
Object Properties: A Mechanism for Providing Runtime
Services to Objects in a Distributed System

by

David Finkeistein
B.S. (Mathematical and Computational Sciences) Stanford University, 1986

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES
COMPUTER SCIENCE

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
October 1994

© David Finkelstein, 1994

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of Cocu—r-2. cic JC.G

The University of British Columbia
Vancouver, Canada

Date QcçZ V2

DE-6 (2/88)

Abstract

Object-oriented systems are increasingly used as a means to develop distributed applications.

Objects provide a natural unit of encapsulation for remote data, and the system can make

remote invocations transparent to local users. Generally the underlying system provides a

variety of services to objects in the system, such as persistence or concurrency control, which

are used by developers of distributed applications. There are problems with existing mecha

nisms for providing such services, however: they may require the programmer to design a dif

ferent subclass of each user class for every service available, limit the choices of services

available, or inhibit performance by providing services to all objects even when not every

sevice is needed. The work in this thesis attempts to solve these problems through a new

mechanism for providing services to objects called properties. Properties allow services to be

delivered transparently to objects on an as-requested basis. Additionally, a mechanism for

describing inter-object relationships has been incorporated into the property scheme, allowing

properties to be used to provide complex services such as atomic transactions. Properties were

developed for the Raven distributed system and language developed in the Department of

Computer Science at the University of British Columbia.

11

Table of Contents

Abstract.ii
Table of Contents iii
List of Figures v
Acknowledgment vi
Chapter 1 Introduction 1

1.1 The System Interface Problem 1
1.2 Providing Services in Object-oriented Systems 2
1.3 Thesis Statement 4
1.4 Outline 5

Chapter 2 Design of the Object Property Scheme 7
2.1 Introduction to the Raven System 7
2.2 Property Scheme Design Goals 8
2.3 Selecting Services via Properties 12
2.4 Property Behavior Semantics 16
2.5 Assigning Properties to Instances 20
2.6 Inter-Object Relationships 22
2.7 Combining Properties 29

Chapter 3 Implementation of the Object Property Scheme 31
3.1 Data Structures for Property Support 31
3.2 Providing System Services Through Properties 34
3.3 Dependent Invocations 37
3.4 Property Inheritance 42
3.5 Part-Of Clusters 47
3.6 Self-Invokes 51
3.7 Parallel Invocations and Property Support 53
3.8 User Properties 57
3.9 Status of the Implementation of Properties 59

Chapter 4 Object Storage: Details of the Durable and Persistent Properties 60
4.1 Object Storage Overview 60
4.2 Storage Model 63
4.3 Implementation Details 67
4.4 Dependent Invocations on Storable Objects 76
4.5 Storage of Collection Class Objects 78
4.6 Object Name Service 80

Chapter 5 Discussion and Future Work 81
5.1 Property Scheme Design 81
5.2 Implementation of Property Support 85
5.3 Object Storage 88
5.4 The.Raven Collection Classes 90

111

Chapter 6 Related Work 92
6.1 Object-oriented Systems 92
6.2 Sunnary 97

Chapter 7 Conclusion 99
Bibliography 101

iv

List of Figures

FIGURE 1. Assigning properties in the class definition 21
FIGURE 2. Assigning properties by using pnew 22
FIGURE 3. Class definition with instance variables showing inter-object

relationships.23
FIGURE 4. Some of the objects comprising a mail message, just prior to being

assigned to the MAIL MESSAGE object.26
FIGURE 5. After assignment, objects have new properties and behave

accordingly.27
FIGURE 6. Object capability structure 32
FIGURE 7. An Example of Recovering a Property Inheritance Assignment 44
FIGURE 8. Objects in a Part-Of Cluster 48
FIGURE 9. GID Structure 62
FIGURE 10. Object Storage Model 63
FIGURE 11. Storage Manager Role 64
FIGURE 12. TDBM Manager Role 65
FIGURE 13. Gifi Manager Role 66
FIGURE 14. Format of encoded buffer in memory 68
FIGURE 15. Format of a fully encoded object 71
FIGURE 16. Formats of data storage on disk 73
FIGURE 17. Format of struct STORAGE_INFO data structure 77
FIGURE 18. Multiple Transactions Modifying a Single Object 82

v

Acknowledgment

First, I’d like to thank my family, especially my parents, for the support (both financial and

otherwise) they’ve given me these past three years.

I’d like to thank Don Acton and Terry Coatta, my Partners in Crime (or Raven, as it were) for

all the assistance they’ve provided me, from simply kicking around ideas to help in tracking

down those elusive bugs. Without you two around, I had no other option but to graduate

myself. I’d also like to thank my supervisors, Norm Hutchinson and Gerald Neufeld, not sim

ply because you’re supposed to do that sort of thing in your Acknowledgment, but for the

guidance they’ve given me especially during those long meetings where I’d come up with

strange scenarios involving object relationships. Thanks also to those who helped during the

redesign of Raven, by contributing their ideas and providing me with feedback on mine:

Stephan Mueller, Raymond Ng, and Jim Thornton. And a special thanks to Steve Loving, who

helped encourage me in my dream to return to school.

vi

CHAPTER 1 Introduction

1.1 The System Interface Problem

Computer operating systems are designed to present a virtual machine to the programmers and

users of the computer. The operating system provides an interface through which applications can

make requests to and receive services from the operating system. For example, operating systems

usually provide a file service. By calling operating system routines, applications can find, read,

and write files in the system. Many modern operating systems have a microkernel architecture,

where the actual set of services provided by the operating system kernel itself are small. Instead,

special servers provide the additional functionality of file service, networking, etc. Although the

implementation is different, the basic model presented to the programmer is the same as that pro

vided by more monolithic operating systems.

Unfortunately for developers of distributed systems, particularly systems designed for

multi-threaded environments, the operating system interfaces can vary widely between different

1

CHAPTER 1 — Introduction 2

operating systems. For example, the interface used by BSD Unix (or systems based on BSD Unix,

such as SunOS) differs from that of Unix SVR4. Anyone who has attempted to port applications

from one environment to the other can attest to the problems which can arise due to the differ

ences in system calls. The interfaces to Mach and OS/2 are similarly incompatible with those of

the other operating systems mentioned. These differences make the development of distributed

applications more difficult. Attempts have been made to create a standardized interface for Unix

systems. For example, many Unix systems support the POSIX application program interface [11],

although most applications are still not written to this standard.

Another mechanism for providing a standardized interface is to use an object-oriented envi

ronment. Object-oriented systems allow the applications programmers to use a standardized inter

face to the object system. Since objects interfaces provide strict, well-structured accesses to the

objects, they make a natural choice for providing the basis of a uniform system interface. It is nec

essary to port the object environment to each different platform, but once this has been accom

plished, all user applications should be portable between platforms with a simple recompilation.

Common object models have also been proposed and developed, primarily for the needs of

object-oriented developers [14], [24].

1.2 Providing Services in Object-oriented Systems

Programming to a common object environment simplifies the development of applications in a

distributed system. However, there remains the issue of exactly how user objects in the environ

ment will receive system services. This is not a trivial question, as objects can require numerous

services ranging from persistence to concurrency control to recoverability.

CHAPTER 1 — Introduction 3

One mechanism is for the system to simply provide “system call” methods. In this scheme,

object methods replace the system calls found in other operating systems such as Unix. This can

be accomplished in one of two different ways:

(1) The system includes system objects which are responsible for providing ser
vices to user level objects. For example, objects which require concurrency
control can invoke methods on a object which coordinates locking (e.g., a
LockManager object):

LockNanager. lockMe(self);

would ask the LockManager to lock the current object.

(2) The system provides classes from which objects can inherit behaviors which
correspond to the services the object needs. For example, objects which
require persistence can inherit methods from a Storage class:

self . storeMeToDisk ;

would store the contents of the object to disk.

One system which uses this technique is Arjuna ([23], see Section 6.1.2). This system call

mechanism has the advantage that objects can be tailored to receive only those services they need.

However, it suffers from a number of problems. First, it requires the programmer to manage the

use of the services. The programmer must invoke the appropriate methods to acquire and release

locks, store the object to disk, etc. Although it’s not necessarily a bad thing to make programmers

responsible for managing the services they use, it does increase the likelihood of errors due to the

programmer neglecting to release locks and from similar mistakes. This mechanism can also lead

to the problem of class explosion: since the system provides multiple services, multiple versions

of each user class might be required [1].

Another mechanism for providing services to objects in an object-oriented system is to pro

vide a set of services automatically to all objects. In such a system, every object would be persis

tent, controlled against concurrent accesses, etc. This scheme has the advantage that the

CHAPTER 1 — Introduction 4

programmer doesn’t have to be concerned with managing the use of system services, they are pro

vided transparently by the system. For example, the Guide system ([4}, see Section 6.1.6) pro

vides persistence to every object in the system. The major drawback of this approach is a lack of

performance. Since every object receives services, the system must devote time and resources

upon every object invocation.

Programmers and users ideally require a system which combines the best features of both

mechanisms described above. Users of classes need to create instances that can receive any com

bination of system services, yet class designers shouldn’t be required to include support for every

possible service a user might desire in the class implementation, nor should there need to exist dif

ferent versions of each class for every combination of services available. Users also desire maxi

mum performance, requiring that invocations on the objects in the system be as fast as possible.

For example, users should be able to create String objects which persist, which are controlled

against concurrent accesses, or possibly both, yet objects which do not receive services should not

suffer any undue performance penalty. Additionally, such a system should be complete enough to

support distributed atomic transactions, a rigorous measure of the usability of a system.

1.3 Thesis Statement

An object-oriented operating system can associate each system service with a property, which,

when assigned to an object, indicates the object should receive the corresponding service. The

operating system can determine which services to provide to an object by an examination of the

object’s property set. The research presented in this thesis attempts to show that:

It is possible to identify and support a set of system services through object properties

such that:

the semantics of the system services provided are independentfrom the others;

CHAPTER 1 — Introduction 5

• services are provided on an instance-by-instance basis;

• services are provided automatically to an instance upon each invocation, with
out requiring any code in the class to use the service;

• the set of services provided to an instance can change dynamically throughout
the lifetime of the object;

• the user can augment the set of services available;

• inter-object relationships can be described, allowing the system to provide
complex services that span invocations on multiple objects;

• the services available, together with inter-object relationships, is sufficiently
complete to support distributed atomic transactions yet does not limit the sys
tem to support only such transactions.

1.4 Outline

A description of the object property scheme, including semantics for each system supported

property, is found in Chapter 2. This chapter includes a general overview of Raven, the object-ori

ented operating system the property scheme was developed for, and discusses how the property

scheme is used by Raven to provide services to objects. This chapter also discusses other aspects

of the property scheme, such as the various inter-object relationships that were developed.

Details of the implementation of the property scheme are given in Chapter 3. This chapter

describes how services are provided to objects via properties. Certain issues and problems

encountered during the implementation are also discussed.

Chapter 4 describes the basic object storage service which was developed. It discusses the

various issues confronted when designing the service, and provides details of the implementation.

A discussion of additional issues, and the future work which can be done to address them,

can be found in Chapter 5. Many of the issues discussed in this chapter did not become apparent

until later stages of the implementation or during testing.

CHAPTER 1 — Introduction 6

Examples of other object-oriented systems, and the mechanisms they use for providing ser

vices to objects, are presented in Chapter 6.

Conclusions are presented in Chapter 7. A list of the data structures used by the runtime sys

tem to support properties is given in Appendix A. Class definitions for the various classes which

were developed or modified in the course of implementing this thesis are given in Appendix B.

Design of the Object Property
Scheme

2.1 Introduction to the Raven System

The object property scheme was developed for the Raven system. Raven consists of a program

ming language and a runtime system which together form an environment for exploring issues

surrounding distributed and parallel applications on both multiprocessor and distributed processor

platforms. The development of the Raven system is an on-going project in the Department of

Computer Science at the University of British Columbia. In addition to the work described in this

thesis, Raven has been primarily used to investigate issues in parallel and concurrent

programming [3] and to explore issues in configuration management of distributed systems [7].

The Raven language is an object-oriented language with a syntax similar to that of C. The

language contains specialized constructs to directly support parallel execution of method invoca

tions, some of which have repercussions for the various properties, as discussed in Section 3.7.

The Raven runtime system provides support for objects written in the Raven language. Though

7

CHAPTER 2— Design of the Oblect Property Scheme 8

the syntax of the language is stable, significant enhancements to the runtime system are continu

ally being made.

The complete Raven environment currently consists of a compiler, a class library, the

runtime system, and a threads environment [161. The Raven system is not very reified: very little

of the runtime system, including the code that supports properties, is written in the Raven lan

guage itself. Instead, the bulk of the runtime system is written in C. Raven currently runs in its

threads environment under Unix on Sun and MIPS workstations in a distributed environment.

Raven is also running in a parallel environment under Mach 3.0 on a 20-processor Sequent

machine. A microkernel running on multiprocessor MC88 100 workstations is being developed to

support the Raven system in a native environment [19]. A detailed overview of Raven, including

a description of the language semantics, can be found in [1].

Each incarnation of the Raven environment is defined as a Raven World. Each Raven World

has a corresponding UDP port number on the machine it is running through which it communi

cates with other Worlds. A Raven World is uniquely identified by its host identifier and port num

ber. Different Raven Worlds, even those on the same local machine, are normally isolated from

each other until the Worlds are informed of each other’s existence.

2.2 Property Scheme Design Goals

The property scheme was designed with a number of goals in mind. The primary goal of the

scheme is to provide a mechanism by which services can be provided transparently to objects on

an instance-by-instance basis, in a flexible yet powerful way that does not limit the system or the

programmer to a small set of possible services. The scheme was designed with each of the goals

outlined below in mind.

CHAPTER 2— Design of the Object Property Scheme 9

2.2.1 Orthogonality of Property Semantics

When properties are designed so that their semantics are independent from each other, the proper

ties are defined to be orthogonal to one another. The necessary strictness of the semantics has sig

nificant impact on the implementation of properties: properties can be designed, developed, and

tested separately, and then added to the system without any concern that they might cause side

effects. This is true whether the property being added is new, or simply a new implementation of

an existing property.

Orthogonality is primarily useful because it makes the semantics easier to understand. The

programmer doesn’t have to be concerned with any changes to the semantics due to property

interactions. When property semantics are independent, programmers can specify any combina

tion of properties for an object with the knowledge that the object’s behavior with respect to each

property will always be correct. It is also an enabling feature; that is, when properties are orthogo

nal, it allows many other features to be included in the system, such as dynamic property assign

ment.

2.2.2 Properties Assignable Dynamically to Any Instance

To combat the problem of class explosion, the scheme was designed to allow properties to be

assigned on a per-instance basis. In this way, sub-classes do not need to be created simply to gain

the benefit of additional property behaviors. By allowing objects to receive services on a per

instance basis, performance can be improved: objects can receive only those services which they

need, and so suffer no performance overhead related to services (such as persistence or concur

rency control) which they may not require.

To further enhance the usefulness of the system, another goal of the design was to allow

properties to be assigned dynamically to objects, even after the object had been created. Since

properties are orthogonal, adding new properties to an object after instantiation can’t create

CHAPTER 2— Design of the Object Property Scheme 10

unwanted side-effects. Dynamic property assignment can be useful especially in a client-server

system. Consider an object server which creates objects for use by various clients. Different cli

ents may require objects with different sets of properties. With dynamic property assignment, the

property set desired doesn’t need to be passed to the server. Also consider the situation where one

application creates an object, a second application wants to use the object, but the second applica

tion needs the object to have properties which weren’t required by the first application. For exam

ple, an object representing a block of text created by a text editor can be referenced by the body of

a mail message. Although the text editor may not have created the text object with the persistent

property, the mail handler can ensure that the object is persistent by dynamically assigning it that

property.

2.2.3 Transparency of Use

Transparency implies that a programmer can implement classes without including special code to

use properties. By placing all support for properties into the runtime system, the programmer is

freed from the responsibility of asking for system services each time they are needed. This declar

ative model has advantages over the procedural model. The possibility of program errors with

regards to receiving services from the system is greatly reduced, since the programmer does not

have to be concerned with acquiring and releasing locks, writing object state to disk, etc., or deter

mining when such events should occur. Additionally, even though the user of a class can assign

any properties to instances of the class, the programmer doesn’t have to be concerned with sup

porting all the properties in the method code (an unrealistic expectation, especially given that the

properties available may change over time). This ties in well with orthogonality: a user of a class

can create an instance of that class with any desired set of properties, without worrying about side

effects between the properties desired or between those desired by the user and any additional

properties specified by the class designer.

CHAPTER 2 — Design of the Oblect Property Scheme 11

2.2.4 Support for Atomic Transactions

One primary goal of the system is for the property scheme to be powerful enough to support

atomic transactions. It was a further goal that this could be accomplished without having to

develop a special service devoted specifically to serializing invocations, but instead build the

atomic transaction support using more general services.

2.2.5 Additional Support for Distributed Computing

Supporting atomic transactions allows the development of distributed databases and other robust

applications. More simple applications, such as mail agents, do not require the same level of sys

tem support as a database. Other applications, such as name services, could benefit from system

services which allow them to be highly available (e.g., some mechanism by which they could be

replicated). As the property scheme was being designed, one of the goals was to provide sufficient

services so that a wide variety of applications could be built. Additionally, the system needed to

continue to support the experiments being conducted in the areas of concurrent programming and

configuration management.

2.26 User Extensibility

To this point, properties have been described as a means of providing system-supported services

to objects. The logical extension of this design is to extend properties so they can be used to pro

vide objects with user-supported services. Such an extension allows users to develop their own

services without the need to modify the runtime system to support them. This is extremely impor

tant, because the system properties could never provide all the services desired by users. It also

allows potentially new system services to be designed and tested at the user level before being

incorporated into the runtime system.

CHAPTER 2— Design of the Object Property Scheme 12

2.3 Selecting Services via Properties

Each of the goals enumerated above are important features for inclusion in Raven. To be truly

useful, however, the properties should provide desirable behaviors when used in combination, and

not simply in isolation. On the surface, this goal may appear to be incompatible with the goal of

orthogonality. However, useful behaviors can be viewed as being composed of other, simpler

behaviors. For example, an atomic invocation on an object requires recoverability, concurrency

control, and persistence of the object state. Atomic transactions involve invocations on multiple

objects and place additional requirements on the system, but it was a primary goal to design a

property scheme that allowed atomic invocations to be performed by combining several proper

ties together. If a new property had to be created for each desired behavior (e.g., if the system

needed to support recoverability, concurrency control, persistence, and an “atomic invocation”

property), then the number of properties could quickly grow to an unmanageable number (an

undesirable property explosion, although growth would be linear and not exponential, as in class

explosion), with a corresponding increase in the likelihood that the property semantics could not

be designed in an orthogonal manner. For these reasons, considerable time was spent selecting the

properties and developing their semantics.

The process of property selection began with an examination of a atomic transactions, to see

if they could be supported by composing several services together. Fundamentally, atomic trans

actions can be broken down into three components:

• Serializability of invocations: If multiple transactions invoke methods on the
same objects, there must be some serial ordering of invocations so that to each
transaction it appears that it has exclusive access to the objects for the duration
of the transaction.

• Recoverability: In the event of abnormal method termination (or possibly at
the user’s discretion) the system needs to be able to undo all the work that has
been done so far.

CHAPTER 2— Design of the Object Property Scheme 13

Persistence of data: Once a transaction commits, any changes that it performed
must be permanent.

Attention was further focused to investigate the services which a single object would require

for an atomic method invocation. Recoverability and persistence map directly as services required

for an atomic invocation. The single-invocation analogue for serializability is concurrency con

trol: since Raven is multi-threaded, objects must be protected against concurrent accesses. This

provides a serial ordering of the invocations on the object. Consequently, the first three services

chosen were concurrency control, recoverability, and persistence.

