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Abstract 

Present computing power allows fine-resolution numerical weather prediction models to 
resolve meso-gamma flows within individual valleys. Such resolution is critical for moun­
tainous British Columbia, because the valleys contain most of the population centers, 
industries, and transportation routes. Accurate high-resolution forecasts depend on accu­
rate initial fields from which to start. To this end, dense local surface weather observations 
should be utilized to supplement the existing coarse-resolution Eta model analysis, while 
keeping computational costs of data assimilation reasonable for local mesoscale modeling. 

This dissertation develops a technique that allows the creation of a new anisotropic 
background-error correlation model for complex terrain, which horizontally spreads surface 
weather observations along circuitous valleys. The technique, called the mother-daughter 
approach, is based on first-order boundary-layer characteristics in mountainous terrain. 
The approach is further refined to account for land-sea anisotropy, and to treat mountain-
top observations differently from valley observations. The resulting improved analysis from 
combining the detailed surface analysis with pseudo upper-air data from the Eta model 
analysis is used to initialize a high-resolution forecast model. 

The mother-daughter approaches are tested and compared with two existing methods, 
using virtual and real observations over different domains in mountainous British Columbia. 
It is found that the mother-daughter approaches outperform the other methods. The 
coastline refinement adds value to the original mother-daughter approach in maintaining 
thermal contrast across coastlines. 

Numerical experiments are performed to assess the impacts of assimilating surface ob­
servations in complex terrain on subsequent forecasts of near-surface parameters. Better 
skill in predicting near-surface potential temperature is found when surface information is 
spread upward throughout the whole boundary layer instead of at only one model level. Ex­
perimental results show improvement on subsequent near-surface forecasts of the variables 
(e.g., temperature and humidity) that are directly assimilated into the model. However, 
the assimilation forecast run tends to worsen the forecasts of near-surface winds, which 
were not assimilated. These findings are confirmed by operational runs, and only minor 
differences are found. 

In summary, a method is devised to bring local surface weather observations in complex 
terrain into a high-resolution forecast model. Suggestions are made to also assimilate 
surface-wind data. 
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Chapter 1 

Introduction and literature review 

1.1 Brief introduction to numerical weather predic­
tion 

Numerical weather forecasts are made by computers using numerical techniques to solve the 
fluid-dynamic and thermodynamic equations that govern the atmospheric evolution. From 
the first operational numerical weather forecasts in the late 1950s, the skill of numerical 
weather prediction (NWP) has improved steadily. Improvements have come by using much 
finer numerical resolution, more accurate finite-difference or spectral numerics, improved 
model physics, and improved initial conditions (Kalnay 2003). The increased availability 
of atmospheric observations has also helped. 

Increasing numerical resolution is extremely computationally expensive. The additional 
computing resources needed to run a model with doubled horizontal resolution increase by 
a factor of 23. The spatial resolution of NWP models is always limited by computer power. 
However, the resolution is crucial to the accuracy of a numerical model. Generally speaking, 
as the resolution increases, the spatial truncation error decreases and the accuracy of the 
model increases. In order to improve numerical forecasts, NWP has always pushed the 
limits of available computing resources. 

As a result of continuously increased computer power, operational (daily, real-time) 
model resolution has increased over last 50 years from a horizontal grid spacing of about 
400 km in the late 1950s to current ones of order 10 km. For example, the current version 
of the U.S. National Centers for Environmental Prediction (NCEP) Eta Model is run at a 
horizontal grid spacing of 12 km, and the current version of the Canadian Meteorological 
Centre (CMC) short-range regional model is run at 15-km grid spacing. Near future trends 
will be implementation of regional models with a horizontal grid spacing of order 1 to 5 km 
in major operational centers. 

Meanwhile, real-time NWP has spread from the major operational centers to many 
regional mesoscale modeling groups (Mass and Kuo 1998). Most of the local mesoscale 
modeling groups use the NCEP Eta model or Global Forecast System (GFS) analysis as 
a start point, and do not have a data assimilation procedure of their own. A horizontal 
grid spacing of less than 10 km is currently employed among some of these groups, such as 
the University of British Columbia and University of Washington. High-resolution NWP 
forecasts are useful, such as for local users including air-quality modelers, hydrological 
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modelers, forest-fire fighters, etc. 
Even though the improvement in overall skill of NWP forecasts due to very-high res­

olution modeling compared to other forecasting approaches (e.g., ensemble forecasting) is 
still an open question (Mass et al. 2002), there are definitely needs for very-high resolution 
in mountainous regions or in regions where geographically driven diurnal circulations are 
important. This has been demonstrated by various studies (McQueen et al. 1995; Doyle 
1997; Colle and Mass 1998; Colle and Mass 2000; Rao et al. 1999; Davis et al. 1999). 

Obviously, increasing only resolution is not enough to improve the model forecasts. 
Initial conditions, model physics for very high-resolution grids, and limited predictability 
also affect model skills. This study addresses the issue of initial conditions. 

1.2 Overview of data assimilation 
Numerical weather forecasting is an initial-value (and boundary condition) problem. To 
make a weather forecast, one must start with observations of the real weather. The more 
accurate the estimate of the current atmospheric state (initial conditions), the higher will 
be the skill of the NWP forecasts into the future. 

Data assimilation (DA) is the sophisticated combination of a numerical model and 
diverse observations, possibly sampled at different times/intervals and different locations. 
The purpose of DA is to determine as accurately as possible the state of the atmospheric 
(or oceanic) flow using all the available information (Talagrand 1997). With the data-
assimilation technique, the observations can also be used to improve boundary conditions 
and to estimate parameters in a physical parameterization scheme. 

1.2.1 Types of data assimilation 
Depending on whether the forecast error covariance is static or evolving, data-assimilation 
methods that are commonly used in meteorology can be categorized into two types: tra­
ditional and advanced. 

Traditional data assimilation works in an intermittent way, and deals with observations 
in small batches at a given time. It usually begins with an objective analysis from all 
available information. An initialization step is then performed and the initialized state is 
used as an initial condition for the next short-term forecast. Output from the forecast are 
used as a first guess for the next analysis. 

This type of data assimilation evolved from a purely space-interpolation method in the 
late 1940s, to empirical methods, and then to statistics-based approaches (Daley 1991; 
Kalnay 2003). In the purely space-interpolation method, a polynomial function is usually 
used to fit a given data set over a region of grid points. The empirical methods, including 
the Successive Correction Method (SCM) (such as the Cressman scheme) and the Barnes 
scheme, determine the relative weights for the influence of each observation on a grid 
point by prescribing an empirical function that decreases with the distance between the 
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observation and the grid point. In the statistics-based methods, the weights for observation-
minus-background increments are dependent upon statistical information about the errors 
in the background (or first guess) and in the observations. 

Optimal Interpolation (01) (Daley 1991) is a statistical analysis method based on the 
least-squares estimation. The successive-correction method of Bratseth (1986) was proven 
to converge to the 01 analysis. Let x represent the state vector of all grid points, and y 
represent the vector of all observations. The 01 analysis x a is then the background X& plus 
a weighted difference between the observation y 0 and the "observed first guess" Hfo). 
The least-squares analysis equations are summarized as 

x a = x b + W(y 0 - tf[x6]) = x b + W d (1.1) 
W = B H T (R + H B H T ) _ 1 (1.2) 
P a = ( I -WH)B (1.3) 

where d is the vector of observational increments or innovations, B and R are background 
error covariance and observational error covariance matrices, respectively. The observa­
tional operator H with its linear counterpart of H transforms the background into the 
observed first guess. The analysis increments are defined by the differences x a — x b. 

The optimal weight matrix W is obtained by minimizing the analysis error covariance 
P a using a least-squares method under the following assumptions: 

• The background and observations are unbiased. 

• Observation and background errors are uncorrelated with each other. 

• The background is a good approximation of the true state. 

• The observational operator can be linearized. 

The three-dimensional variational (3D-Var) approach (Bouttier and Courtier 1999; 
Kalnay 2003) is the variational version of the least-squares analysis. The optimal analysis 
x a is obtained through a variational approach by minimizing a cost function. The cost 
function of the analysis is defined as the distance between the state vector x and the back­
ground x& (weighted by the inverse of the background error covariance B) plus the distance 
to the observations y 0 (weighted by the inverse of the observational error covariance R): 

J(x) = l- [(x - X f c f B - ^ x - xb) + (y0 - H(y))Tn-\y0 - tf(x))] (1.4) 

The 3D-Var solution, through the minimization of the cost function above, is proven to 
be mathematically equivalent to the 01 solution through the least-squares determination of 
the weight matrix W (Bouttier and Courtier 1999; Kalnay 2003), as long as the underlying 
hypotheses (i.e., linearization of the observational operator and Gaussian errors with zero 
mean) are justified. 

One advantage of 3D-Var is the ease to include balance constraints (e.g., geostrophic, 
hydrostatic) as an extra term in the cost function. These constraints are not appropriate 
for the analysis of surface observations. Another advantage of 3D-Var is the convenience 
to directly assimilate data sources (e.g., satellite radiances and radar reflectivities) that 
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are indirectly related to the model variables. The surface observations considered in this 
study are all directly related to the model variables; hence, 3D-Var holds no particular 
advantage. 

In 01 (Daley 1991), in the Bratseth (1986) scheme, and in 3D-Var method (Laroche 
et al. 1999; Kalnay 2003), the background error covariance matrix B is estimated only 
once, and is assumed to be statistically stationary. This type of data assimilation is 
computationally reasonable for local, real-time NWP groups. 

A d v a n c e d data ass imilat ion w i t h evolving forecast error covariance works in a 
continuous (or almost continuous) way, and considers observations that are distributed in 
time. Variabilities in forecast errors are accounted for in this type of data assimilation, 
which includes the Kalman filter (KF) and four-dimensional variational (4D-Var) methods. 
Details about various versions of K F method and 4D-Var can be found in Bouttier and 
Courtier (1999) and Kalnay (2003). Summarized here are the main features of each method. 

The K F and its extended version (EKF) (Kalnay 2003; Gauthier et al. 1993) for non­
linear cases consist of two steps: a forecast step and an analysis step. The algorithm in 
the analysis step is very similar to that in Ol [see Eqs. (1.1), (1.2) and (1.3)] except for 
different notations and terminology. For example, the optimal weight matrix W is replaced 
by the Kalman gain K . The essence of the K F or E K F lies in the forecast step, in which 
the forecast or background error covariance is predicted by the forecast model or tangent 
linear forecast model, the adjoint model and the system error covariance. The forecast 
step also advances the forecast from each new analysis to provide a background for next 
analysis. The computational and storage costs of the K F or E K F are extremely expensive. 
Even though the forecast error covariance can be predicted explicitly in the K F or EKF, a 
correct specification of the system error covariance is problematic. 

Ensemble Kalman filtering (EnKF) (Houtekamer and Mitchell 1998, 2001), one simpli­
fication of the EKF, avoids the estimation of the system error covariance by approximating 
the forecast error covariance from an ensemble of data-assimilation cycles. Each member 
of the ensemble data assimilation assimilates the same observations, but with different 
random perturbations added. More ensemble members usually lead to more statistically 
significant results. However, there is a trade-off between the number of ensemble members 
and the computational costs. 

The 4D-Var (Rabier et al. 2000) is a simple but important generalization of 3D-Var, 
which includes the time dimension and a forecast model. The essence of 4D-Var is to 
minimize the difference between observations and model forecasts over a finite time pe­
riod, in addition to minimizing the difference between the analysis and background at the 
beginning of a time interval. If the forecast model is assumed to be perfect (which is not 
true in reality), then it is used as a strong constraint. When the forecast model is used 
as a weak constraint, the system error covariance matrix has to be estimated as in K F or 
EKF. 

This type of data assimilation is certainly the direction of the future. But at present, 
the computational cost for its real-time applications is well beyond what the local modeling 
groups can afford. 
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1.2.2 Error covariance 
For any of the statistics-based methods, the analysis quality depends crucially on a correct 
specification of the observation and background error covariance [B and R in (1.2)], because 
B and R determine the magnitude of corrections applied to the background. The observa­
tion error variances can be obtained from instrument error estimates. If the measurements 
are independent, observation-error correlations can be assumed to be zero. Hence, the ma­
trix R is often diagonal. This holds true for surface observations. In least-squares analysis 
algorithms, only the ratio of the observation to background error variances is important. 
The ratio determines to what degree the analysis will converge toward the observations. 
Comparatively, the specification of background-error correlations (standardized covariance) 
is most important, and yet a difficult problem. 

Bouttier and Courtier (1999) detailed several reasons for the importance of background-
error correlations. Two of them are summarized here: 1) in data-sparse areas, the obser­
vation information is spread out based on the spatial structure of background-error cor­
relations; 2) in data-dense areas, background-error correlations controls the smoothing of 
the observed information in the presence of discrete observations. 

Literature shows that there exist several ways to estimate background error covariance. 
The first method is the observational method (Hollingsworth and Lonnberg 1986, Mitchell 
et al. 1990), which is also called the innovation method. It is based on the use of innovations 
(the differences between the short-range forecasts and the observations). Reliable estimates 
can be obtained only in a dense and large observation network over a long time period under 
the assumption of uncorrelated observations. This method requires dense observations at 
each valley and mountain, if it is used in complex terrain. 

The second method is to use a lagged-forecast approach [also called the National Me­
teorological Center (NMC) method] (Parrish and Derber 1992). This approach is achieved 
by first forming differences between two forecasts valid at the same time, but started from 
initial conditions at different times. The forecast differences are then assumed to be rep­
resentative of the forecast errors. But the theoretical foundation of this approach is not 
clear at present (Bouttier and Courtier 1999). Complex terrain would also complicate this 
method, as forecast errors arise also from misrepresentation of real terrain in NWP models. 

The third way is to employ candidate correlation models defined by analytic functions, 
such as a Gaussian function (Daley 1991). Al l the three methods above give stationary 
background-error correlations. Time- and flow-dependent structure functions can be es­
timated explicitly by Kalman filter (Gauthier et al. 1993), implicitly by 4D-Var methods 
(Thepaut et al. 1996), or approximated in the ensemble Kalman filter (EnKF) (Houtekamer 
and Mitchell 1998, 2001). The computational costs associated with K F , 4D-Var and EnKF 
are high. 

Finally, as pointed out by Bouttier and Courtier (1999), " meteorological common sense 
can be used to specify error statistics, to the extent that they reflect our a priori knowledge 
of the physical processes responsible for the errors". 

The background error covariances are often assumed to be isotropic in practical imple­
mentation of data assimilation (except for computationally expensive K F and 4D-Var). 

Isotropy, however, is a questionable assumption for mesoscale analyses or for analyses 
in mountainous/coastal regions. Therefore, anisotropic covariance models are receiving 
increasing attention (Benjamin et al. 1991; Desroziers 1997; Purser et al. 2003; Liu and 

5 



Xue 2005; Liu et al. 2005). More anisotropic covariance models to account for terrain 
effects are reviewed in the next section. 

1.3 The use of surface observations in complex terrain 
and related problems 

The current global observing system supplements conventional rawinsondes and surface 
data with various remote sensing and in-situ measurement systems [e.g., wind profilers, 
improved satellite soundings, Doppler sodars, Doppler lidars, NEXRAD (Next Generation 
Weather Radar) Doppler radars, ASOS (Automated Surface Observing System), ACARS 
(Automated Commercial Aircraft Reporting System) and GPS profiles]. Meanwhile, re­
gional surface data are available from many local agencies that deploy surface stations for 
their own purposes, but which are not included in the routine data assimilation performed 
at the national weather centers. 

Among them, surface observations, being frequent and dense, are valuable data sources 
for mesoscale data analysis, assimilation and forecasting (Yee and Jackson 1988; Stauffer 
et al. (1991); Miller and Benjamin 1992; Ruggiero et al. 1996). Ruggiero et al. (2000) 
demonstrated that a combination of continuous assimilation of satellite image data and 
intermittent assimilation of hourly surface observations led to a better depiction of cir­
culations caused by cloud-shading contrasts. It was also found that assimilating surface 
data into NWP models led to significant reduction in the atmospheric boundary layer (BL) 
modeling errors (Alapaty et al. 2001), from which subsequent air-pollution modeling may 
benefit considerably. 

To extract as much information as we can from all available data sources is one of the 
challenges in data assimilation. Remotely sensed data such as from radar and satellite have 
greatly improved the availability and accuracy of 3-D, nearly time-continuous, mesoscale 
observations. There is now a growing literature on assimilating remotely sensed data into 
NWP models. Advances here will surely improve short-term forecasts in regions where this 
data is readily available and accessible. 

However, in mountainous regions, satellite and radar data have inherent limitations. 
Radars have very limited range in complex terrain, such as in mountainous British Columbia 
(BC), where low-level blocking can be severe. Satellites have difficulty measuring the atmo­
sphere below clouds, which means the BL is often not well sampled. In contrast, surface 
observations provide direct measurements of surface weather conditions and also allow 
inference of conditions aloft within the BL. 

Assimilating surface observations in complex terrain into NWP models currently re­
mains a relatively unexplored area for improving the initial conditions of NWP models. 
This is particularly true for mountainous British Columbia, where high-resolution NWP 
models are needed to resolve small-scale weather in each valley. 

This dissertation focuses on assimilating surface weather observations in complex ter­
rain into a very high-resolution NWP model, with emphasis on reducing the near-surface 
model prediction errors. Several problems arise from assimilating surface observations 
into NWP models. Problems associated with horizontal and vertical spreading of surface 
observations are discussed in the next subsection. 
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1.3.1 Horizontal spreading of surface observations 
Horizontal spreading deals with horizontal interpolation of surface observations from irreg­
ularly distributed locations to uniform grids. The horizontal spreading of surface observa­
tions is often complicated by orographic influences. In BC, surface weather stations are 
usually located in deep valleys, while few surface stations are located at high elevations, 
such as at ski areas. Both surface background error covariance and representativeness of 
surface observations are largely affected by heterogeneous terrain. One observation might 
be very poorly represented by its neighboring observations, even at very short distance if 
they are in two different valleys that are separated by a high ridge. An isotropic assump­
tion for the background error covariance (depending on traditional straight-line distance 
only) is clearly not valid in mountainous regions. 

Figure 1.1 illustrates examples of interpolation problems in mountainous regions (in a 
terrain-following coordinate system). The first example is related to the spreading of valley 
observation (ol) into the grid points (e.g., B) in the same valley and into the grid points 
(e.g., A) with differing elevation. Even though the horizontal distance from station ol to 
point A is almost the same as that from ol to point B, the information received at A from 
ol should be different from that received at B. 

The second example is associated with interpolation of data from a valley (e.g., o2) and 
along a ridgeline (e.g., o3) that may experience different flow regimes. This means that 
the information received at point C should be mainly from observation o2, rather than 
observation o3, even though the horizontal distance from station o2 to point C equals that 
from station o3 to point C. 

The third example is interpolation of data from two adjacent valleys that are separated 
by high terrain. As illustrated in Fig. 1.1, point B is located in the middle between station 
ol and o2. Station ol and point B are located in the same valley, whereas station o2 is 
separated from point B by a high ridge. Isotropic background error correlations would 
result in the same contribution to point B from both observations ol and o2. This should 
not be the case, due to blocking by the high ridge (assuming high enough to exceed the 
BL top). The first two scenarios describe problems regarding elevation differences. The 
third example describes a problem of valley differences. 

A simple solution that includes elevation differences in the correlation model for a 2-D 
surface analysis is to use a vertical Gaussian decay such as is used in 3-D analyses. One 
such example is the correlation function used in the Advanced Regional Prediction System 
(ARPS) (Xue et al. 2000) Data Assimilation System (ADAS) (Brewster 1996). 

In recent years, some of the interpolation problems in mountainous regions have been 
tackled by incorporating terrain effects in different ways into background-error correla­
tion (standardized covariance) model. To study Alpine lee cyclogenesis, Lanzinger and 
Steinacker (1990) developed an objective analysis scheme that incorporated anisotropic 
correlation structures due to orography. They used the observational method to derive 
correlation models with and without mountain barriers. A rapid decrease was observed in 
the correlations computed from pairs of stations across a mountain barrier. By including 
the topographic effects, they were able to generate more realistic analyses resolving sharp 
gradients across major mountain ridges. 

In a quadratic horizontal interpolation scheme that was used for temperature analyses 
in a northern part of Yugoslavia, Vrhovec (1990) introduced a correction to the traditional 
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Figure 1.1: Schematic illustration of idealized topography within a ID domain. Filled 
triangles indicate observation locations, whereas open circles represent analysis grid points. 

straight-line distance between a weather station and an analysis grid point. The correction 
was based on the accumulated variation of topography between the two points, and also on 
the atmospheric stability. By doing so, the effective distance is increased and the correlation 
is reduced, if there is a mountain ridge (relative to the two-point averaged elevation height) 
between the two points. 

Miller and Benjamin (1992) used elevation differences (between an observation station 
and an analysis grid point) in the correlation function for potential temperature to account 
for terrain effects. 

Most recently (almost concurrent to this thesis work), Myrick et al. (2004) introduced 
in the ADAS an anisotropic term defined by a negative squared exponential function of 
the barrier height relative to a predefined scale height. This approach required searching 
for any barrier directly between each observation location and each analysis point. 

Any one of these schemes indeed solved one (but not all) of the interpolation problems 
in complex terrain, as illustrated above. The method by Myrick et al. (2004) was able to 
solve the problems associated with both elevation and valley differences. But their method 
would not be valid when a study region has circuitous valleys, such as in mountainous BC. 
The topography considered in all of studies mentioned above is much less complicated than 
that in BC, Canada. BC has a variety of landscapes from seashores, straits, and fjords to 
mountains and valleys, as can be seen in the satellite image from Terra (Fig. 1.2). Some 
valleys are narrow and long with kinks and twists (Figs. 1.3 and 1.4). Horizontal spreading 
of surface observations in such complex terrain requires a new anisotropic parameterization 
of background-error correlations. This is one of the needs that motivated my research. 
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Figure 1.2: Southwestern British Columbia and northwestern Washington as viewed from 
the Terra satellite. 



Figure 1.3: Zoomed picture of Fig. 1.2, showing the Lower Fraser Valley, Coastal Moun­
tains, and neighboring valleys north of Vancouver. 
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Figure 1.4: A typical narrow valley in the Coastal Mountain Ranges north of Vancouver, 
as shown in an aerial photo. 

1.3.2 Vertical spreading of surface observations 
Effective assimilation of single-level data depends on the physically realistic vertical extent 
over which the data are inserted into the model. Barwell and Lorenc (1985) found that the 
useful information from single-level aircraft wind data tended to be lost during subsequent 
forecasts when the information was confined to one model level. By distributing single-level 
data throughout several model levels, they achieved beneficial effects on subsequent model 
forecasts. Surface observations are available at only one terrain-following level. Therefore, 
after the surface observations are analyzed, the surface analysis must be merged properly 
with upper-air data and/or the 3-D first-guess fields. 

In a mesoscale objective analysis using the Barnes (1964) scheme, Yee and Jackson 
(1988) blended surface and rawinsonde observations in the BL by a simple technique. 
They first considered only rawinsonde observations to get a background analysis, and then 
analyzed both surface and rawinsonde observations at the ground level. The differences 
between the two analyses at ground level were treated as mesoscale signals, which were 
spread vertically by a linear weighting function of the distance from the ground. But the 
vertical extent over which the surface data influenced the background rawinsonde-scale 
analysis was chosen arbitrarily. Benjamin (1989) was able to vertically distribute the 
influence of surface observations by using a vertical correlation function of the potential 
temperature difference in an isentropic coordinate system. 

Stauffer et al. (1991) investigated methods to best use single-level surface data by as­
suming that surface wind and mixing ratio observations can be applied throughout the 
model BL according to idealized BL behavior. Their conceptual BL model, adopted from 
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Garratt et al. (1982) who formulated an idealized BL model based on observations at the 
extremely flat locations of Minnesota and Wangara experiment, might not be appropri­
ate for mountainous terrain. Ruggiero et al. (1996) introduced an alternative physical 
approach. They performed a surface analysis at the lowest-level of model. The surface 
analysis increments at the lowest level are then used to adjust the other model layers 
within the BL. This was achieved by integrating the diffusion equations for the analysis 
increments. However, the simple local turbulent scheme used in Ruggiero et al. (1996) 
was not able to adequately propagate the analysis deviations at the lowest model layer 
throughout the BL. 

1.4 Objectives of the thesis 
The Mesoscale Compressible Community (MC2) model (Benoit et al. 1997; Laprise et al. 
1997) has been running daily for eight years at the University of British Columbia (UBC) 
since 1997. A 256-processor IBM supercomputer purchased in 2001 allows fine-resolution 
NWP models to almost resolve small mesoscale flows within individual valleys. Such reso­
lution is important for mountainous BC, because in steep mountainous terrain, the valleys 
contain most of the population centers, industries, and transportation routes. Currently, 
the daily, real-time forecasts at UBC start with 108-km grid spacing, initialized from the 
NCEP Eta model analysis, and then one-way nest down to 36, 12, 4, and 2 km. 

The two finest grids can resolve different weather conditions in separate neighbor­
ing valleys and have the potential to increase the accuracy of point forecasts. These 
high-resolution forecasts from UBC have been used by regional air-quality, transportation, 
forestry and other BC agencies. These agencies in turn help by providing a data-rich net­
work of surface weather observations for statistical verification and potential initialization 
of high-resolution numerical forecasts at UBC. Recently, high-resolution weather forecasts 
driving air-quality models have also been tested in daily operations at UBC (Delle Monache 
et al. 2004a,b). 

This thesis explores ways to fully utilize dense local surface weather observations, such 
as are available in mountainous BC, to supplement the existing coarse-resolution 3-D Eta 
model analysis, while keeping computational cost reasonable for local, real-time NWP 
forecasting. The new, improved analyses are then used to initialize the high-resolution 
NWP models. More specifically, the objectives of this thesis are as follows: 

• Develop a new anisotropic background-error correlation model for use in horizontally 
spreading surface weather observations in complex terrain. 

• Merge dense local surface weather observations in the form of a detailed 2-D surface-
data analysis into the coarse-resolution 3-D Eta model analysis, to create more ac­
curate initial conditions for high-resolution numerical forecasts. 

• Examine the impacts of assimilating surface weather observations on subsequent 
numerical weather forecasts. 

