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Abstract 

In geochemical applications, data classification commonly involves 'mapping' continu

ous variables into discrete descriptive categories, and often is achieved using thresholds 

to define specific ranges of data as separate groups which then can be compared with 

other categorical variables. This study compares several classification methods used 

in applied geochemistry to select thresholds and discriminate between populations or 

to recognize anomalous observations. The comparisons were made using monte carlo 

simulation to evaluate how well different techniques perform using different data set 

structures. 

A comparison of maximum likelihood parameter estimates of a mixture of normal 

distributions using class interval frequencies versus raw data was undertaken to study 

the quality of the corresponding results. The more time consuming raw data approach 

produces optimal parameter estimates while the more rapid class interval approach is 

the approach in common use. Results show that provided there are greater than 50 

observations per distribution and (on average) 10 observations per class interval, the 

maximum likelihood parameter estimates by the two methods are practically indistin

guishable. 

Univariate classification techniques evaluated in this study include the 'mean plus 2 

standard deviations', the '95"* percentile', the gap statistic and probability plots. Re

sults show that the 'mean plus 2 standard deviations' and percentile' approaches 

are inappropriate for most geochemical data sets. The probability plot technique clas

sifies mixtures of normal distributions better than the gap statistic; however, the gap 

statistic may be used as a discordancy test to reveal the presence of outliers. 
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Multivariate classification using the background characterization approach was sim

ulated using several different functions to describe the variation in the background dis

tribution. Comparisons of principal components, ordinary least squares regression and 

reduced major axis regression indicate that reduced major axis regression and principal 

components are not only consistent with assumptions about geochemical data, but are 

less sensitive to varying degrees of data set truncation than is ordinary least squares 

regression. Furthermore, correcting the descriptive statistics of a truncated data set 

and calculating the background functions using these statistics produces residuals and 

scores which are predictable and thus can be distinguished easily from residuals and 

scores calculated for data from another distribution. 
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Chapter 1 

Introduction 

"I have yet to see any problem, however complicated, which, when you 

looked at it the right way, did not become more complicated." 

Poul Anderson (1060) 

"A good terminology is half the game.'1 

Arthur Koestler (1081) 

1.1 Purpose 

Central to any data analysis procedure is a conceptual model of the genetic or de

terministic processes the data are thought to describe. Associated numerical models 

commonly are used to characterize these conceptual models in quantitative terms, act

ing to describe the nature and behavior of the data. These numerical models may 

consist of simple combinations of statistical, empirical and theoretical components. In 

applied geochemistry, numerical models described by statistical terms are becoming 

increasingly common (Bolviken 1971; Sinclair 1974, 1976; Miesch 1981; Garrett 1987, 

Stanley and Sinclair, 1988). 

In order to be useful, numerical models must be general enough to span the variation 

observed in the data sets to which they are applied. In addition, these models must 

be consistent with constraints imposed on the data by the conceptual models of their 

postulated genetic processes. The number and severity of these constraints which 

1 
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limit application of these models differ markedly, but generally manifest themselves 

as underlying assumptions. Statistical models describing geochemical data, especially 

element concentration data applied to mineral exploration, environmental contaminant 

detection and geochemical mapping are no exception. 

This study focuses on element concentration data in applied geochemistry and their 

evaluation using certain exploratory statistical data analysis procedures. A general 

multi-component model is postulated which approximately describes the probability 

density functions (PDF's) of natural element concentration data. However, because 

PDF's of similar general form occur in other types of geologic data, as well as in other 

physical sciences, the application of the results of this study is not restricted to the 

field of applied geochemistry. 

The purpose of this research is to compare various statistical procedures used for the 

classification of element concentration data. All procedures tested are consistent with 

the constraints of the PDF models, but either represent different approaches to data 

analysis or impose slightly different statistical assumptions. Testing of these procedures 

by monte carlo simulation allows quantification of their levels of performance. Com

parisons among these results are used to determine the relative effectiveness (efficiency) 

of each technique on data sets with different PDF forms. 

1.2 Nature of Geochemical Data 

The method by which geologists describe geological materials (the geologic nomencla

ture) is based, at least partially, on modal mineralogy. Because element concentrations 

in minerals are denned by stoichiometry, an analysis of the element concentrations can 

lead to an understanding of the modal frequency of the minerals within geologic mate

rials and, thus, may be used to help in their classification (Thompson 1982a, 1982b). 
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Since physical and chemical processes commonly manifest themselves as variations 

in the composition of geologic materials, these processes are represented by character

istic frequency distributions of element concentrations. As a result, element concentra

tions have specific expected values (means), variations (standard deviations) and inter-

element relationships (correlations; or in statistical terms - mean vectors and covariance 

matrices) which are characteristic of the specific physical and chemical processes that 

have caused variation in the composition of the analyzed geological materials. 

In any natural environment, multiple physical and chemical processes have occurred 

to produce the variations in modal mineralogy, and thus variations in the element 

abundances observed in geochemical samples. These processes, in turn, may manifest 

themselves as a mixture of PDF's, with each distribution representing a specific set of 

processes. Thus, the existence of mixtures of distributions in a data set may indicate 

that multiple genetic processes, or a single genetic process of varying intensity, have 

acted on the related geologic materials. Mixtures of distributions are, therefore, an 

expected PDF form for element concentration data in a variety of natural settings. 

The element concentrations, depending on the processes which controlled them, 

can also occur in a variety of PDF forms. Frequency distributions reflecting primary 

and secondary geologic and geochemical processes are poorly understood; however, 

many authors have postulated that geological materials commonly display PDF's with 

normal (or log-normal) forms (e.g. - Ahrens 1954; Aitchison and Brown 1957; Rodionov 

1961; Shaw 1961; Sinclair 1974, 1976; Miesch 1981; Garrett 1987). Unfortunately, 

since element concentrations are intensive variables, and thus bounded by zero and 

one, geochemical PDF's cannot be theoretically or accurately described in their tails 

by normal or log-normal distributions because these distributions have at least one 

unbounded tail. 
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1 . 2 . 1 Binomial Distributions 

If random processes are the cause of variation in a data set, individual frequencies of 

geochemical concentration data for most hydromorphically borne elements should be 

distributed binomially according to the following PDF : 

where n* is the total number of atoms in a geochemical sample, n„ is the number of 

atoms of the determined element, xe is the observed number of atoms of the determined 

element in the geochemical sample (xe = 0,1,2,... ,nt), ^ is the actual concentration 

and f(xe) is the probability of observing xe number of atoms of interest. The mean and 

respectively, provided the element of interest has a relatively high abundance. 

This function is valid as a PDF model for hydromorphically borne elements because 

the following properties of geochemical data are consistent with the constraints required 

for a variable to be distributed binomially : 

• the 'weight percentage' values (ppb, ppm or %) commonly reported in geochemi

cal surveys can be easily transformed to mole (or atom) proportion values through 

division by the atomic (or gram formula) weight of the determined element (or 

species); thus an element concentration is merely the probability of an atom of a 

specific element being selected at random from a geochemical sample; 

• the act of removing one atom of a specific element from a geochemical sample 

does not significantly alter the probability of removing a second atom of that same 

element from the geochemical sample (the probabilities of successive selection 

outcomes are essentially independent - non-hypergeometric), because of the large 

number of atoms present (on the order of Avogadro's number = 6.022 x 1023 

(1.1) 

variance of the number of atoms of interest in this distribution are n„ and n a(l — "̂-), 
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atoms) and because, since the atoms have been hydromorphically borne, each 

can be thought to occur independently (not in nuggets); 

• geochemical data are intensive and must be bounded by zero and one (or 0 and 

100 %, 0 and 1 x 106 ppm, 0 and 1 x 109 ppb, etc.); and 

• the number of atoms of any element of interest is generally large with respect to 

the total number of atoms in the geochemical sample. 

Elements which commonly display binomial distributions include those which are chem

ically mobile in the secondary environment (Cu, Pb, Zn, Ag, As, Sb, Ca, K, Na, Sr, 

etc.). 

1.2.2 Poisson Distributions 

On the other hand, if the element of interest is contained within a rare mineral grain (n„ 

is small with respect to n*), assuming the theory of equant grains (Visman 1969, 1972; 

Ingamells 1974, 1981; Gy 1982), the resulting frequency will be distributed according 

to the following Poisson PDF : 

/(x e) = c — ^ , (1.2) 

where n,, is the actual number of grains of the determined element in a geochemi

cal sample and xe is the observed number of grains of the determined element ( i e = 

1,2,3,... ,nt). The mean and variance of the number of grains of interest for a Poisson 

distribution are both equal to na. The Poisson distribution is an appropriate PDF 

model for elements borne in resistate minerals because all but the last constraint de

scribed above for binomially distributed elements apply. In this case, a nugget, instead 

of the atom, is the unit of measurement and the number of nuggets containing the 
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element of interest are small with respect to the total number of particles in the geo

chemical sample. 

Elements such as Au, Pt, W, Ba and Sn, which commonly occur in rare resistate 

minerals, display this form of frequency distribution, especially where, relative to the 

true concentrations of the elements, small geochemical sample sizes are analyzed. In 

cases such as these, where the ideal equant grain model (Visman 1969, 1972; Ingamells 

1974, 1981; Gy 1982) can be applied, the atoms occur in collective clusters known 

as grains (or nuggets). These grains report concentrations which occur in discrete and 

integral multiples of a basic concentration, related to the contribution of one grain to the 

observed concentration (refered to here as a quantum). These quanta are representative 

of individual mineral grains, and thus are discrete units, allowing the application of a 

Poisson distribution model to frequency distributions of this type. 

1.2.3 Normal Distributions 

As nt —• oo, with fixed the binomial distribution converges to the normal distri

bution (Hald 1952). Thus, if nt is large (n t("£) > 5 and rc,(l - ^) > 5; Hald 1952) 

and ^ is fixed, a reasonable approximation to a binomial distribution (along with 

its integrals and derivatives) is the normal distribution (with its integrals and deriva

tives). In practical terms, if the size of the geochemical sample is made large enough, 

the expected element concentration distribution can be considered normal. Collection 

of geochemical samples of inadequate size will result in a poor approximation of the 

normal distribution by the binomial distribution, and thus a positive or negative skew-

ness in the observed distribution. Element concentration data easily satisfy the above 

stipulation because geochemical samples commonly contain an extremely large total 

number (nt) of atoms relative to the concentration of elements. 
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For hydromorphically borne elements in a 2 gram geochemical sample, n* ^- >̂ 1012 

and rzt(l — >̂ 1012, even at ppb levels. The large number of atoms in geochemical 

samples mitigates the level of inaccuracy caused by the approximation of a discontin

uous (binomial) distribution by a continuous (normal) distribution. In addition, the 

above conditions cause the tails of the binomial distribution to coincide with the tails 

of the normal distribution, thus reducing the bias of this approximation. As a result, 

in most cases, binomially distributed element concentrations do not require transfor

mation to a normal distribution using the following operator : 

l°gT-^-> (1-3) 1 - p 

where p is the concentration (Johnson and Wichern 1982), although this may be rec

ommended if adequate sampling is not possible. 

Similarly, because the Poisson distribution is the limiting distribution of the bino

mial distribution as Tit —> oo with fixed n„, it can also be approximated by a normal 

distribution provided that the geochemical sample is, as above, large enough to ensure 

that a large number of grains of the resistate mineral borne element of interest are 

present (Hald 1952). Where the size of the geochemical sample is large, the number 

of rare resistate grains increases and the size of the quantum concentration is reduced 

(because each grain represents a smaller proportion of the geochemical sample). As the 

quantum concentration —> 0, the resulting (Poisson) distribution converges to a normal 

distribution. 

In many applications, due to cost or logistical limitations, geochemical samples of 

adequate size cannot be collected to ensure that a large number of grains containing the 

element of interest are present (e.g. Au, Pt and other resistate elements which occur 

in discrete grains at low concentration). The assumption of a normal distribution is 

not valid in these cases; however, in this study, geochemical samples are assumed to 



Chapter 1. Introduction 8 

be large enough to avoid the possibility of error in the approximation of a (discrete) 

Poisson distribution by a (continuous) normal distribution. 

Thus, regardless of whether an element of interest in geochemical samples is present 

in low (Poisson distributed) or high (binomially distributed) abundances, or is trans

ported as resistate mineral grains or hydromorphically, provided that the geochemical 

samples are of sufficient size, the frequency distribution form of geochemical data can 

be approximated by mixtures of normal distributions, each of the form : 

/ ( * ) = - U - ^ > ° , (1.4) 
where x is the observed concentration of the element of interest. For the normal 

distribution, p. is the mean concentration (= -̂) and a is the standard deviation. 

1.3 Treatment of Errors 

Variation in element concentrations in geochemical samples may be caused by poor geo

chemical sample collection, inadequate or improper geochemical sample size reduction 

or analytical procedures, or may be due to random spatial variations. Although col

lection, reduction and analysis procedures of geochemical samples can provide relevent 

geologic information regarding the mineral grain size (Clifton et al. 1969; Ingamells 

1974, 1981; Stanley 1986) and occurrence of specific elements, most hypotheses which 

have geological or geochemical implications concern spatial variations. These spatial 

variations often are related to different geological or geochemical processes operating 

in different parts of a survey area. 

Variations contributed through the geochemical sample collection, geochemical sam

ple size reduction and analytical errors may obscure real variations of geological or geo

chemical import. However, all sources of variation must be evaluated in geochemical 

data analysis procedures. If significant variations exist, these must be distinguished 
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from variations due to geological or geochemical processes in order to avoid irrelevant 

or spurious conclusions. Where variations due to geological or geochemical processes 

can be isolated, significant geologic or geochemical conclusions are possible. Under

standing the causative contributions to the variance of geochemical data is at least one 

of the motivations for any exploratory data analysis procedure. 

In this study, no effort will be made to distinguish the nature or cause of the indi

vidual errors and variations associated with geochemical data; however, the existence 

of these errors is recognized and statistical procedures are formulated assuming error 

is present in all geochemical data for all subsequent data analysis. 

1.4 Distribution Model for Element Concentration Data 

The preceding discussion leads to the postulation of the following paradigm to describe 

the frequency distribution of element concentration data : 

Specific Geological or Geochemical Processes Acting on Geologic Materials 

Are Characterized by Specific Multi-Element Frequency Distributions. 

The following rules describe this postulated model for the frequency distribution of 

geochemical data and encompass all types of variation observed in geochemical data 

frequency distributions : 

• Frequency distributions are composed of a mixture of distributions, 

• Each distribution has a specific mean vector (a set of means), 

• Each distribution has a specific covariance matrix (a set of standard deviations 

and correlations), 

• Each distribution is multivariate normal. 
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An important consequence results from this postulated distribution model. Specif

ically, mixtures of normal distributions can have frequency forms which ap
proximate other positively (or negatively) skewed PTAF's (e.g. - log-normal, 
binomial, or Poisson distributions). This may occur where, in a general mixture of two 

distributions, one distribution has a larger standard deviation or comprises a smaller 

proportion of the data set than the other distribution. Situations where the distri

bution with the larger mean has a higher standard deviation can be expected where 

the total variance (geological, sampling and analytical) is proportional to concentra

tion. Sampling and analytical errors are known to exhibit this proportionality effect 

(Thompson 1973; and Howarth 1973, 1976a, 1976b, 1978). Likewise, situations where 

the distribution with the larger mean comprises a smaller proportion of the data set 

are common, especially in mineral exploration and contaminant detection, because the 

geochemical anomaly generally underlies only a small proportion of the survey area. 

Obviously, confusion may result with data sets which exhibit positive skewness because 

the geoscientist may not be able to readily distinguish whether the skewness is a result 

of a mixture of distributions or is caused by inadequate sampling producing a poor 

approximation of the normal distribution by the binomial or Poisson distributions. Be

cause distributions with positive skewness are common in both mineral exploration and 

environmental contaminant detection, identifying the cause of observed skewness in a 

data set is critical to subsequent interpretation. 

The above model limits the number and types of data analysis techniques which can 

be used to evaluate geochemical data. As a result, this study will address, particularly, 

the performance of those techniques which are consistent with the proposed model. 
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1.5 Use of the Conceptual Model 

As discussed above, determination of element concentrations in geochemical samples 

within a survey area can lead to the determination of the minerals present, and thus 

yield an understanding of the geology and physical and chemical processes which act to 

modify geological materials during formation or destruction (weathering). Geochemical 

mapping, contaminant detection and ore discovery follow directly from this process. 

Unfortunately, element concentrations are continuous (real-valued) variables, where

as geological materials are defined categorically. A transformation is required to 'map' 

the continuous geochemical concentration data onto the geological material categories. 

In geochemical applications, this transformation has taken the form of classification 

through the selection of a threshold concentration (Rose, Hawkes and Webb 1979). 

Geochemical samples with concentrations exceeding this threshold are classified as rep

resentative of one type of geologic material, presumably differing from other geologic 

materials due to the action of at least one additional genetic process. Those geochemi

cal samples with concentrations less than the threshold are classified as representative 

of another type of geologic material with a different genetic history. Other forms of 

geological or geochemical knowledge can then be used to test these exploratory 'clas

sification' hypotheses (Popper 1968) and determine the nature of the geological or 

geochemical processes which acted to produce the observed variation in the geological 

materials. 

Classification by way of threshold selection is an appropriate exploratory data anal

ysis approach for data sets involving geochemical mapping, contaminant detection and 

mineral exploration. In the case of geochemical mapping, the component distributions 

of mixtures of PDF's are thought to be related to the different source materials from 

which they were derived. Because the amount of detail collected in mapping is scale 
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dependent, the mappable features in a survey each cover significant proportions of the 

survey area. As a result, each distribution consists of a significant proportion of the 

data set. Classification procedures used in this application are termed 'population 

discrimination' techniques. 

In the search for mineral deposits and the detection of contaminants, the distribu

tion of interest (that related to mineralization or contamination) generally comprises 

a small proportion of the data set (especially during early reconnaissance stages of 

investigation). Classification procedures used in these applications are called 'outlier 

recognition' or 'anomaly recognition' techniques. 

Both 'anomaly recognition' and 'population discrimination' procedures are actually 

end-members of a continuum of classification techniques. Intermediate cases occur 

due to variations in the proportions of the component distributions. Appropriate data 

classification techniques must be designed to recognize anomalous geochemical samples 

which may be representative of a mineral deposit, a contaminant source or a different 

type of geological material. For consistency in this study, all of these techniques are 

included in the more general term of 'classification procedures'. 

1.6 The Background Characterization Approach 

Classically, the term 'anomaly' is defined as "a deviation from the norm" (Rose, Hawkes 

and Webb 1979, p. 34). Thus, mineral deposits, contaminant sources and geological 

materials comprising a small proportion of the data set may exhibit anomalous geo

chemical signatures. In order to recognize this anomalous character, one must first 

determine the characteristics of 'the norm'. In geochemical data analysis, the norm is 

called 'background' (Rose, Hawkes and Webb 1979), and is commonly considered to be 
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the geochemical signal of the predominant geological material after possible modifica

tion by surficial weathering processes. 

Generally, the models used in anomaly recognition and population discrimination 

procedures allow recognition of those geochemical samples derived from (the possibly 

several) 'background' geologic materials. As a result, the first objective of exploratory 

geochemical data analysis (after confirmation of data quality) is to identify these back

ground geochemical samples and then use them to define the background geochemical 

signature(s) or model(s). K several geochemical variables exist, and a background model 

can be successfully developed, it may be used to classify the geochemical samples, which 

are not derived from the background distribution, by recognizing those geochemical 

samples which differ substantially (and in varying ways) from this background model. 

This technique is known as the 'background characterization approach' (Stanley 

and Sinclair 1987). 

This procedure involves the selection of thresholds to separate the background geo

chemical samples from the enigmatic geochemical samples (those which are anomalous 

or which are derived from another background distribution). In this way geochemical 

samples which cannot be confidently determined as representative of the background 

geochemical signature can be truncated from the data set so that subsequent calcula

tion of a background model excludes their (possibly spurious) contribution (Figure 1.1). 

The procedures by which this may be accomplished are discussed below and include the 

'mean plus 2 standard deviations', ^S1*1 percentile', gap statistic and probability plot 

approaches. Then, after the selection of a threshold and definition of those geochemical 

samples which are enigmatic, two lines of investigation may follow. 

Geoscientists have applied a regression approach to the problem of determining the 

background geochemical signature (Rose, Hawkes and Webb 1979; Matysek et al. 1982; 

Day et al. 1987; Stanley and Sinclair 1987). In this technique, several independent 
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Figure 1.1: Threshold Selection to Separate Background Observations from Enigmatic 
Observations 

A. Population Discrimination - the two thresholds (T) define a range of population 
overlap where further classification may be necessary. Two background models may be 
developed, one for each distribution. 

B. Anomaly Recognition - the single threshold (T) defines a range where the data 
are enigmatic (possibly anomalous) and where further classification may also be neces
sary. A single background model may be developed because the second distribution is 
too small to adequately characterize its variation. 



X 
Figure 1.2: Bivariate Example of the Background Characterization Approach to 
Anomaly Recognition 

This plot of X versus Y demonstates how the BCA can be used to discriminate 
populations. Ellipses represent the 95"" percentile density contour of the A and B 
distributions. Marginal histograms (located on the top (X) and side (Y) of the plot) 
show that approximate classification can be achieved using variable X, but not Y. 
The dashed vertical line defines boundary below which data from population A does 
not (significantly) occur. Thus, data below this threshold can be used to define a 
background model describing the variation in population B (the solid diagonal line). 
Applying this model to data above the threshold readily separates the data from pop
ulation B from that of population A because the residuals (or scores) defined by the 
background model for these two distributions are substantially different. 

If the proportion of population A was large, a threshold could also be defined for 
population A (the dotted vertical line) to identify the data to be used to define a back
ground model for population A. Residuals (or scores) calculated from this background 
model (the dashed diagonal line) could also be used to classify the data from the re
gion of population overlap (between the two vertical lines). This situation would be a 
population discrimination problem. If the proportion of population A was small, this 
situation would be an anomaly recognition problem and this second background model 
would not generally be defined from population A because of the sparsity of data. 

In this example, the standard deviations and correlations for X and Y are the same 
for both distributions. This need not be true for application of the BCA. 
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geochemical variables are regressed against a dependent variable. Once this regression 

function has been denned (using only the background geochemical samples), the func

tion is applied to the enigmatic geochemical samples. Residuals for these enigmatic 

geochemical samples are then evaluated in a univariate context (Figure 1.2) using sim

ilar threshold selection and classification procedures. If truly anomalous geochemical 

samples exist in a data set, these would be expected to 'react' differently to the regres

sion function than the background geochemical samples. As a result, those enigmatic 

geochemical samples with residuals which differ substantially from what would be ex

pected are considered to be anomalous. 

Alternatively, instead of a regression function applied to the background geochemi

cal samples, the principal components of the background data are determined (Roquin 

and Zeegers 1987, Lindqvist et al. 1987). This approach rigidly rotates the multivari

ate data in hyperspace to determine the the most important (uncorrelated) sources of 

variation. Then, instead of evaluating the residuals, the principal component scores 

are examined and those geochemical samples with scores which differ substantially 

from what would be expected are considered anomalous using the same rationale and 

classification procedures. 

Both linear regression and principal components analysis serve to reduce the number 

of variables to be considered, allowing a more rapid evaluation of multivariate data 

sets using the univariate classification procedures described below. However, these 

two statistical approaches have important philosophical implications which may serve 

to limit their application under certain circumstances. The philosophy of the linear 

regression approach involves a conceptual model which postulates the linear control of 

one geochemical variable by others. Examples of these types of causal relationships in 

geochemical data include : 
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• bulk changes in the composition of the waters in equilibrium with geological 

materials, such as pH, pe and the concentrations of other disolved species, or 

physical properties, such as temperature and pressure, may control the solubility 

of elements, and 

• variations in the crystal composition of the geological materials, such as the abun

dance and crystallinity of Fe- and Mn-oxyhydroxides, may cause different mag

nitudes of metal adsorbtion by the geological materials. 

Principal components analysis implies a significantly different conceptual model, assum

ing that the observed variables are linear manifestations of an unobserved, underlying 

factor. Thus, the principal components approach produces a quantitative measure of 

this 'latent' factor. Geoscientists must consider the goal of the analysis, the variables 

available and their possible geologic and geochemical relationships before selecting re

gression or principal component analysis as the appropriate background geochemical 

function. 

Care must also be exercised in the application of both of these techniques. If 

multiple background signatures exist in the data set, both the regression and principal 

component analyses will merely serve to recognize the variables which contribute the 

most to the variation among the geochemical signatures. In these cases, the background 

functions will not necessarily define those variables which contribute to variation within 

a single component distribution (such as background). Robust statistical approaches 

to avoid this potential problem have been recommended by Lindqvist et al. (1987) 

and Wurzer (1988). Alternatively, Stanley and Sinclair (1987) have recommended 

subsetting the data into groups defined by categorical variables (lithology, alteration, 

etc.) which may be responsible for the different background signatures, and evaluating 

each group independently. 
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1.7 Univariate Classification Techniques Used in Applied Geochemistry 

The initial approach commonly taken in any form of geochemical data analysis is to 

evaluate each variable independently. If results from this analysis are unsatisfactory 

or incomplete, subsequent multivariate analysis may be performed. In cases where a 

large number of variables need to be evaluated, the univariate analysis phase may be 

skipped entirely, and only a multivariate analysis performed. 

Although numerous univariate data analysis procedures have been applied to geo

chemical data, only a few are consistent with the above proposed paradigm for the 

frequency distribution of geochemical data. The following data analysis techniques 

have been advocated and used to evaluate geochemical data by geoscientists. The mer

its and shortcomings of each technique are discussed relative to the proposed model for 

the frequency distribution of geochemical data. 

1.7.1 Experiential Selection 

Selection of a geochemical threshold based solely on the 'experience' of the geoscientist 

is called experiential selection. This arbitrary technique does not require a distribution 

model to describe the variation in the element concentrations. Thresholds are chosen 

to 'distinguish anomalous geochemical samples from background geochemical samples' 

or to 'discriminate geochemical samples derived from different lithologies'. A typi

cal example of this type of classification occurs when a mineral explorationist further 

explores only those portions of a survey area which have element abundances above 

a certain concentration, on the assumption that these are derived from a weathering 

mineral deposit. The arbitrary nature of this technique and lack of any quantitative 

frequency distribution model make it, by definition, un-scientific (Popper 1968) and, 

as a result, it is not considered in this study. 
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1.7.2 Mean ± X Standard Deviations 

A widely advocated and utilized threshold selection technique in applied geochemistry 

is the choice of a threshold at the 'mean plus or minus some multiple of standard 

deviations' (Rose, Hawkes and Webb 1979; in common practice the 'mean plus 2 stan

dard deviations'). This approach assumes that the anomalous geochemical samples 

have higher element concentrations than the norm (not generally true), and that the 

frequency distribution of the data is normal (also not generally true). The subjec

tive choice of how many standard deviations to add or subtract to or from the mean 

to define a threshold and the assumption of a normal distribution limits the range 

of applications for which this technique is usable. Although no detailed evaluation 

of the performance of this anomaly recognition approach is undertaken, its projected 

classification performance will be discussed relative to other classification methods. 

1.7.3 Threshold = Yth Percentile 

Another commonly used anomaly recognition approach involves selection of a threshold 

at some arbitrary 'cumulative percentile of the sorted data'. Although this approach 

makes no assumption about the form of the frequency distribution being considered 

(and thus is non-parametric), it still suffers from the subjectivity imposed by the selec

tion of a percentile, commonly the 95th percentile. The non-parametric nature of this 

technique is the basis for its favored use by some geoscientists. 

The distribution model implied by the use of this technique generally takes the 

following form. Where a geoscientist can assume that the anomalous element concen

trations occur in the positive tail of the distribution, selection of a threshold at an 

intermediate percentile between the anomalous and background concentrations is ap

propriate. Unfortunately, no method is generally employed to help determine the value 
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of this intermediate percentile; thus, its choice is arbitrary. 

This technique may also be applied where economic or time contraints limit the 

amount of follow-up evaluation which may be done. In these cases, selecting a thresh

old at a fixed percentile guarantees that time and resources are available to ensure that 

all 'anomalies' can be further investigated because a fixed limitation is made on the 

maximum number of geochemical samples classified as anomalous. No detailed evalua

tion of the performance of this approach is undertaken, but its projected classification 

performance will also be discussed relative to the other classification methods. 

1.7.4 Histograms 

Another approach to threshold selection and classification involves the visual inspec

tion and selection of anti-modes (low frequency classes on discrete histograms or low 

frequency ranges on continuous histograms which are bounded by higher frequency 

classes or ranges; Rose, Hawkes and Webb 1979). These anti-modes are thought to be 

rough approximations of thresholds which separate (or discriminate) the two adjacent 

distributions. In practice, this approach has been carried out in a subjective manner. 

The histogram approach suffers from several serious theoretical and procedural 

problems which substantially affect the quality of the resulting classification. Two 

component mixtures of normal distributions have been shown by Eisenberger (1964) to 

have the following properties : 

• they are unimodal if they satisfy the following sufficient condition : 

("'-^)<4wt%' (1-5) 

• they are bimodal if they satisfy the following sufficient condition 

8O-2CT| 
K + o-f)' ( ^ - / * 2 ) 2 > 7 ^ L (1-6) 
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• with fix — fi2, they are unimodal for all w (the component percentage of one of 

the distributions), and 

• for every set of possible f i i , /x2, <*\ and o2 parameter values in a two-component 

mixture of normal distributions, values of w exist which make the PDF unimodal. 

Similarly, Behoodian (1970) has shown, for two component mixtures of normal distri

butions, that : 

• a more constraining sufficient condition for unimodality is : 

\fJ-i - M2I < 2 x min(<7i,<r2), 

and 

• if oi = a2 — a, the two-component mixtures of normal distributions are unimodal 

if : 

)H-H\<*Jl + yZ-'-™-*)l. (1.8) 

Finally, McLachlan and Basford (1988) have shown that : 

• if U7 = 50 % and a1 = a2 = 0, then two-component mixtures of normal distribu

tions are bimodal if and only if : 

l ^ J l H > 2 . ( L 9 ) 

In the continuous unimodal histogram cases above, no threshold can be selected 

because no anti-mode exists, and the distribution with the smaller frequency appears 

as a shoulder on the side of the distribution with the larger frequency (Figure 1.3). 

Therefore, unimodality of a PDF does not suggest that a distribution is not a mixture of 

two or more normal components. Moreover, small statistical samples of a single normal 

(1.7) 

file:///fJ-i
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Figure 1.3: Examples of Mixtures of Normal Distributions Exhibiting Unimodal Prob
ability Density Functions 
In each case p\ = 0.0 and 0\ = 1.0. 

A. fj.2 = 1.5, tr2 = 1.0 and vo = 0.30. 
B. pi = 1.5, cr<i = 1.0 and tu = 0.60. 
C. / i 2 = 2.0, cr2 = 0.5 and w = 0.85. 

Case A appears to be a symmetrical distribution while case B exhibits negative skew
ness. Only in case C is it obvious that the distribution it actually a mixture of two 
distributions. Modified from Everitt and Hand (1981). 
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Figure 1.4: Example of a Single Normal Distribution Exhibiting a Multimodal His
togram 
Four modes occur on this histogram of 50 observations derived from a single normal 
distribution with p = 20 and a = 5. 

distribution represented in class intervals on a discrete histogram may appear multi

modal, suggesting the presence of more than one component distribution (Figure 1.4). 

Obviously, relying on the location of histogram anti-modes as estimates of thresholds 

can lead to a large number of classification errors. 

Two-component mixtures of PDF's which have very different component percent

ages or standard deviations also have anti-modes which do not define a threshold which 

adequately classifies the data (Figure 1.5). In these cases, a large number of classifica

tion errors (both of omission and inclusion) occur. Only in cases where the standard 

deviations and component percentages of the distributions are equal does the anti-mode 

define a threshold which minimizes the total number of classification errors. Thus, 

visual inspection and selection of thresholds using histograms cannot locate optimal 

thresholds in the majority of real cases in applied geochemistry. 
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Figure 1.5: Distributions Where the Anti-Modes do Not Define Optimal Thresholds 
In A, the distributions have the same a, but different component proportions. In 

B, the distributions have different <r, but the same component proportions. In both 
cases, the shaded areas are proportional to the amount of misclassification produced 
by the selection of a threshold at the anti-mode. It can be shown that the threshold 
which minimizes the amount of misclassification divides this shaded region into two 
equal areas (see Chapter 2). Clearly, the thresholds defined by the anti-modes of these 
mixtures of distributions (T) do not split the shaded regions equally and thus do not 
classify the data with a minimum of error. 
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Furthermore, utilization of different class interval sizes and limits, regardless of 

whether they are uniform or irregular, may cause the histograms to exhibit entirely 

different anti-mode values. Finally, the highly subjective assignment of a threshold 

within any anti-modal class interval (a finite range in which no available criteria exist 

to define a best location), makes this procedure highly subjective. For the above 

reasons, use of the histogram approach to data classification is difficult at best and it 

will not be discussed because of its many theoretical similarities to the probability plot 

technique discussed below. 

1.7.5 Probability Plots 

The probability plot approach to classification is very similar to the histogram approach, 

except that the thresholds are defined either manually, visually (using the cumulative 

frequencies; Sinclair 1974, 1976; Figure 1.6) or numerically (using the individual or 

cumulated densities; Stanley 1987). This approach allows more rigorous approximation 

of thresholds in a graphical context, because all parameters (fl, <r and w) can be visually 

estimated directly from the probability graph. 

The manual approach requires that the cumulative frequency data be plotted on a 

probability graph and the percentiles of the points of inflection defined. The number 

of inflection points determine the number of component populations in the distribution 

(equal to the number of inflection points plus one). Using the formula : 

cm = J2wCk, ( i . i o ) 

where Yll=i w = 1» C m i s * n e cumulative frequency of the mixture of distributions, v is 

the number of component distributions and the Cfc's are the cumulative frequencies of 

the component distributions, a curvilinear model is fitted to the cumulative data with 

the graphical approach described by Sinclair (1974, 1976). The mean and standard 
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Figure 1.6: Example of Probability Plot Approach to Data Classification 
This Al (pet) concentration data has been modeled as a mixture of three normal 

distributions in the ratio 42 : 47 : 11, with means and standard deviations as indicated 
(n = 114; from Stanley and Sinclair 1988). 
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deviation of each normal component distribution are the parameters of this curvilinear 

model and may be estimated directly from the probability graph (Figure 1.6). 

Numerical optimization requires that the mixture of normal distribution PDF be 

fitted to the frequency data by maximizing the likelihood function (Stanley 1987). 

Likelihood ratio tests can be performed to determine the number of distributions used 

in the numerical optimization which are significant at a certain confidence level. This 

approach is discussed in detail in Chapter 2. 

The parameters of the distribution model (the means, standard deviations and 

component proportions (tc)) may then be used to select a single threshold which defines 

the smallest number of total classification errors based on the theoretical characteristics 

of the model. This parametric approach involves no subjective decision other than how 

to determine the number of component distributions and the weights assigned to the 

different types of classification errors (omission and inclusion). This approach is an 

improvement over the histogram approach because all parameters and thresholds may 

be determined (or calculated) directly from the probability graph. 

1.7.6 Gap Statistic 

The gap statistic (Miesch 1981), another relatively objective technique that has not 

been widely used in geochemistry, involves a different set of assumptions about the 

PDF of geochemical data. Instead of assuming that the PDF is multi-normal, this 

technique tests the null hypothesis that 'the data are 3-parameter log-normally dis

tributed'. Scores (gaps) are computed for each adjacent pair of concentration values. 

The gaps are each related to a corresponding value equal to the midpoint of the pair 

of concentrations associated with that gap. If the largest gap exceeds a critical value 

at some confidence level, defined by what would be expected from random sampling of 
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a 3-parameter log-normal distribution, the null hypothesis is rejected and the distribu

tion is not considered to have a 3-parameter log-normal form. The midpoint location 

related to this gap (whether significant or not) is defined as the threshold (Miesch 

1981). This technique is discussed in detail in Chapter 4. 

1.8 Classification Techniques Addressed 

Although several of the above univariate techniques commonly are applied to the anal

ysis of geochemical data, only two of these are addressed in detail in this study. Those 

approaches evaluated include the probability plot and gap statistic techniques; how

ever, a discussion of how these results would compare with those from the 'mean plus 

2 standard deviations' and the '95"* percentile' techniques is also presented. 

Linear regression and principal components analysis techniques are addressed in 

the context of the 'background characterization approach'. They are used solely to 

aid in classification of a single geochemical variable where population overlap prevents 

adequate classification of the data using a single threshold. Multivariate background 

models can then be developed to characterize the background variation and help to 

classify the enigmatic observations. These procedures are used to improve classifica

tion of the marginal distributions where conditions of extreme overlap are present and 

univariate classification results in a large number of classification errors. 
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Theory of Probability Plot Analysis 

"The difference between art and science is that science is what we un

derstand well enough to explain to a computer. Art is everthing else." 

Donald Knuth (1987) 

"Build a system that even a fool can use, and only a fool will want to 

use it." 

Shaw's Principle (1979) 

2.1 Mixtures of Distributions 

The recognition of the existence of mixtures of distributions in geochemical data was, 

at least implicitly, accepted at such an early stage in the development of the science of 

applied geochemistry, that the definitions of 'background', 'threshold' and 'anomaly' 

are all embodied within it (Rose et al. 1979). Its overall acceptance as an element con

centration distribution model led to its mathematical formulation in a specific PDF. 

Consequently, geoscientists have numerically optimized this function to fit' the ob

served frequency distribution and estimate the corresponding parameters. This, in 

turn, allows the calculation of thresholds which optimally classify individual observa

tions as part of the component distributions. 

The general formula for a normal frequency distribution mixture model which is 

29 
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'fitted' to the observed frequency data has the following PDF : 

V 

(2.11) 

or, considering only the independent parameters : 

v-l 
Kx) = E (2.12) 

where v is the number of normal distribution components, pk and o"Jt are the means 

and standard deviations of each component distribution, Wk are the percentages of the 

normal distribution components, and J2t=i wk = 1- For v normal distribution com

ponents, there are 3v — 1 independent parameters required to describe their combined 

2.2 Algorithms for Parameter Optimization 

Numerous statistical techniques have been applied to discriminate, partition or decom

pose mixtures of distributions into their component distributions. Most partitioning 

approaches involve fitting a normal distribution mixture model to frequency data and, 

in the process, produce parameters estimates for the distribution model. Several tech

niques to determine estimates of the parameters of a mixture of normal distributions 

have been advocated. These include (Silverman 1981; Everitt and Hand 1981; Titter-

ington et al. 1985; McLachlan and Basford 1988;) : 

• Minimum Distance Techniques, 

• Graphical Methods, 

• Method of Moments, 

• Bayesian Methods, and 

PDF. 
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• Maximum Likelihood Optimization. 

Parameter estimation using these techniques is not simple, largely because of the 

dual nature of the parameters to be estimated. The component proportions (xcjt) are 

bounded by 0 and 1, whereas the means and standard deviations (p-k and <7fc) are 

parameters of normal distributions. This dichotomy, as well as the constraints on the 

parameters (0 < wt < 1, Y,t=i wk — 1 and <Jk > 0), can cause numerous numerical 

stability problems in all of these parameter estimation techniques. 

The properties of these techniques, as well as their advantages and disadvantages, 

are described below (Fryer and Robertson 1972; Tan and Chang 1972; Quandt and 

Ramsey 1978). 

2.2.1 Minimum Distance Techniques 

Minimum distance methods for determining the equation of a function through a set 

of points have been used to determine the parameters describing the PDF of frequency 

data (Mundry 1972; Clark 1976). Generally, this approach is invoked by minimizing 

some 'distance' criterion which quantifies the extent of deviation of the distribution 

model from the observed frequency data. In some cases, this is equivalent to 'least 

squares' optimization. Advantages of this approach to parameter estimation include 

its applicability to discrete and continuous variables and to multivariate distributions. 

Calculations of the minima generally are made using the multivariate Newton-

Raphson algorithm : 

= tfr - F' (* r ) - 1 F'(* r ) , (2.13) 

where r = 0,1,2,..., _P(*&r) is the vector of first derivatives (Jacobian vector) and 

F"(^r) is the Hessian matrix of the likelihood function with respect to a vector of the 
—* 

parameters * r . This procedure finds the roots of the estimating equations and these 
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axe screened to separate the minima from the maxima. 

Minimizing functions which have been used are presented in Table 2.1 (Kullback and 

Leibler 1951, Wolfowitz 1957, Rao 1965, Choi 1969, MacDonald 1975, MacDonald and 

Pitcher 1979, Parr 1981; after Titterington et al. 1985, p. 116). In certain applications, 

some of these distance measures have specific advantages over others. Specifically, the 

similarity of the Kullback-Leibler distance to the natural logarithm of the likelihood 

function (see below), in terms of both form and performance, "makes it the optimal 

choice for likelihood adherents" (Titterington et al. 1985). Likewise, in applications 

where close approximations are required for the tails of the distribution, the \ 2 

Modified x2 techniques are favored. 

However, problems can occur during the minimization if the denominator terms of 

the Kullback-Leibler, x2 •> Modified x2 distance measures equal or approach zero 

and the functions become extremely unstable. As a result, depending on the numerical 

algorithm employed, solution may not be possible or an unacceptably large number of 

iterations may be required for convergence to the correct solution. 

2.2.2 Graphical Methods 

Graphical techniques have also been widely used (Harding 1949; Preston 1953; Cassie 

1954; Stromgren 1954) to decompose mixtures of distributions. The purposes of these 

informal procedures are : 

• to determine whether a certain mixture of distributions conforms to the observed 

frequency data, and 

• to provide estimates of the means, standard deviations and percentages of the 

component distributions. 
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Table 2.1: Minimum Distance Functions Commonly Used to Determine Optimum PDF 
Parameter Values 

Function Description Continuous Variable Discrete Variable 

Integrated PDF's J[F0(x)-Fm(x)]2dx Ej=i (IIiicj_i +i Qot — 

PDF's f[fo(x)-fm(x)]2dx E"=i(<fc, -qmi)2 

Weighted Integrated 
PDF's 

J[F0(x) - Fm(x)}2w(x)dx E^Li (E«icj_i +i On ~ 
E L , _ 1 + 1 Qmifwj 

Weighted PDF's J[fo(x) - fm(x)]2w(x)dx 

x2 J[fo(x)-fm(x)]2dx/fm(x) 

Modified x2 J[fo(x)-fm(x)]2dx/f0(x) E (q0i -qm{)2/q0i 

Wolfowitz Distance J\F0(x)-Fm(x)\dx E»'=Cj-_i +1 (qoi — <Zm,)| 

Kullback-Leibler J\og[dF0(x)/dFm(x)]dF(x) E"=i9o.log(g0t/gm.) 

