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Abstract i i 

Abstract 
In this thesis I investigate methods for discriminating between unexploded ordnances (UXOs) 
and clutter items (e.g: shrapnel, geology). I first describe a numerical forward model, the 
method of auxiliary sources (MAS) , which can be used to model the magnetic and elec
tromagnetic response of a conductive, permeable body. I use this model to validate the 
connection between the parameters of approximate forward models and target properties 
(i.e target shape). I also examine how model parameters can be estimated from observed 
data using inversion. 

I then describe algorithms for discriminating between U X O and clutter. In the statistical 
classification framework, model parameters are basis vectors within a multi-dimensional 
feature space. I prioritize features based upon their ability to separate U X O and clutter 
using canonical analysis. I describe two approaches for partitioning the feature space: 
modelling the underlying distributions from which the observed feature data are drawn, or 
directly defining a decision boundary. A suite of statistical classifiers are then applied to 
magnetics data acquired at three field sites. Finally, I propose an algorithm for selecting a 
classifier as target excavation proceeds. 
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Chapter 1 

Introduction 
Unexploded ordnances (UXOs) are denned as "explosive, propellant or chemical containing 
munitions that were armed, fired and remain unexploded through malfunction [1]." It is 
estimated that up to 10 million acres are contaminated by UXO within the United States. 
UXO contamination is a growing problem: the Defense Science Board estimates that 10000 
UXOs are produced each year in live-firing exercises. The UXO problem is also prevalent 
in past and present conflict zones around the world. For example, approximately $1 billion 
(US) has been spent on clearance of mines and UXOs in Kuwait [2]. 

Figure 1.1: Ordnance items recovered at Limestone hills, Montana. 

The extent of the UXO contamination within the United States and abroad has mo
tivated intensive research into improved technologies for detection and discrimination of 
UXO. Remediating UXO-contaminated sites in the United States could cost up to $52 bil
lion if metal detectors and pin flags are used to locate potential UXO items (the "mag 
and flag" technique). This cost is distributed throughout the remediation process, but the 
majority of the expense is spent on digging non-ordnance items [1]. Mag and flag can re
quire as many as 100 clutter items (geology, shrapnel) to be excavated for each UXO item 
found. This 100:1 rate is called a False Alarm Rate (FAR) and is a crucial measure for 
comparing discrimination techniques. "Advanced" discrimination methods are expected to 
reduce false alarm rates to 10:1, cutting remediation costs to approximately $16 billion. 
These methods require the acquisition of digital geophysical data and subsequent signal 
processing. 

This thesis examines the signal processing which can be used to discriminate between 
UXO and clutter. In particular, I apply classification algorithms from the field of pattern 
recognition to discrimination between UXO and clutter. 

Chapter 2 discusses methods for forward modelling the magnetic and electromagnetic 
response of ordnance items. Models used in UXO discrimination are typically approximate 
forward models whose parameters serve as proxies for physical properties. I describe a 
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Figure 1.2: The U X O remediation process (after [1]). 

numerical model, the Method of Auxiliary Sources (MAS) , which can be used to model the 
response of a conductive, permeable bodies with arbitrary shape. This model is parame
terized in terms of physical properties. 

In chapter 3, I demonstrate how the parameters of a forward model can be estimated 
from observed data using inversion. I implement the Levenberg-Marquardt inversion al
gorithm for a simple synthetic problem. This example uses the analytic solution for the 
frequency-domain response of a sphere. The parameterization of this model in terms of 
physical properties makes it a useful analogue for future inversions using M A S . In particu
lar, I show how the correlation between conductivity and permeability can preclude unique 
estimation of these parameters. 

In chapter 4, I use M A S as a benchmark forward model for validating approximate 
forward models in the time domain. I demonstrate that there is a nonlinear relationship 
between the estimated parameters of the Pasion-Oldenburg forward model and the aspect 
ratio of a spheroid. 

Chapter 5 gives an overview of pattern recognition. In this framework, model param
eters estimated by inversion are basis vectors within a multi-dimensional feature space. I 
discuss how to prioritize features and reduce the dimensionality of a feature space with 
canonical analysis. I describe two approaches to defining a classification rule: generative 
classifiers which estimate the underlying distributions from which the observed feature data 
are drawn, and discriminative classifiers which directly define decision boundaries to parti
tion the feature space. A crucial step in the classification process is optimization of classifier 
performance through training. 

In chapter 6,1 show the application of classification algorithms to real data sets. I apply 
canonical analysis to prioritize the features obtained from magnetic and electromagnetic 
data. I then apply a suite of classifiers to real feature data. At two sites (Guthrie road 
and Limestone hills) statistical classifiers are outperformed by a "rule-based" remanence 
classifier. However, at a third site (Badlands bombing range), some statistical classifiers 
provide a modest improvement in classification performance. Statistical classifiers rely 
strongly upon the available ground truth, or training data. I show how retaining a classifier 
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as the training data set grows can improve its performance. 
I also propose an algorithm for selecting a classifier from a suite of available classifiers. 

The algorithm estimates the performance of classifiers using cross-validation on the training 
data. B y evaluating performance as digging proceeds, the classifier selection algorithm 
provides near-optimal performance for the synthetic and real data sets considered. 

Finally, I briefly examine the effect of feature uncertainty upon classification with a 
Monte Carlo simulation. Accounting for uncertainty in the feature vectors can have a 
strong effect upon classification of electromagnetic data. 

Chapter 7 reviews the work carried out to date and suggests directions for future research 
within the field of U X O classification. 
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Chapter 2 

Forward modelling 

2.1 Introduction 
In this chapter I review forward modelling of magnetic and electromagnetic data. These 
data types are most commonly acquired for U X O detection and discrimination. Extracting 
relevant features from a geophysical data set requires a model which can predict the mea
sured response of a U X O . Given a model vector m, we seek a forward modelling operator 
F which predicts the data d 

d = F{m}. (2.1) 

In the U X O problem, the model parameters are typically proxies for the relevant physi
cal properties of a target. While these approximate forward models have had success in 
real applications, recent research has focussed upon parameterizations in terms of physical 
properties. I consider a numerical forward model, the method of auxiliary sources (MAS) , 
for modelling both magnetic and electromagnetic data. This model provides a single pa
rameterization in terms of target properties (conductivity, susceptibility, shape and size) 
and geometry (location and orientation). In chapter 4, I will use M A S to validate the 
connection between approximate forward model parameters and physical properties. 

2.2 Magnetics 
2.2.1 Governing equations 

The governing equations for the study of magnetism are Maxwell's equations for the mag
netic field h and magnetic flux density b 

r , , • 9d 
V x h = J + ^ (2.2) 

V - b = 0 

where j is the current density and d is the displacement current. Under a quasistatic 
approximation, displacement currents are assumed negligible [3]. If measurements of the 
magnetic flux density are made in air, no currents are present and so j is zero. The first 
expression in equation 2.2 is then 

V x h = 0. (2.3) 

The magnetic field is irrotational and can therefore be expressed as the gradient of a scalar 
potential 

h = -V<f>. ' (2.4) 

The potential of any arbitrary body occupying a region R can be expressed as the super
position of potentials due to elementary magnetic dipoles 

0(r) = -j- f M. • V(-)dV (2.5) 
47r J r 

R 
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where the magnetization M is the magnetic dipole moment per unit volume. The SI unit 
for magnetization and the magnetic field is A / m . Magnetic flux density is measured in 
tesla (T). 

There are several ways to compute the scalar potential (and flux density) of an arbitrary 
magnetized body using equation 2.5. If the body is assumed to have uniform magnetization 
and a simple shape, the volume integral can often be evaluated analytically. For example, 
the magnetic potential of a permeable sphere is that of a dipole. 

Alternatively, the integrand in the above equation can be approximated by expanding 
£ as a MacLaurin series. This yields a moment expansion with each term in the series 
corresponding to the potential of progressively higher order moments (dipole, quadrupole, 
octupole, etc.) [4]. 

For bodies of more complicated shape (eg geological structures), a more appropriate 
approach to computing the magnetic field is to discretize the volume into cells of con
stant magnetization and numerically integrate equation 2.5. This is a proven method of 
forward modelling magnetics data for three-dimensional imaging problems encountered in 
exploration geophysics [5]. 

Both the moment expansion and discretized methods have been used to forward model 
magnetics data for U X O s . The most common approach is to represent the induced field of 
a U X O as a dipole. Billings et al. justify this by approximating a U X O by an equivalent 
spheroid (most ordnance items can be approximated as prolate spheroids) [4]. The first 
nonzero components in the moment expansion of a spheroid are the dipole and octupole 
moments. The octupole moment falls off very rapidly and so the dipole moment provides 
a reasonable approximation to the field of a spheroid. 

Lelievre used a discretized approach to solve the governing equation for the magnetic 
scalar potential in high susceptibility materials [6]. His implementation of a finite volume 
discretization was able to account for demagnetization effects observed in spheroidal bodies 
such as U X O , as described in section 2.2.4. 

2.2.2 Magnetization 
Magnetization can be modelled as the sum of induced M ; and remanent M r magnetizations 

M = M i + M r . (2.6) 

Remanent magnetization is a permanent magnetization which does not depend on the induc
ing magnetic field. This effect is observed in ferromagnetic (eg. iron) materials commonly 
used to construct ordnance casings as well as in geologic materials. 

Two types of remanent magnetization are thought to be relevant to the study of U X O s : 
thermoremanent magnetization and viscous remanent magnetization. Thermoremanent 
magnetization is acquired when magnetizable material is cooled from a high temperature. 
Below the material-dependent Curie temperature, magnetic moments are locked into per
manent domains, producing a net remanent magnetization. Viscous remanent magnetiza
tion also involves alignment of moments, but can be acquired at lower temperatures by 
prolonged exposure to the inducing field [7]. 

Induced magnetization is produced by the instantaneous alignment of magnetic mo
ments with an inducing magnetic field. In geophysics, the primary inducing field is gener
ally the earth's magnetic field. When the magnetic susceptibility is small (x < 0.1), as is 
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the case for most earth materials, the induced magnetization is modelled as 

M = x h 

where h is the magnetic field. The susceptibility is in general a tensor quantity, but in most 
applications it can be assumed to be isotropic (ie a scalar). The total magnetic flux density 
b is then the superposition of the inducing magnetic field plus the magnetization 

b = p0(h + M) (2.7) 

In the absence of remanent magnetization (ie M = Mj), this yields the constitutive 
relation 

b = ph (2.8) 

with the permeability p, = p0(l + x)-

2.2.3 Geophysical measurements of b 

Equation 2.7 shows that the measured flux density b is the superposition of an inducing 
field bQ = A^ho and an anomalous field ba = ̂ 0M. Total field magnetometers measure the 
magnitude of the flux density 

||b||2 = b X + 2b^b 0 + t£ba. (2.9) 

In geophysical applications the anomalous magnetic field is typically far smaller than the 
earth's magnetic field and so the last term in the above expression can be neglected. Then 
the magnitude of the total field can be approximated as 

||b|| = (bX + 2 b X ) 1 / 2 

« ||b0||+ b o-b 0 

The total field anomaly is then computed by subtracting the magnitude of the earth's 
magnetic field to give 

ba « ba • b0. 
The total field anomaly measured by a magnetometer is the projection of the anomalous 
field on to the direction of the earth's magnetic field. 

2.2.4 Demagnetization 

In highly susceptible materials the induced magnetization is reduced by self-demagnetization. 
This effect can be understood by representing the induced dipole moment of a spheroid as 
a surface distribution of (fictitious) magnetic charges, as shown in figure 2.1. These charges 
produce an internal magnetic field which opposes the induced dipole moment and thereby 
reduces the net moment. If the induced moment is parallel to the long axis of the spheroid, 
then the demagnetizing field is weaker than if the moment is perpendicular to the long axis, 
as illustrated in figure 2.1(b). 

For a given spheroid a range of induced moments can therefore be generated as the 
spheroid is rotated about the inducing field. This "feasibility" curve provides a template 
against which an observed moment can be matched. The minimum distance between the 
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+ + 
+ + + + + 

(a) (b) 

Figure 2.1: (a) Demagnetization of a spheroid. Magnetic charges which produce an induced 
field H i also produce an internal demagnetizing field H o which reduces the net induced 
moment, (b) The demagnetizing field is weakest when the magnetic charges are at their 
maximum separation, ie when the induced moment m j is parallel to the long axis of the 
spheroid (after [7]). 

observed moment and a feasibility curve for a given ordnance type then provides a feature 
which can be used for U X O discrimination [8]. 

Unfortunately, there is ambiguity in the interpretation of magnetics data, even for 
relatively simple objects. Billings showed that there is an infinite family of spheroids which 
can predict an observed dipole anomaly [8]. This nonuniqueness prevents us from drawing 
any inferences about shape and orientation of a target; we can only extract information 
about the induced moment. 

2.3 Time and frequency-domain electromagnetics 

Electromagnetic instruments actively transmit a time-varying primary magnetic field which 
illuminates a buried target. The variation of the primary field induces currents in the target 
and these currents in turn produce a secondary field which can be measured by a receiver 
at the surface. 

E M data can be acquired in the time-domain or in the frequency-domain. In the time-
domain the decay of secondary fields is measured after a primary field is switched off. The 
frequency-domain mode measures the secondary field during transmission of a primary field. 
Frequency-domain instrumentation tries to cancel (or "buck out") the primary field at the 
receiver so that only secondary fields are measured. 

While the two modes of operation theoretically provide the same information about a 
target, in practice there are advantages and disadvantages to both methods. Because time-
domain instruments only "listen" for the secondary field after the primary is shut off, the 
complications of bucking out the primary field are circumvented. However, self-induction 
in the transmitter and receiver makes a true step-off waveform difficult to achieve, and so 
it has historically been difficult to sample the secondary field at very early times after the 
primary field is shut off. 

In the frequency-domain mode of operation there are no complications from the step-
off of the primary field and information at high frequencies (equivalent to early times in 
the time domain) can be obtained. However, careful alignment of transmitter, receiver 
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Bucking coil 

(a) 

Figure 2.2: Operation of a frequency domain E M sensor with concentric transmitter (T x) , 
bucking and receiver (R x ) coils. The bucking coil is designed to produce a field which 
cancels the primary field at the receiver. 

and bucking coils is required if the secondary field, which is typically orders of magnitude 
smaller than the primary, is to be accurately measured. 

2.3.1 The time and frequency domain responses of a sphere 

Figure 2.3 shows the frequency-domain spectrum and the corresponding time-domain re
sponse for a conductive, permeable sphere in a uniform field. These forward modellings 
were computed for the vertical (z) component of the secondary field using the analytic so
lution derived by Ward [9]. Notable features of the frequency-domain response are the low 
and high frequency asymptotes of the in-phase response. At low frequencies, the secondary 
field is entirely in-phase with the primary field and tends to a magnetostatic induced dipole 
as the frequency decreases. The secondary fields are produced by volume currents which 
circulate within the body and produce a uniform magnetization. 

In contrast, at the high frequency end of the spectrum the induced currents circulate 
only on the surface of the body. By Lenz's law, currents are initially induced on the surface 
of the target after the shut-off of the primary field. These currents circulate so as to oppose 
any change in the primary field. The corresponding time-domain response is characterized 
by two stages in log-log space: an early time linear decay followed by late time exponential 
decay. The early time portion of the time-domain response corresponds to the diffusion of 
currents into the body. In the late time stage, the secondary fields decay exponentially. 

Figure 2.4 shows the dependence of frequency and time-domain responses upon physical 
properties. A n increase in relative permeability increases the strength of the induced dipole 
at low frequencies and so the magnitude of the in-phase component grows. The peak of 
the quadrature component shifts to higher frequencies with increasing permeability. In the 
time domain, the effect of increasing permeability is best understood in terms of the time 
constant 

r oc crfiR2. (2.10) 

The time constant is the time at which late-stage exponential decay begins. As shown 
in figure 2.4, increasing either the conductivity, permeability, or radius extends the early 
time stage. In the case of increased conductivity this effect is easy to understand: surface 
currents, which produce the early time stage, persist longer in a more conductive medium. 
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Time (s) 

Figure 2.3: Frequency domain (top) and time-domain (bottom) electromagnetic response 
of a conductive, permeable sphere. 

In the frequency domain, a change in the conductivity or radius for a fixed value of 
permeability simply shifts the response with respect to frequency. If the frequency-domain 
response is plotted as a function of the induction number 

i = ^JcTJT0R (2.11) 

then, for a given relative permeability, a single set of in-phase and quadrature curves are 
required to define the response for all possible values of a and R. 

2.3.2 Approximate forward models for E M 

Although considerable insight can be gained by analytic forward modelling for simple 
shapes, extension of electromagnetic forward modelling to more complex bodies has proven 
to be a difficult endeavour. Finite difference solutions to Maxwell's equations in both the 
time and frequency domain are available. However, these methods are typically too com
putationally intensive for use in U X O applications, where hundreds, if not thousands, of 
anomalies must be modelled. Rigorous solutions to the electromagnetic scattering problem 
can be regarded as benchmarks against which simpler models can be validated. 

Laboratory and field measurements have shown that many U X O s can be approximated 
as axisymmetric bodies of revolution. Though many U X O s are heterogenous objects with 
asymmetries such as fins and nose cones, numerical and analytic models which use approx
imate spheroids have generated good agreement between observed and predicted data. 

These results have motivated the development of approximate forward models which 
parameterize the response of an elongated body as a superposition of excitations along axial 
and transverse directions. 

For example, the Pasion-Oldenburg model represents the time-domain response of a 
U X O as the superposition of two orthogonal dipoles: one oriented along the long axis of 
the object and the other transverse to the long axis (figure 2.5). The secondary field B(r, t) 
is expressed as 

B ( r , t ) = B i ( r ) L i ( t ) + B a ( r ) L 2 ( t ) (2.12) 
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10"* 10"3 10"* 10"' 
Time(s) 

(a) Frequency domain in-phase response (top left), 
quadrature response (top right) and time domain re
sponse (bottom) for three values of relative permeability: 
Hr = (2, 10, 100) . Conductivity is constant (a = 105 

S/m). Arrows indicate increasing relative permeability. 

Time (s) 

(b) Frequency domain in-phase response (top left), 
quadrature response (top right) and time domain 
response (bottom) for three values of conductivity: • 
a = (1 x 104, 1 x 105, 1 x 10°) S/m. Relative perme
ability is constant (fj,r = 100). Arrows indicate increasing 
conductivity. 

Figure 2.4: Dependence of frequency arid time-domain responses upon physical properties. 

where B i ( r ) and B2(r) are the spatial responses of the orthogonal dipoles. The dipoles are 
assumed to decay independently, with each decay parameterized by 

Li(t) = ki(t + ai)~0i e x p ( - t / 7 i ) , i = 1,2. (2.13) 

Pasion showed that combinations time-decays parameters (fc,, and 7$) are diagnostic 
of target shape and size and can therefore be used to discriminate between U X O and 
clutter [10]. 
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Figure 2.5: The Pasion-Oldenburg model represents the secondary field of an arbitrary 
object as the sum of fields radiated by two orthogonal induced dipoles (mi and 7712). 

Inversions using this model have produced good agreement with observed field data and 
can be used to estimate target depth and orientation. A similar two-dipole model has been 
developed in the frequency domain by Baum [11]. In this mode, the spectral response of 
the item is parameterized by resonant frequencies which correspond to decay constants in 
the time domain. 

In magnetics we usually cannot infer orientation or shape information from the observed 
data. However, with electromagnetic data we can hope to extract orientation and shape 
information. A simple analogy to explain the extra information available from E M data is 
the illumination of a spheroid and sphere with a flashlight. If we shine our flashlight along 
the long axis of the spheroid, it casts a circular shadow, just like the sphere. However, if 
we illuminate the spheroid and sphere from multiple angles it is clear that they will cast 
different shadows and we can infer something about the shape of the targets. In a similar 
manner, the earth's magnetic field provides a static primary field which illuminates the 
target from one direction. The primary field from a moving E M transmitter illuminates the 
target from multiple directions and so we can hope to gain some information about target 
shape with E M data. 

Because U X O s are typically prolate spheroids, estimates of target shape can potentially 
provide a feature for discrimination between U X O and clutter items. A criticism of the 
approximate forward models described above is the indirect connection between the pa
rameters of the forward models and the physical properties of the target. For example, 
the relative strengths of the orthogonal dipoles in the Pasion-Oldenburg model provide an 
indication of target shape, but the link between model parameters and physical properties 
is qualitative. 

I address this criticism in chapter 4 using the method of auxiliary sources (MAS) , a 
numerical forward model which is parameterized in terms of physical properties. 

