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ABSTRACT

Recent interest in climatic change and ice .sheet variations
points out the need for accurate and numerically stable models
of time-dependent ice masses. Little attention has been paid to
this topic by the glaciological community, and there is good
reason ~to believe that much of the published literature on
numerical modelling of the flow of glaciers and ice sheets is
quantitatively incorrect. In particular, the importance of the
nonlinegr instability has not been widely recognized. The
purposes of this thesis are to. develop andito'verify a new
numerical model for glacier flow, compare the model to another
widel& accepted model, and to demonstrate the model in several
glaciolbgically interesting applications.

As in earlier work, the computer' model solves the
continuity equation together with a flow law for ice. Thicknesé
profiles_alohg flow lines are obtained as a function of time for
a temperate ice mass with arbitrary bed topogréphy and mass
balance. A set of necessary tests to be satisfied by any
numerical model of glacier flow 1is presented. The numerical
solutions are compared with analytical solutions; these include
a simple thickness-velocity relation.to check terminus mobility,
and Burgers' equation to check continuity and dynamic behaviour
with full nonlinearity.

An‘ attempt has been made to verify the accuracy of the
computer model of Budd and MclInnes (1974), Budd (1975) and
McInnes (unpublished). These authors have reported probléms with

numerical instability. If the existing documentation is
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accurate, the Budd-McInnes model'appears to suffer from mass
conservation violations both locaily and globally.

The new numerical model developed in this thesis can be
used to reconstruct the veloci:y field within the glacier at
each time step; this velocity field satisfies continuity and
Glen's flow law for ice. Integration of this velocity field
yields the trajectories of individual ice elements flowing
through the time-varying ice mass. The trajectofies and velocity
field are checked by cqmparison with an analytical solution for
a steady state 1ice sheet (Nagata, 1977). The model in this
thesis is not restricted to steady state, and it avoids the
violations of mass cqnservétion, and the approximations about
the velocity fiela found in some published trajéctory models.

The feasibility of using stable isotopes to investigate
prehistbric surging of valley glaciers has been studied with a
model simulating the Steele Glacier, Yukon Territory. A sliding
velocity and -surge duration were specified, based on the
.observations of the 1966-67 surge. A surge period of roughly
100 years gave the most realistic ice thickness throughout the
surge cycle. By calculating ice trajectorieé and using two
plausible felationships between 6(0'%/0'¢) and position or
height, longitudinal sections and surface profiles of & were
construéted for times before, during, and- after a surge.
Discontinuities of up to 0.8°/,, were found across several
surfaces dipping upstream into the glacier. Each of these
surfaces is the present location of the ice which formed the
. }ce—air interface ét the time a previous surge began. It may be

difficult to observe these surfaces on the Steele Glacier due to
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the large and poorly-understood background variability of s.

The generation of wave ogives has been examined following
thé theory of Nye (1958[b]), wherein waves are caused by a
combination of seasonal variation in mass balance and plastic
deformation in an icefall. The wave train generated on a glacier
is shown in this thesis to be a convolution of the velocity
gradient with an integral of fhe‘ mass balance function. This
) integral is the impulse response of the glacier surface to a
step in the velocity function. Spatial variations in the glacier
width and mass balance also contribute to the wave train. This
formulation is used to explain why many icefalls do not generate
wave odives in spite of large seasonal balance variations and

large plastic deformations.
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CHAPTER 1: BEGINNINGS

'"Its the job that's never started as takes
longest to finish" as my old gaffer used to
say.''

1.1 INTRODUCTION

1.1.1 ENDS AND MEANS

Although glaciers and ice sheets often appear to be
far-removed from most day-to-day matters, there are a number of
compelling reasons to study their behaviour. Advances of some
glaciers would threaten roads, dams and mines. Berendon Glacier,
British Columbia was studied by Untersteiner and Nye (1968) and -
by Fisher and Jones (1971) for this reason.

Ice avalanches from glaciers have caused a long history of
destruction. For example, a series of four ice avalanches from
the Randa Glacier, Switzerland (Agassiz, 1840, p. 158) between
1636 and 1819 destroyed many buildings and fields and killed
dozens of citizens. Ice avalanches into moraine-dammed lakes in

Peru caused damaging floods (Lliboutry and others, 1977).

Advancing glaciers can dam streams or rivers; the resulting
lakes often drain catastrophically (Clarke and Mathews 1981;
Clarke, in press) when the ice dam fails. Cunningham (1854
(reprinted 1970), p. 100) reported damaging floods on the Indus
River in the nineteennth century, and Forbes (1845, p. 262)

described the 1818 disaster when the Getroz glacier dammed the

' Sam Gamgee, in The Fellowship of the Ring. J. R. R. Tolkien.




Dranse in- the Val. de Bagnes in Switzerland. Several
glacier-dammed lakes threaten a proposed pipeline_route in the
Yukon Territory (Canada, unpublished).

There is still no universally accepfed theory on the cause
of ice ages and continental glaciation; an understanding of ice
sheet dynamics helps to select and test hypotheses. To correctly
interpret the geomorphological record of Rleistocene ice sheets,
we must understand the processes of glacial erosion and
deposition. This requires a knowledge of glacier mechanics (e.g.
Boulton, 1979; Hallet, 1979). The volume, distribution, and rate
of growth and decay of the Pleistocene ice sheets (e.q.
Paterson, 1972) are important data for the determination of the
viscosity of the upper mantle, vertical crustal movements, and
sea level changes (e.g. Andrews, 1974).

The isbtopic composition of polar ice sheets has been used
to reconstruct temperature changes and climate over the past 10°

years (Dansgaard and others, 1969). To correctly date deep

cores, it is necessary to determine the flow pattern within the
ice sheet (Dansgaard and Johnsen, 1969[a); Philberth and

Federer, 1971; Hammer and others, 1978).

A current question of some concern is the possibility of
global atmospheric warming due to combustion of fossil fuels and
clearing of  temperate forests. (e.g. SMIC, 1971). A
multidisciplinary study (NOAA, unpublished) is. underway in
Boulder, Colorado to investigate the effect 1increased
atmospheric CO, would have on the Antarctic ice sheets.
Disintegration of the East Antarctic Ice Sheet could raise sea

level by 75 m and substantially reduce the albedo of the earth



(Wilson, 1969). Of more immediate concern is the possibility of
a surge and disintegration of the West Antarctic ice sheet; this
could raise sea level by seven metres 1in less than 100 years

(Thomas and others, 1979). A group at NASA (NASA, unpublished)

is using satellite radiometry, altimetry and radar imaging to
monitor and to help model variations of the Greenland ice sheet.

Nye (1951, 1952[al, 1953, 1957) made the first quantitative
studies of the steady flow of glaciers and ice sheets using
analytical models, and Weertman (1958), Lliboutry (1958[b]l), and
Nye (1960, 1961, 1963[al, 1963[b], 1963[c], 1965[a]}, 1965[b])
developed the theory of glacier variations, kinematic waves, and
response to climate, by wusing perturbation methods. Many
interesting glaciological problems have large temporal
variations or complicated boundary conditions; the analytical
solutions cannot be used. Answers to some of these more
complicated problems can be' found by numerical methods using
finite differences on digital computers. However, numerical
solutions have their own special pitfalls. A numerical solution
of a differential equation may differ from the correct solution
‘for many reasons (e.g. Richtmyer and Morton, 1967; Gary, 1975).
It is extremely difficult to prove that a numerical model has
correctly solved a particular differential egquation with
complicated boundaries if no analytical check is available; yet
this is precisély the type of problem for which numerical models
are necessary. '

It is essential to first check numerical models against
analytical solutions for a variety of simpler probiems. The

glaciological literature contains very little discussion of



model verification in spite of its obvious importance. There is
some indication that much of the published 1literature on
numerical modelling may be quantitatively incorrect.

The major thrust of my work has been aimed at understanding
the problems of numerical models, finding ways to avoid the
problems, and devising tests to verify the accuracy of the model
results. With this in mind, I have developed a new computer
model of glacier flow (Appendix 1, and Chapter 2, Section 2.2).
Like several previous models (Budd and Jenssen, 1975;
Bindschadler, unpublished), this model uses finite differences
to solve the mass conservation equation together with a flow law
for ice, to give the time-dependent glacier surface for a
temperate ice mass in a channel of arbitrary width and bed
topography, with an arbitrary mass balance, assuming the flow is
driven by gravitational stresses. |

I have analyzed thé numerical stability and accuracy of
this model as thoroughly as is possible for nonlinear equations
(Appendix 1). In Chapter 2 I present a set of tests comparing
the numerical solutions to analytical solutions to check
terminus mobility -and both local and global mass conservation,
including a case wiéh a nonlinear flow law,

If, in a computer model, the glacier terminus moves
incorrectly, it <can seriously affect the ice thickness and the
velocity throughout the glacier (Section A1.,3.4). The physics of
the deformation of a glacier snout is complicated (Nye, 1967)
for any realistic ice rheology. 1In the standard numerical
approximation (e.g. Budd and Jenssen, 1975; Bindschadler,

unpublished, p. 105), the terminus 1is simply a wedge-shaped



voiume with slope and apex chosen so as to conserve mass (see
Section A1.3.4). The error in using this kinematic approximation
~cannot be determined; the correct general solution for the
motion of a glacier terminus on an arbitrary slope with Glen's
flow in tensor form 1is still an unsolved problem. However, I
have tested the numerical implementation of the wedge terminus
by comparing the computed solution to a time-dependent
analytical solution with a simpler "rheology" (Section 2.3.2).

Many standard numerical schemes for linear eguations break
down when applied to nonlinear equations. It is important to
test a numerical model with a nonlinear problem. Burgers'
equation (Section 2.3.3) is a nonlinear hyperbolic equation with
an analytical solution; it 1is also related to the mass
conservation eguation. I have compared numerical results with
the analytical solution to Burgers' eguation ﬁo show that my
model correctly solves nonlinear problems. -

For some glacier flow problems, such as dating 1ice cores
(Dansgaard and Johnsen, 1969[a]) and finding the temperature
distribution of cold ice masses (e.g. Jenssen,  1977), it |is
necessary to know the trajectories of ice particles. My computer
model can calculate the velogity field on a vertical
longitudinal mesh for a time-dependent glacier, by using Glen's
flow law to find the horizontal velocity, and using the
continuity equation to then derive the vertical velocity.
Particle trajectories are found by a numerical integration of
the time—aependent velocity. I tested this part of the computer
model against an analytical solution by Nagata (1977) for

particle paths in a steady ice sheet.



This numerical model is probably the most thoroughly and
accurately tested of its type. The set of tests which I have
assembled, or others éimilar to them, should be used to verify
any numerical model of glaciér flow. Only then can the models be
used with confidence to solve more complicated problems.

I have used this new computer model in two studies.
Previoué efforts have concentrated on using variations in
isotopic ratios 1in 1ice cores to investigate climate change,
assuming steady state flow. In Chapter 3 I have evaluated the
feasibility of wusing stable isotope measurements to study the
surge history of valley glaciers, assuming a constant climate
and unsteady flow. The example I considered was the Steele
Glacier, Yukon Territory. I found that surging leaves a
characteristic pattern in the isotope distribution, but
preliminary measurements of 6(0'8/0'¢) suggest that this pattern
may be masked by other effects.

Finally, in Chapter 4 I have derived a linear convolution
relating the amplitude of wave ogives to the velocity, channel
width and mass balance in icefalls. This work is an extension of
studies by Nye (1958[b]). I used the computer model to verify
the convolution formulation and to determine which features of
the icefall on Austerdalsbreen, Norway are most critical to the

formulation of its large wave ogives.



1.1.2 CONVENTIONS USED

There are many diverse views on the most appropriate style
for a Ph.D. thesis. My aim has been to produce a document which
fully describes my work, and which can be understood on its own
by those with a basic knowledge of phyéics or physical
glaciology. I have documented all my numerical methods in
detail, and summarized the relevant work of others; references
substantiate the text rather than substitute for it. This
results in a lengthy manuscript. To keep the main text as short
as possible, I have placed the numerical methods and the
background material in appendices. The work of others should be
clearly identifiable. I hope that this level of detail will be
appreciated by some readers, since brevity will be required in
the version of this work in preparation for publication.

Unless stated otherwise, I have used a righthanded locally
orthonormal coordinate system such that the x axis 1lies along
the glacier bed down the centrelihe of the channel. The y axis
is transverse and horizontal, and the z axis is normal to the
bed and positive wupward in the vertical plahe containing the
centreline.

The velocity components are (u,w,v) along the (x,y,z) axes.
This notation differs from the standard convention
(i.e. (u,v,w) ) due to historical developments in the thesis.

Underscores are used to indicate tensors. The number of
underscores indicates the rank of the tensor, e.g. v 1is the

velocity vector, and A is a coefficient matrix.

The dot symbol ., when located above a variable, indicates
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a time derivative. When 1located between two vectors, it
represents the standard scalar inner product or dot product,
e.g. Malvern (1969, p. 17).

A bar above a variable indicates an.average value, wusually
over a depth range (z direction), or over time (e.g. annual
averages).

A list of symbols, together with their meanings and the
section in which each 1is introduced, can be found following
Chapter 4.

Equation numbers, and textual references to equation
numbers, are enclosed in round parentheses, e.g. (2.2.5), or
(A5.6), or (A1.1.3). The characters preceding the first decimal
point are the chapter or appendix number. The middle number (if
present) identifies the chapter subsection where the equation is
given, and the final number is the consecutive eguation number
in that subsection. References to chapter sections are always
identified as such, and the numbers are not enclosed in
parentheses.

The LITERATURE CITED 1is in the style of The Journal of

Glaciology. I was not able to obtain the use of some of the very

early literature, and some of the literature in languages other
than English. In those cases, where I could not verify the
citations of others, I have included the citing author in square

brackets.
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1.2 PREVIOUS WORK

1.2.1 FOUR CENTURIES OF GLACIER FLOW THEORY

The framework within which we currently understand and

investigate glacier flow has been assembled in the past three

decades. Deep coring techniques (Hansen and Langway, 1966) and
radio-echo sounders (Evans, 1963), coming shortly after
important experiments on the deformation of ice (Glen, 1952,

1955) and mathematical treatment of the flow of ice sheets and
glaciers (Nye, 1951, 1952[a], 1957) started the rapid growth of
glaciological research. However, investigation of the flow of
glaciers goes back hundreds of years. In Appendix 17, I review
the development of ideas on glacier flow in that early period.
Some early works were based on ferti}e imagination and 1limited
observations; others were concise and lucid statements on topics
which are subjects of research today. Some misconceptions about
glacier flow were raised, debated, and resolved more than once
during the period. The main thrust of research during the second
half of the nineteenth century was directed by physicists; in
the early part of this century, geologists dominated the field
(with a few notable exceptions), and research priorities and
theories reflected this difference. Contemporary reviews of
glacier flow  theory were given by Croll (1875, Chapter XXX,
p. 495), by Geikie (1894, Chapter 3, p. 25), by Russell (1897,
Chapter 9, p. 160), by Ha;kes (1930), by Matthes (1942), by
Perutz (1947), and by Orowan (1949),

Since 1950, research on glacier flow has progressed



12

rapidly. The flow law for ice was established for many practical
purposes by Glen (1952, 1955) and Nye (1953). Weertman (1957),
Lliboutry (1968[a], 1968[b]), Kamb (1970), Nye (1969[bl, 1970)
and Morland (1976[a), 1976[b]) contributed to the theory of
glacier sliding; some aspects of this question are still
unresolved. -Papers by Nye (1951, 1952[a], 1952[b], 1952[c],
1957, 1959[c]) established realistic analytical solutions for
steady glacier and 1ice sheet profiles, velocities, and stress
fields, while identifying many wuseful approximations., Vialov
(1957) used Glen's flow law to derive a steady ice sheet profile
which matched the flow line through Mirny, Antarctica. Weertman
(1961[b]) examined the effects of longitudinal strain rates on
steady ice sheet profiles, and included isostatic depression of
the bed. Weertman (1963) considered the effects of fringing
mountain ranges on steady ice sheets, and (1966) the effect of a
basal water layer.

Although temporal Qariations of ice masses are difficult to
study fully, some useful analytical results have been derived.
Kinematic waves on glaciers were observed by Vallot (1900) and
were studied by Lliboutry (1958[bl), Nye (1958[al), and by
Weertman (1958) using perturbation methods. Nye, in a series of
papers, (1960, 1961, 1963[al, 1963[b], 1963[c), 1965[al,
1965[b]) extended the method to analyze'the response of glaciers
to climatic change, and to estimate past climate from the record
of advance and retreat of glaciers. Bodvarsson (1955) derived
equations for a thin ice sheet and analyzéd its stability to
climatic change. This model ‘is not widely used due to its

assumed relation between basal stress and ice flux. Weertman



13

(1961[a]) performed a similar stability analysis éssuming
Weertman (1957) sliding. He also derived (1964[al]) the time
scales for the growth or decay of a perfectly plastic ice sheet.
Jenssen and Radok (1963) obtained a numerical solution for the
temperature field in the central region of an ice sheet
undergoing thinning.

The study of fully time dependent ice masses with arbitrary
boundaries and source terms 1is a recent development made
possible by high speed computers. Numerical solutions of the
equations governing ice masses have been obtained for a range of
problems by, e.g. Shumskiy (1963), Budd and Jenssen (1975),
Mahaffy (1976), Jenssen (1977), Bindschadler (unpublished) and
Clarke (1976). The complete solution of the eguations of motion,
the constitutive equations and the equations of state for a time
varying ice mass with arbitr;ry sources and boundaries 1is an

outstanding problem.

1.2.2 PREVIOUS ICE PROFILE MODELS

Computer models which find the surface height of
time-varying glaciers and 1ice sheets are a relatively new
research tool.

Campbell and Rasmussen (1969, 1970) and Rasmussen and
Campbell (1973) developed a model which found ice depth at
points on a horizontal mesh. They assumed that the ice was a
viscous material with a basal friction coefficient determined by
mass flux. By arbitrarily lowering the basal friction

~coefficient they simulated glacier surges.
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Budd and others (1971) and Budd and Jenssen (1975)

developed a finite difference model to solve the continuity
equation for the glacier thickness profile along a flowline.
While the equations are similar to those I have used, our
numerical methods differ in some respects (see Appendix 16).
These authors have 1included additional important physical
properties of ice flow (e.g. the effect of longitudinal stress
deviators) and I have devoted more effort toward obtaining an
accurate and stable numerical scheme; the additional physical
properties will be included later. This model was later
developed by Budd (1975) and Budd and McInnes (1974, 1978, 1979)
to generate periodic surges. Working from the assumption that
basal meltwater can cause sliding, they used the strain energy
dissipation to redistribute the basal shear stress, causing
largé longitudinal strain rates and rapid flow. The sliding
behaviour of the model, viewed as a qualitative phenomenon, may
be its most important contribution to our ideas on surges.

Bindschadler (unpublished) developea another finite
difference profile model similar to the one I describe in this
thesis. Bindschadler also did a careful analysis of ‘numerical
stability and used a numerical scheme similar to the one I
discuss in Appendix 1. He used this model to investigate the
changes in the surge-type Variegated Glacier, Alaska, during its
quiescent phase.

Mahaffy (Mahaffy, unpublished; Mahaffy 1976; Mahaffy and
Andrews 1976; Andrews and Mahaffy, 1976) used a two-dimensional
finite difference model to study the ice thickness and lateral

extent of the Laurentide ice sheet and the Barnes ice cap.
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Jenssen (1977) published the only fully three dimensionai
model of 1ice sheets. This model calculated flbwlines and
temperature as well as ice surface height. 1Its accuracy was
limited by severe computer size limits (Jenssen used a mesh of
12 x 12 x 10 points to represent the whole Greenland Ice Sheet).
However, this model is an ambitious development, and probably

will be followed by other models of this kind.

1.2.3 PREVIOUS ICE TRAJECTORY MODELS

Quantitative attempts to calculate streamlines date back to
the late nineteenth. century. Nansen (cited by Shumskiy, 1978,
p. 133) calculated flow lines near the ice divide in central
Greenland by assuming (1) steady state, (2) constant ice
thickness, density and mass balance, and (3) horizontal velocity
independent of depth. Haefeli (1963[b]) ‘independently derived
the same solution. Reid (1894) and Finsterwalder (1897)
independently developed a method of calculating streamlines in
steady glaciers using the concept of flow tubes and properties
of smooth vector fields. All these methods were only
qualitative; none made any use of the constitutive properties of
icg.

Haefeli (1961) derived the velocity field in the central
portion of a steady isothermal ice sheet, assuming (1) no
sliding, and (2) deformation by shear parallel to the bed, using
Glen's flow law for ice (Glen, 1955).

Nagata (1977) developed an analytic steady state ice sheet

model assuming no horizontal shear deformation; the flow was all
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basal sliding following a Weertman-type relation (see AB8.3.1).
By assuming that the vertical velocity was constant along the
ice sheet surface, Nagata also derived the streamlines, and used
the results to model the concentration of meteorites by glacier
flow in Antarctica (Nagata, 1978). I use this model as a test
for my numerical streamline calculations in Section 2.5.2.
Nielson and Stockton (1956) derived the flow field in
valley glaciers of constant valley cross-section assuming steady
plastic flow, and Shumskiy (1967) found a solution for stress
and velocity in a steady glacier with nonlinear viscosity.
Several trajectory models have been derived for regions
near ice divides on steady ice sheets in order to date ice cores
(Dansgaard and Johnsen, 1969[al]; Philberth and Federer, 1971;

Hammer and others, 1978), and to model temperature with depth

(Weertman, 1968). All these models make some assumptions about
vertical strain rates or temperature gradients.

Budd and others (1971) calculated trajectories along steady

state Antarctic flow lines assuming that the vertical strain
rate was constant in any vertical column, (p. 51) or weighted by
the horizontal velocity variation with depth (p. 55). Thié
process does not appear to satisfy continuity locally. The ice
surface elevation was calculated by the numerical model
described 'in Section 1.2.2.

Jenssen (1977) calculated trajectories in a finite
difference three dimensional time-dependent ice sheet model, in
order to solve for the temperature field.

Jenssén (1978) also found the trajectories of ice particles

for a surging model of a flowline through Mirny, Antarctica by
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Budd and McInnes (1978). He did not describe the method used to
obtain the flowlines. This is the only previous model, of which
I am aware, to calculate the trajectories in a time-varying ice

mass.
1.3 THE CONTINUITY EQUATION FOR AN ICE MASS

1.3.1 THE GENERAL GLACIER FLOW PROBLEM

The equation of continuity expresses the manner in which
the ice mass changes its shape over time, in response to mass
input (accumulation or ablation), subject to the physics of
deformation and sliding of ice (Sections 1.4 and 1.5), and with
the assumptions about the flow field imposed below. I have
derived the continuity equation for an ice mass from first
principles in Appendix 5, using standard methods of continuum
mechanics (g.g. Truesdell and Toupin, 1960; Malvern, 1969;
Prager, 1973). In this Section, 1 will give the resulting
equation, the assumptions 1involved in its derivation, and the
physical interpretation of its terms.

The coordinate system I have wused 1in this study 1is
described in Section 1.1.2. The position vector x is the triplet
[x,y,2], and the velocity vector vi(x) 1is the triplet
[u(z),w(x),v(x)].

Three basic assumptions of the glacier model are:

1. matter is conserved.

2. momentum is conserved, i.é. acceleration negligible.

3. ice is incompressible (see Appendix 4).
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To solve the gengral set of conservation equations,
constitutive equations, and equations of state for the
temperature distribution, internal energy content, and all the
components of the stress tensor and the velocity field, with
boundary conditions on a possibly arbitrary boundary, 1is a
problem to 1instill a sense of humility in even the most
enthusiastic and optimistic glaciologist or* numerical analyst.
All attempts, of which I am aware, to find solutions to ice flow
problems start by making some additional assumptions about the
channel geometry (boundaries and symmetry), or about the
temperature distribution (e.g. isothermal), and/or about the
flow field itself (e.g. plane strain, s}mple shear, uniform
strain rates, etc.). The model I describe in this sﬁudy is no

exception.

1.3.2 RECTANGULAR CROSS-SECTION FLOW MODEL

The glacier flow volume being modelled (see Figure 1.1) is
assumed to have a rectangular cross-section, and a width W(x).
The two dimensional model 1includes variations in the third
dimension in an approximate way by the assumptions that the
velocity components u and v are independent of y, and that the
lateral component w varies linearly with y (lateral strain rate
independent of y), such that the net velocity v(x) at the
margins is parallel to the margins, i.e.

du =0 . '
oy (1.3.1)
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dv =0
oy (1.3.2)
ow = u(x,z,t) dw

dy W(x dx (1.3.3)
The glacier thickness h(x,t) is also independent of y.

dh(x,t) = 0
oy (1.3.4)

Nye (1959(c], equation (33)) suggested this method of including
lateral variations, and Budd and Jenssen (1975, equation 3.34)
incorporated it into their model. Figure 1.1 illustrates the
form of this model.

For an ice sheet, W(x) can be the distance between two
possibly nonparallel flowlines; the 'walls' of the channel are a
mathematical fiction, and the assumptions (1.3.1) through
(1.3.4) are reasonable.

For a valley glacier, drag from the vélley walls is
important, and the ice thickness and glacier bed vary with y. If
1 attempt to identify W(x) with the valley width, the
assumptions (1.3.1) to (1.3.4) may be grossly violated. If,
however, I let W(x) be the distance between two flowlines near
the glacier centreline, e.g. W(x) may be a few percent of the
valley width at ghe level of- the ice surface, then all the
assumptions are reasonable, and I obtain a central flowline
solution, but with the lateral variation 1in valley width
included to a good approximation.

The effect of the valley sidewall drag can be included in
an approximate way by using shape factors (Nye, 1965[c]) to

modify the shear stress (see equation (1.4.25) below).
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FIGURE 1.1. Rectangular Cross-section Flow. -
The triad x-y-z shows the coordinate axes, and the bold
arrows u, v, and w are the vector components of the
velocity v. The example shows the velocity in the
accumulation zone (v is negative).

1.3.3 THE CONTINUITY EQUATION

With these assumptions, the well-known continuity equation
(the derivation of which I show in Appendix 5) is

oh(x,t) + 1 00(x,t) = A(x,t)
ot Wix) ox (1.3.5)

where h(x,t) is the ice thickness normal to the bed, Q(x,t) is
the ice flux through a cross-section from bed to surface, and

the source term A(x,t) is the net mass balance normal to the

- bed, i.e. the net accumulation or ablation rate in ice

equivalent thickness units per unit time, including snowfall,

surface melting, and-basal melting and refreezing. The last two
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‘contributions are usually negligibly small (e.g. Rothlisberger,

©1972).
The ice flux Q(x,t) is defined by
h(x,t)

Q(x,t) = W(x)j\0 u(x,z,t) dz (1.3.6)
whefe u(x,z,t) is the velocity component parallel to the bed. It
will be derived in the next section. Q(x,t) can also be written

Q(x,t) = v(x,t) h(x,t) W(x) (1.3.7)

where V(x,t) is wu(x,t), i.e. the downslope velocity u(x,z,t)

averaged between the bed and the surface.

h(x,t)

o(x,t) 1 :

V(x,t) = = u(x,z,t) dz (1.3.8)
W(x) h(x,t) h(x,t) 0

Assuming that the upstream end of the glacier section under
consideration is at x=0, the boundary condition is

Q(0,t) = Q (t)
° (1.3.9)

If x=0 actually represents the physical upper extent of the ice
mass, Qo(t) is identically zero. For the case of an ice divide,
this is achieved by setting

v(0,t) = 0 (1.3.10)
by a vanishing ice surface slope angle (see (1.4.38)), and
letting ice thickness h(0,t) vary. For the case of a valley
glacier originating on a siope, the boundary condition (1.3.9)
is achieved by setting

h(0,t) = 0 (1.3.11)
If the 1lower end x=L(t) is the glacier terminus, then L(t) is

defined implicitly by
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h(L(t),t) = 0 (1.3.12)
(This is not a mathematical boundary condition, but a physical
condition defining the limits of the ice mass. )
An initial condition of the form .

h(x,0) = H (x)
° ' (1.3.13)

is also required. For example, one simple initial condition is

Ho(x)=0, i.e. unglacierized ground.

1.3.4 PHYSICAL INTERPRETATION

Equation (1.3.5) may be interpreted in the following
manner. Consider a vertical prism of iée as shown in Figure 1.2,
extending from the bed to the surface h(x,t), with width W(x) in
the vy direction, and thickness 6x in the x direction. Let p be
the constant density of glacier ice. When (1.3.5) is multiplied
by the constant ,W(x)éxé6t, the first term is the net change in
mass in the prism in a time 6t (the prism 1is then taller or
shorter). The second term on the left is the difference in mass
between that which flowed out of the prism through the downslope
face, and that which flowed into the prism through the upstream
face, in the time 6t. This is the net loss of mass from the
prism into the downstream flow. The term on the right side is
just the total mass added to the prism in time 6t by snowfall or
melting. Thus, (1.3.5) states that the total layer of mass added
to the top of the prism at any position x is the sum of the
snowfall onto the prism and the net mass left inside the prism

by spatial flow variations.
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FIGURE 1.2, Vertical Prism For Continuity Interpretation.
1.4 PHYSICS OF ICE DEFORMATION

1.4.1 INTRODUCTION

In this Section, I will outline the derivation of a second
equation relating glacier thickness and ice flux so that the
continuity equation (1.3.5) can be solved. There are three steps
in this derivation. This is a standard procedure in modelling
glacier flow (e.g. Paterson, 1980; Raymond, 1980).

Newton's second law establishes relationships between the
surface and body forces and the accelerations in any continuum,
The stress equilibrium equations are outlined in Section 1.4.2.
Second, observations and theqry of the deformation of glacier
ice establish constitutive relationships between the stresses

applied to ice, and the resulting deformation. Glen's flow law
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for ice (Glen, 1955, 1958) 1is presented 1in Section 1.4.3.
Finally, in Section 1.4.4, after making simplifying assumptions,
substituting the stress equations of Section 1.4.2 into Glen's
flow law to get the strain rate, and integrating over
appropriate coordinates, I express the downslope component of
the ice velocity in terms of the ice thickness. Since ice flux,
thickness, and velocity are related through (1.3.7), this will
complete the derivation of a second equation needed to solve the

continuity equation (1.3.5) for ice thickness and flux.

1.4.2 STRESS EQUILIBRIUM EQUATIONS

Since glacier ice deforms slowly, the acceleration term in
Newton's second law can be neglected, leaving the result that,
for any volume V of a slowly deforming contingous medium,.

B+T=20 (1.4.1)
where’'B is " the total body force found by integrating the
specific body forces (force per unit mass) f(r) at position r

over all r throughout the volume V. Its components are

B = ﬁL(;) £ (r) a°r
1 1

\Y (1.4.2)
and T is the total surface traction on the surface S enclosing

the volume V with surface normal vector n. The components of T

T =ff n (r) ¢ (r) as
k j jk (1.4.3)

S

are

o;x 1is the stress tensor, i.e. the force - per wunit area on a

surface normal - to the X; axis acting in the x, direction. The
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Einstein convention, whereby repeated 1indices are summed, is
used in this section. Orthogonal axes are assumed.

Applying Gauss' Theorem (e.g. Prager, 1973, p. 29) to
(1.4.3) and substituting (1.4.2) and (1.4.3) into (1.4.1) by

components gives

de
p(r) £ (r) +
1
\

113
dx
1

(g)-I
jd3r =0

(1.4.4)
Since the volume V is arbitrary, the global equation (1.4.4) has
a local counterpart

d¢ (r)

p(r) £ (r) + __ ki =0
i dx (1.4.5)
k
Assuming that the net angular acceleration is zero, and
setting to zero the sum of moments acting on the volume V, gives

the result

« =9 (1.4.6)
ij ji
i.e. the stress tensor is symmetric. The development 1is very
similar to (1.4.1) through (1.4.5), and 1is given in Prager
(1973, p. 47). |

For a glacier, the only body force is gravity, so

f(r) = g : (1.4.7)

When the x, axis (to be called x) 1is taken along the
glacier bed which is at an angle g(x) to the horizontal, the x;
axis (z) is normal to it and upward, and the x, axis (y) is

horizontal, then the stress equations (1.4.5) are
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o6 do d¢ (o) (

XX + Xy + _xz + pgsin(g)= 0 1.4,.8)
X Y 3z
e de d¢

xz + yz + zz - pgcos(g)= 0 (1.4.9)
X oy dz
de Jde d¢

Xy + vy + vz = 0 (1.4.10)
o X oy dz

1.4.3 CONSTITUTIVE RELATION FOR ICE DEFORMATION

The constitutive equations for deformation relate the
stresses applied to ice to the resulting deformation rate. The
components of the strain rate tensor are

. 1]du du
€ =——i+—j
i§  2|dx dx
] i (1.4.11)
where u; is the ith component of the ice velocity.
Glen (1958) showed that the most general relation between

the stress tensor and the strain rate tensor for a nonlinear,

originally isotropic material had the form

€ = A(T ,T ,T )6 + B(T ,T ,T e
ij 1 2 3 1ij 1 2 3 1ij

+ C(T ,T ,T )6 ¢
1 2 3 ik kj (1.4.12)

where éﬁ is the Kroenecker delta
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6 =0 i#9
ij
= 1 i=7 (1.4.13)
and T,, T,, and T, are the first, second, and third scalar

invariants of the stress tensor (e.g. Prager, 1973, p. 22)

T = ¢
! ii (1.4.14)
T =16 ¢ -6 o )
2 2 ij ji ii jj (1.4.15)
T =1(26 ¢ ¢ -36 ¢ 6 *+06 o o )
3 6 i3 jk ki ij ji kk ii jj kk
(1.4.16)
Terms in higher powers of ;. can be eliminated by the

1]
Hamilton-Cayley equation (e.g. Prager, 1973, p. 25). The

stress-dependent coefficients must be functions of, at most, the
scalar invariants, because the relation (1.4.12) is independent
of the choice of axes.

The coefficients A, B, and C may be dependent on
temperature.

Rigsby (1958) showed that, to a good. approximation, the
deformation rate of ice crystals was independent of the
hydrostatic pressure p, where

Pp=1cs

ii ' (1.4.17)
when the ice temperature was measured relative to the
pressure-melting point. This result means that the constitutive
relation can be written more simply in terms of the deviatoric

(]
stress O'ij '
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16 4
ij ij 3 ij Kk (1.4.18)
By definition, the first scalar invariant T} of dﬁ is
zero. By further assumptions, first that the density of glacier
ice is constant (see Appendix 4), second, that, for a given
streés, the components of strain rate are proportional to the
components of the stress deviator tenspr, and third, that the
second invariant of the strain rate tensor is a function of T}
only (see Glen, 1958) the flow law presented by Nye (1953)

reduced the general relation (1.4.12) to

€ = B(T') &'
ij 2 ij (1.4.19)

When ¢ and r are the square roots of the second scalar

1)
plausible relationship was

invariants of ¢;; and ‘ﬁ (r =JT7), Nye (1953) showed that a

. n
e = A v (1.4.20)

Using the case of a simple slab deforming by shear parallel to

the x axis, combining (1.4.20) with (1.4.19) implies that

n-1
B(T') = A« (1.4.21)
2
and
. n-i
€ = A r o' (1.4.22)
ij ij

The exponent n in (1.4.20) is independent of temperature.

Values in the literature vary from 1.5 (Gerrard and others,

1952) to 4.2 (Glen, 1955), and the value usually used for

glacier modelling is n=3 (e.g. Paterson, 1980). The factor A
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follows the exponential Arrhenius temperature dependence

A = A exp(-Q/RT)
0 (1.4.23)

where A, is a constant, R is the gas constant
(8.314 J K- 'mol-'), Q0 is the activation energy for creep, and T
is the temperature (°K). Values of Q for secondary creep of
‘polycrystalline ice are 60 kJ mol-? for T < -10°C, and
approximately 139 kJ mol-'! for T > -10°C (Paterson, 1981,
p. 34). The presence of small amounts of water causes grain

boundary sliding (Barnes and others, 1971; Jones and Brunet,

1978) above -10°C. The deformation below -8°C 1is dominated by

basal glide (Barnes and others, 1971).

In this study, the ice is assumed to be isothermal at 0°C,
and the flow law parameters used are (Paterson, 1981, Table 3.3,
p. 39) |

n=3 A =5.310""'5 g-!' kPa~? (1.4.24)
These values apply only fdr secondary creep, after the initial.
transient response to loading has died away.

Other constitutive relations have been proposed for glacier
ice, such as a hyperbolic sine relation (Barnes and others,
1971), or a polynomial with odd order stress terms (Meier, 1958,
1960; Lliboutry, 1969[al; Colbeck and Evans, 13973). ‘However,
laboratory experiments (e.g. Glen, 1952, 1955; Steinemann, 1958)
and field measuréments of closure of boreholes and tunnels and

deformation of boreholes (e.g. Gerrard and others, 1952; Nye,

1953: Mathews, 1959; Meier, 1960; Paterson and Savage, 1963[a],
1963[b]; Haefeli, 1963[a)]; Shreve and Sharp, 1970; Raymond,

1971: Paterson, 1977) and the flow of ice shelves (Thomas, 1973)
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indicate that (1.4.22), known as Glen's flow law, is a useful

and satisfactory constitutive relation for glacier ice.

1.4.4 SHEAR STRESS AND ICE FLUX

In this section, I will outline the derivation of the shear
stress parallel to the bed, and how it can be integfated to give
the downslope velocity component and the ice flux. The errors
and assumptions are explicitly shown. The details are given in
Appendix 7.

The stress equilibrium equation (1.4.8) can be integrated
from the surface to a height z above the glacier bed to give the

shear stress

, d¢' do'
¢ (x,2) = spg(h-2z)sina |1 + O|2h_xx + h__yy
Xz X oxX

pghe

(1.4.25)
which is derived from (A7.3.21) in Appendix 7. The leading
factor is the standard formula for shear stress in a
parallel-sided slab deforming by simple shear parallel to the
bed (e.g. Paterson, 1969, p. 91) when the shape factor s 1is
unity (see Appendix 7, Section A7.4). The surface slope s is an
effective slope averaged over a distance of at least the order
of 4h (Budd,1968; 1970[a)). The average stress deviators in the

second term are defined by
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h(x)
d¢' = _1 d¢' z<h
XX (h—z{[ xx dz'

ax (1.4.26)

= 0 z=h

with a corresponding definition for the yy component. If I~
'consider the x- and y-directed forces on an ice column from the
ice surface to the bed, the correction terms in (1.4.25) are,
very roughly speaking, ratios of the normal forces to the basal
shear force. These ratios are usually very small for glaciers
and 1ice sheets. Lliboutry (1958[b]), Shumskiy (1961), and Robin
(1967) used a correction term similar to this to account for
longitudinal strain, and Collins (1968) published a mathematical
justification of it. Nye (1969[al) simplified the analyticai
formulation by an appropriate choice of axes. My formulation
differs in some details, partly because I use the axes of the
numerical model (see Section 1.3).

Budd (1968; 1970{al; 1970[b); 1971) gave a detailed
discussion of stress variations in glaciers, 1including
correction terms and the wavelength ranges for which they may be
important. Hutter (in press) gives the most recent and rigorous
treatment of stress in glaciers.

The shape factor is an approximate correction between zero
and unity for the reduction in the shear stress g¢,, along the
channel centreline when some of the weight of the glacier is
supported by the valley sidewalls. It was first used
guantitatively in work on rectilinear flow in rectangular,
parabolic, and elliptical channels by Nye (1965[c]). I describe

shape factors in more detail in Appendix 7, Section A7.4.
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In arriving at (1.4.24) in Appendix 7, I assumed that the
slope angles o of the ice surface, and g of the glacier bed were
small, i.e.

la(x) ]| << 1 (1.4.27)

|g(x)] << 1 (1.4.28)
I also assumed that ¢ was never negligibly small compared to g.
This may not be true near an ice divide.

Although (1.4.8) contains sing, the final result (1.4.25)
for the shear stress depends only on sine. Nye (1952[b]) first
pointed out this result. When the small angle assumptions
(1.4.27) and (1.4.28) hold, the 1longitudinal stress gradient
term baw‘/ax in (1.4.8) introduces a term in (e-g) which cancels
the bed slépe dependence, leaving only the surface slope
dependence of (1.4.25).

With the assumption that the major shear deformation occurs

parallel to the bed, i.e.

dv /du| << 1
d¥x/ dz (1.4.29)
the shear strain rate
¢ = 1|du + dv
Xz 2|0z dx (1.4.30)
is.approximately
e = 12du
Xz 2 dz (1.4.31)

which can be integrated directly, from the bed to height 2z, to

give
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z
u(x,z) = u (x) +S e dz'
s X2z
0 (1.4.32)
where u.(x) 1is the basal sliding velocity discussed in Section
1.5.

If I further assume that r, the sguare root of the second
invariant of the stress deviator tensor (1.4.19) is
approximately equal to the shear stress ¢, , 1i.e. shear stress
parallel to the bed is by far the largest stress deviator

component, or

Q|O~
-
=

[

Q

X2z ¢
Xz (1.4.33)

then I can substitute Glen's flow law (1.4.22) for the strain

rate ¢

«z in (1.4.32), wusing o, from (1.4.25) for both r and

Z

6., + £O get the velocity component u(x,z) parallel to the bed.

u(x,z) - u (x) =
)
n n+1 n+1
2A[s(x)pgsin(a(x))] [h - (h-2) ] [1 + e(x)]
(n+1)

(1.4.34)
where the error e(x), i.e. the terms not included in the

computer model, has the form

d¢' 3¢’ [-14
e(x) =0 n[Zh xx + h yy] + (n-1)s - dv /du
dX oxX Xz o0x/ 3z
pgha

(1.4.35)

where the symbol O[x] means "is of the order of x", i.e. the

function goes to zero at the same rate as x. I have assumed that
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the glacier 1is 1isothermal, 1.e. temperate, so that the
coefficient A of Glen's flow law(1.4.22) can be treated as a
constant. If the ice temperature varies with z, the integral can
be evaluated numerically.

The downslope ice flux for use in the continuity egquation

(1.3.5) is
hix,t) .
Q(x,t) = u(x,z,t) dz
0
n n+2
= u (x,t) hix,t) + 2A[spgsina] [h(x,t)] [1+ e(x)]
s n+2 :

(1.4.36)

With the assumptions discussed above, the error term involving

e(x) is small; it is neglected in the computer model in its
present form.

The average velocity V(x,t) wused 1in Section 1.3 and

Appendix 1 is defined as

v(x,t) = Q(x,t)/h(x,t) (1.4.37)
which is
n n+1
V(x,t) = u (x,t) + 2A[spgsine] [h(x,t)] [1+ e(x)]
s n+2
(1.4.38)

The term on the right due to the internal deformation is just
(n+1)/(n+2) times the downslope velocity component at the ice

surface u(x,h(x),t) from (1.4.34).
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1.5 BASAL SLIDING

1.5.1 INTRODUCTION

The one quantity still required to complete the derivation
of the downslope velocity u(x,z) and the flux Q(x) is the basal
sliding velocity ug(x) which appeared as an integration constant
in (1.4.32). Raymond (1980), in a recent review, gave a summary
of sliding behaviour, measurements, and the physical processes
possibly 1involved, and pointed out some difficulties of
guantitative modelling of sliding.

In Appendix 8, I summarize current ideas on the physics of
sliding, and review the use of sliding in computer models. 1In
this section, I discuss the importance of sliding, the way I

treat sliding in Chapter 3, and the reason for my choice.

1.5.2 BASAL ICE TEMPERATURE AND SLIDING

Ice masses which are cold at the base, 1.e. have
temperatures below the pressure melting point, do not appear to
slide. The basal ice is effectively frozen to the glacier bed,
and

u (x) =0
s (1.5.1)

Ice masﬁes whiéh have temperatures at the pressure melting
point at the ice-rock interface exhibit sliding velocities which
range from zero to values much greater than the velocities due
tb internal deformation. The model I describe in this study

assumes an isothermal ice mass. Due to the existence of the
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geothermal heat flux, and the resulting geothermal temperature
gradient, the only possible essentially isothermal ice mass 1is
one at the pressure melting point throughbut its volume
(neglecting a possibly cold surface layer caused by diffusive
penetration of the winter cold wave), because only then can the
geothe;mal flux beAabsorbed at the base by being . transformed
into energy of fusion. This means that sliding velocities can be

an important component of motion for my modelling situations.

1.5.3 PHILOSOPHY OF SLIDING IN THIS STUDY

Correctly modelling the physical processes of glacier
sliding is, at the present, very difficult, due to inadequatg
observations, and the large number of uncontrolled physical
variables possibly involved in sliding processes. In Appendix 8,
I have outlined the problems of measurements, the physical
complications of sliding processes, the present state of sliding
theory and its quantitafive application in computer models.

In the models presented in this study, I do not attempt to
investigate or to simulate the physics of glacier sliding. My

aim, in Chapter 3, is .to investigate the consequences of surging

(defined by a periodic sliding history) on structures within a
glacier, given that periodic surging occurs in the defined
manner. I do not attempt to induce surges in the model by any
particular physical mechanism. This approach to investigating
effects of surging was also wused by CampbellAand Rasmussen
(1969) and by Clarke (1976).

I could easily incorporate the theories of Weertman (1957),
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Nye (1969[b]; 1970), Kamb (1970), Morland (1976[al; 1976[b]), or
Budd (1975) to calculate the sliding veloéities, but the results
would be numerically suspect, due to the problems discussed 1in
Appendix 8, and would add nothing to my investigation of -the

consequences of surging.

My approach is, instead, to use a predetermined sliding
function us(x,t) (based as closely as possible on the reasonably
well inferred sliding history of a surging glacier such as the
Steele) as a driving function for periodic surges 1in the
computer model. I calculate the response of the glacier model to
this driving function by using continuity and Glen's flow law to
find the 1internal deformation. For my purpose of finding the
effects of surging on the internal structure, this approach 1is
no worse than using a numerically inadequate sliding theory, and
it has the distinct advantage that I can control the s§liding at
will while I relate sliding patterns to resulting changes within

the ice mass.
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CHAPTER 2: MODELS AND TESTS

"Things are seldom what they seem;
Skim milk masquerades as cream."'

2.1 INTRODUCTION

2.1.1 OUTLINE

In this chapter, I outline the operation of the computer
models and I describe tests used to verify their correct
operation. In this introductory section, I explain why I think
tests are important. In Section 2.2, I describe the continuity
equation glacier pfofile model, and in Section 2.3, how I have
tested it. 1In section 2.4 I describe the particle trajectory

calculations, and in Section 2.5, how they were tested.

2.1.2 IMPORTANCE OF MODEL TESTING

Analytical solutions of initial value problems are most
desirable, because the <correctness of the solution can be
verified for all space and time simply by substituting the
solution into the differential equation. Unfortunately,
analytical solutions to ice flow problems are restricted to a
few cases with simple boundary conditions, uncomplicated
rheologies, and, often, steady states.

A finite difference numerical model uses a set of algebraic

' H.M.S. Pinafore. Gilbert and Sullivan.
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equations whose solution closely approximates a digitized
version of the true solution of the differential eqguation, to
within a truncation error (see '~ Appendix 1, Section A1.5.3).
Numerical solutions can extend the domain of solvable problems
to include those with quite general boundary conditions, ice
rheolog&, and temporal variations. The price which is paid for
this 1increased generality, however, is a new inherent
uncertainty in the validity of the solution obtained.
Substitution of a numerical solution into the finife difference
equations, or into the differential equation, can give, at most,
the residual errors in the most recent time step. The long term
integrated error is unknown. The danger is that a numerical
solution will behave in a qualitatively reasonable manner, yet
quantifatively may be, over some time scales, grossly wrong. For
instance, ice velocities and thicknesses may be in error by tens
of percent, and the phase of cyclic phenomena such ‘as surging
may become totally unrelated to the phase of the true.solution.
These possibilities should make us quite cautious about any
predictive claims made for numerical models. We could obtain a
result no more accurate, at best, than an educated guess, yet be
lulled into believing that it was an quantitative prediction of
glacier behaviour.

There are two possible sources of error in numericél
solutions. First, the computer program may not correctly solve
the set of algebraic equations. Programming errors, such as
incorrect constants or missing minus signs, sometimes go
undetected. Spurious numerical "solutions" of this kind have on

occasion found their way into the scientific literature. By
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careful program design and the use of consistency checks, these
'errors can be eliminated, although not all programmers have
taken the time to do so.

Assuming then, that the computer brogram works correctly,
there is still another source of error. The numerical scheme
used in the computer model may not adequately represent the
differential equation at all time scales. .One example of this is
the linear computational instability (Appendix 1,
Section A1.4.2). The solution of the finite difference eguations
may include an exponentially growing high wavenumber oscillation
completely wunrelated to the differential equation. Fortunately,
this error is usually easy to recognize!

The other cause for concern is the possibility that the
numerical solution may drift away from the true solution, yet
still look "physically reasonable". This could be caused by any
of several factors. For example, inappropriate mesh intervals
(Appendix 1, Section A1.5.2) may cause incorrect dispersion and
spectral attenuation, distorting the solution to an unacceptable
degree. Introducing smoothing schemes in attempts to suppress
numerical instabilities can cause similar distortions (and may
still fail to totally remove the instabilities). For example,
the widely reported ice sheet model of the Melbourne group (Budd
and Jenssen, 1975; Budd and Radok, 1971) was wused by ‘McInnes
(unpublished), who appears to have encountered all of the above
difficulties. In an attehpt to model surging glaciers in the
presence of growing numerical instability, McInnes (p. 64)

reported:
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" Different time steps give slightly different surge times
and periods and therefore at the same growth time, profiles
are not directly comparable. Also due to the different
number of steps, and the smoothing scheme not being
perfect, the lower the time step the more iterations, which
leads to more smoothing which tends to lower either the
depth or the base velocity, and therefore affects the
surging times."
and further, discussing a «criterion to introduce automatic
smoothing at the appearance of instability problems (p. 64):
"Using this test before automatic smoothing, 1lessens the
number of times smoothing is used, and therefore decreases
the effect smoothing has on the exact profiles.”
There is obviously little cause for optimism in the belief
that this numerical model, for instance, was providing a
solution that closely matched the true solution at all times.
The results of the McInnes study were published by Budd (1975)
and by Budd and McInnes (1974; 1978; 1979). I mention this
example, not to «criticize any particular individuals, but to
illustrate the lack of attention paid to this serious question
by most members of the glaciological modelling community. Even a
major glacier modelling program has apparently had serious
difficulties with accuracy, consistency, and mass conservation
(see Appendix 16), yet model verification has not been given
priority discussion in the published literature.
Because numerical model results cannot be verified for the

complicated problems the numerical models are created to solve,

it is imperative that numerical schemes be verified by comparing

their numerical solutions with analytical solutions for simpler
problems before the numerical models are used for new problems.
There is always a temptation with a new model to rush into the

solution of complicated glaciological problems. This urge to
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break new ground in a hurry must be controlled until the
numerical model has been demonstrated to work accurately on
known ground. Only in this way can there be any confidence in

the results.
2.2 CONTINUITY EQUATION PROFILE MODEL

2.2.1 INTRODUCTION

I have written a FORTRAN IV computer program which
numerically solves the continuity equation (1.3.5), when
brovided with a subroutine to calculate the velocity V(x,t)
averaged through the ice thickness. The flow equation (1.4.38)
based on Glen's flow law (1.4.22) 1is wused for glacier
simulations (Chapter 3). I describe the computational scheme in
detail in Appendix 1. I summarize the computational aspects in
this Section, including the numerical scheme (Section 2.2.2),
the boundary conditions (Section 2.2.3), numerical stability
(Section 2.2.4), and accuracy (Section 2.2.5).

Inputs to the model are bedrock elevation b(x), mass
balance A(x,t), the initial ice thickness Hyo(x), the ice flux
Qo(t) through the upslope boundary, and parameters to specify
the sliding and flow properties of the deforming medium. Output

from the model is the time-varying ice thickness profile.



43

2.2.2 THE NUMERICAL SCHEME

Complete details of the numerical scheme are given in
Appendix 1, Sections Al.1 and A1l.2.

1 solve the continuity equation (1.3.5) by a finite
difference method (e.g. Richtmyer and Morton, 1967). The partial
differential equation (1.3.5) 1is approximated by a set of
algebraic equations for the ice thickness {h5|j=1,J} at a set of
mesh points at equal horizontal intervals of Ax. Starting from
an initial condition {hf|j=1,J}, the solution 1is obtained by
time marching, wusing a possibly variable time step at. The

finite difference equations are

n+1 n n+1 n+1 n n ;
h -h + 6 (Q -Q ) + (1-8) (Q - Q )
g 3 - j+1/2 j-1/2 —_— j+1/2 j-1/2
At 1Y _ AX W AX
3 J : J 3
n+i n
= OA + (1-6)a (2.2.1)
3 3

1<j<J 1<n<N

where superscripts indicate the time step, and subscripts
indicate the spatial mesh point. Mass balance Aj and ice
thickness Qjare measured normal to the bed, and the mesh
increments Ax; are measured along the bed. The weight factor ©
is a constant between zero and unity, used ‘to stabilize the
scheme. I discuss © further in Section 2.2.4.

The ice flux Qj+V2 between the meshpoints is related to the
ice thickness hj at the meshpoints, the channel width LEPRY and

the vertically averaged downslope velocity Vi between the

meshpoints by
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Q =V W (h + h ) (2.2.2)
jx1/2  jE1/2 jxi/2  _GE1
2

Most of the wvariables in (2.2.2) afe shown in Figure 2.1. The
flux 1is calculated midway between mesh p§ints because of
numerical stability considerations.

The set of eguations (2.2.1) can be written in matrix form
as

H=D

X

(2.2.3)
where the components of the vector H are the wunknown ice
thicknesses at the mesh points at the future time step
{hg“[j=1,J}, the right side vector D contains gquantities from
the previous time step, and the matrix M contains coefficients
involving velocity at the future time step. Since the velocity
is related to the ice thickness (Sections 1.3 and 1.4), this
makes (2.2.3) nonlinear, and the system must be solved
iteratively. For the first iteration, the velocity profile at
the previous time step {V; |j=3/2, 5/2,...3+1/2} is used as an
estiméte of {ov;*‘|j=3/2, 5/2,...J+1/2} , to calculate the first
estimate of the 1ice thickness ~{oh;’“|j=1,J} . Prescripts
indicate iteration number. These ice thickness estimates are
then used to calculate an estimate {,Y;*‘|j=3/2, 5/2,...J+1/2}
of the longitudinal velocity profile at the future step. The

residuals (2.2.4)
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r =, 2pelQ -0 1+ 2p (1-8)[Q -Q ]
J i ivv/2 j-1/2 3 j+1/2  3-1/2
n+1 n n+1 n
+ h -h -6A at - (1-8)A At
J J J )
133 1 <n<N (2.2.4)
where
p = at/(2axW ) (2.2.5)
J J

then measure the degree to which the current estimates of ice
thickness and velocity fail to satisfy the continuity equation
(1.3.5).

By using a linearized equation (2.2.6) to relate residuals
to ice thickness corrections 6hj required to make the ;esidualé

go to zero,

J

Zbrho1
— (2.2.6)
a ne ot

k=1

or A sh=r (2.2.7)

I obtain essentially a multi-dimensional formulation of the

Newton-Raphson method (e.g. Carnahan and others, 1969, p. 319)

to solve (2.2.4). The iterations terminate when the largest
residual in absolute value 1is smaller than a preset test

criterion. I discuss the choice of a criterion in Appendix 11.
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2.2.3 BOUNDARY CONDITIONS

The set of equations (2.2.1) with (2.2.2) consists of J
equations in J+2 unknowns { h;“|j=0,J+1}. Since equation
(1.3.5) 1is a first order differential equation, it requires one
boundary condition selected from (1.3.10) through (1.3.12). This
gives one of the required two extra eguations.

At an ice divide, zero input flux is.modelled by including

an 1image point h, at a distance Ax outside the boundary j=1,

with

1/2 3/2 (2.2.8)
This forces the surface slope to be zero at the boundary, but
the ice thickness can wvary with time. This ‘situation is
illustrated in Figure 2.1.
For a valley glacier originating on a bedrock slope,

h =0
! ‘ (2.2.9)

and the ice surface slope. can adjust to any appropriate value.
To model only a portion of an 1ice mass such that the
upstream end of the model is some distance downslope from the
bergschrund or divide (e.g. Chapter 4, where an icefall |is
modelled), the ice flux must be specified at 1/2 mesh increment
above the boundary, i.e.
n
Q = Qo(nAt)

1/2 (2.2.10)

The second extra equation required to balance the number of
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FIGURE 2.1. Numerical Scheme At Ice Divide.

equations and unknowns comes from the treatment of the downslope
boundary. If I treat the boundary as fixed in space, and simply
allow ice to flow through it and out of the model, I can get the
equation by writing h;,, as an appropriate extrapolation of the
ice thickness at the meshpoints. I use the second order Newton's

divided differences polynomial (e.g. Carnahan and others, 1969,

p. 12).

1f 1 choose to follow the actual motion of the glacier
snout: defined by x=L(t), I must keep track of L(t) when it
falls between the meshpoints, and be able to add or subtract
points to or from the mesh as the terminus moves. I assume that
the terminus is wedge shaped from the last mesh point J to the
snout at L(t), as shown in Figure 2.2. Then, I apply the
principle of conservation of mass to the shaded section of the

wedge, obtaining the required final equation by balancing the
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FIGURE 2.2. The Wedge Terminus.

volume change of the wedge against ice flux into the wedge from
upslope plus net mass balance on the upper surface, durihg each
time step. The details may be found in Appendix 1, Section
A1.3.4. As the terminus moves, the 1ice thickness hI at the
upstream end, the snout position L(t), and the slope of the ice
surface are all free to adjust to changes in the flow. This

terminus model 1is similar in many respects to that used by

Bindschadler (unpublished).

2.2.4 NUMERICAL STABILITY

1f the finite difference numerical scheme and the mesh
increments are chosen unwisely, the finite difference equations
may admit a solution quite different from the solution of the
differential eguation. This usually involves a spurious

exponential growth of some wavenumber component which quickly



49

dominates the desired bounded, physically reasonable solution.

Rigorous stability analysis of nonlinear equations is
usually not feasible, but stability criteria for 1linearized
analogues generally give wuseful guidelines and insights into
stability of the nonlinear forms.

The first type of .stability problem, the linear
computational instability, 1involves the choice of the mesh
increments At and aAx. For many systems of finite difference
equations, 1instability can occur when the time step At is too
large relative to the space step ax. If Ax/At 1is much greater
than the material velocity V, material travels many mesh
intervals per time step, and the system tends to 'forget' the
physical solution. The von Neumann method (e.g. Richtmyer and
Morton, 1967, p. 70), is one standard stability analysis for
linear or linearized equations. The method involves finding the
transfer function T(m) in the wavenumber domain which multiplies
the Fourier‘transform of the solution at the previous time step
n, to give the Fourier transform of the solution at the future
time step n+1., If

T(m) <1 (2.2.11)
at all wavenumbers m, no wavenumber can grow, so no instability
can exist. After linearizing (1.3.5) by setting the velocity V
to a constant in (1.3.7), I find that by choosing

&2 1/2 | | (2.2.12)
I obtain unconditional linear computational stability for any
choice of Ax and at.

The second type of numerical instability is called 'the

nonlinear instability' (e.g. Phillips, 1959; Mesinger and
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Arakawa, 1976, p. 35). This 1is a problem which arises in any
numerical solution of a differential equation using a discrete
mesh, and having terms which are nonlinear in some combination
of the dependent and the independent variables. In (1.3.5),
9Q/9x has this form.

The nonlinearity pumps energy (squared amplitude of the
wavenumber spectrum) from the low wavenumber end to the high
wavenumber part of the wavenumber spectrum of the dependent
variable, and the aliasing (Appendix 3) due to discrete sampling
folds this energy back to the lower wavenumbers, where it
distorts the solution. Since the nonlinear instability has an
importance which 1is not widely recognized in the glacier
modelling community, I discuss it in detail in Appendix 1,
Section A1.4.3.

