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A b s t r a c t 

Human motion plays a key role in the production of films, video games, virtual 
reality applications, and the control of humanoid robots. Unfortunately, it is hard 
to generate high quality human motion for character animation either manually or 
algorithmically. As a result, approaches based on motion capture data have become 
a central focus of character animation research in recent years. 

We observe three principal weaknesses in previous work using data-driven ap
proaches for modelling human motion. First, basic balance behaviours and locomo
tion tasks are currently not well modelled. Second, the ability to produce high quality 
motion that is responsive to its environment is limited. Third, knowledge about hu
man motor control is not well utilized. This thesis develops several techniques to 
generalize motion capture character animations to balance and respond. We focus on 
balance and locomotion tasks, with an emphasis on responding to disturbances, user 
interaction, and motor control integration. 

For this purpose, we investigate both kinematic and dynamic models. Kinematic 
models are intuitive and fast to construct, but have narrow generality, and thus require 
more data. A novel performance-driven animation interface to a motion database is 
developed, which allows a user to use foot pressure to control an avatar to balance 
in place, punch, kick, and step. We also present a virtual avatar that can respond to 
pushes, with the aid of a motion database of push responses. Consideration is given 
to dynamics using motion selection and adaption. 

Dynamic modelling using forward dynamics simulations requires solving difficult 
problems related to motor control, but permits wider generalization from given motion 
data. We first present a simple neuromuscular model that decomposes joint torques 
into feedforward and low-gain feedback components, and can deal with small pertur
bations that are assumed not to affect balance. To cope with large perturbations we 
develop explicit balance recovery strategies for a standing character that is pushed in 
any direction. Lastly, we present a simple continuous balance feedback mechanism 
that enables the control of a large variety of locomotion gaits for bipeds. Different 
locomotion tasks, including walking, running, and skipping, are constructed either 
manually or from motion capture examples. Feedforward torques can be learned 
from the feedback components, emulating a biological motor learning process that 
leads to more stable and natural motions with low gains. The results of this thesis 
demonstrate the potential of a new generation of more sophisticated kinematic and 
dynamic models of human motion. 
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C h a p t e r 1 

In t roduc t ion 

The primary goal of this thesis is the development of techniques for generalizing 
balanced character animation from motion capture examples. Both kinematic and 
dynamic models are investigated. 

In this chapter, we first explain what motivates our thesis work, followed by aj 
general discussion of character animation models, their strengths and weaknesses, 
and what our work aims to improve upon. Lastly we give an overview of the thesis 
organization. 

1.1 Motivation 

Character animation is widely used today in computer graphics film production, video 
games, and virtual reality applications. Artistic skills are heavily relied upon to 
manually produce good quality motions. However, it is an expensive and tedious 
approach, considering the large number of degrees of freedom (DoF) the artists have 
to control, the complexity of the coordinations both in time and in space among 
all the DoFs, and all the environmental and task-oriented constraints that a specific 
motion has to satisfy. 

A more automated approach to character animation thus seems appealing, yet 
remains difficult. The complexities of human motor control and biomechanics are, 
far from fully understood. It is also difficult because every human is an expert in 
observing human motion. We are very familiar with how our body moves and balances 
since we do it everyday. Even though most of us are not artists, we can still feel when 
something is wrong with an animation clip without always being able to identify 
exactly what is wrong. 

Because motion capture directly records the subtleties of human motion, it has 
become popular as a means for creating animated human movement. With relative 
ease, one can place motion capture markers on humans, capture their motion, and in 
turn create compelling animation from the capture data. By comparison, the alter
native of using artists and algorithms to produce convincing motion is considerably 
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more time consuming and difficult. 
Motion capture is not without problems. Motion capture equipment is usually 

expensive. Motion capture sessions and data post-processing are time consuming and 
error prone. One cannot capture every conceivable motion. We thus want to reuse 
the good data as much as possible. A major challenge in motion capture research is 
that of generalizing recorded examples to satisfy the constraints of new animations, 
and to respond to new environmental perturbations. Being able to generalize motions 
observed from human subjects can also help our understanding of the biomechanics 
and control of balance. It may also provide valuable insights into the control of biped 
and humanoid robots. 

With the goal of generalizing motion capture examples established, we need to de
cide on a subset of motions to focus on, given that the human machine is capable of 
performing so many types of movement. The opportunities for character animation 
research seem endless, ranging from animating fine object manipulations to spectac
ular stunts, and from animating small scale body parts to large scale crowds. Yet, we 
can note that common movements such as balance and locomotion, which are among 
the early skills that infants learn, are not very well solved. Foot-skate and abrupt 
transitions are common in kinematic approaches. For approaches based on simulating 
the forward dynamics, the control of biped balance and locomotion is known to be 
difficult. Bipeds are unstable, underactuated, high-dimensional dynamical systems. 
The motor control mechanisms of biped balance and locomotion are far from fully 
understood. Only a small number of groups in the world have demonstrated the 
successful control of dynamic humanoid walking either in simulation or in an actual 
robot. For both kinematic and dynamic approaches, models that support interactions 
of characters with their environment, such as pushes, are lacking. 

In summary, we wish to generalize motion capture examples, focusing on balance 
and locomotion tasks, and interactive responses to the environment. We further wish 
to integrate motor control principles wherever possible. 

1.2 Models for Character Animation 

The problem of character animation can be approached from a number of different 
perspectives. Starting from motion capture data, there are usually two paths to carry 
on reusing the examples. If we care only about regenerating trajectories, without 
much concern about respecting the underlying physics, we can use kinematic models. 
On the other hand, if we want to use examples to help reconstruct a controller which 
outputs torques to a dynamic simulator or a robot, we need to use dynamic models 
coupled with appropriate control strategies. 

Kinematic modelling is usually easier to implement, and can be quite effective in 
well-defined scenarios. However, due to the fundamental limitations of trajectory 
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manipulation, large data sets are needed to ensure the quality of newly synthesized 
trajectories. That is, kinematic modelling has an innate data-driven flavor. The un
derlying assumption is that when trajectories are similar, the underlying physics and 
motor control can be interchangeable. Trajectory editing, and blending techniques 
thus rely on the closeness of sample trajectories to be successful. Interpolation tech
niques are commonly used, while extrapolation is avoided. In this thesis, we develop 
kinematic modelling in two scenarios. (1) We use it to animate a virtual avatar using 
performance animation; (2) we use it to develop models of the balancing behaviors 
of a standing character responding to interactive pushes. 

Kinematic modelling cannot, however, guarantee physical realism irrespective of 
how much data we gather. Its quality is fundamentally limited by the size of the 
backend motion database. Furthermore, kinematic methods provide little insight into 
underlying balance strategies and motor mechanisms. In contrast dynamic modelling, 
such as the use of physics-based simulations, can guarantee the physical plausibility. 
The fidelity of the simulation results is constrained by the details of the dynamic 
models, and fidelity of the dynamic parameters with respect to the parameters of the 
real world that we want to simulate. 

Writing a physics-based dynamic simulator is not trivial. The real key to the success 
of dynamic modelling, however, is how to implement the control. Complex biome-
chanical, sensory, neural, and muscular subsystems are involved in human postural 
and balance control. The balance trajectories we capture are the results of complex 
interactions between environmental disturbances and constraints and complex human 
motor control mechanisms. Ideally, we would wish to reverse engineer "intelligent" 
controllers from the trajectories. 

The aspects of dynamic modelling we develop in this thesis include: (1) the intro
duction of simple neuromuscular control models into dynamic simulations to model 
reactions to small perturbations; (2) the study of character balance behaviours to 
large pushes. (3) the construction of simple and robust balance and locomotion con
trollers based on a set of control laws and insights into motor control. While dynamic 
modelling still has many remaining challenges, we believe that it has significant po
tential for character animation in the future. 

1.3 Thesis Organization 

The section describes the organization and contributions of each chapter. Table 
1.1 shows the organization of this thesis, with a coarse classification of modelling 
approach, i.e., kinematic or dynamic, and a short description of what problem each 
chapter addresses. There are approaches and problems that we do not explore in this 
thesis, and we label these cells as Ai in the domain table. We will discuss them in 
the related work and future work sections of this thesis. 
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kinematic dynamic approach — 
" problem 

Chapter 3 A1 performance 
animation 

A2 Chapter 5 reactions to small 
perturbations 

Chapter 4 Chapter 6 reactions to pushes 
while standing 

A3 Chapter 7 
balance during 

locomotion 

Table 1.1: Thesis organizat ion. Cel l s label led Ai designate areas that are not explored 

i n this thesis. 