F 0(z),Fm(x) = integrated densities of observed data value and 
distribution model, 

fo(x),fm(x) = densities of observed data value and distribution 
model, 

w(x) = weight for each observation, 
q0,qm 

= discrete densities of observed data value and 
distribution model, 

m = number of discrete variable values, 
Tlj = number of observations for each discrete 

variable value, 
CJ = cumulative number of observations up to each 

discrete variable value, 
n = number of observations, 

where E £ i nj = n, 
and Ei=i nj = cj-
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These techniques are largely restricted to univariate normal and log-normal appli

cations, and comprise the earliest attempts at statistically evaluating and decomposing 

mixtures of distributions. Two main type of plots have been used : those based on the 

density function (histograms), and those based on the distribution function (probabil

ity graphs). "In general, in order to be of much use, the former require more data than 

the latter." (Titterington et al. 1985, p. 52). 

The first objective, when graphically decomposing mixtures of distributions, is 

to determine the number of component distributions. Three density-based graphical 

approaches to this problem have been advocated (Tanner 1959; Tanaka 1962; Bhat-

tacharya 1967). 

Tanner (1959) plots the first and second differences of the histogram counts (n,), and 

uses the existence of local maxima (modes) and local minima (anti-modes) to determine 

the number of component distributions. These can also be used to determine crude 

parameter estimates. The approach suffers from the problems described in Chapter 1, 

in that mixtures of distributions may not exhibit multi-modality. 

The more elegant approach of Bhattacharya (1967) is based on two facts : 

• the natural logarithm of the normal density is a concave quadratic in x, and its 

derivative is linear with negative slope, 

• if n is large and the class intervals on a histogram are small, the histogram heights 

are proportional to the density. 

Thus, a 'Bhattacharya Plot' of the first differences of the natural logarithms of 

the histogram frequencies will display a series of negatively sloping linear trends. The 

number of trends equals the number of component distributions. The positions and 

orientations of these lines can be used to determine crude estimates of the parameters 
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(Bhattacharya 1967) by the following formulae 

and 

w 
Pk = h + - , (2.14) 

Hp" 
al = wcota* - — , (2.15) 

where w is the class interval width, a* is the angle between the kth line and the negative 

direction of the x axis and At is the x intercept of the kth line. Unfortunately, this 

approach does not lead directly to estimates of tujt. 

A third approach similar to that of Bhattacharya has been described by Tanaka 

(1962). The PDF for the kth component distribution is multiplied by the estimated 

number of observations derived from that distribution and then its natural logarithm 

is taken, giving : 

ln/jt(x)nfc = — + ln . . 

This is a quadratic of the form : 

(2.16) 

h(x) = ax2 + bx + c, (2.17) 

where : 

a = ^ , (2.18) 

b = (2.19) 

and 

2°l 
+ ln nk - ln y^Tro^. (2.20) 

As a result, the parameters can be estimated by the following 
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pk = — , (2.22) 

fc2 J-n/a 
lnxcfc = c + —+ ln-^ . (2.23) 

4a n 

Tanaka uses quadratic templates to select visual estimates of the coefficients of the 

quadratic and allow calculation of the parameter values. 

All of the above graphical approaches based on PDF's suffer severe estimation prob

lems where overlap between component populations is large. Iterative re-approximation 

of the parameters through subtraction of the overlapping extrema of the component dis

tributions during estimation is likely to help alleviate these inaccuracies (Titterington 

et al. 1985). 

Alternative graphical approaches for determining the parameters of a mixture of 

distributions involve cumulative distribution plots. The normal quantile-quantile (Q-

Q) plot diagram relates P(Q) against $(Q), where 0 < Q < 1, P(-) is the empirical 

distribution function and $(•) is the standard (cumulative) normal. On this plot, 

observations from a normal distribution define a straight line with slope of 1 and P(Q) = 

$(<7). Observations from multi-modal mixtures of overlapping normal distributions 

plot as multiple sigmoidal curves with inflection points at percentages which define 

the percentages of the component distributions along the $(•) axis. The means and 

standard deviations of the component populations cannot be estimated from this plot. 

A slight modification of the Q-Q plot is the P-P plot where $((z,- — X)/S) — g,- is 

plotted against (x, — X)/S, where QI is the cumulative percentile of the ith observation. 

This produces a similar plot, except that the resulting curve is not monotonic. A 

horizontal line defines a normal distribution (because q, is subtracted from $((x< — 

X)/S)), and deviations from this indicate the possible presence of multiple distributions 

(Fowlkes 1979). 
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An alternative to the Q-Q and P-P plots is the probability graph, where the value of 

the variable x, instead of its cumulative frequency P(') is plotted against $(•). On plots 

of this type, the inflection points of sigmoidal curves also define the percentages of the 

component populations. Although early workers using this technique resorted to visual 

estimation of the parameters (Harding 1949; Court 1949; Cassie 1954), straight lines 

can be derived through simple hand calculator operations and graphical projections 

(Sinclair 1976). This allows the definition of the individual normal components, and 

these straight lines plot as asymptotic limits to the sigmoidal curves. Furthermore, 

since the actual values of the variable are plotted, the mean of each component can be 

visually defined as the value on the x axis where the straight component distribution 

line crosses the 50th percentile on the $(•) axis. Similarly, the standard deviation of 

each component distribution is equal to the difference between values on the x axis 

which correspond to the intersection of the straight component population line with 

the 84"* and 50th percentiles on the $(•) axis. Thus, probability graphs provide more 

information than Q-Q or P-P plots (or histograms) because all parameters can be 

estimated directly from the plot. 

Use of probability plots in the geological sciences is widespread (Tennant and White 

1959; Ageno and Frontali 1963; Williams 1967; LePeltier 1969; Folk 1971; Van Andel 

1973; Parslow 1974; Sinclair 1974; Clark 1976; Sinclair 1976; Brazier et al. 1983; Stanley 

1984; Stanley and Sinclair 1988). 

2.2.3 Method of Moments 

Determination of the parameters of the mixture of two normal distributions model 

which best fits' the observed distribution can be accomplished using the method of 

moments technique (Pearson 1894; Charlier and Wickersell 1924; Cohen 1967). Results 

using this method are obtained by determining the first 5 central moments (ug) for the 
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observed distribution by the following formulae for the first moment : 

* l = (2.24) 
n 

and 
_ £"=i (x« ~~ XY /o nr\ ug , (2.25) 

for the second through fifth moments. These moments are then equated using the 

following equations : 

v\ = wpx + (1 - w)p2, (2.26) 

U! = w{p\ + tr2) + (1 - w)(p\ + cr2), (2.27) 

us = vjpx (pi + 3<T2 ) + (1 - w)p2 (pl + 3^2)» ( 2 - 2 8 ) 

u4 = w(p\ + §p\a\ + Za\) + (1 - + + 3tr^), (2.29) 

u5 = XUIH(J4 + I0p2a2 + 15a*) + (1 - zv)p2(p4

2 + VSp\a\ + 15*%). (2.30) 

Solving these simultaneously gives estimates for w, pi, p2, G\ and tr 2. Pearson 

showed that algebraic manipulation of these equations and elimination of these variables 

produces the following nonic polynomial in p : 

0 = 24p9 + 84c4p7 + 36i/2/f)6-r(90c2 + 72c5^)p5 + 

(444c4i/2 - 18c2, )p4 + (288i/| - 108c 4c 5^ + 27ĉ )p3 -

(63c2i/| + T2c5vl)p2 - 96c4v$p - 24i/£, (2.31) 

where c4 = v4 — Zv2 and c5 = u$ —10v2U3, the 4th and 5"* (statistical) sample cumulants 

and p = (pi — v\)(p2 — vi). After determining the negative real root (p0) to this 

equation, we can use the following procedure to determine the 5 parameter estimates. 

First, define : 
-6^3 p3, + 2 c 5Po + 9c4i^ + 61/ 
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and : 

A = T? - (2.33) 

Then by computing g = X/po and solving the quadratic equation : 

0 = (f-gd + po, (2.34) 

(giving roots d\ and d?, where dx < 0 < a\) and calculating : 

Wo 

one can estimate the 5 parameters with the following equations : 

&l = dk0 + v2-dl> (2.36) 

w = d2/(d1-d2), (2.37) 

fik=dk+uu (2.38) 

where k = 1,2. 

Cohen (1967) demonstrated that if the variances of each distribution are equal, 

the nonic equation can be reduced to a cubic, and po can be determined analytically 

(Beyer 1982, p. 9). He recommended starting with this equal variance assumption and 

iterating to the solution of the 5 equations rather than solving the nonic directly. 

Unfortunately, parameter estimates may be not be feasible since the quadratic equa

tion may have no real roots (d\ and d2) and the nonic equation may have more than 

one negative real root, or none at all. Generally, at least one feasible solution can be 

determined if ak > 0 and 0 < w < 1 (Titterington et al. 1985). 

Furthermore, this technique is limited to the bimodal case, and thus is not generally 

applicable to the decomposition of mixtures of distributions in applied geochemistry, 

because these mixtures may be comprised of more than two distributions. However, 

examples of applications of this technique in the geological sciences do appear in Martin 

(1936), Ghose (1970) and Everitt and Hand (1981). 
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2.2.4 Bayesian Methods 

Bayes theorem allows beliefs about a parameter vector \t prior to observing x to be 

updated into beliefs about ^ posterior to observing x through the relation : 

*»w - tffffwt)' ( 2 ' 3 9 ) 

where L(^) is the likelihood, is the probability density before observation of x 

and p($|i) is the probability density after observing x. 

This method for determining estimates of the parameters is not straightforward, 

unless \& consists of a small number of unknown parameters (Titterington et al. 1985). 

If a large number of parameters are unknown, the problem centers on efficiently inte

grating \P in multiple dimensions (Smith and Makov 1982, Smith et al. 1985). Since 

distributions with a large number of parameters (> 2) are common in geochemical 

applications, this approach is not considered further. 

2.2.5 M a x i m u m Likelihood 

Probably the most popular approach to parameter estimation of mixtures of distribu

tions is the maximum likelihood approach (Hasselblad 1966; Day 1969; Gregor 1969; 

Sahu 1973; Dick and Bowden 1973). In the geological sciences, this approach has been 

applied not only to mixtures of normal distributions but to mixtures of Von Mises dis

tributions as well (Jones 1968; James and Jones 1969). Parameter estimates obtained 

by this method are consistent and asymptotically normally distributed. The raw data 

maximum likelihood function (RDML) of observations from a mixture of distributions : 

L ( * ) = n TJ7jfc 
(2.40) 

i=l u = i ° k 

is maximized to produce the maximum likelihood estimates of the parameters \t, where : 

zt,k = ( X i ^ ) , (2.41) 
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and 

^z) = vbe"̂ ' (2,42) 

The natural logarithm of this function is more often maximized, producing an identical 

set of estimates because the transformation is monotonic : 

/(*) =lnL(*) = 53— fa*) 
= 1 L f e l ° * 

(2.43) 

Maximization, if possible, occurs through simultaneous evaluation of the roots of the 

partial derivatives of the log-likelihood function (the likelihood equation) : 

Because procedures to determine the roots of these partial derivatives are neither 

rapid nor straightforward, distribution models with large numbers of parameters and 

data sets with large n may generally take unacceptable amounts of time to iterate 

to a solution. As a result, a more expedient approximation is commonly utilized to 

determine the parameter estimates. The raw data are cumulated into class intervals 

and the class interval frequencies are used to calculate estimates of the parameters. 

The class interval data maximum likelihood (CIDML) function for this approach is : 
m v 

where bj and 6 J +i are the lower and upper class interval limits, respectively, is the 

cumulative distribution function of each component population, rij are the number of 

observations which fall in the jth class interval and m is the total number of class 

intervals. The natural logarithm of this function : 
m v 

/ ( ¥ ) = lnL(*) = £ » > [ E I * * ) - Hbj\dk))], (2.46) 
j=\ k=i 

is likewise maximized, and the result generally requires less computation and fewer 

iterations than maximization of the BDML function. 
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Unfortunately, both of the above likelihood functions may have numerous local 

maxima. There exists n x v unbounded (non-stationary) maxima along the exterior of 

the parameter space (where tr*. = 0 and pk = *») because tr*. occurs in the denominator 

of the normal density function. The likelihood function —• oo with each of these 

parameter sets as the denominator (tr*.) —• 0, thus these solutions to the likelihood 

equation are pathological (Everitt and Hand 1981). Similarly, maximization can occur 

if the 0 < Wk < 1 or Y*L=\ wk = 1 constraints are not satisfied. Roots of the likelihood 

equation producing solutions of this type may not be feasible. As a result, the best 

parameter estimates are found at a local (stationary) maximum in the interior of the 

parameter space, where all constraints are satisfied (tr* > 0, Ylt=i wk = 1 and 0 < 

T^k < 1)- Unfortunately, several local (stationary) maxima of this type may exist, 

so care must be exercised to ensure that all have been located and the root with the 

highest likelihood be used to determine the final parameter estimates. For mixtures 

of normal distributions, this root will produce the true maximum likelihood parameter 

estimates (McLachlan and Basford 1988). 

Numerous algorithms have been proposed to maximize the above likelihood func

tions. These include : 

• the EM Algorithm, 

• the Newton Raphson Algorithm, and 

• Direct Search Methods. 

These will be discussed in terms of the advantages and disadvantages each offers over 

the other techniques. 
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2 . 2 . 5 . 1 E M Algorithm 

The Expectation-Maximization (EM) algorithm originally was described by Dempster, 

Laird and Rubin (1977) as a method of treating problems with incomplete data sets. 

This approach can be used to estimate the parameters of mixtures of normal dis-

tributions by assuming that, for each there exists a column vector of length v, 

composed of an unknown (missing) indicator variable denning the distribution to which 

the Xi belongs (all O's except for a single 1 in the kth entry denoting membership in the 

kth distribution). The corresponding logarithmic RDML function then takes the form : 

where V(w) is a column vector of the \nwk terms, U(0) is a column vector of the 

In ̂ <f>(zi,k) and is the row vector which is the transpose of YJ. 

The EM algorithm works by generating, from some initial approximation of a 

sequence of $ r estimates such that, by Jensen's inequality : 

Thus, successive likelihoods in this series monotonically increase, and optimization is 

accomplished through an iterative two-step process of, first, estimation and, second, 

maximization. 

The expectation stage involves estimating the log-likelihood value at \tr : 

£(9) = In L(*) = £ Y?V{m) + £ Y^tf(6), (2.47) 
i=i i=i 

(2.48) 

n n 

(2.49) 
;=i i=i 

where Wi($r) is a column weighting (indicator) vector of length fc, such that : 

Wi,k(<Zr) = 
p(x,|*r) 

(2.50) 
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The weights are thus probabilities of ktb distribution membership for the ith observation, 

given x, and the parameters $ r . 

The maximization step, a consequence of the estimation step, generally requires an 

iterative approach to solve, but for mixtures of normal distributions, it can be done 

analytically (McLachlan and Basford 1988). It consists of the following formulae to 

determine estimates of the parameters : 

W* ~ n ~ TT' ( 2 - 5 1 ) 

^ = ( 2 > 5 2 ) 

, r + l 

This two-step process is repeated until the log-likelihood £(^>r) does not change signif

icantly, and (hopefully) a maximum has been reached. 

Application of the EM algorithm to mixtures of more than two distributions is 

straightforward. Although convergence can be excruciatingly slow (Redner and Walker 

1984), the algorithm will converge to a solution, unless it gets trapped at some saddle 

point (Dempster, Laird and Rubin 1977; McLachlan and Basford 1988). However, 

there is no guarantee that this procedure will converge to the correct parameter values. 

Constraining the procedure to ensure iteration to a global maximum where 0 < tt7fc < 1, 

J2l=i t u t = 1 and crjfc = 0 (with pt = X i ) may aid in both speeding up convergence and 

preventing convergence to a non-feasible solution (Hathaway 1985). Louis (1982) has 

developed a method for speeding up convergence, as well as extracting the observed 

Fisher information matrix to estimate the asymptotic standard errors of the maximum 

likelihood parameter estimates. 

The EM approach can also be used for the cumulated data likelihood function 

because the indicator (weighting) vectors can be assumed to correspond to each of the 
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individual data values within each class interval, provided that the class intervals are 

small enough. Errors may occur if this function is applied to cases where the data have 

been cumulated into large class intervals for more rapid parameter estimation, because 

the foregoing assumption may not hold. 

2.2.5.2 N e w t o n - R a p h s o n 

An alternative approach for determining the parameter estimates of a mixture of normal 

distributions is through use of the Newton-Raphson algorithm. This consists of a 

gradient search of the log-likelihood surface to locate a maximum (subject to 0 < Wk < 

1, J2k=i wk = 1 °k > 0) using the following equation : 

This procedure involves determination of the first and second partial derivatives of 

the log-likelihood function. These can be determined analytically for both the RDML 

and CIDML functions (Appendix B) and lead directly to calculation of the observed 

Fisher information matrix and estimates of the asymptotic variances of the maximum 

likelihood parameter estimates. 

This numerical approach suffers from shortcomings similar to those of the EM 

algorithm in that no easily implementable procedure has been devised which pre

vents iteration toward a maximum where cr*. = 0 (with pt = x,), J2k=i wk / 1 or 

0 ^ Wk ^ 1. Convergence to non-feasible solutions is common, especially where initial 

parameter estimates differ substantially from their true values. Convergence can be 

rapid (quadratic) if close to the solution; however, if a large number of component 

distributions are present (and thus a large number of parameters need to be estimated) 

a large, time-consuming matrix inversion is required. 

(2.54) 
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2.2.5.3 Direct Search 

Direct search algorithms systematically evaluate the objective function to locate its 

optimum. One popular approach is the SIMPLEX procedure (Nash 1979; Caceci and 

Cacheris 1984). This approach can be applied to either the RDML or CIDML func

tions and can be used to determine parameter estimates of any number of mixtures of 

distributions. 

The procedure begins by defining 3u sets (one more than the number of parame

ters to be estimated) of parameter estimates to define a (3v — l)-dimensional polygon 

or SIMPLEX. These estimates (vertices) must span the full parameter space to be 

searched. New vertices are selected such that they produce objective function values 

which are higher than the current lowest-valued vertex, until a solution is reached. 

Initially, the objective function is evaluated at each vertex and the the lowest- and 

highest-valued vertices are determined. The centroid of the vertices which do not have 

the lowest objective function value is also calculated. Then a series of reflections is made 

from the lowest-valued vertex through the centroid of the other vertices (see Figure 2.7 

for graphical example of minimization). This reflection may be positive, producing a 

new vertex some multiple (generally one or two) times the 'centroid-to-lowest-valued 

vertex distance' past the centroid, or negative, such that the new vertex lies between 

the highest-valued vertex and the centroid. 

The objective function values for each of these possible new vertices are evaluated 

and the highest one is then chosen. If a positive one-fold reflection is chosen, the 

SIMPLEX merely flips through itself toward the parameter solution. If a positive 

greater than one-fold reflection is chosen, the SIMPLEX flips through itself toward the 

parameter solution, becoming larger in the process. If a negative reflection is selected, 

the SIMPLEX collapses in on itself toward the parameter solution, becoming smaller 



Figure 2.7: Two Dimensional Schematic Representation of SIMPLEX Algorithm 

Searching for Optimum Set of Parameter Values on an Objective Function Surface 
The simplex has 3 vertices because two parameters are to be optimized. The right 

vertex of triangle (simplex) # 1 (A) represents the initial guess of the parameter val
ues. Triangles # 2 and # 3 are double reflections, enlarging the simplex to speed 
optimization where the optimization surface is steep. Triangles # 4, 5 and 6 are single 
reflections, moving the parameter estimates toward the optimal solution. Triangle # 7 
is a half reflection to reduce the size of the simplex as the optimation surface becomes 
shallower (close to the solution). Triangle # 8 is another single reflection and triangle 
# 9 is another half reflection. Triangle # 10 has been 'shrunk' to further reduce the 
size of the simplex and allow convergence to a set of optimal parameter values. 
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in the process. H none of these new vertices is higher than the current lowest-valued 

vertex, the entire SIMPLEX is shrunk by moving all of the lower-valued vertices one 

half the distance toward the highest-valued vertex. 

In this way, the SIMPLEX will expand in size where the slope of the objective 

function is smooth (regular), shrink where the slope is irregular, and collapse on the 

solution where the SIMPLEX bounds the optimal parameter estimates. This algorithm 

thus reacts appropriately to the local objective function surface, avoiding numerical 

instability problems. A representation of this procedure is presented in Figure 2.7 for 

a two parameter case to demonstrate the various decision points and features of the 

SIMPLEX method. 

The SIMPLEX method can be constrained easily to satisfy the limiting conditions 

of <Tfc > 0 (with /xt = x,), J2k=i wk = 1 or 0 < zok < 1. Its convergence, although slower 

than the Newton-Raphson algorithm, is slightly faster than the EM algorithm because 

it has the desirable property of bounding and then collapsing onto the solution instead 

of creeping up towards it monotonically. Thus, early termination of the iterative process 

does not by necessity produce wildly inaccurate (biased) estimates. Unfortunately, no 

direct calculation of the observed Fisher information matrix is obtainable using this 

technique, so estimates of the asymptotic standard errors of the maximum likelihood 

parameter estimates may be calculated at the solution. 

2.3 Threshold Selection and Classification 

Once the parameters of the mixture of distributions model have been estimated, thresh

olds are chosen for classification of the data into groups corresponding to the multiple 

component distributions present in the data set. Two thresholds may be chosen at the 

mean plus and minus two standard deviations for each component distribution. This 
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produces 2v thresholds and defines upper and lower limits for each component distri

bution within which, on average, 95 % of the data from the component distribution 

occur. 

The frequency distributions of adjacent component distributions may overlap to 

varying degrees (Figure 2.8). Those component distribution pairs where ps + 2<TB > 

PA — 2(TA are considered to be overlapping cases (where B represents the distribution 

with the lower mean and A represents the distribution with the higher mean). In 

these cases, a total of more than 5 % of data will be misclassified using any threshold, 

assuming the theoretical PDF model is valid. Those component distribution pairs 

where the ps + 2&B < PA are considered to be non-overlapping cases, and less 

than 5 % of the data theoretically will be misclassified using either of these thresholds 

(or an intermediate one). 

Obviously, the application for which the classification procedure is used will define 

the type of criteria used for threshold selection. In some cases, a minimum of one type 

of classification error (either of omission or inclusion) will be the optimal condition. 

These require the assignment of weights (u»- subjective criteria) to indicate the relative 

importance of the errors of omission and inclusion. In other applications, the total 

number of classification errors is minimized, and the 'error' weights are equal. In 

this study, the equal 'error' weights case will be used because of its generality and 

objectivity. 

Figure 2.9 demonstrates how the use of different thresholds can result in varying 

amounts of misclassification. Using the parameters of a mixture of normal distribu

tions, one can calculate the theoretical amount of misclassification of data from the 

distribution with the lower mean (B) in the distribution with the higher mean (A; due 



Chapter 2. Theory of Probability Plot Analysis 50 

Significant Thresholds 

Threshold 

No Overlap 

(Univariate) 

Figure 2.8: Examples of Overlapping and Non-Overlapping Mixtures of Normal Dis
tributions 

Thresholds have been chosen at the x ± 2s for each component distribution (1). 
Non-overlapping mixtures of distributions (2) generally do not require additional 

analysis to classify the data. The threshold separates essentially 'pure' (un-polluted) 
data ranges composed of data from only population A or population B. 

Overlapping mixtures of distributions (3) may require additional information (other 
variables) because a single threshold cannot classify the data adequately. In this case, 
two thresholds define two 'pure' data ranges (for population A and B) and a zone of 
overlap. 
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Figure 2.9: Total Probability of Classification Error Defined by a Threshold is Equal 
to the Area Bounded by the Tails of Each Component Distribution and the Threshold 

The ruled area defines the amount of data misclassification for the threshold. The 
NW-SE ruled area represents the errors of inclusion (#2 classified as # 1) while the 
NE-SW ruled area represents the errors of omission (# 1 classified as # 2). 
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to omission) : 

eB = ^B-(l- fB <p(x\dB)dx), (2.55) 

eA = — fA <K*\0A)dx, (2.56) 
CT A J-oo 

OB 

and of data from distribution A in distribution B (due to inclusion) : 

CT4 J-00 

where tA and ts values corresponding to the threshold which has been standardized for 

each component distribution and eA and eB are the errors of inclusion and omission, 

respectively. Since the total number of observations misclassified is the weighted sum 

of these errors : 

eT = wieg +U2CA, (2.57) 

where u\ and 0*2 are the weights assigned to the different types of errors (for purposes 

in this study, they are considered to be unity), then differentiating this equation with 

respect to the threshold (t) and equating to zero gives : 

* I = ^ ± m A ) - ^ - m s ) = 0, (2.58) 
or <Ta (TB 

the total amount of misclassification is minimized where : 

^ < ^ | M = — M M - (2.59) 

This result can be determined easily and rapidly through interval-halving the region 

between the two means of the distributions until the desired precision is attained. Visual 

estimates of the optimal threshold using histograms are possible only if a true anti-mode 

exists; thus, the above numerical computation is preferred. 

2.4 Probability Graph Software 

The PROBPLOT program is an interactive, graphical computer program designed and 

written to perform the above decomposition and classification (parameter estimation 
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and threshold selection) on a mixture of normal distributions (Stanley 1987). It is sim

ilar to several mainframe programs which also perform multi-modal frequency distri

bution decompositions. Programs which have been used in geological and geochemical 

applications to decompose mixtures of normal distributions include ROKE (I. Clark 

1977), GETHEN (M.W. Clark 1977a, 1977b) and DISCRIM (Bridges and McCammon 

1980). 

2.4.1 Hardware Requirements 

Version 1.1 of PROBPLOT is written in TURBO Pascal (version 3.02A) using the 

TURBO Pascal Graphics Toolbox (version 1.07A) for the IBM-PC (and compatible) 

family of micro-computers. Graphical and tabular output is designed to be printed on 

an Epson-compatible printer. The CGA (640 x 200), EGA (640 x 350) and Hercules 

(720 x 350) graphics card formats are all supported and separate versions of the program 

support high precision floating-point operations in hardware (with the 8087, 80287 or 

80387 numerical co-processor chip) or software. 

The three major sections of the PROBPLOT program allow the user to perform 

the multi-modal frequency decomposition by : 

• determining the general form of the theoretical frequency distribution model (gen

erally done by previewing histograms and probability plots displaying only the 

raw data, choosing the number of component distributions, and estimating the 

parameters of each), 

• optimizing this frequency distribution model and decomposing the data distri

bution into its component populations (done by either maximizing the RDML 

or CIDML function, minimizing the x2 function, or selecting parameters visu

ally to produce estimates of the parameters of a distribution model which fit the 



Chapter 2. Theory of Probability Plot Analysis 54 

frequency distribution of the data), and 

• selecting thresholds to partition the data into groups representative of these com

ponent populations (done by minimizing the total misclassification error (er)> 

assigning thresholds to some multiple of standard deviations away from the mean 

of each component distribution, or selecting thresholds visually). 

The program has been written in a general way to allow its use in any field where 

frequency data analysis is required. Although this study emphasizes the analysis of 

geochemical data, the output from this program is non-specific, and any frequency 

data may be evaluated with it. 

2.4.2 Program Capabilities 

The PROBPLOT program can analyze data files containing up to 45 variables and 3500 

observations. Data values must be real numbers, but those coded as '0' or '0.0' are 

considered as missing values and are not considered. Summary statistics are produced 

which report the number of missing observations, the number of true observations, the 

number of class intervals, the time and date, the mean and standard deviation of the 

data (and their anti-logarithmic equivalents, if the data have been transformed loga

rithmically), the coefficient of variation, skewness, minimum, maximum, 1*' quartile, 

median (2nd quartile) and 3 r d quartiles. The variable evaluated, its units, the data 

transform (arithmetic [none] or logarithmic), the number of component distributions 

(1 < v < 5) fitted to the data, the estimates of the means, standard deviations and 

percentages of each of the component distributions, and the threshold values (or their 

anti-logarithmic equivalents if the data are transformed logarithmically) may also be 

output. 
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2.4.2.1 Histograms and Probability Plots 

Data may be screened on input to filter outlying values. The default acceptable data 

limits consist of a minimum value of 0.0001 and maximum value of 99999.9999; however, 

these may be changed by the user. Values outside the acceptable range may exist in 

the data file, but will not be input. 

The PROBPLOT program automatically determines the number of class intervals 

(or bins) to be used, based on the number of observations in the data set. The default 

number of class intervals is determined by the following formula : 

m = 10 x log1 0 n, (2.60) 

where m is the number of class intervals and n is the number of observations (compare 

Burgess's Rule where m — l + (3.3 x log 1 0 n),(Garrett 1984) and the maximum entropy 

approach (Perillo and Marone 1986a, 1986b)). The formula above results in a maximum 

of 36 class intervals for any data set less than 3500 observations, restricting the size of all 

histograms to one page. The user may modify the number of class intervals manually, 

either to increase the resolution of the cumulative data, to create class intervals with 

integer boundaries, to remove class intervals containing multiple reporting values, or to 

eliminate vacant class intervals. The maximum and minimum number of class intervals 

possible is 36 and 5, respectively. If a 'user defined' number of class intervals is used, 

new histograms and probability plots may be generated with this different number of 

class intervals. 

Class intervals are of equal size and distributed evenly across the entire range of 

the data considered (compare the maximum entropy approach of Full et al. 1984). The 

lower limit of the lowest class interval is one half a class interval length less than the 

minimum value in the data set, and the upper limit of the highest class interval is one 

half a class interval length greater than the maximum value in the data set. 
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The PROBPLOT program cumulates the data values into class intervals for use 

in the histograms and probability plots. This reduces the number of points on these 

plots, making underlying frequency distribution trends easier to recognize. It also allows 

application of the CIDML or x2 functions, which reduces the number of calculations 

required to obtain optimal estimates of the parameters which describe the 'best fitting' 

cumulative frequency distribution model. An observation is included in a class interval 

if its value is greater than or equal to the lower class interval limit and less than the 

upper class interval limit. Relative frequencies for each class interval are calculated 

by dividing the number of observations in the class interval by the total number of 

observations (n). 

Cumulative relative frequency percentage data are not simply the sum of all class 

interval frequencies up to and including the current class interval. This is because the 

resulting cumulative frequency percentages will be different if the cumulation is made 

from the lowest to highest class interval, or vice versa. As a result, a slightly differ

ent computational alternative is used resulting in unique cumulative relative frequency 

percentages which satisfy all of the desirable characteristics of cumulative relative fre

quency data. 

The following formula is used to calculate the cumulative relative frequency per

centages : 
/Ev-i » j + 0.5>. 

CJ = 100 x ( Z" J- 1 3 , ) (2.61) 

v n +1 ' 

where Cj is the cumulative relative frequency percentage, £<=i n j ^ * n e total number 

of observations up to (or down to) and including the current class interval (c), and n 

is the total number of observations in the data set (compare other formulae of Garrett 

1984; Hoffman 1986, p. 23). 

This formula results in the same cumulative frequency values whether the data are 
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cumulated from low to high or high to low, and the resulting distribution has its median 

value at the 50th percentile. In effect, this formula compresses (biases) the frequency 

data away from the tails of the distribution (0th and 100"1 percentiles). This bias may 

be quite large for small data sets (n = 20 has a maximum bias of 2.38 %), but for 

larger data sets of the size where a probability plot analysis may be most useful, the 

resulting bias is insignificant (n = 200 has a maximum bias of 0.25 % and n = 1000 

has a maximum bias of 0.05 %). Since the CIDML and x2 functions are based on the 

individual class interval frequencies, and not the cumulative frequencies, use of this 

formula is merely to aid in visual parameter approximation and has no effect on any 

of the numerical parameter estimation procedures. 

Histograms (Figure 2.10) display the upper and lower limit of each class interval (the 

upper limit is on the same line, the lower limit is on the line immediately above), the 

frequency and cumulative frequency percentages, and stars to represent the number 

of observations in the class interval. With larger data sets (> 200) the number of 

observations represented by each star is increased to prevent the number of stars from 

running off the page. The formula to calculate the number of observations per star is : 

where n , t o r is the number of observations per star and m is the number of class intervals. 

The number of observations represented by each star is indicated below the histogram. 

(2.62) 
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15:57:13 0 5 / 2 9 / 8 7 
D a i s y C r e e k S o i l G r i d 

######################################################################## 

SUMMARY S T A T I S T I C S and HISTOGRAM LOGARITHMIC VALUES 

V a r i a b l e = CU U n i t PPM I = 247 

Mean = 1.6188 M i n = 1.0000 1st Q u a r t i l e = 1.3273 

S t d . Dev. = 0 .4017 Max = 2.9881 Median = 1.5051 

CV '/, = 24 .8135 Skewness = 1.2436 3 r d Q u a r t i l e = 1.7924 

'/. cum '/. a n t i l o g c i s i n t (# of b i n s = 24 - b i n s i z e = 0 .0864) 

0.00 0. 20 9, .053 0. 9568 

0.81 1. 01 11. .046 1. 0432 * 
2.83 3. 83 13. .479 1. 1297 **** 
5.26 9 .07 16. .447 1. 2161 ******** 

12.96 21. 98 20. .070 1. 3025 ****************** 
9.31 31. 25 24 .489 1. 3890 ************* 

15.38 46. 57 29. .883 1. 4754 ********************** 
10.93 57. 46 36. .463 1. 5619 **************** 

9.31 66. ,73 44. .494 1. 6483 ************* 
5.67 72. 38 54. .292 1. 7347 ******** 
4.86 77. 22 66. .249 1. 8212 ******* 
3.24 80. 44 80. .838 1. 9076 ***** 
2.83 83. 27 98. .641 1. 9941 **** 
3.64 86. 90 120. .364 2. 0805 ***** 
2.02 88. 91 146. .871 2. 1669 *** 
0.81 89. 72 179. .215 2. 2534 * 
1.62 91. 33 218. .683 2. 3398 ** 
1.21 92. 54 266. .842 2. 4263 ** 
2.02 94 .56 325. .608 2. 5127 *** 
1,21 95. 77 397, .314 2. 5991 ** 
1.62 97. 38 484. .813 2. 6856 ** 
1.62 98. 99 591. .580 2. 7720 ** 
0.00 98. 99 721. .861 2. 8585 

0.40 99. 40 880. .832 2. 9449 * 
0.40 99 .80 1074. .812 3. 0313 * 

0 1 2 3 4 

E a c h " * " r e p r e s e n t s a p p r o x i m a t e l y 1.7 o b s e r v a t i o n s . 

######################################################################## 

Figure 2.10: Example of Histogram Output from the PROBPLOT Program 
(From a soil survey data set of 247 geochemical samples described in Stanley 1984). 
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Probability plots are generated on the graphics screen which has a probability 

scale ranging from +2.5 to -2.5 standard deviations (approximately the 99.5 and 0.5 

percentiles) on the abcissa, and the variable (or log-variable) scale on the ordinate. 

Rounded maximum and minimum ordinate limits bound the maximum and minimum 

values of the variable by ± approximately 10 % of the range. 

2.4.2.2 Distribution Model Selection and Optimization 

The PROBPLOT program, after allowing the user to preview arithmetic and logarith

mic histograms and probability plots, allows the user to define a theoretical cumulative 

frequency distribution model to match the cumulative frequency distribution of the 

data. This is done by selecting a data transformation (arithmetic [none] or logarith

mic) which creates a cumulative frequency distribution which can be fitted by a mixture 

of normal distributions model. Sometimes, the user may wish to evaluate data using 

both data transforms, comparing the implications and conclusions of the results before 

deciding which transform is the most appropriate. 

In addition to data transformation, the amount of data truncation can be accounted 

for in the PROBPLOT program (Sinclair 1976). Both upper and lower truncation can 

be accommodated, but not both simultaneously. If a data truncation correction is made, 

the program will not allow use of the numerical parameter optimization procedures 

described below to obtain the 'best fit' cumulative frequency distribution. This is 

because truncation correction is made on the cumulative frequency data, not the relative 

frequency data. Thus, because the numerical parameter optimization procedures use 

the relative frequency data, numerical optimization should not be employed. A visual 

fitting option is still available in these cases. 

The PROBPLOT program limits the user to a maximum of 5 component popu

lations in the theoretical multi-modal normal distribution model (the minimum is 1 
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component population - a normal or lognormal distribution). This limitation gener

ally does not restrict the user, because real data sets with a larger number of modes 

are rare, and if present, probably should be broken into subsets of smaller size, based 

on categorical criteria. Furthermore, a larger number of component populations in 

the theoretical distribution model would significantly increase the time required to de

termine the theoretical distribution model and to perform the numerical parameter 

optimization procedures. 

The user, after selecting a data transform and possibly correcting for truncation, 

is asked to determine how many component populations exist in the data set. This 

decision should be based on the previously examined histogram and probability plots. 

The program then prompts for the percentiles where the appropriate inflection points 

occur. These define the relative amounts of the component populations, and allow the 

program to determine initial, provisional estimates of the mean and standard deviations 

of each component population. 

These parameters are calculated in the program by partitioning the data into subsets 

bounded by the percentiles where the inflection points occur. The mean and standard 

deviation of each of the subsets are used to approximate the parameters of each com

ponent population. If component populations are not significantly overlapping, these 

estimates generally define a reasonably acceptable cumulative frequency distribution 

fit of the raw data; however, if the populations overlap substantially, these estimates 

may be biased. In either case, these parameter estimates are generally close enough to 

the true parameter values to act as initial estimates for any subsequent optimization 

procedures. Several authors (Hasselblad 1966; Everitt and Hand 1981; Titterington et 

al. 1985) have suggested using the 'truncated normal distribution technique' described 

by Hald (1949) and Cohen (1950, 1957, 1959, 1961) to determine initial parameter es

timates (see Chapter 5); however, the initial parameter estimation technique described 
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15:52:01 
O l i j y Crtek J c i l G r i d LDGflRITHMC UALUE5 

PERCENT PflRArlETER EJTIMfiTES 

Figure 2.11: Example of Probability Graph Output from the PROBPLOT Program 
(From soil survey data set of 247 geochemical samples described in Stanley 1984). 

above has been found to be adequate for most situations. 

The PROBPLOT program then plots the cumulative frequency points on the prob

ability plot and draws the curve defined by the current population parameters. It also 

draws the straight lines which are defined by the individual component populations. 

Then, the program allows the user to modify these provisional parameter estimates to 

obtain a new cumulative frequency distribution fit (Figure 2.11). 

After allowing the user to estimate the form of a cumulative frequency distribu

tion model, the PROBPLOT program offers three methods by which to optimize this 

distribution model through numerical iteration. The three functions are : 

• Minimum x2 Optimization on Class Interval Data, 
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• Maximum Likelihood Optimization on Class Interval Data, 

• Maximum Likelihood Optimization on Raw Data. 

These procedures offer various advantages and disadvantages, basically differing in the 

way they trade speed for accuracy. 

The x2 function is minimized to obtain 'optimal estimates' and is quite rapid. 

Unfortunately, if one of the component populations does not comprise a substantial 

proportion of the data set, or if there is a large number of class intervals with a very 

small number of observations in each, the mean and standard deviation estimates will 

be very biased. Although rapid, the behavior of the objective function iteration path 

can be unstable, giving spurious results or taking varying amounts of time to determine 

the optimal solution if initiated from different parameter 'seed' values. This is gener

ally the fastest optimization technique (about 25 % faster than the CIDML function 

optimization) but, in general, provides the least visually acceptable 'best fit'. Tests to 

determine the significance level of the model fit (x2 tests) are not supported (the x2 

value is not output) because of the general insensitivity (lack of power) of the test to 

this application (Everitt and Hand 1981; McLachlan and Basford 1988). 

The logarithmic CIDML function optimization is also a fairly rapid technique, but 

generally produces a more visually acceptable 'best fit' than the x2 technique. Iteration 

toward a solution is much more stable than iteration with the x2 technique. The maxi

mum log-likelihood value is output if the function is maximized to allow the application 

of a likelihood ratio test statistic (Johnson and Wichern 1982). This allows comparison 

of distribution models with different numbers of component populations to determine 

if an additional component distribution in the PDF model has statistical significance. 

It cannot be used to determine if a logarithmic transform model should be favored over 

an arithmetic one and must be performed with distribution models defined with the 
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same number of class intervals. 

This likelihood ratio test, is similar to most statistical tests in that it compares the 

null hypothesis against an alternative. In this test, the significance of an additional 

mode or modes (7) in the distribution model is determined by subtracting the log-

likelihood value of the (v — 7)-modes distribution fit from the log-likelihood value of 

the v-modes distribution fit. If this difference is multiplied by : 

~2(n - 2 - f) 

n 
(2.63) 

(given a sufficiently large number of observations), the result is distributed approxi

mately x 2 (Wolfe 1971). Thus, the approximate significance of the additional mode(s) 

can be ascertained by comparison with critical values on a x2 table, although the power 

of this test is reduced if there are small Mahalanobis Distances (A 2 < 2) between the 

component distributions (Everitt and Hand 1981; McLachlan and Basford 1988). De

grees of freedom for this test are equal to the absolute difference in parameterized 

degrees of freedom (the number of parameters minus one for each model), which is 

equal to two times the difference in the number of modes in each distribution model 

(7). 

The logarithmic RDML function (Titterington et al. 1985) is by a large degree, the 

slowest optimization technique (100 to > 500 % slower than the other two techniques 

depending on the size of the data set); however, its resulting parameter estimates are, 

by definition, the 'best fit' estimates. It also records the log-likelihood value of the best 

fit parameters, allowing the application of a likelihood ratio test to determine model 

significance. This technique produces the 'best' fit of the model to the data, if the PDF 

model is appropriate (McLachlan and Basford 1988). 

