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Abstract

Principal and Independent component analysis (PCA and ICA) are two ideas which are very much
related; both employing a statistical understanding of data to achieve their goals. Whereas PCA
exploits statistical correlation, ICA uses statistical independence to glean useful information from
data. Seismic data is inherently noisy, and is complicated by the presence of an unknown seis-
mic wavelet. Analysis of the data is aided by, both, noise suppression and blind deconvolution
techniques.

First, consider the subject of noise suppression. If the data are organized into several sequences
where, from one sequence to the next, the signal is correlated while the noise is uncorrelated, then
PCA has the ability to separate noise and signal. Here, PCA is analyzed from three points of view,
variance maximization, the singular value decomposition and neural networks. The resulting theory
is used to filter noise from a set of common midpoint seismic gathers by exploiting correlations which
exist from one gather to the next.

To further simplify analysis of these data, the Earth is often approximated as a linear system;
thus, the seismic trace is subject to the convolutional model. Convolution is a linear operation, and.
consequently, can be formulated as a linear system of equations. If only the output of the system
(the convolved signal) is known, then the problem is blind so that given one equation, two unknowns
are sought. This problem is well suited for ICA which has the ability to find some estimate of the
two unknowns, and here the blind deconvolution problem is solved using ICA. To facilitate this,
several time-lagged versions of the convolved signal are extracted and used to construct realizations
of a random vector. For ICA, this random vector is the, so called, mixture vector, created by the
matrix-vector multiplication of the two unknowns, the mixing matrix and the source vector. Due
to the properties of convolution, the mixing matrix is banded with its nonzero elements containing
the convolution’s filter. This banded property is incorporated into the ICA algorithm as prior

information, giving rise to a banded ICA algorithm (B-ICA) which is, in turn, used in a new blind

deconvolution algorithm. This algorithm is considered for both noiseless and noisy data.
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CHAPTER 1

Introduction

1.1 Motivation and Tasks

This thesis is concerned with processing data. Reflection seismic data are of particular interest, and
methods to both clarify and simplify these data are presented. Reflection seismic data analysis is
a mature field of research. It is a means to, more efficiently, harvest the Earth’s natural resources.
Thus, the funding and attention that it has received are hardly surprising. The abundance of re-
search is apparent in the multitude of available literature, including a two thousand page treatment
of the subject by Yilmaz [2001].

While this thesis is, ultimately, about data, its focus is processing. In particular, two concepts
are considered: First principal component analysis (PCA), and second independent component
analysis (ICA). These two ideas are very much related; both employing statistical understandings
of the available data to achieve their goals. PCA exploits statistical correlation, while ICA considers
statistical independence, as such, the relation between PCA and ICA is revealed in the equations
that bind independence and correlation.

Two tasks, stemming from seismic data, are pondered while considering PCA and ICA. Namely,
the tasks of noise suppression and blind deconvolution. As with all real data, seismic data are
inherently noisy. PCA is used as a means for suppressing random noise. This is by no means a
new concept. However, the methods are adapted, in this thesis, for collections of two dimensional

seismic gathers; seismic gathers which provide some representation of the Earth. To further simplify
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analysis of these data, the Earth is often approximated as a linear system; thus, the seismic trace
is expressed as the convolutional model which, because of the nature of the reflection seismology
experiment, is a single equation in two unknowns. The unknowns are the reflectivity of the Earth
and the seismic wavelet; the known quantity is the seismic trace. Solving for the two unknowns
in the one equation, allowed for by the convolutional model, is blind deconvolution. In this thesis,
a new algorithm is devised, using a modified ICA algorithm, providing a solution to the blind

deconvolution problem for both noiseless and noisy data.

1.2 Thesis Overview

In Chapter 2, PCA is analyzed from three points of view. First variance maximization, second
using the singular value decomposition and third using neural networks and ordinary differential
equations. These analyses give insight into how and why PCA can be used for the attenuation of
random noise. Both synthetic and real data examples illustrate its effectiveness.

Whereas PCA exploits correlation, ICA exploits independence. In Chapter 3, concepts from
higher order statistics and information theory allow ICA to solve for two unknowns in one equation.
In Chapter 4, a new blind deconvolution algorithm utilizing ICA is described. For this purpose, the
ICA algorithm is modified to match properties inherent in the convolutional model. In Chapter 5,
the blind deconvolution problem is treated with the additional complication of random noise. Again,
this requires modification to ICA to account for the noise and its presence in the convolutional

model.

1.3 Related Methods and Algorithms

‘As mentioned, one of the two tasks of this thesis, blind deconvolution, is solved by way of ICA,
and ICA can be likened to other approaches described in the literature. Most prominent of these
is projection pursuit [e.g. Jones and Sibson, 1987] which looks for interesting features in data.
It so happens, that one of these measures of interest is non-Gaussianity. As will be shown in
Chapter 3, this same measure is used for ICA. Further, a relation can be found between ICA

and self organizing neural networks. Indeed, in this thesis, the relationship between PCA and

neural networks is explicitly shown in Chapter 2. A similar relation holds between ICA and neural
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networks, and is well summarized in Bell and Sejnowski [1995].
Blind deconvolution is by no means a new subject. In geophysics, it was first introduced by
Wiggins [1978] and has received much attention [Haykin, 1994, 2000]. The result is an abundance of

work to draw from. It is not the intent of this thesis to provide an overview. Rather, the intention

is to utilize recent advances, stemming from ICA, to produce a new blind deconvolution algorithm.




CHAPTER 2

Principal Component Analysis

2.1 Introduction

Consider a multivariate data set, xT = [ Z1 Ty - Tm ] , where x is a random vector and z;(t;)
is the jt* realization of the i** random variable.! In seismic data, for example, the realizations of z;
might be a seismic trace, and a single realization of x could be a time slice from a seismic section.

Principal component analysis (PCA) transforms x via
G=ulx , i=1...m : (2.1)

where the random variables, (;, are principa:l compbnents and u;fp = [ Uil Ui Uim ] are
chosen to explain the data with few dimensions (principal components).

This chapter describes PCA from three points of view. Each is sorr}ewhat similar as they
satisfy the same constraints. However, each approach has unique motivation; thus, providing
further understanding of the method. First, PCA is derived by maximizing the variance of the
principal components [Cooley and Lohnes, 1971, Ch. 4]. Second, a connection is drawn between
explaining variance and explaining data using the singular value decomposition (SVD). Lastly,
neural networks are used such that the principal components can be updated as more information
(realizations) becomes available [Oja, 1982]. The chapter concludes with an example of PCA in

signal processing. In particular, an application to noise suppression for seismic data is considered

! All vectors in this thesis are column vectors. i.e. x is a column vector, and x7 is a row vector.
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where an original (to seismic data processing) extension of this method to three dimension is
explained [Kaplan and Ulrych, 2002]. While this chapter can be read independently of the rest of

the thesis, the methods developed herein are used in the remaining chapters.

2.2 PCA by Variance Maximization

In the approach of variance maximization, u; are found such that var ({;) are maximized subject
to some constraints. Namely that ulTui = 1, that the second principal component is uncorrelated
with the first, the third uncorrelated with both the first and second, and so on. The first of these
constraints is built explicitly into the cost function using a Lagrange multiplier. Constraining the
principal components to be uncorrelated is implicit in the formulation and, as will be shown, falls

nicely out of the mathematics. Hence, the appropriate cost functions (for maximization) are

¢(u;)) = var(G)+ X (1- uZTui)
= E(@) +x(1-ulw) (2.2)
= B[(ufx) (u]%)"] + X (1 - ulu)
= E(ufxxTu;) + X\ (1 - ul'w)

= uITCzui + A (1 — uITui) (2.3)

where ); are Lagrange multipliers and C, is the correlation matrix of x. Equation (2.2) assumes

E(¢;) = 0; that is, var (¢;) = E(¢?) - E (¢;)* . This assumption is trivial since the mean of x is

T
)

easily set to zero and E ({;) = E (ul'x) = uTE (x). Taking the gradient of equation (2.3) gives
Vé (u;) = 2C;u; — 2Au,

and setting this result to zero yield the extrema of the cost functions,

Czui = )\iui. (2.4)



CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS 6

Equation (2.4) is easily recognized as an eigen problem where u; are the eigenvectors of the sym-

metric matrix C;, and are therefore mutually orthonormal. Hence,

E(G:¢;) = B [(ufx) (u]%)"] = B (ufxx"w;) = uf Gy = Ajul'w; = A
Aj = V&I‘(Cj) , 1=13
(2.5)

Equation (2.5) illustrates two ideas. First, it confirms that the principal components are uncorre-
lated; and second, it demonstrates that the variance of the i** principal component, {; = u;frx, is
the 7** eigenvalue, );. Hence, ordering the pairs of eigenvectors and eigenvalues in the usual fashion
so that Ay > Ag > --- > ), completes the solution.

This derivation clarifies the role of PCA in terms of variance. In particular, the method attempts
to explain the variance in the data with few dimensions (principal components). However, the
connection between ezplaining variance and ezplaining data is, at best, mysterious. To illuminate

this relation it behooves us to consider PCA in terms of the SVD.

2.3 PCA and the SVD
The SVD decomposes a m x n matrix, A, into the product of three matrices,
A =UsVvT (2.6)

where

U = [ul | wg | --- I um]a
(w1 w]

Y = diag(o1,09,...,0p,0,...,0)

— diag(\/x,\/,\_z,...,\/x,o,...,o)

andu;, i =1...mandv;,i=1...nare the eigenvectors of AAT and AT A respectively, and o; and

Ai, © =1...p=rank(A) are, respectively, the nonzero singular values of A and the correpsonding

eigenvalues of both AAT and AT A [e.g. Strang, 1988, p. 443].
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The connection between PCA derived in the previous section and the SVD is readily found. If

[ z1(t) ] i T1(t1) x(t2) -+ 71(te) ]
A= .’Eg(t) _ 3)2(751) $2(t2) LR ) (tn) : (2.7)
| il?m(t) ] i xm(tl) -'Em(tQ) xm(tn) |

then AAT = nC, where A contains n realizations of x and Cj is, as in Section 2.2, the correlation
matrix of x. Hence, u; are the eigenvectors of C,. Further, noting that UTU = I, where I is the

identity matrix, equation (2.6) gives

(=UTA=3VT (2.8)

where » ) }
C1(2) Clt1)  Gilt2) -+ Giltn)

Ga(t) Co(t1)  Cat2) -+ Caltn)

. Cm(t) | B Cm(tl) Cm(t2) (m(tn)

and (;(t) are, as in Section 2.2, principal components.
In addition to decomposing A into the product of three matrices (equation (2.6)), the SVD,

equivalently, decomposes A into a sum of matrices,
P P
A= Zaiuiv;p = o E; (2.9)
i=1

i=1

where p = rank(A) and E; = u;v] are eigenimages. The eigenimages are significant since if -

. |
Ap=)Y oBi , k<p,
=1

then
minHA-—BHg = ”A—Akllg = Ok+1 (210)

where B is any rank(k) matrix. That is, with respect to the [ norm, Ay is the closest approximation
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to A for any rank(k) matrix {Golub and Van Loan, 1996, pp. 72-73]. Additionally, the rows of E;

are scalar multiples of v;. A fact which is easily seen by examining an eigenimage in its matrix

form,

- - _ -

Uil Uj1V;

T

Ug2 U2V

E, = . Vit Vi2 ct Uip | T

T

| Uim | L UimV; ]

Therefore, the structural information of E;, and thus also A, can be expressed using only the
vectors v;; and hence, using only principal components (see equation (2.8)). Combined with equa-
tion (2.10), eigenimages imply that information, which is coherent across the rows of A, is repre-
sented by the first few eigenimages (principal components). In other words, a matrix containing
mainly coherent information is synonymous with a matrix of small rank.

