and 



spatial distributions, while emission perturbations could be necessary to better predict 

the ozone-concentration magnitude. If this is the case, then both perturbations are 

useful for maximizing the skill of ozone forecasts, but further investigations are needed 

to validate this hypothesis. 

• The 11-member ensembles, given by removing each of the 12-members in turn from 

the original ensemble, show results close to the 12-member system for correlation, gross 

error, R M S E and U P P A . In general, no particular 11-member ensemble consistently 

outperforms the other possible 11-member combinations. This reflects the fact that 

there is not one of the 12 forecasts that clearly outperform the others, based on the four 

statistical parameters considered here. 

• The 18-member ensemble did not improve the ensemble-mean forecast skill. This is 

probably because the added six lagged forecasts did not span more uncertainty than the 

original 12-member ensemble, and that no independent information on errors is added 

with those members. 

These results indicate that ensemble averaging improves the forecast timing of maximum 

and minimum concentrations with respect to the observations, because the correlation is closer 

to one. From the improved (decreased) R M S E and gross-error values, we infer that ensemble 

averaging does improve the forecast accuracy by reproducing the magnitude of ozone concen

trations. The ensemble-mean average performance with U P P A could be caused by excessive 

smoothing of the peak values. 

The results presented in this study suggest that an air-quality (AQ) ensemble design built 

on meteorological and emission-field perturbations is a promising approach. For N W P en-



sembles, the multi-model approach is the more promising approach, especially for short-range 

forecasts (Hou et al., 2001; Wandishin et al., 2001). So, even if only two different N W P models 

are used (each with two different resolutions), the results found here indicate that the multi-

model approach is an efficient way to perturb the meteorological input in an A Q ensemble 

design as well. 

Furthermore, the emission errors are expected to behave in a more systematic fashion than 

the errors in the initial conditions. They should depend much less on temporal variations of 

the atmosphere. So the issue of capturing the "error of the day", which each N W P ensem

ble system strives for (Kalnay, 2003, and references therein), should be less pronounced for 

emission perturbations within an A Q ensemble design. This could be a reason why the simple 

emission perturbation tested here (combined with the multi -NWP model perturbation) gives 

good results. Further investigation is needed to clarify this point. 

A refinement of the system could focus on the emission perturbations. Ideally, a multi-

model approach, using the Sparse Matrix Operator Kernel Emission ( S M O K E ) model and 

other state-of-the-art emission pre-processors, would take into account many of the uncertain

ties generated by the several approximations embedded in the emission-data gathering and 

computation processes. A n alternative way could be to run the same emission pre-processor 

(e.g., S M O K E ) with different configurations, and starting from different emission inventories 

to generate different (but equally likely) emission fields. 

Future work could focus also on a VOC-based perturbation O E F S , and the comparison 

with this study should help to understand the effects of different emission perturbations ( N O x 

or V O C ) when combined with meteorology perturbations. Moreover, interesting experiments 

could result from generating ensemble members by also perturbing other phases of the A Q 



modeling process, such as the chemistry. For instance, Hanna et al. (2001) found the N O 2 

photolysis rate to be "the variable whose uncertainties are most strongly correlated to the 

uncertainties in predictions of maximum hourly averaged ozone concentrations". This would 

make it a strong candidate as a parameter to be perturbed. Perturbing the chemistry likely 

would be more important in predicting particulate matter rather than ozone, because of the 

higher uncertainties on how the models represent hetereogeneous chemistry when compared 

to gas-phase chemistry. 

Also, the perturbations of the meteorological field presented here are not spatially inde

pendent, because two N W P models are used to produce forecasts over four domains. A likely 

improvement could be obtained by using different N W P models for each domain. 

Finally, ensemble averaging is able to remove part of the unpredictable components of 

the physical and chemical processes involved in the ozone fate, resulting in a more skillful 

forecast when compared to any deterministic ensemble member. In Chapter 5, it is shown 

how a Kalman filter can be used to reduce systematic errors. Thus, using both ensemble 

averaging and Kalman filtering, significantly improved real-time A Q forecasts are possible 

even in complex coastal mountain setting as in the L F V . There are no intrinsic limitations to 

these methods that would prevent their application in real time to other pollutants in other 

geographic settings. 
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Chapter 4 

Probabilistic and 

Ensemble-averaged Regional Ozone 

Forecasts 

4.1 Introduction 

1 Exposure to ozone in the troposphere may have adverse effects on humans (Horvath and 

McKee, 1994; Brauer and Brook, 1995), vegetation (Runeckles, 2002) and materials (Brown 

et al., 2001). To alert the population about impending air-quality (AQ) degradation, Dab

berdt and Miller (2000) discussed the need for an operational A Q forecast system. Experiences 

with such numerical forecast systems are described in Delle Monache et al. (2004), McHenry 

et al. (2004) and Vaughan et al. (2004). The U.S. Weather Research Program and its Prospec-

* A version of this chapter wi l l be submitted for publication. Delle Monache, L . , J . P. Hacker, Y . Zhou, X . 
Deng, and R . B . Stul l , 2005: Probabilistic and ensemble-averaged regional ozone forecasts, manuscript to be 
submitted in October 2005 to the Journal of Geophysical Research. 



tus Development Team on Air-Quality Forecasting (Dabberdt et al., 2003) recommended a 

probabilistic approach to A Q forecasting due to the chaotic nature of the atmosphere. 

It has been found for numerical weather prediction (NWP) than the ensemble-mean is 

more accurate that an individual model realization (e.g., Toth and Kalnay, 1993; Molteni 

et al., 1996). Chapters 2 and 3 and recent studies (e.g., McKeen et al., 2005) have shown that 

the ensemble average yields similar benefits for A Q prediction, because there are similar model 

complexities and constraints. Moreover, N W P ensembles have been very useful by providing 

information about the likelihood of possible future evolution of the atmosphere. Similarly, A Q 

ensembles may be able to provide reliable probabilistic information about possible A Q scenar

ios. Given the nonlinear nature of photochemical reactions, the differences among ensemble 

members of an Ozone Ensemble Forecast System (OEFS) may be able to account for some of 

the uncertainties associated with each component of the modeling process. 

Chapter 2 discussed the benefit of the A Q ensemble approach in studies involving not only 

pollutant transport, but also the associated photochemical reactions. A n ensemble composed 

of four Chemistry Transport Models (CTMs) was tested for a 6-day summer period over five 

monitoring stations in northwestern and central Europe. The ensemble mean presented in that 

study showed promising results, performing better than the models individually, and giving 

good performance for ozone peak-value prediction. 

Another successful implementation of the ensemble approach for ozone forecasts can be 

found in McKeen et al. (2005), where the authors present results for a multi-model (i.e., seven 

CTMs) O E F S , statistically evaluated for 53 days (summer 2004), against 340 monitoring 

stations over eastern U.S. and southern Canada. The high correlation coefficients and low 

root-mean-square-error (RMSE) points to the ensemble mean as the preferred forecast when 



compared to any individual model. 

Chapter 3 introduced a new OEFS design (12 ensemble members), generated by including 

both meteorology and emission (NO^) perturbations. They tested the ensemble mean for a 

5-day episode (August 2004) over the Lower Eraser Valley ( L F V ) , British Columbia, Canada, 

and found that the ensemble average is the best forecast, having the best timing of maxima and 

minima values, and predicting the ozone magnitude more accurately than any other individual 

forecast. 

These successful experiments prompted the work presented here. Studies of ozone photo

chemistry in the L F V (Ainslie, 2004) show that the present and projected A Q is in a regime 

affected roughly equally by N O x and V O C emissions (Figure 4.1). Namely, in a maximum 

ozone concentration plot as a function of N O x and V O C emissions, the state of the L F V is 

above the ridgeline of ozone relative maxima. In Chapter 3 the emission perturbations are 

generated with 50 % more N O x emissions (point A in Figure 4.1), and 50 % less (point B 

in Figure 4.1). In this Chapter, V O C perturbations are also considered, and the 12-member 

ensemble has been expanded to 28 members. Hanna et al. (2001) reported that both N O x and' 

V O C estimates can be in error by a factor of two or more. 

The different forecasts are grouped in 13 different OEFS protocols. One includes all the 

forecasts, one includes only the meteorology perturbations, four have only emission pertur

bations, three have both meteorology and emissions perturbations, one contains only fine-

resolution runs, one has only coarse-resolution forecasts, and two drive the A Q forecast with 

two different Numerical Weather Prediction (NWP) models. 

The performance of these OEFS groups are investigated here by comparing their forecast 

skill as both probabilistic and ensemble-averaged forecasts. The effects of different perturba-
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Figure 4.1: Isopleths of maximum ozone concentration (ppbv) are given as a function of year 
2000 V O C and N O x emissions over the Lower Fraser Valley (adapted from Ainslie (2004)). 
The total annual V O C and N O x emissions are 111, 196 and 99,897 metric tonnes, respectively 
( G V R D , 2002). The vertical bar is along the plus (point A) and minus (point B) 50% NO^ 
perturbations. The horizontal bar shows the plus (point D) and minus (point C) 50% V O C 
perturbations. The diagonal bar (approximately perpendicular to the isopleths) follows the 
plus 50% N O x and minus 50% V O C perturbation (point E) and the minus 50% N O E and plus 
50% V O C perturbation (point F ) . Point G is the control run with no perturbations. 



tions, resolutions, and driving models on the ensemble skill are analyzed. 

Section 4.2 describes in detail the O E F S groups generated in this study. Section 4.3 and 

4.4 present the probabilistic forecast skill metrics and results, respectively. This is followed 

by an analysis of the results of the ensemble-averaged forecasts (Section 4.5). In Section 4.6 

conclusions are drawn. 

4.2 Ozone-Ensemble Methodology 

Following the work in Chapter 3, both the meteorology and emissions are perturbed in this 

new study. Two N W P mesoscale models are each run with two horizontal grid spacings: 

12 and 4 km, yielding four meteorological fields. The mesoscale models are the Mesoscale 

Compressible Community (MC2) N W P model (Benoit et al., 1997) and the Penn S t a t e / N C A R 

mesoscale (MM5) model (Grell et al., 1994), which have been running daily for a decade at the 

University of British Columbia (UBC), [http://weather.eos.ubc.ca/wxfcst/]. The A Q forecasts 

were produced with the U.S. Environmental Protection Agency (EPA) Models-3/Community 

Multiscale Air Quality Model (CMAQ) Chemistry Transport Model (CTM) (Byun and Ching, 

1991). 

In this new study, both V O C and N 0 X perturbations are considered. For each one of the 

four available meteorological input fields, runs are made with plus and minus 50 % V O C s 

(point D and C in Figure 4.1, respectively). Also, the N 0 X and V O C perturbations have been 

combined, to make perturbations that are perpendicular to the ozone maximum isopleths. 

This better captures more of the ozone uncertainty than when perturbing only N O ^ or V O C . 

Hence, perturbations combining plus 50 % N O x and minus 50 % V O C (point E , Figure 4.1), 

http://weather.eos.ubc.ca/wxfcst/


and minus 50 % N O x and plus 50 % V O C (point F , Figure 4.1) were generated as well. 

Ensemble members with the original points A and B from Chapter 3 are also included to 

allow comparison with NO x -only perturbations. Including the control run with no emissions 

perturbations, there are a total of seven emission fields, corresponding to the seven points in 

Figure 4.1. 

The 28 A Q forecasts resulting from the above perturbation combinations (four meteorology 

times seven emission) are tested here using the same episode analyzed in Chapter 3, with hourly 

observed ozone concentrations from five stations across the Lower Eraser valley ( L F V ) , British 

Columbia (BC), Canada: Vancouver International Airport ( C Y V R ) , Langley, Abbotsford, 

Chilliwack, and Hope (Figure 4.2). The study period is 11-15 August 2004, and further details 

about the data and episode can be found in Section 3.2. 

The 28 ensemble members are grouped into the following subsets, to form 13 different 

ensemble groups, as also summarized in Table 4.1. These are identified with abbreviation as 

follows: 

• A l l the forecasts available ( A L L , 28 members). 

• Meteorology and N O x perturbations combined together, as presented in Chapter 3 

( M E T + N O x , 12 members). 

• Meteorology and V O C perturbations ( M E T + V O C , 12 members). 

• Meteorology and N O x combined with V O C perturbations ( M E T + N O x V O C , 12 mem

bers) . 

• A l l the ensemble members driven by M C 2 at 12 km (MC2-12, seven members). 



3000 

Figure 4.2: The Lower Fraser Valley is a floodplain spanning the ozone stations of Vancouver 
International Airport ( C Y V R ) , Langley, Abbotsford, Chilliwack, and Hope. The triangular 
valley is widest near C Y V R along the coast of the Georgia Strait, and tapers to a narrow 
gorge between steep mountain walls near Hope. Shading (vertical bar at right) indicates 
terrain elevation above sea level. 



Table 4.1: Ensemble members included in each of the 13 ensemble groups. "Base" is the forecast obtained by running C M A Q 
with the base emissions at one of the two possible resolutions (12 or 4 km) driven by N W P models (MC2 or MM5) . N O x indicates 
runs with perturbations of ± 50% N O x , V O C includes the ± 50% V O C runs, and N O x V O C represents the run with plus 50% 
N O x combined with minus 50% V O C , and the run with minus 50% N O x combined with plus 50% V O C . Last column indicates 
the size (number of forecasts included in the ensemble) of each of the 13 ensemble groups. 

M C 2 - C M A Q M M 5 - C M A Q 

E n s e m b l e 12 k m 4 k m 12 k m 4 k m S i z e 

B a s e N O , V O C N O x V O C B a s e N O , V O C N O , V O C B a s e N O a; V O C N O X V O C B a s e N O , V O C N O , V O C 

A L L • • • • • • • • • • • t • • • 28 

M E T + N O , • • • • • • • • 12 

M E T + V O C • • • • t • 12 

M E T + N O . V O C • • • • • • t 12 

M C 2 - 1 2 • • • 7 

M C 2 - 0 4 • • • • 7 

M M 5 - 1 2 • • • • 7 

M M 5 - 0 4 • • • • 7 

M E T • • • • 4 

1 2 - k m • • • • • • • « 14 

0 4 - k m • • • • • • • 14 

M C 2 - A L L • • • • • • • • 14 

M M 5 - A L L • • • • • • • • 14 



• A l l the ensemble members driven by MC2 at 4 km (MC2-04, seven members). 

• A l l the ensemble members driven by M M 5 at 12 km (MM5-12, seven members). 

• A l l the ensemble members driven by M M 5 at 4 km (MM5-04, seven members). 

• A l l the control runs ( M E T , four members). 

• A l l the ensemble members with 12 km resolutions (12-km, 14 members). 