• Incorporate this new approach into daily operational forecasting for an independent 
test. 
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More details about the MC2 model, the objective analysis tool, and the surface obser­
vations are given in Chapter 2. Chapter 3 details the technique that allows the creation 
of a new anisotropic correlation model for horizontally spreading surface observations in 
complex terrain. The new approach is then compared with two other existing methods 
in Chapter 4 through case studies of surface-data analysis in mountainous and coastal 
terrain. Chapter 5 describes how to merge the detailed surface-data analysis into the 
coarse-resolution Eta model analysis, and how to initialize a high-resolution model from 
the resulting improved analysis. In Chapter 6, with case study examples, the new approach 
is further tested and compared with the other existing methods for a different domain 
over BC. The impacts of various data-assimilation strategies on subsequent near-surface 
weather forecasts are also examined. Chapter 7 contains the results from daily, near-real­
time operational data-assimilation runs. This is presented as an independent test for the 
newly developed data-assimilation system that utilizes dense local surface observations in 
mountainous BC. The summary and discussions are given in Chapter 8. 
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Chapter 2 

Experimental environment 

All necessary tools and procedures for the numerical experiments are given in this chapter. 
This includes the numerical forecast model and domains (section 2.1), the objective analysis 
tool (section 2.2), surface weather observations (section 2.3) for the case studies and near-
real-time operational runs, and statistical verification measures (section 2.4). 

2.1 The numerical model and domains 
The numerical weather prediction (NWP) model into which the surface observations are 
assimilated is the Mesoscale Compressible Community (MC2) model version 4.9.1. This 
model, originally developed by the late Andre Robert and his colleagues (Robert and 
Yakimiw 1986), is based on a fully elastic, semi-implicit, semi-Lagrangian approach (Tan-
guay et al. 1990). MC2 is a nonhydrostatic, primitive-equation model. The model solves 
the Euler equations on a limited-area Cartesian domain of the polar stereographic projec­
tion with time-dependent nesting of the lateral boundary conditions, using the strategy 
developed by Yakimiw and Robert (1990). An Asselin-Robert time filter (Asselin 1972) 
is used to control high-frequency time oscillations. This model is one-way self-nested. 
Namely, nesting values for the coarsest domain often consist of output data obtained from 
another larger-scale model such as the Eta model. Then, output data from a coarse-mesh 
run of the MC2 model is used as input to a subsequent run at finer resolution. The MC2 
model adopts vertically stretched Gal-Chen terrain-following coordinates to obtain greater 
resolution close to the surface. The Gal-Chen terrain-following coordinates (Gal-Chen and 
Somerville 1975) are defined with the following relation: 

z-h0(X,Y) 
Z(X,Y,z) H (2.1) 

_H-h0(X,Y)\ 
where z is geometric height, H is the top of the model atmosphere, £ is the height in 
Gal-Chen units of length, and ho(X, Y) is the topographic height that is a function of the 
independent variables X and Y. 

The MC2 model utilizes the evolving R P N / C M C physics package. A detailed descrip­
tion of the dynamical framework of MC2 is made by Laprise et al. (1997), while a thorough 
description of the full MC2 model is given in Benoit et al. (1997). That paper was accu­
rate for version 4.1 of the MC2. All the experiments reported here use version 4.9.1. The 
essential model physics are summarized in Table 2.1. 
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Table 2.1: The MC2 model physical parameterization schemes 

PBL based on 1.5 order T K E (Benoit et al. 1989) 
Surface layer based on similarity theory 
Force-restore for land surface processes (Deardorff 1978) 
Fritsch/Chappel deep convection scheme (Fritsch and Chappell 1980) 
Radiation schemes interactive with clouds 
(Garand and Mailhot 1990; Fouquart and Bonnel 1980) 
Explicit cloud water/ice prediction scheme (Sundqvist et al. 1989) 

For this dissertation research, the model is configured with five one-way self-nested 
grids with horizontal grid spacings of 108, 36, 12, 4, and 2 or 3 km. Figure 2.1 shows 
the first 4 grids. The configurations of the 108, 36, 12, 4, and 2 km grids are the same 
as those for current daily forecasts at UBC. The NCEP Eta model analysis and forecasts 
from the "104" grid (described in more detail in Appendix A) are used as the initial and 
boundary conditions for the coarsest grid. We start from this Eta forecast because the 
104-grid output extends far enough west over the Pacific to reduce upstream boundary 
errors, and also because this output is continuously available and accessible via Internet in 
a timely manner. 

The 108-km and 36-km meshes have 87 X 71 and 167 X 151 grid points, respectively. 
These two meshes have 19 layers in the vertical, with the model top at 25 km. The 12-km 
mesh has 257 X 207 points and 27 layers in the vertical, with the model top at 24 km. 
The 4-km, 2-km and all the 3-km meshes (Figs. 2.2 and 2.3) have 35 layers (18 below 
1500 m) in the vertical, with the model top at 23 km. Figure 2.4 shows the 35 vertically 
stretched levels for thermodynamic variables. The first "thermodynamic" level is located 
at 5.3 meters above the model ground, while the first "momentum" level is located at 10.6 
meters. The objective analyses of surface potential temperature and specific humidity, 
described in later Chapters, are performed at the first thermodynamic level. 

Some numerical experiments are performed on the bigger 3-km domain (Fig. 2.2). 
Al l other data-assimilation (DA) experiments are performed on the smaller 3-km domain 
(b) (Fig. 2.3) that is centered at Vernon, BC. Near-real-time operational DA runs are 
performed for the 2-km mesh in Fig. 2.2. For all DA runs on 3-km or 2-km meshes, five 
grid points are cut from each side of the analysis domains shown in Fig. 2.3 or Fig. 2.2, to 
reduce the effects of lateral boundary errors. Namely, the domain for DA runs has slightly 
fewer grid points than the domain for the first guess and analysis. 

The 3-km domain in Fig. 2.3 differs from the one in Fig. 2.2 not only in domain loca­
tions, but also in the preparation of the initial geophysical surface fields, i.e., topography 
and landuse data, for historical reasons. The terrain fields for the bigger 3-km domain in 
Fig. 2.2 were provided and prepared by RPN/CMC using the Barnes (1964) technique. 
The software package to generate the geophysical fields for the MC2 model was made 
available by R P N / C M C to UBC, before we started to do case studies in Chapter 6. The 
terrain elevations for the 3-km domain (b) in Fig. 2.3 were generated by applying a three-
point average to the 30-arc-second (approximately 1 km) resolution U.S. Geological Survey 
(USGS) digital elevation model (DEM). For all grids, terrain smoothing should be applied 
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Figure 2.2: MC2 grid domains for Ax = 4, 3, and 2 km. MC2 4-km output provides nesting 
files to initialize 2- and 3-km runs. MC2 at 3 km is run to provide first-guess fields for 
analysis (Chapter 4). MC2 at 2 km is run to provide a reference atmosphere to generate 
virtual surface observations for analysis and verification (Chapter 4). In Chapter 7, MC2 
at 2 km is run to provide first-guess fields for analysis, and also for assimilation runs after 
analysis. But five grid points are cut from each side of the analysis domain shown here. 
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Figure 2.3: Another MC2 grid configuration for Ax = 4 and 3 km. The 3-km domain 
(b) is centered at Vernon, British Columbia. MC2 4-km output provides nesting files to 
initialize the 3-km run. MC2 at 3 km is run to provide first-guess fields for the analysis, 
and also for assimilation runs after analysis. But five grid points are cut from each side of 
the analysis domain shown here. 
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Figure 2.4: Vertical distribution of the computational levels for thermodynamic variables 
in the MC2 model for the grids having Ax = 4 km, 3 km and 2 km. Levels are chosen to 
ensure greater resolution in the bottom part of the troposphere. 
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to make the terrain-elevation resolution consistent with the horizontal grid spacing. The 
MC2 considers this modelled elevation to be the surface of the Earth, even though the 
modelled elevation may be locally very different from the real terrain elevation. 

2.2 The objective analysis tool 
The Advanced Regional Prediction System (ARPS) (Xue et al. 2000) Data Assimilation 
System (ADAS) (CAPS 1995, Brewster 1996) in ARPS5.0.0 Beta8 is used as an objective 
analysis tool. The ADAS employs the successive-correction method of Bratseth (1986), and 
thus requires less computational time than other advanced methods (i.e., EnKF and 4D-
Var). This advantage makes it possible to perform near real-time, high-resolution analyses 
over most of BC, Canada, using the moderately powerful computers ^available at UBC. 

2.2.1 General descriptions 
The ADAS was developed by the Center for Analysis and Prediction of Storms (CAPS) 
at the University of Oklahoma. The ADAS is a 3-dimensional mesoscale analysis system 
that ingests and analyzes meteorological data coming from different observational sources 
including radar, single-level observations (typically surface observations) and multiple-
level observations such as upper-air soundings. An ADAS surface-only analysis can be 
performed quite efficiently. The ADAS is easily implemented. More importantly, the 
ADAS is attractive for high-resolution analysis as it performs analysis on model levels, 
rather than on pressure levels. 

The ADAS combines observations with a background (first guess) by using the successive-
correction method of Bratseth (1986), which gives an analysis that converges to an optimal 
interpolation (01) analysis. Like the 01 scheme, the Bratseth scheme accounts for the rel­
ative error between the observations and the first guess. Different from the OI scheme, this 
scheme iterates without the inversion of large matrices. Hence, this scheme requires less 
computer time and memory compared to the 01 scheme. This type of scheme has been 
used successfully in research and operational mesoscale modeling (e.g., Sashegyi et al. 
1993; Ioannidou and Pedder 1999; Brewster 1996; Ruggiero et al. 1996, 1999). See section 
2.2.2 for more details about Bratseth scheme used in the ADAS. 

The ADAS has gained wide usage in research and operational forecasting. Research 
applications of the ADAS in northwest Utah for a strong cold-front passage (Ciliberti 
et al. 1999) and sensitivity experiments (Ciliberti et al. 2000) showed that realistic local and 
mesoscale structures could be analyzed with the aid of local data. Operational applications 
included short-range weather forecasting support over east-central Florida (Case et al. 
2002), weather support for the 2002 Winter Olympics (Horel et al. 2002), and near-real­
time applications to complex terrain in the western United States (Lazarus et al. 2002). 
For applications in complex terrain, Lazarus et al. (2002) introduced into the ADAS a 
terrain factor for surface data 1 . The terrain factor affects only the analysis in the free 
atmosphere. More recently, Xue et al. (2003) demonstrated positive impacts of the ARPS 
data assimilation system on successfully predicting tornadic thunderstorms. 

1 This idea was expanded for 3D data (surface and sounding data) by Keith Brewster (CAPS, 2004, 
personal communication) in a newer version (ARPS5.1.0) 
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2.2.2 The objective analysis scheme 
The ADAS employs a univariate analysis scheme of a successive-correction method devel­
oped by Bratseth [see Bratseth (1986) for more details]. The Bratseth scheme works in 
an iterative fashion solving for two analysis equations: one for an analysis estimate at the 
grid point, and the other for an analysis estimate at the observation location. 

The desired analysis at the grid point x is given by 

nabs 

Fx

A(p + 1) = Fx

A(p) + £ axj [F° - Ff(p)} (2.2) 
i=i 

while the analysis estimate at the observation location i is solved by 

FA(p + 1) = FA(p) + J2 [*? ~ FfM] (2-3) 
i=i 

where F is any meteorological field to be analyzed, p, is the iteration counter, a includ­
ing a.Xj and are optimal weights for spreading data, and n0t,s is the total number of 
observations. Subscript x indicates an analysis grid point, whereas i,j are indices for 
observations. Superscripts A, O and B represent the analysis estimate, observation and 
background, respectively. Initially, F£(0) = F® and Ft

A(0) = Ff. 
The main difference between equations (2.2) and (2.3) lies in the definition of the 

optimal weights a. The grid-point analysis weight aXj is given by 

aXJ = ^ (2.4) 
rrij 

and the observation analysis weight a,,- is 

(2.5) 

where • is the spatial correlation of background errors between an analysis grid point and 
an observation location; while pfj is the spatial correlation of background errors between two 
observation locations; (a0)2 and {a8)2 are the observation and background error variances, 
respectively; Sij is the Kronecker delta (unity for j = i); and rrij is a "normalization factor," 
which is chosen to guarantee fast convergence (Bratseth 1986) as follows 

nobs 

E 
B x l ° ° 

Pjk + 83k [ 

n0b 

£ | p f * l + e 2 (2-6) 
fc=i| \ u ^ I fc=i 

Here e2 is the ratio of the observation error variance to the background error variance. 
The degree to which the analysis converges toward the observations depends on the error 
variance ratio e2. 

Equations (2.4) and (2.5) are simplified forms from the original definitions [Eqs. (15a) 
and (15b) in Bratseth (1986)] based on following assumptions: 

• The observation errors are uncorrelated with the background errors 

19 



• The observation errors are uncorrelated with each other 

• The background errors are homogeneous 

• The observation errors at each observation station are equal 

In the ADAS, contributions from different observation types are summed additively, so 
different observation errors can be specified for different observation types. In this thesis, 
only surface weather observations are used. The observation errors at each surface weather 
station are assumed to be equal (i.e., af = af = crj? = a ° ) . 

In the unmodified version of the ADAS, the spatial correlations of the background 
errors are modeled as Gaussian. 

2.2.3 Modifications 
A D A S versus M C 2 grids 

Because ADAS is a component of the ARPS, the analysis was originally designed by CAPS 
to be performed on the ARPS grid (also called ADAS grid). Their external file conversion 
program interpolated various NWS/US standard gridded data sets (e.g., RUC, Eta, and 
AVN, et. al.) to the ADAS grid. The output on the ADAS grid was then used as the 
background for the ADAS analysis. 

In this study, the MC2 model is run to provide the background (also called first guess). 
For better analysis quality, the MC2 model output are not mapped onto the ADAS grid. 
Instead, analyses are performed directly on the MC2 grid using MC2 output as first-guess 
fields. To this end, the ADAS horizontal and vertical grid definitions are modified to 
match those in the MC2 model; x and y coordinates of the model grid are modified from 
one-dimension to two-dimensions. Correspondingly, all subroutines related to x and y 
coordinates are modified. Programs were developed to read first-guess fields in RPN-FST 
format from MC2 and to write the analyzed fields in FST format. 

Qua l i t y cont ro l 

For surface observations, quality-control options include climatological checks, tempo­
ral checks, horizontal-consistency checks [Barnes (1964) technique] and observation-to-
background difference checks. Climatological checks ensure that observations fall within 
broadly acceptable meteorological bounds. The temporal checks compare two consecutive 
hourly surface data and ensure that the difference between hourly changes at an individual 
station and averaged hourly changes of all stations is less than four standard deviations. 

For those portions of our case studies with virtual observations, no quality control is 
needed. For those case studies with real observations, the horizontal-consistency checks 
and observation-to-background difference checks are turned off for the following reasons. 
The Barnes technique does not work well for quality control of fine-resolution data in 
complex terrain, because any one surface observation might not be represented well by 
nearby observations at different elevations or on the opposite side of a mountain range. In 
steep terrain, the observation-to-background difference might be large due to a discrepancy 
between the actual station elevation and the model grid-point elevation, rather than due to 
poor quality of the surface observation. We have reduced the ADAS trilinear interpolation 
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to bilinear when the first-guess fields are interpolated to the observation locations. The 
ADAS trilinear interpolation algorithm causes large interpolation errors by introducing 
"free atmosphere" background values (Lazarus et al. 2002); also, the algorithm causes 
large extrapolation errors for the surface valley stations far below the lowest model level. 

Anisotropic correlation function 

The ADAS Bratseth scheme works iteratively, updating the first guess using the difference 
between the observed values and observational estimates derived from the analysis (see 
section 2.2.2). The optimal Bratseth weights [aXj in (2.4) and a,j in (2.5)] rely on the 
spatial correlation (p) of the background errors (and on the ratio of observation error 
variance to background error variance). Over flat terrain, a Gaussian function [G(d)] is 
frequently used to smoothly reduce the correlation with distance (d), causing the impact of 
a single observation to be isotropic in the grid space around the observation [p(d) oc G(d)]. 

In mountainous terrain, this study modifies the Gaussian drop-off to be a function 
of the circuitous travel distances (s, defined later in section 3.3) from the observation to 
an analysis point [p(s) oc G(s)]. To account for terrain effects, the correlation should be 
weighted by an anisotropic term (5) that is a function of the difference between elevations 
of the observation (Za) and the analysis point (Za). By separating horizontal and vertical 
effects into two factors, an anisotropic correlation becomes 

p(s) = G(s) • S(Z0, Za) (2.7) 

One approach for anisotropic objective analysis is to utilize valley masks, within which 
valley-floor observations can be spread. However, the definition of a valley mask based on 
absolute terrain elevation alone is problematic, because in steep terrain, a valley floor in 
one part of the forecast domain might be higher than the ridge top in another. What is 
needed is a mask based on terrain elevations .relative to the observation point, regardless 
of whether the observation is in a valley or on a mountain slope or ridge top. Also, 
the word "mask" implies an on/off situation. However, a better approach is to have the 
observation-increment weight gradually fade to zero as one moves to grid points that are 
further from the elevation of the observation site, given the uncertainties in boundary-layer 
characterization. 

A mother-daughter (MD) approach is proposed in Chapter 3 to generate the verti­
cal factor (S) and the circuitous travel distances (s) for each observation station. The 
hypotheses behind the technique are also presented in Chapter 3. 

2.3 A n overview of surface weather observations 
The "Emergency Weather Net Canada", operated and maintained by the Geophysical Dis­
aster Computational Fluid Dynamics Center at UBC, exists to archive and provide timely 
and comprehensive surface weather observations for western Canada. Hourly data sets are 
combined in the Emergency Weather Net database from several agencies, including the 
BC Ministry of Transportation (MOT), BC Ministry of Forests (MOF), BC Ministry of 
Water Land and Air Protection (WLAP), Greater Vancouver Regional District (GVRD), 
Environment Canada (EC), BC Hydro (HYDR), CN Railroad (CNRL), CP Rail (CPRL) 
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Figure 2.5: A graphic display of surface weather stations over British Columbia and its 
surroundings from Emergency Weather Net Canada. This image was created by George 
Hicks, who maintains the Emergency Weather Net Canada database. 
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and UBC. This real-time weather information system makes it possible to get frequent 
and dense surface weather observations in BC for the use in data assimilation and anal­
ysis/forecast verification as well. Figure 2.5 shows available surface weather stations over 
BC from Emergency Weather Net Canada for one day recently. There are relatively more 
observations over the Georgia Basin [i.e., within the bigger 3-km domain and 2-km domain 
in Fig. 2.2] and Okanagan regions [i.e., center of the 3-km domain (b) in Fig. 2.3]. Dense 
observations result in more accurate estimates of current atmospheric state, and also pro­
vide an opportunity for verification with independent observations. That is why we choose 
to look at the Georgia Basin and Okanagan regions for the real-observation cases. 

Meteorological fields from Emergency Weather Net Canada include surface tempera­
ture, relative humidity, mean sea-level pressure (or surface pressure) and wind speed/direction. 
Observations of cloud cover are not available in the Emergency Weather Net Canada and 
thus cloud analyses are not performed. Assimilation of the moisture variable such as specific 
humidity would indirectly change the cloud formation within the model. Precipitation is 
not considered in this thesis because it is not a boundary-layer process. In addition, there 
are very few precipitation reports from Emergency Weather Net Canada. Temperature 
and moisture variables are used for both analysis and verification, while others are used 
for forecast verification only. 

Potential temperature varies smoothly over mountainous terrain when the boundary 
layer is relatively deep and well mixed (Miller and Benjamin 1992), thus it is chosen as the 
temperature variable for analysis. For case studies with virtual observations, the potential 
temperature corresponds to the temperature that a parcel would have if it were moved 
adiabatically to a reference pressure (i.e., 100 kPa). For case studies with real observations 
from the Emergency Weather Net Canada (having much fewer surface pressure observations 
than temperature observations), the potential temperature is the temperature that the air 
would have if it were brought adiabatically to sea level. The calculations presume a dry 
adiabatic (no heat exchange) lapse rate of 0.0098 °C/meter. This means that the actual 
air temperature is the potential temperature minus 0.0098 times the altitude in meters. 
Potential temperature is also the temperature variable analyzed in the ADAS. 

Specific humidity is chosen as moisture variable for analysis and assimilation into the 
MC2 model for two reasons: 1) the moisture variable in MC2 nesting data is specific 
humidity, and 2) specific humidity is a continuous variable. Specific humidity is also 
one of the moisture variables analyzed in the ADAS. To derive specific humidity from 
relative humidity, the saturation specific humidity is first calculated using the enhanced 
Teten's formula, as in ARPS (Xue et al. 2000) model. This calculation requires surface 
temperature and station pressure as input. There are very few reports of station pressure 
from Emergency Weather Net Canada. In the case of missing station pressure, mean sea-
level pressure is used to approximate station pressure according to the altimeter equation 
(standard atmosphere) for stations with elevations below 500 m. 

2.4 Statistical verification measures 
To assess the analysis skills of different analysis methods, and to evaluate forecast impacts 
of assimilating surface observations into the MC2 model, statistical comparisons of analyzed 
(or modelled) values with observed values are conducted based on following measures. 
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Let n be the total number of all the available paired data values (one observed, and 
one analyzed or modelled). The bias, mean absolute error (mae), root-mean-square error 
(rmse) and root-mean-square vector error (rmsve) are defined as: 

bias = - Y](fa,i - f0,i) (2.8) 

1 
mae = — 

n 

n 
^ ] \fa,i fc 0,1 (2.9) 

rmse — •i=l\Ja,i Jo,i (2.10) 
n 

rmsve — 
U0,if + {Va,i - (2.11) 

n 
where / is any scalar meteorological field, u and v are the eastward and northward vector 
wind components, respectively. The subscripts a and o indicate analyzed (or modelled) 
and observed values, respectively. No single error measure is the best; they all give useful 
and different information (Wilks 1995). Bias can be either positive or negative. A positive 
bias indicates a tendency to overestimate that variable. A smaller magnitude of bias, and 
lower values of mae and rmse (or rmsve), indicate a better analysis or forecast. 

Surface-data analyses of potential temperature and specific humidity are performed 
at the first thermodynamic level. Therefore, bias, mae and rmse of potential temperature 
and specific humidity are determined for analyzed (or modelled) potential temperature and 
specific humidity at the first thermodynamic level (5.3 m above model ground) against the 
observed surface potential temperature and specific humidity, respectively. Error measures 
of winds are determined for modelled winds at the first momentum level (10.6 m, after ro­
tating to the proper earth coordinates) against the observed surface winds. No height 
adjustment was conducted for any one of these variables. By choosing potential tempera­
ture as the temperature variable, effects of elevation difference are minimized. The errors 
in the elevation differences between observations and analyses or forecasts are always the 
same for all the analysis methods or assimilation strategies. 

Several other facts must be noted when comparing modeled and observed near-surface 
weather parameters. Observed values are measured at a specific spot usually in clearings 
and are mean values over a specified period of time (e.g., hourly or 10 minutes). A surface 
station might not be representative of the surrounding area. For example, a surface station 
in forests with its neighboring trees cut might not be representative of its surrounding 
forests. Modeled values are instantaneous and represent a volume-averaged value. The 
forecasts will have some statistical errors associated with these facts. Again, these errors 
are always the same for all assimilation strategies. 
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Chapter 3 

Anisotropic mesoscale 
surface-analysis method for 
mountainous and coastal terrain 

This chapter presents a technique that allows the creation of a new anisotropic correlation 
model for objective analysis of surface weather observations in complex terrain. Before de­
tailing the technique, some hypotheses are described, followed by a review of basic concepts 
of the atmospheric boundary layers (BLs) in mountainous terrain. 

3.1 Introduction 
Objective analysis transforms information from randomly spaced observing sites into data 
at regularly spaced grid-points (Krishnamurti and Bounoua 1996). It is often done by 
optimally combining observations and a short-range NWP forecast, called a first guess 
(background). Analysis schemes, such as optimal interpolation (01) (Daley 1991), succes­
sive corrections (Bratseth 1986), and 3D variational analysis (Laroche et al. 1999), require 
the specification of a covariance function to model the spatial correlations of background 
errors (see Chapter 1). The background error covariance, used to define the optimal weights 
for data spreading, is often assumed to be isotropic. 

As mentioned in Chapter 1, isotropy is a questionable assumption for mesoscale analyses 
or for analyses in mountainous/coastal regions. Therefore, flow-dependent or anisotropic 
covariance models are receiving more attention, such as by introducing isentropic (Ben­
jamin et al. 1991) or semi-geostrophic (Desroziers 1997) coordinate transformations in 
analysis increments. Flow-dependent background-error covariance can also be estimated 
explicitly by Kalman-filtering (KF), implicitly by 4D variational methods (4D-Var), or 
approximated in the ensemble Kalman filter (EnKF) (Gauthier et al. 1993; Bouttier 
1993; Thepaut et al. 1996; Houtekamer and Mitchell 1998, 2001). But K F , 4D-Var and 
EnKF are computationally time-consuming. Lanzinger and Steinacker (1990) incorporated 
anisotropic correlation structures due to orography to resolve sharp gradients across major 
mountain ridges (Alps, Pyrenees). Miller and Benjamin (1992) used elevation differences 
in correlation functions to account for terrain effects. 

In the mountainous terrain of western North America, many surface observation sites 
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are located in deep valleys. Both the background error covariance and representativeness of 
surface observations are affected by heterogeneous terrain. BC has a variety of landscapes 
from seashores, straits, and fjords to mountains and valleys. Some valleys are narrow 
and long with kinks and twists. The need for weather data at many sites in a valley is 
often not matched by the availability of weather stations. Typically, villages are strung 
along the valley floor, with ski resorts higher up the slopes and reservoirs in tributary 
valleys. Observations from a surface weather station at one village in the valley is often 
not representative of conditions up- or down-valley, nor is it representative of conditions 
on nearby mountain slopes. Similarly, weather observations at ridge top would not be 
representative of surface weather in the adjacent valley. 