2.3.3 Method of auxiliary sources (MAS) 

The method of auxiliary sources can model the secondary magnetic field of an arbitrary 
body. The body is parameterized by its shape, size, conductivity and relative permeability. 
M A S formulates the E M forward problem as a boundary value problem. The formulation 
is related to the method of moments, which requires that the integral equation for the 
magnetic field be satisfied on the surface of the body. M A S displaces fictitious sources 
of the secondary field (the auxiliary sources) away from the surface of the conductor and 
requires that the fields produced by these sources satisfy continuity conditions on the surface 
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of the body [12]. 
The first step in implementing M A S is to divide the computational domain into two 

regions: a region outside the conductor (region 1) and a region inside the conductor (region 
2), as shown in figure 2.6. Next consider Maxwell's curl equation for the magnetic field H 

Figure 2.6: Geometry for M A S (after Shubitidze et al.). The boundary of the conductor 
3D defines the boundary between regions 1 and 2. The auxiliary surfaces dD\ and dD<i 
are concentric with the conductor. 

in the frequency domain 
V x H = CTE - iweE. (2.14) 

In region 1 (outside the conductive body), both displacement and conduction currents are 
negligible and so the magnetic field is irrotational. I can then write the magnetic field as 
the gradient of a scalar potential $ 

H = - V $ . (2.15) 

B y analogy with Gauss' law for the electric field, the scattered magnetic field is 

V • H f = — < 7 m ( r ) (2.16) 
Mo 

where om is a (fictitious) magnetic charge density situated on the auxiliary surface dD\. 
So the magnetic scalar potential satisfies Poisson's equation 

V 2 $ ( r ) = - — a m ( r ) . (2.17) 
Mo 

_ f a "*( r ' ) dS'. (2.18) 
J 47r^ 0|r-r'| 

The solution is 

$(r) 

The scattered magnetic field in region 1 is then obtained by taking the gradient of the 
above equation. A n important feature of M A S is that sources are located outside the region 
where the fields are calculated. This a major advantage over the method of moments, where 
integration over regions where source and observation locations coincide must be handled 
with caution due to the singularity of the Green's function. 
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Things are not quite so straightforward inside the conductive body (region 2). We can 
make a quasistatic approximation but the conduction currents are certainly not negligible, 
so the governing equation is Helmholtz's equation (with sources) 

[ V 2 + fc2] H 2 = - tw / i P ( r ) (2.19) 

where the complex wavenumber is fc = \J-iioou- and P ( r ) is a magnetic current density 
( A / m 3 ) situated on the auxiliary surface dD2. The solution is given by 

H 2 ( r ) = [fc2 + VV-]nm(r) (2.20) 

with the magnetic Hertz potential given by 

P(r ' ) e - ^ r - r ' l J C , 
nm(r) = 

d£>2 

r p r y ) e-^\r-r I 

/ 4 ^ 1 7 ^ ( 2 2 1 > 

Having obtained expressions for the magnetic field inside and outside the conductive 
body, we must impose continuity of the tangential H field and normal B field at the interface 
between the ground and conductor 

n x ( H f + H p r ) = n x H 2 , 
2 22) 

n • ( H f + H P r ) = n • / u r H 2

 V ' ; 

where Hw is the primary field, Hsc is the scattered field and H 2 is the total field inside 
the body. The problem is now to determine a distribution of auxiliary sources which will 
satisfy equation 2.22. The source distributions are conveniently expressed by an expansion 
in terms of orthogonal basis functions {Xn} 

N 

OVn(r') = ]T]<2nXn(r') 
n = l 

P(r ' ) = f > n X n ( r ' ) 

V (2-23) 

n = l 

The coefficients Qn and P n can be found by integrating the continuity conditions (equa
tion 2.22) over the physical surface 

J K • ( H f - H2)}wmdS = - j [£ • Wr)wmdS (2.24) 
dD dD 

where ^ is a normal or tangential unit vector on dD. A convenient choice of the weighting 
functions {wm} makes evaluation of these integrals straightforward, producing an linear 
system of equations. For example, if both the expansion and weighting functions are chosen 
to be delta functions, then the above expression reduces to point matching. Continuity of 
the fields produced by auxiliary point sources is enforced at testing points on the surface 
of the conductor. In this formulation, Shubitdize et al. call the sources positioned on the 
outer auxiliary surface dD2 magnetic dipoles [12]. While these sources are parameterized 
in terms of the vector-valued coefficients P n , inspection of equation 2.21 shows they do not 
decay as 1/r 3, as we might expect for dipole sources. To avoid this confusion I call the 
sources on surface dD2 vector sources. 

file:///J-iioou-
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Point-matching implementation of MAS 
As an example of M A S , I implement a point-matching solution for a sphere under axial 
excitation. Figure 2.7 shows the distribution of points on the surface of the sphere and on 
concentric auxiliary surfaces. The vector and charge sources are distributed in 50 bands of 

0.2 J 

0.1 J 

y 

Figure 2.7: Distribution of auxiliary sources (points) and testing points (crosses) on a sphere 
of radius 0.2 m 

constant polar angle, with each band comprised of 120 auxiliary sources (a total of 6000 
sources on each auxiliary surface). 

The rotational symmetry of the sphere, or indeed any body of revolution, dictates that 
under a uniform axial excitation the continuity conditions at any two testing points with the 
same polar angle must be the same. This implies that the strength of auxiliary sources must 
be constant in a given auxiliary source band of constant polar angle. This greatly reduces 
the computational burden: in this example we need only solve for the charge strengths of 
50 bands, rather than the charge strengths of 6000 individual auxiliary charges. A further 
simplification is achieved by requiring that the vector sources be oriented tangential to 
the auxiliary surface dD2 [Shubitidze, personal communication]. Under this assumption, 
the expressions for the secondary fields produced by the vector sources are considerably 
simplified, so that we need solve for one coefficient for each band of vector sources (see [12] 
for details). Figure 2.8 shows the point-matching solution for the z-component of the 
secondary magnetic field at an observation location 1 m above the centre of the sphere. 
The sphere has radius 0.2 m, conductivity 10 6 S/m, and relative permeability 150. The 
auxiliary surfaces have radii of 0.15 m and 0.30 m, respectively. Also shown is an M A S 
implementation provided by Shubitidze which uses the "thin-skin" approximation at high 
frequencies [13]. 

Agreement between the analytic and standard M A S solutions is observed up to ap
proximately 10 3 Hz. At higher frequencies, the linear system becomes ill-conditioned and 
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Frequency (Hz) 

Figure 2.8: M A S point-matching solution (solid line) and analytic solution (circles) for the 
frequency domain response of a conductive, permeable sphere. Dashed line is M A S point-
matching solution with thin-skin approximation at high frequencies provided by Shubitidze. 

an accurate solution cannot be obtained. This ill-conditioning is due to the rapid decay of 
vector sources at high frequencies. This is a weakness of the standard M A S formulation: by 
displacing sources from the physical surface we avoid singularities in the Green's functions 
but problems can arise from the rapid falloff of the vector sources. One possible solution 
is to move the vector auxiliary sources closer to the object surface and to increase the 
number of sources. However, the increased resolution required at these frequencies quickly 
makes the linear system intractable, even for numerical solvers (to quote one comedian 
in the field: "Fugheddaboudit!"). The alternative "thin skin approximation" circumvents 
this problem by solving only for the exterior (scattered) fields together with a modified 
boundary condition which accounts for material properties [13]. 
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Figure 2.9: Top left: real auxiliary point sources. Top right: imaginary auxiliary point 
sources. Bottom left: real response at a height of 1 m above the center of the sphere, plan 
view. Bottom right: imaginary response, plan view. 
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The distributions of auxiliary point sources at two frequencies are shown in figure 2.9. 
At low frequencies, the imaginary component of the charges is very small and so there is 
no quadrature response. The distribution of real charges divides into a positively charged 
upper hemisphere and a negatively charged lower hemisphere. Hence the fictitious mag
netic charges behave like electric charges to produce a (downward-directed) vertical dipole 
moment. 

At higher frequencies (162 Hz in figure 2.9), the quadrature response is opposite in 
sign to the in-phase response. In this case the real charge bands have opposite sign to the 
corresponding imaginary charge bands and produce a dipole moment which is oppositely 
directed to the imaginary component. 

The distribution of auxiliary sources at 162 Hz does not neatly divide into oppositely 
charged hemispheres. How is a dipolar field produced by this distribution of auxiliary 
sources? Closer inspection of the charge strengths at higher frequencies reveals that for 
each band with a given charge there is a corresponding band of equal, but opposite, charge 
in the other hemisphere (figure 2.11). The corresponding bands are vertically displaced by 
the same distance from the centre of the sphere. 

A n equivalent dipole moment can be computed from the charge bands by considering 
bands of equal but opposite charge situated in the upper and lower hemispheres of the 
sphere (figure 2.10). Each band is vertically displaced by a distance d/2 from the centre of 
the sphere, so that the total vertical separation between the two bands is d. By analogy with 
the electric dipole moment, the bands of opposite magnetic charges constitute a vertical 
dipole moment with magnitude 

m = Qeqd (2.25) 

with Qeq an equivalent charge strength for a point charge at the centre of each band (fig
ure 2.10). To compute the equivalent strength Qeq of a point charge, consider an observation 

Figure 2.10: Computing an equivalent dipole moment from the M A S solution. Two oppo
sitely charged bands of magnitude Q with vertical separation d are equivalent to two point 
charges with magnitude Qeq. 

location P along the axis of symmetry (figure 2.10). For P far from the centre of the sphere 
(i.e for z much greater than the radius of the sphere), we require the same secondary field 
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from charge Qeq and the total charge on a band, so that 

NQ = Qeq 

^Qeq = NQ(-) . 

with N the number of charges on a band. As we move from the equator towards both poles 
we encounter pairs of bands with increasing separation. Hence the total dipole moment 
produced by the auxiliary charge sources can be represented as a superposition of vertical 
dipole moments, all located at the centre of the sphere (figure 2.11). The equivalent dipole 

-0 .1 - 0 . 0 5 0 0 .05 0.1 0 0.1 0 .2 0 .3 
z d 

Figure 2.11: Left: Real charge band strengths Q at 162 Hz as a function of vertical location 
z. The centre of the auxiliary surface is at z = 0. The first two pairs of oppositely charged 
bands, constituting vertical dipole moments, are labelled 1 and 2. Right: Magnitude of the 
equivalent dipole moments as a function of band separation d. 

anomaly computed in this manner is identical to the superposition of fields from individual 
charges (figure 2.12). The agreement between analytic, M A S and equivalent dipole models 
shown in figure 2.12 is observed at other frequencies. However, as will be discussed in 
section 4.3, the scattered fields radiated by non-spherical bodies are not wholly dipolar, 
and so the equivalent dipole is, in general, an approximation. 

The M A S solution also provides the total magnetic field inside the body (figure 2.14). 
The field is computed as the superposition of magnetic fields produced by vector sources. 
At low frequencies, the real part of the induced magnetic field is constant within the sphere 
(figure 2.14(a)). The sphere is illuminated by primary fields which are constant throughout 
the sphere and the secondary fields are produced by volume currents, resulting in a uniform 
induced magnetization. The imaginary component of the field is small relative to the real 
component at this frequency and quickly falls off to zero with increasing distance from 
the sphere. In contrast, at higher frequencies the skin depth decreases and so the induced 
magnetic field is nonzero only in a small region near the surface. In this case, the secondary 
fields are produced by surface currents. For the observation locations selected in figure 2.14, 
the z-component of the magnetic field is the tangential component of the field and so it is 
continuous at the boundary between sphere and air. 

Note that the M A S solution in figure 2.14 is for the total magnetic field, both inside and 
outside the sphere. The total field outside the sphere is the superposition of the scattered 
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x 10-* 
MAS Equivalent Dipole Analytic Dipoie-Analytic I 

Figure 2.12: Real component of scattered fields at 162 Hz predicted by M A S , analytic 
forward model, and an equivalent dipole computed from the M A S solution. Observations 
are in plan view at l m above the sphere centre. 

and primary fields. For observation locations lying along the x-axis, the vertical scattered 
field is opposite to the primary field, and so in figure 2.14 the total field increases as the 
magnitude of the scattered field decreases. 

X 

Figure 2.13: Solid horizontal line indicates extent of observation locations used to generate 
figure 2.14. 

(a) 10" 3 H z (b) 162 H z 

Figure 2.14: M A S solution for vertical (z) fields at observation locations inside the sphere 
(heavy solid lines) and outside the sphere (heavy dashed lines). Left plots in (a) and (b) 
are the real components, right plots are the imaginary components. Vertical lines indicate 
the boundary between sphere and air. 
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2.3.4 Forward modelling of sensor data with M A S 

The method of auxiliary sources described above provides a frequency-domain solution 
for the secondary magnetic field produced by a body for axial and transverse excitations. 
This is not a full solution to the forward problem: for most E M sensors we must compute 

' the z-component of the secondary field with an arbitrary excitation and for a target with 
arbitrary orientation. For an implementation of M A S which uses magnetic charges, the 
secondary field B s c at observation location r is 

N 

B s c (r) = ^Q i G(r,r i ) 
(2.27) 

i = l 

with Qi the (complex) magnetic charge strength for the ith magnetic charge. The sum
mation is over all magnetic charges on the auxiliary surface. The Green's function for a 
magnetic charge with position vector r i is 

G(r,r ; ) (2.28) 

The primary field produced by the transmitter loop can be computed with the Biot-
Savart law [10]. However, if the target is more than a transmitter radius away from the 
transmitter, the primary field can be approximated as a dipolar field. I therefore compute 
the primary field to be that of a dipole at the centre of the transmitter loop. Moreover, if 
the target is small compared to the distance to the transmitter, then the magnetic field is 
assumed to be uniform over the surface of the target (ie the M A S problem is solved for a 
uniform primary excitation).The uniform primary field excitation is then the value of the 
dipole field at the centre of the target. 

The secondary field B s c at observation location r is calculated as 

B s c (r) = A T B s c A B p r (2.29) 

where the secondary magnetic field for unit axial and transverse excitations in target-cent red 
coordinates is expressed as 

B s c = 
Ba

a 

Aa

2 

Bi1 B: t2-

B\\ 
B\l 

B% 
BU 

(2.30) 

Here the superscript denotes unit axial (a) or transverse (tl, t2) excitations and the sub
script denotes the component of the secondary field in target-centred coordinates. 

The matrix A is an orthogonal rotation matrix which rotates the primary field B p r 

into target centered coordinates. I adopt the coordinate system shown in Figure 2.15 with 
z-positive up. The declination angle 4> defines the angle clockwise from the y axis. The 
inclination angle 9 measures the angle from the horizontal plane (positive upwards). W i t h 
this convention, the Euler rotation matrix is 

A = 
cos(</>) — sm(4>) 0 

sin(0) sm((f)) sin(0) cos(</>) cos(#) 
cos(#) sin(</>) cos(0) cos(^) — sin(0) 

(2.31) 

In target-centered coordinates the M A S solution for the secondary field is computed for 
unit axial and transverse excitations. These excitations are scaled by the primary field and 
rotated back into geographic coordinates by the inverse rotation matrix. 
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Figure 2.15: Coordinate system for computation of E M data. 

2.3.5 F o r w a r d m o d e l l i n g o f m a g n e t i c s d a t a w i t h M A S 

At low frequencies the E M response of a magnetically permeable target is entirely in-phase 
with the primary field. A low-frequency M A S forward modelling can therefore be used to 
solve for the anomalous magnetic field produced by a spheroid for a static primary field 
(ie the earth's magnetic field). Figure 2.16 shows a forward modelling for the anomalous 
magnetic field produced by a sphere and spheroid. The analytic solution is computed 
using demagnetization factors, as explained in [4]. The observations are modelled using 
the earth's magnetic field at Yuma, Arizona (58° inclination, 12° declination and 48000 nT 
field strength) The M A S solution is computed at a frequency of 1 0 - 6 Hz. The agreement 
between analytic and M A S solutions indicates that we can model both magnetics and E M 
data with a single forward model. This makes M A S a promising candidate as a forward 
model in joint inversion of these data types. 

Analytical MAS Difference 
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Figure 2.16: Analytic and M A S forward modellings of the anomalous magnetic field (nT) 
produced by a sphere (top row) and a spheroid (bottom row). 
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2.4 Discussion and conclusions 

In this chapter, I have reviewed forward modelling of magnetic and electromagnetic data 
in U X O applications. Magnetics data are typically handled using a dipole forward model. 
Similarly, time and frequency domain E M data can be accurately modelled with parametric 
models which represent the spatial response as two orthogonal dipoles. In the time domain, 
the Pasion-Oldenburg model represents the decay of the secondary field in terms of inde
pendent decay functions for the two dipoles. In chapter 4, I examine the dependencies of 
the Pasion-Oldenburg model parameters upon target shape using M A S as a benchmark 
forward model. 
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Chapter 3 

Inversion 
The forward models described in the previous chapter are examples of the forward modelling 
operation 

d = F{m}. 

The data vector d is generated by a forward modelling operator F operating on the model 
vector m. When real data are acquired, the problem is to estimate model parameters which 
produced the observed data. In the presence of noise, the inverse problem can be written 
as 

rh = F - 1 { d o b s } . 

where the observed data d o b s are the true data plus noise e 

d o b s = d + e. 

For magnetic and electromagnetic data the number of observations typically outnum
bers the number of model parameters in an approximate forward model such as M A S . The 
inverse problem is therefore overdetermined and the solution involves minimizing an objec
tive function which quantifies the misfit between observed and predicted data. A common 
choice is the L2 misfit function 

4>d=\\Wd(dobs-F{m})\\2. (3.1) 

The diagonal data weighting matrix Wd weights the contribution of a datum based on its 
estimated standard deviation CTJ 

Wdii = - . (3.2) 

If the forward modelling operator is linear, then there is a unique global minimum to the 
misfit function. In this case, the solution can be obtained in one step by solving a linear 
system of equations. The minimum of 4>d corresponds to a single element of model space. 
This is in contrast to the underdetermined case, where an infinite number of models can 
predict the observed data to a specified degree. 

3.1 Linearized inversion 

If the forward modelling operator is not linear, then there may be multiple minima of the 
misfit function and the solution of the inverse problem cannot be obtained in one step. 
This is usually the case in U X O applications; all forward models described in chapter 2 are 
nonlinear functions of the input model parameters. 

A deterministic approach to solving nonlinear inverse problems is to solve the problem 
iteratively. The first step is to linearize the misfit function by expanding equation 3.1 as a 
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Taylor series with a model perturbation 5m 

</>d(m + Sm) = fa(m) + {Vm^d)\mSm + \smT{ V^fa)\mSm +... (3.3) 

The gradient of the misfit function (equation 3.1) with respect to the model parameters is 

( V m ^ ) | m - - J r W d

T W d ( d o b s - F { m } ) (3.4) 

where the sensitivity matrix J, evaluated at the model m, has elements 

_ dF{m} 
Jijlm~~dm~- [ 6 - b ) 

The operation (V^d) defines the symmetric Hessian matrix H with elements 

y' dmidrrij (^-6) 

For an L2 data misfit function the Hessian is 

H = J T W d

r W d J - ( V T O J T ) W d

T W d ( d o b s - F{m}). (3.7) 

The second term in this expression contains second-order information about the curvature 
of the objective function and is often negligible in comparison to the first term [14]. 

Minimizing a quadratic approximation to the objective function (equation 3.3) with 
respect to the model perturbation yields the following expression 

JrWd

TWdJ<Sm = - J T W d

T W d ( d o b s - F{m}). (3.8) 

This expression is the Gauss-Newton method with the Hessian matrix approximated by 
J T W j W d J . Given an initial guess for the model parameters, we can solve the above 
equation for a model perturbation which will reduce the misfit. We then update our model 
with this perturbation and repeat the procedure until no further reduction in misfit is 
achieved. 

Difficulties can arise with the Gauss-Newton method if the approximate Hessian is i l l -
conditioned. This can be circumvented by applying a singular value decomposition to the 
approximate Hessian and discarding small singular values (truncated SVD) . 

Alternatively, a trust region method can be used to modify the search direction and 
regularize the approximate Hessian. The Levenberg-Marquardt method solves the following 
expression for the model perturbation at each iteration 

(J TWjW dJ + \T)6m = - J T W j W d ( d o b s - F{m}) (3.9) 

with A a non-negative Lagrange multiplier. This parameter controls the step direction: for 
A —> oo the model perturbation is in the steepest-descent direction, while for A —> 0 the 
model perturbation is in the Gauss-Newton direction. Trust region methods therefore adjust 
the step direction within a trusted region of model space where the quadratic approximation 
to the objective function is considered valid. 

Various authors propose different methods of determining a value of A at each iteration. 
Dennis and Schnabel outline a method to calculate this parameter so that the resulting 
step size is approximately the radius of the trust region [14]. I adopt the simpler heuristic 
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originally suggested by Marquardt [15]. If the misfit is decreased by a model step using the 
current value of lambda, I update A —• X/u, where v is a constant factor which I set equal 
to 10. If the misfit is increased by a model step using the current value of A, I discard this 
step and increase A by a factor of v until the misfit decreases. I also monitor the condition 
number of the approximate Hessian to guard against ill-conditioning. If the condition 
number exceeds a maximum maxcond = 10 3, then I increase A until the approximate 
Hessian is regularized by the addition of this parameter to its diagonal elements. 

Convergence can be evaluated with the misfit function. Under the assumption of in
dependent identically-distributed Gaussian noise on the data, the data misfit function is a 
X 2 random variable with expected value (x2) = N, where N is the number of data. As 
in an underdetermined problem, this expected value defines a target misfit which must be 
achieved by the solution. Since the misfit is a random variable, we do not expect to exactly 
obtain the target misfit, but a model which produces a misfit "close" to this target misfit 
(ie within about 10%) can be said to adequately reproduce the data. The solution ob
tained with this approach is nonunique, since different models may satisfy the convergence 
criterion. However, barring convergence to a local minimum, I find that the final models 
obtained with this criterion are not significantly different. 

If the algorithm is given a poor starting model it may converge to a local minimum of 
the misfit function. It is therefore important to have a second convergence criterion based 
on relative changes in the model parameters. Dennis and Schnabel suggest termination 
when 

ma^K-mf1!)^ 
max(\mi\, 1) 

with m\ and m\~l the values of the ith model parameter at successive iterations j — 1 and 
j [14]. The presence of max(\rrii\,l) in the denominator safeguards against blowup when 
mi is close to zero. 

As an example of linearized inversion using the Marquardt-Levenberg algorithm, I con
sider the simple case of inverting frequency-domain data using the analytic forward model 
for a sphere derived in [16]. The data are measured in a plane above the target at 121 
regularly-spaced observation locations and at 10 logarithmically-spaced frequencies rang
ing between 10 3 Hz and 10 8 Hz. I treat the real and imaginary parts of the data as 
independent observations, so that there are a total of 2420 data. To generate synthetic 
data, I add Gaussian random noise to each datum d, with standard deviation 

<Ji = 5% of datum + floor. 

The parameter floor is a minimum error which ensures that data with small absolute values 
have realistic errors and do not dominate the misfit. 

The model vector m is 
m = [x,y, z,n,r,a,R}T. (3.11) 

with x, y, z the target location, (xr the relative permeability, a the conductivity, and R the 
radius. A l l model parameters but the [x, y] position are required to be positive (z is positive 
down in this model). This condition is enforced by making a nonlinear transformation of 
the model parameters 

m= [x,y,y/z, ^,\ogw(a),VR]T. (3.12) 

The conductivity is transformed using a logarithm because this transformation ensures 
positivity and scales this parameter such that it varies over approximately the same order 
of magnitude as the other rescaled parameters. 
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Table 3.1 shows the progression of the Levenberg-Marquardt algorithm for inversion of 
synthetic data. The estimated model agrees well with the true model in this simulation. 