• A l l the ensemble members with 4 km resolution (04-km, 14 members). 

• A l l the ensemble members driven by M C 2 ( M C 2 - A L L , 14 members). 

• A l l the ensemble members driven by M M 5 ( M M 5 - A L L , 14 members). 

M E T + N O ^ , M E T + V O C , and M E T + N O x V O C are ensembles generated with both mete

orology and emission perturbations, while MC2-12, MC2-04, MM5-12, and MM5-04 are en

sembles where only emissions perturbations are considered (i.e., the members in each of them 

are driven by the same meteorological input field). M E T , being formed by the four control 

runs, takes into account meteorology perturbations from N W P model differences alone. 

Ensembles 12-km and 04-km will help to understand the effects of different horizontal grid 

spacing. Finally, M C 2 - A L L and M M 5 - A L L give insights about the different contributions 

from different N W P models (MC2 and MM5) while including different spatial resolutions. 

4.3 Probabilistic-Forecast Verification Statistics 

A probabilistic forecast system (PFS) can be built from a given set of ensemble members by 

computing the probability of an event occurrence. This probability can be computed as the 
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Figure 4.3: Probabilities of ozoue concentrations above 50 ppbv, as predicted by M E T - N O ^ 
at Abbotsford, 11-14 August 2004. Asterisks indicates hours when the forecasted probability 
is 58 % (seven out of 12 ensemble members are predicting the event), crosses when it is 75 % 
(nine out of 12), and squares when it is 91 % (11 out of 12). The continuous line represents 
to ozone 50 ppbv concentration threshold. Circles indicate observations. 

ratio of the number of the ensemble members that predict the event over the total number of 

members. For an ozone P F S , the event can be the probability of ozone concentration above a 

certain threshold. Figure 4.3 is an example of the probabilities forecasted by the MET-I-NO^ 

ensemble, at Abbotsford, 11-14 August 2004. 

Probabilistic forecast skill can be evaluated by determining the predictive accuracy of a 

forecast distribution, and also the ability to distinguish the relative frequency of different 

events. W i t h this in mind two important forecast attributes can be defined: resolution and 

reliability. Both are concerned with the conditional probability p(o\f) of observation (o) given 



Table 4.2: Out of the 549 valid observation points available, this table shows the percent of 
observations with ozone concentration greater than the given threshold. 

Threshold (ppbv) 10 20 30 40 50 60 70 80 " 
Occurrence (%) 79 63 46 34 25 15 7 3 

forecast (/). A n in-depth discussion of those and other attributes of probabilistic forecasts 

can be found in Joliffe and Stephenson (2003). 

4.3.1 Resolution 

Resolution measures the ability of the forecast to sort, a priori, the observed events into 

separate groups, when the events considered have a frequency different from the climatolog-

ical frequency. For an ozone P F S , two different events could be the probabilities of ozone 

concentrations above two different thresholds. A P F S with good resolution should be able 

to separate the observed concentrations when the two different probabilities are forecasted. 

Table 4.2 shows the concentration threshold values used in this study. As the threshold 

concentration increases, the percentage of the available event occurrences greater than this 

threshold decreases. For threshold values above the 60 ppbv limit (an event occurring 15 % of 

the time) the low number of observation points available yields a large sampling uncertainty. 

Nevertheless, these threshold values are included in this analysis, since it is interesting to see 

how the ensembles behave for high (important for health-related issues) but rarely observed 

ozone-concentration values. 

Resolution can be measured with Relative Operating Characteristics (ROC), developed 

in the field of signal-detection theory for discrimination of two alternative outcomes (Mason, 

1982). A contingency table of observed versus forecasted event occurrences is built separately 



for individual forecast probability values (a probability value can be denned as the percentage 

of ensemble members forecasting a given event). The hit rate is computed as the ratio of 

the number of correct forecasts of the event to the total number of occurrences of the event, 

while the false-alarm rate is computed as ratio of the number of non-correct forecasts of the 

event to the total number of non-occurrences of the event. Then, hit rates are plotted on 

the ordinate against the corresponding false-alarm rates on the abscissa to generate the R O C 

curve. For a P F S with good resolution, the R O C curve is close to the upper left hand corner 

of the graph. The area under the R O C quantifies the ability of an ensemble to discriminate 

between events, which can be equated to forecast usefulness, and is known also as the R O C 

score (Mason and Graham, 1999). The closer the area is to one, the more useful the forecast 

is. A value of 0.5 indicates that the forecast system has no skill, as when the predicted events 

have a climatoligical frequency. The R O C curve does not depend on the forecast bias, hence 

is independent of reliability (defined below). It represents the P F S intrinsic value. 

Figure 4.4 shows an example of a R O C curve for the " A L L " ensemble (28 members), for 

observed ozone concentration above 50 ppbv. The shaded portion of the plot represents the 

R O C area, and the dashed line is the R O C curve for a chance forecast. A contingency table 

is constructed for each probability threshold (the labels adjacent to the asterisks), where the 

probability threshold in this example assumes the values from 0/28 to 28/28, with increments 

of 1/28. Hit and false-alarm rates are computed for each contingency table (i.e., for each 

probability threshold). In this example, a correct forecast of the event occurs if the forecast 

probability (ratio of the number of the ensemble members that predict the event over the 

total number of members) is above the given probability threshold when the observed ozone 

concentration is above 50 ppbv. Similar curves can be produced for the other concentration 



thresholds. 

4.3.2 Reliability 

Reliability measures the capability of the P F S to predict unbiased estimates of the observed 

frequency associated with different forecast probabilities. In a perfectly reliable forecast, the 

forecasted probability of the event should be equal to the observed frequency of the event 

for all the cases when that specific probability value is forecasted. It can be improved with 

a forecast calibration such as bias correction; e.g., by re-assigning the forecast probability 

values based on a long series of past forecasts, or by Kalman filtering each individual forecast 

based on recent past bias values, as discussed in Chapter 5. Reliability alone is not sufficient 

to establish if a P F S produces valuable forecasts or not. For instance, a system that always 

forecasts the climatological probability of an event is reliable, but not useful. 

Reliability can be measured with a Talagrand diagram (Talagrand and Vautard, 1997), 

also known as a rank histogram (Hamill and Colucci, 1997). First, the ensemble members are 

ranked for each prediction. Then, the frequency of an event occurrence in each bin of the rank 

histogram is computed and plotted against the bins. The number of bins equals the number 

of members plus one. A perfectly reliable P F S shows a flat Talagrand diagram, where all the 

bins have the same height ("ideal bin height"). In fact, if each ensemble member represents 

an equally likely time evolution and space distribution of the ozone concentration, then the 

ensemble exhibits a perfect spread, and the observations are equally likely to fall between any 

two members. 

In this study a new summary index, called a "reliability index" (RI), is introduced as the 
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reliability attribute. It is computed as follows: 

mean bin distance from ideal bin height 
x 100 (4.1) 

ideal bin height 
1 y * J V M „ I countj _ 1 I 

Nbin l^i=l I Nppjnt Nbin I x 100 (4.2) l 

~1y ^point Nbin 

county 1 x 100 (4.3) 

where Nun is the Talagrand diagram number of bins (corresponding to the number of ensemble 

members plus one), counti is the number of times the observed event falls into the ith bin, and 

Npoint is the sum of counti, f ° r i =!,••• , Nfnn (i-e-> the sample size). 

Lower RI (i.e., closer to zero) means that the bins are closer to the ideal bin height. The 

Talagrand diagram of the 13 PFSs all have similar shapes, as shown in the next Section, so 

' this index can be useful to better discriminate between their reliabilities. The RI does not 

; provide any information about the Talagrand diagram shape. 

The RI index, as define in Equation 4.3 tends to increase with increasing ensemble size, if 

the ensembles are samples drawn from the same distribution. This would prevent its applica

tion in cases as here, where ensembles with different sizes are compared with each other. For 

this reason, Equation 4.3 is normalized as follows: 

where esize is the size of the ensemble for which RI is computed, and esizemin is the size 

of the smallest ensemble considered. Hereafter, this normalized expression is used because it 

makes R I independent of ensemble size. Again, lower RI is better. 

RI = 
E: •Nbi7l I countj ~tL\ x10° (4.4) 



Tests of this normalization are performed by computing RI (using Equation 4.4) with 

ensembles predicting the same distribution but having different size. Results gave the same 

RI value, as desired, plus noise. The variance of the noise can be interpreted as an estimate 

of the sampling uncertainty, where a sample is an individual ensemble. 

The RI (%) measures the degree of closeness of a Talagrand diagram to its ideal flat 

shape. Recently, a similar index (8) measuring the "deviation of the histogram from flatness" 

has been introduced by Candille and Talagrand (2005). This index takes into account the 

deviation from the ideal bin height by considering a sum over the squares of the differences of 

counti minus Npoint/Nbin for i = 1, • • • , A ^ n , and by normalizing this quantity. When used to 

compare the reliability of different ensemble systems, it gives the same relative rankings as RI , 

but its values interpretation differs from RI. In fact, 8—1 means a perfectly reliable system, 

8 » 1 suggests unreliability, and 8 <C 1 indicates that "successive realization of the prediction 

process are not independent". 

4.4 Probabilistic Forecast Results 

In this section the resolution and reliability of the 13 PFSs are evaluated and discussed. The 

PFSs are divided into three groups: ensembles considering perturbations of both meteorology 

and emissions, ensembles based on only emission perturbations or only meteorology perturba

tions, and ensembles formed using the same model resolution or the same model. A summary 

of these analyses concludes this section. 



4.4.1 Ensembles with both Meteorology and Emission Perturbations 

The following are the ensembles generated by including both meteorology and emission per

turbations: M E T + N O x , M E T + V O C , M E T + N O x V O C (all three with 12 members), and A L L 

(28 members). These ensembles will be referred generally as P E R T . 

Figure 4.5 shows the area under the R O C curve and its variation using eight different 

concentration thresholds for each ensemble. The event being forecast is ozone concentration 

above the threshold. The higher the threshold, the less often the event occurs. Table 4.2 shows 

the percentage of occurrence of each event associated with the eight thresholds. 

The probabilistic forecasts are best (ROC area larger than 0.8) for those threshold values 

between 40 and 70 ppbv (except M E T + N O x V O C with 70 ppbv). For low concentration values 

(10 and 30 ppbv) almost all the ROC-area values are below 0.7. For the highest threshold 

(80 ppbv) only A L L is above 0.7, and ensembles M E T + V O C and M E T + N O x V O C have poor 

skill , with the latter below the 0.5 line. A L L and M E T + N O x most often outperform the other 

ensembles. 

Figure 4.6 shows the Talagrand diagram for the P E R T ensembles. The solid lines indicate 

the ideal shape (for a perfectly reliable diagram). A l l the panels show, to different degrees, 

a combination of a "U-shape" and a "L-shape". The U-shape indicates that spread of the 

ensemble is too small, because the observed event often falls outside the range of values sampled 

by the ensemble. In fact, the left-most bin contains an absolute frequency maximum (compared 

with the frequency of the other bins), while the right-most bin contains a relative frequency 

maximum. Furthermore, the asymmetric L-shape (maximum on the first bin) indicates that 

the ensembles are biased towards higher values compared to the observed ozone concentrations. 
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Table 4.3 shows the RI values and the relative ranking based on these values. Among 

the P E R T ensembles, A L L visually shows the least deficiencies (associated with the different 

shapes), followed by similar reliability for M E T + N O x V O C and M E T + V O C (with the former 

slightly better, having a lower left-most maximum). M E T + N O x is the ensemble showing the 

greatest positive bias among the four analyzed in this section, having the highest maximum 

in the first bin. This is confirmed by looking at RI, where A L L is most reliable within P E R T 

(overall ranking 2) followed by M E T + V O C (4), M E T + N O x V O C (7), and M E T + N O x (9). 

The M E T + N O x tendency of overestimating more than the other ensembles in this group 

suggests that the db 50 % N O x perturbation is not centered over an optimal estimate, and 

shifting the perturbations toward lower values could improve its forecast skill by reducing 

the positive bias. M E T + V O C and M E T + N O x V O C also overestimate the measured ozone 

concentrations, suggesting that the same kind of perturbation shifting towards lower values 

could improve their forecast skill as well. This is confirmed by noticing in Figure 4.6 that all 

ensembles have a bump (around the fifth bin for A L L and around the third or fourth bin for 

the others) meaning that the observations fall more often in those bins than the neighboring 

bins. Ideally this bump should appear at the middle bin, so a perturbation shift towards lower 

values may move the bump more centrally. 

Based on the above considerations, A L L is the best forecast by looking at both the prob

abilistic forecast resolution and reliability. A L L is formed by the largest number of members 

(28), and the observations fall more often within the maximum and minimum concentration 

predicted by its members at any given hour, compared with the other ensembles having only 

12 members each (a subset of the A L L 28 members). This is certainly a desirable feature of 
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Table 4.3: Normalized Reliability Index (RI) computed as in Equation 4.4, and the relative ranking based on RI values for each 
of the 13 ensemble groups. Smaller RI is better. 

A L L M E T + N O , M E T + V O C M E T + N O . V O C M C 2 - 1 2 M C 2 - 0 4 M M 5 - 1 2 M M 5 - 0 4 M E T 1 2 - k m 0 4 - k m M C 2 - A L L M M 5 - A L L 

R I (%) 24 46 32 35 29 43 68 88 82 34 33 20 62 
R a n k i n g 2 9 4 7 3 8 11 13 12 6 5 1 10 



an ensemble system in general. Moreover, with the N 0 X , V O C and N O x combined with V O C 

perturbations A L L is able to span more emission uncertainty than the other three forecasts. 

Even though M E T + N O x is the most biased ensemble in this group, it shows very good 

probabilistic predictive skills, having ROC values similar to A L L , and better than any other 

P E R T ensemble with a threshold value of 10, 50, and 60 ppbv. Over the five stations this 

means that the N O x perturbation is more efficient than the V O C (or V O C combined with 

N O x ) perturbations in spanning the emission-uncertainty subspace. 

The N O x perturbation has much better predictive skill than the V O C perturbation for 

ozone above 80 ppbv. These high concentrations were observed in the afternoon mainly at 

Hope, except on 11 August at Chilliwack when a peak of 89 ppbv exceeded for three hours the 

82 ppbv Canadian maximum 1-hour average acceptable ozone level. The fact that the N O x 

perturbations outperform the V O C perturbations for ozone values above 80 ppbv suggests 

that when (afternoon) and where (eastern side of the L F V ) these values are observed, the 

predominant chemical regime is NO^-sensitive. NO^-sensitive means that a percent change 

in N O x results in a significantly greater change in ozone concentration relative to the same 

percent change in V O C (Sillman, 1999). It is beyond the goal of this study to analyze in -

depth the predominant chemical regimes in the region, which would require several runs of a 

photochemical model with different V O C / N O x ratios (here only seven values of this ratio are 

utilized). Other studies using different approaches, i.e., without running complex 3-D C T M 

models, (e.g., Pryor, 1998; Ainslie, 2004) have instead suggested that the L F V is climatologi-

cally VOC-sensitive for the daily maximum. 