This typical scenario stimulates the following question. At locations (in that one valley) 
distant from the observation station, which of the following better represents the initial air 
state: 1) the first guess (from a previous high-resolution forecast) or 2) the observations 
from the distant station? One advantage of the first guess is that the previous, high-
resolution forecast already includes terrain-forced mesoscale flows that are dynamically 
balanced. A disadvantage is that forecast skill decreases rapidly with time due to the 
nonlinear nature of the atmosphere. An experiment to address this question would be to 
densely instrument the valley in question, and determine the correlations between all the 
observations, and between the observations and the first guess. However, it is likely that 
the conclusions from such a study would apply only to that one valley, and would not 
apply to other valleys in the same or different mountain ranges. These other valleys have 
different orientations, lengths, steepness, slopes, locations near or distant from the coast, 
locations near or distant from the mountain range spine (such as the Rocky Mountains and 
Coast Mountains), vegetation, and latitude. It might also be risky to apply results from 
other densely instrumented valleys elsewhere in the world (such as the Mesoscale Alpine 
Project) to the valleys in BC. 

Within the constraints of the present numerical experiments, we hypothesize that in a 
serpentine valley, the first guess (from a fine-resolution NWP model) is better than a distant 
observation from the same valley, in the absence of dense intravalley observations. This 
hypothesis herein is referred to as the intravalley decorrelation assumption. An extension 
of this hypothesis treats two valleys separated by a high ridge, and herein is referred to 
as the intervalley decorrelation assumption. If there is an observation in only one valley, 
then the first guess in the noninstrumented valley represents the air state better than the 
observation from the other valley. 

The intravalley and intervalley decorrelation hypotheses are implemented within the 
ADAS Bratseth scheme (see section 2.2) for data assimilation in complex terrain. The 
intravalley assumption uses a Gaussian drop-off with distance from the observation, but 
using distance that is measured along the circuitous path of the valley. The intervalley 
assumption uses an anisotropic term that reduces data spreading into terrain of differing 
elevation. The horizontal [G(s)] and vertical [S(Z0, Za)] factors included in the anisotropic 
correlation function [see (2.7) in Chapter 2] correspond to the implementation of the in­
travalley and intervalley assumptions, respectively. 

A mother-daughter (MD) approach is proposed in section 3.3 as a convenient, iterative 
way to calculate both the vertical effect (5) and circuitous travel distance (CTD) (s). The 
vertical effect is introduced via a "sharing factor" (SF); namely, the fraction of information 
shared between an observation and analysis grid point (GP). This approach is based on 
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first-order boundary layer (BL) characteristics in mountainous terrain, described next. 

3.2 Topographic anisotropy and boundary layers 

3.2.1 First-order boundary layer characteristics in mountainous 
terrain 

Atmospheric BLs always contain air of lower potential temperature than the air higher in 
the free atmosphere, because the average troposphere is stably stratified (Stull 1988, 2000). 
Between the BL and free atmosphere is a strongly stable layer that caps the BL. Trapped 
in the BL below this cap are pollutants, humidity, and heat released from the surface. 

In steep mountainous terrain such as in western Canada and USA, the ridge heights 
above valley floors are frequently the same order as BL depths. To a zeroth order, the 
turbulent and advective communication of physical, dynamic, and chemical states between 
one valley and the other depends greatly on whether the BL is shallower than the sur­
rounding ridges. For shallow BL situations, tracers emitted into one valley BL are unlikely 
to reach neighboring valleys, due to blocking by mountains. For situations with BLs deeper 
than ridges, BL air can mix between neighboring valleys. 

To a first order, the BL top (zi) is often not level over complex terrain. Observations 
show a variety of behaviors, ranging from BLs that follow the topography to BLs that 
seem relatively level (Lenschow et al. 1979; De Wekker et al. 1997; Kalthoff et al. 1998; 
Kossmann et al. 1998). These observational studies showed that the BL top tends to be 
more terrain-following in the morning, and becomes less terrain-following (or more level) 
in the afternoon. Stull (1992) identified four archetypical BL-top characteristics (Fig. 3.1). 
Gravitational forces tend to make a level BL top (Fig. 3.1c), much like an ocean surface 
that is level over undersea mounts. Other factors including entrainment, advection, and 
friction tend to make a terrain-following top (Fig. 3.1b). Daytime anabatic circulations 
and venting effects can cause the BL-top to exaggerate the topographic relief (Fig. 3.1a). 
In the case of strong anabatic circulations, the up-slope winds converge at the mountain 
crests, which induce upward motion and possible cloud formation over the mountain tops. 
In such a case, the mountain and cloud venting processes might transport aerosols above 
the convective BL top, as shown in De Wekker et al. (2004). They identified the difference 
between aerosol-layer and convective BL heights based on lidar measurements on 30 July 
1997, and found that the BL heights are more terrain-following and lower than the nearly 
level aerosol-layer heights. Some Bernoulli and mountain-wave effects can cause contra-
terrain following (Fig. 3.Id). If the Froude number Fr << 1 (i.e., the airflow is subcritical), 
the air will flow around the mountain. Contra-terrain following BL top is possible for 
supercritical flow (i.e., Fr » 1), where the air flows over the mountain and accelerates. 
See Stull (1998a) for a similarity-theory analysis of the competing factors. This study 
focuses on the level and terrain-following cases (Fig. 3.2). 

BL parameterizations in NWP models are usually based on theories developed for 
flat prairies, and thus do not provide information on levelness of the BL top in steep 
mountainous terrain within first guess fields for use during data assimilation. Nor are 
observations of BL depth usually available at every surface weather station. In an attempt 
to compensate for the lack of information, we develop a background error correlation (p) 
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Figure 3.1: Archetypical categories of mixed-layer-top levelness (after Stull 1992). (a) 
Hyper-terrain following; (b) terrain following; (c) level; (d) contra-terrain following. 
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that includes weighting factors for both level-top and terrain-following BL effects. Namely, 
we define the sharing factor SF [5 in (2.7)] during one iteration (from a source GP to one 
of its neighboring GPs) by 

Sod(v + 1) = Som{v) • WTFBL(u + l,v). WLTBL(v + 1) (3.1) 
where subscript o represents the observation, subscripts m and d represent a GP (mother) 
and its neighboring GP (daughter), respectively. Weights W represent the portions of 
the SF associated with terrain-following BLs (TFBLs) or "level-top" BLs (LTBLs). The 
spreading iteration counter is v. 

3.2.2 Parameterization of terrain-following and level-top BL con­
tributions 

Let Z be the elevation. Approximate the terrain-following BL effects on the SF, from one 
mother GP during iteration v to a neighboring daughter GP at iteration v + 1 , by: 

\Zm{y) - Zd(v + 1) 
WTFBL(v + l , i / ) = 1 (3.2) zrefl 

for \Zm(v) — Zd[v + 1)| < zrefl; otherwise WTFBL — 0- The terrain-following BL-depth 
parameter is zrefl, while parameter a controls the analysis decorrelation rate. 

For illustration, suppose that zrefl — 1 km and a = 1. Let the weather station be 
collocated with a model GP (the first mother GP) at the base of linearly sloping terrain 
(Fig. 3.2a) such that each successive daughter GP is higher up the slope: z{y) — 0, 0.5, 
1.0, 1.5 km... for v = 0, 1, 2, 3.... The iteration counter iv) coincides with each successive 
daughter GP. The resulting sequence of weights from (3.2) is WTFBL — 1-0, 0.5, 0.5, and 
0.5. These weights accumulate multiplicatively via the iteration given by (3.1). Considering 
only terrain-following effects, 5(0) = 1, 5(1) = 0.5, 5(2) = 0.25, and 5(3) = 0.125. An 
outcome is that the GP at Z = 1.5 km has nonzero SF, for the case of a terrain-following 
1-km-thick BL, where turbulence can mix valley variables up the mountain slope. 

Similarly, we can define a level-top BL weight by 
,6 

WLTBL{v + 1) = 1 \Za-Zd(v + l)\ 
(3.3) 

zref2 
for \Z0 — Zd(v + 1)| < zrefl; otherwise WLTBL = 0. The level-top BL-depth parameter is 
zref2, while parameter 6 controls the analysis decorrelation rate. 

For illustration with the same sloping GPs as in the previous example, suppose that 
zref2 — 1 km and 6 = 1. The resulting sequence of weights from (3.3) is WLTBL — 1-0, 
0.5, 0., and 0. These weights accumulate multiplicatively via iteration as in (3.1). If we 
neglect the terrain-following effects, 5(0) = 1, 5(1) = 0.5, 5(2) = 0., and 5(3) = 0. There 
is a different outcome in this case: the GP at Z = 1.5 km has zero SF, because it is above 
the level BL top (Fig. 3.2b). At all higher-elevation GPs, the SF is also zero. Those points 
higher on the mountain are assumed to be in a different air mass than the valley station. 
It is worth noting that zref2 is essentially the BL depth at the observation location. 

These illustrations, albeit somewhat primitive, demonstrate that the basic BL charac­
teristics can be parameterized in a way that allows anisotropic correlations to be created, 
as shown next. 
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Figure 3.2: Shallow boundary layers in steep terrain, for (a) a terrain-following boundary 
layer and (b) a level-top boundary layer blocked by mountains. White dots represent 
surface grid points. The iteration counter is v that coincides with each successive daughter 
grid point. The lowest grid point at v = 0 is collocated with the surface weather station. 

3.3 The mother-daughter (MD) approach 
This section uses the analogy of mothers spawning daughters, granddaughters and more 
distant generations to parameterize the preferential spread of information from an obser­
vation point to neighboring grid points and on to more distant grid points. Suppose that 
the amount of information that a mother GP transfers to each daughter GP is reduced by 
the elevation difference between them, based on the BL weighting functions just described. 

First consider a surface observation that happens to lie directly on a model GP. The 
fraction of information shared between the observation and any analysis point is called 
''sharing factor" (SF), which ranges between 0 and 1. Let subscripts o, m and d represent 
an observation, a mother GP and a neighboring daughter GP, respectively. The iterative 
MD approach is expressed by 

1 
Zd{u + l)\ 

S0d(v + 1) =Som{v) 
zrefl 

if \Zm(y) -Zd{v + 1)| < zrefl 

Sod{y +1) =o if \Z 

\Z0 - Zd{v -
zrefl 

1 - . f t 

(3.4a) 

and \Z0-Zd(v + 1)\ < zrefl 

Zd{v + 1)| > zrefl or \ZQ - Zd{y + 1)| > zref2 (3.4b) 

where v is iteration counter; Z is elevation; and a, b, zrefl, and zre f2 are free parameters. 
The iteration starts with 5^(0) = 1 at the surface observation location. As previously 
discussed, the first and second bracketed terms in Eq. (3.4a) contain the terrain-following 
[WTFBL in Eq. (3.2)] and level-top [WLTBL in Eq. (3.3)] BL effects, respectively. 

The surface observation is treated as the first mother, who has daughters at each of 
her eight neighboring GPs. This is the first iteration (u = I). These daughter SFs are 
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d3 

s = dl + d2 + d3 

Figure 3.3: Schematic of the straight-line horizontal distance (d) and the circuitous travel 
distance (s = dl + d2 + d3) from the observation location O to the grid point D, after the 
third iteration. The grid point D received the most contribution in its sharing factor from 
the grid point B, while the grid point B received the most contribution from the grid point 
A that received the most contribution from the observation O. This illustrates a situation 
such as when a mountain (indicated by shading) lies between O and D. 

calculated by applying (3.4) to every mother-daughter pair. The circuitous travel distance 
(CTD) from the observation to a neighboring daughter GP, after v — 1, is equal to the 
straight-line horizontal distance if the SF at that daughter GP is not zero. For zero SF, 
the CTD is assigned a large value (s = 1.0e5 km), so that p(s) in (2.7) is zero due to the 
Gaussian drop-off. Namely, the observation has no influence on that GP. 

Next, every daughter becomes a mother and has her own eight daughters around her, 
and so on. Around any daughter might be several mothers who contribute different SFs to 
that daughter, but only the biggest SF (among all values from neighboring mothers and the 
value from the previous iteration) is kept. Thus, Eq. (3.4) has to be applied successively 
to every GP within a gradually enlarged subdomain centered at the observation location. 
This process is computationally expensive, as demonstrated later in section 4.3. From the 
second iteration onward, the CTD from the observation to any daughter GP is found by 
accumulating the incremental path segments from each successive mother to the daughter 
GP. Usually there are many different paths from the observation to a distant GP, but the 
path saved is the one that contributes the most to the sharing factor at that daughter GP. 
Figure 3.3 illustrates an example for the CTD (s) from the observation location O to GP 
D after the third iteration. From the daughter GP D, each previous mother was the GP 
at B, then A, and finally the observation point 0. 

To illustrate calculations of the SFs and CTDs, consider a surface station that happens 
to lie directly on a model GP at (x, y) = (7, 5) (Figs. 3.4 and 3.5, indicated by a solid 
triangle). Horizontal grid spacing is 3 km. Initially, the SF is 1.0 at the observation 
location, and zero elsewhere (left-hand panel of Fig. 3.4a). The CTD is initially 0 km at 
the observation point and 1.0e5 km otherwise (right-hand panel of Fig. 3.4a). 

The SFs and CTDs after the first iteration are shown in Fig. 3.4b. The CTD for a 
daughter GP remains 1.0e5 km if its SF is 0. Thus, the CTD (s) from the observation to 
the GP at (8, 5) is 1.0e5 km, even though the straight-line horizontal distance (d) is 3 km. 
A daughter GP with nonzero SF has finite CTD [e.g., s = d ta 4.2 km for GP (6, 6)]. 

In the second iteration, each daughter becomes a mother and has her own eight daugh­
ters around her, yielding 25 (8+16+1) daughters after v — 2 (Fig. 3.4c). The GP of the 
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Figure 3.4: (left column) Printed values of the sharing factors (zeroes are not printed 
except when they first appear in an iteration; darker shading indicates higher elevations) 
and (right column) circuitous travel distance (km) (large values of 1.0e5 are not printed), 
(a) iteration counter v = 0; (b) v = 1; (c) v = 2. The observation is indicated by a solid 
triangle at (x,y) — (7,5). Grid spacing is 3 km. The parameters used are a = 2, b = 2, 
zrefl — 750 m, and zrefl = 750 m. Grid cells along the outside edge are cut off in this 
plot but are really the same size as all other grid cells. 
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Figure 3.5: (top) Sharing factor isopleths (thin lines, after a Gaussian drop-off with stan­
dard deviation of 30 km) and (bottom) the circuitous travel distance (km) for an idealized 
observation in the valley A within a horizontal domain that spans 36 km x 36 km with 
a grid increment of 3 km. Terrain elevations (m) are shown by shading in the top plot. 
Darker shading indicates higher elevations, with a maximum terrain-height difference of 
2000 m. The observation is indicated by a solid triangle at (x, y) — (7, 5). The parameters 
used are a = 2, b = 2, zrefl = 750 m, and zrefl = 750 m. 
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first mother can also be a daughter GP of any grid point surrounding her, but the SF of 
the first mother is left unaffected as the biggest SF is kept during iteration. 

This process is repeated until \S0d(v + 1) — Sod(v)\ < 0.01 for all GPs. The final SFs 
(S0d) and CTDs (s) are used in (2.7) to determine the anisotropic correlation function 
[p{s)). Figure 3.5 shows the end results for this hypothetical station, using a Gaussian 
drop-off with standard deviation of 30 km. The observation information is spread along 
the Valley A where the observation is located. The valley B, disconnected from the Valley 
A, is unaffected, even though it is relatively close to the observation. 

To examine the subtleties of the CTD, consider GP (6, 5) in Fig. 3.4. After v — 1, 
S « 0.31 and s = 3 km (Fig. 3.4b). Obviously, the SF comes from the first mother (i.e., 
the observation). After v = 2, S « 0.38 and s ~ 7.2 km (Fig. 3.4c). Now the largest SF 
comes from a second-generation mother GP (6, 4). The CTD (s « 7.2 km) equals the sum 
of d « 4.2 km between the observation and the second-generation mother GP (6, 4), plus 
d = 3 km from GP (6, 4) to the target GP (6, 5). 

Parameters a and b in (3.4) control SF reduction by the mother-daughter GP elevation 
difference. As a and b are reduced from 4 toward 1, the terrain effects on the analysis 
increase. The optimal values of a, b, zrefl, and zre/2 can be obtained by analyzing a 
subset of the available observations, and verifying against the remaining observations for a 
substantial period of daily analyses, assuming a dense observation network. As mentioned 
before, zre/2 is essentially the BL depth at the observation location. It is shown in 
Appendix C that analysis results are far more sensitive to zre/2 than to zrefl. 

3.4 Application of the MD approach in the real world 
In the previous section, the MD approach was presented for an idealized surface obser­
vation that was collocated with a GP of an idealized domain. In this section, several 
issues are discussed when the MD approach is applied to real observations within a real 
analysis/forecast domain of a NWP model. 

As mentioned before, the topographical height in the NWP model can be locally very 
different from the real terrain height, due to the smoothing of topographical height for 
the NWP model. This means that any one modelled valley can be different from the 
corresponding real valley both in the width and depth. Figure 3.6 shows a cross section 
of the smoothed and unsmoothed topographic heights along 50.08 °N cutting through the 
MC2 2-km domain. When the MD approach is used in a real analysis/forecast domain, the 
model topographic height must be used. Thus, an observation is spread along the model-
resolved valley, not the real valley [this implies that higher grid resolution (i.e., Ax < 5 km) 
is preferred for the MD approach]. Elevation of the model surface may be very different 
from the elevation of any weather station within the domain. 

Also, most real weather stations do not happen to be collocated with any GP of the 
analysis/forecast domain. For the case of a surface weather station that is not collocated 
with a model GP, the station is first approximated as being collocated at the nearest 
neighboring model GP that has the minimum elevation difference between them. 

Figure 3.7 illustrates an example with two observation stations (Os and Od) that are 
not collocated with any model GP. In this example, Os is a source observation location, 
which is approximated as being collocated at grid point C, one of the neighboring model 
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Figure 3.6: Cross section of the unsmoothed (solid line) and smoothed (dashed line) to­
pographic heights along 50.08 °N cutting through the MC2 2-km domain (Fig. 2.2). The 
unsmoothed topographic heights are closer to the real terrain. 

GPs with minimum elevation difference between Os and GP C. The sharing factor at Os is 
1.0. The sharing factor at GP C is first approximated by a Gaussian drop-off of elevation 
difference between Os and GP C with a standard deviation of 1500 m. Then the iterative 
MD approach starts at GP C as described in the previous section. 

The end results are the sharing factors at every model GP for the source observation 
Os. When the surface observations are not collocated with any model GP, the spatial 
correlation between an observation location and another [p^ in (2.5)] is determined by the 
sharing factor at that other observation location. To calculate the sharing factor between 
the source observation location (i.e., Os in Fig. 3.7) and another observation location (i.e., 
Od in Fig. 3.7), an approximation from GP D to Od (same as that from Os to GP C) is 
made. The spatial correlation between Os and GP D is an example of p^- in (2.4), whereas 
the spatial correlation between Os and Od is an example of pfj in (2.5). 

Let SOD a n d S O D be the SF and CTD between Os and GP D respectively; Soo and 
soo be the SF and CTD between Os and Od respectively. The spatial correlation between 
Os and GP D (poo) is parameterized by: 

POD = G(SOD) • SOD (3.5) 

and the spatial correlation between Os and Od (poo) is 

Poo = G(soo) • Soo (3.6) 
where 

Soo = SOD • exp(-^Ai^H ) (3.7) 
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Figure 3.7: Schematic of the straight-line horizontal distances (d, as shown by dashed lines) 
and the circuitous travel distances (CTDs) from the source observation location Os to the 
grid point D and another observation location Od, after the third iteration. The grid point 
D received the most contribution in its sharing factor from the grid point B, while the 
grid point B received the most contribution from the grid point A that received the most 
contribution from the grid point C. The source observation Os is approximated as being 
collocated at the neighboring grid point C with minimum elevation difference between 
them. The grid point D is the neighboring grid point of Od with minimum elevation 
difference between them. The CTD from Os to the grid point D is rs + dl + d2 + d3, 
whereas the CTD from Os to Od is rs + dl + d2 + d3 + rd. This illustrates a situation such 
as when a mountain (indicated by shading) lies between Os and D. 

and SOD = rs + dl + d2 + d3, soo = rs + dl + d2 + d3 + rd (see Fig. 3.7), AZ£,d is the 
elevation difference between GP D and Od, and h = 1500 in. 

The SFs at the model GPs for one observation are dependent upon the elevation of 
that observation station and the elevations of the model GPs. Hence, the SFs at the model 
GPs for one observation station are independent of the SFs at the model GPs for another 
observation station. The MD approach can be used to generate stencils of different SFs 
and CTDs at the model GPs for different surface observation stations. The SFs and CTDs 
are then used to create the anisotropic spatial correlations between one observation and 
all model GPs and other observation locations [see (2.7), or (3.5) and (3.6)]. The values 
of optimal weights for spreading data in the ADAS Bratseth (1986) scheme are modified 
through the spatial correlations [see (2.4) and (2.5)]. The ADAS Bratseth scheme then 
combines multiple observations to determine the analysis at any grid point. 

For a surface observation network, the observation stations and their elevations are 
relatively fixed even though the weather reports vary with time. For fixed GPs and obser­
vation locations within a model domain, the SFs and CTDs for each observation station 
can be determined once, outside of the daily data-assimilation process. The resulting SFs 
and CTDs are saved as a fixed file, which can be applied unchanged for each day's analysis 
to efficiently determine the correlations in the ADAS Bratseth scheme. In the presence of 
temporally missing observations, a flag (i.e., -999.) can be assigned to the missing observa­
tions. If a new station is added latter to the observation network, the new SFs and CTDs 
must be calculated and appended to the fixed file before the new observation can be used 
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in the analysis. 
Although these results are incorporated into the ADAS in this study, the main ideas 

can be used in any objective analysis scheme in which the background error correlations 
depend on observation-to-gridpoint distances. 

3.5 Refinements of the M D approach 

3.5.1 R e f i n e m e n t for coas ta l t e r r a i n 

Many coastal mountain regions, such as southwestern BC, contain complicated straits and 
fjords where thermal contrasts exist between land and water. The sea-breeze driven by 
a land-sea thermal contrast contributes to the recirculation and trapping of air pollution 
during anticyclonic synoptic episodes. Accurate land-sea thermal contrast in analysis and 
forecasts is of critical importance for air pollution studies. 

To consider land-sea contrasts, Hessler (1984) estimated two correlation functions from 
surface-temperature statistics near the Baltic Sea. Between pairs of sea stations or pairs 
of land stations, he approximated correlations by exp(—0.08a!013)cos(0.4d), where d is 
the straight-line distance between two stations. Between sea and land stations, he used 
exp(-0.29d°-06)cos(0.2d). 

This work introduces a similar approach by including an additional factor to the sharing 
factor parameterization (i.e., the third term in brackets on the right-hand side): 

l ) = S £ ( « / ) { l -
\Z0-Zd{v + \)\ 

zref2 
(3. 

for \Zm{y) - Zd(v + 1)| < zrefl and \Za - Zd{v + 1)| < zre/2; otherwise S^{v + 1) = 0. 
The land-sea mask LSQ at the observation location is equal to one for a land observation 
and zero for a water observation. The land-sea mask LSD at a daughter GP is similar, 
but averaged over the nine GPs immediately around and including the daughter GP. The 
average allows gradual transition of the SFs across the coastlines in an attempt to partly 
account for sea/land breeze effects. The coastline refinement does not consider subgrid 
lakes, as the land-sea mask data for MC2 are either one (land) or zero (water). Parameter 
K~is controls the degree of the decorrelation between land stations and analysis points over 
water, or between water stations and analysis points over land; K~LS was subjectively set 
to 1.0 for the case studies in section 4.3 and for the near-real-time operational tests in 
Chapter 7. 

Ideally, the location of the land-sea mask should shift as the sea/land breezes evolve 
every day, however this work neglects this shift. This allows a computationally efficient 
constant land-sea mask that still captures first-order effects. 

The SFs from the MD approach, both before and after the shoreline refinement, are 
illustrated in Fig. 3.8 for two observations over the real terrain of Vancouver, Canada, 
and its surroundings. One observation is on land (the Lower Fraser Valley) and the other 
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is on water (the Georgia Strait). After refinement, the information from a land (water) 
observation is spread mostly within land (water) area, as desired. 

3.5.2 Refinement for mountain-top observations 
Surface weather stations are usually located in valleys. But, there are some surface sta­
tions located at high elevations in mountains, such as at ski areas and in subalpine forest 
ecosystems. The MD approach presented in section 3.3 is good for surface observations 
in valleys, but could be problematic for mountain-top observations. The MD approach is 
not able to spread information from a mountain-top observation to the grid points of sur­
rounding mountain tops. This is particularly true if the observation is located at the top 
of a very steep mountain. The spreading to the surrounding mountain tops is desired for 
two reasons. During shallow cold-air pooling events, the high-mountain tops are all pene­
trating into the free atmosphere where they would experience the same weather. Second, 
during deep BL events with BL top above the mountain top, vigorous turbulence would 
also cause mixing across the valleys. Therefore, the MD approach is further refined to allow 
such spreading by treating mountain-top observations differently than valley observations. 

The modified SF for a mountain-top observation is proposed as follows: 

for \Za — Zd\ < zref2; otherwise S^f — 0. The superscript MT indicates mountain-top 
observations; is the sharing factor at the mountain-top observation location, which 
is 1.0. The SF at any surrounding GP depends upon the elevation difference between the 
observation and the GP, and upon the level-top BL depth parameter zref2. No iteration 
is needed. 