The relation between eigenimages and principal components along with equation (2.10) connect
the ideas of explaining variance and ezplaining data, namely that the two concepts are equivalent.
Hence, PCA attempts to exblain the data with few dimensions (principal components), and in

doing so, extracts coherent information from the data.

2.4 PCA by Neural Networks

In Sections 2.2 and 2.3 principal components, (;, are computed with full knowledge of the corre-
lation matrix, C,, which, in turn, requires some fixed number of realizations of x (). A neural
network formulation of PCA allows for online computation of principal components. That is, as
more realizations of x (¢) are made available, the principal components are updated accordingly.
Interestingly, the derivation of PCA in a neural network framework is motivated through a learning
rule designed to mimic the human brain. In particular, a modified version of a learning rule pos-
tulated by Hebb [1949] is used which, as it happens, allows the neural network to learn principal
components. ‘
Figure 2.1 is a schematic of a neural network consisting of m input neurons and one output
neuron. It finds the first principal component of some data, x (). The data are passed through the

input neurons of the network, and subsequently through the weights of the network, producing the
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n) o O
’U)l(t)
—alt) Q _wm(

Wi (1)

Tm (t) . Q

Figure 2.1: A schematic of a neural network for computing the first principal component.

output, y (t), such that

m

y(t) =D wi(t)zi(t).

=1
For each realization of x () presented to the network, the weights, w(t), are updated according
to a simple heuristic, called Hebb’s learning rule, stating that if both an input neuron and the
output neuron show activity simultaneously, then the weight connecting those two neurons should

be increased. In other words,
w; (tj41) = wi () +ny () 7 (¢5)

where 7 is some small scalar value. In this form the Hebbian learning rule, under certain cir-
cumstances, is a non-convergent algorithm. To circumvent this difficulty a modified Hebbian rule
is used where competition between the weights is introduced through a normalization term [Oja,

1982],

w; (t5) +ny (t5) =4 () ' (2.11)
iy (wi (t5) +ny (85) = ()]

Expanding equation (2.11) in a truncated power series gives [Oja, 1982]

wi (tj11) =

Dol

w; (tj41) = w; () +ny () (=i () —y (&) wi () - (2.12)
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Amazingly, as Oja [1982] shows, Hebb’s simple heuristic provides an algorithm which computes
the first principal component of the data. That is, w(t;) — u; as j — oo where u; is the first
eigenvector of C, = E (xxT); and consequently, y (t) converges to the first principal component.
The proof follows from associating the learning rule with a set of ordinary differential equations
(ODEs). Hence, the convergence analysis of the learning rule is transfered to the stability analysis

. of a set of ODEs. If 0w = w (t;11) — w (¢;), then from equation (2.12),

dw o= ny(t;) (x(t;) —y(t;) w(t;))
= [x(t5) % (45)" W (t5) = (w(t) % (8) % (1) w (1)) w (15)] (2.13)

where y(t;) = w(tj)Tx(tj) = x(tj)Tw (t;). Dividing equation (2.13) through by 6t = ¢;41 — 5,

and letting 6t — 0 and 1 — 0 at comparable rates gives

Jm, %V = lim L)% ()7 w (1) — (w (1) x (1) x (1) w (&) w (2,)]
(il—vtv = x(t)x ()" w(t) - (w O x ) x ()" w (t)) w(t). (2.14)

Taking the expectation of equation (2.14) with respect to the random vector x(t) yields

dw

= = E(x(t)x(t)T)w(t)—[w(t)TE(x(t)x(t)T)w(t)]w(t)
= Cyw— (W Cuw)w. (2.15)

It is easy to see that the stability points of equation (2.15) are given by w = 0 and w = u;,

1 =1...m where u; are the eigenvector of C,. That is,

d
aw -0
dt w=0
and
aw = \u; — (u;fr)\iui) u; = \u; — A\u; = 0.
dt w=u;

It can be shown, under certain conditions [e.g. Haykin, 1999, Ch. 8|, that the stability point, uy,

is the only one which exhibits local convergence. To illustrate this consider a two dimensional
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Figure 2.2: Solutions to the ODEs in equation (2.15) in phase space. Regardless of initial
value (denoted by small circles), w(tp), the solution converges to the first eigenvector of the
correlation matrix of the data.

example where z; (t) = sin (t) and z2 (t) = cos (t). Figure 2.2 plots trajectories of solutions, w (),
for various initial values. The initial values of the trajectories are denoted by small circles in the

plot. Without fail the algorithm converges to £u;.

2.5 Application to Noise Suppression

Consider a hypothetical sub-surface consisting of perfectly horizontal and flat reflectors. A seismic
survey is performed where the receiver spacing is kept perfectly constant. From such a survey
seismic traces could, of course, be gathered into common midpoint sections (CMPs), each of which
would contain the same signal but different realizations of random noise. For this situation a clever
processing step would be to simply stack the CMP gathers, thus preserving the consistent signal
while attenuating the unwanted random noise. However, the point of performing the survey in
the first place is to find the nature of the sub-surface. We cannot add together the CMP gathers
with the hope of reducing the noise in the prestack domain without first knowing something about

the geometry of the sub-surface. Doing so would, of course, attenuate random noise; but more

importantly, doing so would destroy signal.
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Figure 2.3: The synthetic example. (a) The reflector. Two of the CMPs (b)(c) without
incoherent noise and (e)(f) with incoherent noise. (d) The singular values corresponding to
the noiseless data, and (g) the noisy data. (h) The CMP in (e) projected onto the first two
eigensections. (i) The CMP in (f) projected onto the first two eigensections.
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Here, PCA is used to increase the signal to noise ratio in the prestack domain while respecting
lateral variations in the subsurface. The method extends the work of Freire and Ulrych [1988] and
is similar to methods studied in multispectral satellite imagery [Ready and Wintz, 1973; Richards,
1993, pp. 133-148] and face recognition software [Kirby and Sirovich, 1987; Pentland and Turk,
1991; Turk and Pentland, 1991]. From a collection of two dimensional common midpoint gathers
the SVD computes a vector basis, the components of which are called eigensections? and which are
trivially related to principal components. Projecting the seismic sections onto these eigensections
attenuates the noise in the data.

In terms of PCA each seismic section is assigned to a random variable, z;(¢), ¢ = 1...m where
the realizations of each random variable are data in a seismic section (CMP). Hence, the data
form the matrix, A, as in equation (2.7) where each row, z;(t), holds data from a lexicographic
reordered two dimensional seismic section. Computing the SVD of A, as in equation (2.6), yields
the orthonormal vector basis v;, ¢ = 1...m where v; are called eigensections which are, in turn,
trivially related to principal components (equation (2.8)). The projection of a row of A (a seismic
section) onto the subspace spanned by the eigensections maps the vector representation of the

section, z;(t), to a new vector of dimension m via the relation
R
cij = v z;(t) (2.16)

giving a new set of coordinates, c;, for each seismic section. Projecting the seismic sections,
A, onto the first k eigensections gives the rank(k) matrix, Ag. Through elimination of the last
m — k eigensections from the projection, Ay is the approximation to A with the most incoherent
information (the random noise) between the rows of A (the seismic sections) removed.

Here, two examples are considered. First, a simple but instructive synthetic (toy) example
shows the removal of incoherent noise in the CMP domain. Second, the lessons learned in the
synthetic example are applied to real data.

Consider ten CMP gathers recorded at evenly spaced points where the sub-surface topography,
shown in Figure 2.3a, consists of a whole space over a half space. Because of the simplicity of this

synthetic example (complications caused by the sudden change in depth of the impedance bound-

2A similar vector basis is computed in face recognition systems, the components of which are called eigenfaces.
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ary, multiple reflections, and so on are neglected), the two CMP gathers shown in Figures 2.3b-c
represent all variations in the signal. Applying the eigensection technique to these data produces
ten eigensections (v;, ¢ = 1...10) along with ten singular values (oy, 7 = 1...10) shown in Fig-
ure 2.3d. Notice that there are only two non-zero singular values. Thus, the first two eigensections
are the only significant ones (see equation (2.9)). These two eigensections span a subspace that
contains all ten of the CMP gathers. Thus, the CMP gathers can be projected onto these two

eigensections without loss of signal. In other words,
zi(t) = cavi + ciaVvo

where ¢;; and ¢;2 are given by equation (2.16).

Next, Gaussian distributed random noise is added to the data (Figures 2.3e-f) and the eigen-
sections are computed. The random noise is distributed throughout all of the eigensections. Thus,
while the singular values do not decay to zero, they do decay to some horizontal asymptote (Fig-
ure 2.3g). The singular values that fall close to this asymptote represent incoherent noise. Therefore,
this noise can be filtered by eliminating these undesired eigensections from the basis and projecting

the CMP sections onto this reduced basis,
2i(t) = ci1v1 + ciave

where, again, ¢;; and ¢;2 are given by equation (216) Figures 2.3h-i show the result of this filtering.

The extension of the eigensection technique to real data is straight forward. Figure 2.5a plots
nine CMPs to be considered in this real data example. Each CMP consists of twenty traces. For
dramatic effect, Gaussian distributed random noise is added to the data. As already mentioned,
the goal is to increase the signal to noise ratio of these data in the prestack domain without making
assumptions about the consistency of the sub-surface. The eigensection technique allows exactly
this.

Figure 2.5b plots (; (t) = o;v4, ¢ = 1...9 where v; are eigensections computed from the data
in Figure 2.5a and o; are the corresponding singular values. Of course, for plotting purposes,

the vectors, v;, are re-organized into their original two dimensional form via the inverse of the

lexicographic reordering. The singular values are plotted in Figure 2.4.
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Figure 2.4: Real data example. Singular values associated with the respective eigensections
of Figure 2.5b.

Though examination of Figures 2.4 and 2;5b, signal is contained in more than just the first
eigensection. This means that there is variation amongst all the CMPs and simply stacking them
to enhance the signal to noise ratio in the prestack domain would not be appropriate. However,
PCA can increase the signal to noise ratio by considering the projection of a CMP onto a subset
of the eigensections.

Figure 2.6 plots the fourth CMP of Figure 2.5a along with a stack of the CMPs and the
approximation to the fourth CMP using projections onto various combinations of eigensections. In

particular, plotted are
K
A; = Z CijVj
=1

for K = 1 through K = 4 in Figures 2.6¢-f respectively where ¢;; are given by equation (2.16).

As in the previous synthetic example, the singular values (Figure 2.4) indicate how many eigen-
sections should be included in the basis. Figure 2.6 shows that as more eigensections are used in
the reconstruction, signal that was destroyed in the stack reappears. In particular, two hyperbolic
events, delineated by arrows, illustrate this point. Of course, one cannot get something for nothing.
When more eigensections are used in the reconstruction of the original CMP both signal and noise
are added to the final sum.

A key point in the analysis outlined in this section is that each CMP has its own set of coordi-

nates, ¢;, and so when reconstructed from the eigensections, any and all of the CMPs in Figure 2.5a

are recovered uniquely.
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2.6 Summary

This chapter presented PCA from three points of view. First PCA was derived using variance,
illustrating a principal component’s disposition for explaining variance in the data and proving
that principal components are uncorrelated. Second, principal components were computed using
the SVD, showing that explaining variance and ezplaining data are conceptually equivalent. Lastly,
principal components were computed using a neural network with a Hebbian learning rule allowing
for the online computation of principal components and an understanding of them in terms of
ODEs. Regardless of the derivation, the result is a tool which is beneficial to signal and image
processing techniques. Here, PCA was used as a coherency filter for the purpose of attenuating
noise. In particular, a novel extension to three dimensions (time, offset and CMP gather) in seismic
data processing was presented which allows for signal to noise enhancement in the seismic prestack
domain.

