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Abstract 
P r i n c i p a l and Independent component analysis ( P C A and I C A ) are two ideas which are very much 

related; bo th employing a statist ical understanding of data to achieve their goals. Whereas P C A 

exploits statist ical correlation, I C A uses statistical independence to glean useful information from 

data. Seismic data is inherently noisy, and is complicated by the presence of an unknown seis

mic wavelet. Analys is of the data is aided by, both, noise suppression and b l ind deconvolution 

techniques. 

F i r s t , consider the subject of noise suppression. If the data are organized into several sequences 

where, from one sequence to the next, the signal is correlated while the noise is uncorrelated, then 

P C A has the abi l i ty to separate noise and signal. Here, P C A is analyzed from three points of view, 

variance maximiza t ion , the singular value decomposition and neural networks. T h e result ing theory 

is used to filter noise from a set of common midpoint seismic gathers by exploi t ing correlations which 

exist from one gather to the next. 

To further simplify analysis of these data, the E a r t h is often approximated as a linear system; 

thus, the seismic trace is subject to the convolutional model. Convolut ion is a linear operation, and 

consequently, can be formulated as a linear system of equations. If only the output of the system 

(the convolved signal) is known, then the problem is b l ind so that given one equation, two unknowns 

are sought. T h i s problem is well suited for I C A which has the abi l i ty to find some estimate of the 

two unknowns, and here the b l i nd deconvolution problem is solved using I C A . To facilitate this, 

several time-lagged versions of the convolved signal are extracted and used to construct realizations 

of a random vector. For I C A , this random vector is the, so called, mixture vector, created by the 

matrix-vector mul t ip l ica t ion of the two unknowns, the mix ing mat r ix and the source vector. Due 

to the properties of convolution, the mix ing matr ix is banded w i t h its nonzero elements containing 

the convolution's filter. T h i s banded property is incorporated into the I C A algor i thm as prior 

information, g iving rise to a banded I C A algori thm ( B - I C A ) which is, i n turn , used i n a new b l i n d 

deconvolution algori thm. Th i s algori thm is considered for both noiseless and noisy data. 

i i 
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CHAPTER 1 

Introduction 

1.1 Motivation and Tasks 
T h i s thesis is concerned w i t h processing data. Reflection seismic data are of par t icular interest, and 

methods to bo th clarify and simplify these data are presented. Reflection seismic data analysis is 

a mature field of research. It is a means to, more efficiently, harvest the Ear th ' s na tura l resources. 

Thus , the funding and attention that it has received are hardly surprising. The abundance of re

search is apparent i n the mult i tude of available literature, including a two thousand page treatment 

of the subject by Y i l m a z [2001]. 

W h i l e this thesis is, ult imately, about data, its focus is processing. In part icular , two concepts 

are considered: F i rs t p r inc ipa l component analysis ( P C A ) , and second independent component 

analysis ( I C A ) . These two ideas are very much related; bo th employing stat ist ical understandings 

of the available data to achieve their goals. P C A exploits statist ical correlation, while I C A considers 

stat ist ical independence, as such, the relation between P C A and I C A is revealed i n the equations 

that b i n d independence and correlation. 

T w o tasks, s temming from seismic data, are pondered while considering P C A and I C A . Namely, 

the tasks of noise suppression and b l ind deconvolution. A s w i t h a l l real data, seismic data are 

inherently noisy. P C A is used as a means for suppressing random noise. T h i s is by no means a 

new concept. However, the methods are adapted, i n this thesis, for collections of two dimensional 

seismic gathers; seismic gathers which provide some representation of the E a r t h . To further simplify 

1 



CHAPTER 1. INTRODUCTION 2 

analysis of these data, the E a r t h is often approximated as a linear system; thus, the seismic trace 

is expressed as the convolutional model which, because of the nature of the reflection seismology 

experiment, is a single equation i n two unknowns. The unknowns are the reflectivity of the E a r t h 

and the seismic wavelet; the known quantity is the seismic trace. Solving for the two unknowns 

i n the one equation, allowed for by the convolutional model, is b l i nd deconvolution. In this thesis, 

a new algor i thm is devised, using a modified I C A algori thm, providing a solut ion to the b l i n d 

deconvolution problem for both noiseless and noisy data. 

1.2 Thesis Overview 

In Chapter 2, P C A is analyzed from three points of view. F i rs t variance maximiza t ion , second 

using the singular value decomposition and th i rd using neural networks and ordinary differential 

equations. These analyses give insight into how and why P C A can be used for the attenuation of 

random noise. B o t h synthetic and real data examples il lustrate its effectiveness. 

Whereas P C A exploits correlation, I C A exploits independence. In Chapter 3, concepts from 

higher order statistics and information theory allow I C A to solve for two unknowns i n one equation. 

In Chapter 4, a new b l ind deconvolution algori thm ut i l i z ing I C A is described. For this purpose, the 

I C A algor i thm is modified to match properties inherent i n the convolutional model . In Chapter 5, 

the b l i nd deconvolution problem is treated wi th the addi t ional complicat ion of random noise. A g a i n , 

this requires modification to I C A to account for the noise and its presence i n the convolutional 

model . 

1.3 Related Methods and Algorithms 

A s mentioned, one of the two tasks of this thesis, b l i nd deconvolution, is solved by way of I C A , 

and I C A can be likened to other approaches described i n the literature. Most prominent of these 

is projection pursuit [e.g. Jones and Sibson, 1987] which looks for interesting features i n data. 

It so happens, that one of these measures of interest is non-Gaussianity. A s w i l l be shown i n 

Chapter 3, this same measure is used for I C A . Further, a relation can be found between I C A 

and self organizing neural networks. Indeed, i n this thesis, the relationship between P C A and 

neural networks is expl ic i t ly shown i n Chapter 2. A similar relation holds between I C A and neural 
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networks, and is well summarized i n B e l l and Sejnowski [1995]. 

B l i n d deconvolution is by no means a new subject. In geophysics, it was first introduced by 

Wiggins [1978] and has received much attention [Haykin, 1994, 2000]. T h e result is an abundance of 

work to draw from. It is not the intent of this thesis to provide an overview. Rather , the intention 

is to uti l ize recent advances, s temming from I C A , to produce a new b l ind deconvolution algori thm. 



CHAPTER 2 

Principal Component Analysis 

2.1 Introduction 

Consider a multivariate data set, x T = ^ x\ %2 ••• % J, where x is a random vector and Xi(tj) 

is the jth real ization of the ith random variable. 1 In seismic data, for example, the realizations of xi 

might be a seismic trace, and a single realization of x could be a t ime slice from a seismic section. 

P r i n c i p a l component analysis ( P C A ) transforms x v i a 

0 = UFX , i = l...m • (2.1) 

where the random variables, Q, are pr inc ipal components and = | u.--, u;o • • • I are 

chosen to explain the data w i t h few dimensions (principal components). 

T h i s chapter describes P C A from three points of view. E a c h is somewhat s imilar as they 

satisfy the same constraints. However, each approach has unique motivat ion; thus, provid ing 

further understanding of the method. Fi rs t , P C A is derived by max imiz ing the variance of the 

pr inc ipa l components [Cooley and Lohnes, 1971, C h . 4]. Second, a connection is drawn between 

explaining variance and explaining data using the singular value decomposit ion ( S V D ) . Last ly, 

neural networks are used such that the pr inc ipal components can be updated as more information 

(realizations) becomes available [Oja, 1982]. The chapter concludes w i t h an example of P C A i n 

signal processing. In part icular, an applicat ion to noise suppression for seismic data is considered 

1 A l l vectors in this thesis are column vectors, i.e. x is a column vector, and x T is a row vector. 

4 



CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS 5 

where an original (to seismic data processing) extension of this method to three dimension is 

explained [Kaplan and U l r y c h , 2002]. W h i l e this chapter can be read independently of the rest of 

the thesis, the methods developed herein are used i n the remaining chapters. 

2.2 P C A by Variance Maximization 

In the approach of variance maximizat ion, are found such that var (Q) are maximized subject 

to some constraints. Namely that u f U i = 1, that the second pr inc ipa l component is uncorrelated 

w i t h the first, the th i rd uncorrelated w i t h both the first and second, and so on. The first of these 

constraints is bui l t expl ic i t ly into the cost function using a Lagrange mult ipl ier . Cons t ra in ing the 

pr inc ipa l components to be uncorrelated is impl ic i t i n the formulation and, as w i l l be shown, falls 

nicely out of the mathematics. Hence, the appropriate cost functions (for maximizat ion) are 

<f> (ui) = var (Q) + A, (1 - uju,) 

= E ( C 2 ) + A , ( l-ufuO (2.2) 

= E [(ufx) (ufx)T] + Xi (1 - ujui) 

= E (uf xx T Uj ) + Ai (1 - uf U i ) 

= u f CxUi + Xi (1 - uf U i) (2.3) 

where Ai are Lagrange mult ipl iers and Cx is the correlation matr ix of x. Equa t ion (2.2) assumes 

E (£i) = 0; that is, var (Q) = E ((f) - E (Q)2 . T h i s assumption is t r i v i a l since the mean of x is 

easily set to zero and E (Q) = E (uf x) = uf E (x). Tak ing the gradient of equation (2.3) gives 

V c i (u i ) = 2 C x U i - 2 A i U i , 

and setting this result to zero yie ld the extrema of the cost functions, 

C ^ U i — AiUi (2.4) 
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Equa t ion (2.4) is easily recognized as an eigen problem where are the eigenvectors of the sym

metric mat r ix C^, and are therefore mutual ly orthonormal. Hence, 

E (CiCj) = E Uuf x) ( u j x f l = E (uf x x r u ; ) = uj CxUj = Xjufxij = 
0 , i + 3 

Aj = var(Cj) , i = j 

(2.5) 

Equa t ion (2.5) illustrates two ideas. F i rs t , it confirms that the pr inc ipa l components are uncorre

cted; and second, it demonstrates that the variance of the ith p r inc ipa l component, Q = u|"x, is 

the ith eigenvalue, Aj. Hence, ordering the pairs of eigenvectors and eigenvalues i n the usual fashion 

so that A i > A2 > • • • > A m completes the solution. 

T h i s derivation clarifies the role of P C A i n terms of variance. In part icular , the method attempts 

to explain the variance i n the data w i th few dimensions (principal components). However, the 

connection between explaining variance and explaining data is, at best, mysterious. To i l luminate 

this relat ion it behooves us to consider P C A in terms of the S V D . 

2.3 P C A and the SVD 

T h e S V D decomposes a m x n matr ix , A , into the product of three matrices, 

A = U S V r (2-6) 

where 

U 

V 

s 

ui I u 2 I ••• I u T O 

v i I v 2 I ••• I v n 

= diag (CTI, c r 2 , . . . , Op, 0 , . . . , 0 ) 

= diag (y/xi, \f\>, 0 , . . . , 

and i = 1 . . . m and V J , i = 1 . . . n are the eigenvectors of A A T and A T A respectively, and CTJ and 

A ^ % = 1 . . .p = rank(A) are, respectively, the nonzero singular values of A and the correpsonding 

eigenvalues of both A A T and A T A [e.g. Strang, 1988, p. 443]. 



CHAPTER 2. PRINCIPAL COMPONENT ANALYSIS 7 

T h e connection between P C A derived i n the previous section and the S V D is readily found. If 

xi(t) xi{t2) •• 

A = 
x2(t) = X2(h) •• • x2(tn) 

(2.7) 

Xm (t) Xm(tl) Xmih) •• xm(tn) 

then A A T = nCx where A contains n realizations of x and Cx is, as i n Section 2.2, the correlation 

mat r ix of x . Hence, U j are the eigenvectors of Cx. Further, noting that U T U = I, where I is the 

identity matr ix , equation (2.6) gives 

where 

C I ' A = s v T 

' Ci(<) " " Ci(*i) Ci(* 2 ) • • Cl(*n) 

c = Ca(«) CaCtt) C2(*2) • • (2(tn) 

Cm(t) Cm(tl) Cm(h) • Cm(^n) 

and Q(t) are, as i n Section 2.2, pr inc ipal components. 

In addi t ion to decomposing A into the product of three matrices (equation (2.6)), the S V D , 

equivalently, decomposes A into a sum of matrices, 

p p 

A = ^ a i U i v f = 2 > i E i (2.9) 
i=l i=l 

where p = r a n k ( A ) and E j = U j v f are eigenimages. The eigenimages are significant since i f 

k 

Afc = ^ o-»Ei , k < p, 

then 

m i n | | A - B| | 2 = ||A - A f c | | 2 = ak+1 (2.10) 

where B is any rank(fc) matr ix . Tha t is, w i th respect to the l2 norm, A ^ is the closest approximat ion 
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to A for any rank(fc) matr ix [Golub and V a n Loan , 1996,-pp. 72-73]. Addi t iona l ly , the rows of E* 

are scalar multiples of Vj . A fact which is easily seen by examining an eigenimage i n its mat r ix 

form, 
r 

E,; = 
Ui2 

Ui. 