Iteration Misfit X y pr R z 
0 4585.811 0.500 0.500 15.000 1000.000 0.500 1.000 
2 3233.974 0.127 0.116 17.098 64.240 1.028 1.974 
4 2467.132 0.024 0.000 17.869 16.207 0.985 1.518 
6 2456.011 0.025 0.006 9.667 9.467 1.002 1.514 
8 2455.254 0.026 0.005 9.763 9.201 1.006 1.514 

True M o d e l 0 0 10 10 1 1.5 

Table 3.1: Iterations of Levenberg-Marquardt algorithm for inversion of frequency domain 
data using an analytic forward model. The expected misfit is fa* = 2420 and the misfit of 
the true model is (j>d

rue = 2458. 

Figure 3.1 shows the path of the inversion algorithm through cross sections of model 
space. The cross section with respect to x and y target coordinates is a bullseye shape 
characteristic of uncorrelated parameters. Following the gradient of the objective func
tion leads directly to the minimum. However, the cross section with respect to relative 

Figure 3.1: Cross sections of the model objective function for an inversion of E M data 
using an analytic forward model. The path of the Levenberg-Marquardt algorithm through 
model space is plotted with circles and the true model parameters are shown with a cross. 

permeability and conductivity is elongated, indicating a strong correlation between these 
parameters. For the first two iterations of the algorithm, the approximate Hessian matrix 
is regularized with a large value of A so that these steps are in a steepest descent direction 
(figure 3.2). Once the algorithm reaches the bottom of the misfit "valley", less regulariza-
tion is required and A is decreased accordingly. Near convergence, Gauss-Newton type steps 
allow the algorithm to move efficiently to the global minimum of the misfit. If a steepest 
descent algorithm were used in this problem, we would expect slow convergence due to the 
correlation between these parameters. 

The positive correlation between conductivity and permeability indicated by figure 3.1 
seems, at first inspection, inconsistent with the analytic expression for the frequency-domain 
transfer function (Fourier transform of the impulse response) derived by Wait [16] 

(2pr + l)(tanh(a) - a) + a2 tanh(a) 
(pr — l)(tanh(a) — a) - a 2 tanh(a) 

(3.13) 
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Iteration 

Figure 3.2: Regularization parameter A as a function of iteration for the inversion in ta
ble 3.1 

with 

\ 2 K ' (3.14) 

= /3(l + t). 

and f3 = ^-R. Conductivity and permeability appear as a product in the above expres
sion, and so we might expect these parameters to be negatively correlated. However, for w 
sufficiently high that / ? > 1 we can make the approximation tanh(a) ss 1 so that 

(2pr + 1)(1 - a) + a2 

{pr - 1)(1 - a)- a1 

For moderately permeable objects (say pr > 10), we can make the further approximations 
(2pr + 1) fa 2pr and (pr — 1) ~ pr. Some further manipulation leads to the expression 

l+(3/pr{l + i) 

with 

A = JM*R. (3.17) 
pr y 2pr 

The impulse response for moderately permeable objects depends upon the ratio of conduc
tivity and relative permeability and these parameters are therefore positively correlated. 
Figure 3.3 shows the exact and approximate impulse responses for the sphere used in the 
synthetic inversion in this section. The two expressions agree at higher frequencies where 
the assumption /? 2> 1 is valid. 

This result suggests that for permeable objects it may be preferable to parameterize the 
model vector in terms of a j pr rather than solve for these parameters separately. In this 
synthetic example there is sufficient low frequency information available to recover accurate 
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Figure 3.3: True (crosses) and approximate (solid lines) impulse response of the sphere used 
in the example synthetic inversion. 

estimates of the permeability and conductivity. However, the radius (1 m), conductivity (10 
S/m), and frequency range used here are not particularly realistic for U X O applications. 

To investigate this effect further, I forward model the frequency and time-domain E M 
response using more reasonable physical properties and the range of time-channels from 
the EM-63 (figure 3.4). In this figure, the conductivity and permeability are varied such 
that their ratio remains fixed. For a relatively small sphere (figure 3.4(a)), the impulse 
response only depends upon permeability and conductivity at low frequencies and late times. 
Furthermore, there is no distinguishable difference between the responses of moderately 
(fa = 10) and highly permeable (fir = 100) spheres. For a larger sphere (figure 3.4(b)), we 
cannot make any inferences about conductivity and permeability. These results indicate 
that an inversion of E M data which uses physical parameters may, at best, tell us whether a 
target is magnetic, but an accurate estimate of the permeability cannot be recovered. This 
is not a "showstopper" for U X O classification, since permeability and conductivity are not 
likely to be useful features for discriminating between U X O and clutter. 

3.2 Uncertainty appraisal 

A complete solution to an overdetermined inverse problem must include not only estimates 
of the model parameters, but also estimates of the parameter uncertainties. 

For an overdetermined linearized inverse problem with Gaussian errors on the data, the 
model parameters are Gaussian distributed with covariance 

This result states that if the objective function has a large curvature for a given model 
(ie the eigenvalues of the Hessian are large) then this model will have a small uncertainty. 
Conversely, if the model resides in a broad minimum of the objective function then there 
is a large uncertainty in the model parameters [17]. 

A linearized uncertainty analysis may not be valid if the objective function is highly 
nonlinear. In this case the local quadratic approximation provides a poor approximation to 

ccw(m) = H ' (3.18) 
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Frequency (Hz) T l m e <ms> 

(a) R = 0.1 m 

Frequency (Hz) T m e (ms> 

(b) R = 0.5m 

Figure 3.4: Frequency and time-domain impulse responses for two spheres of different radii. 
In each plot the conductivity and permeability are varied such that their ratio remains 
constant. 

the actual objective function. Hence uncertainties estimated with equation 3.18 may not 
be reflective of the actual uncertainties in the model. 

A n alternative approach to estimating uncertainties is to use a Bayesian framework to 
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estimate the model posterior probability distribution (PPD) 

p ( m | d o b s ) ocp(d o b s |m)p(m) . (3.19) 

The posterior p ( m | d o b s ) is the product of a likelihood function p ( d o b s | m ) and a prior 
probability p(m). For continuous models, the likelihood function is often assumed to have 
the form 

p ( d o b s | m ) oc e x p [ - ^ ] (3.20) 

with 4>d the L2 misfit function. The posterior probability is then computed as 

P ( m i d ° b * ) = ^tUTl • <3-21) 
Here the normalizing integral is over all of model space. A special case in the Bayesian 
framework arises with a uniform prior, Gaussian errors on the data and a linear (or lin
earized) misfit. In this case the likelihood function is itself a Gaussian distribution and the 
normalization in the above equation can be evaluated analytically. Maximizing the pos
terior probability distribution then corresponds to maximizing the likelihood function, or 
equivalently, minimizing the negative of the log likelihood. B y inspection of equation 3.20, 
the maximum likelihood estimate of the model is obtained by minimizing Hence the L2 
data misfit used to solve most overdetermined problems has a probabilistic justification [17]. 

For a nonlinear forward problem, the normalizing integral is often difficult to evalu
ate analytically or numerically, especially in high-dimensional model spaces. However, the 
P P D for a nonlinear problem can be estimated numerically using the Gibbs' sampler al
gorithm. This algorithm works by randomly perturbing model parameters and accepting 
these perturbations according to the Metropolis criterion 

r) < exp[-A<pd}. (3.22) 

If the change in the objective function A<^ is less than or equal to m then the perturbation 
is accepted. At each model perturbation n is drawn from a uniform random distribution 
on the interval [0,1]. 

This scheme is a Markov chain; acceptance of the perturbed model parameter depends 
only on the current value of that model parameter. After a sufficient number of samples 
the chain of accepted models will converge to a stationary distribution which is in fact the 
posterior distribution [18]. 

I adopt the fast Gibbs sampler algorithm developed by Dosso to sample the posterior 
distribution [18]. A key feature of this algorithm is the use of two independent samplers. 
Convergence of these samplers to the same distribution, as measured by the maximum 
difference in their cumulative distributions, ensures that the sample provides a reasonable 
estimate of the P P D . 

The posterior probability density is a function in an A^-dimensional model space, with 
N the number of model parameters. It is therefore useful to consider the one-dimensional 
marginal distribution of each parameter. 

p ( m i | d o b s ) = Jp(m\dobs)dmidm2 ... dmi-idmi+i ... dmN (3.23) 

Figure 3.5 shows linearized and nonlinear uncertainty appraisals for the synthetic in
version summarized in table 3.1 The nonlinear appraisal generates marginal distributions 



Chapter 3. Inversion 31 

which can be reasonably approximated as Gaussians. The nonlinear marginal P P D s are 
generally broader than those generated by the linearized appraisal, and the two methods 
produce significantly different distributions for both conductivity and permeability. This 
discrepancy is due to the strong positive correlation between these parameters. The misfit 
function has a narrow "valley" when plotted as a function of conductivity and permeability 
(figure 3.1). Consequently, the nonlinear appraisal, which samples directly from the mis
fit surface and is sensitive to these correlations, estimates a relatively large uncertainty for 
these parameters. In contrast, the Hessian used for linearized appraisal is an approximation 
to the curvature of the misfit function at the solution. This approximation overestimates 
the curvature at the solution so that the resulting uncertainty is too small. 

I » I I I U I 
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(a) Linearized uncertainty appraisal. 
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(b) Nonlinear uncertainty appraisal. Gaussian distribu
tions with the mean and variance of the Gibbs sample are 
also shown as a solid line. 

Figure 3.5: Comparison of uncertainty appraisal methods for inversion of frequency domain 
E M data with an analytic forward model. The true model parameters are shown with a 
dashed line. 
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3 .3 Discussion and conclusions 

In this chapter, I have applied a linearized inversion algorithm to a simple problem. A l 
though I have used a simple analytic forward model, this example has many of the con
siderations encountered when using approximate forward models. Parameters are typically 
estimated with a linearized algorithm and scaling and positivity must often be applied. 

Because models recovered by linearized inversion will subsequently be used for classi
fication, accurate estimation of parameter uncertainties is essential. In chapter 6 I will 
investigate the effect of parameter uncertainties on classification with a Monte Carlo sim
ulation. 

Both its parameterization in terms of physical properties and its ability to accurately 
model magnetic and electromagnetic data make M A S a promising candidate as a forward 
model for joint inversion. I have implemented an initial M A S inversion for target location 
and orientation, with physical properties (size, shape, conductivity and permeability) fixed 
at some initial guess. Under the assumption that the primary field is uniform over the 
surface of the target, the auxiliary source strengths do not depend on the position and 
orientation of the target. This inversion therefore required only one solution for the auxil
iary sources. Using this method, I successfully recovered estimates of target location and 
orientation from synthetic magnetic and frequency-domain E M data. 

Despite the computational savings offered by this approach, I found that M A S inversions 
were prohibitively slow for application to real data. However, this is a preliminary result 
and there are avenues of investigation which may significantly improve the speed of the 
forward modelling. 

A subsequent inversion for target properties will also encounter the strong positive 
correlation between conductivity and permeability seen in my simple example. Sun et al. 
have shown that this positive correlation also exists for arbitrary spheroids [19]. If there 
is sufficient low-frequency or late-time data then it is possible to infer these parameters 
separately. Alternatively, we might invert for the ratio of these parameters. . 
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Chapter 4 

Validating parametric models 
In this chapter, I use M A S as a benchmark forward model for investigating the dependence 
of parametric models on physical properties. Of particular interest is the relationship be
tween the shape of an item and the model parameters estimated with parametric inversion. 
The dependence of parameters upon other physical properties (conductivity, permeability, 
size) can be investigated with analytic modelling. However, because no analytic solutions 
previously existed for the E M response of prolate or oblate spheroids, the connection be
tween shape and model parameters can be verified using modelling with M A S . 

A commonly-used forward model for T D E M data is the Pasion-Oldenburg model, which 
parameterizes the time decay response as 

L{t) = ki(t + ai)-0' expH/ 7 i) (4.1) 

where t is the time since the step-off of the primary field and Q , , and fi determine the 
shape of the decay curve for the ith dipole source. The response of an item is then given 
as the superposition two orthogonal dipoles which decay in time according to the above 
expression. The first dipole represents currents circulating perpendicular to the semi-major 
axis of the item while the second dipole models currents circulating perpendicular to the 
semi-minor axis. 

Pasion demonstrated via laboratory measurements that there is a connection between 
the aspect ratio of an object and the ratio of the k parameters. He showed that for 
nonmagnetic objects the ratio k\/k2 decreases as the aspect ratio is increased. A n opposite 
dependence was observed for magnetic (pr > 1) objects [10]. 

To examine the dependence of the E M response on target shape using M A S , I first model 
a conductive, nonmagnetic spheroid. I vary the spheroid aspect ratio from one (spherical) 
to eight (prolate spheroid), while maintaining a constant volume, conductivity and perme
ability. I then compute the impulse response for axial and transverse excitations, as defined 
in figure 4.1. Figure 4.2 shows the M A S forward modellings of axial and transverse uniform 

Transverse 

• Axial 

Figure 4.1: Definition of axial and transverse excitation directions used in this chapter. 
Semi-major (a) and semi-minor (b) axes are also labelled. 

field excitations as the aspect ratio is varied. As the spheroid becomes increasingly prolate, 
the spectra for both transverse and axial excitations are shifted higher in frequency. 
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(c) Real part, transverse excitation (d) Imaginary part, transverse exci
tation 

Figure 4.2: Real and imaginary parts of the impulse response for a nonmagnetic spheroid 
as a function of frequency and aspect ratio. 

Figure 4.3 shows the same forward modellings for a magnetic spheroid (ur = 150). A 
different dependence is observed for a magnetic spheroid: as the aspect ratio is increased, 
the peak of the imaginary component of the axial excitation moves lower in frequency, while 
the peak for the transverse excitation moves higher in frequency. 

4.1 Inferring aspect ratio from frequency-domain data 
The peak of the imaginary component of the impulse response has important significance 
in the frequency domain. In the time domain, the decay of the secondary field can be 
represented as a superposition of exponentials. The dominant decay exp(—u>pt) falls off 
with time constant u>p, corresponding to the peak frequency of the imaginary part of the 
impulse response. 

For high-frequency E M induction systems (ie ground penetrating radar), multiple peak 
frequencies can be estimated from backscattered data. These frequencies correspond to 
integer multiples of a fundamental resonant frequency and have been successfully used to 
estimate target length for U X O discrimination [20]. 

The peak frequencies of axial and transverse excitations can be related to target shape 
by considering the behaviour of induced currents on the one-dimensional domain [0,L]. 
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(a) Real part, axial excitation (b) Imaginary part, axial excitation 

(c) Real part, transverse excitation (d) Imaginary part, transverse exci
tation 

Figure 4.3: Real and imaginary parts of the impulse response for a magnetic spheroid as a 
function of frequency and aspect ratio. 

Under the quasistatic assumption, the current density J obeys the diffusion equation 

with complex diffusivity 

k = Ji^o~p = + 0 (4.3) 

The solution is then a superposition of decaying harmonic functions 

J oc exp(—ikx) = exp(—ifx) exp(—72;) (4.4) 
where 7 = \Jujpo/2 is the reciprocal of the skin depth. The diffusivity k takes on res
onant values at the peak frequencies coa and tot for axial and transverse excitations. By 
analogy with the wavenumber in the wave equation regime, the diffusivity can be related 
to wavelength according to 

fc = y - (4-5) 

O'Neill proposed that resonance occurs when the dimension of the target L equals an integer 
number of half wavelengths [13], so that 

3(*n) = ( 4- 6) 
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How does resonance arise in a diffusive regime? If the current density is confined to the 
surface of a target, then the solution for harmonic functions on the surface is equivalent 
to a solution on a one-dimensional domain (figure 4.4). In the absence of current sources, 

Figure 4.4: Resonant modes circulating on the surface of a spheroid of circumference L are 
equivalent to resonant modes confined to the one-dimensional domain [0,L] with periodic 
boundary conditions. 

the current density must be continuous and so in one dimension we can impose periodic 
boundary conditions 

7(0) = J(L). (4.7) 

The above boundary conditions lead to eigenvalues of the diffusivity required by equa
tion 4.6. In the high frequency wave equation regime an identical resonance condition 
arises for the wavenumber k. This is because the spatial components of the diffusion and 
wave equations have the same form (equation 4.2). 

Assuming that equation 4.6 holds, the semi-major and minor axis lengths (a and b) can 
be related to the peak frequencies of axial and transverse excitations according to 

2TT 2TT 

la 

h = 2 1 = 2TT ( 4 - 8 ) 

It y/utna/2' 

In general, the conductivity and permeability of a target are not known. However, taking 
the ratio of the above expressions yields an expression for the aspect ratio in terms of the 
resonant frequencies 

-h=M- (4.9) 

b V fa 

The aspect ratio a/b is the ratio of the target length along axial and transverse directions. 
Figure 4.5 shows the proposed diagnostic computed from M A S forward modellings. The 
peak frequency for each excitation was estimated by fitting a spline to the imaginary part of 
the impulse response. While there is certainly a relationship between the "O'Nei l l diagnos
tic" and the aspect ratio, the expected direct relationship only appears to hold for aspect 
ratios up to 3. This result is inconsistent with O'Neill 's result (also using M A S ) , which 
accurately predicted the shape of spheroids with aspect ratio a/b — 6. This inconsistency 
may be due to an error in the M A S forward modelling, though agreement with analytic 
modelling and the results obtained by Pasion (shown later in this section) inspires faith in 
the M A S . 

Alternatively, the errors observed for high aspect ratios may be associated with diffi
culties in accurately estimating the peak frequencies. As the magnetic spheroid becomes 
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Figure 4.5: O'Neil l diagnostic as a function of aspect ratio for a magnetic spheroid (solid 
line). Dashed line is the expected direct relationship between abscissa and ordinate pro
posed by O'Neil l 

increasingly prolate, the axial quadrature response broadens. Consequently, there is greater 
uncertainty in the peak frequency and so errors in the estimate of the aspect ratio grow. A l 
though a direct relationship between the O'Neil l diagnostic and aspect ratio may not hold, 
the diagnostic does provide a means of discriminating between prolate and oblate magnetic 
spheroids. Whether an object has an inferred aspect ratio of 6 or 16, it is clearly "rod
like." From a discrimination standpoint, we need only remain mindful that this particular 
diagnostic may be nonlinearly related to the actual target aspect ratio. 

The modelling used to generate figure 4.5 is for a relatively large spheroid (equivalent 
to a sphere of radius 0.5 m). This raises a concern as to whether resonant frequencies can 
be observed for actual U X O s for the range of frequencies transmitted by frequency-domain 
sensors. Figure 4.6 shows frequency domain spectra modelled for spheroids with aspect 
ratios equivalent to the ordnance listed in table 4.1. 

Ordnance Item Diameter (cm) Length (cm) a/b ft/fa 
Projectile 14.5 mm 1.45 6.48 4.47 n /a 
Montana 76 mm 7.6 27.2 3.58 3.31 
Montana 81 mm 8.1 30.375 3.75 4.58 
Bomb 1000 lb M k 83 36.6 191.5 5.23 n /a 

Table 4.1: Dimensions of ordnance items used to compute M A S forward modellings. Aspect 
ratio a/b and O'Neil l diagnostic ft/fa are also given, n /a indicates that the peak frequency 
was not observed for that item. 

To generate this figure, I assumed a relative permeability of fir = 150 and a conductivity 
of 1 x 10 6 S/m. The response was computed at 17 frequencies transmitted by a standard 
G E M - 3 instrument (ranging between 30 and 50 kHz). The true and estimated aspect ratios 
are given in table 4.1. Unfortunately, both axial and transverse peak frequencies are not 
observed for the small (14.5 mm) and large (1000 lb) ordnance items. This observation has 
motivated research which extends the G E M - 3 frequency range up to 390 kHz [13].. However, 
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detection of peak frequencies may still be problematic for newer broadband instruments, 
particularly for very small ordnance items. 

Frequency (Hz) Frequency (Hz) 

Figure 4.6: Axial (solid line) and transverse (dashed line) quadrature responses of ordnance 
items modelled with M A S for the G E M - 3 range of frequencies. 

Another method of inferring aspect ratio from frequency-domain data is suggested by 
Sun et al [19]. They demonstrate that the ratio of axial and transverse in-phase responses 
at high frequencies is a diagnostic of target shape. This result is reproduced in figure 4.7 
for both magnetic and nonmagnetic spheroids. Both the trend and magnitude of this result 
are in agreement with that given by Sun et al. However, their result, obtained for perfectly 
conducting spheroids using the thin skin approximation (TSA), is a monotonically increas
ing function of aspect ratio. In contrast, my result falls off slightly for the highest aspect 
ratio. This discrepancy may be due to numerical errors in the M A S for large aspect ratios 
or possibly due to the finite conductivity of spheroids used in this modelling. Regardless, 
the agreement of M A S and T S A results for modest elongations (a/b < 4) instills some 
confidence in the validity of the M A S forward modelling. 

2 

0 2 4 6 8 
Aspect ratio 

Figure 4.7: Ratio of transverse and axial in-phase response at 1 M H z . Solid line with 
squares: magnetic and nonmagnetic spheroids, computed with M A S . Solid line with trian
gles: Result obtained by Sun et al. for perfectly conducting spheroids [19]. 

A notable feature of this diagnostic is that it appears to be independent of metal type 
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(magnetic vs. nonmagnetic). This is unique amongst shape diagnostics considered in this 
chapter. How does this property arise? The ratio of axial and transverse responses is 
evaluated at 1 M H z , corresponding to skin depths of 3 x 1 0 - 5 m and 4 x 1 0 - 4 m for 
magnetic and nonmagnetic spheroids, respectively. Although no physical justification is 
offered for this result in [19], it is clear that the relationship involves the circulation of 
surface currents. At the high frequency limit, the impulse response is entirely in-phase and 
corresponds to eddy currents circulating on the surface. The relative magnitudes of eddy 
current loops for axial and transverse excitations are then indicative of target aspect ratio. 

Is the high-frequency asymptotic response observable in practice? The forward mod
ellings used to generate figure 4.7 are for a relatively large spheroid. In this case, the 
in-phase response approaches its asymptotic value for the range of frequencies considered. 
However, in practice most U X O s are much smaller than the spheroid used for this modelling 

t 
and so the frequency spectrum will be shifted to higher frequencies. This implies that for 
realistic targets and existing sensors used in production surveys, the asymptotic response 
will typically not be observable in the frequency domain (figure 4.8). 