The semantics of persistence which are required in order to support atomic transactions

must include strong guarantees about writing the object state to storage: once the method invoca

tion finishes, the object state must be updated before control is returned to the caller. These

semantics are necessarily very expensive to implement, since each invocation on a persistent

object could result in 110 traffic. For many applications, it would be an acceptable compromise

between persistence and performance to delay writing the data to disk for a number of seconds so

the application can return from each invocation on a persistent object without blocking first.

Machines and disks are generally reliable, so the chances of losing data by delaying the write a

small number of seconds is extremely small. Many modern file systems, such as LFS [20], will

buffer sequences of disk writes to memory in order to perform one larger disk write as opposed to

many smaller writes. For objects which are being frequently modified, buffering writes in mem

ory and only updating the version in non-volatile storage periodically can provide a desirable per

formance improvement. For these reasons, the system needs to support two types of persistence:

one which provides a strong guarantee about when object state is written to disk, and one which

provides greater performance by delaying updates.

In a distributed environment it is often advantageous to replicate data (such as name service

information) on many different sites. This allows both an increase in performance (since clients

CHAPTER 2— Design of the Object Property Scheme 14

can access servers which are the most local) and availability (since the system is not dependent on

the status of a single node). To support the development of highly available applications, a mech

anism by which the system can make and maintain replicas of objects is required. Providing

object replication was therefore chosen as another system service to support through properties.

To round out Raven’s support for distributed computing, two other system services were

chosen. First, since Raven’s design allowed objects to be migrated between machines, some

mechanism by which objects could be fixed to their current host (most likely their host of cre

ation) was desired. Second, there are often objects which, once instantiated to a particular state,

should not be modified. An example of such objects are those which comprise a mail message:

once the message has been composed and sent, the objects should be considered to be “read only”

and not modifiable. System support for creating immutable objects was therefore also desired.

In all, seven system services were chosen for support: concurrency control, recoverability,

persistence with both strong and weak guarantees about storage updates, replication, immobility,

and immutability. Security was not chosen as a service to provide for several reasons. First, Raven

has no notion of a user, simply of the local Raven World; this precludes the use of access control

lists or other mechanisms which provide access to objects on a per user basis. Second, the imple

mentation of Raven allows only one capability structure for each object; this precludes the use of

multiple capabilities, each with potentially different access rights. Third, little thought had been

given to security during the initial development of Raven. Developing a notion of security for

Raven is beyond the scope of this thesis, so all issues involving system support of security were

left unresolved.

CHAPTER 2— Design of the Object Property Scheme 15

To correspond to the services provided, seven properties were chosen:

(1) Controlled

(2) Recoverable

(3) Durable

(4) Persistent

(5) Replicated

(6) Immobile

(7) Immutable

The Durable property corresponds to persistence with a strong guarantee that object state

will be updated to storage, while the Persistent property corresponds to the weaker, more efficient

notion of persistence. To receive a service from the system, an object needs only to be given the

corresponding property.

By default, objects are created “plain”, that is, without any properties. The Raven system

handles plain objects in the following way:

• The object exists only in RAM. Therefore, the object does not survive between
reboots of the system.

• No system control exists to prevent multiple threads from executing methods
within the object simultaneously.

• The object can migrate from machine to machine, either at the discretion of the
system or when the object is explicitly asked to move itself.

• Any changes made to the object’s instance data are immediately available and
are not recoverable.

For the vast majority of objects created and used in the system, these semantics should be all

that are needed. Most objects will be created for short-term use and will not require any special

CHAPTER 2— Design of the Oblect Property Scheme 16

system properties. When an object is assigned one of the properties, the system handles the object

differently; it is provided with the service which is associated with that property.

2.4 Property Behavior Semantics

One of the first questions encountered when deciding upon the semantics of property behavior

was deciding at what level the properties would operate: should property behavior be limited to a

single object invocation, or should it affect an entire invocation chain when the objects in the

chain all have the same property? Each of these semantics has distinct advantages and limitations.

Limiting the scope to a single invocation is a very convenient notion: properties can be described

by how they effect one object, and can be viewed from the perspective of a single object. Limited

scope is desirable in the general case for concurrency control: since locks are freed after each

invocation, there is more concurrency and less potential for deadlock. However, it greatly compli

cates the issue of providing support for transactions, as a two-phase locking protocol cannot be

used, and some other method must be used to enforce serializability. It would also require that the

system be able to abort transactions at will: Consider a transaction Ti which invokes a method on

object 0. After the invocation, a second transaction T2 also invokes on object 0. If Ti aborts,

then T2 must also be aborted. Extending the scope to encompass all invocations is desirable in the
general case for recoverability: if at some level the invocation can’t continue, all the work so far

should be aborted. If recovery simply restores the current object’s state, programmers may

become loathe to program using many small objects and instead encapsulate data into larger units.

But extending the scope can also lead to programmer confusion, since it can quickly become

unclear exactly how far up the calling chain each of the properties may be propagated. Further

more, extending the scope does not eliminate the problem of providing semantics conducive to

creating transactions.

CHAPTER 2— Design of the Oblect Property Scheme 17

The semantics decided upon came with the realization that there are two distinct concerns

involved. The first involves objects and the system services they require, and the necessity to pro

vide these services in a uniform manner. By viewing services from the point of view of the object,

it becomes the natural choice to have limit the effects of properties to a single object invocation.

The second concern is the understanding that objects are often placed in a relationship with each

other, so that what happens to one object is predicated on what happens to the other. To provide

for this, the property scheme requires a mechanism for describing inter-object relationships that

allow the scope to be extended in the calling chain. This is described in Section 2.6.

For each of the properties, the semantics of behavior are described below. Since properties

are orthogonal, the system will handle any object with any one of these properties in the same

way, regardless of how many other properties the object has. Although it may appear on the sur

face that some of these properties are not orthogonal, that is not the case. Recoverable, Con

trolled, etc. provide only the semantics described, and do not attempt to provide more complex

behaviors, such as serialized access or atomic invocations.

2.4.1 Controlled

An object given the Controlled property is protected against concurrent accesses by multiple

threads which may modify its instance data. Multiple readers, but only a single writer are allowed

access to the instance data. Threads which cannot be granted the access they require (e.g., they

wish to write to the instance data while someone else is reading) are blocked until the request can

be satisfied.

2.4.2 Recoverable

An object given the Recoverable property has the “all-or-nothing” property. Only when a method

terminates normally are any changes made to the object’s instance variables made permanent. If

CHAPTER 2— Design of the Object Property Scheme 18

the method terminates abnormally, the state of the instance variables is reset to the state they had

just before the method started.

The Raven programming language includes a restore statement. If the current object is

Recoverable, executing a restore will restore the object’s instance variables to the state they

were in before the method started. If the object is not Recoverable the restore statement is

ignored. Execution continues with the next statement after the restore. Control is not

returned to the caller.

2.4.3 Durable

An object given the Durable property has a copy placed in non-volatile storage (e.g., on disk).

Any changes to the instance data of a Durable object are written to non-volatile storage before the

method returns control to the caller. Furthermore, the system ensures that the entire object state is

written atomically—only consistent, complete objects are written. It would be disastrous if only

half the object state were written to storage, since upon restart the object image loaded in would

be inconsistent. Return of control to the caller implies that the object state has been updated in

storage. A Durable object’s capability also survives system failure or restart. These semantics are

necessary for the correct support of atomic transactions and database applications.

2.4.4 Persistent

The Persistent property is similar to the Durable property, except that no guarantee is made as to

when the stored instance data will be updated. Although the in-RAM copy will be marked to be

written to storage whenever a method modifies the object’s instance data, Persistent objects are

only written out periodically by the system to improve performance by reducing 110 traffic and

increasing parallelism. It is not guaranteed that the current state of the object will be in storage at

the time of a system failure, but the version in storage will be complete and consistent.

CHAPTER 2— Design of the Object Property Scheme 19

The semantics of Persistent are similar to those offered by the traditional Unix file systems,

however Unix system semantics make no guarantee that the file will be written in a consistent

state (i.e., some dirty pages may get written while others may not).

Although Durable and Persistent are very similar properties, the semantics of the two are

different. Orthogonality still holds: if an object is both Durable and Persistent it properly obeys

both semantics, since the semantics of Durable subsumes the semantics of Persistent. For most

applications, such as mail agents, simple Persistence will be sufficient.

2.4.5 Replicated

An object given the Replicated property can be replicated on different machines. The decision to

replicate is made by the runtime system in an effort to improve efficiency (for example, when an

object is heavily accessed by processes on two different machines). Replicated objects have weak

consistency: the system does not ensure that all copies of the object always have the same state.

Replication is especially useful for improving performance and building highly available applica

tions, such as name servers.

2.4.6 Immobile

An object given the Immobile property cannot be migrated between machines, and remains fixed

on its current host. Immobility is desirable for objects which implement machine specific tasks,

such as support for specialized devices or servers.

2.4.7 Immutable

The Immutable property prevents an object’s instance data from being changed. If a thread

attempts to invoke a write method (i.e., a method which can modify the instance data) on an

Immutable object, a runtime error is generated.

CHAPTER 2— Design of the Object Property Scheme 20

Properties take effect only after the object has been created and its instance variables have

been initialized. This permits an object which is created with the Immutable property to be

brought into a usable state before the system prevents any accesses which could modify the

instance data.

2.4.8 User-Defined Properties

The seven system properties described above are each implemented directly by the system.

Although it is not possible for a programmer to modify the implementation of any of these proper

ties, programmers can define semantics for and create implementations of their own properties.

The user-defined properties are assignable in exactly the same ways as are system properties.

User-defined properties, by their nature, can only affect data in user space; that is, their

effects are identical to invoking methods on objects. If the programmer defines several properties,

it becomes the programmer’s responsibility to maintain the orthogonality of the properties.

2.5 Assigning Properties to Instances

Since objects in the Raven system can have any combination of properties, a programmer needs to

specify which properties an object will have. The Raven language provides keywords for specify

ing the different properties:

• Controlled property: controlled

• Recoverable property: recoverable

• Durable property: durable

• Persistent property: persistent

• Replicated property: replicated

• Immobile property: immobile

• Immutable property: immutable

CHAPTER 2— Design of the Object Property Scheme 21

• Test property: test_prop

• User properties: u_prop_i, u_prop_2, u_prop_3, u_prop_4

Object property specification can be done in two ways:

(1) The class designer can specify that all instances of the class will have certain
properties. The class designer does not need to write any code to support the
properties, since they are all supported by the system.

As an example, consider the code fragment from a class definition shown in Figure 1. All

instances of the class HappyObjects would be given the Controlled and Recoverable properties.

class HappyObjects controlled recoverable

{

somelnt : Int;

behav doSome thing 0;

}

FIGURE 1. Assigning properties in the class definition.

(2) At object creation time, the programmer can specify a list of properties for
the object. Objects in Raven are created using one of two different methods.
The new method returns an instance of the class, which will have only those
properties specified by the class designer. The second creation method is
pnew, which takes a list of additional properties to assign to the instance as
one of its arguments.

CHAPTER 2— Design of the Oblect Property Scheme 22

Consider the code fragment shown in Figure 2, which shows an assignment to the instance

variable someObject. Since someObject is of class HappyObjects, it will have the Controlled and

Recoverable properties, as well as the Persistent property and a user-defined property.

behavior someBehavior

{

someObject = HappyObjects.pnew(persistent & U_prop_i,

argi, ...);

)

FIGURE 2. Assigning properties by using pnew.

Although the runtime system supports dynamic property removal (since it must be able to

remove properties from an object when the object no longer inherits them) there is no syntax in

the programming language to allow programmers to dynamically remove properties from objects.

2.6 Inter-Object Relationships

As described in Section 2.4, property semantics were developed by viewing properties as

they applied to a single level invocation on an object. But objects do not exist simply in isolation,

and therefore some mechanism by which the relationships between objects can be described is

necessary in order to provide support for more complex behaviors like atomic transactions. In

addition, to achieve the goal of dynamic property assignment, some mechanism must also exist by

CHAPTER 2— Design of the Oblect Property Scheme 23

which objects can be placed in some relationship that provides the dynamic assignment of proper

ties from one object to the other. Towards these ends the Raven language was modified to provide

three methods of describing relationships between objects: Dependent references, Inherits refer

ences, and Part-Of references. When the designer of a class wishes to describe an inter-object

relationship, a class instance variable can be marked as either dependent, inherits, or

partof. Consider the class definition shown in Figure 3. In this example, firstlnstance

Var is a Dependent reference, secondlnstanceVar is an Inherits reference, and thirdln

stanceVar is a Part-Of reference.

class ExampleClass

{

aFirstlnstance : cap dependent;

aSecondlnstance cap inherits;

aThirdlnstance : cap partof;

)

FIGURE 3. Class definition with instance variables showing inter-
object relationships.

2.6.1 Dependent References

Dependent references are the tool by which the scope of a property is extended beyond a single

invocation to encompass a calling chain. A Dependent reference is defined as follows. When an

object P has a reference to another object C which is marked dependent (they can be thought

CHAPTER 2— Design of the Object Property Scheme 24

of as Parent and Child objects), C is said to be Dependent on P. The dependency refers to prop

erty dependency: the properties of the child are dependent on those of the parent. When the parent

invokes a method on the child, state information associated with the properties is passed upwards

to the parent when the method returns. Any actions that would normally be taken before the return

from the child become dependent upon the parent.

Dependency has meaning only for properties; as such, it does not affect plain objects. In the

current design of Raven, the semantics for Dependent references affect only the Controlled,

Recoverable, and Durable properties. It makes little sense to speak of “Dependent Immutable” or

“Dependent Immobile”, although some semantics for these situations could be contrived; also,

since Replicated only provides weak consistency and Persistent makes no guarantees as to when

instance data will be written to storage, no semantics for Dependent Replicated or Dependent Per

sistent have currently been devised.

As examples of how Dependency works, consider the following situations, where the object

P has a Dependent reference to an object C, and P invokes a method on C:

• If P and C are both Controlled, then the access privileges (read or write privi
leges) associated with the invocation on C are retained by the thread which
made the invocation and are passed back to P Other threads are still blocked
from accessing C. Since the thread now in P still holds access privileges, it can
make subsequent invocations on C with impunity (assuming that the access
rights held are sufficient for the invocations—if the initial invocation only
required read privileges, the first future invocation that requires write privi
leges will block if other readers are present). The thread relinquishes control of
the object C when its invocation on P returns, at which time the thread’s con
trol of P is also relinquished.

• If P and C are both Recoverable, then any changes made to C are not commit
ted until the changes made to Pare committed (i.e., the invocation on P returns
normally). If P returns abnormally, or an restore statement is executed, then

CHAPTER 2— Design of the Object Property Scheme 25

both P and C are restored to the states they were in before the invocation on P
began.

• If P and C are both Durable, then any changes made to C are not written to
disk until the changes made to P are written. The invocation on P will not
return until both P and C have been written. Since the Durable property
assures that objects are written in their entirety, it is guaranteed that both P and
C will be written in an atomic fashion.

If P is a dependent child of a third object G, then the state information for the properties of

C and P are passed to G. State information about a property is kept by the thread, and passed

back from a child to a parent until the top level of the Dependent chain is reached. Raven places

no limit on the number of Dependent references that may exist to an object.

2.6.2 Property Inheritance

Section 2.5 described how properties are assigned at the time of object creation. An additional

way in which an object can receive properties is dynamically at runtime through property inherit

ance. When an object is assigned to an instance variable which has been marked inherits, the

object is then assigned all the properties of the object holding the reference. Since the object being

assigned can also have instance variables which are marked as inherits, the runtime system

must compute the transitive closure of all the references which are marked inherits and

update the properties of all the objects so referenced. The complete set of properties of an object

are those assigned at creation time plus those it inherits from another object. In the current design

of Raven, an object can inherit properties from at most one other object, and there is no way to

“mask out” certain properties, i.e., to specify that an object should not inherit a property dynami

cally. The design also does not include a mechanism by which objects can be prevented from

acquiring properties dynamically, nor a mechanism by which the class designer can specify that

instances of the class should never be given certain properties.

CHAPTER 2— Design of the Object Property Scheme 26

SET
Properties: [None]

Item: <Inherits>
Item: <Inherits>
Item: <Inherits>..

___ø.

FIGURE 4. Some of the objects comprising a mail message, just
prior to being assigned to the MAIL MESSAGE

As an example of the use of property inheritance, consider a mail message. All the objects

which make up the mail message (e.g. the To: and Subj ect: fields) need to be Persistent.

However, it is sufficient to simply create the main mail message object as Persistent, and have

each of the sub-objects inherit Persistence from the main object. The advantage of such a scheme

is obvious when you consider that objects that comprise the mail message, such as Sets or Strings,

may have been created by other applications (such as an editor) and may not have been created

with the Persistent property. (See Figure 4 and Figure 5.)

The ability to dynamically assign properties to an object is important in client-server sys

tems where servers create objects for use by different clients. With dynamically assignable prop

erties, clients can be assured that the objects they use will have those properties they need. The

behavior of the object can be specified by the user of the object, and the creator need not know in

advance which properties to assign.

STRING
Properties: [None]

“acton@cs.ubc.ca’

MAIL MESSAGE
Properties: Persistent

To: <Inherits>
Subject: <Inherits>

STRING
Properties: [Nonel

coatta@cs.ubc.ca’

STRING
Properties: [None]

“Meeting Today”

STRING
Properties: [None]

“davef@cs.ubc.ca”

CHAPTER 2— Design of the Object Property Scheme 27

FIGURE 5. After assignment, objects have new properties and
behave accordingly.

Property inheritance should in no way be confused with the traditional notion of inheritance

which describes the inheritance of methods and behaviors by one class from another. Property

inheritance is a relationship between two objects, indicating that additional system services

should be bequeathed to an object. Objects can inherit properties from other objects of any class.

2.6.3 Part-Of References

Dependency describes a relation between objects which affects how the system handles objects

with properties. In object-oriented systems, objects are often bound closely together. Consider

again a mail message object. The mail message is composed of many other objects: a From:

field, a To: field, etc., each of which are themselves often composed of many other objects—e.g.,

the To: field could be a Set or a List or just a simple String object. In such circumstances, the

sub-objects make little sense in an isolated context. They are intrinsically part of the mail message

object. This relationship goes beyond simple Dependency; the objects are tightly coupled together

rSET
Properties: Persistent

Item: <Inherits>
Item: <Inherits>
Item: <Inherits>

MAIL MESSAGE /
Properties: PersistyY”

To: <Inherits>
Subject: <Inherits>

STRING
Properties: Persistent

“acton@cs.ubc.ca”
/

N
STRING

“coatta@cs.ubc.ca”

ISTRING
Properties: Persistent

“Meeting Today”

STRING
Properties: Persistent

“davef@cs.ubc.ca”

CHAPTER 2— Design of the Object Property Scheme 28

by the relationship the programmer has created between them. To describe such a relationship

between objects, Raven allows class instance variables to be marked partof.

By specifying a reference as partof, the reference is considered to be marked as both

inherits and dependent. For the programmer, there is no semantic difference between

specifying a reference as partof and specifying it as both inherits and dependent.

The system interprets Part-Of to imply a tight coupling between the objects. As such, the

Raven runtime system can make special use of Part-Of relationships. Consider a chain of objects,

A—>B--->C, where C is Part-Of B and B is Part-Of A. Together, A, B, and C can be viewed as a

single cluster by the Raven system. Since the objects in a cluster are tightly coupled, object clus

ters can be used by the Raven system in a variety of ways:

• Object clusters can be written to disk as a single unit, even if they are not con
tiguous in memory. Similarly, when the root object of an object cluster is
loaded in from disk, the entire cluster is loaded, since it is probable that many
of the objects in the cluster will soon be needed.

• Object clusters can be migrated together between machines. Simply migrating
the root object of a cluster would be inefficient, since any invocations by the
cluster root object on other objects in the cluster will either have to be remote
(i.e., across machine boundaries), or cause additional object migrations (with
their associated overhead).

Clusters are an efficiency mechanism for the runtime system and do not alter the semantics

for the programmer. Because objects can inherit properties from at most one other object, an

object can be Part-Of at most one other object. The Raven system does not limit the number of

references that can exist to an object that is Part-Of another.