Vil Vi2 

Therefore, the structural information of Ej, and thus also A, can be expressed using only the 

vectors V J ; and hence, using only pr inc ipa l components (see equation (2.8)). Combined w i t h equa

t ion (2.10), eigenimages imply that information, which is coherent across the rows of A, is repre

sented by the first few eigenimages (principal components). In other words, a mat r ix containing 

mainly coherent information is synonymous w i t h a matr ix of smal l rank. 

The relat ion between eigenimages and pr inc ipa l components along w i t h equation (2.10) connect 

the ideas of explaining variance and explaining data, namely that the two concepts are equivalent. 

Hence, P C A attempts to explain the data w i t h few dimensions (pr incipal components), and i n 

doing so, extracts coherent information from the data. 

2.4 P C A by Neural Networks 

In Sections 2.2 and 2.3 pr inc ipa l components, d, are computed w i t h ful l knowledge of the corre

la t ion matr ix , C x , which, i n turn, requires some fixed number of realizations of x ( £ ) . A neural 

network formulation of P C A allows for online computat ion of p r inc ipa l components. Tha t is, as 

more realizations of x (t) are made available, the pr inc ipa l components are updated accordingly. 

Interestingly, the derivation of P C A i n a neural network framework is motivated through a learning 

rule designed to mimic the human brain. In particular, a modified version of a learning rule pos

tulated by Hebb [1949] is used which, as it happens, allows the neural network to learn pr inc ipa l 

components. 

Figure 2.1 is a schematic of a neural network consisting of m input neurons and one output 

neuron. It finds the first p r inc ipa l component of some data, x (t). The data are passed through the 

input neurons of the network, and subsequently through the weights of the network, producing the 
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Figure 2.1: A schematic of a neural network for computing the first p r inc ipa l component, 

output, y (t), such that 
m 

y(t) = ^2wi(t)xi(t). 

i=l 

For each realization of x (t) presented to the network, the weights, w ( i ) , are updated according 

to a simple heuristic, called Hebb's learning rule, stating that i f bo th an input neuron and the 

output neuron show act ivi ty simultaneously, then the weight connecting those two neurons should 

be increased. In other words, 

Wi {tj+i) = Wi (tj) + r\y (tj) Xi (tj) 

where r\ is some smal l scalar value. In this form the Hebbian learning rule, under certain cir

cumstances, is a non-convergent algori thm. To circumvent this difficulty a modified Hebbian rule 

is used where competi t ion between the weights is introduced through a normal izat ion term [Oja, 

1982], 

W i (tj+1) = + ^ ( 2 U ) 

E ™ i K (tj) + vv (tj)xi (tj))]' 

E x p a n d i n g equation (2.11) i n a truncated power series gives [Oja, 1982] 

Wi (tj+i) « Wi (t) + r)y (tj) (xi (tj) - y (tj) Wi (tj)) (2.12) 
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Amazingly , as Oja [1982] shows, Hebb's simple heuristic provides an algor i thm which computes 

the first pr inc ipa l component of the data. Tha t is, w (£_,•) -> u i as j —> oo where u i is the first 

eigenvector of Cx = E ( x x T ) ; and consequently, y (t) converges to the first p r inc ipa l component. 

The proof follows from associating the learning rule w i t h a set of ordinary differential equations 

( O D E s ) . Hence, the convergence analysis of the learning rule is transfered to the stabi l i ty analysis 

of a set of O D E s . If 5w = w — w (tj), then from equation (2.12), 

8w = rjy (tj) (x(tj) - y (tj)w (tj)) 

= V [x (tj) x (tjf w (tj) - ( w (tjf X (tj) X (tjf W (tj)) w (tj) (2.13) 

where y(tj) = w(tjfx(tj) = x(tjf w (tj). D i v i d i n g equation (2.13) through by St = tj+\ — tj, 

and let t ing 8t —> 0 and 77 —>• 0 at comparable rates gives 

h m — - = l i m — 
5t->0 dt 5«,??->0 St 

dw 

X (tj) X (tjf w (t3-) - (w (tjf X (tj) x ( i , ) T W (tj)) w ( i , ) 

^ = x ( i ) x ( t ) T w ( i ) - ( w ( t ) r x ( i ) x ( i ) r w ( i ) ) w ( t ) (2.14) 

Tak ing the expectation of equation (2.14) w i th respect to the random vector x(t) yields 

^ = E ( x ( t ) x ( t f ) w ( t ) - [ w ( t f E ( x ( t ) x ( « ) T ) w ( i ) ] w ( i ) 

= Cxw - ( w T C - c w ) w . (2.15) 

It is easy to see that the stabil i ty points of equation (2.15) are given by w = 0 and w = u ; , 

i = 1 . . . m where are the eigenvector of Cx. Tha t is, 

dw 
~dt = 0 

w=0 

and 
dw 
~dt 

= Xim - ( u f AjUj) Ui = AjUj - XiUi = 0. 

It can be shown, under certain conditions [e.g. Hayk in , 1999, C h . 8], that the stabi l i ty point, u i , 

is the only one which exhibits local convergence. To illustrate this consider a two dimensional 
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1.5 

U>2 

0.5 

0 

- 0 . 5 

-1.5 -1 - 0 . 5 0 0.5 1 1.5 

W\ 

Figure 2.2: Solutions to the O D E s i n equation (2.15) i n phase space. Regardless of i n i t i a l 
value (denoted by smal l circles), w(*o), the solution converges to the first eigenvector of the 
correlation mat r ix of the data. 

example where x\ (t) = s in ( i ) and X2 (t) — cos (t). Figure 2.2 plots trajectories of solutions, w (t), 

for various in i t i a l values. The in i t i a l values of the trajectories are denoted by smal l circles i n the 

plot. W i t h o u t fail the a lgori thm converges to ± u i . 

2.5 Application to Noise Suppression 

Consider a hypothet ical sub-surface consisting of perfectly horizontal and flat reflectors. A seismic 

survey is performed where the receiver spacing is kept perfectly constant. F r o m such a survey 

seismic traces could, of course, be gathered into common midpoint sections ( C M P s ) , each of which 

would contain the same signal but different realizations of random noise. For this s i tuat ion a clever 

processing step would be to s imply stack the C M P gathers, thus preserving the consistent signal 

while attenuating the unwanted random noise. However, the point of performing the survey i n 

the first place is to find the nature of the sub-surface. We cannot add together the C M P gathers 

w i t h the hope of reducing the noise i n the prestack domain without first knowing something about 

the geometry of the sub-surface. Do ing so would, of course, attenuate random noise; but more 

important ly, doing so would destroy signal. 

+ u i 
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CMP index 

1 2 3 4 5 6 7 8 9 10 

I • ,' I i, , I , ,i , , ', , I 

(h) (i) 
Figure 2.3: The synthetic example, (a) The reflector. T w o of the C M P s (b)(c) without 
incoherent noise and (e)(f) w i t h incoherent noise, (d) The singular values corresponding to 
the noiseless data, and (g) the noisy data, (h) The C M P i n (e) projected onto the first two 
eigensections. (i) The C M P i n (f) projected onto the first two eigensections. 
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Here, P C A is used to increase the signal to noise ratio i n the prestack domain while respecting 

lateral variations i n the subsurface. The method extends the work of Freire and U l r y c h [1988] and 

is s imilar to methods studied i n mult ispectral satellite imagery [Ready and W i n t z , 1973; Richards , 

1993, pp. 133-148] and face recognition software [Kirby and Sirovich, 1987; Pent land and Turk , 

1991; Turk and Pent land, 1991]. P rom a collection of two dimensional common midpoint gathers 

the S V D computes a vector basis, the components of which are called eigensections 2 and which are 

t r iv ia l ly related to pr inc ipal components. Project ing the seismic sections onto these eigensections 

attenuates the noise i n the data. 

In terms of P C A each seismic section is assigned to a random variable, Xi(t), i = 1 . . . m where 

the realizations of each random variable are data i n a seismic section ( C M P ) . Hence, the data 

form the matr ix , A , as i n equation (2.7) where each row, Xi(t), holds data from a lexicographic 

reordered two dimensional seismic section. Comput ing the S V D of A , as i n equation (2.6), yields 

the or thonormal vector basis Vj, i = 1 . . . m where Vj are called eigensections which are, i n turn, 

t r iv ia l ly related to pr inc ipa l components (equation (2.8)). The projection of a row of A (a seismic 

section) onto the subspace spanned by the eigensections maps the vector representation of the 

section, Xi(t), to a new vector of dimension m v i a the relation 

dj = vJXi(t) (2.16) 

giving a new set of coordinates, Cj, for each seismic section. Project ing the seismic sections, 

A , onto the first k eigensections gives the rank(fc) matr ix , A*. Th rough e l iminat ion of the last 

m — k eigensections from the projection, Afc is the approximat ion to A w i t h the most incoherent 

information (the random noise) between the rows of A (the seismic sections) removed. 

Here, two examples are considered. F i rs t , a simple but instructive synthetic (toy) example 

shows the removal of incoherent noise i n the C M P domain. Second, the lessons learned i n the 

synthetic example are applied to real data. 

Consider ten C M P gathers recorded at evenly spaced points where the sub-surface topography, 

shown i n Figure 2.3a, consists of a whole space over a half space. Because of the s impl ic i ty of this 

synthetic example (complications caused by the sudden change i n depth of the impedance bound-

2 A similar vector basis is computed in face recognition systems, the components of which are called eigenfaces. 
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ary, mult iple reflections, and so on are neglected), the two C M P gathers shown i n Figures 2.3b-c 

represent a l l variations i n the signal. A p p l y i n g the eigensection technique to these data produces 

ten eigensections ( V J , i = 1 . . . 10) along w i t h ten singular values (<7j, i — 1 . . . 10) shown i n F i g 

ure 2.3d. Notice that there are only two non-zero singular values. Thus, the first two eigensections 

are the only significant ones (see equation (2.9)). These two eigensections span a subspace that 

contains a l l ten of the C M P gathers. Thus, the C M P gathers can be projected onto these two 

eigensections without loss of signal. In other words, 

Xi(t) = C j i V i + C j 2 V 2 

where en and C j 2 are given by equation (2.16). 

Next , Gaussian dis tr ibuted random noise is added to the data (Figures 2.3e-f) and the eigen

sections are computed. The random noise is distr ibuted throughout a l l of the eigensections. Thus , 

while the singular values do not decay to zero, they do decay to some horizontal asymptote (Fig

ure 2.3g). The singular values that fall close to this asymptote represent incoherent noise. Therefore, 

this noise can be filtered by el iminat ing these undesired eigensections from the basis and projecting 

the C M P sections onto this reduced basis, 

Xi{t) = CjiVx + C i 2 V 2 

where, again, en and C j 2 are given by equation (2.16). Figures 2.3h-i show the result of this filtering. 

T h e extension of the eigensection technique to real data is straight forward. Figure 2.5a plots 

nine C M P s to be considered i n this real data example. Each C M P consists of twenty traces. For 

dramatic effect, Gaussian dis tr ibuted random noise is added to the data. A s already mentioned, 

the goal is to increase the signal to noise ratio of these data i n the prestack domain without making 

assumptions about the consistency of the sub-surface. The eigensection technique allows exactly 

this. 

Figure 2.5b plots Q (t) = orjVj, i = 1 . . . 9 where V j are eigensections computed from the data 

i n Figure 2.5a and <7j are the corresponding singular values. O f course, for p lo t t ing purposes, 

the vectors, V j , are re-organized into their original two dimensional form v i a the inverse of the 

lexicographic reordering. The singular values are plotted i n Figure 2.4. 
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onrtn 

1 5 0 C H 

1 0 0 0 H 

5 0 0 - ^ 

2 4 6 8 10 

Figure 2.4: Rea l data example. Singular values associated w i t h the respective eigensections 
of Figure 2.5b. 

Though examinat ion of Figures 2.4 and 2.5b, signal is contained i n more than just the first 

eigensection. Th i s means that there is variat ion amongst a l l the C M P s and s imply stacking them 

to enhance the signal to noise ratio i n the prestack domain would not be appropriate. However, 

P C A can increase the signal to noise ratio by considering the projection of a C M P onto a subset 

of the eigensections. 

Figure 2.6 plots the fourth C M P of Figure 2.5a along w i t h a stack of the C M P s and the 

approximat ion to the fourth C M P using projections onto various combinations of eigensections. In 

part icular , plot ted are 
K 

for K — 1 through K — 4 i n Figures 2.6c-f respectively where Cy are given by equation (2.16). 

A s i n the previous synthetic example, the singular values (Figure 2.4) indicate how many eigen

sections should be included i n the basis. Figure 2.6 shows that as more eigensections are used i n 

the reconstruction, signal that was destroyed i n the stack reappears. In part icular , two hyperbolic 

events, delineated by arrows, il lustrate this point. O f course, one cannot get something for nothing. 

W h e n more eigensections are used i n the reconstruction of the original C M P bo th signal and noise 

are added to the final sum. 