In this thesis, the benefits of PCA extend beyond the scope of this chapter. In Chapter 3,

PCA and its ability to find uncorrelated random variables play an essential role in independent

component analysis (ICA). ICA uses this property of PCA to extract, from data, useful features.




CHAPTER 3

Independent Component Analysis

3.1 Introduction

Consider the linear system

As=x (3.1)

such that x is data generated by applying the forward operator, A, to a model, s. Inverse theory
provides methods for finding s given both A and x. That is, the forward operator and the data
allow for, one way or another, the reconstruction of a model. However, if only x is given while
A and s are unknown, the problem becomes insolvable without additional information. Robinson
[1957] introduced a solution to one such problem. Namely seismic deconvolution where the model is
the seismic reflectivity, the data is the seismic trace and the forward operator is a circulant matrix
generated from the seismic wavelet. To compensate for a lack of information (only the seismic
trace is known), Robinson postulated a white reflectivity and a minimum phase wavelet. This
extra information allows for the simultaneous reconstruction of the reflectivity and the minimum
phase wavelet given only the trace. Thus, Robinson found a method for solving the linear inverse
problem in equation (3.1) when both A and s are unknown, and the wavelet is minimum phase.
Now, consider an alternate set of prior knowledge, namely that the elements of the model are
mutually independent, and that, at least, all but one of the components of x follow non-Gaussian
statistics. No assumptions are made about A. These assumptions lead, indirectly, to independent

component analysis (ICA) [Common, 1994] which, once again, given only x in equation (3.1), allows

19
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for the simultaneous reconstruction of both A and s. This chapter describes ICA and illustrates
it with a simple (toy) example. In particular, the concepts of independence and Gaussianify are
related though the central limit theorem (CLT). Entropy, an indirect measure of Gaussianity and
independence, is explained and efficient methods for its computation are described. The use of
entropy in the ICA problem gives rise to an objective function whose extrema are trivially related

to the inverse of A, and which is further constrained through the use of principal component

analysis (PCA) (see Chapter 2).

3.2 The ICA Model

In what follows, the components of x_T = [ T, Tz - Tm ] will be referred to as mixtures pro-
duced by applying a square and nonsingular mixing matrix, A, to sources, s’ = [ $1 83 v+ Sm ] .
As in Chapter 2, the components of both the soufce and mixture vectors are treated as random
variables so that, for example, z; (t;) is the j" realization of the i** mixture. Hence, the ICA model

18

£L'1(t) = ansl(t) -+ a1232(t) +- 4+ almsm(t),

zo(t) = a2181(t) + axnse(t) + -+ + agmsm(t),

Tm(t) = amisi(t) + amas2(t) + -+ + GmmSm(t)

with the mixing matrix,
a1 Q12 -+ Qim
a21 Q22 - G2
A= " (3.2)
| @m1 Qm2 " Omm. |

Additionally, define a matrix, B, so that
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Figure 3.1: Independent and non-Gaussian sources. (a) s; (t) and (b) sz (2).

where yT = [ Yi Y2 o Um ], y; = blx, i =1...m and b} is the i** row of B. The random
variable, y;, is an independent component exactly when b; is found such that y; « s; for some j.
In other words,oindependent components are sought such that they are broportional to the sources.
The vagueness in the proportionality between a source and an independent component is resolved
by, arbitrarily, setting var (y;) = 1. Additionally, for reasons of simplicity, which will become clear
shortly, the ICA model assumes E (y;) - 0. This assumption is trivial to apply since the mean of
the mixture vector, x, is easily set to zero, and, as in Chapter 2, E(y;) = E (blrx) = b!E (x).

To further illustrate the ICA model consider Figures 3.1a-b which plot one hundred realizations
of s1(t) and s5(t) respectively for some s; and sp. Applying a mixing matrix to these sources

produces, for example,

X = As
T 1.0 1.1 S1

2 1.2 1.3 $9

where () and zo(t) are plotted in Figures 3.2a-b respectively. How s is found from just x is the

subject of ICA and this chapter.
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- 0 10 20 30 40 50 60 70 80 90 100

Figure 3.2: Mixtures produced by taking linear combinations of the sources, s; (), in Fig-
ure 3.1. (a) z; (¢) and (b) x5 (t).

3.3 The CLT, Non-Gaussianity and Independence

The CLT plays an essential role in understanding the workings of ICA. In particular, it behooves us
to understand the relation between the CLT, Gaussianity and independence. Doing so illustrates
the basic principals of ICA and leads, indirectly, to an appropriate algorithm.

The CLT is'stated as follows. Let s1, sg,. .., sy, be independent and identically distributed (iid)

random variables with variance o2 and mean 0. If

m
y=> s
i=1

then

. Y AN / _ '
TI}L@WP<Uﬁgy>—Fy(Y<y) , o<y <oo

where Fy is the cumulative distribution function for a standard Gaussian random variable [Rice,
1995, pp. 166-173]. Hence, if s; are non-Gaussian and iid random variables, then the sum, y, is

more Gaussian then the parts, s;.

Further, from the ICA model presented in equations (3.3) and (3.1),

y = Bx =BAs = Ds
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where D = BA. Hence, the i** independent component is
yi = dl's (3.4)

where d7 is the i® row of D. Given equation (3.4), iid and zero mean sources, and the CLT, the

following two points relate Gaussianity and independent components.

e If an independent component is sought such that y; o s;, then d; must only have one nonzero

component.

e Further, if y; is sought such that it is as non-Gaussian as possible, then d; must have only
one nonzero component; otherwise, at least two random variables are summed producing a

more Gaussian result.

Hence, y; = bzrx = d?s is an independent component exactly when it is maximally non-Gaussian.
This, in turn, means that ICA requires some measure of Gaussianity.

The CLT presented above is the Lévy Theorem. It requires iid sources and, although providing
a CLT with an easily understood proof, is therefore rather restrictive. However, the Lévy Theorem
is a specific case of the more general Lindeberg Theorem which provides a CLT for a sequence of
independent random variables with finite variances. Even more general forms of the CLT exist
for independent random variables which require no assumptions about the existence of moments
[Petrov, 2000]. Additionally, the assumption of independence can be weakened, leading to the aptly
named weak dependence conditions [Sunklodas, 2000]. These conditions drop the requirement of
mutual independence in favor of independence between sets of the random variables. Regardless, for
the purpose of this thesis, one can assume that ICA seeks out independent components which are,
indeed, mutually independent. However, the weak dependence conditions imply that the assumption

of mutual independence, for ICA, is sufficient but not absolute.

3.4 Entropy and Gaussianity

In the previous section Gaussianity was used as a measure of independence. Here, a measurement

central to information theory, called entropy for discrete random variables and differential entropy

for continuous random variables [Shannon, 1948], is considered. It is well known that if only the
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mean and variance of a continuous random variable, y, are given, then y has maximum differential
entropy exactly when it has Gaussian statistics.

Entropy, H (p1,p2,...), measures the randomness (disorder) of a discrete random variable, Y,
where p (Y =Y;) = p; is a probability mass function. As such, entropy must satisfy the following

conditions [Jaynes, 1995, Ch. 11].

e H (py1,po,...) exists and provides a relation between real numbers and uncertainty such that
if there are many possibilities, entropy is large; and conversely, if there are few possibilities,

entropy is small.
e H(p1,p2,...) is a continuous function of p;.

e H (p1,p2,...) is consistent such that if there are multiple derivations, each arrives at the same

measure.

It can be shown that [Jaynes, 1995, Ch. 11]
H(p) == pilog,pi (3.5)
i

fulfills these requirements.’
For example consider, as Cover and Thomos [1991, pp. 14-15] do, an experiment that has two
possible outcomes with corresponding probabilities p and 1—p (a Bernoulli distribution). Following

equation (3.5) the entropy of this experiment,

H (p) = —plogyp — (1 — p) logy(1 — p), (3.6)

is plotted in Figure 3.3 for p € [0,1]. If p = 1/2, then the experiment is in a state of maximum
disorder or maximum uncertainty, and so, entropy (a measure of uncertainty) is maximum. Con-
versely, if the outcome of the experiment is more certain, then p is either closer to 0 or closer to 1,
and entropy is smaller.

For continuous random variables an analogous measure called differential entropy, A (p, ), is

"When the base two logarithm is used (b = 2), the units of entropy are bits. So called because of its relation with
coding lengths and binary numbers.
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Figure 3.3: H(p) as in equation (3.6) plotted with p € [0, 1].

used such that

ho)=- [ ” by () Inp, (4)dy (3.7)

—c0
where, in the context of ICA, y is an independent component. The subscript ¢ is dropped for the
sake of clarity.

It follows that distributions can be found which maximize entropy. Indeed, for the simple
discrete example presented above, a Bernoulli distribution with p = 1/2 maximizes entropy. Of
course, this is for a rather limited scenario where the experiment has only two possible outcomes.
Consider, instead, maximizing the differential entropy of a continuous random variable, y ~ p, (y),

satisfying the usual conditions,

py(y) 20 , yeR, (3.8)

o«
/ py (Y)dy =1 (3.9)

-0

and the moment constraints provided by r; (y) and ¢; such that
fo's) .
/ ri(y)py (Wdy=¢; , i=1...1L (3.10)
—00

Hence, the appropriate cost function (for maximization) is

¢(py) = hipy)+A (/Zpy (y’)dy’—1)+§>\i (/_Zn(y’)py (y’)dy’—ci)

- /oo py () Inpy (v) dy' + X (/Zpy (v) dy' - 1> +§’\i (/_C: ri () oy () dy' - ci)

—00 —_
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where )\; are Lagrange multipliers. Differentiating with respect to the y** component of Dy gives

2

P
5= =—lnp,(y) ~ 1+ X+ ) Airi(y),
py

=1

and setting this result to zero yields the extreme point of the cost function,?

l

Py (y) = exp (—1 + o + 3 Airi (y)) : (3.11)
i=1 . ) :

In Section 3.2, independent components are assigned a mean of 0 and a variance of 1. Hence, { = 2

and equation (3.11) becomes

py () = ol

Setting A, = In (27r)_1/ 241, . =0and Ay =1 /2 yields a Gaussian distribution which satisfies
the constraints in equations (3.8)-(3.10) and, hence, maximizes entropy.

Entropy gives a measure of Gaussianity in that minimizing entropy maximizes non-Gaussianity.
Hence, y is an independent component exactly when it has minimum entropy. Unfortunately,
as is evident from equation (3.7), this creates the rather difficult task of estimating integrals of
probability density functions (pdfs). Indeed, when only a finite sampling of the random variable
is given to constrain the governing pdf, the task seems daunting. In the next two sections, two

solutions to this problem are described, both, giving attainable approximations of entropy.

3.5 Entropy and Polynomial Expansions of pdfs

Here, to approximate entropy, a pdf is expanded on a set of basis functions, called Chebyshev-
Hermite polynomials, derived from the Gaussian distribution. The resultant series, known as
Gram-Charlier and Edgeworth expansions, are used in the definition of entropy, replacing the
integration operator with expectations, and thus, allowing for efficient computations. In particular,
equation (3.21), which estimates a measure called negentropy, will be derived such that maximizing

negentropy is equivalent to minimizing entropy.