Nevertheless, the results of this study suggest a NO x-sensitive regime at Hope for this 

particular 11-15 August 2004 event, which can be explained as follows. The aged air mass 



from the urban core (the main N O x source, located in the west and central parts of the 

L F V ) is transported eastward by sea breezes. In the aged air mass, NO^ concentrations are 

reduced by the chemistry that produces ozone. In a NO^-sensitive regime, a NO^ perturbation 

is more likely than a V O C one to capture ozone-concentration variability, and that is why 

M E T + N O z has much higher ROC-area values with the threshold of 80 ppbv than M E T + V O C 

or M E T + N O x V O C . Also, the good probabilistic skill of M E T + N O ^ suggests that the ± 50 

% limit for NO^ is appropriate, even though the perturbations themselves could be shifted 

towards lower values as discussed above. 

4.4.2 Ensembles with only Meteorology or Emissions Perturbations 

In this subsection the following ensembles are considered: MC2-12, MC2-04, MM5-12, and 

MM5-04 (all formed by seven members), and M E T (four members). Since each of the first 

four PFSs is driven with the same meteorological input, they can be viewed as ensembles 

where only the emissions are perturbed. These ensembles are compared here with M E T , that 

is an ensemble where only meteorology is perturbed. M E T has only four members (while the 

others in this group have seven members), so the comparison with larger ensembles is a more 

stringent test for the meteorology perturbation than for the emissions perturbations. 

Nevertheless, M E T has the best R O C area for concentration thresholds of 40, 60 and 

70 ppbv, and is very close to the best (MC2-04) for 50 ppbv (Figure 4.7). However, it has 

the worst performance for 80 ppbv (where the best is again MC2-04) because only one of 

its four ensemble members is predicting concentrations above this value. As will be shown in 

Section 4.5, the ensemble-averaged M E T forecast is skillful in predicting the ozone peak. Even 

though three out of four of its members are always below 80 ppbv, they balance the highest 
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Figure 4.7: Similar to Figure 4.5, but with ROC-area values for the ensembles generated with 
only emission perturbations, i.e., the ensembles formed by forecasts driven with the same 
meteorological input (MC2-12, MC2-04, MM5-12, and MM5-04, all with seven members), or 
with only the meteorology perturbations ( M E T , four members). 

peak prediction, resulting in a skillful ensemble mean for the ozone peak. 

Among the ensembles with only the emission perturbations, the one showing the highest 

ROC-area values is MC2-04, and it is the best of this group for ozone thresholds from 30 to 

80 ppbv. The M M 5 ensembles including only emission perturbations (MM5-12 and MM5-04) 

have low R O C area values until 40 ppbv, and improve their performance relative to the other 

ensembles for threshold values above 40 ppbv. MC2-12 is the best for 10 and 20 ppbv, and 

the worst with 60 and 70 ppbv. At 80 ppbv it has a R O C area value of exactly 0.5, because it 



never predicts concentrations above this threshold. The 12 km runs are worse than the 4 km 

runs for high ozone values (with the thresholds of 70 and 80 ppbv), because the high values 

are mostly observed at Chilliwack and Hope, where the valley is much narrower than at the 

other locations, resulting in an advantage for the finer horizontal resolution runs. 

Figure 4.8 shows the Talagrand diagram for these PFSs, where the solid lines have the 

same meaning as in Figure 4.6. Similar to Figure 4.6, U - and L-shaped diagrams are observed 

here. At the same time a maximum frequency is observed for MC2-04 at the central fifth 

bin, and to a lesser extent (relative maximum at fourth bin) for MC2-12. The central peak 

indicates less bias in the ensemble forecasts. These ensembles also have a larger spread than 

the ones with only the U - and L-shapes, as for the P E R T ensemble set, but the spread is still 

too small. 

Overall MC2-12 has the third best RI value (29 %), followed by MC2-04 (43 %). The two 

M M 5 and the M E T PFSs all have very high R I values (between 68 and 88), resulting in a worse 

overall ranking (11-13) as shown in Table 4.3. The reason is that they are highly positively 

biased, and this also results in the first bin being considerably higher than the others in the 

Talagrand diagram. 

By comparing Figures 4.5 and 4.7, the utility of the meteorology and emission pertur

bations and their combination can be inferred. The predictive skill of the P E R T ensembles 

(generated with both meteorology and emission perturbations) is superior to the ensembles 

with only the meteorology or only the emission perturbations for threshold values from 10 to 

70 ppbv. For 80 ppbv, the best among those ensembles is M E T + N O * , while MC2-04, MM5-04, 

and MM5-12 are better than M E T + V O C and M E T + N O x V O C . 

Therefore the following can be deduced: both meteorology and emission perturbations are 
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Figure 4.8: Similar to Figure 4.6, but for the ensembles generated with only emission per
turbation, i.e., the ensembles formed by forecasts driven with the same meteorological input 
(MC2-12, MC2-04, MM5-12, and MM5-04, all with seven members), or with only the meteo
rology perturbation ( M E T , four members). 



needed to have a skillful P F S , and neither one is sufficient to form a reliable P F S with a good 

resolution for all the threshold values. Moreover, the emission perturbations (particularly with 

N O x ) appear most important to capturing ozone concentrations above 80 ppbv. 

4.4.3 Ensembles Generated with the Same Model or the Same Resolution 

Here the P F S resolution and reliability for 12-km, 04-km, M C 2 - A L L and M M 5 - A L L are an

alyzed (they are all formed by 14 members). The intent is to observe the effect on the P F S 

skill of different horizontal grid resolutions, and different driving meteorological models. 

Figure 4.9 shows the R O C area for these ensembles. M M 5 - A L L has the lowest values 

from 10 to 60 ppbv, and is slightly better than M C 2 - A L L with the concentration thresholds 

of 70 and 80 ppbv. 12-km is better than 04-km with thresholds of 10 or 20 ppbv and worse 

with the others, and 04-km is the best at 60, 70, and 80 ppbv. This may reflect the fact 

that higher concentrations were observed often in the eastern end of the L F V , where the 

topography progressively becomes more and more complex, giving a clear advantage to the 

finer resolution runs (as also discussed in Section 4.4.2). 04-km and M C 2 - A L L have very good 

ROC-area values (above 0.8) between 40 and 70 ppbv, while 12-km is above 0.8 only with 40 

ppbv. M M 5 - A L L always has a ROC-area below approximately 0.78. 

Figure 4.10 shows the Talagrand diagram for these PFSs. M C 2 - A L L has the smallest bias 

and M M 5 - A L L the largest. This corresponds to the overall best (20 %) and among the worst 

(62 %) RI values, respectively, as shown in Table 4.3. M M 5 - A L L has the smallest spread and 

M C 2 - A L L the largest (but still too small), by comparing the first and last bin heights. This 

suggests that the M C 2 model has more of the needed variability than M M 5 in the 5-day period 

analyzed in this study. Moreover, 04-km has a bigger spread and slightly less bias than 12-km 
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Figure 4.10: Similar to Figure 4.6, but for the ensembles formed with the same resolution runs 
(12-km and 04-km) or driven by the same Numerical Weather Prediction model ( M C 2 - A L L 
or M M 5 - A L L ) . 

(resulting in the fifth and sixth overall Rls , respectively). 

Overall, by looking at the resolution and reliability of these ensembles built with different 

resolutions and models, M C 2 - A L L is the best for observed ozone concentrations below 60 

ppbv, and 04-km has similar or better skills when higher ozone concentrations are measured, 

because it has better ROC-area values but is less reliable. 



AAA Summary 

Figure 4.11 shows the R O C area for all the 13 PFSs, allowing an overall comparison of the 

P F S resolutions. A L L demonstrates the highest resolution, being the best at 30, 70 and 80 

ppbv, and close to the best with the other thresholds. Figure 4.11 shows also that M E T (with 

only four ensemble members) has improved resolution relative to the other PFSs at 40, 50 

and 60 ppbv, while at 80 ppbv is among the worst along with M E T + N O x V O C . The subset 

of ensembles that includes only emission perturbations usually have low R O C area values, 

with the exception of MC2-12 which has the highest value (but still well below 0.7) for 10 

ppbv. Perturbing only the meteorology, or only the emissions, results in a P F S with lower 

verification resolution than when both perturbations are considered. However, the emission 

perturbations are more important than the meteorology perturbations in capturing the highest 

ozone concentrations (above 80 ppbv). 

If A L L is excluded from the P F S set, then M E T + N O * and 04-km have the highest R O C 

area at 60, 70 and 80 ppbv. M E T - f - N O x stays among the best even for lower concentration 

thresholds, while 04-km tends to lower verification resolution skill with lower ozone concen

trations. Instead, by looking at the Talagrand diagram, 04-km (Figure 4.10) is certainly more 

reliable than M E T + N O x (Figure 4.6), which is one of the most positively biased PFSs. How

ever, the MET+NOa; bias could be efficiently removed by Kalman filtering its forecasts (as 

discussed in Chapter 5), resulting in a reliable prediction. 

The most reliable P F S is M C 2 - A L L , followed closely by A L L and then MC2-12. A L L cer

tainly benefits from the highest number of ensemble members, making the extra computational 

effort worthwhile. 
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A L L appears to be the most useful probabilistic forecast, particularly because of its good 

resolution for high ozone concentrations, and because of its good reliability. Ensembles 04-km 

and M E T + N O x closely follow. The choice of a particular P F S may be dictated by user needs, 

depending on which events are interesting (rare versus typical), the available computer power, 

and the importance of reliability versus resolution for a given situation. 

4.5 Ensemble-mean Verification Statistics and Results 

The ensemble mean of OEFSs is computed here as a linear average of the ensemble-member-

predicted hourly concentrations. In this section the forecast skill of the ensemble means of 

the 13 O E F S groups are investigated. The ensemble means are analyzed because it has been 

found that they are the most skillful forecast when compared with the individual ensemble 

members against the observations, as shown in Chapter 2 and 3 and in McKeen et al. (2005). 

The following subsections present and discuss the results by looking at correlation, R M S E , 

and unpaired peak prediction accuracy (UPPA). These discussions are then followed by a brief 

summary. 

4.5.1 Correlation 

Pearson product-moment coefficient of linear correlation (herein "correlation") can be com

puted as follows: 

\JEthr [Co(f, s) - Cjs)}2 £ t ! r r [Cp(t, s) - Cjsjf 
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(4.5) 



where Nhour is the number of 1-h average concentrations over the 5-day period, C0(t, s) is the 

1-h average observed concentration at a monitoring station s for hour t, Cp(t,s) is the 1-h 

average predicted concentration at a monitoring station s for hour t , C0(s) is the average of 

1-h average observed concentrations at a monitoring station s over the 5-day period, Cp(s) 

is the average of 1-h average predicted concentrations at a monitoring station over the 5-day 

period. 

We evaluate correlation to quantify timing errors of maximum and minimum concentrations 

at a specific location. The higher the correlation, the better is the match between the two 

signals; for example, the maximum ozone is predicted close to the right time of the day. 

Figure 4.12 depicts correlation bar plots via five panels for each of the 13 O E F S groups 

presented in this study. Each panel shows the result for a different station, going from the west 

side of the L F V ( C Y V R ) , to the easternmost location (Hope). For comparison purposes, the 

ensemble means are listed on the abscissa following the same order they have been presented 

and grouped in Section 4.4. Moreover, the number at the bottom of each bar represents 

the ranking (1 being the best, 13 being the worst), computed for each station based on the 

individual correlation values. 

Generally, correlation values tend to be lower moving towards the east side of the L F V , 

with all the ensembles having their poorest performance at Hope. Indeed Hope is located in a 

very steep narrow valley (less than 4 km wide), which none of the models are able to resolve. 

Since the 12 km runs do not see this valley, in the afternoon the ozone plume is advected 

past Hope (instead of being trapped there), resulting in decreasing values (after the plume 

passage) while in reality the concentration is increasing. Instead, when during the night a 

return flow (going westward) is established, the 12 km run tends to bring back the plume, 
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Figure 4.12: Correlation values between observed and predicted ozone 1-h average concen
trations are plotted at five stations [Vancouver International Airport ( C Y V R ) , Langley, Ab
botsford, Chilliwack, and Hope], for the 13 ensemble groups (as listed in Figure 4.11), for the 
5-day period 11-15 August 2004. Values are within the interval [-1, 1], with correlation = 1 
being the best possible value. The number at the bottom of each bar represents the ensemble 
ranking relative to the correlation values at each station. 



resulting in increasing predicted concentrations when the observed ozone is decreasing. This 

results in negative correlation values for the 12 km runs, as shown in Figure 4.12. Because 

of that, the ensembles using finer resolution runs have better correlation values at Hope and 

Chilliwack, where the topography is more complex than at C Y V R , Langley, and Abbotsford. 

Spatial resolutions even finer than 4 km would be needed to better capture these topographic 

effects. 

Overall, MC2-04 shows the best correlation values, even though at Langley and Abbotsford 

it is the worst and second worst, but it still has a correlation of 0.61 and 0.71, respectively. 

The MC2-04 shows some utility at the challenging location of Hope, where its correlation is 

considerably higher than all the other ensembles. Conversely, M E T + N O x and 12-km shows 

the best values at the central wider valley locations of Langley and Abbotsford. Also, 04-km 

is clearly better than 12-km at locations where the topography is complex (Chilliwack and 

Hope), or where the coastal settings (and the associated thermally driven circulations) are 

complicated, as at C Y V R , which is located near the Georgia Strait waters. 

M E T , with only four ensemble members, has good correlation with the observations at 

Langley and Abbotsford, having a median (7th rank) performance at the other locations. 

This means that meteorology plays an important role (as expected) in accurately predicting 

the location and timing of the ozone concentration. M M 5 - A L L is better at Langley and 

Abbotsford than M C 2 - A L L , but considerably worse elsewhere, underlying differences between 

the meteorological fields the two mesoscale models provide. 

M E T + N O x has the better correlation values among the P E R T ensembles (the first four 

on the abscissa). A L L , despite the considerably higher number of ensemble members, is never 

the best among these four OEFSs, showing correlation values slightly better than the overall 



median values. In fact, more averaging in the larger ensemble smooths out the peaks and will , 

on average, lower the correlations. 