As a possible use of Part-Of, consider again the mail message objects of Figure 4, only this

time with instance variables marked partof instead of inherits. Performance would suffer

CHAPTER 2— Design of the Object Property Scheme 29

greatly if the system only loaded in the root object from disk when the mail message was

accessed, or only migrated the root object to another machine; in a very short time, the other

pieces of the object will need to be accessed. By logically clustering the objects together the over

all performance of the system can be improved.

It should be emphasized that Part-Of is used by the runtime to provides performance optimi

zations only, and is otherwise no different than specifying inherits and dependent.

2.7 Combining Properties

Since properties in the Raven system are orthogonal, they can be easily combined. No side effects

result from adding properties to objects; instead, the system simply provides the new functionality

of the added property. Properties can be combined to produce the exact behavior required, while

invocations on the object do not incur any overhead for system services not used.

Although many objects will have only a single property (e.g. Controlled or Persistent), more

complex applications and objects require several properties. One natural pairing is Immutable and

Replicated. Since an linmutable object cannot be modified, it can be replicated on many machines

(or even in several places on the same machine) without any concern for maintaining consistency

between copies.

Different applications will require different pairings of properties. Consider a name service.

The name service must support concurrent lookups by multiple users, provide a facility for adding

and removing names, while maintaining the integrity of the service across system reboots. The

objects which comprise the name server need to be both Controlled and Persistent, otherwise the

name server will not function properly.

CHAPTER 2— Design of the Object Property Scheme 30

2.7.1 Supporting Atomic Transactions

More complex systems require more properties. By combining Raven properties and placing

objects in a Dependent relationship, it is possible to create database systems which support atomic

transactions. Objects in the database need to be Controlled, Recoverable, and Durable. By putting

the objects in a Dependent relationship, the invoking thread has exclusive access to the objects

until the transaction returns, as the thread will retain all the concurrency control locks for the

objects touched. New locks can be acquired, but old locks will not be released until the top level

invocation returns. This behavior is analogous to a two-phase locking protocol, and therefore pro

vides the serializability required for atomic transactions. Since the objects are Recoverable, any

abnormal termination or if a restore statement is executed will restore the state of all the

objects touched to the values they had before the transaction began. Finally, the new state of all

the objects will be written to storage at the same time, in an atomic fashion, prior to the return

from the top level invocation. As such, in the event of a system failure, either all the objects are

updated in storage, or none of them are.

CHAPTER 3 Implementation of the Object
Property Scheme

In order to test the ideas developed in the previous chapter, core features of the property scheme

were implemented and integrated into the Raven runtime system.

3.1 Data Structures for Property Support

An object in Raven is referenced using a capability pointer to the object. These pointers are nor

mal 32-bit integer pointers to memory. Capability pointers point to a block of memory which con

tains a capability structure. These structures contain the data, or pointers to the data, used by the

runtime system for the management of the object, as well as a pointer to a block of memory which

contains the object’s actual instance data. The capability structure is shown in Figure 6.

An object’s property set is stored as an integer value inside the capability structure. This 32-

bit value is divided into two 16-bit words. The first word is used to store the set of properties the

object was assigned at creation, while the second stores the currently inherited properties. This

31

CHAPTER 3—Implementation of the Object Property Scheme 32

struct capability

funcptr invoke;

cap id;

cap is_a;

cap parent;

cap inh_root;

cap storage_manager;

method_type method_type_to_use;

struct gid *gid;

voidp rw_lock

voidp cluster_lock;

properties obj ect_properties;

u_char *data;

invoke: Pointer to the invocation function to use
id: Pointer to this structure, for sanity checking
is_a: Capability of class object which we are an instance of
parent: Capability of object we inherit properties from
inh_root: Root object of inheritance tree
storage_manager: Capability of object which manages our storage
method_type_to_use: Indicates if a remote invocation is needed
gid: Pointer to object global identifier
rw_lock: Pointer to object concurrency control lock
cluster_lock: Pointer to object cluster lock
object_properties: Object property set
data: Pointer to object instance data

FIGURE 6. Object capability structure.

design limits the number of properties that the system can support to 16—each bit position indi

cates whether the object has a particular property or not. In addition to the seven system properties

and the four user properties, Raven provides a “test” property that was used extensively during the

testing of property inheritance and dependent invocations. The test property can also be used as

the basis for testing new system properties before modifying the compiler and the runtime system

CHAPTER 3— Implementation of the Object Property Scheme 33

to support the new property name. In total 12 bits of each word are accounted for, allowing up to

four more to be added before these fields would need to be widened.

As described in Section 2.5, a programmer can specify new properties for an instance by

providing a list of properties as an argument to the pnew method. It is a natural convention to list

these properties using an “&“ operator, as in pnew (prop & prop & prop. . .) : when a pro

grammer wants an object to have “concurrency control and recoverability” it can simply be writ

ten as “controlled & recoverable”. To facilitate this, each of the Raven properties is

represented as a bitmask of all is, with a 0 in the position corresponding to that property. The

objects property mask is then created by performing a bitwise-and of the properties the object was

given. If an object is created with a particular property, it will have a 0 in the corresponding posi

tion of the first word of its property mask; if it inherits a property, it will have a 0 in the corre

sponding position of the second word of its property mask. By storing properties as bitmasks, the

runtime system can easily detect when an object has a particular property. The bitmasks are given

in Appendix A.2. Simple macros have been written to test and set the appropriate bit positions for

each of the properties.

The other pieces of the capability structure used by the runtime system to support properties

are:

• The parent capability: Points to the capability structure of the object from
which properties are inherited. If no properties are currently being inherited,
this value points to the nil object.

• The inh_root capability: Points to the root object of the property inheritance
tree. Note that not all inherited properties may be from the root object; some
may be from an intermediate object.

• The storage_manager capability: Points to the object which manages the
storage of this object to disk (see Chapter 4).

CHAPTER 3— Implementation of the Object Property Scheme 34

• The gid pointer: Points to a data structure containing the object’s globally
unique identifier (see Chapter 4).

• The rw_lock pointer: Points to a lock data structure used for concurrency
control, or NULL if the object is not Controlled.

• The cluster_lock pointer: Points to a lock data structure used for Part-Of
cluster locking (see Section 3.5).

3.2 Providing System Services Through Properties

The purpose of properties is to allow system services to be provided transparently to objects. Ser

vices are provided whenever a method is invoked on an object. To accomplish this, the runtime

system uses a series of pre- and post-invocation functions, with one set of functions for each of

the properties. Immediately prior to the method invocation, the property set of the object is exam

ined. For each property the object has, the appropriate pre-invocation function (termed a pre-han

dier) is executed. When the necessary pre-handlers have been executed, the method code itself is

executed. After the method returns, prior to returning control to the calling object, the appropriate

post-handlers are executed.

The order in which the pre- and post-handlers are executed is very important to ensure cor

rectness. For example, it is necessary that locks not be released until after the Durable and Recov

erable post-handlers have executed, since these functions may need to read or write the instance

data of the object; it would be disastrous if another thread began modifying the object’s instance

data while the Durable post-handler was attempting to write the data to disk. Correctness places

several restraints on the ordering that can be used, the primary one being that concurrency control

locks must be acquired before any other work is done and released only after all other work is fin

ished. Correctness also requires that the Recovery post-handler execute first, since it may restore

the object state. They system must not propagate an incorrect state to replicas of the object, or

store an incorrect state to disk.

CHAPTER 3—Implementation of the Object Property Scheme 35

The current ordering of the pre-handlers is as follows:

(1) Controlled

(2) Durable

(3) Persistent

(4) Replicated

(5) Test property

(6) Recoverable

(7) User properties (u_prop_i through u_prop_4)

The post-handler order is the exact inverse of the pre-handler order.

There are no pre- and post-handlers for the Immutable and Immobile properties. To support

the Immutable property, the runtime system checks the method type just prior to executing the

Controlled pre-handler. If the method is a write method (i.e., if it modifies the object’s instance

data), then a runtime error is generated. The determination of the method type is done by the

Raven compiler through an analysis of the statements in the method. Although the compiler can

be fooled and generate an incorrect method type, and some invocations of write methods may not

in fact modify the instance data, this implementation is extremely simple, and provides a reason

able implementation. The Raven runtime system does not currently implement object migration,

and as such, the Immobile property is not used. However, when migration is implemented, immo

bility will still not need a pre- or post-handler, as it will simply be checked for just prior to object

migration.

Since the property set of an object can change dynamically, it’s possible for one thread to be

reading the property set as it begins an invocation while a second thread is modifying the property

set as the result of its own invocation. This problem is addressed by several features of the runt

ime. First, the property set is stored as an integer value. It can be assumed that the hardware can

CHAPTER 3—Implementation of the Object Property Scheme 36

read and write integer values to memory atomically; as such, a thread reading the property set will

not see a partially updated property set that is being written by another thread. Second, a thread

must have the object’s concurrency control lock in order to modify the property set; if no lock

exists, then that thread can be assumed to have exclusive access to the object. Since the concur

rency control lock is acquired before any work is done (even work required by the other proper

ties), it can be assumed that the property set of an object will remain stable for a thread after it is

granted the lock (unless the thread modifies the property set itself). If the property set was

changed while threads are waiting to he granted the object’s concurrency control lock, they are

restarted, object immutability is rechecked, and the threads once again begin the process of exe

cuting the pre-handlers.

One alternative to using a careful ordering of the pre- and post-handlers is to have the han

dlers executed atomically—that is, require that no other threads be allowed to execute while one

thread is inside the set of pre- or post-handlers. Using a careful ordering provides better perfor

mance, but it also precludes the use of user-defined properties for providing alternate forms of

some of the system services, particularly concurrency control, since no ordering could allow both

system-supported concurrency control and user-supported concurrency control to be the first pre

handler executed. However, if the handlers were executed atomically, some mechanism would

still be required to deal with the problem of dynamically changing property sets, and potentially

undoing work done in a pre-handler for a property which the object will not have when the

method is actually executed.

An examination of the pre- and post-handlers helps demonstrate the orthogonality of the

properties. The handler code for each of the implemented properties makes no references to any

other property, nor does the code access data structures used by the pre- and post-handlers of the

other properties. The exception to this rule is the handlers for the Durable and Persistent proper

ties, which perform almost identical tasks. Although separate implementations could have been

CHAPTER 3—Implementation of the Obfect Property Scheme 37

made, it would have required an almost complete duplication of the existing data structures and

code. It was therefore decided to combine the implementations and allow them to share data struc

tures and supporting objects (see Chapter 4).

3.3 Dependent Invocations

Whenever a method is invoked on an object which is referenced via an instance variable which

has been marked dependent, the runtime system must keep track of state information associ

ated with the properties. This is accomplished by maintaining this state information in the thread.

Currently, the runtime system uses the thread to thread keep track of information for the Con

trolled, Recoverable, Persistent, and Durable properties; these properties therefore support

Dependent invocations. Each thread has associated with it a corresponding thread object (an

instance of the Raven Thread class). Thread objects include among their instance variables the

following:

• session_chain: An integer value which is used by the runtime system as a
pointer to a list of lock structures currently held by the thread.

• lock_depth: The integer value of the current depth in the invocation chain,
starting at the top-most Controlled object and counting only Controlled objects
in the chain, lock_depth is basically the count of the number of locks held
by the thread.

• shadows: An integer value which is used by the runtime system as a pointer
to a list of object shadow copies, i.e., copies of object instance data. These
shadow copies are created for Recoverable objects and are used to restore
object state.

• cal lDepth: The integer value of the current depth in the invocation chain,
starting at the top-most Recoverable object and counting only Recoverable
objects in the chain.

CHAPTER 3—Implementation of the Object Property Scheme 38

• function_chain: An integer value which is used by the runtime system as
a pointer to a list of functions that need to be executed at some later time. The
use of function_chain is discussed in Section 3.4.1 and Section 3.5.3.

• storage_chain: An integer value which is used by the runtime system as
a pointer to a list of objects which need to be written to storage. stor
age_chain is discussed in Section 4.4.

Each Dependent invocation has associated with it a corresponding identifier. A chain of

Dependent invocations all use the same identifier, which is set to the id (integer value of the

capability pointer) of the root object of the Dependent chain.

When an invocation is made in Raven, a parameter structure is passed to the invoke routine.

This parameter structure contains data used in the course of the invocation, such as the method

name, and the actual parameters used by the method. These parameter structures are pushed onto

and popped off of the C-level stack with each invocation. The runtime system can examine the

current parameter structure for its current invocation, or trace upwards through the parameter

structures for previous invocations. The parameter structure contains a boolean flag, depen

dent Invoke, that indicates if the current invoke is Dependent or not. The Raven compiler

checks each invocation to see if the invokee is Dependent upon the invoker; if so, the compiler

emits code to set this flag to TRUE (a predefined boolean value used by the runtime). This allows

the runtime system to know when a Dependent invoke is occurring. Details about invocations in

Raven, including the use of parameter structures, can be found in [1].

The parameter structure contains another flag, isDependentRoot, which is normally set

to FALSE, as well as an integer field for the Dependent invocation identifier, dependent ID.

When the runtime finds the dependent Invoke flag set, it examines the parameter structure for

the previous invocation. If this structure has a non-zero value for its dependentlD, this value is

used as the Dependent invoke identifier of the current invocation. If this value is zero, then the

CHAPTER 3—Implementation of the Object Property Scheme 39

invoker must be the root object of the Dependent invocation. The isDependentRoot flag is

set to TRUE in the invoker’s parameter structure, and the local dependent ID is set to the Id of

the invoker.

Normally, post-handlers are executed only for properties which an object has. However, it is

possible that the root object of a Dependent invocation chain does not have the Controlled,

Recoverable, or Durable properties, yet objects with these properties were invoked somewhere in

the chain. The post-handlers for these properties must therefore be executed when the invocation

on the root object has completed. If the isDependentRoot flag is set, these post-handlers are

executed. The post-handlers check the value of this flag, and perform the necessary work if

Dependent invocations were made on objects with the corresponding property (see Section 3.3.1,

Section 3.3.2, and Section 4.4).

A Dependent invocation chain only includes objects which are Dependent upon their call

ers. If an invocation is made on a non-Dependent object, then any further invocations made from

that object will be part of a new, separate Dependent chain. For example, consider a chain of invo

cations, A—>B--->C--*D-—*E, where E is Dependent on D and B is Dependent on A. Both the invo

cation on A and on D are considered to be roots of Dependent invocations, and will have their

isDependentRoot flags set. Properties which support Dependency need to keep track of the

Id of the current Dependent chain, to ensure that the post-handler does not do work prematurely:

using the above example, when the invocation on 0 terminates the Durable post-handler needs to

write 0 and E to storage, but not A and B.

3.3.1 Dependent Invocations on Controlled Objects

Each invocation on a Controlled object has an associated lock depth, which is basically a count of

the number of locks the thread currently holds. An initial invocation on a Controlled object has a

lock depth of one; an invocation it makes on a Controlled object would have a lock depth of two,

CHAPTER 3—Implementation of the Object Property Scheme 40

etc. The lock depth is unaffected by invocations made on objects which do not have locks: if A

invokes on B which invokes on C, and only A and C are Controlled, the lock depth of the invoca

tion on C will be two. The locks held by the thread are kept in a list referenced by the

session_chain instance variable of the thread object. To support Dependent invocations, the

lock information data structure described in [1] was augmented to include a field for the value of

the current Dependent invocation identifier; this field is also called dependent ID. The value of

this field is set by the Controlled pre-handler to the current value of dependent ID found in the

parameter structure.

When a method terminates, the post-handler checks the dependent Invoke flag. If it is

set, then the handler simply returns without releasing any locks; if not, then locks are released up

to the current lock depth. If the isDependentRoot flag is set, then the post-handler must

release all locks that were acquired during the Dependent invocations. If the current object is Con

trolled, all locks with a lock depth greater than the current depth are released, since all the locks

acquired after the current lock will have a lock depth greater than the current lock depth. If how

ever the current object is not Controlled, then the session_chain is traversed starting from

the most recently granted lock. If the dependentlD of the lock information structure is equal to

the id of the current object, the lock is released, and the next lock in the chain is examined. This

process continues until no locks remain in the chain, or a lock information structure has a

dependent ID not equal to the id of the current object.

3.3.2 Dependent Invocations on Recoverable Objects

When Recoverable objects are part of a Dependent calling chain, the shadow copies of the

objects’ instance data must be retained by the thread until the top level invocation in the Depen

dent chain terminates. The thread also keeps track of the current depth in the invocation chain

using the instance variable cal lDepth.

CHAPTER 3—Implementation of the Object Property Scheme 41

Each time an invocation is made on a Recoverable object within a Dependent calling chain,

a shadow copy of the object is made and placed on the shadows list kept by the thread. The cur

rent value of the callDepth is then set for this invocation, and stored with the shadow. When

the top level invocation terminates, the shadow copies are simply discarded, as they are no longer

needed. However, if a res tore statement is encountered, then the list of shadows is traversed

and all objects whose shadows have a higher call depth than that of the current object have their

instance data restored to the value of the shadow, and these shadows are removed from the

shadow list.

3.3.3 Remote Dependent Invocations

Each time a remote invocation is made in Raven, a worker thread is created on the remote

machine to execute the method code [1]. Normally, this thread is destroyed after the method fin

ishes executing. However, since property state information is kept in the thread, remote Depen

dent invocations must be treated in a special manner. Additional problems arise due to the nature

of the implementation of properties: since most of the data structures used are regular C structures

and pointers, references to the state information cannot be easily passed back to the original

machine. Propagating the state data back can be expensive, and troublesome to maintain, as

changes are made to the data structures or support for Dependency is added to additional proper

ties. To address these concerns the following solution to the problem of remote Dependent invo

cations was adopted.

Every remote invocation now includes an additional integer parameter in which the ID of

the current Dependent calling chain is passed (or zero if the invocation is not Dependent). A

potential problem can occur, however, since Dependent IDs are just the location in memory of the

root object of the Dependent chain, and there may be an object at that location on the remote

machine which gets invoked as part of the remote invocation. Therefore, the actual ID passed is

(<real Dependent ID> 1), as no object could ever reside at an odd memory address.

CHAPTER 3—Implementation of the Object Property Scheme 42

When the remote thread finishes execution of a Dependent invocation, in addition to any return

value it also passes back the globally unique ID (GID, see 4.1.1) corresponding to the Thread

object of the remote thread. The remote thread then suspends itself, so the Thread object and its

associated data structures are not destroyed.

The gid of the remote Thread object is stored with the state information for each property

in the local thread. When the invocation on the root object of the Dependent invocation chain fin

ishes, the property post-handlers are executed. As the post-handlers traverse their state data, if a

reference to a remote Thread object is encountered then a remote invocation is made on that

object (see Appendix B. 1). The remote worker which is created does not awaken the original, sus

pended worker; instead, it simply uses the worker’s instance data to perform the appropriate work

necessary for the specific post-handler. This is possible because all remote worker threads of an

original thread have the same session identifier as the original thread, and this session identifier is

supposed to be unique for all threads in the system. Once all the post-handlers have executed, the

original worker is awakened and is then destroyed.

Currently, the system stores the remote Thread object gid in the state information of

every property, even if no objects with that property were invoked upon by the remote thread.

Therefore, remote Dependent invocations will require one additional remote invocation for every

property which supports Dependency.

3.4 Property Inheritance

In the general case, supporting property inheritance is fairly straightforward. The Raven compiler

detects any assignments which are made to a class instance variable which is marked with the

inherits keyword, and emits code to call a special runtime routine, UpdatelnheritsQ,

which does the work of “disinheriting” properties from the old object which had been referenced

CHAPTER 3—Implementation of the Object Property Scheme 43

by the instance variable and “bequeathing” properties to the new object assigned to the instance

variable.