In general, the basic nature of all of these fitting procedures is a weighted opti

mization. The functional form of the resulting cumulative frequency distributions are 
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governed more by the value ranges where more data are present. These are also, by 

consequence, the value ranges where additional, randomly obtained data will have the 

least effect in altering the form of the distribution. As a result, the tails of the distri

bution, as well as the anti-modes, will have a lower influence (weight) in controlling the 

form of the cumulative frequency distribution, and the curve will be less likely to go 

precisely through the cumulative frequency points in these regions. This is appropriate 

because the tails comprise regions on the probability plots where the most deviation 

(scatter) from a smooth curve will occur because of the relative sparsity of data. 

In all three optimization functions, the successive iterations used to obtain opti

mal parameter estimates are made using the SIMPLEX algorithm, because it is easily 

adapted to both minimization and maximization. In addition to the use of the SIM

PLEX iteration algorithm, a set of nested loops is used which significantly speeds up 

iteration, preventing the result from temporarily 'moving' away from the solution. This 

is done by allowing the parameters to vary in two sets, optimizing one set while holding 

the other set constant, then fixing the first set and allowing the second to vary. The 

means and standard deviations (the normal parameters) comprise the first set, whereas 

the component population percentages (the mixture parameters) comprise the second 

set. 

Iteration proceeds for a series of loops, until a solution is reached, or until terminated 

by the user (whichever comes first) and then the program plots the curve defined 

by the current parameter estimates and the straight lines which are defined by each 

component population. This allows the user to make sure that, if only intermediate 

parameter estimates have been produced, irregular objective functions haven't led the 

algorithm off toward a unfeasible solution. After this preview, the user may modify 

the parameters by a variety of techniques, if necessary, and then restart the iteration, 

possibly with a different optimization function, continuing until a satisfactory solution 
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is obtained. 

Stopping criteria for each optimization function is achieved when all SIMPLEX 

vertices have both spatial separation and objective function values within 0.5 % of 

each other. This precision level may be modified by the user. The elaborate iteration 

procedure described above has been found to be the most reliable route to a set of 

acceptable parameter estimates based on both experiential and theoretical grounds 

(the two groups of parameters result in stable iteration paths within each group, but 

do not iterate in a stable manner if optimized collectively). 
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2.4.2.3 Threshold Selection 

After the user is satisfied with a cumulative frequency distribution model, an option 

to choose thresholds that separate the groups denned largely by population affinity is 

presented. The user may modify these thresholds by three methods. These include : 

• imposing user denned 'custom' thresholds, perhaps to obtain integer or rounded 

number thresholds, 

• choosing a different standard deviation multiplier for the mean plus or minus 

some multiple of standard deviations criteria (default = 2), or 

• choosing an option which selects a single threshold between two component dis

tributions which defines the theoretical minimum number of classification errors 

(the sum of the errors of omission and inclusion). 

This last technique will create 1 threshold for a two population model, 3 thresholds 

for a three population model, 6 thresholds for a four population model, and 10 thresh

olds for a five population model. Not all of these thresholds may be significant in that 

thresholds separating non-adjacent populations may be meaningless if an intermediate 

population exists between them. Once these thresholds have been determined, they 

can be used to classify the frequency data according to the multi-modal distribution 

model which has been fit to the data. 

After parameter optimization and threshold selection, the PROBPLOT program 

outputs the summary statistics describing the 'best fit' parameters and thresholds (Fig

ure 2.12). 
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15:53:08 Daisy Creek Soil Grid 05/29/87 

################################«####################################### 

PARAMETER SUMMARY STATISTICS FDR PROBABILITY PLOT AIALYSIS 

Data File Same = DAISY.DAT 

Variable = CU Unit PPM I = 247 

I CI = 24 

Transform = Logarithmic lumber of Populations = 2 

# of Missing Observations = 0. 

Users Visual Parameter Estimates 

Population Mean Std Dev Percentage 

85.00 

15.00 

1 30.284 - 18.019 
+ 50.897 

2 245.661 - 132.729 
+ 454.683 

Default Thresholds 

Standard Deviation Multiplier =2.0 

Pop. Thresholds 

1 10.722 85.539 
2 71.712 841.551 

######################################################################## 

Figure 2.12: Example of Summary Statistic Output from the PROBPLOT Program 
(From soil survey data set of 247 geochemical samples described in Stanley 1984). 



Chapter 3 

Likelihood Function Comparison 

"Scratch the surface, and if you are really lucky, you'll find more sur

face." 

Richard Avedon (1975) 

"The aims of scientific thought are to see the general in the particular 

and the eternal in the transitory." 

Alfred North Whitehead (1956) 

Use of the logarithmic CIDML function instead of the logarithmic RDML function 

by the PROBPLOT program expedites numerical optimization. Each iteration of the 

logarithmic CIDML function, with m class intervals, involves 2m integrations of the 

mixture of normals PDF, m subtractions, m logarithm calculations, m multiplications, 

and m— 1 additions. Alternatively, each iteration using the logarithmic RDML function, 

with n observations, involves n mixture of normals density calculations, n logarithm 

calculations and n — 1 additions of these log-densities. If m <C n, a condition common 

in geochemical applications where n is generally large and sampling, preparation and 

analytical errors have magnitudes which preclude use of small class intervals (large m), 

optimization with the CIDML function instead of the RDML function can result in a 

substantial reduction of calculation time. 

However, the use of the CIDML function does have related costs. These costs can 

potentially take the form of a bias in the resulting parameter estimates. Although the 

68 
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RDML function uses the raw data, the CIDML function does not. Rather, information 

is lost when the raw data are placed into class intervals because knowledge of where 

the raw data occur within the class intervals is not used. Potentially, this can result in 

a parameter estimation bias. 

Clearly, as the width of the class interval is reduced, the amount of information lost 

is reduced because each class interval can more precisely represent the raw data within 

it. In fact, as the size of the class interval —> 0, the CIDML function converges to the 

RDML function, and no bias results. 

Most applications in applied geochemistry involve large data sets and thus can 

benefit substantially from use of the CIDML function to determine the parameter 

estimates of the distribution. However, in this study, data classification techniques 

involve only the RDML function because of its optimal characteristics. As a result, 

a quantitative comparison of the results of both the RDML and CIDML functions 

must be made to determine the extent of the bias produced through use of the CIDML 

function and allow the application of these results to routine applied geochemistry data 

analysis. 

Any comparison of the RDML and CIDML functions must involve multi-modal 

data sets with known parameter values. Thus, although actual data sets from 
applied geochemistry case histories may be used, any conclusions resulting 
from analysis of these data w i l l necessarily be less conclusive because the 
parameters defining the component distributions are not known. Instead, 

stochastically generated data sets should be used with parameters which are known, 

in order to allow quantitative determination of the amount of bias produced by both 

the RDML and CIDML functions. Furthermore, a variety of PDF structures must be 

tested in order to evaluate how the bias changes with different parameter values. 
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Although this comparison considers only mixtures of two univariate normal distri

butions, other evaluations in this study consider multivariate distributions (Chapter 

5). Therefore, a general procedure for generating multivariate normal distributions is 

presented below. 

3.1 Stochastic Data Set Generation 

Data sets comprised of mixtures of normal distributions were generated using a linear 

congruential random number generator. Uniform random integers were produced using 

the algorithm described by Ahrens and Deiter (1973) and Sedgewick (1983), whereby 

a vector of integers is generated using the following formula : 

a, = (a.-ife — 1) mod g, (3.64) 

where g = 16384, the largest power of 2 which can be represented as an integer (16 

bits) in Turbo Pascal, Version 3, and b = 7821 (one power of 10 less than g ending in 

w21, where w is even; Knuth 1981). Starting with some seed value OQ, this produces 

a sequence of uniform pseudo-random variates on the integers between 0 and 16383, 

inclusive. These are then each divided by 16383 to produce an approximately uniformly 

distributed variate with values between 0 and 1, inclusive (17(0,1) ~ U on 1£83, jgiW' 
16383' HU! because 16383 is large). The uniform random variates ( 1 £ 8 3 , 1 ^ s 3 , 

1^383) are stored in a vector with dimension equal to the smallest even integer 

greater than the number of variables to be generated. This vector of uniform random 

variates {u,}2^ can then be transformed into a vector of normal random scores using 

the following formulae (Box and Muller 1958; Ahrens and Deiter 1973) : 

zi = cos(27ru 2)y—2hi Ui, (3.65) 

z 2 = sm(27ru2 )\J—2 ln u\. (3.66) 
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If ui and u 2 are two independent uniform random scores, then zi and z2 are independent 

normal scores which are distributed 7V(0,1). 

A mean vector and covariance matrix for the population must then be specified. 

The statistical sample means and covariance matrix of the resulting normal random 

variables will approximate these population statistics. Production of the multivariate 

normal distributions is accomplished using a multivariate analog of the univariate z-

score formula : 

r = p + az, (3.67) 

where z is a z-score, p and a are the mean and standard deviation of the population, 

and r is a normal score. 

Any a can be thought of as the square root of the univariate covariance matrix. 

To obtain the multivariate equivalent statistic, the multivariate covariance matrix ( £ ) 

must be decomposed using a Choleski decomposition (analogous to taking the square 

root of E; Burden and Faires 1985) to produce a lower-diagonal matrix (L) such that : 

t = LLT. (3.68) 

L is thus the multivariate equivalent of the univariate standard deviation in the multi

variate z-score formula (in matrix notation) : 

R = M + LZ. (3.69) 

By pre-multiplying the lower-diagonal p x p matrix (L) by the p x 1 vector of 

standardized scores (Z) and adding the p x 1 vector of means (M), a p x l vector of 

multivariate normal scores (R) is produced (Ghose and Pinnaduwa 1987; for alternative 

methods see : Alabert 1987; Davis 1987a, 1987b; Mantaglou 1987). This procedure can 

be repeated numerous times to produce a statistical sample comprised of n cases of p 

variables which will have a mean vector and covariance matrix which approximates that 
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of the population. Thus, data sets can be generated which consist of mixtures of mul

tivariate normal distributions with different means, standard deviations, correlations 

and component proportions. 

Bimodal mixtures of normally-distributed data sets were generated with an iden

tifying number indicating the population membership for each observation, which was 

stored with the data so that subsequent classification procedures could be evaluated 

quantitatively. All stochastically generated data sets, as well as all statistics derived 

from them in the course of this study, were stored with 5 places to the right of the 

decimal point to prevent round-off errors and other inaccuracies. 

3.2 Univariate Data Set Structures 

A variety of data set structures was specified for use in this comparative evaluation. 

All were comprised of a mixture of two normal distributions; thus, extrapolation of the 

results of this study to data sets comprised of more than two distributions is possible. 

For each data set structure, ten different realizations were produced. The variations 

in data set structure consisted of modifying the various parameters that describe the 

distributions. These include variations in the total number of observations (n : Test # 

1), variations in the component distribution percentages (TJ7 : Test # 2), variations in 

the square root of the Mahalanobis distance between the two component distributions 

by changing the means and standard deviations (p,2 ' Test # 3, and a2 : Test # 4). 

Only one parameter was modified at any one time, and in all cases, p,\ and <J\ remained 

constant. A summary of the parameter values for each of the data set structures is 

presented in Table 3.2. 

The Mahalanobis distance (A 2) was calculated using the following formula : 

A 2 = (3.70) 
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Table 3.2: Parameter Values for the Different Data Set Structures Used to Generate 
the Stochastic Realizations 

Structure Label ^ i 0 i /*2 tr 2 w(%) n Test # A 
(Datum) 1 20 5 40 5 50 200 1,2,3,4 4 

16 20 5 40 5 50 50 1 4 
2 20 5 40 5 50 100 1 4 
3 20 5 40 5 50 300 1 4 
4 20 5 40 5 50 400 1 4 
5 20 5 40 5 50 500 1 4 
6 20 5 40 5 70 200 2 4 
7 20 5 40 5 85 200 2 4 
8 20 5 40 5 95 200 2 4 
9 20 5 25 5 50 200 3 1 

10 20 5 30 5 50 200 3 2 
11 20 5 35 5 50 200 3 3 
12 20 5 45 5 50 200 3 5 
13 20 5 50 5 50 200 3 6 
14 20 5 40 10 50 200 4 2.53 
15 20 5 40 15 50 200 4 1.79 

(Listed According to Which Parameter is Different from the Datum, and Labelled 
According to their Relation to the Parameter Variation Tests) 
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where <rp is the pooled standard deviation : 

(m - 1 H + (na - 1)<T2

2 

ni + n 2 — 2 
(3.71) 

3.3 Procedure 

Comparison of the RDML and CIDML parameter estimates was made using a version 

of the PROBPLOT program which does not constrain the two standard deviation 

parameter values to be greater than zero and the component proportion parameter to 

be between zero and one, inclusive. This allowed evaluation of the relative stability of 

the maximization algorithm using both likelihood function surfaces. For each of the 15 

data set structures, the 10 data set realizations were evaluated using both likelihood 

functions. 

Initially different seed values were used to determine whether the algorithm iterated 

to the same maximum. In each case, different inflection points were used to calculate 

different sets of parameter seed values (see Chapter 2). Results demonstrate that, for 

data set structure # 1 (Datum), 5 different sets of seed values on each of the 10 data 

sets all iterated to the same maximum for each data set. Variation in the results can be 

explained by the amount of round-off error produced by the iteration stopping criteria, 

which in all cases in this study was set at 0.01 % relative deviation between the vertices 

and between the likelihood function values. 

As a result, for all data sets, the known inflection point (component population 

percentage) was used to determine the parameter seed values. This ensured a relatively 

rapid determination of the maximum likelihood solution. On one data set in each data 

set structure, two other inflection point values were used, where possible, which were 5 

percentage points greater and less than the known value (only the lower could be used 

for data set structure #8). In all cases, these final parameter estimates agreed well 
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with the estimates determined using the known inflection point, given round-off error. 

Furthermore, the variation in the resulting parameter estimates using different 'seed' 

parameter values on one data set structure realization was comparable to the variation 

between different realizations of the same data set structure. 

Parameter estimates calculated directly from the data sets were tabulated. In addi

tion, the means and standard deviations of the ten sets of RDML parameter estimates 

were determined using the PROBPLOT program. Multiple estimates of the parameters 

using the CIDML function were also derived with different numbers of equal sized class 

intervals. The numbers of class intervals ranged from 10 to 50, in increments of 5. The 

means and standard deviations of these 9 additional sets of parameter estimates were 

also calculated. The x2 function was used to determine the mean (and standard devi

ation) parameter estimates for the 10 realizations with the 'datum' data set structure 

(# 1) with the same class intervals used for the CIDML parameter estimates. This 

allowed comparison of the x2 and CIDML function parameter estimates. 

3.4 Results 

Although all of the RDML parameter estimates and x2 parameter estimates produced 

were feasible, the CIDML function commonly produced estimates outside of the pa

rameter constraints. Several data sets iterated to conditions where 0 % m, w j£ 1 

or tr1)2 —• 0, and these produced 'computation overflow' errors. These unconstrained 

cases were considered failures, even though utilization of the parameter constraining 

version of the PROBPLOT program would normally have produced acceptable esti

mates. Where unfeasible estimates were produced, a new data set of similar structure 

was generated and estimates of its parameters were determined. In several cases, nu

merous additional data sets were required because of the high level of instability of the 
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Table 3.3: Number of Additional Data Set Realizations Required to Produce 10 Feasible 
Sets of Parameter Estimates for Different Data Structures 

Structure Label Variable Number of Class Intervals 
Test # 1 n 10 15 20 25 30 35 40 45 50 

2 100 3 2 0 0 0 0 0 0 0 
1 200 1 0 0 0 0 0 0 0 0 
3 300 0 0 0 0 0 0 0 0 0 
4 400 0 0 0 0 0 0 0 0 0 
5 500 0 0 0 0 0 0 0 0 0 

Test # 2 w{%) 
1 50 1 0 0 0 0 0 0 0 0 
6 70 0 0 0 0 0 0 0 0 0 
7 85 1 0 0 0 0 0 0 0 0 
8 95 0 0 0 0 0 0 0 0 0 

Test # 3 
9 25 12 3 1 0 0 0 0 0 0 
10 30 6 1 0 0 0 0 0 0 0 
11 35 2 0 0 0 0 0 0 0 0 
1 40 1 0 0 0 0 0 0 0 0 
12 45 0 0 0 0 0 0 0 0 0 
13 50 0 0 0 0 0 0 0 0 0 

Test # 4 
1 5 1 0 0 0 0 0 0 0 0 

14 10 1 0 0 0 0 0 0 0 0 
15 15 7 2 0 0 0 0 0 0 0 

optimization algorithm on the likelihood surface. 

Table 3.3 presents the number of extra data sets which had to be generated to 

produce 10 feasible sets of CIDML parameter estimates. This table gives a semi

quantitative estimate of the relative stability of the CIDML function applied to different 

data set structures. 
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Table 3.4: Key for the Table of Differences Between the RDML Parameter Estimates, 
CIDML Parameter Estimates, x2 Parameter Estimates and Stochastically Generated 
Sample Parameter Estimates and the Population Parameter Values 

(for Table 3.5 and Appendix A.l) 

Stochastic = the means and standard deviations of the differences between 
the actual population parameter values and the 
calculated statistical sample parameter estimates 
for the stochastically generated data sets 

I oo = the means and standard deviations of the differences between 
the actual population parameter values and the 
RDML parameter estimates for the 
10 stochastically generated data sets 

£ # = the means and standard deviations of the differences between 
the actual population parameter values and the 
CIDML parameter estimates for the 
10 stochastically generated data sets 

X2 # = the means and standard deviations of the differences between 
the actual population parameter values and the 
minimum x2 parameter estimates for the 
10 stochastically generated data sets 

dfa = mean of 10 differences for the lower mean estimates 
Ufa = standard deviation of 10 differences for the lower mean 

estimates 
d(i2 = mean of 10 differences for the upper mean estimates 
Sfo = standard deviation of 10 differences for the upper mean 

estimates 
= mean of 10 differences for the lower standard deviation 

estimates 
= standard deviation of 10 differences for the lower standard 

deviation estimates 
<42 = mean of 10 differences for the upper upper standard deviation 

estimates 
s&2 = standard deviation of 10 differences for the upper standard 

deviation estimates 
= mean of 10 differences for the component proportion estimates 

(%) = standard deviation of 10 differences for the component 
proportion estimates 
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Table 3.3 indicates that the CIDML function does not generally produce reasonable 

estimates where a small number of class intervals are used. Unfortunately, if a small 

number of class intervals are used, the CIDML function offers the greatest advantage 

over the RDML function in terms of calculation time. Additionally, instability also 

appears to be the result of both the size of the data set (unstable if small) and the 

proximity of the two distributions (unstable if a substantial amount of population over

lap exists, corresponding to small Mahalanobis distances, caused both by the proximity 

of the means (Test # 3) and the magnitude of the standard deviations relative to the 

means (Test #4)). Variations in the relative percentages of the two populations do not 

appear to significantly affect the stability of the CIDML function or the performance 

of the SIMPLEX algorithm in finding its maximum. 

Results from the comparison of the RDML and the CIDML function performance 

described above are listed in Table 3.5 for the 'datum' data set (# 1) structure only. 

Plots demonstrating the relative bias of the CIDML parameter estimates for this data 

set structure are presented in Figure 3.13. Tables listing results for all other data set 

structures (# 2 through # 15) are presented in Appendix A . l and corresponding plots 

of the results of these analyses are included in Appendix A.2. 

3.5 Discussion 

Although the number of realizations of each data set structure described above clearly 

are inadequate to precisely estimate the amount of bias produced through use of the 

various optimization functions, several important trends are recognizable. These are 

related to the type of data set structure used, the type of optimization function used 

to obtain the parameter estimates, and, in the case of the CIDML function and the x2 

function, the number of class intervals used. 
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Table 3.5: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates, x2 Parameter Estimates and Stochastically Generated Sample Parameter 
Estimates and the Population Parameter Values for Data Set Structure # 1 

(see Table 3.4 for key) 

Pi = 20, p2 = 40, cri = 5, tr2 = 5, w(%) = 50, and n = 200 

5 Ai dfi:i d&2 

Stochastic -0.20 0.51 0.07 0.77 0.04 0.40 0.16 0.40 0.00 0.00 
I OO -0.04 0.67 -0.26 0.57 -0.11 0.42 -0.14 0.49 -0.24 1.93 
£ 10 0.08 0.51 -0.46 0.62 -0.25 0.49 -1.55 0.73 2.75 2.79 
£ 15 0.20 0.44 -0.25 0.55 -0.04 0.43 -0.81 0.43 1.89 1.91 
£ 20 0.18 0.38 -0.25 0.50 -0.00 0.45 -0.62 0.37 1.39 1.94 
£ 25 0.19 0.58 -0.23 0.46 -0.03 0.44 -0.45 0.35 0.84 2.02 
£ 30 0.03 0.53 -0.16 0.46 -0.07 0.47 -0.46 0.44 0.78 2.32 
£ 35 0.08 0.47 -0.11 0.39 -0.01 0.39 -0.36 0.36 0.76 1.93 
£ 40 0.11 0.67 -0.04 0.43 -0.03 0.49 -0.43 0.42 0.96 2.29 
£ 45 0.20 0.53 -0.18 0.49 0.07 0.43 -0.35 0.46 0.98 2.26 
£ 50 0.12 0.31 -0.05 0.29 0.04 0.24 -0.26 0.49 0.45 2.00 

X2 10 0.26 0.95 -0.01 0.94 -0.08 0.39 -1.48 0.63 2.82 3.76 
X2 15 0.22 0.68 -0.05 0.65 0.16 0.28 -0.75 0.38 1.88 1.42 
X2 20 0.18 0.72 0.05 0.72 0.27 0.36 -0.72 0.45 2.36 1.78 
X2 25 -0.05 1.05 0.09 0.74 0.40 0.29 -0.50 0.63 1.94 2.27 
X2 30 -0.04 0.55 0.04 0.52 0.41 0.39 -0.55 0.61 2.28 2.01 
X2 35 0.16 0.72 -0.03 0.55 0.62 0.33 -0.43 0.60 1.80 1.80 
X2 40 -0.13 0.52 -0.16 0.58 0.28 0.68 -0.02 1.08 0.62 3.76 
X2 45 -0.15 0.64 0.05 0.49 0.67 0.43 -0.63 0.51 2.45 3.11 
X2 50 -0.40 0.54 0.09 0.52 0.60 0.33 -0.42 0.52 1.90 2.82 
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Figure 3.13: Parameter Bias of the RDML Parameter Estimates, CIDML Parameter 
Estimates and the Stochastically Generated Sample Parameter Estimates Relative to 
the True Population Parameter Estimates for Data Set Structure # 1 (Datum) 
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3.5.1 Raw Data Likelihood Function Bias 

Comparison of the actual parameter values, the calculated statistical sample parameter 

estimates for the stochastically generated data sets and the RDML parameter estimates 

made using the stochastically generated data sets reveals several important trends. 

These are described in point form relative to the true population parameter values 

used to produce the stochastically generated bimodal normal data sets. 

3.5.1.1 Effects of Variations in n 

The mean calculated statistical sample and RDML parameter estimates of data set 

structures which differ only in the number of observations per data set (Test # 1) 

are neither different from the actual parameter values nor different from each other. 

Data set structures with larger numbers of observations exhibit lower but roughly equal 

amounts of variance for both the RDML and the mean calculated statistical sample 

parameter estimates. 

The variances of both the statistical sample estimates and the RDML parameter 

estimates should be proportional to 1/n, where n is the number of observations in the 

data set. Results presented in Table 3.6 indicate that the product of the parameter es

timate standard deviations Xy/n exhibits no systematic change with increasing n. This 

product does, however, show variation. This observed non-proportionality (variation) 

may occur because : 

• the small number of realizations for each data set structure (10), and 

• the small size of each data set (100 to 500 observations) 

prevent stable statistical estimates of the variances of the parameter estimates. No 

effort has been made to test the significance of any possible non-proportionality. 
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Table 3.6: Comparison of Proportionality of RDML Parameter Estimate Variances 
With the Number of Observations in the Data Sets Used to Estimate that Variance 

n 
Stochastic 

100 5.100 7.700 4.400 4.000 0.000 
200 7.212 10.889 5.657 5.657 0.000 
300 4.330 3.811 4.157 5.023 0.000 
400 8.400 6.400 2.400 5.200 0.000 
500 5.814 7.603 4.472 4.025 0.000 

£ oo 
100 8.800 11.100 6.300 5.500 26.100 
200 9.475 8.061 5.940 6.930 27.294 
300 7.448 6.235 6.582 3.811 22.517 
400 11.600 9.800 6.400 7.400 27.600 
500 7.603 8.497 4.025 5.367 14.982 
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3.5.1.2 Effects of Variations in w 

Data set structures with large disparity in the proportions of the component distribu

tions (Test # 2) have, with respect to data set structures with roughly equal component 

distribution proportions : 

• a negative bias for the mean RDML parameter estimates of the mean of the 

less abundant component distribution (pi), relative to both the actual parameter 

value and the mean statstical sample parameter estimates; 

• a positive bias for the mean RDML parameter estimates of the standard deviation 

of the less abundant component distribution (CT2), relative to both the actual 

parameter value and the mean statistical sample parameter estimates; 

• no bias in the mean RDML parameter estimates of the mean and standard devi

ation of the more abundant component distribution, relative to both the actual 

parameter value and the mean statistical sample parameter estimates; 

• a negative bias for the mean RDML parameter estimates of the distribution per

centage (w) of the more abundant component distribution relative to both the 

actual parameter value; and 

• lower variances for the mean RDML and mean statistical sample parameter es

timates of the more abundant distribution, but larger variances for the mean 

RDML and mean statistical sample parameter estimates of the less abundant 

distribution. 

3.5.1.3 Effects of Variations in p2 

Data set structures with small Mahalanobis distances between the two component 

distributions (due to proximity of means; Test # 3) have, with respect to data set 
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structures with large Mahalanobis distances between the two component distributions : 

• no bias in both the mean RDML and mean statistical sample parameter estimates 

of the mean and standard deviation of both component distributions relative to 

the actual parameter values; 

• larger variances in the mean RDML parameter estimates of the mean and stan

dard deviation for both component distributions; 

• larger variances in the mean RDML parameter estimates of the mean and stan

dard deviation for both component distributions, relative to the mean statistical 

sample parameter estimates, where the A between the component distributions 

is less than 2.0; 

• smaller variances in the mean RDML parameter estimates of the mean and stan

dard deviation for both component distributions, relative to the mean statistical 

sample parameter estimates, where the A between the component distributions 

is greater than 2.0; and 

t a non-systematic bias and larger variance in the mean RDML component per

centage parameter estimates (zc), relative to the actual parameter value, where 

the A is less than 2.0. 

The non-systematic bias and larger variance of the mean RDML parameter estimate 

of the component percentage (zc) suggests that the SIMPLEX optimization algorithm 

behaves poorly on the (probably highly irregular) raw data likelihood surface in that 

parameter dimension for those data set structures (# 9 and # 10). 
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3.5.1.4 Effects of Variations in a2 

Data set structures with small Mahalauobis distances between the two component 

distributions (due to the magnitude of standard deviations relative to the means; Test 

# 4) have, with respect to data set structures with large A between the two component 

distributions : 

• a positive bias in the mean RDML parameter estimates of the mean of the distri

bution with the larger standard deviation, relative to the mean statistical sample 

parameter estimates and the actual parameter value; 

• a negative bias in the mean RDML parameter estimates of the standard devia

tion of the distribution with the larger standard deviation, relative to the mean 

statistical sample parameter estimates and the actual parameter value; 

• larger variances of the mean RDML and mean statistical sample. parameter es

timates of the mean and standard deviation of the distribution with the larger 

standard deviation; 

• a positive bias in the mean RDML parameter estimates of the component per

centage; and 

• larger variances of the mean RDML parameter estimates of the component per

centage. 

3.5.2 Class Interval Data Likelihood Function Bias 

Results from use of the CIDML function with different numbers of class intervals also ex

hibit several important trends. These are all described relative to the actual parameter 
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values to allow a quantitative evaluation of the bias associated with the technique. Ref

erences are also made to the mean RDML parameter estimates and the mean statistical 

sample parameter estimates where a direct comparison reveals important information. 

3.5.2.1 Effects of Variations in the Number of Class Intervals 

With increasing numbers of class intervals, the variances of the CIDML parameter 

estimates decrease for all data set structures, a feature clearly related to the amount 

of information lost through categorization (cumulation) into class intervals of ever de

creasing size. Thus, as the number of class intervals increases, the size of each class 

interval decreases and the CIDML function converges to the RDML function. Fur

thermore, for data set parameter values optimized with increasing numbers of class 

intervals : 

• the variances of the CIDML mean and standard deviation estimates converge to 

the variance of the mean RDML parameter estimates of the mean and standard 

deviation estimates (and thus also converge on the actual parameter values); 

• if bias exists, the mean CIDML parameter estimates of the standard deviations 

increase toward the mean RDML parameter estimates of the standard deviations; 

• biased mean CIDML parameter estimates of the means approach the mean RDML 

parameter estimates of the corresponding means from both above and below; and 

• where the mean CIDML component percentage estimates are positively biased, 

they converge with decreasing variance toward the RDML component percentage 

estimates from above. 

Certain other trends are observed which may be related to both variations in data 

set structure and the interplay of these variations with the number of class intervals 
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used in the optimization procedure. 

3.5.2.2 Effects of Variations in n 

The primary effect that the size of the data set has on the optimal parameter estimates 

of the CIDML function consists of a reduction of the variation in the results. This 

'stabilization' produces mean CIDML parameter estimates which better approximate 

mean RDML parameter estimates (and the actual parameter values) and their variances 

become smaller with larger data sets. Furthermore : 

• the mean CIDML parameter estimates of the lower mean converge to the cor

responding mean RDML parameter estimates (and the actual parameter values) 

from above with increasing numbers of class intervals; 

• the mean CIDML parameter estimates of the upper mean converge to the cor

responding mean RDML parameter estimate (and the actual parameter values) 

from below with increasing numbers of class intervals; 

• the above positive and negative biases become less pronounced with larger data 

sets; 

• the mean CIDML parameter estimates of the upper standard deviations are 

under-estimated with small numbers of class intervals and data sets of less than 

300 observations; and 

• mean CIDML parameter estimates of the component percentages are by far the 

most sensitive to the number of class intervals utilized, converging from above, 

but approximating the RDML parameter estimates only if greater than 30 class 

intervals are used with data sets of 100 observations (and greater than 15 class 

intervals with data sets of 500 observations). 
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The variances of each of the CIDML parameter estimates should also be propor

tional to 1/n, where n is the number of observations in the data set. Results presented 

in Appendix A.3 indicate that the product of the parameter estimate standard devi

ations Xy/n show no systematic change with increasing n. The amount of variation 

among the data is smallest if a large number of class intervals was used to determine 

the parameter estimates, and if the size of the data set is large (> 300). 

3.5.2.3 Effects of Variations in w 

The primary effect caused by increasing the difference between the component dis

tribution percentages on the CIDML parameter estimates is to increase the accuracy 

and precision of the mean and standard deviation parameter estimates of the more 

abundant distribution, while decreasing the accuracy and precision of the mean and 

standard deviation of the less abundant distribution. Specifically, for data sets with 

disparate component percentages : 

• the mean CIDML parameter estimates of the standard deviation of the distribu

tion with a smaller component proportion are under-estimated with respect to 

the mean RDML parameter estimates and the actual parameter values; 

• the mean CIDML parameter estimates of the mean of the distribution with the 

smaller component proportion are under-estimated with respect to the mean 

RDML parameter estimates and the actual parameter values, and this pattern is 

more pronounced with smaller numbers of class intervals; 

• the mean CIDML parameter estimates of the component percentage (w) are un

biased, but are over-estimated in data set structures which have equal component 

percentages and smaller numbers of class intervals. 
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3.5.2.4 Effects of Variations in p2 

Data set structures with variations in the Mahalanobis distance between means of the 

two component distributions have similar mean CIDML parameter estimates of the 

means and standard deviations, but : 

• the variances of CIDML parameter estimates of the component distribution means 

and standard deviations are smaller where the component distributions have large 

A; and 

• where the difference between the means of the two distributions is small, the mean 

CIDML parameter estimates of the component percentage (m) are imprecisely 

estimated with respect to the mean RDML parameter estimates and the actual 

parameter values. 

This non-systematic bias of the mean CIDML parameter estimate of the component 

percentage (zu) is similar to the behavior of the mean RDML parameter estimates of the 

component percentage, and also suggests that the SIMPLEX optimization algorithm 

behaves poorly on the (probably highly irregular) class interval data likelihood surface 

in that parameter dimension for those data set structures (# 9 and # 10). 

3.5.2.5 Effects of Variations in tr2 

Data set structures with variations in the standard deviation of one of the component 

distributions affects only the mean CIDML parameter estimates of the mean and stan

dard deviation of the distribution with the larger standard deviation. Specifically, with 

increasing disparity in the standard deviations : 

• the mean CIDML parameter estimates of the mean of the distribution with the 

larger standard deviation are over-estimated; 
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• the mean CIDML parameter estimates of the standard deviation of the distribu

tion with the larger standard deviation are under-estimated; 

• the variance of the CIDML parameter estimates of the mean and standard devi

ation of the distribution with the larger standard deviation increases; and 

• increasing the difference between the standard deviations for the component dis

tributions has no effect on the parameters of the component distribution with the 

smaller standard deviation. 

3 . 5 . 3 x2 Function Bias 

Results from use of the x2 function with different numbers of class intervals for data 

set structure # 1 also exhibit several important trends. These are similar to the trends 

observed in the CIDML parameter estimates for data set structure # 1. In general, 

X2 parameter estimates for all 5 parameters are, on average, all slightly larger than 

the CIDML parameter estimates. As a result, they approximate the true parameter 

values for /z2 better than the CIDML parameter estimates. In contrast, the differences 

between the x2 parameter estimates and the true population values have equal to larger 

standard deviations (by up to 25 %) than the differences between the CIDML parameter 

estimates and the true population values. Thus, little difference exists between the 

quality of the parameter estimates produced by the x2 function and the class interval 

data likelihood function for this data set structure. Since other data set structures were 

not evaluated with the x2 function, extrapolation of these results and conclusions to 

other data set structures is not advised. 
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3.5.4 Asymptotic Variances of the Parameter Estimates 

Estimates of the asymptotic variances (and covariances) of the parameter estimates 

at the maximum likelihood solution can be determined using the second derivative 

(Hessian) matrix of the likelihood function. These variances are approximated by the 

inverse of the observed Fisher information matrix, which is the negative of the Hessian 

matrix : 

S ^ r 1 =(-H)-\ (3.72) 

where / is the observed Fisher information matrix and H is the Hessian matrix (Cox 

and Hinkley 1974). Derivation of the formulae for calculation of the Hessian matrix for 

both the RDML and CIDML functions are presented in Appendix B. 

3.5.4.1 Raw Data Likelihood Function Estimates 

The following tables present the standard deviations of the 10 RDML parameter es

timates. The standard deviations determined from the variance of the 10 differences 

between the RDML parameter estimates and the actual parameter value are compared 

with the asymptotic standard deviations calculated from the inverse of the negative 

Hessian matrix (observed Fisher information matrix) evaluated at the RDML param

eter estimates. 

Tables 3.8 and 3.9 compare the empirically estimated parameter standard deviations 

with the mean asymptotic standard deviations approximated by the observed Fisher 

information matrix for the RDML function. 
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Table 3.7: Key for Tables Comparing the Empirical and Asymptotic Standard Devia
tions of the RDML Parameter Estimates and CIDML Parameter Estimates for all Data 
Set Structure Tests 

(for Tables 3.8, 3.0 and 3.11) 

= standard deviation of the 10 lower mean parameter 
estimate differences 

tr^ = mean asymptotic standard deviation for the 
10 lower mean parameter estimates 

Sfft = standard deviation of the 10 lower standard 
deviation parameter estimate differences 

(j^ = mean asymptotic standard deviation for the 
10 lower standard deviation parameter estimates 

s& = standard deviation of the 10 component proportion 
parameter estimate differences 

o$, = mean asymptotic standard deviation for the 
10 component proportion parameter estimates 

Sfa = standard deviation of the 10 upper mean parameter 
estimate differences 

<jfa = mean asymptotic standard deviation for the 
10 upper mean parameter estimates 

— standard deviation of the 10 upper standard 
deviation parameter estimate differences 

a&2 = mean asymptotic standard deviation for the 
10 upper standard deviation parameter estimates 

(Values in parentheses are the standard deviations of the asymptotic 
standard deviation estimates for the corresponding parameter.) 
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Table 3.8: Comparison of the Empirical and Asymptotic Standard Deviations of the 
RDML Parameter Estimates for Data Set Structure Tests # 1 and # 2 

(see Table 3.7 for key) 

Structure 
Label sfa 

Test # 1 
16 1.76 1.13 1.09 0.86 5.98 7.88 0.96 1.25 1.11 0.96 

(0.31) (0.23) ( 0-71) (0.29) (0.24) 
2 0.88 0.88 0.63 0.68 2.60 5.85 1.11 0.98 0.55 0.75 

(0.24) (0.18) ( 0.75) (0.19) (0.12) 
1 0.67 0.61 0.42 0.47 1.93 3.99 0.56 0.61 0.49 0.47 

(0.07) (0.07) ( 0.30) (0.11) (0.09) 
3 0.43 0.48 0.37 0.38 1.29 3.17 0.36 0.48 0.22 0.37 

(0.05) (0.04) ( 0.10) (0.04) (0.03) 
4 0.58 0.43 0.31 0.34 1.38 2.81 0.48 0.43 0.37 0.34 

(0.04) (0.03) ( 0.12) (0.05) (0.03) 
5 0.34 0.36 0.18 0.28 0.66 2.45 0.38 0.38 0.23 0.29 

(0.03) (0.03) ( 0.10) (0.02) (0.03) 
Test # 2 

1 0.67 0.61 0.42 0.47 1.93 3.99 0.56 0.61 0.49 0.47 
(0.07) (0.07) ( 0.30) (0.11) (0.09) 

6 0.45 0.52 0.34 0.40 1.38 3.77 0.94 0.88 0.48 0.65 
(0.07) (0.05) ( 0.40) (0.20) (0.13) 

7 0.48 0.45 0.39 0.34 2.02 3.75 1.57 1.56 0.82 1.19 
(0.11) (0.07) ( 1.36) (0.76) (0.34) 

8 0.22 0.39 0.32 0.29 1.51 2.90 2.37 3.65 1.83 2.37 
(0.04) (0.03) ( 2.07) (2.53) (1.25) 
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Table 3.9: Comparison of the Empirical and Asymptotic Standard Deviations of the 
RDML Parameter Estimates for Data Set Structure Tests # 3 and # 4 

(see Table 3.7 for key) 

Structure 
Label % s*i <r& °n 

Test # 3 
9 1.33 2.82 0.90 1.55 1.48 78.48 2.24 2.21 0.58 1.54 

(1.63) (0.66) (39.79) (0.91) (0.86) 
10 1.16 3.09 0.50 1.23 9.58 34.21 1.15 3.43 0.73 1.28 

(1.96) (0.50) (32.93) (3.27) (0.85) 
11 1.21 0.78 0.60 0.53 9.50 5.71 1.69 0.84 0.86 0.58 

(0.18) (0.09) ( 1-31) (0.21) (0.11) 
1 0.67 0.61 0.42 0.47 1.93 3.99 0.56 0.61 0.49 0.47 

(0.07) (0.07) ( 0.30) (0.11) (0.09) 
12 0.50 0.53 0.36 0.40 3.24 3.59 0.36 0.54 0.60 0.42 

(0.04) (0.04) ( 0.01) (0.07) (0.06) 
13 0.59 0.51 0.33 0.38 0.20 3.55 0.47 0.50 0.36 0.37 

(0.03) (0.02) ( 0.01) (0.04) (0.04) 
Test # 4 

1 0.67 0.61 0.42 0.47 1.93 3.99 0.56 0.61 0.49 0.47 
(0.07) (0.07) ( 0.30) (0.11) (0.09) 

14 0.83 0.75 0.37 0.54 5.32 6.80 1.91 2.14 0.76 1.37 
(0.08) (0.05) ( 9.23) (0.25) (0.12) 

15 0.70 0.73 0.32 0.70 5.99 7.86 3.08 3.59 1.76 2.02 
(0.09) (0.22) ( 2.26) (1.40) (0.78) 

In general, good agreement exists between each of these standard deviation esti

mates. Differences are more pronounced with the smaller data set structures (# 16) 

and those where inversion of the Hessian matrix was not possible in every case (realiza

tions for data set structure # 9 could only have their Hessian matrices inverted 5 out of 

10 times, because the half of these matrices were not positive definite). This was prob

ably due to convergence of the SIMPLEX algorithm to a flat portion of the likelihood 
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Table 3.10: Average Estimated Asymptotic Correlation Matrix (Linear Correlation 
Coefficients) of the RDML Parameters for Data Set Structure # 1 

(see Table 3.7 for key) 

Ml o\ w P2 &2 

Ml 1.00 (0.00) 
0.37 (0.02) 1.00 (0.00) 

W 0.26 (0.02) 0.27 (0.01) 1.00 (0.00) 
P2 0.31 (0.02) 0.32 (0.02) 0.26 (0.02) 1.00 (0.00) 
<?2 -0.33 (0.02) -0.32 (0.01) -0.28 (0.01) -0.37 (0.02) 1.00 (0.00) 

surface which was not quite a true maxima (see Table 3.3), and thus the parame

ter estimates were not quite the true RDML parameter estimates. Most empirically 

estimated parameter standard deviations lie within 2 standard deviations of the asymp

totic parameter standard deviation estimates. The only significant variation between 

these estimates exists for the zo standard deviations, where the asymptotic standard 

deviation estimates are substantially greater than those estimated empirically. 

Correlations between pairs of parameters can also be determined at the RDML 

parameter estimates. The mean estimated asymptotic correlation matrix for data set 

structure # 1 is presented in Table 3.10. The remainder of these correlation matrices 

are presented in Appendix C. l . 

Several notable trends are observed within each of the matrices. First, positive cor

relations occur for all parameter pairs except for those involving tr2. In addition, the 

highest absolute correlations occur between the mean and standard deviation param

eters of each component distribution. Finally, the lowest absolute correlations occur 

between both the mean and standard deviation parameters and the component per

centage parameter. 