4.5.2 R M S E 

Root mean square error (RMSE) is expressed by: 

RMSE(s) 
1 Nh OUT 

\ X ] [Cp(t,s)-C0(t,s)]2 (4.6) 
\ Mho T.OUT t=l 

R M S E gives important information about forecast skill in predicting the magnitude of ozone 

concentration, even though alone it does not draw a complete picture of a forecast value. 

Figure 4.13 shows the 13 OEFS R M S E values, analogous to Figure 4.12. This metric 

clearly shows the difficulties of all the ensembles at Hope, and to a lesser degree at Chilliwack. 

M C 2 - A L L shows the best performance with this metric, being among the first three ensem

bles everywhere. M M 5 - A L L has among the worst R M S E values. MC2-12 shows low R M S E 

values at C Y V R , Langley and Abbotsford, while MC2-04 has low R M S E at Abbotsford, Chi l l 

iwack and Hope. 

Again, mostly because the topographic complexity, 04-km is better than 12-km at Abbots

ford, Chilliwack, and Hope, while the contrary is true at C Y V R and Langley. Instead, all the 

P E R T ensembles have similar R M S E at the five stations. 

M E T has very poor performance with R M S E . While the meteorology perturbation helps 

the ensemble mean to capture space and time variability of the ozone concentration field (as 

discussed with the correlation values), the same is not true for the magnitude of ozone concen-
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Figure 4.13: Root mean square error (RMSE) values (ppbv) at five stations [Vancouver In
ternational Airport ( C Y V R ) , Langley, Abbotsford, Chilliwack, and Hope] are plotted, for the 
13 ensemble groups (as listed in Figure 4.11), for the 5-day period 11-15 August 2004. Values 
are within the interval [0, +oo], with a perfect forecast when R M S E = 0. The number at 
the bottom of each bar represents the ensemble ranking relative to the R M S E values at each 
station. 



tration. This confirms the importance of emission perturbations in A Q ensemble forecasting, 

as already shown in Section 4.4.2, where it was needed to capture ozone concentrations above 

80 ppbv. 

R M S E can be separated into different components. One decomposition was proposed by 

Willmott (1981). First, an estimate of concentration C*(t,s) is defined as follows: 

C*(t,s) = a + bC0(t,s) (4.7) 

where a and b are the least-square regression coefficients, and s is the observation station 

index. Cp(t, s) and C0(t, s), are the predicted and observed ozone concentrations, respectively. 

Then the following two quantities can be defined: 

RMSEs(s) 
our 

\ W— E [C*(t,s)-C0(t,s)}2 (4.8) 
t=l 

RMSEu(s) 
1 Nh 

our 

. —— [C*(t,s)-Cp(t,s)}2 (4.9) 
\j i y h o u r t=i 

where RMSEs(s) is the R M S E systematic component, while RMSEu(s) is the random one. 

RMSES indicates the portion of error that depends on errors in the model, while RMSEU 

depends on random errors, on errors resulting from a model-skill deficiency in predicting a 

specific situation, and on initial-condition errors. The following relates R M S E to its compo

nents: 

RMSE2 = RMS Es
2 + RMSEU

2 (4.10) 

In Chapter 5 is discussed how RMSES can be reduced with post-processing approaches such as 



the Kalman Filter bias-correction technique. Unfortunately, RMSEU reflects errors introduced 

by both model imperfections and initial-condition errors, and thus cannot be removed except 

by fundamental model improvements or better initial conditions. 

Figure 4.14 shows RMSES (bars bottom) and RMSEU (bars top) for the 13 O E F S groups 

at the five stations over the L F V . At Hope, there are the highest RMSES values, meaning 

that all the ensembles can be improved with post-processing bias correction. C Y V R shows 

instead among the highest RMSEU values, indicating an intrinsic lack of predictive skill at this 

location. Marti l l i and Steyn (2004) discuss the effects of the superimposed valley, slope, and 

thermal flows over the L F V . Often the pollution plume is transported during night over the 

Georgia Strait waters as a result of the combination of several transport processes. This makes 

it very challenging for the models to accurately predict the spatial and temporal evolution of 

ozone concentration in near water locations, such as C Y V R , where the over-strait pool of 

pollutants can be re-advected over land by the daytime sea breeze. 

Figure 4.14 also shows that the P E R T ensemble means have a similar R M S E decomposition. 

RMSEU for 04-km is higher than for 12-km, and since these errors tend to grow more rapidly at 

smaller scales (i.e., high wavenumbers), the finer resolution could lose predictability faster than 

the coarser resolution due to rapid growth of the random errors. Also, M M 5 - A L L RMSEU 

is smaller than for M C 2 - A L L at C Y V R , Abbotsford and Chilliwack. Finally, M C 2 - A L L , 

which has overall the best R M S E values, still can be considerably improved (via bias-removal 

techniques) at Chilliwack and Hope. 
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4.5.3 U P P A 

Unpaired peak prediction accuracy (UPPA) is computed as follows: 

1 Nday Cp(day,.s)max - C0(day,s) 
Co(day, s)max 

UPPA 
Nday E max (4.11) 

day=X 

Nday is the number of days, CD(day, s)max is the maximum 1-h average observed concentration 

at a monitoring station s observed during a one-day period, and Cp(day, s) is the maximum 

1-h average predicted concentration at a monitoring station s during the same day. 

U P P A is included in the U.S. E P A guidelines E P A (1991) to analyze historical ozone 

episodes using photochemical grid models. The E P A acceptable performance upper-limit val

ues are ± 20 %. U P P A is computed here as an average (over the five days available) of the 

absolute value of the normalized difference between the predicted and observed maximum at 

each station (Equation 4.11). U P P A is non-negative in our formulation, and only the + 20 % 

acceptance performance upper limit is used here. 

U P P A has been chosen because it measures the ability of the forecasts to predict the ozone 

peak on a given day. In the past, peak concentrations have been the main concern for the 

public health, even though in recent years (over midlatitudes of the Northern Hemisphere) 

a rising trend has been observed in background ozone concentrations, while peak values are 

steadily decreasing (Vingarzan, 2004). 

In Chapter 3 it has been discussed the possibility that ensemble averaging could cause 

excessive smoothing of the peak values. This has been improved in this Chapter by computing 

the ensemble-mean peak prediction as the average of the member predicted-ozone peaks. By 

doing an unpaired in time averaging for the peak values, the smoothing effect is avoided, and 



the ensemble-mean U P P A performance is improved. 

Figure 4.15 shows the U P P A results. The solid line represents the E P A acceptance values 

for this parameter; forecasts below this line are desired. Only at Hope do all the ensembles 

have U P P A values above this limit (i.e., 20 ppbv), so this statistic confirms the difficulties 

that all the OEFSs have there. 

M E T + N O a ; has the best U P P A performance, confirming its good probabilistic predictive 

skill for high ozone concentration values, as shown in Section 4.4. M E T + N O x is followed by 

MM5-04 and M E T in the ranking based on U P P A . M E T good performance is somewhat sur

prising because of its poor performance with R M S E . A comparison of the M E T ensemble mean 

and the measured time series (not shown) confirms indeed that M E T is accurate in replicating 

the maximum ozone (giving good U P P A , even if often the maximum is underestimated), it has 

reasonable timing of maxima and minima values with the observations (sufficiently good cor

relation), but it underestimates the other daylight observed values and largely overestimates 

the nighttime measured ozone (poor R M S E ) . 

M C 2 - A L L has among the worse (higher) U P P A values, except at C Y V R , and in fact M M 5 -

A L L is clearly better with this parameter. M E T + N O x is the best of the P E R T ensembles, 

with good U P P A values at Langley, Abbotsford, and Chilliwack. Finally 04-km does a better 

job than 12-km (except at C Y V R ) in predicting the ozone peak magnitude. 

4.5.4 Summary 

In summary, the best performing ensemble-mean is MC2-04 for correlation, M C 2 - A L L with 

R M S E , and M E T + N O x with U P P A . The ensemble mean computed with M C 2 - A L L also has 

a good performance with correlation, but performs poorly with U P P A . MC2-04 has good 
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skill also with R M S E , but not with the remaining parameters. M E T + N O x has also a good 

performance with correlation, and is worse than average with R M S E . 

Overall the M C 2 - A L L ensemble mean shows the best forecast skill by looking at the statis

tics presented here except for U P P A . This result would prevent its effectiveness for users most 

concerned with this metric. Different user needs can result in different relative importance 

among the statistical metrics. For example, if the main interest is in forecasting the ozone 

peak magnitude and timing, then M E T + N O x should be considered as the best ensemble-mean 

for this case study. If the computational resources are limited, then also M E T (with only four 

ensemble members) has good skills at predicting the magnitude of the ozone peak. 

Among M E T + N O z , M E T + V O C , and M E T + N O x V O C , the M E T + N O x ensemble has the 

best resolution (Section 4.4.1). This agrees with the results presented in this Section, where 

M E T + N O x outperforms the others for unpaired peak prediction accuracy (i.e., for the highest 

values, which corresponds to its good ROC-area value at 80 ppbv) as shown in Figure 4.15. 

Moreover, its low reliability is confirmed by M E T + N O ^ having the highest bias, as shown in 

Figure 4.14 (systematic error). 

4.6 Conclusions 

This study is an analysis of the performance of 13 air-quality (AQ) ensemble groups, consid

ering both probabilistic and ensemble-averaged ozone forecasts. Twenty-eight forecasts were 

generated over the Lower Fraser Valley (LFV) , British Columbia (BC), Canada, for the 5-day 

period 11-15 August 2004, and compared with 1-h averaged measurements of ozone concen

trations over five stations. The different forecasts are obtained by combining four driving 



meteorological input fields with seven emission scenarios: a control run, ± 50 % NO^, ± 50 % 

V O C , and ± 50 % N O j combined with V O C . 

The driving meteorological fields are the output of two mesoscale models (run with 12 and 

4 km horizontal spatial resolution): the Mesoscale Compressible Community (MC2) numerical 

weather prediction (NWP) model (Benoit et al., 1997) and the Penn Sta te /NCAR mesoscale 

(MM5) model (Grell et al., 1994). The A Q forecasts are produced with the U.S. Environmen

tal Protection Agency (EPA) Models-3/Community Multiscale Air Quality Model (CMAQ) 

Chemistry Transport Model (CTM) (Byun and Ching, 1991). 

The following are the main findings of this study: 

• Both meteorology and emission perturbations are needed to have a skillful probabilistic 

• forecast system (PFS), and neither is sufficient alone to form a reliable P F S with a good 

resolution for the whole range of ozone concentrations. 

• The meteorology perturbation is most important to capture the ozone temporal and 

spatial distribution. 

• The emission perturbation is needed to accurately predict the ozone concentration mag

nitude. 

• The emission perturbations are more important than the meteorology perturbations 

to capture high (and rarely measured) ozone concentrations, typically observed in the 

afternoon in areas such as the L F V where ozone production may be mainly attributed 

to local sources. 

• Among the emission perturbations, NO^ perturbations resulted in more skillful proba-



bilistic forecasts for the episode analyzed in this study. 

For all the emission perturbations, biases suggest the ± 50 % is not centered over an 

optimal estimate, and shifting the perturbations toward lower values could improve the 

forecasts by reducing the positive bias. 

Since N O x has good (but positively biased) predictive skill, the ± 50 % limit appears to 

efficiently span the emission uncertainties space for this case. 

The A L L ensemble (formed by all the 28 ozone forecasts available) is the best proba

bilistic forecast, when considering both reliability and resolution. 

Ensemble averaging tends to smooth out the peak values (Chapter 3). However, this 

smoothing can be. avoided if the ensemble-mean ozone peak is computed as the average 

of the ensemble-member peak predictions. 

The M C 2 model has more variability than M M 5 in the 5-day period analyzed in this 

study, and this resulted in M C 2 - A L L (formed by all the runs driven by MC2) being 

the most skillful ensemble-averaged ozone forecast. However, if the main interest is in 

forecasting the ozone peak magnitude and timing, then M E T + N O x should be considered 

as the best ensemble-averaged prediction. 

The root-mean-square-error random component for 04-km (formed by all the runs with 4 

km horizontal spatial resolution) is higher than for 12-km (formed by all the 12 km runs). 

Since these errors tend to grow more rapidly at smaller scales (i.e., high wavenumbers), 

the finer resolution could lose predictability faster than the coarser resolution due to 

rapid random-error growth. 



• W i t h a hard limit on computational resources, the M E T ensemble mean (with only four 

ensemble members; i.e., the control runs, where only meteorology is perturbed) is a 

viable option for predicting the magnitude of the ozone peak. 

The results of this study suggest that future work should focus on OEFSs involving both 

meteorology and emissions perturbations. More specifically, the above findings suggest that 

the emission perturbations could be based on the time and spatial variability of different 

regimes. If (in a particular time of the day and on a subset of the spatial domain) a N O x -

sensitive regime is dominant, then a N O x perturbation would be more useful than a V O C one 

to capture the ozone variability. Conversely, in VOC-sensitive regimes the V O C perturbations 

could be more efficient. In situations where neither of these two regimes is well defined, 

probably a combination of N O T and V O C perturbations could be the best choice. These 

regimes could be identified in forecast mode by looking at the control-model forecasts, for 

example by evaluating the 03/NOy or H 2 O 2 / H N O 3 ratios (Sillman and He, 2002). 

Ideally, each ensemble member should be an equally likely time evolution and space distri

bution of the ozone concentration, and they should all be equally good estimates of truth. W i t h 

this in mind, the ensemble members should be "independent", in the sense that none of them 

should rely on other members for their realizations. This is not the case when nested grids are 

used, as for some of the PFSs used here (ALL , M E T + N O x , M E T + V O C , M E T + N O x V O C , 

M C 2 - A L L , M M 5 - A L L , and M E T ) . Namely, since C M A Q domains are linked using a 1-way 

nesting approach (similarly for M C 2 , but M M 5 runs are implemented with 2-way nesting), all 

the 4 km runs cannot be considered independent of the runs where the driving meteorology 

or chemistry is their 12 km coarser domain. 



The dependency among members of the same ensemble (no attempt has been done in 

this study to measure it) would result in an "effective" ensemble size smaller than the actual 

ensemble size. Moreover, a subset of the dependent members will span approximately the 

same subspace of the A Q modeling uncertainty space (or at least they should be closer to each 

other than to other members), resulting in both probabilistic and ensemble-averaged forecasts 

relying too heavily on the performances of these members than on others. 

Finally, ensemble weather forecasts often provide information on the reliability of the 

forecasts; if the ensemble members have a large spread (defined as the standard deviation of 

the ensemble members about the ensemble mean), this implies less confidence in the forecast. 