Now the question is: how to distinguish a mountain-top observation from a valley 
observation? A simple approach is taken here. Firstly, the model topographic heights 
are smoothed by the Barnes (1964) method (see Appendix B). The shape factor in 
Eq. (B.2)] of the empirical Gaussian weights is taken as 90 km, which is the same as 
the horizontal correlation length scale for the first Bratseth pass used in the surface data 
analysis (see Chapter 4). Secondly, the standard deviation [pz) of the difference between 
the model terrain height and the smoothed model terrain height is calculated within a 
region of (-Ry, +Ry). If ZS is the smoothed model terrain height, then the height of BL 
top (ZBL) can be approximated by: 

where zre/2 is the level-top BL-depth parameter in (3.4) and (3.9). 
If the unsmoothed terrain height for any GP is above the approximated BL height ZBL, 

then the GP is assumed to be in the free atmosphere, and is treated as a mountain-top 
location. The approximation of ZBL is crude, but provides a simple and effective way to 
distinguish mountain-top observations from valley observations. As mentioned in section 
3.4, in the case of an observation that is not collocated with any model GP, the station is 
first approximated as being collocated at whichever nearest neighboring model GP has the 
minimum elevation difference between them. In such a case, the elevation of the nearest 

(3-9) 

ZBL = ZS + max(0., zref2 — oz) (3.10) 
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Figure 3.8: Sharing factors (solid lines) after a Gaussian drop-off with standard deviation 
of 90 km. The dotted lines indicate coastlines and islands. The observation station is 
shown by a solid triangle, (a) Results from the mother-daughter approach before coastline 
refinement for an observation over land in the Lower Fraser Valley just east of Vancouver; 
(b) Same as (a), except with land-sea contrasts included, (c) Same as (a), except for an 
observation over water (a location called the Georgia Strait); (d) Same as (c), except with 
land-sea contrasts included. Terrain elevations in meters, shown by gray shading, are from 
the smoothed terrain data used in the MC2 model (see section 2.1) at a grid spacing of 
3 km. Darker shading indicates higher elevations, with a maximum terrain-height difference 
of 1217 m. The parameters used are: a = 2, b = 2, zrefl = 750 m, zre/2 = 750 m. 

39 



4001 

o4 i i , 1 ; 1 
1 2 2 W 1 2 1 W 1 2 0 W 11.9W 1 1 8 W 1 1 7 W 1 1 6 W 

longi tude 

Figure 3.9: Cross section of the model topography (solid line), the smoothed model topog­
raphy (dashed line), the approximated height of BL top (dot dashed line) and the standard 
deviation of the difference between the model topography and the smoothed model topog­
raphy (dotted line). The cross section is along 49.0 °N cutting through the domain shown 
in Fig. 3.11. Any surface station located above the dot dashed line will be treated as a 
mountain-top station. The same is true for GPs. The regions where the solid line is above 
the dot dashed line are considered to be mountain-top locations. 

neighboring model GP is compared with ZBL- Any surface weather station that is above 
ZBL is treated as a mountain-top station, whereas any surface station that is below ZBL is 
treated as a valley station. The SF for a mountain-top station is obtained through (3.9), 
whereas the SF for a valley station is calculated via (3.4). 

Figures 3.9 and 3.10 are cross sections of the model topography, the highly smoothed 
model topography (ZS), the approximated height of BL top (ZBL), and az- The former 
one is along 49.0 °N cutting through the domain shown in Fig. 3.11. The later one is 
along 50.08 °N, cutting through the domain shown in Fig. 3.12. Any surface station or GP 
located above the dot dashed Z B L line will be treated as a mountain-top station or GP. 

The model topography and the difference between the model topography and the ap­
proximated height of BL top are shown in Figs. 3.11 and 3.12 for the 3-km domain (b) in 
Fig. 2.3 and the 2-km domain in Fig. 2.2, respectively. Any surface station that is located 
in the darkly shaded areas in the bottom plots of Figs. 3.11 and 3.12 will be treated as a 
mountain-top station. 
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model terrain heights (m) 

122W 120W 118W 116W 

Figure 3.11: (top) The model topography (darker shading indicates higher elevations), 
(bottom) The difference between the model topography and the approximated height of 
BL top (any station located in the darkly shaded areas will be treated as a mountain-top 
station). This is for the 3-km domain (b) in Fig. 2.3. Open circles represent towns. Solid 
lines delineate lakes. 
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Figure 3.12: (top) The model topography (darker shading indicates higher elevations), 
(bottom) The difference between the model topography and the approximated height of 
BL top (any station located in the darkly shaded areas will be treated as a mountain-top 
station). This is for the 2-km domain in Fig. 2.2. Open circles represent towns. The 
open circle within LFV (Lower Fraser Valley) indicates Vancouver, while the open circle 
in Vancouver Island indicates Victoria. 
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Chapter 4 

Case study tests of surface-analysis 
methods in mountainous/coastal 
terrain 

4.1 Analysis methods 
Five different analysis methods (Table 4.1) are compared. GAUSS, the native method 
in the ADAS (ARPS5.0.0 Beta8), includes terrain effects with a Gaussian function of 
elevation difference (Az) between the GP and observation station, and with horizontal 
Gaussian decay to define the region of influence. In method TERR_DIFF, the Miller and 
Benjamin (1992) terrain-difference algorithm is added to the ADAS, but slightly modified 
from the original correlation function 1 for potential temperature. 

In the mother-daughter (MD) method, the SFs from Eq. (3.4) are used to replace the 
Gaussian elevation term in GAUSS. MD further differs from GAUSS and TERR-DIFF by 
using the CTD (s), rather than the straight-line horizontal distance (d), in the horizontal 
part of the correlation function. This effectively limits the region of influence in complex 
terrain and restricts valley observation information to follow the valleys around the ridges, 
while reducing spread over the ridge top. Similarly, ridge-top information follows ridges, 
with little spread into valleys. 

The MD_LSMG method is the same as MD except that land-sea anisotropy is included 
in the SFs (section 3.5.1). In method MD_MT, the sharing factors are from the mother-
daughter approach after mountain-top refinement (section 3.5.2), which treats mountain-
top observations differently from valley observations. For valley observations, s is the CTD 
as for method MD , whereas s = d for mountain-top observations. 

Unless stated specifically, the horizontal correlation length scale (Rh) is 90 km for the 
first and second Bratseth passes, 60 km for the third pass, and 30 km for the fourth and 
fifth passes. 

The utilities of the MD approach and its refinements are demonstrated in the following 
sections for surface potential-temperature analyses in different regions. Virtual and real 
observations are used in numerical-experiment case studies for mountainous and coastal 
terrains in southwestern BC. 

1 exp(- |d| 2 / 2 r 2 ) / ( l + Kz • | A z | 2 ) , r = 300 km, Kz = 7x 10~7 m " 2 
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Table 4.1: Analysis methods to be tested with numerical experiments, where Rh and Rz are 
correlation length scales in the horizontal and vertical, respectively, which define the regions 
of influence; d^ and Az^ are straight-line horizontal distance and elevation difference 
between an analysis grid point and the observation station, respectively; Kz is a coefficient. 
Sij is the circuitous travel distance from the observation to an analysis grid point determined 
in the mother-daughter program; S0d is the sharing factor at an analysis grid point, which 
represents how much the analysis grid point shares the observation information; S^f is the 
same as S0<i except that the former is from the mother-daughter approach with coastline 
refinement; S^d

T is the sharing factor from the mother-daughter approach with mountain-
top refinement. In this study, Rh is 90 km for the first and second iteration, 60 km for 
the third iteration, 30 km for the fourth and fifth iteration, during the ADAS assimilation 
cycle. 

Method Correlation function (p) 

G A U S S exp(- 1 \dij\2 

"2 Ri 
) • exp( ^ Az-\2 
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5 Ri 
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4.2 Experiments using virtual observations 
"Fraternal-twin" experiments are used first to evaluate the MD approaches in mountainous 
terrain. In fraternal-twin experiments, the "truth" and "analysis" models are similar, but 
not identical (Arnold and Dey 1986). The truth model (MC2 at 2-km grid spacing) is 
first integrated 12 h to generate a reference "truth" atmosphere. To generate a different 
first guess, the analysis model (MC2 at 3-km grid spacing with radiation turned off to 
purposely introduce errors) is integrated 12 h with the same boundary conditions, but 
started from perturbed initial conditions. Amplitudes of random perturbations for tem­
perature (u wind, v wind, logarithm of pressure perturbation, specific humidity) are 5.0 °C 
(5.0 knots, 5.0 knots, 0.0005, 0.005 kg kg - 1 ) . A dynamic initialization algorithm built into 
MC2 is activated for the 3-km run to remove spurious gravity waves excited by the added 
perturbations. 

The fraternal-twin experiments are performed for 7-8 March 2003, characterized by an 
Arctic outbreak, when cold shallow air masses from northern Canada swept into the valleys 
in BC. 

The MC2 runs consist of five self-nested grids with grid spacings of 108, 36, 12, 4, and 
2 or 3 km (see Figs. 2.1 and 2.2). The Eta analysis and forecasts from NCEP, valid at 
0000 UTC 7 March 2003, are used as the initial and boundary conditions for the coarsest 
grid. The MC2 at 2 km is started at 1200 UTC 7 March from MC2 4-km output, and 
integrated 12 h to generate the truth atmosphere, from which virtual surface observations 
are extracted. To simplify the problem and avoid complexity added by observations at 
the first stage, all virtual observations are assumed to be perfect, with zero observation 
error. Namely, the ratio of observation-error variance to background-error variance is 
zero. Observation errors will be considered for real observations later in this chapter and 
Chapters 6 and 7. The MC2 at 3 km is also started at 1200 UTC 7 March, but from the 
randomly perturbed output of the 4-km run, and integrated 12 h to provide a first guess. 
The analyses are performed at the lowest terrain-following model level of the MC2 3 km 
at 0000 UTC 8 March. 

Figure 4.1 shows six virtual surface stations, all of which are placed in real valleys using 
the truth-model-resolved real topography for British Columbia. Stations ol (elevation 
920 m) and o2 (elevation 536 m), located in different valleys, are used for analysis. Station 
01 is in the Elaho River Valley, and o2 is in the Lillooet River Valley. These two valleys 
are very narrow and deep with steep ridges and glacier-clad mountains on both sides, as 
shown in the aerial-reconnaissance photos (Figs. 1.4 and 4.2). Four stations (bl, b2, b3, 
and b4) in the Lillooet River Valley are used for verification. These stations are selected to 
evaluate the impact of observation ol on the neighboring Lillooet River Valley. Elevations 
for stations b l , b2, b3 and b4 are 894, 881, 765, and 830 m, respectively. 

4.2.1 Impact of a single valley surface observation 

For objective analysis, the interpolated first guess is usually subtracted from the obser­
vation to give an "observation increment", which is then analyzed to produce "analysis 
increments" (AIs) at the GPs. The analysis at each GP is then the first guess plus the 
analysis increment. The AIs produced from the data at ol show how data are spread to 
surrounding GPs. 
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Figure 4.1: Virtual surface observation stations, indicated by solid triangles, used in the 
analysis and verification. The stations are positioned at the truth-model terrain height 
in the Coast Mountains north of Vancouver. Station ol (50.326 °N, 123.578 °W) is near 
the mouth of the Elaho River. Station o2 (50.3344 °N, 122.767 °W) is near the town of 
Pemberton. Terrain elevations (m) are from the truth model. Darker shading indicates 
higher elevations, with a maximum elevation difference of 2055 m in this figure. 

Figure 4.2: A narrow valley (the Lillooet River Valley mentioned in this chapter) in the 
Coastal Mountain Ranges north of Vancouver, as shown in an aerial photo. 
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Figure 4.3: Analysis increments (isopleths) for potential temperature at the lowest model 
level in response to a single surface potential-temperature observation at station ol in­
dicated by a solid triangle. Contour interval is 0.3 K. Darker shading indicates higher 
elevations, with a maximum elevation difference of 1940 m, which is less than that in 
Fig. 4.1 because of the smoothed terrain used in the NWP model, (top) GAUSS, (middle) 
TERFLDIFF, (bottom) MD. 
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Figure 4.3 shows the impact of ol on the GP analysis. The observation increment is 
-3.35 K. The Bratseth analysis is confined to a single pass for convergence in the presence 
of a single perfect observation. All the analysis methods show that the observation mostly 
influences the valley GPs. 

GAUSS and TERR_DIFF both yield large AIs in valleys disconnected from the Elaho 
River Valley, even though both valleys may not necessarily share the same air mass. The 
Lillooet River Valley (containing b l , Fig. 4.1) is such an example. In MD, the large AIs 
are in the Elaho River Valley (containing ol), with much smaller values in the Lillooet 
River Valley, as desired. 

4.2.2 Impact of two surface observations from different valleys 
The analysis at one GP using observations from adjacent but disconnected valleys, where 
each valley contains a different meteorological regime, is a typical problem in complex 
terrain. To examine this, consider two observations in different valleys (stations ol and 
o2 in Fig. 4.1). The observation at o l is 3.35 K colder than the first guess, while the 
observation at o2 is 3.36 K warmer. Four stations (bl, b2, b3, and b4) in the Lillooet 
River Valley are used to verify the analyses. 

First, only the observation at o2 is used. To evaluate different analysis methods, the 
GP analyses are interpolated to the four verifying stations (not collocated with any GP) by 
cubic polynomial interpolation. The root-mean-square error (rmse) between the observa­
tions and analyses at those sites are calculated. For comparison purposes, the parameters 
for GAUSS (Rz = 500 m), TERR_DIFF (Kz = 7.0 x 10"6 m"2) and MD (a — 2, b — 2, 
zrefl — 750 m, zref2 = 750 m) are chosen so that the three methods produce simi­
lar rmses. The values of these parameters are kept fixed for all subsequent experiments 
throughout this dissertation. 

Rmses for GAUSS, TERR_DIFF, and MD are 0.6179, 0.6468 and 0.6559 K, respectively. 
Rmses for these three methods are slightly greater than that between the observations and 
the first guess, which is 0.5395 K. The analyses and the first guess versus the observations 
for the three methods are shown in the left-hand panel of Fig. 4.4. It is evident that the 
three methods produce similar analyses. 

The observations from both sites (ol and o2) are then used to produce an analysis. 
While the same set of observations at b l , b2, b3, and b4 are used for verification. The 
additional observation at o l has a negative impact on both the GAUSS and TERR-DIFF 
analyses (see the right-hand panel of Fig. 4.4). Rmse increases to 2.1464 K for GAUSS and 
2.4380 K for TERRJDIFF. However, in MD, the additional observation at o l has a minor 
impact on the analyses at the verifying stations, as desired because the two valleys with 
observations are not strongly coupled. The slight influence from the added observation 
reduces the rmse to 0.4807 K. The rmse with two observations is reduced about 11% from 
the first guess. 

4.2.3 Impact of a single mountain-top surface observation 
In complex terrain, most surface observation sites are located in populated valleys. There 
are, however, some surface stations located at high elevations in the mountains, such as at 
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Figure 4.4: Analysis, indicated by a circle, and first guess, indicated by a plus, vs observa­
tion, (left column) Observation at o2 only is used in the analysis, (right column) Obser­
vations at both ol and o2 are used in the analysis, (top) GAUSS; (middle) TERR_DIFF; 
(bottom) MD. The four points (circles or pluses) correspond to the four verifying stations 
bl-b4. 
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ski areas and in subalpine forest ecosystems. This subsection examines the analysis impact 
of a single mountain-top observation. 

Figure 4.5 shows the AIs produced by o3 (elevation: 1954 m). The observation incre­
ment is -1.56 K. As desired, all methods produce minimal spread into valley GPs, with 
MD producing very small spread into the valleys. 

For GAUSS and TERRJDIFF, the observation increment is spread to all of the sur­
rounding high mountains, including those separated by deep valleys. In MD, the observa­
tion corrects the first guess only for those GPs on the same mountain as o3. The GAUSS 
and TERRJ3IFF analysis increments in Fig. 4.5 look more realistic than the unrefined 
MD for two reasons. During shallow cold-air pooling events, the high-mountain tops are 
all penetrating into the free atmosphere, where they would experience the same weather. 
Second, during deep BL events with BL top above the mountain top, vigorous turbulence 
would also cause mixing across the valleys. 

To allow such spreading, the MD approach was refined to spread free-atmosphere 
mountain-top observations differently than valley observations (see section 3.5.2). The 
AIs produced by o3 from method MD_MT (the MD after mountain-top refinement) are 
shown in Fig. 4.6. The MD approach after mountain-top refinement now spreads the 
mountain-top observation increment to all of the surrounding high mountains, while gives 
very small spread in the valleys. The amount of spread to neighboring mountain tops is 
not uniform, but still decreases horizontally with the usual Gaussian drop-off. 

Table 4.2 lists the normalized rmses (nrmses) between different sets of the virtual 
surface observations (see Fig. 4.7) and the analyses using the different methods, when only 
the single mountain-top observation o3 is used to produce an analysis. The observation 
increment is -1.56 K. The second column in Table 4.2 indicates that methods MD and 
MD_MT produce very small spread [namely very small correction applied to the first 
guess (FSTG)] from the mountain-top observation into valleys as expected. As shown 
in the third column, methods GAUSS and TERRJDIFF reduce rmses from the first guess 
by spreading the observation increment into surrounding high mountains. Method MD 
produces identical rmse as the first guess. While allowing spread into the surrounding high 
ridges, method MD_MT reduces the nrmse from 1.0 to 0.1633, compared to method MD. 

Table 4.3 lists the verification summary when the three observations (two valley ob­
servations ol and o2, and one mountain-top observation o3) are used to produce an anal­
ysis. The verification is done for independent valley observations (bl, b2, b3 and b4) 
and mountain-top observations (ml, m2 and m3) shown in Fig. 4.7. The GAUSS and 
TERRJ3IFF analyses degrade the first guess and have nrmses greater than 1.0. The anal­
ysis from method MD is better than the first guess. Method MDJVIT has minimum nrmse 
and thus produces the best analysis. 

4.3 Experiments using real observations 
The MD approaches are tested with real observations in the coastal terrain of the Georgia 
Basin, BC, in this section, and with real observations in the inland mountainous region (see 
section 6.1). Hourly surface observations are from the Emergency Weather Net Canada 
(described in section 2.3). The higher density of observations over the Georgia Basin 
(Fig. 4.8) allows us to withhold some stations for verification (Table 4.4). The land-sea 
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Figure 4.5: Analysis increments (isopleths) for potential temperature at the lowest (terrain-
following) model level in response to a single mountain-top observation at o3, indicated by 
a white solid triangle. Contour interval is 0.2 K. Darker shading indicates higher elevations 
(m). (top) GAUSS; (middle) TERR_DIFF; (bottom) MD. 

52 



123.6W 123.2W 122.8W 122.4W 

6 0 0 9 0 0 1 '. 0 0 1 3 0 0 1 5 0 0 1 7 0 0 1 9 0 0 2 0 0 0 

Figure 4.6: Analysis increments (isopleths) from method MD_MT for potential temper­
ature at the lowest (terrain-following) model level in response to a single mountain-top 
observation at o3, indicated by a white solid triangle. Contour interval is 0.2 K. Darker 
shading indicates higher elevations (m). 
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Figure 4.7: Virtual surface observation stations, indicated by solid triangles, used in the 
analysis and verification. The stations are positioned at the truth-model terrain height 
in the Coast Mountains north of Vancouver. Station ol (50.326 °N, 123.578 °W) is near 
the mouth of the Elaho River. Station o2 (50.3344 °N, 122.767 °W) is near the town 
of Pemberton. Station o3 (50.3773 °N, 123.2363 °W) is over the mountain top. Terrain 
elevations (m) are from the truth model. Darker shading indicates higher elevations, with 
a maximum elevation difference of 2055 m in this figure. 
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Table 4.2: The normalized root-mean-square errors (nrmses) between the analyses and 
observations for different sets of the verification stations. One set is the valley observations 
(bl, b2, b3 and b4); the other is the mountain-top observations (ml, m2 and m3). The 
analyses were produced when only the single mountain-top observation o3 is used. The 
observation stations are shown in Fig. 4.7. Nrmse is rmse for each method normalized by 
the rmse of the first guess (FSTG). Smaller nrmse corresponds to better analyses. Nrmse 
close to 1.0 indicates very small correction to the first guess from the observations. 

Method Verified against 
b l , b2, b3 and b4 

Verified against 
m l , m2 and m3 

FSTG 1.0 1.0 

GAUSS 1.1025 0.2745 

TERPLDIFF 1.4061 0.2143 

MD 1.0009 1.0 

MD_MT 1.0026 0.1633 
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Table 4.3: Same as Table 4.2, but for all of the verification stations (the valley stations 
b l , b2, b3 and b4, and the mountain-top stations ml , m2 and m3). The analyses were 
produced using two observations (ol and o2) in different valleys and one mountain-top 
observation o3. 

Method Verified against 
b l , b2, b3, b4, m l , m2 and m3 

FSTG 1.0 

GAUSS 1.7593 

TERR.DIFF 1.9668 

MD 0.9720 

MD.MT 0.4147 

mask is based on the model-resolved coastlines. The ratio of observation-error variance 
to background-error variance is set to 0.08 as in Miller and Benjamin (1992). The low 
observation-to-background error implies that the observations are heavily weighted. The 
value of the ratio (0.08) is used throughout this dissertation whenever real observations 
are used in numerical experiments. 

A 3-4 February 2003 case, characterized by a strong ridge over the Georgia Basin, is 
used to examine if weak land-sea thermal contrasts can be properly analyzed. Figure 4.9 
shows the evolution of potential temperatures for several surface stations on land and water 
during 0000-1200 UTC 4 February 2003. In late afternoon at 0000 UTC (1600 PST), all 
land stations except Vancouver INTL ARPT were slightly warmer than the water stations. 
After a transition period from 0100 to 0300 UTC, all land stations were colder than the 
water stations. Land-sea thermal contrast is the most prominent in early morning at 
1200 UTC (0400 PST). 

The Eta analysis and forecasts from NCEP, valid at 0000 UTC 3 February 2003, are 
used to drive the coarsest grid (108-km grid spacing), which in turn drives grids of 36, 
12, 4, and 3 km. MC2 at 3 km provides first-guess fields, and is started at 1200 UTC 
3 February from MC2 4-km output. Analyses are performed every hour from 0000 to 
1200 UTC 4 February, by blending hourly surface observations with the first guess at the 
lowest terrain-following model level valid at the same time. The hourly analyses are not 
incorporated into the forecast cycle; thus, each analysis is independent of past observations. 
Eight stations are used for analysis and eleven others for verification (Table 4.4), but the 
available number of reporting stations varies with the analysis time (Table 4.5). 
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Figure 4.8: The northern half of the Georgia Basin area. The surface stations are shown by 
pluses, below which are station IDs. Station information is in Table 4.4. The bottom plot 
is zoomed to the top center of the top plot. Terrain elevation (m), indicated by shading, are 
from unsmoothed terrain data resolved by the NWP model at 3-km grid spacing. Darker 
shading represents higher elevations, with a maximum elevation difference of (top) 1374 m 
and (bottom) 1200 m. 
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Table 4.4: Surface stations for analysis and verification. Station IDs are from the Emer­
gency Weather Net database. For the land-sea (LS) mask, 1 stands for land and 0 corre­
sponds to ocean or water. The first eight stations are used for analysis, while the rest are 
used for verification. 

Ful l name Station Lat Lon Elev Agency LS 
ID (°N) (°W) (m) 

Port Mellon 38 49.5228 123.4822 3. W L A P 1 

MT Strachan 132 49.4167 123.2000 1420. MOT 1 

Gold CK. 417 49.4472 122.4750 794. HYDR 1 

Abbotsford ARPT 604 49.0333 122.3667 58. EC 1 

Saturna Island 621 48.7833 123.0500 24. EC 0 

Pitt Meadows 641 49.2000 122.6833 5. EC 1 

Point Atkinson CS 654 49.3333 123.2667 35. EC 0 

Nanaimo ARPT 582 49.0500 123.8667 28. EC 1 

Crofton 59 48.8803 123.6458 20. W L A P 0 

Harmac Pacific 61 49.1353 123.8475 23. W L A P 0 

Deeks Peak 117 49.5333 123.2167 1280. MOT 1 

MT Strachan Precip 138 49.4044 123.1911 1220. MOT 1 

Vancouver INTL ARPT 597 49.1833 123.1833 2. EC 1 

Pam Rocks 615 49.5000 123.3000 10. EC 0 

Discovery Island CS 617 49.4167 123.2333 15. EC 1 

Entrance Island 620 49.2167 123.8000 3. EC 0 

Sand Heads CS 671 49.1000 123.3000 15. EC 0 

West Vancouver 673 49.3333 123.1833 178. EC 1 

White Rock 674 49.0167 122.7667 13. EC 1 
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Table 4.5: Number of reporting stations for analysis and verification at each analysis time 
on 4 Feb 2003. 

No. of stations 

Time (UTC) Analysis Verification 

0000 8 11 

0100 8 11 

0200 8 11 

0300 8 11 

0400 4 7 

0500 7 11 

0600 6 11 

0700 7 11 

0800 7 11 

0900 7 11 

1000 7 11 

1100 7 11 

1200 7 11 
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Figure 4.9: Observed potential temperature (derived from observed temperature) for sta­
tions over water (lines with open circles) and over land (lines with filled circles) during 
0000 UTC-1200 UTC 4 Feb 2003. Stations over water are Entrance Island (620, solid line), 
Pam Rocks (615, dashed line), and Sand Heads CS (671, dotted line). Stations over land 
are West Vancouver (673, solid line), Vancouver INTL ARPT (597, dashed line) and White 
Rock (674, dotted line). Breaks in the graph denote periods for which no observations were 
reported. 0000 UTC (OOZ) corresponds to 1600 PST (late afternoon), and 1200 UTC (12Z) 
is 0400 PST (early morning). 

Figure 4.10 shows time series of the first guess (FSTG) or the analyzed potential tem­
perature and observations for one water station (Entrance Island) and one land station 
(White Rock), separately. The 3-km run produces a good first guess for White Rock from 
0300 to 1200 UTC 4 February, but underpredicts the potential temperatures for Entrance 
Island. The analyses from four methods (not including MD_MT because there are no 
mountain-top stations in this data set) show more agreement with the observations than 
the first guess. Comparatively, MD and MDJLSMG both produce better analyses than 
GAUSS and TERR_DIFF. MD_LSMG is superior in maintaining the thermal contrast be­
tween Entrance Island and White Rock. Figure 4.11 further demonstrates advantages of 
MDJLSMG, based on separate averages from three land and three water stations. Aver­
aging all land stations, including the slope stations, makes the land-water contrast very 
small. However, advantages of MD.LSMG can be seen from separate averages of all water 
stations and all land stations except the slope stations (not shown). 

As mentioned before, the land-sea thermal contrast in early morning at 1200 UTC is the 
most prominent during the study period. Observed potential temperatures at 1200 UTC 4 
February 2003 are presented in Fig. 4.12, which shows thermal gradients across coastlines 
(i.e., relatively cold over the Lower Fraser Valley and warm over the Strait of Georgia). 
High potential temperatures are also observed over the mountain slopes north of Vancouver. 