In general, all correlations have roughly the same absolute magnitude within each 
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matrix (except for those from data set structures which could not have their Hessian 

matrix inverted routinely; data set structure # 9; see Table 3.3). The notable trends 

between these matrices include an overall decreasing average correlation as the means 

of the two component distributions become disparate, and increasing variation in the 

correlation estimates as the number of observations in the data set structure decreases 

and as the standard deviations become more disparate. 

3.5.4.2 Class Interval Data Likelihood Function Estimates 

Asymptotic correlation estimates were also determined for the CIDML parameter es

timates for data set structure # 1 (Datum) only. The standard deviations determined 

from the variance of the 10 differences between the CIDML parameter estimates and the 

true values are compared with the asymptotic standard deviations calculated from the 

inverse of the negative Hessian matrix (observed Fisher information matrix) evaluated 

at the CIDML parameter estimates. 

Asymptotic covariance estimates for the CIDML function were calculated according 

to the formulae derived in Appendix B.2. Comparison of the asymptotic standard 

deviation estimates with those empirically estimated for different numbers of class 

intervals for data set structure # 1 (Datum) are presented in Table 3.11 (refer to 

Tables 3.7 for the key to the symbols used in this table). All asymptotic correlations 

for data set structure # 1 using the CIDML function are presented in Appendix C.2. 
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Table 3.11: Comparison of the Empirical and Asymptotic Standard Deviations of the 
CIDML Parameter Estimates for Data Set Structure # 1 

# Class 
Intervals •Stir <y& si>2 <Ti'2 

10 0.51 0.56 
(0.08) 

0.62 0.46 
(0.06) 

2.79 1.20 
(0.10) 

0.49 0.60 
(0.14) 

0.73 0.35 
(0.09) 

15 0.44 0.61 
(0.09) 

0.55 0.49 
(0.10) 

1.91 0.86 
(0.07) 

0.43 0.60 
(0.13) 

0.43 0.36 
(0.07) 

20 0.38 0.59 
(0.07) 

0.50 0.48 
(0.06) 

1.94 0.66 
(0.04) 

0.45 0.60 
(0.11) 

0.37 0.39 
(0.07) 

25 0.58 0.61 
(0.09) 

0.46 0.49 
(0.06) 

2.02 0.54 
(0.05) 

0.44 0.65 
(0.17) 

0.35 0.41 
(0.08) 

30 0.53 0.58 
(0.07) 

0.46 0.47 
(0.05) 

2.32 0.44 
(0.04) 

0.47 0.61 
(0.11) 

0.44 0.40 
(0.06) 

35 0.47 0.60 
(0.07) 

0.39 0.49 
(0.07) 

1.93 0.39 
(0.04) 

0.39 0.63 
(0.15) 

0.36 0.41 
(0.07) 

40 0.67 0.62 
(0.14) 

0.43 0.52 
(0.16) 

2.29 0.36 
(0.07) 

0.49 0.66 
(0.22) 

0.42 0.40 
(0.06) 

45 0.53 0.63 
(0.10) 

0.49 0.52 
(0.10) 

2.26 0.32 
(0.03) 

0.43 0.67 
(0.15) 

0.46 0.42 
(0.08) 

50 0.31 0.66 
(0.19) 

0.29 0.54 
(0.16) 

2.00 0.28 
(0.03) 

0.24 0.67 
(0.18) 

0.49 0.45 
(0.14) 
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Table 3.11 demonstrates that no change in the asymptotic or empirically determined 

standard deviations of the parameters at the maximum likelihood solution occurs with 

changing numbers of class intervals. The two standard deviation estimates are quan

titatively similar (the empirically determined values are generally within 2 standard 

deviations of the asymptotic estimate), with the exception of the asymptotic standard 

deviation of the component percentage parameter (w), which is substantially lower 

when estimated empirically. This difference is in direct contrast to the difference 

observed for the component percentage parameter standard deviation for the RDML 

function. 

Asymptotic correlations between the parameters also show no change with different 

numbers of class intervals. The magnitude of the correlations are roughly the same for 

the CIDML function as the RDML function, with the exception that the correlation 

between zu and <72 is positive and close to zero. This differs from the asymptotic 

correlation estimates of the RDML function, which have decisively negative correlations 

between these two parameters. 

3.6 Conclusions 

The RDML parameter estimates are generally good estimates of the known parameter 

values using the estimation procedures described in Chapter 2. Estimation is accurate if 

the component distributions are widely separated (characterized by large Mahalanobis 

distances) and if a large number of observations are used. The CIDML parameter es

timates are stably calculated and produce equally acceptable estimates of the known 

parameter values only where a large number of class intervals are used. This is equiva

lent to stipulating that the number of observations per class interval is small, and thus 

represents a situation where more accurate estimation of the population frequencies 
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for each class interval is obtained using the trapezoid approximation. Hence, either 

likelihood function can be used to produce good estimates of the parameters of a data 

set composed of a mixture of normal distributions, provided a large amount of data is 

available (generally greater than 50 observations per component distribution) and, in 

the case of the CIDML function, a large number of class intervals are used to cumulate 

the data (generally, on average greater than 10 observations per class interval). 

If data set structures similar to the simulations which produced both biased and 

non-systematic results occur (the component proportion parameter estimate in Test 

#3 for both the RDML and the CIDML functions), application of either of the above 

procedures are ill-advised. The variable nature of the simulations suggest that the 

optimization algorithm performs poorly in searching for the maximum on both of these, 

probably, very irregular likelihood surfaces. In cases such as these, inconsistent results 

are likely and care should be taken in the application of the above procedures to data 

set structures of similar form. 



Chapter 4 

Univariate Technique Comparison 

"Power : A probability of a possible outcome of a potential decision 

conditional upon an imaginable circumstance given a conceivable value of 

an algebraic embodiment of an abstract mathematical idea and the strict 

adherence to an extremely precise rule." 

S.J. Senn (1988) 

"You have to have some order in a disordered world." 

Frank Lloyd Wright (1936) 

Geochemical sample classification through threshold selection has been accom

plished by a variety of univariate statistical techniques. Since classification in geochem

ical applications can involve both anomaly recognition and population discrimination, 

any approach used must be able to handle all possible conditions. 

Traditional univariate parametric and non-parametric statistical approaches to a-

nomaly recognition concerning normal distributions include Dixon, Grubbs, and Tietjen 

and Moore tests (Barnett and Lewis 1978). These include an entire range of tests 

involving situations where the parameters of the distribution (/z and cr) are both known 

and unknown, where outliers on each and both sides of the distribution can be tested 

and where single and multiple outliers can be considered. Most involve test statistics 

which are ratios of either the distances between ordered values from the statistical 

sample, or the variances calculated from the statistical sample with and without the 

100 
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suspected outlying observations. All of these statistics test a null hypothesis Ho : that 

all observations are drawn from a single normal distribution, against an alternative 

Hi : that at least one observation is drawn from another normal distribution with a 

different mean and standard deviation. 

Statistics which are calculated by ordering the data values and forming ratios of 

the distances between those values, of the form : 

y(r,s,p,q) = X V - X " , (4.73) 
x(p) ~ x(i) 

are called Dixon-type statistics (Dixon 1950, 1951, 1953), where r, s, p and q are the 

indices of the ordered data. Alternative tests involve Grubbs-type statistics (Grubbs 

1950, 1969; Grubbs and Beck 1972; Sheesley 1977), where the ratios of the variances 

of the statistical sample calculated with and without the (up to 2) suspected outlying 

observations. If these statistics exceed the tabulated critical values at a specified 

confidence level, then the null hypothesis is rejected and the tested observations are 

considered to be outliers. Unfortunately, both of these statistic types are limited to 

tests of up to two outliers on one side of the distribution at a time, and thus, although 

they may be applied to a limited number of anomaly recognition situations, they cannot 

be used to discriminate populations. 

A more general likelihood ratio test of similar form which allows evaluation of the 

significance of a number of outliers (h) on one tail was developed by Teitjen and Moore 

(1972). This test can accommodate the continuum of situations between and including 

anomaly recognition and population discrimination. The Teitjen and Moore (1972) 

test takes the following form : 

L = E?=i(yi-yhf i A u ) 
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for outliers on the positive tail, and : 

Lh - &.<*-«• ' ( 4 ' 7 5 ) 

for outhers on the negative tail, where n is the total number of observations, h is the 

number of observations suspected of being outhers (from another population), and yh 

is the average of the n — h observations not suspected of being outliers. L„ is tested 

against a table of critical values determined for the normal distribution to determine 

the significance level of the outhers considered. If LH is less than the critical value at 

a certain confidence level, the h observations tested are considered outhers. 

An alternative test by Teitjen and Moore (1972) tests a total of h outhers on both 

tails of the distribution simultaneously. This is done by first calculating z,- = — y\ 

and sorting {zi}" = 1 into ascending order. Then : 

E k ~ s t , ( * - » ) » • ( 4 - 7 6 ) 

where : 
n-h 

Zh = 

EH is also tested against a table of critical values to determine the significance of the h 

outhers. Again, if EH is less than the tabulated critical value for a normal distribution, 

the h observations are considered to be outhers. 

4.1 The Gap Statistic 

The above statistical procedures test for the existence of outlying observations de

rived from other populations differing from the normal distribution of interest in their 

mean and standard deviation values. They are tests of discordancy (Barnett and Lewis 

1978) determining whether a set of observations have a certain probabihty of being 
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derived from a single normal distribution. Although thresholds can be defined to sep

arate anomalous from background observations using these techniques, they do not 

independently estimate the parameters of the distributions involved. None have been 

used in geochemical applications (Miesch 1981) and, in general, they perform poorly in 

recognizing anomalous observations where the populations significantly overlap (square 

rooit of Mahalanobis distances approximately less than 3; Teitjen and Moore 1972). 

The gap statistic, developed by Miesch (1981), has been used in geochemical appli

cations. It is used to select a value (threshold) which separates the outliers derived from 

an anomalous distribution from observations derived from a background distribution. 

The approach uses the order statistics of a uniformly distributed random variable to 

define the significance level of the standardized distance between two adjacent obser

vations (David 1981). 

This is accomplished by assuming the following : 

• the data set { x f } " = 1 is derived from a 3-parameter log-normal distribution (Aitchi-

son and Brown 1957), defined by a mean, a standard deviation and a such that : 

= M*i ~ «)>£.! ~ WwD* (4-78) 

if { x i } " = 1 is positively skewed and : 

{y.KU = W « ~ *.-)>fei ~ N{tiyyy), (4.79) 

if {s,}"=1 is negatively skewed, and 

• the parameters (p,y, <ry and a) of this data set are known. 

It follows that if : 

^ j M i ( , - . ) ) - f t r _ { 4 m ) 

I °y J ,=i 
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then : 

{* (* ) }£ 1/(0,1). (4.81) 

If the z, are re-labelled so that Z( X) < Z( 2) < . . . < Z ( n ) , then the gaps, or differences 

between adjacent values ( $ ( * ( i ) ) , $ ( * ( 2 ) ) - •• *(*(»»)) - $(z ( n_i)), 1 - $(z ( n))) 

are distributed like the gaps of a statistical sample from a £7(0,1) distribution. 

Alternatively, the gaps in a statistical sample from a 3-parameter log-normal dis

tribution have the same joint distribution as the gaps in a statistical sample from 

the C/(0,1) distribution. On average, gaps are large where the probability density is 

small and small where the probability density is large. The gaps are considered to be 

distributed like gaps from a statistical sample of a [7(0,1) distribution, provided cor

rections to the gaps are made to account for the different probability densities at each 

gap. Since the expected size of each gap is inversely proportional to the probability 

density at the mid-point of the corresponding gap, this correction can be accomplished 

by multiplying the size of the gap by the probability density at its mid-point (Miesch 

A formal derivation of the gap statistic follows, where the largest gap is defined as : 

1981). 

(4.82) 

because we ignore the first and last gap (they are not feasible threshold locations). 

Then, provided that $(z(,+1)) — $(z(,)) is small or, equivalently, that n is large (so that 

a trapezoidal approximation of the integral is accurate) : 

$(z ( > + 1 ) ) - * (z ( l ) ) = <Ku)du = ( z ( t + 1 ) - z ( , ) ) ^ ( Z ( , + 1 )

9

+ Z ( , ) ) , (4.83) 

and the largest gap can be approximated by : 

(4.84) 
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This gap magnitude can then be compared with critical values, derived by Miesch 

(1981) from a monte carlo simulation for a statistical sample of size n to determine its 

level of significance. 

Thus, the largest gap between adjacent values in a data set has a significance equal 

to the probability of the largest gap from a statistical sample of a i7(0,l) distribution. 

As a result, the largest gap can be tested to determine its significance level, and only 

when the largest gap can be considered a highly improbable occurrence in a statistical 

sample of observations derived from a £7(0,1) distribution is the largest gap considered 

as a possible threshold value. This general approach can be applied to any distribution 

(not just the 3-parameter log-normal distribution), provided that the parameters of the 

distribution are known and not estimated. 

Several theoretical and practical problems and limitations exist in the use of this 

implementation of the gap statistic : 

• as Miesch (1981) points out, analyses of geochemical samples must be independent 

(thus application to stream sediment geochemistry may not be valid because 

geochemical samples from the same stream may not be independent) and cannot 

contain variable bias; 

• a large number of observations must be used so that the gaps are small and the 

trapezoidal approximation of the integral in the above equation is accurate (the 

trapezoidal approximation is not actually necessary, a more precise numerical 

evalution of the integral is possible, but the trapezoid technique is the method 

by which Miesch approximates the integral and thus it can contribute to errors 

in the analysis); 

• data sets used for determination of the critical values were normal with known 

Py — 0, <Ty — 1 and a = 0 so that the 3-parameter log-normal transformation 
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was not required; the exact critical values will change if the 3-parameter log-

normal transformation is required and fa, oy and a are unknown and must be 

estimated; 

• the data distribution must be able to be transformed by a 3-parameter log-normal 

distribution such that the resulting standardized scores {̂ }"=1 are unskewed and 

iV(0,l); unfortunately, even best estimates of the fiy, ay and a parameters may 

produce significantly skewed scores; 

• a 3-parameter log-normal distribution represents only an approximation of the 

theoretical distribution form of geochemical data (mixtures of binomial or Poisson 

distributions) and the accuracy of this approximation is not known; although no 

theoretical basis exists suggesting that 3-parameter log-normal distributions are 

an expected form for geochemical data (Aitchison and Brown 1957; Johnson 

and Kotz 1970), Miesch's choice of a 3-parameter log-transform was based on the 

"flexibility" which this family of distributions offers in transforming (normalizing) 

a variety of observed distributions which may exhibit positive, negative or no 

skewness (Miesch 1981); and 

• it is not clear whether the location of the most significant gap corresponds to 

a threshold which best discriminates population observations from outliers; al

though case histories provided by Miesch (1981) appear to demonstrate that the 

largest gap does discriminate the outlying observations, no theoretical basis for 

this contention exists; thus, the gap statistic may be just another example of a 

discordancy test (a test for the presence of outliers or for non-conformity 
to a 3-parameter log-normal distribution and not a test to determine 
which observations are the outliers). 
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Unfortunately, if any of the above limitations or requirements are not satisfied, this 

implementation of the gap statistic test is rendered invalid. 

4.2 Techniques Considered 

In spite of the above problems, the gap statistic has been applied to geochemical and 

geological problems including both anomaly recognition and population discrimination 

(Miesch 1981). Results from the gap statistic appear to corroborate geologic hypotheses 

presented by Miesch, but this cannot be a justification of the validity of the technique 

on a theoretical or scientific basis. As a result, rigorous testing and comparison of the 

classification performance of the gap statistic with results from the probability plot 

technique was undertaken. These tests were made on data sets consistent with the 

postulated distribution model for geochemical data (see Chapter 1) to evaluate how 

well the gap statistic and probability plot techniques perform on mixtures of normal 

distributions. 

The probability plot technique uses the RDML function to produce parameter esti

mates of a flexible distribution model, allowing application to a wide variety of distribu

tion forms. The parameter estimates are used to select thresholds to classify data from 

the distributions present. These thresholds are selected so that a minimum amount of 

classification error is produced, based on the theoretical model (see Chapter 2). The 

distribution model implicit in the probability plot approach is completely consistent 

with the distribution model postulated for geochemical data in Chapter 1. 

The gap statistic takes an alternative approach where the observed distribution 

is transformed using a 3-parameter logarithmic operator. The gap values are then 

calculated and compared with the order statistics from a uniform distribution. The 

locus of the largest significant deviation between the gap values and the order statistics 
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is defined as a threshold. In this way, the data are tested to see if they could be 

derived from a specific distribution, in this case a 3-parameter log-normal distribution. 

Since the accuracy of a 3-parameter log-normal distribution approximation of a normal 

(binomial or Poisson) distribution is unknown, this technique may be inconsistent with 

the postulated distribution model for geochemical data. 

A brief discussion of the expected performance of two other threshold selection 

techniques (the 'mean plus 2 standard deviations' and '95"* percentile' procedures) will 

also be presented. 

Although the 'mean plus 2 standard deviations', l95th percentile', probability plot 

and gap statistic techniques assume different distribution models (a normal distribu

tion, any distribution, a mixture of normal distributions and a 3-parameter log-normal 

distribution, respectively), all have been used in geochemical applications to discrim

inate populations and recognize anomalies. Since geochemical data theoretically can 

exhibit a variety of distribution forms, the choice of which technique to use in eval

uating geochemical data becomes crucial. Bimodal distributions probably are best 

evaluated by the probability plot approach whereas unskewed unimodal distributions 

can be evaluated by either the 'mean plus 2 standard deviations' or gap statistic (with

out transformation) approaches. Unfortunately, with unimodal skewed distributions, 

the choice of which classification technique is most appropriate is not clear because 

these distributions may be produced by several distribution model mechanisms. With 

inadequate sampling, a poor approximation of a binomial or Poisson distribution by 

a normal distribution can produce a single distribution with positive (or negative) 

skewness. These situations might best be evaluated by the gap statistic (including 

transformation). Mixtures of more than one normal distribution can also exhibit posi

tive (or negative) skewness, and these would best be evaluated with probability plots. 

The important difference here is that, in the first case, we are left with a single 
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distribution, a situation which cannot provide additional geological insight because 

the data represent only one type of geological material. In the second case, we are left 

with multiple distributions which may be tested to ascertain if they represent different 

geological signatures. Obviously, with unimodal skewed distributions, decomposition of 

an hypothesized mixture of distributions is the only approach which allows for advances 

in the understanding of the geochemical data. Thresholds derived from this analysis 

can be then used to classify data so that a comparison with other categorical geologic 

variables may allow spatial or other relationships to be discovered (Popper 1968). 

4.3 Previous Analysis 

Miesch (1981) has already subjected the gap statistic to a monte carlo simulation in 

order to test whether it can correctly locate thresholds which discriminate mixtures 

of 3-parameter log-normal distributions. In Miesch's study, a known mean of 100 

and standard deviation of 10 were used for a log-normal background distribution (a 

unknown). In all cases, 50 observations were used for each of the 1000 realizations for 

each data set structure. Miesch varied the distance between the two distributions (the 

higher mean was either 140 or 160 (square root of Mahalanobis distances of 4 and 6, 

respectively), with a standard deviation of 10) and the component percentage of the 

higher distribution (either 5 %, 10 % or 20 % of the data set). Results presented include 

the percentage of all anomalous data recognized as anomalous, the frequency that one 

or more background observations was recognized as anomalous in a realization, and the 

average number of false anomalies. A summary of the results at the 5 % confidence 

level are presented in Table 4.12 (Miesch 1981). 

In addition, Miesch tested the threshold selection power of the gap statistic. In 

these tests, 1000 realizations of 50 observations drawn from a log-normal distribution 
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Table 4.12: Summary of the Performance of the Gap Statistic in a Monte Carlo Simu
lation of Threshold Selection 

Anomalous 
Mean 

Anomaly 
Component 
Percentage 

5 10 20 
% of Anomalous 
Values Detected 

140 
160 

20.0 31.5 36.0 
49.0 77.0 79.0 

Frequency (%) of 
False Anomalies 

140 
160 

11.0 18.0 15.5 
6.5 10.0 5.0 

Average # of 
False Anomalies 

140 
160 

3.55 2.40 1.25 
2.25 1.55 1.05 

with known mean of 105 and standard deviation of 20 (a = 0) were used to determine 

the frequency of anomaly recognition where none are present. Results indicate that, at 

the 5 % confidence level, an average of 5.2 % of the realizations were judged to have 

anomalous observations and an average of 13.5 observations per realization were judged 

to be anomalous. 

Since an evaluation of the performance of the gap statistic has already been made 

for the 3-parameter log-normal distribution (Miesch 1981), albeit where the component 

distributions exhibit only marginal overlap (A = 4 and 6), this study was concerned 

with how well the gap statistic performs in : 

• rejecting the null hypothesis that the observations are derived from a single 3-

parameter log-normal distribution where they have been derived from a mixture 

of two normal distributions, especially where the resulting distribution has a 

structure which is both positively skewed and unimodal, and 

• evaluating how well the gap statistic selects thresholds which accurately discrim

inates the populations from mixtures of normal distributions. 
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If the gap statistic can be shown to be successful in discriminating mixtures of normal 

distributions, it may be applied to positively skewed distributions (which may be pro

duced by a mixture of normal distributions or by inadequate sampling) to test whether 

they were derived from a 3-parameter log-normal (discrete) distribution, and thus a 

result of inadequate sampling. 

4.4 Procedure 

The different underlying assumptions of the above techniques can influence their clas

sification performances when each is applied to different data set structures. To test 

their classification performance, in both an absolute and relative sense, both proba

bility plot and gap statistic classification procedures were evaluated using monte carlo 

simulation. 

The mixtures of normal distribution data set structures used in Chapter 3 were 

also used in this evaluation, and therefore a diverse range of distribution forms were 

represented. These data sets contained structural variation in the total number of 

observations (n), component percentages (zo), difference in means (p2) and difference 

in standard deviations (tr2). 

Classification of the data was made on all 160 data sets with each technique and 

for each data set. The number of observations misclassified in each case was recorded. 

The data sets were all mixtures of 2 distributions so only one threshold was defined 

in each technique and used to classify the data. Since misclassification can consist of 

observations from one population classified as being from the other population, and 

vice versa, both errors of omission and inclusion, and their sum, were recorded. 

Threshold selection for the gap statistic utilized the midpoint of the maximum gap, 

regardless of its significance level. The entire range of values was considered, instead 
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Table 4.13: Average Mean, Standard Deviation and a Values for Positively Skewed 
Mixtures of Normal Distributions used to Transform the Stochastic Data in a Simula
tion of the Gap Statistic 

Test # 2 
w (%) fly a y a 

70 
85 
95 

3.386 0.339 -5.789 
2.978 0.395 1.744 
3.120 0.275 -2.999 

Test # 4 
s2 fly Oy A 
10 
15 

3.521 0.360 -6.026 
3.409 0.441 -3.535 

of only the positive tail (Miesch 1981), because results of this evaluation are meant to 

be general; thus the existence of positive anomalies only could not be assumed. In all 

cases, the 3-parameter logarithmic transform (Aitchison and Brown 1957) of the data 

produced a new variable which, within the approximation stopping criterion of 0.0001, 

had a mean, standard deviation and skewness equal to 0, 1 and 0, respectively. 

In the gap statistic simulation, stable estimates of p., a and a were not obtained for 

data set structures which, based on their population distribution, are un-skewed. This 

is because the corresponding distributions could be either slighty positively or nega

tively skewed and different transformation formulae (Equations 4.78 and 4.79) were 

required. The positively skewed data set structures which produced stable parame

ters for transform equation 4.78 are presented in Table 4.13 along with their average 

parameter values. 

The significance of the largest gap also exceeded the critical value at the 95"" per

centile for all data set structures except for some realizations from data set structures 
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Table 4.14: Comparison of the Average Maximum Gap Value (g) and the Corresponding 
Critical Value (c) for all Univariate Mixtures of Normal Distributions 

Data Set 9 S9 c 
Structure 

16 0.1484 0.0512 0.1240 
2 0.0702 0.0215 0.7070 

1 (Datum) 0.0466 0.0170 0.0395 
3 0.0354 0.0005 0.0282 
4 0.0359 0.0007 0.0231 
5 0.0356 0.0006 0.0180 

1 (Datum) 0.0466 0.0170 0.0395 
6 0.0475 0.0088 0.0395 
7 0.0569 0.0033 0.0395 
8 0.0676 0.0042 0.0395 
9 0.0708 0.0041 0.0395 
10 0.0562 0.0020 0.0395 
11 0.0454 0.0017 0.0395 

1 (Datum) 0.0466 0.0170 0.0395 
12 0.0683 0.0211 0.0395 
13 0.1425 0.0337 0.0395 

1 (Datum) 0.0466 0.0170 0.0395 
14 0.0360 0.0021 0.0395 
15 0.0421 0.0077 0.0395 

# 1, # 2, # 14, # 15 and # 16. In these cases, only 3, 3, 1, 5 and 6 data set realiza

tions (out of 10) had their largest gaps exceed the critical value at the 95"" percentile, 

respectively. A summary of the means and standard deviations of the largest gap value 

for each data set structure is presented in Table 4.14 along with the critical value 

corresponding to the 95th percentile for the size of the data set. 
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Likewise, the probability plot technique involved the selection of only one threshold. 

RDML parameter estimates from the study of Chapter 3 were used. Determination of 

the optimal threshold using these parameter estimates was made using the minimum 

classification error approach described in Chapter 2. 

Likelihood ratio tests were performed on the 10 data set realizations of each data 

set structure to determine the significance level of the parameters of the second mode 

in the distribution model (a test of the power of the probability plot technique). These 

produced average significance levels greater than the 99'" percentile for all data set 

structures except # 9 and # 10, which had average significance levels at the 50th and 

97"* percentiles, respectively. Similar tests to determine the significance level of the 

parameters of a third mode were made on one randomly selected data set realization 

from each data set structure. In no case did the significance level of the maximum 

likelihood estimates of the parameters of this third mode exceed the 85"* percentile. 

4.5 Results 

The average number and variance of the total number of misclassification errors, errors 

of omission and errors of inclusion were determined for each data set structure and 

each classification technique. These are presented in Tables 4.15 and 4.16 respectively. 

Figures 4.14, 4.15, 4.16 and 4.17 depict the relative efficiencies (performance) of the 

probability plot and gap statistic techniques with variation in data set structure. 
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Table 4.15: Classification Error Comparison for the Gap Statistic and Probability Plot 
Classification Techniques 

Structure Gap Probability 
Label Variable Statistic Plots 

Test # 1 n 
16 50 1.50 (2.80) 1.50 (2.80) 
2 100 4.00 (1.87) 3.60 (1.18) 

1 (Datum) 200 4.50 (2.07) 4.60 (2.22) 
3 300 7.30 (2.67) 7.30 (2.36) 
4 400 9.00 (1.76) 9.40 (2.91) 
5 500 9.90 (3.70) 9.50 (3.54) 

Test # 2 w(%) 
1 (Datum) 50 4.50 (2.07) 4.60 (2.22) 

6 70 42.10 (26.47) 5.30 (2.41) 
7 85 91.00 (31.85) 5.00 (3.09) 
8 95 124.10 (18.97) 2.00 (1.05) 

Test # 3 
9 25 62.30 (6.00) 68.40 (8.28) 
10 30 32.20 (3.33) 36.40 (4.99) 
11 35 13.50 (2.92) 20.20 (12.26) 

1 (Datum) 40 4.50 (2.07) 4.60 (2.22) 
12 45 1.10 (0.88) 1.10 (0.74) 
13 50 0.50 (0.71) 0.40 (0.70) 

Test # 4 
1 (Datum) 5 4.50 (2.07) 4.60 (2.22) 

14 10 34.80 (19.05) 17.60 (3.57) 
15 15 48.00 (20.59) 32.30 (4.83) 

Values presented are the mean and standard deviation (in parentheses) of the number 
of observations which were misclassified for each realization. 
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Table 4.16: Errors of Omission Versus Inclusion for the Gap Statistic and Probability 
Plot Classification Techniques 

Structure Gap Probability 
Label Variable Statistic Plots 

Test # 1 n 
16 50 86 86 
2 100 39 19 

1 (Datum) 200 64 43 
3 300 45 41 
4 400 50 55 
5 500 41 40 

Test # 2 
1 (Datum) 50 64 43 

6 70 1 54 
7 85 0 18 
8 95 0 25 

Test # 3 p2 
9 25 52 40 
10 30 52 51 
11 35 42 16 

1 (Datum) 40 64 43 
12 45 27 36 
13 50 80 50 

Test # 4 
1 (Datum) 5 64 43 

14 10 23 80 
15 15 50 92 

Values are the number of population A data (with the higher mean) classified as 
population B data, presented as average % of the total classification error. 
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Figure 4.14: Plot Comparing the Gap Statistic and Probability Plot Classification 
Techniques with Data Sets Composed of Mixtures of Normal Distributions Containing 
Different Numbers of Observations 

Dots represent mean of ten values and vertical bars represent ± 1 standard devia
tion. 
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Vary Relative Sizes of Populations 
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Figure 4.15: Plot Comparing the Gap Statistic and Probability Plot Classification 
Techniques with Data Sets Composed of Mixtures of Normal Distributions Containing 
Differing Proportions of Component Distributions 

Dots represent mean of ten values and vertical bars represent ± 1 standard devia
tion. 
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Vary Distance Between Populations 
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Figure 4.16: Plot Comparing the Gap Statistic and Probability Plot Classification 
Techniques with Data Sets Composed of Mixtures of Normal Distributions Containing 
Different Distances Between the Component Means 

Dots represent mean of ten values and vertical bars represent ± 1 standard devia
tion. 
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Vary Population Standard Deviations 
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Figure 4.17: Plot Comparing the Gap Statistic and Probability Plot Classification 
Techniques with Data Sets Composed of Mixtures of Normal Distributions Containing 
Different Component Standard Deviations 

Dots represent mean of ten values and vertical bars represent ± 1 standard devia
tion. 
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4.6 Discussion 

In general, both classification techniques produced comparable results, with only a few 

exceptions. Trends observed in the total amount of classification error include : 

• a decreasing average amount of total misclassification (but equal percentage) and 

decreasing amount of variance of total misclassification for both the probability 

plot and gap statistic techniques occurs with increasing number of observations 

per data set (n), 

• a constant total amount of misclassification for the probability plot technique 

with increasing disparity in the percentages of the component distributions (w); 

but, a rapidly increasing total amount of misclassification and increasing amount 

of variability for the gap statistic approach with increasing disparity in the per

centages of the component distributions, 

• a decreasing total amount of misclassification for both techniques with increasing 

distance between component distribution mean values (increasing |/xi — p.2 | relative 

to tT p, thus increasing A) , 

• an increasing total amount of misclassification with increasing disparity of the 

component distribution standard deviations (increasing trp relative to \p,\ — pa\, 

thus decreasing A) for both techniques; the gap statistic technique exhibits a 

higher and more variable total amount of misclassification than the probability 

plot approach. 

In terms of total misclassification, the probability plot technique performed sub

stantially better then the gap statistic approach if the data set had an initial skewness 

substantially different from 0. Ironically, these were cases where the 3 parameters of 
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the transformation operator for the gap statistic were most stable, and where the gap 

statistic has the most utility in identifying the form of the distribution. The poor 

performance of the gap statistic in these cases may be due to the various theoretical 

considerations (limitations) described above. 

In terms of the relative proportions of the different types of classification errors (er

rors of omission and errors of inclusion), these two techniques produced substantially 

different results. The theory of the probability plot technique requires that the mini

mum number of total classification errors occur where the number of errors of omission 

equals the number of errors of inclusion. The average percentage of total classification 

error where the observations from the distribution with the larger mean are classified 

as part of the distribution with the smaller mean is 46 % (± 23 %). This cannot be 

considered to be substantially different from the expected 50 %. 

The results from the gap statistic technique are very different. Where data sets have 

equal component percentage values, such as in tests # 1, # 3 and # 4, no appreciable 

difference between the number of errors of omission and inclusion can be detected (they 

have a combined mean of 50 % ± 18 % observations from the distribution with the 

larger mean classified as part of the distribution with the smaller mean). However, if 

the component proportions are not equal, observations from the distribution with the 

smaller mean are classified at least 99 % of the time as part of the distribution with the 

larger mean (Table 4.16). The threshold is chosen at a value located on the lower tail 

of the lower distribution. This clearly indicates that, for these data set structures, 

the gap statistic only tests for discordancy; it can not adequately define a threshold, 

even though it is capable of indicating the existence of outhers from another normal 

distribution. 
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4.7 Other Threshold Selection Techniques 

Application of the 'mean plus 2 standard deviations' and '95"1 percentile' threshold 

selection techniques to these data set structures will clearly classify the data inad

equately. Using the '95"* percentile' technique, the upper 5 % of the data set will 

always be classified as anomalous, whether an anomalous distribution exists or not. 

Thus only data set structure # 8 will be classified optimally. likewise, thresholds at 

the 'mean plus 2 standard deviations' will classify a variable percentage of the data 

as anomalous, depending on the nature (/z, a and w) of the component distributions. 

Since these mixtures of normal distributions are not, themselves, normal, this approach 

requires an assumption about the data set distribution which is not met. Clearly, both 

of these procedures assume the existence of a distribution which is not represented by 

the data and are not flexible enough to be applied to cases where mixtures of normal 

distributions are present. 

4.8 Conclusions 

The gap statistic procedure (including the 3-parameter logarithmic tranformation) ap

plied to mixtures of normal distributions appears to successfully test for discordancy 

(for the existence of outliers from a second population). It also appears capable of 

classifying un-skewed mixtures of normal distributions with error which is comparable, 

if not equivalent, to the probability plot technique. 

However, the gap statistic classifies observations from skewed mixtures of normal 

distributions at a significantly lower level of performance than the probability plot tech

nique. This large discrepancy in performance between the gap statistic approach and 

the probability plot technique indicates that the probability plot technique is an over

all superior data classification procedure for mixtures of normal distirbutions. In fact, 
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due to the optimal properties of maximum likelihood estimation, the probability plot 

technique represents the 'best' possible approach to classification (of the approaches 

considered). 

Other classification procedures such as the 'mean plus 2 standard deviations' and 

the '95"* percentile' techniques are generally inappropriate for the data set structures 

expected for geochemical data. 



Chapter 5 

Multivariate Technique Comparison 

"Basic research is when I'm doing what I don't know I'm doing." 

Werner Von Braun (1964) 

"To err is human, but to really foul things up requires a computer." 

Paul Ehrlich (1978) 

Although results from Chapter 4 demonstrate that the probability plot technique 

classifies the stochastically generated mixtures of normal distributions at an equal or 

superior level of performance than the gap statistic, several data set structures could not 

be classified at an acceptable precision level by either technique. If the Mahalanobis 

Distance between two component distributions is small (A < 2), neither technique 

classifies the data successfully. For example, where the two means of the component 

distributions are 20 and 30 with a common standard deviation of 5 (A = 2) and equal 

component distribution percentages, the smallest possible amount of data misclassifi

cation will be approximately one third of the data set (theoretically 32 %). Based on 

the average results of Chapter 4, the probabihty plot approach misclassified 32 % of 

the data, whereas the gap statistic approach misclassified 36 %. In cases such as these, 

where the component distributions overlap substantially, analysis of other geochemical 

variables may allow better classification. 

Obviously, any systematic univariate analysis of geochemical data should be directed 

toward the discovery of those variables which manifest the least amount of population 

125 
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overlap, and thus can be used to discriminate the populations with the least amount of 

classification error. Clearly, in the ideal case, the maximum level of classification success 

will be achieved using those geochemical variables which manifest the largest difference 

(A) between the component distributions. Although philosophical considerations re

quire that at least one geochemical variable of this type exist (otherwise there would be 

no difference between the component distributions), practical limitations may prevent 

either the recording of these unknown geochemical variables or their subsequent anal

ysis. Factors preventing data collection include budget constraints, lack of adequately 

sensitive analytical techniques, or lack of knowledge that a certain geochemical variable 

has the potential to discriminate populations. Conversely, an abundance of recorded 

geochemical variables may make it too costly for the geochemist to evaluate each vari

able independently and the discriminating variables may never be identified. In either 

case, the geochemist is left without a single geochemical variable with which to ade

quately discriminate the populations. As a result, multivariate analysis of the data set 

may be required to achieve an acceptably low amount of population misclassification. 

5.1 Background Characterization Approach 

One multivariate approach used to reduce the amount of population misclassification 

is the background characterization approach (BCA; Stanley and Sinclair 1987, Day 

et al. 1987). This involves the formulation of a linear background model to describe 

the variation observed in the background data. Any background model used to assist 

in the classification of geochemical data from overlapping mixtures of distributions 

must be consistent with the underlying relationships among the variables used in the 

model. As described in Chapter 1, two general situations exist, one involving a causal 

relationship between geochemical variables and one involving a common association 
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between geochemical variables. 

The first situation involves a single variable, measured with error, which is causally 

related to other variables, also measured with error. Situations such as these can be 

examined appropriately with a regression approach, where one variable is cast as a 

linear function of other variables. For example, in background soil samples, Cu, Zn, 

Co and Ag may occur adsorbed to poorly crystalline Fe- and Mn-oxyhydroxides. The 

abundance of these oxyhydroxides could, thus, control the abundance of Cu, Zn, Co 

and Ag. If this hypothesis is correct, the abundances of Cu, Zn, Co and Ag may all 

be described (predicted) by functions of the measured Fe and Mn concentrations. 

The alternative situation is where Fe and Mn concentrations have not been mea

sured. In this case, the hypothesized Fe- and Mn-oxyhydroxide 'causative' factor 

cannot be observed, and thus is considered a latent variable. The manifest variables, 

those which have been measured (Cu, Zn, Co and Ag), are hypothesized to be (lin

early) functionally related to this latent variable, but a regression model cannot be 

formulated because no estimates of this latent variable are available. A principal com

ponents (PC) analysis would be an appropriate examination method for situations such 

as these because the PC, themselves, would represent estimates of the un-observed la

tent variables. 

In reality, because of the numerous chemical and physical controls on the abundance 

of elements in geological materials, the difference between these two situations may be 

obscure; however, a clear cut theoretical distinction exists between them. For example, 

an un-measured variable, such as pH, may control the abundances of Cu, Zn, Co and 

Ag as well as Fe and Mn. Thus, although Cu may be regressed against Fe and Mn, 

the combination of Cu, Fe and Mn may also be used to determine a PC representing 

pH. Clearly, the appropriateness of the background model will depend to a large extent 

on the way the model is designed and its relevance to specific geochemical processes. 
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After selection of a background model philosophy, the BCA involves selection of 

thresholds using the techniques described in Chapter 3, with the exception that, because 

of extreme overlap between adjacent populations, a single threshold cannot classify the 

data adequately. As a result, two thresholds are chosen (conventionally at 2 standard 

deviations above and below the respective means) which define 3 data ranges of two 

different types. Two of these data ranges are of one type, composed, predominantly, 

of observations from the same population (B or A; Figure 2.8). These can be thought 

of as 'pure' data ranges, although in reality a small proportion of the other population 

are included in each. The third data range would be of a different type, containing a 

significant number of observations from both populations (A and B). This data range 

would be bounded by the two chosen thresholds (Figure 1.2) and is called the 'range 

of population overlap'. Using the observations from the un-contaminated data range 

for population A or B, the parameters of the background model can be estimated 

and the resulting model used to 'characterize' the variation in the background (A or 

B) population. The parameters for this model are estimated using only, or at least 

predominantly, data from the 'background' population. 

This background model can then be applied to observations from the range of 

population overlap, where accurate classification based on the variable of interest is 

not possible. Observations from the background population which occur in the range 

of population overlap can be expected to 'react' to the background model in a way 

similar to those which occur in the range of the 'pure' background population because 

they all are derived from the same population. Observations in the range of population 

overlap which are members of another (anomalous) population would be expected to 

'react' differently to the background model than the background observations (Figure 

1.2). This is because, derived from a different population, the relationships among 

these variables generally would be different. 
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In this way, observations in the range of population overlap for one variable can be 

classified using additional information made available through use of other variables 

in the background model. If both populations comprise a significant proportion of 

the data set (a population discrimination situation), two 'background' models can be 

developed (one for each population) to help classify those observations in the range 

of population overlap (Figures 1.1 and 1.2). For anomaly recognition situations, only 

one background model can be developed because of the paucity of observations derived 

from one of the populations. Clearly, application of a background model derived from a 

population with numerous observations has the potential to be more successful because 

the parameter estimates for that model will be more accurate. 

Unfortunately, a background model determined using data from a 'pure' data range 

will not be the same as one determined using all the data from the associated popu

lation. This is because the distribution is truncated by the bounding threshold. A 

bias will exist which, if the amount of truncation is small, may not be significant, but 

if the amount of truncation is large, may totally invalidate the BCA to anomaly recog

nition or population discrimination. Fortunately, the effects of the truncation can be 

reduced, if not eliminated, by correcting for the truncation. This correction is made on 

the observed parameters of the truncated distribution, so that the corrected values are 

estimates of the parameters of the un-truncated population. Both regression and PC 

analysis can be performed using these 'truncation corrected' parameters instead of the 

truncated data (see below). A derivation of the procedure for correcting the observed 

truncated statistical sample parameters is presented in Appendix E. 

Simulation of the BCA to anomaly recognition was undertaken to evaluate how 

well the procedure can produce accurate background models and residuals for the data 

from the range of population overlap which are similar (and predictable) to those from 

the 'pure' background observations. Obviously, any simulation of the mathematical 
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and statistical operations involved in application of the BCA must be performed on 

data sets which meet the assumptions required. The method of data set generation, 

described in Chapter 3, is consistent with the regression models and PC background 

model used in this analysis. 

5.2 Multivariate Data Set Structures 

Multivariate data sets were generated with specific means, standard deviations and cor

relation structures according to the linear congruential procedures described in Chap

ter 3. Twelve different trivariate (Y, X\, X2) data set structures were used to determine 

the performance (efficiency) of the BCA to classification of data for a range of the ex

tent of overlap between populations. Each data set structure is multivariate normal 

with means of 20, 40 and 60 for the three variables. Standard deviations are 4, 6 

and 8, respectively. Ten realizations of each data set structure were generated and all 

contained 200 observations. 