®Proof that the extreme point is a maximum is left for Appendix A.
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Letting
1
a(y) = me"%yz (3.12)
define Chebyshev-Hermite polynomials, H;, such that
i d
(-1) d—yia(y) =H;(y)a(y). (3.13)

’

waly) = -yal(y)
Lo = B2-1)al

Loy = (- +3)a) ,
Lraly) = (¥ -6y2+3)a(y)

| Loy = (-4 +10° - 15y) o (y)

and hence, it follows from equation (3.13) that

(H, = 1

H =y

Hy = y*-1

) Hy = -3y ’
Hy = y*—6y°>+3

| Hs = y°—10y3 + 15y

yielding a pattern so that, in general [Kendall and Stuart, 1977, p. 167],

S I il6]

g (3.14)

2z2)Y T 3EnY
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Additionally, it can be shown [Kendall and Stuart, 1977, p. 168] that

{ 0 ”éj. (3.15)

/°°Hi(y>Hj<y>a<y>dy= T
—00 bty oi=g

Expanding an arbitrary pdf, p, (y), on a basis of functions comprised of Chebyshev-Hermite

polynomials yields the Gram-Charlier series of type A,

py (W) = cHi(y)a(y) (3.16)

where, due to the orthogonality properties in equation (3.15),

e L (317)

—00

Substituting equation (3.14) into equation (3.17) gives

1 [ i i My ¥
N PN I C R
= ‘{E(y)“z(u)E(y )+ - men

E (yi—6) 4.

and combining this result with the first four terms (5 = 0...3) in equation (3.16) yields

by () = ) {Ho+ BG) Hi + 5 (B0~ 1] B )+ § [E0) - 38 )] Ha ()

+i [E (v*) — 6E (y%) + 3] Ha (y) + O (95)}-

However, if y is an independent component, E (y) = 0 and E (y?) = 1; hence, noting that H, = 1,
1 1 5
py (v) = a(y) |1+ graHa(y) + 57raHa(y) + O (v°) (3.18)

3 [E (yz)]2 are, respectively, the skewness and kurtosis of the

where k3 = E (y3) and k4 = E (y4) -

zero mean random variable, y [e.g. Nikias and Mendel, 1993].
Equation (3.18) is used in the definition of differential entropy (equation (3.7)) yielding an
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estimate of a related measure called negentropy, J (p, (y)), such that

J(py @) = h(py (1)) — h(p () (3.19)

where £ ~ N (0,1). That is, £ has Gaussian statistics with the same mean and variance as y.
Hence, as entropy does, negentropy gives a measure of Gaussianity; in particular, the distance
from a Gaussian distributed random variable. Substituting equation (3.18) into the definition of

differential entropy (equation (3.7)), and neglecting higher order terms gives

h(py (y)) ~ — ” a(y) |1+ lfﬂ:sﬂ's (y) + in4H4 ()|
- 6 24

[ma (v) + In (1 + %mﬂg (v) + élzmm (y))] dy. (3.20)

Further, applying the first two terms in the Taylor series, In (€) = ¢ —€2/2 + - -, to equation (3.20)

yields

By )~ = [ a) (14 grafs ) + gprafis ()

6 24 2

[lna (y) + 1K3H3 (y) + i"’v4H4 (v) - : (6 24

2 .
lf'€3H3 (y) + if*”v4H4 (y)) ] dy

which, using the orthogonality constraints in equation (3.15), becomes

o0

K,2 K22
h (py (y))%—/_ o (y) Ina(y) dy + 31(2y)+ 44;?/)

Therefore, it follows from equation (3.19) that [Jones and Sibson, 1987]

J (py () = G ORAC) (3.21)

which is relatively simple to compute.
To review, the random variable y is an independent component exactly when it is maximally

non-Gaussian, or equivalently, when its negentropy is maximum. However, while the approximation

in equation (3.21) is useful (as will be illustrated shortly), it can also be problematic in that
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any outliers in a sample of y adversely effects the approximation of the cumulants (kurtosis and
skewness) [Hyvérinen et al., 2001, p. 182]. A more accurate measure of negentropy, described anon,

greatly improves the robustness of ICA.

3.6 Entropy and Nonpolynomial Expansions of pdfs

Hyvérinen [1998] introduced an alternative to the polynomial expansions, using a basis of nonpoly-
nomial functions, which greatly reduces the effect of outliers in the approximation of negentropy.

In Section 3.4 the maximum entropy distribution,

l
py (y) = exp(=1+ o) exp <Z AT (y)> ) (3.22)

=1

was derived and required to satisfy the moment constraints,

/oo ri()p, Wdy=c¢; , i=1...1L (3.23)

—00

Here, equations (3.22) and (3.23) are used to find an estimate of negentropy. The end result is
equation (3.35).

Since y is an independent ‘component, E(y)=0and E (y2) = 1; consequently, appropriate mo-
ment constraints are obtained by letting r; =y, ro = y?, ¢; = 0 and ¢; = 1. Hence, equation (3.22)

becomes

{
Py () exp (—1+ Ao) exp <>\1y +hoy” + Y Nir (y))

1=3

2 1 !
= exp(—1+Xo)exp {—-y?— + My + ()\2 + 5) v ) Airi(y)
1=3

= V2ra(y)exp(—1+ o) exp (3.24)

!
1
Ay + (>\2 + 5) y? + E Airi ()
=3

where « (y) has the form of a standard Normal distribution as in equation (3.12). Applying the
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first two terms in the Taylor series, e =1+ €+ -- -, to equation (3.24) gives
1 !
py (W~ A |1+ y+ (/\2 + 5) v Y i (y)] (3.25)
i=3 .
where A = V27a(y)exp(—1+ X,). Additionally, it is useful to assume that r; (y) follow the

orthogonality constraints [Hyvéirinen, 1998],

fo'e) 0 , . . !
/ o (y) 7 (v) 5 (v)dy = { 1 7 (3.26)
oo , 0=
and
/ a)ri(ytdy=0 , k=0,1,2 , i=1...1 (3.27)

Inserting equation (3.25) into [p,dy = 1 and the prescribed moment constraints in equa-
tion (3.23); and using the orthogonality constraints in equations (3.26) and (3.27), a systém of
algebraic equations is derived which, when solved, greatly simplifies equation (3.25). In particular,

letting A = Ac (y), this scheme yields

[ nway=1=A0+x+1/2), (3.28)

—00

and for the zero mean constraint (i = 1 in equation (3.23)),

w ~
| pe @ty =0=Ax, (3.29)
—00
Third, using the unit variance constraint (i = 2 in equation (3.23)),

OO 5 4
| pe@ptdy=1= A0+ 0o+ 1/2) B (Y]

—o0

where £ ~ N(0,1). Further, since x4 (§) = 0 =E (¢*) — 3E (¢2), E (¢*) = 3E (¢?) = 3; and, as a

result,

Al +3(N+1/2)]=1. (3.30)
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Again, inserting equation (3.25) into the moment constraints in equation (3.23) for i = 3...1,

o0

o0 l
| nn@dy=c; =AY 5 [ i) Gy = Ay (3.31)

-0 i=3 -0

Equations (3.28)-(3.31) provide a system of algebraic equations which are easily solved yielding
A=1,0 =0, N = —1/2 and A; = ¢;. Hence, from equation (3.25),

l
py (y) = aly) (1 +) e (y)> -
=3

Combining this result with differential entropy gives

hpy W) = —/m () Inp, ()dy

. |
- _/ (y) (1+Zcm )111 {Oé (v) <1+Zcm(y)>]dy
—_ » =3
= - [ awmatdy (3.32)
0o {
—[_a@ngymmmmawwy (3.33)

_ /_oo (1 + Zcm ) In (1 + Zcm ) (3.34)

The first term (3.32) is the differential entropy of a Gaussian random variable, h (pg (¢)). The
second term (3.33) is eliminated by noting that Ina (y) = —In (vV27) — y?/2; hence,

/ chn YIna (y)dy
_Z[_c’/ yn()dy+c,-ln(\/2—;>/

-0

o0

a(y)r; (y)dy] =0.

The third term (3.34) is simplified using the first two terms in the Taylor series, (1 +€)In(l +¢€) =
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€+ €?/2+ .-+, such that

_/_oo (1+Zczn )ln(l+Zcm )

| 2
~— / o (y) Z ciri (y) + -;— (Z Cirs (y)) d
- i=3 i=3

o]
! - 1 g [
2
_ch/_ooa dy—i/oo Zcia(y) _2226107
1=3 1=3 1=3 j=4
1
-1 o
=3

Recombining these results produces

N -
O
=0

h(py (v) = h(p, (£)) -

and so [Hyvérinen, 1998],

where ¢; = E(r; (v)).

33

Ty (y)) dy

(3.35)

The preceding derivation is long; but, given the simplicity and utility of the result, well worth the

effort. What is left is to choose appropriate nonlinearities, r; (y), the choice imposing a distribution

on y (see equation (3.22)).

3.7 ICA and its Cost Function

Due to the relation between negentropy and independent components, the ICA problem is reduced

to one in optimization with an associated cost function measuring negentropy. Two such measures

are presented in Sections 3.5 and 3.6. Here, this optimization problem is explicitly defined, and the

utility of PCA in terms of ICA is explained.

PCA, used as a pre-processor, allows for the derivation of much needed constraints for the
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optimization problem. Given zero mean mixtures, x, let
z=Ix

where z7' = { 2 2 o Zm ] are whitened mixtures such that E (z) = 0, E (zz?) = C, = I and
I is the identity matrix. That is, the random variables, z;, + = 1...m are mutually uncorrelated.
The utility of z is illustrated by understanding the relation between uncorrelated and independent.
Namely that independent implies uncorrelated. Consider, for example, two random variables, y;
and ys, that follow the bivariate pdf, p,, , (y1,¥2), with marginal pdfs, p,, (y1) and p,, (y2). Also
let g1 (1) and g9 (y2) be arbitrarily defined functions. The random variables, y; and yo, are, said

to be, uncorrelated if

E (y192) = E(y1) E (y2) .

Further, if y; and y; are independent, then p,. ., (y1,¥2) = py, (41) Py, (y2). Thus,

Efg1 (1) 92 (32)] = /_ N /_ N 91 (y1) 92 (¥2) Py, v, (Y1, Y2)dy1dy2

= /00 il (yl)pyl (y1)dy1 /°° 92 (y2) Py, (y2)dy2

—0 —00

= Elg1 (11)]E[g2 (32)].- (3.36)

Therefore, uncorrelated is a special case of independent where g1 (y1) = 1 and g2 (y2) = yo;
and hence, independent implies uncorrelated but uncorrelated does not imply independent. Since
the goal of ICA is to produce components that are independent, they are also uncorrelated and
under orthogonal transformations they stay that way. Therefore, an appropriately chosen rotation
transforms uncorrelated components into independent components. This immediately drops the
degrees of freedom in the optimization problem by one.

From Chapter 2, and in particular equation (2.5), an appropriate choice for T’ is easily found

such that
r=xtu’ (3.37)
where, as in Chapter 2, ¥ = diag (vA1,vAz,...,vVAn) and U = [ u | uw | o | up ]

where u; and A; are, respectively, the eigenvectors and eigenvalues of the covariance matrix of the
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Figure 3.4: A whitened version of the mixtures in Figure 3.2. (a) 2z1(¢) and (b) 25(¢).

mixtures, C;. Recalling that u; are mutually orthonormal,

T - .
uTx u?x _ E (uszxTuj) _ uzTCzuj _ )\juzTuj _ 0 y 1 ?é J
Vi

E(ziz;) = E ( L — = = =
v Vi VA VA VA 1, i=j

confirms that equation (3.37) is a good choice for I'. The result of whitening the data in Figure 3.2
is shown in Figure 3.4.