If a function is known only at discrete intervals ax, a
wellknown result from sampling theory (see Appendix 3) is the
fact thét its Fourier spectrum can be found only up to a
wavenumber my, called the Nyquist wavenumber,

m = _n
N OX (2.2.13)

This 1is a sampling rate of two samples per cycle. Wavenumbers
above this limit are misinterpreted as lower wavenumbers (see
Figure A3.2), by being ‘folded' back into the spectrum

symmetrically about m, (see Figure A1.3).

N

It is easy to show (see (A1.4.7) through (A1.4.9)) that
multiplying two band-limited Fourier series together gives a
producf bandlimited to the sum of the bandwidths of the two

signals. This happens with the ice flux Q=hV., If both h and V
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are always bandlimited to 2/3m,, their product is bandlimited to

N’
4/3mu, which is aliased back onto the interval from 2/3mN to m,,
but the 1lower 2/3 of the spectrum remains correct (see
Figure A1.3).

It is evident, thgn, that to avoid the nonlinear
instability, the aliased sigﬁél at high wavenumbers, 1i.e. above
2/3mN, must be heavily attenuated. At the same time, the
attenuation must not distort the low wavenumbers which contain
information about the glacier. ‘

Budd and Jenssen (1975) encountered an instability which
they attributed to machine roundoff error. I think it was
actually the nonlinear instability. Budd and Jenssen attempted
to cope with the instability by smoothing the velocity profile
Qhenever it began to oscillate spatially. McInnes (unpublished,
p. 58; p. 102) used the same computer programs to simulate
surging at Bruarjokull, Iceland. The broken curves in Figure 2.3
(redrawn from McInnes, (unpublished), p. 58) show the
instability which arose as he attempted to build up the glacier
to a steady state with no sliding, and no smoothing of the
profiles. In Appendix 1 Section Al1.4.4, I discuss the velocity
smoothing method used by Budd and Jenssen (1975), and also, the
addition of a purely numerical dissipation term- to (1.3.5) to
preferentially damp high wavenumbers. I conclude that the use of
either of these methods is hard to justify. The two methods I
use in this numerical model are superior on physical grounds.

First, if the flow equation for the continuum (e.g.

(1.4.34)) depends on the local ice surface slope o(x), then

large amplitude bumps in the solution profile should tend to
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FIGURE 2.3, Example Of The Nonlinear Instability.

The dashed curves redrawn from McInnes (unpublished, p. 58)
show the onset of the nonlinear instability on ice surface
profiles at 50 year intervals for a flowline on Vatnajokull
(Iceland). The Budd-McInnes model did not calculate flux at
the midpoints of the mesh intervals for h(x), and therefore
was vulnerable to the nonlinear instability. The solid
curves are the 50 year profiles from my computer model
using parameters in Table 2.1. The Budd-McInnes model also
appears to create mass (see Appendix 16).

diffuse out rapidly, due to the physical properties of the
medium (See Appendix 6, which relates perturbations of (1.3.5)
to a diffusion equation following Nye (1960)). This same process
should also efficiently smooth out high wavenumber

instabilities. In Appendix 13, I have shown that, when .the ice
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flux 1is calculated at the midpoints of the mesh intervals,
i.e. at jtl/z,»as shown in Figure 2.2, this physical diffusion
process 1is incorporated into the numerical model and controls
the nonlinear instability at all wavenumbers.

For example, the broken curves in Figure 2.3 show the onset
of the nonlinear instability in the Budd-Mclnnes (1974) computer
model (Budd, 1975; Mclnnes, unpublished). The original caption
on Figure 4.3 of McInnes, from which these profiles are redrawn,
was

"Profiles from the Vatnajokull model at (fifty year

intervals, showing the increase in the magnitude of the

oscillations with time, due to the two point finite
difference approximation. In this case, no smoothing was
used."
IThese authors did not calculate the ice flux at the midpoints of
their mesh intervals. As a result, the diffusive mechanism of
Glen's flow law was unable to pfevent sérious aliasing ét the
Nyquist wavelength (in this case, 2 km). The trigger for the
instability‘ could have been a large truncation error

(Appendix 1, Section A1.5.3) resulting from the use of a forward

difference at the boundary (Budd and Jenssen, 1975). The solid

n A s g P AX At
-n -1
bar a ms - 2 kg m-3 m a
2 .225 , 1.0 9.8 S10. 1000, 1.0

TABLE 2.1. Parameters for Vatnajokull (Figure 2.3)

curves are the 50 year profiles using my computer model with the

parameters in Table 2.1. As far as I can tell, McInnes also used
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these values. The nonlinear instability is removed at all
wavelengths due to the choice of numerical scheme. As well as
the high wavenumber oscillation, the Budd-McInnes model appears
to suffer from a mass conservation error. I discuss this further
in Appendix 16.

A second method must be used when the ice flux is not a
function of the local ice slope. For example, the gravitational
'stress may be calculated using an intermediate or large scale
slope (e.g. Bindschadler, unpublished, p. 92). In this case, 1
remove the nonlinear instability without distorting the low
wavenumber signal at all, by, at the completion of each time
step, taking the Fourier trangform of both the velocity profile
and the ice thickness profile, and multiplying by the 1lowpass
filter 1in Figure 2.4; this filter has a cutoff at 2/3mN. I then
perform the inverse Fourier transform to obtain the profiles
which are bandlimited at 2/3 m,, and unaffected by aliasing. The
nonlinear instability cannot grow, and cannot affect the
solution below 2/3m,. By a suitably small choice of the mesh
increment Ax, m, can be made large enough so that all physically
interesting wavenumbers in the glacier profile are well below
the cutoff wavenumber.

Phillips (1959), who originally identified the ‘nonlinear
instability, suppressed it in this manner. However, the
procedure was quite costly to implement, because his work
predated the Fast Fourier Transform algorithm (Cooley and Tukey,
1965). In my work, using the filter of Figure 2.4 with the Fast
Fourier Transform method did not dramatically "increase the

computer execution time for the tests I performed.
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FIGURE 2.4. Filter To Suppress The Nonlinear Instability.
The Nyguist wavenumber is at maAx=w.

2.2.5 ACCURACY

Having achieved a stable scheme, I must now ask how
accurately it solves the partial differential equation. In
Section A1;5, I examine the accuracy of the numerical scheme by
two somewhat complementary methods.

The first method follows from the von Neumann stability
analysis in Section 2.2.4. At all wavenumbers m, I compare both
amplitude and phase of the transfer function T(m) of the the
numerical scheme with those of the partial differential egation.
Errors in amplitude represenf incorrect attenuation, and errors
in phase represent incorrect propagation speeds and dispersion.
For the lirnear equation, the conclusion is to use

& = 1/2 (2.2.14)
for the most accurate amplitudes (sée Figure A1.7), and to take

Ax as small as feasibly possible to get accurate phase (see
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Figure A1.8). I use these conclusions as a guide when selecting
parameters for the nonlinear model.

The second method is an estimation of the 'truncation
error'. This is the difference between an exact solution h(x,t)
of the differential equation, and an exact solution {h;|j=1,J}
of the finite difference equations. It is a spatial domain error
estimate, i.e. it estimates the total error at each x position,
rather than estimating the error in each sine wave component.
After assuming that ice thickness h(x,t) and ice f£lux Q(x,t) are
infinitely differentiable, the finite difference solution can be
expressed as truncated Taylor expansions about the solution

"h(x,t) and Q(x,t) of the differential equation. The error is
expressed in terms of the first neglected derivatives. The

result is that the truncation error e; has the form

n (1-28) 3*h|n 1 &°h|n aE d*Qn

e = At A + At? |- + AX2|—

j 2 dt?|j 6 dt3|j 24 9x? |5
(2.2.15)

The leading term vanishes with the choice

e = 1/2 . (2.2.16)
This is the same result obtained from the wavenumber analysis
(2.2.14). The truncation error is also minimized by keeping the
mesh increments as small as possible. The <coefficients can be
estimeted from the third derivatives of h and Q in the numerical

model to get a quantitative estimate of the error.
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2.3 TESTING THE CONTINUITY MODEL

2.3.1 INTRODUCTION

Two tests are described in this subchapter. The first
verifies that the model satisfies continuity with nonconstant
width, balance, bed, v;locity, and ice thickness, and that the
terminus moves correctly. The second test verifies that the
programs accurately solve a realistic nonlinear problem in which
the flow velocity depends on both h(x,t) and its gradient in x.

Although other tests of numerical models are available
(e.g. Waddington, 1979), the tests presented here are a simple,
reasonably comprehensive, and stringent trial of any numerical
flowl}ne model based on the continuity equation (1.3.5). I think
that it is a reasopable proposal that these tests be used as a
minimum standard for wverification and comparison of all
numérical models of glacier flow prior to attempts to use them

to model complicated ice masses.

2.3.2 CONTINUITY TEST WITH TERMINUS MOTION

The ability of the glacier model terminus to move
correctly, i.e. at a rate consistent with the flow 1law being
used, 1is critical to accurate simulation of glacier flow (e.g.
Nye(1963[al, 1963[b]); Nye in discussion of a paper by Mahaffy
and Andrews (1976)). If the model terminus advances too slowly,
it will act as a dam, resulting in a glacier solution which is
too thick, slow, and short, even though continuity is satisfied

everywhere. If the terminus of the model advances more rapidly
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h s s 1Y W' c AX at
[o] (o] o}

0.1 -1.0 0.01 1.0 1.0 -0.02 0.01 0.5

0.1 -0.1 -0.01 1.0 1.0 -0.02 0.01 0.5

TABLE 2.2. Parameters for continuity test with moving terminus.
The first line gives the advancing model, and the second
line gives a retreating model. See Figure 2.5 and
Figure 2.6. .

than the correct rate, the glacier solution will be too thin,

fast flowing, and extended.

No simple approximations are available to simplify the
stress equations (1.4.8) through (1.4.10) near the glacier
terminus. Nye (1967) published a solution for the shape of a
glacier terminus. Since this solution assumed steady state, a
horizontal bed, and perfectly plastic ice, it is not suitable
for inclusion in my numerical model. The terminus model being
tested is described in Section 2.2.3 and A1.3.

To check that the numerical model satisfies continuity
everywhere and advances or retreats correctly when it is allowéd
to choose 1its own terminus position, 1 use a- channel, mass
balance, and a flow law giving an analytical solution- to the
continuity equation (A1.1.1) and show that the model reproduces
this solution accurately. My choice is to some extent arbitrary.
Other solutions could easily be found. However, the one used
below. is a good one because it is evident at a glance whether
the model results are correct, and it tests the model with a

number of nonconstant and nontrivial input functions. Let h,,

So, S, Wo, W', and c be constants, let the channel width W(x) be
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FIGURE 2.5. Continuity Test with Moving Terminus.
Flow is to the right. The solution profiles are shown at
intervals of 10 time units up to 40 units, then at 5 units.
The model is described by equations (2.3.1) through (2.3.5)
with the constants in Table 2.2.

W(x) =W + W'x
° (2.3.1)

and the mass balance A(x) be

A(x) = sx + c/W(x) (2.3.2)
I use a vélocity (averaged over depth) given by (2.3.3). This

has no physical significance; it is merely a numerical test.
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V(x,t) = ex/[W(x)(h(x,t)-h )]
0 x#0
= ¢/[s(t)wlx)] x=0
(2.3.3)
where the surface slope s is given by
s(t) = s + st .
° (2.3.4)

(During the numerical solution procedure,.care should be taken
to avoid the singularity in (2.3.3) when h(x,t) approaches hy;
this can be done by approximating (2.3.3) by a suitably smooth
analytical function in the region of h(x,t) near h, and
h(x,t)>hy.) Substitution of (2.3.1) through (2.3.5) into
(At.1.1) verifies that the thickness solution h(x,t) is

h(x,t) = h + s(t) x
° (2.3.5)

Diétance X 1is measured along the glacier bed. Any bed profile
may be usedlin the numerical model. The thickness hy, at x=0 is
constant for all time, and h(x,t) varies linearly with x at all
times, resulting in a wedge-shaped "glacier" with slope s(t).
This slope s(t) changes linearly with time at the constant rate
S. By solving (2.3.5) for the value of L such that h(L(t),t)=0,
the correct glacier terminus position is found to be at

L(t) = -ho/s(t) (2.3.6)

Figure 2.5 shows the numerical results for the advancing model
using the constants in the first 1line of Table 2.2, and the
curvilinear bed shown in Figure 2.5. The wedge solution advances
to the right and is‘ shown at equal time intervals of 10

nondimensionalized units for the first 40 units, and at 5 units



61

0.2 I
T
Continuity test
with moving terminus
L X measured along bed -
hiIX. 1) plot interval 10 units - -
' plot interval 5 units
0.1 -
N
.\
- “\ -
NN
W
W\
0.0 LW\
0 0.5 1.0

FIGURE 2.6. Continuity Test With Moving Terminus.
Results in Figure 2.5 with bed -elevation removed and
distance measured along the bed.

thereafter. Figure 2.6 shows the same results with the bed
elevation subtracted, and distance x measured along the model
bed rather than horizontally, i.e. it should be the solution
h(x,t) in (2.3.5). In fact, it reproduces (2.3.5) to within one
part in 10%. The same degree of accuracy is obtained with the
retreating model (Table 2.2) which duplicates the curves of
Figure 2.6, but in the reverse order. This verifies that the
numerical model satisfies continuity everywhere and moves the

terminus correctly under quite general conditions; the width
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varies with x, the mass balance varies with x, and the velocity

varies with h, x, and t.

2.3.3 CONTINUITY TEST WITH BURGERS' EQUATION

The test 1in Section 2.3.2 verifies that the model works
correctly with general geometrical input and a moving terminus.
In this section I show that the iterative procedure in the
numerical model works accurately by correctly solving a fully
nonlinear equation with a realistic form of velocity depending
on both ice thickness and slope. The problem solved also
includes kinematic waves.

The theory of propagation of shock waves in a gas with
diffusion has been investigated by many authors. Contributors to
the literature of gas dynamics have included Stokes (1848),
Rankine (1870) and Taylor (1910). Methods discussed in the text
on nonlinear waves by Whitham (1974) are closely followed here.
One standard approach to find the gas density as a function
spacé and time in a shock front 1is to solve a continuity
equation analogous to (1.3.5) (but with no source term on the
right hand side) together with an eguation analogous to a flow
law relating gas flux Q to gas density H. One of the simplest
flux relations is

Q=0 (H) - v 0H (2.3.7)
1 3%

>

The first term gives the tendency of flux to increase with
thickness, and the second term is diffusive damping with

diffusion coefficient v>0. When the variable change
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(2.3.8)
is introduced to the continuity equation (1.3.5) with mass

balance A(x,t) set to =zero and width W(x) set to unity, the

result is a nonlinear diffusion equation

dc(x,t) + c(x,t) dclx,t) = v d%c(x,t) (2.3.9)
at oX dx?

known as Burgers' equation (Burgers, 1948). When the flux law
(2.3.7) has the form

Q(H) = gH? + gH + + - voH (2.3.10)

ox

the nonlinear Cole-Hopf transformation (Cole, 1951; Hopf, 1950),
reduces (2.3.9) to a linear diffusion eqguation, to which the
analytical solution 1is well-known. Applying the inverse
transformation to the solution gives the analytical solution to
Burgers' equation, and thus to (1.3.5) with the flux relation
(2.3.10). The details of the solution are given in Appendix 9.
Since it is rare to find nontrivial analytical solutions to
nonlinear partial differential eguations, this result is
remarkable. It provides an excellent opportunity for an exact
test of the model with a nonlinear flow law.

Burgers' eguation has appeared previously in the
glaciological literature in papers on kinematic waves of finite
amplitude (Johnson, 1968; Lick, 1970; Hutfer, 1980).

When the initial condition is

c(x,0) = A &(x) (2.3.11)

and the boundary conditions are
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c(oo,t) = c(-o,t) =0 C(2.3.12)
the solution is (see Appendix 9)

J? x2/(4vt) R
t e (e --1)
c(x,t) = (2.3.13)

R ® -z
J?ue-nf e

x/avt
The parameter R 1is equal to A/2v. This solution (2.3.13) is a
single asymmetric decaying hump which propagates in the positive
x direction. A shock (vertical front) tends to form on the
leading edge, but is prevented from doing so by diffusion. When
g=1/2 and g=y=0, we obtain from (2.3.8)
c(x,t) = H(x,t) (2.3.14)
so that the solution (2.3.13) is also the solution for H{x,t).
It 1is worth noting that equation (2.3.9), as well as being
a nonlinear test, is also a test of - kinematic wave behaviour
(Lighthill and Whitham, 1955). For application to waves on
glaciers, see Nye (1960). It is readily apparent from (2.3.9)

that the diffusive property of c(x,t)

de(x,t) = vO2%c(x,t) (2.3.15)
at dx?

is carried as a kinematic wave at velocity

dx = c(x,t) (2.3.16)
dt

which 1is thus the kinematic wave velocity. (The left side of
(2.3.15) is a total derivative.) this kinematic wave behaviour
is included in the complete solution (2.3.13),

To test the numerical solution of (1.4.1) against the

analytical solution (2.3.13) and (2.3.14), I set the material
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FIGURE 2.7. Nonlinear Test With Burgers' Equation.
Dashed lines indicating the analytical solution (2.3.13)
have been superimposed on the numerical model solution for
a single hump. Because of the close agreement (one part in
10%), the curves are indistinguishable in this Figure.
Plots are at intervals of 2 time units. The parameters of
the model are given in Table 2.3.

velocity V(x,t) to be, using (2.3.10),

vix,t) = (x,t)
t) H#0

= 0 H=0 (2.3.17)
I solve the finite difference equations on the interval [-L,L],
choosing L sufficiently large that H(-L,t)=0 adequately

approximates (2.3.12). The condition at +c0 is not needed since
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1.0 0.1 7.5 2.0 1/2 0.0 0.0 0.125 0.05

“TABLE 2.3. Parameters for Burgers' equation test.

(1.4.1) is first order.

Since finite difference eguations cannot répresent the
impﬁlse initial condition (2.3.11), 1 start instead with an
initial condition (2.3.13) c(x,t,) at some small to>0.

In Figure 2.7, the analytical solution (2.3.13) is
superimposed as dashed lines on the numerical model results. The
parameters are given in Table 2.3. The agreement is so close
(generally to better than three figures) that the dashed lines
cannot be distinguished. This test shows that the numerical
model conserves mass with fully nonlinear equations. The
iterative scheme for nonlinearities works correctly. Since the
numerical solution finds the correct time response for the hump,
the behaviour of kinematic waves in the numerical solution is

- also correct.
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2.4 THE ICE TRAJECTORY COMPUTER MODEL

2.4.1 INTRODUCTION

I have written a FORTRAN IV computer program which locates
the trajectories of specified particles of 1ice, as they flow
through a time-varying glacier. I have described the model in
detail in Appendix 2.

The inputs to the model are the bedrock topography, the
constants for Glen's flow law (1.4.22), and the number N, and
the initial positions, of the ice particles to be tracked. The
trajectory model uses the same mesh increments Ax and At as the
continuity model (Section 2.2), and the same assumptions  about
the channel geometry. At each time step, the ice thickness
profile {h5|j=1,J} and the basal sliding profile { usjllj=1'J}
used by the continuity model are also used as input to this
model.

2.4.2 THE VELOCITY AND DISPLACEMENT FIELDS

The trajectory of an ice particle is given by P(t), its
displacement vector as a function of time. For a particle at
position P, at time t,,

_ t
P(t) - P =J‘ v(pP(t'),t') at'

0
Yt (2.4.1)
(o] R

where v(x,t) is the ice velocity field (u,w,v). To solve

(2.4.1), 1 start at each time step by finding the velocity field
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FIGURE 2.8. Meshpoints For Ice Velocity Calculations.

v(x,t) throughout the vertical plane in the glacier centreline,
on the x-z mesh shown in Figure 2.8, and described in
Appendix 2, Section A2.1,. First, the downslope velocity
component u(x,z) is found at each meshpoint using the integrated
form (1.4.34) of Glen's flow law, with h(x), e(x), and us(x)
given by the continuity model solution. The longitudinal strain
rate du/ox is estimated by a finite difference

u(i+1,3) - u(i-1,3)

du(i,j) =
ox DX + DX :

i-1,3 i3 (2.4.2)
of the downslope velocity from (1.4.34), and the lateral strain
rate Ow/dy 1is given in terms of u(x,z) and the channel width

W(x) by (1.3.3).

The incompressibility condition with mass conservation
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gives

Ov = -Ju - Ow :
0z 9x 9y (2.4.3)

Using the approximation (usually very good, e.g. Rothlisberger,
1972) that basal melting is negligible as far as mass balance is
concerned, i.e.

v(x,0,t) =0 (2.4.4)
(2.4.3) 1is integrated numerically by Simpson's rule (e.gq.

Carnahan and others, 1969, p. 73) from the bed to level z to

give v(x,z,t).

The 1atefal velocity component w(x,y,z) is exactly zero on
the flowline down the centre of the channel, and is very small
in a narrow flow volume (Figure 1.1) centred on this flowline.
The average value of w 1is zero in this volume. The computer
model uses w=0.

When the velocity field has been completely determined at
the meshpoints in Figure 2.8, the displacement field of the ice
leaving each meshpoint P, and going to a point P in a time
interval At is found by estimating the intégral (2.4.1) by

P(t+at) - Po(t) = l[g(?_o,t) + z(g,t+At)] At

2 (2.4.5)

i.e., the average of the velocities at the beginning and end of
the time interval At. The velocity v(P,t+At) is estimated from
the values of v at the four surrounding meshpoints at time t+at

using an interpolation scheme described in Appendix 2,

Section A2.3.1.
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2.4.3 THE ICE PARTICLE TRAJECTORIES

At each time step, and for each of the N particles being
tracked, the coordinates (6x,6z) relative to a meshpoint (i,3)
are recorded. The displacements of the particles in the time At
are interpolated from the displacements of .ice at the four
surrounding meshpoints, and the new coordinates of the particles
are then saved. )

The program checks whether the new positions are still
within the glacier mass, and saves the interpolated times and
positions at which ice particles reach the ice surface.

By using At<0,‘ the program 1is easily adapted to track
particles backward in time and upslope (e.g. from a borehole),
to find where and when they entered the ice mass as

precipitation,

2.4.4 ACCURACY OF THE TRAJECTORY MODEL

The velocity field in this model is obtained by assuming
that shearing parallel to the glacier bed 1is the dominant
component of deformation. The downslope velocity u(x,z) is then
found using the stress equations and the mechanical properties
of ice. This is the only place where the force equations are
used. The other velocity components are determined purely
kinematically, using continuity and geometric assumptions about
the lateral variation of the flow field.

When the assumption of predominantly shear deformation
holds, tﬁis approach works very well. The fractional error in

longitudinal strain rate, and in the vertical velocity, is quite
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small. The leading term is approximately the ratio of the
unbalanced longitudinal forces on a vertical column, to the
basal shear force. The details are given in Appendix 7, equation

(A7.5.9), which is repeated here as (2.4.6).

_ : .
(x) [ ° o ] ( ) o i %X//éE
e(x) = O}in{2h xx + h + (n-1)}|e x/ oz
: dx Ox X2z
pGha max
(2.4.6)

When the assumption of predominantly shear deformation is
not accurate, the downslope velocity component u(x,z) is
relatively inaccurate. The final term in the error estimate
(2.4.6) may be of order unity, or larger, when du/dz is small,.

The second term in the same equation may also be of order
unity, or larger, when stress deviators other than the shear o,
contribute to the effective stress. Furthermore, the presence of
any additional stress components other than ¢,, always softens
the 1ice, so there is no possibility of compensating
approximations in this term.

This situation may arise at an ice divide, where the
predominant motions may be vertical sinking, and longitudinali
extension és the ice flows downslope in both directions.
Fortunately, the ice veloci;y is very small at an ice divide, so
that the total error in the trajectories is not large. To be
safe, the trajectories near an ice divide should be interpreted
only qualitatively. Longitudinal stresses are also important in
icefalls.

The use of Glen's flow 1law, and the. inclusion of
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longitudinal strain rates (to the approximationAof (2.4.6)) is
an improvement over the trajectory models of Nagata (1977), who
assumed that du/dz was zero, and Dansgaard and Johnsen (196%[a])
who set du/dz to a constant at each x in the lowest 400 metres,
and zero above that level, and assumed that du/dx was constant
for a given z, in a model ‘for the Camp Century, Greenland
borehole.

The fact that my model 1is time dependent 1is also an
improvement over these models.

_ One advantage of this model is that the mass conservation
law 1is still obeyed globally and locally at all times. This has
not been the case with some other trajectory models. For
instance, the Weertman (1968) analytical model for ice velocity
and temperature at Camp Century, Greenland, assumed a constant
vertical strain rate, but wused a horizontal velocity given
independently by integrating Glen's flow law (1.4.22) to get a
result like (1.4.34). Dansgaard and Johnsen (1969[b]) showed
thaf this violation of continuity was the 1likely cause of a
discrepancy of 2°C between predicted and measured temperature at
the bed at Camp Century, Greenland. The flow model used by
Dansgaard and Johnsen (1969[a]) satisfied continuity everywhere,
but assumed the form of the horizontal velocity component,
instead of using Glen's flow law.

While the model 1 described in Section 2.2 does not yet
include temperature variations, that 1is a simple development
that will not violate mass conservation.

Budd and others, (1971, p. 42) assumed a constant vertical

strain rate dv/dz independent of depth, at each position X,
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regardless of the values of the other terms in (2.4.3). They
alsc described another model (p. 43) in which the vertical
strain rate was weighted by the downslope velocity u(x,z) at
each point. While this makes the vertical strain rate curves
more closely resemble the expected shape in a real ice mass, it
still does not satisfy continuity locally through (2.4.3). An
incompressible continuum flowing with such a velocity field
would have to locally create or destroy mass.

Constant vertical strain rate (or a strain rate specified a
priori) may be a reasonable approximation when deriving
analytical solutions to some flow problems to illustrate the
physics involved (e.g. Robin, 1955; for the effect of advection
on temperature profiles), and it arises naturally in some simple
kinds of flow, i.e. horizontal shearing restricted to the basal
layer (e.g. Hill, 1950, p. 233; Nye, 1951; or Nye, 1957),.
However, given the sophistication of current computer models
accepting otherwise quite general inputs, this assumption now
appears to be a needless limitation. While the errors involved
may turn out, in some situations, to be small, it is preferable
to avoid them at no additional complication.

The only model of which I am aware which attempts to use
the continuity eguation in a manner similar to the way I
described in Section 2.4.2 to find the wvertical velocity
component, and also makes no a priori assumptions about the flow
field other than those described in Section 2.4.2, 1is the
preliminary three-dimensional model of Jenssen (1977) for the
Greenland ice cap. This model also solves for the temperature

distribution, for use in the temperature dependent flow law. The
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Jenssen model is still under development to improve the boundary
treatment and and to reduce inaccuracy resulting from the coarse
grid imposed by computer limitations (Greenland was modelled by
a 12x12 map grid, 10 points deep); however, the Jenssen approach
is the 1logical next step that must be taken towards the
numerical solution of the complete set of eguations for ice

sheets.
2.5 TESTING THE TRAJECTORY MODEL

2.5.1 INTRODUCTION

In Section 2.5, I describe two tests of the trajectory
model.

In Section 2.5.2, I compare the steady state trajectories
and velocity field calculated by my computer model to an
analytical solution for a steady state ice sheet (Nagata,1977).

In Section 2.5.3, I use the balance condition (A5.8) at the
ice surface to show that continuity is satisfied by the velocity

field.

2.5.2 NAGATA ICE SHEET TEST

Nagata (1977) derived an analytical solution for the
surface profile, velocity field, and streamlines of a steady
two-dimensional ice sheet resting on a flat bed. For the steady
state case, streamlines and ice trajectories coincide. I
describe the Nagata model in detail in Appendix 15,

Section A15.3. Nagata (1978) used this 1ice sheet model to



75

- 2

o

é —

0 T~ 0

)

U —

S Nagata (1977) Model

5 Steady state ice sheet 4-2

o } Basal sliding m=2 -
Velocity field -
and streamlines

h/H

FIGURE 2.9. Nagata Steady Ice Sheet.
The analytical solution for the ice thickness, mass
balance, particle paths, and velocity field wusing the
parameters in equation (2.5.2). The velocities have been
multiplied by 250 years. The numbers are the time in years
for ice to flow the length of each particle path.

éxplain the concentration of meteorites at the Meteorite Ice
Field in Antarctica. The Nagata model assumes that the forward
ice velocity u(x) is constant throughout a vertical column and
depends on the basal shear  stress (1.4.25) through a

Weertman-type relation (see Appendix 8, Section AB8.3.1) of the
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FIGURE 2.10. Growth Of Nagata Ice Sheet.
The 1ice surface elevation 1is shown at intervals of 500
years, starting from ice-free conditions. The flow
parameters. are given in Table 2.4 and the mass balance in
Figure 2.9. The steady state ice thickness agrees with the
analytical solution by Nagata (1977) to one part in 103.

form

m
u(x) = A r (2.5.1)

Although it is not clear in the original paper, the Nagata model
also assumes that the vertical velocity component v(x,z) is
equal to a constant b along the upper surface of the ice sheet.
The scale of the ice sheet model is set by H, the . thickness at
the ice divide.

While the form of the mass balance and the velocity field
are not a close representation of real ice sheets, the Nagata

model 1is well suited to testing the accuracy of my numerical



717

| SRS B S R R

. Naazatx llce sgeet‘
- —3
000~ g‘umorlca?o m:jol 7
Velocity field

— 3000 -
€ IRBIARS

| S O Y NN N
%2000 s\\\\\\\. .
= y M NN NN
:?:) 1000 Y %Y N N : : ~ _

[ ] . - - b e

[ L 3 - - - —— "

0 ;o ' -l —Ol
100 200 300 400 500

Distance (km)

FIGURE 2.11. Velocity Field For Nagata Model.
The velocity vectors calculated by the Waddington
trajectory model for the steady state profile in
Figure 2.10 and using flow parameters in Table 2.4. The
velocities have been multiplied by 250 years (The units of
the vectors are displacement).

trajectory program. I compare my nume;ical results to the Nagata
model shown in Figure 2.9 for the constants in Table 2.4.

Figure 2.10 shows the growth of the Nagata ice sheet to
steady state using the profile model described in Section 2.2).
The steady state profile agrees with the analytical model in
Figure 2.9 to within one part in 10°.

The solid vectors in Figure 2.11 show the steady state
velocity field calculated by my numerical model. The velocities

have been multiplied by a factor of 250 years. The velocity
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m A b H L p g
bar-2a- ma' m km kg m-3 m s~ 2
2 100. 1.0 3000 454.6 S10. S.8
AX At
km a
7.215 10.0

TABLE 2.4. Parameters for Nagata ice sheet.

field agrees with the analytical solution (Figure 2.9) to within
a few parts in 10°® (except near the terminus where the agreement
is only to two parts in 102, because the mass balance in the
numerical model remains finite while the analytical mass balance.
goes to -0).

Figure 2.12 shows the trajectories for ice entering the ice
sheet at time t=0.;.these are the same five points shown for the
streamlines in Figure 2.9. The arrowheéds indicate 250 year
intervals. The total residence times along each of the five
streamlines are compared to the analytical values in Table 2.5.

The good agreement between the numerical results and the
analytical solution indicates that the velocity field is
reconstructed accurately and the integration of the velocity

field to get flowlineé is correct and accurate.
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FIGURE 2.12. Trajectories In Nagata Model.
The so0lid curves are the particle paths calculated by the
Waddington trajectory model by integrating the velocity
field "in Figure 2.11. The arrowheads 1indicate 250 year
intervals. In Table 2.5 the total residence times in the
ice sheet are compared to values for the analytical
solution.

z

2.5.3 SURFACE MASS CONSERVATION TEST

Conservation of mass at the glacier surface with normal
vector n implies that the normal velocity of the ice-air
interface is egqual to the sum of the normal ice velocity plus

the surface accumulation rate, i.e.

oh
—en = Ven + a-n (2.5.2)

ot -

This equation is derived in Appendix 5, Section A5.2. When ice
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Streamline Numerical model _Analytical model
‘Number years years
1 6746. 6723.
2 4625, 4606.
3 3335. 3322,
4 2350. 2346.
>5 1477. 1466.

TABLE 2.5. Residence times in Nagata ice sheet.

thickness 'change rate Oh/ot and mass balance vector a are
measured normal to the bed, and the velocity components (u,v)
are parallel to and normal to the bed, (2.5.2) becomes

oh = v(x,h) - u(x,h) dh + A(x)
ot ox (2.5.3)

where A(x) 1is now a scalar giving the mass balance. My
derivation (Section 2.4.2 and Appendix 2, Section A2.2) of the
velocity field uses only incompressibility (2.4.3) and the basal
boundary condition (2.4.4); (2.5.3) can. be wused as an
independent check of the degree to which the velocity field
conserves mass. Models which use (2.5.3) to derive the vertical

velocity (e.g. Weertman, 1968; Budd and others, 1971, p. 42) do

not have this consistency check.

Figure 2.13 (a) shows the mass balance A(x) and the surface
rise dh/3t for a typical time step, with parameters described by
Table 2.6, during the growth of the Nagata ice sheet model. I
- apply the test at a time (2500 years) when the ice sheet is
growing vigorously because conditions at that time impose the
most stringent conditions on accuracy. Figure 2.13 (b) shows the
residual of (2.5.3), i.e. the difference between the 1left and

right sides of the equation on substituting the values of h, A,
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FIGURE 2.13. Surface Mass Conservation Test.

Time=2500 years during the growth of the Nagata ice sheet
model to a steady state. (a) shows the mass balance (solid
curve) and the rate of surface rise dh/dt (broken curve).
(b) shows the residual of (2.5.3). It is very small (note
scale change of 10-2, indicating that the velocity field
satisfies incompressibility. The terminus is at x=37.8 km.
The residual increases near the terminus because there are
few meshpoints in each vertical column; vertical
integration is inaccurate.

u, and v from the numerical solution. The residual error |is
three orders of magnitude less than the average magnitude of the
mass balance, except near the terminus where there are
insufficient mesh points in any vertical column to .guarantee

accurate vertical integratién of (2.4.3). This region has no
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Time AX D2 At
-oa km m a
2500. 7.215 150. 10.

TABLE 2.6. Nagata ice sheet surface boundary test.

effect on the trajectories investigated in this work. Similar
tests (not shown) on the Steele Glacier Model 1 (Figure 3.3)
routinely give residuals of the order of one part in 102 of the
average mass balance, even though the mass balance. is
discontinuous (tributaries), the width is variable, and the flow
law includes a height-dependent 1longitudinal strain rate.
Results of these tests 1indicate that the wvelocity field
satisfies the continuity equation (2.3.3) to a very good
approximation. This test verifies the accuracy of the trajectory

model under time-varying conditions.
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CHAPTER 3: CAN STABLE ISOTOPES REVEAL A HISTORY OF SURGING?

3.1 INTRODUCTION

The stable heavy isotopes 0'® of oxygen and D (deuterium)
of hydrogen in glacier ice have been widely used as indicators

of climatic change (e.g. Dansgaard and others, 1969; 1971). This

procedure requires assumptions about the pattern of glacier
flow. In this chapter, I investigate a related problem; assuming
that the past <climate 1is known, can the stable isotope
distribution be used to reveal the flow history of time-varying
glaciers? The example I consider in this chapter is the Steele
Glacier, Yukon Territory. This glacier was observed to surge in
1966-1967 (Stanley, 1969). I used the computer models described
in Chapter 2 to find the ice surface and the velocity field
throughout the surge cycle, and to calculate  the ice
trajectories. .Knowing the trajectories and the isotopic
composition (from climate) at the time and place the material
was precipitated as snow on the glacier surface, has allowed me
to construct longitudinal cross-sections and surface profiles
showing the isotopic distribution at a series of times during
the surge cycle; this pattern would faciliﬁate the selection of
optimum borehole and surface sampling locations for an isotopic
study of past flow patterns.

In Section 3.2, I describe the Steele Glacier and its surge
history. In Sections 3.3 and 3.4 I describe the computer models

I used to simulate the Steele Glacier. Model 1 in Section 3.3 is
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a detailed model based on all the available data. Because of
limited sliding data and an approximation in the mass balance,
it 1is not at present the best model for particle trajectory
calculations. With more complete data and some computer model
refinements, it may become so. Model 2 in Section 3.4 is a
simplified version better matched to the resolution of the
sliding observations. Model 2 1is wused for the trajectory and
isotopic calculations in Sections 3.6 and 3.7. In Section 3.5, I
describe the use of stable isotopes in glaciology, and present
two possible 1isotopic relations for precipitation at Steele
Glacier. The ice surface profile calculations in Section 3.6
indicate that a surge period of approximately 100 years is
appropriate for the Steele Glacier if the present mass balance
and the velocity of the 1966-67 surge are representative of the
average long-term climate and of the glacier flow pattern. 1In
Section 3.7, I present computed longitudinal cross-sections and
surface profiles of the isotopic distribution &6(0'8/0'¢) for a
model with a surge periodicity of 97 years. Isotopic
discontinuities occur in the ice along surfaces which were at
the ice-air interface 1in the accumulation region when a surge
began. Even for the isotopic-precipitation model most favourable
to the formation of aiscontinuities, the discontinuities do not
exceed one DEL unit on the Steele Giacie;; this amount may be

hidden by noise in the Steele Glacier environment.
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3.2 STEELE GLACIER

3.2.1 GENERAL DESCRIPTION

Steele Glacier (61°10'N, 140°15'W) 1is a surging valley
glacier on the northeast slopes of the Icefield Ranges (see
Figure 3.1) of the St. Elias Mountains, Yukon Territory, Canada.
Prior to 1963 it was called the Wolf Glacier. (Sharp (1951) and
Bostock (1948, p. 99) state that this is more proper than the
often-used notation Wolf Creek Glacier.). The glacier length
varies from 34 to 44 km, and the width of the main channel is
one to two km. The main channel flows down from 3000 m elevation
on the north side of Mt. Steele (Figure 3.2) to 1200 m elevation
in Steele Creek, where the ice is stagnant and moraine-covered
between surges.

The continental slope of the Icefield Ranges is semi-arid.
Annual precipitation drops from 300 cm a-' at Yakutat on the
Gulf of Alaska (see Figure 3.1), to about 35 cm at Kluane Lake
(Wood; 1972). The firn line on the Steele Glacier is presently
very high (2400 m or more). A major source of accumulation |is
avalanches from the north face (labelled (0) in Figure 3.2) of
Mt. Steele (5070 m). In its upper reaches, the Steele 1is an
extensive system of accumulation basins and converging
tributaries. These tributary ice streams (see (1) thréugh (5),
Figure 3.2) also contribute a substantial fraction of the Steele
Glacier mass balance. In its lower reaches, the Steele Glacier
makes a 90° bend to the east, and enters a straight and narrow

valley formed by the Wolf Creek monocline (Sharp, 1943).
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FIGURE 3.1. Icefield Ranges Location Map.
Nonstippled areas are major glaciers and icefields. The
triangles 1indicate major summits of the Icefield Ranges
(St. Elias Mountains). The Steele Glacier 1is on the
north-east (continental) slope (top centre).

3.2.2 GLACIER SURGES .

A glacier surge (e.g. Meier and Post, 1969) is a short
period of very rapid flow, during which ice is transferred from
an 1ice reservoir area to an ice receiving area downstream. A

surge is followed by a longer period of stagnation and ablation
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in the receiving area, with renewed ice buildup in the ice
reservoir; these areas do not necessarily correspond to the
accumulation and ablation zones defined by mass balance. For a
large valley glacier 1like the Steele,' the maximum velocity
during a surge may be 500 m a~' to 10 km a-', with downstream
ice displacement of one to 10 km. Surging appears to be a
periodic phenomenon. For glaciers like. the Steele, the surge
duration is typically one to two years, with a quiescent phase
lasting from 20 to 150 years.

Glaciers of all sizes have been observed to surge. Examples
are the Trapridge Glacier (in the Steele Creek watershed) which
is only three km long, and the Muldrow Glacier on Mt. McKinley,
Alaska which is over 50 km long. There has been speculation that
the Antarctic ice sheet may surge (Hollin, 1969; Wilson, 1969).
Surging glaciers are found in many parts of the world, e.g.
Alaska (Tarr and Martin, 1914, p. 168), British Columbia and the
Yukon Territory. (Post, 1969), the Arctic Islands
(Hattersley-Smith, 1964; Lo¢ken, 1969), 1Iceland (Thorarinsson,
1969), the Karakoram (Hewitt, 1969), the Pamirs, Tien Shan,
Caucasus, and Kamchatka (Dolgoushin and Osipova, 1975). Surges
occur in both temperate and cold or subpolar glaciers. Surging
does not appear to be triggered by climate variations.

The high velocity during surging is generally attributed to
rapid basal sliding. Various hypotheses on the mechanism of
surging have been put forward. The more plausible ones include
thermal regulation (Robin, 1955; Clarke, 1876; Lliboutry,
1969[b]), stress instabilities (e.g. Post, 1960; Robin, 1969)

and basal water film instabilities (Weertman, 1962, 1969; Robin
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and Weertman, 1973; Budd, 1975). A concensus on the cause of
glacier surging has yet to be reached. 1In thi§ éhapter, I
investigate the effect of periodic surging on the stable isotope
distribution in the Steele Glacier. The amount of basal sliding
is important to this qguestion; the mechanism which causes it is
not. For this reason, I specify a basal sliding velocity us(x,t)
consistent with the observations of the Steele Glacier surge of
1966-1967, and I use this as a boundary condition for the

computer model.

3.2.3 OBSERVATIONS OF THE STEELE GLACIER

The flow pattern before and during a surge is better known
for the Steele Glacier than for most ofher surging glaciers.
Scientific expeditions sponsored by the American Geographical
Society and led by W. A. Wood explored the Steele Creek
watershed in 1935, 1936, 1939, and 1941. Work included the
experimental use of oblique aerial photography for mapping areas
of high relief. These air photos and the panoramas from ground
control points give information on the ice surface elevation and
state of flow during the quiescent phase.

Sharp (1943) described the geology of Steele Creek,
observed the glaciers of the Steele Creek basin (Sharp, 1947),
and interéreted the glacial history (Sharp, 1951).

The Surveys and Mapping Branch of the Department of Energy,
Mines and Resources, Government of Canada, obtained vertical
aerial photography of the Icefield Ranges from 10 700 m in the

summer of 1951, Flight 1lines A13232/33 covered the Steele
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FIGURE 3.2.ASteele Glacier And Tributaries.

140°

The central flowline used in the computer model is marked
at 2.5 km intervals. The Hodgson Glacier is included in the
channel width function (Figure 3.3 (b)) for the main ice
stream. For Model 1, the mass contributions from the minor
tributaries (0) through (5) are 1included 1in the mass

balance function (Figure 3.3 (a)).

Glacier. This photography was used to prepare the government map

115F at the scale 1:250,000; it was also used to prepare

a map

of the Steele Glacier at the scale 1:25,000 (Topographical

Survey, 1967). Obligue aerial photography of the Steele

was obtained periodically, between 1960 and 1965 by W.

Glacier

A. Wood

(American Geographical Society) and by A. Post (U.S. Geological

Survey). In 1960, Post predicted an imminent surge

for the
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Steele Glacier (Wood, 1972), and in 1965, noted the first signs
of increased flow on the upper Steele (Wood, 1972).

During the 1966-1967 surge, high obligue aerial photos were
obtained by Wood, pre-1941 survey stations were re-occupied, and
the Surveys and Mapping Branch obtained vertical air photo
coverage on August 13 and September 15, 1966. Wood (1972) and
Stanley (1969) measured displacements of identifiable surface
markings. Features originally between the Hodgson confluence and
the 90° bend (Figure 3.2) all advanced at roughly the same
velocity of 5 km a-' during 1966, with a total displacement of
roughly 8 km when the surge ended late in 1967. There was no
significant lateral variation of velocity beyond 200 m from the
glacier margins. Bayrock (1967) observed the details of the
terminus advance, and the reactivation of stagnant ice. A bulge
of active 1ice 30 m high moved forward at about 10 m d-'
(3650 m a-'). This bulge sometimes has been called the terminus
in the literature on the 1966-1967 surge. Alford from the
Whitehorse office of the Water Survey of Canada obtained monthly
air photographs of the advancing bulge during the winter of
1966-1967. He observed an advance of 6000 feet (1830 m) between
September 10, 1966 and January 15, 1967 (Roots, 1967). By August
1967, the aétive bulge had slowed to 2md' (730 ma™')
(Thomson, 1972).

Stanley (1969) identified three =zones based on surface
elevation changes during the surge. An upper zone, entirely in
the accumulation area, apparently was not involved 1in the
1966-1967 surge. In a middle zone (the ice reservoir zone) from

a point above the firn line (based on Stanley's description, I
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locate. this point at about x=7 km) to a point about 3 km above
the 90° bend (at x=27 km in my model), there was a net lowering
of the ice surface, with a maximum value of 130 m above the
Hodgson-Steele confluence. In the lower remaining =zone (ice
receiving area) the surface rose by up to 100 m,

During the winter of 1966-1967, the Hodgson Glacier began a
year-long surge during which it pushed the still-surging Steele
ice stream to one third of its normal width at the ice surface.
The effect of the Hodgson surge on deep ice is unknown. The
Hodgson ice formed a large lobe extending three km down the main
Steele channel. This tributary surge may have been triggered by
a reduced confining stress resulting from the rapid lowering of

the Steele Glacier at their confluence.

3.2.4 PERIOD OF STEELE SURGES

Sharp (1951) showed that, based on 1941 observations, the
Steeie Glacier below the bend had been stagnant since 1916 or
earlier. Based on biological recolonization rates inside the
most recent trim line, he estimated that the last advance ended
in the period 1840-1890, i.e. 115 to 75 years before the
1966-1967 surge.

Wood (1972) pointed out evidence for ice displacements of
over two km between 1935 and 1941 near the Steele-Hodgson
confluence. The previously smooth ice in that region was heavily
crevassed in 1941, and the crevasses looked several years old.

The evidence suggests that the Steele Glacier had a minor surge
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or a failed attempt at a surge in 1938 or 1939. Sharp's (1951)
estimate of the time of the previoué terminus advance would then
imply a buildup time of 50 to 90 years.

Sharp (1951) pointed out moraines 100 m to 150 m above the
1941 ice surface below the bend. An ablation estimate of 2 m a-'
‘implies the maximum ice elevation occurred 50 to 75 years prior
to 1941, .

There are no direct observations on the Steele Glacier of
regular looped moraines, or of disrupted ogive patterns which
could reveal pre-historical surge episodes. The assumption of
periodicity is based on observation of surging glaciers
elsewhere (e.g. Variegated Glacier, Alaska, (Bindschadler and
others, 1977)). The assumption of exact periodicity for the
computer model is, at best, an approximation; significant
climate variability on the time scale of glacier surges haé been
widely documented (e.g. Bryson and Goodman, 1980; Gribbon,
1979). If the Steele Glacier surges periodically, the period 1is

in the range 50 to 150 years.
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3.3 NUMERICAL MODEL 1

3.3.1 FLOW LAW CONSTANTS AND SHAPE FACTOR

The computer ﬁodel in its present form assumes that the ice
is isothermal. Temperatures in the upper 100 metres of the
Steele Glacier (Jarvis and Clarke, 1974; Clarke and Jarvis,
1976) followiné the 1966-1967 surge wer; in the range -1°C to
-7°C. It is likely that the basal ice, within which most of the
shear deformation takes place, is at or near the pressure
melting point. The assumption of temperate ice is not
unreasonable.

I use the constants (Paterson, 1981, p. 39)

A =5,310"1'5 s-' kPa~? n=3 (3.3.1)
in Glen's flow law (1.4.22) for the Steele Glacier simulation.
Since most of the motion in a surge is due to sliding, changes
in the flow 1law constants have 1little effect on the ice
movement.

The shape of the valley cross-section is unknown. I use a
shape factor (see Section A7.4) of

s = 0.8
independent of position x. Since the shape factor is raised to
the nth power (see egquation (1.4.34)), wuncertainty = in S
introduces substantial - uncertainty into the deformation
velocity. However, as 'pointed out above, the internal
deformation of the Steele Glacier is a small component of the

total motion.
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3.3.2 BED TOPOGRAPHY

There are no published ice depth data for the Steele
Glacier. Jarvis and Clarke (1974) and Clarke and Jarvis (1976)
reached depths exceeding 100 metres with a hot-point drill
without any indication of bottom; the glacier is likely much
thicker than this. Typical depths of large valley glaciers can
exceed 600 metres (e.g. Lowell Glacier, St. Elias Mountains,
based on monopulse radio-echo sounding, 1977; G. K. C. Clarke,
personal communication). A rough estimate of the depth
e.g. above the confluence of the Steele and the Hodgson can be
obtained by assuming a basal shear stress Sz of one bar and
measuring the ice surface slope to be ¢=0.03 from the 1951 map
(Topographical Survey, 1969). Assuming a shape factor of s=0.8,
the stress relation (1.4.25) gives the depth as (approximately)

¢

xz = 472 metres
Spga (3.3.2)

o
n

Alternatively, assuming flow by simple shear with no sliding,
and using the 1951 velocity of 25 m a-' measured at this point
by Wood (1972) (1.4.38) with the flow law constants (3.3.1)

gives the depth estimate

1/(n+1)
(n+2)V

h = n = 445 metres
2A(spga) '
(3.3.3)
Since the motion of the Steele Glacier is obviously not an
example of steady nonslip flow in a cylindrical channel, these

are merely rough estimates. The presence of basal stress of less

than one bar, or of nonzero basal sliding would result in an
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overestimate of the true thickness. Neglecting the stress
perturbations and lateral asymmetry caused by bends in the
channel, I assume the central flowline (x axis) follows the
broken curve shown in Figure 3.2. For the Steele Glacier bed
topography in Figure 3.3 (c), I wuse an exponential function
having the form

-bx
h(x) = ae - + ¢ (3.3.4)

where a, b, and c are constants determined by fitting the three
points:
(1) 2900 metres elevation at the bergschrund of the main ice
stream (x=0).
(2) 1200 metres at the 1978 terminus position (x=42 km).
(3) 1650 metres at the <confluence of the Hodgson and Steele
Glaciers (x=18 km); this value would give an ice depth of about
400 metres at this poinﬁ in 1951 (Topographical Survey, 1969).
The 1951  longitudinal surface profile is shown in
Figure 3.3 (c).

The actual topography beneath the Steele Glacier Iis
undoubtedly more complicated. This approximation means that the
computer model cannot be expected to quantitatively reproduce

the observed ice surface elevations.
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3.3.3 CHANNEL WIDTH

The width of the main ice stream of Steele Glacier can be
estimated by measuring the separation of the lateral moraine
ridges on the topographic map at the scale 1:25,000
(Topographical Survey, 1969). The published government mapsheet
1156 and 115F(E1/2), at the scale 1:250,000, (from which
Figure 3.2 1is drawn), 1is not a reliable indication of the
channel width, Idealiy, tributaries should be included 1in the
numerical model as separate ice streams with their own bed and
mass balance functions, and coupled to the main ice stream by
thickness and flux conditions at the junctions; this option is
not available in the computer model 1in 1its present form.
Instead, I can include the effects of tributaries in approximate
ways through the width or mass balance ﬁunctions. Since the
discharge and depth of the Hodgson Glacier are probably
comparable ‘to those of the Steele at their confluence, I use the
sum of their vwidths above this point. This is a simple
approximation. In fact, their surface gradients are not equal
everywhere in this region, their mass balance functions probably
differ, and the two glaciers do not surge together (the Hodgson
last surged in 1967-68, one year after the Steele). Because of
their much shallower depths, to include the minor tributaries
(1) through (5) (Figure 3.2) in this way would tend to grossly
reduce the thickness and velocity of the main channel. The mass
contribution of these tributaries is included in Model 1 by an
addition to the- mass balance function (Figure 3.3 (a)) at the

regions of confluence.
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3.3.4 MASS BALANCE

No comprehensive mass balance measurements have been made
on the Steele Glacier. Between an average date of July 19, 1974,
and an average date of July 2, 1975, Collins (unpublished)
measured ablation at eight survey targets near the right angle
bend (x=30 km). The measurements ranged from 1.57 m to 2.77 m of
ice, with a mean of 2.15 m. All other evidence is indirect. On
the lower Steele Glacier, Stanley (1969) estimated the ablation
to be 1.5 m a-' based on downwasting of ice shown to be stagnant
by Sharp (1951).

Since snowfall can depend strongly on local conditions,
extrapolating mass balance information even from adjacent
valleys 1is at best a risky procedure. However, the gualitative
patterns of mass balance, and its order of magnitude throughout
the 1Icefield Ranges give some control on reasonable estimates
for the Steele Glacier. Marcus and Ragle (1970) reported winter
accumulation measurements on a traverse across the Icefield
Ranges from the lower Seward Glacier to the Kaskawulsh Glacier.
The values for the Kaskawulsh are instructive because both
Kaskawulsh and Steele Glaciers occupy similar positions on the
east side of the Icefield Ranges (Figure 3.1). The precipitation
on the Kaskawulsh increases with elevation. The 1964-65 winter
accumulation was 1.7 metres of ice equivalent at 2640 metres
elevation, decreasing to 0.35 metres of ice equivalent at
1615 metres elevation. These authors also reported negligible
summer meiting on the ice plateau at Divide Station 30 km west

of the Kaskawulsh Glacier. Divide Station at 2620 metres
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FIGURE 3.3. Model 1 For Steele Glacier.
(a) Mass balance. The dashed curve is balance for the main
ice stream. The solid curve 1includes mass contributions
from the tributaries (0) through (5) identified in
Figure 3.2.
(b) Glacier width. The broken curve is the width of the
main ice stream only. The solid curve includes the width of
the Hodgson Glacier.
(c) Bed topography. The ice surface profile in 1951 is also
shown.
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elevation receives  about 2.2 metres (ice equivalent) net
accumulation each year; the record there indicates that 1965-66
was a low snowfall year by about 40% in the Kaskawulsh region
(Marcus and Ragle, (1970, Fiqure 7)).

Keeler (1969) reported that, on Mount Logan, 60 km south of
the Steele Glacier, elevation has little effect on precipitation
above 2500 metres elevation. The net .,accumulation 1is about
0.8 metres of ice annually.

Stanley (1969, Figure 1) located the firn line at about
2400 metres on the Steele Glacier based on the 1951 aerial
photography. Wood (1972) put the firn 1line in the higher
elevation range of 2750 to 2900 metres. This would leave almost
no accumulation area. Sharp (1947) gave the estimate of 8000 to
9100 feet (2440 to 2775 metres).

The broken line in Figure 3.3 (a) shows an estimated mass
balance function for the main ice stream of the Steele Glacier
consistent4with Collins (unpublished) and Qith the 1indirect
observations. The ice flux from the ith small tributary glacier
is included through a perturbation 6b; to the mass balance
function. In Appendix 19 I describe two methods of estimating
the ice flux from each tributary and how I use this to estimate

the 6bi .

The solid curve in Figure 3.3 (a) shows the mass
balance with the tributary termslébi included.

. While Figure 3.3 (a) represents the best available estimate
of the Steele Glacier mass balance, it should be kept in mind
that mass balance may change significantly with longterm
climatic change. The decades 1930-1950, upon which much of the

data for the Steele Glacier is based, appear to have been an



100

exceptionally warm period (e.g. Hansen and others, 1981;

Schneider and Mesirow, 1976, Chapter 3).

3.3.5 CYCLIC SURGE PATTERN FOR THE MODEL

Because I am investigating conseguences of surging, rather
than surge mechanisms, I specify a priori the sliding velocity
us(x,t). This aspect of surge modelling is discussed in
Section 1.5.3. I have chosen to use a sliding velocity having
the form

u (x,t) = X(x,t) T(t) (3.3.5)
s

because it can represent the observed sliding of the Steele
Glacier reasonably well. Other functional forms of ug(x,t) could
equally well fit the observations of Stanley (1969) and Wood
(1972). The time dependent term T(t) 1is a nondimensional
weighting factor between zero and unity. Figure 3.4 (b) shows
the form of T(t) for a surge cycle of length t,. During the
quiescent stage, T has some small constant value f (e.g. £=0
gives no sliding). The surge starts at time t, and the velocity
rises to the peak value by time t,, remains at the maximum until
t,, then falls back to the nonsurge level by time t;. The term
X(x,t) shown in Figure 3.4 (a) gives the normalized spatial
distribution | of the sliding velocity at a time (t-t,).
Observations on the Steele Glacier (Sténley, 1969) and on other
surging glaciers, and some theoretical work on surging (e.g.
Robin, 1969; Robin and Weertman, 1973) suggest that rapid

sliding starts in a small region, and the boundaries of this
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FIGURE 3.4. Sliding Model For Steele Glacier.
(a) X(x,t) gives the normalized spatial dependence .of the
sliding velocity at time t.
(b) T(t) is the temporal weighting function for the sliding
. velocity in (a).

zone of rapid sliding then propagate down (and possibly up) the
glacier. U, is the maximum sliding velocity during the surge. In
this model, each transition from a zone of rapid sliding to a
zone of no sliding is given by one half cycle of a cosine. The
distribution of sliding can change during the surge as the four
points x.,(t), x_,(t), x,(t), and x,(t) move at velocities
c.,(t), c.,(t), c,(t), and c,(t) respectively. The data from the
surge of the Steele Glacier are not sufficiently complete to
allow detailed estimation of the cj(t). 1 use constant values
for these four velocities, so that the velocity tfansition

points move according to
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x (t) = x (£ ) + (t-t ) c
2 2 o 0 2 (3.3.6)

with similar equations for the other three points. The constants
x.,(to), x.,1(to), x,(to), and x,(t,) define the extent of the
trigger zone.

Observations by Raymond and others (unpublished, Figure 9)

on the Variegated Glacier, Alaska, indicate a regular increase
of sliding velocity, from 0.05 m d-' (18 ma-') in 1973, to
0.3 md ' (110 ma-') in 1979 1in the wupper reaches of the
glacier. The Variegated Glacier appears to have a surge period
of about.zo years, and is expected to surge sometime in the
mid-1980's. The simulations which I have carried out for this
chapter do not include a pre-surge increase in basal sliding,
although it probably could be modelled satisfactorily by the
Weertman (1957) sliding mechanism; thié option 1is availéble in
the computer program. However, for the Steele Glacier, the
observed pre-surge velocities (Wood, 1972) are low, and are. not
sufficiently detailed to warrant this additional complication.
The leading edge of the zone of rapid sliding (i.e. x,(t)
to x,(t)) is a region of compressive flow. The instability of
regions of Eompressive flow is widely recognized (e.g. Paterson,
1969, p. 207). For nonsurging glaciers, the surface rise
resulting from compressive flow in the ablation area is 1largely
"balanced by surface melting. A surge lasting only one or two
years occurs too quickly for melting to have any appreciéble
control on surface elevation; to avoid a growing bulge or shock
wave moving with thé leading edge of the zone of rapid §liding,

the velocities c¢, and c, of the velocity disturbance must be
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sufficiently greatef than the material velocity U, that the
velocity change can move ahead of any bulgeiforming in the ice.
For the elementary case of ice with sliding velocity U, and
thickness h, advancing into thinner stagnant ice of thickness h;
in a channei of constant width, a simple continuity argument in
Appendix 18 shows that when c,=c,, the velocity disturbance must

move at least at the speed

° (3.3.7)
to prevent the development of a shock front in the advancing
velocity transition. Equation (3.3.7) can be used to estimate
the ice thickness h, and h,; for the Steele Glacier, I have used

it only to choose reasonable values of ¢, and c,.
3.4 STEELE GLACIER MODEL 2

3.4.1 PROBLEMS WITH STEELE MODEL 1

I ran the Steele Glacier model 1 (Fiqure 3.3) wusing the
flow law parameters (3.3.1) with no sliding. The numerical
parameters are given in Table 3.1. The surface profiles at
50 year intervals starting from ice-free conditions are shown in
Figure 3.5. The 1individual tributaries coalesced by 250 years.
The maximum velocity (gveraged over depth) in steady state |is
33 ma-' at x=12.5 km. The corresponding velocity at the ice
surface is (see Section 1.4.4) (n+2)/(n+1) times this, i.e.