W e also give a s imple input -output d iagram for each chapter. A r r o w s represent 

user-specified pushes or environmental per turbat ions. F i l m s t r i p s represent captured 

motions or synthesized animat ions . T h e type of computa t ion , i.e., mode l l ing ap

proach, is represented using two icons as expla ined i n F igure 1.1. T h e database icon 

w i t h trajectories inside means that the sys tem is of a data-dr iven k inemat ic nature. 

T h e equat ion icon implies that the system involves controller construct ion and for

ward dynamic s imula t ion . 

Data-driven 
kinematic modelling 

Dynamic simulation 
using controllers 

c r — - 5 1 
l\$y*~* synthesizer — controller -» f=ma —• 

Figure 1.1: Icons for mode l l ing approach. 

Chap te r 2 provides a general survey of related work i n graphics and other fields of 

research, and reviews the background knowledge for later chapters. W e assume the 

reader to have a basic knowledge of k inemat ic an ima t ion and dynamic s imula t ion . 

Discuss ion and ci ta t ions of the most impor tan t related work appear throughout the 

thesis. 

Chap te r 3 describes a k inemat ic an ima t ion system, named FootSee, wh ich we 

develop using a combined mot ion capture and foot-ground interact ion capture sys

tem. W e present a simple-to-use an ima t ion interface that uses a foot pressure sen

sor p a d to in teract ively cont ro l avatars for v ideo games, v i r t u a l reality, and low-cost 

performance-driven an imat ion . D u r i n g an offline t r a in ing phase, we capture full b o d y 
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Input 

System 

foot pressure data 

synthesizer 
combined foot 
pressure and 

motion database 

Output 

Figure 1.2: Input-output diagram of Chapter 3. 

motions with a motion capture system, as well as the corresponding foot-ground pres
sure distributions with a pressure sensor pad, into a database. At run time, the user 
acts out the animation desired on the pressure sensor pad. The system then recon
structs a plausible motion using only observations of the foot-ground interactions. 
The most appropriate motions from the database are selected, and edited online to 
drive the avatar. We describe our motion recognition, motion blending, and inverse 
kinematics algorithms in detail. They are easy to implement, and cheap to compute. 
FootSee can control a virtual avatar with a fixed latency of one second with reason
able accuracy. Our system thus makes it possible to create some types of interactive 
animations without the cost or inconveniences of a full body motion capture sys
tem. Figure 1.2 shows the input and output of the system. This work is published 
as [Yin and Pai 2003]. The corresponding animation video can be downloaded at 
http://www.cs.ubc.ca/~kkyin/animation/Yin_SCA03.avi. 

Input System Output 

Figure 1.3: Input-output diagram of Chapter 4. 

Chapter 4 continues with kinematic modelling, and describes a data-driven ap
proach for producing interactive dynamic balancing behaviors for an animated char
acter. The result is a standing character that can interactively respond to single 
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or multiple pushes in various directions and of varying magnitudes. A database 
of captured responses to pushes is used to create a model that supports hip, arm, 
and stepping strategies for balance recovery. An interactive push is modelled as 
a force impulse, which is then used to compute a momentum-based motion index 
in order to select the most appropriate recovery motion from the database. The 
selected motion is then adapted in order to provide a response that is specifically 
tailored to the given force impulse while preserving the realism and style of the 
original motion. Based on a relatively small motion database, our system is ef
fective in generating various interactive balancing behaviors, for single and multiple 
pushes. Figure 1.3 shows the input and output of the system. This work is pub
lished as [Yin et al. 2005]. The corresponding animation video can be downloaded at 
http://www.cs.ubc.ca/~kkyin/animation/Yin_PG05.wmv. 

Figure 1.4: Input-output diagram of Chapter 5. 

In Chapter 5 we shift to using dynamic modelling. We develop a dynamics-based 
framework that explicitly takes into account motor control by using a simple human 
neuromuscular control model. Our model of muscle forces includes a feedforward 
term and low gain feedback. The feedforward component is calculated from motion 
capture data using inverse dynamics. The feedback component generates reaction 
forces to unexpected small external disturbances. The perturbed animation is then 
resynthesized using forward dynamics. This allows us to create animations where 
the character reacts to unexpected external forces in a natural way, e.g., when the 
character is hit by a ball, but still retains qualities of the original animation. Such 
a technique is likely to be useful for applications such as interactive sports video 
games. Figure 1.4 shows the input and output of the system. This work is pub
lished as [Yin et al. 2003]. The corresponding animation video can be downloaded at 
http: / / www. cs. ubc. ca / ~kkyin / animation / Yin JP G03. avi. 

http://www.cs.ubc.ca/~kkyin/animation/Yin_PG05.wmv


Figure 1.5: Input-output diagram of Chapter 6. 

Chapter 6 parallels Chapter 4, only now using a dynamics-based approach. We 
develop, integrate, and evaluate humanoid balance controllers that can recover from 
unexpected external perturbations of varying magnitudes in arbitrary directions. The 
starting state is a normal standing pose having the feet placed with a shoulder width 
spacing. The supported balance strategies include ankle and hip strategies for in-place 
balance, single-step, double-step, and multi-step balance recovery. These strategies 
are further integrated with a limit cycle based walking controller. The limitations of 
each type of controller are mapped out in terms of the maximum push magnitudes and 
directions they can sustain. The controller construction can be informed using motion 
capture data if desired. Results are provided for a 30 DoF humanoid simulation that 
can be controlled at interactive rates. Figure 1.5 shows the input and output of the 
system. This work is not previously published. The corresponding animation video 
can be downloaded at http://www.cs.ubc.ca/~kkyin/animation/Yin_SUB07.mov. 

Input System Output 

Figure 1.6: Input-output diagram of Chapter 7. 

Chapter 7 presents SIMBICON, a simple control strategy that can dynamically 
generate a large variety of gaits and styles in real-time, including walking in all di
rections (forwards, backwards, sideways, turning), running, skipping, and hopping. 
Controllers can be authored using a small number of parameters, or their construc
tion can be informed by motion capture data. The controllers are applied to 2D and 
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3D physically-simulated character models. Their robustness is demonstrated with 
respect to pushes in all directions, unexpected steps and slopes, and unexpected vari
ations in kinematic and dynamic parameters. Direct transitions between controllers 
are demonstrated as well as parameterized control of changes in direction and speed. 
Feedback-error learning is applied to learn predictive torque models, which allows for 
the low-gain control that typifies many natural motions as well as producing smoother 
simulated motion. Figure 1.6 shows the input and output of the system. This work is 
published as [Yin et al. 2007]. The corresponding animation video can be downloaded 
at http://www.cs.ubc.ca/~kkyin/animation/Yin_SIG07.mov. 

Finally, Chapter 8 presents our conclusions, a discussion of limitations, and sug
gestions for future work. 
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C h a p t e r 2 

R e l a t e d W o r k 

In this chapter, we discuss the most relevant research to our work. The related work is 
divided into three areas: kinematic animation and optimization; dynamic simulation 
and robotics; and motor control. We begin by looking at related work in kinematic 
animation and optimization. 

2.1 Kinematic Animation and Optimization 

Computer animation requires the generation of trajectories. These can be generated 
in a variety of ways. For the purposes of this thesis, we classify techniques that use 
forward dynamic simulation as dynamic animation, and all other techniques as kine
matic. Trajectory optimization techniques that incorporate physics-based equations 
of motion are considered as a kinematic technique subject to dynamic constraints. 

2.1.1 Motion Editing and Data-driven Animation 
Motion Capture [Bodenheimer et al. 1997], rooted in biomechanics (Section 2.3.1), 
has rapidly found its way in animation applications (films and games) and animation 
research during the last 10-15 years. It is currently mainly used as an animation 
acquisition technique (Figure 2.1(a)). One of the principle research challenges is to 
generalize motion capture data. 