A key point i n the analysis outl ined i n this section is that each C M P has its own set of coordi

nates, Cj, and so when reconstructed from the eigensections, any and a l l of the C M P s i n Figure 2.5a 

are recovered uniquely. 
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2.6 Summary 

This chapter presented P C A from three points of view. F i rs t P C A was derived using variance, 

i l lus t ra t ing a pr inc ipa l component's disposit ion for explaining variance i n the data and proving 

that pr inc ipa l components are uncorrelated. Second, pr inc ipa l components were computed using 

the S V D , showing that explaining variance and explaining data are conceptually equivalent. Last ly, 

p r inc ipa l components were computed using a neural network w i t h a Hebbian learning rule al lowing 

for the online computat ion of pr inc ipal components and an understanding of them i n terms of 

O D E s . Regardless of the derivation, the result is a tool which is beneficial to signal and image 

processing techniques. Here, P C A was used as a coherency filter for the purpose of attenuating 

noise. In part icular, a novel extension to three dimensions (time, offset and C M P gather) i n seismic 

data processing was presented which allows for signal to noise enhancement i n the seismic prestack 

domain. 

In this thesis, the benefits of P C A extend beyond the scope of this chapter. In Chapter 3, 

P C A and its abi l i ty to find uncorrelated random variables play an essential role i n independent 

component analysis ( I C A ) . I C A uses this property of P C A to extract, from data, useful features. 



CHAPTER 3 

Independent Component Analysis 

3.1 Introduction 

Consider the linear system 

As = x (3.1) 

such that x is data generated by applying the forward operator, A, to a model , s. Inverse theory 

provides methods for finding s given bo th A and x. Tha t is, the forward operator and the data 

allow for, one way or another, the reconstruction of a model . However, i f only x is given while 

A and s are unknown, the problem becomes insolvable without addi t ional information. Robinson 

[1957] introduced a solution to one such problem. Namely seismic deconvolution where the model is 

the seismic reflectivity, the data is the seismic trace and the forward operator is a circulant mat r ix 

generated from the seismic wavelet. To compensate for a lack of information (only the seismic 

trace is known), Robinson postulated a white reflectivity and a m i n i m u m phase wavelet. T h i s 

extra information allows for the simultaneous reconstruction of the reflectivity and the m i n i m u m 

phase wavelet given only the trace. Thus, Robinson found a method for solving the linear inverse 

problem i n equation (3.1) when both A and s are unknown, and the wavelet is m i n i m u m phase. 

Now, consider an alternate set of prior knowledge, namely that the elements of the model are 

mutual ly independent, and that, at least, a l l but one of the components of x follow non-Gaussian 

statistics. N o assumptions are made about A. These assumptions lead, indirectly, to independent 

component analysis ( I C A ) [Common, 1994] which, once again, given only x i n equation (3.1), allows 

19 
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for the simultaneous reconstruction of both A and s. T h i s chapter describes I C A and illustrates 

it w i t h a simple (toy) example. In particular, the concepts of independence and Gaussiani ty are 

related though the central l imi t theorem ( C L T ) . Entropy, an indirect measure of Gaussiani ty and 

independence, is explained and efficient methods for its computat ion are described. T h e use of 

entropy i n the I C A problem gives rise to an objective function whose extrema are t r iv ia l ly related 

to the inverse of A , and which is further constrained through the use of p r inc ipa l component 

analysis ( P C A ) (see Chapter 2). 

3.2 The ICA Model 

In what follows, the components of x T = x\ X2 • • • xm w i l l be referred to as mixtures pro 

duced by apply ing a square and nonsingular mix ing matr ix , A , to sources, sT = s\ s 2 • • • sm 

A s i n Chapter 2, the components of both the source and mixture vectors are treated as random 

variables so that, for example, Xi (tj) is the jth realization of the ith mixture . Hence, the I C A model 

is 

xi(t) = ausi(t) + ai2s2(t) -\ \-aimsm(t), 

x2(t) = a2iSi(t) + a22S2(t) + --- + a2msm(t), 

Xm{t) — 0,miSi(t) + am2S2(t) + • • • + a m m s m ( t ) 

w i t h the m i x i n g matr ix , 

A = 

a n «12 • • • aim 

a 2 i a 2 2 • • • a 2 m 

Q"ml Q"m2 ' ' ' 0,mm-

(3-2) 

Addi t iona l ly , define a matr ix , B , so that 

y = B x (3-3) 
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• A i A A 
'-/ / A i V 
0 10 20 30 40 50 60 70 80 90 100 

Figure 3.1: Independent and non-Gaussian sources, (a) s i (t) and (b) s2 (t). 

where y T — ^ yl y2 • • • ym J, yi = bjx, i = 1 . . . m and bf is the ith row of B . The random 

variable, yj, is an independent component exactly when bj is found such that j/j oc Sj for some j. 

In other words, independent components are sought such that they are propor t ional to the sources. 

The vagueness i n the proport ional i ty between a source and an independent component is resolved 

by, arbitrari ly, setting var (yi) — 1. Addi t iona l ly , for reasons of simplici ty, which w i l l become clear 

shortly, the I C A model assumes E (yi) = 0. Th i s assumption is t r i v i a l to apply since the mean of 

the mixture vector, x , is easily set to zero, and, as i n Chapter 2, E (yi) = E (bf x ) = bjE (x) . 

To further il lustrate the I C A model consider Figures 3.1a-b which plot one hundred realizations 

of s\(t) and s2(t) respectively for some si and s2- A p p l y i n g a m i x i n g mat r ix to these sources 

produces, for example, 

x = As 
Xl 1.0 1.1 

x2 1.2 1.3 s2 

where x\(t) and x2(t) are plotted i n Figures 3.2a-b respectively. How s is found from just x is the 

subject of I C A and this chapter. 
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. 2 , 5 1— 1 l i l l l l l l I 
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Figure 3.2: Mix tures produced by taking linear combinations of the sources, Sj (t), i n F i g 
ure 3.1. (a) x\ (t) and (b) x2 (t). 

3.3 The CLT, Non-Gaussianity and Independence 
T h e C L T plays an essential role i n understanding the workings of I C A . In part icular , it behooves us 

to understand the relation between the C L T , Gaussianity and independence. Do ing so illustrates 

the basic principals of I C A and leads, indirectly, to an appropriate a lgori thm. 

T h e C L T is stated as follows. Let s\, s2,. • •, sm be independent and identically dis t r ibuted (iid) 

random variables w i t h variance a2 and mean 0. If 

771 

then 

l i m P [ -4= < y' ] = FY (Y < y') , - c o < y' < oo 
m->-oo \0~y/m J • 

where Fy is the cumulative dis t r ibut ion function for a standard Gaussian random variable [Rice, 

1995, pp. 166-173]. Hence, i f Sj are non-Gaussian and i i d random variables, then the sum, y, is 

more Gaussian then the parts, S{. 

Further, from the I C A model presented i n equations (3.3) and (3.1), 

y = B x = B A s = D s 
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where D = B A . Hence, the i independent component is 

(3.4) 

where df is the ith row of D . Given equation (3.4), i id and zero mean sources, and the C L T , the 

following two points relate Gaussianity and independent components. 

• If an independent component is sought such that yi oc Sj, then dj must only have one nonzero 

component. 

• Further, if yi is sought such that it is as non-Gaussian as possible, then dj must have only 

one nonzero component; otherwise, at least two random variables are summed producing a 

more Gaussian result. 

Hence, = hf x = df s is an independent component exactly when it is maximally non-Gaussian. 

This, in turn, means that I C A requires some measure of Gaussianity. 

The C L T presented above is the Levy Theorem. It requires iid sources and, although providing 

a C L T with an easily understood proof, is therefore rather restrictive. However, the Levy Theorem 

is a specific case of the more general Lindeberg Theorem which provides a C L T for a sequence of 

independent random variables with finite variances. Even more general forms of the C L T exist 

for independent random variables which require no assumptions about the existence of moments 

[Petrov, 2000]. Additionally, the assumption of independence can be weakened, leading to the aptly 

named weak dependence conditions [Sunklodas, 2000]. These conditions drop the requirement of 

mutual independence in favor of independence between sets of the random variables. Regardless, for 

the purpose of this thesis, one can assume that I C A seeks out independent components which are, 

indeed, mutually independent. However, the weak dependence conditions imply that the assumption 

of mutual independence, for ICA, is sufficient but not absolute. 

3.4 Entropy and Gaussianity 

In the previous section Gaussianity was used as a measure of independence. Here, a measurement 

central to information theory, called entropy for discrete random variables and differential entropy 

for continuous random variables [Shannon, 1948], is considered. It is well known that if only the 
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mean and variance of a continuous random variable, y, are given, then y has m a x i m u m differential 

entropy exactly when it has Gaussian statistics. 

Entropy, H (pi,P2> • • •)) measures the randomness (disorder) of a discrete random variable, Y, 

where p (Y = Yi) = pi is a probabil i ty mass function. A s such, entropy must satisfy the following 

conditions [Jaynes, 1995, C h . 11]. 

• H (pi,P2, • • •) exists and provides a relation between real numbers and uncertainty such that 

i f there are many possibilities, entropy is large; and conversely, i f there are few possibili t ies, 

entropy is small. 

• H (pi,P2, • • •) is a continuous function of p\. 

• H (pi,P2, • • •) is consistent such that i f there are mult iple derivations, each arrives at the same 

measure. 

It can be shown that [Jaynes, 1995, C h . 11] 

H = ~ l>2Pi lo&bPi (3-5) 
i 

fulfills these requirements. 1 

For example consider, as Cover and Thomos [1991, pp. 14-15] do, an experiment that has two 

possible outcomes w i t h corresponding probabilitiesp and 1 — p (a Bernou l l i d is t r ibut ion) . Fol lowing 

equation (3.5) the entropy of this experiment, 

H{p) = - p l o g 2 p - (1 - p ) l o g 2 ( l - p ) , (3.6) 

is plot ted i n Figure 3.3 for p e [0,1]. If p = 1/2, then the experiment is i n a state of m a x i m u m 

disorder or m a x i m u m uncertainty, and so, entropy (a measure of uncertainty) is max imum. C o n 

versely, i f the outcome of the experiment is more certain, then p is either closer to 0 or closer to 1, 

and entropy is smaller. 

For continuous random variables an analogous measure called differential entropy, h (pY), is 

1 W h e n the base two logarithm is used (6 = 2), the units of entropy are bits. So called because of its relation with 
coding lengths and binary numbers. 
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used such that 

/

oo 

pY{y)\npY{y)dy (3.7) 
-oo 

where, i n the context of I C A , y is an independent component. The subscript i is dropped for the 

sake of clarity. 

It follows that distr ibutions can be found which maximize entropy. Indeed, for the simple 

discrete example presented above, a Bernoul l i d is t r ibut ion w i t h p = 1/2 maximizes entropy. O f 

course, this is for a rather l imi ted scenario where the experiment has only two possible outcomes. 

Consider, instead, maximiz ing the differential entropy of a continuous random variable, y ~ pY (y), 

satisfying the usual conditions, 

PY(y)>0 , y€ll, (3.8) 

/

oo 

PY (y)dy = l (3.9) 
-00 

and the moment constraints provided by (y) and C j such that 

/

oo 

n (y) P y (y)dy = , % = 1 . . . I. (3.10) 
-oo 

Hence, the appropriate cost function (for maximizat ion) is 

<p{pY) = h{pY) + X0(^J pY {y')dy'-lj +J2xi (/ n{y')pY{y')dy' -c)j 

/

oo / /-oo \ ' / poo 

pY (y1) \npY (y1) dy' + A G / pY (y') dy' - 1 + ^ X{ / rt [y') pY (y') dy' 
-oo \J — OO / j = 1 \J — oo 
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where A^ are Lagrange multipliers. Differentiating with respect to the yth component of pY gives 

d(f> P 

-— = - \npY (y) - 1 + A D + ^ Kri(y), 

and setting this result to zero yields the extreme point of the cost function, 2 

pY{y)=exp^-l + \ 0 + J2\iri{y^j . (3.11) 

In Section 3.2, independent components are assigned a mean of 0 and a variance of 1. Hence, I = 2 

and equation (3.11) becomes 

PY (y) =e

x°-1eXiy+x™2. 

Setting A 0 = ln(27r) - 1 ^ 2 + 1, Ai = 0 and A 2 = 1/2 yields a Gaussian distribution which satisfies 

the constraints in equations (3.8)-(3.10) and, hence, maximizes entropy. 

Entropy gives a measure of Gaussianity in that minimizing entropy maximizes non-Gaussianity. 

Hence, y is an independent component exactly when it has minimum entropy. Unfortunately, 

as is evident from equation (3.7), this creates the rather difficult task of estimating integrals of 

probability density functions (pdfs). Indeed, when only a finite sampling of the random variable 

is given to constrain the governing pdf, the task seems daunting. In the next two sections, two 

solutions to this problem are described, both, giving attainable approximations of entropy. 

3.5 Entropy and Polynomial Expansions of pdfs 

Here, to approximate entropy, a pdf is expanded on a set of basis functions, called Chebyshev-

Hermite polynomials, derived from the Gaussian distribution. The resultant series, known as 

Gram-Charlier and Edgeworth expansions, are used in the definition of entropy, replacing the 

integration operator with expectations, and thus, allowing for efficient computations. In particular, 

equation (3.21), which estimates a measure called negentropy, wil l be derived such that maximizing 

negentropy is equivalent to minimizing entropy. 