With whitening, the ICA model becomes I'As = I'x or more succinctly,
Ws =12z

where W = T"'A. Additionally, define Q such that y = Qz, qZT is the i row of Q and y; = q}z
is an independent component exactly when q; is chosen such y; has maximum negentropy. Hence,

an appropriate cost function (for minimization) is

¢ (ai) = —J (o, (1)) = —J (p, (a] 2)). (3.38)

Figure 3.5 plots equation (3.38) for the whitened data in Figure 3.4 using the measure of negentropy
defined in equation (3.21).

As already mentioned, whitening the data further constrains the cost function. In particular,

recalling that var (y;) = 1, E (y;) = 0 and that the independent components are uncorrelated such
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i 1 TE15

Figure 3.5: The cost function for ICA (negative negentropy) computed from the whitened
mixtures in Figure 3.4 using the Gram-Charlier series.
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Figure 3.6: The cost function in Figure 3.5 for the unit circle plotted versus (a) 8, (b) g1
and (c) go.

that E (y;y;) =0, ¢ # J gives

0, i#j

Eyy) =B |(a]2) (of2) | =B (af 22" a)) = of Coqj = af'q; = L i
y =17

The result, quqi = 1, means that the cost function in Figure 3.5 need only be considered on the
unit circle of its domain. That is, the two degrees of freedom in ¢ (qf) for qf = [ Qg ] is
reduced to one variable, 6, such that ¢; = sin(6) and .qQ = cos (#). The cost function traced out
along this unit circle is plotted in Figure 3.6. Notice that there are four distinct local minima in
Figure 3.6a. Each one corresponds to an independent corhponent. However, for this example there
are only two sources and four independent components. Recalling that y; < s; and remembering
the constraint var (y;) = 1, it is clear that both y; and —y; satisfy the ICA definition. Hence,
generalizing, the cost function always providés twice as many local minima as sources. Multiple

local minima are found through consideration of the constraint, qiqu =0, 7 # j. Indeed, using

Gram-Schmidt orthogonalization it is trivial to find a q; which is orthogonal to q; [e.g. Bretscher,

1997, p. 201].
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q2

(0)
i
a step is taken following the gradient of the cost function producing a new point which is

Figure 3.7: A simple optimization scheme for ICA. Given a point, q; ’, on the unit circle,

ey

)

k+1)

projected back onto the unit circle giving q; . This is repeated until |]q§ - qgk)H2 <€

where ¢ is some prescribed tolerance.

3.8 ICA Optimization Algorithms

The problem presented in the previous section requires, of course, a scheme for finding the extreme
points of the cost function given the constraints. Here, two such methods are presented. The first
using a gradient descent type algorithm and the second using a Newton tybe algorithm.

Figure 3.7 illustrates a simple gradient algorithm for finding one local minimum, and hence one
independent component, of the cost function in equation (3.38) subject to the constraint, qZTqi =1.

It is a modified gradient descent algorithm such that in the transition from iteration £ to k +1

o = o -avg (V) -
(k+1) g+ (3.39)

; (k+1)
' NEERITE

where « is some specified constant which governs the rate of convergence. Hence, each iteration
(

ik+1), by following the negative gradient of the cost function away from the

(*)

1

produces a new vector,

unit circle and projecting this result back onto the unit circle. At a local minimum, q; ’, the gradient

of the cost function is orthogonal to the unit circle [e.g. Nocedal and Wright, 1999, p. 320]; hence,
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Figure 3.8: The independent components computed from the whitened mixtures in Fig-
ure 3.4. The solution is found using the polynomial approximation of negentropy in equa-
tion (3.21) and the gradient optimization scheme in equation (3.39).

qng) = qgk) = qg*) and the algorithm converges. Multiple independent components are readily

found using Gram-Schmidt orthogonalization and choosing qu) g*)

such that it is orthogonal to q; * for
t=1...75—1. Figure 3.8 plots the independent components found from the mixtures in Figure 3.2
using the polynomial approximation of negentropy in equation (3.21) and the gradient descent
optimization scheme in equation (3.39). It is obvious that the algorithm has found independent
components. That is, it is obvious that y; o« s;, 1 = 1, 2. .

Hyvérinen [1999a] presents an alternative scheme to equation (3.39) which employs approx-
imative Newton steps in the iterative scheme. In particular, the nonpolynomial approximation
of negentropy in equation (3.35) is considered using only one term in its series expansion which,

combined with the constraint quqi =1, gives, for minimization,

#(a) = ~3 [Br )] + ) (ol — 1) (3.0

where y; = q7 z and X is a Lagrange multiplier. The gradient of ¢ is

Vo () = —E(r (1) E (r' (%) 2) + 2Mq;,

and ignoring the scalar value, —E (r (;)), allows for computation of an approximative Hessian, H,
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such that
H=~E (" (y;)zz") + 2\I = E (r" (;)) E (z27) + 20I = [E (" (y;)) + 2\] L.

This approximation gives a Hessian which is easily inverted, leading to the approximative Newton

step (from iteration k to k + 1) given by

®)
k+1) _ (k) _ B (' (yi) 2) + 2)q,
A TR G

Multiplying equation (3.41) through by the denominator in its third term yields

[B (" () + 22« = [B(" @) +2) ol B (' (1) 2) - 22

7

= B( () o ~B( (1))

Hence, an appropriate algorithm is

Y = B () d® - B (1) 2)
(k+l) q(k+1) . (3.42)
E A T T

The projection back onto the unit circle compensates for the approximations made which neglect
scalar values in both the gradient and the Newton step.

While the simple gradient scheme works well for small examples. It is found that the algorithm
of Hyvirinen [1999a] in equation (3.42) is advantageous in both its efficiency and robustness.

Therefore, in the remainder of the thesis, it is used extensively.

3.9 Summary

This chapter introduced ICA and described algorithms for computing independent components.
ICA considers mixtures of random variables such that its goal is, given only the mixtures and an
assumption of independence, to recover the corresponding sources. It was shown that the CLT

allows for exactly this such that the independent components are obtained exactly when their

statistics are maximally non-Gaussian. Measures of Gaussianity, entropy and negentropy, were
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derived and approximated using series expansions of the pdf of the independent component. Both
polynomial (Chebyshev-Hermite polynomials) and nonpolynomial [Hyvéarinen, 1998] basis functions
were used yielding two different approximations of negentropy and, hence, two measures for the.
computation of independent components.

This chapter presented a simple, but instructive, example of ICA. For this example the polyno-
mial expansion was sufficient for finding independent components. However, for geophysical data
sets the sources are, more often than not, super-Gaussian. For such data sets, the nonpolyno-

mial expansion is essential, the polynomial expansion suffering from outliers in the sampling of the

associated random variable.




CHAPTER 4

Blind Deconvolution by ICA

4.1 Introduction

Consider two time sequences, h (t) and p(t), and their convolution,

X = h(@)*pt) (4.1)

o0

- / h(t—7)p(7)dr.

-0

Neglecting noise, equation (4.1) is often used to model seismic data where x () is a seismic trace
generated by convolving a wavelet, h (t) (the filter), with the Earth’s reflectivity, p (¢). This linear
representation of the truth is useful but, for real data, introduces an equation with two unknowns
(the wavelet and the reflectivity). A blind deconvolution algorithm must find the unknowns given
only the trace; hence, the problem is ill-posed and requires additional constraints. Here, indepen-
dent component analysis (ICA) is used to develop a blind deconvolution algorithm such that the
reflectivity is constrained to follow the ICA model.

Chapter 3 introduced and explained ICA. In this chapter the convolution problem is presented
and adapted to an ICA framework yielding a new blind deconvolution algorithm. The convolutional
model yields a mixing matrix which is banded; and this information is incorporated into the ICA
algorithm as prior information. This banded ICA algorithm (B-ICA) is then used to simultaneously
recover the seismic wavelet and reflectivity for a noise free trace, x (t).

Wiggins [1978] introduced a blind deconvolution algorithm called minimum entropy deconvolu-

42
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tion where the statistics of the reflectivity were constrained using the varimax criterion (a measure
of kurtosis). This algorithm, for a short time, was popular and has received much attention [e.g.
Donoho, 1981; Ooe and Ulrych, 1979; Sacchi et al., 1994; Walden, 1985]. Similar methods were,
independently, derived by Shalvi and Weinstein [1990]. More recently, Kaaresen and Taxt [1998]
derived an algorithm which explicitly incorporates the sparseness of the reflectivity by using a
spike train as a model where the location, amplitude and number of spikes are considered. With
the exception of Kaaresen and Taxt [1998], all of these methods employ higher order statistics. As
such, while the method presented in this chapter is derived from ICA, it has roots reaching a wider

scope of literature.

4.2 Discrete Convolution and the ICA model

As is evident in equation (4.1), convolution is, of course, linear and can be expressed as a linear
system of equations. This lends itself to an ICA formulation of blind deconvolution which given
only one time sequence, x (t), allows for the reconstruction of both A (t) and p (t).

For discretely sampled signals, the convolutional model is modified, such that
X (t) = D h(tiog) p(t5),
J

or equivalently

As=x (4.2)
where

T=[o) st - pltn) ]

= [ x(0) x(t) - x(n) |

and A is an n x n banded matrix. The columns of A are constructed from delayed versions of the

wavelet, h, such that
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Figure 4.1: The nonzero bits of a banded mixing matrix, A, for convolution (n = 100 and
nw = 20).

BT = [ h(t) h(t2) - h(tw) ]

and N; are zero padding matrices [e.g. Claerbout, 1992, p. 107] where the i*" element of a; is A (t1),
element (¢ + 1) is h (t2) and so on. Figure 4.1 illustrates A, showing the nonzero bits of the matrix
when n = 100 and nw = 20.

Equation (4.2) is recognized as the ICA model from Chapter 3 where s are sources, x are
mixtures and A is the mixing matrix. As before s and x are random vectors. However, the
convolutional model in equation (4.2) provides only one realization of each. Obviously this is
inadequate to characterize the corresponding statistics and, hence, is inadequate for ICA. HoWever,
the available information can be reorganized in a clever way providing several realizations. The
trick is to consider time delayed versions of p(t) and x (t) [Hyvérinen et al., 2001, p. 360]. In

particular, let

and

[ A0 0 0]

where Z is the unit delay operator. Hence, organizing the realizations of s into the columns of a
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matrix gives

2" p(t) 0 0 0 0 p (t1)
2" 2 p(t) 0 0 0 p(t)  p(t2)
8= : i T (4.4)
zp(t) 0  p(t) plt2) - plta—2) p(tn-1)
p(t) | Let) plt2) plts) -+ plta1)  p(ta)
and similarly
-z“_lx(t)- 0 0 0 0 x (t1) ]
2" x(t) 0 0 0 x(t)  x(t)
x = T AU (4.5)
zx(t) 0 x(t) x(t2) - x(tn-2) X(tn-1)
x®) | [ x®) x() x(s) - x(tn-1)  x(tn)

where the jt* realization of x is the convolution of the j** realization of s with the wavelet, h. In

other words,

X(tj)Ih*S(tj).