The only parameters allowed to vary between data set structures are the off-diagonal 

terms of the correlation matrix. Presented below are the correlation structures (ma

trices) used for the generation of the multivariate normal data set realizations (# 17 

through # 28), as well as those which were examined in the course of this study and 

which are discussed below : 

/1.0 0.7 0.7 \ 

0.7 1.0 0.1 

\0.7 0.1 1.0/ 

/1.0 0.5 0.5 \ 

0.5 1.0 0.1 

\0.5 0.1 1.0/ 

Data Set Structure #17 (5.85) 

Data Set Structure # 18 (5.86) 
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/1.0 0.3 0.3 \ 

0.3 1.0 0.1 

V0.3 0.1 1.0/ 

n.o 0.9 0.1 \ 

0.9 1.0 0.1 

Vo.i 0.1 1.0/ 

n.o 0.7 0.1 \ 

0.7 1.0 0.1 

\ 0.1 0.1 1.0/ 

/1.0 0.5 0.1 \ 

0.5 1.0 0.1 

Vo.i 0.1 1.0/ 

n.o 0.3 0.1 \ 

0.3 1.0 0.1 

Vo.i 0.1 1.0/ 

n.o 0.9 0.5 \ 

0.9 1.0 0.1 

\0.5 0.1 1.0/ 

n.o 0.9 0.3 \ 

0.9 1.0 0.1 

\0.3 0.1 1.0/ 

n.o 0.7 0.5 \ 

0.7 1.0 0.1 

V0.5 0.1 1.0/ 

n.o 0.7 0.3 \ 

0.7 1.0 0.1 

\0.3 0.1 1.0 ) 

Data Set Structure # 19 

Data Set Structure # 20 

Data Set Structure # 21 

Data Set Structure # 22 

Data Set Structure # 23 

Data Set Structure # 24 

Data Set Structure # 25 

Data Set Structure # 26 

Data Set Structure # 27 

(5.87) 

(5.88) 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

(5.93) 

(5.94) 

(5.95) 
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/ l .O 0.5 0.3 \ 

0.5 1.0 0.1 

\0.3 0.1 1.0/ 

Realizations for correlation structures such as 

/1.0 0.9 0.9 \ 

0.9 1.0 0.1 

\0.9 0.1 1.0/ 

and : 

Data Set Structure # 28 (5.96) 

Data Set Structure # 29 (5.97) 

Data Set Structure # 30 

/1.0 0.9 0.7 \ 

0.9 1.0 0.1 

\0.7 0.1 1.0/ 

could not be produced because these matrices are not positive definite and 

legitimate correlation structures. Finally, five data set structures which were 

to generate stochastic data sets, but which are discussed below, are : 

Data Set Structure # 31 

(5.98) 

thus not 

not used 

n.o 0.1 0.1 \ 

0.1 1.0 0.7 

Vo.i 0.7 1.0/ 

/ l .O 0.7 0.7 \ 

0.7 1.0 0.7 

\0.7 0.7 1.0/ 

/l.O Y Y \ 

Y 1.0 X 

V Y X 1.0/ 

n.o Y 0.1 \ 

Y 1.0 X 

\0.1 X 1.0/ 

(5.99) 

Data Set Structure # 32 (5.100) 

Data Set Structure # 33 (5.101) 

Data Set Structure # 34 (5.102) 
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and : 
/l.O 0.1 0.1 \ 

0.1 1.0 X Data Set Structure # 35 (5.103) 

\0.1 X 1.0/ 
where X and Y equal 0.9, 0.7, 0.5 and 0.3, and Y < X. 

The correlation matrices used to generate stochastic trivariate data sets (# 17 

through # 28) all take the form of oblate ellipsoids. These are meant to encompass a 

reasonably complete spectrum of positive definite correlation structures. Correlation 

structures with high correlation among the independent variables (data set structures 

# 33, # 34 and #35) were avoided because, as discussed in Appendix D, the reduced 

major axis regression solution is numerically unstable if there are high correlations 

among these variables, preventing a solution from being determined (see below). 

5 . 3 Procedure 

Statistical models used to represent the background data include PC as well as two ML 

regression methods. The first regression method assumes errors exist in all variables 

and the regression coefficients are determined by minimizing : 

„l = ^ ( * - > » - X M . ( 5 . 1 0 4 ) 

A formal derivation of this method is presented in Appendix D. In order to determine 

the regression coefficients, the assumption that : 

was used, where sy and sXj are the observed variances of the data and at and are the 

variances of the errors. This approach, with error assumed in each variable, is referred 

to as the 'reduced major axis' (RMA) regression and is based on the premise that a 

structural relation exists between the dependent and independent variables. 
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The other regression function evaluated is the 'ordinary least squares' (OLS) ap

proach, where error is assumed to exist in only the dependent variable. Although this 

is known to be a poor assumption for geochemical data, the OLS regression coefficients 

were calculated in the process of producing the RMA regression coefficients, so no 

addition effort was required. Furthermore, RMA regression options are not yet gener

ally included in commercially available statistical packages; thus, results from the OLS 

truncation analysis may be relevent. Both of these approaches are ML solutions for 

regression models involving different sets of assumptions about the placement of errors 

in the observations (Fuller 1987). 

In order to evaluate the efficiency of the BCA, the parameters of the relevent back

ground functions, as well as the residuals calculated from these functions, must be 

evaluated. This is because, although the residuals will allow an assessment of how well 

the background function represents the truncated background data and thus how well 

the procedure performs in recognizing background observations from the range of pop

ulation overlap, the parameters of the background function will allow an assessment of 

the overall stability of the results. 

5.3.1 Parameter Analysis 

The parameters for each of the background functions based on the population, statis

tical sample, truncated statistical sample and truncation corrected statistical sample 

were evaluated to determine the stability of the parameter estimates of the truncated 

statistical sample and truncation corrected statistical sample parameter estimates. 

5.3.1.1 Population Parameters 

For each data set structure, a principal components (PC) analysis and both the ML 

regression analysis with error in only the dependent variable (OLS regression analysis) 
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and the ML regression analysis with error in every variable (RMA regression analysis) 

were performed on the p o p u l a t i o n . The PC were derived using the population corre

lation matrix, but the regression coefficients had to be derived in a different manner. 

By multiplying the population covariance matrix (£) by the number of observa

tions in the statistical samples produced using that covariance matrix, the population 

corrected cross product matrix can be derived : 

/ ss yy ss vn ss yx* \ 
SSXiy &&xixi 

\SSXiy ssX2Xl ssX7X2 

(5.106) 

where ssyy and ssXjXj are the sum of corrected squares of y and Xj, respectively : 

ss yy = £(£(y,--̂)2J, (5.107) 

ss. = £ ( E ( * . ; - / ^ ) 2 J , (5-108) 

and ssyXj and ssXjXk are the sum of corrected cross products of y and Xj, and Xj and 

xt, respectively : 

= E (X>. - /iy)(*,-,• - ) J , (5.109) 

ss. = E (£(*.-; - /%)(*ik - J J • (5 .H0) 

This matrix can be partitioned in terms of the dependent (Y) and independent (Xi 

and Xi) variables : 
/ 

ssyy ssyxi 

> 

ssyx2 

ssXl y a a H xi &&XI X2 

aax2y ssx^Xl S&X?X2 t 

(5.111) 

and recast in matrix notation, giving 

Y'Y Y'X 

X'Y X'X 
(5.112) 
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where : 

Y = 
$2 

(5.113) 

X = 

\yn/ 

( i l l ^12 \ 

X 21 « 2 2 

V £nl Xn2 I 

(5.114) 

assuming : 

and 

X{j — Xjj pXj • (5.115) 

Vi =Vi - Py- (5.116) 

Since the bj terms in OLS regression can be determined using (Draper and Smith 

1981) : 

B = (X'X)-lX'Y, (5.117) 

determination of these coefficients can be achieved using the partitioned matrix notation 

terms of the population corrected cross product matrix. 

Similarly, since the sum of squared residuals numerator in RMA regression : 

n p 

i = l j=l 
(5.118) 

can be recast in matrix notation as : 

Y'Y - IB'X'Y + B'X'XB, (5.119) 

the expected population sum of squared residuals numerator can be determined by 

multiplication of the partitioned matrix notation terms of the corrected cross product 
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matrix with : 

5 = Q ) . (5.U0) 
The denominator term for the RMA regression sum of the squared residual formula : 

i=i Ai 

can then be determined by using the population variances (the diagonal terms of S) 

to calculate the Xj terms. The B solution which minimizes the RMA sum of squared 

residuals can then be determined through non-linear optimization (minimization) using 

the SIMPLEX method (Figure 2.7) of Nash (1979) and Caceci and Cacheris (1984). 

Inital estimates of the bj terms were, in all cases in this analysis, the OLS estimates. 

5.3.1.2 Sample Parameters 

A similar PC, OLS and RMA regression analysis was also performed on the stochastic 

realizations. In these cases, solution of the PC was accomplished in a straightforward 

manner, using S, the statistical sample covariance matrix. Similarly, solution of both 

OLS and RMA regression analyses was accomplished using the actual data, and in the 

case of RMA regression, the statistical sample variances. 

5.3.1.3 Truncated Sample Parameters 

Each of the realizations was also subjected to four levels of truncation. Truncation was 

made at the 95"*, 85th, 70th and 50th percentiles of V s (the first variable - with a mean 

= 20 and standard deviation = 4) population distribution. These correspond to Y-

values of 26.580, 24.148, 22.096 and 20.000, respectively, and to z-scores of 1.645, 1.037, 

0.524 and 0.000. Truncation reduced the size of each realization to approximately 190, 

170, 140 and 100 observations, respectively. 
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Each of these four truncated realizations was analyzed with standard PC, OLS and 

RMA multivariate regression techniques. The methods for solution of these analyses 

were identical to the analyses performed on the observed statistical sample without 

truncation (above). 

5.3.1.4 Truncation Corrected Sample Parameters 

The second set of analyses was performed on the same truncated realizations after 

'correction' for truncation (see Appendix E). This truncation correction can only be 

made on the statistical parameter estimates of the truncated realizations, and not on 

the individual observations themselves. Those observations which were truncated from 

the realization were lost. As a result, the subsequent calculation of the PC, OLS and 

RMA regression coefficients was made using the truncation corrected statistical sample 

covariance matrix (Sc) in a manner similar to that described for the population derived 

PC, OLS and RMA regression coefficients which were made using S. 

Thus, for each realization, 10 PC, OLS and RMA regression analyses were per-

fomed. These consist of analyses on the population, on the full realization, on the 

four levels of truncation of the realization, and the four levels of truncation on the 

'truncation corrected' realization. This allows an evaluation of how well each analy

sis technique performs in approximating the true PC and regression coefficients with 

increasing amounts of truncation. 

5.3.2 Residual and Score Analysis 

After determination of the parameters of the three background functions (OLS, RMA 

and PC), the residuals and scores were calculated for both the observations used to 

determine the background function (the un-truncated observations) and those obser

vations which were truncated. No residuals could be calculated using the population 
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parameters, because in this case, no actual observations exist. In the case of the two 

regression functions, the residuals : 

were calculated, where y is the predicted value of y,- for the relevant regression function. 

Similarly, the second and third PC scores were calculated. In addition, the pythagorean 

distances between the first PC and the observations were calculated according to : 

where cZ,-23 is the ith distance, p,2 and p,3 are the ith second and third PC scores and Ae2 

and Ae3 are the eigenvalues for PC # 2 and # 3. This distance is essentially, the radial 

(elliptical) distance between the major axis (PC # 1) and the observation, and thus 

should be distributed x* f ° r ^ a e un-truncated data sets. Although not discussed in the 

text, all statistics for this distance calculation have been determined and are included 

in the appropriate tables and figures. 

Clearly, the expected values of the residuals and scores for the background (un-

truncated) data used to determine the coefficients for the background models are zero. 

This is not true for the expectations of the residuals and scores for the truncated 

data and may not be true for the background and truncated data if the truncation 

corrected parameters are used to calculate the residuals and scores. A comparison of 

these different residuals and scores will indicate how sensitive the different background 

functions are to different levels of population truncation, with and without truncation 

correction. 

Vi-Vi, (5.122) 

(5.123) 
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5.4 Results 

Results (means and standard deviations of 10 realizations) from the analysis of the 

parameter estimates for the BCA regression and PC background models for data set 

structure #17 and # 23 are presented in Tables F.58 through F.69 of Appendix F. 

Figures 5.18 through 5.21 graphically depict these results for data set structure # 17 

only. 

Results from the analysis of the residuals and scores of the truncated data for the 

BCA regression and PC background models for data set structure # 17 and # 23 are 

presented in Tables G.70 through G.89 of Appendix G. As above, Figures 5.22 through 

5.23 graphically depict these results for data set structure # 17 only. 

This subset of data set structures (# 17 and # 23) was found to represent a good 

cross-section of results from these analyses, ranging from highly correlated data sets 

(oblate ellipsoids - # 17) to poorly correlated data sets (approximate spheres - # 23), 

and is presented in lieu of the results from all data set structures because of space 

considerations. 

5.5 Discussion 

Results from the simulation of the BCA to anomaly recognition indicate that this 

approach has the potential to classify observations from the range of population overlap 

where adjacent component distributions overlap significantly. 

5.5.1 Parameter Estimates of Background Models 

Results for the truncation corrected and uncorrected statistical sample parameters for 

the four data set structures indicate that truncation significantly affects the values, 
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Figure 5.18: Plot Comparing the Population, Statistical Sample, Truncated Statistical 
Sample and Truncation Corrected Statistical Sample Parameter Estimates of the Means 
and Standard Deviations for Multivariate Data Set Structure # 17 

Values in this figure are the means and (±1) standard deviations of parameters for 
the 10 realizations used for each case. The population estimates are presented in the 
'0 % truncation / truncation corrected' location on the graph while the un-truncated 
statistical sample estimates are presented in the '0 % truncation / truncated' location 
on the graph. 
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Figure 5.19: Plot Comparing the Population, Statistical Sample, Truncated Statisti
cal Sample and Truncation Corrected Statistical Sample Parameter Estimates of the 
Covariances and OLS Coefficients for Multivariate Data Set Structure # 17 

Values in this figure are the means and (±1) standard deviations of parameters for 
the 10 realizations used for each case. The population estimates are presented in the 
'0 % truncation / truncation corrected' location on the graph while the un-truncated 
statistical sample estimates are presented in the '0 % truncation / truncated' location 
on the graph. 
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Figure 5.20: Plot Comparing the Population, Statistical Sample, Truncated Statistical 
Sample and Truncation Corrected Statistical Sample Parameter Estimates of the RMA 
and PC #1 Coefficients for Multivariate Data Set Structure # 17 

Values in this figure are the means and (±1) standard deviations of parameters for 
the 10 realizations used for each case. The population estimates are presented in the 
'0 % truncation / truncation corrected' location on the graph while the un-truncated 
statistical sample estimates are presented in the '0 % truncation / truncated' location 
on the graph. 
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Figure 5.21: Plot Comparing the Population, Statistical Sample, Truncated Statistical 
Sample and Truncation Corrected Statistical Sample Parameter Estimates of the PC 
# 2 and # 3 Coefficients for Multivariate Data Set Structure # 17 

Values in this figure are the means and (±1) standard deviations of parameters for 
the 10 realizations used for each case. The population estimates are presented in the 
'0 % truncation / truncation corrected' location on the graph while the un-truncated 
statistical sample estimates are presented in the '0 % truncation / truncated' location 
on the graph. 
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Figure 5.22: Plot of the Means and Standard Deviations of OLS and RMA Regression 
Residuals for Data Set Structure # 17 

Tick marks on the central vertical axis represent a 1 unit value. Dots represent the 
mean of 10 values while the vertical bars represent ± 1 standard deviation. 
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Figure 5.23: Plot of the Means and Standard Deviations of PC # 2 and # 3 Scores 
for Data Set Structure # 17 

Tick marks on the central vertical axis represent a 10 unit value for PC # 2 and a 
1 unit value for PC # 3. Dots represent the mean of 10 values while the vertical bars 
represent ± 1 standard deviation. 
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and that by correcting for truncation, the resulting estimates approximately repro

duce the un-truncated parameters. With truncation, the descriptive statistics (means, 

standard deviations, covariances and correlations) of Y, X\ and X2 all decrease signif

icantly; however, truncation corrected estimates of these parameters approximate the 

un-truncated statistical sample values without any significant bias (Tables F.58, F.60, 

F.59 and F.61; Figures 5.18 and 5.19). 

The parameter estimates (bo, bi, &2, R2 and J2(Vi ~ Vi)2) °f * n e background regres

sion models (OLS and RMA) become biased with increasing amounts of truncation (the 

61, 02, R2 and £ ( y , — yi)2 estimates decrease and the bo estimates increase). However, 

parameter estimates calculated using the truncation corrected descriptive statistics, 

above, adequately approximate the true population values (Tables F.62, F.64, F.63 

and F.65; Figures 5.19 and 5.20). 

Data set truncation also affects the calculated eigenvector and eigenvalue coeffi

cients for the PC background model. The scaled eigenvector coefficients (those not 

scaled to 1) decrease or increase from an initial un-truncated statistical sample esti

mate, depending on the initial correlation structure. In all cases, both coefficients for 

eigenvector # 1 decrease with truncation. Conversely, the two coefficients for eigenvec

tor # 2 mostly move in opposite directions whereas those for eigenvector # 3 generally 

increase with truncation. Increasing amounts of data set truncation also causes the cal

culated eigenvalues to decrease from initial un-truncated statistical sample estimates. 

Truncation correction of the descriptive statistics (covariances) used to calculate these 

eigenvectors also removes the bias induced through data set truncation (Tables F.66, 

F.68, F.67 and F.69; Figures 5.20 and 5.21). 

Although bias in the background parameter estimates is small with small amounts 

of data set truncation (5 or 15 %), it becomes substantial if the amount of truncation 

is greater than 30 % of the data set. Unfortunately, if the thresholds of a mixture of 



Chapter 5. Multivariate Technique Comparison 148 

two normal distributions with a common standard deviation, equal component pro

portions and A = 2 are chosen at the mean plus or minus two standard deviations 

of the corresponding component distributions, 32 % truncation is applied to each of 

the component distributions. Thus, since geochemical data bases comprised of mix

tures of normal distributions with A ~ 2 are not uncommon (e.g. Stanley and Sinclair 

1988), significant bias in the truncated background model parameter estimates can be 

expected in geochemical applications. 

As a result, the truncation correction described in Appendix E should be imple

mented to avoid background model parameter bias. Background models calculated 

using the truncation corrected parameters should produce residuals and scores which 

are similar to the residuals and scores calculated on the un-truncated data set (Figure 

5.24). 

5.5.2 Residual and Score Comparison 

Although the above analysis of the parameters of the background model indicated 

that background corrections are required to produce unbiased estimates of the true 

parameter values with truncated data sets, this does not guarantee that the resulting 

residuals or scores will be unbiased. Furthermore, residuals or scores calculated from the 

background data, although they may exhibit predictable expected values and variances, 

will not necessarily be distributed similarly to the residuals or scores calculated from 

the truncated data. 

Specifically, for all background functions (OLS, RMA regressions and the PC) cal

culated using the truncated data, the average mean values of the associated residuals 

and scores are zero. However, where the truncation corrected parameters are used to 

calculate these background residuals and scores, the PC scores have a mean value of 

zero, but the residuals from both regression functions have a slightly positive mean 
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Figure 5.24: Comparison of Residuals of OLS and RMA Regression Background Models 
With and Without Truncation Correction for Realizations from Data Set Structures # 
17 and # 23 

All scatterplots have an abcissa of the observed Y value and an ordinate of the 
predicted Y value. Scatterplots on the left predict the Y value with the OLS regression 
function while those on the right predict the Y value with the RMA regression function. 
Scatterplots A, C, E and G have the predicted values calculated using the truncated 
data while scatterplots B, D, F and H have the predicted values calculated using the 
truncation corrected parameters. Scatterplots A, B, E and F are of a realization from 
data set structure # 17 while those of scatterplots C, D, G and H are of a realization 
from data set structure # 23. 
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value. 

Similarly, the standard deviations of the residuals and scores calculated from the 

background model parameters have expected values which are predictable. The average 

standard deviations of the PC scores are equivalent to the average square roots of the 

associated eigenvalues; the average standard deviations of the residuals are equivalent 

to the square roots of the associated average sum of squared residuals. However, resid

uals calculated from the truncation corrected parameters using the regression functions 

are less than the associated average sum of squared residuals for the OLS regression 

function and greater than the associated sum of squared residuals for the RMA regres

sion function. Scores for PC # 2 and # 3 calculated using the truncation corrected 

parameters have average standard deviations which are generally less than the average 

square root of the associated eigenvalues. 

Finally, the background residuals and scores are not normally distributed. With 

truncation, the OLS regression residuals exhibit extremely positive average skewness 

whereas RMA regression residuals exhibit only marginally positive average skewness. 

Truncation correction appears to reduce the amount of skewness for both regression 

techniques; however, the skewnesses observed for the OLS truncation corrected regres

sion residuals are still significantly positive. Average background scores calculated for 

PC # 2 and # 3 generally become negatively skewed with truncation, but this skewness 

appears to be removed if the truncation corrected PC parameters are used. 

Identification of the observations which occur within the range of population overlap 

but which were derived from the background population will clearly have to be based 

on the residuals or scores of these observations and their distribution relative to the 

distribution of the residuals for the background observations (Figure 5.24). In all 

data set structures examined, average regression residuals for the truncated data are 

negative (residuals calculated using the OLS function are all more negative than those 
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calculated using the RMA function), whereas average PC scores for the truncated data 

are positive. These trends may reverse where there are negative correlations among 

pairs of variables in a data set. In addition, data set structure affects the magnitudes 

of these discrepancies from zero. Where \R\ (or equivalently, the multiple correlation 

coefficient or the percent variance explained by the first PC) is large, the discrepancies 

are small, and vice versa. 

Similarly, average standard deviations of the residuals and scores for the truncated 

data are smaller than for the average background data for small amounts of trunca

tion, becoming approximately equal to the average background values where truncation 

reaches 50 %. Likewise, average skewnesses of the residuals and scores for the truncated 

data tend to be more extreme with small amounts of truncation, becoming approxi

mately equal where truncation reaches 50 %. The magnitudes of both the standard 

deviations and skewnesses of residuals and scores also vary inversely with \R\, the 

multiple correlation coefficient or the percent variance explained by the first PC. 

5.6 Conclusions 

OLS regression (despite not being consistent with a distribution model for geochem

ical data with error in every variable), RMA regression and PC can all be used as 

background functions to explain the variation among data from the background distri

bution. Residuals and scores calculated from these functions for the background data 

and (truncated) data from the range of population overlap are generally stable and 

predictable. However, RMA regression residuals are less biased away from zero and 

less skewed than their corresponding OLS regression residuals. 

Truncation correction of the means, standard deviations and correlations of the 

truncated distribution can be used to calculate estimates of the background functions 
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for the un-truncated distribution. These truncation corrected background model pa

rameters can then be used to determine truncation corrected residuals and scores which 

are even more stable and predictable, and less biased, than those calculated from the 

un-corrected parameters. 

Although inclusion of data from a second distribution was not simulated, the sta

bility and predictability of the residuals and scores calculated using the truncation cor

rected background model parameters should allow discrimination of data from other 

distributions from that of the background distribution which occurs in the range of pop

ulation overlap, provided that the inclusion of these polluting observations has only a 

negligible effect on the background model parameter estimates. 

Techniques for classifying the calculated residuals and scores include the very same 

techniques described in Chapter 1 and tested in Chapter 4 for selecting thresholds 

(histograms, probability plots and the gap statistic). 



Chapter 6 

Conclusions and Recommendations 

"Enough research will tend to support your theory." 

Murphy's Law of Research (1979) 

"A conclusion is the place where you got tired of thinking." 

Matz's Maxim (1980) 

6.1 Conclusions 

Several important conclusions from this study which relate to the approaches taken 

by geoscientists in the evaluation of geochemical data result from the monte carlo 

simulations of thresholds selection and classification procedures presented in Chapters 

3, 4 and 5. Major conclusions resulting from the comparison of likelihood functions in 

the decomposition of mixtures of normal distributions and the calculation of optimal 

parameter estimates (Chapter 3) include : 

• ML optimization can be used successfully to decompose a mixture of normal 

distributions, producing estimates of the means, standard deviations and compo

nent porportions of the component distributions, thus mixtures of geochemical 

populations in a data set can be described and discriminated; 

• both RDML and CIDML approaches may be used to obtain reasonable estimates 

of these parameters; however, biased estimates can result using the CIDML ap

proach where a small number of class intervals are used (corresponding to a poor 

153 



Chapter 6. Conclusions and Recommendations 154 

estimate cf the frequency of the c31ass interval by the trapezoid approximation); 

and 

• both RDML and CIDML approaches produce poor (and commonly variable) 

estimates of the population parameters if a small number of observations are used 

(< 50 observations per distribution) or if the component distributions overlap 

substantially (A < 2). 

This analysis demonstrates that ML estimation of the parameters of each distribution 

in a mixture of normal distributions can be done rapidly and accurately using the 

CIDML function. Thus, optimal parameter estimation applied to large data sets com

mon in geochemical applications is not only possible, but can be accomplished easily 

and rapidly with inexpensive personal computers. 

The comparison of classification results between the probability plot and gap statis

tic approaches of Chapter 4 indicates that : 

• the probability plot approach can be used successfully to classify observations 

from the component distributions of a mixture of normal distributions; 

• the performance of the probability plot approach is the 'best' of the techniques 

considered using a single threshold; 

• classification with the probability plot approach may be inaccurate where a small 

number of observations is used (< 50 observations per distribution) or if the 

component distributions overlap considerably (A < 2); 

• the gap statistic can be used successfully to classify observations from component 

distributions of a mixture of normal distributions; however, the performance of 

the gap statistic, where the data distribution is substantially skewed, is inferior 

to that of the probability plot approach; and 
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• the gap statistic, at the very least, may be used as a test of discordancy, deter

mining the plausibility of the observed distribution being derived from a single 

3-parameter log-normal distribution. 

The probability plot technique, thus, is recommended for use by geoscientists to de

compose mixtures of normal distributions, select thresholds and classify geochemical 

samples. Software to accomplish this task is described in Chapter 2. 

Finally, the simulation of the BCA to anomaly recognition using both regression 

and PC functions as background models (Chapter 5) indicates that : 

• either OLS regression, RMA regression or PC can be used to predict the back

ground model coefficients required by the BCA; 

• these coefficients may then be used to calculate residuals or scores for background 

data and data from the range of population overlap; 

• since the projected residuals and scores for background data from the range of 

population overlap are neither identically distributed nor generally known, all 

truncated residuals and scores should be compared to the background residuals 

and scores to ascertain which observations from the range of population overlap 

are truely anomalous; 

• the RMA regression truncated residuals are less biased from 0 and have smaller 

skewness than the corresponding OLS regression truncated residuals; thus, the 

RMA reression function is prefered because the resulting residuals are more pre

dictable; and 

• the truncation correction procedures applied to truncated data sets appear to 

reduce the disparity between the background and truncated residuals and scores 
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in the BCA, allowing for a better chance of identifying observations which are 

not part of the background distribution. 

Thus, the BCA can be used successfully to decrease the amount of misclassification 

of data from the range of population overlap where a large amount of overlap exists 

between the component distributions. 

6.2 Summary 

In summary, this study has presented a general systematic methodology for the classifi

cation of geochemical data. A mixture of distributions model is fit' to the geochemical 

data. If a small amount of population overlap exists, a single threshold can be selected 

using the parameters of this distribution model to classify the data. If substantial 

overlap exists, two thresholds can be selected to define background ranges and a range 

of population overlap. A background variation model can then be used to describe 

the background data and discriminate the background observations in the range of 

population overlap from the anomalous observations. 

This methodology has been tested using stochastic data sets and monte carlo sim

ulations to evaluate whether the techniques used are apphcable to the variety of data 

set strctures which may be encountered in applied geochemistry. Results demonstrate 

that the techniques advocated for estimating the parameters of a mixture of distribu

tions, the selection of thresholds, and the discrimination of observations from ranges of 

population overlap all perform adequately and allow classification of geochemical data 

which are distributed as a mixture of distributions. 
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6.3 Recommendations for Further Work 

While a thorough comparison of the classification efficiency and performance of prob

ability plots and the gap statistic has been presented above, the same cannot be said 

of the simulation of the BCA to anomaly recognition. Specifically, no attempt to sim

ulate the effects of the presence of an anomalous population was undertaken. This 

is because the quality of classification using the BCA to anomaly recognition is not 

solely dependent upon the behavior of observations from the anomalous distributions, 

but rather is also dependent upon how well the observations from the truncated range 

of the background population can be predicted. If these are predicted well, provided 

there is enough difference between the anomalous and background populations, the 

anomalous observations should be able to be distinguished. 

However, the effect of having a small number of anomalous observations in the 

background data range used for determining the parameters of the background model 

has not been assessed. These outliers, while few in number, can lead to inaccurate 

background model parameter estimates. Obviously, simulation of how a small number 

of these outlying observations affect the background model parameters and resulting 

residuals and scores should be undertaken. In the meantime, conservative thresholds 

should be selected which lead to a number of contaminating observations included in 

the background data range which is as small as possible. At the same time, the locations 

of these thresholds should be chosen such that the the amount of truncation is not too 

large and does not lead to inaccurate background model parameter estimates when the 

distribution parameters are corrected for truncation. 

Obvious methods for reducing the effects of these polluting observations involve 

assigning weights to all observations which are inversely proportional to the residuals or 

scores in an iterative fashion. Unfortunately, this may only be done using the truncated 
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data set procedures because these procedures are the only ones which calculate the 

background model parameters using the actual data. 

Since this study represents only a small proportion of the analysis required to as

certain the quality of all classification techniques which may be used in geochemistry, 

expansion of this study could lead to an evaluation of other 'true' multivariate ap

proaches. Topics which may represent good subjects for further study in the future 

include multivariate ML parameter estimation of mixtures of multivariate normal dis

tributions. This approach involves little subjective criteria, is completely consistent 

with the proposed paradigm for the distribution of geochemical data and represents 

the optimal approach to multivariate classification. However, the time-consuming nu

merical calculations required to determine the maximum likelihood parameter estimates 

of the distribution model : 

m = — — J - ^ - L e~ 2 ( 3 i ~px )T t_1 & -p*)}, (6.124) 

(calculation of the determinant and inverse of S) limit the use of this technique to 

those with inexpensive main-frame computer accounts. Furthermore, the number of 

parameters which must be approximated becomes very large when a large number of 

variables are considered : 

s — v 2p+ | P ] +1 - 1 , (6.125) 

where s is the number of parameters, v is the number of normal distributions and p is 

the number of variables. Thus, 19 independent parameters must be approximated for 

a simple mixture of two trivariate normal distributions. As a result, multivariate ML 

parameter estimation and classification is an approach which may be feasibly studied 

in the future, when high speed computing power becomes even cheaper. 

A second topic not evaluated in this study represents not so much a new approach 

as a new application of an existing approach. Specifically, this study has addressed 
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positive mixtures of normal distibutions of the form : 

f{x) = ± - ^ - e - ^ ) \ (6.126) 

where tr̂  > 0, Ylk=i  wk — 1 and 0 < tcj; < 1. By relaxing one of these conditions, 

specifically 0 < wy. < 1, negative mixtures of normal distributions may be considered. 

These could be used to model geologic or geochemical processes such as sediment win

nowing, where an initial distribution is acted upon by a process which removes specific 

components from that distribution through specific stochastic processes. 

PDF's of the form : 

\2 
f(x) = - ^ _ e - ^ ) + _ ^ _ e - ^ ) , (6.127) 

V27T01 V27TtT2 

where TJJ\ > 1, w2 < 0 and w\ +zo2 = 1, can be used to describe a frequency distribution 

which is the difference between two normal distributions. In order for this mathematical 

model to be consistent with reality, the parameters of this PDF must ensure that 

f(x) > 0, or more specifically (for a negative mixture of two normal distributions) : 

e ^ «i ^ > \w2\ e i K > . (6.128) 
V27T<7i \JlK02 

This approach merely represents a reformulation of the constraints on the distribution 

model. Figure 6.25 depicts the expected probability graph of a negative mixture of 

normal distributions relative to additive mixtures of normal distributions described by 

Sinclair (1974, 1976). This negative mixture model could provide new insight into the 

study of winnowing and dissolution processes because it is completely consistent with 

the processes which lead to the observed distributions. 

Both of these topics represent logical extentions of this study and may lead to 

substantial improvements in data classification and our understanding of geochemical 

processes. 
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Figure 6.25: Probability Graph Comparison of Non-Overlapping, Overlapping, Inter
secting and Negative Mixtures of Normal Distributions 

(A) Probability graph and frequency distribution of Overlapping mixture of distri
butions. 

(B) Probability graph and frequency distribution of Non-overlapping mixture of 
distributions. 

(C) Probability graph and frequency distribution of Intersecting mixture of distri
butions. 

(D) Probability graph and frequency distribution of Negative mixture of distribu
tions. 

The sigmoidal form for probability graphs A, B and D are all similar (flat, steep and 
then flat), but substantially different from C (steep, flat and then steep). Thus, it is 
easy to see how distributions produced by a negative mixture could easily by mistakenly 
modeled as mixtures of overlapping or non-overlapping distributions. 
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Appendix A 

Maximum Likelihood Parameter Estimate Comparison 

"Statistics is the only profession which demands the right to be wrong 

5 % of the time." 

Anonymous 

A . l Tabulated Differences of ML Parameter Estimates 

The following tables present the differences between the CIDML parameter estimates, 

the RDML parameter estimates, the stochastic parameter values calculated from the 

different data sets and the actual population parameter values. Each table refers to a 

different data set structure, as indicated, with the exception of data set structure # 

16, which was not evaluated. These tables have a format similar to Table 3.5 with the 

exception that the minimum x2 parameter estimates were not determined for these data 

set structures. All differences are expressed relative to the actual population parameter 

values. 

See Table 3.4 for the definitions of all symbols used in the following tables. 

177 
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Table A.17: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 2 

(pi = 20, pi = 40, tTX = 5, u2 = 5, vu(%) = 50, and n = 100) 

dfr 8 /I, 4, dw(%) »&(%) 
Stochastic -0.20 0.51 0.07 0.77 0.04 0.40 0.16 0.40 0.00 0.00 

/ OO -0.61 0.88 -0.33 1.11 -0.36 0.63 0.43 0.55 -1.93 2.61 
/ 10 0.39 1.55 -0.78 1.32 -0.09 1.33 -1.76 1.23 4.87 7.33 
£ 15 0.23 1.78 -0.17 1.76 -0.22 1.35 -1.32 1.03 3.42 7.74 
I 20 0.24 1.67 -0.26 1.59 -0.17 1.32 -0.84 1.00 2.34 8.02 
£ 25 -0.17 0.70 -0.49 0.62 -0.31 0.73 -0.37 0.35 0.04 2.92 
£ 30 -0.29 0.53 -0.67 0.61 -0.37 0.63 -0.15 0.36 -0.77 2.46 
£ 35 -0.27 0.60 -0.56 0.57 -0.36 0.64 -0.14 0.36 -0.82 2.79 
£ 40 -0.10 0.80 -0.49 0.67 -0.24 0.72 -0.28 0.42 -0.04 3.57 
£ 45 -0.33 0.66 -0.50 0.64 -0.40 0.62 -0.22 0.48 -0.75 3.30 
£ 50 -0.25 0.62 -0.53 0.54 -0.36 0.64 -0.18 0.43 -0.62 2.80 
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Table A.18: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 3 

(/xi = 20, n2 = 40, <T! = 5, CT2 = 5, w(%) = 50, and n = 300) 

* 1 <U2 »&{%) 
Stochastic -0.11 0.25 0.19 0.22 0.02 0.24 -0.18 0.29 0.00 0.00 

£ oo -0.21 0.43 0.12 0.36 -0.11 0.38 -0.15 0.22 -0.39 1.30 
£ 10 0.34 0.64 -0.13 0.48 -0.30 0.54 -1.32 0.69 1.99 3.08 
£ 15 0.08 0.33 -0.05 0.39 -0.28 0.27 -0.62 0.34 0.52 1.65 
£ 20 -0.08 0.30 -0.17 0.26 -0.24 0.27 -0.35 0.25 0.08 1.23 
£ 25 0.02 0.34 -0.06 0.36 -0.08 0.22 -0.30 0.31 0.38 1.44 
£ 30 -0.06 0.32 -0.06 0.34 -0.13 0.29 -0.31 0.28 0.21 1.60 
£ 35 0.01 0.26 -0.04 0.31 -0.09 0.25 -0.28 0.31 0.37 1.42 
£ 40 -0.04 0.31 -0.08 0.25 -0.09 0.25 -0.23 0.32 0.16 1.52 
£ 45 0.04 0.36 -0.07 0.36 -0.08 0.26 -0.23 0.34 0.31 1.69 
£ 50 0.00 0.35 -0.15 0.50 -0.12 0.34 -0.27 0.39 0.05 1.96 
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Table A.19: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 4 

(p1 = 20, p2 = 40, ox = 5, tr2 = 5, w(%) = 50, and n = 400) 

ddi <U7 
d&(%) 

Stochastic -0.01 0.42 -0.12 0.32 -0.09 0.12 -0.03 0.26 0.00 0.00 
OO 0.06 0.58 -0.07 0.49 -0.02 0.32 -0.05 0.37 0.31 1.38 

/ 10 0.54 0.48 -0.40 0.51 -0.04 0.39 -1.60 0.68 3.84 2.82 
15 0.22 0.37 -0.16 0.38 -0.09 0.31 -0.68 0.49 1.39 1.83 

£ 20 0.19 0.34 -0.02 0.27 0.08 0.26 -0.42 0.30 1.23 1.58 
£ 25 0.09 0.30 0.01 0.27 0.02 0.29 -0.27 0.31 0.77 1.53 
£ 30 0.06 0.32 -0.03 0.31 0.00 0.29 -0.24 0.33 0.60 1.63 
£ 35 0.11 0.32 0.03 0.33 0.07 0.29 -0.20 0.28 0.79 1.60 
£ 40 0.10 0.31 0.03 0.31 0.07 0.29 -0.22 0.30 0.80 1.68 
£ 45 0.07 0.33 -0.03 0.34 0.01 0.26 -0.29 0.37 0.68 1.59 
£ 50 0.14 0.28 -0.11 0.24 0.02 0.20 -0.18 0.24 0.56 1.25 
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Table A.20: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 5 

(/ii = 20, / x 2 = 40, CTI = 5, <72 = 5, w{%) = 50, and n = 500) 

dfr dfo d*i <U7 
dw(%) 

Stochastic -0.10 0.26 0.03 0.34 -0.16 0.20 -0.02 0.18 0.00 0.00 
£ oo -0.17 0.34 -0.05 0.38 -0.22 0.18 0.04 0.24 -0.38 0.67 

10 0.28 0.54 -0.19 0.34 -0.35 0.49 -1.34 0.71 2.33 2.89 
£ 15 -0.09 0.32 -0.28 0.24 -0.33 0.17 -0.34 0.39 -0.27 1.19 
£ 20 -0.08 0.22 -0.12 0.17 -0.13 0.16 -0.26 0.21 0.01 0.84 
£ 25 -0.01 0.24 -0.06 0.29 -0.13 0.21 -0.21 0.19 -0.04 0.70 
£ 30 -0.01 0.18 -0.06 0.13 -0.07 0.14 -0.19 0.18 0.11 0.80 
£ 35 -0.03 0.13 -0.13 0.15 -0.09 0.11 -0.14 0.14 -0.06 0.63 
£ 40 0.02 0.21 -0.07 0.16 -0.04 0.14 -0.12 0.19 0.01 0.94 
£ 45 -0.03 0.27 -0.21 0.27 -0.05 0.20 -0.03 0.27 -0.27 1.20 
£ 50 -0.04 0.26 -0.15 0.24 0.02 0.17 -0.07 0.27 -0.03 0.98 
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Table A.21: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 6 

(pi = 20, p2 = 40, a! = 5, cr2 = 5, zo(%) = 70, and n = 200) 

d/h 3 fa dw(%) 
Stochastic -0.04 0.30 -0.22 0.69 0.11 0.37 0.08 0.39 0.00 0.00 

I OO -0.01 0.45 -0.06 0.94 0.15 0.35 -0.01 0.48 0.13 1.38 
t 10 0.34 0.38 -0.40 0.63 -0.11 0.41 -1.36 0.93 3.42 3.34 
I 15 0.06 0.39 -0.19 0.74 -0.18 0.37 -0.88 0.63 1.40 2.32 
I 20 0.16 0.30 -0.13 0.53 0.08 0.24 -0.62 0.52 1.53 1.61 
/ 25 0.13 0.42 0.11 0.64 0.03 0.30 -0.62 0.37 1.24 1.68 
e 30 0.04 0.19 -0.09 0.44 -0.01 0.22 -0.58 0.31 0.93 1.13 
t 35 0.09 0.22 0.01 0.50 0.07 0.21 -0.53 0.37 1.14 1.34 
/ 40 0.07 0.20 -0.12 0.48 -0.00 0.21 -0.53 0.34 0.91 1.16 
I 45 -0.00 0.21 -0.12 0.43 -0.06 0.20 -0.53 0.28 0.71 1.11 
I 50 0.04 0.27 -0.20 0.48 -0.01 0.21 -0.44 0.31 0.66 1.36 
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Table A.22: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 7 

(fix = 20, p2 = 40, ox = 5, cr2 = 5, w{%) = 85, and n = 200) 

dfr 3 Ai d„t d&7 
dM%) 