The basic steps taken in disinheriting properties from and bequeathing properties to a target

object (i.e., an object which has been de-assigned from or assigned to an instance variable which

provides property inheritance) are the same. When bequeathing properties, two additional steps

must be taken: first, the system must ensure that the target object is in the same Raven World as

the bequeathing object; and second, the system must check to see that a property inheritance cycle

is not being created, by checking to see if the target object is the root object from which the

bequeathing object inherits properties.

The system first computes the transitive closure of all objects which inherit properties from

the target object. These objects are then locked to prevent any concurrent accesses to them while

their properties are being updated. Next, the property mask maintained in each object’s capability

structure (see Figure 6) is recomputed, and any work associated with the gaining or losing of

properties (e.g., creating or destroying locks used by the Controlled property) is performed. The

value of inh_root stored in each object’s capability structure is also updated accordingly. This

pointer points to the root object of the property inheritance tree; an object which no longer inherits

any properties has its inh_root set to point to itself. The value of the parent pointer for the

target object must also be updated; this is either the object from which properties are directly

inherited, or nil if no properties are inherited. Finally, the locks on the objects are released.

Currently, the system does not do any performance optimizations, such as checking to see if

disinheriting or bequeathing properties actually affects the property sets of all the objects in the

transitive closure, and then omitting the unaffected objects from the set of objects that need to

have their property masks updated.

CHAPTER 3—Implementation of the Object Property Scheme 44

3.4.1 Recovering Property Inheritance Assignments

Although providing property inheritance is straightforward in the general case, it becomes much

more complicated when the assignment which provided property inheritance can be recovered.

Consider the example shown in Figure 7, where anlnstance provides property inheritance.

behavior doSomething ()

{

if (anlnstance == oldObject)

anlnstance = newObject;

restore;

}

FIGURE 7. An Example of Recovering a Property Inheritance Assignment.

The original object (oldObj ect) which had been referenced by anlnstance and all objects

which inherit properties from oldObj ect will have their property masks changed, and newOb

j ect and all objects which inherit from newObj ect will have their property masks changed.

Furthermore, these objects must behave as if they have (or don’t have) the appropriate properties;

if newObj ect was uncontrolled before, but has the Controlled property now, it must be given a

lock. However, once the restore statement is executed, all the work which was done to disinherit

oldObj ect and bequeath properties to newObj ect must be undone. Since the data structures

CHAPTER 3— Implementation of the Object Property Scheme 45

used by the runtime system to support properties are mostly C structures, and since the property

information is stored in the capability structure and not in the object instance data itself, the

shadow structures used by the Recoverable property cannot be used to recover all the state that

existed prior to the method invocation.

To solve this problem, recoverable assignments which provide property inheritance are

treated in a special way. When the assignment is made, only the minimal amount of work neces

sary to provide correct functionality is performed, and the remaining work is delayed until recov

erable invocation terminates normally (or, in the case of a Dependent invocation on a Recoverable

object, when the top-level invocation returns). This minimal amount of work involves modifying

the property masks, and creating the data structures needed for any properties newly inherited by

an object (e.g., creating locks for newly Controlled objects), but does not include destroying the

data structures used by properties for any objects which were disinherited. Therefore, the locks,

storage managers, shadow copies, etc. of objects which have been disinherited will be retained.

Furthermore, the objects in the transitive closures will remain locked until the status of the invo

cation has been determined, as the objects must be protected against concurrent accesses through

out the time that their property sets might change.

One of two scenarios will now occur: either the invocation will terminate normally, or will it

will be rolled back. After the minimal work described above is performed, a special function is

queued up to be executed when it is known which of these two situations has occurred. This func

tion is added to a list of similar functions kept by the Thread object in its function_chain

instance variable. One function exists to handle the work associated with disinheriting objects and

another to handle the work of bequeathing properties to objects. With the function, a list of param

eters (which include the set of objects in the transitive closure) is kept, as well as the current level

of the invoke depth (corresponding to the invoke depth of the current shadow copy). The execu

CHAPTER 3—Implementation of the Oblect Property Scheme 46

tion of the functions in the function_chain is performed by the post-handler for the Recover

able property and by the code which implements the restore statement.

If the method terminates normally, the function_chain is traversed in the order it was

created, and each function is executed in sequence. If a res tore statement is encountered, the

function_chain is traversed in the reverse order of its creation until the invoke depth of the

functions in the chain are of a higher level than the invoke depth of the current recovery shadow.

The functions take as one argument a boolean flag indicating the status of the method termination.

This allows them to either complete the work begun when the assignment was made, or roll it

back to the previous state it was in.

An alternate scheme to performing the minimal work necessary when a recoverable assign

ment is made is to make the optimistic assumption that the method will terminate normally, and

do all the work associated with disinheriting and bequeathing properties accordingly. It is not pos

sible to do a “pessimistic” assumption, since the object assigned to the instance variable must

receive the services associated with the properties it inherited as a result of the assignment. How

ever, this scheme will be very expensive in the case where the assignment is recovered, since all

new data structures for the disinherited object will need to be created (which, in the case of Persis

tent or Durable objects, will require coordination with the on-disk storage; furthermore, the sys

tem must not in any case delete any on-disk versions until it is absolutely sure that the object is no

longer Persistent or Durable). Delaying most of the work until later does not increase the amount

of work that needs to be done. Furthermore, at least some work must be done even in the optimis

tic case, since all the objects in the transitive closure must be unlocked. Since the locks were

acquired directly and not as the result of an invocation, it cannot be assumed that they will be

released by the Concurrency post-handler, since the post-handler may never be executed.

CHAPTER 3—Implementation of the Object Property Scheme 47

3.5 Part-Of Clusters

The partof keyword also provides property inheritance, and therefore much of its implementa

tion is similar to that described in Section 3.4. When the compiler detects an assignment to an

instance variable marked partof, a special runtime function, UpdatePartOf (), is executed.

As with property inheritance, this function and its support functions must treat recoverable assign

ments to Part-Of instance variables in a special manner, as described in Section 3.5.3.

In addition to providing property inheritance and dependency, the partof keyword is used

by the runtime system to provide a logical clustering of objects. The transitive closure of all

objects which can be accessed from a root object (i.e., an object which is not Part-Of any other

object) using Part-Of references comprises the Part-Of cluster. This clustering information is cur

rently used by the Durable and Persistent pre- and post-handlers to store and retrieve all objects in

a cluster to and from disk as a single unit (see Section 4.3). Once object migration is implemented,

clustering information can also be used to migrate entire clusters between disks. How objects are

removed from and added to Part-Of clusters is described below. The effects of such changes to

Part-Of clusters on object storage are discussed in Section 4.4.

There is one potential problem with using Part-Of clustering information in the manners

described above. Consider the situation shown in Figure 6, where two objects form a Part-Of clus

ter. One thread (Ti) invokes a method on one object of the cluster, while another thread (T2)

invokes a method on the other. If Ti is a worker thread for a remote request the system may

decide to migrate the cluster. However, lea fObj ect may be in an inconsistent state because

thread T2 is invoking on it. If the objects in the cluster are Controlled, the system can acquire all

the locks before doing the migration; however, there is no guarantee that either rootObj ect or

leafObj ect have concurrency control locks (and indeed, since only one thread is accessing

each object at a time, neither object may need to be Controlled). The system has no mechanism by

CHAPTER 3—Implementation of the Object Property Scheme 48

FIGURE 8. Objects in a Part-Of Cluster.

which it can detect that uncontrolled objects in a cluster are in a consistent state, yet it may need to

make a copy of the instance data of these objects for the purposes of migration or object storage.

To solve this problem, and to more rigorously enforce the notion of clustering, a new con

currency control lock is added to each Part-Of cluster. This lock is shared among all the objects in

the cluster, and any access to any objects in the cluster must first acquire this lock before acquir

ing any concurrency control locks on the objects in the cluster. Although this cluster lock renders

any local object locks superfluous, the current implementation does not perform any optimizing

and all locks are still acquired.

Ti

T2

CHAPTER 3—Implementation of the Oblect Property Scheme 49

By placing a cluster lock on all the objects in a cluster, the system is effectively creating one

Controlled object out of all the component objects in the cluster: only one thread may access the

objects in a cluster at the same time. Although this scheme does solve the problem described

above, adding the concurrency control lock will degrade performance slightly. Treating the object

clusters as single objects has one additional drawback: it is not possible for a thread to spawn par

allel invocations on the individual objects of a cluster, as deadlock will result.

The Part-Of cluster lock is acquired during the execution of the property pre-handlers, and is

released during the execution of the post-handlers. The cluster lock is acquired just prior to and

released just after any local concurrency control lock is acquired or released.

3.5.1 Removing Objects from a Part-Of Cluster

When an object is de-assigned from an instance variable which is marked partof, the system

must first determine if the object is a single object or has part0 f references of its own. The tran

sitive closure of all objects which inherit properties from the removed object is computed, and

these objects are tagged to indicate if they simply inherit properties from the removed object or

are Part-Of the removed object. These objects are locked, and the properties of the objects in the

transitive closure are updated in the same fashion as described in Section 3.4. If the object has

Part-Of references, then the removed object will form the root of a new Part-Of cluster. A new

cluster lock is created and assigned to all the objects in the transitive closure which are Part-Of the

root object.

Since Part-Of clusters have cluster locks, it’s possible that a thread waiting on the cluster

lock was attempting to invoke on the removed object (or, if the removed object is now the root of

its own Part-Of cluster, one of the objects in the new cluster). Therefore, with each queued thread

the identity of the target object of the thread is stored. When objects are removed from a Part-Of

cluster, the cluster lock waiting list is examined, and any thread which is waiting to invoke on an

CHAPTER 3—Implementation of the Object Property Scheme 50

object no longer in that cluster will be moved to the new cluster lock (if one exists), or restarted if

the removed object is no longer part of a cluster.

3.5.2 Adding Objects to a Part-Of Cluster

When adding an object to a Part-Of cluster, the system first ensures that the object is in the same

address space as the cluster. As with removing an object from a Part-Of cluster, when adding an

object the runtime system must determine if the object is the root object of its own cluster. If so,

the objects in the old cluster must have their cluster lock pointers reset to point to the lock of the

cluster to which they are being added. The threads waiting on the now unused cluster lock must be

transferred to the new cluster lock. If the object being added is a single object (i.e., it has no Part-

Of references) then any threads waiting on its local concurrency control lock (if one exists) are

restarted. These threads are not allowed to begin execution of the method code, however; instead,

they are required to begin the process of executing the property pre-handler code again. This

forces them to acquire the new cluster lock before they are allowed to acquire the local concur

rency control lock, for which they had been previously waiting. An alternate scheme to forcing a

thread restart is to move all the threads queued on the local concurrency control lock to the cluster

lock. The current implementation of locking makes this difficult, however, since the lock depth

will not be correctly updated.

3.5.3 Recovering Part-Of Assignments

Because instance variables marked partof provide property inheritance, recoverable assign

ments to Part-Of instance variables are handled in the manner described in Section 3.4.1. As with

any recoverable assignment that can affect multiple objects, the primary concern is that the

objects be kept in a consistent state throughout the life of the invocation. Only a minimal amount

of work is done when an object is added or removed from a cluster, and functions are queued up

CHAPTER 3— Implementation of the Obiect Property Scheme 51

on the Thread object’s function_chain to finish the work begun, or undo the work started,

when the status of the invocation is determined.

When a recoverable assignment is made, any objects removed from the Part-Of cluster

retain their cluster lock. This allows them to remain protected against concurrent accesses while

their status is in doubt. Dropping the cluster lock (or creating a new one if the removed object is

the root of a new cluster) must be done anyway, and delaying this work until it is known that the

assignment is permanent makes recovery easier, since any threads queued on the original cluster

lock can be left untouched. If an existing Part-Of cluster is added to a Part-Of cluster, the existing

cluster retains its cluster lock until the status of the invocation is determined. This lock is held by

the thread which is performing the recoverable invocation, so all the objects in the cluster will

remain in a consistent state.

3.6 Self-Invokes

The question arises about what to do about self-invokes, i.e., an object invoking a method

upon itself. Self-invokes can be viewed in one of two ways, each with its own advantages and dis

advantages:

(1) Self-invokes are considered to be “sub-invocations” of the initial object invo
cation. As such, no system services need to be provided for the invocation: all
necessary pre-handlers were already executed before the initial invocation,
and the post-handlers will be executed once the initial invocation finishes.

(2) Self-invokes are normal invocations, and are treated no differently than any
other invocation. All the property pre- and post-handlers are executed for
self-invocations.

If self invocations are viewed as sub-invocations, then the runtime can execute them more

efficiently (since it does not need to check for object properties). Furthermore, the object can be

continually modified by sub-invocations, but nothing will be written to disk until the initial invo

CHAPTER 3—Implementation of the Object Property Scheme 52

cation returns. Any res tore statement encountered will restore the instance data to the state it

was in prior to the initial invocation; all work done inside the object to this point will be lost. This

prevents an object from executing a transaction upon itself. It also raises the question of whether

only invocations explicitly made on the object self should be considered sub-invocations, or if

invocations on an instance variable which was set to self should also be sub-invocations. The

runtime system has no mechanism by which it can determine which of these scenarios occurred,

although the compiler could be modified to emit special code in the event of an invocation on

self.

If self-invokes are classified as normal invocations, then redundant work will be done in

some of the pre-handlers (e.g., the local concurrency control lock is obviously already held by the

thread). Although some efficiency is lost, programmers are presented with a single, uniform

model of object invocation, and they can view self-invocations as if they were any other invoca

tion. A further question arises, and that is whether self-invocations should be considered Depen

dent or not. If they are considered Dependent, then the efficiency of the system can be further

compromised, as extra work for Dependency must be performed; however, it does imply that

writes will be delayed until the initial invoke returns. If self-invokes are not considered Depen

dent, then all invocations following the self-invocation would consider the self-invocation to be

the root of their Dependent chain; this would preclude having self-invokes inside of transactions.

In the current implementation, all self-invocations are treated as normal invocations, and are

furthermore considered to be Dependent invocations. Although the dependent Invoke flag is

not set by the compiler in this case, the runtime system checks to see if the method invoker and

invokee are the same object, and sets this flag if they are. Although this scheme is not the most

efficient, it provides the most consistent support for Dependent invocations, and helps provide a

uniform programming model.

CHAPTER 3— Implementation of the Object Property Scheme 53

3.7 Parallel Invocations and Property Support

As mentioned in Section 2.1, the Raven language contains special constructs to facilitate user-

directed parallel programming. There are three primary forms of parallelism provided: companion

invocations, early replies, and delayed results. The work on parallelism focused only on the Con

trolled property, in an environment that pre-dated Dependency. Most of the thought given to these

features was therefore directed towards their impact on concurrency control [2]. Integrating the

new property scheme (especially the notion of Dependency) with Raven’s support for user-level

parallelism has presented several challenges, many of which are yet to be fully resolved. For a

further discussion of these issues, and alternate implementations to those chosen, see Chapter 5.

Property information is kept by the thread, so it is not possible to perform a Dependent invo

cation using a parallel thread of execution. There is no facility by which property information kept

by one thread can be propagated to another thread, although some scheme such as the one used for

remote invocations (see Section 3.3.3) could potentially be adapted. Consequently, multi-threaded

transactions are currently not supported.

3.7.1 Companion Invocations

Companion invocations are invocations which are started from and executed in parallel with

the current thread of execution. In the Raven language, executing the statement

{ someobject.someMethod() } .startO;

creates a companion thread which will invoke the someMethod method on someObj ect. The

target of the invocation (in this example, someObj ec t) is treated as if it were not Dependent,

even if the reference to the object is marked Dependent. If this object makes subsequent invoca

tions on Dependent objects, they will form their own Dependent chain, and the target object the

companion thread invoked on will be the root of the chain.

CHAPTER 3—Implementation of the Object Property Scheme 54

Another way to achieve parallel execution in a manner similar to a companion thread is for

the user to simply create a new instance of the Thread class and have it invoke a method on an

object. As with a companion thread, the initial invocation of this thread is treated as if it were not

a Dependent invocation.

3.7.2 Early Reply

Early reply is a mechanism by which a method can return a result to its invoker but continue

executing inside the method. The statement

result (value);

will return value to the caller, and a new thread will be created at this point to continue execut

ing the method.

Early replies have severe consequences for the implementation of object properties, espe

cially when the object is part of a Dependent chain. Consider a Controlled object in which an

early reply is done. The initial invoker must give up the lock it acquired, and the spawned thread

must acquire the lock. The question arises as to what happens if the object is in a Dependent

chain. The invoking thread will not give up its lock, but the spawned thread will need to acquire

the lock before it can do any work. Consider also a Recoverable object in which an early reply is

done. It is unclear what should happen if a restore statement is encountered by the new thread

executing after the result has been returned: should the object be restored to the state it was in

when the result statement was executed, or to the state it had prior to the initial method invoca

tion? What if the object is part of a Dependent chain, and an object above it in the chain executes

a restore? How can work done by the spawned thread be restored properly, especially if the

thread is still executing inside the object? Similar problems relate to the Durable and Persistent

properties: should the object state be written to disk at the point of the result, when the

spawned thread terminates, or both? If only at the point of the result, then changes made by the

CHAPTER 3— Implementation of the Object Property Scheme 55

spawned thread could be lost; but if the object is Durable and part of a Dependent chain, then the

object state cannot be written by the spawned thread when it terminates, since the object state can

only be written along with the objects comprising the initial Dependent chain.

Rather than attempt to resolve all these issues, and to simplify the implementation, early

replies are ignored in some circumstances. If the object is part of a Dependent chain, or has the

Recoverable, Durable, or Persistent properties, then the result statement will simply save the

value to be returned to the caller and use it as the return value when the method terminates (ignor

ing any subsequent value specified by a return statement as the result to return). A new thread

is not created; instead, the current thread continues execution, and control is not returned to the

caller until an actual return statement is encountered or execution of the method finishes. This

choice decreases the parallelism of the system, but ensures its correct operation when an early

reply is encountered.

3.7.3 Delayed Result

Delayed result allows the execution of a method to finish with the expectation that a different

thread will actually provide the result to return to the caller. The statement

leave;

acts like a return statement, except the value to be returned to the caller is not taken from the

body of the method but is instead sent to the current thread by another thread. If this value hasn’t

yet been sent, the current thread blocks (and control is not returned to the caller) until the value is

received. A thread sends a return value to another thread using the result statement:

result thread value;

sends value as the value to return to the thread thread.

CHAPTER 3—Implementation of the Object Property Scheme 56

To properly implement delayed result, any locks held on the object (both concurrency con

trol locks and cluster locks) must be released when the leave statement is executed. This is

because it may be necessary for another thread to enter the object in order to perform the result

which will send the value to the waiting thread. However, if the object is in a Dependent chain,

locks are not supposed to be released until the top-level invocation completes. If the requirements

of Dependency are maintained, then using a delayed result may bring the system into a state of

deadlock; if locks are freed, then the semantics of Dependency are not preserved.

Since delayed result provides programmer-specified parallelism, the current implementation

will release any local locks when a leave statement is executed, even if the object is in a Depen

dent chain. It is assumed that the programmer will take into account that locks will be released

when writing code that executes a leave, and will not attempt to use such objects in transac

tions, since a significant consequence of releasing the locks is that serializability will be lost when

another transaction invokes on the object while a thread is suspended waiting for a result.

Releasing local locks when a leave is encountered creates the potential for an additional

problem. Consider a thread Twhich is suspended in an object 0 waiting for a result to return to its

caller. It’s possible for another thread T’ to acquire the locks on 0 and assign 0 to an instance

variable marked inherits, or de-assign 0 from such an instance variable. When T resumes, the

properties of 0 have changed from what they were when the invocation on 0 began. Property

post-handlers are executed after a suspended thread resumes, creating a potential mismatch in the

execution by Tof the property pre- and post-handlers. The current implementation therefore gen

erates a runtime error if an object which contains suspended threads is assigned to an instance

variable marked inherits orpartof.