However, similarly to Chapter 3 and 5, in this Chapter no correlation or relationship between 

ensemble spread and forecast error has been found. 
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Chapter 5 

Ozone Forecasts Kalman-filter 

Predictor Bias Correction 

5.1 Introduction 

1 Chapter 3 presented a new Ozone Ensemble Forecast System (OEFS), composed of 12 fore

casts created using four different meteorological inputs and three different emission scenarios. 

The meteorological fields were obtained by running two mesoscale numerical weather predic

tion (NWP) models over two nested domains with 12 and 4 km horizontal grid spacing. The 

emission scenarios were a control run, a run with 50 % more N O K emissions, and a run with 50 

% less. The 12 combinations of the meteorological and emission fields were used to drive the 

U.S. Environmental Protection Agency (EPA) Models-3/Conrmunity Multiscale Air Quality 

Model (CMAQ) Chemistry Transport Model (CTM) (Byun and Ching, 1991). 

1A version of this chapter has been accepted for publication. Delle Monache, L . , T . Nipen, X . Deng, Y . 
Zhou, and R. B . Stul l , 2005: Ozone ensemble forecasts. Part II: a Kalman-filter predictor bias correction, 
accepted in August 2005 to be published in the Journal of Geophysical B.esearch. 



This O E F S has been tested for the period 11-15 August 2004 using data from five stations 

across the Lower Fraser Valley (LFV) , British Columbia (BC), Canada, a region where the 

ozone modeling is particular challenging because of the complex coastal mountain setting. 

The main finding in Chapter 3 is that, for the locations and days used to test this new O E F S , 

the ensemble-mean is the most skillful forecast when tested against the observations, and 

compared to any other ensemble member. 

The results in Chapter 3 show that all the forecasts have systematic errors (e.g., nighttime 

over prediction). This is a problem common to all C T M s (Russell and Dennis, 2000), caused 

by a poor representation of the nightime A B L (e.g., vertical eddy diffusivity) and errors in the 

emissions. In this Chapter the Kalman filter predictor (KFP) post-processing bias-correction 

method (Bozic, 1994) has been applied to each ozone forecast (the 12 ensemble members 

and the ensemble-mean) to improve the individual forecast skill for all sites where ozone 

observations are available. The K F P correction is an automatic post-processing method that 

uses the recent past observations and forecasts to estimate the model bias in the forecast, 

where bias here is defined as the "difference of the central location of the forecasts and the 

observations" (Joliffe and Stephenson, 2003). This estimate can then be used to correct the raw 

model prediction. It is a recursive, adaptive method that takes into account the time-variation 

of forecast error at a specific location. 

Details of the Kalman algorithm are given in Section 5.2. Section 5.3 describes the exper

iment and methodology. In Section 5.4, the performance of the raw (i.e., not corrected), the 

K F P bias-corrected forecasts, the ensemble-mean of the K F P bias-corrected forecasts (EK, is a 

linear average of the K F P bias-corrected ensemble-member predicted hourly concentrations), 

and the K F P bias-corrected E K ( K E K ) are compared using the same data set and statistical 



parameters as in Chapter 3. Moreover, E K and K E K performances are compared with two 

other bias-correction methods; namely, the additive and multiplicative methods (Section 5.5). 

In Section 5.6 those results are discussed and conclusions are drawn. 

5.2 The Kalman-filter-predictor Bias Correction 

The Kalman filter (KF) is a recursive algorithm to estimate a signal from noisy measurements. 

For N W P model forecasts, it has been mainly used in data-assimilation schemes to improve 

the accuracy of the initial conditions for both N W P (e.g., Burgers et al., 1998; Hamill and 

Snyder, 2000; Houtekamer and Mitchell, 2001; Houtekamer et al., 2005) and air quality (AQ) 

forecasts (e.g., van Loon et al., 2000; Segers et al., 2005). The K F has also been used for N W P 

model forecasts as a predictor bias-correction method during post-processing of short-term 

weather forecasts (Homleid, 1995; Roeger et al., 2003), an approach that is extended here for 

A Q forecasts (i.e., ozone). 

In a post-processing predictor bias-correction method, the information (i.e., recent past 

forecasts and observations) is used to revise the estimate of the current raw forecast. Previous 

bias values are used as input to K F . The filter estimates the systematic component of the 

forecast errors, or bias, which is often present in A Q forecasts as shown in Chapter 3 and 

as reported in the literature (e.g., Russell and Dennis, 2000). Once the future bias has been 

estimated, it can be removed from the forecast to produce an improved forecast. Such a 

corrected forecast should be statistically more accurate in a least-squares sense. 

The K F models the true (unknown) forecast bias xt at time t, by the previous true bias 



plus a white noise rj term (Bozic, 1994): 

Xt\t-At = xt-At\t-2At + tit-At (5-1) 

where rjt-At is assumed uncorrelated in time, and is normally distributed with zero-mean and 

variance a2, At is a time lag (see Figure 5.1), and t\t — At means that the value of the variable 

at time t depends on values at time t — At. Because of unresolved terrain features, numer

ical noise, lack of accuracy in the physical parameterizations, and errors in the observations 

themselves, the K F approach further assumes that the the forecast error yt (forecast minus 

observation at time t) differs from truth by a random error term et: 

yt = xt + e t = xt_&t + r7t_At + et (5.2) 

where et is assumed uncorrelated in time and normally distributed with zero-mean and variance 

Kalman (1960) showed that the optimal recursive predictor of xt (derived by minimizing 

the expected mean-square error) can be written as a combination of the previous predicted 

bias and the previous measurement of the bias: 

Xt+At\t = Xt\t-At + Pt\t-At(Vt - Xt\t-At) (5-3) 

where a hat Q indicates the estimate. The weighting factor (3, called Kalman gain, can be 

calculated from: 

' R - Pt-At\t-2At + <y2 

,Pt\t-At - 7 : — 2 ~ , — 2 \ (-5-4) 
(Pt-At\t-2At + + °i) 



where p is the expected mean square error, which can be computed as follows: 

Pt\t-At = (Pt-At\t-2At +<J^)(1 - Pt\t_At) (5.5) 

It can be shown (Dempster et al., 1977) that the time series 

zt = Vt+At - Vt = Vt + et+At ~£t (5-6) 

has variance 

a2 = a2 + 2a2 (5.7) 

Assuming r = a„/ae, Equation (5.7) become: 

a2 = ra2+2a2 = (2 + r)a2 (5.8) 

a2 (which is a time-varying quantity) can be estimated with the Kalman algorithm itself (i.e., 

by substituting x with a2 in Equation (5.3) in combination with Equation( 5.8). Further 

details on the filter implementation are given in Appendix A . 

Since here a time lag of At = 24 hours is used, today's forecast bias is estimated using 

yesterday's bias, which in turn was estimated using the day-before-yesterday's bias, and so on. 

Figure 5.1 shows the flow diagram of the Kalman filter algorithm. The difference between to

day's forecast error (yt) and the portion of today's bias that was estimated yesterday (£t|t_At)) 

is weighted by the Kalman gain to give the correction that was "learned" from previous errors. 

This correction is applied to yesterday's estimate of today's bias (xt\t_&t) to produce today's 



estimate of the bias for tomorrow (xt+^t). Thus, real-time A Q forecasts are possible by 

taking the raw forecast from a model such as C M A Q , and correcting it with the bias forecast 

from K F . 

The K F algorithm will quickly and optimally converge (after few time-step (At) iterations) 

for any reasonable initial estimate of po and /?o- However, the filter performance is sensitive, 

to the ratio av/a£. If the ratio is too high, the filter will place excessive confidence on the past 

forecasts, and will therefore fail to remove any error. On the other hand, if the ratio is too 

low, the filter will be unable to respond to changes in bias. Thus, there exists an optimal value 

for the ratio that is given by the climatology of the forecast region, which can be estimated by 

evaluating the filter performance in different situations with different meteorology and different 

A Q scenarios (not only for A Q episodes). 

The data set presented in this study is not extended enough to compute an optimal ratio 

value that can also be used for different A Q scenarios (i.e., non episodic). A ratio value of 

0.01 is used in this study. This is the value from previous studies where the K F was used to 

bias-correct weather forecasts in the steep mountains of B C , Canada (Roeger et al., 2003), 

and close to the optimal value found in Homleid (1995); i.e., 0.06. W i t h the availability of a 

longer data set (a full month or season), including both ozone forecasts and observations with 

a broader variability than just the A Q episode presented here, a different optimal value may 

result. 

A period of two days (9-10 August 2004) is used to train the Kalman-gain coefficients. 

Kalman corrections are then applied to data for the subsequent five days (11-15 August 2004). 

Also, the filter algorithm is run on data for each hour of the day, using only values from previous 

days at the same hour of the day (corresponding to a A t = 24 hours time delay in Figure 5.1). 
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Figure 5.1: Flow diagram of the Kalman-filter bias estimator. It uses a predictor-corrector 
approach, starting with the previous estimate of the bias (xt\t-/\t) a n d correcting it by a 
fraction (0) of difference between the previous bias estimate and previous observed forecast 
error (yt) to estimate the future bias (xt+/±t\t). 



In this way, a given hour is corrected using only the past forecasts and observations at that 

same hour. This is to take into account the diurnally-varying behavior the bias may have at 

different times of the day (e.g., different ozone reactions during daytime versus nighttime). 

Thus, we compute and save different Kalman coefficients and variances for each hour of the 

day. 

When observations are missing for an hour, the filter uses the last known bias for that 

same hour from an earlier day. In some cases, however, the true bias changes considerably in 

such a time period, causing the algorithm to use incorrect, old values. This creates spikes in 

the Kalman coefficients that can be smoothed by applying the following low-pass filter twice: 

xt = + + xt+i\ (5-9) 

Since the bias correction is additive, the Kalman-filtered ozone concentrations were forced to 

a lower bound of 0 ppbv, in order to avoid negative forecast values. 

The Kalman-filter predictor-corrector approach is: 

• linear 

• adaptive 

• recursive 

• optimal 

Namely, it predicts the future bias as equal to the old bias, but corrected by a linear 

function of the difference between the previous prediction and the verifying bias. Contrast this 

to a neural-network approach, which is non-linear (e.g., Cannon and Lord, 2000). Contrary 



to a neural-network approach that requires a long training period and then behaves in a 

static manner, the K F approach adapts its coefficients during each time step. Advantages 

are a much shorter training period, and an ability to adapt to changing synoptic conditions, 

changing seasons, and even changing weather-forecast models or A Q models. A disadvantage 

is that it is less likely to predict extreme bias events; namely, it is unable to anticipate a large 

bias when all biases for the past few days have been smaller. 

It is recursive because values of the K F coefficients at any one time step depend on the 

values at the previous time step. It is optimal in a least-square sense, since it minimizes the 

expected mean-square error. Finally it is easy to implement and fast running on the computer, 

requiring storage of a handful of the K F coefficients for each A Q site for each forecast hour. 

5.3 Method 

5.3.1 Experiments 

Because each A Q ensemble member is a forecast based on a different meteorological model, 

different grid resolution, different emissions, or different initial specie concentrations, it is 

anticipated that each forecast will have a different bias. Some of these biases could be quite 

large. Also, this bias could vary depending on the hour of the day. To correct the individual 

A Q forecasts, we apply a separate Kalman filter for each ensemble member, for each hour. 

Individual Kalman-corrected A Q forecasts are denoted by K . 

Next, if we ensemble (E) average all of the Kalman-corrected (K) forecasts for any hour, 

then the result is denoted by E K . This ensemble average could have a small residual bias, 

because the bias corrections that were applied to the individual members were only estimates 



of future biases (as is the case for true A Q forecasts, not for ex-post-facto calculations of actual 

biases). Hence, as a final fine-tuning, one can Kalman filter (K) the ensemble average (EK) , 

with the result denoted by K E K . 

Experiments are performed here for the same suite of case-study days, N W P models, and 

initial concentrations, as are described in Chapter 3, but this study tests and compares the 

performance of the raw, K , E K , and K E K forecasts. During the 5-day period of 11-15 August 

2004 used in this case study, there were typical conditions that lead to high ground-level ozone 

concentrations in the L V F . Those conditions are associated with a northward progressing low-

level thermal trough from Washington State, associated with a stationary upper-level ridge 

situated across southern British Columbia, as described by McKendry (1994). 

The five A Q measurements sites for this study are in the complex terrain of the L F V , which 

is widest at its west terminus at the Georgia Strait. In the L F V sea-breeze circulations, valley 

and slope flows exist, and with the addition of the photochemistry, ozone modeling becomes 

quite challenging in this area (McKendry and Ludgren, 2000). 

Roughly two million people in greater Vancouver live in this valley, causing significant 

anthropogenic emissions of N O x that can mix with the volatile organic emissions from both 

anthropogenic sources and the surroundings evergreen forest. The Vancouver International 

Airport ( C Y V R ) ozone monitoring site is at this western edge. The north and south walls 

of the valley are the steep Coast Range'and Cascade Mountains. The valley width decreases 

considerably toward east, where the ozone site at the town of Hope is located in a very narrow, 

deep valley. See Chapter 3 for a map and site details. K F post-processing is particularly 

valuable at complex locations such as these, where both the N W P model and the A Q model 

can have difficulty. 



5.3.2 Verification Statistics 

The skill of the 14 forecasts (12 ensemble members plus E K and K E K ) have been measured 

using the same statistical parameters as defined in Chapter 3: 

• Pearson product-moment coefficient of linear correlation (herein "correlation"): 

, . . y^cmr\CJt station) — CD(t, station)]\C„(t, station) — Cv(t. station)} corr(station) = —. <. j. •• ^ ^ r\ ^ 
V Etl hr r iCo(t, station) - C0(t, station)}2 ^^\cmr [Cp(t, station) - Cp(t, station)}' 

(5.10) 

gross error (for hourly observed values of O3 > 30 ppbv): 

1 N^^r \Cp(t, station) — CQ(t, station)] 
qross err or (station) — > — -— : (5.11) 

N*°»r ^ C0(t,station) v J 

root mean square error (RMSE): 

RMSE (station) a — ^ [Cp(t, station) — C0(t, station)]2 (5.12) 
T,cmr 

unpaired peak prediction accuracy (UPPA): 

UPPA = —!— V * \Cp(day' Stati°n^max ~ Co(day> station)max\ ^ ^ 
N d a y dkii °o(day, station)max 

where Nhaar is the number of 1-h average concentrations over the 5-day period, N^ay is the 

number of days, Ca(t, station) is the 1-h average observed concentration at a monitoring sta

tion for hour t, Cp(t, station) is the 1-h average predicted concentration at a monitoring station 

for hour t, C0(t, station) is the average of 1-h average observed concentrations at a monitoring 



station over the 5-day period, Cp(t, station) is the average of 1-h average predicted concentra

tions at a monitoring station over the 5-day period, CQ(day, station) m a x is the maximum 1-h 

average observed concentration at a monitoring station over one day, and Cp(day, station)max 

is the maximum 1-h average predicted concentration at a monitoring station over one day. 