2 Proof that the extreme point is a maximum is left for Appendix A. 
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Let t ing 

a (y) = \ e ^ 
2TT 

(3.12) 

define Chebyshev-Hermite polynomials , Hi, such that 

(-iy^a(y)=Hi(y)a(y) (3.13) 

Equat ions (3.12) and (3.13) define Hj and allow for its explici t formulation. F r o m equation (3.12), 

- y « (y) 

= (y2 - 1) a (y) 

( - y 3 + 3 ) a ( y ) 

&a(y) - ( y 4 - 6 y 2 + 3 ) a ( y ) 

. = ( - y 5 + I0y3 - 15y) a (y) 

and hence, it follows from equation (3.13) that 

H0 = 1 

Hi = y 
H2 = y2 - 1 

H3 = y 3 - 3 y 

H4 = y 4 - 6 y 2 + 3 

. #5 = y 5 - 10y 3 + 15y 

yielding a pattern so that, i n general [Kendal l and Stuart, 1977, p. 167], 

Hi(y)=yl-
2(1!) y*~ 2 + . . i -4 

,•[6] 

2 2 ( 2 ! ) y 2 3 (3!) 
y*~ 6 + (3.14) 

where 

»W = (i) (i - 1) • • • (i - (n - 1)) . 
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Addi t iona l ly , it can be shown [Kendal l and Stuart, 1977, p. 168] that 

/

oo 

Hi(y)Hj(y)a(y)dy = 
-oo 

j ! , * = 3 
(3.15) 

E x p a n d i n g an arbi trary pdf, pY (y), on a basis of functions comprised of Chebyshev-Hermite 

polynomials yields the Gram-Char l i e r series of type A , 

PY (y) = YICiHi (y)a 

i=0 

where, due to the orthogonality properties i n equation (3.15), 

1 r°° 
°i = ^ pY(y) Hi (y)dy-

l - J—oo 

Subst i tu t ing equation (3.14) into equation (3.17) gives 

i r fJi i[2] i-2 ^ i f 4 ] i-4 

,•[6] 

2 3 (3!) y
i _ 6 + dy 

[6] E ̂  - mE
 ( ^ ) + 2 ^ ^ - 2 ^ E ( ^ ) + 

(3.16) 

(3.17) 

and combining this result w i t h the first four terms (j = 0 . . . 3) i n equation (3.16) yields 

pY (y) = a (y) jff0 + E (y) HX + \ [E (y 2 ) - l ] H2 (y) + \[E ( y 3 ) - 3 E (y)] # 3 (</) 
+ ^ [E (y 4 ) - 6 E (y 2 ) + 3] HA (y) + O ( y 5 ) } . 

However, i f y is an independent component, E (y) = 0 and E (y 2 ) = 1; hence, not ing that H0 = 1, 

Pv (y) = a (y) ( l + ^K3H3 (y) + ^ « 4 # 4 (y) + O ( y 5 ) ) (3.18) 

where K$ = E (y 3 ) and K4 = E (y 4 ) — 3 [E ( y 2 ) ] 2 are, respectively, the skewness and kurtosis of the 

zero mean random variable, y [e.g. Nikias and Mendel , 1993]. 

Equa t ion (3.18) is used i n the definition of differential entropy (equation (3.7).)' y ie ld ing an 
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estimate of a related measure called negentropy, J(pY (y)), such that 

J(pY (y)) = h(pY (y))-h{P.(0) (3.19) 

where £ ~ N (0,1). Tha t is, £ has Gaussian statistics w i t h the same mean and variance as y. 

Hence, as entropy does, negentropy gives a measure of Gaussianity; i n part icular , the distance 

from a Gaussian distr ibuted random variable. Subst i tut ing equation (3.18) into the definit ion of 

differential entropy (equation (3.7)), and neglecting higher order terms gives 

/

oo 

« ( y ) 
-oo 

In a (y) + In ( 1 + ^ K 3 # 3 (y) + 7^K±H4 (v) dy. (3.20) 

Further, apply ing the first two terms i n the Taylor series, In (e) = e - e 2 /2 + • • •, to equation (3.20) 

yields 

f°° ( 1 1 
h (pY (y)) « - J a (y) I 1 + -K3H3 (y) + ^4#4 (y) 

In a (y) + j U 3 #3 (y) + ^ « 4 i 7 4 (y) - ^ f (y) + ^ K 4 # 4 (y) 

which, using the orthogonality constraints i n equation (3.15), becomes 

,2 Jl 

dy 

/

oo 

a (y) In a (y)dy + 
-oo 

«3 (y) +

 Ki (y) 
12 ' 48 

Therefore, it follows from equation (3.19) that [Jones and Sibson, 1987] 

12 48 
(3.21) 

which is relatively simple to compute. 

To review, the random variable y is an independent component exactly when it is max imal ly 

non-Gaussian, or equivalently, when its negentropy is max imum. However, while the approximat ion 

i n equation (3.21) is useful (as w i l l be i l lustrated shortly), it can also be problematic i n that 
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any outliers i n a sample of y adversely effects the approximat ion of the cumulants (kurtosis and 

skewness) [Hyvarinen et a l . , 2001, p. 182]. A more accurate measure of negentropy, described anon, 

greatly improves the robustness of I C A . 

3.6 Entropy and Nonpolynomial Expansions of pdfs 

Hyvar inen [1998] introduced an alternative to the polynomia l expansions, using a basis of nonpoly

nomia l functions, which greatly reduces the effect of outliers i n the approximat ion of negentropy. 

In Section 3.4 the m a x i m u m entropy dis tr ibut ion, 

PY (y) = exp ( - 1 + A 0 ) exp ]̂T] A ; r ; (y )^ , (3.22) 

was derived and required to satisfy the moment constraints, 

/

oo 

n [y)pY (y)dy = 
-oo 

C j , i = 1.. .1. (3.23) 

Here, equations (3.22) and (3.23) are used to find an estimate of negentropy. T h e end result is 

equation (3.35). 

Since y is an independent component, E (y) = 0 and E (y 2 ) = 1; consequently, appropriate mo

ment constraints are obtained by let t ing r\ = y, r2 = y2, c\ = 0 and c 2 = 1. Hence, equation (3.22) 

becomes 

PY (y) = 
exp ( -1 + A 0 ) exp ^ A : y + A 2 y 2 + \rl (y^j 

+ A i y + ^ A 2 + 0 y 2 + ^2 X i n (y) 

A i y + (A2 + ^ y2 + Y^Kri (y) 

= exp (—1 + A 0 ) exp y_ 
2 

= V2na (y) exp (—1 + A 0 ) exp (3.24) 

where a(y) has the form of a standard N o r m a l d is t r ibut ion as i n equation (3.12). A p p l y i n g the 
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first two terms i n the Taylor series, e e = 1 + e + • • •, to equation (3.24) gives 

PY (y) ~ A 1 + \ l V + ^ A 2 + ^ y 2 + J2 V i (V) (3.25) 

where A — v2ira (y) exp (—1 + A 0 ) . Addi t iona l ly , it is useful to assume that Ti (y) follow the 

orthogonality constraints [Hyvarinen, 1998], 

a (y) n (y) Tj {y)dy = 
0 , i^j 

i = j 
(3.26) 

and 

/

oo 

a{y)ri{y)ykdy = Q , A; = 0 ,1 ,2 , i = l...l. 
•oo 

(3.27) 

Inserting equation (3.25) into JpYdy = 1 and the prescribed moment constraints i n equa

t ion (3.23); and using the orthogonality constraints i n equations (3.26) and (3.27), a system of 

algebraic equations is derived which, when solved, greatly simplifies equation (3.25). In part icular , 

let t ing A = Aa (y), this scheme yields 

/

oo 

pY (y)dy = l = i ( l + A 2 + l / 2 ) , 
-oo 

(3.28) 

and for the zero mean constraint (i = 1 i n equation (3.23)), 

/

oo 

Py (y) 
-oo 

ydy = 0 = AXi. (3.29) 

T h i r d , using the unit variance constraint (i = 2 i n equation (3.23)), 

/

oo 

PY (y) y2dy = 1 = A [1 + (A 2 + 1/2) E ( | 4 ) ] 
-oo 

where £ ~ N(0,1). Further, since KA ( 0 = 0 = E ( £ 4 ) - 3 E ( £ 2 ) , E ( £ 4 ) = 3 E ( £ 2 ) = 3; and, as a 

result, 

i [ l + 3 ( A 2 + l /2 ) ] = 1. (3.30) 
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Aga in , inserting equation (3.25) into the moment constraints i n equation (3.23) for i = 3 . . . I, 

/

OO ^ /»00 

P y (y)rj(y)dy = ci = ̂ YlXi I a^n^rj^dy = ^-xr (3-31) 
-OO J—oo 

Equat ions (3.28)-(3.31) provide a system of algebraic equations which are easily solved yie ld ing 

A = 1, X\ — 0, X2 — —1/2 and Xj — Cj. Hence, from equation (3.25), 

pY (y) = a (y) ^1 + Y2 an (y)j 
Combin ing this result w i t h differential entropy gives 

/

OO 

pY (y) l n / v (y)dy 
-oo 

a (y) (1 + Y2CiTi (y) j ^(y) l^l + J2 an (y)j 

/

oo 
a{y)\na(y)dy 

-oo 

/

oo ^ 
a(y) X C i n (y} lna(y)dy 

'°° i=3 

j »(y) + YICiTi (y^Jln + YICiTi (y^Jdy-

dy 

(3.32) 

(3.33) 

(3.34) 

The first term (3.32) is the differential entropy of a Gaussian random variable, h (p ? ( £ ) ) . The 

second term (3.33) is el iminated by noting that l n a (y) — — l n (\/27r) — y 2 / 2 ; hence, 

/

oo ^ 

a{y)Y2Ciri(y)ina(y)dy 
-°° i=3 

= Y2 oCi / a(y)y2ri(y)dy + aln(V2Tr) a(y)ri(y)dy 
i = . 3 ll J-oo

 v ' J-oo 

= 0. 

The th i rd term (3.34) is simplified using the first two terms i n the Taylor series, (1 + e) l n (1 + e) = 
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e + e 2 / 2 + • • •, such that 

- j a (y) ^1 + ciri (V^j l n + CiTi ^ d y 

/
oo ^ 2 ( \ 

« ( y ) YICiTi
 fe) + o E c * r i to) 

|_»=3 Z \ i = 3 / 

i =3 " / - ° ° z . / - o o y i = 3 i = 3 J = 4 y 

1 ' 

i = 3 

Recombining these results produces 

1 ' 
M T V (y)) (0)-^cl 

i =3 

and so [Hyvarinen, 1998], 

1 ' 
(Py (y)) = h(pc(0)-MP. ( y ) ) * « £ c ? (3.35) 

i = 3 

where c, - E ( r j (y)). 

The preceding derivation is long; but, given the s impl ic i ty and u t i l i ty of the result, well wor th the 

effort. W h a t is left is to choose appropriate nonlinearities, T{ (y), the choice imposing a d is t r ibut ion 

on y (see equation (3.22)). 

3.7 ICA and its Cost Function 

Due to the relation between negentropy and independent components, the I C A problem is reduced 

to one i n opt imizat ion w i t h an associated cost function measuring negentropy. T w o such measures 

are presented i n Sections 3.5 and 3.6. Here, this opt imizat ion problem is expl ic i t ly defined, and the 

u t i l i ty of P C A i n terms of I C A is explained. 

P C A , used as a pre-processor, allows for the derivation of much needed constraints for the 
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opt imiza t ion problem. Given zero mean mixtures, x, let 

z = T x 

where z T = zi z2 are whitened mixtures such that E (z) = 0, E ( zz T ) = C 2 = I and 

I is the identity matr ix . Tha t is, the random variables, Zi, i — 1... m are mutua l ly uncorrelated. 

The u t i l i ty of z is i l lustrated by understanding the relation between uncorrelated and independent. 

Namely that independent implies uncorrelated. Consider, for example, two random variables, y\ 

and y2) that follow the bivariate pdf, pY Y^ (2/1,2/2)) w i t h marginal pdfs, pYi (yi) and pY^ (2/2)- A l so 

let gi (2/1) and g2 (2/2) be arbi t rar i ly defined functions. The random variables, y\ and y2, are, said 

to be, uncorrelated i f 

E (2/12/2) = E (2/1) E (2/2) • 

Further, i f yx and y2 are independent, then pY^Yi (2/1, y 2 ) = pYl (yi)pY2 (2/2)- Thus , 

/

OO POO 
/ 9i (Vi) 92 (2/2)P Y I,Y 2 (yi,y2)dyidy2 

•00 J—00 
r-OO 

/

oo /*oo 

91 ( y i ) p n (y i )dy i / g2 (y2)pY2 (y 
00 J—00 

2)%2 

= E [ f f i ( 2 / i ) ] E b 2 ( y 2 ) ] . (3.36) 

Therefore, uncorrelated is a special case of independent where g\ (y{) = y\ and g2 (y2) = 2/2; 

and hence, independent implies uncorrelated but uncorrelated does not imp ly independent. Since 

the goal of I C A is to produce components that are independent, they are also uncorrelated and 

under orthogonal transformations they stay that way. Therefore, an appropriately chosen rotat ion 

transforms uncorrelated components into independent components. T h i s immediately drops the 

degrees of freedom i n the opt imizat ion problem by one. 