Thus, blind deconvolution is posed in a manner that can be solved using ICA. In particular,
ICA computes some approximation to the rows of s, each containing a portion of the reflectivity.
However, as described in Chapter 3, ICA does not directly recover h but rather q; which maps
the whitened mixtures to the i** independent component. Additionally, recall that ICA relies on
computing the statistics of the independent components. Clearly the first few rows of s and x

provide few nonzero realizations; thus, doing little to define the statistics of their corresponding

random variables.
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4.3 Banded ICA

Recall the notation used, in Chapter 3, to describe ICA:
As=x (TAs =T'x) = (Ws =z) y =Bx y=Qz (4.6)

where A, B, W and Q are m X m matrices, I' is chosen such that z is white and Q is chosen such
that the elements of y, y;, are independent components. That is, Q is chosen such that y; o s; for

some j where s; is the 4% element of s. Additionally, define a new matrix, P, such that
Py=x (4.7)

and

P=[p1 | p2 | o | pm]-

By definition, y is a scaled and permuted version of s; thus, P and A provide similar mappings.
Here the ICA algorithm is modified such thvat instead of finding rows of Q, it finds columns of P.
This, conveniently, allows for application of the given prior knowledge to ICA. Namely, the banded
nature of A can be applied to P, leading to the new B-ICA algorithm and a solution to the blind
deconvolution problem.

Recall, from Chapter 3, that the ICA algorithm involves finding a minimum of some cost
function, ¢ (q;), which measures the entropy of an independent component, ¥y; = q;fpz, where q;; is
the i** row of Q. A relationship between q; and p; is readily found. Noting that the independent
components, y;, are zero mean and uncorrelated random variables with unit variance, and that

y = Qz (equation (4.6)), gives
E(yy") = E(Qzz"Q") = QE (zz7) QT = QQ”T =1

where I is the identity matrix. Therefore, assuming that Q™! exists,

Q'QQ" = Q!
QT — Q_l-
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Further, using equation (4.6),

z2=Q 'y =Q'y =Tx;
+ hence,
x =T"1Qly. (4.8)
Equations (4.7) and (4.8) allow for the explicit formulation of P in terms of Q such that
P=r"'Q" Q' =rP

or more explicitly,

Q=@ | @ | | an|=F[pi | p2 | - | pn]=TP.

Hence, q; = I'p; and using equation (4.6) gives
yi =qlz = (Cp;)T z = ('N;h)T 2 = WTNIT72 = "% (4.9)

where x = NzTI‘Tz and N; is a zero padding matrix which maps h to the i** column of P, p;,
which, in turn, corresponds to a particular column of the mixing matrix. In other words, N; is the
prior information. It enforces the banded property of the mixing matrix, A, by explicitly choosing
the number and location of zero entries in p;, and in doing so forces p; to correspond to columns
of A which have an equivalent sparse structure.
In equation (4.9), X can be thought of as a new set of mixtures (nw in total) with corresponding
independent components, y, such that
y =Bx

where

BT=[1”11 | hy | - | flnw]

is an nw X nw matrix; so, assuming an ICA model, equation (4.9) can be generalized such that

As=% (fAs = 1”“5:) = (Wé - z) 7 = Bx 7= 0z (4.10)
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Figure 4.2: An example of B-ICA. The four sources (a)-(d) are mixed using equation (4.11)
producing Figure 4.3.

where B = QT. Hence, given x, the ICA algorithm is used to find y and B where one element of
y is the desired independent component, and one row of B is the nonzero bits of one column of P.
In other words, h; « h for some 3.

The above algorithm can be further generalized so that p; = N;h; where h; are all of dimension

nw, giving a more general form of equation (4.3) such that

A=[Nh | Nohy | - | Nphp |-

For example, consider the mixing matrix,

(10 0 0 0
11 12 0 0
A (4.11)

0 13 14 0

0 0 15 1.6

which provides a mapping between the sources, s, in Figure 4.2 and the mixtures, x, in Figure 4.3.
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Figure 4.3: An example of B-ICA. The four mixtures (a)-(d) are produced by mixing the
sources in Figure 4.2 according to the mixing matrix in equation (4.11).

New mixtures, X, are computed according to equation (4.9) such that X = NIT7z. Figure 4.4a
plots the cost function, ¢ (¢;), for ||&1]la = 1, where &’ is the i** row of Q. The cost function is
computed using the approximation to negentropy in equation (3.21). As expected, there are four
local minima corresponding to two independent components in §. These indepéndent components,
71 and 4o, are plotted in Figures 4.4b-c respectively. Clearly Figure 4.4b corresponds to the source
in Figure 4.2b. For this example the prior information is Ny which constrains the ICA algorithm
to find po; consequently, it finds an independent component proportional to the second element of
s, so. This logic is échoed in Figure 4.4.

As a second example let x = NgFTz. The corresponding independent components are plotted
in Figure 4.5. Through examination of equation (4.11), it is clear that this prior information, Nj,
allows for both the third and fourth columns of A. Both have the same nonzero bits, so both obey
the prior information imposed by N3. As such, both the third and fourth elements of s, s3 and
s4, are represented in Figures 4.5b-c respectively. The corresponding cost function is plotted in

Figure 4.5a.

While B-ICA allows for application of the given prior knowledge, it still presents a difficulty in
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Figure 4.4: An example of B-ICA. (a) The cost function computed from the mixtures in
Figure 4.3 using the prior information in Ny and plotted for |||z = 1. Superimposed on
the cost function are the optimization paths which the algorithm followed to find the local
minima. (b)-(c) The independent components, ¥, corresponding to the local minima in
(a). Notice that the independent component in (b) is representative of the second source
(Figure 4.2b).




CHAPTER 4. BLIND DECONVOLUTION BY ICA

-0.01
-0.02
-0.03
-0.04
-0.05
-0.06
-0.07
-0.08
_0.09 1 ] 1 1 Il 1

[ R X}
T
1

2
1
0r 4
9

0 10 20 30 40 50 60 70 80 90 100

Figure 4.5: A second example of B-ICA. (a) The cost function computed from the mixtures
in Figure 4.3 using the prior information in N3 and plotted for ||q||2 = 1. Superimposed on
the cost function are the optimization paths which the algorithm followed to find the local
minima. (b)-(c) The independent components, y, corresponding to the local minima in (a).
Notice that the independent components are representative of the sources in Figures 4.2¢-d.
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the ambiguity of the result. Namely that the algorithm produces as many independent components
as the dimension of h (or h;). As such, there is left the task of choosing one independent component
and its corresponding row of B. Fortunately, as will be shown, when B-ICA is used for blind

deconvolution a solution presents itself.

4.4 B-ICA for Blind Deconvolution

In Section 4.2 the convolutional model was formulated as an ICA problem with a banded mixing
matrix. Here, B-ICA, presented in Section 4.3, is used to solve for the filter, h. Unfortunately, as
illustrated in Section 4.3, B-ICA provides as many independent components as the dimension of h.
The best solution must be chosen from the pool of candidate solutions, yielding one approximation
of both h and p(%).

Further, the s and x proposed in equations (4.4) and (4.5) are inadequate in that the first few
mixtures and sources provide few nonzero realizations; hence, doing little to constrain the statistics
of their corresponding random variables. Therefore the algorithm must be modified to compensate
for this lack of information. This modification produces an approximate convolutional model such
that if A is an m X m matrix and x (;) is n points (z = 1...n), then modifying equation (4.4) such

that m < n gives

oy | o 0 0 p(t1) plt) p(tnm) |
2" 2p (t) 0 0 p(t) plt2) . p(ta) p (tn-m-1)
s = = PR
zp (t) 0 p(t1) oeviiii. p(tn-s) ptn—2) p(tn-1)
p (1) p(t) plta) oot p(tn-2) p(ta-1)  p(tn)
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Figure 4.6: B-ICA used for blind deconvolution. (a) A sparse spike train convolved with (b)
the twenty-five point filter, h, produces (c) the signal, x (¢). Given the data in (c), B-ICA
finds the information, B, presented in Figure 4.7. :

and, similarly from equation (4.5),

2" () 0 0 0 x(t1) x(t) X (tn—m)
272 (1) 0 0 x(t1) x(t2)  x(s) X (tn-m-1)
zx (%) 0 x(t1) ..... e X (tn-3) x(tn-2) X (t"fl)
x (t) i | X () x(f2) oo X (tn-2) X (tn—1) x (tn) i
(4.13)

Hence, each random variable has a number of nonzero realizations to constrain their statistics.
Given equatic;ns (4.12) and (4.13), the mapping between s and x, imposed by the convolutional
mixing matrix (equation (4.3)), is not exact. Rather, it provides an approximate convolutional
model such that As ~ x. In particular, through careful inspection of equations (4.12) and (4.13),

it is clear that, given A and s, z; (¢;) is incorrectly mapped for

(te{l...nw})n(j e {(m=-1)...n}).

However, for the remainder of x the mapping is correct which, as will be illustrated, given only
knowledge of x (¢) (i.e. x in equation (4.13)), allows ICA to find a wavelet following the true
convolutional model.

Consider the synthetic time sequence, x (t), in Figure 4.6¢ which is the convolution of the sparse

spike train, p (¢), in Figure 4.6a with the twenty-five point filter, h, (a Ricker wavelet) in Figure 4.6b.

Given only x (t), B-ICA produces B, the rows of which are plotted in Figure 4.7. The matrix, B, is
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Figure 4.7: B-ICA used for blind deconvolution. Plotted are the twenty-five rows of B
computed using B-ICA and the data in Figure 4.6c.

computed using the ICA model in equation (4.10) which is arrived at using the prior information
in the zero padding matrix, N, _pny-10)- The employed algorithm estimates negentropy using the
nonpolynomial expansion of the corresponding pdf (as shown in equation (3.35)), and performs
the optimization using the routine of Hyvéarinen [1999a] (equation (3.42)). The forward model is
approximated such that m = 100, and the nonlinearity used in the nonpolynomial expansion is
r(7;) = exp (—%’2—) A quick search through the panels reveals good approximations to the wavelet.

While the h; in Figure 4.7 are an interesting result, their utility is not immediately obvious. In
practice the filter is, of course, not known. Hence, simply presenting the choices in Figure 4.7 is
nonsense. Instead, there is a sensible way to check for the best result. In particular, coefficients,

¢i, can be calculated such that, given the prior Nk,
Yle) =|xk —chyxyil]a , i=1...nw (4.14) .

is, for each ¢, minimized where, here, xf = [ zp (t1) ok (t2) -+ g (tn) ] are the realizations of

the k' mixture, and y7 = [ gi (1) §i(ta) -+ T (tn) ] are the realizations of the ** indepen-
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Figure 4.8: B-ICA used for blind deconvolution. (a) A sparse spike train convolved with
(b) the thirty-five point filter, h, produces (c) the signal, x (£). (e) The recovered filter, h,,
and (d) the independent component using B-ICA and the criterion in equation (4.14). (f)
The convolution of (d) and (e).

dent component. It is easily verified that equation (4.14) has its extreme point when

O X}, (fli * S’i)
z (ﬁi * S’i)T (fli * S’i)

The best solution, (¥4, h), is chosen such that

0 (cﬁ*)) = min {¢ (cg*))} , t=1...nw.

K3

For example, consider the synthetic time sequence, x (¢), in Figure 4.8c generated by convolving
the spike train, p(¢), in Figure 4.8a with the thirty-five point filter (a Berlage wavelet), h, in
Figure 4.8b. B-ICA is used to compute B such that the prior information is the zero padding
matrix, N(m_py—_10), m = 75 and, again, the algorithm of Hyvérinen [1999a] (equation (3.42))

~9 ~ ~
is used with 7 (g;) = exp (—%—) As a result, thirty-five wavelets are recovered, h;...hss. The

best result (h,, g, (t)) is extracted from the pool of thirty-five candidate solutions according to the

criterion in equation (4.14) (with ¥ = m — nw — 10) and is plotted in Figures 4.8d-e. Figure 4.8d

is, as expected, an approximation to the sparse spike series in Figure 4.8a with a linear phase shift.
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The shift is due to how the mixtures, x, are organized (see equation (4.5)). Finally, the convolution
of the independent component in Figure 4.8d with the recovered wavelet in Figure 4.8e is plotted
in Figure 4.8f. Clearly the algorithm has done a reasonable job in recovering both the wavelet and

the reflectivity.