Predicted values also include E K and K E K . 

The gross error and U P P A are included in the U.S. E P A guidelines (EPA, 1991) to analyze 

historical ozone episodes using photochemical grid models. The E P A acceptable performance 

upper-limit values are + 35 % for gross error, and ± 20 % for unpaired peak prediction 

accuracy. U P P A is computed here as an average (over the five days available) of the absolute 

value of the normalized difference between the predicted and observed maximum at each 

station (Equation (5.13)). Thus, U P P A is non-negative; hence, only the + 20 % acceptance 

performance upper limit is used in the next sections. 

The reasons for utilizing this set of statistics are as follows. We choose correlation to get 

an indirect indication of the phase differences between the predicted and measured ozone time 

series at a specific location. The closer the correlation is to one, the better is the correspondence 

of timing of ozone maxima and minima between the two signals. 

R M S E (measured in ppbv) gives important information about the skill in predicting the 

magnitude of ozone concentration, even though alone it does not draw a complete picture 

of a forecast value. It is very useful also for understanding the filter behavior, because it 

can be decomposed into systematic and unsystematic components as discussed in detail in 

Section 5.4.3. 

The gross-error statistic has been considered in this analysis because it is included in the 

U.S. E P A guidelines (EPA, 1991). Also, being computed for hourly observed values of O3 > 



30 ppbv, it gives useful information about the forecast skill for higher concentration values, 

which are important for health-related issues. It gives information about the error magnitude 

(as R M S E ) , but as a portion of the observed ozone concentration (i.e., is measured in %). 

U P P A (%) is also used because it measures the ability of the forecasts to predict the ozone 

peak maximum on a given day. In the past, peak concentrations have been the main concern 

for the public health. However, in recent years over midlatitudes of the Northern Hemisphere, 

a rising trend for background ozone concentrations has been observed, while peak values are 

steadily decreasing (Vingarzan, 2004). 

5.4 Results 

Figure 5.2 shows a typical example of the K F P bias-correction behavior. In the top panel, 

the time series include the observations (circles), the ensemble-mean of the raw forecasts 

(continuous black line), E K (black dashed line), and K E K (black dotted line), for the 7-day 

period of 09-15 August 2004, at Abbotsford. The first two days on the left side of the vertical 

dashed line represent the training period, when the coefficients start to be computed, but no 

correction is applied to the forecast. 

Even though the C M A Q model has been spun-up the four days before the start of training 

(i.e., in the period 05-08 August 2004), the poor first day (August 09) prediction suggests 

that the forecast did not yet recovered from the cold start initialization. Therefore, a longer 

C M A Q spin-up period would improve the filter performance as well. 

Nevertheless, K F P preserves the good performance of the raw ensemble-mean for the peak 

concentration, except for the first day. The underestimated peak the first day is not adequately 



corrected by the K F P because the bias was much smaller for the previous training day. The 

overnight over prediction (that is indeed common to all the forecasts and the raw ensemble-

mean) is improved, with K E K closer to the observations than E K . 

The bottom panel of Figure 5.2 shows the behavior of the Fractional Relative Improvement 

(FRI), defined as follows: 

\RawFcsts - Obs\ v ; 

where RawFcsts is the ensemble-mean of the raw forecasts, and Obs is the observation. F R I 

is computed in Figure 5.2 at 4:00 am (PDT), each day, when the nighttime over prediction is 

more evident. The fact that F R I , after the training period, almost steadily increases towards 

its optimal value (FRI = 1; i.e., when K E K = Obs) it means that the filter, day after day, keeps 

learning about the over prediction at that hour, and progressively improves its performance. 

This also confirms what was said in Section 5.2, that the filter quickly and optimally converges 

after few time-step iterations. It also means that, with a slightly longer training period, the 

results presented here could be improved, particularly for statistical parameters such as gross 

error and R M S E . 

F R I is not shown here for daytime because the forecasts are already good then. The 

following subsections present and discuss the results by looking at correlation, gross error, 

R M S E , and U P P A . 

5.4.1 Correlation 

Figure 5.3 shows the correlation results for the K F P bias-corrected 12 ensemble members and 

the ensemble-mean for the 5-day period of 11-15 August 2004, at the five stations ( C Y V R , 
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Figure 5.2: Ozone ensemble-mean forecasts and observations at Abbotsford, for the 7-day 
period 09-15 August 2004 are shown. Top panel: the continuous line is the raw ensemble-
mean, the dashed line represents the ensemble-mean of the K F P bias-corrected forecasts (EK) , 
and the dashed-dotted line represents the K F P bias-corrected E K ( K E K ) . The circles are the 
observations. The vertical dashed lined separates the training period (two days, left) from the 
filter application (five days, right). Bottom panel: Fractional Relative Improvement (FRI) at 
4:00 am for each day. Vertical dashed line as in the top panel, and the dashed-dotted line 
represents the optimal F R I value (one). Local Pacific Daylight Time (PDT) is U T C - 7 h. 



Langley, Abbotsford, Chilliwack and Hope). The black bars are the values for the raw fore

casts and raw ensemble-mean (as in Figure 3.6), the grey bars are the values for the K F P 

bias-corrected forecasts and E K , while the white bars in the last column represent the K E K 

correlation values. There are improvements (higher correlation between forecast and observa

tions) in most of the cases, except at C Y V R where forecasts 10, 11 and 12 (MM5, 4 km) have 

slightly lower correlation after the K F . The E K improvements are up to a factor of six and 

they are larger for correlation values below 0.5. At Hope, six ensemble members have negative 

correlation before the K F bias-correction, but have positive correlation (with values between 

0.3 and 0.5) after the correction. 

The E K correlation is slightly lower than the raw ensemble-mean at C Y V R , slightly higher 

at Abbotsford and Langley, better at Chilliwack, and significantly improved at Hope. The 

K E K correlation values are slightly lower than the E K values at C Y V R and Abbotsford (but 

still very high correlation there), while they are higher at the other stations. Notably, after the 

K F P bias-correction, the differences between the correlation values of the forecasts are lower, 

meaning that the filter brings all of them closer to the same point - the observations. 

Table 5.1 shows for each station the ranking (from 1 to 14) of each ensemble member, 

E K , and K E K , where the highest correlation value has a ranking of 1, and the lowest has 14. 

Forecast 08 has similar rankings when compared to E K , while forecasts 08 and 09 (MC2, 4 

km) have a slightly worse performance. K E K rankings are the best when compared to any 

other forecast. 
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Figure 5.3: Correlation values between observed and predicted ozone 1-h average concen
trations are plotted for the 12-member Ozone Ensemble Forecast System (01, 02, • • •, 12) 
and the ensemble-mean (E-mean). The black bars are the values for the raw forecasts and 
raw ensemble-mean, the grey bars are the values for the Kalman filter predictor (KFP) bias-
corrected forecasts and their ensemble-mean (EK) , and the white bar represents the K F P 
bias-corrected ensemble of the K F P members ( K E K ) . Results are plotted at five stations 
[Vancouver International Airport ( C Y V R ) , Langley, Abbotsford, Chilliwack, and Hope], for 
the 5-day period 11-15 August 2004. Values are within the interval [—1, 1], with correlation 
= 1 being the best possible value. 



Table. 5.1: Ranking for correlation of K F P bias-corrected 12 ensemble members (01, 02, • • •, 
12), the ensemble-mean of the K F P bias-corrected forecasts (EK) , and the K F P bias-corrected 
E K ( K E K ) at the Vancouver International Airport ( C Y V R ) , Langley, Abbotsford, Chilliwack 
and Hope stations. 

01 02 03 04 05 06 07 08 09 10 11 12 E K K E K 
G Y V R 6 11 7 12 13 14 3 1 2 9 8 10 4 5 

Langley 4 12 13 6 10 14 9 11 3 . 7 8 5 2 1 
Abbotsford 9 12 13 4 6 14 3 5 7 10 8 11 1 2 
Chilliwack 6 9 10 8 5 14 4 2 7 13 12 11 3 1 

Hope 13 10 14 11 8 12 2 1 4 7 9 6 5 3 

Table 5.2: Ranking for gross error of the K F P bias-corrected 12 ensemble members (01, 02, 
• • •, 12), the ensemble-mean of the K F P bias-corrected forecasts (EK) , and the K F P bias-
corrected E K ( K E K ) at the Vancouver International Airport ( C Y V R ) , Langley, Abbotsford, 
Chilliwack and Hope stations. 

01 02 03 04 05 06 07 08 09 10 11 12 E K K E K 
C Y V R 1 9 2 6 10 4 14 13 12 8 11 3 7 5 

Langley 4 10 11 6 5 8 14 13 12 7 9 3 1 2 
Abbotsford 4 6 12 3 5 11 13 14 10 7 9 8 2 1 
Chilliwack 10 7 2 5 8 13 12 14 11 6 9 4 3 1 

Hope 12 13 10 5 8 14 3 7 11 6 4 9 2 1 

5.4.2 Gross Error 

The K F P bias-corrected forecasts have better (lower) gross-error values than the raw forecasts, 

except at C Y V R for forecasts 01 and 06 (Figure 5.4), with improvements roughly between 10 

and 20 %. K E K is always better than E K , which in turn is always better than the raw ensemble-

mean. The gross-error computation (Equation (5.11)) has a lower ozone concentration limit 

(observed 30 ppbv). Those improved gross-error values after the K F correction means that 

the K F P bias-correction is improving not only the forecast nighttime over-prediction, but also 

efficiently remove bias throughout the time series, regardless of the time of the day. 

Table 5.2 summarizes the rankings computed by looking at the gross error. K E K is clearly 

the best, while E K is the best when compared to the single deterministic forecasts. Here, as 
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Figure 5.4: Similar to Figure 5.3, but for gross-error values (%). The continuous line is the 
E P A acceptance value (+ 35 %). Values are within the interval [0, + oo], with a perfect 
forecast having gross error = 0. 



Table 5.3: Ranking for root mean square error of the K F P bias-corrected 12 ensemble mem
bers (01, 02, • • •, 12), the ensemble-mean of the K F P bias-corrected forecasts (EK) , and the 
K F P bias-corrected E K ( K E K ) at the Vancouver International Airport ( C Y V R ) , Langley, 
Abbotsford, Chilliwack and Hope stations. 

01 02 03 04 05 06 07 08 09 10 11 12 E K K E K 
C Y V R 2 7 1 9 11 4 14 12 13 8 10 6 5 3 

Langley 2 11 6 8 9 4 14 12 13 7 10 5 3. 1 
Abbotsford 4 11 7 6 5 8 13 14 12 9 10 3 2 1 
Chilliwack 14 6 9 7 2 10 8 13 4 11 12 5 3 1 

Hope 12 7 .13 14 9 10 3 4 2 8 11 6 5 1 

well as for the correlation (Table 5.1), the K F P forecast shows the same problem as the raw 

ones at C Y V R , but not at Hope. The overall poor skill of the raw forecasts at C Y V R and Hope 

are due to the fact that both stations are located in areas where all the individual ensemble 

members have difficulties, as explained in Section 3.4.2. The K F P is able to considerably 

improve the raw ensemble-mean at Hope (where it was 4th), with E K being 2nd and K E K 1st. 

Moreover, both E K and K E K gross error are always well within the E P A acceptance limit (+ 

35 %). 

5.4.3 R M S E 

The R M S E results are shown in Figure 5.5. With this parameter there is an improvement after 

the K F P bias-correction for all the forecasts, with values improved (decreased) up to 20-25 

%. The raw ensemble-mean R M S E is considerably improved at each location, with further 

improvements (decreases) between 17 and 21 % with E K , and between 29 and 36 % with K E K . 

Table 5.3 shows the R M S E rankings. K E K is always the best except at C Y V R where it is 3 r d . 

E K is 3 r d at Langley and Chilliwack, and second at Abbotsford, therefore it is the second best 

forecast when compared with ; the other 13. 
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Figure 5.5: Similar to Figure 5.3, but for root mean square error (RMSE) values (ppbv). 
Values are within the interval [0, + oo], with a perfect forecast when R M S E = 0. 



R M S E can be separated into different components. One decomposition was proposed by 

Willmott (1981). First, an estimate of concentration C*(t, station) is denned as follows: 

C*(t, station) — a -\-bC0(t, station) (5.15) 

where a and b are the least-square regression coefficients of Cp(t, station) and Ca(t, station) 

(the predicted and observed ozone concentrations, respectively, as defined in Section 5.3.2). 

Then the following two quantities can be defined: 

RMSEs(station) 
Nho 

, — ^ [C*(t, station) - C0(t, station)}2 (5.16) 
t=l 

RMSEu(station) ^2 [C*(t, station)-Cp(t, station)]2 (5.17) 
t=i 

where RMSE gestation) is the R M S E systematic component, while RMSEu(station) is the 

unsystematic one. RMSES indicates the portion of error that depends on errors in the model, 

while RMSEU depends on random errors, on errors resulting by a model skill deficiency in 

predicting a specific situation, and on initial-condition errors. The following is an interesting 

relationship between R M S E and its components: 

RMSE2 = RMS Es
2 + RMSEU

2 (5.18) 

The K F is expected to correct some of the systematic components of the errors (i.e., 

RMSEs), while the unsystematic component (RMSEU) on average (over the different fore

casts) should be affected little by the filter correction. In fact, if RMSEU reflects errors 



introduced by model imperfections and initial-condition errors, then it cannot be removed 

except by fundamental model improvements or improvements in initial conditions. 

Figure 5.6 shows the results for RMSES. The filter is correcting some of the forecast 

systematic errors, as expected, meaning that the algorithm is properly designed. There is an 

improvement even when the filter is applied twice (with K E K ) , meaning that successive appli

cations of the filter correction will decrease further the systematic errors of all the forecasts. 

The 12-km runs (forecasts 01-06) have their highest systematic error at Hope. A l l these model 

runs poorly reproduce the real topography effects at this location, and this lead to systematic 

misrepresentations of ozone temporal and spatial distribution. Conversely, the 4-km runs have 

their highest systematic error at C Y V R (in particular for M C 2 driven runs, forecasts 07-09), 

where their ability to capture complex terrain more accurately than the 12-km runs is not an 

advantage, since at C Y V R the terrain is flat. 