X1Q-s Projectile 14.5 mm x 10"* M o n t a n a 7 6 m m 

10' 10 3 10 s 10' 10 3 10 s 

Frequency (Hz) Frequency (Hz) 

Figure 4.8: Axia l (solid line) and transverse (dashed line) in-phase responses of ordnance 
items modelled with M A S for the G E M - 3 range of frequencies. 

Finally, an alternative frequency-domain shape diagnostic proposed by Sun et al. is 
the ratio of the magnitude of transverse and axial responses over the measured frequency-
domain spectrum [19]. By considering the entire frequency-domain spectrum this fea
ture circumvents the requirement to measure (or approximate) the peak frequencies or 
asymptotic in-phase response. Figure 4.9 shows this feature for magnetic and nonmagnetic 
spheroids. The result obtained here using M A S is in agreement with that presented in [19] 
using the thin skin approximation method. As shown in figure 4.9, this ratio equals one 
for a sphere. This is because the axial and transverse responses are identical at all fre
quencies. O'Neill claims that this feature is more robust than other methods since it uses 
the entire frequency spectrum to decide whether a target is prolate or oblate. However, 
an implicit step in this analysis is the resolution of axial and transverse responses from 
the observed data. This is necessary for all shape diagnostics and so this feature has no 
particular advantage over other methods presented in this chapter. 

Figure 4.9 also suggests a diagnostic for the magnetic properties of a target: if the ratio 
of responses passes through unity, then the item is magnetic. A more direct indicator of 
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Figure 4.9: Ratio of transverse to axial frequency-domain response for magnetic and non
magnetic spheroids. 

magnetic properties is the low-frequency in-phase response. A nonzero in-phase response 
at low frequencies (either axial or transverse) indicates that the target is magnetic. 

4.2 Inferring aspect ratio from time-domain data 

To obtain the corresponding time-domain impulse response from frequency-domain M A S 
data, I use the digital filters of Anderson [21]. The sine transform of the imaginary part 
of the impulse response H(ui) produces the time derivative of the secondary magnetic field 
for a step-off primary field. 

dh{t) 

dt 

OO 

= ^ J (w)) sm(wt)du. (4.10) 

Similarly, the secondary magnetic field is obtained by a cosine transform of the imaginary 
part of the impulse response 

OO 

h(t) = - - [ * i H { u ) ) COs(ujt)dLJ. (4.11) 
7T J U) 

Good agreement is observed between the M A S forward modelling for a sphere and an 
analytic solution derived by Wait ([16]) in the time domain (figure 4.10). The analytic 
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solution requires an infinite sum involving the roots of a transcendental equation. The 
analytic solution shown in figure 4.10 uses the first 5000 roots to compute the time-domain 
impulse response. Figure 4.11 and 4.12 show time decays obtained by transforming the 

10"* 10"3 10" 2 10"' 
Time (s)" 

Figure 4.10: M A S forward modelling in the time domain for a conductive sphere (solid line) 
and analytic solution (crosses) 

impulse responses from figures 4.2 and 4.3, respectively. The synthetic data were generated 
for 26 EM63 time channels ranging between 0.18 and 25.14 ms. Numerical errors were 
produced by the frequency to time domain conversion when the secondary field decayed by 
more than approximately 4 orders of magnitude for the range of times considered. A large 
spheroid with volume equivalent to a sphere of radius 0.5 m was therefore used in these 
simulations. The decays shown in figures 4.11 and 4.12 are characteristic of the early time 
(linear) decay, with the late time exponential decay only evident for a few cases. 

Given the time decays for a spheroid of variable aspect ratio, we can examine the 
dependence of approximate forward model parameters (k, a, f3, 7) upon shape. For each 
decay, I minimize the difference between the logarithms of the observed and predicted 
data. Taking the logarithm makes all data the same order of magnitude, so that early 
time channels do not dominate the misfit. The goal of these inversions is to map from 
physical properties to model parameters and so no noise is added to the synthetic data. 
When computing linearized errors in the model parameters I therefore estimate the data 
uncertainty as the standard deviation of the residuals. 

Figures 4.11 and 4.12 show the fits obtained using the Pasion-Oldenburg parameteri
zation. The dependence of model parameters upon aspect ratio is shown in figure 4.13. 
The magnitude of the time-domain impulse response, governed by the k parameters in the 
Pasion-Oldenburg model, is highly dependent upon target shape. Figures 4.13 and 4.14 
show that the ratio ki/k2 provides a robust diagnostic of target shape. 

The parameter a controls the asymptotic early time response. For both magnetic and 
nonmagnetic spheroids considered here, the estimates of this parameter are several orders 
of magnitude smaller than the earliest time channel. This indicates that the early time 
response is linear with slope governed primarily by the parameter (3. As observed by 
Pasion, the ratio of Pi/f32 is a shape diagnostic for magnetic spheroids. However, for 
nonmagnetic spheroids there is little differentiation between the inferred rates of early time 
decay for axial and transverse excitations. Similarly, the exponential portion of the decay 
curve (represented by 7) cannot be reliably used to infer shape for either magnetic or 
nonmagnetic spheroids. 

Figure 4.14 shows the dependence of the ratio k\/k2 on target aspect ratio. These 
results are consistent with laboratory measurements made by Pasion. No synthetic noise 
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(b) Transverse excitation 

Figure 4.11: M A S forward modellings for a nonmagnetic spheroid in the time domain 
(crosses). Solid lines are the fits obtained using the Pasion-Oldenburg parameterization. 

was added to the time decay data, and so the diagnostic is a smoother function of aspect 
ratio in these examples than was previously observed for laboratory measurements. 

Also shown is the same diagnostic from a power law model fit to four early times (ranging 
between 0.216 and 1.266 ms) used by the EM61 M K I I instrument. The parameterization 
gives a linear decay in log-log space 

Lt(t) = kit-*. (4.12) 

A similar dependence is observed for the power law diagnostic, though the result is less 
smooth since fewer time channels were used to fit the decays. These results confirm that 
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Figure 4.12: M A S forward modellings for a magnetic spheroid in the time domain (crosses). 
Solid lines are the fits obtained using the Pasion-Oldenburg parameterization. 

the diagnostic k\/k2 provides information about the aspect ratio of a target. 
Figure 4.15 shows the ratio fi\/p\ as a function of aspect ratio for a magnetic spheroid. 

As was previously shown by Pasion, fitting the decay of the secondary B-field directly 
provides a similar dependence of the diagnostics k\/k2 and /?i /p\ upon aspect ratio. 
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Figure 4.13: Dependence of Pasion-Oldenburg model parameters upon aspect ratio. Solid 
line is axial excitation and dashed line is transverse excitation. Vertical dashed line indicates 
an aspect ratio of one. 

4.3 Validity of the dipole approximation 
Many time-domain (Pasion-Oldenburg, power law) and frequency-domain parametric mod
els assume that the spatial response of an axisymmetric body can be represented by two 
orthogonal dipoles. These models are motivated by analogy with the analytic solution for 
a sphere in the time domain, which can be represented as the product of a magnetostatic 
dipole (the spatial response) and a time or frequency-domain impulse response [10]. A l -
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Figure 4.14: Dependence of the diagnostic k\/k2 upon aspect ratio for magnetic and non
magnetic spheroids. Solid line is the diagnostic estimated using a Pasion-Oldenburg param
eterization and dashed line is the diagnostic estimated using a power law parameterization. 
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Figure 4.15: The ratio P1/P2 as a function of aspect ratio for a magnetic spheroid. 

though parametric models can generally reproduce observed data, discrepancies have been 
observed in the spatial response, especially for laboratory measurements. For example, 
Das et al. attributed the misfit between observed laboratory data and predicted data from 
a two-dipole model to modelling error. They speculated that the misfit was due to the 
presence of higher order poles in the observed data which were not accounted for in the 
model [22]. 

The accuracy of the dipole approximation of the spatial response can be investigated 
using M A S . This is because M A S does not represent the secondary field as a moment 
expansion but rather computes the secondary magnetic field as a superposition of fields 
produced by magnetic charges. Figure 4.16 shows the axial and transverse spatial response 
for a magnetic spheroid with semi major axis a = 0.2 m and semi-minor axis b = 0.1 
m. Best-fitting dipoles are also shown. To generate these fits it was assumed that the 
spatial response for an axial excitation is represented by a vertical dipole located at the 
center of the target. In this case, only the magnitude of the dipole moment needs to 
be estimated to fit the synthetic M A S data (a linear problem). Similarly, the transverse 
excitation is represented by a horizontal dipole. The residual between synthetic M A S 
data and data predicted for a dipole shows a systematic variation which indicates the 
presence of higher order moments. The next nonzero moment for an axisymmetric body 
with uniform magnetization is the octupole moment [23]. The octupole response for this 
spheroid can be computed analytically given the estimated dipole moment. The lower 
panels of figure 4.16 show the residual between M A S and dipole models modellings as well 
as the predicted octupole response. Although the residual has the character of an octupole 
response, the fit of octupole moment is poor. A possible explanation for this is the trade-off 
between octupole and dipole moments described by Billings [24]. The best-fitting dipole 
is not necessarily the induced dipole and overfitting the dipole moment degrades the fit to 
the octupole. Regardless, the implication of figure 4.16 is that the dipole approximation 
produces a modelling error which is caused by neglecting higher order moments. This 
error falls off with distance between receiver and scatterer so that at a distance of 1 m the 
modelling error of the dipole moment is negligible (figure 4.17). 

Aspect ratio 
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Figure 4.16: Top row: M A S forward modellings (dashed line) for axial and transverse exci
tations. Best fit dipoles are shown as solid lines. Bottom row: Residual of fit between M A S 
and dipole models (dashed lines) The octupole moment corresponding to the magnetization 
computed for the best fit dipole is shown as a solid line. Observations are at an elevation 
of 0 m directly above the center of the spheroid. 

4.4 D i s c u s s i o n a n d conc lus ions 

In this chapter, I have examined the connection between parametric model parameters and 
target shape using M A S as a benchmark forward model. I verified the relationships previ
ously established by Pasion for parametric models in the time-domain. I also investigated 
the frequency-domain shape diagnostics suggested by O'Neil l and collaborators. 
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Figure 4.17: Abscissa: Maximum residual of best-fit dipole (max(|i?|)) normalized by maxi
mum amplitude of predicted data (max(|B|)). Ordinate: Distance from observer to spheroid 
center (r) normalized by characteristic length L — 2a. Solid line is axial excitation and 
dashed line is transverse excitation. 

A l l shape diagnostics discussed in this chapter involve a ratio of some feature of the axial 
and transverse response. Implicit in this discussion has been the unique resolution of axial 
and transverse components of the impulse response. While it is usually possible to resolve 
the components of the polarization tensor via inversion, difficulties with local minima can 
arise. For example, the measured response of a vertical prolate spheroid will be dominated 
by the axial response at observation locations close the target. As the transmitter moves 
farther from the spheroid, the primary field will increasingly illuminate the target from the 
side, thereby exciting the transverse response. However, the secondary field will fall off as 
1/r 6 (for a dipole source) so that the SNR at more distant locations may be quite low. 
This implies that in certain situations the transverse response may be difficult to resolve 
(ie parameters estimated for the transverse response via inversion may be far from their 
"true" values) 

These considerations will of course have an impact on the performance of the subsequent 
discrimination. Because we rely on both axial and transverse excitations to make inferences 
about shape, inaccuracies in shape diagnostics may degrade classifier performance. 

It is also important to note that most shape features are strongly nonlinear functions 
of aspect ratio. In many classifiers, a Euclidean metric is used to measure the "distance" 
between points in the feature space. However, because of the nonlinear relationship between 
features and shape, the same distance will have a different physical meaning in different 
regions of the feature space. This is not necessarily a bad thing: nonlinearity of the features 
may provide a large separation between items which would appear close together based 
solely upon their physical properties. Of course, the converse may also be true, in which 
case statistical classification will likely have a hard time. 

W i t h these considerations in mind, I will now discuss statistical methods for partitioning 
the feature space. 
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Chapter 5 

Statistical classification 

5.1 I n t r o d u c t i o n 

As outlined in chapter 1, improved classification algorithms are crucial to achieving cost-
effective U X O remediation. A focus of this thesis is therefore a systematic application of 
existing pattern recognition algorithms to the U X O problem. A full discussion of pattern 
recognition can be found in many textbooks (e.g. [25]). In this chapter, I give a survey of 
considerations and methods relevant to U X O discrimination. 

Pattern recognition has been defined as 

the study of how machines can observe the environment, learn to distinguish 
patterns of interest from their background, and make sound and reasonable 
decisions about the categories of patterns [26]. 

Pattern recognition algorithms have found application in a wide variety of fields, including 
optical character recognition, voice recognition, and D N A sequence analysis. The current 
state of pattern recognition research within the U X O field is discussed in the next chapter. 

With in the field of pattern recognition there is an important dichotomy between super
vised and unsupervised classification. Supervised classification makes classification decisions 
on a test or prediction data set for which labels are unknown. The classifier performance is 
optimized using a training data set for which labels are known. In unsupervised classifica
tion there is only a test data set; labels are unknown for all observed patterns. Unsupervised 
classification is often a more difficult problem than supervised classification. 

Template matching is a simple solution to supervised learning problems. This approach 
compares observed data with pre-defined templates; a pattern is classified based upon the 
template which best matches the observed data. A typical measure of similarity is the 
correlation between the data and the template. While template matching is an intuitive 
approach to classification, it is often difficult to generalize templates so that they can match 
all possible permutations of the data. For example, in biometrics (face recognition) a change 
in the orientation of the face can be difficult to model within the template framework. 

In the statistical classification framework, patterns are represented by vectors within an 
M-dimensional feature space. The basis vectors in this space, the features, are computed 
from observed data and are chosen so that feature vectors belonging to different classes 
occupy different regions of the feature space. The goal of a statistical classifier is then to 
find an optimal partition of the feature space. Here optimality can be defined by minimizing 
the probability of misclassifying a new feature vector [25]. Statistical classification is the 
most widely applied framework for pattern recognition and this thesis focuses primarily on 
statistical methods for discriminating between U X O and scrap. 
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5.2 Statistical classification 
Figure 5.1 summarizes the classification process within the statistical framework. Given 
test and training data sets, we extract features from the data, select a relevant subset of 
these features, and optimize the classifier using the available training data. Because the pre
dicted performance of the classifier is dependent upon the feature space, the learning stage 
can involve further experimentation with feature extraction and selection before adequate 
performance is achieved. 

Feature Extraction 
Physics-based or 
statistical features 
are estimated from 
the observed data. 

Feature Selection 
A relevant subset of 
features is selected, 
forming an 
N-dlmensional 
feature space. 

Learning 
The classifier is 
optimized in the 
feature space using 
tho available 
training data. 

Classification 
Predicted class 
memberships are 
generated for 
unlabolled feature 
vectors. 

Figure 5.1: A framework for statistical pattern recognition. 

With in statistical classification there are two approaches to generating a decision rule. 
A generative algorithm seeks to model the underlying distributions which produced the 
observed data, often assuming a parametric distribution such as the Gaussian. A discrimi
native algorithm is not concerned with underlying distributions but rather seeks to identify 
decision boundaries which provide an optimal separation of classes [27]. 

5.3 Feature selection and the curse of dimensionality 

Before pattern recognition algorithms can be applied to the problem of discriminating be
tween U X O and clutter items, a feature space must be defined. As discussed in the previ
ous chapter, features used in U X O classification are commonly parameters in physics-based 
models. Because multisensor platforms are used increasingly in the U X O field, available 
features may be extracted from different data types. For example, the Multi-Sensor Towed 
Array Detection System (MTADS) combines electromagnetic and magnetic sensors on a 
single platform [28]. 

A consequence of multisensor platforms has been joint and cooperative inversion of data 
sets. Pasion has shown that the additional constraints afforded by combining magnetic and 
electromagnetic data can provide improved estimates of target parameters [10]. 

These results suggest that statistical classification will perform better when many fea
tures from multiple sensors are used to define a feature space. However, if the true under
lying class distributions are unknown and parameters are estimated from a limited training 
data set, increasing the dimensionality of the feature space will eventually degrade classifier 
performance. Unbiased estimation of class distributions requires that the number of feature 
vectors in the training data set must grow exponentially as the dimensionality of the feature 
space increases. This effect is often referred to as the "curse of dimensionality". 

The lesson to be drawn from the curse of dimensionality is that a small set of relevant 
features should be chosen as basis vectors for a feature space. If features have physical 
significance, they can be chosen based upon a physical understanding of which features 
provide the best separation between classes. Alternatively, feature selection or extraction 
algorithms can be used to define the feature space. Feature selection algorithms choose a 
subset of existing features to define the feature space, whereas feature extraction algorithms 
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use linear or nonlinear combinations of features to produce new feature vectors. The process 
of inverting geophysical data to obtain parameter estimates can be regarded as a (usually 
nonlinear) feature extraction algorithm. 

The simplest transformation of raw features is rescaling to ensure that features have the 
same range. This is especially important with classifiers which require an estimate of class 
covariances. If the variability of features differs by orders of magnitude then the covariance 
matrix may be ill-conditioned and classifier predictions may be numerically unstable. A n 
easy way to prevent this is to standardize the features so that they are zero mean and unit 
variance. 

Principal components analysis (PCA) can be used to project the feature data onto the 
eigenvectors of the feature data covariance matrix. P C A outputs linear combinations of 
the input features which are standardized (zero mean and unit variance) and uncorrelated. 
However, P C A assumes that the feature data follow a multivariate Gaussian distribution. 
This assumption will certainly be violated if the classes in the training data occupy dis
crete regions of the feature space. Furthermore, the principal components corresponding 
to directions of maximum variance in the feature data do not necessarily correspond to 
directions which provide maximum class separation. In the next section, I describe a more 
suitable feature extraction algorithm for supervised learning. 

5.3.1 Canonical analysis 

Canonical analysis is a linear feature extraction algorithm which provides low-dimensional 
projections of high-dimensional feature spaces. The algorithm differs from principal compo
nent analysis in that it projects the data onto non-orthogonal directions which are designed 
to maximize the separation between classes. 

M 

' *\2 
Figure 5.2: Motivation for canonical analysis. Projection of feature vectors (open circles 
and squares) onto direction w i separates the two classes, whereas projection onto direction 
W 2 does not. Projection onto wj provides a maximum separation between the classes 
relative to the variance of the classes in that direction. 

The problem is summarized in figure 5.2 for a simple two dimensional case. We are 
given a set of N labelled feature vectors X = { x i , X 2 , • • •, xyv} in an M-dimensional feature 
space. We wish to find the optimal set of directions which maximize the variance between 
K classes, relative to the variance within classes, i.e. we want to maximize the number of 
standard deviations between class means. The M x M total scatter matrix of the feature 
vectors is defined as 

N 

S T = ^ ( x i - / x ) ( x i - M ) T . (5.1) 
i=i 



Chapter 5. Statistical classification 52 

There are N feature vectors and the estimate of the mean is 

1 N 

(5.2) 

The scatter matrix provides an unbiased estimate of the covariance E of the feature data 

A 1 
N-l 

ST- (5.3) 

The estimate is divided by N — 1 because one degree of freedom is lost in estimating the 
sample mean with equation 5.2. 

Consider a given feature vector belonging to class Uj with class mean fij. For any class, 
we can decompose the deviation from the mean into 

( X - fl) = ( X - flj) + (flj - fl). (5.4) 

If K is the number of classes, then substituting the above expression into equation 5.1 
yields 

K 

j=l x 6 W j 

zZ ( X ~ - M ) T + zZ (»j - M ) ( X - Vi)1 

K 

xEojj 

T 

(5-5) 

j=l 

Here x G Wj denotes summation over the points belonging to class LJJ. Taking the 
expectation of the above expression yields 

K 

~-E zZ H(x-Mi)(x-/*j 
j= ixe^ 

[Sw] + £ [SB]. 

+ E 

K 

YN^fij - fijifij - fi) 
J'=l 

(5.6) 

The first term is the pooled within-class scatter Sw, it is a measure of the total scatter 
of feature vectors about their class means. The second term, the between-class scatter Sjg, 
represents the total scatter of class means about mean fi. Normalizing the terms on the 
right hand side by their respective degrees of freedom, we obtain unbiased estimates of the 
within-class and between-class covariances 

Ely = 
1 

N-K 
- 1 0 

w (5.7) 

The estimate of the within-class covariance matrix is then identical to the pooled covariance 
matrix used in linear discriminant analysis. 
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Now that we have estimates of the within-class and between-class covariances, we can 
try to find an optimal projection. After projection of means and feature vectors onto the 
direction w, the estimate of the within-class variance is 

1 K 

dw =W^1? Y Y ( w T x - w T

M j ) ( w T x - w T ^ ) T N-K 

=w r £n /w 

( 5 i 

Similarly, the estimated between-class variance is 

< 7 B = w T E B w . (5.9) 

To maximize the between-class variance relative to the within-class variance, we maximize 

A = ^ _ = w _ ^ w _ ( 5 _ l 0 ) 

Taking the derivative with respect to w gives 

d\ 2 £ B w 
<9w w T E n / w 

2£H/W = 0 

(5.11) 

E T J E B W = Aw. 

The solutions for w are therefore the eigenvectors of the matrix D — E ^ E B . The covari
ance matrices are symmetric and positive definite and so E iy will always be invertible. 

Recall that the eigenvectors of a symmetric matrix are orthogonal and that the inverse 
of a symmetric matrix is itself symmetric. Assuming that neither Ew nor £ # are the 
identity and that E g ^ E ^ / we have 

D T = (trftBf 
= ( S B E ^ 1 ) (5.12) 

so that the matrix D is not symmetric. This implies that the eigenvectors of D are, 
in general, not orthogonal. This is a fundamental difference with principal component 
analysis, which projects the data onto orthogonal eigenvectors of the covariance. 

The projection of feature vector x into the M-dimensional space of canonical variables 
is 

x* = f i T x (5.13) 

where the ith column of f i is the normalized eigenvector W j . The eigenvectors are normalized 
so that the projected classes will have unit standard deviation 

W i = W i / ( w f E w / w f ) 1 / 2 . (5.14) 

Projection onto eigenvectors ordered by decreasing eigenvalues produces canonical axes 
with decreasing separation between classes. 
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The above derivation requires that there are no outliers which will skew the estimated 
means and covariances. While it is convenient if the observed data follow a well-behaved 
distribution (eg Gaussian), class distributions which are "reasonably symmetric and not 
too long-tailed" can provide useful estimates of canonical eigenvectors [29]. 