Figure 4.13 shows how much the analysis from each of the four methods corrects the 
first guess by assimilating surface potential temperature observations. Methods GAUSS 
and TERR_DIFF exhibit similar results: over-correction for observed potential tempera­
ture less than 278 K (mostly stations along coastlines over the Lower Fraser Valley) and 
under-correction for observed potential temperature greater than 278 K (stations over the 

59 



2 8 4 

2 8 2 

cu 
D 2 8 0 

aj 
C L 

£ 2 7 8 

2 7 6 

o 
C L 

2 7 4 

2 7 2 

F S T G 

A - - A - - A 

Ik 

-e—s—e 

2 8 4 

2 8 2 

3 2 8 0 

ro 
cu 
| 2 7 8 
a) 

"to 
= 2 7 6 

C CU 
o 

° - 2 7 4 

2 7 2 0 0 Z 0 1 Z 0 2 Z 0 3 Z 0 4 Z 0 5 Z 0 6 Z 0 7 Z 0 8 Z 0 9 Z 1 0 Z 1 1 Z 1 2 Z 

4 F E B 2 0 0 3 

0 0 Z 0 1 Z 0 2 Z 0 3 Z 0 4 Z 0 5 Z 0 6 Z 0 7 Z 0 8 Z 0 9 Z 1 0 Z 1 1 Z 1 2 Z 

4 F E B 2 0 0 3 

O O Z 0 1 Z 0 2 Z 0 3 Z 0 4 Z 0 5 Z 0 6 Z 0 7 Z 0 8 Z 0 9 Z 1 0 Z 1 1 Z 1 2 Z 

4 F E B 2 0 0 3 

0 0 2 0 1 Z 0 2 Z 0 3 Z 0 4 Z 0 5 Z 0 6 Z 0 7 Z 0 8 Z 0 9 Z 1 0 Z 1 1 Z 1 2 Z 

4 F E B 2 0 0 3 

2 8 4 

„ 2 8 2 v 
cu 
3 2 8 0 
to 
cu 

I 2 7 8 

1 2 7 6 

C 

QJ 
O 

tt 2 7 4 

2 7 2 

O O Z 0 1 Z 0 2 Z 0 3 Z 0 4 Z 0 5 Z 0 6 Z 0 7 Z 0 8 Z 0 9 Z 1 0 Z 1 1 Z 1 2 Z 

4 F E B 2 0 0 3 

Figure 4.10: Time series of observed potential temperature and the [first guess (FSTG) or 
analyzed] potential temperature from four analysis methods for two stations. Observations 
at Entrance Island over water: dashed line with open triangles. Observations at White 
Rock over land: dashed line with solid triangles. Analyses at Entrance Island: solid line 
with open circles. Analyses at White Rock: solid line with filled circles. Analyses are 
better when the solid lines are closer to the respective dashed lines. 
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Figure 4.11: Time series of averaged potential temperature of three stations over water and 
land, respectively. The three stations over water, used for the average, are Entrance Island, 
Pam Rocks and Sand Heads CS. West Vancouver, Vancouver INTL ARPT and White Rock 
are the three stations used for the average over land. Observations and analyses over water 
are denoted by the dashed line with open triangles and the solid line with open circles, 
respectively. Observations and analyses over land are represented by dashed line with solid 
triangles, and solid line with filled circles, respectively. FSTG stands for the first guess. 
Closer correspondence between the solid and dashed lines indicate a better analysis. 
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Figure 4.12: Surface potential temperature observations (K; rounded to be integer for 
plotting) over the Georgia Basin area at 1200 UTC 4 Feb 2003. The corresponding station 
IDs can be found in Fig. 4.8. The bottom plot is zoomed to the top center of the top plot. 
Higher elevations are shaded darker (see gray reference bar in units of meters). 
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Figure 4.13: The first guess, indicated by a plus, and analysis, indicated by a circle, from 
each of the four methods (GAUSS, TERR_DIFF, MD, MD_LSMG), vs observation. Perfect 
analysis is along the diagonal. The size of circles and pluses is increased with the following 
sequence of stations: s674, s673, s671, s620, s617, s615, s597, sl l7, sl38, s61, s59. See 
station locations in Fig. 4.8. 
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Figure 4.14: The first guess (FSTG) and analyzed potential temperature (K) from each 
of the four analysis methods (GAUSS, TERRJDIFF, MD, and MDJLSMG), as shown by 
shading. Darker shading indicates colder temperatures. Superposed are observed poten­
tial temperatures as shown by digital values for all stations. The analyzed and observed 
potential temperature are available at 1200 UTC 4 Feb 2003. 
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Table 4.6: Verification of analyzed potential temperatures in terms of bias, mean absolute 
error (mae), and normalized root-mean-square error (nrmse) for all reporting verification 
stations during the analysis period from 0000 UTC to 1200 UTC 4 Feb 2003. N equals 
number of stations times the number of observation times. Nrmse is rmse (root-mean-
square error) for each method normalized by the rmse of the first guess (FSTG). Percent 
improvement of the rmse is with respect to FSTG. 

M e t h o d N Bias ( K ) M a e ( K ) N r m s e Percent improvement 

FSTG 139 -2.6832 2.7624 1. 0 

GAUSS 139 -0.5625 1.7565 0.6610 34 

TERR_DIFF 139 -0.6401 1.6482 0.6317 37 

MD 139 0.2344 1.3069 0.4943 51 

MD_LSMG 139 -0.0051 1.1956 0.4433 56 

mountain slopes of West Vancouver or over the Georgia Strait). Compared to GAUSS 
and TERRJDIFF, results from method MD show more agreement with observed potential 
temperature greater than 278 K. This reveals that MD accounts for terrain effects bet­
ter than GAUSS and TERR_DIFF. Method MDJLSMG gives better analyses than MD, 
with reduced differences between the analyses and observations for almost all stations. 
Comparatively, the mother-daughter approaches (both MD and MD_LSMG) produce bet­
ter analysis results than GAUSS and TERRJDIFF. MD.LSMG is superior in maintaining 
thermal contrasts across coastlines (for example, the coastline between the Georgia Strait 
and the Lower Fraser Valley), as can be seen in Fig. 4.14, which shows a better defined 
warm band over the Georgia Strait from MD_LSMG than from FSTG and any other anal­
ysis methods including GAUSS, TERRJDIFF, and MD. 

To gain further insight into the performance of each analysis method, it is useful to look 
at the verification statistics for the whole analysis period. As shown in Table 4.6 and in 
Fig. 4.15, all methods improve FSTG as measured by bias, mean absolute error (mae) and 
normalized root-mean-square error (nrmse). TERR_DIFF is slightly better than GAUSS, 
with smaller mae and nrmse. MD is better than GAUSS and TERRJDIFF, and MD_LSMG 
is the best. Percentage improvement of rmse over FSTG is below 40% for GAUSS and 
TERRJDIFF, but above 50% for MD and MDJLSMG. Compared to MD, MDJLSMG gains 
5% more improvement. 

To compare computational efficiency, each method is executed on one processor of 
a High-Performance Computing Linux Super-Cluster, with 1 GHz Pentium III CPU. The 
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Figure 4.15: Verification of analyzed potential temperatures in terms of bias, mean absolute 
error (mae), and normalized root-mean-square error (nrmse) for all reporting verification 
stations during the analysis period from 0000 UTC to 1200 UTC 4 Feb 2003. Nrmse is 
rmse (root-mean-square error) for each method normalized by the rmse of the first guess 
(FSTG). 
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results from a surface-only analysis at 0100 UTC 4 February 2003 are presented in Table 4.7. 
For the purpose of computational comparison, all 169 available temperature observations 
are used within a domain having 257 x 205 = 52685 GPs, with 3-km grid spacing. The 
execution time for GAUSS is slightly less than that for TERRJDIFF. The execution time 
for the MD approach is split into two parts: 1) the calculation of the SFs (which needs 
to be done only once for each surface station within an analysis domain, as mentioned 
in section 3.3) and 2) the application of the SFs during the analysis (which is repeated 
for each analysis). Part 1 of both MD and MD_LSMG is computationally more expensive 
compared to GAUSS and TERRJDIFF, while part 2 is nearly the same as TERRJDIFF. 
MDJLSMG is computationally cheaper than MD, because adding land-water contrasts 
limits the region of influence and hence speeds computation. The timing for part 1 is 
done without limiting the observation's influence region. Thus, the computational costs 
are affected by the domain size. 

To eliminate the domain-size effect, the SFs are re-calculated within a prescribed in­
fluence region (a square here) of the observation. The radius of the circle inscribed in 
the square was set to 300 km, which is slightly greater than the radius of influence (ROI; 
273.14 km) calculated in the ADAS based on Rh for the first pass. Now the execution time 
for calculating the SFs is reduced 36.5% for MD and 33% for MD_LSMG [see item (*) in 
Table 4.7]. 
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Table 4.7: Execution time in seconds for each analysis method on one processor of a 
High-Performance Computing Linux Super-Cluster, with 1 GHz Pentium III CPU. The 
results are obtained from a surface-only analysis at 0100 UTC 4 Feb 2003, when all 169 
observations are used for analysis within a domain of 257 x 205 grid points, with 3-km 
grid spacing. The parameters used in the mother-daughter approach are: a — 2, b = 2, 
zrefl = 750 m, and zref2 = 750 m. For the two MD approaches, item 1 is the one-time 
setup cost without limiting search radius, item 2 is the execution time for its application 
to this test domain, item * is also the one-time setup cost but with limiting search radius 
to 300 km. 

Method Execution time (s) 

GAUSS 22.99 

TERRJDIFF 28.12 

MD (1) 3902.03 

(2) 29.96 

(*) 2476.80 

MD_LSMG (1) 2833.89 

(2) 29.93 

(*) 1897.60 
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Chapter 5 

Methodology for Assimilat ing 
Surface Observations into N W P 
models 

5.1 Combination of surface and upper-air data 
Dense surface observations are valuable data sources for mesoscale data assimilation (Stauf-
fer et al. 1991; Ruggiero et al. 1996, 2000). However, surface observations are available 
at only one terrain-following level. Meanwhile, major operational centers generate 3-D 
meteorological analyses daily by assimilating many types of measurements. One exam­
ple is the Eta model analysis from NCEP (see Appendix A). This chapter describes how 
to effectively combine dense local surface data with a coarser, 3-D analysis from major 
operational centers. 

5.1.1 Surface-data analysis 

Surface observations are first analyzed by using the MD approach in conjunction with the 
ADAS to generate a surface-data analysis (see Chapters 2, 3, and 4). This is done by 
optimally combining surface observations and the first guess. The first guess is a previous 
forecast (on the lowest terrain-following level) from the MC2 model at 3-km grid spacing 
(or 2-km grid spacing for operational runs in Chapter7). 

5.1.2 Upper-air analysis 

The Eta model analysis from NCEP (see Appendix A) is used to provide pseudo upper-air 
data. The input fields for MC2 nesting runs (e.g., 3-km grid) need to be on terrain-
following model levels. To obtain an upper-air analysis on the terrain-following MC2 3-km 
(or 2-km) model levels, the Eta model analysis is interpolated horizontally to 108 km and 
vertically to the MC2 108-km model levels, and MC2 108 km is integrated for 1 h. The 
0-h and 1-h output from the MC2 108 km are used as initial and boundary conditions 
to drive MC2 36 km, which in turn drive 12, 4, and 3 km (or 2 km). MC2 3-km (or 
2-km) output on terrain-following levels at 0 h are the upper-air data that are used below. 
By doing this, horizontal interpolation is gradual from coarse grid to finer grids, and 
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vertical interpolation is done at the terrain-following coordinate except the one from the Eta 
model analysis (pressure levels) to the MC2 108-km model levels. Therefore, interpolation 
errors particularly associated with the interpolation from pressure levels to terrain-following 
levels are minimized. Also, assimilating this interpolated Eta data makes it effective to 
incorporate all the satellite, radar, aircraft and rawinsonde data that were assimilated by 
NCEP. 

5.1.3 Combination schemes 
Now we have a surface-data analysis, an upper-air analysis, and the 3-D first guess from 
a previous MC2 3-km (or 2-km) forecast. The three sources of data are on the MC2 3-km 
(or 2-km) model levels. As mentioned in Chapter 1, there is a need to spread single-level 
surface information upward into several model layers. Two schemes are proposed below 
to combine the three data sources at the times when there are analyses, to form a final 
analysis that can be used to initialize the data-assimilation (DA) runs. The two schemes 
are based on the following assumptions, similar to the ones made by Yee and Jackson 
(1988): 

Surface observations are important in describing atmospheric state in the atmospheric 
boundary layer (BL). 

Coarser, 3-D analyses from major operational centers are important in providing 
information for atmospheric state above the BL. 

The first scheme (SIGM) uses a sigmoidal function to influence the background above 
the lowest model level by vertically spreading the analysis increments from the lowest 
model level. The scheme assumes that the analysis increments at the lowest model level 
apply to the whole BL, considering similar forecast errors in the BL. Above the BL top, 
the final analysis is a weighted average of the MC2 first guess and the pseudo upper-air 
data interpolated from the NCEP Eta model analysis. A transition zone exists near the 
BL top. The BL depth used in this scheme is diagnosed from the first guess by Stull's 
transilient turbulence theory (TTT) mixing-potential approach (Stull 1993; Stull 1998b). 

Let h be the BL depth, Zg be the height of the grid point above the ground level, SGsa 

and SGua be sigmoidal functions for surface analysis increments and upper-air analysis 
increments, respectively, then 

SGsa(r,k) = sgm 

SGua(r,k) = sgm 

h(r)-Zg(r,ky 

-Zg(r,k)-h(r) 
K. 

(5.1) 

(5.2) 

where sgm(x) = l/(l-t-exp(—x)), and parameter Kt (taken as 10. m here to restrict the 
influence of surface data within the BL) controls the sharpness of the sigmoidal functions 
near the BL top. Subscripts sa and ua represent the surface analysis and upper-air analysis, 
respectively. Indexes r and k correspond to horizontal position and vertical level. A 
boundary condition is applied at the lowest model level: SGsa(r, 1) = 1.0 and SGua(r, 1) = 
0.0. The two sigmoidal functions are illustrated in Fig. 5.1. 
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Figure 5.1: Illustration diagrams of the sigmoidal functions for a) surface analysis incre­
ments; b) upper-air analysis increments. 

Let F be an analysis variable. The final analysis of F becomes 

FA(r, k) =FB(r, k) + SGsa(r, k) [FSA(r, 1) - FB(r, 1)] 

+ SGua(r, k)Wua(k) [FUA(r, k) - FB(r, k)] 
(5.3) 

where superscripts A, B, SA and UA represent the final analysis, the background, surface 
analysis and upper-air analysis, respectively. Weights Wua in (5.3) depend on the ratio of 
error variances of upper-air analysis and the background: 

Wua(k) = 1 

1 + 
rauA (k) -,2 

(5.4) 

As the upper-air analysis is obtained by interpolating the Eta analysis to the MC2 
3-km (or 2-km) model levels, the error variance for the upper-air analysis is assumed to be 
the same as that for the background: aUA(k) = aB(k). 

The second scheme is a profile (PROF) method, where potential temperature and 
specific humidity at the lowest model level are assumed to be mixed uniformly within 
the BL, so the potential temperature and specific humidity analysis at the lowest model 
level are applied to the whole BL. This assumption works well for unstable mixing layer, 
or stable mixed layer when strong winds, strong turbulence and weak surface cooling are 
present (Stull 1988). This assumption is not valid if a very stable layer exists near the 
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Figure 5.2: Illustration of a slab idealization of the mixed-layer potential temperature 
profile. 

ground. In this thesis work, observations valid at 0000 UTC (1600 PST) are analyzed 
and assimilated into the NWP model. Above the BL top, the final analysis is a weighted 
average of the first guess and upper-air data as in SIGM. BL height is diagnosed from 
a profile method (described below) based on a slab idealization of the mixed layer (Stull 
2000). A jump (A0) of potential temperature at the entrainment zone is taken as 1.5 K. 
Figure 5.2 illustrates a slab idealization of the mixed layer. 

In the profile method, the analyzed potential temperature at the lowest model level 
9SA(1) is compared with the potential temperature profile of the upper-air analysis (9UA) 
at successively higher grid points. When 9SA(1) — 6UA(1) > —1.5 K, the BL height Zj 
is the height of the model level k at which the criterion of 6UA(k) — 9SA(l) > 1.5 K is 
first met. When 9SA(1) - 9UA(1) < -1.5 K, zTj is assumed to be 300 m, which represents 
shallow BLs with cold-air pooling. 

5 .2 Insertion technique 
The objective analysis procedures described in section 2.2 do not provide mass and motion 
fields that are in optimal balance to initiate a forecast. If the analysis is used directly 
as an initial condition, the initial imbalance between mass and motion fields can excite 
large, spurious inertial-gravity waves (IGWs). To reduce the effects of initial imbalances, 
a separate initialization step is usually utilized after analysis. According to Haltiner and 
Williams (1980): "The objective of an initialization procedure is to prepare gridpoint 
data with which the model can integrate forward in time with a minimum of noise and 
maximum accuracy of the forecasts of the meteorological scales that the model is designed 
to simulate." There are many initialization methods, such as damping techniques, static 
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initialization, normal-mode initialization, dynamic initialization and Newtonian relaxation. 
More details about these methods can be found in Haltiner and Williams (1980), and 
Kalnay (2003). 

An explicit initialization process after analysis has become less popular recently, because 
alternative approaches have been developed. One approach is the incremental analysis 
updating (IAU) developed by Bloom et al. (1996). IAU combines aspects of the intermittent 
and continuous approaches, i.e., the analyses are intermittent, but the analysis increments 
are used as constant forcings in model's prognostic equations over an assimilation period 
centered on an analysis time (Bloom et al. 1996). Hence, in IAU, the analysis increments 
are incorporated gradually into a model, without the use of an explicit initialization process. 

Once the final analysis is obtained as proposed in the previous section, incremental 
analysis updating (IAU, similar to Bloom et al. 1996) is used here to insert the final 
analysis increments (the differences between the final analysis and the first guess) into the 
MC2 model. A schematic of the data assimilation using the IAU technique is shown in 
Fig. 5.3. 

In the MC2 model, different terms of the prognostic equations are combined during 
the numerical integration using a process-splitting method (Bergeron et al. 1994). The 
prognostic equation for any variable tp can be expressed in symbolic form by 

dtib = L(ip) + R # ) + E(tfO + P(ip) + H ( ^ ) + T(V) (5.5) 

where dt is a total derivative, L ( ^ ) is the linear part of the gravity and elastic waves, and 
R(ip) represents all the other dynamic terms. The E(T/J) term represents the nesting of the 
model variables with the driving model values near the lateral boundaries, P(^>) are the 
physical parameterizations acting in the vertical, H(ip) is horizontal diffusion, and T(tp) is 
an Asselin-Robert time filter. 

With the process-splitting method, the model first solves for t/j, retaining only the first 
two terms on the right-hand side of Eq. (5.5). This value of ip is then corrected successively, 
retaining each of the other terms one at a time. It was convenient to incorporate the 
IAU technique into the MC2 model because of this process-splitting method. The analysis 
increments are applied over a data assimilation window as a constant forcing term after the 
physical parameterizations in the vertical, but before the treatment of horizontal diffusion 
and the Asselin-Robert time filter. 

IAU is implemented in the MC2 model largely following from the existing ARPS Data 
Analysis System (ADAS) incremental analysis updating (IAU) scheme (Brewster 1996, 
2003a,b), which is based on the IAU approach by Bloom et al. (1996). Parallelization 
of IAU uses the software architecture of the MC2 model. Applications of the ADAS IAU 
scheme for data assimilation (particularly of Radar data) to a storm-scale numerical model 
have employed a constant time weighting over a 10-min window (Brewster 2003b; Xue et al. 
2002; Yoo et al. 2002a;Yoo et al. 2002b). 

5.3 Time-lines of data assimilation 
A schematic diagram illustrating model time-lines of MC2 self-nesting cascade runs and 
the data assimilation runs at 3-km grid spacing is shown in Fig. 5.4. The coarsest grid at 
108-km grid spacing is started from the Eta analysis at 0000 UTC on day 1, while each 
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Figure 5.3: Schematic diagram illustrating data assimilation using the incremental analysis 
updating (IAU) technique. The analysis increments (incr) are the differences between the 
final analysis (FA) and the first guess (FG). 

of the finer grids is started 3 hours later than the previous grid. A control run (CTRL) 
at 3-km grid spacing is started at model-time 1200 UTC on day 1 and is integrated 36 h. 
The CTRL run provides its 12-h output as a first guess for the surface data analysis and 
the final analysis at 0000 UTC on day 2. 

A surface data analysis is obtained by optimally combining the first guess and surface 
observations at 0000 UTC on day 2. The surface data analysis and the Eta analysis valid 
at 0000 UTC on day 2 are merged by the schemes proposed in section 5.1.3 to produce a 
new final analysis. Al l data-assimilation (DA) runs incorporating final analysis increments 
are started at model-time 0000 UTC on day 2 and are integrated for 24 h. Same lateral 
boundary conditions from the MC2 4-km output are used for the DA runs and the CTRL 
run. Verification of subsequent forecasts at the lowest model level is performed during a 
24 h forecast period for DA runs and is compared with the verification of CTRL run during 
13-36 h forecast period from 0000 UTC on day 2 to 0000 UTC on day 3. This implies 
a 12-h difference in the forecast length between the CTRL and DA forecasts. But both 
forecasts are available at the same time. Tests are made for one case to start the CTRL run 
also from 0000 UTC on day 2 as for the DA run but without including new observations. 
Minor differences are found between the CTRL forecasts started from 1200 UTC on day 1 
and those started from 0000 UTC on day 2. 
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Figure 5.4: Schematic diagram illustrating model time-lines of the MC2 self-nested grids, 
the 3-km CTRL run, and the 3-km assimilation runs. MC2 4-km provides boundary 
conditions for the 3-km CTRL run and the 3-km assimilation runs. SFC indicates surface 
data. 
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Chapter 6 

Case study tests of assimilating 
surface observations in complex 
terrain 

In this chapter, case study tests of data assimilation (DA) are conducted for the 3-km 
domain (b) (see Fig. 2.3). This region is selected because of the relatively high density of 
surface observations and comparatively small domain size (allowing fast computations). 

Numerical experiments are performed for the 29-30 July 2003 case when a large forest 
fire occurred near McLure, BC. The weather situation during 29-30 July 2003 was char­
acterized by fair weather associated with a 50-kPa ridge over Southern BC, allowing the 
boundary-layer processes to play a dominant role. 

The Eta analysis and forecasts from NECP, valid at 0000 UTC 29 July 2003, are used 
to drive the coarsest grid (108-km grid spacing), which in turn drives grids of 36, 12, 4, and 
3 km. The MC2 3-km run is started at 1200 UTC 29 July from the MC2 4-km output, and 
provides its 12-h output as the first guess for the analysis at 0000 UTC 30 July. Surface 
analyses are performed at 0000 UTC 30 July by blending hourly surface observations with 
the first guess at the lowest terrain-following model level valid at the same time. The Eta 
analysis valid at 0000 UTC 30 July is used to generate pseudo upper-air data. A final 
analysis at 0000 UTC 30 July is obtained by combining the surface analysis, upper-air 
data and first guess. DA runs at 3-km grid spacing (with five grid points cut from each 
side of the domain for the first-guess run to reduce lateral boundary errors) are started at 
0000 UTC 30 July from the final analysis via the IAU technique. 

As mentioned earlier, surface observations are from several agencies: BC ministry of 
Transportation (MOT), BC Ministry of Water Land and Air Protection (WLAP), BC 
Ministry of Forests (MOFS), CN Railroad (CNRL), CP Rail (CPRL), Environment Canada 
(EC) and BC Hydro (HYDR). Those surface stations with a difference between their 
actual elevation and model topography greater than 500 m are excluded from analysis and 
verification. Out of the total 134 stations in the DA domain, 20 stations were excluded for 
this reason. 
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Figure 6.1: Surface weather stations (indicated by triangles) superposed on the model 
topography (m). Darker shading indicates higher elevations. Open triangles represent 
station locations with missing temperature observations at the analysis time (0000 UTC 
30 July 2003), while closed triangles indicate station locations with available temperature 
observations at the analysis time. 

6.1 Analysis results 
Figure 6.1 shows all the surface stations used in analysis. There are 118 surface stations 
(indicated by open and closed triangles) within the analysis domain. The domain for DA 
runs is a little bit smaller than the analysis domain, leaving 114 stations within the DA 
domain for verification. Among them, 65 stations (indicated by closed triangles) reported 
temperature observations at 0000 UTC 30 July. 

Because we use specific humidity as the moisture variable for analysis, the available ob­
servations depend on the availability of observed relative humidity, temperature and either 
surface pressure or sea-level pressure. The derivation of specific humidity from relative 
humidity is described in section 2.3. The pressure reports including surface pressure and 
mean sea-level pressure are much fewer than temperature reports. As a result, fewer ob­
servations for specific humidity are available, as shown in Fig. 6.2. Observations separated 
by 100 m or less in the horizontal and vertical are averaged to create a smaller number of 
"superobservations". 

The verification statistics of potential temperature (Table 6.1 and Fig. 6.4 ) show that 
all methods give improved analyses compared to the first guess (FSTG) as measured by 
bias, mean absolute error (mae) and normalized root-mean-square error (nrmse). GAUSS 
is slightly better than TERR_DIFF, with smaller mae and nrmse. Both MD and MDJVIT 
outperform GAUSS and TERR.DIFF. MD produces lowest bias, mae, whereas MDJVIT 
has lowest nrmse. The improvement of MD_MT over MD is not as large as that for the 
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Figure 6.2: Surface station locations (indicated by closed triangles) with available spe­
cific humidity observations at the analysis time (0000 UTC 30 July 2003) and the model 
topography (m). Darker shading indicates higher elevations. 

virtual-observation case in section 4.2. A reason for this performance could be that a 
very small fraction of stations (three out of the 65 stations, see Fig. 6.3) are treated as 
mountain-top observations in this case, while in the virtual-observation case, one out of 
the three stations is a mountain-top observation. 