Motion editing in its simplest form can be modelled from a purely kinematic, sig
nal processing point of view [Bruderlin and Williams 1995; Witkin and Popovic 1995; 
Unuma et al. 1995; Lee and Shin 1999]. Various signal processing techniques, in
cluding multiresolution filtering, displacement mapping, interpolation, extrapolation, 
warping and blending are applied to kinematic motion data. 

Representative works that reuse motion capture data for motion synthesis and in
teractive avatar control include [Lee et al. 2002; L i et al. 2002; Kovar et al. 2002a; 
Arikan and Forsyth 2003; Arikan et al. 2003; Chai and Hodgins 2005]. Most of 
them use "resequence and blend" techniques. A statistically based approach is used 
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(a) (b) 

Figure 2.1: (a) Motion capture in computer animation, (b) Figure 2.4 of [Patton 
1998], courtesy of J. L. Patton. A sophisticated balance control experiment in Biome
chanics. 

to organize and index the motion database in [Chai and Hodgins 2005]. Machine 
learning, especially non-linear dimensionality reduction techniques, such as [Ghahra-
mani and Hinton 1996; Tenenbaum et al. 2000; Roweis and Saul 2000; Hastie et al. 
2001; Roweis et al. 2002; Matusik et al. 2003; Hertzmann 2003; Lee 2003; Teh and 
Roweis 2003; Salesin 2003] are finding promising applications in computer animation. 
[Lawrence 2004] uses MoG (Mixtures-of-Gaussian) model. Gaussian Processes have 
been successfully utilized for inverse kinematics in [Grochow et al. 2004]. 

Although data-driven animation systems are abundant, there is little work on mod
elling interactions w i t h human mot ion . Notab le exceptions are [Ar ikan et a l . 2005; 

Komura et al. 2005a]). That is, areas marked by A2, Chapter 4 and A3 in Table 1.1 
are not well explored. This is likely because of the innate dynamic nature of push 
interactions. 

2.1.2 Trajectory Optimization 

The foundation of computer animation is the interpolation of key frames [Parent 
2002]. Users start by specifing the position or orientation of some keyframes, which 
are represented by circles in Figure 2.2. Computers then generate in-between frames 
marked by triangles, resulting in a continuous trajectory. Usually splines of some form 
are chosen because of their smoothness. In the case of the trajectory in Figure 2.2, it 
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is continuous but not smooth because its derivative curve is not continuous. However, 
smoothness is just the simplest criterion for animation. There are cases we have more 
requirements. For example, the trajectories interpolated by splines may not be valid 
if we want a physically realistic animation. Imagine that the trajectory in Figure 2.2 
specifies the trajectory of a ball. First it is thrown upwards, then it hits the ground 
and bounces. In the real world, the trajectory of a ball dropping and bouncing obeys 
Newton's laws. That is, the acceleration of the ball, computed by taken the second 
derivatives of the positions, has to be a constant for this case. The keyframes given by 
the users may not obey the laws of physics. Often we not only want a valid trajectory, 
but also the best trajectory given some goals for a motion. An optimization algorithm 
can be used to adjust the trajectory so that it minimizes an objective function while 
satisfying constraints. Possible objectives are energy cost, height reached, or distance 
traveled. Possible constraints are friction constraints, torque limit constraints, or 
ZMP(Zero Moment Point) constraints. 

• position 

Figure 2.2: Trajectory interpolation and optimization. Circles are keyframes of the 
positions or orientations specified by the user. Triangles represent computer generated 
in-betweens. 

Spacetime constraints (SC), first proposed by Witkin and Kass [1988], casts the 
motion editing problem into a constrained optimization framework. SC combines 
spatial kinematic constraints with temporal dynamics constraints. Conceptually, a 
constrained optimizer is used as the motor controller. This optimization approach 
has also been used in relevant neuroscience and movement science disciplines. These 
methods are usually computationally expensive and do not typically account for styles 
of motion. There are various improvements and extensions to the basic SC approach: 
[Cohen 1992; Ngo and Marks 1993; Liu et al. 1994; Rose et al. 1996; Gleicher 1998; 
Popovic and Witkin 1999]. They either try to make SC practical by addressing the 
inherent high cost of the optimization, or extend SC to address specific types of 
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animation tasks. Muscle dynamics can also be incorporated into the SC framework 
as in [Komura and Shinagawa 1997; Komura et al. 2001]. 

Spacetime optimization methods emphasize the physical plausibility of motions, by 
incorporating dynamic constraints into the optimization procedure. Dynamic con
straints include satisfying the equations of motion, torque smoothness, torque limits, 
and foot-ground contact constraints. Foot-ground contact constraints often enter into 
the optimization as friction constraints or ZMP (Zero Moment Point) constraints. The 
ZMP concept is important to robot balance control, and will be discussed in more 
detail in Section 2.2.1. Here we briefly summarize the ZMP as the point where the 
horizontal moment of external forces and inertial forces balance. The larger the hor
izontal moment is, the further away the ZMP is from the center of foot. Because all 
physical systems have a finite foot length, the extra horizontal moment will simply 
make the system rotate and fall when the ZMP hits the foot boundary. The ZMP is 
mathematically equivalent to CoP (Center of Pressure). 

[Fang and Pollard 2003] adopt physical constraints that have linear time analyt
ical first derivatives (including the CoP constraint) to speedup the optimization of 
key-framed motions. [Liu et al. 2005] introduces nonlinear inverse optimization for 
estimating model parameters from motion capture data. Their dynamical model in
corporates several factors of locomotion that are based loosely on the biomechanical 
literature. When used in a spacetime optimization framework, the parameters of 
this model define different styles of natural human movement. Motions can also be 
generated in the same style but performing different tasks, and styles may be edited 
to change the physical properties of the body. As with other spacetime results, the 
results are not directly shown to be capable of driving a forward dynamics simulation. 

[Tak et al. 2000; Shin et al. 2003] are representative works that utilize the ZMP 
concept to have dynamic balance effects. They both concentrate on post-processing 
(touch-up or filtering) motion clips that might be physically implausible. For a robot 
or a physical system, the ZMP will never be outside of the support polygon, even when 
it falls. However, motions choreographed by animators manually might be violating 
physical laws, and the ZMP might be outside of the support polygon. The authors 
used an optimization framework to find the motion that is close to the original motion, 
yet the ZMP always resides inside or on the edge of the foot boundary. Realism of 
the motions can thus be enhanced by eliminating physically implausible part of an 
input motion. They are off-line motion editing techniques. 

[Kudoh et al. 2002; Kudoh et al. 2006] are online balance controllers that can cope 
with pushes mainly in the sagittal plane. Appropriate sub-controllers can be selected 
based on whether they can recover from a particular perturbation. PD control is 
adopted for small perturbations and final posture adjustment, which is similar to our 
own work in Chapter 5. A quadratic programming controlling the ZMP constraint 
is activated when the perturbation is large, i.e., the ZMP is close to the boundary 
and the balance is in danger. The author claims real-time rates and realistic balance 
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reactions such as arm rotations. Stepping is activated when in-place control fails, 
similar to our work in Chapter 6. The main difference between their work and our 
work is that we construct controllers to drive dynamic simulations, while theirs use 
optimizations to generate trajectories. 

The are several problems with the nonlinear optimization framework. It is unknown 
how to best formulate the objective and constraints to achieve given classes of motion. 
The computational cost is high, making it an offline tool. The optimization can easily 
get trapped in local minima. 

2.1.3 Animation Interfaces 

Character animation is difficult to specify and control, both for kinematic and dy
namic systems. Kinematic approaches do not lead themselves to an obvious way as 
to how to choreograph with captured motion trajectories. Intuitive user interfaces 
play an important role in alleviating this problem. In recent years, sketch-based in
terfaces [Thorne et al. 2004; Yang et al. 2005], voice-driven interfaces [Wang and 
van de Panne 2006], and performance-driven interfaces [Lee et al. 2002; Chai and 
Hodgins 2005] have been very successful. Our work in Chapter 3 includes the use of 
foot pressure pads as a novel interface component. 

2.2 Dynamic Simulation and Robotics 

In this section, we focus on discussing previous work from computer animation and 
robotics literature that utilizes forward dynamic simulations or controls real robots. 