41 m a-'. The final steady state 1length is 35.5 km, and the
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TABLE 3.1. Parameters for Steele steady state.
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FIGURE 3.5, Steele Model 1 Growth To Steady State.

There was no sliding. The model parameters are given in

Table 3.1. The ice surface profiles are shown at 50 year
intervals starting from ice-free conditions. The ice lobes
at 11 km and 13 km are caused by ice from tributaries (1)

and (2).

maximum dépth is 444 m at x=25 km.

The surface profiles from Model 1 appear to be reasonable,
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and the model coped with the rapidly-varying mass balance and
width functions in Figure 3.3. However, I calculated some of the
steady state streamlines for Model 1; these are shown in
Figure 3.6 (note that the abscissa is ice thickness rather than

elevation). The vertical mesh increment for the velocity

T | | |
B Steele Gla:cier Model 1 7
—~ 800F Steady streamlines -
E No sliding
- — Arrows every 100 years =
v 600 -
(V)]
Q - -
[t
X
L 400 -
i -
’—- —
S 200 -
1 I 1 \ L
0 10 20 30 40 , 50
X (km) '

FIGURE 3.6. Steady State Streamlines For Model 1.
This cross-section shows ice depth. Arrows on the
streamlines 1indicate each 100 years of flow. There was no
sliding. The perturbations to the smooth streamlines are
due to the addition of ice flux from tributaries through
mass balance terms.

calculations (see Figure 2.8) was

DZ = 15 m
The perturbations in the streamlines are caused by the additions
of tributary ice flux through the mass balance function. I am
looking for irregularities in streamline shape and in isotope

distribution resulting from surging; to have features of this



106

3000}

Steele Glacier Model 2
Growth to steady state
No sliding

Profiles every 50 years

E

2000}
T
Rl
@
I

1000 1 ] 1 |

0 10 20 30 40 50

x (km)

" FIGURE 3.7. Model 2 For Steele Glacier.

(a) Mass balance.

(b) Glacier width.

(c) Bed topography and ice surface profiles at 50 year
intervals during growth to steady state with no sliding.

form introduced through the mass balance function is
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undesirable. Adding the tributary flux at the glacier surface
rather than at the channel margins is an adequate approximation
if only the ice surface shape 1is desired. If particle
trajectories are also desired, this approximation is
unacceptable.

.An additional problem arises with Model 1 when. sliding is
added. The width function (Figure 3.3 (b)) is a detailed
representation of the valley of Steele Creek. The spatial
distributién of the surging velocity of the Steele Glacier is
not known with the same resolution; Wood (13872) and Stanley
(1969) obtained only spatially and temporally averaged
velocities. Forcing the ice to slide at nearly constant velocity
through a channel of highly variable width can result 1in some
unrealistic surface configurations. For instance, in regions
where the channel width gradient is large and negative, the ice
can thicken rapidly and obtain a reversed surface slope. More
detailed data on how the glacier actually changes speed to
prevent this situation are not available for the 1966-67 surge.
It is necessary to use a width function which has the same
degree of spatial detail as the sliding data.

When a network computer model for tributaries is developed,
and when more detailed sliding observations are available, the

amount of detail in Model 1 can be justified.
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3.4.2 SIMPLIFICATIONS

Figure 3.7 (a) and (b) show a simplified model for the
Steele Glacier. This model resembles Model 1 in its gross
features, yet avoids the difficulties I described 1in the
previdus section.

Figure 3.7(c) shows the growth of Model 2 to steady state
with no sliding, using the parameters in Table 3.1, and starting
from ice-free conditions. The steady state 1length 1is 36.5 km,
the maximum ice thickness is 452 m at x=21 km, and the maximum
velocity (averaged over depfh) is 30.4 m a-' at x=11 km. These

values are close to the values for Model 1 (see Section 3.4.1).
3.5 STABLE ISOTOPES IN GLACIOLOGY

3.5.1 DEFINITION OF THE DEL SCALE

The étandard method of describing the isotopic composition
of oxygen and hydrogen in water is the DEL scale (6). The ratio
R of the concentrations of the heavy and light isotopes 0'8/0'¢®
and D/H can be measured with a mass spectrometer; a practical
concentration scale should be based on R. The 6 value (3.5.1) of
an ice sample 1is the relative difference between R_ of the

S

sample and Rs wof a reference sample known as Standard Mean

Mo
Ocean Water (SMOW) (Craig, 1961).
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R - R
6 = |_S SMOW| 10°
R
SMOW (3.5.1)

A drawback of true SMOW 1is the fact that no samples are
available. Samples of other 0'8/0'¢ isotopic standards from the
U.S. National Bureau of Standards have been distributed in the
past by the International Atomic Energy Agency, Vienna. In
September 1976, at Vienna, the Consultants' Meeting on Stable
Isotope Standards and Intercalibration in Hydrology and
Geochemistry set up a standard sample called Vienna SMOW. The
difference betweén true SMOW (Craig, 1961) and Vienna SMOW is
-0.05%/060. This difference. 1is not significant for my
glaciological applications. The reports of isotopic data for the
Icefield Ranges (West and Krouse, 1972; West, unpublished;
Ahern, wunpublished [b]) predate this change. Dansgaard (1969)
reported a reproducibility of #0.12°/0,, (per mil) for routine
mass spectrometer measurements of &. Ahern (unpublished [bl],
p. 158) reported *#0.03°/,, for samples from the Steele Glacier.
Dansgaard's laboratory in Copenhagen also now achieves this
level. This is adequate for work on glaciers, since 6 may vary
by several parts®/,, to tens of parts®/,, for samples from any

one glacier.,
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3.5.2 FACTORS AFFECTING DEL

The nonzero value of DEL (6) for an ice sample from a
glacier 1is the result of a 1long series of processes in the
hydrological cycle since the water left the well?mixed ocean
(where & is close to zero). At 0°C, the vapour pressures of the
three major isotopic forms of water have the approximate ratios
(e.g. Dansgaard, 1964)

HO'S ¢: HO'® : HDO = 1,000 ¢ 0.989 : 0.904
2 2 (3.5.2)

and the differences increase with decreasing temperature. The
resulting differences in volatility lead to temperature
dependent isotopic fractionation in evaporation and condensation
processes. .Under fast evaporation or coﬁdensation conditions
(i.e. equilibrium conditions do not exist between the vapour and
the liquid phases) thé fractionation factor (the ratio of the
concentrations of a pafticular isotopic species in the two
phases) is complicated. The process which tends to control the 6
values in glacier precipitation is the condensation of droplets
from cloud vapour; fortunately, this can, in most cases, be
adequately modelled by a Rayleigh condensation process, i.e. a
slow condensation (quasi-equilibrium of the vapour and liquid
phases) with immediatebremoval of the condensate (Dansgaard,
1964). For slow condensation or evaporation, the fractionation
factor is just a ratio of the vapour pressures of the different
isotopic species of water at the ambient temperature. These
ratios are well known above 0°C from laboratory measurements,

and have been extrapolated to -20°C (Dansgaard, 1964, Table 1)

using a formula of Zhavoronkov and others, (1955). When the
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Rayleigh condensation model 1is applicable, the 6 value of the
precipitation is primarily an 1indication of the condensation
temperature. In general terms, 6§ values tend to decrease with
altitude and with latitude, and, at any one site, to be more
negative in winter than in summer. A continental effect is also
sometimes observed (Dansgaard, 1964); the 6 values of
precipitation at constant condensation temperature may decrease
with distance from the ocean due to depletion of heavy isotopes
from the storm systems through precipitation, and due to
dilution with isotopically light vapour from freshwater sources.

Factors other than temperature can influence the 6 value of
precipitation. Dansgaard (1964) discussed the effects of
evaporation from falling droplets, 1isotopic exchange between
drops and air.through which they fall, non-equilibrium phase
changes, and variations in the frequency and isotopic
composition of the source storms. While these processes can
cause variations in 6 from storm to storm, their effect on the
average summer or winter 6 value tends to be constant from year
to year. 6(0'8/0'¢) and 6&6(D/H) are linearly related under
Rayleigh conditions (Dansgaard, 1964); simultaneous measurement
of &6(0'8/0'¢) and 6(D/H) can be used to reveal the presence of
non-equilibrium condensation.

. Several processes in snow and firn tend to homogenize the
isotopic distribution, obliterating differences between
individual storms, and sometimes the summer to winter
difference. In regions with summer melting, recrystallization in
the presence of percolating meltwater can bring the whole

vertical column of snowpack to the average 6-value (Dansgaard
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and others, 1973). However, the effects of meltwater are not

always simple; Ahern (unpublished [a], p. 109) found that .
percolating meltwater could enhance rather than smooth the
isotopic Yariations in a cold snowpack with variable density. In
regions with no summer melting, some smoothing of the isotopic
profile occurs due to sublimation and recrystallization in the
firn., Vertical vapour motion is most pronounced 1in regions of
~high wvertical gradients of temperature in the firn (e.g. due to
large seasonal temperature variations), or in stormy regions
with frequent barometric pressure changes (Dansgaard, and
others, 1973).

Below the depth at which firn reaches a density of
550 kg m-?, the ' vapour spaces in the firn are isolated. The
isotopic profile is smoothed only by solid diffusion. This
process 1is too slow to have an appreciable effect on ice in the

Steele Glacier,

3.5.3 PREVIOUS ISOTOPIC STUDIES

Assuming (1) that the precipitating air masses follow
similar tracks with similar frequency the year around and from
year to year, (2) that Rayleigh condensation occurs, (3) that
surface and condensation temperatures can be simply related, (4)
that the 6-temperature relationship is constant with time, and
(5) that the flow pattern of the ice mass can be calculated,
then 6 values in ice cores can be related to climate at the time
of precipitation. This was first pointed out by Dansgaard

(1954). A thorough discussion of ice core studies can be found
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in Chapter 15 of Paterson (1981),
The Greenland ice sheet provides the most suitable ice flow
and meteorological conditions for a simple climatic

interpretation of a deep ice core (Dansgaard and others, 1973).

The first major drilling program was undertaken in 1856 by
S.1.P.R.E. (U.S. Army Snow, Ice, and Permafrost Research
Establishment, now called CRREL, Cold Regions Research and
Engineering Laboratory); a 411 m core was recovered at Site 2,
in northwest Greenland. This was followed by deep c%res at Camp
Century, Greenland in 1966 (1387 m), and at Byrd Station,
Antarctica, in 1968 (2164 m). The Camp Century core has been
used to derive climate variations over the past 100,000 years

(Dansgaard and Johnsen, 196%[al, 1969[b]; Dansgaard and others,

1969, 1971). The Byrd Station core also shows long term climate

variations (Epstein and others, 1970; Johnsen and others, 1972),

but is more difficult to date absolutely, because the annual
variations of & were not preserved during the 1ice formation
process. The length of the flowline, and the time scale for this
hole are in dispute (Robin, 1977).

Coring programs and climatic interpretations have also been

undertaken at other sites in Greenland (Dansgaard and others,

1973), in Antarctica, includﬁng Vostok (Barkov and others, 1974,

1975, 1977), Dome C (Lorius and others, 1979), Little America V

(Dansgaard and others, 1977), and Terre Adelie (Lorius and

Merlivat, 1977), and at sites in the Canadian Arctic, 1including

Meighen Ice Cap (Koerner and others, 1973; Koerner and Paterson,

'1974), Devon Ice Cap (Paterson and others, 1977; Paterson and

Clarke, 1978; Fisher, 1979), and Agassiz Ice Cap, Ellesmere
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Island (D. Fisher, personal communication). 1Ice cores for
isotopic analysis have been obtained from the plateau at 5400 m
on Mount Logan, Yukon Territory by G. Holdsworth.

During periods of extensive glaciation, deep sea sediments
are enriched in 0'®; the isotopic composition of sea water 1is
altered because of the large volume of O'®-depleted ice on land.
Measurements of the isotopic composition of deep sea sediments

(e.g. Hayes and others, 1976) have complemented the <climatic

studies of deep ice cores.

The validity of the climate interpretation of ice cores has
also been supported by other studies. Robin (1976) and Johnsen
(1977) found that the temperature history derived from the
isotopic records was compatible with the present vertical
distribution of temperature in boreholes. Paterson and Clarke
(1978) used the isotopically-derived temperature history as a
boundary condition for a time-dependent heat flow model for the
Devon Island boreholes.

Picciotto and others, (1960) demonstrated the existence of
a linear relationship between cloud temperature and & on the
coast of East Antarctica, and Lorius and Delmas (1975) found a
linear relationship between 6(D/H) and ten metre firn

temperatures. Picciotto and others, (1968), and Lorius and

others, (1970) used the annual variation of & .in near-surface
samples to measure the recent accumulation rate at Antarctic
sites. Lorius and others, (1969) measured regional variations of
6(D/H) in Antarctic precipitation.

- West and Krouse (1972) measured isotopic ratios at several

sites in the St. Elias Mountains, Yukon Territory, including
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Mount logan, Divide Station, and Rusty Glacier, obtaining mass
balance estimates and relating isotopic composition to weather
patterns. A longitudinal surface sampling of Rusty Glacier (a
small surge-type glacier in the Steele Creek basin) showed a
systematic increase of 6 with height in the ablation =zone,
demonstrating that the general isotopic pattern of the glacier
was not destroyed by surging.

Ahern (unpublished [b], p. 162) obtained an isotopic
profile to a depth of 36 m in a borehole at x=15 km (Figure 3.2)
on the Steele Glacier. This profile appeared to show periodic
oscillations of wavelength 7 metres and amplitude #1.5%/,, in
6(0'8/01¢),

Isotopic studies 'on glaciers and ice sheets are closely
related to studies of ice flow. The age of the 1ice must be
'determined: and annual layers cannot always be detected
isotopically. Time scales for ice cores have been derived by
Dansgaard and Johnsen (1969[al), by Philberth and Federer

(1971), and by Hammer and others (1978), using assumptions of

steady sState, proximity to an ice divide, and specific forms of
vertical strain rate or temperature gradient. Paterson and
others (1977) measured the vertical deforﬁation in the Devon
boreholes; this allowed them to eliminate the strain rate
assumptionsv when deriving a time scale from the flow. For
boreholes at large distances from ice divides, the horizontal
velocity influences the time scale calculation, and
two-dimensional flow simulations, such as given by Budd and
others (1971, p. 148) for the Byrd station flowline, must be

used to date the ice.
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A conceptual inconsistency can arise with the use of steadf
state flow models; the existence of the climatic .variations,
which the isotopic profiles attempt to determine, could preclude
the existence of steady state conditions. In addition, the ice
surface elevation may vary in the absence of climatic
variations. For this reason, time-dependent flow models are
essential to the interpretation of some isotopic data. Jenssen
(1978) investigated the effect of ice sheet elevation changés on
the 1isotopic profile in the 'Vostok core. He calculated ice
trajectories and simulated isotopic profiles on the Antarctic
ice sheet flowline from Vostok to Mirny, assuming periodic
surges; the time-dependent ice surface profiles were computed by
Budd and McInnes (1978, 1979). This is the only previous work of
which I am aware in which trajectories and isotopic distribution
are calculated in a time-varying ice mass. Jenssen (1978) was
interested = 1in the effect of surging on the «climatic
interpretation; in this chapter, I investigate the feasibility
of wusing isotopic information to reveal the surge history.
Jenssen (1978) used a linear isotopic-elevation relation similar
to equation (3.5.3) below. The details of the flowline

calculations weré not described.

3.5.4 DEL RELATIONS FOR THE MODEL

In the computer model, I assume that:
(1) all precipitation has the annual average value for the
given elevation or location, (i.e. rapid isotopic

homogenization in the firn), and



117

(2) 1isotopic diffusion is negligible in the solid ice.

I use two 6-precipitation models, representing opposite
extremes of topographic control of precipitation. The first,
which I call Model 61, 1is based on-the assumption that the
isotopic composition of snowfall is completely controlled by the
surface elevation of the glacier h(x,t), and can be approximated
by a 1linear relationship over .  the range of elevations
considered, i.e. |

6(x,t) = 6o + ¢ h(x,t) (3.5.3)
Values of the constants 6, and ¢ consistent with the few
measurements in the Steele Creek basin (West and Krouse, 1972)
and on the Steele Glacier (Ahern, unpublished [b]) are
60 = -15.0 °/40
c = -0.004 m~ ' °/,, : (3.5.4)

The gradient ¢ is close to the value of -0.005 m-' °/,, found by

Sharp and others, (1960) for ¢ at Blue Glacier, Washington,
U.S.A, It 1is within a factor of two of the value of
-0.002 m~' °/,, reported by Dansgaard (1961). Jenssen (1978)
used ¢c=-0.006 m~' °/,, in a modelling study of an Antarctic
flowline. Isotopic values on ice sheets and ice caps can be
described by Model 61, because the 1ice sheet surface height
strongly influences the vertical motion of incoming air masses.
The second model, called Model 82, assumes that the
isotopic composition of the snowfall is combletely controlled by
the regional mountain topography and by distance from the storm
source in the Gulf of Alaska; 6 is assumed to be a function only
of position x. Approximating the 1951 Steele Glacier surface

(Topographical Survey, 1969) by a straight  line in the
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FIGURE 3.8. Reference Surface For 6-x Function.

The accumulation area of the Steele Glacier is assumed to
extend (see Figure 3.7 (a)) to x=13 km (vertical broken
line). The curved 1line 1is the observed Iice surface
elevation in 1951. Applying the 6-elevation relation
(3.5.3) to the linear approximation (dashed line) to this
surface, and using the constants (3.5.4) gives a linear 6-x
relationship with the constants in (3.5.6).

accumulation area, as shown in Figure 3.8, and applying the 6-h
relationship to this line, with the constants (3.5.4), gives the
X-6 relatiohship
6(x,t) = 60 *+ k x (3.5.5)
with the constants
60 = —-26.6 °/40
k = 0.00022 m~' °/,, (3.5.6)
Modél 62 1is more appropriate than Model 61 for small valley
glaciers. The Steele Glacier, being a large valley glacier,
probably falls between the two extremes. D
Because Model 61 allows the isotopic composition of
snowfall to vary with both position and time, while Model 62

_allows only variation with position, Model 61 can produce lérger

variations or discontinuities in 6(0'8/0'¢). Models 61 and 62
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can be considered to give the maximum and minimum structure
respectively to the 1isotopic distribution within the Steele

Glacier,
3.6 MODEL RESULTS: SURGE PERIOD AND TRAJECTORIES

3.6.1 INTRODUCTION

The surge periodicity of the Steele Glacier is unknown. 1In
Section 3.6.2, 1 show three computer simulations of the Steele
Glacier using surge periods spanning the range of 50 to
150 years suggested by field observations. 1 used the same
velocity pattern during the surge in all three cases. The period
(97 years) which gave the most reasonable ice thickness profiles
at all times was selected for trajectory and isotopic
calculations. In Section 3.6.3, I present typical trajectories
for ice particles in this model. These trajectories show

periodic abrupt changes of direction and speed.

3.6.2 PERIODICALLY REPEATING STATE

To obtain a periodically repeating surge cycle, I used the
constants in Table 3.2 to generate the sliding velocity. This
sliding pattern 1is shown at intervals of 0.25 years in
Figure 3.9. The surge duration was two years. I uéed three surge
periods; 47, 97, and 147 years span the range of possible
periods described in Section 3.2.4. Starting from the nonsliding
steady state in Figure 3.6, I ran the Steele Glacier Model 2

through fifteen surge cycles of length t,. By that time, the
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to (a) 0.0 x_.,(to) (km) 8.0
t (a) 0.75 X_1(to) (km) 18.0
t, (a) 1.5 X1(to) (km) 19.0
t, (a) 2.0 x,(ty) (km) 26.0
ty (a) 1) 47.0
2) 97.0 c.,(tg) (ma-?) -1000.0
3) 147.0 C_1(t0) (m a-"') 7500.0
£ 0.0 cqi(to) (m a-?') 15000.0
Uy (ma-1') 5000. Cz(to) (m a-"') - 15000.0

TABLE 3.2. Velocity pattern for Steele surge.

The three values of surge period t, were used for Figures

3.10, 3.11, and 3.12 respectively.
model no longer "remembered" the iniéfal steady state condition;
it repeated the same surface profile sequence to one part in 10°¢
with each new cycle for 97 and 147 year periods, and to a few
parts in 102 ‘with a 47 year period. The time steps in the
computer model must be very small when the glacier is surging in
order to maintain accuracy (see Section A1.5). Table 3.3
summarizes the numerical time step sequence used. The other
numerical and physical constants had the values shown in
Table 3.1. Figures 3.10 through 3.12 show the pre-surge glacier
surface (solid line) at to,, and the post-surge surface (broken
line) at t; for the three surge periods of 47, 97, and 147 years
respectively. The  model with a 47 year surge period
(figure 3.10) has a pre-surge profile (soli@ line) which is less
than 100 m thick beyond x=20 km. The post-surge profile is less
than 100 m thick beyond x=25 km. It seems unlikely that a surge
of 1ice always less than 100 m.thick could advance 12.km'in two
years. The profiles shown in this diagram are unrealistic. This
conclusion indicates that the Steele Glacier accumulation area

cannot provide sufficient mass in just 47 years to generate
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FIGURE 3.9, Sliding Velocity: Steele Glacier Model.
The sliding velocity profile is shown at intervals of 0.25
years during the surge of two years duration. The end of
each curve indicates the position of the advancing terminus
(for the model with 97 year surge period.)

surges which move as quickly or as far as the 1966-67 example.
Either some surges must be less vigorous, or the surge period
must be substantially 1longer than 47 years. The model with a
period of 147 years (Figure 3.12) is reasonablf thick at all
times. It could be criticized on the basis of the exceptionally
thick ice lobe below x=25 km following the surge. Radio echo
sounding (e.g. Narod and Clarke, 1980) of the Steele Glacier
would resolve the validity of this criticism. This model could
be acceptable for the trajectory analysis, but I did not use it

because the observations of Stanley (1969), Wood (1972) and
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FIGURE 3.10. Pre- And Post-surge Profiles: 47 Year Period.

The solid curve shows the glacier as the surge begins. The
broken curve shows the surface elevation as the surge ends
two years later. The sliding function is given in Table 3.2
and Figure 3.9. The ice depths of the 1lower glacier are
unreasonably thin; the Steele has insufficient accumulation
to surge as vigorously as the 1966-67 event as frequently
as every 47 years.

Sharp (1947), described in Section 3.2.4, 1indicate thaf
150 years is an upper limit for the time between surges.

The surge period of 97 years is the most acceptable of the
three. There is little change in the ice surface elevation above
x=8 km., Between 8 km and 20 km, the surface drops by up to
110 m, while below 20 km, the surface rises during the surge by
up to 120 m. This pattern agrees well with the zones described

by Stanley (1969). I used this model for the trajectory and
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FIGURE 3.11. Pre- And Post-surge Profiles: 97 Year Period.
The solid curve shows the glacier as the surge begins. The
broken curve shows the surface elevation as the surge ends
two years later. The sliding function is given in Table 3.2
and Figure 3.9. This model is used in Section 3.7.

isotopic calculations.

Figure 3.13 shows an orﬁhographic view of the ice thickness
h(x,t) during one complete surge cycle for the case with a
97 year period. The rapid decrease in surface elevation between
x=8 km and x=20 km and between time zero and two years is hidden
by the pre-surge profile, but the rapid surface rise of the
lower glacier can be seen. The subsequent slow ablation of the
terminus region, and the buildup and advance of the ice 1in the
source region are evident. Three steps or waves can be seen in

" the ablation zone. One wave forms during each surge. The ice
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FIGURE 3.12. Pre- And Post-surge Profiles: 147 Year Period.
The solid curve shows the glacier as the surge begins. The
broken curve shows the surface elevation as the surge ends
two years later. The sliding function is given in Table 3.2
and Figure 3.9. This model is physically reasonable, but
147 years 1is an upper limit on the surge period based on
the observations of Stanley (1969), Wood (1972), and Sharp

(1947).
Interval Time (a) at (a)
tO—t'l 0.0 - 0.75 0.01
t1"t2 0.75 - 1.5 0.01
ta-ta 2.0 - 7.0 0.1
7.0 - 97.0 1.0

TABLE 3.3. Numerical time steps for Steele surge.
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(m)

Thickness

FIGURE 3.13. Steele Glacier Thickness: One Surge Cycle.

Ice thickness h(x,t) in orthographic view from a point 45°
above the x axis, and 45° around the thickness axis from
the time axis. The model used the constants in Tables 3.1,
3.2, and 3.3. The surge started at time=0.0 and ended at
2 years. The surge period 'was 97 years. The transverse
lines indicate 1 km intervals, and the longitudinal lines
are spaced at intervals of 5 years.

thickens as a result of being forced into the converging channel
(see Figure 3.7 (b)). The observed profile of the Steele Glacier
in 1951 (Figure 3.3 (c)) has long surface undulations, but these
could result from bed topography. Rebeated surface mapping and a
radio-echo depth survey -would resolve this gquestion. The
undulations in Figure 3.13 may be an artifice of the model due
to the poorly-known spatial variation of the surge velocity, and

the 1inclusion of the Hodgson Glacier through the width function
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FIGURE 3.14. Ice Trajectories For 97 Year Surge Period.

Trajectories for 5 particles starting on the ice surface as
a surge begins. The dashed profile is the ice thickness at
to. The dashed-dotted profile 1is the post-surge ice
thickness at t;=2 years. The arrows on the trajectories
indicate time intervals of 48.5 years, i.e. the midpoint
and end of each 97 year surge cycle. Beyond x=22 km, the
ice is virtually stagnant between surges, and the arrows
for mid-period and for the end of the period are
superimposed.

shown in Figure 3.3 (b).

3.6.3 ICE TRAJECTORIES

-Figure 3.14 shows the trajectories of particles starting on
the ice surface at t, as a surge begins. The arrows on the
trajectories show the particle 1locations each 48.5 years,
i.e. at the midpoint and at the termination of each 97 year

surge cycle. The pre-surge (dotted curve) and the post-surge
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(dotted-dashed curve) ice thickness are also shown. The ice
beyond x=22 km is virtually stagnant between surges, and the
arrows indicating the end of each surge cycle are superimposed
on the mid-cycle arrow. Between x=8 km and x=20 km, the
trajectories descend abruptly during the surge; the high
longitudinal strain rate resulting from the gradient of the
sliding velocity in Figure 3.9 causes a general thinning in this
zone. The trajectories rise during the surge in the region below
x=20 km because the velocity gradient is small and the ice
thickens as it flows into a chénnel of decreasing width. The
endpoint of each trajectory indicates the position of ice

surface at the time the ice particle came to the surface.
3.7 MODEL RESULTS: DISTRIBUTION OF ISOTOPES

3.7.1 INTRODUCTION

In this section, I show the isotopic distributions found by
calcﬁlating ice trajectories for the surge model with.97 year
period (Figures 3.11 and 3.13) and the precipitation-6 models 61
and 62. I have chosen to look at the isotope distribution at
four times during the ¢ycle: (1) when the surge begins at t=0.0,
(2) at mid-surge, t=1.0 years, (3) at t=10.0 years, when it is
again possible to walk over most of the glacier surface, and
(4) at t=50.0 years, near the midpoint of the quiescent period.

Since the velocity field is smoothly-varying even during a
surge (Stanley, 1969), discontinuities cannot be introduced into

the isotope distribution within the ice by the rapid flow alone;
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this would require shear fracturing and dislocation on a large
scale. Discontinuities or sharp changes in the gradient of & can
be introduced only by abrupt changes in the &-value of
precipitation falling onto a given element of ice at the glacier
surface. ﬁhen 6 is considered to be a function of position and
surface elevation (Section 3.5.2), the 6-value of new
precipitation falling on an element of ice at the surface can
change abruptly only if (1) the surface elevation changes
abruptly, or (2) the surface element is rapidly moved to a new
position at which snowfall has a different 6-value. Thus,
isotopic discontinuities can be formed only in ice which (1) is
at the ice-air interface at the moment a surge begins, (2) is in
the accumulation region, and (3) participates in the surge
through forward motion or a decrease in ice thickness. The
region above x=8 km on the Steele Glacier diq not take part in
the 1966-67 surge (Stanley, 1969); this feature is incorporated
into the computer model. Since all the ice downstream from x=25,
and the deep ice throughout the glacier comes from the region
upstream from x=8 km, there cannot be any discontinuities or
abrupt variations 1in 6 in this ice. (The surges do, of course,
alter the positions and distort the gradients of tﬁe isodel
lfnes, but all quantities remain slowly-varying; this would be a
difficult and subtle matter to interpret iﬁ a flow regime as
complicated as that of a surging valley glacier).

In Section 3.7.2, I show longitudinal vertical sections of
the Steele Glacier between x=5 km and x=25 km at the four times
metioned above using the height-dependent precipitation

model 61. I present detailed surface profiles of & at the same
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four times in Section 3.7.3. In Section 3.7.4, I show sections
and profiles at the same times wusing the the precipitation

model 62.

3.7.2 MODEL 61: LONGITUDINAL &6 SECTIONS

Would a well-placed borehole, or series of boreholes in the
Steele Glacier recover convincing isotopﬁc evidence of past
surges? In Figure 3.15, 1 show the expected isotopic
distributions in a longitudinal section at the four times 0, 1,
10, andl 50 years measured ffom the initiation of a surge. The
region from x=5 km to x=25 km contains all the ice which 1is
capable of containing discontinuities in 6 and its gradient (see
Section 3.7.1). A 6-value was assigned to each point on a mesh
(indicated by dots) with a horizontal spacing of 500 m, and a
vertical spacing of 5 m. The 6-value was calculated by applying

the isotopic model &1 to the starting coordinates of the ice

Overleaf:
FIGURE 3.15. Longitudinal & sections: Model 61.
The 6-values within the Steele Glacier are contoured at
intervals of 0.1°/,0,. The dots show the 5x500 m mesh at
which &6 was evaluated using Model &61. (Section 3.5.4). The
surge model (Figures 3.11 and 3.13) had a period of
97 years. Each 1liné of steep 6 gradient which intersects
the ice surface and is attenuated with distance upstream
and into the ice outlines the relict ice-air interface at
the start of a previous surge.
a) t=0 year; pre-surge profile.
b) t=1 year; mid-surge.
c) t=10 years; post-surge profile. Foot travel would again
be pdssible.
d) t=50 years; this is approximately the midpoint of the
guiescent period.
In Model 61, precipitation is a linear function of ice
surface elevation; this tends to over-estimate the
magnitude of isotopic discontinuities due to surging.
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trajectories which passed through the meshpoints at the time of
the cross-section. The -Model 61 (Section 3.5.4) assumes that the
isotopic ratio of precipitation is a linear function of the ice
surface elevation. I <calculated the trajectories wusing the
velocity evaluated on a mesh (Figure 2.8) with

DZ = 15 m Ax = 500 m : (3.7.1)
(The velocity mesh can be coarser than the -isotopic mesh because
there are no discontinuities in the velocity field). The
6-values for the isotopic mesh were contoured automatically with
an interval of 0.1°/40.

The only features in the otherwise smooth isotopic
distributions are curved lines which intersect the glacier
surface and dip wupstream 1into the ice. Crossing one of these
lines from above to below, 6 decreases by an amount which varies
from 0.8°/,, or more at the surface near the firn line (x=13 km)
to near zero at depth. Each of these lines reveals the present
location of 1ice which was at the surface in the accumulation
region at the time a previous surge began. The line generated by
the surge cycle shown in Figure 3.15 is not visible untid (d) at
50 years. From zero to ten years, the discontinuity is too close
to the ice surface and to the edge of the 5 m mesh to be
displayed in the contour plots. I discuss the ice surface
further in the next section.

To understand the creation and evolution of one of these
relict pre-surge surface 1lines, consider the ice at x=12 km
where the -24°/,, contour intersects the ice surface .in
Figure 3.15 (a). During the surge, this element of ice moves

rapidly downstream and to a lower elevation. In (b), it is at
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x=8 km. The combined effect of bed slope and ice thinning has
lowered this ice element by approximately 100 m, so, using the
value of ¢ from (3.5.4), the snow falling on this element of ice
has a 6&-value of -23.6°/5,. At the end of the surge, this ice
element is further downstream and still lower; the 6-value of
new snow on this element is near -23°/,,. A 6 discontinuity of
the order of 1°/,, has been created. As snow accumulates during
the quiescent phase, the discontinuity is buried; it is at a
depth of 20 m in (d). The magnitude of the 6 transition across
the relict surface decreases with distance wup the glacier,
because the sliding veldcity during the surge and the amount of
surface-lowering also decrease in this direction (see
Figures 3.9 and 3.11). After one complete surge, this line 1is
clearly visible in Figure 3.15 (a); it intersects the ice
‘surface at x=15 km. During the subsequent surge (b) and (c),
this 1line is seen to move down the glacier. Since it then
intersects the glacier surface in the ablation zone (at x=20 km
in (c)), the downstream part, with the largest 6 contrast, is
rapidly destroyed by melting (d4), until, at the start of the
third surge cycle (a), all that remains is a slight perturbation
of the isodel lines near x=17.5 km.

An isotopic profile in a single borehole would show, at
best, a single abrupt decrease of about 0.8°/,0 to 0.5%/00 at
the most recent or second most recent relict pre-surge surface.
Because this ice is displaced by three to five km during each
surge, it is not possible fo see more than one discontinuity in
a single borehole. A large number of boreholes (5-30) would be

required to interpret the 6 pattern with reliability and
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precision. This would be an expensive field project.

3.7.3 MODEL 61: SURFACE & PROFILES

A cheap alternative to borehole drilling 1is detailed
surface sampling 1in the ablation zone. In Figure 3.16, I show
the 1isotopic 6-values along the glacier surface for the same
models and the same times as for the cross-sections in
Section 3.7.2. The 6-values were poorly determined by the
computer model where the profiles are broken. When an ice
particle is very near the surface, and its velocity is nearly
parallel to the surface, small truncation errors in the normal
velocity component (see Section 2.5.3) can cause the trajectory
to intersect the ice surface at a largg distance from the
correct position; this gives an incorrect value for 6. I
estimate the error in 6 to be #0.1°/,, in this region.
Elsewhere, the trajectories intersect the ice surface at larger
angles, giving reliable intersection positions and &-values.

'At any given time, isotopic discontinuities due to three
previous surges can be seen, diminishing in amplitude from
0.8%°/00 to 0.2°/,, with age. As in the previous section, it 1is
possible to follow the motion of any relict pre-surge surface,
this time seeing only where it intersects ' the present ice
surface. The four 1isotopic peaks and discontinuities labelled
t=0, t=1, t=10, and t=50 in Figure 3.16 show the position and
the amplitude change across a relict surface during the cycle in
which it forms. The discontinuities labelled simply 1, 10, and

50 show how the pattern moves downstream with the ice in the
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FIGURE 3.16. Model 61: Surface 6 Profiles.

6 was calculated at 50 m intervals along the surface of the
Steele  Glacier model with 97 year surge period
(Figures 3.11 and 3.13). The profiles correspond to the
longitudinal sections in Figure 3.15. The discontinuities
in 6 occur where the relict pre-surge surfaces in
Figure 3.15 intersect the ice surface. The 6-values may be
in error by #0.1°/,, where the lines are broken, due to
small vertical velocity errors 1in trajectories 'nearly
parallel to the surface. The firn line is at x=13 km.

second surge (1 and 10), then how the intersection point
retreats back upstream (50) as the shallow downstream portion of
the relict surface is melted off. '

Information on either surge periodicity, or on ice
displacement auring previous surges could be derived from a

surface isotopic sampling program if Model 61 is appropriate for



135

the Steele Glacier, and if the background noise in 6(0'%/0'¢) is
small. Some shallow coring could help to control the
uncertainties in surface intersection points of the relict
surfaces; these points may be difficult to locate precisely due
to the small angles between ice surfaces and relict pre-surge
surfaces.

3.7.4 MODEL 62: SECTIONS AND SURFACE PROFILES

Model 61 assumes that the &-value of snowfall is determined
by the surface height of the ice. In fact, cloud height (and
thus 6) 1is probably strongly influenced by the height of the
mountains in the vicinity of the Steele Glacier, and 1is thus
also a function of 1location x. Figufe 3.17 shows isotopic
cross-sections at times t=0 and t=10 years usihg the
6-precipitation Model 62 (Section 3.5.4). The surge period,
surface height, velocity field, and trajectories are identical
to those used for Figure 3.15; only the relationship between 6
and the point of origin of the snow has been changed. Compared
to Figure 3.15 (a) and (c), the amplitude of the 6 change across
each relict pre-surge surface 1is reduced by a factor of
approximately one half, and only the most recent pre-surge
surface can be seen plainly.

Figure 3.18 shows the surface 6 profiles at the same for
times as the profiles in Figure 3.16, wusing the same flow
models, but isotope model 62. The same discontinuities are
visible in both figures, but the amplitudes are smaller by a

factor of two to three wusing Model 62. During a surge, ice
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FIGURE 3.17. Model 62: Longitudinal & Sections.

: The 1isotopic content of precipitation is assumed to depend
only on location x. The surge period, surface height, and
trajectories are identical to those used for
Figure 3.15 (a) and (c). The amplitude of the 6
discontinuities is reduced by a factor of 1/3 to 1/2 by the
change in precipitation-6 model.

(a) t=0; pre-surge cross-section

(b) t=10 years; 8 years after the end of a surge

particles on the surface a few kilometres above the firn 1line
both (1) move downstream approximately 3 km, 1losing roughly
150-200 m of elevation due to the slope of the glacier bed, and
(2) are 1lowered a further 100-120 m by the thinning of the

glacier. Both these factors are used to calculate 6 with
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FIGURE 3.18. Model 62: Surface 6§ Profiles.
Isotopic variations expected on the surface along the
central flowline of the Steele Glacier if the 6-value of
snow depends only on x. The flow model is identical to that
used for Figure 3.16. The amplitude of the 6

discontinuities is reduced by approximately 1/2 from the
amplitudes in Figure 3.16.

Model 61. With Model 62, the variation of 6§ with x is based on
the elevation drop of an average slope (see Figure 3.8), but 6
is considered to be indépendent of the second factor; hence the
6 contrast at the buried pre-surge surfaces is smaller by a
factor given, approximately, by the ratio of the height changes
considered relevant in the two cases. Since the Steele 1is a
large glacier, 1its surface height may influence the flow of

local air masses. The amplitude of 6 discontinuities on the
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Steele should fall between the limits set by models 61 and 62.

3.7.5 ARE THE PREDICTED EFFECTS OBSERVABLE?

The computational results 1in Figures 3.15 through 3.18
predict that isotopic features with amplitudes in the range
0.2°/60 to 0.8°/,, should outline several relict pre-surge
surfaces now buried in the ice. This amplitude is an order of
magnitude 1larger than the measurement repeatability error of
mass spectrometers (Ahern, - unpublished [b], p. 158). The
principle obstacle to a successful match of observed 6 profiles
and numerical predictions 1is the wunknown 1level of natural
background noise in the isotopic distribution. How large are the

isotopic effects of (1) meltwater percolation, (2) wind scour

and wind-blown deposition of snow, (3) accumulation from
avalanches, (4) annual and year-to-year variations of
precipitation and temperature, (5) crevassing and shear
displacement of seracs during surges, and (6) surging

tributaries? The effect of these processes can be evaluated only
after systematic data collection on and around the Steele
Glacier.

A crude estimate of the background noise level'éan be
obtained from the isotopic profile to a depth of 35 m at x=15 km
on the Steele Glacier by Ahern (unpublished [b], p. 162) in
1975, nine years after the start of the 1966-67 surge. Ahern
measured 6-values for water samples obtained at intervals of
approximately two metres by periodically bailing a hole made by

a hot point drill. The data points varied from =-29.8°/,, to
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-26.5°/00. From the surface to 10 metres depth, the points fall
close to a line with slope -0.1°/,, m~'., Below 10 metres, Ahern
fit the data with a sawtooth wave with amplitude +1.5%°/,0 and
wavelength 7 metres, and a small amount of scatter. Ahern
(unpublished [b], p. 165) suggested that the wave pattern
resulted from periodic surging; the computed longitudinal'
section (Figure 3.15 (c)) at the time and 1location of this
borehole does not support this interpretation. I also calculated
the isotopic distribution (not shown) wusing a tighter mesh
(2x100 m) to look for fine structure not found in
Figure 3.15 (c); none was found. This same simulation found that
the approximate thickness of annual layers in the vicinity of
the borehole was 0.5 m. The wavelength seen by Ahern is an order
of magnitude too large to be an annual effect, and an order of
magnitude too small to be a surge period effect. With the
present limited understanding of the 1isotopes on the Steele
Glacier, I can only say that the variations seen by Ahern are a
source of noise which could easily obscure the presence of
buried pre-surge surfaces. If Ahern's observations can be
explained by a simple physical mechanism which allows a
prediction of their spatial distribution, amplitude, and phase,
then it might be possible to recover the signals due to surges

by data filtering methods.
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3.7.6 CONCLUSIONS

I have carried out a computer si@ulation of the flow of the
Steele Glacier using a simplified model based on observations of
the 1966-67 surge, and on 1limited surveys and mass balance
estimates extending back to the late 1930's. The numerical model
is accurate, but due to uncertainties in the data (mass balance,
bed topography, flow law constants, ‘shape factor, ice
temperature, surge period and surge velocity), I do not expect
the model profiles to give more than qualitative information;
one figure accuracy in ice depth is the most that can be claimed
(no more should be claimed of any simulations of complicated
glacier.flow).

By comparing surface profiles for a suite of models with
differing surge periods, I chose a surgeAperiod of 97 years. My
calculations of 1ice trajectories and isotope distributions in
this model indicate that it is possible to 1locate the buried
pre-surge surface ice from the accumulation area for the
previous one to three surges, by drilling a series of boreholes
to a depth of 50 to 100 m in the region from x=10 to x=20 km.
Detailed surface sampling along the centreliﬁe can also reveal
surge-created isotopic discontinu&ties. 1f the background
isotopic noise is large everywhere on the glacier, then the
signal due- to surges may be overwhelmed; Ahern's
(unpublished [b], p. 162) data show a high noise 1level. I
conclude that the isotopic signal due to surges of the Steele
Glacier would be difficult to measure without a much better

understanding of the precipitation-6 relationship and the causes
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of noise in the 1isotopic record. The technique may be more

feasible on glaciers for which the surge reservoir region
: -

(Stanley, 1969) and the accumulation region have a larger

overlap.
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CHAPTER 4: WAVE OGIVES

4,1, INTRODUCTION

4.1.1 DESCRIPTION OF OGIVE SYSTEMS

Ogives are transverse surface features which form at the
rate of one per year at icefalls on some alpine glaciers. Ogives
travel downglacier at the surface velocity of the ice, so that
the wavelength of an ogive pattern is the distance ice flows in
one year. There are two related types of ogives; topographic
waves, called "wave ogives", and pairs of alternating light and
coloured bands, called "Forbes bands". There are some types of
bands on glaciers which do not repeat annually, and are not
associated with icefalls. These bands are not considered to be
true ogiveé (e.g. Lliboutry, 1965, p. 386). Ogives occur in many
parts of the world e.g. the Alps (Forbes, 1845), Norway (King
and Lewis, 1961), 1Iceland (Ives and King, 1954), Greenland
(Atherton, 1963), the Canadian Rockies (Sherzer, 1907, p. 50),
the Andes (Lliboutry, 1957; 1958[al), the Karakoram (Yafeng ané
Wenying, f980), the Himalayas (Haefeli, 1957) and Alaska
(Leighton, 1951). |

Typical wave ogives may have a crest-to—troﬂgh amplitude of
10 metres right below the icefall. The amplitude usually decays
with distance travelled down the glacier, so that often only 10
to 20 waves are seen. Some wave ogive trains persist, however,

for many more years, e.g. Trimble Glacier North Branch, Alaska
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Range (frontispiece, p. 2).

Forbes bands were first described by Forbes (1845, p. 162)
on the Mer de Glace, although Agassiz (1840, p. 121) may have
seen them earlier, in 1833. In French nomenclature, Forbes bands
are also called "chevrons", because, due to differential flow,
they become convex downglacier. The name "bandes brunes" (e.g.
Lliboutry, 1965, p. 338) has also been used. It probably refers
to the colour of morainic material often found on the dark
bands. The bands often become more visible with distance down
the glacier from the icefall.

King and Lewis (1961) who worked on Odinsbreen icefall at
Austerdalsbreen, an outlet glacier of Jostedalsbre in western
Norway, gave a complete description of the origins of the
coloured bands. In their view, crevasses near the top of the
Odinsbreen icefall collect dust in summer, and snow in winter.
Years later, when these closed and compressed crevasses are
below the icefall, they are seen as narrow structural bands
(1 - 100 cm thick) of dirty and bubbly ice respectively,
extending to a large depth in the glacier. The Forbes bands are
the result of variations in the numbers of these narrow
structural bands per unit distance down the glacier. Leighton
(1951), Lliboutry (1957), and Fisher (1951; 1962) also discussed
the likelihood that the structure of ogives extendea deep into
the ice. On the Mer de Glace, Vallon (unpublished), Reynaud
(1979), and Lliboutry and Reynaud (1981) indicate that the
colour and structural differences extend to a depth of several
hundred metres in the ice immediately downstream of the icefall

Séracs du Géant. However, Lliboutry (1958[a]; 1965) feported
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that in some circumstances the colouration appeared to be purely
surficial rather than continuing into the body of the glacier.

It has long been known that there is some connection
between wave ogives and Forbes bands. Tyndall (1874, p. 131) and
King and Lewis (1961) associated the dark bands with the troughs
of the wave ogives, and the 1light bands with the crests.
Atherton (1963) and Elliston (1957), who worked in-a variety of
different climatic regimes, associated the dark bands with the
leading slopes of the waves.

Since the earliest observations, there has been a tradition
of controversy in the literature concerning the origin of the
layered structure in ogives. Agassiz (1840, p. 40) thought that
all layering and foliation in glaciers was sedimentary in
origin, whereas Forbes (1845) realized that this was not true
for the bubbly 1ice and dirt layers of ogives. The controversy
persisted into this century. Vareschi (1942), (and reported by
Godwin, 1949), wusing a careful pollen analysis on Grosser
Aletschgletscher, attempted to correlate ogives with annual
layering in the accumulation zone, but King and Lewis (1961)
were able to trace the ogives back to a steep avalanching
icefall.

Fisher (1947) suggested that ogives in northern climates
were sedimentary in origin, and proposed a category called
"Alaskan bands". This interpretation is probably incorrect, and
Alaskan ogives are similar to ogives elsewhere.

1 propose in this chapter to consider only wave ogives, and
these can be modelled on the large scale using mass

conservation. Therefore, the controversy about the small scale
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processes of crevassing and dirt accumulation does not affect my

conclusions.

4,.1.2 THEORIES OF WAVE OGIVE FORMATION

Early theories of ogive wave formation (Forbes, 1845;
Streiff-Becker, 1952; Haefeli, 1951[a]; 1951[b]; 1957) favoured
a seasonally varying longitudinal stress at the foot of the
icefall; these variations were assumed to be caused by seasonal
changes in the sliding velocity. In fact, in early terminology,
wave ogives were called "pressure waves", an unfortunate choice
of words that may have biased future thinking on ogive origins.

The pressure mechanism 1is still a topic of research.
Williams (1979) [abstract only] reported a theoretical
derivation of wave trains on glaciers as a second order creep
effect. Pressure doesvappear to be the cause of some wave trains
on cold glaciers, in particular on Meserve Glacier in Wright
Valley, Antarctica (Holdsworth, 1969; Hughes, 1971, 1975). The
waves on Meserve Glacier are associated with the glacier
terminus rather than with an icefall, so they are not ogives in
the classical sense (Lliboutry, 1965, p. 386).

From observations on Austerdalsbreen, however, Nye
(1959[al; 1959[b]) calculated the distribution of stress and
found that the ogives there could not be explained by pressure.
Nye (1958[b]) proposed another mechanism for creating wave
ogives. He showed that annual waves should be expected below an
icefall due to the annually periodic nature of the seasonal mass

balance, and the large plastic deformations taking place in the
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icefall, even when the velocity was independent of time. Vallon
(unpublishéd, p. 51) applied Nye's theory to the generation of
ogives by les Séracs du Geéant on the Mer de Glace. Martin (1977)
showed that this mechanism could also generate kinematic waves
at icefalls in response to fluctuations of <climate. The Nye
theory 1is the basis of the developments reported 1in this
chapter.

Some authors (Atherton, 1961; Elliston, 1957; 1Ives and
King, 1954; King and Ives, 1956) reported multiple systems of
ogives with more than one wave or pair of bands per year. Sharp
(1960) reported that the ogive bands on the Blue Glacier,
Washington State, USA, were not annual. He attributed the
periodicity to the regular passage of serac blocks over the
icefall, rather than to annual balance variations. Waves due to
serac blocks are seen on the Mer de Glace below Séracs du Geant
(Tyndall, 1874, p. 180), and Vvallon (unpublished, p.80) found
four new waves in a six month period. Washburn (1935) and Fisher
(1947) ‘also suggested this mechanism for forming waves. There
may be a range of periodic sources or a combination of sources
which generate waves, but I will consider only the annual

ablation-stretching mechanism.

4.1.3 DISAPPEARANCE OF THE WAVES

The wave crests are free of snow earlier in the melt season
(e.g. North Trimble Glacier, frontispiece, p. 2; Gilkey Glacier,
Post and LaChapelle, 1971, Plate 66, p. 56) and tend to receive

less shadowing than the troughs. Nye (1958[b]) reported 30%
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higher ablation on the crests  than 1in the troughs at
Austerdalsbreen. Kamb (1964) favoured this mechanism of wave
decay. It appears likely, however, that, for some glaciers,
there 1is enough dirt or meltwater in Ehe troughs to cause the
ablation there to be just as high as on the crests, due to
lowered albedo and increased absérption of solar radiation.

A compressive longitudinal strain rate as the ice slows and
thickens below the icefall can lead to amplification of the
waves (Nye, 1958[b]). Glen (1958) pointed out that the
associated 1longitudinal stress could effectively soften the ice
in the region downstream from an icefall, allowing the waves to
decay by flow under their own weight. The presence of the waves
themselves also causes a perturbation of the stress field near
the ice surface, and Vallon (unpublished, p. 54) suggested that,
on the Mér de Glace, the waves may decay in amplitude due to
viscous relaxation of the stress perturbation. However, due ‘to
the nonlinear rheology of ice, the effective viscosity increases
as the waves (and the stress perturbation) decrease. Lick (1970)
indicated that this effect increased the relaxation time by an
order of magnitude in the case of the Vaughn Lewis Glacier. He
concluded that the wave decay was due almost entirely to
differential ablation.

The relative importénce of these processes on a particular
glacier will determine how long the wave train remains visible.

I do not model any of these processes in this thesis.
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4.2 NYE'S THEORY OF WAVE OGIVES

4,2.1 OUTLINE OF THE NYE THEORY

To give a concise and 1lucid description of Nye's wave
producing mechanism, I qguote from the abstract to Nye (1958[b]l):

"The widely held theory that the waves are the result of
pressure requires that the forward velocity of the ice U,
depends both on distance x down the glacier and on the time
t. The simpler case where U depends only on x is treated
analytically, and it 1is found that, owing to the
essentially periodic nature of the ablation, even this case
gives waves. All elements are stretched out as they pass
through the icefall, owing to the high local velocity, and
they therefore present greater surface area. Those passing
through the icefall in the summer therefore lose more ice
by ablation than those which spend the summer in regions of
lower velocity. Waves are thus produced by a combination of
plastic deformation and ablation."

Washburn (1935) also suggested that the annual mass balance
cycle could cause wave ogives, but he did not attempt to
formulate the principle mathematically. He attributed the
troughs to 1increased summer melt made poSéible by an increased
exposed surface area due to shattering in the icefall, whereas
Nye (1958[b]) attributed the greater surface area to thinning in

regions of rapid flow.

4.2.2 NYE'S ANNUALLY REPEATING STATE SOLUTION

Since the wavelength of wave ogives where they become
visible belowvan icefall rapidly becomes 1less than the ice
thickness (due to compressive flow), the waveforms are too short
to propagate as kinematic waves (Nye (1958[b]) discussed fhis
possibility), and essentially the waves do not perturb the flow.

This is consistent with the assumption that U(x) is independent
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of time, i.e.

oU = 0
ot (4.2.1)

The waves are simply carried forward at the velocity of the ice
surface, which.is treated strictly as a "conveyor belt" in this
theory. Nye defined an Annually Repeating State (A.R.S.) by

h(x,t) = h(x,t+1) C (4.2.2)
for time measured in years, and used the continuity equation
(1.3.5) repeated here as (4.2.3)

dh(x,t) + _1 30(x,t) = A(x,t)
dt - W(x) ox (4.2.3)

where h is ice thickness, W(x) is the transverse width, A(x,t)
is the mass balance rate, and Q is the ice flux given by

Q(x,t) = h(x,t) U(x) W(x) (4.2.4)
U(x) 1is the forward velocity of the ice. Because the theory
concerns regions of thin and rapidly sliding ice, the difference
between V(x) of (1.4.38), the average velocity through a column,
and u(x,h), the surface velocity from (1.4.34), is very small.
U(x) may be identified with the ice surface velocity.

For wunit width following a section of ice moving at U(x),
introducing the total derivative DQ/Dx (e.g. Malvern, 1969,
p. 211) and using £he assumption (4.2.1), Nye found

DO(x,t) = A(x,t)
Dx ‘ - (4.2.5)

Nye assumed that, at Austérdalsbreen, where Odinsbreen
icefall is in the ablation zone, the amount of winter snoﬁfall
was unimportant to the wave generation process, being merely a
protective covering for the true glacier surface. To simplify

the . analysis, he also assumed that the net annual ablation of



150
ice occurred instantaneously each year at time to, i.e.

. o]
A(x,t) = b(x) Zé(t-to+n)

n=-co (4.2.6)
where 6(t) is the Dirac delta function (e.g. Morse and Feshbach,
1953, p. 122), n is an integer, and b(x) 1is the net annual

balance given by

1

b(x) = IA(x,t) dt
0

He then derived a recursion relation for the glacier thickness

(4.2.7)

profile h(x) in an A.R.S. immediately after the ablation at t,

h(x) = U(x-x) h(x-\) - b(x)
U(x) (4.2.8)

for ice that was at position (x-\) one year previously. Assuming
an input ice thickness at the origin x=0 (13.8 m and constant
with time for Odinsbreen icefall), Nye used (4.2.8) to predict
the wave pattern at Austerdalsbreen. The spatial balance b(x)
and the surface velocity U(x) shown in Figure 4.1 (redrawn from
Nye, 1958[b]),‘were a fit to the observations of the Cambridge
Austerdalsbreen Expedition.,

The agreement between the observed and the predicted waves
was good, except for the decay of the waves (which the theory
does not attempt to predict), and the sharpness of the troughs,
which resulted from the assumption (4.2.6). The ablation season
at Austerdalsbreen actually lasts about three months (Nye,

1958([b]).
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FIGURE 4.1. Austerdalsbreen Velocity And Mass Balance.
Odinsbreen icefall: curves redrawn from Nye (1958[b]). T(x)
is the time 1in years for ice to flow from the origin to
position x.

4.2.3 OGIVES ABOVE THE FIRN LINE

Fisher (1962) thought that the head of an icefall that
generated ogives had to be at or below the firn 1line. This is
now known to be incorrect. Post and LaChapelle (1971, plate 68,
p. 57) showed distinct wave ogives in firn on the Grand Pacific
Glacier, Fairweather Rangé, British Columbia, and Atherton
(1963) reported wave ogives in the accumulation zone of Eldridge
Glacier, Alaska. Atherton thought that Nye's _(1958[b]) theory
was inadequate above the firn line, perhaps because he thought
that the instantaneous mass balance form (4.2.6) was essential
to the theory. In fact, it is not, and Nye (1959[al]) pointed out
~that a related process would produce waves above the firn line.
(Atherton also thought that, by Nye's theory, the wavelength of

ogives should increase going down an icefall above the firn
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line. He must have misunderstood some aspect of the theory,
because the wavelength is related to the velocity U(x) and not
to the mass balance.)

Above the firn line, the ratio of winter accumulation to
summer melt is important to the wave generation process, and the
mass balance in the vicinity of the icefall might be better
expressed, to a first approximation, as the sum of the net
annual mass balance x(x) and an annual variation T(t)

independent of x, so that

A(x,t) = x(x) + T(t) (4.2.9)
This simple function will generate wave ogives above the firn

line by Nye's mechanism,

4.2.4 AN UVNANSWERED QUESTION

The ablation-plastic deformation mechanism is capable of
producing véry large waves. The guestion which 1is often asked
(e.g. Post and LaChapelle, 1971, p. 57) is why large ogives are
not present below many active icefalls? In particular
(Nye,1958[{b], p. 153), why are waves from the ablation-plastic
stretching mechanism absent?

In Section 4.3, I solve the continuity equation (4.2.3) in

a manner that answers this gquestion.
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4.3 A NEW SOLUTION FOR OGIVES

4,3.1 USING METHOD OF CHARACTERISTICS

In this section, I solve the continuity eqguation (4.2.3)
with veiocity U(x) independent of time (4.2.1), in a more
general form. The solution includes the wave ogives caused by
the mechanism Nye described. )

Multiplying the continuity equation (4.2.3) by U(x) and by

W(x) gives

d0(x,t) + U(x) 90(x,t) = A(x,t) U(x) W(x)
ot Ox (4.3.1)

I used (4.2.1) and (4.2.4) to take all the factors inside the
time derivative.

Now I change the distance variable X to a. nev variable
T(x), the time required for ice to flow from the origin (x=0) to'

position x, travelling at the ice velocity U(x).

X
T(x) = ds
U(s) (4.3.2)
0

Nye also used this transformation when evaluating (4.2.8). (When
the variable T is used, \ becomes unity.)
Using the chain rule gives

U(x) 9Q(x,t) = dx 30(x,t) = dQ(T,t)
X - dT 3x T (4.3.3)

so that (4.3.1) becomes

39Q(T,t) + 30(T,t) = A(T,t) U(T) W(T)
ot oT (4.3.4)

This equation is readily solved by the method of characteristics

(e.g. Whitham, 1974, p. 19) to give
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do = A(T,t) U(T) W(T)
dT (4.3.5)

along the characteristic curves

ar =

dt (4.3.6)
or

T=1¢t - ¢ (4.3.7)

These characteristics are straight lines at 45° to both axes in

the T-t plane, Figure 4.2. They are the space-time trajectories

position

FIGURE 4.2. The Characteristics In T-t Space.
T(x) is the time taken by ice to flow from the origin to x,
so it measures position on the glacier, and t is time. Each
characteristic, representing the trajectory of an ice

column,is parameterized by £, the time the ice passed the
.origin T=0,

of the vertical ice columns. Each characteristic is labelled by

a value of @, the time when that ice passed the origin x=0.
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The equation (4.3.5) is a single total derivative in one
variable T. It is quite similar to equation (4.2.5) used by Nye
(1958[b]). It is easily integrated to give

T
o(T,T+g) - Q(To,To+ﬂ) =.J~ A(s,s+fg) U(s) W(s) ds
T : (4.3.8)

0

where T, is a reference position where the boundary condition is
applied.

Now I want to show that. the solution (4.3.8) contains terms
of the form Q(t-T), which are waveforms travelling down the
glacier at the speed of the ice, 1i.e. at one year's flow
distance per year. I also need to show that this propagating
solution has a spatial periodicity of one year's flow distance

below the icefall.

4.3.2 SEPARABLE MASS BALANCE

To proceed further, I will assume that the mass balance

A(T,t) is separable into the summation

N
A(T,t) = Z x (T) T (t)
i i (4.3.9)
i=1
This form includes, as a special case,
A(T,t) = X(T) T(t) (4.3.10)

where the annual cycle T(t) is weighted by the annual net
balance x(T) at each position T. The mass balance (4.2.6) that
Nye used for Austerdalsbreen had this form.