Stochastic 0.11 0.53 0.03 1.00 -0.07 0.28 0.22 0.45 0.00 0.00 
£ oo -0.14 0.48 -1.13 1.57 -1.32 0.39 0.88 0.82 -2.24 2.02 
£ 10 -0.15 0.51 -1.95 1.87 -0.61 0.33 -2.10 1.12 0.25 3.65 
£ 15 -0.25 0.46 -2.08 1.89 -0.48 0.31 -0.93 1.03 -0.89 3.13 
£ 20 -0.20 0.35 -1.56 1.48 -0.33 0.36 -0.89 0.90 -0.14 1.81 
£ 25 -0.15 0.43 -1.54 1.40 -0.27 0.31 -0.33 1.24 -1.24 2.69 
£ 30 -0.18 0.33 -1.54 1.40 -0.29 0.31 -0.29 1.24 -1.41 3.16 
£ 35 -0.24 0.37 -1.59 1.50 -0.24 0.32 -0.22 1.39 -1.39 3.01 
£ 40 -0.24 0.37 -1.69 1.54 -0.30 0.39 -0.10 1.28 -1.61 3.14 
£ 45 -0.11 0.38 -1.20 1.11 -0.23 0.37 -0.30 1.05 -0.64 2.42 
£ 50 -0.17 0.29 -1.31 1.17 -0.24 0.29 -0.26 1.18 -1.03 2.42 
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Table A.23: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 8 

(px = 20, p2 = 40, CTI = 5, cr2 = 5, w(%) = 95, and n = 200) 

dfo 
Stochastic -0.03 0.22 0.60 1.20 -0.08 0.30 0.03 1.02 0.00 0.00 

t OO -0.16 0.22 -1.33 2.37 -0.19 0.32 1.07 1.83 -1.27 1.51 
/ 10 -0.20 0.20 -3.91 3.24 -0.46 0.23 -2.36 0.98 0.31 1.12 
£ 15 -0.03 0.18 -1.83 1.23 -0.28 0.24 -1.94 0.69 0.72 1.19 
/ 20 -0.02 0.19 -2.19 1.60 -0.15 0.17 -1.09 0.72 0.21 0.92 
I 25 -0.02 0.11 -1.26 1.02 -0.10 0.12 -1.39 0.68 0.35 0.98 
/ 30 -0.05 0.15 -1.57 1.22 -0.07 0.09 -1.22 0.78 0.30 0.80 
t 35 -0.04 0.13 -1.48 1.03 -0.10 0.11 -1.39 0.74 0.27 0.82 
t 40 -0.01 0.14 -1.15 1.01 -0.05 0.18 -1.47 0.76 0.53 0.75 
I 45 -0.08 0.27 -1.64 1.16 -0.08 0.17 -1.12 0.93 0.18 0.99 
t 50 -0.04 0.12 -1.54 1.19 -0.08 0.12 -1.23 0.91 0.30 0.75 
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Table A.24: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 9 

(/ii = 20, / i 2 = 25, <7i = 5, o2 = 5, w(%) = 50, and n = 200) 

5 A i d^ 8<T2 
Stochastic 0.10 0.64 -0.06 0.47 0.15 0.29 0.05 0.35 0.00 0.00 

I oo 0.34 1.33 0.05 2.24 0.23 0.90 -0.18 0.58 -0.94 1.48 
/ 10 -0.56 1.51 0.18 0.97 -0.52 0.85 -1.08 0.49 -0.49 10.04 
t 15 0.09 1.01 0.17 1.43 -0.12 0.57 -0.65 0.77 2.55 7.90 
/ 20 -0.01 1.57 -0.10 1.70 -0.07 0.82 -0.72 0.75 -0.82 8.64 
I 25 -0.21 1.22 0.34 1.45 -0.20 0.78 -0.74 0.65 1.40 6.97 
I 30 -0.30 0.98 0.17 1.31 -0.12 0.61 -0.68 0.67 -1.06 9.83 
I 35 -0.10 1.81 0.17 1.98 -0.15 0.83 -0.96 0.70 4.05 16.49 
I 40 -0.49 1.00 0.38 1.15 -0.27 0.70 -0.68 0.58 0.16 5.34 
t 45 -0.30 1.08 0.35 1.27 -0.22 0.71 -0.71 0.58 1.66 6.55 
I 50 -0.45 1.12 0.40 1.22 -0.28 0.73 -0.71 0.54 0.44 4.90 



Appendix A. Maximum Likelihood Parameter Estimate Comparison 186 

Table A.25: Differences Between the RDML Parameter Estimates, CLDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 10 

(/xi = 20, p2 = 30, cTX = 5, cr2 = 5, w(%) = 50, and n = 200) 

dfc Sfa d^\ s&i d*5 dw(%) 
Stochastic 0.19 0.44 0.19 0.52 0.21 0.35 -0.03 0.53 0.00 0.00 

£ oo 0.08 1.16 0.35 1.15 0.03 0.50 -0.19 0.73 1.37 9.58 
/ 10 
/ 15 
/ 20 
/ 25 
£ 30 
£ 35 
/ 40 
£ 45 
/ 50 

0.24 1.13 
0.50 1.09 
0.32 1.23 
0.66 1.25 
0.36 1.36 
0.22 1.65 

-0.09 1.40 
0.69 1.19 
0.35 1.25 

0.41 0.69 
0.74 1.39 
0.61 1.30 
1.11 1.13 
0.75 1.19 
0.64 1.22 
0.74 1.52 
0.77 1.14 
0.66 1.39 

-0.33 0.68 
-0.04 0.39 
-0.14 0.38 
-0.01 0.52 
-0.04 0.36 
-0.13 0.42 
-0.24 0.42 
0.07 0.49 

-0.07 0.54 

-1.23 0.56 
-1.05 0.83 
-0.79 0.83 
-0.95 0.82 
-0.86 0.76 
-0.73 0.73 
-0.79 0.85 
-0.77 0.77 
-0.81 0.95 

4.99 8.30 
7.90 11.95 
4.66 12.81 
9.94 11.51 
7.22 12.89 
6.19 14.57 
4.40 14.95 
9.12 11.99 
6.18 13.26 
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Table A.26: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 11 

(p,x = 20, fi2 = 35, <rx = 5, <r2 = 5, w(%) = 50, and n = 200) 

3 /jt dv-t dw(%) •**(%) 
Stochastic 0.16 0.70 -0.21 0.47 -0.12 0.33 -0.10 0.22 0.00 0.00 

£ oo -1.03 1.21 -1.18 1.69 -0.85 0.60 0.25 0.86 -7.68 9.50 
£ 10 -0.37 1.48 -0.52 1.22 -0.56 0.73 -0.99 1.04 -1.45 9.99 
£ 15 -0.38 1.06 -0.73 0.96 -0.55 0.63 -0.46 0.67 -2.42 6.90 
£ 20 -0.80 1.42 -0.74 1.23 -0.66 0.77 -0.18 0.86 -4.75 9.45 
£ 25 -0.88 1.28 -0.79 1.27 -0.61 0.73 -0.13 0.86 -5.12 9.35 
£ 30 -1.14 1.37 -0.85 1.31 -0.74 0.76 -0.03 0.89 -6.10 9.38 
£ 35 -0.93 1.43 -0.83 1.22 -0.68 0.83 -0.08 0.88 -5.24 9.56 
£ 40 -1.01 1.44 -0.82 1.26 -0.65 0.81 -0.07 0.85 -5.35 9.51 
£ 45 -1.10 1.33 -0.87 1.34 -0.72 0.71 -0.02 0.90 -6.06 9.51 
£ 50 -1.01 1.34 -0.92 1.26 -0.66 0.71 -0.03 0.86 -5.83 9.38 
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Table A.27: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 12 

(px = 20, pa = 45, trx = 5, 02 = 5, w(%) = 50, and n = 200) 

d A l 
3 Ai 3ih d-x d*2 

dM%) 3w(%) 
Stochastic 0.10 0.48 0.02 0.33 -0.02 0.27 -0.06 0.50 0.00 0.00 

/ oo 0.06 0.50 -0.07 0.36 -0.07 0.36 0.07 0.60 0.82 3.24 
/ 10 0.12 0.43 -0.53 0.35 -0.69 0.52 -1.45 0.58 1.15 1.85 
£ 15 0.07 0.24 -0.25 0.23 -0.24 0.28 -0.72 0.24 0.94 0.94 
e 20 -0.06 0.17 -0.35 0.13 -0.19 0.29 -0.37 0.20 0.52 0.90 
£ 25 0.06 0.27 -1.33 0.33 -0.08 0.18 -0.32 0.27 0.48 0.71 
£ 30 -0.01 0.14 -0.23 0.24 -0.02 0.17 -0.22 0.20 0.40 0.75 
£ 35 -0.03 0.19 -0.27 0.22 -0.05 0.19 -0.16 0.28 0.32 0.72 
£ 40 -0.00 0.17 -0.25 0.21 -0.09 0.22 -0.15 0.18 0.29 0.77 
£ 45 -0.03 0.14 -0.25 0.19 -0.04 0.21 -0.21 0.21 0.41 0.76 
£ 50 0.06 0.17 -0.28 0.31 0.02 0.23 -0.13 0.27 0.34 0.83 
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Table A.28: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 13 

(fix = 20, fi2 = 50, ox = 5, <72 = 5, w(%) = 50, and n = 200) 

dfr 3ih 3A(%) 
Stochastic -0.01 0.59 -0.12 0.46 0.03 0.32 0.00 0.37 0.00 0.00 

oo 0.02 0.59 -0.07 0.47 0.04 0.33 -0.07 0.36 0.09 0.21 
10 0.06 0.47 -0.20 0.41 -0.61 0.46 -1.35 0.57 1.04 1.27 

£ 15 0.09 0.21 -0.16 0.30 -0.23 0.21 -0.74 0.27 0.70 0.47 
20 0.10 0.16 -0.23 0.13 -0.11 0.16 -0.48 0.22 0.49 0.33 

£ 25 0.17 0.21 -0.05 0.26 0.03 0.14 -0.47 0.22 0.64 0.45 
e 30 0.05 0.22 -0.08 0.22 -0.09 0.07 -0.38 0.20 0.44 0.26 
£ 35 0.04 0.10 -0.08 0.12 -0.01 0.14 -0.30 0.14 0.44 0.30 
£ 40 0.05 0.09 -0.13 0.15 -0.05 0.11 -0.25 0.13 0.37 0.29 
£ 45 0.07 0.11 -0.05 0.12 -0.01 0.11 -0.31 0.11 0.44 0.32 
£ 50 -0.02 0.07 -0.06 0.15 0.01 0.08 -0.27 0.14 0.39 0.28 
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Table A.29: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 14 

= 20, (JL2 = 40, cTj = 5, CT2 = 10, = 50, and n = 200) 

d^ 
Stochastic 0.08 0.49 0.28 0.74 -0.12 0.28 0.19 0.47 0.00 0.00 

£ oo 0.26 0.83 0.78 1.91 -0.04 0.37 -0.10 0.76 1.42 5.33 
/ 10 0.32 0.95 1.52 2.06 -0.28 0.69 -2.40 1.44 6.34 6.80 

15 0.27 0.46 0.58 1.65 -0.13 0.49 -1.09 0.98 2.71 4.94 
£ 20 0.35 0.84 0.88 1.90 0.07 0.49 -1.26 1.14 3.66 5.99 
£ 25 0.32 0.67 0.80 1.72 0.10 0.48 -1.12 0.99 3.50 5.41 
£ 30 0.62 0.85 1.13 2.03 0.03 0.50 -1.21 1.05 3.81 5.93 
£ 35 0.35 0.63 0.82 1.82 0.12 0.42 -1.04 1.07 2.47 5.00 
£ 40 0.36 0.69 1.06 1.99 0.17 0.51 -1.12 1.15 3.89 6.00 
£ 45 0.35 0.70 0.85 1.92 0.13 0.49 -1.02 1.09 3.39 5.95 
£ 50 0.35 0.65 0.82 1.88 0.13 0.45 -1.04 1.14 3.32 5.72 
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Table A.30: Differences Between the RDML Parameter Estimates, CIDML Parameter 
Estimates and Stochastically Generated Sample Parameter Values and the Population 
Parameter Values for Data Set Structure # 15 

0*i = 20, p-i = 40, 0i = 5, CT2 = 15, = 50, and n = 200) 

dfo SPI 

Stochastic 0.07 0.47 -0.08 1.76 0.04 0.21 0.11 1.24 0.00 0.00 
OO 0.42 0.70 3.07 3.08 0.60 0.32 -2.62 1.76 7.53 5.99 
10 1.37 1.62 6.90 4.12 0.77 1.45 -5.52 2.74 16.81 7.30 

£ 15 0.45 0.55 3.00 3.79 0.15 0.63 -3.16 2.12 8.83 8.01 
£ 20 0.56 0.65 4.25 3.40 0.48 0.72 -3.36 1.93 10.90 7.01 
£ 25 0.64 0.41 5.10 2.21 0.87 0.41 -3.50 1.12 13.21 3.67 
£ 30 0.35 0.36 3.46 3.17 0.56 0.51 -2.76 1.49 9.31 6.02 
£ 35 0.54 0.43 4.07 2.89 0.71 0.53 -3.01 1.44 10.87 5.76 
£ 40 0.60 0.40 4.62 2.69 0.73 0.49 -3.21 1.47 11.69 5.56 
£ 45 0.41 0.52 3.57 3.57 0.52 0.60 -2.66 1.90 9.31 7.32 
£ 50 0.41 0.40 3.80 3.80 0.64 0.47 -2.81 1.69 9.72 6.28 
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A.2 Graphical Comparison of ML Parameter Estimates 

The following figures graphically depict the differences between the parameters which 

are listed in the tables above. At the bottom of each of these plots, "S" refers to the 

sample statistic differences, "I" refers to the RDML parameter estimate differences, 

and the numbers indicate the number of class intervals used for determination of the 

CIDML parameter estimate differences. All differences are depicted in the parameter 

units, except the component proportion differences, which are depicted in 100 x the 

parameter units. 
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Figure A.26: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 2 
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Figure A.27: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 3 
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Figure A.28: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 4 
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Figure A.29: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 5 
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Figure A.30: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 6 
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Figure A.31: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 7 
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Figure A.32: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 8 
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Figure A.33: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 9 
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Figure A.34: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 10 
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Figure A.35: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 11 
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Figure A.36: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 12 
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Figure A.37: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 13 
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Figure A.38: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 14 
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Figure A.39: Parameter Bias of the RDML Parameter Estimates, the CIDML Parame
ter Estimates, and the Stochastically Generated Sample Parameter Estimates Relative 
to the True Population Parameter Estimates for Data Set Structure # 15 
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A.3 Proportionality of Parameter Estimate Variances and the Number of 

Observations 

The following tables present the average product of the standard deviations of the 

CIDML parameter estimates x^/n, where n is the size of the data set. 
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Table A.31: Comparison of Proportionality of CIDML Parameter Estimate Variances 
With the Number of Observations for 10, 15 and 20 Class Intervals 

n »<n y/n 
t 10 

100 15.500 13.200 13.300 12.300 73.300 
200 7.212 8.768 6.930 10.324 39.457 
300 11.085 8.314 9.353 11.951 53.347 
400 9.600 10.200 7.800 13.600 56.400 
500 12.075 7.603 10.957 15.876 64.622 

/ 15 
100 17.800 17.600 13.500 10.300 77.400 
200 6.223 7.778 6.081 6.081 27.011 
300 5.716 6.755 4.676 5.890 28.579 
400 7.400 7.600 6.200 9.800 36.600 
500 7.155 5.367 3.801 8.721 26.609 

/ 20 
100 16.700 15.900 13.200 10.000 80.200 
200 5.374 7.071 6.364 5.233 27.436 
300 5.196 4.503 4.677 4.330 21.304 
400 6.800 5.400 5.200 6.000 31.600 
500 4.919 3.801 3.578 4.696 18.783 
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Table A.32: Comparison of Proportionality of CIDML Parameter Estimate Variances 
With the Number of Observations for 25, 30 and 35 Class Intervals 

n sMl -\/n 8<r2y/n 
I 25 

100 7.000 6.000 7.300 3.500 29.200 
200 8.202 6.505 6.223 4.950 28.567 
300 5.890 6.235 3.811 5.369 24.941 
400 6.000 5.400 5.800 6.200 30.600 
500 5.367 6.485 4.696 4.249 15.652 

I 30 
100 5.300 6.100 6.300 3.600 24.600 
200 7.495 6.505 6.647 6.223 32.810 
300 5.543 5.890 5.023 4.850 27.713 
400 6.400 6.200 5.800 6.600 32.600 
500 4.025 2.907 3.130 4.025 17.889 

/ 35 
100 6.000 5.700 6.400 3.600 27.900 
200 6.647 5.515 5.515 5.091 27.294 
300 4.503 5.369 4.330 5.369 24.595 
400 6.400 6.600 5.800 5.600 32.000 
500 2.907 3.354 2.460 3.130 14.087 
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Table A.33: Comparison of Proportionality of CIDML Parameter Estimate Variances 
With the Number of Observations for 40, 45 and 50 Class Intervals 

n saiyjn M%) y/n 
t 40 

100 8.000 6.700 7.200 4.200 35.700 
200 9.475 6.081 6.930 5.940 32.385 
300 5.369 4.330 4.330 5.543 26.327 
400 6.200 6.200 5.800 6.000 13.600 
500 4.696 3.578 3.130 4.249 21.019 

*45 
100 6.600 6.400 6.200 4.800 33.000 
200 7.495 6.930 6.081 6.505 31.961 
300 6.235 6.235 4.503 5.890 29.272 
400 6.600 6.800 5.200 7.400 31.800 
500 6.037 6.037 4.472 6.037 26.833 

I 50 
100 6.200 5.400 6.400 4.300 28.000 
200 4.384 4.101 3.394 6.930 28.284 
300 6.062 8.660 5.890 6.755 33.948 
400 5.600 4.800 4.000 4.800 25.000 
500 5.814 5.367 3.081 6.037 21.913 



Appendix B 

Likelihood Function Hessian Matrices 

"Science bestowed immense new powers on man and at the same time 

created conditions which were largely beyond his comprehension and still 

more beyond his control." 

Sir Winston Churchill (1949) 

The second partial derivative (Hessian) matrix of the logarithm of a likelihood 

function with respect to the parameters evaluated at the maximum likelihood ML 

solution can be used to estimate the asymptotic variances of the ML estimators of 

these parameters at the solution : 

(B.129) 
dip k dipt 

where H is the Hessian (or second partial derivative) matrix. Specifically : 

VAR(9N)* [ - ^ ( r j „ ) ] _ 1 . (B.130) 

The negative of the Hessian matrix is the observed Fisher information matrix, the 

inverse of the covariance matrix of the asymptotic parameter estimates. Thus, an 

estimate of the asymptotic covariance matrix can be calculated from the second partial 

derivative matrix (Hessian) using the following formula : 

E S / " 1 =[-Jf(*)]- 1. (B.131) 

where I is the Fisher information matrix. 
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Two approaches with different likelihood functions are commonly taken. The first 

utilizes a likelihood function for the raw data and the second involves a likelihood 

function for the data after it has been cumulated into class intervals. The terms required 

to determine the entries for both of these likelihood function Hessian matrices are 

derived below. 

B. l Derivation of the Hessian Matrix for the Raw Data Maximum Likeli

hood Function for a Mixture of Two Normal Distributions 

The probability density function for a mixture of two normal distributions is : 

* | . ) - ( 7 £ - - ' < ^ ) + ( a g . W ) . ( B - , 

where \t = (pi, <j\, p2, (r2, w). The parameters pi, o\, p2 and <r2 are the first and 

second normal distribution means and standard deviations respectively, and zu is the 

percentage of the first component normal distribution. The RDML function for this 

probability density function is : 

L = f[p{zi\*). (B.133) 
i=i 

Taking the natural logarithm gives : 

/ = lnL = £ l n p ( z , - | ¥ ) , (B.134) 
1=1 

or : 

* = lnL = ]Tln 
i=i 

This can be described in the more compact form : 

I = In L = £ In [(-)#*.•,!) + ( — - ) * ( « * ) ] » (B.136) 

ZD 

'y/Zxcri ' V y/2Ha2 ' 
(B.135) 
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where : 
'Xi -fik 

and 

^ ) = - ^ e - H . (B.138) 

Taking the first and second partial derivatives of the log-likelihood function with respect 

to the 5 parameters (pi, tr l5 w, p^, tr2) gives : 

= 1, AJT = - L ^ . U T A A Z ' (B.139) 

and : 
&t f y h ^ - i t ) • A f i aq<«.-i*)K r m 

00**0, cvfcfl0/ ^0* 

which, by the quotient rule, reduces to : 

#0*#0/ feU*.l*) I < * . W V #0* n 50, V ' K ] 

This summation is used to calculate the second partial derivatives of the natural 

logarithm of the RDML function at the RDML solution with respect to the parameters. 

The individual first derivative terms consist of : 

S | i f f i = ( - ) ( z u W ^ ) , (B. 1 42) 

^ S f f U f - W ^ X ^ - D . (B.143) 

= - r ^ > > <B-144> 

^ = ( ^ ) f e ¥ f e ) , (B.145) 

dpjxi\<2) _ A l - w ) 2 (U-IAR\ 
—o- = ( 2—W xia)\ zi,2 ~ 1)- (B.146) 
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The individual second derivative terms consist of : 

« = ( < ^ 4 ) r f * , X 4 " 1). ( B . l « 

M = 0 , (B.149 

= ( f s ) « « . . ) « i - + 2), (B.150 

* ^ * > = ( ( I ^ > ) ^ ) « 2 - + 2), (B.151 

M = 0, (B.152 
00\ CHT2 

rgm.^H^-^ (B.X54 

M = 0, (B.155 

^ S = 0 , (B.156 

^ i = ( ^ X « « ) * ( * . 0 , (B.«T 

^ ^ = ( ^ . X « S . - D . <B."8 

« ^ = 0 , <B.159 

^ i = ( ^ ) f e W „ , 2 ) , (B.160 

^ ^ = ( ^ X 4 - D . (B-161 

These partial derivatives can then be used to calculate the terms of the Hessian matrix 

of the natural logarithm of the RDML function evaluated at the RDML parameter 

estimates (Behboodian 1972). 
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B.2 Derivation of the Hessian Matrix for the Class Interval Maximum 

Likelihood Function for a Mixture of Two Normal Distributions 

The likelihood function for the class interval data from a mixture of two normal distri

butions is : 
m 

L = n {p(bj+1 m - p{h m)ni, (B.162) 

where bj and 6 J +i are the lower and upper class interval limits, respectively, the n,- are 

the number of cases which fall in the j'th class interval and : 

P ( x | ¥ ) = r p(u\9)du. (B.163) 
J —OO 

Taking the natural logarithm of the likelihood function gives : 
m 

£ = In L = X X - ln [P(bj+11*) - P ( 0 j |*))]. (B.164) 

This can be further expanded to a more specific equation expressed in terms of all of 

the parameters : 

/ = InL 

IA \/2n<T\ 

In more compact form this becomes 

e 2 v °i ; du + 

2na2 

y/2~n(T2 J-oo 
duj (B.165) 

= InL 

where : 

m r 

^ n , - In (tu*(z i+i,i) + (1 - m)*(zj+1,2)) 

(wiizv) + (1 - w)*(zja)) 

$(z) = / <f>(u)du, 
J — OO 

(B.166) 

(B.167) 
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and : 

^ = ( ^ ) - (MM) 
v Oh ' 

Taking the first and second partial derivatives of the CIDML function with respect 

to the 5 parameters (pi, <Ti, W, p,2, a2) we get : 
d£_ A d\n[P(bj+1\*) - P^)} 

fli 

and 

ffl fl2ln[P(6J+1|^)-P(6J|^)] 

= g * ^ ( ( ^ w - ^ i t ) ) 4 : ' * > - m ) ' ( B ' 1 7 0 ) 

which, by the quotient rule, reduces to : 

ffi - / i y ( p ( 6 i + 1 | » ) - p ( 6 i | g ) ) 

i d(p(bi+1\9) - p^m) d(p(bj+1m - P M * ) ) \ 

( P ( 6 i + 1 | * ) - P ^ l * ) ) 2 W>k ^0' / 

This summation is used to calculate the second partial derivatives of the natural 

logarithm of the CBDML function at the CIDML parameter estimates. The individual 

first derivative terms consist of : 

d(P{bj+l\9) - Pjb^)) - W ( , 
dpTx = -^-{ttzj+iM - <K*iM)> (B-172) 

V gai

 J = — |«i) - Mil I'I))> (B.173) 

(B.174) 
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^ ^ ' I ^ - ^ ' I * ) ) = ~ ( 1

j ~ W ) ( f a W , i M ( ^ u l ^ ) - toWfel*.)). (B.176) 

The individual second derivative terms consist of : 

V

 d i i 2

 J = (^)((*i+u - (Hi)<K*iM), (B-177) 

(B.178) 
efi(p{bi+1\9)-p(bi\9)) 

dpi dpi 
= 0, (B.179) 

6F(Pjbj+1\9)-P(bi\9)) 

(^)((*i+u " 2* i + 1,i - (4i - 2*i.i (B.180) 

e^(p{bj+1\9)-P{bi\iS)) _ 

( ~ ( 1 ; C T ) ) ( ( z | + 1 | 2 - 2z J + 1, 2>Hz i + 1, 2|0 2) - (z?a - 2Zj,2)<f>(zji2\92)), (B.181) 
2̂ 

0015<72 

= 0, (B.182) 

d2(P(bj+i\9)-P(bj\9)) _ 

dpi d<Ti 

(^r)((*;+u " W'i+iM ~ W.i " l)0(^,i l^i)), (B.183) 

y(p(6 i + 1 ^)-p(f t i l*) ) _ 

C(1~2W)){(z2

j+i,2 ~ Mzi+iM) - {z\2 - Mzja\63)), (B.184) 
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dp.dc, -0' (B-185) 

6*(p(bj+1m-p(bj\*)) 
di^bV, °' ( B , 1 8 6 ) 

*^bi+dl!d»^bim^ = & ( « X * " M ~ (B.187) 

a 2 (p(6 i + 1 |*)-p(6 j |*)) _ i , . 

L'dw = - (zuMziM), (B.188) 

Sft(P(bi+1\9)-P{bim) _ 
dw2 

V } = (-){<K^M - <K*M), (B.190) 

5 2 (p(6 i + i |*)-P(6 i |*)) i , , 
flr/ftp = ( ^ ( ( ' W ^ l ^ ) - feW^lft)). (B.191) 

These terms can then be used to calculate the terms of the Hessian matrix of the natural 

logarithm of the CIDML function evaluated at the CIDML parameter estimates. 

0* =°' ( B ' 1 8 9 ) 
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Asymptotic Correlation Estimates 

"Without deviation, progress is not possible." 

Frank Zappa (1080) 

C . l Raw Data Maximum Likelihood Function 

The following tables contain the mean asymptotic correlations of the RDML parameter 

estimates calculated using the inverse of the negative Hessian matrix (observed Fisher 

information matrix) evaluated at the RDML parameter estimates. Correlation matrices 

for all data set structures except data set structure # 1 (see Table 3.10) are presented. 

(Values in parentheses are the standard deviations of the asymptotic correlations 

for the 10 data sets of the corresponding parameters.) 
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Table C.34: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 2 

pi = 20 (Ti = 5 zo(%) = 50 pa =40 cr2 = 5 n = 100 
Ml zo p2 Ol 

Ml 1.00 (0.00) 
Ol 0.41 (0.02) 1.00 (0.00) 
zo 0.30 (0.03) 0.31 (0.02) 1.00 (0.00) 
p2 

0.36 (0.03) 0.37 (0.02) 0.30 (0.03) 1.00 (0.00) 
02 

-0.37 (0.02) -0.36 (0.02) -0.32 (0.02) -0.41 (0.02) 1.00 (0.00) 

Table C.35: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 3 

Pi = 20 ai = 5 zo(%) = 50 pa = 40 tr2 = 5 n = 300 
Ml Ol zo P2 02 

Ml 1.00 (0.00) 
Ol 0.36 (0.01) 1.00 (0.00) 
zo 0.23 (0.00) 0.26 (0.00) 1.00 (0.00) 
P2 0.30 (0.01) 0.32 (0.01) 0.23 (0.00) 1.00 (0.00) 
CT2 -0.32 (0.00) -0.33 (0.01) -0.25 (0.00) -0.35 (0.00) 1.00 (0.00) 

Table C.36: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 4 

pi — 20 ai = 5 zo(%) = 50 pa = 40 a2 = 5 n = 400 
Mi Ol zo M2 o2 

Ml 1.00 (0.00) 
Ol 0.38 (0.01) 1.00 (0.00) 
zo 0.26 (0.01) 0.28 (0.01) 1.00 (0.00) 
PT. 0.32 (0.01) 0.33 (0.01) 0.26 (0.01) 1.00 (0.00) 
CT2 -0.33 (0.01) -0.32 (0.01) -0.28 (0.01) -0.38 (0.01) 1.00 (0.00) 
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Table C.37: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 5 

pi = 20 <T\ = 5 zo(%) = 50 pi=4Q <r2 = 5 n = 500 
Mi 0i ZO M2 02 

Ml 1.00 (0.00) 
01 0.33 (0.01) 1.00 (0.00) 
w 0.21 (0.01) 0.23 (0.00) 1.00 (0.00) 
M2 0.27 (0.01) 0.29 (0.00) 0.22 (0.00) 1.00 (0.00) 
CT 2 -0.29 (0.00) -0.29 (0.00) -0.24 (0.00) -0.34 (0.00) 1.00 (0.00) 

Table C.38: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 6 

pi = 20 ai = 5 zo(%) = 70 p2 = 40 a2 = 5 n = 200 
Mi zo M2 &2 

Mi 1.00 (0.00) 
0i 0.33 (0.01) 1.00 (0.00) 
zo 0.26 (0.01) 0.29 (0.01) 1.00 (0.00) 
M2 0.33 (0.01) 0.35 (0.01) 0.31 (0.02) 1.00 (0.00) 
CT 2 -0.31 (0.01) -0.31 (0.00) -0.31 (0.01) -0.44 (0.01) 1.00 (0.00) 

Table C.39: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 7 

pi = 20 (Ti = 5 zo{%) = 85 pa = 40 tr2 = 5 n = 200 
Mi 0i zo M2 02 

Mi 1.00 (0.00) 
01 0.32 (0.03) 1.00 (0.00) 
zo 0.32 (0.04) 0.34 (0.03) 1.00 (0.00) 
M2 0.37 (0.04) 0.38 (0.02) 0.46 (0.05) 1.00 (0.00) 
02 -0.33 (0.02) -0.31 (0.01) -0.43 (0.04) -0.56 (0.03) 1.00 (0.00) 
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Table C.40: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 8 

pi = 20 (T\ = 5 w{%) = 95 pa = 40 cr2 = 5 n = 200 

Mi 0i zo M2 02 
Ml 1.00 (0.00) 
01 0.22 (0.01) 1.00 (0.00) 
zo 0.29 (0.03) 0.32 (0.02) 1.00 (0.00) 
P2 0.32 (0.03) 0.35 (0.02) 0.53 (0.06) 1.00 (0.00) 
02 -0.29 (0.02) -0.30 (0.01) -0.50 (0.06) -0.63 (0.05) 1.00 (0.00) 

Table C.41: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 9 

pi = 20 <Ti = 5 zo(%) = 50 pa = 25 cr2 = 5 n = 200 

Mi 0i zo M2 02 
Mi 1.00 (0.00) 
0i 0.20 (0.48) 1.00 (0.00) 
ZD 0.70 (0.15) -0.12 (0.85) 1.00 (0.00) 
M2 0.27 (0.38) -0.06 (0.60) 0.71 (0.09) 1.00 (0.00) 
02 -0.39 (0.37) 0.27 (0.41) -0.73 (0.18) -0.57 (0.08) 1.00 (0.00) 

Table C.42: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 10 

Pi = 20 ai = 5 zo(%) = 50 pa = 30 <r2 = 5 n = 200 

Mi 0i zo pi ai 
Mi 1.00 (0.00) 
0i 0.89 (0.00) 1.00 (0.00) 
zo 0.94 (0.00) 0.86 (0.00) 1.00 (0.00) 
M2 0.90 (0.00) 0.79 (0.01) 0.94 (0.00) 1.00 (0.00) 
02 -0.77 (0.01) -0.64 (0.02) -0.84 (0.01) -0.88 (0.00) 1.00 (0.00) 
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Table C.43: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 11 

pi = 20 ai = 5 w{%) = 50 th, = 35 <r2 = 5 n = 200 
Pi (Tl w p2 (T2 

Pl 1.00 (0.00) 
0.59 (0.01) 1.00 (0.00) 

w 0.58 (0.02) 0.51 (0.01) 1.00 (0.00) 
P2 0.57 (0.01) 0.49 (0.01) 0.60 (0.03) 1.00 (0.00) 
<r2 -0.50 (0.01) -0.40 (0.01) -0.56 (0.02) -0.61 (0.01) 1.00 (0.00) 

Table C.44: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 12 

Pl = 20 (Ti = 5 w(%) = 50 p2 = 45 (j2 = 5 n = 200 
Pl (Tl w P2 (T"l 

Pl 1.00 (0.00) 
(T\ 0.17 (0.00) 1.00 (0.00) 
TO 0.07 (0.00) 0.10 (0.00) 1.00 (0.00) 
P2 0.12 (0.00) 0.16 (0.00) 0.07 (0.00) 1.00 (0.00) 
(T2 -0.16 (0.00) -0.21 (0.00) -0.10 (0.00) -0.18 (0.00) 1.00 (0.00) 

Table C.45: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 13 

Pl = 20 (Ti = 5 w(%) = 50 p2 = 50 «T2 = 5 n = 200 
Pl (Tl p2 <r2 

Pl 1.00 (0.00) 
(Tl 0.07 (0.00) 1.00 (0.00) 
W 0.02 (0.00) 0.03 (0.00) 1.00 (0.00) 
P2 0.03 (0.00) 0.06 (0.00) 0.02 (0.00) 1.00 (0.00) 
(T2 -0.06 (0.00) -0.11 (0.01) -0.03 (0.00) -0.06 (0.00) 1.00 (0.00) 
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Table C.46: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 14 

pi = 20 o\ = 5 zo(%) = 50 pa = 40 a2 = 10 n = 200 
Mi 0 i zo pi ai 

Ml 1.00 (0.00) 
0.53 (0.01) 1.00 (0.00) 

zo 0.57 (0.01) 0.53 (0.01) 1.00 (0.00) 
Pt 0.55 (0.01) 0.51 (0.01) 0.74 (0.01) 1.00 (0.00) 
02 -0.45 (0.01) -0.42 (0.01) -0.67 (0.00) -0.73 (0.00) 1.00 (0.00) 

Table C.47: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 15 

px = 20 a\ = 5 zo(%) = 50 pi = 40 a2 = 15 n = 200 
Mi 0 i vo pi ai 

Mi 1.00 (0.00) 
0.39 (0.05) 1.00 (0.00) 

zo 0.40 (0.05) 0.61 (0.02) 1.00 (0.00) 
M2 0.35 (0.06) 0.59 (0.02) 0.77 (0.01) 1.00 (0.00) 
02 -0.19 (0.07) -0.45 (0.03) -0.63 (0.03) -0.68 (0.03) 1.00 (0.00) 

Table C.48: Asymptotic Correlation Matrix for RDML Parameter Estimates for Data 
Set Structure # 16 

pi = 20 a\ = 5 zo{%) = 50 pi = 40 <r2 = 5 n = 50 
Mi 0 i zo pi a2 

Mi 1.00 (0.00) 
0i 0.29 (0.02) 1.00 (0.00) 
zo 0.21 (0.02) 0.22 (0.02) 1.00 (0.00) 
pi 0.24 (0.02) 0.23 (0.02) 0.22 (0.02) 1.00 (0.00) 
02 -0.24 (0.02) -0.21 (0.01) -0.23 (0.02) • -0.32 (0.03) 1.00 (0.00) 
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C.2 Class Interval Data Maximum Likelihood Function 

The following tables contain the mean asymptotic correlations of the CIDML param

eter estimates calculated using the inverse of the negative Hessian matrix (observed 

Fisher information matrix) evaluated at the CIDML parameter estimates. Correla

tion matrices for 9 different numbers of class intervals for data set structure # 1 are 

presented. 

(Values in parentheses are the standard deviations of the asymptotic correlations 

for the 10 data sets of the corresponding parameters.) 
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Table C.49: Asymptotic Correlation Matrix for CIDML Parameter Estimates for Data 
Set Structure # 1 (Datum) Using 10 Class Intervals 

Ml 0i w Pi <T2 

Ml 1.00 (0.00) 
01 0.31 (0.24) 1.00 (0.00) 
w 0.17 (0.14) 0.47 (0.35) 1.00 (0.00) 
M2 0.32 (0.26) 0.47 (0.37) 0.52 (0.39) 1.00 (0.00) 
02 -0.26 (0.23) -0.21 (0.23) 0.07 (0.16) -0.27 (0.31) 1.00 (0.00) 

Table C.50: Asymptotic Correlation Matrix for CIDML Parameter Estimates for Data 
Set Structure # 1 (Datum) Using 15 Class Intervals 

Mi 0i U7 M2 02 
Mi 1.00 (0.00) 
0i 0.37 (0.15) 1.00 (0.00) 
w 0.16 (0.12) 0.38 (0.15) 1.00 (0.00) 
M2 0.32 (0.14) 0.43 (0.15) 0.47 (0.11) 1.00 (0.00) 
02 -0.27 (0.11) -0.24 (0.11) 0.05 (0.09) -0.30 (0.13) 1.00 (0.00) 

Table C.51: Asymptotic Correlation Matrix for CIDML Parameter Estimates for Data 
Set Structure # 1 (Datum) Using 20 Class Intervals 

Mi 0i 1X7 M2 02 
Mi 1.00 (0.00) 
0i 0.34 (0.08) 1.00 (0.00) 
w 0.12 (0.05) 0.33 (0.09) 1.00 (0.00) 
M2 0.29 (0.10) 0.39 (0.10) 0.44 (0.08) 1.00 (0.00) 
02 -0.25 (0.10) -0.22 (0.11) 0.08 (0.11) -0.27 (0.19) 1.00 (0.00) 
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Table C.52: Asymptotic Correlation Matrix for CIDML Parameter Estimates for Data 
Set Structure # 1 (Datum) Using 25 Class Intervals 

Pl 0 i ZO Pa <r2 

Pl 1.00 (0.00) 
0.38 (0.15) 1.00 (0.00) 

zo 0.16 (0.10) 0.36 (0.13) 1.00 (0.00) 
P2 0.33 (0.15) 0.42 (0.15) 0.48 (0.10) 1.00 (0.00) 
<T2 

-0.29 (0.13) -0.25 (0.13) 0.04 (0.14) -0.30 (0.19) 1.00 (0.00) 

Table C.53: Asymptotic Correlation Matrix for CIDML Parameter Estimates for Data 
Set Structure # 1 (Datum) Using 30 Class Intervals 

Pl 0i zo pa a2 

Pl 1.00 (0.00) 
0.34 (0.10) 1.00 (0.00) 

zo 0.14 (0.07) 0.37 (0.08) 1.00 (0.00) 
P2 0.29 (0.11) 0.40 (0.10) 0.48 (0.07) 1.00 (0.00) 
°2 -0.25 (0.10) -0.21 (0.10) 0.09 (0.12) -0.23 (0.16) 1.00 (0.00) 

Table C.54: Asymptotic Correlation Matrix for CIDML Parameter Estimates for Data 
Set Structure # 1 (Datum) Using 35 Class Intervals 

Pl oi ZO P2 &2 
Pl 1.00 (0.00) 
01 0.35 (0.14) 1.00 (0.00) 
ZO 0.16 (0.11) 0.36 (0.12) 1.00 (0.00) 
P2 0.30 (0.14) 0.40 (0.14) 0.49 (0.09) 1.00 (0.00) 
02 -0.26 (0.11) -0.22 (0.11) 0.07 (0.11) -0.23 (0.13) 1.00 (0.00) 
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Table C.55: Asymptotic Correlation Matrix for CIDML Parameter Estimates for Data 
Set Structure # 1 (Datum) Using 40 Class Intervals 

Ml o\ zo Pa 02 
Ml 1.00 (0.00) 
0\ 0.38 (0.19) 1.00 (0.00) 
ZO 0.19 (0.19) 0.40 (0.19) 1.00 (0.00) 
P2 0.32 (0.19) 0.43 (0.19) 0.52 (0.15) 1.00 (0.00) 
02 -0.26 (0.12) -0.22 (0.13) 0.06 (0.16) -0.23 (0.16) 1.00 (0.00) 

Table C.56: Asymptotic Correlation Matrix for CIDML Parameter Estimates for Data 
Set Structure # 1 (Datum) Using 45 Class Intervals 

Mi 0\ zo M2 02 
Mi 1.00 (0.00) 
0\ 0.40 (0.17) 1.00 (0.00) 
zo 0.19 (0.14) 0.38 (0.17) 1.00 (0.00) 
M2 0.35 (0.17) 0.44 (0.16) 0.51 (0.13) 1.00 (0.00) 
02 -0.29 (0.12) -0.25 (0.13) 0.04 (0.13) -0.27 (0.19) 1.00 (0.00) 

Table C.57: Asymptotic Correlation Matrix for CIDML Parameter Estimates for Data 
Set Structure # 1 (Datum) Using 50 Class Intervals 

Mi 0\ zo M2 02 
Mi 1.00 (0.00) 
0i 0.39 (0.21) 1.00 (0.00) 
zo 0.19 (0.13) 0.38 (0.10) 1.00 (0.00) 
M2 0.34 (0.17) 0.43 (0.15) 0.51 (0.09) 1.00 (0.00) 
02 -0.29 (0.14) -0.25 (0.14) 0.06 (0.12) -0.24 (0.15) 1.00 (0.00) 



Appendix D 

Derivation of the Multivariate Regression Formula 

"There are three type of Hes in the world : lies, damned lies, and statis

tics." 

Benjamin Disraeli (1023) 

A possible background characterization approach (BCA) model which can be used 

to describe the variation in a 'background' population is a regression function. Unfor-

tuately, an ordinary least squares (OLS) regression approach accomodates error in only 

the dependent variable; thus, it is not rigorously applicable to geochemical data because 

all geochemical variables are subject to error. Any regression applied to geochemical 

variables must accommodate these errors. 

Geochemical concentration data have error variances which are frequently propor

tional to concentration (Thompson 1973; Thompson and Howarth 1973, 1976a, 1976b, 

1978). Since the expected concentration range of data from the population representing 

the 'background' geologic material will not, in general, be large (at least not greater 

than an order of magnitude), the effect of this proportionality is minimized. 