F r o m Chapter 2, and i n part icular equation (2.5), an appropriate choice for T is easily found 

such that 

T = E ^ U 7 (3.37) 

u i I u 2 I ••• I u„ 
where, as i n Chapter 2, £ = diag ( \ A i , V^,..., \ A ^ ) and U = 

where Uj and Aj are, respectively, the eigenvectors and eigenvalues of the covariance mat r ix of the 
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_2.5 I l J l l l l l l l I 
0 10 2 0 30 4 0 50 6 0 7 0 8 0 9 0 1 0 0 

Figure 3.4: A whitened version of the mixtures i n Figure 3.2. (a) z\(t) and (b) z2(t). 

mixtures, Cx. Recal l ing that Uj are mutual ly orthonormal, 

E (uf xx r Uj) _ ufCsUj _ Ajufuj _ f 0 , i^j 
y/X~iXj \A^i yh^j I l , i = j 

confirms that equation (3.37) is a good choice for T. The result of whitening the data i n Figure 3.2 

is shown i n Figure 3.4. 

W i t h whitening, the I C A model becomes TAs = Tx or more succinctly, 

Ws = z 

E (mzj) = E 

where W = TA. Addi t iona l ly , define Q such that y = Qz, qf is the ith row of Q and yi = qf z 

is an independent component exactly when is chosen such yi has m a x i m u m negentropy. Hence, 

an appropriate cost function (for minimizat ion) is 

<MQi) = -J(PY (Vi)) = -J{PY ( q f z ) ) • (3-38) 

Figure 3.5 plots equation (3.38) for the whitened data i n Figure 3.4 using the measure of negentropy 

defined i n equation (3.21). 

A s already mentioned, whitening the data further constrains the cost function. In part icular , 

recalling that var (yi) = 1, E (yi) = 0 and that the independent components are uncorrelated such 
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Figure 3.5: The cost function for ICA (negative negentropy) computed from the whitened 
mixtures in Figure 3.4 using the Gram-Charlier series. 
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that E (yiyj) = 0, i ^ j gives 

' 0 , i±j 
E (yiyj) = E | (qf z) (qjz) | = E (qf zz r

q j ) = qf Czqj = qfq,- = 
1 , *=j 

The result, qfqi = 1, means that the cost function i n Figure 3.5 need only be considered on the 

is unit circle of its domain. Tha t is, the two degrees of freedom i n <f> (qf) for qT = 

reduced to one variable, 6, such that q\ — sin(#) and q2 = cos(0). The cost function traced out 

along this unit circle is plotted i n Figure 3.6. Notice that there are four dist inct local m i n i m a i n 

Figure 3.6a. E a c h one corresponds to an independent component. However, for this example there 

are only two sources and four independent components. Recal l ing that j/j oc Sj and remembering 

the constraint var(y;) = 1, it is clear that both yi and — yi satisfy the I C A definition. Hence, 

generalizing, the cost function always provides twice as many local m i n i m a as sources. M u l t i p l e 

local m i n i m a are found through consideration of the constraint, qf qj = 0, i ^ j. Indeed, using 

Gram-Schmidt orthogonalization it is t r i v i a l to find a qj which is orthogonal to q̂  [e.g. Bretscher, 

1997, p. 201]. 
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92 

Figure 3.7: A simple opt imizat ion scheme for I C A . G iven a point, , on the unit circle, 
a step is taken following the gradient of the cost function producing a new point which is 
projected back onto the unit circle giving q j X ) . T h i s is repeated un t i l | | q f + 1 ) - q j f c ) | | 2 < e 
where e is some prescribed tolerance. 

3.8 ICA Optimization Algorithms 
T h e problem presented i n the previous section requires, of course, a scheme for finding the extreme 

points of the cost function given the constraints. Here, two such methods are presented. T h e first 

using a gradient descent type algori thm and the second using a Newton type algori thm. 

Figure 3.7 illustrates a simple gradient a lgori thm for finding one local m i n i m u m , and hence one 

independent component, of the cost function i n equation (3.38) subject to the constraint, q f qj = 1. 

It is a modified gradient descent algori thm such that i n the transi t ion from i terat ion k to k + 1 

-<fc+1> - «<*> - aV* (qjfc)) 
^ Q l ( f c + i ) x " ' (3.39) 
^ l lqf + 1 ) H 2 

where a is some specified constant which governs the rate of convergence. Hence, each i terat ion 

produces a new vector, q^k+1\ by following the negative gradient of the cost function away from the 

(*) 

unit circle and projecting this result back onto the unit circle. A t a local m i n i m u m , q^ , the gradient 

of the cost function is orthogonal to the unit circle [e.g. Nocedal and Wright , 1999, p. 320]; hence, 
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T 1 r 

_2 I 1 1 I i i i i i i I 
0 10 2 0 30 4 0 50 6 0 7 0 8 0 9 0 1 0 0 

Figure 3.8: The independent components computed from the whitened mixtures i n F i g 
ure 3.4. The solution is found using the polynomia l approximat ion of negentropy i n equa
t ion (3.21) and the gradient opt imizat ion scheme i n equation (3.39). 

Qi — Qi — Qi a n d the algori thm converges. M u l t i p l e independent components are readily 

found using Gram-Schmidt orthogonalization and choosing such that it is orthogonal to q̂  for 

i — 1 . . . j — 1. Figure 3.8 plots the independent components found from the mixtures i n Figure 3.2 

using the po lynomia l approximat ion of negentropy i n equation (3.21) and the gradient descent 

opt imiza t ion scheme i n equation (3.39). It is obvious that the algor i thm has found independent 

components. Tha t is, it is obvious that yi oc Sj, i = 1, 2. 

Hyva r inen [1999a] presents an alternative scheme to equation (3.39) which employs approx

imative Newton steps i n the iterative scheme. In particular, the nonpolynomia l approximat ion 

of negentropy i n equation (3.35) is considered using only one term i n its series expansion which, 

combined w i t h the constraint qf q, = 1, gives, for minimiza t ion , 

<j> (en) = -\[E(r (yi))}2 + A (qf q, - l ) (3.40) 

where yi — c\[z and A is a Lagrange mult ipl ier . The gradient of (j> is 

V</> (q;) = - E (r (Vi)) E ( / ( y i ) z) + 2 A q i , 

and ignoring the scalar value, —E (r (yi)), allows for computat ion of an approximative Hessian, H, 
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such that 

H « E (r" (yi) z z T ) + 2AI « E ( r" (y;)) E ( z z r ) + 2AI = [E ( r" (y,)) + 2A] I . 

Th i s approximat ion gives a Hessian which is easily inverted, leading to the approximative Newton 

step (from iterat ion k to k + 1) given by 

„(*+!) _ (k) _ E (r' fa) Z) + 2 A q f } 

q ' ~ Q * E ( r » ( y , ) ) + 2 A • ( 3 - 4 1 j 

M u l t i p l y i n g equation (3.41) through by the denominator i n its t h i rd term yields 

[E (r" (JH)) + 2A] q<*+1> = [E (r" (W)) + 2A] q ^ - E (r ' ( w ) z) - 2 A q f ̂  

= E ^ ' ^ q S ^ - E ^ ' ^ J z ) . 

Hence, an appropriate a lgori thm is 

q f + 1 ) = E ( r " ( y , ) ) q f ) - E ( r ' ( y l ) z ) 

^ l | q f + 1 ) | | 2 

The projection back onto the unit circle compensates for the approximations made which neglect 

scalar values i n bo th the gradient and the Newton step. 

W h i l e the simple gradient scheme works well for smal l examples. It is found that the a lgor i thm 

of Hyvar inen [1999a] i n equation (3.42) is advantageous i n bo th its efficiency and robustness. 

Therefore, i n the remainder of the thesis, it is used extensively. 

3.9 Summary 

T h i s chapter introduced I C A and described algorithms for comput ing independent components. 

I C A considers mixtures of random variables such that its goal is, given only the mixtures and an 

assumption of independence, to recover the corresponding sources. It was shown that the C L T 

allows for exactly this such that the independent components are obtained exactly when their 

statistics are maximal ly non-Gaussian. Measures of Gaussianity, entropy and negentropy, were 



CHAPTER 3. INDEPENDENT COMPONENT ANALYSIS 41 

derived and approximated using series expansions of the pdf of the independent component. B o t h 

po lynomia l (Chebyshev-Hermite polynomials) and nonpolynomial [Hyvarinen, 1998] basis functions 

were used yielding two different approximations of negentropy and, hence, two measures for the 

computat ion of independent components. 

T h i s chapter presented a simple, but instructive, example of I C A . For this example the polyno

m i a l expansion was sufficient for finding independent components. However, for geophysical data 

sets the sources are, more often than not, super-Gaussian. For such data sets, the nonpolyno

m i a l expansion is essential, the po lynomia l expansion suffering from outliers i n the. sampl ing of the 

associated random variable. 



CHAPTER 4 

Blind Deconvolution by ICA 

4.1 Introduction 
Consider two time sequences, h (t) and p(t), and their convolution, 

X(t) = h(t)*p(t) (4.1) 

/

oo 

h(t-r)p (T)C1T. 
-oo 

Neglecting noise, equation (4.1) is often used to model seismic data where x(*) is a seismic trace 

generated by convolving a wavelet, h (t) (the filter), w i t h the Ear th ' s reflectivity, p{t). Th i s linear 

representation of the t ru th is useful but, for real data, introduces an equation w i t h two unknowns 

(the wavelet and the reflectivity). A b l ind deconvolution algori thm must find the unknowns given 

only the trace; hence, the problem is ill-posed and requires addi t ional constraints. Here, indepen

dent component analysis ( I C A ) is used to develop a b l ind deconvolution a lgor i thm such that the 

reflectivity is constrained to follow the I C A model. 

Chapter 3 introduced and explained I C A . In this chapter the convolution problem is presented 

and adapted to an I C A framework yielding a new b l ind deconvolution algori thm. T h e convolutional 

model yields a mix ing mat r ix which is banded, and this information is incorporated into the I C A 

algor i thm as prior information. Th i s banded I C A algori thm ( B - I C A ) is then used to simultaneously 

recover the seismic wavelet and reflectivity for a noise free trace, x (*)• 

Wiggins [1978] introduced a b l i nd deconvolution algori thm called m i n i m u m entropy deconvolu-

42 
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t ion where the statistics of the reflectivity were constrained using the var imax cri terion (a measure 

of kurtosis). Th i s algori thm, for a short time, was popular and has received much attention [e.g. 

Donoho, 1981; Ooe and Ul rych , 1979; Sacchi et a l . , 1994; Walden, 1985]. S imi la r methods were, 

independently, derived by Shalv i and Weinstein [1990]. More recently, Kaaresen and Taxt [1998] 

derived an algori thm which expl ic i t ly incorporates the sparseness of the reflectivity by using a 

spike t ra in as a model where the location, ampli tude and number of spikes are considered. W i t h 

the exception of Kaaresen and Taxt [1998], a l l of these methods employ higher order statistics. A s 

such, while the method presented i n this chapter is derived from I C A , it has roots reaching a wider 

scope of literature. 

4.2 Discrete Convolution and the ICA model 
A s is evident i n equation (4.1), convolution is, of course, linear and can be expressed as a linear 

system of equations. Th i s lends itself to an I C A formulation of b l i nd deconvolution which given 

only one t ime sequence, x (t), allows for the reconstruction of bo th h (t) and p (t). 

For discretely sampled signals, the convolutional model is modified, such that 

X(U) = yjT,h(ti-j)p(tj), 

or equivalently 

A s = x (4.2) 

where 

p(h) p(t2) 

x(h) x (*2) 

P(tn) 

X(tn) 

and A is an n x n banded matr ix . The columns of A are constructed from delayed versions of the 

wavelet, h, such that 

A = ai | a 2 | a 3 | ••• 

N i h I N 2 h I N 3 h N n h (4.3) 
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Figure 4.1: The nonzero bits of a banded mix ing matr ix , A , for convolution (n = 100 and 
nw = 20). 

h1 = [ h(h) h(t2) ••• h(tnw) 

and N j are zero padding matrices [e.g. Claerbout, 1992, p. 107] where the ith element of is h(t\), 

element (i + 1) is h (t2) and so on. Figure 4.1 illustrates A , showing the nonzero bits of the mat r ix 

when n = 100 and nw = 20. 

Equa t ion (4.2) is recognized as the I C A model from Chapter 3 where s are sources, x are 

mixtures and A is the mix ing matr ix . A s before s and x are random vectors. However, the 

convolutional model i n equation (4.2) provides only one realization of each. Obvious ly this is 

inadequate to characterize the corresponding statistics and, hence, is inadequate for I C A . However, 

the available information can be reorganized i n a clever way providing several realizations. T h e 

trick is to consider t ime delayed versions of p(t) and x(t) [Hyvarinen et a l . , 2001, p . 360]. In 

part icular , let 

vn—1 Pit) v n - 2 Pit) zp(t) p{t) 

and 

T x = vn—1 
X(t) zn~2

X(t) zx(t) X(t) 

where z is the unit delay operator. Hence, organizing the realizations of s into the columns of a 
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matrix gives 

" zn-lp{t) ' 0 0 o • 0 P(*l) 

zn~2p(t) 0 0 0 • P(h) P ( *2 ) 

= (4.4) 

zp(t) 0 p(h) p(ta) • • p{tn-2) P(*n-l) 

(4.4) 

Pit) . p(h) P(h) p(h) • • p(*n-l) P (*n) 

and similarly 

" zn~xx{t) ' 0 0 0 0 X.(*i) 

zn~3x(t) 0 0 0 • x(ti) X ( *2 ) 

= (4.5) 

0 x(h) x(h) • • X (tn-2) X(*n-l) 

(4.5) 

x(t) . X ( * i ) X ( *2 ) x(h) • • X(tn-l) X(*n) 

where the j realization of x is the convolution of the j realization of s with the wavelet, h. In 

other words, 

x (tj) = h * s (tj). 