As an example of canonical analysis, I consider a synthetic three-dimensional feature 
space with two normally-distributed classes (figure 5.3). This figure should be interpreted 
as a matrix of plots, ordered so that the plot at the intersection of jth row and kth column 
shows the projection of the feature vectors onto basis vectors i , and i^. Plots above and 
below the main diagonal contain redundant information. 

The feature data projected onto the first two basis vectors have relatively large variances 
but provide little separation between the classes. The classes have a small variance when 
projected onto the third basis vector, but their separation is large relative to the variance 
in this dimension. The eigenvalues and eigenvectors of D are shown in table 5.1. There is 

Figure 5.3: Projections of synthetic feature data from two normally-distributed classes 
(crosses and circles) onto basis vectors {ii,«2>*3J- The plot at the intersection of jth row 
and kth column shows the projection of the feature vectors onto basis vectors ij and ifc. 

Index 1 2 3 
Eigenvalue 2038 2 x l 0 " 1 3 l x l 0 ~ 1 3 

Eigenvec tor 0.2619 -2.7789 -0.0396 
0.2960 0.0256 -3.1374 

31.9319 2.7606 2.1249 

Table 5.1: Eigenvalues and eigenvectors of D for the synthetic example shown in figure 5.3. 

only one canonical variable whose associated eigenvalue is significantly different from zero. 
Hence canonical analysis of this simple example identifies a single feature which provides 
the maximum separation between the classes. The third dimension of the feature space 
contributes 99.99 percent to the norm of the corresponding vector. Figure 5.4 shows the 
data projected onto the first two canonical features. As expected, the first canonical variable 
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icl provides all of the separation between the classes. Note also that the projected classes 
have approximately unit within-class variance. 

-5 0 5 
id 

Figure 5.4: Feature data projected onto the first two canonical variables ( i c l , ic2) 

5.4 Generative classifiers 
Once the feature space is defined by a judicious choice of available features, the goal is to 
find an optimal partition of the feature space. In this section I discuss generative methods: 
classifiers which seek to model the underlying distributions from which the observed training 
and test data sets are drawn. 

5.4.1 Bayes Decision Theory 

The starting point for any generative classifier is Bayes rule 

P(UH\X) OC P(x|wi)P(wi). (5.15) 

The likelihood P(X|WJ) is the probability of observing the feature vector x given the class 
Wj. The prior probability P(WJ) quantifies our expectation of how likely we are to observe 
class u>i before (ie prior to) observing any feature vector data. Bayes rule translates the 
prior probability into a posterior probability P(WJ|X). The posterior is the probability that 
we have observed class u>i given the observed feature vector. Equality in the above equation 
can be obtained by normalizing the right hand side by the data prior 

K 

P(x) = £ p ( x , u * ) 

*t (5-16) 

= Y^P{-x\wi)P(uH) 
i = l 

where P ( x , ui) denotes the joint distribution of the feature data and the discrete random 
variable u>. In classification algorithms the posterior probability is assumed to be 

P(«*|x) = / ( x k ) P M (5.17) 
£ p(x|wF C)P(w f c) 

k=l 
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where p(x|ojj) is the likelihood function for the class evaluated at the point x. I use the 
standard notation that P(-) is a probability and p(-) is a probability density function. If 
all classes have equal prior probabilities (P(wk) = 1/K, VA"), then the likelihood is 

P ( x W = (5.18) 
£ P ( X I ^ ) 
k=l 

Equation 5.17 is not a trivial application of Bayes rule: it assumes that the posterior prob
ability is computed by evaluating a density function p(x\uji) at a point. Strictly speaking, a 
probability is an integral of a probability density function and the probability of observing 
any given value of the feature vector x is zero. 

How can we justify equation 5.17? The assumed form of the posterior probability 
produces generative classifiers which can predict the class of an observed feature vector. 
However, the predicted probability output by a classifier is not necessarily representative 
of the probability we might expect from the estimated likelihood function of a test vector 
given the training data. This effect is summarized in figure 5.5. The posterior probabilities 
are approximate step functions which vary only in the region where p(x|wi) « p(x\u>2) (i.e. 
near the decision boundary). Therefore the probabilities output by a generative classifier 
are insensitive to the likelihood function away from the decision boundary. 

Figure 5.5: Top: Arbitrary likelihood functions p(x|o;) for two classes. Bottom: posterior 
probabilities estimated using Bayes rule (after [25]). 

A n important implication of figure 5.5 is that the probabilities output by a generative 
classifier are nearly binary. By assuming equation 5.17, we are designing a classifier which 
can answer the question: to what class does the observed feature vector belong? This is 
a reasonable question to pose in many applications. For example, in character recognition 
we are primarily concerned with assigning each test vector to a class (ie identifying it as a 
particular character). The value of the posterior probability is of secondary interest. Ripley 
terms this formulation a diagnostic classifier: we are making a definite diagnosis as to the 
class of a feature vector [30]. 

Generative classifiers which use equation 5.17 are also insensitive to outliers to the 
training data. In figure 5.5, a feature vector at x = 2.5 is unlikely to be drawn from either 
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likelihood function. However, the posterior probability of an outlying feature vector at this 
point is nearly one. This is not egregious in typical problems: all test data can usually be 
assumed to fall within one of the classes defined in the training data. 

Bayes rule provides a mechanism for classifying feature vectors: assign feature vector x 
to the class with the largest posterior probability. 

Decide if P ( ^ | x ) > P(WJ|X) V i ^ j (5.19) 

The decision boundary for this rule is a contour along which the posterior probabilities 
are equal. Is the decision rule described by the above equation optimal? As in an inverse 
problem, we need some kind of misfit, or loss, function which defines the "best" decision 
rule. A n appropriate misfit for classification is 

where u> is the predicted class membership of the feature vector x„ belonging to the class 
UJJ. According to this "0-1" loss function we are only penalized for misclassified feature 
vectors. The total expected loss for a set of N observed feature vectors is 

N 

71=1 

K  N»j 

= E E P ( i ^ ^ W (5-21) 
j = l i = l 

K 

= 5 3 ^ ( 1 - P ( w = u; i|x i)) 
j = i i = i 

where the expectation is taken over realizations of the discrete random variable to. Here 
NUj denotes the number of feature vectors belonging to class ujj. This equation states that 
if we assign each feature vector to the most probable a posteriori class, then we expect the 
total loss to be minimized. Therefore under the assumption of the "0-1" loss, the decision 
rule is optimal. The minimum of $ is obtained when the true posterior probabilities are 
known for all feature vectors, i.e. when the true distributions for all classes are known. 

Application of Bayes rule to classification requires knowledge of the prior probabilities 
and the form of the likelihood function. In the Bayesian framework, prior distributions 
play a central role: they quantify our subjective expectations. When Bayes rule is used in 
the form given in equation 5.17, the prior probabilities weight the relative importance of 
classes. If no prior information is available we may choose to assign equal prior probabilities 
to each class. In this situation, we must rely on the likelihood function to make classification 
decisions. The prior probability P(wi) can also be estimated from the training data as the 
proportion of feature vectors belonging to that class: 

P(UH) = Ni/N (5.22) 

with Ni the number of points belonging to class u>i and N the number of points in the 
training data set. 
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The likelihood function can take either a parametric or nonparametric form. The para
metric approach assumes a probability distribution (most commonly the normal distribu
tion) and tries to estimate the parameters of this distribution (eg. mean, covariance) from 
the training data. This methodology is described in section 5.4.2. This approach can work 
well if the data follow a simple distribution, but unfortunately this is not always the case 
in classification problems. If the training data cannot be described by a parametric dis
tribution, we may turn to nonparametric methods (section 5.4.3) which try to model the 
likelihood function as a superposition of kernel functions. 

5.4.2 Parametric methods 

The most common parametric classifier is discriminant analysis, which assumes a Gaussian 
form for the likelihood function 

M x K ) - ( 2 7 r ) d / 2 | ^ | 1 / 2 e x p ^ 2 j (5.23) 

with p,{ and £ j the mean and covariance of the ith class. Here | • | denotes the determinant. 
The decision boundary between classes u>i and Wj is found by equating posterior probabilities 

P(wi|x) = P(wj|x). (5.24) 

The discriminant function fj is defined as 

fii = log(P(wj|x)) - log(P(w,|x)) (5.25) 

so that fij = 0 corresponds to the decision boundary between classes and uij. Quadratic 
discriminant analysis computes a separate covariance for each class. In this case the decision 
boundary is a quadratic function in the feature space. Alternatively, if the covariances are 
assumed equal for all classes (£j = £ p , Vi) , then the discriminant function is 

fij = - M j ) T E ; 1 x + 1 ( M J E - V ; - Hi E " V ) + \ log (fj^j) • (5-26) 

The above equation defines a linear decision boundary in the feature space, and so discrim
inant analysis with a pooled covariance for all classes is called linear discriminant analysis. 
The pooled covariance E p is 

j K N«J 

E p = ~N~-~K E E ( x i " ttXxi - ^ ) T (5.27) 
i = l j=l 

with N the number of feature vectors, K the number of classes, and Nu. the number of 
training vectors belonging to class Uj. We normalize by N — K (as opposed to N — 1 in 
the usual covariance estimate) because this estimator has N — K degrees of freedom [31]. 

Choosing a linear or quadratic form for the decision boundary can be guided by sta
tistical tests of the training data class distributions [31]. The complexity of the decision 
boundary can also be governed with regularized discriminant analysis, which computes the 
regularized class covariance matrix for the ith class £ [ as 

EJ = a E j + (1 - a ) E p . (5.28) 
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For a = 0 we have the pooled covariance for all classes (linear discriminants) whereas 
for a = 1 we have separate covariances (quadratic discriminants) [25]. The value of the 
regularization parameter a can be estimated by cross-validation (section 5.6). 

A n example application of discriminant analysis for U X O classification is shown in fig
ure 5.6. This feature space was generated by cooperative inversion of EM-63 data acquired 
at the Yuma, Arizona test site. A Pasion-Oldenburg parameterization was used to fit the 
observed data for each target. As discussed in chapter 4, these parameters can be used 
to make inferences about target size and shape. Unfortunately, no other ground truth is 
available and so the performance of trained classifiers cannot be evaluated for this site. 

To generate a discriminant analysis classifier for this feature space, I compute the mean 
of each class (ie ordnance type) and the pooled covariance of the training vectors. I then 
apply equation 5.17 to compute posterior probabilities of membership in each class on a grid 
of points in the feature space. Plotting the maximum posterior probability of membership, 
evaluated over all classes, provides an image of the trained classifier in the feature space. 
Minima of this function then correspond to decision boundaries. 

This choice of feature space produces good separation between ordnance types and 
so the boundaries delineated by both linear and quadratic discriminant analysis provide 
very low misclassification rates on the training data. The assumption of pooled or separate 
covariance matrices has a dramatic effect on the resulting decision boundaries. For example, 
the class covariance for M75 ordnance (black crosses in figure 5.6) has a large variance along 
its first principal axis, producing a thin region of the feature space for this class. This is 
very different from the piecewise linear decision boundary provided by linear discriminant 
analysis. 

Which form of the decision boundary (linear or quadratic) will provide the best gen
eralization to the test data? For this data set no ground truth was available from other 
areas of the test site, and so we must evaluate the classifiers based solely upon the training 
data. A subjective ranking of the classifiers in figure 5.6 might prefer linear discriminant 
analysis. There does not appear to be sufficient structure in the training data to justify 
the more complex partition of the feature space offered by quadratic discriminant analysis. 
This is confirmed by regularized discriminant analysis: leave-one-out cross-validation of the 
training data reproduced linear discriminant analysis (a = 0 in equation 5.28). 

5.4.3 Nonparametric methods 

Assuming a parametric form for the likelihood function greatly simplifies the problem of 
density estimation. However, this assumption may be difficult to justify if limited training 
data are available (ie statistical tests may not provide sufficient confidence that the assumed 
distribution is valid). In this situation, we may turn to nonparametric methods, which 
estimate a likelihood function p(u\u>i) from the training data 

where K(v,Xi) is a kernel (or windowing) function centered on the training vector x;. 
The summation in the above equation is over the Nulj training vectors belonging to class 
ojj. The kernel is commonly a density function (eg a Gaussian) with some parameter a 
controlling its width. If the kernel function is chosen to be a delta function, then as the size 
of the training data set goes to infinity the expected density estimate will approach the true 
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Figure 5.6: Discriminant analysis applied to the fcl and k2 parameters from cooperative 
inversion. Grayscale images show the maximum posterior probability evaluated over all 
possible classes. Decision boundaries correspond to minima of this function. 

density. However, with limited training data delta functions will produce a high variance, 
"spiky", estimate of the underlying distribution which will provide poor generalization 
to the test data (ie an estimate which overfits the training data). Here the choice of 
kernel width acts as a regularization parameter: a small kernel width will produce a spiky 
distribution whereas a large kernel width will produce a smooth distribution (figure 5.7). 

A representative nonparametric classifier is the probabilistic neural network (PNN). 
This name is something of a misnomer, the classifier is an application of Bayes rule using 
a nonparametric estimate of the class likelihood functions. The P N N is often implemented 
using a single smoothing parameter for all classes. I have also implemented a P N N which 
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Figure 5.7: Nonparametric density estimation. Kernel centers are shown as crosses. A large 
kernel width will produce a smooth distribution (left) compared with a small kernel width 
(right) 

allows a separate smoothing parameter for each class. This is analogous to allowing a 
separate covariance for each class in quadratic discriminant analysis and produces a more 
complex decision boundary. 

Figure 5.8 shows PNNs applied to the Yuma data. The single-smoothing P N N produces 
decision boundaries which are quite similar to linear discriminant analysis. By the central 
limit theorem, the superposition of Gaussian kernels will converge to a Gaussian distribution 
as the number of kernels and the smoothing parameter are increased. The regularized P N N 
therefore tends to linear discriminant analysis. As was seen with quadratic discriminant 
analysis, a P N N with separate smoothings can overfit the training data and produce decision 
boundaries which are overly complex. 

5.5 D i s c r i m i n a t i v e C lass i f i e r s 

Instead of estimating posterior probability distributions, discriminative classifiers directly 
define a decision boundary to classify test data. As illustrated in figure 5.9(a), the learning 
problem is nonunique in this formulation. Given linearly separable feature data there is 
an infinite number of decision boundaries which can perfectly separate the training data. 
Finding a decision boundary which separates the training data and generalizes well to the 
test data can be approached as a constrained optimization problem. 

A commonly-used classifier of this form is the support vector machine (SVM). The basic 
idea is to maximize the margin between classes, subject to the constraint that the training 
data are classified correctly [32]. This concept is illustrated in figure 5.9(b). Referring to 
figure 5.9(b), the decision boundary satisfies 

/ (x ) = w x + 6 = 0 (5.30) 

Wi th this formulation we can derive the constrained optimization problem 

min 
w, 6 

W 
N 

^ « j ( ( w XJ + b)y{ - 1) 
i=l 

(5.31) 
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Figure 5.8: Probabilistic neural networks applied to the kl and k2 parameters from cooper
ative inversion. Grayscale images show the maximum posterior probability evaluated over 
all possible classes. Decision boundaries correspond to minima of this function. 

with cti the Lagrange multipliers. The optimization problem can also be expressed in terms 
of its dual problem 

max 
a>0 

N 1 JV N 

i=l =1 j = l 

(5.32) 

where ./V is the number of points in the training data. The dual problem has the constraints 
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Figure 5.9: (a) Nonuniqueness for discriminative classifiers: an infinite number of decision 
boundaries can separate the training data, (b) Support vector machine formulation for 
linearly separable feature data. 

N 

X>2/; = ° (5-33) 
2 = 1 

and 
N 

Y, on [yi ( w x i + 6) - 1] = 0, V i (5.34) 
2 = 1 

with m G {—1,1} defining the class labels for the two classes. Inspection of equation 5.34 
shows that only those feature vectors satisfying 

yi(w • x; + b) = 1 (5.35) 

will have nonzero coefficients a,. Feature vectors in the training data with nonzero coeffi
cients are called support vectors; in a sense they hold up, or support, the decision boundary. 

A more general formulation of the S V M allows for nonlinear decision boundaries with 
overlapping classes. The idea is to map the feature data to a higher-dimensional space where 
the training data become separable. We then construct the optimal separating hyperplane 
in this space [25]. 

Mapping the features to a higher-dimensional space seemingly risks the curse of dimen
sionality. However, there is an implicit dimensionality reduction included with support 
vector machines. The prediction for a test vector is generated by projection of that test 
vector onto a small number of (nonorthogonal) support vectors. This is analogous to the 
dimensionality reduction in canonical analysis where the test vectors are projected onto a 
small number of nonorthogonal directions. 

Extension of the S V M to problems with more than two classes is non-trivial and beyond 
the scope of this thesis. Instead of the five-class Yuma feature data used earlier in this 
chapter, I therefore show linear and nonlinear S V M solutions for a synthetic two-class 
problem in a two-dimensional feature space (figure 5.10). The nonlinear S V M with Gaussian 
kernels produces a more complicated decision boundary, similar to what we might expect 
from a P N N . The output of this classifier ranges on [-co, co]. While it is possible to convert 
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the output of an S V M to a probability, this step is unnecessary if our aim is to prioritize 
feature vectors based upon their predicted membership in a given class. 

Figure 5.10: Linear (left) and nonlinear (right) support vector machines applied to a syn
thetic two-class problem. Solid lines indicate the decision boundary and dashed lines are 
the support planes. 

5.6 C lass i f i e r t r a i n i n g 

Before a classifier can generate predictions of class memberships for test data, its perfor
mance must be optimized using the available training data. It should be apparent from the 
previous sections that most classifiers have adjustable parameters which govern the com
plexity of the decision boundary. The training stage of the learning process requires that we 
estimate values for these parameters which will minimize the probability of misclassification 
for the test data. 

If a large set of labelled data is available, we can divide it into training and validation 
sets. We use the training set to estimate parameters of the classifier and then evaluate the 
classifier using the (independent) validation data. W i t h no regularization, we can often 
obtain a perfect "fit" to the training data (i.e. no misclassifications). As in an inverse 
problem, overfitting the feature data results in a model for the decision boundary which is 
overly complex. On the other hand, if the decision boundary is too simple it may produce a 
higher misclassification rate on both the training and validation data. The idea in training 
is to balance our fit to the training data with our desire to have good predictions made 
on the validation data. In geophysical inverse problems the same "bias-variance" balance 
must be struck between fitting the observed data and producing a model which reflects our 
a priori knowledge. 

In many situations (including U X O classification) the training data set is relatively 
small and so we cannot divide it into training and validation sets. This leads to the cross-
validation approach, which sets aside a randomly selected portion of the training data for 
validation. In "leave-one-out" (LOO) cross-validation, a training vector is set aside as 
a test vector, the classifier is trained on the remaining training set, and a prediction is 
then generated for the test vector. B y repeating this process for all training vectors, an 
estimate of the misclassification rate for a given value of the regularization parameters is 
obtained [25]. The estimated misclassification rate obtained with L O O cross-validation is 

K 

* = £ £ ( ! - - P ( " = ^ W ) (5.36) 
j = l x € w , 
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where P(u> = UJJ\X) is the estimated posterior probability of membership of the vector x in 
its true class uij. 

Figure 5.11 shows $ as a function of the regularization parameter a for a single-
smoothing probabilistic neural network applied to the Yuma training data. The estimated 
error function $ is a smooth function of the regularization parameter and has a global 
minimum on the range of the smoothing parameter considered here. I therefore apply the 
Levenberg-Marquardt algorithm discussed in chapter 3 to minimize this function. The op
timization routine successfully estimates of the optimal smoothing parameter (indicated by 
the vertical dashed line in figure 5.11). The error is a nonlinear function of the regular-

2 1 • _ . , , , 

0 0.2 0.4 0.6 0.8 1 
Smoothing Parameter 

Figure 5.11: Estimated misclassification rate ($) as a function of smoothing parameter for a 
P N N . Vertical dashed line indicates the minimum of this function estimated by a linearized 
inversion algorithm. The training data used to generate this figure are from the Yuma test 
site 

ization parameter and local minima may in general be a concern with linearized inversion. 
However, in experimentation with both real and synthetic data sets I have not encountered 
problems with local minima (ie multiple inversions with random starting models converged 
to the same parameters). 

Using cross-validation as a means to estimate regularization parameters is appropriate 
for probabilistic neural networks and regularized discriminant analysis. Cross-validation 
works well if the classes have approximately the same numbers of feature vectors (eg as 
in the Yuma data). In the next chapter I will demonstrate that minimization of $ for 
real data sets with significant skew (unequal class populations) can overfit the training 
data. I propose a simple heuristic which produces better classification performance than 
minimization of the L O O error. 

Regularization of a support vector machine can also be done with cross-validation. How
ever, each realization of the training data in the cross-validation process requires solution 
of an optimization problem. This computational burden quickly becomes onerous for even 
moderately-sized training sets (hundreds of feature vectors). Efficient methods for regulariz
ing S V M s have been developed. However, I found it difficult to obtain reliable performance 
with these approaches. Instead, I adopt a heuristic for regularizing nonlinear S V M s with 
Gaussian kernels suggested by [33]. I set the kernel smoothing a to be the median distance 
from each training vector to the nearest oppositely-labelled training vector (figure 5.12). I 
found this heuristic to be reliable for both synthetic data and the real data sets considered 
in chapter 6. 
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a 
Figure 5.12: Heuristic for regularizing an S V M . The kernel smoothing a is estimated as the 
median distance d from each training vector to the nearest oppositely-labelled point. 

5.7 C lass i f i e r v a l i d a t i o n 

When labels are available for a validation data set, we can compare the performance of 
various classifiers using these data. A useful tool for evaluating classifier performance is 
the receiver operating characteristic (ROC) curve. The R O C curve plots the proportion of 
true positives as a function of the proportion of false positives. In the U X O context this 
corresponds to plotting the proportion of U X O s correctly identified as a function of the 
proportion of clutter items incorrectly identified. A n optimal classifier is one which finds 
all U X O items with a minimum number of false positives. 