Furthermore, in BCA applications, the observations which are subjected to a re

gression analysis are presumed to be derived from a single population representing a 

single geologic material. As such, every element determination represents an estimate 

of the true concentration of the geologic material for that element, and thus relation

ships between elements have a structural rather than functional form (Dolby 1976a). 

The variance estimate calculated from the observations is an estimate of the unique and 

229 
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constant error variance for that geological material, and the assumption of a constant 

error variance for each variable is, therefore, justified. 

A multiple linear regression model which can be applied to this type of situation 

i s : 

Y = bo + J2bA (D.192) 

where Y and the Xj's are random vectors and bo and the 6,'s are the regression coef

ficients. In practice, we have only the observations of the Xj and Y variables (which 

are observed with error). Thus : 

Xij^Xij+rjij, (D.193) 

and : 

y,; = Yt - c, (D.194) 

and the relationship between the observed element concentrations on the ith case be

comes : 
p 

</. = *>o + E bJ + Vii) + * > (D.195) 
3=1 

where n is the number of cases, i = 1,2,3,...,n, p is the number of independent 

variables, y; is an observation of the dependent variable (Yj), — e; is the error in an 

observation of the dependent variable, x tJ are the observations of the p independent 

variables (Xij), and are the errors in the observations of the p independent variables. 

Re-arranging this equation and combining the errors into gives : 

lft = *b + E6i*y+6» ( D- 1 9 6) 

where : 

6 = X>;% + e.- (D.197) 

The usual assumptions in this regression model include : 
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• all observations for each variable are independent, 

• the expectations of all % and e, are 0, 

• the variances of all 77, j and e,- are t r 2 and o\, respectively (all are constant across 

the range of the data), 

• all observation errors (7/,-j and e,-) are independent and normally distributed, and 

• all covariances between the variables (as.-y and y,) and their errors (T?,J and e,) are 

0. 

From these assumptions it follows that : 

• the expectation of £, is 0, and 

• the variance of £, is <r| = Y?j=\ tfvj + 

Thus : 

Now, the likelihood (L) is 

and the logarithm of the likelihood is : 

T -TT 1 -&to-*-T.U*'*#*\ 

x Tt x 

/ = InX = nln —= - -ln<r2 - TT~i £ ( y < ~ **> ~ 52bjxn)2 

V27T ^ ^ , = 1 J = 1 

If we define \ , to be the ratio of the error variances : 

Al ~ _2 ' 

1 A 

(D.198) 

(D.199) 

(D.200) 

(D.201) 

then 

(D.202) 
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and we can substitute this into the logarithm of the likelihood (Equation D.200) to 

get : 

yr £ > • - «b - E h*ii?- (D.203) 

D. l Maximum Likelihood Estimates 

Now, to determine the maximum likelihood (ML) estimates of the regression coefficients 

(fen and the 6/s), we must differentiate the logarithm of the likelihood with respect to 

the bo and bj terms and set each partial derivative to zero. 

Differentiating Equation D.203 with respect to bo gives : 

fit 1 " p 

| - = 72 £(*/• - «b " £ ), (D-204) 
COo cr( , = 1 j = 1 

which when summed and set to zero, reduces to : 

0 = y - fc>- f>;z ; , (D.205) 

or : 
p 

*b = y - ( D . 2 0 6 ) 

Differentiating Equation D.203 with respect to bt, where bt represents each of the 

bj terms, gives the following set of p simultaneous equations : 

dt_ = -nbt | bt E?=1(y,- - bp - bJxijf , 

E ^ - ^ - S ^ * , ) ^ 
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Setting these equations to zero and reducing gives : 

(D.208) 
•=i j=i A< 

W T , — 

Unfortunately, this set of simultaneous equations (D.206 and D.208), while when solved 

produce the ML regression coefficients, is neither easily reduced nor capable of being 

solved numerically in a straightforward manner. 

However, by differentiating the logarithm of the likelihood equation (D.203) with 

respect to c\ and taking a least squares approach by choosing bj and bo terms which 

minimize the result, we can more easily determine the ML regression coefficients (Moran 

1971; Anderson 1984; Fuller 1987). Differentiating Equation D.203 with respect to o\ 

gives : 

. - T V ' (D.209) 
t E r = i ( y , - ^ - E ? = i Q j s , - j ) 2 

2<(l + £ ? = 1 £ ) 

Setting this equation to zero and multiplying both sides by o\, we get 

0 , J g + s,(i.-«.-a,*wr-f ( D . 2 1 0 ) 

2 2(1 + EU $) 

which reduces to 
_ a _Efai (y . - - tb-£g=i^. j ) a 

6? (D.211) 
"(1 + & i 

Thus, this least squares regression approach produces coefficient estimates of the re

gression model with error in every variable which are equivalent to the ML regression 

coefficient estimates (Fuller 1987, Ripley and Thompson 1987). 

Minimization can be accomplished by using a non-linear numerical optimization 

procedure such as the SIMPLEX method of Nash (1979) and Caceci and Cacheris 

(1984). Unfortunately, the sum of squared residual formula of Equation D.211 is not 

particularly stable, especially when the independent variables are highly correlated 
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(Jones 1972). Specifically, this equation can be minimized when the bj terms in the 

denominator are large. Because of the high correlation between independent variables, 

when at least one of the bj terms become highly positive, the others, to compensate, 

become highly negative. 

Using, as an example, a trivariate data set where the dependent variable is regressed 

against two independent variables which are highly correlated and no bo constant term 

exists, the resulting £ " = i a\ surface is a trough in 61 : 62 space. The axis of this trough 

has a slope in 61 : 62 space (where b\ is the abcissa and 62 is the ordinate) with a sign 

opposite to the sign of the correlation between X\ and X2 and a magnitude equal to 

^ (Figure D.l). 

When the trivariate data set has a correlation structure of the form : 

/1.0 r 1 2 r X 3 \ 

r 1 2 1.0 rsa , (D.212) 

V ri3 r 2 3 1.0 / 

then, if r23 = ri2 = ri3, the b\ and 62 RMA (see below) values corresponding to the 

minimum of are indeterminate and the base of the trough is 'equal-valued' at all loca

tions along its length. If r23 > r 1 2 and r 2 3 > ri3, r 2 3 > r i 2 and r23 = r i 3 or r 2 3 = r i 2 

and r23 > ri3, then the RMA b\ and bj values are also indeterminate, but the trough 

has a saddle form (concave-down). As a result, solution of the ML regression solution 

is not possible when substantial correlation exists between the independent variables. 

Only when r23 < ru and r23 < ri3 does the trough have a 'concave-up' form and a 

true minimum, the ML regression solution. Fortunately, correlation structures pro

duced by the regression model of Equation D.192 will generally have structures where 

independent-independent variable correlations are lower than dependent-independent 

variable correlations, provided that the variances of the errors are small with respect 

to the variances of the variables. 
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Figure D.40: E(Y^=i 0 - 2) Reduced Major Axis Regression Surface for Various Correla
tion Structures 

Contour plots of RMA -E(£"=i <r2) for data set structures # 17 (A), # 31 (B) and 
# 32 (C). The abcissa on all plots is <S and the ordinate is 62. Filled diamond on plot 
A represents the RMA regression solution (minimum). Open diamonds on each plot 
represent the corresponding OLS regression solution. The dashed diagonal line on C 
is the minimum axis of the trough (with a slope in &i : 62 space of —5). 
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D.2 Estimation of A_, 

With the ML regression procedure, knowledge (or assumption) of the individual error 

variances of the independent and dependent variables or the ratios of these error vari

ances are required. This is because the solution, as described in Equation D.211, is 

under-determined. To illustrate this using a trivariate data set, the parameters of the 

population can be cast in terms of the regression model (Equation D.192) and esti

mated. In this case there are 11 population parameters which need to be approximated 

(Mv> M * I » M*2» ° l v , °X» K ' am > ^ I * * ' &i and 62), but only 9 equations : 

y = b0 + b\pXl+ b\pXi, (D.213) 

x!=pXl, (D.214) 

X2=pXi, (D.215) 

£ = * i + * i . (D.217) 

(D.218) 

= ^ 1 ^ +b2Vxlx7, (D.219) 

sy*, =k*l2 +b\aXlXi, (D.220) 

and : 

sxix7=axixi. (D.221) 

We can calculate the estimates of the parameters for Equations D.214, D.215 and D.221, 

and substitute these into Equation D.213 to solve for pXl, pX2, <rXlXj and bo, but this 

still leaves 5 equations and 7 unknowns. 

Solution requires that certain assumptions be made in order to determine the ML 

regression estimates. The most common assumption made is that the ratios of the error 
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variances are known (Madansky 1959; Kendall and Stuart 1961; Mark and Church 1977; 

Jones 1979). This eliminates the p degrees of freedom (in general, equal to the number 

of independent variables), allowing determination of a unique solution. 
/ 

Estimation of the ratios of the error variances is commonly achieved through the 

use of replicate analysis to estimate the variances (Thompson 1973; Thompson and 

Howarth 1973, 1976a, 1976b, 1978; Thompson 1982) and allow calculation of the error 

variance ratios (Aj's). In the absence of these estimates, or when only a portion of 

the information required is known, several different approaches have been employed in 

bivariate applications to solve the ML regression (Madansky 1959; Kendall and Stuart 

1961; Birch 1964; Till 1973; Dolby 1976b; Mark and Church 1977; Jones 1979). Some 

of these approaches can also readily be employed in multivariate applications. 

The basic difference between the approaches lies in amount of information available 

about the error variances and severity of the assumptions employed. The various 

amounts of information regarding the error variances include cases where : 

• all error variances are known (thus all error variance ratios can be calculated), 

• the error variances are not known, but all of the ratios of the error variances 

between the dependent variable and each independent variable are known, 

• some of the error variances or some of the error variance ratios are known, and 

• error variances and error variance ratios are not known. 

In the first case, a direct determination of each error variance ratio (Xj) can be 

calculated and these can be used to minimize the ML regression equation and determine 

the bj and bo terms. In the bivariate case, minimization of Equation D.211 produces 



Appendix D. Derivation of the Multivariate Regression Formula 238 

estimates identical to those produced by the formula : 

b = 
3^ —-
i — ^ ( D - 2 2 2 ) 

x 1 

of Madansky (1959), Dolby (1976b), and Kendall and Stuart (1961). Thus, application 

of this approach is merely a generalization of the above bivariate formula. This ap

proach has been used extensively in geochonological applications (York 1966; Mclntyre 

et al. 1966; York 1967; Brooks et al. 1968; York 1969; Brooks et al. 1972) 

If the ratios of the error variances are known, but the individual error variances 

are not known, simple substitution of these A,- terms into the ML equation will lead 

to a solution (Madansky 1959; Kendall and Stuart 1961; Birch 1964; Till 1973; Dolby 

1976b; Mark and Church 1977; Jones 1979). This also produces a result identical to 

the result obtained, in the bivariate case, using the formula : 

5 = 4 - **i + >/(*; - x*i)2+<•» - p^*i)(***« - P^H) ( D 2 2 3 ) 

2{sxy-pV\sx) 

of Jones (1979), which when, in this case p = 0 (the errors are uncorrelated), reduces 

to the formula : 

b = — ^ - , (D.224) 

of Kermack and Haldane (1950), Madansky (1959), Kendall and Stuart (1961), Davies 

and Goldsmith (1972) and Jones (1979). 

If only some of the error variances are known, or similarly, if only some of the 

error variance ratios are known, no multivariate approach analogous to the bivariate 

formulae : 
, 2 _ , 2 

o=^-A (D.225) 
Sxy 

or : 
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of Madansky (1959) and Kendall and Stuart (1961) exists. In cases such as these, the 

geochemist is advised to estimate the unknown variances by whatever means possible 

(e.g. - replicate analysis) or to use the approach described below. 

In the last case, where neither the error variances nor their ratios are known, two 

assumptions may be employed to approximate the ratios of the error variances. The 

assumption that all error variances are equal (Xj = 1) produces what is referred to as a 

"major axis" (MA) regression solution, while the assumption that the error variances 

are proportional to the ratio of the variances of the actual observations : 

(D.227) 

produces what is referred to as a "reduced major axis" (RMA) regression solution. In 

the absence of specific over-riding experimental or theoretical considerations, the RMA 

regression solution is preferred over the MA solution because it produces estimates of 

the 6,'s which are scale invariant. 

Justification of the use of the RMA approach is found in the nature of the struc

tural relation which this regression exemplifies. Specifically, since all observations of 

each variable are estimates of the 'true' value of that variable, the variance of these 

observations is, by definition, an estimate of the observation error variance. Using a 

Xj which is proportional to the ratios of the observed sample variances is, thus, an 

appropriate estimate of the error variance ratio (for references regarding ML regression 

on a linear functional relation see : Lindley 1947; Villegas 1961; Solari 1969). 

Solution of the ML regression in this way is analogous to solution of a bivariate case 

using Equation D.224 of Madansky (1959), Kendall and Stuart (1961), Dolby (1976b) 

and Jones (1979) where the error variance ratios are known. 
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D.3 Relationship to Principal Components 

The ML regression coefficients estimated using Equation D.211 can be shown to be 

related to the PC of the multivariate distribution defined by the regression model 

(Equation D.192). Substituting : 

y. = Vi - y, (D.228) 

and 

Xjj — Xfj Xj, (D.229) 

into Equation D.211 produces 'corrected' values of the variables (centered about 0), 

(D.230) 

thus eliminating the bo term (Equation D.206), and giving : 

2 - EU bjiijf 

Knowledge of the Xj terms allows scaling of the Xj variables such that Xj = 1. Thus, 

multiplying each Xj variable by yjx~j creates new independent variables with all new 

scaled Xj (X„j) equalling one. The regression now is 'orthogonal' and corresponds, in a 

bivariate case, to the major axis of the data (Fuller 1988). Including the denominator 

in the summation of squares after the above multiplication gives : 

2 

~ n k { y/1 + EU ».i 
(D.231) 

where y„- and x„j are the corrected and scaled values and the b,j are the coefficients of 

the scaled data, 

ff we define : 
I y» \ 

(D.232) 
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and : 

a = 

( 1 ^ 

1 

1 +13-1 bji • 

\-b,PJ l a p / 

(D.233) 

then Equation D.231 can be cast in matrix notation and minimized, provided that the 

length of a is unity (||a|| = 1). Thus : 

1 " 1 n 

min o\ — min — ^(a^z))2 = min — ^ aF z\zfa. 
3 =1 a =i n 1=1 a =1 n 

(D.234) 
i=i 

Since a is not involved in the summation : 

min a] = min aF ( — £ i f j a — min aF S.a, 
\\s\\=i \\a\\=i \nf-i / ||c?||=i 

(D.235) 
t=i 

where 5, is the observed covariance matrix of the scaled variables. 

Thus, a corresponds to the eigenvector (PC) associated with the smallest eigen

value of the scaled covariance matrix. This can be demonstrated conceptually (geo

metrically) by the following argument (Figure D.3) : 

• the regression model denned above corresponds to fitting a hyperplane through 

the data; 

• scaling the data converts all Xj — 1, so that minimization of the sum of squared 

residuals is made on the perpendiculars to the regression hyperplane (orthogonal 

regression); 

• the eigenvector associated with the smallest eigenvalue is the vector of the residual 

variance after removal of the variances associated with all other eigenvectors; 

• this eigenvector would, thus, define the direction of the perpendiculars to the 

regression hyperplane. 

file:///nf-i
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Figure D.41: Bivariate Example of the Relationships Between OLS Regression, ML 
Regression (RMA and MA) and PC 

OLS regression lines consist of those labelled 'Y on X' (where an = 0 and the 
residuals are vertical) and 'X on Y^ (where <rt = 0 and the residuals are horizontal). 
The ML regressions (RMA and MA) and first PC are all represented by 'RMA'. In 
this case, the RMA and MA regression lines are identical because <rn = at was assumed 
(thus the residuals are perpendicular to the 'RMA' line). If an < at then the RMA 
would have a slope between that of 'Y on X' and 'RMA', and if <rn > <rc the slope 
would be between 'RMA' and 'X on Y' (the residuals to be minimized would not be 
perpendicular to the resulting line for both of these cases). In this bivariate case, the 
first PC is equivalent to the MA regression slope; however, in multivariate space, the 
MA corresponds to the hyper-plane defined by the eigenvectors corresponding to all 
non-smallest eigenvalues. 
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Clearly, if the smallest eigenvalue is not unique, the solution is indeterminate. 

Thus, calculation of the eigenvectors and values of the scaled covariance matrix rep

resents another method for determining the coefficients of a ML regression. Estimates 

of the scaled bj terms (baj) can be calculated from : 

b,j = (D.236) 
Oy 

and then un-scaled to represent the true bj values associated with the observed data 

by dividing each by its corresponding \J\~j. The io constant can then be determined 

using Equation D.206. 

file:///J/~j


Appendix E 

Truncated Distribution Parameter Estimation 

Statistics means never having to say you're certain. 

Anonymous 

E . l Truncated Multivariate Normal Parameter Estimates 

While truncation of a normal distribution at some known point (i 0) yields different 

estimates of the mean and standard deviation of the population, this bias may be cor

rected and estimates of the ML population parameters calculated from these truncated 

sample estimates (Hald 1949; Cohen 1950, 1957, 1959, 1961). 

To determine the expectations of the means, variances and covariances of a multi

variate normal distribution which has been truncated at XQ, some known value of one 

of the variables, the nature and relationships of the different types of variables must 

be considered. Specifically, there is one variable used to truncate the distribution, and 

others, correlated with it, which are not used. The expected values and variances of 

the variable used for truncation, as well as the other correlated variables, can all be 

calculated; however, different approaches are required for each. 

The quantities which must be evaluated include : 

E(X\X < XO), (E.237) 

VAR(X\X < XQ), (E.238) 

244 
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where X is the variable used to truncate the distribution, 

E(Y\X < so), (E.239) 

VAR(Y\X < x0), (E.240) 

where Y is not the variable used to truncate the distribution, 

COV(X,Y\X <*o), (E.241) 

and : 

COV(Y,W\X <x0), (E.242) 

where W and Y are both variables which were not used to truncate the distribution. 

E . l . l Truncated Variable Parameters 

To determine the expected value of X, the variable used for truncation, the relevant 

probabilities must be evaluated : 

P r ( X < AX < „ ) = f r ( ^ ( - / ' / X j f 0 > - (E-243) 

If x > Xo, then this equals 1; however, if x < XQ, then : 

Pr(X < x,X < x0) Pr(X<x) 
(E.244) 

Pr(X<x0) Pr{X<x0)' 

Substituting the appropriate normal distribution functions into this equation and dif

ferentiating with respect to x gives : 

><^-> = I ^ ( ^ ) ' (E'245) 

when x < XQ, and 0 when x > Xo, where : 

zo = ^ J L ^ L . (E.246) 
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Thus, the expectation of X given X < XQ can be determined by multiplying x by 

f(x\X < XQ) and integrating the result from —oo to xo, giving : 

E(X\X < xo) = r xf(x\X < x0)dx = r x-j——4> (?—^\ dx, (E.247) 
J-oo J-oo $\ZQ) Ox \ Ox ' 

Performing a change of variables, where : 

z = l^J±^ (E.248) 
<TX 

and : 

oxdz = dx, (E.249) 

gives : 

E(X\X <x0) = -J-r I* (px + zGx)4>(z)dz, (E.250) 
<P(ZO ) J-oo 

which reduces to : 

E(X\X < x0) = - r r ^ (px I" 4{z)dz + ax f0 z<j>(z)dz) , (E.251) 
QyZo) \ J-oo J-oo / 

and : 

E(X\X <x0) = px+ \^r^<Tx r *K*)d*) • (E-252) 
\*(,Zo) J—oo J 

Taking this integral : 

E(X\X <xo) = px+(^~*x -<t>{z) *0 (E.253) 

and evaluating it from —oo to x0, yields : 

E(X\X <x0)=px + <rxEZQ, (E.254) 

where 

Ezo = =£2±. (E.255) - < K * Q ) 

*(*) 
This result is identical to that of Hald (1949) and Cohen (1950, 1957, 1959, 1961) 
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Similarly, the variance of X given X < XQ is determined through multiplication of 

f(x\X < x0) by (x — E(X\X < XQ)2 and integration of the result from —oo to x0, 

giving : 

(x - E(X\X < x0)ff{x\X < x0)dx 
•oo 

= P (x - E(X\X < x0))2^rr—<f> (^^-) dx. (E.256) 
J-oo 4>(Zrj) O x V O x / 

Substituting the appropriate terms for E(X\X < XQ) gives : 

VAR(X\X < xo) = fX° (x - (px + oxEZo))2-<f> (tZJ!£\ ^ 
<P{Zo) J-oo O x \ <TX / 

Performing the same change of variables (as above) gives : 

VAR(X\X < xo) = f0 {zox - <TxEZ0)2<ftz)dz, 
*(zo) J - ° ° 

which reduces to : 

(E.257) 

(E.258) 

2 
VAR(X\X <x0) = -^4- / * (z2 - ZzE^ + E2)<f>(z)dz. (E.259) 

Q(ZQ) J-oo 

Now, adding and subtracting 1 to the quadratic term inside the integral, rearranging 

and then integrating by parts gives : 

2 £» i & £, + * *w £ « z ) i z- ( E- 2 6 0 ) 

Taking the integral gives : 

VAR(X\X < xo) = 
*(zo) L 

„2 

-z<f>(z) 

-2EZ -<f>(z) 

-\ ~ 
-oo $(*<}) 

zo a2 

*(z) 
zo 

4- " T B 1 2 

*(z0y z o 

and evaluating the result from —oo to ZQ gives (see Equation E.255) 

VAR(X\X <xo) = o2

x (zoE^ + 1 - 2E2

0 + E]0) , 

zo (E.261) 

(E.262) 
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which reduces to : 

VAR(X\X < XQ) = <r2V20, (E.263) 

where : 

VXo=l-rz0EX0-E2

Zo. (E.264) 

This result is also identical to that of Hald (1949) and Cohen (1950, 1957, 1959, 1961). 

Thus, for any variable Z distributed N(0,1) which is truncated at zo, by substituting 

0 and 1 for px and ox into equations E.254 and E.263, the expected value and variance 

can be shown to be EZo and Vzo, respectively. 

E.1.2 Un-Truncated Variable Parameters 

To detemine the equations for the other four distribution parameters, we may cast all 

of the variables in terms of the independent variables Zx, Z2 and Z3, which are each 

distributed iV(0,l). Thus : 

X = px +(TxZt, (E.265) 

Y = py + Ci Zx + C2 Z2, (E.266) 

and : 
W = pu, + A Zx + D2 Z2 + D3 Z3. (E.267) 

The variances and covariances of each of these variables can be written in terms of 

Ci and C2 (for F), and £>i, D2 and D3 (for W). This produces the following equations : 

<% + Ci=(rl, (E.268) 

Cl <TX = PXy <TX (Ty , (E.269) 

and 

Dl + D2

2+D* =<rw, (E.270) 
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D\ax = pxw<rx<Tw, (E.271) 

Ci Di + C 2 A = pyway<Tw. (E.272) 

These can be solved simultaneously for Ci, C2, A ? A and D3, producing : 

Ci = pxyay, (E.273) 

xy 
and 

Ci = <rvyjl-ply, (E.274) 

A — Pxw &w 1 (E.275) 

A = ^ v ™ " ^ * " ) , (E.276) 

A = <r« 
1 o (Pyw PxyPxw)2 /•,-, 0»»\ •V"*"—̂ r~- ( ' 

Now, substituting the formulae of the variables X, Y and W in terms of Z\, Z2 

and Z3 into the formula for the expectations, variances and covariances of the variables 

truncated at xo, we can derive the appropriate equations. 

Since {X < xQ} if and only if {Z < ZQ}, the conditioning event {X < x0} can be 

replaced by {Z < zo}. Thus : 

E(Y\X <x0) = E(py + C1Z1+ C2Z2\Zi < zo), (E.278) 

and the individual expectations are : 

E(Y\X <x0) = py + CiE(Zx\Zi < zo) + C2E(Z2\Zi < zo). (E.279) 

Thus, since E(Z2\Zi < zo) = 0 because Zi and Z2 are independent random variables : 

E(Y\X <xQ) = p^ + CiE,, + 0 

= py+PxyayEZQ. (E.280) 
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By a similar derivation : 

E(W\X <x0) = pw + PxwawEZ0. (E.281) 

Derivation of the variance of the non-truncating variables is achieved in a similar 

manner, where : 

VAR(Y\X <x0) = VAR(py + CXZX + C2Z2\ZX < ZQ), (E.282) 

which reduces to : 

VAR(Y\X < x0) = C\VAR(ZX\ZX < zo) + C\V AR{Z2\ZX <zo) + 

2C1C2COV(Z1Z2\Z1 <zo). (E.283) 

Evaluating the individual terms gives : 

VAR(Y\X < x0) = ClV^ + Cj + 0 (E.284) 

After reduction and substitution of the constants : 

VAR(Y\X < xo) = o J ( l + p 2 ^ - 1)). (E.285) 

By a similar derivation : 

VAR(W\X < xo) = a2

w(l + PL(^„ - 1))- (E.286) 

The covariance between the truncating variable and any non-truncating variable 

can be determined by the following. First : 

COV(X,Y\X < xo) = COV(px + <rxZl,py + CXZX + C2Z2\ZX < zo), (E.287) 

which reduces to : 

COV(X,Y\X < xo) = <rxCxVAR(Zx\Zx < ZQ) + oxC2COV(ZuZ2\Zx < zo). (E.288) 
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Evaluating the individual terms gives : 

COV(X,Y\X < x0) = <rxCxVZ0 + 0, (E.289) 

which, after reduction and substitution of the constants, becomes : 

COV(X, Y\X < XQ) = pxy<rx*yVZ0. (E.290) 

By a similar derivation : 

COV(X,W\X < Xo) = P^CTxCTnV^. (E.291) 

Finally, the covariance between two non-truncating variables is : 

COV(Y, W\X < xo) = COV(py + dZ!+ C2Z2, 

pw+D1Z1+ D2Z2 + D3Z3\Zi < zo). (E.292) 

Evaluating the individual terms gives : 

COV(Y,W\X < xo) = CxD2COV(Zx,Z2\Zx < zo) + CxD3COV(Zx,Z3\ZX <zo) + 

C2D1COV(Zl,Z2\Z1 <zo) + C2D3COV(Z2,Z3\Z1 <zo) + 

d A V A R ( Z X \ Z X < zo) + C2D2VAR(Z2\ZX < zo), (E.293) 

and reducing these individual terms, we get : 

COV(Y, W\X < xo) = CXDXVZ0 + C2D2, (E.294) 

which, after substitution, becomes : 

COV(Y, W\X < XQ) = pxypxw<ry(Tw(VZ0 - 1) + (Ty<TwPyw. (E.295) 



Appendix E. Truncated Distribution Parameter Estimation 252 

E.2 Solution of Simultaneous Equations 

The expected values, variances and covariances for truncated multivariate normal dis

tributions (derived above) are : 

E(X\X < xo) = ptx = px + oxE^, (E.296) 

E(Y\X <xo) = pty = Pv+ pxyOyE^, (E.297) 

E(W\X <x0) = ptw=pw+ pxw<rwEZ0, (E.298) 

VAR(X\X < xo) = a]x = alVZQ, (E.299) 

VAR{Y\X < xo) = a% = oJ(l + p2

xy(VZo - 1)), (E.300) 

VAR(W\X < xo) = al = a2

w(l + p2

xw(VZo - 1)), (E.301) 

COV(X,Y\X < x0) = atxy = PxyaxayVZ0, (E.302) 

COV(X, W\X <xo) = atxw = pxwaxawVZ0, (E.303) 

COV(Y,W\X < x0) — &tyw — PxyPiw 
oyaw(VZ0 — 1) + ay aw Pyw , (E.304) 

where : 

En = (E.305, 

and 

Vzo=l + zoEZo-E2

Q. (E.306) 

However, in this application, the parameters of the truncated distribution may be 

estimated from the data. Estimation of the parameters of the underlying distribution 

requires recasting these equations and solving them simultaneously. 

The first requirement for solution is knowledge of the truncation value XQ which was 

used to truncate the normally distributed data. In the general case, equations E.296 

and E.299 are solved in an iterative non-linear manner using the truncated data. This 



Appendix E. Truncated Distribution Parameter Estimation 253 

yields estimates of px and <rx, and thus of ZQ. Estimation of E^ and VZO follows directly. 

With knowledge of ZQ, px and <rx, we are left with 7 equations and 7 unknowns, which 

can be solved analytically through substitution. 

In this application, px, ox and zo may be estimated directly because they have 

already been determined from the ML solution parameters of a mixture of normal 

distributions. As a result, solution of the 7 unknowns is the primary task, and can 

be accomplished by algebraically recasting these equations in terms of the truncated 

parameters. 

First, rearranging the equations for (rtxy, Otx, o~ty, and a t w , in terms of the untrun-

cated parameters gives : 
&txy 

ux — A7—5 

(Tty 

and 
<Ttu 

P*v = Tr~TZ~'> (E.307) 

(E.308) 

(E.309) 

aw = , (E.310) 
sfiTpijy^-i) 

Substituting the recast standard deviation equations into the correlation equation, 

above, produces : 

P*v — T T i 
VZO <Ttx (Tty 

which, because ptxy = (Ttxy/<Ttx(Tty, reduces to : 

(E.311) 

Pxy — Ptxy' 

Combining terms and solving for pxy gives 

(E.312) 

Pxy = Ptxy 

^/V«o-p?,„(^o-l), 
(E.313) 
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or 

By similar derivation 

or 

uXy 

V 
( °**V ) - 1 ) 

/I Ptxuj 

A» -Ptxw ( ^ 0 - 1 ) ' 

0~xw 0~xw 

V ^0 ( "Jim )V«o - 1 ) 

(E.314) 

(E.315) 

(E.316) 

Now, substituting the untruncated correlation equations (E.313 and E.315) into the 

recast standard deviation equations (E.309 and E.310) we get : 

<Tty 
y / i+p?.,(v«o-ir' 

V V - o - P ? « v ( ^ o - l ) 

(E.317) 

and 

V v « o - ^ - - C V » o - l ) 

which reduce to : 

and 

or 

°v = ^=yJvZ0-pixyiyZ0-\), 

<r. = J<£y/V» - -1) . 

and 

(E.318) 

(E.319) 

(E.320) 

(E.321) 

(E.322) 

Substituting all of these relations into the covariance relation between non-truncat

ing variables, we get : 
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1 + Pxy 

zo 

Pxw (Vz0 ~ 1) 

y/Vzo - p\xv{Vzo - 1) y/VZ0 - p?xw(Vzo - 1) 

which reduces to 
VtnP«yu>+(l — Vtn )pt»yPt»u> 

?«,(V^-1)' 

or : 

<TyW - <Ttyw + [ v j J 

, (E.323) 

(E.324) 

(E.325) 

Finally, the untruncated distribution means can be calculated through substitution 

of the standard deviations derived above, to give : 

Px=Ptx~ ~ ^ E Z 0 , 

II — IU — FJ 

and 

pw=ptw- ° i ^ E , 

(E.326) 

(E.327) 

(E.328) 



Appendix F 

BCA Parameter Comparison 

"Statistics are like a bikini. What they reveal is tantalizing; what they 

conceal is vital." 

Anonymous 

The following tables present the average of 10 means, standard deviations, covari

ances, correlations, determinants, OLS regression coefficients, RMA regression coeffi

cients, multiple correlation coefficients, least squared values, eigenvectors and eigenval

ues for the population, statistical sample, truncated statistical sample (at 5, 15, 30 and 

50 % truncation) and truncation corrected statistical sample for data set structures # 

17 and # 23. 

(Values in parentheses are the standard deviations of the calculated parameters for 

the 10 data sets used in this simulation.) 

256 
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Table F.58: Population, Sample, Truncated Sample and Truncation Corrected Sample 
Parameter Estimates for the Number of Observations, Means and Standard Deviations 
of Multivariate Data Set Structure # 17 

Truncation (%) n y X~2 sy 

Population 200.0 20.00 40.00 60.00 4.00 6.00 8.00 
(0.0) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) 

Sample 200.0 19.98 39.93 60.11 3.97 5.88 8.03 
(0.0) ( 0.30) ( 0.56) ( 0.40) ( 0.19) ( 0.22) ( 0.42) 

5 190.5 19.56 39.51 59.50 3.58 5.64 7.65 
(2.8) ( 0.27) ( 0.48) ( 0.47) ( 0.13) ( 0.21) ( 0.33) 

15 171.5 18.94 38.83 58.65 3.21 5.35 7.36 
(4.7) ( 0.26) ( 0.51) ( 0.45) ( 0.15) ( 0.22) ( 0.37) 

30 141.6 18.08 37.95 57.46 2.85 5.14 7.15 
(5.6) ( 0.26) ( 0.52) ( 0.53) ( 0.15) ( 0.31) ( 0.35) 

50 98.7 16.79 36.67 55.57 2.44 4.89 6.85 
(7.4) ( 0.14) ( 0.40) ( 0.56) ( 0.21) ( 0.34) ( 0.51) 

5 190.5 19.99 39.96 60.12 3.98 5.92 8.04 
Corrected (2.8) ( 0.26) ( 0.48) ( 0.45) ( 0-14) ( 0.22) ( 0.37) 

15 171.5 20.04 39.95 60.23 4.01 5.89 8.14 
Corrected (4.7) ( 0.23) ( 0.51) ( 0.42) ( 0.19) ( 0.24) ( 0.44) 

30 141.6 20.09 40.00 60.45 4.05 5.92 8.34 
Corrected (5.6) ( 0.21) ( 0.59) ( 0.48) ( 0.21) ( 0.35) ( 0.47) 

50 98.7 20.03 39.99 60.37 4.05 5.92 8.41 
Corrected (7.4) ( 0.21) ( 0.62) ( 1-41) ( 0.36) ( 0.44) ( 0.96) 
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Table F.59: Population, Sample, Truncated Sample and Truncation Corrected Sample 
Parameter Estimates for the Number of Observations, Means and Standard Deviations 
of Multivariate Data Set Structure # 23 

Truncation (%) n y X~2 sy 8X7 

Population 200.0 20.00 40.00 60.00 4.00 6.00 8.00 
(0.0) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) 

Sample 200.0 20.06 39.99 59.97 4.04 6.08 7.68 
(0.0) ( 0.31) ( 0.52) ( 0.31) ( 0.17) ( 0.26) ( 0.37) 

5 188.9 19.58 39.75 59.83 3.61 6.03 7.66 
(2.2) ( 0.28) ( 0.51) ( 0.35) ( 0.19) ( 0.23) ( 0.30) 

15 167.9 18.89 39.54 59.66 3.20 6.02 7.70 
(3.7) ( 0.23) ( 0.60) ( 0.20) ( 0.25) ( 0.21) ( 0.32) 

30 138.6 18.00 39.14 59.49 2.80 6.05 7.75 
(5.0) ( 0.28) ( 0.52) ( 0.43) ( 0.23) ( 0.28) ( 0.33) 

50 100.7 16.84 38.60 59.39 2.40 5.99 7.65 
(7.5) ( 0.30) ( 0.61) ( 0.57) ( 0.22) ( 0.23) ( 0.53) 

5 188.9 20.02 39.93 59.93 4.02 6.07 7.67 
Corrected (2.2) ( 0.27) ( 0.53) ( 0.35) ( 0.21) ( 0.25) ( 0.31) 

15 167.9 19.98 40.06 59.92 4.00 6.14 7.73 
Corrected (3.7) ( 0.22) ( 0.69) ( 0.19) ( 0.31) ( 0.26) ( 0.34) 

30 138.6 19.99 40.08 59.99 3.99 6.23 7.79 
Corrected (5.0) ( 0.24) ( 0.76) ( 0.55) ( 0.33) ( 0.37) ( 0.37) 

50 100.7 20.01 40.19 60.51 3.97 6.23 7.79 
Corrected (7.5) ( 0.20) ( 0.77) ( 1-27) ( 0.36) ( 0.30) ( 0.58) 
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Table F.60: Population, Sample, Truncated Sample and Truncation Corrected Sample 
Parameter Estimates for the Covariances, Correlations and Determinants of Multivari
ate Data Set Structure # 17 

Truncation (%) ryx2 rxiX2 1*1 8yXl 
ayx* \s\ 

Population 0.700 0.700 0.100 0.108 16.80 22.40 4.80 3981.31 
(0.000) (0.000) (0.000) ( 0.000) ( 0.00) ( 0.00) ( 0.00) ( 0.00) 

Sample 0.698 0.707 0.106 0.103 16.33 22.64 498 3573.10 
(0.036) (0.046) (0.086) ( 0.017) ( 1.66) ( 3.28) ( 4.18) ( 550.56) 

5 0.662 0.666 0.009 0.122 13.36 18.27 0.26 2901.22 
(0.038) (0.051) (0.090) ( 0.016) ( 1.13) ( 2.38) ( 4.08) ( 411.05) 

15 0.613 0.626 -0.092 0.148 10.52 14.85 -3.76 2357.20 
(0.043) (0.055) (0.098) ( 0.018) ( 1.05) ( 2.17) ( 4.23) ( 380.20) 

30 0.563 0.591 -0.185 0.170 8.24 12.06 -6.98 1853.45 
(0.039) (0.066) (0.093) ( 0.023) ( 0.86) ( 1.92) ( 3.99) ( 275.32) 

50 0.514 0.528 -0.293 0.195 6.14 9.01 -10.08 1309.67 
(0.057) (0.124) (0.132) ( 0.028) ( 0.92) ( 2.85) ( 5.28) ( 317.91) 

5 0.700 0.704 0.096 0.097 16.51 22.57 451 3467.22 
Corrected (0.037) (0.049) (0.086) ( 0.015) ( 1.39) ( 2.94) ( 420) ( 558.91) 

15 0.695 0.707 0.091 0.094 16.43 23.19 429 3448.89 
Corrected (0.041) (0.050) (0.091) ( 0.017) ( 1.63) ( 3.39) ( 4.45) ( 707.23) 

30 0.696 0.720 0.099 0.084 16.72 24.47 481 3313.34 
Corrected (0.037) (0.058) (0.085) ( 0.021) ( 1.74) ( 3.90) ( 4.19) ( 705.79) 

50 0.702 0.706 0.095 0.082 16.89 24.79 482 3075.80 
Corrected (0.051) (0.117) (0.129) ( 0.048) ( 2.54) ( 7.83) ( 6.51) (1328.40) 
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Table F.61: Population, Sample, Truncated Sample and Truncation Corrected Sample 
Parameter Estimates for the Covariances, Correlations and Determinants of Multivari
ate Data Set Structure # 23 

Truncation (%) \R\ &X\ X2 \s\ 
Population 0.300 0.100 0.100 0.896 7.20 3.20 480 33030.14 

(0.000) (0.000) (0.000) ( 0.000) ( 0.00) ( 0.00) ( 0.00) ( 0.00) 

Sample 0.288 0.132 0.109 0.883 7.12 4.11 5.19 31253.22 
(0.086) (0.050) (0.083) ( 0.060) ( 2.36) ( 1.58) ( 4.12) (2677.27) 

5 0.249 0.112 0.100 0.907 5.44 3.10 468 25062.22 
(0.090) (0.038) (0.086) ( 0.053) ( 2.03) ( 1-04) ( 4.09) (1482.16) 

15 0.250 0.097 0.106 0.904 4.82 2.36 496 19785.18 
(0.095) (0.068) (0.094) ( 0.058) ( 1.89) ( 1.60) ( 4.50) (2192.13) 

30 0.220 0.089 0.099 0.916 3.78 1.91 472 15711.69 
(0.109) (0.064) (0.102) ( 0.056) ( 1.98) ( 1.34) ( 491) (1557.26) 

50 0.200 0.107 0.090 0.917 2.90 1.95 421 11031.12 
(0.093) (0.103) (0.101) ( 0.042) ( 1.41) ( 1.85) ( 478) (1827.77) 

5 0.274 0.125 0.095 0.892 6.72 3.83 452 31041.58 
Corrected (0.097) (0.042) (0.078) ( 0.061) ( 2.51) ( 1.28) ( 3.78) (1794.82) 

15 0.305 0.120 0.096 0.871 7.53 3.69 459 31086.13 
Corrected (0.112) (0.084) (0.079) ( 0.078) ( 2.95) ( 2.50) ( 4.00) (3357.57) 

30 0.302 0.126 0.083 0.865 7.68 3.87 416 32165.50 
Corrected (0.144) (0.089) (0.079) ( 0.090) ( 4.02) ( 2.71) ( 4.22) (3207.92) 

50 0.315 0.174 0.076 0.829 7.97 5.38 3.83 30647.05 
Corrected (0.140) (0.167) (0.064) ( 0.089) ( 3.88) ( 5.08) ( 3.58) (5156.75) 
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Table F.62: Population, Sample, Truncated Sample and Truncation Corrected Sample 
Parameter Estimates for the Ordinary Least Squares Regression Coefficients, B? and 
Average Sum of Squared Residuals for Multivariate Data Set Structure # 17 

Truncation (%) 
x 

bi 
x 1 ' 1 , 1 " * 

bo B? nVi-Vi)2 

Population 0.424 0.318 -16.061 0.891 1.75 
( 0.000) - ( 0.000) ( 0.000) ( 0.000) ( 0.00) 

Sample 0.426 0.317 -16.097 0.896 1.63 
( 0.013) ( 0.011) ( 0.604) ( 0.017) ( 0.19) 

5 0.416 0.310 -15.337 0.870 1.64 
( 0.012) ( 0.011) ( 0.372) ( 0.017) ( 0.19) 

15 0.407 0.301 -14.508 0.831 1.72 
( 0.014) ( 0.013) ( 0.661) ( 0.021) ( 0.21) 

30 0.386 0.288 -13.146 0.785 1.72 
( 0.022) ( 0.015) ( 0.980) ( 0.033) ( 0.27) 

50 0.366 0.269 -11.587 0.707 1.68 
( 0.032) ( 0.021) ( 1.621) ( 0.077) ( 0.22) 

5 0.428 0.319 -16.273 0.901 1.55 
Corrected ( 0.013) ( 0.011) ( 0.313) ( 0.014) ( 0.18) 