Thus, blind deconvolution is posed in a manner that can be solved using I C A . In particular, 

I C A computes some approximation to the rows of s, each containing a portion of the reflectivity. 

However, as described in Chapter 3, ICA does not directly recover h but rather q; which maps 

the whitened mixtures to the ith independent component. Additionally, recall that I C A relies on 

computing the statistics of the independent components. Clearly the first few rows of s and x 

provide few nonzero realizations; thus, doing little to define the statistics of their corresponding 

random variables. 
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4.3 Banded ICA 

Reca l l the notat ion used, i n Chapter 3, to describe I C A : 

As = x ( r A s = Tx) = (Ws = z) y = Bx y = Qz (4.6) 

where A, B, W and Q are m x m matrices, T is chosen such that z is white and Q is chosen such 

that the elements of y, yi, are independent components. Tha t is, Q is chosen such that yi cc Sj for 

some j where Sj is the jth element of s. Addi t iona l ly , define a new matr ix , P, such that 

Py = x (4.7) 

and 

P = P l | P2 

B y definition, y is a scaled and permuted version of s; thus, P and A provide s imilar mappings. 

Here the I C A algori thm is modified such that instead of finding rows of Q, it finds columns of P. 

Thi s , conveniently, allows for appl icat ion of the given prior knowledge to I C A . Namely, the banded 

nature of A can be applied to P, leading to the new B - I C A algori thm and a solut ion to the b l i n d 

deconvolution problem. 

Reca l l , from Chapter 3, that the I C A algori thm involves finding a m i n i m u m of some cost 

function, (j> (q;), which measures the entropy of an independent component, yi = q[z, where qf is 

the ith row of Q. A relationship between q, and pi is readily found. No t ing that the independent 

components, j/j, are zero mean and uncorrelated random variables w i t h unit variance, and that 

y = Qz (equation (4.6)), gives 

E (yyr) = E (QzzTQT) = QE (zzT) Q T = Q Q T = I 

where I is the identity matr ix . Therefore, assuming that Q _ 1 exists, 

Q - 1 Q Q T = Q - 1 
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Further, using equation (4.6), 

z = Q ~ V = Q" y = Fx; 

hence, 

x = r - ^ y (4.8) 

Equat ions (4.7) and (4.8) allow for the explicit formulation of P i n terms of Q such that 

Q T = TP 

or more explici t ly, 

Q = qi I q2 = r Pl I P2 = TP. 

Hence, qj = Tpi and using equation (4.6) gives 

V i = qfz = ( r P i ) T z = (rNih)Tz = h T N f r T z = hTx (4.9) 

where x = NjTTZ and Nj is a zero padding mat r ix which maps h to the ith co lumn of P, pi, 

which, i n turn , corresponds to a part icular column of the mix ing matr ix . In other words, is the 

prior information. It enforces the banded property of the mix ing matr ix , A, by expl ic i t ly choosing 

the number and locat ion of zero entries i n Pi, and i n doing so forces pi to correspond to columns 

of A which have an equivalent sparse structure. 

In equation (4.9), x can be thought of as a new set of mixtures (nw i n total) w i t h corresponding 

independent components, y, such that 

y = Bx 

where 

B = 

is an nw x nw matr ix; so, assuming an I C A model, equation (4.9) can be generalized such that 

As = x (f As = fx) = ("Ws = zj y = Bx y = Qz (4.10) 
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where B = Q f . Hence, given x, the I C A algorithm is used to find y and B where one element of 

y is the desired independent component, and one row of B is the nonzero bits of one column of P . 

In other words, hj cx h for some i. 

The above algorithm can be further generalized so that = N j h ; where hj are all of dimension 

nw, giving a more general form of equation (4.3) such that 

A = N i h i Noh' 2 n 2 
N h 

For example, consider the mixing matrix, 

A = 

1.0 0 0 0 

1.1 1.2 0 0 

f 0 1.3 1.4 0 

0 0 1.5 1.6 

(4.11) 

which provides a mapping between the sources, s, in Figure 4.2 and the mixtures, x, in Figure 4.3. 
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Figure 4.3: A n example of B - I C A . The four mixtures (a)-(d) are produced by mix ing the 
sources i n Figure 4.2 according to the mix ing mat r ix i n equation (4.11). 

New mixtures, x, are computed according to equation (4.9) such that x = N ^ r r z . F igure 4.4a 

plots the cost function, (f>(cn), for ||qi||2 = 1, where q[ is the ith row of Q. The cost function is 

computed using the approximat ion to negentropy i n equation (3.21). A s expected, there are four 

local m i n i m a corresponding to two independent components i n y. These independent components, 

y~i and j/2, are plotted i n Figures 4.4b-c respectively. Clear ly Figure 4.4b corresponds to the source 

i n Figure 4.2b. For this example the prior information is N2 which constrains the I C A algor i thm 

to find P2; consequently, it finds an independent component proport ional to the second element of 

s, S2- T h i s logic is echoed i n Figure 4.4. 

A s a second example let x = Njr^z. The corresponding independent components are plot ted 

i n Figure 4.5. Th rough examination of equation (4.11), it is clear that this prior information, N 3 , 

allows for bo th the th i rd and fourth columns of A. B o t h have the same nonzero bits, so bo th obey 

the prior information imposed by N 3 . A s such, bo th the th i rd and fourth elements of s, S3 and 

S4, are represented i n Figures 4.5b-c respectively. The corresponding cost function is plot ted i n 

Figure 4.5a. 

W h i l e B - I C A allows for appl icat ion of the given prior knowledge, it s t i l l presents a difficulty i n 
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Figure 4.4: A n example of B - I C A . (a) The cost function computed from the mixtures i n 
Figure 4.3 using the prior information i n N 2 and plotted for ||q|| 2 = 1- Superimposed on 
the cost function are the opt imizat ion paths which the a lgori thm followed to find the local 
min ima , (b)-(c) The independent components, y, corresponding to the local m i n i m a i n 
(a). Notice that the independent component i n (b) is representative of the second source 
(Figure 4.2b). 
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Figure 4.5: A second example of B - I C A . (a) The cost function computed from the mixtures 
i n Figure 4.3 using the prior information i n N 3 and plotted for ||q||2 = 1- Superimposed on 
the cost function are the opt imizat ion paths which the a lgor i thm followed to find the local 
min ima , (b)-(c) The independent components, y, corresponding to the local m i n i m a i n (a). 
Notice that the independent components are representative of the sources i n Figures 4.2c-d. 
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the ambiguity of the result. Namely that the algori thm produces as many independent components 

as the dimension of h (or hj). A s such, there is left the task of choosing one independent component 

and its corresponding row of B. Fortunately, as w i l l be shown, when B - I C A is used for b l ind 

deconvolution a solution presents itself. 

4.4 B- ICA for Blind Deconvolution 

In Section 4.2 the convolutional model was formulated as an I C A problem w i t h a banded m i x i n g 

matr ix . Here, B - I C A , presented i n Section 4.3, is used to solve for the filter, h. Unfortunately, as 

i l lustrated i n Section 4.3, B - I C A provides as many independent components as the dimension of h. 

The best solution must be chosen from the pool of candidate solutions, y ie ld ing one approximat ion 

of bo th h and p (t). 

Further, the s and x proposed i n equations (4.4) and (4.5) are inadequate i n that the first few 

mixtures and sources provide few nonzero realizations; hence, doing l i t t le to constrain the statistics 

of their corresponding random variables. Therefore the algori thm must be modified to compensate 

for this lack of information. Th i s modification produces an approximate convolutional model such 

that i f A is an m x m mat r ix and x (U) 1 S n points (i = 1 . . . n) , then modifying equation (4.4) such 

that m < n gives 

zm-lp{t) 0 0 0 pih) Pit2) P (tn—m) 

zm~2p (t) 0 0 • p(h) P (*2) . Pih) p(tn-m-l) 

zp(t) 0 Pih) • p(tn-3) P{tn-l) P(tn-l) 

Pit) pih) P(*2) • P{tn-2) P(tn-l) Pitn) 
(4.12) 
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0 50 100 150 200 250 

Figure 4.6: B - I C A used for b l ind deconvolution. (a) A sparse spike t ra in convolved w i t h (b) 
the twenty-five point filter, h, produces (c) the signal, x ( * ) - G i v e n the data i n (c), B - I C A 
finds the information, B , presented i n Figure 4.7. 

and, s imi lar ly from equation (4.5), 

" zm-l

X{t) ' 0 0 0 x(h) xih) X {tn—m) 

zm-2

X{t) 0 0 • x(h) X(t2) x(h) X (tn-m-l) 

ZX (t) 0 x(h) • X (tn-3) X(tn-2) X(tn-l) 

x(t) x(h) X ( *2 ) • X (tn-2) X(tn-l) X(tn) 

(4.13) 

Hence, each random variable has a number of nonzero realizations to constrain their statistics. 

G i v e n equations (4.12) and (4.13), the mapping between s and x, imposed by the convolutional 

mix ing mat r ix (equation (4.3)), is not exact. Rather, it provides an approximate convolutional 

model such that As « x. In particular, through careful inspection of equations (4.12) and (4.13), 

it is clear that, given A and s, X{ (tj) is incorrectly mapped for 

( i £ { l . . . nw}) n (j e {{m - 1 ) . . . n}) . 

However, for the remainder of x the mapping is correct which, as w i l l be i l lustrated, given only 

knowledge of x (t) (i-e. x i n equation (4.13)), allows I C A to find a wavelet following the true 

convolutional model . 

Consider the synthetic t ime sequence, x (t), i n Figure 4.6c which is the convolution of the sparse 

spike t ra in , p (t), i n Figure 4.6a w i t h the twenty-five point filter, h, (a Ricker wavelet) i n Figure 4.6b. 

G i v e n only x (*)5 B - I C A produces B , the rows of which are plotted i n Figure 4.7. T h e matr ix , B , is 
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V 

-4, 
Figure 4.7: - B - I C A used for b l i nd deconvolution. P lo t ted are the twenty-five rows of B 
computed using B - I C A and the data i n Figure 4.6c. 

computed using the I C A model i n equation (4.10) which is arrived at using the pr ior information 

i n the zero padding matr ix , N ( m _ n u ; - i o ) - The employed algori thm estimates negentropy using the 

nonpolynomial expansion of the corresponding pd f (as shown i n equation (3.35)), and performs 

the opt imiza t ion using the routine of Hyvar inen [1999a] (equation (3.42)). T h e forward model is 

approximated such that m = 100, and the nonlinearity used i n the nonpolynomia l expansion is 

r (y^ = exp ^ — . A quick search through the panels reveals good approximations to the wavelet. 

W h i l e the hi i n Figure 4.7 are an interesting result, their u t i l i ty is not immediately obvious. In 

practice the filter is, of course, not known. Hence, s imply presenting the choices i n Figure 4.7 is 

nonsense. Instead, there is a sensible way to check for the best result. In part icular , coefficients, 

Cj, can be calculated such that, given the prior N^, 

^ ( Q ) = | | X A : - C j h i * y j | | ! , i = l...nw (4-14) 

is, for each i, min imized where, here, x^ = 

the kth mixture, and yf = \ fa (h) yi (t2) 

Xk(t\) Xk(h) Xk (f"n) are the realizations of 

Vi (tn) are the realizations of the ith indepen-
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Figure 4.8: B - I C A used for b l i nd deconvolution. (a) A sparse spike t ra in convolved w i t h 
(b) the thirty-five point filter, h, produces (c) the signal, x (*)• ( e ) The recovered filter, h*, 
and (d) the independent component using B - I C A and the cri ter ion i n equation (4.14). (f) 
T h e convolution of (d) and (e). 

dent component. It is easily verified that equation (4.14) has its extreme point when 

(*) 
Ci = c) — 

(hi * yi) (hi * 

T h e best solution, (y*,h*), is chosen such that 

if) (c**^) — m . i n { V 7 ( c i * ^ ) } ' « = ! • • • fiw. 