It also includes the special case (4.2.9) which I discussed
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in connection with waves above the firn line. In this-case, an
annual cycle T(t) is added to the annual net balance.
1t is possible to introduce travelling waveforms into the
solution through propagating mass balance waves having the form
A(T,t) = b(T-t) (4.3.11)
when N is larger than wunity in (4.3.9). In fact, the
disappearance of the wave ogives (see Section 4.1.3) can be
represented by such a term; zones of excessive ablation rate may
propagate down the glacier so as to remain on wave crests.
However, I have not included this effect in the examples I show.
Any propagating waves formed between T, and T in the examples
arise from the ablation-stretching mechanism.
| Because (4,3.8) 1is linear 1in the mass balance, the
summation in (4.3.9) will carry through all the linear
operations which follow. To keep the expressions as simple as
possible, I can consider the case N=1, and drop the subscripts,
without loss of generality.
It will be useful, subsequently, to define a function B(t)

which is an integral of the temporal variation T(t) of the mass

t
B(t) = ,I. T(s) ds
0

balance.

(4.3.12)
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4,3.3 THE GENERALIZED VELOCITY

To simplify the‘appearance of the equations, I will define
a 'generalized velocity function' v(T)

v(T) = U(T) W(T) x(T) (4.3.13)
vhich comprises the total spatial dependence of the integrand in
(4.3.8). I have called it a velocity because, of the three
factors, U(T) is likely to have the largest relative changeé in

an icefall.

4.3.4 THE UPSTREAM BOUNDARY CONDITION

In this section, I derive an expression for the input flux
at the upstream boundary T=T,.

By substituting the mass balance (4.3.9) into the flux
conﬁinuity equation (4.3.4) evaluated at the boundary T,, I get

20(T ,t) = v(T ) T(t) - 30(T ,t)
at ° ° 9T © (4.3.14)

Integrating this from time zero to time

t =T+ ¢
° (4.3.15)

i.e. up the vertical boundary 1line at T, in the T-t plane
(Figure 4.2), gives
T +@

)
Q(T ,T +@) = Q(T ,0) + v(T )B(T +0) —f d0(T ,s)ds
o o 0 o 0 3T ©
0

(4.3.16)
This is the input flux at the boundary T, for the characteristic
#. It is composed of three terms. The first is a constant which

may be thought of as a datum flux, the flux which - was crossing
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the boundary T, at time t=0.

The second term is the change in flux at the boundary due
to the synchronous rise and fall B(t) of the whole surface in
response to the seasonal changes.

The final term is a function of @=[t-T], so it represents a
waveform travelling at the speed U(x) of the ice. It gives the
flux changes at the boundary due fo advection of spatial

variations across the boundary.

4.3.5 THE TERMS OF THE FLUX SOLUTION

When I substitute the mass balance (4.3.9) into the flux
solution (4.3.8) using the generalized velocity (4.3.13), I get
- _
Q(T,T+@) - Q(To,To+ﬁ) =.J; T(s+@) v(s) ds
° (4.3.17)
Using integration by parts on the right side,

Q(T,T+@) - Q(T ,T +§)
o o

S

T
= v(s) f T(s+@)ds J‘ dv(s T(r+ﬂ)dr ds
T dT
T

(o] 0

s:
(o]
(4.3.18)
Evaluating the first expression on the right at its limits, and

recalling the definition (4.3.12) of B(t),



159

o(T,T+g) - Q(To,To+ﬂ)

T
= v(T)[B(T+@) - B(T +@)] -J‘ dv(s)[B(s+@) - B(T +#)]ds
(o] dT (o]
T
° (4.3.19)

Taking the second term in the integrand outside the integral,
substituting the boundary condition (4.3.16), and setting T+f@=t

from (4.3.7), two terms cancel, and

TO
Q(T,t) = Q(TO,O) —~/~
0

T

+ v(T) B(t) —Ulalgz(s) B(s+[t-T]) ds
daT
T

0 (4.3.20)

+(t-T)

t—
90(T ,s) ds
oT °

1f the summation is carried through from (4.3.9),

. T +(t-T)
o]
Q(T,t) = Q(T ,0) —v/~ 0(T ,s) ds
[o] ﬁ [+]
0
T
N N ]. .
+ v (T) B (t) - dv (s) B (s+[t-T]) ds

:E: i i :{: —i i
i=1 i=1 daT -

T .

° (4.3.21)

To find the waves 1in the ice thickness profile h(T,t),
divide through by U(T). To see the waves as ‘a function of
distance x rather than the travel time T, stretch the T axis by

the inverse transformation to (4.3.2), i.e.
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T
x(T) =~I~ U(s) ds
0

(4.3.22)

4,3.6 PHYSICAL INTERPRETATION

The equation (4.3.21) is the complete solution for the flux
at all times t and positions T>T, with the assumptions

1) velocity is independent of time (4.2.1), and

2) mass balance is separable (4.3.9).

The first two terms were discussed in Section 4.3.4. The first
term is the datum flux that existed at the origin at time t=0.
It has no effect on the generation of waves.

‘The second term is the advection of spatial flux variations
dQ0/dT across the boundary at T,. If waves exist above T,, this
term will -represent their propagation through the region of
interest. Nye's assumption of constant velocity and ice
thickness above the Austerdalsbreen icefall eliminatéd this
effect from his analysis. I will also avoid introducing waves
through the boundary condition in the examples I show,

The third term represents the synchronous rise and fall of
the whole glacier surface due to the changing seasons. There can
be no propagating wave of the form Q(t-T) from this term.

The final term contains the ogive waves. It is a fuﬁction
of the 1limits T, and T, and of [t-T], the phase shift of the

balance integral B(t).
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T
p(T ,T,[t-T]) = fgg(s) B(s+[t-T]) ds
0 dT
T
o]

(4.3.23)
The dependence on [t-T] indicates that this term contains a
disturbance propagating in the positive direction at the same
speed as the ice, |

If the annual balance wvariation T(t) 1is cyclic with a
period of one year, then so is its integral B(t) (4.3.12), to
within a linear trend which is made zero by a suitable choice of
the terms in (4.3.9), i.e.

B(t) = B(t+1) (4.3.24)

This suggests that the propagating disturbance (4.3.23) also has
a strong periodic component at one year. For example, 1if 1
consider a region below the icefall where the generalized
velocity is constant, then the wupper integration limit of
(4.3.23) can be put to oo, and substituting (4.3.24) into
(4.3.23) shows that

P(T ,T+1,[t-T+1]) = P(T ,T,[t-T])
0 ° (4.3.25)

i.e. that the propagating disturbance is a wave that repeats
with a period of one year's flow distan;e.

The wave term (4.3.23) has the physical interpretation that
any incremental step change 6v in the generalized velocity at
position T,, or, eguivalently, an impulse of strength év in the
velocity gradient, generates a set of waves downstream given by

~ G([t-T);T ) = v B(T +[t-T])
! ! : (4.3.26)

Nye (1958[b]) illustrated the wave generating mechanism by
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an, example of an A.R.S. shown in Figure 4.3 (redrawn from Nye
(1958[b]). The ice velocity (curve(a)) is

doubled from U, to

-
-

b(x)

|"l(>()'“‘~7_\\N

- -

S ] W, féﬂ w3~|L~~-
g4Lb)<1q fes- x

FIGURE 4.3. Double Step Icefall Model.
The 1ice travels the distance BC

in 6 months. The mass
- balance is applied instantaneously each year.
(a) the ice velocity.

(b) the average annual mass balance.
(c) solid curve:

ice thickness just before ablation.
broken curve: immediately after ablation.

U,=2U, between B and C. The ice travels this distance in six

" months. The mass balance function

(curve (b)) 1is spatially
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constant, }and is applied instantaneously each year at the same
time. The resulting ice thickness .(Figure 4.3 (c)) immediately
before the ablation occurs is shown by the solid line. The ice
thickness immediately after ablation 1is shown by the broken
line. The volume elements S, and W, are nearly equal before
ablation. S, is on the fast section BC during the summer
ablation, and W, is not. The square waves result from the fact
that the ablation removes approximately twice as much mass from
the element S, as from the elements W, and W, on either side,
because S, has approximately twice as much surface area exposed
to ablation. Downstream, the wvolumes S. which were in the

J
icefall in summer are shorter than the elements W:, and so form

J
troughs.

However, the result (4.3.26) 1indicates that there is an
even simpler wave generating model. If the velocity 'merely
increases or decreases, but not both, waves are still generated.
This model is shown in Figure 4.4 for a decreasing velocity step
from U, to U,=Uy,/2 , with an instantaneous mass balance. As
before, the solid curve in (c) is the ice thickness just before
ablation, and the broken curve is immediately after.

In this case, the ablation removes twice the volume from
the column A,, immediately upstream from the velocity decrease,
as from the column B, of equal volume immediately below. Later,
when both A, and B, have moved dgwnstream, and are travelling at
the same velocity, B, will be higher than Ao. A new
discontinuity 1is generated 1in this way every year, giving the

sawtooth pattern.

From the definition (4.3.13) of the generalized velocity
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U(x)
Ug a
U, -
X
b(x) t)
X

h(x)

'{Lh*'10 F&— X
FIGURE 4.4. Single Velocity Step Model.
(a) the ice velocity.
(b) the average annual mass balance.
(c) solid curve: ice thickness just before ablation.

broken curve: immediately after ablation.
The mass balance is applied instantaneously each year.

gradient, it 1is apparent that spatial changes in.the mass
balance and in the channel width contribute annual waves in the
same manner as do velocity changes. However, the relative
changes in these factors on actual glaciers are wusually less
than the relative velocity changes in an icefall. Nye (1958[b])
mentioned waves due to changes in mass balance with x. A theory

was presented at a meeting of the British Glaciological Society,



165

November 1, 1957.

These three factors would be expected to influence the wave
amplitude on simple physical grounds. If I consider the ice in
terms of vertical prisms, then the wéves-arise because the mass
balance removes or adds a different amount to prisms immediately
above and below the position x(T,) (To relate x to T, see the
transformation (4.3.22)). .

As illustrated in Figuré 4.5 (a), a change of velocity
achieves this by stretching the ice prism in the downstream
direction to expose a different surface area.

A change in glacier width achieves this by stretching the
ice prism laterally (Figure 4.5 (b)) to expose a different
surface area.

A change in mass balance achieves this by removing ice to a
different depth in prisms presenting equal surface area
(Figure 4.5 (c)).

Of course, a longer ablation season would generate smoother

waves.

Overleaf:
FIGURE 4.5. Three factors generating waves.

(a) a change of velocity U(x). W(x) and x(x) are constant.

(b) a change of width W(x). U(x) and x(x) are constant.

(c) a change of mass balance =x(x). U(x) and W(x) are
constant.

The mass balance is assumed to be applied instantaneously
for the purpose of illustration. The A.R.S. profiles are
shown immediately before the ablation is applied. The
shaded volumes indicate the mass about to be ablated from
previously equal volumes of ice above and below the
transition point x(T,). :
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4.3.7 THE GREEN'S FUNCTION FOR OGIVES

The function (4.3.26) is the Green's function (e.g. Morse
and Feshbach, 1953, p.-791) or impulse solution for wave ogives.
The total resultant wave pattern (4.3.23) is the integral of the
Green's function over the whole wupstream region where the
generalized velocity varies. |

The reason that annual waves are not seen on all glaciers
is that all the small waves due to spatial changes in velocity,
mass balance, or channel width tend to have differing phase,
which makes them interfere destructively. Only on glaciers where
the spatial changes are large and 1localized, such as in an
icefall, can these waves add together constructively to give

visible ogives.

4.3.8 A CONVOLUTION FORMULATION FOR OGIVES

If I define a reversed cumulative balance function Br(t) by

B (t) = B(-t)
r (4.3.27)

and if the.generalized velocity v(T) 1is constant above the
boundary T, and below the observation point T, the ogive term
(4.3.23) takes the standard form of a simple linear convolution
(with variable [t-T]), of the time-dependent term B, with the

spatial velocity gradient term dv/4dT.
00

P(t-T) =f§_\_r(s) B ([t-T]-s) ds .
dT r (4.3.28)
-0

The theory of convolutions, and algorithms to do convolutions,

are widely known. For example, the velocity gradient dv/4dT may
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be treated as a smoothing filter applied to the wave term B,..

If the velocity gradient is nonzero downstream from T, the
truncated convolution with finite limits must be used for the
exact solution. If the gradient below T is small, or is uniform
for a large distance, however, the convolution (4.3.28) is a
good approximation, because a small, uniform gradient has little
effect on wave generation. I shall illustrate this in the next
section. The only effect of a small negative velocity gradient
is to cause longitudinal compression. This amplifies existing
waves expressed 1in terms of ice thickness and has no effect on

waves expressed in terms of ice flux.
4.4 SOME SIMPLE EXAMPLES

4,4.1 INTRODUCTION

I shall consider two very simple types of generalized
velocity changes, and use the convolution equation (4.3.28) to
illuetrate how destructive interference c¢an occur, even on
active 1icefalls, to prevent the formation of observable waves.
Combinations of these simple velocity patterns can be applied to
any icefall to get a rough but easy estimate of the expected

ogive wave amplitude.
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4.4.2 EXAMPLE: LINEAR VELOCITY GRADIENT

Equation (4.3.26) showed that the simplest feature
generating wave ogives is an impulsive velocity change from v,
to v,;. A generalization of this step change is a constant
velocity gradient from v, at T, to v, at T,, a distance I will
call r, as shown in Figure 4.6 (b).

The velocity gradient dv/dT in Figure 4.6 (b) is a "boxcar”
function of length r.

v -V T <T<T
dv = 1 o (o} 1

aT T

= 0 T<T or T>T
[o] 1

(4.4.1)

Some general results for this velocity gradient are
immediately apparent. First, the wave amplitude will, in
general, tend to decrease as the gradient decreases, i.e. as r
lengthens, or as v, approaches v,. Second, because convolution
using (4.4.1) 1is (except for a constant factor) just a running
average over a distance v, (4.3.28) must be identically zero

whenever r is an integer and the mass balance integral B(t) is

Overleaf:

FIGURE 4.6. Ogives from a velocity gradient.
T is a measure of distance downglacier, and t is time.
(a) Generalized velocity.
(b) Generalized velocity gradient.
(c) Mass balance.
(d) Normalized crest-to-trough wave amplitude as function
of v, the spatial extent of the gradient. The solid
triangles are the amplitude of waves in numerical solutions
(Figure 4.7).
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an annually repeating function with zero mean.
If, for example, the mass balance (4.3.9) 1is a simple
harmonic function

T(t) A cos(2nt) ' (4.4.2)

as shown in Figure 4.6 (c), then

B (t) = -A sin(2nt)
r 21 (4.4.3)

Performing the convolution (4.3.28) using (4.4.1) and (4.4.3),
and using the standard addition formula for cosines (e.g.

Abramowitz and Stegun, 1965, formula (4.3.17), p. 72) gives

P(t-T) = -_A(v -v )[sin(nr)] sin(2n[t-T] + n[T +T 1)
2n 1 (4] TT 1 0

(4.4.4)
The final factor 1is the propagating annual wave train. The
crest-to-trough amplitude of this wave train is modulated by

A(v -v ) sin{(n7)

M(r) = (4.4.5)

w
which is shown in Figure 4.6 (d). A velocity gradient over an
integer number of years generates no waves at all, and the
amplitude of the ogive waves falls rapidly with increasing
length of the gradient region between zero and one year. It is
always small for lower gradients, i.e. larger r. Because of the
processes which can destroy wave ogives (Section 4.1.3), waves
formed by gradients longer than 6 months may, in most cases, be
too small to be observable.

Figure 4.7 shows the numerical solution to the continuity
equation (4.3.4) for a suite of models with velocity gradient
sections of varying lengths r as shown in Figure 4.6 (a), using

v,=vo/4'and the mass balance (4.4.2). The constant A is 0.1h,
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per year, where h, is the average input ice thickness at the
boundary. I used the numerical model described in Chapter 2. The
numerical solutions are presented as orthographic projections of
the ice flux Q(T,t), seen from a position rotated 45° up about
the t axis, and 30° forward about the Q axis.,.

In these numerical solutions, the terms in the analytical
solution (4.3.20) can be identified. The first term Q(T,,0)=Q,
is the amplitude at the point T=0, as the 1ice surface passes
through its average level in the middle of the accumulation
season. The second term is zero, because there are no input
waveforms at the boundary T=0.

The annual wvariations on lines parallel to the time axis
are the third term, the whole glacier surface going up and down
with the changing seasons. This is clearest on Figure 4.7 (c).

Finally; the fourth term, the wave ogives, describes the
annual disturbances which propagate at a velocity of unity (one
year per year). The triangular data points on Figure 4.6 (d) are
the wave amplitudes from these numerical solutions. Figure 4.7
is a graphic illustration of the differences in wave amplitude

due to slightly different geometrical situations.

Overleaf:

FIGURE 4.7. Flow past a velocity gradient: numerical solution.
Orthographic projections of ice flux Q(T,t) for various
gradient lengths r. T is a measure of distance downglacier,
and t is time. Surface profiles are at intervals of 1.5
months. The velocity and the mass balance have the form
shown in Figure 4.6.

(a) r = 0.2
(b) r = 0.5
(c) r = 1.0
(d) r = 1.5
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FIGURE 4.8. Double Step Icefall Model.

T 1is a measure of distance downglacier, and t is time. The
mass balance is given in Figure 4.7 (c).
(a) Generalized velocity.

(b) Generalized velocity gradient.

(c) Normalized crest-to-trough amplitude of waves in flux
as a function of icefall length r.

4.4.3 EXAMPLE: DOUBLE STEP ICEFALL MODEL

The second simple example (Figure 4.8) of a

velocity
distribution and the resulting ogives

is a generalization of
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Nye's (1958[b]) simple illustrative model previously shown in
Figure 4.3 (a). This time, I will look at the amplitude of the
waves as a function of v, the length of the 'icefall', as shown
in Figure 4.8 (a)

In this case, the velocity gradient dv/dT 1is two Dirac
delta functions (e.g. Morse and Feshbach, 1953, p. 122) of
opposite polarity, shown in Figure 4.8 (b). If B, is annually
repeating, and if «+r is an integer, these two delta functions
will qontribute equal and opposite amounts to the convolution
(4.3.28), i.e. no waves are formed.

For example, using the harmonic mass balance (4.4.2), the
convolution (4.3.28) becomes

P(t-T) = -aA(v —vo) sin(rr) sin(2n[t-T]+ ﬂ[T1+T°])

" 1

(4.4.6)
The peak-to-trough amplitude is given by

M(r) = [2A(v -v ) sin(n7T)
T 1 0

(4.4.7)
which is shown in Figure 4.8 (c). Even when the velocity changes
are abrupt, the wave interference from the speed-up phase and
from the slowdown phase modulates the ogive amplitude, depending

on the length of the icefall,
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4.5 AUSTERDALSBREEN

4,5.1 INTRODUCTION

King and Lewis (1961) attributed the Forbes bands on
Austerdalsbreen to seasonal differences 1in dust accumulation,
melting, and snow accumulation in the crevasses formed in the
upper part of the Odinsbreen icefall, where the ice undergoes a
longitudinal extension. This region is between x=500 metres and
x=1000 metres 1in Figure 4.1. Since wave ogives are often
associated with Forbes bands, it is interesting to see which
sections of the Odinsbreen icefall are most important for

forming the waves.

- 6000 ; T | J
b(T)-UIT) ettt s e e e

-4000

- 2000

T (yeorsY

FIGURE 4.9. Odinsbreen: Generalized Velocity Per Unit Width.

The arrows indicate the ends of the approximately linear
sections in Table 4.1,
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4.5.2 ESTIMATED WAVE GENERATION

If I assume that the width variations are unimportant (Nye
(1958[{b]) also assumed this), then, by multiplying the curves
U(x) and b(x) 1in Figure 4.1, and using the transformation
(4.3.2), 1 get the generalized velocity v(T) for unit width on
Odinsbre. This is shown in Figure 4.9. In rough terms, this

curve can be approximated by four sections of constant gradient,

as described in Table 4.1. The wave amplitude function M(t) in

T T T (v -v ) M(r1)
0 1 1 o
years years years m3a-? normalized
0.5 0.9 0.4 -5500. 0.76
0.9 1.6 0.7 2200. 0.15
1.6 2.6 1.0 1100. 0.0
2.6 5.0 2.4 400. 0.01

TABLE 4.1. Approximation to Odinsbreen by 1linear velocity
sections. The endpoints are shown by arrows on Figure 4.9.
Values of generalized velocity v are given per metre width.
The wave amplitude factor M has been normalized using r=0
and v,-v,=5500. m3a-2, (Note that the units of generalized
velocity are not m a~').

Table 4.1 is the value of M(r) from equation (4.4.5) normalized

to =0 and v,-v,=5500. m*® a-?, Although (4.4.5) is exact only

for the mass balance (4.4.2), other annually varying mass
balance functions would show similar rapid falloff of the wave
amplitude with r. The M(r) column in Table 4.1 suggests that the
largest contribution to the generation of the waves comes from

the initial section of the generalized velocity as the ice

accelerates to maximum speed. This is the same section that King
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and Lewis (1961) 1identified as the region controlling the

formation of the Forbes bands.

4,5.3 OGIVE SOLUTION FOR AUSTERDALSBREEN

To test this 1idea, I have wused the Odinsbreen icefall
profile (Figure 4.9) to solve the continuity equation (4.3.4)
with the numerical model described in Chapter 2.

The upstream boundary condition was satisfied by a constant
input flux. Using the values of ice thickness (h =13.8 m) and
ice velocity (U =1375. m a-') at the upstream boundary from Nye
(1958[b]), the input flux per metre widtﬁ was

O =h U = 18975. m3® a'! ' :
° °c o (4.5.1)

(For Nye's model of Austerdalsbreen, the input flux was constant
in time because the mass balance at the top of the icefall was
zero.)

Because the finite difference model cannot accurately
represent an instantaneous mass balance of the form (4.2.6), I
used a constant ablation rate for three months each year, i.e.

T(t) = 4[H(t-t ) - H(t-t -1/4)]
° - 0 (4.5.2)

where H(t) is the unit Heaviside step function (e.g. Morse and

Feshbach, 1953, p. 123). Nye (1958[b]) indicated this was

Overleaf:

FIGURE 4.10. Austerdalsbreen wave ogives.
The numerical solution using the generalized velocity in
Figure 4.9, with constant input flux at T=0, and a 3 month
constant ablation season. Profiles at 1.5 month intervals.
T is a measure of distance downglacier, and t is time.
(a) ice flux Q(T,t). '
(b) ice thickness h(x,t).
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actually a more realistic representation of

mass balance.

180

the Austerdalsbreen

Figure 4.10 (a) shows the computed ice flux Q(T,t) in an

orthographic view from an angle 30° forward
and 45° up about the t axis. Figure
transformation to ice thickness h(x,t). The

back about the h axis, and 30° up about

about the Q axis,
4,10 (b) shows the
view 1is from 20°

the t axis. The wave

ogives are evident in both plots. The amplification of the waves

due to compressive flow can be seen in Figure 4.10 (b).

150 A il LJ ) L) T

h(T)
100

metres
50

T years

FIGURE 4.11. Austerdalsbreen Ice Thickness,

Ice thickness h(T) at the midpoint of the ablation season.
T(x) is a measure of distance downglacier (the time to flow

from the origin to position x).

s0lid curve: numerical solution with

sSeason.

3 month ablation

broken curve: Nye (1958[b]) with instantaneous ablation.

The solid curve in Figure 4.11 shows

the 1ice thickness

profile h(T) in the middle of the ablation season. For

comparison, the broken line is the wave pattern found by Nye



181

using an instantaneous ablation season. The longer ablation

season smooths out the sharp troughs on the waves.

4.5.4 FINDING THE WAVE GENERATING REGION

To test whether the steep gradient of v(T) in the upper
icefall essentially causes the wave ogives, I then used the
numerical model with two.modified velocity profiles. |

To generate the annual repeating state in Figure 4.12 (a),
I brought the 1ice into the icefall already travelling at the
high generalized velocity of -5500. ma-2?, i.e. using the dotted
horizontal curve in Figure 4.9, then let the ice slow down on
the standard Odinsbreen curve (solid 1line). The upstream
boundary condition for this A.,R.S. model 1is time-dependent,
because b(x) cannot be zero at the boundary. The boundary flux
is

t
Qo(O,t) = hoUo +f T(s) ds
0 (4.5.3)
the waves generated in this model have only 15%-20% of the
amplitude of those in Figure 4.10 (a). The prediction in
Table 4.1 was 15%.

Next, I ran the numerical model wusing the standard
Odinsbreen curve (solid 1line in Figure 4.9) up to the peak of
the generalized velocity curve, but letting the ice 1leave the
icefall and travel down Austerdalsbreen without slowing down,

i.e. using the broken horizontal curve. The boundary condition

was (4.5.1). The average slope of the flux surface is much
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larger in this case, because the ice remains thin, and ablation
takes a larger proportion of the mass each year, but the
amplitude of the waves in this case, Figure 4.12 (b), |is
approximately 80% of the amplitude in Figure 4.10 (a). The
prediction in Table 4.1, based on the approximating linear
velocity gradient segments, was 76%. This agreement suggests
that the simple estimates are quite adequate. These results also
substantiate the idea that the rapid velocity increase in the
upper region of Odinsbreen causes the waves at Austerdalsbreen,
and the subsequent slowdown of the ice only amplifies the waves
in ice thickness by compressive flow. It appears that the rapid
extension, which 1is responsible for the crevassing controlling
Forbes bands, is also responsible for the formation of wave
ogives.

The velocity and' ablation data for Séracs du Geant in
Vallon (unpublished, p. 52) suggest that the slowdown phase at
Mer de Glace also contributes very little to the wave ogives on

that glacier.

Overleaf:

FIGURE 4.12. Variations on Odinsbreen icefall.
T is a measure of distance downglacier, and t is time. the
vertical arrows at T=5 show the wave amplitude.
(a) The 1ice enters the icefall already travelling at the
maximum generalized velocity (dotted curve in Figure 4.9).
It slows down following the solid curve. The wave amplitude
is small.
(b) The ice reaches peak generalized velocity and maintains
it as it descends the icefall (broken curve in Figure 4.9).
The wave amplitude is comparable to the amplitude in
Figure 4.10 (a).
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4.6 CONCLUSIONS

The ablation-plastic stretching mechanism of Nye (1958[b])
has been re-examined through a solution of the continuity
equation for ice flux by the method of characteristics. The
total wave ogive pattern on a glacier can be written as a
. convolution of a spatial term, the velocity-width-mass balance
gradient, with a temporal term, the time-integrated mass
balance. Nye's plastic stretching is in the spatial term, and
the annual mass balance 1is in the time term. The convolution
describes their interaction.

The integrated mass balance has an annual periodicity. The
velocity gradient can be viewed as a filter applied to this
periodic function. Wave ogives appear in the filter output- (the
glacier flux profile), only if the filter does not heavily
attenuate the annual component. The theory predicts that factors
such as the icefall length, and the magnitude and spatial extent
of velocity changes in the icefall modulate the amplitude of the
resulting wave ogives. The modulation factor may go to zero.

Since small annual waves may go unnoticed, or be rapidly
obliterated by differential ablation, this modulation effect may
be why some icefalls with rapid ice velocities and large annual
balance variations do not generate observable wave ogives by the
ablation;stretching mechanism,

Several points of physical interest can also be made:

1. Longitudinal variation of ice velocity, channel width, and
mass balance all can generate annual wéves in the same way.

The waves due to velocity changes are usually the largest.
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Every incremental <change with x of any of these three
factors generates a wave train downglacier. This annually
periodic wave train is the Green's function for the total
wave pattern.

Waves are not observed on all glaciers, because the
velocity gradients are small, and waves generated over a
large spatial range tend to be out of phase and to
interfere destructively.

Only large and localized gradients traversed by the ice in
six months or less can generate waves sufficiently coherent
to form large wave ogives.

Wave ogives and Forbes bands often are found together,
because, while the physical processes causing them are
different, they both depend on the occurrence of a short
zone of rapid ice acceleration, such as the upper stretch

of some icefalls.
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LIST OF SYMBOLS

SYMBOL SECTION' MEANING

A 1.4.3 temperature dependent coefficient in
Glen's flow law

A 1.4.3 coefficient in general stress-strain rate
relationship

A 2.5.2 coefficient in Weertman sliding law

A 4,4.,2 half amplitude of seasonal mass balance

A A2.,3.2 coefficient in quadratic equation for 6x

A(m) A13.4 real term common to numerator and

denominator of T{(m)

A'(x,t) A5.4 mass balance normal to glacier surface
A A1.3.4 mass balance averaged over wedge terminus
A Al1,1.2 sub-diagonal element of M row j
3 -
Ao 1.4.3 constant in Arrhenius temperature

relation for A in Glen's flow law

A, 4.3.6 a vertical prism of ice at lower edge
of icefall during ablation

A, 4.3.6 a vertical prism of ice which occupied
position A, one year previously

A 2.2.2 tridiagonal matrix in iterations for &6h
A(x,t) 1.3.3 mass balance normal to bed
n
A 2.2.2 mass balance normal to bed at mesh .point j,
j time step n

'The SECTION column indicates the section in the text where this
particular definition of the symbol is first used.



Ao(X)

al(x,t)

|

B(t) .

B (t)

B(m)

B(x)

lor

A6

A5.2

A1.2

A1,2

1.4.3

A2.3.2

4.3.8

A13.4

A15.3.1

2.5.2

A15,2

AS5.2
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mass balance for a datum (steady) state
perturbation to mass balance Ay(x)

a vector in a set whose endpoints define
mass balance as a function of position
everywhere on the glacier surface

element in row j column k of matrix A

sub-diagonal element in row j matrix A
equal to a -

3*+1,3

coefficient in general stress-strain rate
relationship

coefficient in quadratic equation for é6x

a vertical prism of ice which left
icefall just prior to ablation

a vertical prism of ice which occupied
position B, one year previously

total body force on a deforming continuum

ith component of body force B

row j main diagonal element of matrix M

temporal integral of bt(t)

time reversal of B(t) i.e. B(-t)

real factor common to imaginary parts of
numerator and denominator of T(m)

mass balance for Nagata ice sheet model

constant term in mass balance of Nagata
ice sheet model

constant mass balance for Nye ice sheet"
model

vector in a set whose endpoints define
basal melting rate over bottom surface



c(H)

c(x,t)
c.,(t)
c.,(t)
c,(t)
c.(t)

Cco(x)

2.3.2

3.5.4
A15.3.3

Al1.2

2.3.3

2.3.3
3.3.5
3.3.5
3.3.5
3.3.5

A6
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glacier bed elevation at gridpoint ]

diagonal element a  of matrix A
3] -

total depth of accumulation in one year

coefficient in general stress-strain rate
relationship

coefficient in guadratic eqguation for 6x

super-diagonal element in row j matrix M

—

scale constant in analytical solution for
terminus motion test

rate of change of 6(0'8/0'%) with height
streamline parameter for Nagata model
super-diagonal element in row j matrix A
rate of change of flux Q, with H
(variable for Burgers' equation)

same as c(H)

velocity of transition region edge x.,(t)
velécity of transition region edge x_,(t)
velocity of transition region edge x,(t)
velocity of transition region edge x,(t)

rate of change of flux Q with
depth H in datum state

value of co(x) at gridpoint j

material derivative or total derivative of
a function of both space and time

“ right side column vector containing known

terms in equation for H

element j of vector D



Do(X)

DX

DX
ij
DZ

DX,

DX,

F(m)

F(2Z)

|'3

A6

A13.4

A2.3.1

A1.5.4

A1.5.4

A3.1

A3 .1

A5.2

A7.3

A7.3

A7.3

3.3.5
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rate of change of ice flux Q with
surface slope in datum state

value of D,(x) at gridpoint j
length of wedge terminus region
grid interval in x direction at
position i and height j

grid interval in z direction

DX between meshpoints P, and P,
i3

DX  between meshpoints P, and P,
1]

displacement vector (6x,6z) of an ice
particle relative to a meshpoint P,

fractional interpolation error in ice
thickness h at midpoint of mesh interval

error in 0Q/dx resulting from E
h

fractional error in ice velocity due to
assumption of simple shear deformation

an error in h at some meshpoint j
]

Fourier transform of a function f(x)

Z transform of a sampled function f
]

a length vector tangent to glacier surface

gravitational term in expression (A7.2.20)
longitudinal stress term in (A7.2.20)
shear stress-dependent term in (A7.2.20)

ratio of sliding velocity between surges
to peak sliding velocity during surges



fo,.oof3

{9

(e

Ho (%)

H(t)

H (z)

Ho (x)
H(x,t)
h(x,t)
h(x,t)

K2.3.1

1.3.3

4.5.3

A1.4.2
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fractional error in flux Q due to error E
h

jth point of a sampled a;bitrary function f£

specific body forces at position r

ith component of f(r)

value of an arbitrary scalar function £
at a point P in a vertical longitudinal

section

values of arbitrary function f(P)
at meshpoints Poy,...P;

arbitrary vector tangent to ice surface
(units of mass balance)

acceleration due to gravity 9.8 m s-?

gas density

thickness of Nagata ice sheet at x=0
n+1

column vector with jth element h
J

initial condition for ice thickness
Heaviside step function =0 t<0
=1 t>0

polynomial z transform of {h [j=1,J}
J

ice thickness in datum (steady) state
total ice thickness Hy(x)+h(x,t)
perturbation to ice thickness Hg(x)

ice thickness normal to glacier bed

ice thickness at meshpoint j, time step n
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h A5.2 a position vector from a set whose
endpoints define the ice surface

h'(x,t) AS5.4 ice thickness measured normal to glacier
surface

h(m,t) A1.5.1 Fourier transform of h(x,t)

ho 2.3.2 ice thickness at x=0 for analytical
solution testing terminus motion

b A1.,4.2 i2 = -

J 2.2.2 number of finite difference meshpoints
between bergschrund and terminus

K(m) A1.5.2 a real term in the transfer function T(m)

K(Z) Al1.4.2 a real term in the transfer function T(Z)

k 3.5.4 rate of change of 6(0'8/0'¢) with x

k A1.3.1 nonzero element in last row of matrix M

k A16.2 flow law constant used by Budd and
McIinnes (related to Glen's flow law
through k=2A/[n+1] )

L(t) 1.3.3 length of glacier

M 2.2.2 coefficient matrix in equation for H

M(7T) 4.4.2 amplitude of wave ogives generated by
velocity changes over a distance r

M(t) AS5.1 mass inside a volume V of a continuum

M A19 width of ith tributary of Steele Glacier

i

m 2.2.4 wavenumber

m 2.5.2 exponent in Weertman sliding relation

m 2.2.4 Nyquist wavenumber; highest wavenumber

N which can be detected on a discrete grid

m A7.2 ice surface downslope unit tangent vector

N 2.2.2 total number of time steps At.
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o[x]

EOr°'°_E_>3

P(t)

P(To,T,[t—T]) 4.3.6

2.4.2

2.3.3

AS5.2

exponent in Glen's flow law for ice

unit vector normal to a surface

jth component of n

f=0[x] means f is of the order of x

It is used in the approximate sense:
|10-Tx|<|E]|<|10x|

Technically it means lim (f) is bounded

x=->0

initial position of an ice particle

four meshpoints at the vertices of a

quadrilateral mesh cell in vertical

longitudinal section (used for 4-point

interpolation scheme)

trajectory of an ice particle

term containing wave ogives in
solution of continuity equation

pressure

constant At/(24xW ) at gridpoint j
]

activation energy for creep
ice flux through a vertical transverse
cross-section
ice flux at time step n, midway
between gridpoints j and j+1
n n
estimate of Q when h has error e
j+1/2 3 h
ice flux at x=0 (boundary condition)

ice flux in datum (steady) state

flux term depending on H
(derivation of Burgers' equation)

ice flux through surface S,
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La

So

Si
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s(t)

A5.2

Al6.4 -

A19

A5.2

4.3.6

4.3.6

A5.3
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ice flux through surface S,

balance flux for steady glacier
discharge of ith tributary of

Steele Glacier

perturbation to datum flux Qo (x)

gas constant 8.314 J °K-' mol-!
Reynold's number for Burgers' equétion
isotopic concentration ratio of a sample
isotopic concentration ratio of

Standard Mean Ocean Water

n+1

_residual in iterative solution for h

at gridpoint j, time step n+i j

n+1
residual vector with jth element r

]
position vector of a point in a continuum

surface enclosing a deforming continuum V

upstream surface of a thin transverse
vertical prism

downstream surface of a thin transverse
vertical prism

prism of ice in icefall durlng ablation
(Summer ice)

prism of ice which occupied p051t10n So
one year previously

transverse cross-sectional area of
glacier channel

shape factor (may be x dependent)

slope of analytical solution to continuity
equation (used to test terminus motion)
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So 2.3.2 initial value of s(t)

s 2.3.2 rate of change of s(t)

T 1.4.3 temperature (°K)

T 1.4.2 surface traction vector for a deforming

volume V of a continuum

T 1.4.2 kth component of T
k
T,,T2,T, 1.4.3 scalar invariants of stress tensor o«
jk

T),T:,T} 1.4.3 invariants of stress deviator tensor ¢'

T(m) 2.2.4 transfer function for numerical scheme
when using Fourier transform

T(2) A1.4.2 transfer function for numerical scheme
when using Z transform

T(t) 3.3.5 amplitude function used to model surge
velocity of Steele Glacier

T(x) 4,3.1 time for ice to flow from origin to x
(For ogive problem, this is a nonlinear
measure of distance)

To 4.,3.1 reference position at which boundary
condition Qqo(t) is applied

To 4,4.2 upstream end of a linear gradient in
generalized velocity v

T, 4.4.,2 downstream end of a linear gradient
in generalized velocity v

t 1.3.3 time

to 2.3.3 initial time

t, A2.3.2 time subsequent to to: t,=to+At

to 3.3.5 time at which a surge starts

t, 3.3.5 time at which a surge reaches peak sliding

velocity



max

u (x,t)

u
S

Uo,...U;:,

X2

Vi(x,t)

j+1/2

4.2.2

A2.3.2

A2.3.2

A2.3.2

A2.3.2

1.4.2

1.3.3

time at which a surge begins to slow
time at which a surge ends
surge period

maximum sliding velocity in
Steele Glacier surge simulations

surface velocity of ice for ogive models

velocity of ice at upstream edge of
transition zone for simple ogive models

velocity of ice at downstream edge of
transition zone for simple ogive models

velocity component parallel to bed
when x is the triplet (x,y,z)

velocity component in direction x
When .)i iS (X1,XZ,X3) i

maximum value of u(x) on [0,L(t)]
basal sliding velocity
u (x) at gridpoint j

s

velocity component u at mesh points
_E_)Or 211 221 23

first difference of u in x direction
between P, and P,

first difference of u in z direction
between P, and P,

first difference of u in z direction
X

volume of a deforming continuum
downslope velocity component u(x)

averaged over width and depth

V(x,t) at time step n, midway between
gridpoints j and j+1
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VoreseVs

A15.3.1

A1.5.2

A1.3.4

4.3.3

A2.3.2

A2.3.2

~Az.3.2

A2.3.2

A1.3.4

A19
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vertical velocity component at ice
surface for Nagata ice sheet model
phase velocity of wavenumber component m

volume of wedge terminus

times width W
j=1/2

ice velocity VvV
j=1/2

velocity vector (u,w,v)
z component of v(x)
generalized velocity function for ogives

velocity component v at mesh points
.EO' Blr 221 23

first difference of v in x direction
between P, and P,

first difference of v in z direction
between P, and P,

first difference of v
X

in z direction

channel width

width W(x) at gridpoint j

channel width at x=0 for analytical
solution used to test terminus

x gradient of channel width for analytical
solution used to test terminus

a prism of ice above icefall during
ablation (in icefall in Winter)

ice which occupied volume W, one
year previously
average width of wedge terminus

width of Steele Glacier at confluence
with ith tributary



wix)

X(x,t)

E

L
N = '
~ e~ N
o~~~
~ e t+ ¢t

N N

L]

Al1.3.4

A15.3.2

velocity component in y direction
nondimensional length of wedge terminus

spatial pattern of sliding velocity for
Steele Glacier surge simulations

position vector (x,y,z)

axis along glacier bed on a flowline
(positive downstream)

equivalent to x axis
equivalent to y axis
equivalent to z axis

axis along glacier surface
(positive downstream)

position of glacier terminus
(equivalent to L(t) )

equilibrium line for Nagata steady
ice sheet model

points defining zone in
which sliding takes place
in simulations of surges of
the Steele Glacier
transverse horizontal axis

imAx
Z transform variable Z=e

axis in vertical plane and normal to x
(positive upward)

axis in vertical plane and normal to x'

inclination of ice surface slope in
datum (steady) state

inclination of ice surface slope

perturbation to /4
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coefficient in quadratic relation between

gas flux Q, and gas density H
(Burgers'equation)
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B 1.4,2 inclination angle of glacier bed

B 2.3.3 coefficient in quadratic relation between
gas flux Q, and gas density H

4 2.3.3 coefficient in quadratic relation between
gas flux Q, and gas density H

At 2.2.2 time increment for finite difference
solution of continuity equation

AX 2.2.2 horizontal grid interval for finite
difference scheme
Ax 2.2.2 grid interval along bed at grid point j
j for finite difference scheme
6(0'8/0'¢) 3.5.1 isotopic composition of oxygen
6t 1.3.4 a small time interval
6x 1.3.4 a small increment in x direction
(6x%,62) 2.4.3 position of an ice particle relative
to a meshpoint P,
6 1.4.3 Kroenecker delta function: =1 if i=j
i3 =0 if i#3
6(x) 2.3.3 Dirac delta distribution
8o 3.5.4 isotopic composition at a reference
location
sV Al1.3.4 volume change of wedge terminus in
bal time At due to surface melting
&V A1.3.4 volume change of wedge terminus in
flux time At due to ice flow through
upstream boundary
6b 3.3.4 perturbation to Steele Glacier mass
i balance to simulate ice discharge from ith
tributary
: n+1
6h 2.2.2 iterative correction to h
] ]
&h 2.2.2 correction vector: ith element is 6h

J



6v

61

AB.3.1
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magnitude of a step change in
generalized velocity v

difference between effective shear stress r

and shear stress ¢
XZ

numerical viscosity (Lax-Wendroff scheme)
truncation error at gridpoint j

at time step n

strain rate tensor

effective strain rate (square root
of second invariant of ¢ )

ij

Newtonian viscosity for longitudinal
strain (Budd, 1975)

weighting parameter between 0 and 1, used
to mix past and future time steps in
finite difference scheme

displacement of surface ice in one year
diffusion coefficient

density of glacier ice

stress tensor

deviatoric stress tensor

effective shear stress (square root of T')
2

time for ice to travel the length of a

channel section with a velocity gradient

simple gravitational shear stress

given by spgh sine

local lubrication-lowered stress
(Budd, 1975)



T(t)

g (m)
pde

g (m)
fd

Boreeels

x(x)

‘Plr ‘1'2

A1.5.2

A1.5.3

Al1.4.2
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'actual' basal shear stress
(Budd, 1975)
temporal term in mass balance for ogives

time when ice passes origin (this is also
the label for characteristic curves)

basal lubrication factor (Budd, 1975)

baseline halflength for finite difference
estimate of 9Q/dx

phase angle of transfer function T(m)
for partial differential equation at
wavenumber m

phase angle of transfer function T(m)
for finite difference scheme at
wavenumber m

real numbers between 0 and 1/2 giving x
locations of remainder terms in truncated
Taylor expansions of h(x) and Q(x)

spatial term in mass balance for ogives

‘baseline halflength for finite difference

estimate of slope ¢

real numbers between 0 and 1 giving

X locations of remainder terms for Taylor
expansions for interpolation error analysis

underscore indicating a vector.
double underscore indicates a matrix .

convolution operator
superior dot indicating time derivative

superior bar indicating spatial average
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APPENDIX 1: CONTINUITY MODEL

"A mighty maze! But not without a plan;
A wild, where weeds and flowers promiscuous shoot,
Or garden, tempting with forbidden fruit."'

A1.1 THE NUMERICAL SCHEME

Al1.1.,1 THE CONTINUITY EQUATION

The solution of the partial differential equation (At1,1.1)

oh(x,t) + 1 30(x,t) = a(x,t)
ot Wix) ?x
0 <x <L 0<t<sT (A1.1.1)

is approximated by the solution of a corresponding set of
algebraic equations (A1.1.4) for {h?|j=1,J;n=1,N}, the values of
h(x,t) at a set of mesh points in x-t space.

j =1

{4y ax , nat)|j=1,3; n=1,N}
1= 1

-—

L = AX n =at/T (A1.1.2)

J-1
=1 3

The x axis runs along the glacier bed, and the thickness h
and the source term A are measured normal to it. Q 1is the Iice
flux through the cross section normal to the bed. W is the width
of the glacier channel. The mesh points are chosen with a

uniform spacing Ax in the horizontal direction. The intervals

along the x axis on the glacier bed are then

' An essay on man. Alexander Pope.
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box = Ax/cos(a.) (A1.1.3)
J J

The slope of the glacier bed is g. This is illustrated in Figure

Al.,1,
n+1 n n+1i n+1 n n
h -h + 6 (Q - Q ) + (1-8) (Q -Q )
j j - i+1/2 3-1/2  — J+1/2 3=1/2
At W. AX W. Ax’
J J 3 J
n+1 n
= 6A + (1-8)A (A1.1.4)
J ]

The weight factor © 1is a constant between 0 and 1 used to

FIGURE Al.1. Mesh Increment On Bed.

stabilize the numerical scheme by mixing estimates of the
spatial partial derivative at successive time steps. This is
discussed further in Section A1.4 below.

The‘ice flux Qj.+12 can be written in terms of the ice

thickness hj at the mesh points by
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Q =V W (h  +h) (A1.1.5)
J+1/2  §£1/2 §21/2 _3#*1 i
2

where Vi, . is the ice velocity midway between the mesh points
and averaged over the depth hj*‘ﬂ normal to the glacier bed.
Wj.yz 1is the channel width.

After substituting (A1.1.5) into (A1.1.4), separating past
and future values of thickness h and setting

p'=At/(2Ax_W_)

J 3 (A1.1.6)
(A1.1.4) gives
n+1 n+1 n+1
[1 + po(v W -V W )] h
3 j+1/2 j+1/2 j_1/2 j-1/2 i
n+1 n+1 n+1 n+1
+ [-ep W \ Ih + [6ep W v ] h
j 3=t/ 3-vr 0 3 jo3+r/ og+t/2 3n
n n n
= [1 -p (1-0)(V W -V W )1 h
3 j+1/2 j+1/2 j_1/2 j_1/z j
n n n n
+ [(1-8)p W \Y lh - [(1-8)p W \' ] nh
I VA R VA R s RAVAND L AVASEEN Y
n+1 n
+ [ea  + (1-8)Aa ] at
J )

1 <3 <4 1 €£n <N (A1,1.7)

Starting from an initial condition {hg |j=1,J}, this system
of equations is solved for {h; |j=1,3} . This time stepping
method of solution is continued until n=N, Since the left side
of (A1.1.7) contains more than one of the unknowns i.e.

h"+1,h?*', and h%:!, this is an implicit numerical scheme for
i-1rt i-

thh*1]3=1,3} .
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A1.1.2 A MATRIX FORMULATION

The system of equations (A1.1.7) can be written as a matrix

eqguation
B C O . 0 . ] hn+! D
1 1 1 1
A B C 0 . 0 . L] *
2 2 2
0 A B C . 0 . .
3 3 3
" . 0A B C 0O 0 .| |nn D
5 I B ] ]
.0 a B ¢ . .
J-t J-1 J-1
. . 0 A B hn+! D
J J J J

where D, is the expression on the right side of (51.1.7)
containing only known quantities. B,,C,, A, BI, D,, and Dy are
determined by the choice of boundary conditions discussed below
in Section A1.3. The matrix M is tridiagonal and is diagonally
dominant because the diagonal terms B; , the coefficients of h?*‘
in (A1.1.7), are of order unity, while the off-diagonal terms
are of the order of pQ, which is usually less than unity for
reasonable glacier models, énd choices of mesh. This means that
the matrix eguation 1is easily solved by Gaussian elimination
without wusing any special pivoting strategy (Carnahan and

others, 1969, p. 272).
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A1.2 NONLINEARITY
If the wvelocities {V;“|j=3/2, 5/2,...J+1/2} were perfectly
known, the complete solution would be obtained by simply solving
the matrix equation (A1.1.8). Since the
{Y;"|j=3/2, 5/2,...J+1/2} depend 1in general on {h;*‘|j=1,J}
through some flow and sliding law, (A1.1.8) only appears to be
linear in {h;“|j=1,J} . The standard technique to solve
nonlinear equations of the form of (A1.1.8) 1is to wuse an
iterative method to improve the coefficient values (here, the
{Y;“lj=3/2, 5/2,...J+1/2} ) based on the values of the unknowns
{h;*‘|j=1,J} at the previous iteration. Specifically, 1letting
the sublevel prescripts indicate the 1iteration number,
{OV;“|j=3/2, 5/2,...J%1/2} at the new time sﬁep are
approximated by {V; |3=3/2, 5/2,...J+1/2}, the velocity at the
previous time step. Using these values for the coefficients,
(A1.1.8) is solved for {ohg"|j=1,J} . This thickness profile
estimate is then put into the flow and sliding 1law to find a
better velocity profile {,V;*‘|j=3/2, 5/2,...J+1/2} . The

residuals { r;“|j=1,J} are then calculated.

n+i n+1 n+1 n n
r = 2p0lQg -0 ] +2p (1-e)[Q -0 ]
J 3 3+ /2 j3-1/2 3 j+1/2  j-1/2
n+1 n n+1 n
+h -h -[ea - (1-6)a ]Jat
J ] ] )
1<3j=J 1 <n<N (A1.2.1)

and
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p = ot/(2ax W) (A1.1.6)
J : 33

The residuals are a measure of the degree to which the
continuity equation is satisfied by the current values of
{hg*‘|j=1,J} and {V;“|j=3/2, 5/2,...J+1/2} . The quantity r;
is the wvolume of ice created or destroyed in one time step per
unit length and width at mesh point j, through error either in
the surface elevation, or in the amount of ice flowing in and

out from the adjacent mesh points.

It 1is then necessary to calculate the corrections
{6hj|j=1,J} to the thicknesses such that the residuals will be
reduced to zero using

h = h - 6h (A1.2.2)
k+1 3 k J j
This can be done using a multidimensional Newton-Raphson
technique. A variation of this method was used by Bindschadler
(unpublished, p. 84), who did not solve the matrix equation
(A1.1.8) for the first estimate {ohg“|j=1,J} , but instead set
{oh]""1j=1,3} = {hj|3=1,3}
i.e. used a steady state starting estimate. The procedure
described in this study gives a better starting estimate of
{ohg*‘|j=1,J} when the profile 1is changing with time, but
requires the extra computing effort of solving (A1.1.8).

The residuals { r?"|j=1,J} are a function of the thickness
values {h?“|j=1,J} either directly, or through the ice surface
slope or higher derivatives. Dropping iteration prescripts for
the moment, the first order Taylor expansion of rg“ about zero

is
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J
n+1 drn+?
r = :E: —3j sh
3 ohn-1'  k

x
]
E I |

or, in matrix form,

tiy

h=r . (A1.2.3)

This 1is a set of algebraic equations which can be solved for
{6hj|j=1,J} . The elements of matrix A can be found by
differentiating the residuals in (A1.2.3)
ar + 1
a =

—]
jk oh *!
k

(A1.2.4)

This 1is another implicit system of equations that can be

solved by Gaussian elimination (e.g. Carnahan and others, 1969,

p. 272) for the corrections to the ice thickness.

A common modelling case is that in which the flux at x is a
function of the thickness at x and the slope at x. In this case,
the matrix A is also ‘tridiagonal. For models with a flow law
such that the flux depends on thickness and slope over a range
of x, the diagonal band of A becomes wider than three. These
models are no more difficult in theory, but merely require more
computational time.

For the «case that flux Q(x) depends only on thickness and

slope at x,
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dr h 30 h
a = —j 3 = -2p 6—j-1/2] 3
i dh h j oh h
=1 3+ -1 j*1
dr |h o0 30 h
b = —j | j=1 = 1+2p ©|—3F+1/2 - —j-1/2|| -1
i odh |n j |on dh h
I R J J j+1
ar h o0 h
c = —j j=1 .= 2p &—3j+1/2| j-1
j  oh j oh h
j+1 3 J+1 j (A1.2.5)

where each partial derivative is evaluated with all the other
h; held constant. The bj's are the main diagonal elements a;;
and the_aj's, and cj's are the sub- and super-diagonal elements
aj+1.j and 35,3+ 1+

For computations it 1s more convenient to express the
coefficients in the matrix A as partials with respect to
thickness between mesh points hj+1n and the slope between mesh
points 85+1j2 o since these are the quantities from which the
flux is directly calculated. This form of the coefficients is
derived in Appendix 10.

As with the matrix equation (A1.1.8) for the full thickness
for the first iteration at a new time step, the coefficients in
rows 1 and J are determined by the boundary conditions. The
details are described below in Section A1.3.

If the residuals were truly a linear function of the
{hg“|j=1,J} , the solution would be obtained exactly after
soiving the residual equation (A1.2.3) once. Since the matrix

equation (A1.2.3) was obtained by linearization through'a Taylor

series, the iterations must be continued until the the largest
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residual in absolute value is smaller than some preset test
criterion. The choice of such a criterion 1is discussed in

Appendix 11,
A1.3 BOUNDARY CONDITIONS

A1.3.1 THE UPPER BOUNDARY
The first order partial differential equation (A1.1.1) requires
one boundary condition. The condition for the finite difference
system (A1.1.4) is applied at the upstream end j=1 1in complete
analogy to the condition on equation (A1.1.1). The various

possible types of condition are described below.

1) Zero flux input: wedge type

The thickness h, 1is =zero. This models alpine glaciers
starting on a steep slope. In the eguations (A1.1.8) for the
first iteration,

B =1.0 C =0.0 D =1.0 (A1.3.1)
1

For subseqguent iterations to find {6hj|j=1,J} , the same wvalues

are used.

2) Zero flux input: zero slope

The surface slope is zero at x=0. This is the model for a
stable ice divide on an ice sheet. The boundary condition is
implemented by reflection at j=1 by using an image point in the

equations (A1.1.7) with subscript 0 such that
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h =nh
o] 2
W =W
172 3/2
vV = -V
1/2 3/2 (A1.3.2)

In the matrix equation (A1.1.8)

n+1
B =1 + 2p 6V W
1 1 3,72 3/2
n+1
C =2p oV W
1 1 3/2 32
n n n
D= h =-2(1-6)pv [h +h 1w (A1.3.3)
1 1 1 3/2 2 1 3 /2
n+1 n

+ 6A At +(1-6)A At
1 1

3) Flux inpht Qo(t)

The flux Qo,(t) at x=-Ax/2, or j=1/2, is substituted into
(A1.1.7). This models a section of an ice mass starting some
distance below the bergschrund or ice divide. For example this
model is used to investigate the generation of wave ogives at an
icefall when the input flux from the upper glacier is Q,(t).
Note that in the limit of Qo (t) going to =zero, this 1is not
equivalent to boundary conditions 1) or 2) above, since in this
case neither the slope nor the thickness is specifically set to
zero at the boundary, and the boundary is located at X=-Ax/2

rather than at x=0. In the matrix (A1.1.8)
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n+1
B =1 + p 6V W
1 1 3/2 3/2
n+1
C=p 6V W
1 1 3 /2 3 /2
n+1 n n n n
D=-2p[6Q +(1-6)Q ] -p (1-8)v  [h +h ] W
1 1 0 0 1 3 /2 2 1 372
n n+1 n
+(1-6)A At + © A At + h (a1.3.4)
1 1 1

A1.3.2 THE DOWNSTREAM BOUNDARY
Sihce the partial differential equation (A1.1.1) is first order,
it requires only one boundary condition. However, to implement
the numerical scheme (A1.1.7) it is necessary to impose some
condition at the lower boundary j=J so that the the matrix M can
be terminated i.e. to eliminate hZ}:|

301'

A1,.3.3 NONZERO FLUX LEAVES DOWNSTREAM BOUNDARY

This treatment is useful when modelling a short section of
an ice mass‘which does not include the terminus region. No mesh
points are added to or removed from the grid as time advances,
and a nonzero ice flux exists at Ax/2 beyond the last mesh point

j=Jd. This ice flux is given by

n+1 n+1 n+1
Q =V h 1)
J+1 J+1/2 J+1/2 J+1/2

where h3lj, is estimated by the second order Newton's divided
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difference polynomial (e.g., Carnahan and others, 1969, p. 12)

h =
J+1/2
h - h h -h h -h
h + Ax| J J-1}1 + jax 3AX J J-1 - J-1v J-2
J 2 AX 2 2 AX AX
2Axv
(A1.3.5)

This quadratic extrapolation ignores the third order term
(93h/dx3)ax3, so that the extrapolated flux has an error that is
o(v [?*h/dx%]ax?), and the flux gradient has an error term that
is 0(V [d%h/dx%]ax?), which is the same order as the truncation
error described in Section A1.5. To use any extrapolation with a
larger error than the truncation error would reduce the accuracy
of the total solution. This was done by Budd and Jenssen (1975)
whé used a linear extrapolation. The 'shocks' at the boundaries
described by these authors are possibly a result of this
treatment..

However, this extrapolation introduces a nonzero
coefficient k for h;t; in the last row J of the matrix (A1.1.8),

so that the matrix is no longer tridiagonal, but has the form

o . A B C 0 h"*') = D
J-2 J-2 J-2 J-2 J-2
. 0 . 0 A B C hn! D
J-1 J-1 J-1 J-1 J-1
. k A B ! D
J J J J
- - . - L e

(A1.3.6)

in the last three rows. When k is nonzero, the matrix can be

restored to tridiagonal form by subtracting (k/AJ) times the
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(J-1)st row from the Jth row to give

. A B C 0 hh*1'| = |D
J-2 J-2 J-2 J-2 J-2
. 0 A B C  |pne D
J-1 J-1 J-1 J-1 J-1
0 A -kB B -kC URR D -kD
J _J-1 J_J-1 J J g1
A A A
L J g 4L J L J
) (A1.3.7)

A1.3.4 MOVING WEDGE TERMINUS

For some applications it 1is essential to include the
terminus in the glacier model, and allow it to move so as to
satisfy mass conservation and the flow law for ice. For example,
the terminué of a surging glacier may advance and retreat by 10%
or more of the glacier length during one cycle. This requires a
procedure to add meshpoints to the grid, or to remove them,
based on a calculation of the terminus position at each time
step.

To calculate the terminus position when it 1lies between
mesh points, it 1is necessary to make some assumptions. The
velocity (1.4.34) based on an integration of Glen's flow law
(Glen, 1955) for simple shear cannot be used near the terminus
(Nye, 1967). The scheme described below is based on the one used
by Bindschadler (unpublished, p. 105), with some modifications
to the x increments. Referring to Figure A1.2, the terminus is
~assumed to be wedge-shaped i.e. the ice thickness h(x) is linear

with distance from the 1last mesh point x to the terminus

J
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FIGURE A1.2. Model Terminus.

position x., at which the thickness is zero. Mass is conserved
in the shaded wedge beyond xy,,, in Figure A1.2. The volume of
this terminus section is

DX
T

VOL = h(x) W(x) dx (A1.3.8)
T 0

where x is measured parallel to the bed, and h(x) is normal to
the bed. Neglecting the possibility that dw/dx may change

slightly below xy,,,

1
=2
+
=2
>
>
]

h(x) -h DX
J J+1/2// T

(A1.3.9)
+ W'x W'

(W -w ny
J J+1 J T

Substituting (A1.3.9) into (A1.3.8) gives

W(x)

L[}
> H



248

h W DX W' h DX?
VOL = J+1/2 J+1/2 T + J+1/2 T (A1.3.10)
T 2 6

and, using the similar triangles of height hy; and hy,., shown in

Figure A1.2,

DX = J J+1 J . (A1.3.11)

Changes in the volume VOLy occur due to the mass balance acting
on the surface, and' ice flowing into VOL. through the
cross-section at xy,.. The average mass balance (normal to the
bed) on the surface of the wedge, to the same accuracy as used
elsewhere on the grid, is

_ A(x ) + A(x )
A = J+1/2 T (A1.3.12)

2

The surface area exposed normal to this ablation is

W(x ) + W(x )
DX = J+1/2 T DX
T T
2 (A1.3.13)

b H|

Bars over variables indicate average values. W(x;) and A(x;) can
be interpolated 1linearly between their values at x; and xj,;.