CHAPTER 3— Implementation of the Object Property Scheme 57

3.8 User Properties

User properties are supported in the same way as the system properties, through the execution of

pre- and post-handlers. The invoke routines and the system pre- and post-handlers are all written

in C. Allowing programmers to write their pre- and post-handlers in C as well is possible, but is

fraught with problems. If users are allowed to write in C, they can become tempted to modify sys

tem data structures. Furthermore, programmers would need to know details of the Raven imple

mentation in order to access object instance data; however, these details may change, introducing

bugs into the user code.

Given these considerations, user pre- and post-handlers are therefore supported by perform

ing invocations on the object. The basic Obj ect class supports four (empty) pre-methods and

their corresponding post-methods:

behavior preUserN(dependentlnvoke: Int);

behavior postUserN(dependentlnvoke: mt1 isDependentRoot: Int, hasProp: Int);

Where Ncan be either 1, 2, 3, or 4.

The integer parameter dependent Invoke which is passed to the user pre- and post-han

dlers is set to either True or False (predefined boolean values supported by the Raven lan

guage) depending upon whether the current object is Dependent upon its invoker. Similarly, the

parameter isDependentRoot will be True or False depending upon whether the current

object is the root object of a Dependent invocation chain. This information is provided to the pro

grammer so that user properties can also be designed to take advantage of Dependent invocations.

In such circumstances, the programmer may need to subclass the Thread class so that state

information for the user property can be kept in the thread along with the information for the Con

trolled, Recoverable, and Durable properties. The integer parameter hasProp is set to True or

False depending on whether the current object actually has the user property. This flag is neces

CHAPTER 3—Implementation of the Object Property Scheme 58

sary since the post-methods will be executed when isDependentRoot is True, even when

the object does not have that property. Without this flag, the programmer would have no way of

determining if the root object of a Dependent invocation chain actually had one of the user prop

erties.

The pre- and post-methods will be invoked on an instance which has user properties. When

a programmer wishes to implement a user property for a class, the programmer must override

these methods in the class. The invocations of the pre-methods must be done in such a way that

they do not result in a continual recursive execution of the pre-methods; similarly, the post-meth

ods must be executed in such a way that they don’t cause the pre-methods to execute. This is done

by calling the method code directly, bypassing the property support routines. The pre-handlers are

only executed on the machine where the object resides, so there is no worry that the object data

will not be local.

Although self-invokes are normally considered dependent invocations, the pre- and post-

methods are not considered dependent invokes. Since the user pre-methods are executed after the

Recoverability pre-handler, any restore statement executed inside the object method code will

restore the object to the state it was in prior to the execution of the pre-methods. This may create

some difficulties, since the current implementation does not re-execute the pre-methods (and the

post-methods will be executed when the object invocation finishes). The issues surrounding user

properties are further explored in Chapter 5.

Since the pre- and post-handlers are written by the user, the system cannot make any guaran

tees about the orthogonality of user properties. No tools have been written to test for such orthog

onality.

CHAPTER 3—Implementation of the Object Property Scheme 59

3.9 Status of the Implementation of Properties

Although semantics have been developed for all the properties (see Section 2.4), the runtime sys

tem does not yet provide all the services for which there are properties. The properties which are

currently implemented are the following:

• Controlled

• Recoverable

• Persistent

• Durable

• Immutable

• User properties (as described in Section 3.8)

Details of the implementation of the Controlled property can be found in [1]. Details of the

implementation of the Recoverable property can be found in [71. Details of the implementation of
the Persistent and Durable properties can be found in Chapter 4.

Dependent invocations are supported by the Controlled, Recoverable, Persistent, and Dura

ble properties, even when such invocations are remote. Although the Raven semantics say noth

ing about Dependent Persistent invocations (Section 2.6.1), the implementation treats them in the

same manner as objects which are Durable. Dynamic property inheritance, through both the

inherits and partof keywords, is fully supported. This includes the case when the assign

ment to an instance variable marked inherits or partof is recoverable: if a restore state

ment is encountered in the current Dependent calling chain, the object property sets will be

correctly restored, and all data structures (such as lock structures) used in the implementation of

system properties will be correctly updated. However, the system only allows property inherit

ance from local objects (i.e. objects which are in the same address space).

Object Storage: Details of
the Durable and Persistent

Properties

4.1 Object Storage Overview

Objects in Raven are normally volatile; they exist only in memory, and persist only as long as the

active process which created them (or until they are garbage collected [1]). When an object is

given either the Persistent or Durable properties, the Raven system will ensure that a copy of the

object’s instance data will be written to disk. Since the Persistent and Durable properties function

in almost identical ways (see Section 2.4 for a description of their semantics), the concepts dis

cussed in this chapter apply equally to both properties. The only differences between the two

properties arise in their implementations, and are described in Section 4.3.5. In this chapter,

objects which are described as being storable are meant to be those which have either the Persis

tent or Durable properties.

The object storage system provides the following features:

60

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 61

• Reference swizzling: All references to other objects are capability pointers,
which point to the location in memory where the object’s capability structure
resides. All references to an object must be converted to unique identifiers
which correspond to the object. This allows the system to reload the object at
any position in memory, as the unique identifiers can be translated back to the
new capability pointer.

• Whole object storage: Objects must be stored in their entirety in an atomic
fashion. If the object’s state isn’t written atomically to disk, a failure during the
disk write could result in an inconsistent version of the object on disk, and sub
sequently an inconsistent version of the object will be loaded into memory.

• Lazy loading of object data: When a reference to an object is unswizzled, if
that object is not currently in memory, the runtime system will not fetch the
object data immediately. The object’s instance data will be fetched only when
it is actually needed, i.e. when an invocation is made on the object.

• Object clustering in storage: Objects which comprise a Part-Of cluster are
stored together on disk, and loaded together from disk.

Although the Raven runtime system provides garbage collection for in-memory objects, no

garbage collection is currently provided for objects in storage. The system will remove an object

from storage when it is no longer a storable object (e.g., while an object inherits the Persistent

property it will be stored to disk, but when it no longer inherits that property it will be removed

from disk storage).

4.1.1 Globally Unique Identifiers

To implement reference swizzling, the system must provide a globally unique identifier, or GID,

for every storable object. GID5 are also useful for accessing remote objects, but in the absence of

object mobility and persistence the object’s location information can be used to provide a unique

identifier. The original version of Raven used location information as the global identifier, and

was therefore unsuitable as a true globally unique identifier.

CHAPTER 4— Obfect Storage: Details of the Durable and Persistent Properties 62

The actual GID of an object is a 128-bit value composed of four distinct 32-bit fields (see

Figure 9). The first field contains the IP address of the machine on which the object was created.

The second field contains the port number to which the Raven World which created the object was

attached. The third and fourth fields are incremental counters. The third field is incremented once

upon each startup of a Raven World, and the fourth is incremented once for each GID assigned by

the World. The fourth counter is reset to zero upon each startup of a World.

{

u_long creator;

u_long world;

u_long generation;

u_long name;

creator: IF address of creator machine
world: Port number of Raven World
generation: Raven World incarnation counter
name: Per-incarnation GID assignment counter

FIGURE 9. GID Structure.

A GID is assigned to every storable object. An object which is referenced from another

Raven World (i.e., for which a Proxy object [1] exists in the other World) is also assigned a GID.

GID5 are not normally assigned at object creation time unless the object is storable. The object’s

capability structure (see Figure 6) contains a pointer to a structure which in turn contains a pointer

to the GID structure (see Appendix A.6). If the object does not have a GID, the pointer in the

capability structure will point to NULL.

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 63

4.2 Storage Model

The basic storage model used is outlined in Figure 10. At the highest level are the Raven objects

themselves, which exist in main memory. Each storable object has an associated Storage Manager

object (see Figure 11), which is an instance of the StorageManager class (see Appendix B.2).

The storage manager is responsible for overseeing the storage of the object’s instance data to disk,

as well as converting stored data into user objects.

Storable Objects in Memory

Storage Managers

TDBM Manager

Local Disk

FIGURE 10. Object Storage Model.

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 64

Objects Storage

Swizzled
Manager Data

FIGURE 11. Storage Manager Role.

At the lowest level is the local disk itself. To achieve whole object storage, TDBM [6] is

used to write the object state to disk. TDBM is a transaction oriented database that stores key!

value pairs. TDBM will ensure that all the data presented to it is written in an atomic fashion to a

local disk. Although multiple Raven Worlds on the same machine may use the same disk, each

World has its own TDBMmanager object (see Figure 12), which is an instance of the

TDBMIanager class (see Appendix B.5). The TDBMmanager object is accessible inside Raven

applications as the global object identifier TDBMrnanager. The TDBMmanager object writes the

data for all the objects in the Raven World to a file specific to that World. If the Raven World is

shut down and a new instance of Raven is launched with the same World identifier (i.e., on the

same machine using the same port number as the previous World), it is considered the same World

and will use the same file.

TDBM cannot guarantee atomic updates of data if the database file is located across NFS.

Object storage should therefore be done on a disk physically mounted on the same machine on

which the Raven World is running, or the system will be vulnerable to NFS failures. The local

directory under which TDBM should store its files is determined at startup time by examining the

environment variable RVSTORAGEPATH. If no such environment variable exists, a default value

is used; however, this default value is not guaranteed to exist on any particular host.

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 65

Encoded TDBM

DiskData Manager

FIGURE 12. TDBM Manager Role.

Each Raven World has an associated GlDmanager object (see Figure 13), which is an

instance of the GlDManager class (see Appendix B.4). The GlDmanager object is accessible

inside Raven applications as the global object identifier GlDmanager. The GlDmanager has

several responsibilities:

• It assigns GIDs to storable objects.

• It maintains a GID to capability map. For every (currently known) object with
a GD, this map provides the current location in memory of the capability
structure for the object. This map is necessary during unswizzling, when GDs
must be converted to capability pointers.

• It creates capability structures for objects loaded in from disk.

• It intercepts invocations made on objects currently not in memory and interacts
with the TDBMmanager to fetch the objects from disk.

4.2.1 Object Storage Events

After an invocation which modifies the instance data of a storable object completes, the object’s

instance data must be written to disk. This involves the following actions:

(1) The object’s storage manager is notified that an invocation occurred on the

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 66

Fetch Object Requests Load From Disk Requests

Assign GID Requests Decode Data Requests

FIGURE 13. GIl) Manager Role.

object.

(2) The storage manager instructs the object to encode its instance data.

(3) The storage manager adds the information in the object’s capability structure
to the encoded data.

(4) The encoded data is passed to the TDBMmanager along with the GD of the
object, which is used as the key under which the data is stored.

(5) The TDBMmanager writes the data to disk.

4.2.2 Object Loading Events

When an invocation is made on an object which is not in RAM, the object must be loaded in from

disk. The capability structure used for objects not in RAM is a “skeleton” capability structure: the

only fields of the structure which are filled in are the GID and the invoke routine (see Figure 6).

The invoke routine used by skeleton capabilities is a special routine called Fetchlnvoke.

Fetchlnvoke ensures the object data is loaded into disk and that the skeleton capability struc

CHAPTER 4— Oblect Storage: Details of the Durable and Persistent Properties 67

ture is filled in before allowing the invocation to proceed. The exact sequence of events involves

the following actions:

(1) The Fetchlnvoke routine calls the GlDmanager, and asks it to load in the
data for the object with the GID found in the skeleton capability structure.

(2) The GlDmanager passes the GID of the object to the TDBMmanager.

(3) The TDBMmanager fetches the encoded data stored under that GD from
disk.

(4) The GlDmanager extracts the capability information and fills in the skeleton
capability structure, including replacing the Fetchlnvoke function with
the appropriate invoke function for the object.

(5) The GlDmanager creates a storage manager for the object, and passes the
encoded data to the storage manager.

(6) The storage manager creates an object of the appropriate class, and has it load
its instance data using the encoded data.

(7) During decoding, all GIDs are passed to the GlDmanager to be unswizzled
and turned into capability pointers. If no capability exists for the GID, the
GlDmanager creates a skeleton capability structure for the object.

4.3 Implementation Details

The StorageManager objects, GlDmanager, and TDBMmanager are all Raven objects and interact

with each other using normal object invocations. Much of the implementation of these objects,

however, is directly in C, although the Raven language has been used where possible. As an

object’s instance data is encoded and the capability information added to form the complete

encoding of the object, Raven Integers are used to hold pointers to the data for passing

between a Storage Manager, the TDBMmanager, and the GlDmanager.

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 68

4.3.1 Object Encoding

When a Storage Manager needs to get the encoded form of an object, it asks the object to encode

itself and return the encoded data. Similarly, a Storage Manager will provide an object with a

pointer to encoded data, and have the object load its instance data using the encoded data. The

Obj ect class provides two basic methods:

• behav enCodeData() : mt

This method traverses the object’s instance data and writes an encoded version of the data into

memory, swizzling all object references and encoding primitive integers and floating point num

bers (see below). A pointer to the location of the data is returned.

• behav deCodeData(data: Int);

This method replaces the object’s current instance data with the data obtained by decoding the

data pointer passed in.

The format of a buffer containing encoded data in memory is shown in Figure 14. The buffer

begins with an integer representing the total length in bytes of the buffer (including the four bytes

needed for the integer), followed by the encoded instance data.

Total Length Data

FIGURE 14. Format of encoded buffer in memory.

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 69

Raven currently supports three different types of instance variables: mt (simple integer),

Float (floating point number), and cap (object reference). While encoding (or decoding) an

object, the type of instance variable is determined by examining the definition of the object’s

class.

Ints are stored as instance variables in their (usually) 32-bit machine-dependent represen

tation [1]. This allows integer operations to be efficient. They are encoded by simply copying

them directly into the encoded buffer. Conversion into an external representation (such as that

obtained using XDR [25], which is currently used to encode requests and replies for remote invo

cations) is not needed nor done, since the object will always be reloaded into the current Raven

World, and the assumption is made that the machine representation of integers will not change

between incarnations of a Raven World.

Like Ints, Floats are also stored as instance variables in their machine-dependent form,

and are encoded by simply copying the floating point number into the encoded buffer.

Object references are swizzled by writing out the GID of the object to the encoded buffer.

Upon decoding, the GID is converted to a local capability by the GlDmanager. If the object refer

enced is not storable, zero values are written to the encoded buffer in place of the actual fields of

the GID (which may not even exist for a non-storable object). Since a non-storable object will not

survive system restarts, if an actual GIlD were stored the encoded object would contain a reference

to an object which no longer exists. Upon decoding, a zero-valued GID is treated as a reference to

the nil object. This practice precludes the use of the object storage system as a mechanism for

providing object paging.

The current implementation relies upon the fact that each of the values stored in the encoded

buffer are a multiple of four bytes. If the encoded buffer itself is allocated on a four byte boundary

(true for the current implementation of the Raven MALLOC () macro), then the values (especially

CHAPTER 4— Oblect Storage: Details of the Durable and Persistent Properties 70

integers and floating point numbers) can be easily written to and extracted from the buffer. Since

class definitions can vary widely, the size and format of different encoded buffers is highly vari

able, and the object class must be known to properly decode an object’s data.

The data in the encoded buffer contains only the object’s instance data and lacks other

important information about the object which is contained in the object’s capability structure. In

addition to the instance data, an object’s class, property set, parent, and inheritance root must also

be stored. Storing this information allows the capability structure to be rebuilt upon object load

ing, and provides the class information necessary for decoding the data. Figure 15 shows the lay

out of the complete encoding of an object, including the capability information. The class name,

which is assumed to be unique for all classes (an assumption shared by the remote invocation

mechanism [1]), is stored along with its length. If necessary, padding is added after the class name

to ensure that the properties field begins on a four byte boundary. The properties stored in the

encoded form of an object may be a different set than those the object currently has. This is

because the object can inherit properties from a non-storable object, in which case the property

mask to be stored must be calculated by traversing up the inheritance tree until the top-most stor

able object from which properties are inherited is found. The Parent GID field holds the GID of

the object’s parent (i.e., the object from which properties are directly inherited). The Inh_root

GID field contains the GID of the top-most storable object in the inheritance tree. The Instance

Data field contains the contents of the encoded buffer shown in Figure 14. A final pad, if needed,

is placed at the end to ensure the entire encoded object is a multiple of four bytes. Since the

encoded buffer will always be a multiple of four bytes, and the class name with its pad will be a

multiple of four bytes, there should never actually be a need for a trailing pad.

The process of adding the object’s capability information to the encoded data is done by the

object’s Storage Manager. The GlDmanager is responsible for extracting the capability informa

tion and filling in the object’s capability structure when an encoded object is loaded from disk.

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 71

Name Parent Inh_root
T h Class Name Pad Properties Data Pading GID GID

FIGURE 15. Format of a fully encoded object.

4.3.2 Storage Manager Implementation

Objects maintain a pointer to their storage manager inside their capability structure. When a stor

able object is created, or when an object inherits the Persistent or Durable properties, the object

will be assigned a Storage Manager. All of the storable objects in a Part-Of cluster each use the

same Storage Manager.

Storage Managers maintain a “cached” version of the encodings for every object they man

age. These caches serve two purposes:

(1) They allow the Storage Manager to compare the object’s current state with its
previous state, to determine if the object state has actually changed. If the
object is unchanged, there is no need to write the object to disk, thus saving
significant performance overhead.

(2) They allow the Storage Manager to submit all the objects in a Part-Of cluster
to the TDBMmanager for storage at once. If the Storage Manager didn’t
maintain cached versions, it would have to encode and encode each object in
the cluster every time it needed to write the cluster to disk. Furthermore, if
the Part-Of cluster lock is ever abandoned, a lack of cached versions could
force the Storage Manager to acquire a lock on every object in the cluster
before encoding each object. No cluster lock implies multiple threads could
be inside the cluster, so the Cluster Manager may have to wait a significant
amount of time in addition to increasing the likelihood of deadlock.

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 72

The encoded data of an object is kept by a Storage Manager inside an object of the SMEn

try class (see Appendix B.3). An SMEntry object contains the object capability pointer, a

pointer to the object’s encoded data, and the length of the encoded data. If a Storage Manager

manages multiple objects, it keeps the SMEntry objects in a dynamically sizeable array. The

SMEntry for the root object of the Part-Of cluster is always the first object in the array.

4.3.3 TDBMmanager Implementation

A Storage Manager presents the encoded data streams to the TDBMmanager for writing to disk.

The encoded data is packaged into an object which is an instance of the class TDBMDatum (see

Appendix B.6). A TDBMDatum object is an object encapsulation containing two of the

TDBMDatumStruct data structures used by the TDBM library. It contains four integer values:

one integer value used as a pointer to the data, a second holds the data length, a third is used as a

pointer to the key under which the data is to be stored, and the fourth contains the length of the

key. A TDBMDatumStruct also requires alignment information, but data and keys are always

assumed to be aligned on a four byte boundary. When a Storage Manager invokes on the TDBM

manager, it creates a TDBMDatum object and sets the data pointer to point to the encoded data

stored in the SMEntry object. A pointer to the object’s GIJD is used as the key under which the

object is to be stored. If the Storage Manager manages multiple objects, it passes an array of

TDBMDatum objects to the TDBMmanager. Each TDBMDatum object occupies the same posi

tion in the array passed to the TDBMmanager as the SMEntry object from which the TDBMDa

turn was formed occupies in the array kept by the Storage Manager. As such, the TDBMDatum

object containing the encoded data for the root object of the Part-Of cluster will be the first object

in the array passed to the TDBMmanager.

The TDBMmanager stores data to disk in one of three formats, which are shown in Figure

16. The basic structure of all three formats is count data, where count specifies the number

of objects stored in the data. The key under which the data is stored is an object GID.

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 73

1• (Encoded Objec
GID J

GIlD1

Data

GID D
3:

(GIDn D
0 GID1

FIGURE 16. Formats of data storage on disk.

Format type 1 is the most basic, and shows how a single TDBMDatum object which is pre

sented to the TDBMmanager will be stored. The count field is one, since only one object is

stored. The data field contains the encoded data that was passed in the TDBMDatum object. The

key under which this data is stored is the key contained in the TDBMDatum object, which is the

GIlD of the object.