Although robots have been successfully applied to "assembly lines" for automation 
in factories for years, bipedal walking robots are far less successful and robust. A 
fundamental reason why biped locomotion is hard is that the foot ground contact 
"joint" is unilateral and underactuated. Unilateral refers to the fact that the ground 
can only push but not pull the foot. Underactuated means there is no actuators 
between the ground and the foot that we can directly control. More intuitively, they 
mean the robots in Figure 2.3(a) do not have a fixed base as does the robot arm 
shown in Figure 2.3(b). As a result, legged robots have postural instability and can 
fall. 

Recent years have seen considerable progress in humanoid robot research. Large 
corporations such as Honda [Hirai et al. 1998] and Sony have made amazing entertain
ment humanoids and human-sized experimental bipeds. They can walk [Yokoi et al. 
2002] with different speeds to different directions, climb up and down stairs, kick, jog 
and even fan-dance. Other researchers are making robots that can lie down and get 
up [Hirukawa et al. 2003], and roll and rise [Kunivoshi et al. 2003]. However, great 
man power is involved to hand-pick the tasks, reconstruct and tune the controllers 
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(a) (b) 

Figure 2.3: (a) State-of-Art Humanoid Robot: Honda ASIMO. (b) A typical indus
trial robot arm. 

for the humanoids. Adaptive behaviour and learning are lacking. Robustness to large 
environmental perturbations is also unproven. 

2.2.1 Balance Indices 

The unique interaction characteristics between foot and ground are the fundamental 
reason that causes instability for bipeds. Most balance indices or postural stability 
criteria that incorporate dynamics are thus defined by the Ground Reaction Force 
(GRF). Only a conceptual understanding of the ZMP is sufficient for further reading of 
later chapters. Other indices are given for completeness, and some of them are relevant 
for future work. We avoid more formal definitions in the interest of understandability. 
Interested readers are referred to Appendix A for more details. We note that balance 
indices themselves do not directly describe what the controls should be in order to 
retain balance when performing tasks. 

CoG and GCoM 

We use GCoM (Ground projection of Center of Mass) and CoG (Center of Gravity) 
interchangeably in this thesis. 

GRF and CoP 

Suppose the quadrangles shown in Figure 2.4 are the feet. We define the CoP (Center 
of Pressure) as the point on the ground where the resultant normal ground reaction 
force acts. We decompose the interaction forces between the foot and the ground 
into: 
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• forces that are normal to the ground plane (Figure 2.4(a)) 

• forces that are tangential to the ground plane (Figure 2.4(b)). 

The normal forces can only generate net torque vectors that are embedded in the 
horizontal plane (See Appendix A). The total resultant ground reaction force and 
torque, as shown in Figure 2.4(c), includes the normal force, the tangential force and 
the normal torque. 

Figure 2.4: Illustration of the ground reaction force, p is the CoP. (a) Normal force 
and tangential torque, (b) Tangential force and normal torque, (c) Total ground 
reaction force and torque. 

ZMP 

The Zero Moment Point (ZMP), introduced by [Vukobratovic 1990] and widely used 
in the robotics literature, is defined as the point on the ground where the net moment 
of the inertial forces and gravity forces has no component along the horizontal axes. 
Mathematically the ZMP and the CoP (Center of Pressure) are equivalent [Goswami 
1999]. The CoP is widely used in Biomechanics literature, while the ZMP is favored 
by robotics researchers. We refer the reader to Appendix A for the formal explanation 
of their equivalence. 

The ZMP concept is important to robot balance control. ZMP is the point where 
the horizontal moment of external forces and inertial forces balance. The larger 
the horizontal moment is, the further away the ZMP is from the center of foot. 
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Figure 2.5: CoG, ZMP, and FRI 

Because all physical systems have a foot of finite size, the extra horizontal moment will 
simply make the system rotate and fall when ZMP hits the foot boundary. Numerous 
robotics balance algorithms, such as [Ito and Kawasaki 2000; Kagami et al. 2000; 
Kim et al. 2002; Kajita et al. 2003a; Okumura et al. 2003; Ito et al. 2003; Zhu and 
Kawamura 2003], keep the ZMP inside the foot boundary all the time 1 . Keeping the 
ZMP inside the foot boundary is a necessary but not sufficient condition for balance. 
For a physically plausible motion, the ZMP is always inside or on the edge of the 
foot boundary, whether it is falling or not. See the left picture of Figure 2.5 for a 
comparison of the ZMP with the CoG. 

The use of the ZMP as a postural stability indicator is limited in several ways. One 
is that keeping the ZMP inside foot boundary is not always possible. This is often 
not considered a problem for robotics because of the focus on algorithms that give 
maximum stability in benign environments. In computer animation, we wish to have 
balance algorithms that produce realistic motion in a wide variety of conditions. The 
Foot Rotation Indicator (FRI), introduced by [Goswami 1999] yet not widely used in 
robotics, is an indication of postural instability that is more general because it allows 
for foot rotation. 

The conventional ZMP can be further generalized to the GZMP (Generalized Zero 
Moment Point) [Harada et al. 2003] to include hand-environment contacts, in the 
context of arm/leg coordination tasks. 

1 More formally, this can be referred to as the support boundary or base of support, which is 
the convex polygon of all the ground contact points. However, we will also refer to it as the foot 
boundary for simplicity and intuitiveness. 
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FRI 

The significance of the FRI to our problem is that when in-place balance fails, the 
FRI can provide a hint of where to make a step to compensate for the unbalanced 
moment on the stance foot. We have not directly used this index in our stepping 
strategies, although this might be interesting to investigate further. 

The FRI point is a point on the ground at which the resultant moment of the 
force/torque impressed on the foot is normal to the ground surface [Goswami 1999]. 
The impressed force/torque means the force and torque at the ankle joint, other 
external forces on the foot, plus the weight of the foot, but not the GRF. FRI and 
ZMP are closely related. Unlike the ZMP, the FRI can be outside of the support 
polygon, as shown in Figure 2.5. It is where the net ground reaction force would have 
to act to keep the foot stationary Intuitively, we can think of the FRI as the virtual 
ZMP when the foot is infinitely large and static. 

Momentum Control 

A problem with the FRI is that it only serves as an instability measure for the single 
support phase of a biped with flat feet. Linear and angular momentum, on the other 
hand, is a more general quantity for motion planning and balance control of legged 
robots. One example is the Resolved Momentum Control in [Kajita et al. 2003b]. Var
ious models and indices based on momentum control have been proposed, including 
IPM (Inverted Pendulum Model) [Kajita et al. 2001b], 3DLIPM (3D Linear Inverted 
Pendulum Model) [Kajita et al. 2001a], enhanced IPM [Kudoh and Komura 2003], 
Z R A M (Zero Rate of change of Angular Momentum), point [Goswami and Kallem 
2004], and R M P (Reaction Mass Pendulum) model [Lee and Goswami 2007]. Mo
mentum regulation is observed in human walking [Popovic et al. 2004]. A number 
of computer animation researchers are investigating momentum based editing tech
niques, such as [Abe et al. 2004; Komura et al. 2005a]. Our work in Chapter 4 uses 
momentum perturbations as motion index. 

2.2.2 Equations of Motion and Control 

There are two common ways of formulating Equations of Motion for an articulated 
body system: Newton-Euler and Euler-Lagrange [Featherstone 1987; Craig 1989; 
Schilling 1990; Murray et al. 1994; Mason 2001; Xie 2003]. We use a Lagrange-
multiplier velocity-based Newton-Euler formulation. We describe our dynamics en
gine in more detail in Chapter 5. We use Open Dynamics Engine [ODE] for the work 
in Chapter 6 and 7. 
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Figure 2.6: Illustration of the kinematics and dynamics of an articulated rigid body 
system. 

Newton-Euler 

As shown in Figure 2.6, for an articulated rigid body system, we use f;, T J , to represent 
the force and torque applied to link i from link i — 1 through joint i. rciti is the vector 
connecting the center of gravity of link i to joint i's origin Oj. represents the 
linear acceleration at the CoM of link i . is its angular acceleration. Ij is the inertia 
tensors of link i. A l l quantities are given in world coordinates. 