Table 6.2 and Fig. 6.5 present the verification statistics of specific humidity. MD, with 
smaller bias, mae and nrmse, outperforms GAUSS and TERR_DIFF. MDJVIT performs the 
same as MD, as none of specific humidity observations is from the mountain-top stations. 
The MD approach with coastal refinement is not studied here, because there are no stations 
in the Okanagan lakes for analysis or verification. 

6.2 Results from M C 2 data-assimilation runs 
As mentioned above, a detailed surface analysis is available at 0000 UTC 30 July 2003. 
Meanwhile, coarser-resolution upper-air data can be obtained from the Eta analysis avail­
able at the same time (see section 5.1.2). These two analyses can then be combined with 
the first guess to generate a final analysis (see section 5.1). The final analysis increments, 
obtained by subtracting the first guess from the final analysis, are introduced into the 
MC2 model via the IAU technique (section 5.2). All data-assimilation runs are started 
at 0000 UTC 30 July 2003 and are integrated 24 h into the model future. See Chapter 5 
for more details about combination schemes, the insertion technique and time-lines of the 
CTRL and DA runs. Lateral boundary conditions for all DA runs and for the CTRL are 
from the MC2 4-km output. For all DA runs, surface analyses are from MDJVIT. 

In the following subsections, impacts of combination schemes and insertion rates used 
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Figure 6.3: Surface weather stations (indicated by triangles) superposed on the difference 
between the model topography and the approximated heights of BL top (see section 3.5.2). 
Any station located in the darkly shaded areas will be treated as a mountain-top station. 
Open triangles represent station locations with missing temperature observations at the 
analysis time (0000 UTC 30 July 2003), while closed triangles indicate station locations 
with temperature observations at the analysis time. 
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Table 6.1: Verification of analyzed potential temperatures in terms of bias, mean absolute 
error (mae), and normalized root-mean-square error (nrmse) for all reporting verification 
stations at the analysis time: 0000 UTC 30 July 2003. N equals total number of reporting 
stations. Nrmse is rmse (root-mean-square error) for each method normalized by the rmse 
of the first guess (FSTG). For all these statistics, smaller is better. 

M e t h o d N Bias ( K ) M a e ( K ) N r m s e 

FSTG 64 -5.2583 7.6869 1. 

GAUSS 64 0.7577 2.0990 0.5146 

TERRJDIFF 64 0.7121 2.3238 0.5462 

MD 64 0.0894 1.5997 0.3906 

MD_MT 64 0.1332 1.6102 0.3872 

Table 6.2: Same as Table 6.1, but for verification of analyzed specific humidity. 

M e t h o d N Bias M a e N r m s e 
(1.0E-4 kg kg-1) (1.0E-4 kg kg-1) 

FSTG 16 14.9409 21.9212 1. 

GAUSS 16 -3.5951 7.8778 0.6208 

TERRJDIFF 16 -4.4802 9.4399 0.6646 

MD 16 -3.1810 6.7704 0.5940 

MD_MT 16 -3.1810 6.7704 0.5940 
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Figure 6.4: Verification of analyzed potential temperatures in terms of bias, mean absolute 
error (mae), and normalized root-mean-square error (nrmse) for all reporting verification 
stations at the analysis time: 0000 UTC 30 July 2003. Nrmse is rmse (root-mean-square 
error) for each method normalized by the rmse of the first guess (FSTG). 
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Figure 6.5: Same as Fig. 6.4, but for verification of analyzed specific humidity. 
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Table 6.3: Experiment design to test different schemes for combining surface and upper-air 
data. 

E X P 
Name 

Surface 
Analysis 

Upper-air 
Analysis 

Combination 
Scheme 

CTRL No No 

SIGMDA Yes Yes SIGM 

PROFDA Yes Yes PROF 

SURFDA Yes No 

SF_SIGM Yes No SIGM 

SF_PROF Yes No PROF 

in IAU on subsequent model forecasts will be assessed when assimilating only temperature 
observations for the above mentioned case. We will also examine impacts of assimilating 
different meteorological fields on subsequent model forecasts. Verification of subsequent 
model forecasts at the lowest model level, against surface observations from the Emergency 
Weather Net Canada database, is performed during a 24-h forecast period from 0000 UTC 
30 July to 0000 UTC 31 July 2003. 

6.2.1 Impact of different combination schemes 

To assess the impacts of the different combination schemes on subsequent forecasts, six 
experiments are conducted: one control experiment without assimilation (CTRL) and five 
other experiments, which assimilate various combinations of the surface and upper-air data 
(see Table 6.3). Experiment SIGMDA uses the surface analysis increments within the BL 
and the upper-air analysis increments above BL, where the two analysis increments are 
merged by the scheme SIGM (section 5.1.3). Experiment PROFDA uses the surface and 
upper-air data combined by the scheme PROF (section 5.1.3). These two experiments are 
performed to see which combination scheme is better for subsequent forecasts. Experiment 
SURFDA uses the surface data at only the lowest model level, and uses the first guess at 
all higher model levels. This experiment is used to study the effect of assimilating surface 
observations at only one model level. Experiment SF_SIGM uses the surface analysis only, 
but the analysis increments at the lowest model level are spread by the scheme SIGM to 
the whole BL. Experiment SF_PROF is the same as SF_SIGM, except that the surface data 
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are spread vertically by the scheme PROF. These two experiments are conducted to see 
if the assimilation of surface data plays a dominant role on subsequent surface forecasts, 
compared to using surface and upper-air data. 

Al l of the five DA experiments assimilate only potential temperature observations from 
the surface and/or upper-air data for the 29-30 July 2003 case. For fair-comparison pur­
poses, upper-air data are used at those grid points where the absolute values of the surface 
potential-temperature analysis increments are greater than 0.0 K. The final analysis in­
crements are incorporated all at once within a single timestep (30-second) window. The 
subsequent forecasts at the lowest model level are verified against surface observations. 
Bias, mae and rmse between observations and forecasts are calculated. 

Statistical assessments during 1-12 h forecast period in Tables 6.4 and 6.5 suggest that 
different DA experiments have variable success at predicting near-surface fields. 

For potential-temperature forecasts, all of the DA experiments outperform CTRL. By 
assimilating surface temperature at only the lowest model level, experiment SURFDA 
produces very little improvement over CTRL. When surface potential temperature analyses 
are spread upward throughout the whole BL either through SIGM or PROF (namely 
experiment SF_SIGM or SF_PROF), larger improvement for predicting surface potential 
temperatures are achieved. By combining the surface and upper-air data, experiments 
SIGMDA and PROFDA gain slightly larger improvement over CTRL than SF_SIGM and 
SF_PROF, respectively. The improvement of SIGMDA over SF_SIGM is smaller than that 
of SF_SIGM over CTRL. Similarly, the improvement of PROFDA over SF_PROF is smaller 
than that of SF_PROF over CTRL. This implies that the assimilation of surface data plays 
an important role in reducing the model errors for predicting surface weather parameters. 
The differences in the errors between SIGMDA and PROFDA are very small. The same 
conclusions can be drawn from the verification results of surface temperature forecasts (not 
shown). 

Verification results of mean sea-level pressure (SLP) forecasts reveal similar perfor­
mances of all DA experiments to those indicated by temperature verification. Al l experi­
ments except SURFDA outperform CTRL. Overall, the improvement of SLP forecasts is 
smaller than that of potential-temperature forecasts. This is reasonable as temperature ob­
servations are directly assimilated into the model. For wind forecasts, all DA experiments 
underperform CTRL in terms of normalized root-mean-square vector error (nrmsve) due to 
initial imbalances between mass and wind fields caused by a sudden change in temperature 
fields. SURFDA has the smallest nrmsve, probably because the assimilated temperature 
information is lost soon after insertion (as seen from the evolution of nrmse for surface po­
tential temperature, not shown). The differences between nrmsves of all DA experiments 
except SURFDA are small. For relative humidity (RH) forecasts, all of the DA experiments 
except SURFDA outperform CTRL in terms of bias, mae, and rmse or nrmse, similar to 
the SLP statistics. 

Verification statistics for 13-24 h forecast period (see Tables 6.6 and 6.5) indicates that 
all DA experiments produce temperature, wind, SLP and RH forecasts with errors that 
are close to those from CTRL. 
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Table 6.4: Verification of surface potential temperature (#), vector wind (V) and mean 
sea-level pressure (SLP) forecasts in terms of bias, mean absolute error (mae), root-mean-
square error (rmse) and/or normalized rmse (nrmse) for all reporting verification stations 
(n) during a 12 h forecast period from 0100 UTC 30 to 1200 UTC 30 July 2003. Rmsve 
stands for root-mean-square vector error. Nrmse (nrmsve) is rmse (rmsve) for each ex­
periment normalized by the rmse (rmsve) of the control run (CTRL). Data assimilation 
experiments differ in the combination of the surface and upper-air data. For all these 
statistics, smaller is better. 

1 -12 h Forecast 

e (K) SLP (hPa) V(m s-1) 

(n = = 601) (n= 153) (n = 506) 

Experiment Bias Mae Rmse Nrmse Bias Mae Nrmse Rmsve Nrmsve 

CTRL -4.8380 5.6661 6.4715 1. 3.7556 3.9732 1. 1.7445 1. 

SIGMDA -4.1647 5.1123 5.9504 0.9195 3.1126 3.5925 0.9329 1.9478 1.1165 

PROFDA -4.1629 5.1785 5.9788 0.9239 3.0049 3.5659 0.9348 1.9958 1.1441 

SURFDA -4.8528 5.6228 6.4421 0.9955 3.7572 3.9703 1.0003 1.7502 1.0033 

SF_SIGM -4.3195 5.2334 6.0702 0.9380 3.2345 3.6122 0.9368 1.9604 1.1238 

SF_PROF -4.3279 5.2882 6.0890 0.9409 3.2109 3.6500 0.9511 1.9682 1.1282 
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Table 6.5: Verification of surface relative humidity in terms of bias, mean absolute error 
(mae), root-mean-square error (rmse) and normalized rmse (nrmse) for (left column) the 
1-12 h forecast period from 0100 UTC 30 to 1200 UTC 30 July 2003; (right column) the 
13-24 h forecast period from 1300 UTC 30 to 0000 UTC 31 July 2003. Data assimilation 
experiments differ in the combination of the surface and upper-air data. For all these 
statistics, smaller is better. 

1 -12 h Forecast 13 - 24 h Forecast 

RH (%) RH (%) 
(n = 562) (n = 631) 

Experiment Bias Mae Rmse Nrmse Experiment Bias Mae Rmse Nrmse 

CTRL 32.0475 33.0919 38.0858 1.0000 CTRL 28.0863 28.6220 32.3712 1.0000 

SIGMDA 29.6808 31.3725 36.4135 0.9561 SIGMDA 28.7016 29.4102 32.9633 1.0183 

PROFDA 30.2433 32.1377 37.1019 0.9742 PROFDA 28.3768 29.0807 32.6601 1.0089 

SURFDA 32.5957 33.5962 38.4899 1.0106 SURFDA 28.3288 28.8262 32.6434 1.0084 

SF_SIGM 29.8114 31.6279 36.8775 0.9683 SF_SIGM 28.4262 29.1363 32.6861 1.0097 

SF_PROF 29.8905 31.6764 36.5784 0.9604 SF_PROF 28.3216 29.0408 32.6628 1.0090 
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Table 6.6: Same as Table 6.4, but for the 13-24 h forecast period from 1300 UTC 30 to 
0000 UTC 31 July 2003. 

13 - 24 h Forecast 

6(K) SLP (hPa) V(m s-1) 

(n = 681) (n= 181) (n = 585) 

Experiment Bias Mae Rmse Nrmse Bias Mae Nrmse Rmsve Nrmsve 

CTRL -7.1577 7.5398 8.0764 1. 2.7725 3.1285 1. 1.8655 1. 

SIGMDA -7.1416 7.5645 8.1103 1.0042 2.7881 3.1325 1.0025 1.8644 0.9994 

PROFDA -7.1119 7.5345 8.0842 1.0010 2.7700 3.1161 0.9973 1.8619 0.9981 

SURFDA -7.2105 7.5925 8.1292 1.0065 2.8382 3.1736 1.0144 1.8638 0.9991 

SF_SIGM -7.1512 7.5719 8.1191 1.0053 2.7970 3.1385 1.0030 1.8642 0.9993 

SF_PROF -7.1403 7.5683 8.1133 1.0046 2.8012 3.1457 1.0071 1.8582 0.9960 
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Table 6.7: Experiment design to test different insertion rates in IAU. 

E X P 
Name 

Sfc & U A 
Analysis 

Combination 
Scheme 

D A 
Window 

Insertion 
Rate 

CTRL No 

TH1 Yes PROF 30 s 30 s 

TH2 Yes PROF 1 h 30 s 

TH3 Yes PROF 1 h 120 s 

TH6 Yes PROF 1 h 1200 s 

6.2.2 Impact of insertion rate on model forecasts 

Experiments (see Table 6.7) are conducted to assess different data assimilation strategies 
by varying insertion rate in IAU. Experiment TH1 incorporates temperature analysis in­
crements all at once within a single 30-second time step. Experiment TH2 incorporates 
temperature analysis increments every 30 seconds over a 1-h DA window. The 1-h DA win­
dow is selected because the BL responds to the surface forcing with a time scale of about 
one hour or less (Stull 1988). In experiment TH3, the temperature analysis increments 
are introduced into the model integration every 120 seconds over a 1-h DA window. In 
experiment TH6, the temperature analysis increments are incorporated every 1200 seconds 
over a 1-h DA window. For all these four DA experiments, the final potential temperature 
analysis is obtained by using the PROF scheme (see section 5.1.3) for vertical spreading. 
Therefore, experiment TH1 is identical to PROFDA defined in Table 6.3. 

The impact of varying insertion rate on potential-temperature forecasts is much larger 
than on SLP and wind forecasts (Table 6.8). The 1-12 h error-measures of potential 
temperature decrease significantly from experiment TH1 to TH2 (or TH3, TH6). This 
implies that introducing the temperature analysis increments over a 1-h window (and thus 
smaller magnitude of analysis increments at each time step) reduces data rejection. Data 
rejection is a common problem in the DA procedure if the observation data are significantly 
different from the first guess. The differences between the error-measures of experiments 
TH2, TH3 and TH6 are small. Comparatively, experiment TH6 produces the smallest error 
measures for temperature and vector wind, probably because the model is less frequently 
disturbed when analysis increments are introduced every 1200 s instead of every 30 s or 
120 s. The bias and mae (but not rmse) of relative humidity from experiment TH6 are 
also smallest among all the experiments, as shown in Table 6.9. 
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Table 6.8: Verification of surface potential temperature (6), wind (V) and mean sea-level 
pressure (SLP) forecasts in terms of bias, mean absolute error (mae), root-mean-square 
error (rmse) and/or normalized RMSE (nrmse) for all reporting verification stations (n) 
during 12 h forecast period from 0100 UTC 30 to 1200 UTC 30 July 2003. Rmsve stands 
for root-mean-square vector error. Nrmse (nrmsve) is rmse (rmsve) for each experiment 
normalized by the rmse (rmsve) of the control run (CTRL). Data assimilation experiments 
differ in the insertion rate in IAU. For all these statistics, smaller is better. 

1 -12 h Forecast 

6(K) SLP(hPa) V(ms-l) 
(n = 601) (n=153) (n = 506) 

Experiment Bias Mae Rmse Nrmse Bias Mae Nrmse Rmsve Nrmsve 

1. 1.7445 1. 

0.9348 1.9958 1.1441 

0.9397 2.0240 1.1602 

0.9393 2.0229 1.1596 

0.9356 1.9906 1.1411 

CTRL -4.8380 5.6661 6.4715 1. 3.7556 3.9732 

TH1 -4.1629 5.1785 5.9788 0.9239 3.0049 3.5659 

TH2 -3.8462 4.8854 5.6791 0.8776 2.6897 3.6274 

TH3 -3.8709 4.9097 5.7003 0.8808 2.7039 3.6208 

TH6 -3.7522 4.7917 5.6002 0.8654 2.7652 3.5824 
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Table 6.9: Verification of surface relative humidity in terms of bias, mean absolute error 
(mae), root-mean-square error (rmse) and normalized rmse (nrmse) for the 1-12 h forecast 
period from 0100 UTC 30 to 1200 UTC 30 July 2003. Data assimilation experiments differ 
in the insertion rate in IAU. For all these statistics, smaller is better. 

1 -12 h Forecast 

R H (%) (n =562) 

Experiment Bias Mae Rmse Nrmse 

C T R L 32.0475 33.0919 38.0858 1.0000 

TH1 30.2433 32.1377 37.1019 0.9742 

TH2 29.2943 31.3002 36.1769 0.9499 

TH3 29.4600 31.4542 36.3662 0.9549 

TH6 29.1937 31.2109 36.2455 0.9517 
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Figure 6.6: Time series of normalized root-mean-square error (nrmse) for surface potential-
temperature from experiments CTRL, TH1, TH3, and TH6. Smaller nrmse corresponds 
to better forecasts. 

Figure 6.6 shows nrmse of potential temperature versus forecast hour for experiments 
CTRL, TH1, TH3 and TH6. The nrmses for these experiments are much smaller than 1.0 
(nrmse of experiment CTRL) during the first 12 h (except 4 h) of forecasts, and increase 
gradually with forecast hour. Finally the nrmse becomes close to 1.0. By applying the 
analysis increments over a 1-h window rather than all at once, experiment TH3 and TH6 
produce much smaller nrmse than experiment TH1 for the first 7 h (except 4 h) of forecasts. 
Reducing the insertion rate at which the analysis increments are introduced decreases nrmse 
mainly for the first 1 h of forecasts. 

The time series of normalized root-mean-square vector error (nrmsve) for experiments 
CTRL, TH1, TH3, and TH6 are shown in Fig. 6.7. By assimilating temperatures only, 
the model tends to produce poorer wind forecasts than CTRL during the first 12 h, due 
to initial imbalances between the mass and wind fields. During the second 12 h forecast 
period, all DA experiments and CTRL produce similar forecasts. This could be because the 
assimilated information propagates out of the domain. Another reason could be that the 
mass and wind fields are adjusted to be in balance. By applying the temperature analysis 
increments over a 1-h window rather than all at once (thus reducing initial imbalances), 
experiments TH3 and TH6 decrease nrmsve effectively for the 1 h forecast as compared to 
experiment TH1, but increase nrmsve a little bit during the 2-8 h forecast period. Reducing 
the rate at which the analysis increments are incorporated decreases further nrmsve for 
the 1 h forecast while reducing the increase of nrmsve for the later forecasts. 
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Figure 6.7: Time series of normalized root-mean-square vector error (nrmsve) for surface 
winds from experiments CTRL, TH1, TH3, and TH6. Smaller nrmsve corresponds to 
better forecasts. 

Table 6.10: Experiment design for assimilating different meteorological fields. Variable T 
is temperature and qv is specific humidity. 

E X P Sfc & U A Combination D A Insertion Variables 
Name Analysis Scheme Window Rate Assimilated 

CTRL No 

AT Yes PROF 

AQ Yes PROF 

ATQ Yes PROF 

1 h 1200 s T 

1 h 1200 s qv 

1 h 1200 s T, qv 
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6.2.3 Impact of assimilating different fields 

To study the impact of assimilating different meteorological fields on subsequent model 
forecasts, three other experiments (Table 6.10) are performed, each of which assimilates 
temperature only (AT), specific humidity only (AQ), and both temperature and specific 
humidity (ATQ), respectively. For all these DA experiments, the final analyses of potential 
temperature and specific humidity are obtained by combining surface and upper-air data 
using the PROF scheme (section 5.1.3) for vertical spreading; the final analysis increments 
are incorporated into the MC2 model every 1200 seconds over a 1-h DA window. Therefore, 
experiment AT is identical to experiment TH6 defined in Table 6.7. Finally, the MC2 model 
is run to make a 24 h forecast that is verified against subsequent surface observations. 

For potential-temperature and SLP forecasts, experiment AQ (assimilating specific hu­
midity only) produces poorer forecasts than CTRL (Table 6.11). The effects on tempera­
ture forecasts of assimilating specific humidity can be due to scattered low clouds formed 
during the forecast period. The forecasts from experiments AT and ATQ are greatly im­
proved compared to the CTRL forecast. By assimilating both temperature and specific 
humidity, experiment ATQ is improved compared to experiment AT that assimilates tem­
perature only. 

Al l of the DA experiments (AT, AQ and ATQ) give poorer wind forecasts than CTRL. 
In contrast to the error measures of potential temperature and SLP, nrmsve is the smallest 
from experiment AQ, and the largest from experiment ATQ. Winds are more sensitive to 
temperature perturbations than to moisture perturbations. 

Surprisingly, assimilating only specific humidity (experiment AQ) slightly decreases 
bias and mae (but slightly increases rmse) in the forecasts of surface relative humidity 
(Table 6.12). As a result, experiment ATQ produces slightly larger RH error measures 
compared to experiment AT, while experiment AT gives the best RH forecasts, with min­
imum bias, mae, rmse and nrmse (Table 6.12). 

However, verification statistics of surface specific humidity (see Table 6.13) show that 
rmse from experiment AQ is reduced by about 18% from the CTRL experiment. The 
needed derivation of surface specific humidity from observed surface relative humidity 
might help to explain the contrasting results between the verification statistics of surface 
relative humidity and specific humidity. As mentioned in section 2.3, the derivation of 
specific humidity depends on surface pressure and temperature. When surface pressure is 
not available, an approximation of surface pressure from mean sea-level pressure is made. 

The impact of assimilating different meteorological fields on the diurnal variation of 
surface temperature is examined at three stations near McLure and three stations in the 
Okanagan Valley (Fig. 6.8). These stations are chosen because McLure and the Okanagan 
Valley suffered extensive forest fires in the past few years, for which improved forecasts 
could have aided fire fighters in saving more of the adjacent homes. The diurnal variation 
of surface temperature forecasts from experiments AT and AQ is almost the same as 
experiments ATQ and CTRL, respectively, and therefore not included here. 

Figure 6.9 compares surface temperature forecasts (at the lowest model level, which 
is 5.3 m above model ground) from experiments CTRL and ATQ to the observed surface 
temperatures at three stations near McLure every 1 h during 24 h forecast period from 
0000 UTC (OOZ) 30 July to 0000 UTC 31 July 2003. For these three stations, the first 
guess (from CTRL experiment) underforecasts the surface temperature at the analysis 
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Table 6.11: Verification of surface potential temperatures (#), mean sea-level pressure 
(SLP) and vector wind (V) forecasts in terms of bias, mean absolute error (mae), root-
mean-square error (rmse) and/or normalized RMSE (nrmse) for all reporting verification 
stations (n) during 12 h forecast period from 0100 UTC 30 to 1200 UTC 30 July 2003. 
Rmsve stands for root-mean-square vector error. Nrmse (nrmsve) is rmse (rmsve) for 
each experiment normalized by the rmse (rmsve) of the control run. Data assimilation 
experiments differ in the variables assimilated into the model. 

1 -12 h Forecast 

e 

(n = 

(K) 

= 601) 

SLP (hPa) 

(n = 153) 

V(m s-1) 

(n = 506) 

Experiment Bias Mae Rmse Nrmse Bias Mae Nrmse Rmsve Nrmsve 

CTRL -4.8380 5.6661 6.4715 1. 3.7556 3.9732 1. 1.7445 1. 

AT -3.7522 4.7917 5.6002 0.8654 2.7652 3.5824 0.9356 1.9906 1.1411 

AQ -4.9213 5.7311 6.5542 1.0128 3.8518 4.0770 1.0214 1.7726 1.0161 

ATQ -3.6882 4.7416 5.5484 0.8574 2.7530 3.5666 0.9236 2.0333 1.1655 
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Table 6.12: Verification of surface relative humidity in terms of bias, mean absolute error 
(mae), root-mean-square error (rmse) and normalized rmse (nrmse) for 1-12 h forecast 
period from 0100 UTC 30 to 1200 UTC 30 July 2003. Data assimilation experiments differ 
in the variables assimilated into the model. 

1 -12 h Forecast 

RH (%) (n = 562) 

Experiment Bias Mae Rmse Nrmse 

CTRL 32.0475 33.0919 38.0858 1.0000 

AT 29.1937 31.2109 36.2455 0.9517 

AQ 31.3868 32.7379 38.4099 1.0085 

ATQ 29.6367 31.5080 36.7007 0.9636 

Table 6.13: Same as Table 6.12 except for verification of surface specific humidity. 

1 -12 h Forecast 

qv(1.0E-4kgkg-l) 

(n = 169) 

Experiment Bias Mae Rmse Nrmse 

CTRL 18.883 24.465 29.723 1.0000 

AT 17.605 24.051 28.801 0.9690 

AQ 14.082 19.810 24.249 0.8158 

ATQ 18.410 23.517 28.369 0.9544 
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time (0000 UTC 30 July). By assimilating dense local surface temperature observations, 
experiment ATQ produces improved forecasts. The improvement in surface temperature 
from data assimilation decreases greatly from 1 h to 2 h forecast for the three stations. At 
Kamloops ARPT (top plot of Fig. 6.9), the improvement of ATQ over CTRL is evident in 
the forecasts from 1 to 17 h (i.e., from 0100 to 1700 UTC 30 July). The improvement at 
Sparks Lake (middle plot of Fig. 6.9) lasts about 12 hours. The measurement shows a large, 
sudden decrease in surface temperature at 0400 UTC. Whether this decreasing is caused by 
local effects or by observation error is unknown. The large drop in surface temperature can 
also be seen at East Barriere (bottom plot of Fig. 6.9), for which experiment ATQ produces 
better forecasts than CTRL for only the first three hours and then similar forecasts to 
CTRL for the later period. The trend of surface-temperature evolution from experiment 
ATQ are the same as experiment CTRL and almost matches the observed trend. 

Time series of observed and forecasted surface temperatures are also shown for three 
stations located in the populated Okanagan Valley in Fig. 6.10. Similar conclusions can be 
drawn from Fig. 6.10: the large improvement in surface temperature from experiment ATQ 
decreases from 1 h to 2 h forecast, but slight improvement lasts about 13 hours. Therefore, 
assimilation of observations at 0000 UTC (1700 PST) is good to improve forecasts during 
the night. This implies that assimilation of observations available in the early morning 
(e.g., 1200 UTC) is needed to improve the daytime forecasts. The trend of observed 
surface-temperature evolution is well predicted by experiments ATQ and CTRL. However, 
the difference in the magnitude between the observed and forecasted surface temperature 
is obvious. 