When the TDBMmanager is presented with an array of TDBMDatum objects, it stores all

the objects together on disk in one continuous block, as shown in format type 2. In this case,

count contains a count of the number of encoded objects stored in the block, which is equal to

Key

2:(

1 Encoded Object

Count GIlD1 Size Data GID Size Data)

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 74

the number of TDBMDatum objects in the array. It is followed by <count> tuples consisting of

the key under which the object was to be stored, the size of the object’s encoded data, and the

encoded data itself. The entire block is stored using the key found in the first TDBMDatum object

of the array, which will be the GID of the root object of the Part-Of cluster which is being stored.

Storing the size of the encoded data allows the TDBMmanager to quickly transform a block of

clustered objects into individual TDBMDatum objects, one for each stored object, without having

to know the format of the encoded data.

When an array of TDBMDatum objects are to be stored, all the encoded objects will be

stored using the GID of the root object as the key. To allow the system to locate the other objects

in the cluster, the TDBMmanager stores a data block of format type 3 under the GID of these

objects. The count field is set to zero, indicating that the data is the actual key under which the

object’s data is stored.

When an object is to be loaded in from disk, the TDBMmanager is presented with a

TDBMDatum object with only the instance variables corresponding to the key set. The TDBM

manager uses the key information to load in the associated data from disk. The data is examined

to determine which format it is in. If the data block is of format type 3, the TDBMmanager uses

the stored key to fetch the actual data. If only a single object was stored under the key, the TDBM

manager returns the passed in TDBMDatum object with the integers for the value pointer and size

set to the encoded data. If multiple objects were stored in a cluster under the key, an array of

TDBMDatum objects is returned. If no object is stored under the key presented, the TDBMman

ager returns the nil object.

Because Raven is multi-threaded, the TDBMmanager has the Controlled property to ensure

that accesses to the disk are serialized and that the whole system does not enter a blocked state

when a particular thread is blocked waiting for a lock from TDBM itself.

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 75

4.3.4 GiDmanager Implementation

The GlDmanager interacts with the TDBMmanager to load encoded objects from disk. If the

TDBMmanager returns nil to the GiDmanager, the GlDmanager attempts to find the object

somewhere on the network. The creator and world fields of the object’s GID are examined,

and a remote invocation is made on the GlDmanager of the Raven World at that location in an

attempt to find the object. When object migration is implemented in Raven, a broadcast or other

mechanism will be needed to find the actual location of the object, since there will be no guaran

tee that an object will remain in the World in which it was created.

If the TDBMmanager returns encoded data to the GlDmanager, the GlDmanager begins the

process of unencoding the object data. First, it creates a Storage Manager object to manage the

storage of the object (or objects, if a cluster of objects were returned by the TDBMmanager).

Next, it fills in the capability information for each object, creating a capability structure first if

necessary. Any necessary locks (including a cluster lock) are created. The encoded data is then

passed to the Storage Manager so the object instance data can be decoded.

As described in Section 4.2.2, capability structures that exist for objects not currently in

RAM use a special invoke routine called Fetchlnvoke. When a Fetchlnvoke is performed,

the first action of the GlDmanager is to ensure that the object data has not already been loaded in.

Although the GlDmanager is controlled against concurrent accesses, multiple Fetchlnvokes

could be performed on an object before the first has completed. The final action of the GIDman

ager is to set the invoke routine to the normal invoke to be used for the object.

The GlDmanager also maintains a mapping of GIDs to capabilities. This allows it to find the

local capability pointer for any object based upon its GID. The map is simply a hash table that

associates the four integer fields of the GID with the capability pointer of the object. IIIIISc

[10], a table package which performs { 4 integer) —> { 1 integer) mappings, is used to manage the

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 76

hash table. If the GlDmanager is asked for the capability pointer for a particular GID, and no such

capability currently exists, the GlDmanager creates a skeleton capability structure whose invoke

routine is Fetchlnvoke; it then returns a pointer to this structure. The GlDmanager will turn

this capability structure into a Proxy object if the object cannot be found on the local machine

when the GlDmanager attempts to load the instance data of the object.

4.3.5 Implementation Differences Between the Persistent and Durable Properties

In the current implementation, the Durable and Persistent property handlers are almost entirely

identical. Objects have only one Storage Manager, which acts for either the Durable or Persistent

properties (or both, if an object actually had both properties). In the case of Dependent invoca

tions, both properties are handled in the same way, and conform to the Durable notion of storage:

control will not be returned to the caller until all the objects have been written to disk. The only

current difference between the implementation of the two properties is that in the case of Persis

tent objects, a new thread is spawned to perform the work of storing the object to disk, allowing

the original thread to return immediately. This does provide faster performance for the user, but

does not provide any 110 optimizations that might be available by delaying writes to disk, such as

allowing some updates to be done only in RAM. This can be accomplished with an active thread

inside each Storage Manager which periodically writes the cached data to disk.

4.4 Dependent Invocations on Storable Objects

When storable objects are part of a Dependent chain, the Raven system must delay writing the

objects to disk until the top-level invocation completes. Furthermore, the objects must be written

atomically; i.e., either all the objects get written to disk, or none of them do.

To support Dependent invocations on storable objects, each Thread object keeps a list of the

Storage Managers for the storable objects it invokes upon in a Dependent chain. A pointer to this

CHAPTER 4— Oblect Storage: Details of the Durable and Persistent Properties 77

list is kept in the Thread’s storage_chain instance variable. Each entry in the storage_chain

(see Figure 17) is a structure which includes the dependentlD of the Dependent chain, the cap

of the Storage Manager, and a list of the objects which are managed by that Manager and which

have been invoked upon during the current Dependent invocation chain. The Durable and Persis

tent post-handlers append the current invokee’s Storage Manager to this chain. If the Manager is

already on the chain, the current invokee is appended to the list of modified objects kept for the

Manager.

struct STORAGE_INFO

struct STORAGE_INFO *next;

struct STORAGE_INFO *previous;

mt dependentlD;

cap manager;

LIST *objects;

FIGURE 17. Format of struct STORAGE_INFO data structure.

Normally, the TDBMmanager expects to perform the storage for a single Storage Manager

as one transaction. In a Dependent chain, however, multiple Storage Managers must have their

data stored by the TDBMmanager using the same transaction identifier. To accomplish this, the

following steps are taken when the top-level invocation of the Dependent chain completes:

(1) A transaction identifier is acquired from the TDBMmanager.

(2) For every Storage Manager in the storage_chain, the local cache of each
object in the obj ects list for that Storage Manager is updated.

(3) The Storage Manager is directed to write the list of cached objects to storage,

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 78

using the transaction identifier acquired in step 1.

(4) The TDBMmanager is directed to commit the transaction associated with the
transaction identifier.

4.4.1 Remote Dependent Invocations on Storable Objects

The semantics for Dependency specify that all the objects in the Dependent chain will be stored

together. This requires that when Durable objects in a Dependent chain are in different Raven

Worlds, a two-phase commit protocol (or similar protocol) be used to ensure that all the objects

are written to disk atomically.

In the current implementation, a two-phase commit protocol is not implemented, as it is

beyond the scope of this thesis. Instead, each of the Raven Worlds involved in a distributed trans

action will write their data separately from the other Worlds, although atomically within each

World.

4.5 Storage of Collection Class Objects

The Raven class library supports a variety of classes which are collections of other objects. These

classes all inherit from the Collection class, and include the Array, MemoryArray, List,

Set, and String classes (see [1] for a full description of the Raven class library, including the

Collection classes). The implementations of these classes often rely upon other classes (usu

ally an instance ofMemoryArray at the lowest level). For example, the String class uses an

MemoryArray object to store the actual characters of the string.

This implementation presents a problem for object storage. Consider a Persistent String

object. If this object is encoded normally, the actual characters of the string will never be stored,

as these actually reside in the MemoryArray inside the String. In fact, although the String itself is

Persistent, the MemoryArray is not, and so the encoded data will contain a reference to the nil

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 79

object and not even to the MemoryArray which contains the characters. Similar problems exist for

the other Collection classes. MemoryArray has its own storage problem: its implementa

tion is done directly at the C level, so normal Raven statements cannot be used to swizzle an

instance of MemoryArray.

One solution is to attempt to use the Part-Of or Inherits references when designing the Col -

lection classes. For example, the String class can indicate that the MemoryArray object

should be Part-Of the String, so if the String is Persistent then the MemoryArray will be also.

There are several problems with this approach, however. If Part-Of is used, then the Collec

t ion class object will be given a concurrency control lock, which will decrease the performance

of operations on the object. If Inherits is used instead, then the object will be stored in pieces on

disk, and multiple fetches will be required to load it into RAM. A more fundamental problem is

that although this scheme will work for the String class, it will currently not work for any of the

Collection classes which are implemented by composing multiple Collection class

objects together. The Array class, for example, is implemented as a multi-way tree, using

objects of the class FixedArray. At any given level, a FixedArray may contain elements of the

Array or another FixedArray. Although the top level FixedArray used by the Array class can be

specified as being Part-Of the Array, there is no mechanism by which other FixedArrays placed

into the top level FixedArray can be declared as being Part-Of also. Therefore, the Part-Of tree

stops after one level, and parts of the Array will not be Persistent. One simple solution is to re

implement the Array class (and the other Collection classes) in such a way that Part-Of can

be used so all components of the class can inherit properties. Indeed, when a class is written all

objects which are used to implement the class should be defined as Part-Of. Another solution is to

use the techniques described in Section 5.4 to implement the Collection class objects, which

would allow the Part-Of relationships to extend downward as many levels as necessary to include

all the component objects of the Collection class object.

CHAPTER 4— Object Storage: Details of the Durable and Persistent Properties 80

To allow String objects to be properly stored, the String and MemoryArray classes

override the enCodeData and deCodeData methods found in the Obj ect class with special

versions which will properly encode and decode the contents of a String or MemoryArray object.

This scheme can be adopted for all the different Collection classes, although at present the

enCodeData and deCodeData methods have been overridden only in the String and Mem

oryArray classes.

4.6 Object Name Service

Once object storage has been implemented, some mechanism by which users can identify

and name objects must be provided, so that after a system reboot particular objects that have been

stored to disk can be reloaded. Otherwise, the user will never be able to find the objects stored to

disk. Using ASCII (string) names is a natural convention for naming objects (as they are for nam

ing Unix files), and much less cumbersome for users than requiring that they remember the GIDs

of the objects which they are interested in. A rudimentary name server, which provides string to

GID mappings, was developed to assist in the testing of the object storage system. Ideally, Raven

should support a well-known persistent object accessible from the Raven System object which

programmers can use to provide their own name service.

CHAPTER 5 Discussion and Future Work

The design and development of the Raven property scheme is extensive but far from complete. In

particular the implementation has brought to light many issues and possible directions for future

research.

5.1 Property Scheme Design

The Raven system has experienced only limited use, which has been confined to answering spe

cific research questions. Until Raven is fully implemented and used as the basis for developing

distributed applications which rely on all aspects of the property scheme, it will be difficult to

conduct a comprehensive evaluation of the Raven property scheme. It’s unclear how useful the

different properties and features (such as Part-Of) will be for applications programmers, and in

particular the usability of the currently unimplemented properties will not be fully known until the

system is extensively used. In the testing which has been performed, the system behaves exactly

as specified in the property semantics. In particular, transactional processing can be accomplished

81

CHAPTER 5— Discussion and Future Work 82

by providing objects with the Controlled, Recoverable, and Durable properties, and placing the

objects in Dependent relationships.

There is one problem with the current mechanism for providing transactions, however. The

Controlled property is designed to prevent concurrent access to an object by multiple threads.

Now consider the following scenario, as shown in Figure 18. Thread T inside object A, performs

a Dependent invocation on object B. It then performs a non-Dependent invocation on object C,

which then makes a Dependent invocation on object B again. The invocation from A—>B is one

transaction, while the invocation from C—*B is another (the invocation from A—>C is not part of

the first transaction, since C is not Dependent on A). The problem arises when the invocation on

C returns: if a res tore statement is executed inside A, the instance data of B will be restored to

a previous state as well. However, the state B will be restored to is inconsistent with the transac

tion C—*B, since the state of C (which will not be restored) may have relied on the state B was in

at the time of the transaction.

T

A
— II,IiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIuII,II — —

I
non-Dependent

Dependent C C

Dependent

[liii B

FIGURE 18. Multiple Transactions Modifying a Single Object.

CHAPTER 5— Discussion and Future Work 83

This problem exists because of the particular interaction of the semantics of Dependent and

Controlled. The runtime system has a mechanism by which it can differentiate between invoca

tions on an object done by the same thread but as part of different Dependent invocation chains,

by using the Dependent id. to restrict access to the object. However, this does not solve the prob

lem of the semantics, which allow this situation to occur. A solution is to introduce the semantic

notion of a invocation identifier (or transaction identifier) which is assigned to every invocation.

Invocations in a Dependent chain would all have the same invocation identifier. The semantics of

the Controlled property would then be modified to control access to an object based upon the

invocation identifier, and not the thread. This is also only a potential problem when the object B

has the Recoverable property, but due to the orthogonality of the properties the system cannot use

its knowledge of the properties of B to allow the above situation to occur when B is not Recover

able.

When Raven becomes a platform for developing distributed applications, the property

scheme may need to be expanded with the addition of new features and capabilities. Potential

future features include:

• Property masking: The ability to “mask out” certain properties; that is, a mech
anism by which an instance can refuse to be assigned a property which was
specified at creation time or inherited from another object.

• Selective inheritance: The ability to selectively bequeath a set of properties at
runtime to an instance. Currently, property inheritance requires that all proper
ties be inherited. An extension of this feature would allow any set of properties
to be dynamically assigned to an object, by specifying the properties when the
instance variable is declared in the class definition.

• Alternate policies for system properties: The ability for the user to choose from
among a set of different versions of the system properties, which each provide
different semantics. For example, the current semantics for Replicated only
provide weak consistency. The system could instead provide both weakly and
strongly consistent Replication, and allow the user to choose either policy for

CHAPTER 5— Discussion and Future Work 84

an object. Other possibilities include different storage policies for the Persis
tent property, each of which trade off between more immediate updates to disk
and providing more updates in RAM.

User specified property ordering: as mentioned in Section 3.2, the correct
behavior of the system relies upon a careful ordering of the property pre- and
post-handlers. Because of this, it is not possible for the user to create their own
versions of certain system properties, such as Controlled, since the system
must acquire locks before any other work is done and release them only after
all other work has completed. To allow users to write their own versions of
Controlled, the system could allow the user to specify the ordering of the pre
and post-handlers, thereby installing user written pre- and post-methods as the
first and last handlers to be executed. A alternative to this scheme is to continue
to hide the actual ordering from the user, but allow the user to load their own
property handlers in place of the existing system handlers. Such a scheme
would integrate well with providing alternate policies for the properties: the
user could choose from among various system supplied properties, or choose
one of their own, to install as the Controlled handler, the Persistent handler, etc.

5.1.1 Note on Replication

When the Replicated property is implemented, it will become necessary to decide how Replicated

objects should be stored. Should Persistent or Durable Replicated objects be kept on the local disk

of all machines where they are Replicated, or perhaps only a subset of these machines? For cor

rectness, the system only needs to keep one non-volatile version of the object, and requiring every

node to store the replicas wastes disk space and adds to the system overhead. For a read-mostly

database system consisting of one master any many clones, storage is only required (and perhaps

desired) on the master node. There may also be situations where “diskiess Ravenstations” are

used (machines whose only disk is used for swap space, as exist in current Unix systems), in

which case it is not possible to do any local storage. To provide such an implementation, however,

violates the orthogonality of the properties, which requires that each of the replicas behave as if it

has all the properties of the original object (including Persistent or Durable, in which case the

CHAPTER 5— Discussion and Future Work 85

object must be stored to local disk). Even if the user is allowed to select different policies for the

behavior of the Persistent or Durable properties, each replica should use the same policy; the

object would not be truly replicated if each replica could use different policies.

One option is to provide a new service, similar to Replication, which keeps the instance data

of a list of objects in synchronization with each other. As changes were made to one object, they

would be propagated to the others. This would allow an object to have many “replicas” each of

which could have different properties or policies for their properties.

5.2 Implementation of Property Support

The Raven runtime system is written primarily in C. This lack of reification has actually made

parts of the implementation somewhat difficult to accomplish: if an object has the Recoverable

property, the system must be able to restore the object’s capability information, which is kept in

the capability structure and not as part of the instance data. This complicates the recovery process,

as the shadow copies used by Recoverable must be augmented with a mechanism to recompute

(or save and restore) the capability structure entries. There is also no technical reason why concur

rency control locks and shadow copies cannot be implemented using Raven objects, except that

such an implementation would result in a drop in performance, as the overhead for performing an

invocation is greater than that of a normal C invocation (see [11).

A possible future implementation is to move the capability information into the instance

data. This would provide several benefits:

(1) The existing support for Recoverability could be used to provide recovery
support when assigning objects to instance variables which are made
partof or inherits.

(2) It would allow the user access to the information which is currently stored in
the capability structure, which is currently unavailable for the user’s inspec

CHAPTER 5— Discussion and Future Work 86

tion. Raven would therefore be more reflexive: the user could modify this
information, changing the object’s behavior accordingly. For example, the
user could select from among different objects to manage an instance’s lock
ing and storage, depending on the behavior the user wishes the object to have,
and set the appropriate instance variables to reference these objects. Property
behavior could therefore be further customized on an instance by instance
basis.

User defined properties are a particularly valuable tool, and present a future direction for the

development of all Raven properties: implementing all of the current system properties as user

properties. This would force reification of the system properties, since they could no longer rely

on C-level data structures, although C data types would still be required to interface with TDBM.

Since user properties are supported through the use of special pre- and post-methods, a reifi

cation of the Raven system properties would require that all properties be supported with pre- and

post-methods. As with user properties currently, these methods would need to be invoked in a

special manner to ensure that they are not invoked recursively when the invocations on the han

dler methods are made.

The current implementation of user properties does suffer from a significant problem.

Because the pre-methods for the user properties are executed after the Recovery pre-handler has

executed, if a restore statement is executed then the instance data used by the user properties

will be reset to the state it was in prior to the method invocation. However, the user post-methods

will still be executed, and they may rely on information set by the pre-methods. The problem is

further complicated by the mechanics of the restore statement: the invocation is not termi

nated, it instead continues on inside the method after the instance data has been restored. A solu

tion to this problem is to force the system to return control to the caller when a restore

statement is executed. If all the Raven properties were implemented using Raven objects, the

complete property state of the object could then be restored and the post-handlers would not need

CHAPTER 5— Discussion and Future Work 87

to be executed—it would be as if the invocation never took place. (An exception to this scheme

would be for the Controlled handlers: locks must always be acquired first, and if any were

acquired, they would need to be freed; as such, the Controlled post-handler would still need to be

executed.)

The current implementation is also deficient in that it does not completely obey the specified

semantics for Dependent invocations. As described in Section 3.7, when a leave statement is

executed the system will temporarily release (suspend) any locks held on the current object, in

case the result will be provided by a thread executing a method within the same object. Correct

execution in accordance with the semantics of Dependency requires that any locks remain in

place until the top level invocation completes. Three possible alternate implementations therefore

present themselves:

(1) The system does not release any locks when a leave is executed and the
object is in a Dependent chain. This would require the programmer to ensure
that the result statement is executed from a separate object.

(2) The system refuses to assign an object to an instance variable marked
dependent when one of the object’s methods contains a leave. A runt
ime error would instead be generated.

(3) The system suspends the current locks, but does not allow any invocation on
the object to fully complete until the suspended thread is resumed. A second
thread which accessed the object while the original thread was suspended
would itself be suspended until the original thread completed the top level
invocation of its Dependent chain. If the original thread did not execute a
restore statement, the second thread would be resumed normally. If how
ever the original thread executed a restore, the second thread would need
to be aborted in some manner. The exact semantics and implementation of
this scheme would need to be carefully worked out to ensure that orthogonal
ity between the Recoverable and Controlled properties was maintained.