The Newton-Euler formulation is recursive in nature. The backward Newton-Euler 
recursion relation is as follows: 

fi = f i + i + m-i&i - m-ig (2.1a) 
n = ri+1 - r^i x + r - j i i + i x f m + \iOn + cJiX (1^) • .(2.1b) 

Euler-Lagrange 

The Euler-Lagrange formulation has a compact description of motion equations in 
matrix form. The equations of motion can be written as: 

M(8)6 + C(6,6)6 + g(9) = T (2.2) 

where 9 represents the generalized coordinates and r is the generalized forces. When 
we adopt joint angles as 9, r represents the joint torques. Matrix M(#) is the inertia 
matrix. Matrix C(9,9) accounts for centrifugal and Coriolis effects2. Vector g(0) 
accounts for the effect caused by gravitational force. 

Null Space Postural Control 

Equations of motion govern how the system evolves over time given the controls, 
taking the form of joint torques r in our case. When there is only a single task to 

2 In the classical mechanics, one identifies terms of the form &i9j,i ^ j as Coriolis forces and 
terms of the form Of as centrifugal forces. 
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perform, we may attempt to solve the control problem by direct formulation and 
manipulation of motion equations. However, a robot typically has to maintain its 
posture or balance while accomplishing a specified manipulation task. Researchers 
have developed algorithms, such as [Park et al. 1996; Crowe et al. 1998; Chang and 
Khatib 2000; Kim et al. 2002; Khatib et al. 2004], based on the idea of kinematic 
or dynamic decoupling of the control associated with different tasks. The most im
portant task is achieved by solving the motions equations in the full control space, 
torques for secondary tasks are only performed in the null space of the first task space. 
This formulation allows for posture objectives to be controlled without dynamically 
interfering with the operational task. 

2.2.3 Learning from Humans 

Robotics researchers often have the robustness of their control algorithms as a primary 
concern. An alternative objective is to investigate how to make robot motions more 
human-like [DasGupta et al. 1998; Safonova et al. 2003; Kagami et al. 2003], targeting 
applications such as entertainment robotics or demonstrations of motor learning. 

A desired ZMP location only introduces a 2-dimensional constraint. Common ZMP 
algorithms choose to modify one major joint, such as the waist joint [Nakaoka et al. 
2003], to meet the ZMP requirement. In contrast, humans are much better in multi-
joint coordination. Motion capture technology, as mentioned in Section 2.1.1, provides 
a starting point to learn motor skills from humans. 

Current control algorithms, including sophisticated ones with many parameters to 
tweak, lack the ability to self-evolve and adapt, and rely on researchers to carefully 
design every behavior. Humans have the ability to balance motion goals with kine
matic and dynamic constraints, and to acquire new motor skills and adapt old ones. 
Additional insights into human motion will be discussed in Section 2.3.2. 

2.2.4 Dynamic Simulation for Animation 

Dynamic simulation for animation has been demonstrated in many different scenar
ios and at many different levels of detail. Neuromusculoskeletal simulations focus on 
more detailed modelling of human motion, such as modelling the neck [Lee and Ter-
zopoulos 2006] or limbs [Pai et al. 2005]. For full-body motion simulations, muscles 
are often abstracted as joint torques. Air-borne stunts [Wooten 1998; Zhao 2004] are 
more successful than motions that involve environmental interactions such as loco
motion tasks [Hodgins et al. 1995; Faloutsos et al. 2001], in terms of perceived motion 
realism. Control of balance remains an open problem. In the game industry, rag doll 
simulations are common but avoid issues of balance. Recent years have seen more 
pseudo-physics to deal with the problem [Wrotek et al. 2006], by using a virtual help
ing force or the "hand of God". Hybrid kinematic and dynamic systems have also 
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been proposed, such as [Zordan et al. 2005], where the initial impact phase is sim
ulated, but balance recovery is achieved by blending with kinematic motion capture 
examples. 

Balance control in simulated computer animation basically can be classified into 
static balance control and dynamic balance control. Static balance requires the GCoM 
always remain within the support polygon. For a stationary system, GCoM, ZMP, 
FRI all coincide.. Algorithms controlling GCoM can achieve good results for static 
and slowly moving systems. GCoM is also easy to understand. Thus it has been 
the most commonly used balance control variable by computer graphics researchers 
[Zordan and Hodgins 1999; Zordan and Hodgins 2002; Zhao 2004; Zhao and van de 
Panne 2005]. 

Highly robust dynamic balance control for stepping and locomotion, implemented 
using forward dynamic simulation or on a robot, has yet to be seen. Our work in 
Chapters 6 and 7 makes significant progress in this direction by using a change-of-
support strategy when the CoM falls out of the support polygon. Meanwhile, dynamic 
balance considerations are sometimes incorporated into off-line postprocessing or in
teractive motion synthesis in kinematic modelling, as discussed in Section 2.1.2 and 
our work in Chapter 4. 

2.3 Motor Control 

While some human motions have been successfully reproduced on humanoid robots, 
the quality of many robot movements can be characterized as slow, rigid, and clumsy. 
While on occasion such robotic movements may be useful in computer animation, the 
more common desire is to replicate realistic motion. The simulated or synthesized 
motions have to be of high quality in order to be seamlessly blended with realistic 
motions prepared by motion capture. How can we make robotic motions more "hu
man"? Motor control in biomechanics and neuroscience may provide some insights. 
Research in these fields is far from being able to fully understand the generation of 
human movement. Nevertheless, computer animation can benefit from taking ad
vantage of principles and models that have been the product of research in these 
disciplines. 

2.3.1 Biomechanics 

Biomechanics is the science that examines forces acting upon and within a biological 
structure, and effects produced by such forces [Hogan 1990; Alexander 1992; Adrian 
and Cooper 1989; Nigg and Herzog 1995; Hall 1998]. We can think of biomechan
ics as "Mechanics on living things", in contrast to "mechanics on electromechanical 
components". Human biomechanics is relevant to our problem in at least three ways: 
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• In a typical human motion simulation, the segment inertia properties have to 
be known. 

• If a PD control law is to be used for human simulation, the joint stiffness and 
damping coefficients have to be known. 

• If more complex control laws that include muscle dynamics are used, the muscle 
dynamics properties have to be known. Many muscle models have been pro
posed over the years. The Hill model [Winters and Crago 2000; Hogan 1990] is 
commonly used because of its simplicity. 

Motion capture for biomechanical analysis of motions is often more involved than 
motion capture used for computer animation. Figures 2.1(a) and 2.1(b) illustrate 
this. A biomechanics experiment often requires measuring devices that can measure 

• External forces and moments. For example, computer controlled robot devices 
are used for delivering fixed perturbation/interaction forces at known times; 
force plates are used for measuring GRF. 

• Internal muscle activations. An example would be surface electromyographic 
(EMG) electrodes. 

• Kinematic quantities. The procedures are roughly the same as motion capture 
in computer animation, but with stricter requirements on the measurement 
accuracy. 

Our measurement of foot-ground pressure in Chapter 3 is inspired by GRF mea
suring from force plates in biomechanics. 

2.3.2 Computational Motor Control 

As we see in Section 2.2.3, motion capture only provides a starting point for learning 
to produce motions based upon human motion data. Eventually we wish to develop 
a motor control model from the observed motions. Neuromotor control is a branch of 
neural science that seeks to explain biological motor behavior at a low level [Kandel 
et al. 2000; Winters and Crago 2000; Wise and Shadmehr 2002]. The computa
tional study of biological motor control is often called Computational Motor Control 
[Mussa-Ivaldi 1999; Jordan and Wolpert 1999; Wolpert and Ghahramani 2000]. It 
is fundamentally concerned with the relationship between sensory signals and motor 
commands. There are two basic transformations involved. The first transformation is 
from sensory signals to motor commands. This is often referred to as motion planning. 
The second transformation is from motor commands to their sensory consequences 
and is often referred to as motion execution. It is governed by the physics of the en
vironment, the musculoskeletal system and the sensory receptors. The human motor 
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Figure 2.7: A complete motor system. 

system consists of peripheral and central parts, located in the peripheral and central 
nervous system respectively. 

Motor systems are often decomposed into the feedforward components and feedback 
components [Jordan and Wolpert 1999; Kandel et al. 2000; Wang et al. 2001]. Figure 
2.7 shows a typical motor control model. Internal models are thought to output 
a feedforward motor command and desired trajectory. The muscle-tendon system 
is driven by the motor command and generates muscle forces. Muscle forces and 
external forces act upon the human inertial dynamics system and produce the actual 
trajectory. 