Setting

J : (A1.3.14)
then the change in volume of the wedge terminus due to melting

on the top surface in a time interval At is
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bal T

- At DX [(z-x)w +(2+X)W ] [(z-x)A +(2+X)A ]
i6 T J J+1 J J+1

(A1.3.15)
The change 1in volume of the wedge due to influx of ice through
the cross-section at xy,,, during the same time interval At is

&V =W h v At
flux J+1/2 J+1/2 J+1/2 (A1.3.16)

Conservation of mass in the terminus from time step n to time
step (n+1) requires
n+1 n n+1 n
n+1 n &V + &V + 6V + 6V

VvOL - VOL = bal bal flux flux
T T 2 . 2

(A1.3.17)
On substituting (A1.3.10). through (A1.3.16), the unknowns in
this equation are'h;*‘ and h%;]. Since it is not linear in these
unknowns, it cannot be included directly in the matrix equation
(A1.1.8) at the first iteration for {hg*‘|j=1,J+1}. Instead, an
initial gquess at h}:}] must be used. For instance, I can assume
that the terminus has the same slope as at the previous step,

1.2'

h - h = h - h (A1.3.18)

A = =-1.0 B = 1.0 D = h - h (A1.3.19)
J+1 J+1 J+1 J+1 J

After dividing through (A1.3.17) by a sufface area .WI‘,nAXJ to

give the same units as the other residuals in (A1.2.1), the
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residual at xg.; 18

n+1 n n+1 n n+1 n
n+1 VOL  -VOL - l[av +6V ] - l[éV +6V ]
r = T T 2 bal bal 2 flux flux
J+1
1% AX
J+1/2 J

(A1.3.20)
Using the Taylor expansion (A1.2.3) on (A1.3.20) gives a (J+1)th
equation for the corrections {6hj |j=1,J3+1} . The coefficients

in (A1.2.3) are

a or
J+1,J = oh
J
DX W' DX? At V At h Vv
= _ T+ T - J J+1/2 _J +
4AX 12W AX 4AX o 2 AXx oh
J J+1/2 3 J J J
h h W' DX W
J+1/2 + J+1/2 T - 6V 1
5DX 2AX 3W AX bal Ax DX W
_T J J+1/2 J J T J+1/2
oh
J .
at DX [w -w ] [(2-X)A +(2+X)A ]
- T J+1 J J J+1
164X ‘W
J J+1/2 + [A  -a ) [(2-3)W +(2+X)W ]
] J+1 J J J+1
(A1.3.21)

The coefficient at J+1 has the same form, with the changes
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\Y

J (A1.3.22)
oh
J

+1
The derivatives of Ve can be found in equation (A10.5). The

derivatives of DX, are

O (DX ) 2DX h
T = - T J
dh hZ -h? (A1.3.23)
J J+1 J
(DX ) 2DX h
T = T J+1
93k hZ -h? (A1.3.24)
J+1 J+1 J

At each iteration for thé thickness, DX; is calculated from
(A1.3.11). When the residuals have been reduced sufficiently at
the (n+1)th time step, the value of DX, determines whether the
number J+1 of mesh points must be changed.

The terminus region is a critical region for any numerical
model. If the model terminus advances too slowly due to
incorrect use of the flow law at the terminus, it tends to dam
up the ice behind. This creates a model solution which is too
thick and flows too slowly. If the model terminus advances too
quickly, it can stretch the whole model profile beyond the
correct length, even though continuity is satisfied everywhere.

There are two points to consider:

The equation (A1.3.16) uses the flow law only in the flux
term &V ., through the velocity factor Vy,,,. If the terminus

is allowed to advance too far beyond xy,,., the terminus will
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satisfy coﬁtinuity, but will bear 1little similarity to the
expected terminus shape of a real ice mass Qoverned by the flow
law. This can lead to grossly inaccurate behaviour of the whole
model.

On the other hand, integrated forms of Glen's flow law
(Glen, 1955), as discussed in Appendix 7, assume small slopes
and thick ice with the major deformation heing shearing parallel
to the glacier bed. This is not the case near the terminus. The
sliding wvelocity near the terminus is aléo difficult to model.
This means that x, must not be allowed to get too close to Xy,
either, because then the value of Vy,,, would be in question. A
reasonable compromise 1is to keep the length DX, of the wedge
terminus of'the order of the average ice thickness. If maximum
and minimum acceptable lengths are DXmax and DXmin respectively,
then a new meshpoint 1is added when xy exceeds Xy, +DXmax.
Similarily, if x4 is less than xy, ., +DXmin, then the meshpoint

J+1 is discarded at the subsequent time step.
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A1.4 NUMERICAL STABILITY

Al.4.1 INTRODUCTION

Physically realizable solutions of the partial differential
equation (At1.1.1) are bounded for all time t. Solutions of the
set of finite difference equations (A1.1.4) .must be bounded
also. For what valueé of at, ax, and © is this true? Assuming
that the source term Aj will not affect stability, it can be
set to zero without loss of generality. A large positive mass
balance will result in faste; flow of a bounded solution, while
a large negative mass balance will terminate the computations in
a bounded time by eliminating the ice mass.

Rigourous stability analysis of nonlinear equations is in
general not possible. However, the stability conditions.for the
linearized system of equations used in the iterative procedure
are a helpful guide.

The approach I take in the next few sections, to find
stability conditions involving ©, 1is a wvariation on the
von Neumann, or Fourier series method. (e.g., Richtmyer and
Morton, 1967, p. 70). 1 use Z transform notation (Claerbout,
1976, p. 2) because it is equivalent to Fourier series, but more
direct and notationally simpler. (see Appendix 3). The method in
brief is to find the transfer function T(2Z) in the wavenumber
domain which takes the transform H"(Z) of the ice profile
{h?|j=1,J} at time n to the transform H"*'(Z) at time (n+1). 1If
|T(Z)|<t for all Z or wavenumbers that can be sensed by the

grid, then the profile {hg“|j=1,J} is also bounded for all n,
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i.e. the scheme 1is stable. Accuracy of the scheme can be
estimated by comparing the amplitude and phase of the transfer
functions for the partial differential equation and the finite
difference eéuations.

There are two questions to ask about numerical stability.
First, how should the mesh increments Ax and At be chosen for
stability of the linearized equations? Second, what effects are
introduced by the nonlinearity, and how should they be handled?

The scheme used for the flux gradient is a critical factor. for

both questions.

A1.4.2 THE LINEAR COMPUTATIONAL INSTABILITY

1f © 1is set to zero giving the explicit numerical scheme,
no effect can propogate through the mesh faster than the
characteristic speed Ax/At. This 1is unrealistic for a system
with diffusive characteristics (see Appendix 6). In this model
diffusion arises from the dependence of the ice flux on the
surface slope. Explicit schemes for diffusion equations are
usually numerically wunstable wunless the time steps are very
small, giving a high characteristic speed ax/At (e.g. Richtmyer
and Morton, 1967, p. 18). Using an implicit scheme, i.e. 6>0
lets the domain of dependence (e.g., Mesinger and Arakawa, 1976,
p. 5) for each mesh point be the entire mesh at the subsequent
time step. For diffusion equations, this tends to alleviate
stability problems (e.g. Richtmyer and Morton, 1967, p. 18).

The velocities {V;“|j=3/2, 5/2,...J+1/2} are treated as

constants at each iteration in Section A1,2, Here, they are all
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set equal to ‘one constant wvalue V to get an approximate
stability criterion involving ©. The channel width W(x) is also
held constant. Similarily, the differences in the {ij|j=1,J}
due to the bed slope are not expected to be important. All bX;
are set equal to ax. The actual variation with x will presumably
alter the criterion in a minor way..The signal h 1is assumed to
be periodic with period 2Jax in the x direction, so that Fourier
series can be used. (This is also a form of boundary condition.)
With zero mass balance, the finite difference system of

equations can be written as convolutions (e.g. Claerbout, 1976,

p. 5)
n+1  n+i n+1
{h ,h ,eeoh } * {pVwWe,1,-pVwe]}
1 2 J
n n n
= {h ,h ,...h } * {-pVW(1-6),1,pVW(1-8)} (A1.4.1)
1 2 J

After taking the Z transform the convolutions become
multiplications in the Z domain, and the series become sums.
n+1 n

H (z)[pvWwe+1-pvWez] = H (Z)[-pvW(1-8)+1+pVW(1-0)2Z]

yA yA
(A1.4.2)

Since Z is a complex number of the form e ™2*, the 2 transform
is equivalent to a discrete Fourier transform with wavenumber m.
The factor (2-1/Z) 1is purely 1imaginary and is equal to
i[2 sin(mAx)] where "i" is the sguare réot of minus one. Setting

i R(z) = wpv(z-1/2)

= i AtVsin(max) .
Y | (A1.4.3)

where K(2Z) is real, the transfer function is
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1 + (1-8)1iK(2)
T(2) = (A1.4.4)
1 - ©iK(2Z)

Setting |T(Z)| £ 1 gives

K2 (K282+1) (1-206) < 0 (A1.4.5)

Since the first two factors are nonnegative for all 2, the
stability criterion is

o21/2 for all At and Ax. (A1.4.6)
The case ©6=1/2 gives |T(2)|=1 for all Zz and thus is marginally
stable at all wavenumbers. The presence of nonlinearity could
alter the stability criterion (A1.4.6). A velocity dependent on
ice slope tends to stabilize the scheme (Section A1.4.6 and
stability analysis of Budd and Jenssen, 1975). However, a
velocity dependent on ice thickness tends to form shocks, and is
a destabilizing factor. To guarantee stability, I could be
tempted to use a larger value of ©. However, the accuracy of the
scheme also depends on ©. This is discussed in Section A1.5.1

and Section A1.5.3.

A1.4.3 THE NONLINEAR INSTABILITY

In this Section, I will discuss the nonlinear instability
(NL1) (e.g. Haltiner, 1971, p. 199; Mesinger and Arakawa, 1376,
p. 35; Gary, 1975, p. 8.41; Haltiner and Williams, 1980,
p. 170), a problem thch arises in any numeriéal solution of a
differential equation using a discrete mesh, and having terms
which are nonlinear in some combination of the dependent and the

independent variables. In (A1.1.1), 3Q/dx is such a term.
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Basically, the nonlinearity pumps energy (squared amplitude
of the wavenumber specfrum) into the high wavenumber part of the
wavenumber spectrum of the dependent variable, and the aliasing
(Appendix 3) due to discrete sampling folds this energy back to
the lower wavenumbers, where it distorts the solution.

Assuming that the initial profile {h§|j=1,J} and the
velocity {V§|j=3/2, 5/2,...J+1/2} derived from it are periodic
with period 2Jax, they can be expressed as Fourier series with

wavenumbers (lx)/(Jax) from -m to the Nyquist wavenumber m

N
(see Appendix 3, Section A3.2).
m = n/Ax (A1.4.7)
N
J/2 i2nl
JAx
h® = H e (A1.4.8)
j - 1==J 1 '
2
J/2 i2nk
JAx
Ve = V e (A1.4.9)
j - k== k
2

The flux . Q(x,t) in a channel of unit width, however, is the

product of these two series.

3/2 /2 P27 (1+k)

:E: JAX
Q° = H V e (A1.4.10)

j 1= k=-Jd 1 k

2 2
This flux has harmonic components up to 2n/Ax, or twice the
Nyquist wavenumber. The energy in these high wavenumbers should
not appear in the solution because the solution is bandlimited;

however, due to the discrete mesh this energy is aliased (see
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Appendix 3, Section A3.2) back 1into the wavenumber interval
[0,n/0x] and thus .distorts the solution. Most important,
however, is the fact that more energy 1is aliased into the
solution at each time step. This numerical_effect can increase
without bound and will dominate the true solution of the partial
differential equation (A1.1.1) in a finite time. The situation
can be avoided if the numerical scheme allows damping of the
higher wavenumbers, so that aliased energy is attenuated; this
also leaves 1little energy ‘available at the wavenumbers from
which it can be pumped up past the Nygquist wavenumber by the
nonlinearity.

In principle, the nonlinear instability can be completely
eliminated if, at every time step, the wavenumber spectra of the
velocity profile and of the ice thickness profile contain no

energy above 2/3 of the Nyquist wavenumber m Then, in the

N.
following time step, the highest wavenumber component activated

by the nonlinearity (see (A1.4.10)) is 4/3 m,, . The spectral

N

band from my to 4/3 mN is folded back onto the band from

2/3 m, to mN , making the spectrum of Q in this latter band

incorrect. This is illustrated schematically in Figure A1.3. The

important point to note, however, is that the band from 0 to

2/3 m,, to which 1 originally band 1limited h and V, is
unaffected by the aliasing. If the energy above 2/3 m, can be
eliminated at every time step, the signal in 0 to 2/3 my will

always be correct. Choosing Ax small enough can always push thé
cutoff (2m)/(3ax) out beyond the wavenumber of any feature of
interest in the glacier spectrum, no matter how short its

wavelength.
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FIGURE A1.3. Aliasing And The Nonlinear Instability.
The spectrum of Q(m)=v(m)h(m) beyond the Nygquist wavenumber
at max=n is folded back (lower dotted curve) as an aliasing

error between 27/3 and n. The upper dotted 1line 1is the
spectrum of the sampled Q(m) with aliasing.

There are several ways to damp the instability in the
aliased part of the spectrum. Some are more satisfactory than
others. 1 will discuss four methods. The first two have
conceptual drawbacks. I have used the third and fourth methods

in this study.

A1.4.4 VELOCITY SMOOTHING

Budd and Jenssen (1975), who attributed the instability to
machine roundoff, replaced the velocity profile V(x) by a
version smoothed by a second derivative operator

V(x) «—— V(x) + 1 32V Ax?

4 Ox? (A1.4.11)
whenever they saw high wavenumber components in the velocity

profile. To see what (A1.4.11) does to the spectrum of V(x),
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T(m)I |
0.5
0 m ax n/2 2n/3 n

FIGURE A1.4. Transfer Functions Of Smoothing Schemes.
Solid curve: Budd and Jenssen smoothing applied
occasionally to velocity profile.
Broken curve: Lax-Wendroff numerical scheme with maximum
dissipation., This would be applied to h(x) at each time
step.

take the 2 transform (Appendix 3) of the right side using the
standard finite second difference estimate
o2v v - 2V + V

3x% = _j+1 i 3=t
AX ? (A1.4.12)

to get

V(Z) «<— Vv(Z) + 1 V(Z) (Z-2+1)
-4 : 2 (A1.4.13)

or, in terms of wavenumber m,

V(im) «<— v(m) [1 + cos(max)]
2 (A1.4.14)

max

- since Z=e' (Section A1.4.2). The smoothing filter (the second

factor on the right side of (A1.4.14)) is shown in Figure " A1l1.4.

Although it substantially reduces the signal beyond 2/3 m » it

does not totally eliminate it. Since Budd and Jenssen (13975)
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applied it only to the velocity, and not to the ice thickness
profile, and only at infrequent times when the solution was
already seriously in error, it could not completely or correctly
remove the nonlinear instability. It could only keep it from
totally dominating the physical solution.

In addition, the filter attenuates the amplitude at all
wavenumbers except zero.

Both these effects distort the shape and total energy
content (integral of the squared amplitude) of the velocity
profile. This can cause errors in mass conservation through the
flux gradient term. The effect 1in many cases may be small.

However, better methods are available.

A1.4.5 NUMERICAL DISSIPATION

A second method to stabilize the equations (A1.1.4) is to
add a dissipative diffusion term of the form

¢ 0%h
Ox 2

where ¢ 1is small, directly into the differential eguation
(A1.1.1). Kreiss (1964) showed that a wide class of difference
schemes for linear hyperbolic equations could be stabilized this
way, rather than by using implicit schemes such as (A1.1.4).
Dissipative terms control instabilities by preferentially
damping the high wavenumbers at which instabilities typically
arise. They can also be wused to control the nonlinear
instability.

For example, consider the transfer fuhction which results

from adding the dissipative term to the linear form of the
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continuity equation, a simple special case of (A1.1.1) with
constant width and velocity.

oh + V3h - €d%h = 0

ot X dx? (A1.4.15)

The simple finite difference scheme for (A1.4.15)

n+1 n n n n n n
h ~h V(h - h ) (h - 2h + h )
3 j o+ ~g+1 j=1 = € g+ 3 i=1 =0
At 24X AX 4
(A1.4.16)
has the transfer function
T(m) = 1 + 2eAt[1 - cos(max)] + iVAt sin(max)
AX 2 AX (A1.4.17)
The derivation parallels Section A1.4.2. When
e = Viat
2 (A1.4.18)

Gary (1975, p. 3.69) showed that (A1.4.16) 1is the standard
Lax-Wendroff dissipative formulation (Lax and Wendroff, 1960)
which is stable for

VAt < 1
AX (A1.4.19)

and approaches the solution of

dh + V3h =0
.ot 0% (A1.4.20)

in the limit At—>0. Using (A1.4.18), the modulus of the transfer

function is

1/2
IT(m)| = [1 - 4c(1-c) sin"(mAx/Z)]
(A1.4.21)
where ¢ is given by
2
C = |2eAt]| = V2at?
Ax ¢ AX 4

(A1.4,22)

The magnitude of the damping term is largest when c=1/2, i.e.
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when material advances (1/2)'2 mesh intervals per time step.
|T(m)] is shown for that case in Figure A1.4. For other values
of At, there is less damping of the high wavenumber components.
This scheme would be preferable to the method of Budd and
Jenssen (1975). Because it is applied at every time step, it is
more likely to keep the nonlinear instability in check at all
times.

It nevertheless suffers from some of the same drawbacks. It
attenuates the low wavenumbers. The damping term also changes
the equation from first order to second order. This means a
‘'second bounaary condition is needed. Because the new term has no
physical meaning, there 1s no immediately obvious physical
boundary condition to apply, and the amplitude of the solution
to partial differential equations can often be very sensitive to
the boundary conditions.

The reason ‘that these two methods appear to work in
practice 1is that the nonlinear instability tends to grow at
least exponentially. It either totally dominates the solution,
or it is insignificantly small. It seldom exists undetected with
a magnitude comparable to that of the physical solution,
although this 1is always a possibility with these second

derivative schemes.
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A1.4.6 DISSIPATION FROM THE VELOCITY EQUATION

A more aesthetically pleasing way to avoid the nonlinear
instability is to utilize the damping inherent 1in the flow
properties of ice, rather than to introduce an artificial
diffusive term, as in the previous section. For any realistic
flow model of glacier ice, the flow velocity of ice increases
with increasing ice surface slope. '

By using the linearized perturbation form (Appendix 6) of
the continuity equation with a velocity dependent on ice
thickness and surface slope, I illustrate, in Appendix 13, the
main features of this method of suppressing the nonlinear
instability. The modulus |T(m)| of the transfer function
(A13.2.5) of the differential eguation, with parameters in
(A13.2.6), is shown by a dotted curve in Figure A1.5 . The slope
dependence leads to substantial damping at high wavenumbers. In
Appendix 13, I show that, in order to achieve acceptable damping
with the numerical scheme, it is necessary to calculate the ice
surface slope over at most one mesh interval Ax, and to evaluate
the ice flux between the mesh points, so that the flux gradient
is also evaluated over a distance of at most -ax. The solid curve
in Figure A1.5 shows the transfer function modulus for the
difference scheme when these restrictions are met.

Like the previous two methods, this transfer function does

not completely eliminate the components above 2/3 m . However,

N.
in practice, the attenuation is adequate to prevent growth of
the nonlinear instability. There are advantages to this method.

Although it attenuates wave numbers below 2/3 my this '
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FIGURE A1.5. Transfer Functions: Slope-dependent Damping.
Solid curve: transfer function modulus for the finite
difference scheme with space increment Ax.
Broken curve: transfer function modulus for the linear
partial differential equation.
The Nyguist wavenumber is at max=n.

attenuation has a physical basis, i.e. the diffusive nature of
ice flow. The two curves in Fiqure A1.5 are similar at low
wavenumber, indicating that the numerical scheme models this
diffusive property quite well.

Since no artificial damping term is introduced, the order
of the equation is unchanged, and no extra boundary conditions
are required.

This method was used by Mahaffy (unpublished), Mahaffy
(1976), Mahaffy and Andrews (1976) and Bindschadler
(unpublished) to control the nonlinear instability. It is also

used in this study for the Steele Glacier model.
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A1.4.7 WAVENUMBER SPECTRAL TRUNCATION

The most straightforward way to eliminate energy above

2/3 m, without altering the spectrum up to that wavenumber is to

N
apply a lowpass filter with cutoff at 2/3 my to the Fourier
transforms of the ice thickness and velocity in the-wavenumber
domain. Phillips (1959) did this in the original paper
identifying the nonlinear iﬁstabiliﬁy. At that time, to

calculate the discrete Fourier series of a long profile was an

|
1.0 -
IT(m)
0.5 -
1 1 1 L ] 1
0 n/2 2n/3 n

mAX
FIGURE Al1.6. Filter To Suppress Nonlinear Instability.
The length of the taper at 2n/3 1is exaggerated for the

purpose of illustration. The Nyquist wavenumber is at
mAX=mw,

expensive procedure, so the method was rarely used. Since the
introduction of the Fast Fourier Transform (FFT) by Cooley and
Tukey (1965), however, it is quite feasible to use the lowpass
filter in Figure A1.6 at each time step with only a modest

increase in cost. The filter is smoothed at the corner at 2/3 m,
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with a raised cosine to prevent spurious ripple or sidelobe
formation in the spatial domain (e.g. Kanasewich, 1975, p. 96).
The length of the cosine taper is exaggerated in Figure A1.6.

Briefly, the procedure 1is to remove the mean value and
trend from the glacier profile, take 1its FFT to get the
wavenumber spectrum, multiply it by the filter in Figure A1.6 to
remove the high wavenumbers, then take the inverse FFT to get
back to the spatial domain, then finally add back the trends and
mean value originally removed.

This method is the most appropriate one when the velocity
of the ice does not depend on the local surface slope.

Some observations (Meier and others, 1974:; Bindschadler and

others, 1977; Budd, 1968) and theory (Budd, 1968; 1970[al;
1970[b]) indicate that glacier flow responds to an effective
slope averaged over several times the ice thickness, rather than
to the local slope, due td the influence of longitudinal stress
gradients. Bindschadler (unpublished) used a weighted average of
a long-scale slope, to match observations, and the 1local slope
to get numerical stability. Using the lowpass filter eliminates
the need to include an amount of local slope in the effective
slope definition. The effective slope can be based strictly on
the physics of glacier flow, and not on the numerical

difficulties.
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A1.5 ACCURACY

A1.5.1 © PARAMETER: ACCURACY

In Section A1.4.2, I concluded that for numerical
vstability, ©21/2, and that using a value strictly greater than
1/2 would help ensure stability when nonlinearity is included.
However, the accuracy with which the £finite difference scheme
represents the partial differential equation also depends on 6,
leading to a tradeoff situation. I will now compare the transfer
function (A1.4.4) with the transfer ‘function for the
corresponding partial differential eguation, to find conditions
on © for an accurate solution.

When the velocity V is a constant, and mass balance 1is
zero, (A1.1.1) for unit width reduces to

dh + Voh = 0

ot ox (A1.5.1)
Taking the Fourier transform represented by tildes, with respect
to x (e.g. Morse and Feshbach, 1953, p. 453), and using the

derivative property

~ ~

dh = i mh(m)
dx (a1.5.2)

where m is the wavenumber, and i?=-1, gives

~ ~

éh(m,t) + ivmh(m,t) = 0 :
ot (A1.5.3)

The solution of (At1.5.3) is
~ ~ imVt

h(m,t) = h e ~ (A1.5.4)

In a time interval aAt, the transfer function is then
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imVAt ' :

T(m) = e (A1.5.5)

The transfer function T(m) for the partial differential eguation

has unit modulus at ~all wavenumbers. Figure A1.7 shows the

modulus of the numerical transfer function for several stable
values of ©, using

vat = 1
AX (A1.5.6)

which means that waveforms travel one mesh interval in one time
step. It is evident that I must keep © near 1/2 to minimize
discrepancies between the two transfer functions. Systematic
differences in modulus can spuriously create or destroy mass in
the glacier. Figure A1.7 indicates thak this would be most
evident as a nonphysical decay of features at one half the

Nyguist wavenumber, or at a wavelength of four meshpoints.

1.0
{T(m)i
05} | ' -
i ] 1.
0 m Ax n/2 nt

FIGURE A1.7. Transfer Function Modulus For Various ©.

The analysis of the truncation error by a spatial  domain

method with different assumptions in Section A1.5.3 also
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indicates that 6=1/2 is the best choice for an accurate scheme. -
To compromise between the accuracy problem and the marginal
stability at ©=1/2, I usually used values of © in the range 0.50

to 0.55 .

A1.5.2 PHASE ERRORS

Any differences in phase between thé transfer functions
(A1.5.5) of the partial differential equation and (A1.4.4) of
the numerical scheme will distort the glacier thickness, by
causing errors in phase velocity, leading to incorrect
dispersion. The phase speed at which the component at wavenumber
m propagates is

v (m) = —
phase mAt 4 (A1.5.7)
where # is the phase of the trénsfer function. The phase of the
transfer function (A1.5.5) of the partial differential equation
is

g (m) = mvat
pde (A1.5.8)

Its phase velocity is V, a constant for all wavenumbers. The
phase ‘increases linearly with m. The straight line in
Figure A1.8 is the phase (A1.5.8) when VAt=Ax/4.

The phase of the finite difference transfer function

(A1.4.4) using ©6=1/2, is

g (m) = tan"[ K(m) ]
fd 1 - K“(m)/2
_ (A1.5.9)

By using the multiple angle formula for arctangent (Abramowitz



(4.3.26), p.

g (m) =
fd

and Stegun, 1965, 73)

2tan-'[K(m) /2]
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step At

scheme
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10)

is given by (A1.4.3). The phase (A1.5.10) is also shown in

for the finite difference scheme with

with

in

finite difference phase.obviously diverges badly

from the correct value at wavenumbers above one half the Nyquist

wavenumber n/Ax, giving large errors in phase speed. In fact, at

the Nyquist wavenumber, the phase velocity goes

waves sampled

to

Zero.

Any

at two points per wavelength do not propagate at



273

all! Gary (1975, p. 2.21) discussed this behaviour for a mixed
differéntial-difference hyperbolic system. The numerical scheme
éauses gross dispersion of the High wavenumber components. The
difficulty is due almost entirely to inadequate spatial
sampling. When the single time step At is replaced by 100 time
steps of 10-2At, there is almost no change in the cumulative
phase. The differences cannot be distinguished on the scale of
Figure A1.8.

If, on the other hand, the spatial mesh increment Ax is
halved, keeping the same large time step, the phase is given by
the dotted curve in Figure A1.8. The agreement with the correct
phase is greatly improved out to higher wavenumbers (note that
the Nyquist wavenumber has also been increased. It is now at

max = 2n
when the mesh increment is Ax/Z).

It is. evident that, to maiqﬁain phase accuracy, I must
choose ax sufficiently small so that the spectrum of the glacier
profile h(x) is essentially bandlimited to the region

max << 1 (A1.5.11)
which means that there are many mesh points per wavelength for
all wavelengths having significant amplitude in the spectrum. |

In the region (A1.5.11), I can evaluate the error in the
phase (A1.5.10) relative to (A1.5.8) by expanding sin(max) as a
Téylor series to third order (Abramowitz and Stegun, 1965,
(4.3.65), p. 74) in the small parameter max. When

K(m)/2 <1 (A1.5.12)

or
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AX 2V .
At 2 (A1.5.13)

i.e. material moves less than two mesh increments per time
step, the power series expansion (4.4.12) of Abramowitz and
Stegun (1965, p. 81) can be used for the arctangent. With the
restrictions (A1.5.11) and (A1.5.13), the phase is

g (m) = mvat|1 - (max)2?|1 + V2at?| + O(max)*
fd 6 124%2 (
Al

.5.14)
No matter how small I choose the time step At, the fractional
error in the phase is still at least

(max)?2/6 | (A1.5.15)
This error can be reduced by smaller mesh intervals ax subject
to (A1.5.13).

The results in this section are based on the analysis of
the linear equation (A1.5.,1), but similar phenomena occur 1in
numerical solutions of the nonlinear analbgue, and the
restrictioﬁs derived here give excellent guidance for the

nonlinear case.

A1.5.3 TRUNCATION ERROR

In the previous sections, I examined the accuracy of the
finite difference scheme (A1.1.4) as a function of wavenumber,
assuming constant velocity. In this section, I will examine the
accuracy of the scheme starting from different assumptions. The
truncation error is the difference between an exact solution
h(x,t), indicated by tildes, of the partial differential

equation (A1.1.1) and an exact solution {h?|j=1,J} of the
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corresponding system of algebraic eguations (A1.1.4). The name
arises because the finite differences can be represented by
truncated Taylor expansions of the solutions h(x,t) and Q(x,t)
of the partial differential equation. The assumption in this
analysis is that h(x,t) and Q(x,t) are infinitely differentiable
in x and t. This is reasonable since glacier profiles are so
smooth, The accuracy is expressed in terms of neglected
derivatives at each spatial position, rather than 1in terms of
wavenumber.

To derive an expression for the truncation error, first
expand all the guantities in the finite difference eguations
(A1.1.4) as Taylor series with remainder about the point
((j-1)ax,(n+1/2)Aat)) in terms of the exact solution h(x,t) and

its derivatives there.

n+1/2 n+1/2 n+1/2+@
n+1 n+1/2 At 3dh At?Q3%h At 3%h 0
h = h - + —_ — S — + —
j j 2 dt|] 8 at?|j 48 at?|j
n+1/2 n+1/2 n+1/2-¢
n n+1/2 At 3dh At 2 o%h at? d*h !
h = h - ——  o—_— -
j j 2 dt{j 8 3t?|j 48 at3|j
n+1 n+1 n+1
n+1 n+1 ~ Ax 3Q _ ax? 3%Q ax? %Q
Q = Q + — — + — t — j+g
j+1/2 3 2 dx|j 8 ox2|j 48 ox? 2
i-1/2 ' i-g

(cont'd)
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n n n
n n AxX 00 Ax? %20 Ax3 Q%0
Q =Q % — — +o— — t — —|j+8
j+1/2 3 29x|j 8 dx?|j 48 dx? 4
j-1/2 ' j-g
(A1.5.16)

The derivatives in the expressions for the flux Q are expanded

in the same way.

n+1 n+1/2 n+1/2 n+1/2+ﬁ6
00 " _ 00 3 At2 3%Q \ At*°Q|n+1/2-0
Ox |3 ox|j 2 dx?|j 8 Ox?|]
n+1 n+1/2 n+1/2+¢a
020 i _ 92%Q . at 9%Q n+1/2-;zf9
Ox2|j -  d¥x?|j 2 0x?|j
(A1.5.17)

The bars followed by subscripté and superscripts indicate the
mesh indices at which the derivatives are gvaluated. The Qi in
the remainder terms are real numbers between zero and 1/2. The
existence of remainder terms of this form is guaranteed by the
Taylor Formula with Remainder Theorem, (e.g. Kaplan, 1952,
Theorem 41, p. 357).

After substituting these expressions into the finite
difference equations (A1.1.4), assuming unit width, and
cancelling the terms which 1identically satisfy the partial
differential equation (A1.1.1), the truncation error which

remains 1is
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n+1/2
(26-1) 92%Q
€ = At | ——  —
3 2 Oxdt |j
[ n+1/2+¢ n+1/2-4 ]
a3Q [3 baQ 7
69 + 6(1-6)
at? oxot?|j | O0xdt 2|
+ —
48
n+1/2+g n-1/2-¢
aah (o} 33h 1
 — +  —
ot? |3 ot?|j
L .
[ n+1/2 n+1/2 |
30 30
e )
ax? ox3|j+¢ dx?|j-#
+ — 2 3
48 ) n+1/2 n+1/2
330 b X
+ (1-8) + (1-6)
ox3|j+g ox3|j-¢
L. 8 5 4 (A1.5.18)

In terms of dependence on the mesh increments,
e = (20-1) o(at) + o(at?) + o(ax?) (A1.5.19)
J
It appears that wusing the scheme with ©=1/2 results in a
minimum truncation error, as the term O(At) goes to zero. This
advantage must be traded off against the marginal numerical
stability at this value.
The coefficients of Ax?, At, and At? cannot be evaluated
exactly because the derivatives of the exact solution h(x,t) are
not known -exactly, and the éhifts g; at which they are to be

evaluated are also unknown. However, wuseful estimates of the
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coefficients can be obtained for order of magnitude effects.
First, assume that the derivatives change slowly with time
and space, so that the @; can be ignored without 1large error.

Then note that for time-independent mass balance,

0 |3@| = -92h (A1.5.20)
dt |ox dt?

by using the continuity eqguation (A1.1.1). The truncation error

is then approximately

(1-20) d%h|n 1 9*h|n 1 3%Q|n
e = At —_— + At? |- + AX?|—
j 2 dt?|j 6 ot3|j 24 9x?%|j
(A1.5.21)

and the coefficients can be estimated by the finite difference
analogues of these simple partial derivatives, using the

numerical solution.

A1.5.4 INTERPOLATION ERROR
There is an error introduced by representing the thickness hy .2
at the midpoints of the mesh intervals by a linear interpolation
from the primary grid, i.e. by using

h = (h +h )/2
j+1/2  G+v 3 ' (A1.5.22)

To estimate this error, write the thickness values at the mesh
points as Taylor series with remainder about the true value at a

point j+@ between j and j+1.
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oh Ax? J3%h
h =h + (1-f) ax — + (1-g)% — g<v <1
j+1 j+g ox|j+¢ 2 Ox2|j+¥
1
dh Ax? 9%h _
h =h + @ ax — + g2 — 0<¥,<f
3 j+g ox|j+¢@ 2 Ox?|j+¥
. 2
(A1.5.23)
The interpolation error E at j+f is then
E =nh - (gh + (1-g)h )
g i+# J+1 ]
INE o%h d%h
= g(1-g) — | (1-6) +
2 Ox?|j+¥ Ox2|j+¥
1 2
(A1.5.24)
The interpolation error at @=1/2 is approximately
ax? d%h
E =  — (A1.5.25)
1/2 8 Ox2?|j+1/2
when 0?h/dx? is slowly varying with x.
The fractional interpolation error is
E = E o*h Ax? (A1.5.26)
h 1/2 = —— —
h ox? 8h

For example, on a glacier of unit length, with a mesh chosen so
that Ax and h are 0(10°?) and thickness and slope change by of
the order of 10% between adjacent mesh points, the fractional

interpolation error is

E = 10-°5 (A1.5.27)

which is quite acceptable. The error 1is largest where the
curvature 1is largest. The interpolation error also propagates

into the 3Q/dx term. For instance, if flux Q is proportional to



280

m
h , as 1in the simple case of slab flow with Glen's flow law,

(Glen, 1955), the fractional error in Q is
f = E =mE (A1.5.28)
Q h
How does this error in Q affect the flux gradient
estimates? Let {Qj |j=1,3} be the true values of the ice flux,
and {Q3 |=1,J} with primes be the estimates including the
interpolation error. Then

Q' =Q (1 + £). : (A1.5.29)
j+1/2 j+1/2

and the error in the representation of 0Q/dx is

Q' - Q' Q -Q
j+1/2  §-1/2 - _j*1/2 §-1/2
AX AX

(0]
"

- o : - £
j*1/2 j+1/2 j-1/2 j-1/2 AX

Q -Q £ + £
= L j+1/2 3=1/2 3+1/2 2j—1/2

AX

EOALI RV
+ i+1/2 i-1/2 3+1/2 i=1/2

2 AX
s 30 f+ Qof (A1.5.30)
X ox

Substituting (A1.5.28) for f§,
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(A1.5.31)
usihg QO=hV. Thus
e = max? EL[V Bzh}
8 X Ox? (A1.5.32)

whiéh can be kept small by suitably small choice of Ax. This is
the same requirement as found previously for the truncation
error and transfer function error. The coefficient of Ax? can be
estimated from the solution profile. It is generally small,

because velocity and ice thickness usually vary slowly with x.
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APPENDIX 2: ICE TRAJECTORY MODEL

A2.1 INTRODUCTION

This Appendix describes the procedures I have used in the
computer model which calculates the trajectories of individual
particles of ice, as they travel through the time-varying
glacier.

At each time step, the glacier profile obtained with the
continuity equation model (Appendix 1) is used to determine the
velocity field within the glacier on a two dimensional vertical
surface through the glacier centreline, as shown in Figure A2.1.
The x axis is along the glacier bed, z is up and normal to x,
and y is transverse and horizontal making a right handed system.
The gridpqints lie at equal intervéls of DZ along lines normal
to the bed. These lines are rooted on the bed at the midpoints
of the intervals Ax wused in the continuity model (Appendix 1,
Section A1.1.1, i.e. at equal horizontal increments of Ax,
starting at 4x/2 from the origin). The meshpoint (i,j) is the
jth point above the bed over X;. The meshpoints divide the
glacier section into quadrilateral cells (see Figure A2.1). The
top and bottom of each cell are parallel,' but the sides may
diverge siightly due to the curvature of the glacier bed. This
makes necessary some minor geometric corrections, bht has
definite advantages over a rectangular Cartesian grid when 1

calculate the velocity components.

Jenssen (1977) used a grid with a vertical mesh increment
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A2.2 THE VELOCITY FIELD

A2.2.1 THE RECTANGULAR FLOW MODEL

The velocity vector v(x) at a point x within the glacier
has components
v(x) = (u,w,v) (A2.2.1)

on the x,y,z axes. The glacier channel (Figure A2.2) is

rectangular in cross-section, with width W(x). The ice thickness

Wix) —

“/

L ATTMADR
A \,\,\;\/‘\_'\\

’
I//,'

FIGURE A2.2. The Rectangular Flow Model.
The triad x-y-z is the coordinate system, and the bold
arrows u, v, and w show the vector components of the
velocity field v.

h(x,t) and the velocity components u(x,z,t) and vix,z,t) are
assumed to be independent of y, the lateral position in the

channel., Only the lateral velocity w(x,y,z,t) varies with y. At
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the sidewalls of the flow tube (Figure A2.2), the total velocity

vector v(x,t) must be in the local plane of the sidewalls, i.e.

wiz,2W,z,t) = 2u(x,z,t) dw
2 2 dx (A2.2.2)

and assuming constant lateral strain rate across the channel,

dw(x,z,t) = u(x,z,t) dw
dy W(x ax ‘ (A2.2.3)

A2.2.2 THE DOWNSLOPE VELOCITY

The component of velocity u(x,z,t) parallel to the glacier
bed at height z where the ice thickness normal to the bed is
h(x,t) and the 1ice surface slope angle is a, is given in
Appendix 7 (A7.5.8) as
n

n+1 n+1
u(x,z,t)-u (x,t) = ZA[h - (h-2) ][s(x)pgsina]
S .

(A2.2.4)
n+1

plus some correction terms for stresses and strain rates other
than shear parallel to the bed. A and n are the constants in
Glen's flow law (Glen; 1955) (see 1.4.22)), p is the density of
glacier ice, g is the acceleration due to gravity at the surface
of the éarth, and us(x,t) is the basal sliding velocity which I

discussed in Section 1.4,



A2.2.3 THE LONGITUDINAL STRAIN RATE

After u(i,j) is obtained at each mesh point (i,j) as in
Figure A2.1, the gradient du/dx is estimated by the first term
of the finite difference

u(i+1,3) - u(i-1,3)

du(i,j) = + 0(023u Ax?) (A2.2.5)
X DX + DX %3
i-1,3 i,

If any of the points (i%*1,3j) on the right side of (A2.2.5) are
above the glacier surface, the velocities there are estimated by
extrapolation from within the ice mass (purely for the numerical
procedure). The error term in (A2.2.5) due to the use of the
finite difference is made small by a suitably small choice of
Ax. The factor 3%u/dx3® is also small, since glacier flow tends
to be smooth.

Using (A2.2.4) for the velocity gfadient (A2.2.5) neglects
all the stress and strain rate components in the error terms in
(A7.5.9), répeated below as (A2.2.8), yet purports to give the
longitudinal strain rate, which is related to the longitudinal
stress deviator by Glen's flow 1law (Glen, 1955). 1Is this
inconsistent? I will show in the following pages that the
estimate of the velocity gradient is in fact accurate to within
an error term which is usually small. The error term contains
stress and strain rate terms other than those parallel to the
" bed.

If u(x,z) 1is the velocity.due to internal deformation by
simple shearing from (A7.5.8), without the correction terms

(A7.5.9)
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n+1 n+1 n
ulx,z) = gﬁ[h ~(h-z) ][s(x)pgsina]

n+1 (a2.2.6)
then the total velocity component parallel to the bed is

ul(x,z) = u (x) + u(x,z)[1+ e(x)]
s (A2.2.7)

where e(x) is the error term containing other stress and strain

rate components subject to the assumptions in Appendix 7.

(x) [ o 3 } ( ) < ov /
e(x) = O0||n|{2h xx + h + (n-1) ¢ - Ov /du
dx dx xz Ox/ 3z
pgha max
(A2.2.8)
Taking the x derivative of (A2.2.7) gives
du(x,z) = du (x) + dulx,z) + dlu(x,z) e(x)]
ox —s X X
dx . (A2.2.9)

The procedure I described in (A2.2.5) to .estimate the
longitudinal velocity used the first two terms of (A2.2.9), but
neglected the third. In the most favourable case, 1i.e. e(x)’
does not vary with x, (A2.2.9) reduces to

| du(x,z) = Ju (x) + Qu(x,z)[1 + e(x)]

X —s dx
Ox (A2.2.10)

and the error in my method is always a small fraction of the
longitudinal velocity gradient.

In the more general case, both e(x) and u(x,z) can vary

with x, and the relative error in Ou/0x in (A2.2.9) is

Alu(x,z) e(x)] /dulx,z)
ox . ox

(A2.2.11)
which can be large when u(x,z) changes slowly with x. This may
be the case if the glacier near position x behaves 1like a

parallel-sided slab in simple shear. This implies that where the
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longitudinal gradient du/dx is very small, i.e.

du(x,z) u // :
X << | max/ L (A2.2.12)
where L is the glacier 1length, and Unax 15 the greatest

downslope velocity in the glacier, or

du(x,z)| << |vix,h(x))
ox (%) (A2.2.13)

then estimates of du/dx in the computer model are unreliable.
However, in absolute terms, the error is likely always

small, because e(x) is small and presumably slowly varying with

X. Unless the glacier has pronounced icefalls, or other steep

bed gradient changes, the error is likely to satisfy

<< U '
max//L (A2.2.14)

and the gross flow pattern of the glacier model will be

é[u el
Ox

essentially correct.

A2.2.4 VELOCITY NORMAL TO THE BED

Because ice 1is incompressible, the divergence of the

velocity field v(x,t) is zero, i.e.

du + Ov + dw = 0
ox 3z dy (A2.2.15)

The first term is calculated in (A2.2.5), and the third term is
given by‘(A2.2.3) with (a2.2.4). Neglecting'bésal melt, which is
usually less than a few centimetres per year (except during
sdrging, when it may be comparable to surface melting for short
periods), gives a boundary condition

v(x,0,t) =0 , (A2.2.16)
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so that integrating (A2.2.7) from the bed to level z gives

z
du(x,z,t) u(x,z,t) aw
vix,z,t) = - —_ + ———— —| dz
ox W(x) dx ‘
0 (A2.2.17)

This integral 1is evaluated at each meshpoint using Simpson's

Rule (e.g. Carnahan and others, 1969, p. 73). This completes the

solution for the velocity field v(x,t) at-each time t.

At the glacier surface with normal vector n, the condition

oh
ven = —-n - a.n =0

ot (A2.2.18)
must be satisfied. The terms a.n and (3h/dt):n are the mass
balance and the rate of change of ice thickness measured normal
to the ice surface. Input values of h and a, and v derived by
the numerical procedure described above, when substituted into
(A2.2.11) will leave a residual, the size of which indicates the

accuracy achieved in determining v. This 1is used as an

independent test of this model in Chapter 2.
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A2.3 ICE DISPLACEMENT FIELD

A2.3.1 FOUR POINT INTERPOLATION

Since ice particles may be located anywhere in the
cross-section at the beginning of any time step, I must be able
to relate any arbitrary quantity f(P) at an arbifrary point P
inside a mesh cell to the values of f at the four vertices
labelled P, through P, as shown in Fiqure A2.3. Let P be

displaced by an amount dP from P,.

o
T P‘f/' ? TE:/'
|

Y '
| L{%&Zx-ﬂé ng

FIGURE A2.3. Four Point Interpolation Scheme.

dp = (6x,62) (a2.3.1)
To find f(P), first find f(A) and £(B) on the boundaries of the
mesh cell on the line through P parallel to PoP, using a linear
interpolation. Letting subscripts j on fj indicate the meshpoint

(see Figure A2.4),
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f -f
£(a) = £+ 2 0] sx
0 DX
L o (A2.3.2)
f -f
£(B) = £ + | 3 ' 6x
1 DX
L v . (A2.3.3)
Then, interpolating between f(A) and f(B),
£(p) = f£(A) + [£(B)-f(A)]| 6z
L DZ
f -£ f -f f -f £t -f
= f + 2 Oflgx + ' Olgz + 3t - 2 Olgyez
° DX DZ DX DX
o 1 0
D2 (A2.3.4)

The interpolated values f(P) then lie on the surface sketched in
Figure A2.4. This surface is linear along any line parallel to

the x or z axes.

A2.3.2 DISPLACEMENTS AT MESHPOINTS

The next step is to find the displacement from time t, to
time t,=to+At of the ice which was at meshpoint P at time t,.

This is given by

° (A2.3.5)
This can .be approximated by using the arithmetic mean of the
velocities at its position at the beginning and at the end of

the time step, so that
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FIGURE A2.4. Interpolation Surface f(P).

!(E(to),to)+z(g(t1),t1)
dB = - At
2 (A2.3.6)

After wusing the interpolation scheme (A2.3.4) to express the
velocity vector v(P(t,),t,) in terms of the components &x and 6z
of dP, letting integer subscripts on the velocity component u
indicate fhe vertex number, and introducing the notation
(A2.3.7) for the partial differences of the component u,

u(t) -u (t)
2 1 o 1

u =
X DX
(o]
u (t ) -u(t)
u = 1 o 1
z DZ
u (t ) =-u (t) u(t ) -u(t)
u = 3 1 R I SR o 1
Xz DX DX
1 (o]
DZ

(A2.3.7)

together with the obvious equivalent definitions for v, the two
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components of the vector -equation (A2.3.6) yield two coupled
nonlinear eqguations (A2.3.8) and (A2.3.9) for 6x and 6z.

6x = ég[u (t ) +u(t ) +uéx +uéz +u
0 1

6xéz]
2L 0 0O X z X2z

(A2.3.8)

6z = At[v (t ) + v (t ) +v 6x +Vv 6z + vV -éxéz}

2L 0o o . X z Xz

(a2.3.9)

Solving (A2.3.9) for 6z and substituting it into (A2.3.8) gives

A 6x%2 + B &x +C =0 (A2.3.10)
where
A =uv -u v - _2
X X2 Xz X At

B=v [u (t )+u (t )] - u [v (t )+v (t )]
XZ [o] [} (o] 1 XZ (o] (o] o 1
+uv -~uv - 2[u +v ]+ 4
X z zZ X At x z At 2 (A2.3.11)
C =

viu(t)+u(t)]l-ulv (t)+v (t)]
A (o] 0 o} 2 z (o] [0} ] 1

+ Z%[uo(to) + uo(t1)]
The solution of (A2.3.10) 1is given by the standard
quadratic formula taking the positive square root. The other
displacement component 6z is found by substituting 6x ‘into
(A2.3.8).
If the point P 1is in a region where v is positive (upward
flow), the procedure described above is used. This is the wusual

situation in the ablation region of a glacier. However, if v<O0,
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FIGURE A2.5. Cell Vertex Notation For Downward Velocity.

the ice at P, would flow into the cell below the cell
‘illustrated in Figure A2.3. In this case P, is chosen to be the
upper left vertex of the cell, DZ 1is negative, and similar
equations are derived for 6x and 6z. The vertex notation for
this case is illustrated in Figure A2.5. This 1is the usual
situation in the accumulation zone.

This procedure is repeated for each mesh point (i,j) to
find the displacement field throughout the longitudinal section
of the glécier. Figure A2.6 shows the displacement field

calculated by this method for a glacier in steady state.
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FIGURE A2.6. Displacement Field In A Steady State.
The mass balance and the width for this Steele Glacier
model are shown in Fiqure 3.3. The displacement vectors
indicate the flow for 25 years in a steady state with no
sliding.

A2.4 ICE PARTICLE TRAJECTORIES

A2.4.1 TRACKING PROCEDURE

At time t,, the cell occupied by each particle P currently
being tracked is identified, and the coordinates (6x,62) of_»the
particle relative to the vertex P, are determined. Then, using
the interpolation scheme (A2.3.4) where f(P) is a Cartesian
- displacement component, the displacement components f(P) at P

are found using the known displacements at the surrounding
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vertices. The new Cartesian coordinates of the particle at time
t, are then saved. The program then checks to see whether the
particle has moved into a new cell, and calculates the new
(6x,6z) for the next time step. This procedure 1is repeated at

each time step for each particle being tracked.

A2.4.2 PARTICLES WHICH REACH ICE SURFACE

If the calculated position of a particle at the end of a
time step is above the glacier surface, it has obviously gone
too far! The position and time at which it actually reached the
glacier surface are interpolated from the surface position and
particle position at the two times involved, and this

information is saved.

A2.4.3 TRACKING BACKWARDS IN TIME

For some applications, I do not want to know where the ice
is going, but from where it came. For instance, given a sample
of ice from a position P' in a borehole at time t', I may wish
to know where and when it was precipitated at the glacier
surface as snow. To do this I run the model described above
backwards through time from t', wusing At<0. Then (6x,62) in
(A2.3.8) and (A2.3.9) are the displacements of ice particles
which arrived at mesh point P, at time t,, rather than
displacements of ice which left P, at time to,. When At<0, P, is
chosen to be on the downstream boundary of the mesh cell, as in

Figure A2.7.
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FIGURE A2.7. Cell Vertex Notation For Negative Time.

A2.4.4 BOUNDARY CONDITION AT UPSTREAM END

If the boundary condition at x=0 is zero input £flux with
zero surface slope (ice divide model), then image points at

-Ax/2 are assigned the velocities

u(-ax,z,t) = -u(ax,z,t)
2
v(-ax,z,t) = v(ax,z,t)
2 (A2.4.1)

This preveﬁts the 1ice particles from flowing across the
transverse section at x=0 .

I1f there 1is a nonzero input flux Q,(t) into the model at
x=0, then the fictitious points at -Ax/2 are assigned velocities
derived by extrapolation from the mesh points at x>0, and ice
particles tracked back across the section at x=0 disappear from

the model.



298

APPENDIX 3: ASPECTS OF DISCRETE DATA SERIES

A3.1 THE Z TRANSFORM

A digitized function on a grid with spacing ax can be

represented as a series

f(x) = [f ,f£ ,f ,...f ] (A3.1.1)
0 1 2 J

It can also be represented by a polynomial F(Z), where the
coefficients are the {fj|j=1,J}, and Z is the unit space shift

operator.,

J
_ J
F(z) = 2 S/ (A3.1.2)
j=0 3 '

(A3.1.2) is the Z transform of (A3.1.1). If the substitution

imAx
Z = e (A3.1.3)

is made 1into (A3.1.2), the Fourier transform of the digitized

function is obtained.

J
imjAx .
F(m) = Z £ e (A3.1.4)
=0 3

As the wavenumber m goes from =zero to 2n/Ax, Z moves
counterclockwise around the unit circle in the complex plane, as
shown in Figure A3.1.

Convolution of time series is equivalent to multiplying the
yA polyndmials. The forward Fourier transform is equivalent to
summing the terms in the Z polynomial, and the inverse Fourier

transform is equivalent to identifying the coefficients of each
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FIGURE A3.1. The Z Plane.
power of Z in the polynomial.

A3.2 ALIASING

A mesh with spacing Ax cannot resolve a sinusoidal
variation with a wavelength less than 2ax, i.e. with less thaﬁ
two mesh points per wavelength. A signal with a wavelength less
than 2ax will be misinterpreted by the mesh as a signal at a
longer wavelength. Figure A3.2 shows how a signal with the
wavelength 1.5aAx, or wavenumber 4n/(3ax), is indistinguishable
from a signal with a wavelength 3Ax, or wavenumber 2n/(3ax).

The 1limiting wavenumber which is detectable, i.e. n/Ax is

called the Nyquist wavenumber m It is also called the folding

N.
. wavenumber. In general, energy 1in a signal at the wavenumber

(2mN -m) with 0<m<m , will be 'folded' back to the wavenumber m

N
within the 'principal alias' [0,my ]. This phenomenon is called
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FIGURE A3.2. Signals With Wavelengths 1.5ax And 3.04x.
The sampled signal (spikes) 1is identical for both the

continuous signals.

aliasing because the energy at high wavenumbers is disguised as
energy at lower wavenumbers due to the discrete mesh.
To demonstrate this, consider the signal

f = sin{(2r -m)jax] j=1,J (a3.1.1)
j AX

which has a wavenumber beyond my. Basic trigonometric

manipulation gives

sin[(2n - m)jax] = -sin[mjax]
Ax (A3.1.2)

This shows that the high wavenumber (2mg -m) signal takes on the
same values at the mesh points as a sigpal at the lower
wavenumber m. Similarily, signals at wavenumbers higher than 2my
are folded back into the principal alias. All the energy at
wavenumbers (2nmy*m) for integer n in the Fourier spectrum of a
signal appears in the mesh at the wavenumber m. This aliasing

causes signal distortion.

The aliasing problem arises in this study because of the
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nonlinearity of the flux gradient term in the continuity
equation. The nonlinearity pumps energy into wavenumbers above
m, at each time step. This energy is then aliased back into the
principal alias by the discrete nature of the mesh. This
misplaced energy can grow with time and dominate the true

solution. This nonlinear instability is discussed in Appendix 1

Section (A1.4.3).
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APPENDIX 4: DENSITY OF GLACIER ICE

Ad4.,1 FIRN AS EQUIVALENT ICE THICKNESS

While the firn is generally restricted to the upper 10% or
less of an ice mass, the deformation by shearing is concentrated
near the bed. In a region of laminar flow parallel to the bed,

the ice velocity depends only on ¢, , the shear stress parallel

XZ
to the x axis. Balancing forces on an ice element above a bed
with slope ¢ as in Figure A4.t1,

o (z+62z) -6 (2) = p(2) g sin(a) 62z (Ag4.1.1)
Xz Xz

where p(z) is ice density, g is the acceleration due to gravity,

and e is ice surface slope. In the limit as 6z gées to zero,

d¢ ‘
xz = p(z) g sin(a) ' (A4.1.2)
dz
Integrating (A4.1.2) gives
z
¢ (z) = g sin(e) f p(y) dy (A2.1.3)
Xz 0

where z 1is positive downward and the free surface is at z=0.
(A4.1.3) shows that the shear stress parallel to the bed depends
only on the integral of the density above 1level 1z, i.e. the
total mass above, and not on its distribution. For z below the
firn, the shear stress is not éffected by representing the firn
by an ice layer of equal mass. Within the firn itself, the

stresses are generally too small to cause significant

deformation other than compaction. When comparing model results
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Ice

FIGURE A4.1.

with field observations, it must be remembered,

the elevation of the equivalent

glacier surface.

A4 .2 CONSTANT DENSITY ASSUMPTION

New snow may have a density as low
1936) on falling. The density increases

to compression and metamorphism of snow

Force Balance On An Ice Element.

however, to use

ice layer, not the observed

as 50 kg m~®* (Seligman,
with depth of burial due

and firn crystals, until

at a density of about 850 kg m~3, the interconnecting air
passages between grains are sealed off. The depth at which this
occurs can vary widely. Paterson (1969, p. 16) gives two
examples. On the upper Seward Glacier (a wet snow regime) the

transition to 1ice occurs at a

Site -2, Greenland, (a dry snow regime) the transition is

depth of 13 metres, while at

at 80
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metres. In climates with significant summer ablation, ice can
also form by the freezing of meltwater percolating. down into
soaked firn. This 1is called superimposed ice (e.g. Paterson,
1969, p. 9).

The density of glacier ice itself varies with temperature,
pressure, bubble content and debris content.

The coefficient of cubical expansion of ice in the range
-10°C to -50°C is of the order of 1.5 x 10-% deg-' (Hobbs, 1974,
p. 350). Thus the total variation in density of ice that could
be expected due to a temperature difference of 50°C is of the
order of 10-%2, or 1%. This 1is negligible given the other
uncertainties in glacier parameters.

Values of the bulk modulus of polycrystalline ice at -5°C
(Hobbs, 1974, p. 258) are of the order of 10'°Pa (10° bar).
Since maximum basal pressures (overburden load) in ice sheets
are of the order of 10’7Pa, the maximum variation in density to
be expected due to pressure contraction is 10-3, or 0.1%. The
assumption that ice is incompressible is included explicitly in
Glen's formulation of the flow law for ice (Glen, 1955).

The presence of gas bubbles within glacier ice can have a
larger effect on density. Seligman (1936, p. 119) gives a
variation of 38 kgAm‘3 or about 3% between measurements on white
bubbly ice and blue bubble-free ice. The bubbly ice could be
compressed by pressure on flowing to depth by up to this 3% by
merely compressing the gas in the bubbles. Even a 3% variation
is negligible, however, given other assumptions of modelling.

The inclusion of debris in the basal layers of a glacier

may increase the 1local density considerably. For example, 50%
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debris by volume (a large amount) with a density of 2100 kg m-3
would raise the density of the ice-debris mixture to 1500
kg m~3, or by over 50%. It would presumably also alter the flow
law parameters in the basal region where a large part of the
deformation of a glacier takes place. There is very little that
one can do about this source of error in the numerical model.
The only salvation is the observation that extensive debris is
usually restricted to within a few metres of the glacier bed.
For most computations carried out 1in this study, the

density of glacier ice was taken as 900 kg m~3,
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APPENDIX 5: CONTINUITY EQUATION FOR AN ICE MASS

A5.1 MASS CONSERVATION IN A MOVING CONTINUUM
Let M(t) be the volume integral of a continuously differentiable
function ,(x,t) defined in a volume V(x,t) enclosed by a surface
S(x,t) moving with the velocity v(x,t) of the continuum.‘ The

position vector is x and t is time. Underscores indicate vector

M(t) = fffp(i,t) d3r (A5.1)

\Y

guantities. Then

When »(x,t) is the material density, M(t) is the mass contained
within V. The material derivative DM/Dt is the rate of change of

M(t) with respect to time 't' (e.g. Malvern, 1969, p. 211).

drlx,t)
fff d3r +ff plx,t) v(x,t).n ds
(A5.2)

S
where n is the outward unit normal to S. By the law of
conservation of mass,

DM = 0 (A5.3)

For ice masses in this study, the firn and the mass balance are
expressed as eqguivalent ice thickness, and the density of ice is
taken constant. These assumptions are examined in Appendix 4.

Under these assumptions, (A5.2) reduces to

ffg(g,t)-g ds =0 (A5.4)
S :
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A5.2 IN A STATIONARY GLACIER CROSS-SECTION ’

Although (A5.4) was derived assuming the surface S moved
with the continuum, (A5.4) is also true for a stationary surface
that corresponds to S at the instant considered. Since pv.n is
the mass flux density, (A5.4) states that the net ice flux
across the surface S is zero. To put this info a usable form,

let S comprise two transverse sections S; and S, through the ice

FIGURE A5.1. Surfaces for Derivation of Continuity Equation.

mass in Figure A5.1, plus the annular surface joining them, i.e.
the sections TOP and BED. Then (A5.4) is

Sfeness [foness [fonass [frnor - .