CHAPTER 5— Discussion and Future Work 88

Of these options, number (2) is the most consistent with the current state of the implementa

tion. Since Dependent chains (and therefore transactions) are restricted to a single thread, the sys

tem should not allow a second thread to essentially become part of the transaction by providing a

return value for an invocation.

Perhaps the most debatable implementation detail is the use of cluster locks for Part-Of clus

ters. Using cluster locks allows the runtime system to make assumptions about the states of the

objects in a cluster, but impacts the user by increasing the overhead associated with every imple

mentation on an object in a cluster. Cluster locks are useful to enforce the consistency of a cluster

when the cluster is to be migrated or stored to disk, but are not required for these purposes (e.g.,

keeping cached versions of the objects in a cluster allows consistent object states to be written to

disk). If cluster locks are to remain a part of the implementation, future enhancements to the runt

ime system should focus on improving the performance of invocations on Part-Of clusters by

keeping the amount of locking performed to a minimum. This can be accomplished by bypassing

any local concurrency control lock for objects in a cluster, and bypassing the local and cluster

locks when one object in the cluster invokes a method on another object in the cluster.

5.3 Object Storage

The object storage system provides reliable storage of objects to disk. Since TDBM was designed

to provide efficient atomic storage, supplanting TDBM with a Raven-specific atomic storage

scheme is unnecessary. There is currently no mechanism to perform garbage collection on the

object store; however the system does provide an “1 s”-like function to list the GIDs and class

names of all the objects in the store as a potential aid to a human user in cleaning out persistent

garbage. A mechanism for collecting distributed, persistent garbage created by Raven applica

tions needs to be developed.

CHAPTER 5— Discussion and Future Work 89

To allow all the objects in a cluster to be loaded from disk into memory together, there is a

close relationship between Part-Of clusters and the object storage scheme. This is accomplished

by storing all the objects in the cluster together. However, some pieces of a Part-Of cluster may be

rather large, in which case the system will perform several large memory-to-memory copies and

disk transfers which could be unnecessary if the large object wasn’t the piece which was modi

fied. Storing the objects together facilitates the retrieval of the entire cluster from disk, but it is not

required. An alternate implementation is for the system to store each of the objects in a Part-Of

cluster separately on disk, but load all of the objects when any one object is fetched. This scheme

has a further advantage in that it allows the user thread to begin execution inside the first fetched

object, while the system fetches the remaining objects of the Part-Of cluster in parallel.

In the current implementation of the storage model, an object’s Storage Manager is respon

sible for creating the full encoding of the object (adding the object’s capability information to the

swizzled instance data) during object storage, while the GlDmanager extracts the capability infor

mation when the object is loaded in from disk. This requires that the GlDmanager and the Storage

Managers agree on the general format of the encoded data, so that the GlDmanager can extract the

information encoded by a Storage Manager. This is a potential liability, since any change in the

encoding format must be reflected in two class implementations. An alternate implementation is

for the Storage Managers to pass the swizzled data to the GlDmanager for encoding instead of

performing the encoding themselves. This problem is also addressed if the system is modified so

that the capability information is moved into the instance data, as the process of swizzling will

produce the full object encoding for extraction by the unswizzle routines.

The implementation of Persistent property improves performance by performing the storage

in parallel with the execution of the user thread. Performance could be improved significantly if

the system could delay the parallel writes, allowing the object state to be updated many times in

memory before actually performing the storage. This could be accomplished by having an active

CHAPTER 5— Discussion and Future Work 90

thread inside of every Storage Manager. When an invocation on a storable object finished, the

cached version of the object would be updated in the Storage Manager and a boolean flag would

be set. The active thread would sleep a specified period of time, then awaken and check the flag to

see if the caches were modified, and write them to disk if they were. It would then go back to

sleep for its time-out period.

In the current implementation, the system makes a distinction between the case when a sin

gle object is stored or a cluster of objects are stored together: in the first case, the encoded data is

passed around in a single TDBMDatum object; in the latter, an array of TDBMDatum objects is

used. The implementation could be simplified if the system were changed to always use an array

of TDBMDatum objects when passing the encoded object data to and from the TDBMmanager. If

only one object is to be stored, the array would simply contain one TDBMDatum object. The for

mat of object storage on disk could also be simplified by eliminating the format used by the spe

cial case of only a single object being stored to disk (see Figure 16).

5.4 The Raven Collection Classes

Problems with the storage of Collection class objects were discussed in Section 4.5. Once a

mechanism for storing all the Collection classes is standardized (such as providing specialized

swizzle and unswizzle methods for each class) one other issue becomes apparent: the Collec—

t ion classes are not designed to allow the items actually in the collection to be considered Part-

Of the Collection class object. When items are placed in a Set object, for example, there is no

mechanism by which they can be described as being Part-Of the Set. This means that if the Set

itself is Part-Of some other object, the items in the Set will not be part of the Part-Of cluster. Sim

ilarly, there is no mechanism to specify that the items in a collection should inherit properties or

be in a Dependent relationship. Property inheritance, Dependency, and Part-Of clustering stop at

the Collection class objects. One obvious example of where it would be useful to allow

CHAPTER 5— Discussion and Future Work 91

objects inside a collection to inherit properties is the implementation of a Name Server. The Name

Server can be implemented using a Persistent Set. If the items in the Set could be Part-Of the Set,

string names can be placed in the Set and become Persistent for the duration of the time they are

entries in the Name Server.

This issue can be addressed in one of several ways. The system can provide multiple ver

sions of each of the Collection classes. For example, there can be a regular Set class, a

SetPartOf class, a Setlnherits class, and a SetDependent class. These classes would

differ only in the how objects inside the collection would be treated. A second solution is to pro

vide an extra parameter to the constructor methods of the Collection classes. This

parameter would mirror the compiler keywords used to specify Part-Of, Inherits, and Dependent,

and would indicate how the items in the collection should be viewed:

• partof: The items in the collection should be Part-Of the collection.

• inherits: The items in the collection should inherit the properties of the
Collection class object.

• dependent: The items in the collection should be Dependent upon the Col
lection class object.

A third solution is for the system to treat the objects inside a collection in the same way the Cal —

1ec t ion class instance is used. If the collection object is Part-Of another object, the objects in

the collection will be Part-Of the collection. If the collection object is invoked upon as part of a

Dependent chain, the objects in the collection will become part of the same chain. If the collection

object inherits properties, then the objects in the collection will inherit properties as well.

CHAPTER 6 Related Work

6.1 Object-oriented Systems

The problem of providing system services in object-oriented systems is not new, and many

solutions have been implemented. One scheme is to map traditional services into object represen

tations. These system objects are crafted to integrate into the object model provided by their

runtime systems. Another scheme is to provide direct runtime support for various services to

objects in the system. There are many object-oriented languages which simply give the user

objects, without any real runtime system support. In such systems the user relies on the underly

ing system (Unix, etc.) for services as they would in a non-object-oriented language. Sometimes

objects can be exploited to make access to some services, such as persistence, more automatic.

6.1.1 C++

Several different approaches have been proposed for adding persistence to C++ objects [12],

including some which even allow the incremental loading of object data [22]. This has the benefit

92

CHAPTER 6— Related Work 93

of allowing C++ objects existing in any operating system to be persistent, but the consequence is

that no general operating system support can be assumed. These approaches rely on overloading

the “>>“ and “<<“ operators to write the object data into streams to which files have been

attached. The basic mechanism is for a persistent class to write out a typed stream which includes

a class identifier followed by the instance data. These schemes do not provide general persistence

for all objects, but provide mechanisms which programmers can use to make specific classes per

sistent. Since C++ classes aren’t real objects, there is no mechanism by which the system can

automatically traverse the instance data. Instead, the programmer is responsible for writing the

load and store functions for each class by hand (although tools for generating these functions

automatically could potentially be developed at an unknown cost). These schemes further require

the user to manage a unique identifier (either a class name or numerical id) for each class which is

to be persistent, and to develop a mechanism (such as a simple switch or jump table) to allow the

creation of new classes given the name or identity.

6.1.2 Arjuna

The Arjuna system ([18], [23]) was designed to provide a C++ class library and system to

support the building of robust distributed systems through the use of atomic transactions and per

sistent objects. Arjuna supplies the system support for atomic transactions (serialized concurrency

control and recoverability) and persistent objects through specific C++ classes organized into a

class or type hierarchy. Arjuna is currently designed to run on top of Unix. Unlike Raven, multiple

versions of what are essentially the same class are required if one version is to make use of the

system services for atomic transactions and persistence. Additionally the support for these ser

vices is not transparent to the programmer like it is in Raven. The use of transactions, for exam

ple, requires the programmer to explicitly instantiate an atomic transaction object and then use

methods of the atomic transaction object to start, end or abort the transaction within the object the

transaction is to affect. Because services are provided through methods inherited from system

CHAPTER 6— Related Work 94

classes, the programmer does have the opportunity to subclass these system supplied classes in

order to customize the way they system handles persistence, recoverability, and concurrency con

trol.

6.1.3 NEXTSTEP

Perhaps the most widely used object-oriented system is NEXTSTEP [17], which runs on

hardware developed by NeXT Inc. as well as Intel 486 and Pentium platforms. NEXTSTEP is not

a true object-oriented operating system, but provides a runtime system for Objective-C objects

which sits on top of Mach and Unix. Programmers are required to manage the use of system ser

vices themselves. The programmer can make use of the traditional Unix system calls, but the rec

ommended method for managing object archiving is through the use of special C functions

provided in NEXTSTEP. These functions support the archiving and retrieval of objects to spe

cially typed streams by writing to the stream the object class and it’s instance data. These func

tions can ensure that objects are only encoded once inside of each stream. By using these

functions, the programmer can read and write objects and object references without having to

write special functions for each class. Concurrent programming is possible in NEXTSTEP using

Mach threads or the cthreads package. No system support for concurrency control is provided,

however. It is the programmers responsibility to create mutex locks and manage their use among

any cooperating threads.

6.1.4 Argus

The Argus system [13] was designed specifically for use for developing applications that

require stable data storage in a distributed environment (such as banking systems). Argus pro

vides special objects called guardians which effectively encapsulate data with a well defined

interface, and can also shield the data from the effects of network and host failures. Special atomic

objects, which contain locks to control against concurrent accesses, are used to synchronize

CHAPTER 6— Related Work 95

accesses to guardians. Persistence is achieved by explicitly declaring part (or all) of the data kept

by a guardian to be stable when the guardian is designed. Once the programmer has specified

atomic and stable objects, the Argus system itself provides serializability and persistence without

the programmer having to explicitly make calls to acquire locks or write the data to storage. Other

types of system services are not available, as the designers of Argus focused primarily on provid

ing persistent, distributed atomic transactions, and developed special language and runtime sys

tem features to support such transactions.

6.1.5 Cronus

Cronus [5] is an object-oriented distributed computing environment developed by BBN

Laboratories Inc., that is a capable of connecting groups of heterogenous computers. Among its

goals are providing typical operating system services to a distributed environment, simplifying

the task of writing distributed programs, building highly available systems, building scalable sys

tems and integrating local and remote resources. To accomplish these goals Cronus employs the

active object model with access to objects managed by an object manager. Each machine has one

object manager per object type and the object performs pre and post method processing and deter

mines the method to execute. Although there are some routines that can be used to control the

execution of an object manager, these techniques apply to the whole collection of objects and not

to individual objects. Raven provides a similar type of system control only it is on a per object

basis. Cronus does provide a mechanism to allow individual objects to be customized. Each

object has methods to allow user specific data to be attached to an object. The interpretation and

use of this data, however, is the responsibility of the application using the object. It is essentially

advisory information attached to the object that only has a meaning if the user of the object

chooses to examine the data and follow any usage guidelines associated with the data.

CHAPTER 6— Related Work 96

6.1.6 Guide

Like Raven, Guide [4] consists of both a programming language and a runtime system.

Guide is designed for a multi-threaded environment with persistent synchronized objects which

support atomic transactions in a distributed environment. In contrast with Raven, all objects in

Guide are persistent. Guide also has support for an atomic property for objects, but Guide requires

all updates to atomic objects to be within the confines of a transaction. Furthermore, atomicity

must be specified at object creation time, and cannot be changed afterwards. Invocations in Guide

are accomplished by using the ObjectCall system primitive. This does allow the system to catch

invocations on objects, and potentially insert additional code before and after the method execu

tion to provide services in a manner similar to Raven.

6.1.7 Spring

Spring [15] is a new object-oriented distributed operating system developed by Sun Micro

systems, Inc. It uses objects to provide strong interfaces to data and services. Although one of the

primary motivations for Spring objects is the transparency they provide during distributed compu

tations, Spring objects can also be used within a local address space. One of the key components

of a Spring object is its subcontract [9], which defines the communications mechanisms the object

should use at runtime. Different subcontracts can be created to provide different services. For

example, the architects of Spring have developed subcontracts to provide object replication, cach

ing, and crash recovery, among others. Subcontracts provide a powerful mechanism for customiz

ing the way invocations are made on objects. However, they have some limitations as the basis for

a general service providing scheme like Raven properties. First, subcontracts are not generally

used for local (same address space) invocations, as Spring’s Interface Definition Language (IDL)

compiler will transform method invocations into calls on the object’s regular method table,

bypassing the subcontract, when it can access the object directly. Second, subcontracts cannot be

assigned to an object dynamically, to allow the object to change the services it receives; a particu

CHAPTER 6— Related Work 97

lar subcontract is used when the object is created and is thereafter used by the object. This also

can lead to a “subcontract explosion” similar to the class explosion problem, as an object could

not have both the replicated and crash recoverable subcontracts, for example, but would need

some subcontract that combined both services if both were desired. An intriguing notion would be

to devise some mechanism to expand the abilities of subcontracts so that they could be composed

together and dynamically changed at runtime ala Raven properties.

6.1.8 COOL

COOL [8] is a distributed object-oriented layer developed for the Chorus system [21].

Object descriptors in COOL include an attributes field, which is similar to the properties field of

the Raven capability structure. COOL attributes can specify various properties of the object, such

as whether the object is persistent or has an active thread. If an object is persistent, then the entire

context (address space) in which the object resides is also persistent, and the system will save

objects and threads in the context at shutdown time (and checkpoint them during execution) for

automatic restart when the system reboots. COOL objects must have a special attribute to be glo

bally known, otherwise they are accessible only from within their context. One main difference

between COOL attributes and Raven properties is that attributes are assigned only at object cre

ation time.

6.2 Summary

Raven differs significantly from many of the languages and systems discussed in this section

in that it avoids a class explosion when classes differ only in the underlying system support that

they require. For example, an object of an existing class can be made persistent, recoverable and

controlled simply by instantiating a new instance of that class with the desired properties instead

of programming a new class.

CHAPTER 6— Related Work 98

Unlike several of the systems described in this section, Raven’s support for system services

is largely transparent to the programmer and requires little effort on the programmer’s part to uti

lize. Because services are provided automatically by the system, the programmer does not have to

manage their use. Raven avoids some of the performance problems inherent in other systems

which provide services transparently, because Raven allows objects to be assigned properties on a

per-instance basis. Objects only incur performance overhead for services they actually use.

CHAPTER 7 Conclusion

This thesis has presented a new technique for providing system services to objects in an object-

oriented system. This technique associates each system service with a property, which when

assigned to an object will allow the object to receive the associated service. It also allows the pro

grammer to describe inter-object relationships, to provide object clustering and serialize invoca

tions on objects.

The design and implementation of the property scheme for Raven has shown that it is possi

ble for an object-oriented system to provide services to objects:

• transparently, without the need for the programmer to manage the use of the
services, and

• on a per-instance basis, so invocation performance is directly related to the
number of services the object receives.

99

CHAPTER 7— Conclusion 100

The property scheme also provides atomicity of method invocations through the use of Dependent

relationships.

Three aspects of the property scheme stand out above the others: Inherits references, Depen

dent references, and user properties. These features not only contribute to the uniqueness of the

Raven property scheme, they are enabling features which vastly extend the flexibility and usabil

ity of the system, providing basic capabilities which can be built upon to achieve desired results.

Bibliography

[1] Donald Acton. Unified Language and Operating Systems Support for Parallel Processing. Ph.D. The
sis PHDO94-ACTO, Department of Computer Science, University of British Columbia, Vancouver,
British Columbia, 1994.

[2] Donald Acton, Terry Coatta, and Gerald Neufeld. The Raven System. Technical Report TR92-15,
Department of Computer Science, University of British Columbia, Vancouver, British Columbia,
1992.

[3] Donald Acton and Gerald Neufeld. Controlling Concurrent Access to Objects in the Raven System. In
1992 International Workshop on Object-Orientation in Operating Systems, IW000S ‘92. IEEE
Computer Society Technical Committee on Operating Systems, September 24-25 1992.

[4] R. Balter et al. Architecture and Implementation ofGuide, an Object-OrientedDistributed System. In
Computing Systems, 4, 1991.

[5] James C. Berets, Natasha Cherniak, and Richard M. Sands. Introduction to Cronus. Technical Report
6986, BBN Systems and Technologies, Cambridge, MA, January 1993.

[6] Barry Brachman and Gerald Neufeld. TDBM: A DBM Library with Atomic Transactions. Proceed
ings of the USENIX Summer Technical Conference, June, 1992, pp. 63-80.

[7] Terry Coatta. Configuration Management Using Objects and Constraints. PhD Thesis PHDO94-
COAT, Department of Computer Science, University of British Columbia, Vancouver, British
Columbia, 1994.

[8] Sabine Habert and Laurence Mosseri. COOL: Kernel Support for Object-Oriented Environments.
Proceedings of ECOOP/OOPSLA 1990, October 21-25 1990,pp.269-277.

[9] Graham Hamilton, Michael L. Powell, and James G. Mitchell. Subcontract: A Flexible Base for Dis
tributed Programming. Proceedings of the 14th Symposium on Operating Systems Principles,
Asheville, NC, December 1993.

[10] Norm Hutchinson. Generalized Table Routines (unpublished).

[11] The Institute of Electrical and Electronic Engineers. Information Technology—Portable Operating
System Interface (POSIX) Part 1: System Application Program Interface. IEEE Standard 1003.1-
1990 (also available as International Standard ISO/IEC 9945-1, 1990).

[12] Philippe Laurent and Nino Silverio. Persistence in C++. Journal of Object-Oriented Programming,
Vol. 6, No. 6, October 1993, pp. 41-46.

[13] Barbara Liskov. Distributed Programming In Argus. Communications of the ACM, Vol. 32, No. 3,
March 1988, pp. 300-312.

101

102

[14] Mary E.S. Loomis. The ODMG Object Model. Journal of Object-Oriented Programming, Vol. 6, No.
3, June 1993, pp.64-69.

[15] James G. Mitchell et al. An Overview of the Spring System. Proceedings of Compcon Spring 1994,
February 1994.

[161 Gerald W. Neufeld, Murry W. Goldberg, and Barry J. Brachman. The UBC OS! DistributedApplica
tion Programming Environment. Technical Report 90-37, Department of Computer Science, Univer
sity of British Columbia, Vancouver, British Columbia, January 1991.

[17] NeXT, Inc. NeXTStep Reference. Addison-Wesley Publishing Company, 1991.

[18] Graham D. Parrington. Reliable Distributed Programming in C++: The Arjuna Approach. Technical
report, COmputing Laboratory, University of Newcastle upon Tyne, UK.

[19] Stuart Ritchie. The Raven Kernel: a Microkemelfor Shared Memory Multiprocessors. Masters’ The
sis, Department of Computer Science, University of British Columbia, Vancouver, British Columbia,
April 1993.

[20] Mendel Rosenblum and John Ousterhout. The Design and Implementation ofa Log-Structured File
System. In Proc. ACM Symposium on Operating Systems Principles, pages 1-15, October 1991.

121] M. Rozier et al. Chorus Distributed Operating Systems. Computing Systems, l(4):305-367, 1988.