15 0.433 0.321 -16.587 0.905 1.52 
Corrected ( 0.016) ( 0.013) ( 0.659) ( 0.016) ( 0.19) 

30 0.431 0.321 -16.525 0.915 1.38 
Corrected ( 0.026) ( 0.016) ( 1.259) ( 0.021) ( 0.25) 

50 0.433 0.315 -16.347 0.916 1.27 
Corrected ( 0.038) ( 0.022) ( 2.008) ( 0.049) ( 0.46) 
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Table F.63: Population, Sample, Truncated Sample and Truncation Corrected Sample 
Parameter Estimates for the Ordinary Least Squares Regression Coefficients, R2 and 
Average Sum of Squared Residuals for Multivariate Data Set Structure # 23 

Truncation (%) br 
x 

h 
x 

bo K2 

n t i - y i ) 2 

Population 0.195 0.035 10.067 0.095 14.48 
( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.00) 

Sample 0.183 0.053 9.577 0.101 14.60 
( 0.055) ( 0.018) ( 2.717) ( 0.054) ( 1-48) 

5 0.144 0.042 11.356 0.067 12.15 
( 0.053) ( 0.014) ( 2.511) ( 0.044) ( 1-45) 

15 0.128 0.029 12.097 0.058 9.65 
( 0.049) ( 0.022) ( 2.550) ( 0.040) ( 1-72) 

30 0.100 0.023 12.709 0.041 7.52 
( 0.051) ( 0.017) ( 2.105) ( 0.034) ( 1-17) 

50 0.079 0.026 12.204 0.032 5.52 
( 0.044) ( 0.037) ( 2.427) ( 0.021) ( 0.98) 

5 0.175 0.052 9.932 0.095 14.65 
Corrected ( 0.061) ( 0.017) ( 2.917) ( 0.058) ( 1-84) 

15 0.191 0.046 9.556 0.117 14.21 
Corrected ( 0.068) ( 0.032) ( 3.614) ( 0.072) ( 2.58) 

30 0.188 0.048 9.505 0.124 14.04 
Corrected ( 0.088) ( 0.033) ( 3.705) ( 0.085) ( 2.53) 

50 0.194 0.071 7.748 0.163 13.27 
Corrected ( 0.095) ( 0.088) ( 5.603) ( 0.087) ( 2.45) 
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Table F.64: Population, Sample, Truncated Sample and Truncation Corrected Sam
ple Parameter Estimates for the Reduced Major Axis Regression Coefficients, R? and 
Average Sum of Squared Residuals for Multivariate Data Set Structure # 17 

Truncation (%) bo R? 
Population 0.448 0.336 -18.097 0.941 0.94 

( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.00) 
Sample 0.449 0.334 -18.043 0.944 0.88 

( 0.016) ( 0.010) ( 0.620) ( 0.009) (o.ii) 
5 0.445 0.331 -17.708 0.936 0.81 

( 0.016) ( 0.010) ( 0.389) ( 0.008) ( 0.11) 
15 0.443 0.328 -17.521 0.926 0.76 

( 0.018) ( 0.011) ( 0.568) ( 0.009) (o.ii) 
30 0.431 0.322 -16.756 0.917 0.67 

( 0.025) ( 0.014) ( 0.919) ( 0.012) ( 0.13) 
50 0.426 0.313 -16.242 0.905 0.56 

( 0.038) ( 0.016) ( 1.487) ( 0.014) ( 0.10) 
5 0.450 0.335 -18.122 0.947 0.83 

Corrected ( 0.016) ( 0.010) ( 0.355) ( 0.007) ( 0.10) 
15 0.455 0.337 -18.396 0.949 0.81 

Corrected ( 0.019) ( 0.011) ( 0.557) ( 0.008) ( 0.09) 
30 0.449 0.335 -18.124 0.955 0.73 

Corrected ( 0.027) ( 0.015) ( 1.164) ( 0.010) ( 0.12) 
50 0.452 0.330 -17.951 0.957 0.67 

Corrected ( 0.039) ( 0.017) ( 1.582) ( 0.023) ( 0.21) 
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Table F.65: Population, Sample, Truncated Sample and Truncation Corrected Sam
ple Parameter Estimates for the Reduced Major Axis Regression Coefficients, K? and 
Average Sum of Squared Residuals for Multivariate Data Set Structure # 23 

Truncation (%) w bo R? E(y,-y,)2 

Population 0.667 0.000 -6.667 0.300 11.20 
( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.00) 

Sample 0.660 0.028 -8.048 0.299 11.36 
( 0.155) ( 0.202) ( 7.534) ( 0.082) ( 1-49) 

5 0.703 -0.073 -4.011 0.264 9.59 
( 0.285) ( 0.330) ( 9.847) ( 0.087) ( 1-49) 

15 0.603 -0.076 -0.409 0.265 7.53 
( 0.134) ( 0.202) ( 7.993) ( 0.096) ( 1-61) 

30 0.411 0.012 1.119 0.251 5.85 
( 0.329) ( 0.257) ( 7.707) ( 0.084) ( 0.95) 

50 0.498 -0.078 2.271 0.251 4.24 
( 0.629) ( 0.536) ( 10.684) ( 0.083) ( 0.70) 

5 0.691 0.009 -8.137 0.286 11.55 
Corrected ( 0.186) ( 0.234) ( 8.304) ( 0.096) ( 1-91) 

15 0.633 0.031 -7.230 0.315 11.00 
Corrected ( 0.112) ( 0.156) ( 6.804) ( 0.115) ( 2.44) 

30 0.521 0.105 -7.412 0.328 10.73 
Corrected ( 0.309) ( 0.215) ( 6.542) ( 0.114) ( 2.20) 

50 0.465 0.179 -9.843 0.376 9.86 
Corrected ( 0.203) ( 0.232) ( 10.889) ( 0.118) ( 2.17) 
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Table F.66: Population, Sample, Truncated Sample and Truncation Corrected Sam
ple Parameter Estimates for the Eigenvector Coefficients for Multivariate Data Set 
Structure # 17 

Truncation (%) en en e2i e23 e32 e33 
Population 0.463 0.315 0.294 -0.451 -0.440 -0.324 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Sample 0.454 0.299 0.302 -0.434 -0.441 -0.323 
(0.050) (0.117) (0.040) (0.116) (0.014) (0.011) 

5 0.385 0.159 0.342 -0.288 -0.433 -0.317 
(0.061) (0.143) (0.051) (0.147) (0.013) (0.010) 

15 0.306 -0.007 0.392 -0.110 -0.426 -0.310 
(0.068) (0.151) (0.056) (0.163) (0.016) (0.012) 

30 0.226 -0.177 0.430 0.083 -0.407 -0.298 
(0.066) (0.145) (0.050) (0.163) (0.025) (0.014) 

50 0.210 -0.167 0.402 0.304 -0.388 -0.281 
(0.158) (0.451) (0.143) (0.325) (0.035) (0.020) 

5 0.453 0.291 0.305 -0.427 -0.443 -0.324 
Corrected (0.053) (0.123) (0.041) (0.124) (0.014) (0.010) 

15 0.450 0.278 0.313 -0.415 -0.448 -0.326 
Corrected (0.071) (0.154) (0.053) (0.154) (0.018) (0.012) 

30 0.445 0.268 0.312 -0.404 -0.444 -0.325 
Corrected (0.071) (0.137) (0.044) (0.141) (0.027) (0.016) 

50 0.437 0.254 0.296 -0.170 -0.445 -0.320 
Corrected (0.165) (0.336) (0.160) (0.470) (0.039) (0.020) 
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Table F.67: Population, Sample, Truncated Sample and Truncation Corrected Sam
ple Parameter Estimates for the Eigenvector Coefficients for Multivariate Data Set 
Structure # 23 

Truncation (%) en ei2 e2i 2̂3 e32 e33 

Population 0.092 0.187 0.307 -0.216 -0.315 -0.034 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Sample 0.127 0.243 0.280 -0.279 -0.293 -0.057 
(0.051) (0.201) (0.078) (0.213) (0.077) (0.027) 

5 0.088 0.213 0.204 -0.231 -0.213 -0.046 
(0.036) (0.197) (0.077) (0.201) (0.074) (0.021) 

15 0.061 0.193 0.168 -0.203 -0.173 -0.030 
(0.047) (0.221) (0.067) (0.228) (0.065) (0.027) 

30 0.045 0.185 0.123 -0.190 -0.126 -0.024 
(0.037) (0.219) (0.066) (0.224) (0.064) (0.020) 

50 0.042 0.171 0.093 -0.174 -0.094 -0.028 
(0.032) (0.191) (0.063) (0.190) (0.054) (0.043) 

5 0.117 0.223 0.268 -0.254 -0.281 -0.059 
Corrected (0.046) (0.192) (0.093) (0.200) (0.089) (0.026) 

15 0.108 0.201 0.287 -0.232 -0.298 -0.049 
Corrected (0.083) (0.230) (0.102) (0.252) (0.100) (0.042) 

30 0.107 0.196 0.277 -0.224 -0.288 -0.052 
Corrected (0.080) (0.222) (0.135) (0.242) (0.130) (0.044) 

50 0.136 0.189 0.259 -0.220 -0.286 -0.081 
Corrected (0.134) (0.125) (0.138) (0.156) (0.138) (0.117) 
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Table F.68: Population, Sample, Truncated Sample and Truncation Corrected Sample 
Parameter Estimates for the Eigenvalues for Multivariate Data Set Structure # 17 

Truncation (%) Kl Ki Ae3 

Population 75.875 38.772 1.353 
(0.000) (0.000) (0.000) 

Sample 76.726 36.999 1.265 
(8.270) (3.922) (0.145) 

5 66.188 35.816 1.228 
(5.774) (3.251) (0.133) 

15 59.541 32.525 1.218 
(6.164) (2.408) (0.124) 

30 55.744 28.927 1.155 
(5.742) (2.524) (0.144) 

50 50.881 25.325 1.057 
(11.783) (7.503) (0.109) 

5 76.649 37.844 1.199 
Corrected (6.965) (4.144) (0.134) 

15 78.509 37.532 1.168 
Corrected (7.757) (3.698) (0.146) 

30 82.248 38.121 1.064 
Corrected (8.883) (5.274) (0.188) 

50 84.681 37.786 0.985 
Corrected (18.885) (6.444) (0.372) 
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Table F.69: Population, Sample, Truncated Sample and Truncation Corrected Sample 
Parameter Estimates for the Eigenvalues for Multivariate Data Set Structure # 23 

Truncation (%) Ae2 Ae3 
Population 65.194 37.178 13.627 

(0.000) (0.000) (0.000) 

Sample 61.573 37.006 13.850 
(6.459) (2.828) (1.531) 

5 60.696 35.779 11.660 
(4.902) (2.089) (1.443) 

15 61.389 35.317 9.243 
(5.040) (2.357) (1.563) 

30 62.035 35.387 7.260 
(5.416) (2.703) (1.174) 

50 60.417 34.740 5.323 
(8.541) (2.631) (0.890) 

5 61.019 37.120 13.877 
Corrected (5.162) (2.621) (1.854) 

15 62.102 38.222 13.336 
Corrected (5.966) (3.265) (2.457) 

30 63.075 39.651 13.150 
Corrected (7.286) (4.191) (2.348) 

50 63.380 40.198 12.272 
Corrected (10.275) (4.205) (2.234) 



Appendix G 

Residual and Score Summary 

"Significance Level : a natural constant, like TT and e, whose value is 

0.05." 

S.J. Senn (1088) 

The following tables present the average of 10 means, standard deviations and 

skewnesses of the residuals or scores of the truncated data for the OLS regression 

model, RMA regression model, PC # 2, PC # 3, and the radial (elliptical) distance 

between PC # 2 and # 3 scores and PC # 1 (the major axis) calculated for both the 

truncated statistical sample and truncation corrected statistical sample for data set 

structures # 17 and # 23. 

(Values in parentheses are the standard deviations of the calculated parameters for 

the 10 data sets used in this simulation.) 
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Table G.70: Means, Standard Deviations, Skewnesses, Minima and Maxima of Ordi
nary Least Squares Regression Residuals of the Truncated Data for Data Set Structure 
#17 

Truncation (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

5 9.5 -1.08 1.25 0.11 -2.84 0.86 
( 0.52) ( 0.36) ( 0.66) ( 1-10) ( 1-07) 

15 28.5 -1.03 1.21 -0.07 -3.48 1.43 
( 0.32) ( 0.18) (0.48) ( 0.77) ( 0.76) 

30 58.4 -1.26 1.18 -0.09 -3.96 1.31 
( 0.32) ( 0.16) ( 0.25) ( 0.77) ( 0.71) 

50 101.3 -1.52 1.21 -0.11 4.76 1.49 
( 0.30) ( 0.12) ( 0.15) ( 0.88) ( 0.69) 

5 9.5 -0.83 1.28 0.11 -2.63 1.17 
Corrected ( 0.54) ( 0.37) ( 0.66) ( 1-13) ( 1-U) 

15 28.5 -0.52 1.27 -0.05 -3.13 2.11 
Corrected ( 0.34) ( 0.19) ( 0.47) ( 0.72) ( 0.82) 

30 58.4 -0.50 1.27 -0.04 -3.35 2.30 
Corrected ( 0.40) ( 0.19) ( 0.23) ( 0.71) ( 0.89) 

50 101.3 -0.42 1.29 -0.00 -3.89 2.85 
Corrected ( 0.34) ( 0.15) ( 0.25) ( 0.87) ( 0.88) 
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Table G.71: Means, Standard Deviations, Skewnesses, Minima and Maxima of Reduced 
Major Axis Regression Residuals of the Truncated Data for Data Set Structure # 17 

Truncation (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

5 9.5 -0.57 1.33 0.10 -2.44 1.50 
( 0.56) ( 0.39) ( 0.65) ( 1.16) ( 1-16) 

15 28.5 -0.47 1.30 -0.04 -3.14 2.23 
( 0.33) ( 0.19) ( 0.47) ( 0.68) ( 0.81) 

30 58.4 -0.66 1.27 -0.04 -3.52 2.15 
( 0.36) ( 0.18) ( 0.23) ( 0.69) ( 0.83) 

50 101.3 -0.74 1.28 0.00 -4.17 2.47 
( 0.34) ( 0.14) ( 0.25) ( 0.87) ( 0.76) 

5 9.5 -0.45 1.35 0.09 -2.35 1.65 
Corrected ( 0.56) ( 0.39) ( 0.64) ( 1-17) ( 1-18) 

15 28.5 -0.25 1.33 -0.03 -2.99 2.54 
Corrected ( 0.34) ( 0.20) ( 0-47) ( 0.67) ( 0.84) 

30 58.4 -0.32 1.32 -0.03 -3.29 2.59 
Corrected ( 0.40) ( 0.20) ( 0.23) ( 0.67) ( 0.95) 

50 101.3 -0.30 1.33 0.02 -3.86 3.07 
Corrected ( 0.36) ( 0.16) ( 0.28) ( 0.90) ( 0.92) 
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Table G.72: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 2 
Scores of the Truncated Data for Data Set Structure # 17 

Truncation (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

5 9.5 7.32 4.22 0.39 1.48 14.93 
( 2.70) ( 1-49) ( 0.54) ( 3.51) ( 4.06) 

15 28.5 8.42 4.67 0.17 -1.12 18.96 
( 2.20) ( 0.87) ( 0.52) ( 4.35) ( 3.16) 

30 58.4 9.29 4.63 0.29 -0.52 21.25 
( 1.30) ( 0.51) ( 0.41) ( 3.25) ( 3.76) 

50 101.3 9.38 5.10 0.44 -1.11 24.84 
( 2.18) ( 0.63) ( 0.35) ( 3.83) ( 4.30) 

5 9.5 5.31 4.48 0.35 -1.06 13.36 
Corrected ( 2.46) ( 1.50) ( 0.51) ( 3.21) ( 3.80) 

15 28.5 4.94 5.31 0.06 -6.13 16.68 
Corrected ( 2.34) ( 0.77) ( 0.46) ( 4.99) ( 1.85) 

30 58.4 462 5.46 -0.05 -8.73 17.60 
Corrected ( 1-47) ( 0.22) ( 0.32) ( 2.41) ( 1-61) 

50 101.3 5.02 5.61 0.03 -9.18 19.43 
Corrected ( 2.42) ( 0.39) ( 0.30) ( 4.06) ( 3.17) 
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Table G.73: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 3 
Scores of the Truncated Data for Data Set Structure #17 

Truncation (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

5 9.5 0.75 1.13 -0.12 -1.01 2.33 
( 0.48) ( 0.33) ( 0.66) ( 0.98) ( 1.00) 

15 28.5 0.71 1.10 0.05 -1.56 2.95 
( 0.29) ( 0.17) ( 0.47) ( 0.71) ( 0.64) 

30 58.4 0.93 1.08 0.07 -1.42 3.38 
( 0.32) ( 0.15) ( 0.23) ( 0.66) ( 0.67) 

50 101.3 1.15 1.10 0.06 -1.59 4.09 
( 0.30) ( 0.10) ( 0.17) ( 0.63) ( 0.75) 

5 9.5 0.59 1.15 -0.11 -1.19 2.20 
Corrected ( 0.49) (0.34) ( 0.65) ( 1.00) ( 1.01) 

15 28.5 0.41 1.14 0.04 -1.96 2.75 
Corrected ( 0.30) ( 0.17) ( 0.46) ( 0.73) ( 0.61) 

30 58.4 0.48 1.13 0.04 -2.02 3.02 
Corrected ( 0.36) ( 0.17) ( 0.22) ( 0.81) ( 0.62) 

50 101.3 0.50 1.15 -0.01 -2.40 3.58 
Corrected ( 0.32) ( 0.13) ( 0.27) ( 0.79) ( 0.74) 
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Table G.74: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 2 
and # 3 Radial Distance of the Truncated Data for Data Set Structure # 17 

Truncation (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

5 9.5 1.05 0.63 0.42 0.32 2.18 
( 0.30) ( 0.25) ( 0.47) ( 0.10) ( 0.80) 

15 28.5 1.01 0.64 0.92 0.22 2.63 
( 0.20) ( 0.10) ( 0.40) ( 0.10) ( 0.54) 

30 58.4 1.20 0.71 0.86 0.21 3.15 
( 0.23) ( 0.12) ( 0.32) ( 0.12) ( 0.73) 

50 101.3 1.48 0.84 0.89 0.25 4.20 
( 0.25) ( 0.13) ( 0.26) ( 0.15) ( 0.94) 

5 9.5 1.00 0.66 0.34 0.21 2.18 
Corrected ( 0.30) ( 0.28) ( 0.56) ( 0.08) ( 0.84) 

15 28.5 0.94 0.67 0.96 0.13 2.67 
Corrected ( 0.19) ( 0.13) ( 0.38) ( 0.06) ( 0.50) 

30 58.4 1.09 0.74 0.88 0.09 3.23 
Corrected ( 0.22) ( 0.18) ( 0.23) ( 0.07) ( 0.84) 

50 101.3 1.32 0.92 1.00 0.06 463 
Corrected ( 0.50) ( 0.38) ( 0.30) ( 0.04) ( 2.08) 
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Table G.75: Means, Standard Deviations, Skewnesses, Minima and Maxima of Ordi
nary Least Squares Regression Residuals of the Background Data for Data Set Structure 
#17 

Background (%) h Mean Standard 
Deviation 

Skewness Minimum Maximum 

Sample 200.0 0.00 1.28 -0.01 -3.68 3.52 
( 0.00) ( 0.07) ( 0.18) ( 0.70) ( 0.66) 

95 190.5 0.00 1.25 0.00 -3.50 3.45 
( 0.00) ( 0.07) ( 0.17) ( 0.64) ( 0.66) 

85 171.5 -0.00 1.24 0.01 -3.47 3.36 
( 0.00) ( 0.06) ( 0.18) ( 0.66) ( 0.64) 

70 141.6 0.00 1.20 0.06 -3.16 3.24 
( 0.00) ( 0.07) ( 0.28) ( 0.91) ( 0.59) 

50 98.7 -0.00 1.13 0.10 -2.75 3.03 
( 0.00) ( 0.06) ( 0.25) ( 0.32) ( 0.55) 

95 190.5 0.04 1.26 0.00 -3.47 3.55 
Corrected ( 0.01) ( 0.07) ( 0.19) ( 0.69) ( 0.66) 

85 171.5 0.10 1.26 0.01 -3.38 3.60 
Corrected ( 0.02) ( 0.07) ( 0.21) ( 0.76) ( 0.66) 

70 141.6 0.17 1.23 0.03 -3.09 3.57 
Corrected ( 0.03) ( 0.08) ( 0.29) ( 0.98) ( 0.67) 

50 98.7 0.26 1.20 0.04 -2.61 3.41 
Corrected ( 0.12) ( 0.07) ( 0.27) ( 0.40) ( 0.66) 
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Table G.76: Means, Standard Deviations, Skewnesses, Minima and Maxima of Reduced 
Major Axis Regression Residuals of the Background Data for Data Set Structure # 17 

Background (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

Sample 200.0 0.00 1.29 0.00 -3.71 3.67 
( 0.00) ( 0.08) ( 0.20) ( 0.72) ( 0.57) 

95 190.5 0.00 1.27 -0.00 -3.55 3.60 
( 0.00) ( 0.07) ( 0.20) ( 0-74) ( 0.62) 

85 171.5 0.00 1.27 0.01 -3.51 3.56 
( 0.00) ( 0.07) ( 0.21) ( 0.78) ( 0.61) 

70 141.6 0.00 1.23 0.02 -3.30 3.38 
( 0.00) ( 0.08) ( 0.28) ( 0.98) ( 0.68) 

50 98.7 -0.00 1.19 0.02 -2.91 3.07 
( 0.00) ( 0.07) ( 0.27) ( 0.36) ( 0.65) 

95 190.5 0.02 1.28 0.00 -3.54 3.66 
Corrected ( 0.00) ( 0.07) ( 0.21) ( 0.76) ( 0.61) 

85 171.5 0.06 1.29 0.01 -3.48 3.70 
Corrected ( 0.01) ( 0.07) ( 0.22) ( 0.82) ( 0.61) 

70 141.6 0.09 1.27 0.03 -3.28 3.63 
Corrected ( 0.02) ( 0.09) ( 0.27) ( 0.99) ( 0.67) 

50 98.7 0.14 1.23 0.03 -2.84 3.39 
Corrected ( 0.06) ( 0.08) ( 0.26) ( 0.39) ( 0.68) 
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Table G.77: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 2 
Scores of the Background Data for Data Set Structure # 17 

Background (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

Sample 200.0 0.00 6.08 0.00 -16.16 16.22 
( 0.00) ( 0.32) ( 0.21) ( 2.49) ( 1-64) 

95 190.5 0.00 5.98 -0.01 -15.28 15.39 
( 0.00) ( 0.27) ( 0.18) ( 1.93) ( 1-51) 

85 171.5 0.00 5.70 -0.10 -15.21 14.12 
( 0.00) ( 0.21) ( 0.23) ( 1.99) ( 1-74) 

70 141.6 0.00 5.37 -0.22 -14.95 12.12 
( 0.00) ( 0.24) ( 0.26) ( 2.11) ( 1.62) 

50 98.7 0.00 4.99 -0.28 -13.77 11.83 
( 0.00) ( 0.67) ( 0.26) ( 1.99) ( 2.86) 

95 190.5 0.00 6.02 0.01 -15.93 15.56 
Corrected ( 0.00) ( 0.29) ( 0.22) ( 2.59) ( 1.80) 

85 171.5 0.00 5.87 0.04 -15.21 14.97 
Corrected ( 0.00) ( 0.25) ( 0.26) ( 2.72) ( 2.18) 

70 141.6 0.00 5.80 0.09 -14.70 14.52 
Corrected ( 0.00) ( 0.35) ( 0.30) ( 3.02) ( 2.40) 

50 98.7 0.00 5.54 0.08 -13.09 13.99 
Corrected ( 0.00) ( 0.55) ( 0.32) ( 2.62) ( 3.06) 
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Table G.78: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 3 
Scores of the Background Data for Data Set Structure # 17 

Background (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

Sample 200.0 0.00 1.12 0.01 -3.13 3.23 
( 0.00) ( 0.06) ( 0.19) ( 0.54) ( 0.62) 

95 190.5 0.00 1.11 0.00 -3.09 3.09 
( 0.00) ( 0.06) ( 0.19) ( 0.56) ( 0.62) 

85 171.5 0.00 1.10 -0.00 -3.01 3.07 
( 0.00) ( 0.06) ( 0.20) ( 0.57) ( 0.63) 

70 141.6 0.00 1.07 -0.04 -2.88 2.84 
( 0.00) ( 0.06) ( 0.29) ( 0.57) ( 0.84) 

50 98.7 0.00 1.03 -0.06 -2.68 2.50 
( 0.00) ( 0.05) ( 0.26) ( 0.53) ( 0.28) 

95 190.5 0.00 1.11 0.00 -3.12 3.09 
Corrected ( 0.00) ( 0.06) ( 0.20) ( 0.55) ( 0.64) 

85 171.5 0.00 1.11 -0.01 -3.11 3.06 
Corrected ( 0.00) ( 0.06) ( 0.22) ( 0.54) ( 0.68) 

70 141.6 0.00 1.09 -0.03 -3.02 2.89 
Corrected ( 0.00) ( 0.07) ( 0.28) ( 0.59) ( 0.85) 

50 98.7 0.00 1.06 -0.03 -2.81 2.55 
Corrected ( 0.00) ( 0.06) ( 0.26) ( 0.57) ( 0.31) 
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Table G.79: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 2 
and # 3 Radial Distance of the Background Data for Data Set Structure # 17 

Background (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

Sample 200.0 0.80 0.55 1.06 0.04 2.87 
( 0.05) ( 0.03) ( 0.25) ( 0.02) ( 0.33) 

95 190.5 0.81 0.55 1.06 0.04 2.95 
( 0.05) ( 0.02) ( 0.24) ( 0.02) ( 0.36) 

85 171.5 0.81 0.55 1.05 0.04 2.91 
( 0.05) ( 0.03) ( 0.28) ( 0.02) ( 0.41) 

70 141.6 0.83 0.57 1.09 0.04 2.98 
( 0.05) ( 0.03) ( 0.32) ( 0.02) ( 0.52) 

50 98.7 0.86 0.59 1.01 0.05 2.85 
( 0.06) ( 0.03) ( 0.20) ( 0.03) ( 0.39) 

95 190.5 0.83 0.57 1.06 0.04 3.05 
Corrected ( 0.06) ( 0.04) ( 0.25) ( 0.02) ( 0.41) 

85 171.5 0.86 0.59 1.05 0.04 3.15 
Corrected ( 0.09) ( 0.06) ( 0.30) ( 0.03) ( 0.58) 

70 141.6 0.92 0.65 1.07 0.04 3.43 
Corrected ( 0.13) ( 0.10) ( 0.33) ( 0.02) ( 0.75) 

50 98.7 1.06 0.76 1.01 0.06 3.60 
Corrected ( 0.38) ( 0.27) ( 0.21) ( 0.03) ( 1-31) 
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Table G.80: Means, Standard Deviations, Skewnesses, Minima and Maxima of Ordi
nary Least Squares Regression Residuals of the Truncated Data for Data Set Structure 
#23 

Truncation (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

5 11.1 -7.81 1.57 -0.23 -10.70 -5.36 
( 0.47) ( 0.36) ( 0.38) ( 1-17) ( 0.93) 

15 32.1 -6.91 1.76 -0.66 -11.35 -4.05 
( 0.25) ( 0.22) ( 0.37) ( 1-17) ( 0.61) 

30 61.4 -6.39 2.04 -0.80 -12.27 -3.23 
( 0.26) ( 0.22) ( 0.24) ( 1-12) ( 0.69) 

50 99.3 -6.24 2.38 -0.74 -13.43 -2.37 
( 0.34) ( 0.18) ( 0.22) ( 1-07) ( 0.64) 

5 11.1 -7.26 1.69 -0.16 -10.30 -4.52 
Corrected ( 0.51) ( 0.40) ( 0.35) ( 1-17) ( 1.09) 

15 32.1 -5.74 1.93 -0.49 -10.35 -2.32 
Corrected ( 0.34) ( 0.24) ( 0.32) ( 1.28) ( 0.87) 

30 61.4 -4.37 2.22 -0.57 -10.42 -0.35 
Corrected ( 0.24) ( 0.25) ( 0.22) ( 1-17) ( 1.03) 

50 99.3 -3.22 2.61 -0.45 -10.75 2.14 
Corrected ( 0.43) ( 0.24) ( 0.28) ( 1-27) ( 1.33) 
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Table G.81: Means, Standard Deviations, Skewnesses, Minima and Maxima of Reduced 
Major Axis Regression Residuals of the Truncated Data for Data Set Structure # 23 

Truncation (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

5 11.1 -5.54 4.52 -0.01 -12.89 2.15 
( 1.22) ( 1.95) ( 0.18) ( 2.74) ( 4.34) 

15 32.1 -5.78 3.80 -0.16 -14.28 1.88 
( 1-13) ( 0.86) ( 0.31) ( 2.46) ( 1-81) 

30 61.4 -5.65 3.70 -0.26 -15.44 2.10 
( 0.86) ( 0.83) ( 0.23) ( 2.80) ( 1-19) 

50 99.3 -5.15 4.60 -0.22 -18.44 5.52 
( 1-37) ( 4.15) ( 0.21) (11.04) (11.10) 

5 11.1 -5.19 4.32 0.04 -12.13 2.44 
Corrected ( 0.91) ( 1-18) ( 0.22) ( 2.36) ( 3.24) 

15 32.1 -4.81 3.88 -0.14 -13.32 3.03 
Corrected ( 1-18) ( 0.56) ( 0.30) ( 2.83) ( 1.29) 

30 61.4 -3.88 4.06 -0.18 -14.41 4.78 
Corrected ( 0.74) ( 0.61) ( 0.34) ( 2.30) ( 1-70) 

50 99.3 -3.07 4.02 -0.04 -14.08 6.84 
Corrected ( 0.88) ( 0.49) ( 0.27) ( 2.35) ( 1.53) 
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Table G.82: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 2 
Scores of the Truncated Data for Data Set Structure # 23 

Truncation (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

5 11.1 4.97 5.35 0.02 -3.96 13.80 
( 2.12) ( 1.08) ( 0.44) ( 2.34) ( 2.84) 

15 32.1 3.57 5.62 -0.04 -8.28 15.94 
( 1-94) ( 0.75) ( 0.39) ( 3.76) ( 2.88) 

30 61.4 3.22 5.66 -0.06 -10.72 16.33 
( 1-U) ( 0.35) ( 0.47) ( 2.68) ( 2.96) 

50 99.3 3.04 5.77 0.02 -11.39 18.10 
( 1-16) ( 0.28) ( 0.31) ( 3.25) ( 2.32) 

5 11.1 5.32 5.28 0.01 -3.53 13.96 
Corrected ( 2.12) ( 1-07) ( 0.42) ( 2.34) ( 2.87) 

15 32.1 4.20 5.51 -0.03 -7.53 16.32 
Corrected ( 1-82) ( 0.78) ( 0.37) ( 3.53) ( 2.66) 

30 61.4 3.98 5.53 -0.05 -9.39 16.83 
Corrected ( 1-13) ( 0.37) ( 0.44) ( 2.41) ( 2.48) 

50 99.3 3.93 5.71 0.06 -9.94 18.76 
Corrected ( 1-16) ( 0.27) ( 0.28) ( 3.11) ( 2.00) 
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Table G.83: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 3 
Scores of the Truncated Data for Data Set Structure # 23 

Truncation (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

5 11.1 7.34 1.78 0.06 4.35 10.42 
( 0.66) ( 0.38) ( 0.32) ( 1.20) ( 1-17) 

15 32.1 6.67 1.83 0.55 3.51 11.08 
( 0.38) ( 0.20) ( 0.35) ( 0.83) ( 1.18) 

30 61.4 6.25 2.06 0.74 2.90 12.06 
( 0.30) ( 0.22) ( 0.24) ( 0.79) ( 1-14) 

50 99.3 6.16 2.38 0.71 2.16 13.26 
(0.34) ( 0.18) ( 0.24) ( 0.80) ( 1.06) 

5 11.1 6.92 2.04 -0.01 3.38 10.35 
Corrected ( 0.77) ( 0.44) ( 0.28) ( 1.44) ( 1.26) 

15 32.1 6.13 2.18 0.33 2.10 11.07 
Corrected ( 0.65) ( 0.25) ( 0.33) ( 1-25) ( 1.33) 

30 61.4 5.57 2.42 0.39 0.91 11.85 
Corrected ( 0.55) ( 0.30) ( 0.26) ( 1.44) ( 1.26) 

50 99.3 5.33 2.75 0.30 -0.74 13.10 
Corrected ( 0.64) ( 0.30) ( 0.30) ( 1.85) ( 1-21) 
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Table G.84: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 2 
and # 3 Radial Distance of the Truncated Data for Data Set Structure # 23 

Truncation (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

5 11.1 0.69 0.13 0.50 0.52 0.94 
( 0.08) ( 0.05) ( 0.39) ( 0.06) ( 0.20) 

15 32.1 0.78 0.20 0.65 0.47 1.27 
( 0.12) ( 0.05) ( 0.36) ( 0.07) ( 0.33) 

30 61.4 0.91 0.29 0.82 0.49 1.74 
( 0.14) ( 0.07) ( 0.24) ( 0.08) ( 0.40) 

50 99.3 1.21 0.45 0.77 0.51 2.60 
( 0.19) ( 0.10) ( 0.18) ( 0.10) ( 0.59) 

5 11.1 0.57 0.12 0.53 0.42 0.80 
Corrected ( 0.07) ( 0.05) ( 0.43) ( 0.06) ( 0.19) 

15 32.1 0.53 0.15 0.58 0.29 0.91 
Corrected ( 0.09) ( 0.04) ( 0.37) ( 0.06) ( 0.27) 

30 61.4 0.49 0.17 0.76 0.23 0.98 
Corrected ( 0.07) ( 0.05) ( 0.17) ( 0.05) ( 0.26) 

50 99.3 0.51 0.21 0.64 0.13 1.16 
Corrected ( 0.08) ( 0.05) ( 0.24) ( 0.04) ( 0.32) 
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Table G.85: Means, Standard Deviations, Skewnesses, Minima and Maxima of Ordi
nary Least Squares Regression Residuals of the Background Data for Data Set Structure 
#23 

Background (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

Sample 200.0 -0.00 3.83 -0.03 -10.21 10.27 
( 0.00) ( 0.20) ( 0.16) ( 1-13) ( 1-24) 

95 188.9 0.00 3.47 0.22 -7.22 9.81 
( 0.00) ( 0.21) ( 0.14) ( 0.62) ( 1.38) 

85 167.9 -0.00 3.07 0.43 -5.67 9.16 
( 0.00) ( 0.26) ( 0.14) ( 0.65) ( 1-47) 

70 138.6 -0.00 2.71 0.58 ^.63 8.40 
( 0.00) ( 0.23) ( 0.15) ( 0.42) ( 1-54) 

50 100.7 0.00 2.31 0.75 -3.80 7.32 
( 0.00) ( 0.21) ( 0.18) ( 0.57) ( 1-42) 

95 188.9 0.39 3.48 0.20 -7.05 10.13 
Corrected ( 0.03) ( 0.21) ( 0.14) ( 0.71) ( 1-31) 

85 167.9 0.97 3.10 0.36 -5.33 10.05 
Corrected ( 0.12) ( 0.26) ( 0.12) ( 0.93) ( 1.39) 

70 138.6 1.74 2.78 0.41 -3.97 9.99 
Corrected ( 0.21) ( 0.23) ( 0.13) ( 0.82) ( 1-45) 

50 100.7 2.65 2.48 0.40 -2.75 9.92 
Corrected ( 0.33) ( 0.22) ( 0.22) ( 1-45) ( 1.26) 
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Table G.86: Means, Standard Deviations, Skewnesses, Minima and Maxima of Reduced 
Major Axis Regression Residuals of the Background Data for Data Set Structure # 23 

Background (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

Sample 200.0 -0.00 4.93 -0.03 -14.09 12.92 
( 0.00) ( 0.77) ( 0.19) ( 2.67) ( 1.92) 

95 188.9 0.00 5.15 0.00 -14.37 13.55 
( 0.00) ( 1.89) ( 0.21) ( 6.15) (4.31) 

85 167.9 0.00 4.36 0.07 -11.54 11.82 
( 0.00) ( 0.96) ( 0.19) (3.64) ( 2.79) 

70 138.6 0.00 3.91 0.05 -9.64 10.35 
( 0.00) ( 0.82) ( 0.19) ( 2.33) ( 2.27) 

50 100.7 -0.00 4.29 0.08 -11.28 10.98 
( 0.00) ( 3.86) ( 0.23) (12.50) ( 9.81) 

95 188.9 0.31 4.94 -0.00 -13.31 13.12 
Corrected ( 0.04) ( 1-14) ( 0.21) ( 4.09) ( 2.33) 

85 167.9 0.75 4.41 0.04 -11.02 12.34 
Corrected ( 0.14) ( 0.61) ( 0.18) ( 2.18) ( 1.42) 

70 138.6 1.33 4.27 -0.02 -9.89 12.03 
Corrected ( 0.23) ( 0.57) ( 0.18) ( 1.56) ( 1.35) 

50 100.7 1.97 3.86 -0.05 -8.24 11.24 
Corrected ( 0.37) ( 0.39) ( 0.17) ( 1.64) ( 1.11) 
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Table G.87: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 2 
Scores of the Background Data for Data Set Structure # 23 

Background (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

Sample 200.0 0.00 6.08 -0.11 -17.67 16.56 
( 0.00) ( 0.23) ( 0.14) ( 2.05) ( 1.58) 

95 188.9 0.00 5.98 -0.12 -17.40 16.42 
( 0.00) ( 0.17) ( 0.15) ( 2.23) ( 2.38) 

85 167.9 0.00 5.94 -0.13 -17.12 15.83 
( 0.00) ( 0.20) ( 0.10) ( 2.36) ( 1.85) 

70 138.6 0.00 5.94 -0.09 -16.47 15.60 
( 0.00) ( 0.23) ( 0.09) ( 2.29) ( 1-77) 

50 100.7 0.00 5.89 -0.13 -15.88 13.77 
( 0.00) ( 0.23) ( 0.22) ( 2.12) ( 2.46) 

95 188.9 0.00 5.97 -0.13 -17.39 16.37 
Corrected ( 0.00) ( 0.18) ( 0.14) ( 2.16) ( 2.30) 

85 167.9 0.00 5.92 -0.15 -17.12 15.75 
Corrected ( 0.00) ( 0.20) ( 0.09) ( 2.19) ( 1-71) 

70 138.6 0.00 5.90 -0.10 -16.39 15.52 
Corrected ( 0.00) ( 0.24) ( 0.10) ( 2.25) ( 1.65) 

50 100.7 0.00 5.87 -0.10 -15.27 13.65 
Corrected ( 0.00) ( 0.23) ( 0.21) ( 2.34) ( 2.48) 
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Table G.88: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 3 
Scores of the Background Data for Data Set Structure # 23 

Background (%) n Mean Standard Skewness Minimum Maximum 
Deviation 

Sample 200.0 0.00 3.72 0.04 -9.89 9.95 
( 0.00) ( 0.21) ( 0.15) ( 1-19) ( 1-21) 

95 188.9 0.00 3.41 -0.18 -9.45 7.58 
( 0.00) ( 0.22) ( 0.13) ( 1.29) ( 0.71) 

85 167.9 0.00 3.03 -0.38 -8.87 5.94 
( 0.00) ( 0.26) ( 0.14) ( 1.38) ( 0.87) 

70 138.6 0.00 2.69 -0.54 -8.23 480 
( 0.00) ( 0.22) ( 0.14) ( 1-46) ( 0.49) 

50 100.7 0.00 2.30 -0.72 -7.23 3.93 
( 0.00) ( 0.20) ( 0.19) ( 1.36) ( 0.66) 

95 188.9 0.00 3.43 -0.13 -9.46 8.08 
Corrected ( 0.00) ( 0.22) ( 0.13) ( 1.22) ( 0.85) 

85 167.9 0.00 3.10 -0.24 -8.77 7.08 
Corrected ( 0.00) ( 0.27) ( 0.13) ( 1-15) ( 1.33) 

70 138.6 0.00 2.84 -0.24 -8.07 6.52 
Corrected ( 0.00) ( 0.25) ( 0.15) ( 1-17) ( 1.08) 

50 100.7 0.00 2.59 -0.20 -7.08 6.23 
Corrected ( 0.00) ( 0.26) ( 0.24) ( 0.85) ( 1-46) 
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Table G.89: Means, Standard Deviations, Skewnesses, Minima and Maxima of PC # 2 
and # 3 Radial Distance of the Background Data for Data Set Structure # 23 

Background (%) n Mean Standard 
Deviation 

Skewness Minimum Maximum 

Sample 200.0 0.29 0.15 0.71 0.03 0.82 
( 0.01) ( 0.01) ( 0.19) ( 0.01) ( 0.13) 

95 188.9 0.30 0.16 0.67 0.02 0.86 
( 0.01) ( 0.01) ( 0.21) ( 0.01) (o.ii) 

85 167.9 0.33 0.18 0.82 0.03 1.01 
( 0.02) ( 0.02) ( 0.25) ( 0.01) ( 0.17) 

70 138.6 0.36 0.20 1.01 0.03 1.16 
( 0.02) ( 0.02) ( 0.26) ( 0.02) ( 0.15) 

50 100.7 0.40 0.24 1.27 0.03 1.38 
( 0.03) ( 0.02) ( 0.26) ( 0.03) ( 0.14) 

95 188.9 0.27 0.14 0.66 0.02 0.74 
Corrected ( 0.01) ( 0.01) ( 0.23) ( 0.01) ( 0.10) 

85 167.9 0.26 0.13 0.75 0.02 0.74 
Corrected ( 0.02) ( 0.02) ( 0.21) ( 0.01) ( 0.13) 

70 138.6 0.24 0.13 0.74 0.03 0.68 
Corrected ( 0.02) ( 0.02) ( 0.22) ( 0.01) ( 0.12) 

50 100.7 0.24 0.13 0.84 0.03 0.67 
Corrected ( 0.02) ( 0.02) ( 0.28) ( 0.01) ( 0.15) 
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