S S TOP BED
! 2 (A5.5)
Now consider the motion of the free surface TOP defined as
the endpoints of position vectors h. As the surface TOP moves,

dh/dt.n is the normal velocity of the free surface. The vector
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dh/dt is determined only to within an arbitrary constant vector

F normal to n, or tangent to the surface TOP, i.e.

dh  1dh

e— = |=—en} n + F

ot ot (A5.6)

13

B
1]
O

Similarily, the mass balance a(x,t) at the surface is arbitrary
to within a constant vector G tangent to the surface TOP, but
the component a:n is the normal velocity of the melting surface
or accumulation surface with respect to the material.

a(x,t) = (asn) n- + G G'n =0

(A5.7)
It is apparent that the net normal velocity of the surface must
be the sum of the normal velocity v(x,t)-n of the material at
the surface plus the normal velocity into the material of the
melting surface, i.e.,

oh
—°h = y-n + a-n (A5.8)
ot
where v(x,t) is the material velocity.
Similarily, on the constrained surface BED
ven + ben =0 (A5.9)
where b(x,t) is the rate of melting or freezing at the bed.
Letting Q, and Q, be the total fluxes through S; and S, wusing

the downslope unit normal, (A5.5) becomes

3 ’
2 1 bt

TOP TOP BED (A5.10)
To proceed further, it is necessary to choose some axes. Let the
x' axis run along the glacier surface down the "centre" of the

channel (how this is defined is not crucial). The 2z' axis |is
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orthogonal to x' and positive upward in the vertical surface
containing the centreline. The horizontal y' axis completes a
right-handed orthogonal coordinate system. These axes are shown
in Figure A5.1.

Next, let the surface S become thin such that S; and S,
intersect the glacier surface at x} and x; separated by a small

amount &x' (see Figure A5.2). Then, when W(x',Z') is the channel

/\

“<*Jx’

Wix'Z')

'~.datum
S~

FIGURE A5.2. The Thin Cross-section Limit.

width at the level Z'(x',y') of the ice surface above some datum

level, (A5.10) becomes
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0 = Q (x') - Q (x")
2 2 1 1

R

W(x',z2") wWix',z2"')

o/ | O/~.
ID‘N
]
o
}=]
Q
L
\'
o
1=
Q,
o]

(A5.11)

A5.3 IN AN ARBITRARY CHANNEL

At this point there are two possible lines of development,
dependent on the form of channel cross-section to be modelled.
Letting (A5.12) define a scalar B(x',t) which is mass balance
plus basal melting per wunit channel width normal to the ice
surface at height z'=0 and averaged across the glacier channel

width W(x',0) ,

W(x',0)
B(x',t) wW(x',0) = ~/” (a*n + b-n) dy' (A5.12)
0
and recognizing
oh dS(x',t)
—ﬂdy:-—
ot ot (A5.13)

where S(x',t) 1is the transverse cross sectional area of the
glacier in the y'-z' plane, (A5.11) becomes

Q (x') - Q (x") + 3s(x',t)
2 2 LI — = B(x',t) W(x',0) (A5.14)

6x ' ot

In the limit as 6x'— 0,
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3S(x',t) + 90(x',t) = A(x',t) W(x',0) (A5.15)
?t ox'

This formulation (A5.15) is useful when the channel width varies

with depth z' (e.g. Bindschadler, unpublished; Raymond, 1980).

A5.4 IN A RECTANGULAR CHANNEL

In this study, however, I use models yith rectangular cross
section, so that the <cross sectional area S need not be
introduced. In such a channel (Figure A5.3), the thickness and
the x' and z' velocity components are assumed to be independent
of y'. The transverse velocity component is such that at every
point on the channel wall, the total velocity vector is 1in the
plane .of the wall, i.e. there are no voids along the margins.
The transverse strain rate is then assumed to be constant across
the channel. I have described this model in Section A2.2.1. This
approach was suggested by Nye (1959[c]). It 1is.. quite a good
model for nonparaIlel flowlines on ice sheets, where the "walls"
of the "channel™ are fictitious. Even for valley glaciers, the
same approach may be used. W(x) may be thought of as the width
of a narrow band of flow lines near the glacier centreline,
e.g. a few percent of the Qalley width at the level of the ice
surface. The bed is likely to be nearly flat over a narrow band
at the centre of the channel, and u and v are usually almost
independent of y near the centreline. Then, v is essentially the
centreline velocity, not the average across the whole channel.
Shape factors (Nye, 1965[c]) can be used to account

gualitatively for the drag from the valley walls. This approach

does allow. me to get an approximaté solution to a
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three-dimensional problem using a two-dimensional model.

With these assumptions, the first integral in (A5.11)

4

reduces to

W(x')

dh oh(x',t) (A5.16)
f oo dy' = Wx') — ‘n

ot ot
0

where h(x',t) is now independent of the transverse coordinate

y', and W(x') is independent of surface elevation Z'. Defining a

total source term A(x',t) independent of y' through (A5.17)
W(x')

V/‘ (a-n + ben) dy' = W(x') A(x',t)-n (A5.17)
0

and letting 6x'—> 0 puts the continuity equation (A5.11) into
the form
dh(x',t) T30
—— oﬂ + —
ot Wix') dx'

I1f the vectors h(x',t) and A(x',t) are h'(x',t) and A'(x',t)

= A(x',t)n  (A5.18)

oriented normal to the ice surface (see Figure A5.3),
i.e. parallel to n, (A5.18) reduces immediately to

dh' (x',t) + _1_9Q(x',t) = A'(x,t) (A5.19)
at W(x) 3x

where the scalars h'(x',t) and A'(x',t) are just the magnitudes
of the vector quantities. However, a coordinate system that
moves with the time-varying ice surface 1is computationally
inconvenient..I will now show that other more convenient choices

of coordinates lead to a equation of the same form as (A5.19).
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A5.5 IN BED-NORMAL COORDINATES

Let an x axis lie anywhere in the x'-2' plane. The z axis
is in the same plane, and positive up. The y axis is the same as

the y' axis. These coordinates are shown in Figure A5.3. Let

FIGURE A5.3. Coordinates And Variables In Rectangular Channel.

e(x') and g(x) be the inclinations of the ice surface (x' axis)
and the x axis respectively, and let the vector h be measured

normal to the x axis. Then

3 N
—-n = oh cos{gs-8g) (A5.20)
ot 3t

and
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A.n = A cos(o-8g) (A5.21)
The difference between h normal to the x axis and h' normal to
the ice surface is just the vector F in (A5.6); a similar result
holds for the balance and G in (A5.7).
It is also seen from Figure A5.3 that the x axis is related
to the x' axis by

ax'(x) = 1 (A5.22)
dx cos(a-g)

so that using the chain rule

30 =930 dx = 30 cos(c-p) (A5.23)
ox' dx dx' X

and (A5.18) reduces to

oh(x,t) cos(e-g) + 1 30Q(x,t) cos(a-p)
ot W(x) ox

= A(x,t) cos(as-8) (A5.24)
The cosine factors divide out, leaving an equation of exactly
the same form as (A5.19) when h(x,t) and A(x,t) are measured
normal to, and the flux gradient is taken along, any x axis in
the x'-z' plane that can be related to the x' axis by a
one-to-one transformation through integrating (A5.22). This
restriction means that the curvature of the x axis must be small
enough that vectors normal to it do not intersect within the ice
mass.

Some obvious choices for the x axis are (1) the glacier
surface: this is impractical because it moves in time; (2)
horizontal Cartesian axis; and (3) the glacier bed: this is used
in 'this study because it is stationary, and the integrated form
of Glen's flow law (see Appendix 7) uses thickness normal to the

glacier bed.
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When u(x,z,t) is the x-component of velocity, the flux
o(x,t) is
h(x,t)

Q(x,t) = W(x) u(x,z,t) dz (A5.25)
0

After defining V(x,t), the velocity averaged over depth, by

h(x,t)
O(x,t) 1
Vix,t) = = u(x,z,t) dz (A5.26)
W(x) h(x,t) h(x,t) 0
Q(x,t) can be written as
Q(x,t) = V(x,t) h(x,t) W(x) . (A5.27)

When the 1ice deforms mainly by shear near the bed, V(x,t) is
close to the velocity at the ice éurface. In fact, using Glen's
flow for 1ice, the surface velocity u(x,h,t) 1is equal to
(n+2)/(n+1) times the average velocity V(x,t) in (A5.26)..

The form of the continuity eguation that is solved in this
study is

Sh(x,t) + _ 1 J[h(x,t)v(x,t)W(x)] .
ot W(x) 9x = A(x,t) (A5.28)

where h(x,t) and A(x,t) are measured normal to the glacier bed,

and the flux gradient is measured along the bed.
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APPENDIX 6: EQUATIONS FOR PERTURBATIONS

L2

This appendix follows the work of Weertman (1958) and of
Nye (1960; 1963[al; 1963[b]). The continuity equation (1.3.5)
has the form

dH(x,t) + 30(x,t) = a(x,t)
ot X

(A6.1)
when the width W(x) of the channel is unity. H(x,t) is the ice
thickness normal to the ice surface, Q(x,t) is the ice flux
through H(x,t), and A(x,t) is the mass balance. Letting
subscripts 0 indicate. a steady state configuratioﬁ, (A6.1)

becomes

—%(x) = A (x)
ox 0

(A6.2)
If the steady state quantities are perturbed by small amounts
indicated by lower case variables, (A6.1) becomes

AH ()+h(x,0)]  3[0 (x)+q(x,t)] = (A (x)+a(x,t)]
5t

+ 9dx ©°
(A6.3)
Using (A6.2), (A6.3) becomes
dh(x,t) + 3g(x,t) = a(x,t)
3t o
(A6.4)

when the width W(x) of the «channel is unity. When the flux
Q(x,t) depenas on the thickness H(x;t) and the ice surface
slope /A4(x,t), the flux perturbation can be linearized by a
first order expansion about the steady state in terms of the

thickness perturbation h(x,t) and the slope perturbation a(x,t).
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Q(x,t) = co(x)h(x,t) + Do(x)p(x,t)

(A6.5)
where
90
c (x) = e—
° JdH|0
: dQ (A6.6) -
D (x) = —
0 bf% 0
Since )
éﬂ(x,t) = p(x) - Alx,t)
X (A6.7)
where g is the slope of the glacier bed, it follows that
oh(x,t) = = a(x,t)
X (A6.8)

Substituting (A6.5) and (A6.8) into (A6.4) gives

0h = -¢'(x) h = [c (x)-D'(x)]3h + D (x)d%h + a(x,t)
ot 0 ° ° 3x °  Jx? - (26.9)

where primes indicate x derivatives.

The nonlinear equation (A6.1) has been transformed into a
linear equation with variable coefficients to obtain solutions
for the perturbations to the steady state.

The fact that (A6.9) is a diffusion equation demonstrates
the diffusive nature and thus high wavenumber damping of the ice

surface profile as discussed in Section (A1.4.6).
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APPENDIX 7: VELOCITY EQUATION FOR AN ICE MASS

A7.1 INTRODUCTION

In this Appendix, I will derive an eguation for the ice
flux ©(x), and the downstream velocity component u(x,z), using
the stress equilibrium equations (1.4.8) through (1.4.10), and
Glen's flow law (1.4.22), maintaining the small error terms so
that the error in the formulae (1.4.34) and (1.4.36) can be
estimated. Orowan (1949), Shumskiy (1961), Lliboutry (1958[bl),
and Robin (1967) pointed out the importance of 1longitudinal
stress gradients. My derivation of the shear stress contains
concepts drawn from Nye (1952[b]), who showed that the shear
stress depends on surface slope rather than bed slope, from
Collins (1968) who derived a correction term depending on the
longitudinal stress deviator gradient, and from the summary of
both by Paterson (1969, p. 92—105). Nye (1969[al]) put the
analytical shear stress equation in a particularly simple form
by an appropriate choice of axes.

Budd has written several papers on the Veffects of
longitudinal stress gradients on the flow field (1968; 1970[a];
1970[b]; 1971), deriving correction terms to the basal shear
stress in (1.4.23), together with estimates of the scale lengths
over which they may be important.

Hutter and Legerer (1979), Hutter (1980), Hutter (1981),

and Hutter and others (1981) derived equations for the shear

stress including longitudinal strain and nonparallel surfaces,
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A7.2 THE SHEAR STRESS EQUATION
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The stress equilibrium equations (1.4.8) and (1.4.9) are

d¢ Qo de

- XX + xy + xz + pgsin(pg) = 0
OX oy 3z :
d¢ d¢ d¢
Xz + yz + zz - pgcos(g) = 0
X oy 9z
These can be integrated from the surface h(x) to depth
the bed
h(x)
oc
¢ (x,2) = ¢ (x,h) + pg(h-z)sin(p(x)) + XX
X2z X2z 0x
z
and
h(x)
oc
¢ (x,2z) = ¢ (x,h) - pg(h-z)cos(s(x)) + Xz
r 44 zz 9x
z

The first and last terms on the right side of (A7.

be combined through the surface boundary condition. Let

unit outward surface normal vector

n = [sin(o-8),cos(o-5),0]

and let m be the downslope unit tangent vector

(A7.2.1)

(A7.2.2)

z above

daz'

.(A7.2.3)

dz'
(A7.2.4)

2.4) can

n be the

(A7.2.5)
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m = [cos(e-8),-sin(ae-p),0] (47.2.6)

The surface traction vector T 1is then (using the summation
convention for repeated indices)

k i gk (A7.2.7)
The normal stress on the boundary is the atmospheric pressure p,

and the shear stress on the surface is zero, i.e.

13
12
[

-p (A7.2.8)
(A7.2.9)

1

E
i1
o

which give the two equations

sin?(e-g)s + 2sin(e-g)cos(e-g)e + cosz(q-a)a

XX XZ Xz

= -p _ (A7.2.10)
sin(e-g)cos(o-g)[e¢ -¢ ] + [cos?(a-g)a-gsin?(ae-g)]e

xx  zz Xz

=0 ' (A7.2.11)

which can be reduced to

[¢ (h) + pldh = ¢ (h) (A7.2.12)
XX dx XZ
¢ (h) + p= ¢ (h) dh
zz Xz dx (A7.2.13)
since
tan(o-g) = -dh
' dx (A7.2.14)

The Leibnitz formula for differentiation of integrals (e.g.

9

~ Kaplan, 1952, p. 220) gives the identity
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h(x) h(x)
Q¢
~/~ xz dz' = é_ 1 e dz' - ¢ (x,h(x)) dh
ox OX Xz Xz dx
z z (r7.2.15)
Using (A7.2.13) and (A7.2.15) in (A7.2.4) gives
h(x)
¢ (x,2) = =p - pg(h-z)cos(p(x)) + O ~/~¢ (x,z')dz’
zZZ ox Xz
z (A7.2.16)
I will now evaluate the influence of the final term 1in
" (A7.2.3) on the shear stress, wusing (A7.2.16) and the

definitions (1.4.18) of stress deviators to get o, .

Nonparallel bed and ice surface will generate a correction

term to the gravitational stress, and longitudinal variation of
the stress deviators will generate a dynamic stress correction
term,
Solving (1.4.18) for «,, and ‘yy gives
¢ = ¢ + 2¢' + ¢
XX zz XX vy (A7.2.17)
¢ = ¢ + 2¢' + ¢
vy zz yy XX (A7.2.18)
Substituting (A7.2.16) 1into (A7.2.17) and differentiating with

respect to x yields

do (x,z) = -pglcos(p(x))dh - (h-z)sin(p(x))ds]
XX dx dx
X '
h{x)
+ 2 ¢ (x,z')dz' + jL[2 ¢' + ¢' ]
x? Xz X XX vy

z ' (27.2.19)
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This derivative can then be used 1in the integral term in
(A7.2.3) to give aﬁ equation (A7.2.20) for the shear stress in
anbice mass. It is exact, except for the neglect of the
acceleration terms in the stress balance equations (1.4.18).
Unfortunately, (A7.2.20) is still an implicit solution for a,,.

¢ (x,2) = ¢ (x,h(x))
Xz Xz

+ pg(h-2z)[sin(g(x)) - cos(p(x))dh - (h-z)sin(p(x))%g]
: X

dx ’
h(x) h(x) h(x)
+ a2 °/~ ¢ (x,z')dz' dz" + dl2s" + &' laz'
ox? Xz Ax XX Yy
z z" z
(A7.2.20)

A7.3 APPROXIMATIONS

Throughout this section, I will assume that the width of

the ice mass is much greater than its thickness. The effect of

the valley walls is considered in Section A7.4 below.

First, note that for the case of a parallel-sided slab

(e=p), all x derivatives are =zero, the boundary term in

(A7.2.20) is zero by (A7.2.12), and the exact solution for the

shear stress reduces to

¢ (z) = pg(h-z)sin(a)

XZ (A7.3.1)
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Since a parallel-sided slab is often a good first approximation
to a glacier or an ice sheet (except near the bergschrund or the
terminus), I will introduce some approximations and show when
the other terms 1in (A7.2.12) can be neglected or treated as
correction terms to (A7.3.1).

I will assume that the slope o(x) of the ice surface s(x)
and the slope g(x) of the bed b(x) are small

la(x)]| << 1 (A7.3.2)

le(x)] << 1 (A7.3.3)
An implication of this is )

la(x) - g(x)| << 1 (A7.3.4)
A further result of (A7.3.3) is

h |dg| << 1 (A7.3.5)
dx

because the bed slope cannot change by an amount near unity
(e.g. 0° to 45°) in a distance equal to the ice thickness if the
bed slope g is always small. Results analogous to (A7.3.5) apply
to a(x) and to [ae(x)-p(x)].

I will now consider the gravitational term which I will
call Fg» on the right side of (A7.2.20). Using (A7.2.14), and
expanding the trigonometric functions as Taylor series to two

terms,

F = pg(h-2){pg -pg% + [1-p%?]{0-p-(a-8)%] - (h-2z)[p-p*]ds]
g 6 2 3 6 dx

(A7.3.6)

Retaining only terms to third order in the small quantities,



324
F = pg(h-z)o [1-0%+ap -38%2] + pg(h-2z)p [p%-(h-z)ds]
g | 3 2 3 ax
(A7.3.7)
Unless a<<g (which 1is possible at ice divides, for instance),
the first term is dominant because the leading term 1in the
square bracket is unity. The other terms in the square brackets
are small by (A7.3.2) through (A7.3.5), and
F = pg(h-z)a [1-0?+apg -3g2+g°- g(h-z)ds]
g 3 2 ¢ o dx
(A7.3.8)
An important point to note in (A7.3.8) is that, to a good
approximation, the éhear stress depends only on the ice surface
slope a(x), and not on the bed slope angle g(x).
If o<<g, the form (A7.3.7) must be retained.
Now I will consider the term involving the gradient of the
x and vy normal stress deviators. Defining the average Qalue of

the gradient of the normal stress deviator above depth z by

. h(x)
g¢' = _1 de’ z<h
XX (h—z{/ﬁ xx dz'
ox ox . (A7.3.9)
z
= 0 z=h
_ h(x)
d¢' = 1 3¢’ z<h
Yy (h-z{/‘ yy dz'
X - ox (A7.3.10)
z
= 0 z=h

lets me write this term in (A7.2.20) as
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YRR de '
F = [pg(h-2)e ]|[2h_ xx + h__yy
1 ox Ox
pghe (a7.3.11)

The leading factor in (A7.3.11) 1is Jjust the dominant term
(A7.3.1). For an ice column from surface to bed, the
nondimensional term in the square bracket is, roughly speaking,
(apart from the factor of two), the ratio of the net
longitudinal force (plus transverse force) to the basal shear
force acting on the column. This ratio is usually quite small
for most glaciological éituations. This term will be retained in
the analysis in this Appendix, as an estimate of the error due
to neglect of nonzero longitudinal and transverse stress
gradients. .

All the stress components near the free surface are small,
and ¢, (h) is also proportional to (e-p) from (A7.2.12) and
(A7.2.14). It will only make a significant fractional change in
¢, near z=h, where there is very little shear deformation in any
case. Neglecting o,,(h) will not cause a significant absolute
error in the shear stress At any depth.

Now I will show that the shear term involving the double
integral of ,,(x,z) in (A7.2.20) 1is negligible wunder most
conditions. I call it F,. This 1is the term that makes the
equation implicit; eliminating it will 1lead to an explicit
solution for the shear stress.

Because of the assumptions (A7.3.2) and (A7.3.3) of .small
angles, I know that the solution for e, is approximately
(A7.3.1). I will substitute this approximate solution into the

term in question, and show that the result is very much smaller
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than the approximate solution (A7.3.1). The substitution gives

F = pg(h-z){(h-z)de dh - (h-z)2d%g¢ + (h-z)o d°h + o(dh)?}
S dx dx 6 dx ¢ 2 ax* dx

(A7.3.12)

Noting that, by the chain rule,

(h-z)2d%¢ = (h-z)d [(h-z)de] - (h-z)dh dea

. dx? dx dx dx dx
(a7.3.13)
and by differentiating (A7.2.14) to get
d?h = -d(o-8)
dx? dx (A7.3.14)

by using (A7.2.14) with a first order expansion of the tangent,

(A7.3.12) becomes

F = pg(h-z)c |-5(h-z)ds + (h-z)ds * (a-w]
. dx 2 dx

- pg(h-2)8 (h-z)de| - »g(h-2z)|(h-2)d [(h-z)da]
6 dx dx
(A7.3.15)
All the terms in the first two brackets are much less than
unity, by (A7.3.2) through (A7.3.5). The third term is more of a

problem. Since

(h-z) de
dx (A7.3.16)
is the change in slope over a distance equal to (h-z), it must
satisfy
(h-z) de| < @
dx max (A7.3.17)
where o, .. is the maximum surface slope on the glacier. By

assuming that the surface slope ¢ is nonzero and slowly varying,



327

(h-z) de
dx

<< g
(A7.3.18)

the whole qguantity inside the curled bracket in (A7.3.12) is the
change in a distance (h-z) of a quantity which is always much
less than a; therefore it too is much less than e. This implies
that the third term in (A(7.3.15) satisfies

pg(h-z){(h-z)d [(h-2)dal}
dx dx

<<  pg(h-2)a

(A7.3.19)

I3

(A7.3.18) is usually true in all regions of a glacier,
except where the surface slope goes to zero, such as at an ice
divide. In that circumstance, the shear stress is very small in
absolute value, and the normal stresses may give the dominant
deformation. The correction term Fl_from (A7.3.11) is é major
contribution to the shear stress in (A7.2.20). Then, reasonable
assumptions about slow variation of F with x can be wused to
give

F << F (A7.3.20)

by using Fl .as an estimate of o, to evaluate Fg . Budd (1968;
1970[a]) also derived the result that a term similar to Fg; was
negligible when only undulations of long wavelength (greater
than 4h) were considered. In either case, the term F, can be

neglected without drastically affecting the estimate of the

error in ¢,,, so that, approximately,
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(x,2) ) o %y
¢ (x,2) = pg(h-z)sine |1 + |2h_xx + h
X2z ox X

pgha
(A7.3.21)

with the assumptioné (a7.3.2), (A7.3.3), and (A7.3.18), and ¢ is
not small compared to g (see(A7.3.7)).

The surface slope o was replaced in (A7.3.21) by sine to
make it consistent with the standard result (A7.3.1) for a
parallel-sided slab. The difference between e and sine is 0(c?);

this is the same order as other neglected terms.

A7.4 SHAPE FACTORS

The derivation of the shear stress (A7.3.21) was based on
the assumption of a very wide channel, such that the total
downslope component of the weight of the ice is supported by Oyz

shear forces. However, in valley glaciers; Sxy shear forces also
support some of the glacier weight.

Nye (1965[c]) considered rectilinear flow in channels with
rectangular, elliptical, and parabolic cross-section. He found
that the shear stress o,,was linear with depth on the central
axis of a semicircular channel, and was exactly half the value
(A7.3.1) at the same depth in an infinitely wide channel. For

the other channels considered, the stress ¢ was nearly linear

xXZ
with depth on the central axis, so Nye suggested the
approximation

¢ (z) = spg(h-z)sina
Xz . (A7.4.1)

where s is a "shape factor" varying from zero for an infinitely
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deep channel, to unity for an infinitely wide channel. The shape
factor is chosen so that the integration of the shear strain
rate given by (A7.4.1) and Glen's flow law gives the correct
downslope velocity component u at the ice surface. Nye's method
was numerical and can be adapted to any arbitrary cross-section.
He tabulated. values of s for a series of rectangular,
elliptical, and parabolic channels.. When the channel
cross-section varies with distance x, the flow is no longer
rectilinear, and longitudinal forces may be present, but it 1is
common practice (e.g. Bindschadler, unpublished; Budd and
Jenssen, 1975) to introduce a shape factor s(x) depending on
position x, to try to account for the drag of the valley walls
in an approximate way. I include a shape factor of this type in
the model used in Chapter 3 for the Steele Glacier.

The shape factor can be a large source of uncertainty for
the guantitative interpretation of computed velocities, because
the shear stress is raised to the nth power when using Glen's

flow law (see next section).
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A7.5 SHEAR STRAIN RATE

The shear strain rate ¢, is defined by

z
Y
&4 2|9z ox (A7.5.1)

I1f I assume that the shear parallel the bed 1is the dominant

deformation, i.e.

3v fau| << 1
x/ 8z (A7.5.2)
then (A7.5.1) can be written as
¢ =19ull +23v /3u
Xz 2 oz ?x/ 9z (A7.5.3)

where the second term in the bracket is a small correction term.
The velocity u(x,z) can be obtained by integrating (A7.5.3)

from the bed to level z.

z .
. _
‘J~ X2 dz'
u(x,z) = u (x) + 2
s 1 + Qv du
0 9x/ 3z (A7.5.4)

where u.(x) is the basal sliding velocity. When I substitute

Glen's flow law (A1.4.22) for ¢, use the identity (A7.5.5),

z y
for v, the effective shear stress (1.4.20), assuming the second

term is small,

Xz (A7.5.5)

together with Taylor expansions of (A7.5.5) to the (n-1) power
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and of the velocity gradient term in the denominator to the

power -1
z
n
u(x,z) = u (x) + 2A ¢ (x,2"){1+(n-1)6r - 8v Jdu|dz’
s Xz s ox/ 9z
0 Xz
(A7.5.6)

In taking A, the coefficient of Glen's flow law, outside the
integral, 1 am assuming an isothermal 1ice mass. If the
temperature varies spatially in a known manner, the integral may
be evaluated numerically. Substituting (A7.3.21) for the shear
stress in (A7.5.6), with a Taylor expansion of the correction

terms in (A7.3.21) raised to the nth power, I get

u(x,z) - u (x) =
s

i —_— T

o¢' o¢'

z 1+ n[Zh xx + h yy]
n ox ox
2Af[s(x)pg(h—z)sin(a(x))] dz'

+ (n-1)6r - dv /3u

0 ' ] Jax/ 9z
e xz -

\ ) ‘ (A7.5.7)

The leading term is easily integrated, but the error terms
all depend on z' in unknown ways depending on the geometry of
the ice mass. However, an estimate of the magnitude of the error
in u(x,z) can be found by replacing the z' dependent errors in
(A7.5.7) by the maximum amplitude of their sum over the depth
range of zero to z. This estimation allows me to bring the

factor in the large square bracket outside the depth integral.

Then
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u(x,z) - u (x) =
s

n n+1 n+1
2A[s(x)pgsin(a(x))] [h = (h-z) ] [1 + e(x)]
n+
(A7.5.8)

where the error e(x) is estimated to be of the order of

T d¢' (14
e(x) = O||n{2h xx + h vyy!l + (n-1)¢ - dv fdu
ox ox Xz ox/ oz

pgha max

(A7.5.9)
6r is defined by (A7.5.5) as the difference between the stress
invariant and the shear stress parallel to the glacier bed. The
longitudinal stress gradients are given by (A7.3.11). The
subscript 'max' indicates the maximum value taken anywhere by
the term in the inngr large square bracket. This gives a

conservative estimate of the accuracy obtained.

A7.6 ICE FLUX AND AVERAGE VELOCITY

The downslope ice flux for use in the continuity eguation

(1.3.5) is
h(x,t)
Q(x,t) = u(x,z,t) dz
0 >
n n+2
= u (x,t) h(x,t) + 2A[spg sinae]l [h(x,t)] [1+ e(x)]
S n+2

(A7.6.1)
The error term involving e(x) is small with the assumptions

discussed in the previous section, and 1is neglected in the
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computer model.

The average velocity V(x,t) used in Section 1.3 and

Appendix 1 is defined as the

Vix,t) = Q(x,t)/h(x,t) (A7.6.2)
which is
n n+1
V(x,t) = u (x,t) + 2A[speg sine] [h(x,t)] [1+ e(x)]
S n+i
(A7.6.3)

The term on the right due to the internal deformation is just
(n+1)/(n+2) times the downslope velocity component at the ice
surface u(x,h(x),t).

The surface slope o should be considered to be an average
over at least 4h, because of the neglect of the term Fg in

(A7.3.12).
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APPENDIX 8: GLACIER SLIDING

A8.1 MEASUREMENTS

Measurements at the glacier bed are obviously difficult.
Direct access is possible only in a few places, such as at
cavities at the glacier margin, or in tunnels into the ice
itself, or in galleries in bedrock directly below the glacier
(e.g. Glacier d'Argentiere (Vivian and Bocquet, 1973) and other
sites in Europe (Vivian, 1980)). These are obviously not
representative of the glacier bed as a whole.

Boreholes may reach the glacier bed. Hotpoint probes are
often stopped by debris-laden ice at some distance above the

bed, but cable tool drilling (Englehardt and others, 1978) or

rotary drilling (Newmont Mining, at South le Duc Glacier, and at
Burroughs Glacier (W. H. Mathews, personal communication, 1981))
usually gets to the ice-rock interface. The method 1is time
consuming. Observations by borehole television cameras provide
sliding data, but can be 1limited by turbidity in the basal
water, and by unknown motion of a thin layer of subsole drift
(possibly a few cm thick).

Indirect measurements of sliding may be obtained by
subtracting a calculated internal deformation velocity (using
(1.4.34)) from the surface measurement of the total velocity.
This method is limited by the assumptions in deriving (1.4.32),
and by uncertainty in the appropriate 1local values of the

constants in Glen's flow law (1.4.22) in the basal ice.
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Surface measurements of ice velocity show variations on
time scales of hours or days, often with correlations with
rainfall or intense surface melting. Deformation velocities in
the ice are unlikely to vary that rapidly; this suggests that

pressure in the basal water influences sliding.

AB8.2 PHYSICAL PROCESSES IN SLIDING

Weertman (1957; 1964[b]) identified two main processes
controlling sliding, on the assumption that bed irregularities
or roughness prevent the glacier from sliding downslope as a
rigid body. Weertman suggested that the basal ice moved past
small obstacles by regelation, a sliding process originally
discussed by Deeley and Parr (1914). Because the upstream side
of an obstacle supports some of tﬁe downslope component of the
glacier weight, the pressure in the ice there is elevated above
average. This lowers the pressure melting temperature. Ice
approaching an obstacle cools and gives up some of its internal
enefgy to melting. Meltwater from the upstream side of an
obstacle flows around to the lee side, where the pressure is
lower than average, and the pressure melting temperature is
correspondingly higher, so that the water refreezes. The heat of
fusion so released diffuses along the temperature gradient to
the ups;ream‘ side of the obstacle, where it contributes to
further hélting. This process is limited by reduced temperature
gradients as the obstacle size increases.

The presence of excess pressure upstream from large

obstacles increases the second scalar invariant T of the stress
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deviator tensor, leading to enhanced deformation rates,
i.e. softer 1ice and more rapid flow (see (1.4.19)). For small
obstacles, this process is limited by less significant stress
perturbations.

The combination of these two processes is postulated to
allow basal ice to move past obstacles on any roughness scale.

Kamb and LaChapelle (1964) interpreted structures 1in the
basal ice of Blﬁe Glacier, Washington, U.S.A. as evidence of
both regelation and enhanced plastic flow.

Weertman (1957) developed a mathematical model of sliding
using these concepts, with a bed modelled by an array of cubic
obstacles on a plane (the "tombstone model"™). Nye (1969[b];
1970) and Kamb (1970) presented theories using the same sliding
concepts with a Fourier spectral representation of the glacier
bed. These theories assumed small sliding velocities, and
further, that clean ice was in contact with the bedrock. Morland
(1976[al; 1976[b]) included the effects of glacier thickness and
bed friction.

Raymond (1980) summarized a number of other physical
complications of this simple sliding concept which limit its
guantitative applicability in a computer model.

Drake and Shreve (1973) and Morris (1976) 1indicated that
solutes in the basal water can alter the pressure melting point,
inhibiting régelation by lowering the temperature gradient
through obstacles. Hallet (1976) gave field evidence that this
process is significant for at least some glaciers.

Nye (1973[b]) pointed out that temperature gradients in the

- basal water film may affect regelation, and Harrison (1972) and
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Raymond (1976) showed that water and bubbles in the basal ice
could also affect the diffusion of heat, and the amount of
regelation.

Lliboutry (1968[a]) pointed out that transient creep may be
significant in the time scales involved in flow around
obstacles. Glen's flow 1law (1.4.22) 1is applicable only to
secondary creep.

Vivian and Bocquet (1973) suggested that ice texture,
impurities, and water content in basal ice may affect its
mechanical properties, and Weertman (1969) pointed out that
local stress near obstacles may be large enough to exceed the
range of validity of Glen's flow law.

Permeability of the bed could, of course, significantly
affect regelation, and rock load 1in the glacier sole, and a
layer of subsole drift can alter the mechanical properties of

the interface itself (e.g. Englehardt and others, 1978).

Lliboutry (1968[a); 1968[b); 1978) made an important
contribution to the theory of sliding by including the
possibility of a separation of basal ice and bedrock to form
cavities in the lee of obstacles. This can alter the apparent
roughness of the bed, and there may be a reduced contact area to
support the ice load. This can be expressed by a shadowing
function (Benoist and Lliboutry, 1978; Benoist, 1979; Lliboutry,
1979).

" Cavities beneath a glacier may be connected, leading to a
complicated basal water system. Weertman (1972) gave a review of
water flow beneath glaciers, and its relation to sliding. Flow

may occur in subglacial drift, in channels incised 1in the
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bedrock (Nye, 1973[al), or in time-varying channels incised in

the basal ice (Rothlisberger, 1968; 1972; Nye, 1876).
AB8.3 COMPUTER MODELS OF SLIDING

A8.3.1 USING WEERTMAN SLIDING

The Weertman model is incorporated into my computer model

by

(n+1)/2
u (x) =Cr

S b (A8.3.1)
where n 1is the exponent in Glen's flow law (1.4.22), C is a
constaﬁt related to bed roughness (Weertman, 1957; 1964[b]), and
r, is the basal shear stress. However, I have not wused it in
this study (except for the Nagata ice sheet model, Appendix 15),
because it 1is wvalid only for small sliding velocities; in

addition, all the possible complications outlined 1in Section

AB.2 would make any results numerically suspect.

AB.3.2 BUDD-MCINNES MODEL

Budd and MclInnes (1874) and Budd (1975) used a quite
different approach to model basal sliding. Rather than
attempting to quantitatively model the processes described in
Section A8.2, they started from the premise that meltwater
produced by sliding or internal friction can lower or
redistribute the effective basal shear stress, or shear
resistance, which would otherwise prevent the glacier from

sliding. If the downslope component of the weight was everywhere
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balanced locally by a shear stress at the base, this shear
stress would be approximately

T = spgh sing
c (A8.3.2)

This is the simple result (A7.3.1) for a parallel-sided slab.
Budd (1975) chose a simple feedback function (AB8.3.3) having the
desired qualitative behaviour; at low sliding velocities, the
basal shear stress and slidiné velocity increase together, but
at higher sliding velocities, 1increased sliding reduces the
basal shear stress, due to meltwater lubrication of the bed. The
constant @ was called the 'basal lubrication factor', and the
stress (A8.3.3) was called the "local lubrication-lowered
stress”

r

T = c

c 1t + Pr V
c (A8.3.3)

Since V is the average downslope velocity, the factor v V is
approximately the power dissipated per unit area of bed by
sliding friction and internal deformation. This is directly
related to meltwater production. To maintain the global force
equilibrium of the glacier, i.e. to prevent it from accelerating
off the bedrock slope, Budd added a constant stress to (A8.3.3).
Letting bars represent averages over the total glacier length,

Budd took the basal shear stress to be

* *

r = r + (71 -7)
b c c c (A8.3.4)
Obviously, (A8.3.4) 1is only one of many pdssible ways to
maintain gross equilibrium. For instance, (A8.3.4) does not

exclude uphill sliding; this would be a logical constraint. The
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procedure (A8.3.4) redistributes the basal shear stress so that
sections with the highest meltwater production are partially
unsupported by their local basal shear stress, and throw their
weight on sections upstream and downstream. This leads to
longitudinal strain rates. By assuming that the longitudinal
extension, when averaged over the 1ice thickness, is viscous,

with viscosity =, i.e. '

2n € = @'

XX XX (AB8.3.5)
and that the extension is due entirely to gradients in the basal
sliding, i.e.

. ou (x)

€ = —8§

XX  Oox (AB.3.6)
Budd was able to perform two x integrals of a stress equation
similar to (1.4.25) (neglecting the lateral term in y) to get a
sliding velocity. (Shumskiy (1961) also thought that sliding
could be best expressed as the integrated 1longitudinal strain
rate.)

The Budd model 1is not restricted to small sliding
velocities, and it incoréorates longitudinal gradients; sliding
at any point depends on conditions at other points in the
glacier. This was an important and realistic advance. Some of
the overly simple assumptions such as (AB8.3.5) and (A8.3.6) can
be ‘eliminated easily (Budd, 1975). Budd f1975) suggested that
beriodic surging could exist with no special requirements other
than some feedback mechanism 1like (A8.3.3) to give a
multi-valued sliding velocity as a function of basal shear

stress.
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The Budd model reduces the sliding problem to one physical
process (meltwater production), two gqualitative functions
(AB.3.3) and (A8.3.4) to express its effect on basal stress, and
two free fitting parameters @ and n. This simplicity makes the
Budd model appealing to computer modellers.

on the other hand, its connection to physical processes is
indirect. There are, presumably, a large or infinite number of
relationships involving the meltwater production 7 V that could
perform the same gqualitative roles as (A8.3.3) and (A8.3.4) in
redistributing the basal shear stress, and, as far as I am
aware, there 1is little physical basis for selecting any
particular ones over the others. This makes it difficult to
justify interpreting the output in anything more than a
qualitative sense.

The fitted  parameters g and n implicitly contain
informatioh about the local glacier geometry, ice composition
and structure, bed composition, interface structure, drainage
structure, etc., as well as about the fundamental properties df
sliding, so that new values of # and n are required for each
glacier. The model can perhaps be used to predict the future
behaviour of a given glacier; it cannot be used to predict the
sliding behaviour if the physical conditions at the bed are
altered, and it cannot be used to predict the ‘behaviour of new

glaciers without first measuring their sliding velocity.
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A8.3.3 SLIDING IN THIS STUDY

Nye (1965[c]) used a no-slip condition when deriving the
flow 1in channels of various cross—section, because of a lack of
knowledge of the form of a sliding law, and of the numerical
values of the parameters of such a law. Bindschadler
(unpublished, p. 5), who used a numerical model similar to the
one I described in Appendix 1, chose not to attempt to model
sliding, due to the lack of agreement between proposed sliding
theories and his data from the Variegated Glacier, Alaska, and
the lack of any simple relationship between glacier geometry and
sliding.

I agree with Bindschadler's assessment of sliding models.
In the computations for this thesis (excluding Appendix 16), I
have not tried to calculate sliding velocities based on physical
processes or the glacier geometry. In Chapter 3, I have wused a
predetermined sliding velocity ug (x,t) to drive the computer
model through periodic surge cycles. My sole purppse’was then to
observe the resulting internal deformation in the model as a

consequence of the given surge behaviour.
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-APPENDIX 9: BURGERS' EQUATION

The material in this appendix is based on Whitham (1974,
p. 96). Burgers' equation from (2.3.9)

dc(x,t) + c(x,t) dc(x,t) = v 9%c(x,t) (A9.1)

ot X dx °

is an exact equation for waves described by

OH(x,t) + 980Q(x,t) =0
at ax

Q = oH? + gH + y - v OH (A9.2)
ox
Cole (1951) and Hopf (1950) showed that wusing the nonlinear
transformation
g (x,t)
OX
g(x,t)

c(x,t) = -2v (A9.3)
reduces (A9.1) to a linear diffusion -equation. Doing the
substitution in two steps,
c = d+% (A9.4)
?x

and integrating (A9.1) over x,

¥ + 1 |3¥|% = v 0%¥ (A9.5)
ot 2 |ox ox<?
Introducing
¥ = -2v log(g) (29.6)
(A9.5) becomes
of = v 3*¢ (A9.7)
ot dx?
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The solution of this linear differential equation is

(o]
g(x,t) 1 fﬂ(y,O) expl-(x-y)?/(4vt) ]dy
-0

(4wvt) 72 (A9.8)
The 1initial condition @(x,0) is derived from the initial
condition c(x,0) = F(x) for any arbitrary function F(x) through
(A9.4)

X

g(x,0) = exp[—_l~/°F(y) dy ] (A9.9)
2v
0

and the solution c(x,t) derived from (A9.4) and (AS9.8) is

Q
(x-y) -G/2v
> £ © dy (A9.10)
c(x,t) =
e -G/2v
f e dy
-
where
Y
G(y:x,t) =~l~ F(z) dz + (x-y)? (A9.11)
0 2t

When the initial condition is
c(x,0) = A &6(x) (AS.12)
(A9.11) reduces to

G(y:x,t) = (x-y)2 + A y>0
2t (A9.13)

= (;;z)z y<0

Substituting (A9.13) into (A9.10), setting A/2v =R, and using

the variable change

z = (x-y) (A9.14)
4vt 1/2

puts (AS.10) into the form
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o x/J4vt

_22 R _22
2vf (2z) e dz + e 2;f (2z) e dz

x/\’4vt -0
o0 X/J4Vt

_z2 R _22
-(4vt) V2 ~I~ e dz + e (4vt)'? e dz

x/\/4vt -co

cl{x,t) =

(A9.15)
Evaluating the integrals in the numerator, and using the

property

(> =]

_22
e dz = n'? (A9.16)

f . -0
in the denominator,

v -x%/(4vt) R
t e (e - 1)

c(x,t) = = - : (A9.17)

R -2
a2 + (e - 1) ~/~ e dz
x/J4ut

This analytical solution of (A9.1) 1is wused in Chapter 2 to

verify that the numerical model solves nonlinear and kinematic

wave problems correctly.
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APPENDIX 10: MATRIX COEFFICIENTS

The tridiagonal matrix A of coefficients 1in equation

(A1.2.3) has sub-, main, and super-diagonal elements
{aj, bj, cj|j=1,J}. These are given by
or h 90 h
a = —] ] = -2p 6—3-1/2| j
5 oh h j oh h
-1 3+ -1 j+1
or |h JQ a0 h
b = —3 j=1 = 1+2p ©|—j+1/2 - —j-1/2 j-1.
5 3n |n 5 |an” an” h
i 3+ j j j+1
dr h oQ h
c = —j J = 2p 6—3j*1/2] j
i 3h” |n i 3h h
j+1 j-1 J+1 -1 (A10.1)

by differentiating in 'equation (A1.2.1). The quantities
following the vertical bar are held constant while pefforming
the partial differentiation. The purpose of this appendix is to
derive expressions for the coefficients in terms of the
thickness and slope midway between mesh points, rather than in
terms of the thickness at mesh points. First, I will evaluate
TR know the ice flux Qj_,n(hj.1m,cj.Jn), where the thickness
hj.y2 is
h (h + h )
j-1/2 = _j-1 i
2 (A10.2)

and the ice surface slope is
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tan(a ) =
j-1/2

{[b'+h./cos(a )) - [b +h /cos(s )1}
i 3 3 31 i1 i

oX
(A10.3)

The glacier bed elevation is {bj|j=1,J} , the bed slope is
{3j|j=1,J}, and the thickness {hj|j=1,J} normal to the bed 1is
divided by cos(sj) to give the verticél ;ce thickness to within
a fractional error of ([e-glg) with the assumptions e<<! and
g<<1 . This is derived in Appendix 14. Figure A10.1 illustrates
the geometry of the slope calculation. The ice flux is

Q = h VW (A10.4)
5-1/2  3-1/2  3-1/2

wvhere VW3 .. is the velocity V parallel to the bed averaged over

the ice depth hj. 2, and multiplied by the channel width Wj.p.

Then
a =
]
0Q dh 9Q dc
2p © —g-1/2 a1 /2 + _3_1/2 A 1/2
3 ¢ oh h da h oh h
j-'/2 -/ 3+ j Il s R j
(A10.5)
AVW 2cos?(a ) | VW
= p ol + h S - i-1/2 .
. - _ |51 .y
3 i B 3 5 Axcos(aj_1) o [3-_

Similarily for bj and Cjr
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FIGURE A10.1. Quantities In Slope Calculation.

- 2cos?(a ) : -
h VW - j+1/2 |dVW
j+; oh j+; axcos(s ) da j+;
J .
b =p©
j 3 - 2cos?(e )
- h lbvwl - i=-1/2 |OVW
.y 3 |- z _
17, I e xcos(pj) dc |3 -
+ VW - VW
i j+ 172 j=172 i
(A10.6)
c =
J
VW 2cos?(a ) |[oVW
p ©|VW + h —_— - 4172 |
j j+! j+! dh |j+! AXCOS ° j+!
] 3+, 3t it Xc (aj+1) o |3+
(210.7)

The vertical brackets with subscripts indicate where the

partials are evaluated. The bars indicating the other
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independent variables held constant have been dropped, since

there is no confusion when the flux is a function of only two

variables hj,,n and Gjstf2e
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APPENDIX 11: CONVERGENCE CRITERIA

The numerical scheme uses an iterative procedure to solve
the nonlinear continuity and flow law eguations. The iterations
are terminated when the largest residual in absolute value is
smaller than some criterion. The residuals are the the error
left when the solution is substituted back into the continuity

equation. The residuals { rg“|j=1,J} are

n+1 n+i n+1 n n
r = 2p elQ - Q. ]+ 2p (1-8)[Q -0 ]
3 i ivv/2 j-i/2 j j*1/2 j-1/2
n+1 n n+1 n
+h -h -[ea + (1-6)a Jat
J J J 3
1 <3 <43 1 £n<N (a11.1)
p = at/(2ax W) (A1.1.6)
J J 3

For practical purposes, however, it is convenient to stop when
the changes in 1ice thickness are below some value. This is
easier to relate to measurable quantities on real ice masses.
How are the residuals { r}*'|j=1,J} related to errors in
{h;“|j=1,J} ? _
| Using the Glen flow law (Glen, 1955) for laminar slab flow
in a channel of unit width with a small surface slope o gives
for the flux Qj;,h
m+2 m
Q = A(h ) (a ) (a11.2)
j+1/2 j+1/2 j+1/2

where the exponent m is about 3. A is a constant (see Section

1.4). {b;]j=1,3} is the bedrock topography. First note that the
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ice surface slope ¢ is given by
s =h  +b -h -b - (A11.3)
j+1/2 DR S R ]

Now suppose that there 1is an error e, in hj due to
imperfect convergence in the 1iterations; all thé other
{h; |i=1,J, i#j} are correct. Letting the calculated vélues of
Qj.12 and hj.2 have primes, and guantities without primes be

the values that would be obtained when the residuals are zero,

m+2 ‘ m

h + h' h +b - h'-b

A |4 ] 41 e ]
2 AX

Q'
j+1/2

e m+2 e m
h 1 - h
Q 1 +h + h h +b -h -b
3+1/2 i+ 313+ 3 g

(m+2)e me m e
1+ h - h 2 Q 1 - ___h
j+1/2 2h Axa j+1/2 Axo
3 j+1/2 i+1/2

(A11.4)

]
©

since @ << h /ax for reasonable slopes and mesh selection.

Similarily
me
Q' *Q 1+ _h
j=1/2 j=1/2 AXo (A11.5)

The flux gradient estimate is then

o' - Q' 0 -0 2m e
3+1/2 i-1/2 = i+1/2 9=1/2 1 - h
AX AX AXa

3 (A11.6)
using the assumption that the slope and flux vary slowly with x,

i.e.
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[+
j+1/2 i-1/2| << 1

Q
j+1/2 j-1/2| << 1 (A11.7)

I1f the glacier is in steady state, then

Q - Q
j+1/2  4-1/2 = A (A11.8)
AX j

where Aj;is the mass balance. Then the error in the flux gradient
is approximately
m e
€ = —2A h (A11.9)
J boXae
J

For unit width and =0, the residual (A11.,1) is then

approximately

j h INT (A11.10)

This order of magnitude estimate is valid only at some distance
from the bergschrund or ice divide, and from the terminus, due
to the restriction (A11.7). To get an estimate of a residual
criterion for the program that will reduce changes in thickness
h; to less than e, replace A; by a=max|Aj| and the surface

slope o} by the average slope g of the bed. Then

r = e 1 - 2am At
j h B AOX (A11.11)

For example, if m=3, At=1, Ax=10-2, $=10"2 and a=10"? for a
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glacier of unit length, then the residual error is

lr | = 1073 |e | (A11.13)
3 h

For example, if the ice thickness is approximately 10-', and we
want to find the thickness to six figure accuracy, then

le | <1077 (A11.14)
h

and the residual convergence criterion must be set to

lr | < 10°°® (A11.15)
j
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APPENDIX 12: MACHINE ROUNDOFF ERRORS

The truncation error is reduced by taking smaller mesh
intervals Ax and At. The reduction of the mesh increments is
limited, however, by the machine roundoff error. Single
precision real floating point arithmetic on the Amdahl 470 V/8
computer at the University of British Columbia is limited to six
significant figures. Extended precision results in 14
significant figures. The Amdahl 470 V/8 is similar in
architecture to an IBM 370 computer.

Any finite difference estimate of a derivative has the form

(f -f )/ap (A12.1)
s

where Ap is ax or at, and the index j can be either space or
time. As Ap becomes small, f;,, approaches fj since f is
assumed to be continuous. When f;,, gets sufficiently close to
£4 that they are the same in their first M digits, then M
significant figures are lost in the subtraction for the finite
difference estimate.

At each time step, there are three operations in which
accuracy can be lost. First, the ice surface slope is calculated
by a finite difference of the ice surface elevation. This slope
is used in the flow law equation to find the ice velocity and
flux. A further finite differencing is used to get the ice flux
gradient. Finally, in the calculation of the residuals, fhere is
a comparison of the flux gradient and the mass balance.

For example, if in each of these operations, ‘the quantities
being differenced differ by less than 1% over Ax, there are zero

significant figures left wusing single precision arithmetic on
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the Amdahl 470 V/8. For most modelé and mesh selections extended

precision should be used.



356

APPENDIX 13: DIFFERENCING SCHEME FOR THE FLUX GRADIENT

A13.1 INTRODUCTION

This Appendix describes how the finite difference form of
30/3x must be handled in the spatial dimension to get a stable
solution when the flux is a not a linear function of the ice
thickness, and 1 wish to use the diffusive nature of the flow
equation for ice to control the nonlinear instability.

To show that the solution of the nonlinear equations
(A1.1.4) is bounded for all positions x and all time t is a very
difficult problem. Bindschadler »(unpublished, p. 87) derived
constraints on the form of the the flux gradient scheme for one
example of a nonlinear advection equation. He obtained a linear
equation by treating h2(x,t) as the dependent variable. The
applicability of the result to other nonlinear equations could
be guestioned; it is easy to show that the scheme for the
special case analysed by Bindschadler reduces to the standard
Crank-Nicolson scheme for the 1linear diffusion equation. The
approach 1 follow here is instead, to find the local numerical
stability criterion for perturbations to a steady staté solution
of the partial differential equation (At.1.1). This at least
gives necessary conditions for global stability, and allows me
to eliminate some schemes from further consideration. It is also

~ applicable to any nonlinear form of flux.
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A13.2 PERTURBATION EQUATIONS

For small perturbations h(x,t) to a steady state ice mass
of unit width with thickness profile H(x) and ice flux Q(x), the
continuity equation (A1.1.1) can be written as (see Appendix 6)

dh(x,t) = - 3lc (x) h(x,t)) + 3[D (x) dhn(x,t)]
9t ox © ox ° ax
(a13.2.1)

when the source term a(x,t) is zero. 'Small' means

Ih(x t)

Hozxi

<< 1 (A13.2.2)

when the region near the terminus is not included. Letting #A(x)

be the slope of the steady state ice surface,

D (x) = |20(x)
° 27
0

c (x) [ég(x)]
0 3H
40

Treating co(x) and Do(x) and their derivatives as locally

(A13.2.3)

constant (this assumption is the one most 1likely to be
questionable in this section, although Gary (1975, p. 8.42) and
Richtmyér and Morton (1967, p. 91) indicate that this 1is a
standard assumption in this type of stability analysis), I can
get the wavenumber domain solution of (A13.2.1) by first taking
the Fourier transform (Morse and Feshbach, 1953, p. 453)
indicated by tildes, with respect to x. Primes indicate spatial

derivatives, and m is'the wavenumber. Then
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~

~ im(D'-¢c )t -c't ~-D m?t
h(m,t) = h e ° o
]

e ° e °
(A13.2.4)
and the transfer function for a time interval At is

im(D'-c )at -c'at -D m?at
0 (o] [¢] (o}

T(m) = e e e (A13.2.5)
The complex exponential factor gives the phase shifts for
advection analogous to (A1.5.6), the real exponential factor
with cl, gives the decay or growth due to extending or
compressing flow, and the factor with D, is the damping due to
the diffusive nature of ice flow. It is evident that the higher
wavenumbers are preferentially attenuated in this analytical
solution. The modulus of the transfer function (A13.2.5) is

shown as a dotted line in Figure A13.1 for the case

D' = ¢
(o}

r= 0 D At = 1
(o] o

1
4
AX 2 (A13.2.6)

A13.3 SPACE DIFFERENCING SCHEME

Because the mesh is discrete, the highest wavenumber which

can be sampled is

m = n/AX (A13.3.1)
N

i.e. two samples per wavelength. This is the Nyquist wavenumber.
I will derive conditions on the form of the finite difference
scheme for the flux gradient so that the slope dependence in the
flow equation can suitably damp all high wavenumbers up to the

Nyquist wavenumber mg .

Primes indicate x spatial derivatives. To set up a finite
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FIGURE A13.1. Damping Using The Ice Surface Slope.
Dotted curve: partial differential equation.
Broken curve: finite difference scheme with slope measured
over 2Ax. This scheme cannot suppress the nonlinear
instability at the Nygquist wavenumber.
Solid curve: finite difference scheme with slope measured
over Ax. »

difference analogue of (A13.2.1), let the differences outside
the square brackets, i.e. those representing 9g/dx, have the

form

q. - q.
g' = 3+¢ -9
j (A13.3.2)
20Ax .

where @>0 and

q = q([j-1+g)ax, nat) (A13.3.3)
j+g
and let the differences representing the surface slope inside

the last bracket in (A13.2.1) have the form

h - h
h' = j+¢ j-¥
3 (A13.3.4)
2 ¥AX
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A13.4 TRANSFER FUNCTION

The procedure is now to find the transfer function T(2Z),

just as in Section (A1.4.2) and find restrictions on @ and ¥

such that T(2z) is similar to the transfer function (A13.2.5) for

the partial differential equation (A13.2.1) and has a form that

can suppress the nonlinear instability. The finite difference
equation is
n+1 n n+1 n
h_ - h. = —c'.[eh. + (1-6)h']
3 3 °i 3 3
Aot
r n+1 n+1 n n e
c |6(h - h ) - (1-6)(h - h )
- __° g P g i-p
20ax b -
- n+i n+1 n n -7
D' e(h - h ) - (1-6)(h - h )
+ 04 j+¥ j-¥ j+¥ j-¥
2vax L J
- n+1 n+1 n+1 n+1 -
D (6(h -h -h +h )
°3 jrg+e  jHg-v J-gre j-g-d
+
4y@Ax? n n n n
+(1-6) (h -h -h "~ +h )
- jg+e JHE-v g §og-v
(A13.4.1)
Treating co(x) and Do(x) and their derivatives as locally

constant and forming a transfer function as in Section (A1.4.2)

gives
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-1—(1-6)At[c;+ DO sin(m¥ax) sin(mﬂAx)]T

Y AX

D;(1-e) At sin(m¥ax)/(2¥Ax)

-co(1—e) At sin(m@ax)/(2@ax)

T(m) =

1 + 6 at[c'+ D sin(m¥ax) sin(mg@ax)] ]
0 [s]

YAX

D'® At sin(m¥ax)/(2¥Ax)
o]

i -coe At sin(m@ax)/(28ax)

(A13.4.2)

A13.5 CONDITIONS ON THE MESH INTERVAL

When ©=0.5, which was the minimum value for stability from
Section (A1.4.2), the 1imaginary parts of the numerator and
denominator are equal, and |T(Z)|<1 requires

-c'v¥fax?

sin(m@ax) sin(m¥ax) 2 o
D

(o}
0 <m< n/Ax (A13.4.3)
First, note that D,(x)>0, because any realistic flow law gives
increasing 'ice flow with increasing surface slope. Consider the
simple case c§(x)=0. If @=¥, then (A13.4.3) is satisfied for all
g and wavenumbers m. However, to achieve the strict inequality'
i.e. damping at the high wavenumbers, both ¥ and @ must be

strictly less than unity. When @#¥, the left side of (A13.4.3)
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is positive when

0O <m<min{ » , w
Ax YAX

This also requires both ¥ and § less than unity to satisfy

(A13.4.4)

(A13.4.3). When c$<0 (compressive flow), both @ and ¥ must be
smaller still. Since the nonlinear instability tends to grow
exponentially, merely keeping |T(m)|<1 may not be sufficient
damping to ‘curb its growth. For example, the broken curve in
Figure A13.1 for ¥=@=1 shows that fhere may be no damping at all
at the Nyguist wavenumber. Since the damping term' in (A13.2.5)
decreases monotonically with increasing wavenumber, it is
reasonable to demand the same of the numerical scheme.
Noting that, when ©=1/2, (A13.4.2) has the form

T(m) = 1 - A(m) + iB(m)
t + A(m) - 1iB(m) (A13.4.5)

and that (A13.4.3) implies
A(m) 2 0 (A13.4.6)
it is evident that |T(m)| decreases monotonically with
wavenumber m as long as A(m) increases with m., Setting the first
derivative of A(m) to zero gives an equation (A13.4.7) for the
maximum wavenumber m for which A(m) increases with m.
¢sin(mPax)cos(miax) + Pcos(mPax)sin(méax) = 0
(A13.4.7)
For the case ¥=@, (A13.4.7) reduces to
sin(2m@gax) = 0 (A13.4.8)

or
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m = _l _n
20 ax (A13.4.9)

To keep this turning point m above the Nyquist wavenumber n/Ax,
v =g < 1/2 . (A13.4.10)

The modulus of T(m) is plotted as the solid curve in Figure

A13.1 for
v =0 =1 c' =D =0
2 (o] .0
c At D At
0 = 4 ° = 1
AX AX? P (A13.4.11)

It evidently provides better damping at high wavenumbers than
did the choice ¥=f=1 . The choice of 1/2 is quite convenient for
computations. The flux is evaluated at the midpoints of the mesh
intervals, and can be wused twice, 1i.e. for the gradient
estimates at the points both ahead and behind.