[22] John J. Shilling. How to Roll Your Own Persistent Objects in C++. Journal of Object-Oriented Pro
gramming, Vol. 7, No. 4, July-August 1994, pp. 25-32.

[23] Santosh K. Shrivastava, Graeme N. Dixon, and Graham D. Parrington. An Overview of the Arjuna
Distributed Programming System. Technical report, Computing Laboratory, University of Newcastle
upon Tyne, UK.

[24] Soley, R.M., Ed. Object Management Architecture Guide, Rev. 2.0, 2nd Ed. 0MG TC Document
92.11.1, Object Management Group, 1992.

[25] Sun Microsystems Inc.. XDR: External Data Representation Standard (RFC 1014). Network Infor
mation Center, SRI International, June 1987.

103

Appendix: Table of Contents

Appendix A. Data ‘I’ypes ... 105
A. 1 Capability Structure 105
A.2 Property Values 107

A.2. 1 Property Masks 107
A.2.2 System Supported Properties 108

A.3 Structures for Supporting the Recoverable Property 108
A.3. 1 Shadow Structure 108

A.4 Structures for Supporting the Controlled Property 109
A.4. 1 Lock Status Values 109
A.4.2 LockTypes 110
A.4.3 Lock Structure 110
A.4.4 Lock Information Structure 111

A.5 Structures for Supporting Object Storage 112
A.5. 1 Storage Information Structure 112
A.5.2 Object List Entry Structure 113

A.6 Unique Identification Structures 113
A.6.1 GID Structure 114
A.6.2 Location Information GID Structure 114
A.6.3 Unique Identifier Structure 115

A.7 Compiler Types 115
A.7. 1 Property Set 115
A.7.2 Variable Attributes 116

A.8 Other Data Types 116
A.8.1 Instance Variable Modifier Bits 116
A.8.2 Defined Values for Object Storage 117
A.8.3 Environment Variables 117

Appendix B Class Definitions •..fl..fl.....fl. 118
B.1 Thread Class 118

B.1.1 Public Interface 118
B. 1.2 Private Interface 120

B.2 StorageManager Class 120
B.2.1 Public Interface 120
B .2.2 Private Interface 120

B.3 SMEntryClass 121
B.4 GlDManager Class 121

B.4.1 Public Interface 121
B.4.2 Private Interface 122

B.5 TDBMManager Class 122
B .5.1 Public Interface 122
B .5.2 Private Interface 123

104

B.6 TDBMDatum Class .123
B.6.1 Public Interface 123
B .6.2 Private Interface 124

B.7 New Basic Methods 124

Appendix A Data Types

The implementations of the property scheme and of object storage required modifications to

existing data types used by the Raven runtime as well as the development of new data struc

tures. What follows is an exhaustive list of all modified and new data structures used by the

runtime, including those already presented in the thesis.

Many of these data types and structures rely upon definitions of other data types and

structures. This additional definitions are generally not provided here.

Al Capability Structure

This structure is also described in Figure 6.

struct capability

{
Euncptr invoke;
invoke is a pointer to the current invocation function to use.

105

Appendix A: Data Types 106

cap id;
id points to the current capability structure. It is useful when debugging as
a sanity check for a capability pointer.

cap is_a;
is_a points to the Class object which this object is an instance of.

cap parent;

parent points to the object from which this object inherits properties. par
ent points to the nil object if we do not inherit properties.

cap inh_root;

inh_root points to the object which lies at the top of our current inher
itence chain. This pointer points to ourself if we do not inherit properties.
This allows us to detect inheritance cycles, such as attempting to inherit
properties from ourself.

cap storage_manager;
storage_manager points to our current Storage Manager object, or to
nil if we do not have the Persistent or Durable properties.

method_type method_type_to_use;

method_type_to_use is used by the runtime system to determine if a
local version of a method exists. Some invocations on remote objects can
(and should) be handled locally.

struct gid *gid;

gid points to a global identification structure (see Section A.6). In general
this will point to NULL unless the object requires such a structure.

voidp rw_lock;
rw_lock is a pointer to the object’s concurrency control lock, or to NULL
if the object is not Controlled. The structure of this lock is shown in
Section A.4.

voidp cluster_lock;

cluster_lock is a pointer to the object’s cluster lock, or to NULL if the
object is not part of a Part-Of cluster.

properties obj ect_properties;
obj ect_properties contains the current property set of the object.

u_char *data;

Appendix A: Data Types 107

data is a pointer to the instance data for the object.

}

A.2 ProperLy Values

typedef u_long properties;

A.2.1 Property Masks

#define default_size OxlO

#define inherited_mask Oxffff0000

#define default_mask Ox0000ffff

#define no_properties Oxffffffff

#define basic no_properties

#define persistent Oxfffffffe

#define inherited_persistent Oxfffeffff

#define durable Oxfffffffd

#define inherited_durable Oxfffdffff

#define recoverable Oxfffffffb

#define inherited_recoverable Oxfffbffff

#define controlled Oxfffffff7

#define inherited_controlled Oxfff7ffff

#define immutable Oxffffffef

#define inherited_immutable Oxffefffff

#define immobile Oxffffffdf

#define inherited_immobile Oxffdfffff

#define replicated Oxffffffbf

#define inherited_replicated Oxffbfffff

#define test_prop Oxffffff7f

#define inherited_test_prop Oxff7fffff

#define u_prop_i Oxfffffeff

#define inherited_u_prop_i Oxfeffffff

Appendix A: Data Types 108

#define u_prop_2 Oxfffffdff

#define inherited_u_prop_2 Oxfdffffff

#define u_prop_3 Oxfffffbff

#define inherited_u_prop_3 Oxfbfffftt

#define u_prop_4 Oxfffff7ff

#define inherited_u_prop_4 Oxf7ffffff

A.2.2 System Supported Properties

typedef enum

{
LOCKING 0,

PERSISTENCE,

DURABLE,

RECOVERABILITY,

IMMUTABILITY,

REPLICATION,

IMMOBILITY,

NUN_PROPERTIES

} property_categories;

A.3 Structures for Supporting the Recoverable Property

Recoverability is accomplished by creating shadow copies of the object instance data prior to

executing the method code. The format of the shadow structure has been modified to support

Dependency.

A.3.1 Shadow Structure

typedef struct ShadowStruct

{
struct ShadowStruct*next;

next points to the next Shadow structure in the chained list of shadows.

Appendix A: Data Types 109

struct ShadowStruct *prevjous;

previous points to the previous Shadow structure in the chained list of
shadows.

struct capability *object;

obj ec t is a pointer to the object for which this is a Shadow structure.

u_long methodHash;

methodHash is used for debugging purposes when dumping out the
shadow list.

mt depth;

depth is the current call depth in the shadow chain.

char * image;

image is a pointer to the copy of the instance data of the object.

mt invokeDepth;

invokeDepth is incremented once for each invocation made on a Recov
erable object in the current Dependent calling chain.

mt dependentlD;

dependent ID is the ID of the current Dependent calling chain.

} Shadow;

A.4 Structures for Supporting the Controlled Property

Each controlled object has an associated concurrency control lock. Objects which are in a Part-

Of cluster have a seperate cluster lock. Each thread maintains a list of the locks which it has

aquired.

A.4.1 Lock Status Values

Each lock which a thread holds (or is attempting to aquire) has an associated status.

typedef enum

{
GRANTED = 1,

Appendix A: Data Types 110

Indicates the lock has been granted to the thread.

WAITING,

Indicates the thread is waiting to aquire the lock.

SUSPENDED,

Indicates the thread has been suspended and the lock temporarily relin
quished by the thread due to a delayed result.

WAITING_REACQUIRE,

Indicates the thread is waiting to reaquire a lock that had been suspended.

RETRY,

Indicates that the thread should attempt to aquire the lock again. This will
generally involve the thread reexecuting the locking portions of the property
pre-handlers.

DELETED,

Indicates that the specified lock was deleted, either becuase the object no
longer is Controlled or is no longer in a Part-Of cluster.

LOCKING_ERROR,

Not currently used in the implementation.

LOCK_TIMED_OUT

Indicates the lock could not be granted before the timeout timer expired. A
possible indication of deadlock.

} LOCK_STATUS;

A.4.2 Lock Types

typedef enuin

{
CLUSTER_LOCK = 1,

INSTANCE_LOCK

} LOCK_FAMILIES;

A.4.3 Lock Structure

The concurrency control and cluster locks have the following structure.

Appendix A: Data Types 111

typedef struct LOCK

{
LIST granted;

The list of threads which have been granted the lock.

LIST waiting;

The list of threads which are waiting for the lock.

LIST suspended;

The list of threads which have temporarily released this lock due to a
delayed result.

LIST reacquire_list;
The list of threads which had temporarily released the lock and now wish to
aquire it again. They are given preferrential access to the lock over threads
which are simply on the waiting list.

OSSemaphore semaphore;

The semaphore which ensures that only one thread is manipulating the lock
data structures at a time.

} LOCK;

A.4.4 Lock Information Structure

Each entry on any of the lock lists is a LOCK_INFO structure. Threads maintain a chain of

these structures, one structure for each lock they have aquired, are waiting for, or are suspended

in.

typedef struct LOCK_INFO

{
struct LOCK_INFO *next;

Used to point to the next structure in the list (granted, waiting, etc.) we are
currently on.

struct LOCK_INFO *previous;

Used to point to the previous structure in the list (granted, waiting, etc.) we
are currently on.

struct LOCK_INFO *sessionchajn_ptr;

Appendix A: Data Types 112

The next structure in the chain of LOCK_INFO structures held by the thread.

struct LOCK *lock_ptr;

A pointer to the lock.

void *waiting thread;

If the thread is currently suspended, it’s position is recorded here.

behaviorLockType lock_type;

The type of lock (read, write) we are holding/wish to hold.

mt lock_holder;

The P1D of the process.

cap objectlD;

The object which was was invoked upon.

mt session_id;

The identifier of the current session (unique for each thread).

mt lock_depth;

The current depth in the locking chain.

LOCK_STATUS lock_status;

The status of our attempt to aquire a lock will be placed here.

mt dependentlD;

The id of the current dependent chain.

} LOCK_INFO;

A.5 Structures for Supporting Object Storage

Each thread maintains a list of Storage Managers for the objects that have been invoked upon

in a Dependent calling chain. The entries of this list are of type struct STORAGE_INFO.

A.5.1 Storage Information Structure

typedef struct STORAGE_INFO

{

Appendix A: Data Types 113

struct STORAGE_INFO *next;

The next entry on the list of Storage Managers.

struct STORAGE_INFO *prevjous;

The previous entry on the list of Storage Managers.

mt dependentlD;

The identifier of the current Dependent calling chain.

cap manager;

The Storage Manager object.

LIST *objects;

A list of objects managed by the Storage Manager which may have been
modified during the current Dependent invocation chain. Each entry is of
type STOREL1ST_ENTRY, which is shown below.

} STORAGE_INFO;

A.5.2 Object List Entry Structure

typedef struct STORELIST_ENTRY

struct STORELIST_ENTRY *next;

The next entry in this list.

struct STORELIST_ENTRY *prevjous;

The previous entry in this list.

cap object;

The object, managed by the Storage Manager, which was invoked upon.

} STORELIST_ENTRY;

A..6 Unique Identification Structures

An object’s unique identifier is stored in three levels. This is partly a historical artifact, due to

thoughts about how Raven would handle gids. Raven’s initial use of the term “gid” is some

what of a misnomer, since it was simply used to describe object location information (which,

Appendix A: Data Types 114

prior to object storage, was sufficient to uniquely identify an object). The capability structure

of an object contains a pointer to a struct gid.

A.6.1 OlD Structure

struct gid

(
struct u_gid u_gid;
The structure which actually contains the location information and unique
identification information.

mt gid_len;

Unused. Originally designed to hold the length of the encoded gid.

char * encoded_gid;
Unused. Originally designed to hold a pointer to an encoded version of the
gid.

A.6.2 Location Information OlD Structure

struct u_gid

u_long hid;

The P address of the host on which this object currently resides.

u_long lid;

The port number of the Raven World on which the object currently resides.

struct unique_id uid;
The unique identifier of the object.

d_cap capability;
A pointer to the capability for the object, i.e., the object’s location in mem
ory on the Raven World specified by the hid and lid fields.

char *class name
The class name which this object is an instance of.

Appendix A: Data Types 115

A.6.3 Unique Identifier Structure

struct unique_id

{
u_long creator;

The IP address of the machine on which the object was created.

u_long world;

The port number to which the Raven World on which the object was created
was bound.

u_long generation;

A counter which is incremented once for each incarnation of a Raven World.

u_long name;

A counter which is incremented once for each gid which is assigned by an
incarnation of a Raven World.

A7 Compiler Types

A.7.1 Property Set

typedef enum

{
persistent = 0,

durable,

recoverable,

controlled,

immutable,

immobile,

replicated,

test_prop,

u_prop_i,

Appendix A: Data Types 116

u_prop_2,

u_prop_3,

u_prop_4,

phaseout,

lastProperty

} Properties;

The phaseout property is used to warn the user that he has selected a property which

is no longer supported by the system.

A.7.2 Variable Attributes

typedef enum

{
stat=O,

meta,

copy,

partof,

inherits,

dependent,

indirect,

public,

las tVarAttribute

} VariableAttributes;

A8 Other Data Types

A.8.1 Instance Variable Modifier Bits

#define PT_DEPENDENT 0x8

#define PT_INHERITS OxlO

Appendix A: Data Types 117

#define PT_INDIRECT 0x20

#define PARTOF_MASK_VAL 0x40

#define PT_PARTOF (PT_DEPENDENT I PT_INHERITS I
PARTOF_MASK_VAL)

A.8.2 Defined Values for Object Storage

#define GENERATIONSTRING “.sysGENERATION”

#define GENERATIONSTRINGLEN 15

#define DBMPATH “/raven/export r/gener±c/storage”

A.8.3 Environment Variables

RVSTORAGEPATH Directory into which TDBM will store objects

RAVENWORLD Port number to bind to when starting Raven

Appendix B Class Definitions

Many new classes were created during the implementation of the object property scheme.

Additionally, many existing classes were modified to support the new property scheme. These

classes are presented here.

Some of the interfaces listed here as private interfaces are private simply in that they are

not to be known by the general programmer. They are not necessarily private in that they are

functions which are only used from within an instance of that class. Many “private” behaviors

are invoked by the runtime system, or from other objects which are used to provide support for

properties.

B.1 Thread Class

B.1.1 Public Interface

class Thread uncontrolled

{

118

Appendix B: Class Definitions 119

pid, stack_size : Int;

name, instance: Cap;

method : String;

prio : Int;

session_id, session_chain, lock_depth : Int;

shadows, callDepth : Int;

function_chain : Int;

storage_chain : Int;

remoteResumeStatus : Int;

constructor (pprio: Int);

behaviour starter(...);

behaviour start(...) : Int;

behaviour startAsSystemProc(...) : Int;

behaviour attach(obj:Cap) : Int;

behaviour getPid() : Int;

behaviour threadRunnable() : Int;

behaviour kill() : Int;

behaviour threadName() : String;

behaviour resume() : Int;

behaviour stackSize() : Int;

behaviour suspend;

behavior sleep(duration:Int);

behavior startNetwork;

behavior monitorLocks ;

behav traceEnable(minSize: Int);

behav traceDisable ;

behav traceStackOnly;

behav traceDumpOnFill 0;

behav traceDumpOnExit 0;
behav traceDurnp 0;
}

Appendix B: Class Definitions 120

B.1.2 Private Interface

class Thread

{
behavior rernoteDependentWorker(handler : mt1

resumeStatus : Int);

behavior remoteRestoreO;

behavior remoteRestoreFunctions 0;
}

B.2 storageManager Class

B.2.1 Public Interface

class StorageManager controlled

{
$objects : F±xedArray[cap];

$size : Int;

$entries : Int;

constructor();

behav updateCacheOfObject(obj : cap, doWrite: mt1

now : Int) writelock;

behav manageObj ect (obj cap);

behav uninanageObj ect (obj : cap);

behav writeToStorage(writeNow : mt1 id : Int);

}

B.2.2 Private Interface

class StorageManager

{
behav loadDataFromCache () readlock;

behav setCacheValue(datum : cap) writelock;

Appendix B: Class Definitions 121

behav privateWrite(id : Int) private;

behav getCap(uidPtr : Int) : cap private;

behav privateDelete(entry SMEntry) private;

behav setUpEntry(obj : cap, entry cap) private;

behav entriesHaveSameValue(el : cap, e2 : cap) : mt private;

}

B.3 SMEntry Class

This class is used only internally by the Storage Manger. Its interface is not visible to any other

object.

class SMEntry <- Object

{
$dataPtr : mt public;

$dataLen : mt public;

$objCap : cap public;

behav loadData() private;

}

B.4 GlDManager Class

B.4.1 Public Interface

class GlDManager controlled

{
table Int;

nameList : cap;

creator : Int;

world Int;

generation : Int;

name Int;

Appendix B: Class Definitions 122

constructor();

behav getGID(obj : cap);

behav fetch(obj : cap) : mt writelock;

behav becomeVolatile(obj cap) writelock;

behav listNaines() readlock;

behav findNaine(name : String) : cap writelock;

behav adc3Name(name : String, obj : cap) : mt writelock;

behav deleteName(name : String) : mt writelock;

}

B.4.2 Private Interface

class GlDManager

{
behav capFromGlD(uID : Int) : cap writelock;

behav findForRernote(uID : Int) cap writelock;

}

B.5 TDB1anager Class

B.5.1 Public Interface

class TDBMItanager controlled

{
dbm : Int;

namedbm : Int;

recovery : Int;

constructor ;

behav shutdown;

behav getGeneration() : mt writelock;

Appendix B: Class Definitions 123

behav getTID() : mt readlock;

behav preComrnit(id : Int) writelock;

behav commit(id : Int) writelock;

behav store(datum cap) writelock;

behav storeForTransaction(id : mt1 datum : cap) writelock;

behav fetch(datum : cap) : cap readlock;

behav delete(datum : TDBMDatum) : mt writelock;

behav dumpObjects() readlock;

behav storename(datum : TDBMDatum) writelock;

behav fetchname(datum : T]DBMDatum) : cap readlock;

behav deletename(datum : TDBMDatum) : mt writelock;

behav dumpnames() readlock;

}

B.5.2 Private Interface

class TDBM4anager

{
behav privateStore(translD : mt1 datum : cap) nolock;

}

B.6 TDBMDatuin Class

B.6.1 Public Interface

class TDBMlDatuin

{
keydptr : Int;

keydsize : Int;

valuedptr : Int;

valuedsize : Int;

behav setKey(dptr : mt1 dsize : Int);

Appendix B: Class Definitions 124

behav setValue(dptr : mt1 dsize : Int);

behav getKeyPtr() : Int;

behav getValuePtr() : Int;

behav getValueSize() : Int;

}

B.6.2 Private Interface

There are no additional methods or instance variables beyond what is specified in the public

interface.

B.7 New Basic Methods

The Obj ect class was extended to include several new methods to do the following:

• Assign the object a GID.

• Swizzle and unswizzle the instance data.

• Provide support for the user defined properties.

These methods were added to the list of basic methods supported by the Obj ect class. As

such, they do not appear in the interface definition of Obj ect.

behavior assignGID;

behavior sWizzleData() : Int;

behavior unsWizzle]Data(data : Int);

behavior preUserl(dependentlnvoke : Int);

behavior postUserl(dependentlnvoke : Int, isDependentRoot : mt1

hasProp : Int);

behavior preUser2 (dependentlnvoke : Int);

behavior postUser2(dependentlnvoke : mt1 isDependentRoot mt1

hasProp : Int);

behavior preUser3 (dependentlnvoke : Int);

Appendix B: Class Definitions 125

behavior postUser3 (dependentlnvoke : mt1 isDependentRoot : Int,

hasProp : Int);

behavior preUser4(dependentlnvoke : Int);

behavior postUser4(dependentlnvoke : mt1 isDependentRoot : mt1
hasProp : Int);