There are three feedback mechanisms: muscle-tendon feedback which has essen
tially zero delay because it involves the passive properties of muscles and tendons; 
reflexes, having >30 ms delay; and voluntary reactions involving cortical replanning 
which have a delay of >100 ms. The feedback loops with longer delays are higher 
in the control hierarchy of the motor system, and are thus less well understood and 
more challenging to model. 

In computer animation and robotics, research has already examined the motor con
trol problem to some extent [van de Panne and Fiume 1993; Sims 1994; Grzeszczuk 
and Terzopoulos 1995; Grzeszczuk et al. 1998; Smith 1998; Hornby et al. 1999; 
Tedrake and Seung 2002], mainly focused on parametric search methods and neu
ral networks techniques. However, a systematic exploration of neuromotor control 
and computational motor control reveals that there is more that can be adopted. We 
note that neuromotor control is a broad field with diverse hypotheses. Thus, we only 
review the specific principles most related to our problem here. 

Two Views of Motor Control 

What is the motor system controlling during a motor task? There are numerous 
hypotheses, classifiable into two categories: 

• Control objectives are kinematic quantities, such as position, velocity and ac-
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celeration, and the variance of end-effector location. A well known kinematic 
model is the minimum jerk model [Flash and Hogan 1985]. Smoothness and 
invariance of the motion trajectories are deemed to be the fundamental char
acteristics of human movements. There are also many empirical observations 
such as motor primitives, two-thirds power law, Fitts' law, and Donders' law. 

• Control objectives are dynamic quantities, such as energy consumption, muscle 
stiffness/impedance/compliance, muscle torques, or interaction forces. Mini
mum torque-change is a commonly used dynamic model [Uno et al. 1989]. 

Both kinematics and dynamics likely provide control objectives for the motor sys
tem. Depending on the task, goal and environment, one may be more important than 
the other. In an optimization framework, the important one should probably be in 
an objective function, while the less important one can serve constraints. This stems 
in part from work in neuroscience and biomechanics [Wise and Shadmehr 2002] that 
the motor system has both kinematic and dynamic representation of movements. For 
example, the Posterior Parietal Cortex (PPC) and Premotor cortex (PM) are believed 
to have key roles in formulating a kinematic plan; Primary Motor cortex (Ml) and 
cerebellum are known to be more related to the dynamic implementation of a mo
tor plan. In practice, computational neuroscience, robotics, and computer animation 
have used both kinematic and dynamic objective functions in different situations in 
various forms. Under most circumstances kinematic planning is likely higher in the 
motor control functional hierarchy, and happens earlier in the motor control process 
[Rosenbaum et al. 1999; Kandel et al. 2000; Wise and Shadmehr 2002]. 

Internal Models 

Internal models (IM) represent one of the most successful concepts established in 
neuroscience in recent years [Kawato 1999; Wise and Shadmehr 2002]. Internal mod
els are neural mechanisms that can mimic the input/output characteristics, or their 
inverses, of the motor apparatus. During a typical motor task, the brain may solve 
three types of computational problems, as illustrated in Figure 2.8: 

1. Forming a kinematic plan. This requires learning a model of the forward and 
inverse kinematics of the controlled system and its environment in order to 
know how to accomplish the goals of the task. However, since there are usually 
redundant DoFs in biological systems, there is no unique kinematic solution 
to the planning. The internal kinematics models should provide the ability to 
choose the best solution. There are many controversial hypotheses in terms of 
what the brain is controlling or optimizing during motor planning. 

2. Inverse dynamics. This requires learning a model of the inverse dynamics of 
the controlled system. This model is usually called the inverse internal model. 
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It answers the following question: how can the body be made to move along 
a planned trajectory? More formally, it provides the ability to predict the 
inputs that should be provided to the biomechanical system for a given desired 
change in state of that system. Inverse internal models can calculate necessary 
feedforward motor commands from desired trajectory information. 

3. Forward dynamics. This requires learning a model of the forward dynamics 
of the mechanical system. This model is usually called the forward internal 
model. It answers the following question: what will happen to my limbs and/or 
the environment if I activate my muscles in a certain way? More formally, 
it provides the ability to predict how the biomechanical system will behave 
as a function of current input. Forward internal models can predict sensory 
consequences from efferent copies of issued motor commands, which is useful in 
the context of systems that have inherent delay. 

Internal models are a blanket term used to describe the information contained in the 
solution to these three types of computational problems, and motor memory refers 
to the representation of IMs in the Center Nervous System (CNS). 

Figure 2.8: Internal Models 

The necessity for IMs in motor control originates from the fact that biological motor 
systems, including neurons and muscles, are very slow. The fastest reflex response to 
the sensory information about the perturbation requires about 50 ms to travel from 
the sensors to the spinal cord and out along the motor axons, followed by another 
50 ms delay for the processes involved in excitation-contraction coupling to change 
the force output of the muscle. Very fast voluntary movements take about 250 ms. 
The time delay of 100 ms occupies a large proportion of movement execution time of 
250 ms, and therefore the feedback gains cannot be set high to avoid instability. In 
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contrast, robots can work at high (0.5-10 kHz) sampling and control frequencies which 
supports the implementation of high feedback gains. Fast and coordinated movements 
cannot be executed solely under feedback control in biological motor systems, since 
the biological feedback loops are slow, and have small gains. Thus, the internal model 
hypothesis proposes that the brain needs to acquire an inverse dynamics model of the 
object to be controlled through motor learning, after which motor control can be 
executed in a pure feedforward manner. In theory, a forward model of the motor 
apparatus embedded in an internal feedback loop can approximate an inverse model. 

The significance of the IM concept to computational motor control is that the 
existence of IM shows that biological motor control fundamentally differs from robot 
control. Robots can use high-gain fast feedback loops to do trajectory tracking, while 
humans are thought to rely on IMs to compensate for slow feedback loops. Although 
we can borrow robot control mechanisms in simulation for animation purposes, the 
resulting motions and perturbation responses are not going to look human unless extra 
tricks are incorporated, such as the gain scheduling procedure in [Zordan and Hodgins 
2002]. In Chapters 5 and 7 we use feedforward components based on the IM concept to 
achieve more stable biological motor control and more natural perturbation responses, 
even though the mechanisms of IM acquisition, representation, coordination, and 
execution is not exactly known today. 

Synergy 

A fundamental problem of motor control is what is known as the degrees of freedom 
problem. As an illustrative example, suppose a person raises her hand to adjust her 
glasses. There are twenty-six muscles - ten at the shoulder, six at the elbow, four at 
the forearm, and six at the wrist - that govern the movement of the four arm joints 
we are moving. Even simple movement of the arm requires the complex temporal and 
spatial orchestration of all these muscles. Each joint must move the correct amount 
and at the right time in order for us to reach our destination and accomplish our 
task. The problem of managing this complexity is known as the degrees of freedom 
problem. The hsman body, considered as a movement system, has an astronomical 
number of states with the hundreds of thousands of muscle fibers that make up the 
six hundred and ten muscles that regulate the motion at the joints formed by our two 
hundred and ten bones [Goldfarb 1993]. 

How can we handle all these degrees of freedom? How do we learn new motor tasks? 
The computations are daunting in complexity if the potential degrees of freedom 
are not temporarily reduced. This reduction of DoFs is accomplished by adding 
constraints. A muscle synergy constrains the relative activity of muscle groups that 
span two or more joints, thereby linking them together. The neural basis for muscle 
synergy is that in the descending pathway of the nervous system, one cortical neuron 
often projects through synapses to several inter-neurons, and one inter-neuron often 
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projects to several motor neurons. Thus, cortical output neurons or spinal inter 
neurons do not map one-to-one to muscles. Although muscle synergy is a concept 
related to dynamics, synergy itself has a much broader meaning. Synergy can be 
either kinematic or dynamic, spatial or temporal or spatio-temporal, associated with 
neurons, muscles or limbs. Synergy means the movements of joints are often correlated 
in a certain fashion. Humans are capable of moving their arms in many peculiar ways, 
such as moving one segment at a time when trying to imitate a robot. However in 
every day life, we tend to move our arms in a highly stereotyped and stylized way 
with stable spatial and temporal characteristics. 