1f, for some reason, a value other than 1/2 is used for
either ¥ or(ﬁ, (A13.4.7) can be solved with m=m to find the

maximum usable value of the other.
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APPENDIX 14: ICE SURFACE ELEVATIONS

To £find the slope o of the glacier surface for the flow
equation (1.4.38), I must know the elevation s of the ice
surface. From the geometry shown in Figure A14.1, it is evident
that the surface elevation at xj; is

s = b + hlcos(g) + sin(g)tan(a)] (A14.15
where b is the bed elevation, g is the bed slope angle, h is the

ice thickness normal to the bed, and ¢ is the ice surface slope

FIGURE A14.1, Ice Surface Elevation,

angle. By writing tan(e) as tan([e-gl+s), and expanding it by
the addition formula (4.3.18) of Abramowitz and Stegun (1965,
p. 72),
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tan(e-g) + tan(g)

s = b + hicos(g) + sin(g)
- 1-tan(e-g)tan(g)

(A14.2)

Assuming
|e] << 1 (A14.3)
s << 1 , (A14.4)

and neglecting third power terms in tangent of @, g, or (e-g),
s = b + h{tan(e-g)sin(g) + tan(g)sin(p) + cos(s)]
(A14.5)
Using one term expansions for the trigonometric functions in the
first term in the square brackets, and combining the last two
terms,

s =b + h[(a-g)s + 1 ]
cos(g) (A14.6)

Because of (A14.4), this can be rewritten as
s =b+ h [1+0(gle-p])]’
cos(g) (A14.7)
Because o depends on s, (At4.7) is an implicit equation for
s. However, the term O(glo-g]) is small when (A14.3) and (A14.4)
hold, so in the computer model 1 have used

s =b+ h
cos(g) (A14.8)

This estimate is exact when a=g.
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APPENDIX 15: ANALYTIC MODELS OF ICE SHEETS

A15,1 INTRODUCTION

In order to test the accuracy of the ice trajectory model
(Section 2.4) I compared the numerical trajectory results to
analYtical trajectories using ice sheet models which 1included
the two-dimensional velocity field (u,v). In Section A15.2 1
discuss the Nye (1959[c]) ice sheet model which was the basis
for several later models. In Section A15.3, I present the Nagata
ice sheet model, used as a test including basal sliding
velocities. In Section A15.4, I point out other models which can

be used as tests.

A15.2 NYE ICE SHEET MODEL

Nye (1959[c]) derived the surface profile h(x) of a steady
state two-dimensional ice sheet on a plane horizontal bed with a
positive constant mass balance b, assuming that the horizontal
ice velocity u at any position x was strictly basal sliding, or
shear concentrated very near the bed. This model was never
intended to be used near the edge of an ice sheet, because the
ice velocity in the model goes to infinity as the ice thickness
goes to zero. This model approximates the central region of icé
sheets in which 1ice flux 1is discharged from the terminus by

iceberg calving.
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A15,.3 NAGATA ICE SHEET MODEL

A15.3.1 BASIC EQUATIONS

A misunderstanding of Nye's meaning of mass balance led
Nagata (1977) to develop a related ice sheet model which has an
equilibrium 1line and an ablation area, and no velocity
singularity at the terminus. The Nagata model can be described
by the following equations.

Global continuity for a steady state requires that the ice
flux Q(x) be given by

X

Q(x) = h(x)u(x)=vr B(s)ds
0 (A15.3.1)

where B(x) is the mass balance. Nagata chose the mass balance to

be

B(x) = b + u dh
dx (A15.3.2)

where b 1is the constant balance from the Nye model. Nagata's
reasdn for using (A15.3.2) is, I think, questionable on physical
grounds, but the resulting model 1is still mathematically
consistent. By comparing (A15.3.2) with (A2.2.18), the condition
for mass conservation at the ice surface, it is apparent that
(A15.3.2) can be true only if

Vo(x) = —b
(A15.3.3)

i.e., the downward velocity component Vo(x) at the ice surface
must be everywhere constant.
As in Nye's model, the horizontal velocity u(x) Iis

independent of depth z, and the basal sliding is given by
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ul(x) = Al[-pg h(x) gg]m

ax (A15.3.4)
where m is approximately 2 or 3, and A is a constant. This 1is
the form of the sliding law proposed'by Weertman (1957). The
term in parentheses is Jjust the simple basal shear stress
(1.4.25). Because of the aséumption that all of the horizontal
velocity is basal slip, the horizontal velocity u(x) is constant
in any vertical column. This means that the longitudinal strain
rate du/dx is also constant in any vertical column. Local
application of incompressibility then implies that the vertical
strain rate dv/dz must also be constant in each vertical column.
Integrating a constant strain rate from the bed to depth z,

using the basal boundary condition
v(x,0) =0 (A15.3.5)

gives the vertical velocity

vix,z) = -{gg(x)]z
dx

(A15.3.6)

A15.3.2 ICE DEPTH, MASS BALANCE, AND VELOCITY

Nagata's model 1is found by solving (A15.3.1) through
(A15.3.6) for the five functionsbh(x), u(x), Vo(x), v(x,z) and
B(x). The ice thickness solution h(x) wusing the boundary
conditions

h(0) = H h(L) = 0
(A15.3.7)

is given implicitly by
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m
m+1
1+ m |h(x)|[1-h(x) = X
m+1| H H L
(A15.3.8)
where the 1ice thickness H at the centre of the ice sheet is
related to the length L of the ice sheet by
2 2m+1 1 -m -1
(m+1) m+1 m+1 m+ 1 m+1
m(2m+1) H = [m+1 b] [ﬁg] A L
(A15.3.9)

This equation for h(x) can be solved at each x by Newton's

method (e.g. Carnahan and others, 1969, p. 319) supplemented by

interval halving whenever estimates of h(x) exceed H.
By setting B(x)=0 in (A15.3.2), it is easy to show that the

equilibrium line occurs at

m
m+1
X = |[3m+1 m :
e 2m+1 | [ 2m+1 ' (A15.3.10)
and the ice thickness at this point is
h
_e = mHl -
H 2m+1 (A15.3.11)
The velocity solution is y

u(x) = {2m+1
_ [m+1:| H|:1+[Lj|h(x):|
m+1| H

(A15.3.12)

v(ix,z) = -bz
h{x) (A15.3.13)

The mass balance solution for the Nagata ice sheet is found
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by differentiating (A15.3.8) and substituting dh/dx into

(A15.3.2) to get

- l'n1
' m+1
]
x 5[&} R
B(x) = b| 1 - L h|m
t+|_m_th
L m+1|H _
- (A15.3.14)

From (A15.3.14), it is apparent that, although the Nagata model
eliminates the singularity in the horizontal velocity at x=L, it
introduces a mass balance singularity and an indeterminate

vertical velocity at x=L, because h(L)=0.

A15,3.3 STREAMLINES

The streamlines in the Nagata model are found by

integrating

(A15.3.15)

i [1 h 17
[ m ] in H - + {Jﬂ_ }ln(x) + 1ln(z) = ¢’

2m+1 7 2m+1
1 + m
m+1
L i

where c' is a constant identifying each streamline.

o fe g '
—_—
L

(A15.3.16)

Exponentiating (A15.3.16) and using (A15.3.8) gives the

streamline curves
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‘ -1
2 xi1 +|_m |h =C
HL m+1{H
(A15.3.17)

where ¢ is a new constant iaentifying each streamline. (There
appears to be an error in the exponent of the outer bracketed
term in Nagata's original derivation (his equation (28))).

It is evident that c=0 corresponds to a vertical flowline
at the ice divide x=0, and using the equations (A15.3.10) and

(A15.3.11), it can be shown that the streamline with

m+1
c = (m+1) m
(2m+1) [ 2m+1

just touches the ice surface at the -equilibrium 1line. All

(A15,.3.18)

streamlines in the ice sheet are represented by constants
falling between these extremes.

- For each acceptable value of ¢, the two endpoiﬁts X, and x;
at which the streamline enters and leaves the icemass are found
by setting z=h in (A15.3.17), solving (A15.3.17) for h(x), and
substituting this expression into (A15.3.8); this gives an
implicit solution (A15.3.19) for x, and x,.

m 2m+1

X - [2m+1]|c| - |x - |_mc =0
L m+1 L m+1
. . (A15.3.19)

For values of c between zero and (A15.3.18), this equation can
be solved by Newton's method for x, and x;.
The shape of the streamlines in the nondimensional form,

i.e. using the variables
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T H  (a15.3.20)
does not depend on the flow law constant A, or on the
accumulation constant b. These two constants only affect the
rate at which ice moves along these streamlines.

Because the horizontal velocity u(x) 1is independent of
depth, the time taken by any ice particle to flow from x, to x
is given by

X

ds
o u(s)
X
° (A15.3.21)

Substituting (A15.3.12) for u(x) leads to

X
t -t=(m+1) H ln|x | + m h(s) ds
° {2m+1)b X (2m+1)b )
X
° (A15.3.22)

The 1integral in (A15.3.22) can be evaluated by Simpson's Rule

(e.g. Carnahan and others, 1969, p. 73).

Figure A15.1 shows the Nagata ice sheet in nondimensional
form for m=2 with five streamlines at equal intervals of c
between zero and the limit in (A15.3.18). For the steady state
case, the streamlines and particle paths coincide. The velocity
field is also shown in Figure A15.1 using lthe parameters in
Table A15.1.
The plot has been nondimensionalized wusing (A15.3,20). The
arrows show velocity multiplied by 250 years, i.e. displacement.
These particular numbers are not meant to represent any existing
ice sheet; they were simply chosen as round numbers to give a

.model test.
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S Nagata (1977) Model |
o Steady state ice sheet 4-2
0o } Basal sliding m=2 ‘
Velocity field .
and streamlines

FIGURE A15.1. Nagata Steady Ice Sheet.

Distance and height are shown in nondimensional form. The
mass balance goes to.-0© at X=1,0 . The numbers give the
time in years for ice to travel the length of the indicated
trajectory. The streamlines are shown for equal intervals
of the constant ¢ (see equation A15.3.17). The velocity
vectors correspond to the case m=2 A=100 bar-? m a-', with
b=1 m a-' and H=3000 m. Using (A15.3.9), L is found to be
454.6 km. The velocities have been multiplied by 250 years
so that the vectors effectively show 250 year
displacements.

Nagata (1977, p. 19) attempted to find an equilibrium line

in Nye's (1959[c]) ice sheet model. The result obtained is
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m A b H L p g
bar-2%a-' ma~' m km kg m-3 ms-?
2 100. 1.0 3000 454.6 910 9.8

TABLE A15.1. Parameters for Nagata ice sheet.

incorrect because (A15.3.2) does not hold in the Nye ice sheet.

The Nye model does not have an equilibrium line.

A15.4 HAEFELI-PATERSON ICE SHEET MODEL

The Nagata ice sheet model can be used to test the computer
model of Appendix 2 for the case of basal sliding. For the case
of internal deformation in simple shear using Glen's flow law
(1.4.22), Haefeli (1961) derived the steady surface profile for
the accumulation area of an ice sheet with a spatially constaﬁt
mass balance b. Haefell used the leading term of (1.4.38) for
the ice velocity with ug(x)=0. Paterson (1972) derived the same
profile for the accumulation region, added an ablation region of
constant ablation rate c; and matched the two solutions to get a
continuous profile. He also included the effect of isostatic
depression of the originally horizontal bed. The veloéity field
(u,v) can be derived in analytic form for this model, and used
as another check of the numerical model. This model has not been

included in this study.
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APPENDIX 16: TESTS OF THE BUDD-MCINNES MODEL

"You've got to show me - I'm from Missouri."!

A16.1 INTRODUCTION

A basal éliding treatment proposed by Budd (1975) was
incorporated into a numerical model of glacier flow by McInnes
(unpublished), Budd and McInnes (1974) and Budd (1975), and used
to simulate surges of several valley glaciers (Budd and Mclnnes,
18974; Budd, 1975; Mclnnes, unpublished) and of the East
Antarctic ice sheet (Budd and McInnes, 1978; 1979). This model
suffered from a numerical instability (McInnes, unpublished,
p. 57) which in my opinion appears to be the nonlinear
instability (see Section 2.2.4). This instability was tfeated by
the unorthodox method of smoothing the solution profiles
whenever high wavenumber oscillations appeared (Mclnnes,
unpublished, p. 64). Since Budd (1975) has become a widely read
paper on glacier surges, I wished to verify the accuracy of the

final results.

! American traditional.
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A16.2 ICE FLOW IN THE BUDD-MCINNES MODEL

Budd (1975) reported that the ice velocity due to internal
deformation in the Budd-McInnes model was calculated from

n

V(x) = k v h(x) (A16.2.1)
where k is a constant given by
k = 2A
(n+1) (A16.2.2)

when. A and n are the constant and exponent of Glen's flow law
for ice. Both Budd (1975, p. 5) and McInnes (unpublished, p. 88)
gave the values of these parameters as

n=2 k=0.15 bar-? a-' (A16.2.3)
The basal shear stress r is given by

r = spgha (A16.2.4)

which I have discussed in Section 1.4.4. The ice thickness is
h(x), the surface slope is @, s is a shape factor, and »g is the
weight of ice per unit volume.

The basal sliding was controlled in the Budd-McInnes model
by a basal lubrication factor @ and a viscosity n for
longitudinal extension. Details have been given by Budd (1975);
a summary can be found in Appendix 8, Section 8.3.2. An
important péint for this discussion is that the basal sliding

velocity goes to zero as @ goes to zero.
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A16.3 VATNAJOKULL MODEL: NONLINEAR INSTABILITY

My attention was first caught by Figure 4.3 of Mclnnes
(unpublished, p. 58). Since this figure is not widely available,
I show a redrawn version in Figure A16.1. Figure 4.3 of Mclnnes
illustrated the growth of a high wavenumber numericai
instability of the sort which required smoothing in the
Budd-McInnes model. The figure caption in McInnes (unpublished).
indicated that the profiles show the ice surface at 50 year
intervals, starting on an ice—%ree'bed, and using the bed and
mass balance of "the Vatnajokull model". This model is different
from the Vatnajokull (Bruarjokull ice stream) model used later
by McInnes (unpublished, p. 107) and shown in Figure 5 of Buda
(1975).

McInnes (unpublished, p. 58) used a simple two-point finite
difference scheme to compute the dashed profiles in
Figure A16.1. For subsequent work he used (unpublished, p. 68) a
higher order scheme. The higher order schemes increase accuracy
by reducing the truncation error (Section A1.5.3), but do not
remove the aliasing prdblem (section A3.2) which causes the
nonlinear instability.

Since McInnes was discussing stability in the absence of
basal sliding, I .~ assumed that, for this example, the basal
lubrication parameter @ was eqgual to zero.

To compare these profiles, for which the nonlinear
instability was a problem, to the profiles from a numerical
model in which the nonlinear instability was adequately treated,

I ran my computer model using the bed and mass balance functions
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FIGURE A16.1. Vatnajbkull: Instability And Growth Rate.

Growth of the Bruarjdkull ice stream on Vatnajdkull
(Iceland) from ice-free conditions at 50 year intervals
using Model 1. The dashed ice surface profiles are redrawn
from McInnes (unpublished, Figure 4.3). The original
caption on that figure was:
"Profiles from the Vatnajbkull model at fifty year
intervals, showing the increase in the amplitude of the
oscillations with time,” due to the two point finite
difference approximation. In this case there was no
smoothing."
The solid curves are from the numerical model described in
this thesis. I used the mass balance given by the solid
curve, .rather than the broken curve (from Mclnnes
(unpublished) and Budd (1975)) in order to match
(approximately) the first 50 year profile. The bed
topography is also different from that used later by
MclInnes (unpublished, p. 107) and Budd (1975). The
Budd-McInnes model suffers from the nonlinear instability
precipitated by inadequate treatment of the boundary x=0.
It also appears to create mass.
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scaled from Budd (1975) Figure 5. MclInnes (unpublished, p. 53
and p. 106) gave the parameters in the first six columns of

Table A16.1 for the Vatnajdkull model. The time step of one year

n k S g p AX At
-n -1
bar a . ms " 2 kg m 3" | m a
2 0.15 1.0 9.8 910. 1000. 1.0

TABLE A16.1. Parameters for Vatnajodkull (Bruarjokull) model.

gave stable and accurate results with my model, 1i.e. the
profiles were smooth, and were unchanged by a smaller time step.
(The Budd-McInnes model was unstable for a time step of one year
(McInnes, p. 56), but this was the linear computational
instability (see Appendix 1, Section A1.4.2) due to the explicit
scheme used by McInnes and Budd.)

From reading all the published accounts of the Budd-Mclnnes
model, I was unable to discover exactly -how the boundary
condition was implemented; McInnes . (unpublished, p. 53)
indicétéd that for most models, the ice surface slope was equal
to zero at x=0 (ice divide condition). However, none of the
published profiles in Budd (1975) or the dashed curves in
Figure A16.1 appears to 5e fiattening out near x=0. Budd (1975)
did not mention the boundary condition. For all the profiles 1
generated in this Appendix, I used the ice divide boundary
condition of zero slopé at x=0. (see Section A1.3.1). I also ran
some tests using the boundary condition number 3 of

Section A1.3.1, i.e.
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Q (-ax,t) =0 o .

0 2 : (A16.4.1)

where ax is the spatial mesh interval, and the massAbalance and

bed functions were shifted appropriately so that X=-A%x/2

corresponded to x=0 in Figure A16.1. The resulting profiles were

visibly different from the solid curves in Figure A16.1 only in

the three km stretch nearest ghe ice divide. Any differences

further downglacier could not be resolved on the plotted
display.

To match the bed in Figure Al16.1, it 1is necessary to
multiply the topographic gradient in Budd (1975, Figure 5) by a
factor of roughly 1.18 to get the elevation drop of 400 m. The
base level must also be adjusted. |

Using the mass balance from Budd (1975), my glacier
profiles (not shown) for Vatnajokull also grew much less rapidly
than the dashed curves in Figure A16.1, even in the firét 50
year period when there 1is 1likely very little ice flow; the
glacier changes shape mainly by mass accretion due to snowfall.
After multiplying the mass balance function shown by Budd (1975)
and by McInnes (unpublished, p. 107) by a factor of 1.25, 1 ran
the model again to get the solid curves in Figure Al16.1. My
first 50 year profile agrées reasonably closely in shape and
total ice volume with the first 50 year profile from Mclnnes.
Both the mass balance from Budd, and the mass balance I actually
had to use are shown in Figure A16.1. I will use the notation
"Vatnaj&kull model" or "Model 1" for the model in Figure Al6.1,
"and "Bruarjdkull model" or "Model 2" for the version in Budd

(1975) and in Mclnnes .(p. 107).
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It is evident that the profiles from my computer model are
free of the nonlinear instability. Due to the choice of finite
difference scheme, no smoothing is necessary with this computer

model.

A16.4 VATNAJOKULL (MODEL 1): MASS CONSERVATION

In addition to the high wavenumber instability, the dashed
profiles in Figure A16.1 appear to have another serious problem.
The computer model appears to create mass. During the first 150
years (three profiles), my glacier simulation (solid curves)
grows at about the same rate as Budd-Mclnnes model (dashed
curves). The agreement is as close as 1 could expect, given the
manner in which I had to deduce the mass balance function. At
200 years (fourth profile), however, the terminus has begun to
move, and the Budd-Mclnnes model contains a substantially larger
volume of ice than my model. By 250 years, the Budd-Mclnnes
model has a larger volume of ice than my model could amass by
350 years. No amount of high wavenumber smoothing can alter this
apparent discrepancy 1in the total glacier mass. Since my
computer model satisfied the tests for continuity described in
Chapter 2, I am confident that the results from my model are
correct.

The apparent peculiar behaviour of the Budd-McInnes model
can be illustrated graphically in two simple ways. First, note
that the glacier mass can grow most rapidly when the terminus is

at the equilibrium line X defined by



382

b(X) = 0 . (A16.4.1)
where b(x) is the mass balance. At this position, the
accumulation area is maximized, and the ablation area 1is
minimized. At all times the growth rate of the glacier mass M
must then satisfy

X

<M =~f‘ pW(s)b(s)ds '
max 0 (A16.4.2)

where W(x) is the channel width (assumed independent of height.

QJIQJ
a9

See Appendix 2, Section A2.2.1), and » is the density of glacier
ice (assumed constant). On a plot of glacier mass as a function
of time (Fiqure A16.2), a glacier is forbidden by (A16.4.2) to
exist above the straight 1line through the origin with slope
Mmax, regardless of the flow law or sliding law used. The mass
of ice 1in my model 1is obtained 'at each time step by a
trapezoidal rule integration of

L

M(t) = ./” ph(s)W(s)ds
0 (A16.4.3)

L is the current glacier terminus position, and h(x) is ice
thickness. The mass 1in the Budd-MeInnes model was obtained by
using a razor blade to cut out a copy of each profile on paper
of uniform weight; I then weighed the cutouts on a microbalance.
In Figure A16.2, the simulation using the model described in
Chapter 2 follows the solid curve. The Budd-Mclnnes model,
however, plots above the straight line, in the forbidden region
when there is significant ice flow.

Another simple test of continuity is a plot of dM/dt

against glacier lendth L. Irrespective of the glacier thickness,
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FIGURE A16.2. Glacier Mass As A Function Of Time.
Vatnajokull model continuity test. The broken straight line
gives the maximum possible growth rate. The solid line is
the mass of the Waddington simulation. It stays in the
permitted region. The triangles are the values for the
McInnes simulation (McInnes, wunpublished, Figure 4.3).
These points fall in the forbidden region after 150 years..

or the rate of terminus advance, or the sliding and flow law
used, dM/dt at L should equal the balance flux at L. The balance
flux Qp, » the flux that would exist in a steady state, is
completely specified by the mass balance b(x) and the glacier
width W(x). For all models in this Appendix, W(x) 1is equal to

unity, and I use flux per unit width.
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X .
o) (x) LI‘ pW(s)b(s)ds ] W(x)
bal 0 , (A16.4.8)

balance flux (A16.4.4) is shown by the broken line in

Figure A16.3. The numerical values of dM/dt found by integrating

the thickness profiles from my model (using (A16.4.3)) are shown
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FIGURE A16.3. Rate Of Growth As A Function Of Length L.

The broken curve 1is the balance flux per metre width
(A16.4.4) for Vatnajdkull wusing the dashed mass balance
curve in Figure A16.1. X is the equilibrium line. The solid
curve is the numerical estimate of mass change rate from
integrating the ice thickness changes of the Waddington
simulation. The triangles are 50 year averages (all that is
available) for the McIlnnes simulation. These numbers fall
well off the correct curve. The 50 year averages for the
Waddington runs are shown by circles.
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by a solid line. The agreement 1is very good. For the
Budd-McInnes model, the best I can get from Figure A16.1 (dashed
curves) is 50 year averages of dM/dt. When the terminus
advances, these plot well above the correct curve. For
comparison, the 50 year averages for my model are also shown.
Both these simple continuity tests appear to indicate that
the Budd-McInnes model has a serious mass greation error. There
may be several other possible explanations for the apparent mass
discrepancy, but they seem improbable:
(1) The mass balance used for this particular model run may have
been . altitude-dependent. As the glacier thickened, the
accumulation rate could increase, leading to a more rapid
growth. However, I was unable to find any mention of an
altitude-dependent mass balance in any of  the ‘descriptions of
this model (Budd and Mclnnes, 1974, 1978, 1979; Budd, 1975;
McInnes, unpublished).
(2) The glacier channel could constrict at or below the
equilibrium 1line, leading to a narrower and déeper glacier
cross-section. However, the map of Bruarjdkull from Thorarinsson
(1969) which McInnes used as a data soﬁrce ‘does not show a
constriction. In any case, McInnes (unpublished, p. 54) and Budd
(1975, p. 17) indicate that width varigtions are absorbed into
the mass balance function.
(3) The figure caption on Figure 4.3 in MclInnes (unpublished)
may be incorrect. However, the first three profiles (150 years)
agree well with my results, so they, at least, appear to be at .
uniform intervals as stated in the caption. The fourth profile

could be at .225 years (75 year interval) and the fifth could
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conceivably be at 350 or 375 years (125 or 150 year interval),
but this is a peculiar sequence, especially'in light of the fact
that the instability is just becoming interesting, and the
terminus is just beginning to advance. Such a seguence would

surely be mentioned in the caption.

A16.5 BRUARJOKULL (MODEL 2): STEADY STATE FLUX

Since the Budd-McInnes model appeared to have some mass
creation difficulties 1in the initial glacier buildup phase, I
also wished to compare their final steady state solutions with
the results from my model. I chose the nonsurging case because
the surging models could be especiaily sensitive to the details
of the numerical s;hemes, and hard to duplicate under the best
of circumstances.

Using the bed shape and the mass balance from Budd (1975,
Figure 5) for the Bruarjdkull model (Model 2), the parameters in
Table A16.1, and no sliding, I ran my computer model for 1500
years to obtain the 50 year profiles in Figure A16.4.

When describing surges of the Fedchenko Glacier (which I
discuss below), McInnes distinguished the model with no sliding,
called the "steady state case" (unpublished, Section 6.2.1) from
models with nonzero basal sliding parameter @, called "surging
case" (unpublished, Section 6.2.2) (although in fact for small
nonzero values of @, the model may not surge). Since McInnes did
not mention any value of @ for what he called "the steady state”
in his Figure 6.15, I first assumed that he used @=0. That

~figure (Figure 6.15, - p. 110) showed steady state profiles for
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FIGURE A16.4. Bruarjdkull Ice Profiles (Model 2).
The mass balance and bed are from Budd (1975). The
waddington model (Chapter 2) was run using the parameters
in Table A16.1 and no sliding. The ice surface elevation is
shown at 50 year intervals, starting from ice-free
conditions.

ice elevation and ice velocity for the Bruarjdkull ‘model. The
ice elevation and thg ice velocity, given by its logarithm by
MclInnes, are redrawn in Figure A16.5 (a) and (c) as broken
curves. 1 have converted the ice velocity to a linear scale,
plotted as the broken curve in (b). I estimated the error in

measuring 1log(Vv) from that curve as +0.03, which is *7% in V.
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These limits are shown by the shaded area. The solid 1lines in
Figure A16.5 are the profiles from the steady state reached by
my simulation in Figure A16.4. The difference in terminus
location 1is not significant. If a smali constant amount of the
order of 10 to 20 cm a- ' were to be added to the mass balance,
my terminus would advance the reguired amount without noticeably
altering the profile upglacier (see Nye,-1963[al). A change of
10 cm a”' could barely be resolved on Figure 5 of Budd (1975).
Elsewhere, the agreement 1is not good. The velocity in the
McInnes profile exceeds my velocities by up to 40%. The ice
thickness in my model is greater by up to 65 m. Discrepancies in
this direction would be expected if the Budd-Mclnnes profiles
were in fact from a model with some sliding (g#0).

However, the mass flux per unit width (A16.5.1)

Overleaf:
.FIGURE A16.5. Bruarjokull flux test. :

The final steady state velocity, ice elevation, and mass
flux for Model 2, the Bruarjékull model of Budd (1975).
McInnes plotted the logarithm of ice velocity, reproduced
here as curve (a). I have converted this to velocity on a
linear scale (broken curve in (b)). The shaded area shows.
the maximum error limits ($7%) in measuring the velocity
from (a). From 10 to 35 km, it substantially exceeds the
velocity from my model (solid curve). The broken ice
surface curve in (c) is redrawn from Mclnnes (unpublished,
p. 110). There appears to be a draughting error at x=12 km
(arrow), making a direct comparison with my ice profile
(s0lid curve) of dubious value. In (d), the solid curve is
the balance flux (A16.4.4) wusing the mass balance in
Figure A16.4. The shaded area indicates the limits of the
balance flux due to an estimated maximum error of"
+10 cm a-' in measuring the mass balance from Budd (1975,
Figure 5). At steady state, the mass flux (A16.5.1) should
equal the balance flux. The mass flux in my model lies on
the solid curve. The flux in the Budd-MclInnes model 1is
given by the broken curve. The shaded area indicates #10%
error limits due to scaling the velocity and thickness from
curves (a) and (c). The Waddington model wused the
parameters in Table A16.1 and no sliding.
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Q(x) = p h(x) V(x) '
‘ (A16.5.1)

should, at steady- staté, -equal the: balance fiux (A16.4.4),
regardless of - ﬁhe flow 1law = or state of sliding. In
~ Figure A16.5 (d), the éolia curve is the balance fiux (A16.4.4)
i using the mass balance in Figure A16.4. The limits of the shaded
band represent ‘the addition of #10 cm a-' along the whole
glaciér 1ength.'when méaéuring b(x) from Budd (1975, Figure 5).
This is roughly the width of an ink line on the figures. The
'mass:flux (A16;5.i) for my modelvfalls‘right on the‘solid curve.

The broken curve is the Budd-MclInnes model mass flux using the

profiles in (b) and (c). The shaded area represents my estimate

~of +10%  for the maximum total error in measuring V(x) and h(x)
from the figures. The Budd-McInnes mass flux 1is grossly

~different from the expectéd curve between 15 and 25 km. This

résult_suggests,that the Budd-McInnes model does not conserve

.mass loca;ly, - even in é.steady state. This test is .independent
of ‘the slidiné state or flow law used for the glacier
simulation.

»ifheré"fare éomeb other possible explanations for the
'diécrepéﬁcy:

o First, if McInnes actually used a larger mass balance (such
‘as the solid curve in'Figure-A16.1) rather than tﬁe ;urVe which
" he '(p; 107) iand Budd (1975, Figure 5) state was uéed, the
béiance flux in.Figure A16}5 (d)'coﬁld be increased enough to
oyerlép the mass flux curve. |

‘Second, if thé ice veiocity or ice thickness profiles in

McInnes (Figufe 6.15), were incorrectly drawn  too large, the
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-éorrect‘ mass flux curve (their product) could be reduced énough
“to overlap the bélance flux cufve. The cusp at 12 km (arrow) on
, fhe ice,fhicknessvcurvé (Figure A16.5 (é)) in fact suggests that
there may béva'draughting error in the McInnes figure. There are
alsd some appargnt_con;fadictions in the text concerning these
profiles. The figure caption and the text (p. 109) in' McInnes
state that the maximﬁm ice thicknéss was 650 m, but I measured a
thickness of 690 m at x=17 km ‘'on the dashed curve. The MclInnes
téxt.also states (p. 109) fhat fhe ice thickness in the vsteady
state is .less  than  the thickness observed by Thorarinsson
(1969), but Figdre 6.13 (McInnes, p. 107) to which MclInnes
refers,v showing the observed ‘elevation from ‘Thorarinsson's
(1969)’map, has a maximum icé depth of only 570 m. Both in the
text (p. i09) and in the caption to Figure 6.15, McInnes stated
that the maximum ice deformational velocity was 400 m a-', but
the_Véldcity profile shown does not exceed 90 ma-',

Because of these apparént unresolved contradictions, I can
only conclude _that éitheé the Bﬁdd—McInnes model works
incorrectly for Bruarjékull; or the >curves in Mclnnes
(unpublished) or Budd (1975) are inaccurately drawn or
incorfectly labeileda. | |

~The ohly other profiles shown by Budd (1975) or McInnes
:(unpﬁblished) fdr’the Bruafjékﬁil model are in one diagram
'-showing"a few profiles during the‘advanéé and retreat phases of
a surge (McInnes, unpublished, p. 120; Budd,  1975; Budd ~and
McInnes, 1978). . . These profiles, for n=1 bar a and
g=1.7 10'“'bar“m;5a woﬁldAbe veryhdiffiCUlt to wverify because

the surge cycle in Budd (1975, Figure 6) does not repeat itself
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; exactly, and there may be sighificant model-dependent truncation

errors aésociated with the rapid changes when a surge begins.

A16.6 FEDCHENKO GLACIER: STEADY STATE FLUX

Buddv:(1975) and McInnes (unpublished) ‘also presented
numerical model . results fo; the Fedchenko Glacier. 1 measured
the bed topography and the mass balance profiles from Figure 6.2
of McInnes; this same aiagram appears as Figure 3 of Budd
.(1975).~I show these functions in Figure A16.8. | |

MéInneS (Figure 6.10, p. 100) showed the.yelodity and ice
surface profiies for é stéady state he obtained for the moael,
withbuflsfating the values he used for the sliding parameteré. I
have redrawn these profiles as the'dashed‘curveé in Figure A16.6
(a) and (c). The ice fhickness was‘exaggérated by a factor of
_two' (McInnes, caption to Figure 6.10). The actual steady state

thickness was the curve shown by the dot and dash pattern. The

Overleaf: ' o ‘
FIGURE A16.6. Fedchenko Glacier flux test. 4
The final steady state velocity, ice elevation, and mass
flux for the Fedchenko Glacier model of Budd . (1975).
McInnes plotted the logarithm of ice velocity, reproduced
" heré as curve (a). I have converted this to velocity on a
linear scale (broken curve in (b)). The shaded area shows
the maximum error limits (%7%) in scaling the velocity from
(a). The broken ice surface curve in (c)" is redrawn from
McInnes (unpublished, p. 100). Because McInnes used a x2
‘vertical exaggeration, the .actual ice surface was the
dot-dash line. In (d), the solid curve is the balance flux
(A16.4.4) using. the mass balance in Figure A16.8. The
~shaded area indicates the limits of the balance flux due to
an estimated maximum error of *10 cm a-' in measuring the
mass balance from Budd (1975, Figure 3). At steady state,
.the mass flux (A16.5.1) should equal the balance flux. The
flux in the Budd-McInnes model is given by the broken
curve. The shaded area indicates *10% error limits due to
scaling the velocity and thickness from curves (a) and (c).
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shaded band in (b) apbroximates the error limits (#7%) which I
estimated in réading'the velocity from (a). | | |
1In Figure A16.6 (d), I compare the mass flux (dashed line)
vusihg the profiles (b) and (c) to the balance flux (solid curve)
obtained by 1integrating the mass balance :from Budd (1975,
Figdre 3). The shaded béhds ihdicate the maximum error limits

associated with measuring V(x), h(x), and b(x) from the Budd and
‘the McInnes figures.

In the central portion of the glacie:;bthé Budd-McInnes '
-mass flgx exceedé the balance flux by significahtly more than‘
the error limits. Figure‘A16.6 (a) is'remérkably similar to the
result'(Figufe A16;5 (d)) fof Bruarjokull, suggesting that the
prdblem 1ie5"inbthe Budd—McInnes computer‘modél itseif, rather
-ﬁhan in draughting problems bf incorrect figure captions. The
model does not apbear:to cohserve mass locally, even in a steady
state configuration. This test result holds regapdlegs of the
flow_law parametérs; shape factor, or sliding parameteré used by

Budd and Mclnnes.
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A16.7 FEDCHENKO GLACIER: NONSLIDING MODEL

I then tried to verify the nonsliding steady state of the
Fedchenko Glacier nodei.' On. Figure'3b of Budd (1975), and
Figure 6.2b of Mcinnes“(unpublfshed)L is a profile which I ‘'show
' as a dashed line indéigure A16.7, McInnes (unpublished, p. 88)
stated that he used the parameters in Table A16.2 (except for
dt), and (p. 91) indicated that the “profile redrawn here .in
Figure A16.7 ~was the resulting steady state. Budd (1975),
howeuer,'may have thought that this proflle resulted from a
nonzero value of §, because hlS only reference to this proflle
(p,‘13> was.

..for small values of @ and reasonable n, the ice

masses grow up to a steady state as shown, e.g. in
Figure 3b." '

.Assuming“McInnes, who-ran the models, to be.correct, I attempted
to duplicate this profile. Todget my ﬁcdel"runs to reach the-
steady. state length of 52 km ‘.as reported 4by McInnes
(unpublished, p. 91), I‘adjusted the mass balance within ‘the
linits of resolutlon on the publlshed flgure (£10 cm a- 1), This
procedure has no dlscern1ble effect on the thickness profile
upstream from the termlnus.reglon‘(see Nye, 1963[al). 1 then ran
a’ nonsliding simulation of the Fedchenko. Glacier using the
“parameters in Table A16.2. The resulting set of 50 year profiles
“is shown in Figurevn1é 8. 1In Figure A16.7, the final steady
state prcfileA from Flgure A16 8 is g1ven by the solid line. It
js thicker than the Budd MclInnes profile (dashed curve) by
lapbroaimateiy 8%: along most of its length. Th1s difference is

51gn1f1cantly larger than either the resolution 1limit. on the
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FIGURE A16.7. Fedchenko Steady State Ice Profiles.

' The solid 1line is the final steady state reached by the
Waddington model in Figure A16,8. The dashed profile is
redrawn from Budd (1975, Figure 3). The dash-dot curve is
the steady state reached by the Waddington model with a.
small amount of .sliding (@=4. 10-5% bar - 'm 'a and
n=25 bar ‘a). The flow law parameters n, k, and s are given
in Table A16.2.

published diagraﬁé, or ﬁhe expected truncation error.

Eifhef tHeA(Budd4McInnes .model does not reach the cofrect'
:steady staté icé'thickness, or at ieast one of the parameteré in
.Téblé ATG;é is incofrect, due to_'incomplete or iﬁaccurate
documentation in MclInnes (unpublished) and Budd (1975). In fact,
‘changing the flow law parameters to

‘n=3 k=0.15 bar-? a- ' (A16.7.1)
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_FIGURE‘AJG;B, Fedchenko Nonsliding Model.
‘ Ice surface profiles at 50 year intervals wusing the

- Waddington computer model with the parameters in
‘Table A16.2, and the .bed and mass balance from Budd (1975)
Figure 3. . ' >

gaye' mé‘ a model (Figure Af6.9)_ which gréw to a steady staﬁe
.matching»£he Budd—McInnés 4éur§e exactly; ‘A model with some
:élidiﬁg  A(ﬁ=4 10-% bar-'m-'a .and n=25 bar a) shown Sy' the
dot-désh patéefn'in figurelA16.7 is slightly thinner than the

Budd-McInnes profile; presumably a smaller § or a larger n» could
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n k s g p AX At
-n -1 | A
bar a - ms-? kg m-3 m - a
2 | 0.15 0.7 | 9.8 910, 1000, 1.0
g n
bar-'m-'a bar a
0. 25.0

TABLE A16.2.. Parameters for Fedchenko Glacier model.

give a better fit. The only conclusion I can draw’from this is
'the dbservation thét,« if Table A16.2 contains the"correct‘
parémeteré,. my model disagrees'with the Budd-McInnes quél; if
the valués in Table A16.2 are incorrect, then some combinations

exist which could giVe the profile in question.

A16.8 FEDCHENKO GLACIER: DYNAMIC BEHAVIOUR

Bécause McInnes (unpublished) and Budd (1975) ao not show‘a
set’of_profiles sﬁch as Figure A16.8 during the growth to steady
stéte, it is ’difficult to test the dynamic behaviour of their
‘hodel. However, they do show (Budd, 1975, Figure 4; McInnes,
Figure 5.7, 'p. 86) a diaéram illustrating the chénge inyglacier
length, the maximum ice velocity, and the position of the
velocity maximum as functions of time. The cufves which reach
steady state ére fedrawn as dashed lines in .Fiqure A16.10. R
have cohvertéd thé velpcity"from a logarithhic to a _linear.
scale;'the.shadedvband approximates the maximum éerr in reading

from the logarithmic scale.
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FIGURE A16.9. Fedchenko nonslldlng model with n= 3.
Ice surface profiles at 50 year intervals with n= 3 and
- k=0.15 bar-® a-' and other parameters as listed in
Table A16.2. : - '

‘Neither Budd (1975) nor MclInnes (unpublished) state the
valuesAqf the sliding parameﬁers @ and ¢ uséd to obtain these
-1’functions; Because the maximum velocity reaches a steady state
valﬁe of 115410 m a-' which is very close to fhe value of:

112 ma"' in my nonsliding model (Figure A16.8), I began by
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FIGURE A16.10. Growth Of Fedchenko Glac1er.
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Terminus location, maximum velocity, and position of
velocity maximum. The»dashed curves are from Budd * (1975,

" Figure 4). The solid curves are from the Waddington model

using .the parameters in Table A16.2. The shaded band in (b)
is the uncertainty 1in measuring 1log(Vv) from Budd. The
velocity in the Waddington model was within 5% of the peak
value within the shaded band in (c); thus the position of
the peak velocity is not a sen51t1ve test. The agreement in
veloc1ty at 700 years suggests” that the Budd-McInnes curves
‘are also a nonsliding model, but the large velocity durlng
buildup is not present in the Waddington model.
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comparing .the dashedA CUrues in Figure A16.10 to the
corresponding’ curves (sqlid) for my nonsliding case using the
parametefs'in TablevA16.2. The Budd-MclInnes terminus begins to
move earlier, and is up to 2.5 km ahead of the terminus of my
~ model. Both'models reach the same steady state length. The lack

ef agreemeht' is disturbing, but it should be noted that
| different wayé of modellihg the terminus numerieally may give
differences in terminue locations.which can be of the order of
Ax_which,-in this case, is 1 km.
| .The max imum Veioeity curves‘in (b) differ by vup to 50%
betWeen 100A and 400 years, although they reach the same. steady
state ‘value. Because ‘the power of the flow law for ice is low
(n=2), substantial differences in ice thickness and slope are
required-to.preduce this diserepancy. Either the Budd-McInnes
model ad?anceS' too rapidly (as was also the case for the
' Vatnajékull model in Figure A16.1) with too high a velocity, or
‘the two models used dlfferent parameters for ice deformatlon and

slldlng due to incomplete documentation of the curves in Budd
(1975, Figure 4) and Mclnnes (F1gure 5.7). |

The ‘dashed curve in Figure A16.10 (c) shows the
Budd-McInnes poeihion of maximum velocity travelling nearly
10 km farther downglaeier and persisting'JOO years later than
the peak - position in my results.. However, the velocity peak in
‘my hodel was.nearly'constant‘over a wide distance; the velocity
varied by less than 5% from the peak value throughout the shaded.
'band Thls test is therefore not discriminating.

The unanswered-questlon about Figure A16.10 is whether Budd

and McInnes used parameters different from those in Table A16.2,
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. FIGURE A16.11. Fedchenko Growth: Other Nonsliding Models.

The terminus position and maximum velocity. The dashed
curves are from Budd (1975, Figure 4). The other curves are

. attempts to match the Budd curves by varying the flow and

sliding parameters from the values in Table A16.2. The
solid curves (1) are from the n=3 model in Figure A16.9.
The double-dashed curves (2) are from a model with
k=0.408 bar-?a-‘'. T ' :

and whether any possible combinatiob of parameters is likely to

give curves résembling the dashed lines in Figure A16.10. It was

not feasible to "run .a complete "set of models spanning"all,

possible variations of n, k, s, g and n. 1 did try a few

variations,  altering at most two of the parameters in

Table A16.2 at any one time, and 1 was able to reach some
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conclﬁsions{ For the nonsliding case, I wés unable.to both keep
the makimum velocity at steady state down near 115 m a-' and at
the same- time obtain peak_velbcitieS‘near 190 m a-' during the
growth phaSe.'For'eXample, in Figure A16.11, - the solid curves
(1) are for the model shown in Figure Af6.9 with n=3. This model
reproducéd thévBudd-Mcinnes stéady staﬁe in Figure A16.7 (dashed
curve). However, in Figure A16.11, it does not match the growth
functioﬁs any better than did the n=2 model (Figure.A16.10)u

-1 alsé tried using a larger value of k. fhe long;short
dashed pattern (2) in ?igure‘A16.l1'showé the béhaviour of the
model with k=0.408'bar‘é,a“.‘ The terminus position . advances
‘much earlier than the Budd-McInnes terminus, and the steady
kstate_maximum Qelocityu(at 700 years) is much largérb than the
‘Bﬁdd-Mthnés valué,AWhile the peak between 100 and 200 years is
still significantly lower. | »

It is evident:frOm (A16.2.1) and = (A16.2.4) that changing
the shape féctor s is equivalént tb changing k. |
Although my ‘teéﬁs were not exhaustiVe, I conclude that it

is unlikely that a nonsliding m@del exists which can match-.the
velocity curve‘(Figuré:A16.11 (b)). N

. To ‘test'.dhether ahy sliding models can match the dashed
curves in.Figure A16;11, I have written a computer subroutine to
implemeﬁt the Budd (1975) slid{ng algorithm., Because the sliding
velocity iﬁ Budd's formulation ~depends on the whole gladiér
profile, it was most conQenient to include the contribution due
to éiiding-by expliéit terms; i.g._at a  giveﬁ time step, the
Siidiﬁg _depehds oniy on the glacier configuration at the old

time step. This makes the 0(At) term nonzero in the truncation
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FIGURE A16.12. Fedchenko Growth: Moderate'Sliding.

Terminus position and maximum velocity for the growth. of
the Fedchenko Glacier to steady state for model (1) in
Table A16.3. The dashed lines are the Budd-McInnes model.

The maximum velocity falls short of the value for the
Budd-McInnes model.

error (A1.5.21), forcing the use of much smaller time steps to

" maintain accuracy. The solid curves in Figure A16.12 give the

.result with a small amount of sliding (§=4.0 10-5 bar-'m-'a and

n=25.0 bar a). This model does at least sth a peak in maximum

bvelocity at i50'years, élthough it is not large enough‘to match

the Budd-McInnes curve (broken line).

- The broken curve 1in Fiqure A16.13 of the @-n plane shows

the dividing line which séparatéd surging from steady state
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MODEL g . n : At

bar - 'm-'a bar a ~a
1 4.0 10-5 25.0 - 0.1
2 1.5 104 25.0 0.1
3 5.0 10-6 1.0 0.1
4 5.0 1077 0.1 0.1

TABLE A16.3. Parameters for sliding models.
The entries under At are the smallest time steps used
during the run. Larger values were used during the initial
growth (before 100 years) and near steady state (after 300

years).
models in McInnes '(unpublished Figure 6.4, p. 94). A similar
flgure for the Bruarjokull model can be seen in Budd (1975,
Flgure 7).

In my attempt to get a high maximum velocity during the
gledier advance, I used the values of n and g (2), (3), and (4)
in Teble A16.3. These points are shown in Figure A16.13. They
lie close to the surge—ndnsufge transition line; in fact, (4).is
'in the 3urge 'region. The terminus .advance and the max imum
Veiocities 'for these three models are shown in Figures Al16.14,
Af6.15, and A16.16. All three models reached a steady state.

In'ail three cases, fhe,terminus advanced more rapidly than
:the Budd-McInnes tefminds (broken lines 1in (a)). The max imum’
sliding velocity. Qas not e stoth’ function of time in my
simulationsf it varied erraticaliy wifﬁin the the shaded bands
in (b) of each figure. Smaller fime steps At did not reduce the
width of the shaded bands. The ~ upper 1limit of eech sheded
'Venvelope 1s compatlble with the Budd McInnes curve (To keep the
diagram simple I d;d not include the shaded band indicating my

uncertainty in measuring their curve. It can be seen 1in
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FIGURE A16.13. Fedchenko Glacier: @-n Plane. .
The broken line is the boundary between surging and steady
state glaciers from McInnes (unpublished, Figure 6.4). The

triangles are models reported in this appendix; all reached
steady state.
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1

‘ Figure A16.10 (b)). However; the erratic variations in maximum
fvelocity‘ appear to be a purely numerical effect resulting frem
ihsufficient_spetial sampling; I ueed a grid spacing of Ax=1 km,
‘because McInnes (unpublished, p. 88) used this value. At. each
.time step, the position and angle of the glacier model terminus
are.chosen so as to conserve mass; they are not  choSen"t9
maiﬁtainl a constant er,'well-behaved basal"shear' stress e
(A8.3.2). As the termines advances and adds meshp01nts or alters
the angle beyond the 1est_meshp01nt (Sectlon A1.3. 4) theu basal
' shear stress r, ﬁear the terminus also varies, in a manner that

bears little relationship to the forces acting on the glacier

upstream., Unfortunately, the shear stress r, near the terminus
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FIGURE A16.14. Fedchenko Growth: Sliding Model (2).
Terminus motion (a) and maximum velocity (b) for model (2)
in "Table A16.3. The curves from Budd (1975) are shown by
broken 1lines.  The maximum velocity varied erratically
throughout the shaded region because the mesh interval of
1 km (used by both Waddington and Budd (1975)) was too
- large for accurate stress estimates near the terminus. The
correct curve is probably near the lower 1limit of the
shaded zone. My estimated uncertainty in drawing the Budd
curve is shown in Figure A16.10 (b).

.then affects Budd's local basal shear stress 7, (A8.3.4) through
the average valuév?;-in equation'(A8.3.4). Each time that ~the
basal stress Tb‘ is altered by a terminus change of this type,
unbalancéd longitﬁdihél forées are created . in the computer

model, and ' the glacier adjusts to the new stress conditions by
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rapid sliding. The effecﬁ should be reduced Aby repeating the
cal¢ulations with a(smaller grid interval (e.g. 500 m or 250 m)
to minimize the contribufion of 'the ‘point néafest to the
terminus. | |

- If this interpretation "of the variance in the maximum
velocity is éorrect,-Ijexpect that the maximum velocity should
stay near the lower baﬁndary' of the shaded bands in
'figures A16.14 fhrodgh A16.16., In FigUre_Alé.15 (c), I show the
maximum velocity curve for model (37‘of Table A16.3 when Ax was
reduced by a factof'of.four, i.e. to 250 m. The velocity.maximum

for this case falls within a much narrower band, indicated by

P
s
5

the shaded region;'anduthis band ﬁies along the lower boundary
of the region in F1gure A16.15 (b). This- substantiates the
hypothesis that the large velocities were caused by a spatial
numerfﬁal,truncation error. It 1s possible that a similar
truncation error causes or contributes to the large velocity
‘during the adVahce:of the Budd—McInhes'model_(g,g. broken curve
in Figure A16.10 (b)). TIf the. rapid sliding is in fact being

driven by numerical truncation errors at the terminus as a

Overleaf: '
FIGURE A16.15. Fedchenko growth sliding model (3).
Terminus motion (a) and maximum velocity (b) for model (3)
- in Table A16.3. The curves from Budd (1975) are shown by
broken lines. The maximum velocity varied erratically
throughout the .shaded region because the mesh interval of
1 km (used by both Waddington and Budd (1975)) was too
large for accurate stress estimates near the terminus. When
Ax was reduced.to 250 m (a factor of 1/4), the erratic
variations of . the maximum velocity were restricted to the
- shaded region in (c). The correct curve 1is probably near
the lower limit of the shaded =zone. My estimated
uncertainty in drawing the Budd curve is shown in
" Figure A16.10 (b).
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FIGURE A16.16.- Fedchenko Growth: Sliding Model (4).

Terminus motion (a) and maximum velocity (b) for model (4)
in Table At16.3. The curves from Budd (1975) are shown by
broken 1lines. The maximum velocity varied erratically
throughout the shaded region because the mesh interval of
1 km (used by'both Waddington and Budd (1975)) was too
large for accurate stress estimates near the terminus. The
correct curve .is probably :near the 1lower 1limit of the
shaded zone. My estimated uncertalnty in drawing the Budd
curve is shown in Figure A16.10 (b).

result  of usiﬁg a ~11arge grid interval ax, then the

~ surge-nonsurge .trahsition line from  Mclnnes (unpublished,
Figure-6‘4) 'Shown in Figure A16.13 1is incorrectly placed; it
should be further to the right.

The p0551b111ty also exists that the surging instability in
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the Budd theory (1975) 1is so sensitive to details of the
numerical schemes at the glacier terminus, that only qualitative
comparisons are possible, i.e. none of our numerical models is
adequate to quahtify the Budd surge mechanism. |

| Although I may have overlooked sbme possibie combination of
pafameters, it appears uniikely'that I could find a model to
dupiicaté the .Budd—McInnés Fedchenko Glacier-growth to steady
.state. The termiﬁus advance rate is best matched by ﬁonsliding

‘models, while the peak velocity during the advance stage appears

to require significant sliding, if it can be duplicated at all.

A16.9 CONCLUSIONS

There " are sevefal indications that the Budd (1975) and
‘McInnes (unpublished) computer model has serious flaws. I was
,unéble. to find any tests which indicated that it works
correctly: _ A

| The'instability prbblem was pointed out by McInnes (p. 58), -
but, following Budd and Jenssen (1975), - was incorrectly
attributed.‘_ i |

’The  mass flux—balance‘flux tests (Figures A16.5 and.K16.6
suggest fhat the model creates mass on the local scale at a rate
of about 25% of the mass balance.

. The profiles shown for the‘Vatnajékull,model'(Figufe A16.1)
suggest that the model creates mass globally during times of
active flow. |

Figure A16;J and Figure A16.10. suggest the possibility that

the Budd-McInnes model may on occasion advance much too quickly
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due to purely numerical efﬁects{ This would be an wunfortunate
characteristic for a compﬁter model designed to verify a
physical mechanism of triggering glacier surges.

For one of the few profiles with. an apparently complete set
of parameters given (McInnes, p. 88), my " well-tested computer
model fodnd a steadf' state thickness B% greater than the one
shown.by Budd (1975, Figure 3) and by McInnes (p. 90).

| Curves in = Budd (1975,  Figure 4) and in . MclInnes
A(unpublished, 4p. 86) shbwed tefminus position and maximum
veldcity for the Fedchenko Glacier during Qrowth to a steady
state. ‘The ‘documentation of all tﬁe physical parameters was
incomplete. Using my computer model, I was unable to find any
‘combinations whicﬁ could match the BuddchInnes curves. Although
my - search’ was not . exhaustive, due to other time and
-cémpﬁtatidnal_commitments; I covered‘the most probable areas‘ of
the @-n plane. | ‘

It 1is possible that fapid sliding in the computer model is
triggéred or dpiven‘by a numerical truncation error resulting
from the the coérse'mesh inte;vél (1000 m). This possibility is
being testéd‘further. ‘
| ~Verification of the accuracy of the Budd-McInnes model is.
made ‘difficuit by incomplete documentation of the numerical
values of the physical parameters used for the 'published model
reéults. ‘However, fhe tests I have been able to devise indicate
,that,,if the existiﬁg“dogumentation is accurate, thei ﬁoael has
Serious defidiénqies.' These prdblems may cause it to give
incorrect résults which at first glance appear to be "physically

reasonable”, but which may be no more accurate  than intuition.
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The surgel model proposed by Budd is a useful addition to our
concepts ‘of glacier sliding. However its numerical confirmation

remains to be conclusively demonstrated.
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APPENDIX 17: FOUR CENTURIES OF GLACIER FLOW THEORY

"Yes, that's all very well, but which really advanced
further in four hundred years, the glacier ice or the
theory?"! '

"A17.1 INTRODUCTION

Our contemporary understanding of ‘'glacier flow has been
formed mainly in the past three-decades, as a ;esult of several
important developments. Nyel(1951, 1952[a], 1957) established
continuum -mechanics and mathématical methods as indispensible
research tools. Glen (1952, 1955, 1958) determined a realistic
flbw law for ice, following the general realization (Orowan,
1949)lthatl'metéllurgical research could shed .light on the R
constitutive 'relations of ice. Deep ice coring Atethniques
(Hansen and Langway, 1966) ana radio-echo sounders (Evahé, 1963)
gave another dimension to data acquisition. Nonetheless, this
should not obscure the fact that iﬁquiries into the causes qf
glacier flow date back ﬁour hundred years. In this appendix, I
outline some of the major questions, controversies, and results
inlthe period prior to the fépid deVelopments in the. years
1950-1981, In-Seétion A17.2, 1 outline some of the better-known

writings prior to 1840. Studies on glaciers by Louis Agassiz in

that ~year marked a transition 'point. In Section A17.3, I
summarize the observations and theories in the period 1840-1915,
when physical scientists dominated research on glaciers. 1In

'Secfion A17.4, I describe the period 1915-1953, in which

' an anonymous (andvdis:espectfully impudent) colleaqgue.
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glaciological research (withﬁ‘some important ekceptioné) was
~often desc;iptive and sometimes speculative; thé‘physics of ice
flow.was occasionally ignored,when-mény research programs were
geolog cally or meteoroloalcally orlented |

. This h;stpry may show a blas toward English language

sources; some German language sources were difficult to obtain.
A17.2 THE YEARS 1570 TO 1840

-A17.2;i.EARLIEST PIONEERS

One'c1aséiéal‘viéw (based on limited observation and ~no.
knowledge of therhodynamics,. €.g. Muraltuf, .1669) held that
‘glaciers were ﬁot ordinary ice, but a form of rock crystai like
quartz. One of the early scientific writers on glaciers was
Simler (1574), who reélized fhat glécieré resulted. from snow.
'accumuléfioh. He made a clear distinction between neves and
glaciers; giaciers had the ability to carry material downslope.
Hottinger ‘(see de Beer, 1950) in 1703 = observed the
'stratlflcétlon of glac1ers, and advances and retreats of glacier
_termlnl, Scheuchzer, a phy51c1st from Zurich, was one of the
eariy glaciologists to make an 1mpress1on on Louis Agassiz.
Scheuchzer (1723) also dlscussed glac1er strat1f1cat1on and the
forward motion of glac1er termini. He related the opening of
crevésses to gas bubbles and ‘temperature changes. Scheﬁchzer
first. proposed thé_ diiatation theory of'glacier flow. Agassiz
adopted this theory in 1840; but later realized it was

incorrect. According to the dilatation theory, melt water flowed

[
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into the interstices aﬁd cracks in the ice eéch day, theh froze
at night. The volume expansion upon freezing then -pushed the
lower fongue of the glacier forward.

Gruner (1760) .may have - been the first to realize that
melting takes place almosﬁ entireiy on the. lower reaches of
alpine .glaciers. He was also the first tolsuggeét»that glaciers
move forward by sliding>on their base. ‘His ideas . on ‘glacier
growth were inéorrebt. He. thought accumuiation .of ice was
primarily caused by water whicﬁ filled crevasses, thén spilled

out over the surface and froze there.

A17.2.2 H. B. DE SAUSSURE -

One of the earliest comprehensive studies of the glaciers

of the Alps  can be_ found in Voyages dans les Alpes by

H. B. de Saussure (1779-96). This work, in four volumes, is a
marvellous vnaturai' hiéfory' covering geology, glaciology,
ﬁetéorology, ahd geography of the Alps. De Saussure (Vol. 1,
Section:523) obtained a lower limit on the thickness of the
'Mér‘de Glaée ‘at Chamonix by observing crevasse depths. He
favoured the sliding theory‘ of Gruner, but Férbes (1859,
p. 97-101) was convinced that de.Sauésure and Gruner thought of
Qlaciers'as rigid blocks, rather than as viscous fluid or
plastic sblids; De Saﬁséure assigned too large a role to the
geoﬁhérmal heat flux when he considered ablation, but 'corréctly
identified solar radiétion, warm wind and: réin as other

important melting agents (Vol. 1, Section 531-34).
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De Saussufe élso"investigated' glacial moraines (Vol 1,
Sectioﬁ 536) and had the idea of using them to determine the
hiStory'of.advance and retreat of valley élaciers.‘ However, he
théught ~that the huge erratic boulders on the Swiss plain were 
deposited by water éurrents rather than by glacial ice (Vol. 1,
Section 210-13).

De Saussure was one of the_first to visif the upper reaches
of glaciers and to write about his‘obServations there. He was
the first to uée the term 'seracs' (a name for a local cheese)

for the Lafgé blocks_of ice and firn seen in icefalls (Vol. 4,
ISection 1975),.and, by observing the annual 1ayerihg‘exposed in
them, was able to corre;tly describe the transition from snow
through firn to glacier ice. He also described glacier tunnels
and correctly assigned their formation to meltwater and warm
valley winds. | | |

De Saussure was apparently the first to describe 'red
snovw', .which we now knbw to be caused by blue—green_algae. From
chemical tests of samples, he reached the correct conclusion
(Vol. 2, Section 646) that theicolour was due to organic matter,
~although he tentativeiy identified it as pollen (Vandalism is
not. a new probleﬁ; 6ne §f his early sample collecting trips on
Mont Brevent endéd'when someone stole the cloth filter in which
he Qas.meltiné’some red snow);A |

The earliest‘&riter to suggest that ice flowed as a viscous
Qr.ductile subétancé, ih spite of the apparent rigidity of small

specimens, was Bordier (1773). In his book entitled Picturesque

journey to the glaciers of Savoy, he observed that ice behaved

like "softened wax, flexible and ductile to a certain point",
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which .fIOWed domnward "after the manner of fluids™ (quoted by
Tyndall (1874, p. 157)).

| Hugi (1830) made_ one of . the earliest measurements of
glacier motioa. In 1826' he bu1lt a stone shelter on the medial
moralne of the Flnsteraar and Lauteraar Glaciers, right at their
'confluence.bln 1830 “he found that the hut had moved 30 m
downstream. - 1In 1836 (Aga551z, 1840, p. 150) Hugi found that'it
had moved a further 650 m, and in 1839, Agassiz (1840) found it

1350 m from its startlng'point.