4.5 Summary

This chapter adapted the ICA algorithm to include prior information on the mixing matrix. In
particular, its banded nature was accounted for by specifying its nonzero bits. Additionally, the
deconvolution problem was coaxed into an ICA formulation with a banded mixing matrix computed
from the filter, h. Initially, this resulted in an ICA model with only one realization of both the
source and mixture. To compensate for this lack of information, time delayed versions of p (¢) and
x (t) were considered. This resulted in a new blind deconvolution method, utilizing B-ICA, which
in turn gave rise to a second complication. Namely that the first few mixtures and sources had few
nonzero realizations, and so, had insufficient information to constrain their statistics. The solution
was to use an approximate convolutional model which proved to be sufficient. B-ICA created a
further complication. It produced as many candidate solutions as the dimension of h. This problem
was overcome by using the extra information provided by the convolutional model.

While useful, the model presented in this chapter neglected noise. In seismic data, as with all
real data, noise plays an important factor, and the convolutional model in equation (4.1) must be

modified such that

x (8) = p(t) * b (t) +n ()

where n (t) introduces additive random noise. Chapter 5 deals with this extra complication.




CHAPTER 5

Noisy ICA and Blind Deconvolution

5.1 Introduction

Chapter 4 described a blind deconvolution algorithm for a model devoid of noise. For real world
applications data are inherently noisy, and the convolutional model in equation (4.1) requires

modification such that

x (@) =h(t)*p(t)+n(t) (5.1)

where n (t) is additive random noise. In terms of ICA, the addition of noise augments equation (3.1)

such that

">

=x+n=As+n (5.2)

where n is a random noise vector and X are noisy mixtures. In this chapter, B-ICA (see Chapter 4)
is adapted such that the effect of n (¢) on the recovered wavelet, h (t), is mitigated. As a means to
this end, a modification, following the work of Hyvérinen [1999b], to the ICA algorithm is sought
such that the estimated de-mixing matrix, Q, is invariant to the noise term, n.

The incorporation of noise into the ICA algorithm is a two-fold process. First, the noise must be
accounted for in the whitening of the noisy mixtures. Second, the cost function measuring entropy
requires modification such that it is invariant to noise. Further, two additional assumptions must

be applied to the ICA model; the noise, n, and the noise free mixtures, x, are assumed to be

independent, and the noise is assumed to follow a Gaussian distribution with a known (estimated)
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covariance matrix. Subsequently, this modified algorithm can be applied to B-ICA, giving a noisy

B-ICA algorithm, and a blind deconvolution algorithm for noisy signals.

5.2 Pre-Processing Noisy Mixtures

Section 3.7 described a pre-processing step for the ICA algorithm where, using principal component
analysis (PCA), a whitening operator, T, is extracted from the mixtures, x, such that z = I'x and
B (zzT) = I. Here, the whitening algorithm is modified so that the whitening operator, T, is
invariant to the noise term in equation (5.2) [e.g. Douglas et al., 1998].

The whitening operator, I', is sought such that
z=Tx=I'(x+n)=I'x+In=z+TIn, _ (5.3)

z=Ixand E (zzT) = I. Recall, from section 3.7, that the whitening operator is computed using
the covariance matrix of the noise free mixtures, C,. Fortunately, knowledge of the covariance
matrix of the noise coupled with the, already mentioned, assumption of independence between the
noise, n, and noise free mixtures, k, allows for computation of C,. In the case of zero-mean and

noisy mixtures, X,

C: = E[(x+n)(x+n)]
= E(xx¥ +xn” + nx” + nn”)
= E (xxT) +E (nnT)

= C,+C,

where C; and C,, are, respectively, the covariance matrices of X and n. Hence, C, = C; — C,,,

and given C,,, C; is obtained and used in the computation of I'; thus, allowing equation (5.3).
Recall, from Chapter 3, that the ICA algorithm consisted of an optimization problem; the

corresponding cost function, ¢ (q;), providing a measure of entropy (independence) for y; = q z.

Additionally recall that y; is an independent component exactly when q; is chosen such that ¢ (q;)

is a local minimum and ||q;|l2 = 1. Thus, if a cost function, ¢ (q;), measuring entropy can be




CHAPTER 5. NOISY ICA AND BLIND DECONVOLUTION 59

constructed such that

¢(a)=f(af2)=f(a/T(x+n))=f(y;+q Tn) = f(yi+n) = f (v:), (5.4)

then q; can be found as in the noise free case. In other words, the desired cost function is invariant
to noise.
For a first example, let f () = k4 (-) where k4 is kurtosis. Hence, given independence between

the noise free mixtures and the noise,’

¢(q:) = k4 (qf 2) = k4 (@] 2+ @] Tn) = k4 (a] z) + k4 (¢] Tn) . (5.5)
Further, if n follows a Gaussian distribution, then quI‘n also has Gaussian statistics and, therefore,

zero kurtosis so that

¢ (q;) = k4 (a2) = k4 (35) - (5.6)

Hence, using kurtosis as a measure of entropy yields a cost function that is invariant to noise.
The incorporation of the noise covariance matrix in the whitening algorithm allows for equa-
tion (5.6). However, kurtosis is not a sufficiently robust measure of entropy for the application of
blind deconvolution. Instead, the nonpolynomial expansion of the appropriate probability density
function (pdf) (Section 3.6) is required. The task is to find an appropriate nonlinearity, for the

nonpolynomial expansion, such that equation (5.4) is realized.

5.3 Gaussian Moments

In Chapter 3 a cost function, for ICA, was devised from an estimate of negentropy which employed
a nonpolynomial expansion of the corresponding pdf (equation (3.40)). With additive noise, this

cost function becomes

#(a) = =5 [B(r (v + m) + A (aF @i — 1) (5.7

where ) is a Lagrange multiplier and, as in equation (5.4), n = q/I'n. Equation (5.7) can be

adapted such that equation (5.4) is applicable and, hence, the cost function is invariant to noise.

LA proof of equation (5.5) is provided in Appendix A.
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As a means to this end, the nonlinearity is chosen according to the work of Hyvérinen [1999b] who-
lets 7 (-) be a Gaussian pdf.
To understand the importance of the Gaussian pdf, it is necessary to contemplate its moments.

In particular, given

and

1 y?
vat) = —eww (- 25 ), 53)
it will be shown (and is shown by Hyvérinen [1999b]) that,

E (e (y)) = E (¢a (y + n)) (5.9)

where y and n are random variables, n ~ N (0, 02) and d = V¢ — 62. A proof of equation (5.9)
follows the derivation presented in Hyvérinen [1999b], and is included here. Let p, \ (y,n) be the
bivariate pdf for n and y with marginal pdfs, p, (n) = 9, (n) and p, (y). Further, let y and n be
independent such that

E(%q(y+n)) = /_Oo /_oo Ya (y +n) pyy (y,n) dydn

-/ Z / : B (g + 1) py (3) P (n) dydn:

Letting ¥’ = y+n so that n = 3’ —y and dn = dy’, and noting that 1, (y) is an even function gives

E($a(y+n) = /oopy(y) [/Z¢d(y')¢a(y’—y)dy'] dy

= /:ipy (v) [/:O; Ya (v') Yo (y — ') dy'] dy
= [ r a0 W (5.10)

— 00

It can be shown [e.g. Frieden, 1983, pp. 75-76] that

Ya (y) * Yo (y) = Pe (y) (5.11)
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where ¢ = v/d? + 2.2 Hence, equation (5.9) follows from equation (5.10), and the proof is complete.
Equation (5.9) enables the cost function in equation (5.7) to be adapted to account for the

noise. In particular, choosing

r(yi +n) = Ya (yi + n) = P (%:)

allows for a cost function which is invariant to noise. In other words,

#(a) = —5[EGblu+n) + X (aFa— 1) (512)

= B )P+ (aai - 1)

where

d=/ct —E(mT) = \/c2 ~E[(aTn) (afTn)"] = /& - dfTC,TTq; = /¢ — af Cra

(5.13)

and G, = I'C,I'T.

5.4 A Noisy ICA Optimization Algorithm

In the preceding section, a cost function well suited for noisy ICA was found. The remaining task
is to find an algorithm, analogous to equation (3.42), for finding the minima of equation (5.12).

For readability, equation (3.42) is restated here:

" = B0 @)a - B w)2)
(k+1) a* v ' (514)
% a2

As in Chapter 3, the optimization scheme, for noisy mixtures, is devised using a Newton type
algorithm; thus, requiring expressions for both the gradient and Hessian of ¢ (q;). The end result

of our efforts is the algorithm in equation (5.22).

2For a proof of equation (5.11), please refer to Appendix A.
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First, the gradient is computed as

V6 (i) = —E (a (i + 7)) E (Viba (ys + 1)) + 22g (5.15)

where, after substituting in equation (5.8), and some calculus,

, _ 1 (vi+n)’|~  (y+n) wi+n)’| =
Viby (yz + n) = \/%dB €xXp 242 Crhai \/Q—%df’ e€x 2d2 Cq;
yi+n (i +n)°| .
o exp 57 Z.
Further, making use of equation (5.8) and its derivative,
)
Ya(y) = —5va(y), (5.16)
d
allows for
~ 1 . . :
Vipg (ys +n) = Cn‘lizﬁ [¥a (yi + n) + (yi + n) Py (y + n)] + 29 (y +n) . (5.17)
Lastly, equation (5.17) is simplified by noting that
1 Y
Yo (y) = —ﬁ% (y) — Eg‘% (y) -
Therefore,
Vipa (yi + 1) = —Cnaithl (i + 1) + 295 (i + 7). (5.18)

Second, consider the Hessian matrix, H; however, rather than computing it explicitly, simply
let
H=(a+2)I (5.19)

where « is some scalar value and I is the identity matrix. The choice made in equation (5.19A) will
be validated shortly, and a value for o will fall out of the mathematics.

Using the expressions for the Hessian and gradient in equations (5.15) and (5.19) respectively,

and ignoring the scalar term, —E (¥4 (y; + n)), in the expression for the gradient, an approximative
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Newton step (from iteration k to & + 1) is given by

= - ma o)

_ 0BVl ) + 2a
% a+ 22 '

Multiplying through by a + 2\ gives

(@+20)q* ™ = (a+20) " — E (Ve (s +n)) + 22¢®

i3

= aq®® —E(Vyu(yi +n)). (5.20)

Finally, recall the algorithm in equation (5.14) where the first part of the update rule, for the noise

free case, can be written as

oF =B (9" (%)) &P — E (Ve (w) -

Hence, remembering equation (5.9), an appropriate choice for « is given by

a=E (] (yi+n)) =E (¥ (v:)) - (5.21)

Combining equations (5.20), (5.21) and (5.18) yields

[E @4 (i +n)] ¥ = E(@) @ +n)a® + Cud®E (4 (4 + n)) — E (39, (v; +n))

= (1+C) B (] (5 +m) o — B (29 (s + ).