In determining which classifier is best for a given set of training and validation data, 
we must pose the question: when is the performance of classifiers significantly different so 
that we may prefer one classifier over all others? For a given realization of training and 
validation data, the R O C curve for a classifier can be regarded as a cumulative distribution 
function. We can then test to see whether the R O C curves are significantly different. 
A n appropriate statistical test in this situation is the two-sample Kolmogorov-Smirnov 
(KS) test, which tests to see whether two random samples (51,52) are drawn from the 
same distribution [34]. The test statistic T is the maximum difference between estimated 
cumulative distribution functions 

T = max(|P c(51) - P c(52)|) (5.37) 

where P c is the estimated cumulative distribution function for a given sample. If the test 
statistic exceeds a tabulated critical value, then we reject the null hypothesis that the 
two samples are drawn from the same distribution. Equivalently, if the P-value computed 
from the test statistic is less than the desired significance level a, then we reject the null 
hypothesis. The P-value is computed as 

oo 
P-value = 2 ̂ ( - i ) J - 1 e x p ( - 2 A 2 j 2 ) (5.38) 

with 
A = (y/N + 0.12 +0 .11 /V^OT. (5.39) 

The infinite sum in equation 5.38 can be accurately approximated with its first hundred 
terms. The P-value depends upon the degrees of freedom AT of the test statistic T. The 
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number of degrees of freedom in turn depends upon the number of items N\ and N2 in our 
two samples 

N= A

 1 ' . (5.40) 
Ni + N2

 v ' 
If we are treating R O C curves as cumulative distributions, then it is reasonable to use the 
numbers of U X O found by each classifier in our K S test to compute the degrees of freedom 
N. 

Figure 5.13 demonstrates the K S test for two hypothetical R O C curves. The right plot 
shows the computed P-value as a function of the number of U X O s found by the classifiers. 
Here I assume that both classifiers find the same number of UXOs , so that Ni = N2. 
According to figure 5.13, if the R O C curves were generated by more than 160 U X O items, 
then at a 95 % confidence level we would reject the null hypothesis that the two classifiers 
provide the same performance. To reject the null hypothesis at a higher confidence level 
we require more evidence: the R O C curves are significantly different at a 99 % confidence 
level if they are generated by more than 230 U X O items. 

0 0 .5 1 150 2 0 0 2 5 0 
Proportion of clutter found Number of UXOs 

Figure 5.13: Left: two hypothetical R O C curves. Right: Computed P-value for the corre
sponding Kolmogorov-Smirnov statistic as a function of number of U X O s . The horizontal 
lines show the cut-off for the a = 0.05 and a = 0.01 significance levels. 

As an example of R O C analysis, I generate synthetic test data for the Yuma feature 
data. I assume that the generative model used in linear discriminant analysis is the true 
model (i.e. I use a pooled covariance matrix for all classes). I then generate a total of 
200 U X O items in the test data as random samples from normal distributions with the 
means and covariances of each class. The relative frequencies of each ordnance type in the 
synthetic test data are equal to the frequencies in the training data. Figure 5.14 shows 
the observed training data and synthetic test data for this simulation. This example is 
only intended to illustrate R O C analysis and so comes with the following disclaimer: in the 
absence of ground truth about the distribution of clutter at this site, the performance of 
classifiers in this simulation is not necessarily representative of their actual performance. 

To generate a synthetic R O C for each classifier in figure 5.15, I first compute the pre
dicted probabilities of class membership for all test data. I then identify all test data 
with a maximum probability of membership above a given threshold Pthesh, starting with 
Pthesh = 1- These items are then labelled and the numbers of found U X O and false positives 
(items whose class was incorrectly predicted by the classifier) are added to running totals. 
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Figure 5.14: Left: Training data for Yuma calibration grid. Right: Synthetic test data for 
Yuma calibration grid, assuming a pooled covariance for all classes. 

In this example all targets are U X O and so the number of U X O found at a given threshold 
is simply the number of targets which are labelled. This process is repeated by lowering 
Pthesh until all U X O have been labelled. 
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Figure 5.15: Receiver operating characteristic curves for classifiers applied to the feature 
data of figure 5.14. D A denotes discriminant analysis. 

Linear discriminant analysis provides the best performance of all classifiers for this ex
ample. This is because this classifier uses the true distributions of the test data and so 
it will , on average, have an optimal error rate (i.e. it will have the smallest number of 
misclassifications to find all UXOs) . The assumption of separate or pooled covariance ma
trices has a strong effect on classifier performance: quadratic discriminant analysis performs 
quite poorly. Finally, the probabilistic neural network has a comparable R O C to that of 
linear discriminant analysis. This is consistent with the earlier observation that the P N N 
produces decision boundaries which are quite similar to linear discriminant analysis. 

These observations can be quantified with K S tests of the R O C curves in figure 5.15. I 
test whether the ROCs are significantly different from that of linear discriminant analysis. 
To compute the tests statistic T, I linearly interpolate the R O C curves at discrete values 
of the misclassification rate. The ROCs in figure 5.15 are not single-valued functions of the 
misclassification rate and so T must be calculated as 

T = max(min(/?OC71i - ROC2i)) (5.41) 

with min(ROCli~ ROC2i) denoting the minimium difference between the two R O C curves 
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at the ith interpolation location. Retaining the minimum difference between the two R O C 
curves at an interpolation point will produce a smaller test statistic. Consequently, we are 
less likely to reject the null hypothesis when it is true (a type I error). 

At a 95% confidence level, the R O C for the P N N is not significantly different from 
that of linear discriminant analysis (P-value=0.3735). In contrast, the R O C for quadratic 
discriminant analysis is significantly different from that of linear discriminant analysis at a 
95 % confidence level. In fact, the R O C curves for L D A and Q D A are significantly different 
at any confidence level since P-value=0 for this test. 

Analysis of R O C curves with hypothesis testing provides a rigorous basis for evaluating 
classifiers. In particular, we can definitively say that a particular classifier provided worse 
performance than the best classifier for that data set. However, we must be cautious when 
the null hypothesis is retained at a given confidence level. Retaining the null hypothesis does 
not mean we have proven there is no difference between the performance of two classifiers, 
it means there is insufficient evidence to reject the null hypothesis. Consider again the 
two hypothetical R O C curves shown in figure 5.13. According to the KS-test these curves 
are not significantly different at the 95% confidence level until the number of U X O s in the 
test data exceeds 160. Does this mean we will attain the same performance from these two 
classifiers? Certainly not, since one R O C curve requires us to dig all clutter items to find all 
U X O s whereas the other only requires us to dig 30% of clutter items. This can represent a 
significant expenditure in a real context. Hence if the K S test indicates that two classifiers 
are not significantly different, then we must consider their actual performance (the number 
of clutter items dug in order to find all UXOs) when validating classifiers. 

5.8 Discussion and conclusions 
In this chapter I have reviewed statistical pattern recognition. I presented generative classi
fiers, which apply Bayes rule to minimize the probability of misclassifying a feature vector. 
Discriminative classifiers also attempt to minimize the probability of misclassification, but 
circumvent the problem of estimating parameters of the likelihood function by directly defin
ing the decision boundary. In the next chapter, I demonstrate the application of statistical 
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Figure 5.16: Classification algorithms presented in this chapter 

classification to several real data sets. Practical applications of statistical classification al
gorithms have shown that there is no single algorithm that will work best in all situations. 
While the support vector machine is appealing in its formulation as an optimization prob
lem, generative classifiers can outperform SVMs. It is prudent to use all available classifiers 
and evaluate their performance as labelled data become available. I will investigate this 
approach to U X O classification in the next chapter. 
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Chapter 6 

UXO classification 

6.1 I n t r o d u c t i o n 

In this chapter, I review research on the application of classification algorithms to the prob
lem of discriminating between U X O and clutter items. I also apply classification algorithms 
to real data sets from a number of field sites. 

The U X O classification problem presents a number of challenges which are not always 
encountered in pattern recognition. These include: 

• Useful features are site-specific. 

• There is uncertainty in the feature vectors. 

• The U X O class is often far less numerous than the clutter class. 

• Training data is limited and is expensive to acquire. 

I address the problem of feature selection for magnetic and electromagnetic data using 
canonical analysis. I also examine the propagation of errors through the classification 
process with Monte Carlo simulations. 

The final two issues in the above list are central to the success of statistical classification. 
The rarity of U X O s at a field site makes random sampling an inefficient way to generate 
training data: we are unlikely to obtain enough U X O ground truth to model the U X O class 
with confidence. In this chapter, I demonstrate how retraining a statistical classifier as the 
training data set grows can alleviate this problem. 

The statistical classifiers described in the previous chapter are not the only available 
approach for discriminating between U X O and clutter items. A commonly-used discrimina
tion method is to dig every anomaly with an amplitude above a specified threshold. While 
simple thresholding circumvents the sometimes laborious process of inversion, anomaly am
plitude is not a particularly robust feature for discriminating between U X O and clutter. For 
example, U X O items at depth may produce a comparable anomaly amplitude to shallower 
clutter items. 

Feature extraction via inversion can provide more useful diagnostics for discrimination. 
In cases where multiple data types are available, we can threshold on some linear combi
nation of the available features. At a higher level of sophistication, we may take nonlinear 
combinations of features. The remanence classifier developed by Billings is an example 
of this approach: we project the components of the estimated moment onto a nonlinear 
function to obtain the estimated remanence [8]. 

A n advantage of these thresholding or "rule-based" classifiers is that they do not require 
any information regarding the distribution of clutter at a field site. In contrast, statistical 
classifiers model the decision boundary between U X O and clutter and so we need informa
tion about both classes before we can make predictions for the test data. However, I will 
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demonstrate in this chapter that statistical classifiers can learn from the training data as 
digging proceeds and thereby improve their performance. 

Figure 6.1 shows a hierarchy of classifiers which can be used for U X O classification. It 
should be emphasized at the outset that increasing sophistication does not necessarily imply 
better performance. As will be demonstrated in this chapter, the performance of classifiers 
is dependent upon the particular data set and there is no classifier which performs best in 
general. Given this result, I propose an algorithm for selecting a classifier during digging. 
The algorithm selects a classifier from a suite of classifiers (statistical or otherwise) using a 
performance metric estimated from the training data. 

Level one 

•Thresholding on anomaly 
amplitudes 

1 

Level two 

•Inversion + thresholding on features 
(model parameters) 

Level three 

•Thresholding on linear combinations 
of features 

r— 
Level four 

•Thresholding on nonlinear 
combinations of features 

•Statistical classifiers 

Beyond level four 

•Ensembles of classifiers 

Figure 6.1: Flowchart showing increasing sophistication in U X O classification. 

6.2 Feature selection 
The existing literature on U X O classification uses a wide variety of features estimated 
from electromagnetic and magnetic data. The features are most often parameters of the 
estimated dipole for magnetics and shape and size parameters (eg fcl,fc2 in the Pasion-
Oldenburg model) for electromagnetics. Some authors have also used goodness-of-fit as a 
feature, reasoning that U X O items have anomalies which can be better fit by parametric 
models. Estimated depth can also provide some discrimination between U X O and clutter, 
especially at sites with large ordnance items that are relatively deep below the surface. In 
the following sections, I prioritize raw features using canonical analysis of real data. 

6.2.1 Canonical analysis of magnetics data 

A n appropriate feature set for discrimination of magnetics data can be selected with canoni
cal analysis. I consider three data sets acquired at field sites: Guthrie road, Montana, Lime-
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Figure 6.2: Marginal class distributions for log-transformed features. Solid lines are normal 
distributions with the estimated class means and variances. 

stone hills, Montana and Badlands bombing range, South Dakota. Table 6.2.1 summarizes 
the U X O and clutter items found at these sites. 

D a t a set U X O types N o . of U X O s N o . of C l u t t e r 
Guthrie road 81 mm, 76 mm 80 644 
Limestone hills 76 mm, 81 mm, 75 mm, 

155 mm, 90 mm, 105 mm, 
4.2" illumination round, 
2.75" rocket 

64 253 

Badlands range M38 practice bombs 71 73 

Table 6.1: Summary of ordnance and clutter items at field sites. 

The aim of canonical analysis is to prioritize features at each field site based upon 
their ability to separate U X O and clutter. For a raw feature set, I select the norm of the 
estimated moment and the angle of the moment with the earth's magnetic field, as well as 
the minimum estimated remanence. 

To meet the assumptions of canonical analysis I log-transform and standardize the 
features (ie subtract the mean of each feature). Figure 6.2 shows the resulting marginal 
distributions for U X O and clutter classes at the field sites. 

Only the marginal class distribution of log(||m||) for U X O s at Limestone Hills is nor
mal at the 95% confidence level (Kolmogorov-Smirnov one-sample test). However, these 
distributions are sufficiently well-behaved (ie approximately unimodal) for the purposes of 
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canonical analysis. Taking the logarithm of the angle is not strictly necessary for these data 
sets: an approximately normal marginal can also be obtained by subtracting the mean of 
this feature. However, I found that the canonical analysis was unchanged by the particular 
transformation used on the angle. This is because the (natural) logarithm is an approxi
mately linear function for most estimated angles in the data. Consequently, the number 
of standard deviations between class means is largely unaffected when we take the log of 
the angle. Figures 6.3 and 6.4 compare the resulting projections onto the first canonical 
eigenvector with and without the log transformation of the angle. 

For all data sets, canonical analysis of the transformed features produces a single eigen
vector which describes 100% of the separation between the classes. The contributions from 
the raw features to these eigenvectors are given in table 6.2.1. At Guthrie road, the most 

Data set log(Mi) log( Angle) log(Remanence) 
Guthrie road 
Limestone hills 
Badlands range 

-0.0287 
0.3081 
-0.5036 

0.4936 
0.0737 
0.7510 

0.8648 
0.9485 
0.4270 

Table 6.2: Contributions of features to the first canonical axis of each data set. 

significant contribution to the separation between U X O and clutter classes is provided by 
remanence. The angle of the estimated moment with the earth's field also provides some 
discrimination between the classes. This is consistent with a physical understanding of 
magnetization: because of demagnetization effects the induced moment of a U X O is ex
pected to be restricted to a range of angles about the earth's field. Figure 6.3 shows the 
projection direction identified by canonical analysis to provide the maximum separation 
between U X O and clutter classes for the Guthrie road data. 

At Limestone hills the largest contribution to the first canonical variate is again from 
remanence, but in this case the size of the moment provides more separation between 
classes than does the angle. This is because the marginal distribution of log(||m||) for U X O 
items is shifted to larger values compared to the same distribution at Guthrie road. The 
marginal distribution of log(||m||) for clutter items is also very subtly shifted to smaller 
values compared to the same distribution at Guthrie road. While it is tempting to suggest 
that there are larger U X O s and smaller clutter items at Limestone hills than at Guthrie 
road, we cannot make any inferences about target size using magnetics data. The analysis 
only indicates that there is a difference in the distributions of estimated moments at Guthrie 
road and Limestone hills. 

Canonical analysis indicates that remanence produces the smallest separation between 
U X O and clutter classes at Badlands bombing range. In contrast with the other sites, a 
significant number of U X O items at Badlands have a relatively large estimated remanence 
(> 50%). This result is somewhat surprising, given that estimated moments for U X O s tend 
to have small angles with the earth's magnetic field. This suggests that their magnetization 
is primarily induced. However, the dig list shows that large number of ordnance items are 
"pancaked", crushed or otherwise distorted. W i t h the exception of one outlier, distorted 
U X O s tend to have a smaller estimated remanence than intact U X O s (figure 6.5) at the 
Badlands site. A possible explanation for this is that many intact bombs did not strike the 
ground with sufficient force to fully erase their remanent magnetization. Alternatively, the 
nominal dimensions of 250 lb. bombs (37 cm diameter, 162 cm length) used to generate 
the feasibility curve may require some tuning. 
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Figure 6.3: (a) Standardized feature space spanned by angle and log(Remanence) showing 
U X O (squares) and clutter (triangles) classes for Guthrie road data. The solid line is the 
eigenvector from canonical analysis providing the largest separation between classes, (b) 
Distribution of U X O s after projection onto the first canonical eigenvector, (c) Distribution 
of clutter after projection onto the first canonical eigenvector. 

-A -2 0 
log( Angle) 

Figure 6.4: (a) Standardized feature space spanned by log(Angle) and log(Remanence) 
showing U X O (squares) and clutter (triangles) classes for Guthrie road data. The solid 
line is the eigenvector from canonical analysis providing the largest separation between 
classes, (b) Distribution of U X O s after projection onto the first canonical eigenvector, (c) 
Distribution of clutter after projection onto the first canonical eigenvector. 

Figure 6.6 compares the receiver operating characteristic curves (ROC) generated by 
thresholding on the first canonical variate with that generated by thresholding on remanence 
alone. Although the canonical variate provides an initial decrease in the false alarm rate 
at Guthrie road and Limestone hills, remanence ultimately requires us to dig fewer clutter 
items in order to find all U X O s . However, at these sites a two-sample Kolmogorov-Smirnov 
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Figure 6.5: Estimated remanence for distorted and intact ordnance items at Badlands 
bombing range. 

test indicates with 95% confidence that there is no significant difference between the two 
R O C curves. Therefore, we cannot conclude that thresholding on either remanence or 
the first canonical variate provides better classification performance. However, canonical 
analysis does indicate that, in comparison with the size of the moment and the angle with 
the earth's magnetic field, remanence provides the largest separation between U X O and 
clutter classes for these sites. 

Thresholding on remanence produces a respectable false alarm rate at Badlands bomb
ing range: in the process of digging all 71 U X O s we must dig only 20 clutter items. The 
canonical variate significantly improves this false alarm rate, requiring only 7 false alarms. 
However, the preceding analysis identified useful features using all available ground truth. 
In general, we will use a representative training set of labelled data to prioritize features 
with canonical analysis. A smaller training set will likely result in a higher false alarm 
rate when thresholding on canonical variates. This is an advantage of the rule-based rema
nence classifier: the performance of the classifier depends only upon prior knowledge of the 
ordnance items at a site. 

6.2.2 Canonical analysis of electromagnetic data 

As a second example of canonical analysis applied to U X O discrimination, I consider fea
tures estimated from the Yuma test site. Table 6.2.2 summarizes the canonical analysis of 
these data. Unlike the analysis of magnetics data in the previous section, in this case there 
are two canonical variates which together describe 98.6% of the separation between classes. 
The parameters kl and k2 contribute the most to the corresponding eigenvectors, with 
the (3 parameters providing negligible separation. This is consistent with the analysis of 
Pasion-Oldenburg parameters presented in chapter 4: the k parameters are more sensitive 
to target shape and size than are the (3 parameters. 

Projection onto the first two eigenvectors (icl,ic2) produces a feature space which 
appears very similar to a projection onto the original k parameters (figure 6.7). However, 
projection onto the second eigenvector (ic2 in figure 6.7) increases the separation between 
the M75 and 40 mm ordnance types at the expense of an increased overlap between 40 
mm and 60 mm ordnance classes. In problems with multiple classes (> 2), the between-
class scatter matrix will be dominated by classes whose means deviate the most from the 
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Figure 6.6: R O C curves generated by thresholding on the first canonical variate (solid line) 
and remanence (dashed line). 

total mean of the feature data. The first few eigenvectors of D will try to separate these 
classes, sometimes to the detriment of the separation between other classes. Figure 6.7 
clearly shows that the dimensionality of the feature space can be reduced to two features: 
a projection onto the last two eigenvectors gives no separation between the classes. 

Index 1 2 3 4 
Eigenvalue 0.8285 0.1577 0.0127 0.0011 • 
logio(fcl) 0.3256 0.5733 0.7800 -0.5364 
log10(fc2) 0.9384 -0.7423 -0.5442 0.7296 

-0.1114 -0.3468 0.2800 -0.1366 
-0.0310 -0.0061 0.1309 0.4017 

Table 6.3: Eigenvalues and eigenvectors of D for Yuma data. Eigenvalues are normalized 
to sum to one. 
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Figure 6.7: Canonical analysis of Yuma test data. Top row shows projections in the original 
feature space and bottom row shows projections onto the canonical eigenvectors. 

6 . 3 C l a s s i f i c a t i o n o f m a g n e t i c s d a t a 

The canonical analysis of feature data presented in the previous sections provide canonical 
variates which are linear combinations of the raw features. In general, statistical classifiers 
such as a P N N or nonlinear S V M try to separate classes using nonlinear combinations of 
the feature data. In this section, I compare the performance a suite of statistical classifiers 
with the rule-based remanence classifier. 

Hart et al. trained a probabilistic neural network to discriminate between U X O and 
scrap using features extracted from magnetics data [35]. They found that a P N N trained 
using size (a proxy for strength of the dipole moment), depth, and inclination of best-fitting 
dipoles provided a higher rate of correctly classified U X O s and fewer false alarms than linear 
discriminant analysis. 

6.3.1 Training for U X O classification 

Estimating priors 

At first consideration, the estimate of the prior probability appears to be crucial to obtaining 
optimal performance from a generative classifier. For example, if we estimate the priors 
from the training data, then the prior probability of the U X O class will typically be quite 
small and will produce undesirably small posterior probabilities. This does not reflect our 
prior expectation that it is far more costly to misclassify a U X O item than it is to misclassify 
a clutter item. 

However, the prior probability turns out to be something of a red herring in the con
text of U X O discrimination. Recall that for linear discriminant analysis the discriminant 
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function is expressed as 

fij = (m - tijfz-1* + i(Mjs;Vj - d^m) + \ log (̂ y) (6J) 

with fij = 0 the decision boundary between classes u>i and u>j. In this expression the 
prior probabilities only appear in the constant term ^ log ( p j ^ j - Therefore the prior 
probabilities only affect the location of the decision boundary. This effect is demonstrated 
for a random realization of the Guthrie road data (figure 6.8(a)). Using equal or estimated 
priors with quadratic discriminant analysis merely shifts the decision boundary. The aim 
of U X O classification is not to dig all items on one side of the decision boundary but rather 
to generate a prioritized dig list by thresholding on classifier output. Consequently, while 
the values of the posterior probabilities will depend on the priors, the order in which items 
are dug is independent of the prior. This effect is shown in figure 6.8(b): using equal or 
estimated priors produces exactly the same R O C curve. 

- 2 o 

log(||m||) 
- 2 0 

log(l|m||) 

(a) Quadratic discriminant analysis applied to a random realization of Guthrie road 
training data. Squares are UXO items and triangles are clutter items. Left: estimated 
priors. Right: equal priors 

o 0.1 0 . 2 0 . 3 0 . 4 

Proportion of clutter found 

(b) ROC curves generated by quadratic dis
criminant analysis with equal priors and esti
mated priors (the two curves are identical in 
this plot). 