For example, consider the synthetic time sequence, x(i) , i n Figure 4.8c generated by convolving 

the spike t ra in , p ( i ) , i n Figure 4.8a w i t h the thirty-five point filter (a Berlage wavelet), h, i n 

Figure 4.8b. B - I C A is used to compute B such that the prior information is the zero padding 

matr ix , N ( m _ n u ) _ 1 0 ) , m = 75 and, again, the a lgori thm of Hyvar inen [1999a] (equation (3.42)) 

is used w i t h r (yi) = exp (— f̂). A s a result, thirty-five wavelets are recovered, h i . . . 1135. T h e 

best result (h*, y* (t)) is extracted from the pool of thirty-five candidate solutions according to the 

cri ter ion i n equation (4.14) (wi th k — m - nw — 10) and is plotted i n Figures 4.8d-e. Figure 4.8d 

is, as expected, an approximat ion to the sparse spike series i n Figure 4.8a w i t h a linear phase shift. 
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The shift is due to how the mixtures, x, are organized (see equation (4.5)). F ina l ly , the convolution 

of the independent component i n Figure 4.8d wi th the recovered wavelet i n Figure 4.8e is plot ted 

i n Figure 4.8f. Clear ly the algori thm has done a reasonable job i n recovering bo th the wavelet and 

the reflectivity. 

4.5 Summary 

T h i s chapter adapted the I C A algori thm to include prior information on the m i x i n g matr ix . In 

part icular , its banded nature was accounted for by specifying its nonzero bits. Addi t iona l ly , the 

deconvolution problem was coaxed into an I C A formulation w i t h a banded m i x i n g mat r ix computed 

from the filter, h. Init ial ly, this resulted i n an I C A model w i t h only one realization of bo th the 

source and mixture . To compensate for this lack of information, t ime delayed versions of p (t) and 

X (t) were considered. T h i s resulted i n a new b l ind deconvolution method, u t i l i z ing B - I C A , which 

i n tu rn gave rise to a second complicat ion. Namely that the first few mixtures and sources had few 

nonzero realizations, and so, had insufficient information to constrain their statistics. T h e solution 

was to use an approximate convolutional model which proved to be sufficient. B - I C A created a 

further complicat ion. It produced as many candidate solutions as the dimension of h. T h i s problem 

was overcome by using the extra information provided by the convolutional model . 

W h i l e useful, the model presented i n this chapter neglected noise. In seismic data, as w i t h a l l 

real data, noise plays an important factor, and the convolutional model i n equation (4.1) must be 

modified such that 

X(t) = p(t)*h{t) + n(t) 

where n (t) introduces additive random noise. Chapter 5 deals w i t h this extra complicat ion. 



CHAPTER 5 

Noisy ICA and Blind Deconvolution 

5.1 Introduction 
Chapter 4 described a b l i nd deconvolution algori thm for a model devoid of noise. For real world 

applications data are inherently noisy, and the convolutional model i n equation (4.1) requires 

modificat ion such that 

X{t) = h{t)*p(t) + n(t) (5.1) 

where n (t) is additive random noise. In terms of I C A , the addi t ion of noise augments equation (3.1) 

such that 

x = x + n = As + n (5.2) 

where n is a random noise vector and x are noisy mixtures. In this chapter, B - I C A (see Chapter 4) 

is adapted such that the effect of n (t) on the recovered wavelet, h (t), is mit igated. A s a means to 

this end, a modification, following the work of Hyvar inen [1999b], to the I C A algor i thm is sought 

such that the estimated de-mixing matr ix , Q, is invariant to the noise term, n. 

The incorporat ion of noise into the I C A algori thm is a two-fold process. F i r s t , the noise must be 

accounted for in the whitening of the noisy mixtures. Second, the cost function measuring entropy 

requires modificat ion such that it is invariant to noise. Further, two addi t ional assumptions must 

be applied to the I C A model; the noise, n, and the noise free mixtures, x , are assumed to be 

independent, and the noise is assumed to follow a Gaussian d is t r ibut ion w i t h a known (estimated) 

57 
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covariance matr ix . Subsequently, this modified algori thm can be applied to B - I C A , giving a noisy 

B - I C A algori thm, and a b l i nd deconvolution algori thm for noisy signals. 

5.2 Pre-Processing Noisy Mixtures 

Section 3.7 described a pre-processing step for the I C A algori thm where, using p r inc ipa l component 

analysis ( P C A ) , a whitening operator, V, is extracted from the mixtures, x, such that z = Tx and 

E (zzT) = I. Here, the whitening algori thm is modified so that the whi tening operator, T, is 

invariant to the noise term i n equation (5.2) [e.g. Douglas et a l . , 1998]. 

The whitening operator, T, is sought such that 

z = Tx = T (x + n) = Tx + Tn = z + Tn, (5.3) 

z = Tx and E (zzr) = I. Recal l , from section 3.7, that the whitening operator is computed using 

the covariance mat r ix of the noise free mixtures, C x . Fortunately, knowledge of the covariance 

mat r ix of the noise coupled w i t h the, already mentioned, assumption of independence between the 

noise, n, and noise free mixtures, x, allows for computat ion of Cx. In the case of zero-mean and 

noisy mixtures, x, 

C* = E (x + n) (x + n)T 

= E (xxT + xn r + nxT + nnT) 

= E (xxr) + E (nnT) 
= C x + Cn 

where Cx and Cn are, respectively, the covariance matrices of x and n. Hence, Cx = Cx — Cn, 

and given C n , C x is obtained and used i n the computat ion of T; thus, al lowing equation (5.3). 

Recal l , from Chapter 3, that the I C A algori thm consisted of an opt imiza t ion problem; the 

corresponding cost function, <j>(qi), providing a measure of entropy (independence) for ?/j = q^z. 

A d d i t i o n a l l y recall that yi is an independent component exactly when qj is chosen such that (f> (qj) 

is a local m i n i m u m and ||qi||2 = 1- Thus, i f a cost function, <̂ >(qi), measuring entropy can be 
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constructed such that 

<t> (q») = / ( q f a) = / ( q f r (x + n)) = / (yi + q f rn) = /(# + « ) = / ( y < ) , (5.4) 

then qj can be found as i n the noise free case. In other words, the desired cost function is invariant 

to noise. 

For a first example, let / (•) = K4 (•) where K4 is kurtosis. Hence, given independence between 

the noise free mixtures and the noise, 1 

<p (qO = K 4 ( q f z) = K4 (qf z + qf rn) = K 4 ( q f Z) + K4 (qf rn) . (5.5) 

Further, i f n follows a Gaussian dis t r ibut ion, then qf rn also has Gaussian statistics and, therefore, 

zero kurtosis so that 

<P (q») = 4̂ (qf z) = « 4 (Vi) • (5-6) 

Hence, using kurtosis as a measure of entropy yields a cost function that is invariant to noise. 

T h e incorporat ion of the noise covariance mat r ix i n the whitening a lgor i thm allows for equa

t ion (5.6). However, kurtosis is not a sufficiently robust measure of entropy for the appl icat ion of 

b l i n d deconvolution. Instead, the nonpolynomial expansion of the appropriate probabi l i ty density 

function (pdf) (Section 3.6) is required. The task is to find an appropriate nonlinearity, for the 

nonpolynomial expansion, such that equation (5.4) is realized. 

5.3 Gaussian Moments 

In Chapter 3 a cost function, for I C A , was devised from an estimate of negentropy which employed 

a nonpolynomial expansion of the corresponding pd f (equation (3.40)). W i t h addit ive noise, this 

cost function becomes 

0 (Qi) = - 1 [E (r {Vi + n))f + A (qf q, - l ) (5.7) 

where A is a Lagrange mult ipl ier and, as i n equation (5.4), n = qfTn. Equa t ion (5.7) can be 

adapted such that equation (5.4) is applicable and, hence, the cost function is invariant to noise. 

XA proof of equation (5.5) is provided in Appendix A. 
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A s a means to this end, the nonlinearity is chosen according to the work of Hyvar inen [1999b] who-

lets r (•) be a Gaussian pdf. 

T o understand the importance of the Gaussian pdf, it is necessary to contemplate its moments. 

In part icular, given 

i ( y2 

and 

(y) i i y 
exp 2nd 

2 

2tf) ' 
(5.8) 

it w i l l be shown (and is shown by Hyvar inen [1999b]) that, 

E ( ^ c (y)) = E(^d (y + n)) (5.9) 

where y and n are random variables, n ~ N (0,a2) and d = V c 2 - a2. A proof of equation (5.9) 

follows the derivation presented i n Hyvar inen [1999b], and is included here. Let pYN (y, n) be the 

bivariate pd f for n and y w i t h marginal pdfs, pN (n) = tpa (n) and pY (y). Further, let y and n be 

independent such that 

/

OO POO 

/ *Pd (y + n) pYN (y, n) dydn 
-oo J—oo 

/

OO /"OO 

/ (y + n) p y (y) ij)a (n) dydn: 
-oo J —oo 

Let t ing y' = y + n so that n = y1 — y and dn = dy', and noting that ipa (y) is an even function gives 

E ( V r f ( y + n)) = 
/

oo /-oo 

Py (y) / tpd (y') (y' - y) dy' 
-oo —oo 

/
oo r /.oo 

Py (y) / ^d (y') (y - y') dy' 
-oo LJ—oo 

/
oo 

Py (y) tyu (y) * Vv (y)] dy. 
-oo 

dy 

dy 

(5.10) 

It can be shown [e.g. Frieden, 1983, pp. 75-76] that 

•>Pd (y) * ipa (y) = A (y) (5.11) 
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where c = Vd2 + a2.2 Hence, equation (5.9) follows from equation (5.10), and the proof is complete. 

Equa t ion (5.9) enables the cost function i n equation (5.7) to be adapted to account for the 

noise. In part icular, choosing 

r {yi + n) = V'd (Vi + n) = ipc (yi) 

allows for a cost function which is invariant to noise. In other words, 

4>{<\i) = -^[E(^(yi + n))]2 + A(qfq i - l ) (5.12) 

= - I [ E ( ^ ( y i ) ) ] 2 + A(q fq l - l ) 

where 

d= -\Jc2 -E (nrF) = ̂ c2 - E [(qf Tn) (qf r n ) T ] = y/<? - q f r C ^ q , = ^ c2 - qf C n q , 

(5.13) 

and C n = T C n r T . 

5.4 A Noisy ICA Optimization Algorithm 

In the preceding section, a cost function well suited for noisy I C A was found. T h e remaining task 

is to find an algori thm, analogous to equation (3.42), for finding the m i n i m a of equation (5.12). 

For readability, equation (3.42) is restated here: 

q f + 1 ) = E ( r » ( W ) ) q S * ) - E ( r ' ( W ) « ) 
( f c + 1 ) qp + 1 ) • (5-14> 

Q i l|qlFC+1)||2 

A s i n Chapter 3, the opt imizat ion scheme, for noisy mixtures, is devised using a Newton type 

algori thm; thus, requiring expressions for both the gradient and Hessian of (f> (qj). T h e end result 

of our efforts is the algori thm i n equation (5.22). 

For a proof of equation (5.11), please refer to Appendix A . 
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F i r s t , the gradient is computed as 

V0 ( q i ) = - E (rpd {yi + n)) E ( V ^ (Vi + n)) + 2Aq! (*) (5.15) 

where, after subst i tut ing i n equation (5.8), and some calculus, 

2nd3 
exp 2d2 

Cn<\i (y + nY 
2nd5 

exp 2d2 

xfhid3 
exp 

C q , 

2d2 

Further, making use of equation (5.8) and its derivative, 

i>'d (y) = (y)> (5.16) 

allows for 

V?/>rf (yi + n) = Cnqi-p [ipd (yi + n) + (yi + n) ip'd (y + n)] + zip'd (y + n). (5.17) 

Last ly, equation (5.17) is simplified by noting that 

€(y) = - ^ d ( y ) - ^ A v ) 

Therefore, 

y^d (yi + n) = - C n q i ^ 2 (yi + n)+ zip'd (yi + n) (5.18) 

Second, consider the Hessian matr ix , H; however, rather than computing it explici t ly, s imply 

let 

H = (a + 2A) I (5.19) 

where a is some scalar value and I is the identity matr ix . The choice made i n equation (5.19) w i l l 

be validated shortly, and a value for a w i l l fall out of the mathematics. 

Us ing the expressions for the Hessian and gradient i n equations (5.15) and (5.19) respectively, 

and ignoring the scalar term, —E (tpd (yi + n)) , i n the expression for the gradient, an approximative 
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Newton step (from iteration k to k + 1) is given by 

( f c ) _-EJWd(yijJi))Ji2^ (*) 

Q * a + 2A 

M u l t i p l y i n g through by a + 2A gives 

( a + 2 A ) q f + 1 ) = (a + 2A) q f } - E ( V ^ (yi + n)) + 2 A q f } 

= a q i f c ) - E ( V ^ ( y i + n ) ) . (5.20) 

F ina l ly , recall the algori thm i n equation (5.14) where the first part of the update rule, for the noise 

free case, can be wri t ten as 

q i * + 1 ) = E ( ^ ' ( W ) ) q i f c ) - E ( V ^ ( W ) ) . 

Hence, remembering equation (5.9), an appropriate choice for a is given by 

a = E{^(yl + n)) = E « (JA)) • (5.21) 

Combin ing equations (5.20), (5.21) and (5.18) yields 

[E W fa + n))} q f + 1 > = E tyg (Vi + n)) qf> + C n q f } E [fd (Vi + n)) — E ( z ^ ( W + n)) 

= ( i + C n ) E ty2 ( W + n)) q f ) - E ( z ^ ( ^ + n)) . 