The results for RMSEU are shown in Figure 5.7. The filter does not decrease the unsys

tematic errors, and often increases them for this A Q episode. C Y V R shows among the highest 

RMSEU values (particularly for M C 2 driven runs, forecasts 01-03 and 07-09), indicating an 

intrinsic lack of predictive skill at this location. Marti l l i and Steyn (2004) discuss the effects 

of the superimposed valley, slope, and thermal flows over the L F V . Often the pollution plume 

is transported during night over the Georgia Strait waters, as a result of the combination of 

several transport processes. This makes it very challenging for the models to accurately pre

dict the spatial and temporal evolution of ozone concentration near water locations, such as 

C Y V R , where the over-strait pool of pollutants can be re-advected over land during daytime 

sea breeze. 

For the ensemble mean, RMSEU keeps growing after successive filter applications, the 
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Figure 5.6: Similar to Figure 5.5, but for root mean square error (RMSE) systematic com
ponent values (ppbv). Values are within the interval [0, + oo], with a perfect forecast when 
R M S E = 0. 
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Figure 5.7: Similar to Figure 5.5, but for root mean square error (RMSE) unsystematic com
ponent values (ppbv). Values are within the interval [0, + oo], with a perfect forecast when 
R M S E = 0. 



opposite of what is observed for RMSES. This means that there is a finite upper limit on the 

number of useful corrections that can be obtained by successive K F applications. Here, for the 

ensemble mean, R M S E decreased until the fourth iteration, and grew considerably afterward 

(not shown). 

5.4.4 U P P A 

Figure 5.8 shows the results for U P P A . There are improvements (values closer to zero) in the 

majority of cases; however, in one, three, six, five and three cases out of 14 at C Y V R , Langley, 

Abbotsford, Chilliwack and Hope, respectively, there is no improvement or the K F forecasts 

are slightly higher. The improvements of the U P P A K F P forecasts with respect to the raw 

forecasts are modest if compared with the improvements shown with the previous statistical 

parameters. E K is always better than the raw ensemble-mean, except at Chilliwack, where 

it is slightly higher. The same can be said for K E K when compared to E K , with the larger 

improvements for both E K and K E K at Hope. E K and K E K have U P P A values within the 

E P A acceptance limit (+ 20 %) at Langley, Abbotsford and Chilliwack, while they are close 

to this limit at Hope and above 30 % at C Y V R . 

U P P A is the only parameter where the ensemble-mean does not have the best overall rank

ing, even after the forecasts are K F P bias-corrected. Both E K and K E K have approximately 

an average performance for U P P A , when compared with the other forecasts (Table 5.4). 
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Figure 5.8: Similar to Figure 5.3, but for unpaired peak prediction accuracy (UPPA) values. 
The continuous lines are the E P A acceptance values (+ 20 %). Values are within the interval 
[0, + oo], with a perfect peak forecast when U P P A = 0. 

Table 5.4: Ranking for unpaired peak prediction accuracy of K F P bias-corrected 12 ensemble 
members (01, 02, • • •, 12), the ensemble-mean of the K F P bias-corrected forecasts (EK) , and 
the K F P bias-corrected E K ( K E K ) at the Vancouver International Airport ( C Y V R ) , Langley, 
Abbotsford, Chilliwack and Hope stations. 

01 02 03 04 05 06 07 08 09 10 11 12 E K K E K 
C Y V R 3 10 1 5 9 2 14 13 12 8 11 4 7 6 

Langley 8 4 12 3 5 11 14 10 13 2 1 9 7 6 
Abbotsford 8 10 13 2 4 11 12 14 9 5 6 7 1 3 
Chilliwack 10 13 11 2 9 14 5 3 12 4 1 8 6 7 

Hope 10 13 11 5 6 14 3 2 12 4 1 8 9 7 



5.5 Comparison with other Bias-correction Methods 

Figure 5.9 shows the ensemble-mean R M S E values for the five stations ( C Y V R , Langley, 

Abbotsford, Chilliwack and Hope), for the 5-day period 11-15 August 2004. On the abscissa 

are K E K , E K , the additive bias-correction (AC), the multiplicative bias-correction (MC) , and 

the raw ensemble-mean for comparison purposes. 

The additive bias-corrected concentration is computed as follows: 

C^cit, station) = Cp(t, station) — — [Cp(t, station) — C0(t, station)] (5.19) 

whereas the multiplicative bias-corrected concentration is given by 

Y£j$ur CQ(t, station) ( 

Y^=rr Cp(t, station) 
CMc(t, station) = — -CM, station) (5.20) 

Both A C and M C use observations throughout the experiment period, so the ozone time 

series corrected with these methods cannot be considered forecasts, since they cannot be 

computed in a predictor mode. Contrast this with both K E K and E K that are predictor post

processing procedures of the forecasts, which use only observations available before the time 

for which the forecast verify. In this sense, this is a stringent test for the K F P bias correction. 

Nevertheless, at every station (except C Y V R ) K E K is the best, while E K in general is 

better than M C , but has higher (worse) R M S E values than A C (except at Hope). Finally, at 

C Y V R , K E K is third while E K is better only than the raw ensemble-mean. 
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Figure 5.9: Root mean square error (RMSE) values (ppbv) are shown for four different bias-
correction methods applied to the ensemble-mean. These methods are: the Kalman filter 
predictor (KFP) bias-corrected ensemble-mean of the K F P bias-corrected forecasts ( K E K ) , the 
ensemble-mean of the K F P bias-corrected forecasts (EK) , the Additive correction (AC), and 
the Multiplicative correction (MC). The last values on the abscissa are for the raw ensemble-
mean with no corrections. Results are plotted at five stations [Vancouver International Airport 
( C Y V R ) , Langley, Abbotsford, Chilliwack, and Hope], for the 5-day period 11-15 August 2004. 
Smaller values are better. 



5.6 Discussion and Conclusions 

In summary, the Kalman-filter predictor (KFP) bias-corrected forecasts and their ensemble-

mean have better forecast skill than the raw forecast, for the locations and days used here 

to test their performance. The corrected forecasts are improved for correlation, gross error, 

root mean square error (RMSE) , and unpaired peak prediction accuracy (UPPA) , the latter 

being the statistical parameter showing the less pronounced improvement after the K F P bias-

correction. In general, the ensemble-mean forecast benefits from the improvement of each 

single Kalman-corrected ensemble member. In fact, the ensemble-mean of the K F P bias-

corrected forecasts (EK) and the K F P bias-corrected E K ( K E K ) are the second best and the 

best forecasts overall when compared with the other 12 individual forecasts members and their 

raw ensemble-mean. The results in Section 5.4.3 showed also that only a limited number of 

successive K F application to the same forecast would result in an improvement. 

Those results indicate that the filter improves the forecast timing of maxima and minima 

concentrations with respect to the observations, because the correlation is closer to one. From 

the improved (decreased) R M S E and gross-error values, we infer that the K F improves the 

forecast accuracy in reproducing the magnitude of ozone concentrations. Better (closer to 

zero) U P P A and gross-error values indicate that the filter improves the forecast ability to 

capture rare (but important for health-related issues) events, such as the occurrence of ozone 

concentration peaks. Moreover, the K F reduced systematic errors such as can be induced 

by model error, as for example the poor representation of topographic complexity. Ensemble 

averaging tended to remove the unsystematic errors, as showed in Chapter 3. This is why the 

combination of Kalman filtering and ensemble averaging results in the best forecasts; i.e., E K 



and K E K . 

E K and K E K performances have been compared also with the performances of two other 

bias-correction (not in predictor mode) techniques, the additive bias-correction (AC), the 

multiplicative bias-correction (MC). At every station (except C Y V R ) K E K is the best, while 

E K is better than M C , but has higher (worse) R M S E values than A C (except at Hope). 

Finally, at C Y V R , K E K is third while E K is better only than the raw ensemble-mean. 

A concise way to summarize the results from Section 5.4 is given in Figures 5.10, 5.11, 5.12, 

5.13, and 5.14. A Taylor's diagram (Taylor, 2001) is used to create a multi-statistic plot of 

correlation, centered R M S E ( C R M S E : R M S E computed after the overall bias is removed), and 

standard deviation. C R M S E is the distance on the diagram between the point representing 

the forecast and the one representing the observations. For each forecast (smaller arrows) and 

for E K and K E K (bigger arrows, with different arrowhead), the arrow tail gives the standard 

deviation and the correlation of a raw forecast, while the arrowhead represents the same values 

for the K F P bias-corrected version of the same forecast. If the arrow points toward to the 

observation (circle) it means that the K F P is correcting the forecast statistically in the right 

direction. The arrows representing E K and K E K are consecutive; i.e., the E K arrowhead 

is also the K E K arrow tail, because E K is the raw version of K E K . The three concentric 

lines centered over the point representing the observation indicate the C R M S E for the raw 

ensemble-mean (dotted line), E K (thick dashed line), and K E K (thick continuous line). 

At C Y V R (Figure 5.10) the majority of arrows point away from the observation (including 

the arrows with different arrowhead for E K and K E K ) , indicating that the K F P in those cases 

degraded the raw forecasts. This is caused by the dominance of unsystematic errors at this 

location (as discussed in Section 5.4.3), that prevent the filter to being able to do a successful 



correction. 

At Langley (Figure 5.11) the forecasts tend to be improved, as indicated by the arrows 

pointing closer to the observation. E K is better than the raw-ensemble-mean (which in turn 

is better than all the individual deterministic forecasts), since the thick dashed line passing 

through its arrowhead is closer to the observations than the dotted line passing through the 

tail . K E K is the best being the closest to the observations (thick continuous line). 

The same conclusions can be drawn for Abbotsford (Figure 5.12), with even larger im

provements after the correction. At this location, the forecast standard deviations after the 

correction are much more similar to the observation standard deviations (but the same can be 

said also at the other stations). 

Figure 5.13 shows the same diagram for Chilliwack. The forecasts are improved, since the 

arrows point toward the observations. At this location, E K is fourth best, while K E K is still 

the best. 

The results for Hope are shown in Figure 5.14. A l l the forecasts are improved, with E K 

and K E K being the fifth, and third best, respectively. In this case (as well as for Chilliwack) 

the benefit of applying the K F P bias correction is even higher than at the other locations, 

demonstrating that the K F correction is particularly efficient if the raw forecast shows high 

systematic errors, as discussed in Section 5.4.3. This is evident since the arrows are on average 

longer than at the other locations. At Hope, forecasts 07 and 08 are the first and second 

best forecasts (by comparison with Figure 3.19), while they were among the worst at other 

locations, particularly at C Y V R , Langley at Abbotsford. 

The K F P bias-correction approach for the locations and days used in this study success

fully removes part of the forecast bias. The filter is able to recognize systematic errors in the 
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Figure 5.10: Taylor's diagram is plotted for Vancouver International Airport ( C Y V R ) . The az-
imuthal position gives the correlation, while the radial distance from the origin is proportional 
to the standard deviation (ppbv). The smaller arrows represent the 12 ensemble members, 
and the bigger arrows (with different arrowhead) represent the ensemble-mean of the Kalman 
filter predictor (KFP) bias-corrected forecasts (EK) and the K F P bias-corrected E K ( K E K ) . 
Each arrow tail represents the forecast statistics of a raw forecast, and the arrowhead indicates 
KFP-corrected values. If the arrow points closer to the observation point (circle) it means that 
the K F P is correcting the forecast in the right direction. The arrows representing E K and 
K E K are consecutive; i.e., the E K arrowhead is also the K E K arrow tail, because E K is the 
raw version of K E K . The distance between the observation and a given point is proportional 
to the centered root mean square error (CRMSE) between the observation and the forecast. 
The three concentric lines centered over the point representing the observation indicate the 
C R M S E for the raw ensemble-mean (dotted line), E K (thick dashed line), and K E K (thick 
continuous line). If the line passing through the arrowhead is closer to the observation than 
the one passing through the tail, it means that that the K F P is improving (reducing) the 
C R M S E . 
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Figure 5.11: Taylor's diagram for Langley (similar to Figure 5.10). 
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Figure 5.12: Taylor's diagram for Abbotsford (similar to Figure 5.10). 
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Figure 5.13: Taylor's diagram for Chilliwack (similar to Figure 5.10). 
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Figure 5.14: Taylor's diagram for Hope (similar to Figure 5.10). 



forecast, as for example the nighttime over-prediction of ozone concentration induced by a poor 

representation of the nighttime boundary layer, or the errors at Chilliwack and Hope induced 

by the systematic misrepresentation of topographic complexity in the model. As a conse

quence of the improved nighttime over prediction, the ozone distribution low-concentration 

tail is better represented after the K F correction, resulting in forecasts having a variance that 

resembles more closely the observation variance, as discussed above. 

The experiments performed in this study suggest that better forecasts can be made with a 

longer K F training period (such as 5 days), and with a longer C M A Q model spin-up. Moreover, 

with the availability of a longer data set (a full month or season), including ozone forecasts 

and observations with a broader variability of low and high ozone events, an optimal value for 

the sigma ratio (as discussed in Section 5.2) could be found. 

K E K , which combines the beneficial effects of ensemble averaging and K F P post-processing, 

is overall the most skillful forecast for the locations and days tested here, where the ozone 

modeling is particular challenging because the complex coastal mountain setting. For this 

reason the approach used here to improve ozone forecasts might be equally successful when 

implemented in other regions with similar or less complex topographical settings. 

Finally, ensemble weather forecasts often provide information on the reliability of the fore

cast: if the ensemble members have a large spread (defined as the standard deviation of the 

ensemble members about the ensemble mean), this implies less confidence in the forecast. 

Perhaps a similar spread-skill relationship exists for air-quality forecasts. However, in Chap

ter 3, neither a correlation nor a relationship between the raw ensemble spread and the raw 

forecast error has been found. Similarly, a spread-skill relationship has not been found for the 

Kalman-filtered A Q forecasts in this study. 



5.7 References for Chapter 5 

Bozic, S. M . , 1994: Digital and Kalman Filtering, Second Ed.. John Wiley & Sons, New York. 

Burgers, G., P. J . van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble 

Kalman filter. Monthly Weather Review, 126, 1719-1724. 

Byun, D. W. and J . K . S. Ching, 1991: Science algorithms of the E P A Models-3 Community 

Multiscale Air Quality (CMAQ) modeling system. Technical Report EPA/600/R-99/030, 

U.S. Environmental Protection Agency. 

Cannon, A . J . and E . R. Lord, 2000: Forecasting summertime surface level ozone concentra

tions in the Lower Fraser Valley of British Columbia: A n ensemble neural network approach. 

Journal of the Air and Waste Management Association, 50, 322-339. 

Dempster, A . , N . Laird, and D. Rubin, 1977: Maximum likelihood from incomplete data via 

the E M algorithm. Journal of the Royal Statistical Society, 39, 1-38. 

E P A , 1991: Guideline for regulatory application of the urban airshed model. Technical Report 

EPA-450/4-91-013, U.S. Environmental Protection Agency. 