Hence, an appropriate algorithm for noisy ICA is [Hyvérinen, 1999b]

o) = (14 &) BWY i+ ) o - B ) (s +n)
(k+1) q{F+D ’ (5.22)
g a1l

To review, consideration of the noise in the whitening algorithm allows for a cost function which

is invariant to Gaussian noise. The result is an algorithm which, given noisy mixtures, computes
(*)

7

an optimal model, q; /, which is also invariant to noise. This is an appealing result which, in the
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following section, is used to adapt the B-ICA and blind deconvolution algorithms of Chapter 4 so
that they are applicable to noisy data. '

5.5 Gaussian Moments, B-ICA and Blind Deconvolution

The incorporation of noise into B-ICA requires its marriage with the algorithm presented in the
previous section which, in turn, requires appropriate modifications to the noise covariance matrix.
The end result is a much improved approximation of the wavelet.

Recall equation (4.9) which provides a relation between the i** independent component, the
whitened mixtures and the filter, hT = [ h(t)) h(t) - h(taw) ] For noisy mixtures, this

equation is modified such that
yi+7=q} (z+Tn) = ('N;h)? (z + 'n) = b’ (x + 1) (5.23)

where X = NZTI‘Tz, n= N;TFI‘TI‘n, 7 = hTh and, as before, T' is chosen such that E (zzT) =L
As in Chapter 4, x can be thought of as mixtures for a new noisy ICA problem with an nw X nw

mixing matrix so that
As=%+h TAs=T(x+8) §+Ba=Bx+n) 9+Qf‘ﬁ=Q(i+f‘ﬁ) (5.24)

and T is chosen such that E (ZZT) = I. That is, ' is computed, as usual, using the covariance
matrix of the noise free mixtures,

Cz = Ci _Cna

and, likewise, I' is computed using the covariance matrix of x,
Cs = Cz4n — Cai

where

C; = E (anT) = E (NTTTan”TTTN;) = N/T7TC,I''TN;.

If equation (5.24) is true; that is, if I and T' are computed with proper consideration for the

noise, then the algorithm in equation (5.22) is applicable, and Q is found such that it is invariant
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Figure 5.1: (b) The convolution of (a) with the filter (d). (c) The signal in (b) with additive,
random and Gaussian noise. (e) The filter recovered from (c) using noisy B-ICA. (f) The
filter recovered from (c) using B-ICA (without consideration for noise).

to noise. However, it is evident that the transformation of the noise occurring in equation (5.24)

must be incorporated into the computation of d; hence, d is re-evaluated as

d= \/c2 —E((@nT) = \/02 — §'TE (an7T) I'Tq;
and, in equation (5.22), C, becomes
C, = IE (aa?) I'T = I'C;IT.

The end result of these modification to B-ICA is a new algorithm, noisy B-ICA, which, in turn, can
be used in a blind deconvolution algorithm (see Chapter 4) where the convolved signal is corrupted
with additive noise.

For illustration, consider the synthetic example in Figure 5.1. Figure 5.1b is the convolution

of the signal in Figure 5.1a with the filter (a Berlage wavelet) in Figure 5.1d. Figure 5.1c is the

same as Figure 5.1b, but with additive, random, Gaussian and zero-mean noise such that the signal
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to noise ratio is 7 (about 14 percent noise). In applying noisy B-ICA to the noisy signal, C,
is chosen as a constant diagonal matrix; hence, to apply the algorithm, the user need only select
one parameter. Figure 5.1e shows the wavelet, h (t), recovered from the noisy signal using noisy
B-ICA. For comparison, Figure 5.1e shows the wavelet recovered from the noisy signal using B-ICA
(without consideration for the noise). By inspection, it is obvious that the incorporation of noise

into the algorithm yields improved results.

5.6 Summary

This chapter adapted the ICA and B-ICA algorithms for noisy data. In particular, the noise covari-
ance matrix was used to provide a whitening operator which is invariant to noise; and subsequently,
its use produced cost functions, measuring entropy, which are invariant to noise. First, an example
using kurtosis was provided. Second, the properties of Gaussian moments were exploited so that a
more robust measure, using nonpolynomial expansions of the appropriate pdf, of entropy could be
used. This resulted in a new noisy B-ICA algorithm which was used for blind deconvolution.
While the results of the blind deconvolution routiné, presented in Figure 5.1, are interesting, for
higher noise levels the quality of the results diminish. Further, it was found that the algorithm is
very sensitive to the choice of C,, = 021. A choice which must be made by the user of the algorithm.

Despite these shortcomings, the method is sound in its mathematics and shows promising results.

3The signal to noise ratio is compﬁted as the absolute maximum amplitude of the signal divided by the standard
deviation of the noise.




CHAPTER 6

Conclusions

6.1 Summary

Principal and independent component analysis (PCA and ICA) use the statistical properties inher-
ent in data, extracting useful information which, in this thesis, is used for noise suppression and
blind deconvolution.

PCA and noise suppression was explained in Chapter 2. PCA was explained from three per-
spectives; variance, the singular value decomposition and ordinary differential equations. The
subsequent derivations gave rise to an orthogonal basis consisting of, so called, eigensections which
proved useful in their ability to separate coherent and incoherent information. Examples, illustrat-
ing the theory, were given for both synthetic and real seismic data, attenuating the random noise
while conserving the coherent signal and, thus, increasing signal to noise ratios.

Whereas PCA uses correlation, ICA uses independence. The relation between independence
and correlation was explained in Chapter 3 where uncorrelated was shown to be a special case of
independent. In fact, it was shown that independent random variables are nonlinearly decorrelated.
Chapter 3 developed ICA algorithms from the perspective of information theory. In particular, the
concepts of independence and entropy wefe related through the central limit theorem, and entropy
was used as a tool for building ICA algorithms. The estimation of entropy is not a trivial matter,

and two approaches were considered. First, entropy was approximated using higher order moments

and, second, using nonpolynomial functions. The algorithm employing nonpolynomials is preferred
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for the applications in this thesis due to its robustness.

In Chapters 4 and 5, the ICA algorithm, employing the estimate of entropy using the non-
polynomial expansion, was used for blind deconvolution. Chapter 4 considered the noise free case,
and Chapter 5 used a convolutional model corrupted with additive, random and Gaussian noise.
To facilitate a blind deconvolution algorithm using ICA, the properties of the convolutional model
were associated with a banded ICA mixing matrix. Taking the banded nature of the mixing matrix
into account, the ICA algorithm was modified, producing banded ICA (B-ICA) and a new blind

deconvolution algorithm.

6.2 Future Work

Chapters 4 and 5 illustrated blind deconvolution using ICA. The result is some estimate of the
wavelet and its corresponding independent component. For the noise free case, this independent
component is, in turn, an estimate of the reflectivity with some linear phase shift. Moreover, when
the trace is corrupted with noise, the recovered independent component need not be representative
of the reflectivity. Hence, it would seem useful to have a deconvolution algorithm which, given
the estimated wavelet, can recover the full reflectivity. When the wavelet is exactly known and
the reflectivity is sufficiently sparse, this problem has a known solution [e.g. Walker and Ulrych,
1983; Oldenburg et al., 1983]. However, when the wavelet is estimated, and thus subject to error,
the solution is more elusive. Deconvolution is an inverse problem where the forward operator
is constructed from the wavelet. Thus, when the wavelet is estimated, the forward operator,
inevitably, contains errors. This suggests that methods are needed which allow for errors in both
the forward operator (e.g. seismic wavelet) and the data (e.g. seismic trace). One such method-is
total least squares (TLS) [e.g. Golub, 1973]. Future work could include a deconvolution algorithm

which incorporates some version of TLS; thus, enabling a deconvolution algorithm applicable when

the wavelet is estimated using the blind deconvolution algorithm presented in Chapters 4 and 5.
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APPENDIX A

Additional Proofs

Proof that equation (3.11) is a mazimum. Consider the Kullback-Leibler divergence measure [e.g.

Sakamoto et al., 1986, p. 38],

Torp) = fia (2| = [ py ) 204y A

P2 () —oo D2 (y)

where p; (y) and p2 (y) are probability density functions (pdfs). Jensens’s inequality [e.g. Cover

and Thomos, 1991] states that if f (y) is convex and y is a random variable, then

B(/@)>f(EW). (A2
Letting y = po (y) /p1 (y), and defining the convex function, f (y) = —In(y), equation (A.2) is
applicable. In other words,
T )2 () =BG ) 2 FEG) =1 | [~ p16) 20| = ta[ [~ ;)] =0
Hence,
I(p1(y),p2(y)) 2 0. | (A.3)

Recall the extreme point given in equation (3.11),

i=1

l
Py (y) = exp (—1 + X+ D Nirs (y)> - (A.4)
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Let g (y) be a pdf which obeys the same moment constraints as p, (y). The differential entropy of

g(y) is
row) = - [ swmoway
= [ awm (s, ) a
= —/_:g(y) In (pgy(?y))) dy—/_c:g(y) Inp, (y)dy.

However, from equations (A.1) and (A.3),

/_Zg(y) In (%) dy=1I(g(y),p, (y)) > 0.

Therefore, since g (y) and p, (y) share the same moment constraints,

rew) < - [ " W) lp, (v)dy

—00 .

= —/oo py (y) Inp, (y) dy.

—00

Hence, h (g (y)) < h(p, (y)) and the proof is complete.
Proof of equation (5.5). It was shown in equation (3.36) that independent random variables are
also nonlinearly uncorrelated. That is, given two independent and random variables, y; and o,

and two arbitrary functions, g; (y1) and g5 (y2),

E{g1 (1) g2 (y2)] = E[g1 (11)] E [92 (y2)] - (A.5)

Additionally, recall, from Chapter 3, the definition of kurtosis: k4 = E (y‘ll) -3 [E (y%)]2 Thus,

the kurtosis of the sum of y; and ys is

ke (y1 +y2) =E [(yl + y2)4] -3 {E [(Zh + y2)2] }2

where

4
(y1 +y2)* =yt + 4yy2 + 6372 + dy193 + vi
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and

2
(1 +92)* = ¥% + 2y192 + 3.

If y; and y2 are independent, then they are also nonlinearly uncorrelated. Hence, equation (A.5)

is applicable, and after some algebra, assuming that E (y;) = E (y2) = 0,

Relyr+y2) = E(yl) +E () + 6B (1) E(4]) - 3[E(43)" + B (1)) + 2B (1)) E (15)]

= E(y})~3E (y‘f)2 +E(y3) - 3E (y§)2 ;

thus, allowing for equation (5.5) and completing the proof.
Proof of equation (5.11). Consider the moment generating function (mgf) [e.g. Rice, 1995,
pp. 142-144],

My )= [ exp(ity)py, () =77 (py,) (A6)

-0
where 1 = v/—1 and y1 ~ p,. (y1). My, (t) defines the moments of p,. (y1); hence, both My, (¢)
~and Py, (y1) are equally valid representations of the random variable, y;. Further, equation (A.6)

is recognized as one half of a Fourier transform pair; hence,

() = 5= [ exp (=ity) M, (1) .

21 J_ oo

With a second random variable, y2, the convolution theorem [e.g. Bracewell, 1978, pp. 108—111]
gives,

My; (y1) My, (42) = F " [py, (1) * by, (12)] (A7)

where the operator, 77!, is defined by equation (A.6).
If y1 and y9 are independent, then their sum, z = y; + y2, has the mgf,

- Mx (t) = El[exp (itz)]
= E{expl[it (y1 +y2)]}
= E [exp (ity1)] E [exp (ityo)]

= My, () My, (t).
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Therefore, it follows, from equation (A.7), that z has the pdf,

px (z) = Dy, *Py,-

Equation (5.11), and thus completion of the proof, follows from the fact that the variance of the

sum of two independent random variables is the sum of the variances of the random variables.