Figure 6.8: Effect of priors for U X O classification. 
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Regularization 
Training a P N N or S V M for U X O classification requires estimation of a regularization 
parameter via cross-validation. In the previous chapter, the regularization parameter was 
found by minimizing the estimated probability of misclassification. 

K N"i 

$ = £ £ ( 1 - P ( & = W J - |XO ) (6.2) 
3 = 1 i=l 

Hart et al. chose to square the leave-one-out error [35] 

K N<"j 
$* = E D 1 - ^ = ^ i x ' ) ) 2 (6-3) 

j=l i=l 

Although no justification was provided for this error function, squaring the probability of 
misclassification increases the importance of highly uncertain feature vectors in the cross-
validation error function. Though $ and $* are nonlinear functions of the smoothing 
parameter a, both functions tend to be smooth with well-defined minima (figure 6.9). The 
leave-one-out estimate also provides a reasonable approximation to the computed value for 
the test data. However, minimizing either error function does not provide particularly good 

Figure 6.9: Cross validation error functions <E> (left) and $* (right) evaluated as functions 
of the kernel smoothing parameter a. Solid line is the error function estimated from the 
training data and dashed line is the error function computed from the test data. 

performance for a P N N (figure 6.11). The decision boundary is overly complex and produces 
a high false alarm rate. These error functions provide poor performance because most of 
the terms in the summation are from feature vectors which are correctly classified. Conse
quently, the error functions are insensitive to misclassified feature vectors. While squaring 
the probability of misclassification emphasizes the contribution from misclassified feature 
vectors, the smoothing parameter estimated from $* still produces a high misclassification 
rate. 

I have found that an effective heuristic for the kernel smoothing is the average within-
class standard deviation, where the average is taken over all classes (see figure 6.10). This 
heuristic is motivated by analogy with the averaging of the class covariances used in linear 
discriminant analysis. As shown in figure 6.11, this estimate tends to produce a smooth 
decision boundary and better average performance than cross-validation methods. 
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Figure 6.10: A heuristic for estimating P N N kernel smoothing. Left: synthetic feature data 
belonging to two classes. For each class I compute the standard deviation of that class 
along each feature (solid lines enclosed by dashed ellipses). The kernel smoothing is then 
the average standard deviation over all classes. Right: P N N decision boundary using a 
smoothing estimated with this heuristic. 

6.3.2 Results 

In this example, the training data are generated as random subsets of the entire data set. 
The performance of a statistical classifier will depend upon the particular realization of the 
training data set. I therefore compute an average R O C curve and its standard deviation 
over twenty realizations of the training and test data. To average R O C curves over multiple 
realizations, I interpolate the R O C curve for each realization at fixed values of the false 
alarm rate. I then compute a mean and performance bounds of the ensemble of R O C curves 
at each interpolation location. In addition to representing the average performance of a 
classifier, the interpolated curve also provides an indication of the worst case performance. 
This is because the curve is interpolated out to the maximum false alarm rate seen for the 
twenty realizations of the training data. 

I also consider the effect of training data size on classifier performance. As the size 
of the training data set increases, we might expect classifier performance to improve. A l l 
classifiers are trained in a two-dimensional feature space spanned by the logarithm of the 
dipole moment magnitude and the logarithm of the angle with the earth's field. 

Figure 6.12 shows the decision boundaries for all classifiers for a realization of the 
Guthrie road training data set. In this figure the training data are a random sample of 10 
percent of all feature data. Quadratic discriminant analysis and the P N N produce similar 
decision boundaries in the feature space. Interestingly, the S V M output does not attain a 
value of +1 in the feature space. This means that there are no support vectors for the U X O 
class and the decision boundary is comprised of a nonlinear combination of support vectors 
from the clutter class. The shape of the decision boundary is nonetheless quite similar to 
that of the P N N . 

Figure 6.13 shows the performance of linear and quadratic discriminant analysis for the 
Guthrie road data. Mean R O C curves generated by thresholding on remanence and angle 
are also shown for comparison. Linear discriminant analysis (LDA) produces an R O C curve 
which is quite similar to that generated by thresholding on angle. The performance of this 
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Figure 6.11: Models of the decision boundary for a realization of the Guthrie road training 
data. Model 1: P N N with a estimated by minimizing $. Model 2: P N N with a estimated 
by minimizing $*. Model 3: P N N with a estimated as the mean standard deviation within 
the training data. Bottom right: R O C curves generated from the test data using the P N N 
models 

classifier does not significantly improve as the size of the training data set increases. This is 
because the pooled covariance matrix used in L D A is estimated from all the training data, 
regardless of class. Even for relatively small training data sets, there is sufficient informa
tion to obtain an accurate estimate of the pooled covariance. Consequently, L D A provides 
constant performance as the training data grows. In contrast, quadratic discriminant anal
ysis (QDA) estimates a separate covariance for each class, and so it requires information 
about both classes. Small training data sets generated by random sampling contain few 
U X O items, resulting in poor performance. As more information is obtained, the estimate 
of the U X O class covariance significantly improves. 

The mean R O C curves generated by thresholding on remanence and angle do not depend 
upon the size of the training data set. This is because the outputs of these rule-based 
classifiers are independent of the training data. While remanence provides the optimal 
classification performance at this site, the rule-based approach does not learn from the 
available information. 



Chapter 6. UXO classification 82 

The performance of nonlinear classifiers on the Guthrie road data is shown in figure 6.14. 
The P N N with Gaussian kernels provides similar average performance to Q D A . This classi
fier is even more sensitive to the realization of training data because the likelihood function 
depends directly upon the training data. Therefore for small training data sets there is 
relatively large variance in the performance of the classifier. As the training data set grows, 
the P N N estimates an improved approximation of the class likelihood functions and there 
is a corresponding decrease in the false alarm rate. The S V M shows a similar improvement 
in classification performance as the training set grows. 

At Badlands bombing range, a linear decision boundary does a reasonable job at sepa
rating the two classes (figure 6.15). Regularization of the P N N and S V M yields a boundary 
which is approximately linear for this realization, while Q D A models a curved boundary. 

In contrast to the Guthrie road data, Q D A does quite poorly on the Badlands data 
(figure 6.16). The additional structure in the Q D A decision boundary hinders classification 
in this case. The S V M yields excellent performance on these data followed closely by the 
P N N (figure 6.17). For this data set, there is no significant improvement in the performance 
of classifiers as the size of the training data set is increased. This is because there is a 
large separation between U X O and clutter classes so that an approximately linear decision 
boundary can be estimated from small training sets. 

Statistical classifiers show more variability in their performance on the Badlands data 
than on the Guthrie road data. This is because the training data sets for the Badlands data 
are small relative to those used for Guthrie road. At Badlands there is more variability 
in the realizations of the training data and so there is more variability in the outputs of 
statistical classifiers. Interestingly, the variability of rule-based classifiers grows as the size 
of the training data set grows (see figure 6.17). This is an effect of the random sampling 
used in this study: as the training data set grows there is a commensurate decrease in the 
size of the test data. The realizations of the test data are increasingly variable and so the 
performance of rule-based classifiers for a given realization is more likely to deviate from 
the mean. 

6.3.3 Retraining 

Relying on random training data is a risky proposition. If we are unlucky in our realization 
of training data, then our statistical classifier will perform quite poorly. Increasing the size 
of the training data set can alleviate this problem, though this will increase costs and is 
not guaranteed to lower the false alarm rate. 

As items are excavated during field operations, our training data set grows. This ad
ditional information can be used to retrain the classifier and revise the dig list. I simulate 
this procedure by starting with a small random training data set (F=0.1). I train a P N N 
on these data and then dig 10 items most likely to be U X O s . The P N N is retrained with 
the new training data and the next 10 items are identified from the updated probabilities. 
Figure 6.18 compares the performance of the retrained P N N with a P N N that is trained 
using only the initial realization of training data. In this figure I show an ensemble of R O C 
curves generated from 20 realizations of the initial training data. 

In the worst case scenario at Guthrie road, a P N N without retraining would require us 
to dig all clutter items. Retraining reduces this worst case false alarm rate to about 0.35. 
B y learning from the training data as items are excavated, the retrained P N N is able to 
guard against "bad" realizations of the training data. At Badlands bombing range, the 
separation between U X O and clutter is so large that retraining does not improve upon the 
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(d) Support vector machine: solid line shows the decision boundary and dashed lines 
show the support planes (only the support plane for the clutter class is visible in 
this example). 

Figure 6.12: Classifier solutions for a single realization of the Guthrie road data. Squares 
are U X O items and triangles are clutter items. Training data are a random sample of 10% 
of all feature data. 



Chapter 6. UXO classification 84 

Figure 6.13: R O C curves of Guthrie road magnetics data for discriminant analysis (squares). 
Also shown are R O C curves generated by thresholding on remanence (crosses) and angle 
(circles). Subplots (a) through (d) show the average performance of classifiers when the 
size of the training data set is a fraction F of all feature data. Error bars indicate minimum 
and maximum performance bounds seen over all realizations for that classifier. 
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(b) Support vector machine 

Figure 6.14: R O C curves of Guthrie road magnetics data for nonlinear classifiers with 
Gaussian kernels (squares). Also shown are R O C curves generated by thresholding on 
remanence (crosses) and angle (circles). Subplots (a) through (d) show the average perfor
mance of classifiers when the size of the training data set is a fraction F of all feature data. 
Error bars indicate minimum and maximum performance bounds seen over all realizations 
for that classifier. 
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(d) Support vector machine: solid line shows the decision boundary. 

Figure 6.15: Classifier solutions for a single realization of the Badlands bombing range 
data. Squares are U X O items and triangles are clutter items. Training data are a random 
sample of 10% of all feature data. 
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(b) Quadratic discriminant analysis 

Figure 6.16: R O C curves of Badlands bombing range magnetics data for discriminant 
analysis (squares). Also shown are R O C curves generated by thresholding on remanence 
(crosses) and angle (circles). Subplots (a) through (d) show the average performance of 
classifiers when the size of the training data set is a fraction F of all feature data. Error 
bars indicate minimum and maximum performance bounds seen over all realizations for 
that classifier. 
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(b) Support vector machine 

Figure 6.17: R O C curves of Badlands bombing range magnetics data for nonlinear classifiers 
with Gaussian kernels (squares). Also shown are R O C curves generated by thresholding on 
remanence (crosses) and angle (circles). Subplots (a) through (d) show the average perfor
mance of classifiers when the size of the training data set is a fraction F of all feature data. 
Error bars indicate minimum and maximum performance bounds seen over all realizations 
for that classifier. 
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Figure 6.18: Ensemble of R O C curves generated by a P N N . Heavy solid line is the mean 
R O C curve for remanence with error bars indicating performance bounds seen over all 
realizations. Top plot is for 20 random realizations of the training data (F = 0.1). Bottom 
plot uses the initial random realizations with retraining in increments of 10 items. Dashed 
lines indicate range of inset plots. 
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worst case false alarm rate (figure 6.18). 
Figure 6.19 shows the evolution of training and test data sets for a retrained P N N 

applied to the Guthrie road data. The initial realization is quite poor in this example; a 
P N N without retraining requires us to dig nearly all clutter items in order to find all U X O s . 
Retraining quickly corrects the initial decision boundary: after only a few iterations of the 
algorithm the decision boundary is quite similar to its final form. The retrained P N N 
requires us to dig 30 % of all clutter items to find all U X O s . 

Training Test ROC 

Figure 6.19: Evolution of the training and test data for a retrained P N N . Each row shows 
the training and test sets and retrained P N N decision boundary. The rightmost column 
shows R O C curves for the retrained P N N (Solid) and a P N N without retraining for the 
remainder of the digging process (Dashed). Open circle indicates the point on the R O C 
curve for the training and test sets in the corresponding row. 

The P N N is particularly suited to the retraining process. By modelling the likelihood 
function as a superposition of Gaussian kernels, it is flexible enough to incorporate new 
information into the class distributions as items are excavated. Linear discriminant analysis, 
for example, is unlikely to show much improvement with retraining. As was shown in the 
previous section, the linear decision boundary will not change very much as the training 
set grows. 

Care must be taken, however, not to overfit the training data at each iteration of 
retraining. Information acquired during the digging process only comes from items which 
are likely to be U X O s . Hence our training data becomes increasingly biased at each iteration 
of retraining. Previous experiments using retraining with a cross-validation error function 
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degraded classifier performance. This was because the P N N overfit the training data at 
each iteration. 

The interval at which a classifier is retrained is governed by practical field considerations. 
At one extreme we might imagine retraining the classifier after every item is excavated. 
This would require some logistical effort coordinating field crews. Updating the dig list 
after every item would also prevent a field crew from efficiently managing its movements 
on a site. It is more reasonable to generate a dig list for each crew at the start of the field 
day and then update the classifier with whatever information is available at the end of the 
day. 

6.4 S e l e c t i n g a c lass i f ie r 

While statistical classifiers can outperform rule-based classifiers, there is no way to know a 
priori which classifier is optimal for a given data set. In this section, I address this problem 
with an algorithm for selecting a classifier as the learning process proceeds. 

Classifier selection or combination appears in various forms in the statistical literature. 
"Bagging" is a democratic approach: a test vector is classified based upon the majority vote 
of an ensemble of classifiers. A single algorithm is used to generate the ensemble, with each 
classifier trained using a random subset of the training data. "Boosting" applies classifiers 
sequentially, with each classifier in the sequence placing increased importance on training 
vectors which were misclassified by the previous classifier. This scheme also uses a single 
classifier to generate predictions at each stage. Finally, "bumping" selects a single best 
classifier from a set of classifiers. The best classifier is chosen based upon some optimality 
criteria estimated from the training data [25]. 

For U X O classification, I propose an algorithm which is a variant of bumping. The 
classifier selection algorithm is summarized in pseudocode in figure 6.20. 

I start with an initial training data set and an "active" classifier selected from the 
set of available classifiers C. The selection algorithm needs an initial training data set 
because statistical classifiers require information about both U X O and clutter classes to 
make classification decisions. If we were to generate the training data set by only digging 
items which are likely to be U X O , then we would not have a representative distribution of 
clutter at the beginning of the algorithm. 

At the first iteration, I dig (i.e. label) the batch of Ndig items identified by the active 
classifier as most likely to be U X O s . The numbers of U X O and clutter found in the current 
batch are then added to running totals NUXO and NScrap. The newly-labelled items are 
appended to the training data. 

Next, I evaluate the predicted performance of the classifiers in the ensemble C using a 
version of cross-validation known as "k-fold" cross-validation. A criticism of leave-one-out 
cross-validation is that the training data sets at each stage of the process are not significantly 
different and so the resulting decision boundary may fit the training data too closely. This 
can be addressed by leaving out a proportion of the training data for cross-validation. In k-
fold cross-validation, a random hold-out subset is used for validation. The method provides 
an asymptotic estimate of a classifier's actual performance on the test data and has been 
successfully used in model selection problems [25]. 

To implement k-fold cross-validation, I randomly divide the training data set into tem
porary training and test sets (Training-temp and TestJtemp in figure 6.20). The size of 
the temporary training set is a specified proportion F of the total training data set, so that 
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the temporary test set is (1 — F) of the training data. 
A l l statistical classifiers are trained using the temporary training set. The expected per

formance of all classifiers (rule-based and statistical) is then evaluated with the temporary 
test set. I compute the estimated false alarm rate FARest for all classifiers for the current 
realization of temporary test data. Here the false alarm rate is the maximum of the R O C 
curve, i.e. it is the proportion of clutter items which must be dug in order to find all U X O s . 

The estimated false alarm rate for each classifier will depend upon the particular re
alization of the temporary training and test sets. Consequently, the false alarm rates for 
all classifiers are estimated using a large number (Ar r e a;j z afj 0„<.) of realizations. However, 
it is important that all classifiers are evaluated on the same set of realizations of the tem
porary training and test sets. If different realizations were used for each classifier, then it 
is possible that one classifier might see lucky realizations of the training data. This could 
produce overly optimistic estimates of that classifier's performance. For a fair comparison, 
all classifiers must be evaluated using the same temporary training and test sets. 

Once I have computed FARest using cross-validation, I compare the mean false alarm 
rates of all classifiers. I set the active classifier as the classifier with the minimum mean 
FARest- However, if the actual performance of the active classifier is optimal (i.e. no 
clutter items were found in the current batch of labelled items), then there is no reason to 
change classifiers. I only switch classifiers if the active classifier has uncovered clutter items 
and cross-validation has identified another classifier which is expected to do better. 

When the active classifier is chosen, the process begins anew and the next batch of 
test items is labelled with the active classifier. Implicit in this algorithm is retraining of 
statistical classifiers as each batch of targets is labelled. The algorithm proceeds until some 
stopping criterion is achieved (e.g: no U X O s are found in the current batch of labelled 
items). 
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active 1 c l a s s i f i e r from the set C 
size of random samples of t r a i n i n g 
set as a proporr.i on of set si.ze 
number of random samples of trai n i n g set 

9 iteration^! 9 i t e r a t i o n counter 

10 Repeat 1.0 
11 V (Test) Predict { Training 1, Test, Tactile) 11 Train the active c l a s s i f i e r and 

generate predictions P of 
membership in the UXO class 

12 wdicr-Di^iP(Test), Ndig) 12 Generate set of labels vdig for the 
Hdig itetns i d e n t i f i e d by Tactivtis 
as most l i k e l y to be UXOs 

13 rrdiiii/jy-Upcate {Training, wdig) 13 append newly Labelled feature, vectors 
to training set 

14 NVXO{lteraLion)=lengthlwdlg t wUXO) 
NScrsp{iteration) = length (vdig c wScr;tp) 

14 
I D 

number of UXO found 
number of Scrap found 

16 For -r.o .Vrsai.i nations) 16 loop on real i z a t i o n s 

1? F c r ( j < to L) 17 loop on c l a s s i f i e r s 

18 Training cerap-Ran6Train (Training, F) . 10 generate random t r a i n i n g 3et which 
i s a proportion F of the e x i s t i n g 
training set 

19 Test^ temp-Training U Training^temp 19 Generate a random test set with 
the reata i ni ng iterns in Tra inirig 

20 P(Test__ter?.p)-Predict (Training^teirtp, Test_temp, Tj) 20 Train c l a s s i f i e r and generate 
predi c t ions P fTes t__ temp J 

21 thres^O-M - min ( P (Test temp (w a uUXO}}) 21 Set a threshold as the minimum prediction 
for items belonging to the UXO class 

22 zARz&mpt,i\~l.&nqt.Y,{P(Test temp (w <? wScrap) )>~t tires hold) 22 Estimated false alarm rate for t h i s 
r e a l i z a t i o n i s the number of Scrap 
items which would be dug in ord'L-r 
to find a i l UXOs 

23 EndFcr 23 End loop on c l a s s i f i e r s 

2$ FARest ( 3) -mean (FAKr.emp) 24 Estimated false aiara; rate for c l a s s i f i e r 
is the mean PAR over a l l r e a l i z a t i o n s 

25 EndFor 25 End loop on r e a l i z a t i o n s 

26 

28 

If ( [FARest {Tact±ve) PFARest (Ti)) and isam(HScrap) 
Tactive^Tj 

Endlf 

>0)) 26 
27 
23 

"hange active c l a s s i f i e r s i f the 
active c l a s s i f i e r does not have the minimum 
FARest and scrap items have been found. 

29 iteratio.':=ifceratio,"i-'-I 29 

30 Until(StopDigtWHKO, Nscrap) ) 30 Stop digging when a convergence 
c r i t e r i o n StopDig i s achieved 

Figure 6.20: A n algorithm for selecting classifiers during learning 
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6.4.1 Synthetic example 

As a first example, I simulate the classifier selection algorithm for the Yuma E M feature 
space. I assume that the generative model used in linear discriminant analysis is the true 
model (i.e. I use a pooled covariance matrix for all classes). I then randomly generate 200 
test items from normal distributions with the mean and covariance of each class. The rela
tive frequencies of each ordnance type in the synthetic test data are equal to the frequencies 
in the training data. Figure 6.21 shows the observed training data and synthetic test data 
for this simulation. 

Initial training Initial test 
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Figure 6.21: Yuma E M training set and synthetic test set for simulation of classifier selection 
algorithm. 

Figure 6.22 shows the performance of the classifier selection algorithm on the synthetic 
test data. The ensemble of classification algorithms includes linear discriminant analysis, 
quadratic discriminant analysis and a P N N . The active classifier is selected after batches of 
Ndig — 20 items are labelled. Cross-validation is carried out with F — 0.9. In this example, 
linear discriminant analysis represents the "true" model of the decision boundary, and so 
its performance should, on average, be optimal for these test data. Figure 6.22 shows that 
L D A does provide a minimal misclassification rate for these data. Training Q D A using only 
the initial realization of training data produces very poor performance; the initial training 
data is too small to provide accurate estimates of the class covariances. 

To test the selection algorithm, I set the initial active classifier to be quadratic discrimi
nant analysis. Although this classifier does quite poorly using only the initial training data, 
Q D A does reasonably well with retraining for the first couple of iterations of the selection 
algorithm. Once a misclassification occurs, the algorithm selects linear discriminant anal
ysis as the active classifier for the remainder of the digging process. The resulting R O C 
curve is comparable to that generated by the optimal L D A classifier. B y evaluating the 
performance of classifiers as digging proceeds, the algorithm was able to detect that Q D A 
was an inappropriate classifier for these data. 

As the algorithm proceeds, the choice of the active classifier becomes less clear. A t 
early iterations, L D A has the minimal false alarm rate by a comfortable margin. However, 
for the last three iterations of the algorithm there is no classifier which is clearly optimal 
(rightmost plot in figure 6.22). This effect can be understood by considering histograms of 
the estimated false alarm rates at different iterations (figure 6.23). Because the training data 
set is relatively small at the second iteration, there is enough variability in the realizations of 
the temporary training data to resolve differences in the expected performance of classifiers. 
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Figure 6.22: Left: performance of statistical classifiers on synthetic Yuma test data. Clas
sifiers are: (1) Linear D A , (2) Quadratic D A , (3) P N N . Middle: performance of classifier 
selection algorithm (dashed line) on Yuma test data. Numbers indicate the active classifier 
for that point on the R O C . Solid line with crosses shows the performance of the optimal 
L D A classifier. Right: estimated false alarm rate for classifiers as a function of selection 
algorithm iteration. 