Hamill , T . M . and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis 

scheme. Monthly Weather Review, 128, 2905-2919. 

Homleid, M . , 1995: Diurnal corrections of short-term surface temperature forecasts using 

Kalman filter. Weather and Forecasting, 10, 987-707. 



Houtekamer, P. L . and H . L . Mitchell, 2001: A sequential ensemble Kalman filter for atmo

spheric data assimilation. Monthly Weather Review, 129, 123-137. 

Houtekamer, P. L . , H . L . Mitchell, G. Pellerin, M . Buehner, M . Charron, L . Spacek, and 

B . Hansen, 2005: Atmospheric data assimilation with an Ensemble Kalman Filter: results 

with real observations. Monthly Weather Review, 133, 604-620. 

Joliffe, I. T . and D. B . Stephenson, 2003: Forecast Verification: A Practitioner's Guide in 

Atmospheric Science. Wiley and Sons, West Sussex. 

Kalman, R. E. , 1960: A new approach to linear filtering and prediction problems. Journal of 

Basic Engineering, 133, 35-45. 

Mart i l l i , A . and D. G. Steyn, 2004: A numerical study of recirculation processes in the Lower 

Fraser Valley (British Columbia, Canada). In 27th NATO/CCMS Conference on Air Pol

lution Modeling. Banff, Alberta. 

McKendry, I. G., 1994: Synoptic circulation and summertime ground-level ozone concentra

tions at Vancouver, British Columbia. Journal of Applied Meteorology, 33, 627-641. 

McKendry, I. G. and J . Ludgren, 2000: Tropospheric layering of ozone in regions of urbanized 

complex and /or coastal terrain: a review. Progress in Physical Geography, 24, 329-354. 

Roeger, C , R. B . Stull, D. McClung, J . Hacker, X . Deng, and H . Modzelewski, 2003: Veri

fication of mesoscale numerical weather forecasts in mountainous terrain for application to 

avalanche predicition. Weather and Forecasting, 18, 1140-1160. 

Russell, A . and R. Dennis, 2000: N A R S T O critical review of photochemical models and mod

eling. Atmospheric Environment, 34, 2283-2324. 



Segers, A . , H . J . Eskes, R. J . van der A , R. F . van Oss, and P. F . J . van Velthoven, 2005: 

Assimilation of gome ozone profiles and a global chemistry-transport model using a kalman 

filter with anisotropic covariance. Quarterly Journal of Royal Meteorological Society, 131, 

477-502. 

Taylor, K . E . , 2001: Summarizing multiple aspects of model performance in a single diagram. 

Journal of Geophysical Research, 106, 7183-7192. 

van Loon, M . , P. J . H . Builtjes, and A . J . Segers, 2000: Data assimilation applied to L O T O S : 

first experiences. Environmental Modeling Software, 15, 603-609. 

Vingarzan, R., 2004: A review of surface ozone background levels and trends. Atmospheric 

Environment, 38, 3431-3442. 

Willmott, C. J . , 1981: On the validation of models. Physical Geography, 2, 184—194. 



Chapter 6 

Conclusions 

The goal of this research was to improve real-time short-term forecasts of tropospheric ozone 

measured at near-surface receptor sites. This goal was achieved. 

6.1 Summary of Methods and Procedures 

This research was based on the hypothesis that the ensemble technique and Kalman-filter 

postprocessing can be transferred to air-quality modeling, and can potentially yield similar 

benefits as for N W P . The method used here was 3-D mesoscale N W P modeling coupled with 

3-D chemical numerical modeling. The procedure was to run these models using emission 

inventories for actual ozone episodes, and to calibrate and verify the results against near-

surface ozone observations. 

This dissertation summarizes the results of an immense amount of numerical computations: 

• Nine days run with the 3-D Eulerian N W P model M C 2 with four (108, 36, 12, and 4 km 

horizontal grid spacing) nested grids. 



• Nine days run with the 3-D Eulerian N W P model M M 5 with four (108, 36, 12, and 4 

km horizontal grid spacing) nested grids. 

• 36 (two N W P model by nine days by two grids) 1-day runs with the meteorological 

pre-processor M C I P . 

• 56 (four control runs by nine days plus four lagged runs by five days) 1-day runs with 

the S M O K E emission pre-processor. 

• 186 (four spin-up days by four control runs plus five days by 28 forecasts plus five days 

by six lagged forecasts) 1-day run with the 3-D Eulerian C M A Q model (to perform the 

12 A Q forecasts). 

A l l the above resulted in few hundreds Gigabytes of data, and several hundreds of computa

tional hours on processors of a high-performance computing Linux super-cluster. 

Chaos theory has been applied through the ensemble approach to improve our ability 

to predict the spatial and temporal distribution of tropospheric ozone concentration, and to 

estimate in advance its magnitude. The ensemble approach is one method to represent the 

time evolution of the probability density function describing the atmosphere's initial state and 

its uncertainty. The probability density function is represented by a limited set of points. The 

evolution of each of these points would be a member of the ensemble. Each of these members 

should ideally represents an equally likely evolution of the dynamical system. 

Kalman-filter theory has been applied in this dissertation to remove ozone forecast bias; 

i.e., systematic errors. The filter was applied as a post-processing procedure, in a predictor 

mode. Previous bias values were used as input to Kalman filter. Once the future bias has 



been estimated, it was removed from the raw forecast to produce an improved forecast. Such 

a corrected forecast should be statistically more accurate in a least-squares sense. 

To accomplish this goal, the following research work was conducted: 

• The realization and test of an air-quality ensemble built on a previous photochemical 

model intercomparison study (see Chapter 2). This preliminary work demonstrated the 

value of ensemble air-quality forecasts, and lead to more-detailed research. 

• The realization and test of a new air-quality ensemble design, created by perturbating 

the input fields that most affect the uncertainty of the air-quality photochemical models; 

i.e., the meteorological and the emissions fields (see Chapters 3 and 4). 

• The realization and test (introducing a new reliability index) of probabilistic forecasts 

resulting from ensemble methods (see Chapter 4). 

• The realization and test of a new method to remove systematic errors from air-quality 

forecasts, based on the Kalman-filter-predictor algorithm (see Chapter 5). 

6.2 Summary of Findings 

The findings of this dissertation can be summarized as follows: 

• A n ensemble average computed from the ozone prediction of different photochemical 

models is a more skillful ozone forecast than the one from a single deterministic model 

(Delle Monache and Stull, 2003). 

• A n average of ensembles created by both meteorology and emission perturbations has 

better-forecast performance than any individual ozone prediction, being able to filter out 



unpredictable components of the transport, diffusion, and chemical reactions governing 

the ozone spatial and temporal distribution evolution (Delle Monache et al. , 2005a). 

Twenty-eight forecasts (grouped in 13 different ensembles) have been generated over the 

Lower Fraser Valley, British Columbia, Canada, for the 5-day period 11-15 August 2004, 

and they have been compared with 1-hour averaged measurements of ozone concentra

tions over five stations. The different forecasts are obtained by combining four driving 

meteorological input fields with seven emission scenarios: a control run, ± 50 % NOx, 

± 50 % V O C , and ± 50 % N O x combined with V O C (Delle Monache et al., 2005c). 

— Both meteorology and emission perturbations are needed to have a skillful prob

abilistic forecast system, and neither of two is sufficient alone to form a reliable 

probabilistic forecast system with a good resolution for the whole spectrum of ozone 

concentrations. 

— The meteorology perturbation is important to capture the ozone temporal and 

spatial distribution. 

— The emission perturbation is needed to accurately predict the ozone concentration 

magnitude. In particular, the emission perturbations are more important than 

the meteorology ones to capture high (and rarely measured) ozone concentrations, 

typically observed in the afternoon in areas such as the Lower Fraser Valley where 

ozone production may be mainly attributed to local sources. 

— Among the emission perturbations, the ones involving N O x resulted in more skillful 

probabilistic forecasts for the episode analyzed in this study. 

— The ± 50 % emission perturbations appeared to be not centered over an optimal 



estimate, and shifting the perturbations toward lower values could improve the 

forecasts by reducing the positive bias. 

— Since N O x has good (but positively biased) predictive skill, the ± 50 % limit seems 

to efficiently span the emission uncertainties space for this case. 

— The ensemble formed by all the 28 ozone forecasts available is the best probabilistic 

forecast, when considering both reliability and resolution. 

— The smoothing of peak values caused by ensemble averaging (Delle Monache et al., 

2005a) can be avoided if the ensemble-mean ozone peak is computed as the average 

of the ensemble-member peak predictions (Delle Monache et al., 2005c). 

— The M C 2 model has more variability than M M 5 in the 5-day period analyzed in 

this study, and this resulted in the ensemble formed by all the runs driven by 

M C 2 forming the more skillful ensemble-averaged ozone forecast. However, the 12-

member ensemble based on meteorology and N O x perturbations provided the best 

ensemble-averaged prediction of the magnitude and timing of peak ozone. 

— The root-mean-square-error random component for the ensemble formed with all 

the runs with 4 km horizontal spatial resolution is higher than the one formed with 

the 12 km resolution runs. 

— W i t h a hard limit on computational resources, the ensemble mean computed with 

only the four control runs, where only meteorology is perturbed, has good skill at 

predicting the magnitude of the ozone peak. 

The Kalman-filter predictor bias-corrected forecasts and their ensemble-mean have better 

forecast skill than the raw forecasts, for the locations and days used here to test their 



performance (Delle Monache et al., 2005b). The corrected forecasts are improved for 

correlation, gross error, root mean square error, and unpaired peak prediction accuracy, 

the latter being the statistical parameter showing the least pronounced improvement 

after the Kalman-filter predictor bias correction. Furthermore: 

— The Kalman-filter predictor bias-correction approach successfully removes part of 

the forecast' bias for the locations and days used in this study. 

— Only a limited number of successive Kalman-filter applications to the same forecast 

would result in an improvement, since while the filter removes systematic errors, it 

tends to amplify random errors. 

— As a consequence of the raw-forecast nighttime over prediction, the ozone distribu

tion low-concentration tail is better represented after the Kalman filter correction, 

resulting in forecasts having a variance that resembles more closely the observed 

variance. 

• Ensemble averaging tends to remove the unsystematic errors. Its combination with 

Kalman filtering (which removes part of the systematic errors) results in the best ozone 

forecasts. 

6.3 Discussion and Recommendations 

This dissertation proved the necessity of considering the chaotic behaviour of the atmsphere 

(associated with the nonlinearity of the chemistry) in any attempt to describe the evolution of 

such a system. Any deterministic prediction of this evolution would most likely misrepresent 

the nature of the problem. Ensemble and Kalman-filter methods can indeed significantly 



improve near-surface ozone forecasts, even in the complex coastal mountain setting of the 

Lower Eraser Valley. There are no intrinsic limitations to these methods that would prevent 

their application in real time to other geographic settings. 

The results of this dissertation suggest that future ozone-forecast work should focus on 

ensemble forecast systems involving both meteorology and emission perturbations. More 

specifically, the above findings suggest that the emission perturbations could be based on 

the temporal and spatial variability of different regimes. If (during a particular time of the 

day and in a subset of the spatial domain) a NO x-sensitive regime is dominant, then a N O x 

perturbation would be more useful than a V O C one to capture the ozone variability. Con

versely, in VOC-sensitive regimes the V O C perturbations could be more efficient. In situations 

where neither of these two regimes is well defined, probably a combination of N O x and V O C 

perturbations could be the best choice. These regimes could be identified in forecast mode by 

looking at the control-model forecasts, for example by evaluating the O s / N O y or H 2 O 2 / H N O 3 

ratios (Sillman and He, 2002). 

One of the findings of this dissertation is to shift the emission perturbations toward lower 

values (for both NO^ and V O C ) , to improve the forecasts by reducing their overall positive bias. 

This correction will improve the forecasts on the west side of the spatial domain considered in 

this dissertation, while for the eastern-most locations (i.e., Chilliwack and Hope) such a shift 

will not improve the ozone forecasts, or may deteriorate them slightly. 

Ideally, each ensemble member should be an equally likely time evolution and space dis

tribution of the ozone concentration, and they should all be equally good estimates of truth. 

W i t h this in mind, the ensemble members should be "independent", in the sense that none of 

them should rely on other members for their realizations. This is not the case when nested 



grids are used, as for some of the probability forecast systems created in this dissertation. 

Namely, C M A Q domains are linked using a 1-way nesting approach (similarly for M C 2 , but 

M M 5 runs are implemented with 2-way nesting), and all the 4 km runs cannot be considered 

independent of the coarser 12 km runs providing the driving meteorology and/or the initial 

and boundary chemistry. The dependency among members of the same ensemble (no attempt 

has been made in this study to measure it) would result in an "effective" ensemble size smaller 

than the actual ensemble size. Moreover, a subset of the dependent members will span ap

proximately the same subspace of the air-quality modeling uncertainty space (or at least they 

should be closer to each other than to other members), resulting in both probabilistic and 

ensemble-averaged forecasts relying too heavily on the performances of these members than 

on others. 

Ensemble weather forecasts often provide information on the reliability of the forecasts; if 

the ensemble members have a large spread (defined as the standard deviation of the ensemble 

members about the ensemble mean), this implies less confidence in the forecast. However, in 

this research no correlation or relationship between ensemble spread and forecast error has 

been found. 

Finally, the methodology developed in this study to improve ozone regional forecasts could 

be implemented also to improve forecasts of particulate-matter and other pollutants. 
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Appendix A 

Kalman-filter Implementation 

Here a step-by-step description of the filter implementation is given. First, a2 is estimated via 

the Kalman filter algorithm as follows (by applying Equation (5.5)): 

= ( ^ A 4 | t - 2 A t + <•)(! - (A ' 1 ) 

where is the expected mean-square-error in the a2 estimate, a2
2 is the variance of o~2 and 

is the Kalman gain when the filter is used to estimate a2. Next, the new Kalman gain 

can be computed, similarly to Equatio'n( 5.4): 

0* = f l ^ a < ( A . 2 ) 

T) 4-rr2 A-n2 

where a2% is the variance of a2. Finally, a2 can be estimated by combining Equations (5.3) 

and (5.8): 

~ 2 _ Ji , fpl [(Vt - Dt-At)2 2 i (K o \ 
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<ĵ 2 and a2
2 are assumed constant, with values of 1 and 0.0005, respectively, as determined 

from previous works (e.g., Roeger et al., 2003). 

Once a2 is estimated, a2 can be computed as a2 = ra2. Then, Equations (5.5), (5.4), 

and (5.3) can be applied in sequence, resulting in the final estimate of the bias (x). This 

process is iterated trough different At, and for the first step, given initial values are used as 

discussed in Section 5.2. 