At 0400 UTC, Figs. 6.9 and 6.10 show either a large drop in surface temperature 
observations for some stations or missing reports for some other stations. This helps to 
explain the sudden jump of nrmse for surface potential temperature at 4 h forecast in Fig. 
6.6. 

Generally speaking, after assimilating surface temperature within the BL, experiment 
ATQ improves surface temperature forecasts in magnitude while keeping the diurnal cycle 
unaffected. 

The difference between the observed and model forecasted surface temperature varies by 
station, partly because each station is affected by its local weather, and partly because the 
elevation difference between the observation location and modeled station location varies by 
station. Table 6.14 summarizes observed station elevations and modeled station elevations 
for the six stations used here. The modeled station elevations are obtained by interpolating 
from the elevations at the lowest model level of four neighboring grid points surrounding 
the station. The difference in the magnitude between the observed and forecasted surface 
temperature for East Barriere is very small from 0500 to 1400 UTC, even though the 
elevation difference at that station is the largest among the six stations. This is because of 
the sudden drop in surface temperature at 0400 UTC and thus lower surface temperature 
during the following several hours. Penticton ARPT has larger elevation difference than 
other stations except East Barriere, and hence the difference between the observed and 
modeled surface temperatures is larger for Penticton ARPT than for other stations (see 
bottom plot of Fig. 6.10). The model bias in surface temperature caused by elevation 
difference can be easily removed by Kalman-filter predictor postprocessing (Roeger et al. 
2003). 
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Figure 6.8: Three surface stations (indicated by closed triangles) near McLure (indicated 
by a closed square) and three in Okanagan valley. The model terrain heights (m) are shown 
by shading. Darker shading corresponds higher elevations. 

Table 6.14: The actual station elevations and the modeled station elevations for various 
surface stations. 

station Actual Elev (m) Modeled Elev (m) Elev error of model (m) 

Kamloops ARPT 346. 541.37 195.37 

Sparks Lake 1036. 1029.72 -6.28 

East Barriere 671. 911.85 240.85 

Vernon 556. 486.83 -69.17 

Kelowna College 300. 399.40 99.40 

Penticton ARPT 344. 568.97 224.97 
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Figure 6.9: Time series of observed surface temperature (dotted line with closed triangles) 
and the forecast temperature at the lowest model level from the control run (CTRL; dashed 
line with open circles) and from experiment ATQ (solid line with closed circles) for stations 
near McLure, BC. (top) Kamloops ARPT; (middle) Sparks Lake; (bottom) East Barriere. 
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Figure 6.10: Time series of observed surface temperature (dotted line with closed triangles) 
and the forecast temperature at the lowest model level from the control run (CTRL; dashed 
line with open circles) and experiment ATQ (solid line with closed circles) for stations in 
Okanagan Valley, BC. (top) Vernon; (middle) Kelowna College; (bottom) Penticton ARPT. 
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6.2.4 Summary 
This chapter presents results from case study tests of surface data assimilation for the 
3-km domain (b) (see Fig. 2.3). The MD approaches (MD and MDJVIT) are tested for 
specific-humidity and potential-temperature analyses, and are compared with GAUSS and 
TERRJDIFF. Because there are no water stations in the 3-km domain (b), the MD ap­
proach after coastline refinement (MDJLSMG) is not studied in this chapter. It is found 
that both MD and MDJVIT outperform GAUSS and TERRJDIFF in potential-temperature 
and specific-humidity analyses. The improvement of MDJVIT over MD is not as large as 
that for the virtual-observation case in section 4.2. A reason for this performance could be 
that a very small fraction of stations (three out of the 65 stations) are treated as mountain-
top observations in this case, while in the virtual-observation case, one out of the three 
stations is located at the mountain top. 

Various DA experiments are conducted to examine the impacts on subsequent model 
forecasts of different combination schemes, different insertion rates, and of assimilating 
different meteorological fields. 

Surface information assimilated at only the lowest model level is soon lost at the begin­
ning of the forecast period. Larger improvement over the control (CTRL) run is achieved 
when surface information is spread upward throughout whole BL. Combining the surface 
and pseudo upper-air data gives slightly larger improvement over the CTRL forecast than 
assimilating only surface data but spread upward throughout the whole BL. This implies 
that assimilation of surface data plays an important role in reducing the model errors of 
near-surface weather parameters. Experiments that spread surface information by the two 
combination schemes (SIGM and PROF) behave only slightly differently. 

By applying the temperature analysis increments over a 1-h window rather than all at 
once by using incremental analysis update (IAU), the model decreases nrmse of potential 
temperature for the first 7 h forecast (and nrmsve of winds for the first 1 h forecast), except 
for the 4 h forecast (valid at 0400 UTC) when a large sudden drop in surface temperature 
observations at some stations and missing reports at others are observed. Better skill can 
be achieved when the final analysis increments are incorporated into MC2 every 1200 s 
over a 1-h DA window. 

By assimilating surface temperature and specific humidity, the forecast quality of those 
parameters and mean sea-level pressure are better than CTRL. The DA improvement is 
the largest at 1 h, and gradually decreases with forecast time. However, the DA run gives 
poorer forecasts of near-surface winds, which are not assimilated into the model. 
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Chapter 7 

Near-real-time operational 
data-assimilation runs 

It is demonstrated in the previous chapters that the mother-daughter (MD) approaches 
produce better analyses than the other existing analysis methods. In addition, with case 
study tests during 29-30 July 2003, it is shown in Chapter 6 that a numerical forecast 
model started with the improved temperature and specific humidity analyses from the 
MD approach (after mountain-top refinement) makes a better forecast for near-surface 
temperature, humidity and mean sea-level pressure (SLP), but not for winds. 

This chapter further tests the MD approaches (and the methodology of assimilating 
surface observations) for robustness over a longer period by applying them to a parallel run 
of the daily operational forecast system. These daily operational data-assimilation parallel 
runs are started about 12 h after data availability, because limited computer resources 
require that the primary, real-time, operational runs be finished first. That's why the 
parallel runs are "near-real-time". 

7.1 Descriptions of the near-real-time operational data-
assimilation runs 

As described in the previous chapters, assimilating dense, local surface observations into a 
high-resolution NWP model consists of three major components: the anisotropic mesoscale 
analysis method (Chapter 3), combination of surface and upper-air data, and the incre­
mental analysis updating (IAU) insertion (Chapter 5). In order to perform independent 
tests for the MD approaches and assimilation strategies of surface observations, all of the 
three components are incorporated into a daily operational forecasting system using the 
MC2 model, starting at the end of September 2004. 

As mentioned earlier, the MC2 model at UBC is configured with five one-way self-nested 
grids with horizontal grid spacings of 108, 36, 12, 4, and 2 km. The data-assimilation (DA) 
run is performed daily for only the finest grid of 2 km. The model time-lines shown in Fig. 
7.1 are almost the same as those for the case study tests in the previous chapters (see Fig. 
5.4), except for different forecast length and model resolution (a replacement of 3 km by 
2 km). The 108-km forecast starts from NCEP Eta analyses at 0000 UTC each day, and 
provides initial and boundary conditions for the 36-km forecast, which in turn drives the 

101 



12-km grid, and so on. 
In an operational setting, the grids at 108, 36, 12, and 4 km are actually run into the 

future beyond Day 3. Limited by computational resources, the primary operational 2-km 
grid driven by the 4-km output is run for only 27 hours. Hereafter, this primary operational 
2-km run is referred to as a control (CTRL) run. This CTRL run is started at model-time 
1200 UTC on Day 1 (Fig. 7.1), and provides its 12-h output as a first guess for analyses 
at 0000 UTC on Day 2 for the parallel DA run. 

For the operational DA runs in this chapter, the surface observations of potential tem­
perature and specific humidity from the Emergency Weather Net Canada at 0000 UTC on 
Day 2 are first analyzed by using the ADAS Bratseth (1986) scheme (Brewster 1996) mod­
ified to include the mother-daughter approach after mountain-top refinement (MD_MT) 
(as previously described in section 3.5.2). The final analyses valid at 0000 UTC are ob­
tained by combining the first guess, surface and upper-air data by using the scheme PROF 
(see section 5.1.3). Those surface weather stations with a difference between their actual 
elevation and model topography greater than 500 m are excluded from analysis and ver­
ification. Out of the total 305 stations in the DA domain, 22 stations were excluded for 
this reason. Stencils of different sharing factors at the model grid points are generated for 
each of the remaining 283 surface stations using method MD_MT, so that there is no need 
to re-calculate the sharing factors during each day's analysis. In order to compare with 
the subsequent impacts of data assimilation for the July 2003 case in Chapter 6, method 
MD_MT is chosen for the operational runs. 

The 2-km DA parallel forecast run is started at model-time 0000 UTC on Day 2 and is 
integrated forward for 15 h. The observation information is assimilated through gradual 
introduction of the final analysis increments of temperature and specific humidity by using 
the IAU technique. The DA window is one hour. Boundary conditions for both CTRL 
and DA forecasts are from the 4-km output. Verification of subsequent forecasts at the 
lowest terrain-following model level against surface observations is performed during the 
15 h forecast period for the DA forecast runs, and are compared with verification of the 
CTRL forecast runs during the 12-27 h forecast period from 0000 to 1500 UTC on day 2. 

Each day, the analysis obtains its first guess from the 12-h output of the CTRL run. 
This implies that the surface observations are not incorporated into the forecast cycle; 
thus, each analysis and DA forecast are independent of past observations. This is good for 
independent tests of the robustness of the DA module. Results for the months of November 
and December 2004 are given below. Due to a hardware failure of the supercomputer in 
December 2004, the sample size in December is smaller than that in November. 

7 . 2 Analysis results 
Figure 7.2 shows all of 283 surface stations (indicated by open and closed triangles) within 
the analysis domain. Even though the domain for the DA run is a bit smaller than the 
analysis domain, stations within the DA domain for verification remain the same. How­
ever, the number of observations used in analysis and verification varied from day to day 
depending on the number of stations actually reporting. Because verification was sched­
uled to be done one day later than analysis, the number of available reports for verification 
is larger than that for analysis. 
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Figure 7.1: Schematic diagram illustrating model time-lines of the operational MC2 self-
nested grids including the 2-km data assimilation (DA) run. The 2-km CTRL run is the 
regular operational 2-km run. MC2 4-km provides boundary conditions for the 2-km CTRL 
run and the parallel 2-km assimilation run. SFC indicates surface data. 
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Figure 7.3a shows the number of stations having temperature reports for analysis and 
verification during November 2004. The difference between the number of available tem­
perature reports for analysis and for verification ranges from 1 to 44 with an average of 
24. This makes the verification more independent, as some of observations used in the 
verification were not used in the analysis. The difference between the number of available 
specific humidity observations for analysis and for verification are rather small, ranging 
from 0 to 2 (Fig. 7.3b). It is also apparent that the number of available observations of 
specific humidity is much smaller than that of temperature on any single day. For ex­
ample, at 0000 UTC 2 November 2004, 130 stations (indicated by closed triangles in Fig. 
7.2) reported temperatures, whereas 36 stations (indicated by closed triangles in Fig. 7.4) 
had observations of specific humidity. As explained in Chapter 6, there are much fewer 
observations of specific humidity, because the direct measurement of humidity is relative 
humidity, but the pressure reports needed for conversion from relative humidity to specific 
humidity are sparse. The above features of the difference between the number of available 
temperature (or specific humidity) reports for analysis and for verification are also observed 
for the month of December (not shown). 

Surface analyses of potential temperature and specific humidity are verified against 
surface observations over two months: November and December. Five analysis meth­
ods (defined in Table 4.1) are compared. Method MD_MT was performed every day in 
near-real-time mode. The other methods were performed later (not near-real-time) for 
comparison. For method MDJLSMG, 18 out of 283 surface weather stations are identified 
to be stations over water, based on the land-sea mask input data for the MC2 model at 
2-km grid spacing. The parameters used in each analysis method are the same as for the 
case studies in the previous chapters. 

Po ten t i a l temperature . Table 7.1 summarizes the verification statistics (also see Fig. 
7.5) for the month of November, when the analyses were performed at 0000 UTC during 
the period from 2 November to 1 December 2004. The analyses from all methods have 
smaller positive biases than the first guess (FSTG). The bias of TERR_DIFF is smaller 
than those of GAUSS, MD, and MDJVIT. But the differences between the biases of the 
analyses from different methods except MD_LSMG are very small. The mean absolute error 
(mae) and root-mean-squared error (rmse) of the analysis from each method are largely 
decreased from those of the first guess. The rmse is reflected in the nrmse (normalized 
rmse of the analysis by the rmse of the first guess). Even though TERR_DIFF produces 
smaller bias than all other methods except MDJLSMG, it has the largest mae and nrmse. 
The mother-daughter approaches (MD, MD_MT, and MDJLSMG) have smaller mae and 
nrmse than GAUSS and TERRJDIFF similar to the July 2003 case. The mountain-top 
refinement introduced into the MD approach results in a minor increase of mae and nrmse. 
This is slightly different from the July 2003 case. Comparatively, the MD approach after 
coastline refinement (MDJLSMG) has the smallest bias, mae, and nrmse, which is similar 
to what is found for the February 2003 case. But the improvement of MD JLSMG over MD 
is smaller, compared to the February 2003 case. 

The verification statistics for the month of December (Table 7.2) show similar results to 
the month of November. One difference is that the first guess now has small negative bias, 
whereas the analyses from all methods have smaller positive bias. The surface observations 
at 0000 UTC were analyzed during the period from 2 December 2004 to 1 January 2005. 

Specific humidi ty . The bias, mae, and nrmse of the specific humidity analyses and 
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Figure 7.2: Surface weather stations (indicated by triangles) within the Canadian portion of 
the domain superposed on the 2-km MC2 model topography (m). Darker shading indicates 
higher elevations. Open triangles represent station locations with missing temperature 
observations at this one sample analysis time 0000 UTC 2 November 2004, while closed 
triangles indicate station locations with available temperature observations at that analysis 
time. 
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Figure 7.3: Number of stations that had reports of a) potential temperature and b) specific 
humidity for each day of November 2004. Each day in the x-axis corresponds to "Day 1" 
in Fig. 7.1. Hence, the number of available reports are actually for a date that is one 
day later than the date shown in x-axis. Those indicated by triangles are the numbers of 
reports used in analyses; whereas those marked by diamonds are the numbers of reports 
used in verification. 
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Figure 7.4: Surface station locations (indicated by a closed triangle) with available specific 
humidity observations at this one sample analysis time 0000 UTC 2 November 2004 and 
the 2-km MC2 model topography (m). Darker shading indicates higher elevations. 
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Table 7.1: Verification of analyzed potential temperatures in terms of bias, mean absolute 
error (mae), and normalized root-mean-square error (nrmse) for all reporting verification 
stations in November 2004. N equals total number of reporting stations. Nrmse is rmse 
(root-mean-square error) for each method normalized by the rmse of the first guess (FSTG). 
For all these statistics, smaller magnitude is better. 

Method N Bias (K) Mae (K) Nrmse 

FSTG 4537 0 2929 2.2384 1. 

GAUSS 4537 0 2858 1.1582 0.6107 

TERJLDIFF 4537 0 2609 1.2782 0.6438 

MD 4537 0 2843 1.0244 0.5799 

MDJVIT 4537 0 2843 1.0314 0.5822 

MD_LSMG 4537 0 2190 0.9675 0.5630 

Table 7.2: Same as Table 7.1, except for December 2004 

Method N Bias (K) Mae (K) Nrmse 

FSTG 

GAUSS 

TERRJDIFF 

MD 

MDJVIT 

M D X S M G 

3364 

3364 

3364 

3364 

3364 

3364 

-0.7103 

0.2092 

0.1907 

0.1910 

0.1969 

0.0812 

2.6375 

1.2775 

1.3834 

1.1532 

1.1643 

1.1078 

1. 

0.5906 

0.6152 

0.5671 

0.5707 

0.5596 
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Figure 7.5: Verification of analyzed potential temperatures in terms of bias, mean absolute 
error (mae), and normalized root-mean-square error (nrmse) for all reporting verification 
stations in November 2004. Nrmse is rmse (root-mean-square error) for each method 
normalized by the rmse of the first guess (FSTG). 
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Table 7.3: Same as Table 7.1, but for verification of analyzed specific humidity in November 
2004. 

Method N Bias Mae Nrmse 
(1.0E-4 kg kg-1) (1.0E-4 kg kg-1) 

FSTG 1125 -5.987 7.800 1. 

GAUSS 1125 -0.451 1.892 0.292 

TERRJDIFF 1125 -0.418 2.443 0.356 

MD 1125 -0.169 1.687 0.270 

MDJVIT 1125 -0.169 1.687 0.270 

MDJLSMG 1125 -0.464 1.553 0.247 

Table 7.4: Same as Table 7.1, but for verification of analyzed specific humidity in December 
2004. 

Method N Bias 
(1.0E-4 kg kg-1) 

Mae 
(1.0E-4 kg kg-1) 

Nrmse 

FSTG 834 -4.205 7.222 1. 

GAUSS 834 -0.372 1.711 0.282 

TERRJDIFF 834 -0.344 2.113 0.335 

MD 834 -0.232 1.543 0.271 

MDJVIT 834 -0.232 1.543 0.271 

MDJLSMG 834 -0.631 1.510 0.275 
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Figure 7.6: Same as Fig. 7.5, but for verification of analyzed specific humidity. 
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first guess for the month of November are presented in Table 7.3 and Fig. 7.6. The first 
guess (FSTG) has large negative bias, and large mae. The analysis from each method 
gives largely reduced magnitude of bias, mae and nrmse compared to the first guess. 
TERR_DIFF produces slightly smaller magnitude of negative bias but slightly larger mae 
and nrmse than GAUSS. The MD approaches (MD and MDJVIT) produce better analyses 
with smaller negative-bias magnitude, mae, and nrmse than GAUSS and TERR_DIFF. 
These findings are the same as for the July 2003 case (Table 6.2). Note the magnitude 
of the monthly averaged errors is much smaller than that of the errors on a single day 
in July 2003. As there are no specific humidity observations from mountain-top stations, 
method MDJVIT is equivalent to method MD. Method MDJLSMG gives the smallest mae 
and nrmse of the specific-humidity analyses, as was also found for potential-temperature 
analyses. 

Similar conclusions can be drawn from the verification statistics of specific humidity 
analyses for the month of December (Table 7.4). But the magnitude of bias, mae, and 
nrmse of FSTG in December is correspondingly smaller than that in November. Method 
MDJLSMG slightly underperforms method MD for the month of December. 

7.3 Impacts of data assimilation on subsequent fore­
casts 

As mentioned earlier, daily operational DA forecast runs assimilate temperature and spe­
cific humidity observations. The experimental setting for the DA runs is exactly the same 
as for experiment ATQ during the July 2003 case as described in Chapter 6 (also see Table 
6.10). Namely, the final analyses are obtained by combining surface analysis from MDJVIT, 
upper-air analysis, and the first guess by using the scheme PROF; the final analysis incre­
ments are incorporated into the MC2 model every 1200 seconds over a 1-h DA window. 
But the forecast domain and forecast length are different. The MC2 model at 2-km grid 
spacing is run to make 15 h forecasts that are verified against surface observations and 
compared with verification statistics from the MC2 CTRL run. Verification results from 
November and December 2004 are summarized here. 

7.3.1 Verification over the full forecast length 

This subsection presents the verification summary for different near-surface parameters 
over the full forecast length from the initial 0 to 15 h forecast period, over all surface 
stations that reported observations, and over the entire month of November and December 
2004, respectively. 

Table 7.5 summarizes verification statistics for the month of November. For potential 
temperature forecasts, the DA run presents slightly larger negative bias than the CTRL 
run. The magnitude of the biases for both runs are small. The mae and nrmse of the 
DA run are correspondingly smaller than those of the CTRL run. The monthly averaged 
improvement in potential temperature forecasts due to data assimilation, as indicated by 
the value of nrmse, is much smaller compared to the July 2003 case (see experiment ATQ 
in Table 6.11). A reduction in the improvement of near-surface potential temperature 
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forecasts due to assimilation of surface observations implies that surface thermal forcing 
in late Fall may become smaller than in Summer. 

Humidity (including relative humidity and specific humidity) forecasts from the DA 
run are all improved compared to the MC2 CTRL run, in terms of bias, mae, and nrmse. 
The improvement in humidity forecasts due to data assimilation in November is larger 
when compared to the July 2003 case (see experiment ATQ in Tables 6.12 and 6.13). The 
relatively dry July and wet November might help to explain the difference in humidity-
forecast performance. 

In contrast to the July 2003 case in Chapter 6 (see experiment ATQ in Table 6.11), 
assimilating temperature and specific humidity does not improve the forecast quality of 
mean sea-level pressure (SLP) for the month of November. Instead, SLP forecasts from 
the DA run are verified to be close to those from the CTRL run. 

For wind forecasts, root-mean-squared vector error (rmsve) of the DA forecasts is 
slightly smaller than that of the CTRL forecasts. The nrmsve of the DA forecasts is 
less than 1.0 but very close to 1.0. This implies that assimilating temperature and specific 
humidity does not disturb the wind fields very much. This finding is different from the 
July 2003 case. One reason for the difference in wind-forecast performance may be related 
to the magnitude of surface potential temperature improvement. When the improvement 
of surface potential temperature is large (i.e., the July 2003 case), the initial imbalances 
between mass and wind fields due to a sudden change in temperature fields are also large 
and can not be removed by the IAU technique. However, when the improvement of surface 
potential temperature is small (implying that surface thermal forcing introduced by new 
observations is small), the initial imbalances are also small and can be suppressed when 
the analysis increments are gradually introduced into the model by the IAU technique. 

Verification statistics for the month of December are summarized in Table 7.6. The 
DA forecast run produces potential temperature, humidity (including relative humidity 
and specific humidity) forecasts of higher skill than the CTRL run. The improvement in 
potential temperature for the month of December is slightly larger than that for November, 
but is much smaller compared to the July 2003 case. The relative humidity forecasts from 
the DA forecast run are less improved in December than in November. 

Similar to the November case, the SLP forecasts are neither improved nor degraded 
much in the DA run compared to the CTRL run. As can be seen from Table 7.6, the SLP 
nrmse for the DA forecast run is slightly larger than 1.0 but very close to 1.0. Similar 
performance is found for vector-wind forecasts in December. 

For better view of the DA improvement over CTRL for different near-surface parame­
ters, the nrmses (or nrmsve for vector winds) are also shown in Fig. 7.7. 

7.3.2 Verification by forecast hour 
Performance of the DA run compared with the CTRL run over the full forecast length 
from 0 to 15 h for November and December 2004 was examined in the previous subsection. 
This subsection further evaluates the performance of the DA forecast run by examining 
the nrmse (for scalars) or nrmsve (for vectors) for each of the forecast hours. 

The hourly rmse or rmsve for each forecast variable from the CTRL and DA run were 
calculated over all the reported surface stations and over the entire month of November 
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Table 7.5: Verification statistics of near-surface parameters produced by the MC2 control 
(CTRL) and data-assimilation (DA) runs. The verification parameters include poten­
tial temperature, relative humidity, specific humidity, mean sea-level pressure, and vector 
winds. The statistics are calculated over the 15 h forecast period and for all the observation-
forecast pairs over all stations that reported during the month of November. The units for 
each variable are included for bias and mae (or rmsve). The nrmse or nrmsve is unitless. 

Bias Mae Nrmse 

Variable N C T R L D A C T R L D A C T R L D A 

*(K) 55230 -0.4263 -0.5244 2.2855 2.1596 1.0000 0.9592 

RH (%) 31954 -3.2686 -0.7176 10.8270 9.6447 1.0000 0.9117 

qv (1.0E-4 kg kg-1) 13290 -5.1481 -3.4751 7.4598 6.3903 1.0000 0.8861 

SLP (hPa) 14172 1.2401 1.3159 2.2397 2.2566 1.0000 1.0043 

Rmsve Nrmsve 

Variable N C T R L D A C T R L D A 

V (m s-1) 43823 2.6962 2.6925 1.0000 0.9986 
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Table 7.6: Same as Table 7.5, except for the month of December. 

Bias Mae Nrmse 

Variable N C T R L D A C T R L D A C T R L D A 

6(K) 37532 -1.2295 -1.2269 2.7094 2.4955 1.0000 0.9350 

RH (%) 21198 2.6845 3.1267 10.6121 10.2724 1.0000 0.9827 

qv (1.0E-4 kg kg-1) 10056 -4.0527 -3.5805 7.4361 6.4127 1.0000 0.8875 

SLP (hPa) 10878 -0.5464 -0.5475 3.3603 3.3347 1.0000 1.0023 

Rmsve Nrmsve 

Variable N C T R L D A C T R L D A 

V (m s-1) 29961 2.9353 2.9557 1.0000 1.0070 
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theta R H qv SLP V 

Figure 7.7: The normalized root-mean-square errors (nrmses) of near-surface parameters 
produced by the MC2 control (CTRL) and data-assimilation (DA) runs. The verification 
parameters include potential temperature (theta), relative humidity (RH), specific humid­
ity (qv), mean sea-level pressure (SLP), and vector winds (V). The statistics are calculated 
over the 15 h forecast period and for all the observation-forecast pairs over all stations that 
reported during the month of: top) November; bottom) December. 
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and December, respectively. The nrmse (nrmsve) is the rmse (rmsve) of the DA forecast 
run normalized by the CTRL rmse (rmsve). 

Time series of monthly averaged nrmse of surface potential temperature for November 
is shown in the top panel of Fig. 7.8. A rapid drop in nrmse of the DA run from 1.0 (nrmse 
of the CTRL run) is apparent at 1 h forecast, as new observation information is introduced 
into the model within the 1-h DA window using the IAU technique. Then, the nrmse 
of the DA run increases gradually with forecast hour. At the end of the forecast period 
(15 h), nrmse is close to 1.0 but still less than 1.0. This implies that the DA forecast 
at 15 h is still a better match to the observations than the CTRL forecasts. The time 
series of potential-temperature nrmse for December (see the bottom panel of Fig. 7.8) 
shows the same pattern as for November, but December has smaller nrmse than November 
throughout the forecast period. 