By the tenth iteration, the realizations of training data are quite similar, and so cross-
validation yields very similar distributions of FARest. 
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Figure 6.23: Estimated false alarm rates (FARest) for classifiers at two iterations of the 
selection algorithm applied to synthetic Yuma test data. Vertical dashed lines indicate the 
mean FARest for each classifier. Histograms are generated by 100 realizations of temporary 
training and test data. Top row is for the second iteration of the algorithm, bottom row is 
for the tenth iteration. 

One way to address this problem is to adjust the proportion F as the training data 
set grows. To obtain more variability in the realizations of the temporary training data, I 
adopt a cooling schedule for F. When the training data is sufficiently large (e.g. more than 
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100 feature vectors), I decrease F at each iteration by a factor a < 1 

F *- aF. (6.4) 

I delay the cooling schedule for the first few iterations because the training data set is so 
small that the temporary training data must initially be a sizeable (i.e. F = 0.9) propor
tion. Figure 6.24 shows the resulting performance of the algorithm with a = 0.75. The 
performance is the same as before, but there are larger differences between the estimated 
false alarm rates at later iterations. Decreasing F with iteration strongly affects the distri
butions of FARest (figure 6.25). There is more variability in the estimated performance of 
the classifiers and so it is easier to identify the optimal classifier at each iteration. 
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Figure 6.24: Classifier selection algorithm with variable F. Left: performance of classifier 
selection algorithm (dashed line) on Yuma test data. Numbers indicate the active classifier 
for that point on the R O C . Classifiers are: (1) Linear D A , (2) Quadratic D A , (3) P N N . Solid 
line with crosses shows the performance of the optimal L D A classifier. Middle: estimated 
false alarm rate for classifiers as a function of selection algorithm iteration. Right: F as a 
function of iteration. 

6.4.2 Application to magnetics data 

For magnetics classification, the initial training data set is generated as a small random 
subset of the feature data. I choose the set of classifiers to be remanence, a P N N and an 
S V M . The statistical classifiers are trained in a feature space spanned by log(Moment) and 
log(Angle). I select remanence as the initial active classifier. 

Figure 6.26 shows the performance of the algorithm for a single realization of the initial 
training data at Badlands bombing range. Although the selection algorithm depends upon 
the initial realization of training data, figure 6.26 shows its typical performance. The algo
rithm keeps remanence as the active classifier for the first few iterations. At this early stage 
of the digging process, no false alarms have occurred and so there is no reason to change 
classifiers. B y the third iteration, the statistical classifiers have gained enough information 
about the U X O class that cross-validation predicts that they will outperform remanence. 
The selection algorithm chooses nonlinear statistical classifiers for the remainder of the 
digging process, resulting in a smaller false alarm rate than would be obtained by thresh
olding on remanence alone. The resulting performance is comparable to that obtained with 
retrained PNNs for this data set. 

The estimated false alarm rate increases for all classifiers as the algorithm proceeds. 
This is because in the early stages of digging we are labelling "easy" targets which all 
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Figure 6.25: Estimated false alarm rates (FARest) for classifiers at two iterations of the 
selection algorithm with variable F. Vertical dashed lines indicate the mean FARest for 
each classifier. Histograms are generated by 100 realizations of temporary training and test 
data. Top row is for the second iteration of the algorithm, bottom row is for the tenth 
iteration. 

classifiers can identify as U X O . As digging proceeds, we encounter more clutter and the 
classification task becomes more difficult. Consequently, the estimated false alarm rate 
increases for all classifiers. 

The estimated false alarm rate is quite optimistic: in figure 6.26 the estimated F A R 
indicates that we will dig no more than 8% of all clutter items. However, the remanence 
classifier actually requires us to dig 25% of all clutter items. This discrepancy arises from 
the fact that the actual false alarm rate is governed by a small number of U X O items which 
are difficult to find and are discovered in the final few iterations of digging. The estimated 
F A R provides a measure of the relative merits of classifiers using the available training 
data, and does not necessarily represent the actual performance. While this is an obvious 
weakness of the selection algorithm, I have found that the algorithm provides near optimal 
performance for the data sets and classifiers considered. 

The performance of the selection algorithm is quite sensitive to the interval N<ng at 
which statistical classifiers are retrained and the active classifier is selected. Figure 6.27 
compares the performance of the algorithm for the same initial realization of training data 
but with intervals N&g = 10 and N^ig = 20. When the algorithm selects the active classifier 
at the larger interval Ndig — 20, the training data becomes increasingly biased in favor of 
remanence. B y the time the algorithm switches from remanence to statistical classifiers 
at the third iteration, there is no difference in the dig lists provided by the ensemble of 
classifiers. The resulting R O C curve for the selection algorithm is identical to that produced 
by simply thresholding on remanence (bottom row of figure 6.27). 

Figure 6.28 shows the application of the selection algorithm to the Guthrie road data, 
with a retraining interval of N^g = 10. The algorithm chooses remanence as the best avail-
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Figure 6.26: Performance of the classifier selection algorithm for Badlands bombing range. 
Top row shows the initial realization of test and training data. Squares are U X O and 
triangles are clutter. Bottom left: R O C curves generated by thresholding on remanence 
(dashed), and by the classifier selection algorithm (solid). Numbers indicate the active 
classifier for the point on the R O C curve: (1) Remanence, (2) P N N , (3) S V M . Bottom 
right: estimated false alarm rates for classifiers at each iteration of the classifier selection 
algorithm. 

able classifier throughout the digging process. This is consistent with the experiments in 
the previous sections: remanence was the optimal classifier amongst all available classifiers 
for the Guthrie road data. 

In this section, I have proposed an algorithm for selecting a classifier during the digging 
process. M y approach is to evaluate the performance of classifiers using the available infor
mation. While there is no guarantee that this algorithm will provide optimal performance 
for a given data set, the continual evaluation of classifiers can at least guard against a 
poor choice of classifier. Some care must be taken with the setting parameters (F, a,Ndig, 
^realizations) and further experiments may suggest more sophisticated means of tuning pa
rameters. The algorithm is easily expanded to include a wide variety of classifiers and is 
not computationally intensive. The simulations presented here each required less than a 
minute to execute on a standard Pentium 4 laptop. Ultimately, the utility of this algorithm 
at field sites will depend upon close coordination between field crews and an operations 
centre which generates updated dig lists. 
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Figure 6.27: Dependence of the classifier selection algorithm upon retraining interval. Top 
row shows the R O C curves and estimated classifier error rates (as in figure 6.26) for the 
selection algorithm with Ndig = 10. Bottom row is for Ndig = 20, R O C curves for remanence 
and the selection algorithm are identical in this example. 

6.5 C l a s s i f i c a t i o n o f e l e c t r o m a g n e t i c d a t a 

Electromagnetic data is better suited to statistical classification techniques. The sensitivity 
of this data type to target shape and size means that multiple features can be used to define 
the feature space. However, the large number of features which have been developed for 
this data type means that we must carefully choose our features to avoid the curse of 
dimensionality. 

Previous studies with statistical classifiers and electromagnetic data have yielded promis
ing results. Pasion proposed a simple rule-based algorithm based on thresholding ratios of 
decay parameters from his model [10]. 

Norton and Won proposed a "fingerprinting" approach to discrimination using frequency-
domain E M data [36]. They extracted the elements of the polarization tensor from the 
observed data and then computed a metric which compares the estimated values of the 
polarization tensor with a library of polarizations for ordnance items. They showed using 
laboratory measurements that this metric can be used to discriminate between different 
ordnance types. 

A weakness in this approach is that their metric assumes that two estimated polariza
tions which are the same "distance" from a library item are equally likely to be that item. 
However, as was shown in chapter 4, there is a strongly nonlinear relationship between tar
get shape and parametric model parameters. Therefore a Euclidean metric may not have 
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Figure 6.28: Performance of the classifier selection algorithm for Guthrie road. Top row 
shows the initial realization of test and training data. Squares are U X O and triangles are 
clutter. Bottom left: R O C curves generated by thresholding on remanence (dashed), and 
by the classifier selection algorithm (solid). Numbers indicate the active classifier for the 
point on the R O C curve: (1) Remanence, (2) P N N , (3) S V M . Bottom right: estimated 
false alarm rates for classifiers at each iteration of the classifier selection algorithm. 

the same meaning for two points which are equidistant from a library item. Barrow and 
Nelson accounted for this nonlinearity by showing experimentally that the distributions 
of polarization tensor elements for U X O items were log-normally distributed [28]. They 
devised a rule-based classifier by estimating the mean and covariance of log-transformed 
model parameters for 81 mm mortars in a calibration grid. To generate a dig list at a field 
site, they then computed the number of standard deviations between an observed test vec
tor and the class mean. A n advantage of this method is that it requires no prior information 
regarding clutter. 

Statistical classifiers have also been applied to discrimination with E M data. Zhang 
et al. compared the performance of a support vector machine and Gaussian likelihood 
ratio 1 for discrimination using both magnetic and frequency-domain E M data [37]. E M 
features included the estimated peak frequency of the axial excitation and the ratio of peak 
frequencies discussed in chapter 4. They found that the best performance was obtained 
using the S V M applied to E M features estimated by cooperative inversion. However, given 
the small number of U X O items in the test data (16), a K S test of the resulting R O C curves 
would likely not reject the null hypothesis that these classifiers are significantly different. 
A feature space which combined features from E M and magnetics data actually degraded 

Equivalent to quadratic discriminant analysis 
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the performance of both classifiers, suggesting that careful assessment of the feature space, 
perhaps using canonical analysis, may be necessary before attempting joint classification. 

A study by Collins et al. using a larger suite of classifiers produced similar results: 
while statistical classifiers typically outperform simple thresholding algorithms, there is no 
classifier whose performance is optimal in all cases [38]. These results highlight the need for 
an algorithm "to choose a classifier as digging proceeds, as discussed in the previous section. 

Unfortunately, no E M data suitable for classification was available for this thesis. How
ever, future work will use E M features for statistical classification. In the next section, I 
examine the effect of noise upon classification using the Yuma training data set. 

6.6 Uncertainty in classification 

As discussed in chapter 3, model parameters estimated with inversion have an associated 
uncertainty. This uncertainty can be estimated using a linearized or nonlinear uncertainty 
analysis. Uncertainties estimated with nonlinear uncertainty analysis are typically larger 
than those obtained with a linearized uncertainty analysis. Uncertainties in the feature 
vectors are always neglected in the classification process, primarily because most classifica
tion algorithms have been developed for applications where there is negligible uncertainty 
in the feature vectors. 

Propagating uncertainties through a classifier is a difficult task, since we must deal with 
both with errors in the parameters of the classifier and errors in the test feature vectors. The 
former must be estimated by propagating errors from the training data to the parameters 
of the classifier. For example, if we are to propagate errors through discriminant analysis, 
then we must estimate the uncertainties in the class means and covariances. 

This problem has been tackled in the context of regression using variational meth
ods [39]. In this work the independent variable (input) with associated uncertainty x + dx 
is propagated through a neural network to the dependent variable (output) y and its associ
ated uncertainty dy. This analysis identified three sources of uncertainty which contribute 
to dy: the uncertainty in the parameters of the neural network (which are themselves 
estimated from uncertain training data), the uncertainty in the inputs (rfx), and a term 
involving the interaction of the first two sources of uncertainty. 

In classification we might expect the same sources of error. Analytic propagation of 
errors is beyond the scope of this thesis, and so I propagate uncertainties through the 
Yuma training data with a Monte Carlo simulation. The aim of this simulation is to gain 
a first-order understanding of how errors could propagate and how the final output could 
be used. 

As in the previous chapter, I assume that the model generated by linear discriminant 
analysis is the "true" model for the Yuma test data. However, I account for uncertainty 
with multiple realizations of the training data. In each realization, I generate each training 
datum as a random sample from a Gaussian distribution with the mean and variance 
estimated by linearized uncertainty analysis. I then compute the class means and pooled 
covariance to generate a model of the decision boundary for this realization. At each point 
in the feature space I can then compute maximum posterior probability. Finally, I compute 
the mean and variance of the posterior probability over all realizations of the training data. 

This simulation was carried out with 1000 random realizations of the Yuma feature 
data in a two-dimensional feature space spanned by kl and k2 (figure 6.29). The effect 
of uncertainty is to blur the decision boundaries (figure 6.30). In regions of the feature 
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space where the training data have a small relative uncertainty (ie for large items), there 
is a small uncertainty in the posterior probability. For small items, however, the relative 
uncertainty in the training data produces an uncertainty of up to ±0.2 in the posterior 
probability. As was shown in the analysis of magnetics data, linear discriminant analysis 

o 

Figure 6.30: Left: Mean posterior probability from Monte Carlo simulation of discriminant 
analysis with uncertainty in the feature vectors. Right: Standard deviation of the posterior 
probability, estimated by Monte Carlo simulation. 

is relatively insensitive to the realization of the training data. Classifiers which are more 
sensitive to the particular realization of the training data (eg Q D A or PNNs) will therefore 
produce more uncertainty in the posterior probability. 

Estimates of the uncertainty in the posterior probability can be used to revise the dig 
list. Again, rigorous development is postponed for future research. However, even first order 
ideas can be insightful. For instance, by subtracting the uncertainty from the posterior we 
obtain a worst case estimate of the posterior (figure 6.31). This corrected posterior can 
then be used to generate a prioritized dig list. For E M data, the effect will be to prioritize 
large items ahead of small items in the dig list. 
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Figure 6.31: Mean posterior minus the standard deviation of the posterior, estimated from 
Monte Carlo simulation. 

6.7 Discussion and conclusions 

Useful features are site-specific: a parameter which separates classes at one site may not 
work at another. Canonical analysis is one way to identify the relevant features at a site. At 
Guthrie road and Limestone hills, canonical analysis of raw features showed that remanence 
provided the largest separation between U X O and clutter. For the Badlands bombing range 
data set, remanence was ranked behind moment and angle. 

The results of canonical analyses were supported by applying a suite of classifiers to the 
feature space spanned by moment and angle. In no case did statistical classifiers outperform 
remanence at Guthrie road and Limestone Hills. A t Badlands bombing range, the best 
classifier provided a modest reduction in false alarm rate in comparison to remanence. 

Classifiers depend upon the input features and so they are also site specific. For example, 
quadratic discriminant analysis did quite well at Guthrie road but performed poorly on 
the Badlands data. Though it was outperformed in some cases, the P N N consistently 
provided reliable classification of the data sets considered in this chapter. I found that 
a simple heuristic for estimating the kernel smoothing provided better performance than 
cross-validation techniques. A similar heuristic for estimating kernel smoothing for S V M s 
produced comparable performance to that of the P N N . This classifier performed best on 
data which had a relatively large separation between U X O and clutter classes. 

In practice, we cannot know the point on the R O C curve where we have found all U X O 
items. Previous authors have suggested setting a threshold on classifier output and digging 
everything up to this threshold [35]. The threshold may be estimated from the training 
data or using prior information from other sites. A more sensible way to choose a threshold 
might be to monitor the false alarm rate as targets are excavated. If a batch of excavated 
targets contains no UXOs , then this is probably an indication that we are nearing the 
maximum of the R O C curve. It is crucial however, that a classifier does not generate an 
R O C curve which levels off near its maximum. This corresponds to the worst case scenario 
where we must dig many clutter items to find the last few U X O s . If the digging process is 
terminated based upon the false alarm rate, then these last few U X O items will never be 
found. Ultimately, the difficulty of the U X O classification problem comes down to finding 
those U X O s which "look" like clutter. This is a function of ordnance type: 250 lb bombs 
are easy to classify correctly but smaller items (e.g. cluster bombs) are often hard to find 
within the clutter "cloud" in the feature space. Retraining can alleviate this problem to 
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some extent: by adapting to the changing feature space a classifier is better able to identify 
U X O s which were not seen in the initial training data. Retraining thereby lessens our 
dependence on the initial training set. 

In this chapter, I have assumed that the training data are generated by random sam
pling. While this is a weakness of the analysis, random sampling will probably always be 
a component of U X O remediation, both for initial site assessment and follow-up quality 
control. For example, during wide-area assessment and vegetation clearance, both clutter 
and U X O will probably be encountered on the surface. These items could be used as the 
initial training data set for statistical classifiers once digging begins. 

Experiments with a classifier selection algorithm show that it can be a viable way of 
selecting classifiers for a given data set. The algorithm aims to combine the advantages of 
all classifiers (rule-based and statistical) to minimize the false alarm rate. In future work I 
will apply this algorithm to discrimination with E M data. 

Initial simulations of uncertainty propagation show that it will be an important con
sideration for classification of electromagnetic data. Future work will focus upon finding 
analytic methods of propagating uncertainty through classification. 
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Chapter 7 

Conclusions and future work 
This thesis examined the process of discriminating between unexploded ordnance and clut
ter items. I have discussed issues arising at several stages of this process, beginning with 
forward modelling (chapters 2 and 4), inversion (chapter 3) and discrimination (chapters 5 
and 6). 

Chapter 2 presented forward models for magnetic and electromagnetic data. I discussed 
in detail a numerical forward model, the method of auxiliary sources (MAS) , which can 
be used to model both frequency and time-domain E M data, as well as magnetic data. I 
implemented M A S for the frequency-domain response of a sphere and examined the distri
butions of auxiliary charges and the secondary fields produced by these charges. I showed 
that an equivalent dipole response can be computed from the M A S solution by summing 
the dipole moments produced by auxiliary source charge bands. This simplification may 
provide a way to speed-up M A S forward modelling for inversion. 

In chapter 3, I implemented the Levenberg-Marquardt algorithm to recover estimates 
of model parameters from observed data. I applied this iterative algorithm to a synthetic 
problem using the analytic forward model for a sphere in the frequency-domain. This simple 
"toy" problem highlighted some of the complications which arise for E M models such as 
M A S which are parameterized in terms of physical properties. In particular, the strong 
positive correlation between conductivity and permeability at higher frequencies prevents 
unique estimation of these parameters. I also showed that a linearized uncertainty analysis 
tends to underestimate the uncertainty in these parameters. This error is directly related 
to the correlation between these parameters. 

Future inversions using M A S as a forward model will face a similar correlation be
tween conductivity and permeability. One option is to reparameterize in terms of the ratio. 
Alternatively, we might infer the magnetic properties of the target using other informa
tion (eg magnetic data or /? parameters of the Pasion-Oldenburg model) and then fix the 
permeability at a reasonable value. 

Initial attempts at inversion with M A S were prohibitively slow for application to real 
data, and so in chapter 4 I used M A S as a benchmark forward model for verifying the 
dependence of parametric model parameters upon target shape. I showed that for the 
Pasion-Oldenburg and power law models the ratio of kl/k2 is a diagnostic of target shape. 
This confirms the previous results Pasion obtained with laboratory measurements [10]. In 
addition, I showed that the spatial response of two-dipole models becomes more accurate 
as the distance between target and observation location increases (and the contribution of 
higher order moments decays). 

Chapter 5 outlined statistical classification algorithms for discrimination between U X O 
and clutter. I derived the canonical analysis algorithm for identifying linear combinations 
of features which provide the maximum separation between classes. This algorithm can 
be used to prioritize features for classification and reduce the dimensionality of the feature 
space. I then described classification algorithms for partitioning the feature space using 
the available training data. Generative classifiers model the underlying class distribu-
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tions, either parametrically (e.g. discriminant analysis) or nonparametrically (e.g. P N N ) . 
Discriminative classifiers model the decision boundary directly by maximizing the margin 
between classes (e.g. S V M ) . 

In chapter 6, I applied statistical classification algorithms to features extracted from 
three magnetic data sets. Canonical analysis was used to prioritize features, ranking re
manence ahead of estimated moment and angle in two of three cases. These results were 
confirmed by application of statistical classifiers to a two-dimensional space spanned by mo
ment and angle. Statistical classifiers were outperformed by remanence at Guthrie road and 
Limestone hills, and provided a modest reduction in false alarm rate at Badlands bombing 
range. I demonstrated how retraining a classifier can improve its performance by guarding 
against poor initial realizations of the training data. 

A n important result of this thesis (and of several decades of pattern recognition re
search) is that no single algorithm performs best on all data sets. To address this problem, 
I proposed a classifier selection algorithm for choosing a classifier during the digging process. 
At each iteration, the algorithm uses k-fold cross validation to compare the expected perfor
mance of all classifiers. The classifier with the best estimated performance is then chosen 
as the "active" classifier for the next iteration of digging. I found that cross-validation 
worked best when the size of- the temporary training set (specified as a proportion F) was 
decreased as the full training set grew. 

Experiments with the classifier selection algorithm on synthetic and real data sets pro
vided near-optimal performance. Here optimality is defined by the best performance seen 
for all classifiers on a given data set. There is no theoretical guarantee that the algorithm 
will always produce an optimal false alarm rate.. However, with continual assessment of 
classifier performance we can, at the least, guard against a particularly unsuitable choice 
of classifier. In addition, the algorithm provides an easy way to combine classifiers at all 
levels of sophistication, from simple thresholding to statistical classifiers. 

Finally, I investigated the effects of feature uncertainty on classifier output with a Monte 
Carlo simulation. I found that propagating uncertainty through a classifier may reprioritize 
the order in which items are dug. 

Future work stemming from this thesis will focus on two areas: inversion of magnetic and 
E M data using M A S and reliable application of classification algorithms to U X O problems. 
M A S can model both E M and magnetics data with a single parameterization and so it is a 
leading candidate for joint inversion of these data types. 

A priority of future work will be the application of statistical classification to E M data. 
Joint classification will also be investigated: the combination of remanence with E M features 
may provide a powerful means of discriminating between U X O and clutter at some sites. 

The reliance of statistical classification algorithms upon a random training data set is an 
obvious weakness in this thesis. Recent work by Zhang et al. has focussed upon generating 
the initial training data set from the unlabelled feature space [40]. This is an unsupervised 
learning problem: we must identify the classes without any information about U X O and 
clutter in the feature space. Initial results with this approach have significantly improved 
over random sampling. In future, other unsupervised methods of identifying clusters of 
feature vectors using only unlabelled feature data will be investigated. 

Finally, analytic methods for propagating uncertainty will provide rigorous means to 
account for uncertainties at the final classification stage. 
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