Hence, an appropriate a lgori thm for noisy I C A is [Hyvarinen, 1999b] 

q f + 1 ) = ( l + C n ) E ( ^ ' ( y i + n ) ) q f ) - E ( z ^ ( y i + n)) 
V (t+D ' . (5.22) 

Q l l |qf + 1 ) | |2 

To review, consideration of the noise i n the whitening algori thm allows for a cost function which 

is invariant to Gaussian noise. The result is an algori thm which, given noisy mixtures, computes 

an op t imal model, q^ , which is also invariant to noise. Th i s is an appealing result which, i n the 
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following section, is used to adapt the B - I C A and b l ind deconvolution algorithms of Chapter 4 so 

that they are applicable to noisy data. 

5.5 Gaussian Moments, B- ICA and Blind Deconvolution 

T h e incorporat ion of noise into B - I C A requires its marriage w i t h the a lgor i thm presented i n the 

previous section which, i n turn, requires appropriate modifications to the noise covariance mat r ix . 

The end result is a much improved approximation of the wavelet. 

Reca l l equation (4.9) which provides a relation between the ith independent component, the 

whitened mixtures and the filter, h T = 

equation is modified such that 

h(ti) h(t2) ••• h(tnw) For noisy mixtures, this 

y i + h = q / (z + T n ) = ( r N i h r (z + T n ) = h1 (x + n) (5.23) 

where x = NjTTZ, h = Nf r T rn, n = h r f i and, as before, V is chosen such that E ( z z T ) = I. 

A s i n Chapter 4, x can be thought of as mixtures for a new noisy I C A problem w i t h an nw x nw 

mix ing mat r ix so that 

As x + h f As = f (x + n) y + B h = B (x + n) y + Q f fi = Q ( z + f n ) (5.24) 

and f is chosen such that E ( z z T ) = I. Tha t is, T is computed, as usual, using the covariance 

mat r ix of the noise free mixtures, 

Cx — C x — C n , 

and, likewise, T is computed using the covariance mat r ix of x , 

C s — Cx-fft Cjj 

where 

c f l = E (hhT) = E (Nf r r rnn T r T rNj) = Nf r r r c n r T r N j . 

If equation (5.24) is true; that is, i f T and T are computed w i t h proper consideration for the 

noise, then the a lgor i thm i n equation (5.22) is applicable, and Q is found such that it is invariant 
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0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 

Figure 5.1: (b) The convolution of (a) w i th the filter (d). (c) T h e signal i n (b) w i t h addit ive, 
random and Gaussian noise, (e) The filter recovered from (c) using noisy B - I C A . (f) The 
filter recovered from (c) using B - I C A (without consideration for noise). 

to noise. However, it is evident that the transformation of the noise occurring i n equation (5.24) 

must be incorporated into the computat ion of d; hence, d is re-evaluated as 

d = \Jc2 - E (hnT) = y ^ - q f f E (nnT) f r q i ; 

and, i n equation (5.22), C n becomes 

Cn = f E (nnT) f T = f CntT. 

The end result of these modification to B - I C A is a new algori thm, noisy B - I C A , which, i n turn , can 

be used i n a b l i n d deconvolution algori thm (see Chapter 4) where the convolved signal is corrupted 

w i t h additive noise. 

For i l lus t ra t ion, consider the synthetic example i n Figure 5.1. Figure 5.1b is the convolution 

of the signal i n Figure 5.1a w i t h the filter (a Berlage wavelet) i n Figure 5.Id. Figure 5.1c is the 

same as Figure 5.1b, but w i t h additive, random, Gaussian and zero-mean noise such that the signal 
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to noise ratio is 7 (about 14 percent noise) 3 . In applying noisy B - I C A to the noisy signal, C n 

is chosen as a constant diagonal matr ix; hence, to apply the algori thm, the user need only select 

one parameter. Figure 5.1e shows the wavelet, h(t), recovered from the noisy signal using noisy 

B - I C A . For comparison, Figure 5.1e shows the wavelet recovered from the noisy signal using B - I C A 

(without consideration for the noise). B y inspection, it is obvious that the incorporat ion of noise 

into the a lgor i thm yields improved results. 

5.6 Summary 

T h i s chapter adapted the I C A and B - I C A algorithms for noisy data. In part icular , the noise covari

ance mat r ix was used to provide a whitening operator which is invariant to noise; and subsequently, 

its use produced cost functions, measuring entropy, which are invariant to noise. F i r s t , an example 

using kurtosis was provided. Second, the properties of Gaussian moments were exploited so that a 

more robust measure, using nonpolynomial expansions of the appropriate pdf, of entropy could be 

used. T h i s resulted in a new noisy B - I C A algori thm which was used for b l i n d deconvolution. 

W h i l e the results of the b l i nd deconvolution routine, presented i n Figure 5.1, are interesting, for 

higher noise levels the quali ty of the results d iminish . Further, it was found that the a lgor i thm is 

very sensitive to the choice of Cn = a^I. A choice which must be made by the user of the a lgori thm. 

Despite these shortcomings, the method is sound in its mathematics and shows promising results. 

3 T h e signal to noise ratio is computed as the absolute maximum amplitude of the signal divided by the standard 
deviation of the noise. 



CHAPTER 6 

Conclusions 

6.1 Summary 

Principal and independent component analysis ( P C A and ICA) use the statistical properties inher

ent in data, extracting useful information which, in this thesis, is used for noise suppression and 

blind deconvolution. 

P C A and noise suppression was explained in Chapter 2. P C A was explained from three per

spectives; variance, the singular value decomposition and ordinary differential equations. The 

subsequent derivations gave rise to an orthogonal basis consisting of, so called, eigensections which 

proved useful in their ability to separate coherent and incoherent information. Examples, illustrat

ing the theory, were given for both synthetic and real seismic data, attenuating the random noise 

while conserving the coherent signal and, thus, increasing signal to noise ratios. 

Whereas P C A uses correlation, ICA uses independence. The relation between independence 

and correlation was explained in Chapter 3 where uncorrelated was shown to be a special case of 

independent. In fact, it was shown that independent random variables are nonlinearly decorrelated. 

Chapter 3 developed I C A algorithms from the perspective of information theory. In particular, the 

concepts of independence and entropy were related through the central limit theorem, and entropy 

was used as a tool for building ICA algorithms. The estimation of entropy is not a trivial matter, 

and two approaches were considered. First, entropy was approximated using higher order moments 

and, second, using nonpolynomial functions. The algorithm employing nonpolynomials is preferred 

67 
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for the applications i n this thesis due to its robustness. 

In Chapters 4 and 5, the I C A algori thm, employing the estimate of entropy using the non-

po lynomia l expansion, was used for b l ind deconvolution. Chapter 4 considered the noise free case, 

and Chapter 5 used a convolutional model corrupted w i t h additive, random and Gaussian noise. 

To facilitate a b l i nd deconvolution algori thm using I C A , the properties of the convolutional model 

were associated w i t h a banded I C A mix ing matr ix . Taking the banded nature of the m i x i n g mat r ix 

into account, the I C A algori thm was modified, producing banded I C A ( B - I C A ) and a new b l i n d 

deconvolution algori thm. 

6.2 Future Work 

Chapters 4 and 5 i l lustrated b l ind deconvolution using I C A . The result is some estimate of the 

wavelet and its corresponding independent component. For the noise free case, this independent 

component is, i n turn, an estimate of the reflectivity w i t h some linear phase shift. Moreover, when 

the trace is corrupted w i t h noise, the recovered independent component need not be representative 

of the reflectivity. Hence, it would seem useful to have a deconvolution a lgor i thm which, given 

the estimated wavelet, can recover the full reflectivity. W h e n the wavelet is exactly known and 

the reflectivity is sufficiently sparse, this problem has a known solution [e.g. Walker and U l r y c h , 

1983; Oldenburg et al . , 1983]. However, when the wavelet is estimated, and thus subject to error, 

the solut ion is more elusive. Deconvolution is an inverse problem where the forward operator 

is constructed from the wavelet. Thus, when the wavelet is estimated, the forward operator, 

inevitably, contains errors. Th i s suggests that methods are needed which allow for errors i n bo th 

the forward operator (e.g. seismic wavelet) and the data (e.g. seismic trace). One such method is 

total least squares ( T L S ) [e.g. Go lub , 1973]. Future work could include a deconvolution algori thm 

which incorporates some version of T L S ; thus, enabling a deconvolution a lgor i thm applicable when 

the wavelet is estimated using the b l i nd deconvolution algori thm presented i n Chapters 4 and 5. 
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APPENDIX A 

Additional Proofs 

Proof that equation (3.11) is a maximum. Consider the Kul lback-Le ib le r divergence measure [e.g. 

Sakamoto et a l . , 1986, p. 38], 

I(Pl,P2) = E l n Pi (v) 
P2 (y) 

f°° (\n(y)j 
/ PI (y) z—r^dy 

J—oo 
P2 (y) 

( A . i ) 

where p\ (y) and p2 (y) are probabil i ty density functions (pdfs). Jensens's inequali ty [e.g. Cover 

and Thomos, 1991] states that i f / (y) is convex and y is a random variable, then 

E ( / ( y ) ) > / ( E ( y ) ) . (A.2) 

Le t t ing y = p2 (y) jp\ (y), and defining the convex function, / (y) = — l n ( y ) , equation (A.2) is 

applicable. In other words, 

I (Pi (y) ,P2 (y)) = E ( / (y)) > / (E (y)) = - l n pi iy) — 7 ~dy 
Pi \y) . 

- I n 
/

oo 
P2 (y) 

-00 

dy = 0. 

Hence, 

i(pi(y),P2(y)) >o. (A.3) 

Reca l l the extreme point given i n equation (3.11), 

PY (v) = exp I - 1 + A 0 + X (y) (A.4) 

i=l 
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Let g (y) be a pdf which obeys the same moment constraints as pY (y). The differential entropy of 

9 (y) is 

/

oo 
g(y) \ng(y)dy 

-oo 

= - £ » ( » ) t a ( ^ ) * - £ " » » t o M , ' ) * -
However, from equations (A.1) and (A.3), 

Therefore, since g (y) and pY (y) share the same moment constraints, 

/

oo 
9 (y) l n jv (y) dy 

-oo 

/

oo 
p y (y) l n p y (y) dy. 

-oo 

Hence, h(g (y)) < h (pY (y)) and the proof is complete. 

Proof of equation (5.5). It was shown in equation (3.36) that independent random variables are 

also nonlinearly uncorrelated. That is, given two independent and random variables, y\ and y2, 

and two arbitrary functions, g\ (y\) and g2 (y2), 

E [gi (yi) 92 (2/2)] = E [01 (yi)] E [g2 (y2)] • (A.5) 

Additionally, recall, from Chapter 3, the definition of kurtosis: K4 = E (y 4) — 3 [E ( y 2 ) ] 2 . Thus, 

the kurtosis of the sum of y\ and y2 is 

« 4 (yi + y 2) = E [ ( y i + y 2 ) 4 ] - 3 { E [(yi + y 2 ) 2 ] } 

where 

(yi + V2)4 = yf+ 4y?y 2 + 6y?yf + 4yiyf + y\ 
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and 

(y i + yi)2 = y\ + tym + vi

ii yi and y 2 are independent, then they are also nonlinearly uncorrelated. Hence, equation (A.5) 

is applicable, and after some algebra, assuming that E (y\) = E (y 2 ) = 0, 

« 4 (y i + y 2 ) = E [yf) + E (y 2

4) + 6E ( y 2 ) E (y 2 ) - 3 [E ( y 2 ) 2 + E ( y 2 ) 2 + 2E ( y 2 ) E (y 2 )" 

= E ( y 4 ) - 3 E ( y 2 ) 2 + E ( y | ) - 3 E ( y 2 ) 2 ; 

thus, al lowing for equation (5.5) and completing the proof. 

Proof of equation (5.11). Consider the moment generating function (mgf) [e.g. Rice , 1995, 

pp. 142-144], 

MYl (t) = f exp (ity) pYi (yi) dVl = F~l (pYi) (A.6) 
I —oo 

where i = yf^l and y\ ~ pYi (y i ) . Myx (t) defines the moments of pYi (y i ) ; hence, bo th Myx (t) 

and pY (yi) are equally val id representations of the random variable, y\. Further, equation (A.6) 

is recognized as one half of a Fourier transform pair; hence, 

1 f°° 
pYl (yi) = ^ J E X P (~LTYI>) M Y I ^ DT-

W i t h a second random variable, y2, the convolution theorem [e.g. Bracewell , 1978, pp. 108-111] 

gives, 

MYl (yi) MY2 (y2) = T \pYi (yi) * pY2 (y 2 ) 

where the operator, F"1, is defined by equation (A.6). 

If y i and y2 are independent, then their sum, x = y\ + y2, has the mgf, 

(A.7) 

Mx (t) = E [exp (itx)] 

= E { e x p [ i i ( y i + y 2 ) ] } 

= E [ e x p ( i t y i ) ] E [ e x p ( i i y 2 ) ] 

= MYl (t) MY2 (t). 
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Therefore, it follows, from equation (A.7) , that x has the pdf, 

Px (x) = PYX * PY2 • 

Equa t ion (5.11), and thus completion of the proof, follows from the fact that the variance of the 

sum of two independent random variables is the sum of the variances of the random variables. 