The improvement of the DA forecasts over the CTRL forecasts decreases with forecast 
time. These findings are similar to what are found for the July 2003 case. As the veri­
fication is carried out for all the surface stations within the forecast domain, the gradual 
decrease in the improvement (namely increase in the nrmse) of the DA forecasts can be 
partly attributed to the effects of boundary conditions. Another reason for the decrease 
in the improvement can be related to the model error that returns after assimilating the 
observations. 

It was demonstrated in section 6.2.1 that assimilating only surface observations but 
spreading the single-level information upward within the whole BL could result in im­
proved forecasts of near-surface parameters. Even though hourly Eta model analyses are 
not available, assimilating surface observations for several continuous hours might achieve 
better forecast quality for a longer forecast period. This could form a part of future work. 

The nrmse of surface relative humidity (RH) for November is shown in the top panel of 
Fig. 7.9. Similar to the performance of the potential temperature forecasts, the nrmse is 
the smallest at 1 h, and then gradually increases with forecast hours. This means that the 
improvement in the RH forecasts due to data assimilation is the largest at 1 h, and then 
gradually decreases with forecast hours. The increase with forecast time in the nrmse of RH 
for November is correspondingly slower than that in the nrmse of potential temperature. 
Unlike the RH verification in November, the RH verification in December (see the bottom 
panel of Fig. 7.9) shows small improvement in the DA forecast at 1 h and gradual decrease 
in the improvement with time. 

The DA forecasts of specific humidity in both November and December are better than 
the CTRL forecasts (Fig. 7.10). Similar to the potential-temperature forecasts, the nrmse 
of specific humidity is the smallest at 1 h and then increases gradually with forecast time. 

By assimilating temperature and specific humidity only, the model gives slightly de­
graded SLP and wind forecasts at the first several forecast hours for both November and 
December (Figs. 7.11 and 7.12). The deviation of the DA wind forecasts from the CTRL 
wind forecasts for November and December 2004 is much smaller than for the July 2003 
case. Near the end of the forecast period, the SLP and wind forecasts from the DA forecast 
run are very similar to those from the CTRL run. As mentioned in Chapter 6, this could be 
caused by two factors: part of the assimilated information propagates out of the domain; 
the mass and wind fields are adjusted to be in balance. 
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Figure 7.8: Time series of monthly averaged normalized root-mean-square error (nrmse) 
for surface potential temperature from the CTRL and DA runs: (top) November; (bottom) 
December. 
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Figure 7.9: Time series of monthly averaged normalized root-mean-square error (nrmse) 
for surface relative humidity from the CTRL and DA runs: (top) November; (bottom) 
December. 
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Figure 7.10: Time series of monthly averaged normalized root-mean-square error (nrmse) 
for surface specific humidity from the CTRL and DA runs: (top) November; (bottom) 
December. 
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Figure 7.11: Time series of monthly averaged normalized root-mean-square error (nrmse) 
for mean sea-level pressure from the CTRL and DA runs: (top) November; (bottom) 
December. 
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Figure 7.12: Time series of monthly averaged normalized root-mean-square vector error 
(nrmsve) for surface vector wind from the CTRL and DA runs: (top) November; (bottom) 
December. 
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7.4 Summary and conclusions 
This chapter presents the verification results of near-real-time, operational data analysis 
and data-assimilation parallel runs for late Fall and early Winter of November and De­
cember 2004. The parameters used in each analysis method are the same as for the case 
studies in the previous chapters. The analysis results here further confirm that the MD 
approaches achieve better analysis quality than GAUSS and TERRJDIFF, and that the 
MD approach after coastline refinement (MD_LSMG) verifies the best. The improvement 
of the MD approaches over GAUSS and TERRJDIFF and the improvement of MDJLSMG 
over the original MD approach in November and December are not as large as for case 
studies in the previous chapters. The case studies are dominated by one flow regime, 
whereas there are many different flow regimes in November or December. 

One uncertainty with the MD approach lies in the specification of the free parameters 
(a, b, zrefl, and zref2). Fine-tuning of these free parameters over different seasons could 
produce an analysis that maximizes the gain of applying the MD approach. 

The mountain-top refinement introduced into the MD approach did not improve the 
analyses for the two months studied here compared to the original MD approach, and 
therefore needs further examination in the future. 

The results from the operational DA forecast runs in this chapter confirm that the 
forecasts improve for the directly assimilated variables, such as temperature and humidity. 
The improvement of the DA forecast run over the CTRL run is the largest at 1 h, and 
gradually decreases with forecast time, but lasts until the end of the forecast period (15 h). 
These findings are similar to what are found for the July 2003 case. In contrast to the July 
2003 case, the model tends to produce only slightly degraded SLP and wind forecasts at 
the first few hours, compared with the forecasts from the CTRL run. 

In conclusion, it is confirmed that the MD approach performs better than GAUSS and 
TERRJDIFF in horizontally spreading surface observations in mountainous regions having 
circuitous valleys. The coastline refinement introduced into the MD approach helps to 
produce analyses that better match observations. Compared to the MC2 CTRL run, 
the parallel MC2 DA forecast run, started from the new analysis obtained by combining 
surface and upper-air data, produces better forecasts for those near-surface parameters 
directly assimilated into the model. 
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Chapter 8 

Summary and Discussion 

This chapter first summarizes the methodology for analysis and assimilation of surface 
observations in complex terrain. The key findings related to case studies and near-real­
time operational runs are then summarized. Finally, discussion and recommendations for 
future research are presented. 

8.1 Summary of the methodology 
Steadily growing computer power allows the resolution of numerical weather prediction 
(NWP) models to be increased correspondingly. Such resolution is particularly important 
for mountainous regions like British Columbia (BC). Better use of the available atmospheric 
data in a high-resolution NWP model is one of crucial factors for improving the quality of 
model forecasts. The need to improve initial conditions for high-resolution NWP models 
and the availability of dense, local surface observations in mountainous BC motivate this 
research. 

Assimilating surface observations into a high-resolution NWP model in this thesis in­
volves three major components: horizontal spreading, vertical spreading, and data inser­
tion. 

The isotropic assumption typically used in the background error correlation model for 
horizontally spreading observations is not valid for mountainous terrain. In this disser­
tation, a technique is developed to create a new anisotropic background error correlation 
model for use in horizontally spreading surface weather observations in complex terrain 
with circuitous valleys. The technique is called the mother-daughter (MD) approach and 
is based on the first-order boundary-layer characteristics in mountainous terrain. In the 
MD approach, the amount of information transferred from one grid point (the mother) to 
all neighboring grid points (the daughters) depends on their relative elevation differences. 
The daughters become mothers and further share information with their neighboring grid 
points. This iterative method allows valley information to follow valleys around ridges, 
while reducing spread up over the ridge top. Similarly, this method keeps ridge-top infor­
mation on the ridge, while suppressing spread down into the valleys. 

Two refinements are introduced into the MD approach of horizontal spreading. The 
first refinement includes an additional factor to account for the land-sea anisotropy. The 
second refinement is introduced to treat mountain-top observations differently from valley 
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observations, so that mountain-top information can be spread to neighboring mountain 
tops. 

Regarding vertical spreading, surface observations (and thus surface analyses) are avail­
able at only one terrain-following level. Meanwhile, major operational centers generate 3-D 
meteorological analysis at coarser resolution on a daily basis by assimilating many types 
of in-situ and remotely sensed measurements. This thesis outlines a method for adding 
the value of dense local surface observations to the existing 3-D analyses at a coarser res­
olution. The method assumes that the surface observations are important in describing 
the atmospheric state vertically within the atmospheric boundary layer (BL), whereas the 
coarse 3-D analyses from major operational centers are important in providing information 
for the atmospheric state above the BL. Under these assumptions, two schemes (SIGM and 
PROF) are proposed to vertically spread the surface information upward to the BL top. 
In the scheme SIGM, the analysis increments at the lowest model level are assumed to be 
applied throughout the whole BL. Sigmoidal functions for surface and 3-D analysis incre­
ments are designed separately. In the scheme PROF, the analyzed potential temperature 
and specific humidity at the lowest model level are assumed to be mixed uniformly within 
the BL, so that the potential temperature and specific humidity analyses at the lowest 
model level are applied to the whole BL. The BL top for this scheme is determined by 
using a profile method. Above the BL top, the two schemes use the first guess from a 
previous high-resolution MC2 forecast and incorporate as pseudo-observational data the 
3-D analysis from major operational centers. 

Finally, the incremental analysis updating (IAU) is implemented to insert the final 
analysis increments (the differences between the final analysis and the first guess) into the 
MC2 model. 

8.2 General conclusions 
In Chapter 4, the MD approaches were tested and compared with two existing methods us­
ing virtual and real observations for mountainous and coastal terrains in southwestern BC. 
The two existing methods examined include the original method (GAUSS) in the ADAS 
(ARPS5.0.0 Beta8), and the method (TERRJDIFF) developed by Miller and Benjamin 
(1992). In Chapter 6, the MD approaches were further tested and compared with GAUSS 
and TERRJDIFF using real observations for a different domain in mountainous BC. A va­
riety of numerical experiments were carried out to investigate the impacts of assimilating 
surface observations using different strategies on subsequent forecasts of near-surface pa­
rameters. In Chapter 7, the MD approaches (and the methodology of assimilating surface 
observations) were tested in near-real-time mode over two months. The key findings in 
this dissertation are summarized here. 

• The spatial structure of background error correlations created by the MD approach is 
anisotropic. The MD approach can better account for both elevation differences and 
valley differences in the analysis of observation increments over mountainous regions 
with circuitous valleys than GAUSS and TERRJDIFF. 

• The one-time, initial computational cost of the MD approach is more expensive than 
that of either GAUSS or TERRJDIFF, because of the need to calculate the sharing 
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factors (SFs). However, for any fixed set of the free parameters, the resulting SFs 
can be saved as a fixed file, and can be applied unchanged for each day's analysis. 
The computational cost for the application of the SFs during each day's analysis is 
similar to that for either GAUSS or TERR.DIFF. 

• The MD approach after coastline refinement performs better than the original MD 
approach in maintaining thermal contrast across coastlines for the case examined. 
This is further confirmed by the near-real-time operational tests. 

• The MD approach after mountain-top refinement (MD_MT) behaves better than the 
original MD approach (MD) for the cases examined. Based on the results from the 
near-real-time operational runs, overall performance of MD JMT is found to be similar 
to that of MD. 

• Surface information assimilated at only the lowest model level is soon lost during the 
forecast. Better skill in predicting near-surface potential temperature than the con­
trol (CTRL) forecast is achieved when surface information is spread upward through­
out the whole BL. 

• Combining the surface and upper-air data gives slightly larger improvement over 
the CTRL forecast than assimilating only surface data within the whole BL. The 
skill of subsequent near-surface potential temperature forecasts by applying the two 
combination schemes is found to be very similar. 

• By applying the temperature analysis increments over a 1-h DA window by using 
the IAU technique rather than all at once, the DA forecast run has better skill in 
predicting near-surface potential temperatures for the first several forecast hours. 

• By assimilating surface temperature and specific humidity, the model improves the 
forecast quality of near-surface temperature and moisture parameters compared to 
the CTRL forecast. The improvement of the DA forecast run over the CTRL run is 
the largest at 1 h, and gradually decreases with forecast hours, but lasts more than 
12 hours before becoming close to the CTRL run. However, the DA forecast run 
tends to give poorer forecasts of near-surface winds, which were not assimilated into 
the model. 

8.3 Discussion 
The MD approach was developed under the intravalley and intervalley decorrelation as­
sumptions. Nonetheless, one can imagine scenarios where the observation in one valley 
might happen to be well correlated with the air state in a neighboring valley. During a 
fair-weather event with strong solar heating, the BL could be deeper than the mountain-
ridge height, allowing turbulence to mix air between the two valleys. Or during strong 
synoptic forcing, high winds and intense turbulence could inject similar air into both val­
leys and/or homogenize the air in both. For these situations, running the forecast model 
A F T E R initialization will mix the air in neighboring valleys due to resolved advection and 
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parameterized turbulence, even if the initialization spreads the observations only within 
one valley. 

The surface winds are not analyzed and assimilated into the MC2 model in this thesis. 
The MD approach developed in this thesis might not be suitable for the analysis of surface 
winds in complex terrain, unless the approach is further refined to account for the rela­
tionship between valley orientation and observed wind directions. As a result, the sharing 
factors have to be calculated during each analysis time. Even if the surface winds are 
successfully analyzed and assimilated, the near-surface wind forecasts started from a new, 
better wind analyses might not be better than the forecasts without assimilating surface 
winds due to the current limitation of grid resolution. The surface winds in complex terrain 
are highly influenced by surrounding landscapes. A grid spacing less than 2 km will be 
needed. 

One uncertainty with the MD approach lies in the specification of the free parameters 
(a, b, zrefl, and zrefl). Sensitivity tests on the MD free parameters were performed 
for the February 2003 case (see Appendix C). A subset of available observations were 
analyzed using various values of the free parameters, and the resulted analyses were verified 
against the remaining observations. The normalized root-mean-square errors (nrmses) are 
found to be far more sensitive to zrefl than to zrefl, and the nrmse sensitivity to zre/2 
shows a daily-cycle, corresponding to the characteristics of the BL. This implies that one 
could automate detecting decorrelated weather versus well-mixed events by using observed 
BL depth (if available) as the value for zref2 during daily analyses. Unfortunately, the 
observations of BL depth are usually not available at most weather stations. The precise 
estimation of BL depth remains a big problem though. Further experiments will be required 
to investigate the sensitivities for other times and locales. The optimum values of the free 
parameters might be dependent on weather, season, and topography. 

For GAUSS and TERRJDIFF, a shorter correlation length scale (Rh) could be used 
to successfully reduce the intervalley spreading from a disconnected neighboring valley 
(see Appendix C). However, this strategy also reduces the potentially good intravalley 
spreading. In addition, it might be hard to find a universal Rh in highly variable terrain. 
The MD approach suppresses intervalley spreading while allowing intravalley spreading 
over a longer distance. This approach automatically accounts for the elevations of surface 
stations and analysis grid points. 

To use the MD approach in mountainous terrain, fine-resolution NWP models (i.e., 
Ax < 5 km) are recommended, for two reasons. First, the SF is a function of the elevations 
of analysis grid points, thus there is a need to resolve all important ridges and valleys. 
Second, the quality of the analyses in data-sparse ridges or valleys depends strongly on the 
quality of the first guess from the NWP models. 

The results from the MD approach after coastline refinement might be further improved 
if the land/sea breeze frontal location is used to define the edges of the land mask, rather 
than the actual coastline. However, determining the position of a sea/land breeze front 
increases the complexity, and requires that the SFs be recomputed during every analysis. 
The case examined and near-real-time operational tests show encouraging results for the 
proposed approach, even with land-water contrasts fixed at the coastlines. More studies 
for different seasons can be done to further elaborate the coastline refinement. 

The schemes for vertical spreading of surface information proposed in this dissertation 
are simple but computationally efficient and practical for daily operational applications. 
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More advanced and costly scheme could use an ensemble Kalman filter method. In a 
parameterized 1-D planetary boundary layer (PBL) model, Hacker and Snyder (2004) 
investigated the potential use of the EnKF in vertically spreading the surface observations 
and found that assimilating surface observations can improve the modeled PBL state. 

Even with high-resolution NWP models and accurate initial conditions, mesoscale 
model forecast errors will remain due to model deficiencies (e.g., poor model physics) and 
the inherent limit of mesoscale predictability. Improving the mesoscale model physics (e.g., 
microphysical schemes and boundary-layer parameterizations) and evaluating short-term 
high-resolution ensembles are next challenges in improving mesoscale NWP. 

8.4 Recommendations for future research 
The steps in bringing local surface weather observations in mountainous BC into a high-
resolution NWP model have been accomplished successfully. The results show positive 
impacts on subsequent forecasts of near-surface parameters that are directly assimilated 
into the model. Based on the findings from this dissertation, recommendations for future 
research are given as follows. 

• Fine-tuning of the free parameters in the MD approach over different seasons could 
produce an analysis that maximizes the gain by using the MD approach. If compu­
tational resources are not a concern, one can also re-calculate the sharing factors for 
the MD approach during the analysis each day using a zref2 value that equals the 
estimated BL depth. Other issues related to further development and application 
of the MD approach include its sensitivity to the model resolution or to different 
locales. 

• It is demonstrated in section 6.2.1 that assimilating only surface observations but 
spreading the single-level surface information upward within the whole BL could 
result in improved forecasts of near-surface parameters. Even though the 3-D Eta 
model analyses are not available hourly, future work could be done to assimilate 
hourly surface observations for several continuous hours in order to achieve better 
quality for a longer forecast. 

• Future investigations could include the analysis of surface winds in complex terrain 
and the incorporation of winds, together with temperature and specific humidity, 
into the NWP model. 

• One could also verify the DA forecasts against observations, and compare the DA 
forecasts with the CTRL forecasts in three dimensions. 
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Appendix A 

The E t a analysis 

The Eta is NCEP's mesoscale NWP model, which derives its name from its vertical co­
ordinate known as the "eta" or "step-mountain" coordinate. The Eta has been running 
operationally at NCEP since 1993 (Rogers et al. 1997). Initial analysis was firstly based on 
optimal interpolation (01) using a first guess from the Global Data Assimilation System 
(GDAS). The Eta Data Assimilation System (EDAS), which was run as a 12-h pre-forecast 
data assimilation with 3-h 01 analysis updates, began in October 1995. Since then, the 
ED AS has been continuously under development. According to Mitchell et al. (2003), 
several major milestones in the EDAS development included a) replacement of 01 analy­
sis with the 3D-Var (Parrish et al. 1996) analysis on 9 February 1998, b) introduction of 
fully continuous EDAS cycling on 3 June 98, c) assimilation of hourly 4-km radar/gage 
precipitation analyses on 24 July 2001. 

EDAS with 3D-Var assimilates many types of in-situ and remotely-sensed observations, 
including rawinsondes, dropwinsondes, wind profilers, aircraft winds, satellite cloud-drift 
winds, ACARS temperature data, surface land temperature/wind/moisture, oceanic sur­
face data (ships and buoys), GOES and TOVS-1B radiance data, SSM/I oceanic surface 
winds, radar/gage precipitation analyses, VAD wind profiles, NEXRAD 88D radial winds 
and GOES cloud top pressure, etc (Nelson 1999; Rogers et al. 2000; Ferrier et al. 2003). 

As mentioned in section 2.1, the coarsest grid of the MC2 model is directly driven by 
the Eta model analysis and forecasts. The upper-air information for data assimilation at 
3 km (or 2 km) are also extracted as virtual "soundings" from the Eta model analysis 
(see section 5.1.2). This Eta data is used in this work to generate pseudo upper-air data 
because it includes the influences from all data sources mentioned above. 

The availability of NCEP Eta model output has been restricted to the initial 6-h, and 
then to 3-h time intervals on grids of degraded resolution by limited Internet bandwidth. 
Output of polar-stereographic grid "104" with a 90.7-km grid spacing true at 60 °N created 
from the operational NCEP Eta model forecast are continuously accessible via anonymous 
ftp in real-time mode. The grid 104 covers a large domain including all of North America 
and extends west over the Pacific ocean to approximately the date line. The Eta analysis 
is available on 38 pressure levels from 5.0 to 100.0 kPa every 2.5 kPa. 

Effective 25 January 2005, the Eta model has been renamed the North American 
Mesoscale (NAM) model. This thesis keeps using the name of "Eta" because all numerical 
experiments performed in this work use the model's analysis/forecast before 25 January 
2005. 
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Appendix B 

The Barnes method 

The Barnes (1964) scheme is an empirical version of the successive correction method 
(SCM), as expressed below: 

where f" is the analysis value at the analysis grid point i, f^"1 is a background field or 
value of the previous pass at the analysis grid point i, f% is the data value at a data point 
k, and is the estimate of the previous pass at the data point k. The weights Wik are 
given by an empirical Gaussian function: 

where is the distance between the analysis grid point and the data point, Rv is a 
parameter determining the shape of the weights. Al l the data points within a square 
influence region centered on an analysis grid point are used in this study. The radius of 
the circle inscribed in the square is five times value of the shape factor (Rv), implying that 
the lower limit of the weight function being on the order of 10~ n . A single pass scheme is 
used to smooth topography in this work. 

fi = fr1 + En 
fc=l Wik 

(B.l) 

wik = exp(-T-^) (B.2) 
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Appendix C 

Sensitivity Tests 

This appendix provides a sensitivity analysis of MD_LSMG (the mother-daughter approach 
after coastline refinement) to different values of the free parameters for the real-observation 
case (3-4 February 2003) from section 4.3. The potential-temperature analysis and ver­
ification observations remain the same as in Chapter 4. This single case is insufficient 
to determine the optimal values of the free parameters. However, it does indicate some 
sensitivity characteristics. 

First vary zrefl and zrefl from 250 to 3000 m every 250 m, while holding a = 2 and 
6 = 2. Recall that zrefl and zref2 are the maximum effective BL heights through which 
surface observations are felt. 

Figure C l shows normalized root-mean-square errors (nrmses) versus zrefl and zre/2 
for 0000 UTC (1600 PST) and 1200 UTC (0400 PST) 4 February 2003. At both 0000 UTC 
and 1200 UTC, nrmses are less than 1.0 for any values of zrefl and zref2 within the range 
250-3000 m. Thus, the analyses agree with the observations better than the first guess. 
Nrmse is not sensitive to zrefl when zrefl > 750 m, or zref2 < 500 m. This is because 
the elevation differences between a mother grid point (GP) and its immediate daughter 
GPs are usually small. Nrmse is far more sensitive to zref2 than to zrefl, as zref2 defines 
the maximum effective height above the observation, and because the elevation differences 
between the observation and the analysis GPs vary considerably. 

Figure C l shows different features at 0000 and 1200 UTC. In late afternoon (0000 UTC), 
nrmse shows small sensitivity to zrefl > 750 m and zref2 > 750 m. In early morning 
(1200 UTC), lower nrmse is confined to a narrow band from zrefl — 500 to 3000 m and 
from zref2 = 1000 to 1250 m. Similar sensitivity tests from 0100 to 1100 UTC indicate 
a transition at 0200 UTC (not shown). The behaviors correspond to the characteristics of 
the evolving BL. 

Then vary a and b from 0.5 to 4.0 every 0.5 for 1200 UTC 4 February 2003. For these 
experiments, zrefl — 2250 m and zre/2 = 1000 m, which were the best values from the 
previous tests. As shown in Fig. C2, a = 2 and b = 2 (or a = 1 and b = 2.5) yield lower 
nrmses. 

Using the circuitous travel distance (CTD) in the mother-daughter (MD) approach 
effectively limits the region of influence in complex terrain (section 4.1). GAUSS and 
TERRJDIFF ROI (radius of influence) sensitivity tests are performed by varying horizontal 
correlation length scale Rh (used to calculate ROI in the ADAS) from 100 to 10 km every 
10 km for the first and second Bratseth passes. For each test, the third Bratseth pass 
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Figure C l : Nrmse of analyses vs zrefl and zref2 when a=2 and b=2. Contour interval is 
0.025 K. (top) Late afternoon (0000 UTC 4 Feb 2003); (bottom) Early morning (1200 UTC 
4 Feb 2003). Smaller nrmse is better. 
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Figure C2: Nrmse of analyses (1200 UTC 4 Feb 2003) vs a and b when zre/l=2250 m and 
zre/2=1000 m, which were the best values for 1200 UTC from Fig. C l . Contour interval 
is 0.025 K. Smaller nrmse is better. 

reduces Rh by 70%, while the fourth and fifth passes reduce Rh by 70% from the third 
pass. 

For the virtual-observation case (see section 4.2.2), rmse decreases rapidly with decreas­
ing Rh for both GAUSS and TERR_DIFF (Fig. C3), as the correction from ol becomes 
negligible in the Lillooet River Valley. When Rh = 20 km, a minimal rmse for potential 
temperature is found to be 0.3385 K for GAUSS and 0.4105 K for TERR.DIFF. The rmse 
with Rh = 20 km is reduced about 37% for GAUSS and 24% for TERRJDIFF from the first 
guess. While such small values of Rh successfully reduce intervalley spreading, they do so 
at the expense of reducing the potentially good intravalley spreading. The MD approach 
avoids this problem. 

Similar tests are performed for the February 2003 real-observation case (see section 
4.3). Figure C4 shows nrmses versus Rh used in the first and second Bratseth passes for 
1200 UTC 4 February 2003. For both GAUSS and TERRJDIFF, nrmses are less than 1.0. 
Nrmse shows small sensitivity to Rh when Rh > 40 km, while relatively large sensitivity 
when Rh < 40 km. A minimal nrmse is found at Rh — 20 km for GAUSS and at Rh = 
10 km for TERRJDIFF. Identical tests are performed for 0000 UTC (Fig. C5). Different 
from the 1200-UTC results, Rh — 100 or 90 km produces lower nrmses for both GAUSS 
and TERRJDIFF. 

The ROI sensitivity for the February 2003 real-observation case is much smaller than 
that for the virtual-observation case. This is not surprising, considering only two observa­
tions in the two adjacent valleys were used for the virtual-observation case. These results 
indicate that a prescribed Rh does not work everywhere in highly variable terrain. An Rh 
that depends on the elevations of surface stations and analysis GPs might help to improve 
the analyses from GAUSS and TERRJDIFF. In complex terrain, an effective Rh might not 
only depend on the average station separation, but also on the geographic regions, seasons 
and weather. 
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Figure C3: Rmse of analyses (0000 UTC 8 Mar 2003) vs Rh used in the first and second 
Bratseth passes. The third Bratseth pass has a Rh that is reduced by 70% from the second 
pass, while the fourth and fifth Bratseth passes have a Rh that is reduced by 70% from the 
third pass, (top) GAUSS; (bottom) TERRJDIFF. Smaller rmse is better. 
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Figure C4: Nrmse of analyses (1200 UTC 4 Feb 2003) vs Rh used in the first and second 
Bratseth passes. The third Bratseth pass has a Rh that is reduced by 70% from the second 
pass, while the fourth and fifth Bratseth passes have a Rh that is reduced by 70% from the 
third pass, (top) GAUSS; (bottom) TERRJDIFF. Smaller nrmse is better. 
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Figure C5: Same as Fig. C4, but for 0000 UTC 4 February 2003. (top) GAUSS; (bottom) 
TERR_DIFF. Smaller nrmse is better. 

144 