A17.2.3 RENDU

:Rendu, a Cathollc priest who subsequently became Bishop of
.Annecy presented a. paper entitled 'Theorie des .glac1ers ‘de
Savoie' to the Royal - Academy of Savoy in t841 (Rendﬁ, 1841,
1874). He pointed oﬁt the similarities of glacier and river
flow, and predicted that ‘a glacier should move most rapidly
(1) at the surface‘and (2).near the centre of the channel. His
méasUrements of the displacement of surface features
substantiated‘the aecond prediction (Tyndall; 1874, p; 159).
_Rendu attributed to ice = -

"

a kind of ductility which enables it to mould itself to
'its locality, to thin out, to swell, and to contract as if
it were a soft paste” - : ’ -

(quoted by Tyndall, (1874, p. 159)), and postulated that ice
could fracture and flow when the ‘pressure exceeded a certain
amount. He realized - that further experiments to measure the

}.solidity of ice were necessary (Tyndall, 1896,'p. 302). We now
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know that the plasticity of ice depends on the stress deviator,
rather than on pressure. Rendu's appreciation of the importance
" of stress was a major advance, but the miséonception about the

.role of hydrostatic pressure persisted into the twentieth

century.

>‘A17.3~1840 TO 1915

A17.3.1 LOUIS AGASSIZ

The decade 1840-1850 saw the beginnings of experimental
glaciology. As Tyndall expressed it (1874, p. 160):
"In science thought, as far as possible, ought to be wedded

to fact. This was attempted by Rendu, and in great part
accomplished by Agassiz and Forbes."

In 1840, Louis Agassiz published Etudes sur lés glaciers.
This book Qas a landmark for glacier research. Fof severél
years, . Venetz (1830, 1833)‘ and de Charpentier had been
formﬁlating "the Glacial - Theory', 1i.e. the idea that the
glaciers of the Alps had pfeviously'been much more extensive,
‘and.wéte “responsible for the striae, erratic boulders and:
moraiﬁic ridgés. of the Jura and the Swiss plain; Agassiz
: pﬁblished these ideas:togethert with 'his own observations on
glaciai geom&rphology and glacier flow. In the concluding
chaptéf of the book, Agassiz’ becamé highly speculative; he
thought that the ice age preceded the uplift of the Alps, and
" that this subsequent uplift, combined with the heat from new

species of warm-blooded animals, caused the disintegration of
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the .ice sheet (Agassiz was not well versed in thermodynamics).
kThis  idea waS'justifiab;y atﬁacked.by'the leading geologists of
the day, Leopoid von Buch, and Elie de Beaumont. The controyersyb
tended to put the whole work into gquestion. This | w;s
_unfortunate, becaﬁée when Agassiz cohtrolled his exuberance and
wrote about his own observations, his work was logical and
organized. Prior to 1840, Agassiz had éevoted most of his effort
to geomorphology; he had spent very litfle time obser§ing
glacier . flow. Agassiz . otiginally"‘accepted Scheuchzer's

ailatatiop thédry, and this . assumption 1led him into séverél
pitfalls. Since there Qas more meltwater near glacier margins
than in the centrg of the chaﬁnel, and, éften, more. crevasses as
well, Agassiz (1840, p. 86) assumed that glaciers flowed most
rapidly near their edges. He also thought that glaciers did not
flow 1in winter ‘when theré waé litfle of no meltwater‘(y840p
p. 212). When basal meltwater was present, Agassiz thought that
the basal ice‘ could flow down the slope more rapidly tﬁan the
_sﬁrface icé,’This improbabie pattefn of deformation,. called_
'extrusion flow',' was to feapﬁéar a century léter. To Agassiz'

: éredit, he himsélf'corrected some of »these errors. His stake
nétﬁbrk on the Aar Glacier in 1841-42 moved aurihg the Qinter,

and transvérse iines became cbnvexukdownstreamt (Carozzi, 1967,

p. xxx; Tyndall, _1896, p. 273). Betwéen 1840 and 1847, when he

published his second book Nouvelles &tudes et expé}iénces sur

" les glaciers actuels, .he conducted one of the first extensive

and scientific observation programs on ~glacier movement. By
‘1847, he was aware that his extrusion flow idea was mere

conjecture (see Battle, 1951). Joint observations by Agassiz and
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’Forbes (Forbes;_1845, p. 441; 1853, p. 69) revealed that .the
.velocity at the glacier surface tended to be largest near the
firn line; it did not ihcrease monbtonically from bergschrund to
terﬁinus as the dilatation théory’predicted. Agassiz also :came‘
to realize (Tyndall, 1874, p. 156) that temperate glaciers could
not ektraéf'heat'frbm Qateffin deep cracks to cause it to freeze

as the dilatation theory required, because the ice was already

at the melting point.

A17.3.2 J. D. FORBES

"Iﬁ 1841, AgaSsiz‘invited'J. D. Forbes, brofessor of natural
history at Edinburgh, to join ﬁim at .the Aar Glacier.. Forbes
became" interested in giacie;v flow, and introduced accurate
surveying téchniques td glécier observations. Forbes (18457
compiled the first accurate topographic map of a glacier and its
surroundings; his map of thé Mer de Glace at Chamonix has been
used as baseline‘infdrmétion'for modern studies. Forbes made
detéiied 1obSefvations of ablation raté and of glacier‘motipn,
-detectingvmovement ovef times as shoft as one hour (1845,
p; 133), “and’ éhowing that the 1ice generally moved steadily
(1845, p. 444), rather than with a stick-slip motion. 1In 1842,
at the. Mer de Glace; he confirmed Agassiz' observation (at the
Aar) that ‘the‘,icé at midchannel flowed mofe' rapidly than
imarginal “ice; their | results: were publisﬁed nearly
':simultaneOQSly, |

Forbes was the first structural glaciologist. He noticed
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and investigated the foliation of glacierbice (1845, p. 162). He
found narrow bands of hard, clear ice-a few centimetres.thick,
alternating with bands of bubbly 71ice; he called this "the
ribboned structure" or "the veined structure“'ofrglaciersi From
'investigations on the Mer de Glace, Forbes saw that the ribboned
structure formed spoon-shaped surfaces, concave upward, and
dipping 'upglacier. He realized (1845, p. 402) that the ribboned
structure was not stratigraphic, but was caused by, and could be
used to map the glac1er flow Describing these structures, he
wrote (1845, p. 406):

"their figure at once gives the 1idea of fluid motion,
freest in the middle, obstructed by friction towards the
sides and bottom;"

He suggested (1845, p. 406) that the hard clear bands
represented crevasses which had“filled with meltwater, frozen,
and - been stretched by differential flow (this is partially
correct; foliation'can also .arise from recrystallization and
redistribution - of bubbles (Sharp,A1960 p. 57), and foliation
often extends to ‘greater depths than crevasses) He pointed out
(1845, p. 27 and p. 438) the similarity between foliation and.
slaty cleavage in metamorphic rocks. |
Forbes is. assoc1ated w1th "the v1scous theory" of glacier
flow, although .a concise statement of thlS theory is elusive
‘even now. Forbes frequently emphasized the viscous or plastic
nature of glaCier flow (he did not differentiate the two;
continuum Amechanics ‘was an "unknown field in 1845).‘ His
‘observations of differential motion, even in areas free of
‘crevasses (1845, p; 438);led him to conclude of glaciers, that

(1845, p. 445):
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"the extreme inequality of motion of the central and
lateral parts of glaciers is the best direct proof of the
.very considerable plasticity of their mass:" :

Forbes reproduced sdme features of large scale fldw patterns by
using plaster of Paris.scale'models of giaciers; "these .models
developed differential flow, crevasses, and foliation (1859,
p. 77). He also commented on similarities between glacier flow
and the flow of lava at Mt. Etna and Mt. Vesuviﬁs (1859, p. 82).
‘In this sense, the viscous theory was, as Tyndall pointed out
(1896, p. 311), not a theory ‘af all, but a statement of
uncontested facts. On several occasions Forbeé appears to have
changed his views concerﬁing the the details of the way in which

ice flowed in a viscous manner. In his discussion of the viscous

theory in Travels through the Alps of Savoy (1845) he considered

the flow pattern of a glacier as é wholé; he did not state that

ice, on'the scale of hana specimens, or indiQidual érystals, was

necessarily viscous or isotropic. Yet, in 1855, Forbes stated:
"the viséosity, though it cannot be traced in the parts if

very minute, nevertheless exists there, as unequivocally
proved by experiments on the large scale".

(This conclusion may appear to strain the use of thé-scientific
method!) fet, bon "other occasions, Forbes invoked physical
Aprocessés other than microscopic viscous flow. In Travels ...
(1845,'p. 428), he described glacier ice as a mixture of ice,

water, and cracks, undergoing melting, freezing, and relative

motion, and in Occasional papers on the theory of glaciers,
(1859, p. 47), Forbes, discussing the apparent lack of ductiiity
"of small specimens of ice, wrote: .

| "it 1is this ffagility precisely which, yielding to the

hydrostatic pressure of the unfrozen water contained in the
countless capillaries of the glacier, produces the crushing
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action which shoves the ice over its neighbouring
particles™,

How Forbes‘ reconciled - crushed ice with continuous viscous
deformation is not cleaf. (like Rendu, Forbes in this passage
incorrectly attributedl deformation to pressure, rather than to
. deviatoric stress.)

Forbes is probably best known for his discovery ~of annual
" band ogives (now also known as Forbes bands) on the Mer de Glace
(see Chapter.4). He correctly related the light and dark bands

to differences in surficial dirt on areas with differing

foliation.

A17.3.3 JOHN TYNDALL

Johﬁ Tyhdall, professor of natural philosophy at the Royal
Institution, published_t;o'books about glacier physics. Glaciers
of the Alps (1860) was divided into.tﬁo sections; the first was
a travelogpe and vmountaineefing guide, and the second,
observatieﬁs“and discussion of glacier flow (Unfortunately, this 
- clean division fempted some 1ater_ publishers (e. g. J. M Dent
;and Co., 1906) to delete the second part on the grounds that 1t
was of no possible 1nterest to anybody). Tyndall's second book;

‘entitled The forms of water, (fourth edition, 1874), resulted

from a Christmas'lectufe series for youhg peeple in 1871 at.,the
ReYal Institution. Cleuas, rain, and ice of rivers, lakes, and
sea were given-curSOry_ tfeatment‘ compared to Tyndall's main
interest,'glaciers. |

Tyndall conducted further surveys on the Mer de Glace,
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obtaining, among his observations, firm evidence that the flow
was most rapid at the glacier surface, and decreésed with depth
(1874, p. 80), and the observation that the point of maximum‘
surface velocity on any transverse. line was often displaced’
‘toward the outside of.valley bends.

Tyndall looked to thé microscopic level for an explanation
of glacier flow. He was the original advocate of the 'regelation
flow'theory‘. In 1850, Faraday had found that two clean surfaces
of melting “ice, when. brought 1into contact, wohld freeze
together, and Bottomiéy.(cited by Tyndali, 1874, p. 170) had
performed the classic.regelation experiment, wherein a weighted
‘ Qife was passed through a block of tha&ing ice in one half hour,
leaving the block of ice inbone piéée; the pressure of the ‘wife
reduced the mélting-point of the ice, allowipg the ice to melt,
and the.water subéequently vreftoze abové the wiré. Tyndall
(1874, p. 165) compresééd Blocks of ice in moulds, showing that,
when the ice was«neépfOQC, the ice fractured, then was reuﬁited
by fegelation into a new block of a different\shape, and,‘if the
pressure was applied carefﬁlly, the shape could be chénged
- without total fracture (1874, p. 166). Since glacier ice is
under pressufe due to the weight of overlying ice, hé concluded
(1874, p. 166) that: |

"by the slow and constant application of pfessure the ice
gradually moulds itself to the valley, which it fills."

Tyndall envisioned ice as a brittle material crushed by pressure
and shear stresses, and reunited by regelation -after minor
rearrangement of the fragments. The process of fegelation is

important in basal sliding, and, as Tyndall realized, in
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crevasse closure (1874, p. 166) ‘and in the tranéformation of
firn to ice (1874; p..165),_but it is not a complete explanafion
of the internal deformation _of. glaciers. It does not take
account of the crystalline properties of ice, and if is
inapplicable to cold ice masses. |

Tyﬁdall frequently criticized Forbes' viscous theofy‘_(g.j.‘
Tyndall, 1896, p. 327). Forbes' theory had obvious weaknesses,
but then, so did_Tyndall's reéelation thedry} Because of this
controversy, ~some glaciologistsi'thought of 'the glacier flow
'brobiem'as‘simply a chbice betwéén the viscous or the regelation
model. This impeded the de&elopment of a éomplete description,
Russell (1897,‘p. 186) appfeciated the difficulty, and proposed
‘the adoption of an 'ecleétic moael'.

Tyndalll is often‘-remémbered - for his discovefy and
explanation of 'Tyndall flowers'. These are small melt figureé
inside icé cfystals. If a Elear crystal of ice is‘left for a few
minutes in directlsunlight, internal melting parallel >t§  the
basal plane produées discs of liquid and vapour about 5 mm to
10 mm in diémeter. These discs continue to grow with continued
exposure to sunlight, eventually forming délicate crenulated
shapes with 6-fold symmetry. Tyndall (1874, p. 36) used crystals
of lake ice; the figures cén also be produced in large crystalé
§f 'glacier éce, sﬁch as are often .found in old ice néar a

glacier terminus.
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A17.3.4 MANY WONDROUS THEORIES

During the last decades of the nineteénth century, a number
of ﬁheories of glacier flow were proposed. Like Tyndall, mosf
.yriters' looked for small-Scale processes to explain large scale
glacier motion. The appareﬁt brittleness of small lumps of ice
coupled with the observed laminar flow of glaciers was a
puzzling paradox Most of the new theorles were controversial,
ingénious{ and . almost invariably 1nadequate. Like the viscous
theory and the regelation theory, they often contained some
elemenﬁslof_truth._Fof example, Canon Moseley (1862) shoﬁed that
av plate of- lead could creep down an inclinéd plane ifvit was
-repeatgdly warmed aﬁd cooled. This process accounts for some of
the motion of talus slopes (e.g. Russell. 1897, p. 176); Moseley
vsuggestéd that it also caused the motion of glaéiers, due to
diurnai expansion and contraction. Forbes (i855) and Ball (1870)
strongly refuted this.suggestion; on the grounds that:

(1) the vertical diurnal displacement necessary fo cause the

- creep phenomenon waé not observed; |

(2). heat dlffu51on 1nto glac1ers was too slow and too small to
achleve any diurnal effect; and

(3) alpine glaciers were invariably observed to be at the
pressufe melting point. |

Moseley 6bjected to most flow theories other than his own on the

grounds that they reqﬁired'ice_to shear. Moseley measured the

force requ1red to cleanly and abrﬁptly éhear off one squére inch

bars of ice; he then leapt to the -unjustified conclusion that a

glacier' would need to be at least 34 times thicker than the Mer
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de Glace (i.e. at least several.km) to deform by shear. As Ball
pointed out, Moseley - totally .neglected the rate at which
deformation occurred. Continuum mechanics was not one of
Moseley's stroﬁg points. This discussion, and others like it, -
occupied a iarge portion of the glaciological literature of the
" period (e.g. see Croll (1875) Chapters XXX and XXXI).

Croll (1869, 1875, Chapter XXXI) proposed the 'hypothesis
of molecular'Change'. Solar radiation at the . glacier surface
could prodﬁce melting; this water would flow downhill, then
refreéze; the latent heat released would melt the adjacent ice,
which could then flow downhill before refreezing. This chain
réaction would extend‘throughout the glacier mass. Deeley (1888)
proposed a similar theofy;;Russell (1897, p. 182) pointed out
that, in the St..Elias Mountains, surface ice and snow abbve
_13,000'feet'(4000 m) waé always at a temperature well below the
melting point. 1In addition, where surface melting oécurs,'most.
of the water is éuickly lost to runoff in glacial streams.

Various authors, includihg' T. C. Chamberlin (1895),
proposed a ‘felated theory called 'the hypothesis of granular
'change'. According to this theory, each ice crystalbﬁas assumed
to undergo pressufe melting where it _touched neighbouring
Acfystals. With these obstructing points removed, the crystal was
free to settle downslope under the influence of gravity; the.
meltwater would refreeze, -leaving. a new crystal shape and
orientaﬁion, with a dd&nslope displacement. This idea ‘resembled
‘TYndall‘s. regelation theory applied to individual crystals. The
prqéess does exist in glaciers (e.g. the development of

foliation), but it is insufficient to account for observed
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. glacier motions.

| In 1894, Chamberlin‘ bbserved shear planes and thrust
featuresf.in _stratified iée in the termini of some Greenland
-glaciers. Using less thén rigorous arguments (g.g. entrained
boulders did not visibly sink through glacier ice), he then
(1895) challenged the concépt of flow by continuous viscous
yielding. He ‘suggestea,l instead, that individual sedimentary
layers moved as cohesive units, possibly bending and sliding
relative to oﬁe another, but maintaining their identity
throughoqt their flow history (i.e. deforming 1like a deck of
playing cards). I suspect that the layering which Chamberiin
(1895) observed was a secondary foliation (e.g. Sharp, 1960)
rather than the initial bedding, and the thrusts which he
observed wefe‘prébably of local extent. In fact, both shearing
~and plastic yielding play some part in glacier flow under

- various conditions (e.g. Nye, 1951),

A17.3.5 ICE DEFORMATION EXPERIMENTS

By’thé'endbof the_century, field glacioiégists had begun tov
examine ice at the crystalline level. 'J. C. McConnel performed
séme of the  earliest experiments. Part of Tyndéll‘s rationale
for the regeléiion theory was the assumption that (1874, p. 167)
ice could not'deform’in tension without fracturing. Main (1887)
and McConnel and Kidd (1888)' showed that a bar of
polycrystailine ice deformed under both compression and tension.

They also found that, for a given stress,‘the deformation rate
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decreased rapidly »with decreasing temperature below OOC',bU£
;they wefe unable to quantify this result; they worked in” winter
at the edge of glaciers, and had poor temperature control and
large»struéﬁural variétions in the ice bars. They found ‘tnat
monocrystalline bars 'were highly énisotropic; they weré unable
fo produce a measurablé’ deformation by applying tension or
compréssion af_ :righti angles to the optic axis. Further
- experiments by McConnel (1890,'1891) showed that the ice crystal
"behaved as if"it consistéd of an infinite number of
indefinitely thin sheets of paper,. normal to its optic
axis, attached to each other by some viscous substance
which allowed one to slide over the next with great
difficulty.”
This process of gliding on the basal plane'is fundamental to 6ur
modern understanding 6f the flow of glaciers. Furtherl work by
others substantiated this ihportant result and led to a refined
understanding of the deformation of ice crystéls. - For example,
Tarr énd Rich (1912) showed that the laminae normal to the optic
axis could bend as we11 as'glidé, if the stress was nonunifofm.
R. M. Deeley was one of the last in the.series of‘notable
glacier:physiéists of the pre-1914 perioa. In a paper on granule
markings (1910), he showed thaf striae on the surface of ' ice

crystals were the edges of McConnel's laminae.
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A17.3.6 MATHEMATICAL GLACIOLOGY

Iﬁ an early paper, Deeley (1895) .made the.first clear
distinction in the glaciological literature between viécoﬁs and
plastic materiéls, and derived some simple solutions for viscous
flow .in cylindrical channels and on inclined planes. Deeley
(1908)_used these resulté together with estimates of glacief
thicknesses and observed flow rates at ten locations on four
- glaciers in the -Alps to estimate the bulk viscosity of
- polycrystalline ice. Thére was.a large scatter; we now know that
the viscosity of ice is stréés—dependent. (Deeley (1895) was
also aware-fhat the viscosityvmiéht not be constant). Deeley
found thatvthe viscosity of a single ice crystal shearing normal
to the optic axis was several'oraers of ﬁagnitudevless than the
viscosity of polycfystalline ice. |

Previously, Thomsén (Lord Kelvin)i(1888) had approached the
feverse problém; he had estimated the thickness of the floating
arétic 'iée péck ‘and . of the East Antarctic ice sheet using a
viscosity calcuiated from the data by Main (1887).

Some of the earliest mathematical modélling of glacief flow
appeared at the end of the nineteenth century. Reid (1895) and
Finsfefwaldef (1897) calculated streamlines through steady
glaciers. The results were only approximate, because they took
no account of the rh;ological properties of glacier ice.
Finsterwalder (1907) was the first to solve the continuity (mass
conservation) equation to fihd glacier thickness <changes; this

procedure forms the basis of most modern models of ice masses.

Blumcke and Hess (1899) carried out one of the most
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comprehensive glacier survéys of that era. They measured
ablation rate, surface altitude, and ice velocity along a éeries
of transverse profiles on the‘Hintéréis Glacier. In addition,
they used borehole infqrmatidn coupled with the Finsterwalder
(1897) kinematic theorylto estimate the ice thickness.

Weinberg (1907) had estimated the viscosity of . the
Hintereis Glacier by ﬁsing the equafions for viscous flow in an
'elliptical channel to approximate the observations of Blumcke
and Hess (1899). Deeley and‘Parr (1913, 1914) also uséd' the
‘Hinfereis data of Blumcke and Hess (1899) in two outstanding
papers. Deeley and Parr (1913) found a solution to the Poisson
eguation for viscous vflow in a uniform channel having a more
- general cross-section than an'ellipse. They showed that this
vtypé of channel«'(called "Parr's curve") gave an improved fit
| ovef Weinberg's result ‘(1907) to the observed flow of the
Hintereis Glacier. |

They also 'addresééd the difficult quesfion of separatiﬁg
basal slip from 1nterna1 shear deformatlon. They estimated - the
basal slldlng_ veloc1ty by assum1ng it was proport1onal to the
basal shear'stress, and inversely proportional to the frictional
resistaﬁce. Théyvpointed out that, since ice must flow around
some obstacies on the bed, the flow and sliding quesfions were
ébnnected. | | |

In this paper (1913), Deeley and’ Parr also pointed out the
_fact that flow is controlled primarily by the ice surface slope,
rather than by the slope of the glacier bed. They were the first
to propose the name "Poise" (after Poiseuille) for the

C.G.S. unit of viscosity.
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‘Their second paper (Deeley and Parr, 1914) = focused
primarily oﬁ the basal sliding problem., They presented a
conceptual model of sliding which is remarkably similar to . the
widely known model put' forward independently by Weertman in
- 1957. Deeley and Parr (1914) envisioned flow by regelation
. around small‘bééal obstacles. Instead of modelling bed1rbughness
by a plane with an array of cubes with a characteristic
separation (the Weertman (1957) 'tombstone model'), Deeley and
Parr modelled the glacier bed by a plane covered by an array of
pyramids with a characteristic slope angle; In both models, the
parameter could'lbe adjusted to balance the downslope éomponent
of gravity.agaihst-the resisténce offered by the uphiil faces of
;he obstacles. Deeley and Parr pointed out that ice hoved ~past
large obstacles, channel cur?es and other irregularities by
_viséoﬁs flow; they did not ényision the enhancement of flow due
to stress concéntrations as pointed out by Weértman (1957),

because they assumed a linear (viscous) constitutive relation

for ibe.

Deeley. and - Parr (1914) tested their ideas on slip by
measuring the sliding rate of a 1loaded piece of 1ice on an
inclined, grooved rock slab in their laboratory, noting that the
51ipv rate decreased as thevteﬁperaturé dropped below 0°C. They
expeéted this result from ‘the regelation mechanism.

Several chér,pheanena of'intefest to. the glaciological
community of 1914 Qefe discussed in?this.landmark‘papep. Vallot
(1900) had observed a wave on the Mer de Glace; Deeley and Parr

(1914) mentioned waves which they called 'Schwellungswellen
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travelling down glaciers at three to four times the ice
velocity. These waves were thought to rééult from thickening in
the lower .accumulation regibn and from changes 'in the elevation
of the firn 1line (Weertman (1958) presénted a mathematical

treatment of these kinematic waves). Deeley " and Parr also

discussed 'a second type of wave called Druckwellen, which they
said arose from thickening and thrusting in the upper
accumulation. region.i‘These wavés were said to travel at 20.to
150 times the velocity of the ice. Few authors since 1914, with
the exception of Hodge (1974) and Fowler (1979), have mentioned

Druckwellen-type waves,

Johnston and Adams (1913) pointed out that uniform pressure
could caﬁse an elastic compression, but could - not permanently
deform solid-'bodies; significant permanent distortion resulted
only frbm“nonuniform ~pressure, or stress, deviétors; This .
important fact had been overlooked by Rendu ahd Forbes, and was
sométimeé overlooked later in this century (g.g.vDemorest, 1938,

p. 36).

A17.3.7 THE BRINY DEPTHS OF GLACIERS

One other question about glacier flow arose near the end of
‘this:period. What effect do solutes and impurities have on the
déformation rate of ice? Johnston and Adams (1913) had argued
that permanent deformation of a solid near its melting point
took place through real melting of the constituent:particles

under the greatest stress. Quincke (1905[a), 1905[b]) and
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Buﬁhanan (1912) had suggested that brine in glacierslcouldu
account for melt features on crystal laminae. and grain
. boundaries. Both. authors thought that the salts came from rock
‘and dirt inclusionéi while Buchanan (1887[al, 1887[b], 1887[c])
- suggested that snow and rain could also supply the impurities.
_Tarf‘and Engelnv(1915)V used these ideas to iﬁterpret their

compression and = extrusion experiments on ice bars. They

','suggested that salts turned the 1liquid fraétion (proposed by

Johnston  and Adams, 1913) ‘into a brine which formed an
intergranular film afltemperatures doﬁn to -22°C (its éutectic 
point). They énvisiOned individual rigid ice crystals
readjusting their relative positions by displacing tﬁe vfluid
pﬁase,' to give a net bulk flow.'In_addition, since'the fluid
voiume was hypéthesized to increase with shear stress, the ice
would soften ‘with ihcreésing stress. While graiﬁ. boundary
'sliding does océur in ice near 0°C, we now know that deformétioh
within ice cfystals‘is the majorfcohtribution'to the creep bf

ice Hbelow' —8°C (Barnes and others, 1971), and that glaciér icé'

is often'purer than Tarr and Engeln (1915) thought it to be;
howéver, brinesbdo affect thé:appéreﬁt viscoéity of ice, and the
subject is still worthy of ;eséaréh (g.g¢ Bowden and Tabor,
1964, p. 137;‘Llib§utry; 1971[al). Because the 1914-1918 World

War disrupted research and international communication, Engeln

(1915) republished the work on solutes in The American Journal

of Science.
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A17.4 1915 TO 1953

A17.4.1 INTRODUCTION

Following the 1914-1918 World Wer, glacioloéical studies
were resumed at many institutions. Wﬁile most work in Europe and
in the U.K. continued to emphasize the mathematics of glacier
flow and  the physics of ice deformation, some studies,
earticularily in North America, were interested in glaciers as
agents of geomorphological 'chaege, or as components of
hydrological or meteoroloéicel cycles. Several céntrbversies
arose in the glaciological literature as a result of
misconceptions advanced ‘by writers whose expertise lay
elsewhere. 1l will mention the ongoing deBate en the roles of
shear plane,elip (Chamberlin, 1928) and viscous flow (Engeln,
1934), the glacief anticyclone theofy of Hobbs (1921,1926,1934)
and the extrﬁsion‘flow theory of Demorest (1937, 1938, 1941,

1942) and Streiff-Becker (1938). |
| The ° leading glaciological journel of the perioa' was

Zeitschrift fiir Gletscherkunde; the Journal of Glaciology began

publication 1in ~ 1947, Two books by Hans Hess, Die Gletscher’

(1904) and Das Eis der Erde (1933) were frequently cited
authorities on glacier physics. Review articles on glacier flow
were published in English by Hawkes (1930), Matthes (1942),

Perutz (1947), and Orowan (1949).
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A17.4.2 SHEAR PLANE SLIP OR VISCOUS FLOW?

In ‘the nineteenth century, Tyndall and Forbes, and their
respective followers, ;hotiy debated the merits of "the
regelation theory" (a solid deformation theory) and "the viscous
thebryf. Both solid and viscous theories survived well into the
twentieth Century with new variations and new champions. Since
1894, mounting evidence suggested the existénce of significant
shear thrusting in glaciers. T. C. Chamberlin (1895) had pointed
out the existence of sheat'planes at glacier termini, and was
scept1ca1 of the ability of glacier ice to behave as a 1sotrop1c
viscous flu1d on a scale length of centimetres to metres;
. Scherzer (1907, p. 34) measﬁred an offset of 5.9" (15 cm5 at a
shear plane spanned by a line of spikes in the Victéria Glacier
in the Canadian'Rockies..Philipp (1920) thought that the thin
bands of blue ice in glaciers were slippage planes, along which
ice had been crushed, melted, and refrozen. R. T. Chamberlin"
- (1928) ‘used: a recording strainmeter to méasure ‘episodic
.overthrust displacements along shear surfaces at the margin of
Glacier de la Brenva on Mont Blanc. He postulated three other
types of solid flow in addltlon to slip on shear planes. They
were:.

(1) flow by ideomolecular exchange between crystals, i.e. some
crystals could grow at the expense of others due to ambient
cond;tioné of stress, surface energy, etc.,

(2) solid shearing of ice éggregates, and,

(3) sliding of the whole giacier over the bedrock.

Having preéented this careful and timely work, Chamberlin (1928)
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then attacked the concept of viscous flow (a type of motion his
experiment 'waé not designed to measure). He first labelled two
apparently mutually exclusive schools 6f thought, "the declared
adherents of the viscous theory”, and "the distinct advocates of
the ideomolecular, theory" (léaving'everyone else’among "those
who play'fast'and loose with both sides and entertain more or
less Qague notions zof the mechanics of moving glaciers"). He

then concluded (1928, p. 1) that

"The results speak definitely for the SOlldlty and elastic
rigidity of moving glacier 1ce, and decisively against

liguid or viscous flow as the main type of adjustment under
stress” :

and further (1928, p. 21), that

"it shows that the common conception of viscous liquid flow
has to be eliminated from the picture completely before any
real understanding of glacier motion is possible."

These were fighting words, and 'they stirred up . a
controversy. Engeln, who had proposed (1915) a ."viscous" flow
model based on- intergranular brine films, ‘apparently took
umbrage at Chamberlin's sweeping conclusions. When Hess (1933,

p. 79) (translated by Engeln) described glacier motion to be

"due solely to gravity and ... the motion 1is to be

considered comparable to the streaming of a .very viscous
fluig", ' .

Engeln (1934) with some delight quoted Hess in a letter to
Science, and claimed Hess' support for the viscous theory. After
outlining Chamberlin's four types of solid flow, Engeln

concluded that -

"Such shear concept Hess, now, and the present author

earlier, hold to be fundamentally and completely
erroneous.”

These were also fighting words, and a-debate (Chamberlin, 1934;
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"Engeln, 1935) eﬁsuea in the pages of Science.

Demorest (1934) provided evidence supporting viscous
deformation in basal ice. The glacial striations which he mapped
on rock steps, around obstacles, and in tfansverse trenches in
deglaciated terrain formed patterns suggestive of fluid
flowlines. Eyentually, as more data éccumulated, even the
protagonists realized tﬁat glacier motion involved both epiéodic
shearing and continuous déformation. R. T. Chamberlin wrote

-

(1936, p. 104):

"To advocate either a 'plastic theory of glacier motion!,
or...perforce advocate a 'shear theory' is to seize upon
only a part instead of the whole and to have but a very
imperfect understanding of the actual composite phenomenon.
The plastic theory 1is 1little more than a name for the
familiar fact that glaciers move en masse and change in
shape. The so-called 'shear theory' ... would imply belief
that shearing is the only process producing glacier motion.
... The discovery that a particular process is in operation
does not signify that that is the whole story.
Unfortunately, this has been all too commonly overlooked in
scientific investigations."

After nearly a century, glaciologists could realize that neither
Forbes nor Tyndall had been wrong, that neither had:been wﬁolly
correct, but that both had contributed to the theory of glacier

flow,

A17.4.,3 CONTINUUM MECHANICS FOR GLACIERS

Two Europeans made important contributions to the
mathematicél description of glacier' motion. Somagliana (1921,
1927) derived the eduations of motion for steady flow of a heavy
viscous fluid in a éhannel of constant slope and cross-section.

' This treatment was notable for its clarity and its discussion of
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all the assumptions made. Somagliana also derived expressions
for the glacier channel cross-section when the‘longitudinal
surface velocity broﬁile could be approximated,by a second or
third order polynomial. Somagliana cited Weinberg's (1907)
derivation of the viscosity of the Hintereis Glacier, but did
not appear to be aware of the work on viscous flow by Deeley and
Parr (1913), |

Lagally (1930) extended the Somagliana viscous flow theory,
and used it to predict the ice depth of the Pasterze Glacier
(Austria); seismic soundings by Brockamp and Mothes (1930)
showed the predictibns to be correct. In 1934, Lagally published

Mechanik und Thermodynamik des stationarem Gletschers. This

important monograph formulated the glacier fiow problem ‘in the
ﬁathematical framework of continuum mechanics. For example,
Lagally discussed glacier'flow in terms of the Navier-Stokes
equation, and the temperature of glaciers in terms of the heat
diffusion equation. Various early authors had considered some
aspects of the thermodynamics of glaciers (e.g. Helmholtz (1865,
4p. 133; 1873;.p. 151) had shown that as much as 7% of the Mer de
Glace was melted by inte;nal viscous heating), but in this work,
Lagally established a comprehensive and consistent framework for
thermodynamic studies. This was an important step, since the

viscosity of ice depends strongly on temperature.
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A17.4.4 THE GLACIER ANTICYCLONE

During the nineteenth and twentieth centuries, there have
been many = expeditions tb glaciers and ice sheets in the arctic .
and in Antarctica. The tone of these expeditions has .deQelOped.
frdm the early heroic (and romantic) efforts to explore unknown
lands, into a desire to carry out rigorous scientific inquiries.
1 discuss only thqse few expeditions which I think led to a new
understanding of the flow of ice masses.

w; H, Hobbs, a meteorologist at the University of Michigan,
was the eariiest proponent of the glacial anticyclone theory.
Hobbs (1911, p. 149; 1921, 1926, 1934) pointéd.out that a: zone
of high atmoépheric' pfessurg could be expected over an ice
sheet, because the éir would‘ be <cold and dense. This cold
sinking air would tend to fléw radially out, down the sﬁrface
slope of the iée shéet. It would be replaced by air drawn down
from aldft. This air would befco;lednby the ice sheet, causing
fog, some frost and rime, and generally light and variable winds
with little precipitatién over fhe centre of the ice sheet.
These 'atmospheric conditions do often occur over the East
Antarctic ice sheet; however, Hobbs attributed to the glacial
- anticyclone a stability which 1is not justified for these
atmospheric conditions, and he attempted to predict the glacial
- flow regime‘ of the Greenland 1ice sheet on the basis of a

permanent glacial anticyclone. Hobbs (1934) thought' that
| precipitation in-éentral Greenland Qas very small, and that this
small amount of 1light snow and rime was blown out radially by

v'the downslope winds. He thought that cyclonic depressions from
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the Atlantic and from Baffin Bay were unable to penetrate the
interior; all fhe. precipitation from these storms would be
dropped ‘within 80 km to 150 km of the ice sheet margin.
Consequently, he.postulated that the 1ice in the centre bf
Greenland hadbto be motionless, and the large outlet iée streams
were fed oniy by the marginallzone. He 'supported' this view
with two additional claims of questionablé-merit:

(1) there were no ‘cre§assesé in. the iﬁterior, and thus no

évidence for'motioh,‘and

(2) "the glaciated rock ~surface overridden by the continental

glaciers bears a record of erosional work beneath the

marginal zone only ... It thus supplies no warrant whatever

for supposing that such action has gone on beneath the vast
“central area." (1934, p. 421).
(Hobbs',theory of motionless ice was a refreshing break with the

. traditionalAdebafe over shear slip or viscous flow!)‘ |
- Little ~was:  known about the climate or the glacier
conditions in the ihteriQr,.but the high dischafge ‘observed at
Wés£ Greenland ~glaciers by Rydéf (1889) and by Rink (1889) and
by subsequént.observers required‘either a‘ large positive mass
balance  in the marginal zone, br_a large collection area} this
posed é problem for Hobbs " theory. Hobbs (1941) 1led four
expeditions between‘1926 and i933 attempting to demonstrafe the
existence of the anticyclohe. His results were inconclusive.
~ Observations in 1929 and 1930-1931 by the Alfred ‘Wegener
'Gféénlgnd Ekpéditioq (Sofgg; 1933) showed that Hobbs had been
led .to‘ érronédus éonclusions about the flowvof the.ice sheet,

Wegener's expedition over-wintered in 1930-1931 at three
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stations, Scoresby Sound on _the east coast, a station at the

wéste;n margin of the ice sheet, and at Eismitte, a station near

3000 metres elevation and close to the ice divide 400 km from

the west coast. Their observations (Georgi, 1933; Matthes, 1942)

established that:

(1) the‘mean_mass balance over roughly a twelve year period was
31 cm a‘.1 water equivalent at the ice divide. This was tod
large for the Hobbs theory,Aand

(2) gravity currents of cold air often flowed down the slope of
the ice sheet, as Hobbs prediéted: however, they were
frequentiy é}Srubted- by cyclonic disturbances which
penetrated the central regions of Greenland.
Matthes,(1942,lp. 187) summarized the anticyclone theory

when he wrote: |

"If vis thus manifest that the ice sheet of Greenland is

nourished, . not by the glacial anticyclone, as Hobbs

supposed, but in spite of it". ‘

The Wegener éxpedition was notable for its geophysical
work. Sorge (1933) obtained the‘first seismic soundings of the
Gfeehland ‘ice sheét, finding the ice thickness at twelve points
on a profile from Eismitte to the west coast. Temperature
measurements - showed the diffﬁsion ofzthe annual cold wa&e into
the firn, and.density measurements determined the mass balance
and firn compaction rates. In November 1930, the expedition
leader Alfred Wegener died bf a heart problem Vﬁhile ‘travelling
from Eishitfe to the western station, and his companion

Villumsen was lost trying to reach the west coast alone.
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A17.4.5 FIELD STUDIES: 1934 SPITZBERGEN EXPEDITION

»W. H:son Ahlmann and H. U. Sverdrup led the Norwegian -
Swedish Spifzbergen Expedition (Ahlmann, 1935[a]) in the summer
of 1S34. They carried out quantitative investigations -of the
mass and energy balance of the Fourteenth of July Glacier and
the icefield on Isachsen's Plateau. The interaction of glaciers
aﬁd climate is critical to understanding‘glacier motion and
variations; this expedition made the most comprehensive
obéervations to that time. |

Olsson (1936) measured the total incoming radiation, the
albedo of the snow and ice surfaces wunder various conditions,
and the absorption properties of the snow. Ahlmann (1935[c])
mea;d:ed ablation rates using lines of surVeyed stakes and a
reco}ding ablatograph, and mapped the stratification of firn in
pits and boreholes (1935[b], 1935[d], 1936) to- derive the. net
annual mass balance. Sverdrup (1935[a]) measured the temperature
gradient in thelfirn, and (1935[b}) used all these observations
together with meteorological data (Sverdrup, 1936) to formulate
the " mass and energy balance equations. He was then able to
- determine the relative roles of radiation, conductionl from the
éir or from below, vapour condensation, evaporation, and fusion.
This work had fundamental impoftance to our knowledge of how and
why glaciers vary in response to c¢limate.

" The temperature measurements in the firn on Isachsen's
Plateau held some surprises. Because the mean ‘annual temperature
was below 0°C, Sverdrup (1935[a]) had expected the firn to be

frozen to a great depth, as the Wegener expedition had found at
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Eiémitte (Sorge, 1933); however, he found that 1in June thé
temperature wés at the melting point everywhere below ten ﬁetres
depth. The thermocouples and thermometers in shallow boreholes
showed that even this surface layer of firn warmed 'to the
melting éoint everywhere- during the sﬁmmer. To explain this
observation, Sverdrup (1935[al) showed that the latent heat
available each summer in meltwater percolating from the surface
was sufficient to warm the total thickness of firn if the water
refroze, thﬁs‘ completely eliminating the diffusing cold wave
from the previous winté:. Sverdrup realized that the
transformation from firn to glacier ice occured at shallower
depths and‘in younger firnl when meltwater was present. In
addition,_ the discovery of .ice 'at the melting point in cold
climates had implications for the distribution of viscosigy and
thus flow rate in the upper reaches of many glaciers.

Ahlmann (1935[d]) studied the hydrology of the Fourteenth
of Juiy Glacier, showing that the iargest contribution to
subglaéial runoff came from surface melting. This was true even
in winter, because there was a large time lag for percolation
thrbugh __firn‘ and  ice «crevices. The temporal and spatial
distribution,of.gubglacial water is now widely thought to be
important for basal sliding. |

The work of this Spitzbergen expedition was an admirable

model for later studies of glacier physics.



A17.4.6 FIELD STUDIES: JUNGFRAUJOCH RESEARCH PARTY

Most studies of ice structure prior to 1938 had been
confined td the ablation zones, the most accessible regions of
glaciers. The Juﬁgfraujoch Research Party, led by Hughes,
Perutz, and. Seligman from Cambridge, was a field study of
processes and ice.structure in an accumulation area. Seligman
(1936, Chapters 5 and 6) had pfeviously studied the
transformation of .snow into firn, and the Norwegian - Swedish
Spitzbergen Expeaition had made some observations- of firn
temperature and metamorphosis. Did similar processes occur 1in
the Alps? An additional goal was to shed some lighf on the
controversy éurrounding the relative importance 6f shear plane
siip and continuous'deformation. The results of the expedition
were published by Perutz and Seligman - (1939), Hughes and
Seligman (1939), and ‘Seligman (1941). Seligman (1941)_cited a
Second-paper by Hughes and Seligman as "in press" in Bulletin of

the International Association of Scientific Hydrology; this

paper méy have become a war casualty; Volume 1 of the Bulletin
was not published untiiv1956.

The Jungfraujoch is a saddle at 3460 m elevation between
the Monch and the Jungfrau in the Swiss Alps. It is accessible
by cog railway, and has tQurist‘facilities. The Research Party
set up a cold 1laboratory 1in an artificial cavern in the ice
apron (the Guggifirn) on the north sideiof the saddle, using an
old rock tunnel for access. Members of the research group
excavated a 20 mefré pit in the Monchfirn, an accumulation area

of the Great Aletsch Glacier. They measured temperatures in the
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pit walls using thermocouple probes, and collected samples for
density measurements and crYstallographic studies. Observations
of water percolation, firn density, and settling rate were taken
in additional shallow pits and boreholes, and in crevasseé.

This expedition was one of the first to use tﬁe polarizing
.microscope to examine ice <crystals in thin section. This
technique is now used routinely to study ice fabric. Perutz and
Seligman (1939) charted the increase in grain size and density
of the firn with age, until the interconnecting air passages
were closed off at a density of 820 to 840 kg m-3. They found no
significant discshtinuous changes in crystal size, density, or
fabric across the transition. They showed ’that ice fabric
developed 1in several stages. New-fallen. sédw had randomly
oriénted crystals. In firn at a depth of about one,.metre, the
C-axes tended to be aligned vertically, due to recrystalliéation
parallel to the temperature gradient. After six to eight years,
differentiai motion héd destroyed this fabric; crystals,  or
clumps of crystals, tended to be'rotated by flow. In the glacier
ice, flow tended to deVelog a strong fabric. Crystals could no
longer rotéte as they had done in the firn. Instead, the
crystals with basal planes parallel to the flow were able to
grow at the expense of less gnergetically ‘favoured crystals.
Bader (1939) had found that a fabric with basal planes parallel
to the directioh of shear had developed in blocks of ice
deformed 1in the laborétory. Tammann ~and Dreyer (1929) had
demonstrated the_gréwth of the preferentially otiented crystals
during shearing, and had attributed the migration of molecules

(to the preferred crystals) to the closer packing of atoms in
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the basal plane. The work at the Jungfraufirn showed that the
same phenomena occur in Alpine glaéiers.

To investigate the relative importance of slip on shear
‘blaﬁes and plastic deformation, Perutz and Seligman (1939)
inserted lines and arrays of pins and screws :in exposed
longitudinal vertical faces in the pit, in crevasses, and in ice
grottos at the cold lab and in the terminus of the
Eigergletscher. The deformation of these lines and arrays showed
.that: | |
(1) there was no evidence for shear plane motion in the firn;

the ice lenseé in firn were purely sedimentary in 6rigin;
(2) Dboth shear plahe slip and continuous deformatién occurred

near the glacier terminus.

Several other interesting guestions weré addressed during
the " field éeason._.The temperature measurements throughout the
- summer (Hughes. and Seligman 1939) showed hbw the winter cold
wave was reduced and eliminated from the upper 15 metres of the
firn by heat conduction early in the summer, and by latent heat
from‘refreezing meltwater later in the season (as had been shown
by Sverdrup, (1935[a]) at Spitzbergen). Simultaneous measurement
of meltwater mass transpért (using collection pans) and of bulk
settling (using the array of pins) allowed Hughes and Seligman
(1939) to separafe the relative contributions of the two
processes in the densification of thevfirn. Attempts (Perutz and
Seligman, 1939) to 1locate the intergranular brine film
hybothesized by Engeln (1934) were unsuccessful down to the

resoldtion of 0.004% NaCl and 0.008% NH,NO;. Perutz and Seligman
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(1939) attributed three sources to the various blue bands of ice
observed at the terminus of the Eigergletscher: (1) the original
sedimentary layering, (2) shear planes, and (3) traces of closed
crevasses (In view of later work (e.g. Sharp, 1960), I think the
case for (1) sedimentary layering was not conclusive).

The Jungfraujoch Research Party had performed one of the

~most rigorous and comprehensive Alpine glacier studies of the

pre-World War II period.

A17.4.7 EXTRUSION FLOW

Extrusion flow is the name given to any velocity field in
which the maximum horizontal velocity occurs not at the free
4upper surface, but at some depth, so that the underlying ice
flows out or is 'extruded' from beneath the overlying layer. For
the case of two-dimensional flow (plane strain) extrusion flow
is clearly impossible. There is no way to apply a retarding
forcé on the .surface ice to prevent it being carried along at
least as rapidly as the ice below (The analogy of a mortar paste
squeezed out from beneath a brick requires a large tensile
strength 1in  the bfick; tﬁe ice of én ice sheet would fail in
tension long before extrusion flow could occur). Raymond (1971)
pointed out that extrusion flow can exist in the transverse
airection of a valley glacier, because the valley walls can
provide "the retarding forbe, but in the longitudinal direction,
for all but a few implausible valley configurations, plane

strain is a good approximation, and any deviations from plane
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strain are generally insufficient to retard the wupper layers.
Nevertheless, extrusion flow has been invoked regularly over the
past 130 years by glaciologists who were unfamiliar with
Newton's laws of motion. Louis Agassiz (1840; p. 212) postulated

extrusion flow, although he realized it was merely a conjecture,
'and Tyndall and Forbes showed that the idea was untenable at the
Mer de Glace. Rink (1889), Drygalski (1938), Hess (1933, p. 113)
and Matthes (1942) thought that the west Greenland glaciers were
fed from the ice sheet by  extrusion flow. Aleschow (1930)
reported extrusion fléw in.a cirque‘glacier in the Urals, and
Gibson and Dyson (1939) invoked extrusion flow to explain the
dip of stratification planes in the Grinnell Glaéier in Montana.
The most dedicated proponent of extrusion flow in the twentieth
century was Max Demorest.

DemoreSt,'too, derived hisAfirst.ideas on extrusion flow
from a trip to Greenland (Demorest, 1937). Following ﬁis work on
striétions (1938) - to show that viscous flow existed, he
developed a four part classification scheme for all giacier
flow. Demorest justified the scheme by referencés to "the
principles Aof fluid mechanics", but he was neither a
-mathematician nor a phys{cist, and did not éublish any equations
to support his proposals. The four flow regimes were "gravity
flow", T"extrusion flow", "obstructed gravity flow", and
"obstructed extrusion flow", The criteria for each category
involved surfécé and bed‘geometry.

"Gravity flow" was the standard type of deformatign which
we associate with a viscous material on an inclined plane,

i.e. the velocity increased continuously from bed to surface.
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'AThe.’physical reasoning by which Demorest included
"extrusion flow"»ln his system was defective on several points.
He thought that hydrostatic pressure increased deformation rates
of ice lJohnston and Adams (1913) had pointed out the error in
that . view), he probably confused strain rate with velocity, and
he totally missed the force equilibrium dif ficulty (i.e. the
need for a retarding force on the upper ice surface).

"Obatructed flow" meant that sohething got in the way and
forced the streamlines to rlse away from the bed. The difference
between "obstructed grav1ty flow"™ and "obstructed extrusion
flow" was related 1in some way to the cur§ature of these

'st;eamlines.

”Although the system was physically incorrect and logically
muddled, Demorest adQettizea it effectively. Many glaciologists
who accepted ahd_quoted his ideas may later have regretted being
so uncritical.

Demorest was the theoretician of extrusion flow;
Streiff-Becker was: the' experimentalist. Streiff-Becker (1938)
had measured the surface velocity and the net anhual mass
balance each year since 1916 at a central location on the
Claridentlrn, a small cirque glacier. When Streiff-Becker
(reported by Seligman, 1947) estimated the cross-secticn area of
the channel‘ belov the observatlon site, and mult1pl1ed by the

- meaaured velocity to find the ice flux, his result was only one
i‘quarter of the balance flux calculated by multiplying the
surface area of the glacier upstream by the mass balance rate at

the observatlon 51te. Yet, the surface of the glac1er at the
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site had not risen since 1916. Streiff-Becker concluded

therefore, (for lack of any better explanations!) that there had

to be extrusion flow with a bottom current to carry away the
excess mass. This "evidence" for extrusion flow was widely
accepted for a decade, despite several obvious difficulties:

(1) The»glatier was not enclosed by walls on both s@des. It was
not clear (Seligman, 1947, p. 18i that all the flow passed
through the cross-section at the observation site; some"
firn or ice could have fallen away transversely ogfr .thé
ledge on the right margin of the glacier. "

(2) The bedrock profile and the velocity profile at the site
were incompletely known.

(3) Mass balance can be highly variable, especially in a
cirque, where turbulent winds and drifts can redistribute
snowfail."MeaSUrements at voﬁe location are  totally

inadequate to estimate the basin accumulation.

The definitive test of the extrusion flow theory was
obviously the measurement of the deformation of vertical
boreholes through glaciers. The borehole casing left in the
© Hintereis Glaéier in 1904 by Blumcke and Hess (Hess, 1933)
developed a forward slant, implyihg fhat the velocity was

greatest at the surface. Other boreholes in the Jungfraufirn

(Perutz,. 1950} Gerrard and othefs, 1952), in the Malaspina
Glacier (Sharp, 1953), in the Salmon Glacier (Mathews, 1959),
and in many other locations all gave the same result; none
supported the extrusion flow concept. Faith in an idea persists,

nonetheless. Streiff-Becker (1953) suggested that the
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Jungfraufirn borehole failed to detectﬂéxtrusion flow simply
because it had been drilled in the wrong section of the glacier.

| By the>early 1950's, some glaciol@gists were guestioning
the extrusion flow concept. The final blow to the theory came in

1952 in correspondence in the Journal of Glaciology.

J. E. Fisher (1952) objected to a statement by Nye (1951) that
extrusion flow seemed to bé impossible. In his reply, Nye
(1952[d]) showed that, for an idealized ice sheet with the
dimensions of an east-west profile of Greenland (a distance AB),
the existence of extfusion flow would reguire an unbalanced
force which would accelerate the ice such that (Nye, 1952[d],
p.‘53): |

"Starting from rest under this acceleration a particle of
ice would move the distance AB in 2 hours. Or, 1if the

acceleration were sustained for 100 years, which is not
long compared with the 1lifetime of a piece of ice in
Greenland, the ice would reach nearly one-fifth the

velocity of light."
No glaciologists, not even the non-physicists or

non-mathematicians among us, have recently postulated the

existence of extrusion flow in glaciers. .
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APPENDIX 18: STABILITY CONDITION FOR A SURGE BULGE

This appendix contains a brief discussion of - the
equilibrium condition for a monoclinal flood wave. This analysis
is well-known in the study of tidal bores (e.g. Whitham, 1974,
p. 87). I include it here because of vits relevance to the
velocity function used to simulate surges of the Steele Glacier
in Chapter 3.

Consider the propagation of a velocity change in a
continuum with a free top surface lying on a plane bed
(Figure A18.1). Behind the velocity transition. zone, the
material is a parallel sided slab of thickness he sliding
forward at velocity U,. Ahead of the transition ~zone, the
material is a simple slab of thickness h, sliding forward at
velocity U, such that |

U, > U, ' (A18.1)
The transition zone (shaded in the figure) between Xo(t) and

x,(t) advances along the characteristic. line (e.g. Whitham,

1974, p. 19)

dx = c,
dt (A18.2)
Note that U, and U, are material velocities, but ¢, 1is the

propagation velocity of the velocity transition zone. If ¢, is
véry small, matérial from behind will overt%ke the transition
region, causing a growing bulge between xokt) and x,(t). If c,
is only marginally}faster than U,, the transition zone can still
plow the slow-moving ice ahead into a growing bulge. On the

other hand, if c, is very large, there is insufficient material



FIGURE A18.1. Advancing Surge Bulge.
The transition zone (shaded) between ice moving at U, and

lce moving at U, moves downstream at c¢,. The condition for
a stable bulge is given by (A18.4).

availabie to fill the rapidly lengthening zone behind Xo(t) to
the level hy; the transition profile must flatten out. There is
a unique intermediate speed at which the profile can maintain
its steady shape (as illustrated in Figure A18.1) with no change
of  volume | in the transition zone. Considef an inertial
‘coordinate system moving at vélocity c;. Assuming no addifion or.
subtraction of mass at the top or bottom surfaces of the
éontihuum, the net ‘flux per unit width 6Q across the vertical
surfaces at x;(t) and x,(t) and into the transition zone in this
coordinate system is- |

6Q = (U,-cy) hy, - (Uyg-c,;) hy , (A18.3)

To maintain a constant transition profile, 6Q=0, and
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Uoho - Uh,

Cy =
ho - h1. . (A]804)

if ¢, exceeds this value, 6Q is negative (assuming (A18.1) is
true) and the transition profile flattens. If ¢, is less than
(A18.4), 6Q is positive, and a shock, or growing bulge forms in
the transition region.

The 1966-67 surge bulge on the Steele Glacier (Stanley,
19695 appeafed to maintain-a roughly constant height as it moved
down the glacier. There are probably physical procesées
operating in a bulge to increase its speed when the front
steepens, and to slow it down when the advancing front flattens
out..These trends tend to maintainvthe equality in (A18.4).

When the ice 1in front of the transition zone is stagnant

(U,=0) (A18.4) reduces to

ho - h1 (A18.5)

It is interesting to note that by observing the speed c, of
the bulge, the speed U, of surface features on the ice, and the
height (ho-h,) of the bulge, it is possible to obtain an

estimate of the ice thickness h, from (A18.5).
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" APPENDIX 19: STEELE GLACIER TRIBUTARIES

The ice flux from the ith tributary glacier is included as
a perturbation &b; to the mass balance function of the Steele
Glacier. The.fluk from ~each tributary is estimated by two
methods: |
(1) The surface area of the tributary glacier is multiplied by
the average -mass balance using the wvalues in Figure 3.3 (a) as a

function of élevation. The ice fluxes calculated in this way are

listed in Table A19.1.

Number Area Average Flux
‘ balance :

m? o ma ' m? a-!
0 5. 10°¢ 2.0 10. 106
1 10. 10¢° 0.7 7. 10¢
2 8. 10° 1.0 8. 106
3 8. 10° 0.25 2. 10¢°
4 5. 10°% 1.0 5. 10°
5 10. 10¢ 0.3 3. 10¢

TABLE A19.1. Ice flux from Steele Glacier tributaries (a).
Tributary 0 is the avalanche zone on the 'north face of

Mount Steele (see Figure 3.2). Numbers 1 through 5 are ice
streams,.

- (2) The discharge of each ‘tributary is estimated by simple
dynamic considerations. Assuming a basal shear stress of one bar
for the tributary glaciers, and using the simple basal stress
estimate (1.4.25) without the error term, and with an estimated
shape factor of s=0.8, the ice thickness as the tributary enters
-‘the trunk‘ice stream can be estimated from the ice surface slope

of the tributary. Narod (unpublished, p. 23) and Narod and
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Clarke (1980) suggested that UHF radio echo sounding reflections
from within the Hazard Glacier céuld be the basal moraine of a
tributary; 1if this interpretation is correct, the tributary ice
did not change thickness significantly_as it was incorporated
into the trunk glacier. Wood (1972) reported velocity estimates
for the main channel of the Steele Glacier in 1951, and the
yidth of the inset tribdtary iée streams can be measured on 6n
1251 air photos. The product of the width w; of the inset ice
stream, the tributary thickness hi, and the main trunk ice
‘velocity v; is an estimate of the tributary discharge Q;.

Q =wwvh
i i i i (A19.1)

These estimates are shown in Table A19.2. This estimate aésumes
that the flow rates given by Wood (1972) are applicable near the
margins of the channel, and that and that the tributaries flow
at a steady rate. In fact, the onlonbsérvations of plug flow on
the Steele Glacier are during the surge (Stanléy, 1969), and,
from the moraine pattern on the 1951'air photos, there is some
evidence for irregular flow of tributary (4) in the late 1940's.

Both methods give, at best, order of magnitude estimétés of
tributafy discharge. The balance-area method gives _consistently
larger flux estimafes. The values in Table A1§.2 may be iess
reliable. The tributary streams may be deeper and narrower in
the main channel than 1in their own valleys, or they méy have
been deformed by thé'episbde of rapid sliding (Wood, 1972) in
the late 1930's. If the moraine configuration on the 1951
photographs reflects the geometric conditions during a fast flow

episode, the rapid (and unknown) wvelocity during the advance



459

No Slope- Depth Inset Speed Flux
width

tan(a) m m ma-' m3 a-'
1 0.08 175 750 30. 3.9 10°
2 0.13 105 200 30. 0.6 10°¢
3 0.10 140 200 - 28. 0.8 10°
4 0.20 707 300 - 25, 0.5 10¢
5 0.13 105 500 25. 1.3 10¢

TABLE A19.2. Ice flux from Steele Glacier tributaries (b).
The slope of the tributary upstream from the confluence
with the main channel is measured from the 1:25,000 map
(Topographic Survey; based on 1951 air photos). The ice
depth is obtained from the slope assuming a basal shear
stress of one bar, and assuming the thickness is not
greatly changed as the tributary ice enters the main
channel. The velocity estimates (1951) for the main channel
are from Wood (1972). The flux estimates are the product of
depth, width and speed of the inset tributary ice stream.
would be a more appropriate estimate than the speed for 1951
from Wood (1972). I have used values intermediate between those
in Tables A19.1 and A19.2 to calculate additional terms 6b; for
the mass balance using the relationship

&b = Q /(W M)
i i i1 » (A19.2)

Q; is the discharge of tributary i, W; 1is the :width of the
Steele at the confluence, and M is the width of the tributary,
i.g; the length along the main Steele ice stream within which
the flux from the tributary must be absorbed. The solid cufve in
Figure 3.3 (a) shows the mass balance with the tributary terms
6b; included. Table A19.3 summarizes the contribution of the
tributaries to the mass balance. Incorporating tr{butaries into
the mass balance adequately represents their effect on the bulk
flow of the glacier, but it introduces an error into the

trajectory calculations, because it assumes that the tributary
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No X Q W M &b
1 i i 1 1
km m? a-! m m ma'

0 2. 9. 106 3200, 4000. 0.7
i 1. 4, 106 2400, 1000. 1.7
2 13. 4, 10°€ 2500. 1000. 1.6
3 15. 1.5 1068 2800. 800. 0.7
4 24. 3. 10°8 1750, - 550. 3.1
5 27. 2.5 fo¢ 1750. 800. 1.8

TABLE A19.3. Tributaries: effect on mass balance.

mass

Xi{ is the distance from the bergschrund of the main ice
stream, Qi is the discharge of the ith tributary, W; and M
are the widths of the Steele and the tributary, and &b; is
the term added to the mass balance over a distance 'M; to
include the flux Q;. Due to the discrete mesh increment AX,

6by may be smaller and be applied over a larger d1stance M{
in the computer model.

is added to the glacier surface; in fact, the tributaries

add ice only along the'glacier margins.