Although synergy appears to be an attractive concept, much of current work in this 
area is based on either P C A (Principal Component Analysis) or ICA (Independent 
Component Analysis). [Santello et al. 1998] found that the first two principal compo
nents could account for >80% of the variance of the 15 digit joint angles, in grasping a 
large number of familiar objects. The first principal component corresponds roughly 
to how wide the object to be grasped is, and the second principal component cor
responds roughly to how long the object is. This hints that by parametrizing the 
object shape, we can actually get the principal components, which we can then use 
to synthesize motion. A problem with P C A is that when kinematic constraints are 
present, even with the principal components accounting for 99% of the variance, the 
resulting motion will still violate the constraint. As observers, humans are known to 
be sensitive to errors in constrained motions, such as the footskate problem when a 
foot ground contact constraint is violated [Kovar et al. 2002b]. In contrast, motion 
such as a hand waving goodbye tolerates a much higher error in terms of how much 
the resynthesized motion can differ from a known ground truth motion while still 
being plausible. 

Postural Reflexes 

Reflexes are the middle level feedback mechanism, slower than the muscle-tendon 
feedback, but faster than cortical feedback. After a perturbation most postural re
sponses are reflex mechanisms, especially the initial responses. We will first discuss 
reflexes in general, and then look at postural reflexes in particular. 

Reflexes are stereotyped, adaptable motor behaviors evoked by specific sensory 
stimuli [Kandel et al. 2000]. Although they can involve both spinal and supraspinal 
pathways, they are generally fast and functionally limited. Voluntary movements, 
however, require integration of more sensory information, such as visual, vestibular, 
and somatic sensory, and planning in cerebral cortex. The fastest voluntary reaction 
time is about 250 ms, while the slowest reflex takes less than 200 ms. Thus reflexes are 
important in providing rapid responses to perturbations or disturbances of movement. 
There are many kinds of reflexes, and we classify them into two categories: 

• Spinal Reflexes: reflexes mediated by neural circuits entirely confined to the 
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spinal cord. They are generally very fast (<80 ms). They can further be 
classified to two types: 

— Monosynaptic: reflexes with sensory neurons and motor neurons directly 
connect to one another, with no interneuron intervening between them. 
Stretch reflexes, such as the well-known patellar reflex (also known as 
knee-jerk), are monosynaptic reflexes. This type of reflex has very short 
latency, and can be as fast as 30 ms. 

— Polysynaptic: reflexes including one or more sets of interneurons. Most 
reflexes, such as the withdraw reflex after touching a hot stove, are polysy
naptic reflexes. Because more neurons and synapses are involved, this type 
of reflex has long latency, usually >45 ms. 

• Long-loop Reflexes: reflex responses mediated via supraspinal structures. Both 
cortical and subcortical regions might be involved. Cortical routes mainly reg
ulate distal muscles, which are responsible for tasks requiring precise regulation 
by voluntary commands. Subcortical routes mainly regulate proximal muscles, 
which are most responsible for more automatic motor functions, such as main
taining balance and producing gross bodily movements. Their time scale is 
usually between 80-160 ms. Long-loop reflexes allow responses to be modulated 
and adapted by supraspinal centers, sometimes even to the extent of revers
ing movements when appropriate. An example is the phase-dependent reflex 
reversal of the obstacle-induced tripping response during locomotion. 

Postural reflexes are the collection of reflexes that regulate postural control, which 
are detailed in the following section. Researchers document reflexive postural ad
justment behaviors of human subjects in many different balance tasks, and extract 
knowledge about balance control strategies. Postural reflexes are semiautomatic re
sponses (70-180 ms) to a disturbance or perturbation, occurring after a monosynaptic 
response, and before a voluntary reaction can occur. They are subcortical long-loop 
reflexes and long latency spinal reflexes. Short latency stretch reflexes do provide the 
first defense line after a postural perturbation, but they are generally not considered 
to be postural reflexes. Due to the inherent difficulty of biped balance control and 
locomotion, more supraspinal influences are observed for balance control of humans 
than in, say, cats. These claims are supported by the literature which will be reviewed 
shortly in the following section. The exact mechanism of how supraspinal structures 
select and regulate reflexes to be task, functional and phase appropriate is largely 
unknown. 

27 



2.3.3 Postural and Balance Control Strategies 

We have discussed the broad topic of motor control. We now concentrate on a liter
ature review of the particular problem of balance control and postural adjustment. 
The mechanical problem of maintaining posture is particularly challenging for erect 
bipeds. However, humans can make proper postural adjustments usually without 
thinking, i.e., through subconscious control. From the discussion in the previous sec
tion, we see that they are mostly spinal and subcortical. The human neuromuscular 
postural system must meet at least three main challenges. It must maintain a steady 
stance in the presence of gravity; it must generate responses that anticipate volitional 
goal-directed movements, and recover from unexpected external disturbances; and it 
must be adaptive. 

According to our knowledge, currently there is no general model available for pos
tural and balance control. Researchers are still striving to discover and understand 
individual low level balance strategies or mechanisms. We summarize a list of such 
strategies here, and believe they can help define how a successful balance controller 
should behave. These previous works are enlightening in terms of experiment design, 
data acquisition, and data analysis. 

We mainly focus on studies on standing, stepping and locomotion postural control, 
and balance recovery. A l l these balance mechanisms are interrelated physiologically. 
That is, one mechanism may be implicated in multiple balance tasks, and one task 
can utilize many mechanisms. We first summarize a list of balance strategies. Then 
a more detailed literature review is given. Findings from these studies support the 
major points in Section 2.3.2. 

Summary of postural strategies 

There are four characteristic postural strategies commonly observable kinematically 
in postural responses to external perturbations [Horak et al. 1997; Buchanan and 
Horak 2001; Shumway-Cook and Woollacott 2001]: the ankle strategy, hip strategy, 
arm strategy, and stepping strategy. We will utilize these strategies in Chapters 4 
and 6. Instead of being "discrete" strategies, in humans they form a continuum 
of "mixed" strategies in postural responses. Similarly, in terms of control, neither 
a simple reflex mechanism nor a fixed muscle synergy organization is adequate to 
explain the muscle activation patterns observed in postural control tasks. A flexible 
continuum of muscle synergies that are modifiable in a task-dependent manner are 
used for postural control [Henry et al. 1998]. We summarize the four strategies as 
follows: 

1. The ankle strategy uses distal to proximal muscle activation!; This strategy is 
characterized by body sway resembling a single-segment-inverted pendulum. It 
is typically elicited during small shifts on flat support surfaces or perturbations 
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of CoM when the task requires maintenance of upright posture. 

2. The hip strategy uses early proximal hip and trunk muscle activation. This 
strategy is characterized by body sway resembling a double-segment inverted 
pendulum divided at the hip. It is typically elicited during perturbations that 
are large in comparison with the supporting surface (short surface), or on com
pliant support surfaces, or when the task requires a large or'rapid shift in CoM. 

3. The arm strategy uses upper arm muscle activation. This strategy is character
ized by rapid arm rotation. It is typically elicited during perturbations that are 
too large to recover from using just lower limb strategies, and with the presence 
of surface or instructional constraints not to step. 

4. The stepping strategy uses early activation of hip abductors and ankle co-
contraction. This strategy is characterized by asymmetrical loading and un
loading of the legs to move the base of support under the falling CoM. It is typ
ically elicited when there are no surface or instructional constraints, or when the 
perturbations are extremely large and in-place balance is not possible. Multiple 
steps may occur during balance recovery. 

Postural control during standing 

Various strategies have been reported for standing postural control. [Kuo and Zajac 
1993; Rietdyk et al. 1999] report that both "hip strategy" and "ankle strategy" are 
present in controlling the CoM during postural response to perturbation in standing 
posture; and the "hip strategy" is more effective than "ankle strategy". [Runge et al. 
1999] indicate that hip strategy is added to ankle strategy to produce a continuum 
of postural responses, by analyzing the strategies on the joint torque level. [Rietdyk 
et al. 1999; Winter et al. 2003] also indicate that CoP is the variable used to control 
the CoM. [Hoogvliet et al. 1997] propose that a "foot tilting strategy" is utilized to 
control the CoP during one-leg stance. 

Standing postural control has been principally modelled as an inverted pendulum. 
[Pai and Patton 1997] used an inverted pendulum model to identify that the en
vironmental (contact force), anatomical (foot geometry), and physiological (muscle 
strength) constraints all play a role in limiting balance recovery, which conforms to 
experimental findings. [Pai et al. 2000] further prove that dynamic models instead 
of static models should be used in determining the threshold where a compensatory 
step must be initiated in order to recover balance. [Winter et al. 2003] develop a 
0th order inverted pendulum model, and a non-linear model consisting of a series of 
elastic elements representing the plantarflexor. [Peterka 2003] evolved a model with 
PD control and feedback loops including visual, vestibular, proprioceptive and force 
sensory information. 
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Balance control involving stepping 

There has been much work on balance control which involves stepping. [Eng et al. 
1997] identified intralimb dynamics that utilizes passive dynamics during quick cor
rective action caused by unexpected mechanical perturbations applied to the foot 
during early and late swing of walking. [Rietdyk et al. 1999] report that the first line 
of balance defense is provided by muscle stiffness, not reflex-activated muscle activity. 
[Rietdyk and Patla 1998] studied balance recovery from tripping in unilimb support 
and trilimb support. Their results show that reflexive responses are modulated ac
cording to the balance requirements to optimize the recovery strategy. [Maki et al. 
2003] review their studies on change-in-support balance reactions, including compen
satory stepping and grasping. These reactions are much more rapid than volitional 
limb movements. 

[Hsiao and Robinovitch 1999] develop a pendulum-spring model for balance recov
ery by stepping, and predict that successful balance recovery by stepping is governed 
by a coupling between step length, step execution time, and leg strength. [Patla 
et al. 1999] require participants to avoid stepping on light spots under different time 
constraints during locomotion. They find that alternate foot placements are chosen 
systematically to minimize required changes to the ongoing locomotor muscle activ
ity, and the posed threat to dynamic stability. [Maki and Mcllroy 1999] find that 
for compensatory stepping reactions, single-step reactions favor stability over speed, 
whereas multiple-step reactions are distinctly different and favor speed. 

Results from [Mcllroy and Maki 1999] suggest that anticipatory control is not the 
primary mechanism by which the CNS deals with the lateral instability arising during 
rapid compensatory stepping reactions. Yet [Zettel et al. 2002] claim CNS may be 
acting to avoid potential risk by adjusting anticipatory postural adjustments (APAs) 
accordingly during triggered stepping reactions evoked by unpredictable perturba
tions. [Marigold and Patla 2001] study the effect of prior experience and knowledge 
in slippery surface locomotion. [Marigold et al. 2003] further investigate the role of 
the unperturbed limb and arms in the reactive recovery response to an unexpected 
slip. [Chow et al. 2002] examine the effect of sudden release load on CoP motion and 
the response strategy with respect to load. Their interesting finding is that humans 
are prepared for the worst in balance control. 

Balance control during locomotion 

[Patla 2003] provides a good survey of strategies for dynamic stability during adaptive 
human locomotion, including reactive control, predictive control and anticipatory 
control. [Hirschfeld and Forssberg 1991] study the treadmill walking and find the 
modulations of anticipatory postural activity was phase-dependent. [Schillings et al. 
1999] investigate reflex responses of subjects walking on a treadmill while the forward 
sway of the foot was unexpectedly obstructed by an obstacle. Al l subjects show phase-
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dependent short-latency stretch reflexes, which is the first line of defense in preparing 
for the functional reaction generated by longer latency responses. [Schillings et al. 
2000] further the stumbling-over-obstacle study by identifying phase dependent long-
latency reflexes as well. These functionally important response strategies depend on 
long latency responses and are assumed to be premotoneuronal in origin. Similarly 
[Eng et al. 1994] report functionally appropriate responses for recovering from obstacle 
induced trips in different stages of human walking. 
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Chapter 3 

Data-Driven Kinematic Animation 
from Foot Pressure: FootSee 

This chapter presents our first contribution, which develops a data-driven kinematic 
animation technique for interactive performance-based animation. Data-driven kine
matic animation has become a popular approach in recent years. It is able to generate 
high quality motions without having to fully tackle the motion control problem. 

Our system, named FootSee, is an intuitive animation interface that uses a foot 
pressure sensor pad to interactively control avatars for video games, virtual reality, 
and low-cost performance-driven animation. During an offline training phase, we cap
ture full body motions with a motion capture system, as well as the corresponding 
foot-ground pressure distributions with a pressure sensor pad, into a database. At 
run time, the user acts out the animation desired on the pressure sensor pad. The 
system then tries to "see" the motion only through the foot-ground interactions mea
sured, and the most appropriate motions from the database are selected, and blended 
online to drive the avatar. FootSee can control a virtual avatar in a fixed latency 
of one second with reasonable accuracy. Thus makes it possible to create interactive 
animations without the cost or inconveniences of a full body motion capture system. 
An example result is shown in Figure 3.1, where foot pressure data generates an 
animated kick. 

We start by briefly describing the motivation for performance-driven animation 
systems, and give an overview of our system in Section 3.1. Section 3.2 discusses 
closely related work. We then give a detailed description of how to gather and process 
data (Section 3.3), recognize new motions to select good matches (Section 3.4), and 
edit selected motions to generate new motions (Section 3.5). Experimental results 
are given in Section 3.6. The final section in this chapter provides a discussion of 
limitations and possible directions for future work. 
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Figure 3.1: An example result. A kick motion is synthesized by the system to follow 
a user's foot pressure pattern. 

3.1 Motivation 

Avatar control in video games, virtual reality, and human-like character animation 
has been widely studied (see [Cavazza et al. 1998] for a survey). There are several 
reasons why this problem is challenging. Most animation packages have keyframe-
based interfaces for creating new motions, and are only mastered by experts. More 
exotic interfaces, such as [Oore et al. 2002], are more intuitive, but not very efficient or 
general. To make matters worse, human observers are really good at human motion 
perception; some recent studies of human motion perception include [Hodgins et al. 
1998; Reitsma and Pollard 2003]. 

Although dynamic simulation techniques have been used to animate humans [Hod
gins et al. 1995; Faloutsos et al. 2001], data-driven kinematic animation systems 
that reuse motion capture data provide superior realism, larger motion repertoires, 
and richer styles. Figure 3.2 shows a typical decomposition of data-driven kinematic 
animation systems. 

Data-driven kinematic animation systems consist of two major components: (1) 
a front-end user interface that enables users to direct and control desired new mo
tions. (2) a back-end synthesis algorithm that uses the input commands to select 
and edit motions from the motion database. Previous work has demonstrated strik
ing similarity in their back-end algorithms [Kovar et al. 2002a; Arikan and Forsyth 
2003; Lee et al. 2002]. What makes these systems more interesting is the variations 
in the front-end user interface. Traditional keyboard and mouse based user inter
faces cannot always meet the desired requirements of character animation systems. 
Voice-driven [Wang and van de Panne 2006], sketch-based [Thome et al. 2004], and 
performance-driven interfaces [Lee et al. 2002] are proposed to alleviate this problem. 

Motion capture based performance-driven character animation has become pop
ular and widely used [Lee et al. 2002; Chua et al. 2003; Bodenheimer et al. 1997; 
Belland et al. 2002]. However, full body motion capture is expensive and delicate. 
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Figure 3.2: Data-driven kinematic animation system. 

The capturing process involves significant effort including careful preparation, cal
ibration, special clothing, and tedious post-processing. Less expensive and non-
intrusive capture devices, such as the foot pad used in Dance Dance Revolution 
(http://www.ddrgame.com), the camera in Sony EyeToy (http://www.ddrgame.com), 
or the motion sensor in Nintendo Wii (http://wii.nintendo.com), have gained pop
ularity in real-world applications. Despite their limited functionality, these type of 
"motion capture in the living room" interfaces have a great potential in the enter
tainment market. 

Our system, named FootSee, uses a non-intrusive easy-to-use pressure sensor mat as 
the animation front end. A high quality motion database serves as the animation back 
end. Our hypothesis is that many full body motions have distinctive foot pressure 
signature. In addition, postural control is an essential part of all full body motions, 
and is constantly regulated by foot-ground interactions. Our work provides a viable 
alternative to applications that need an intuitive, interactive, robust, and high quality 
animation interface, but do not need high accuracy reconstruction (i.e., require only 
plausible animations and can afford occasional mistakes), and do not involve subtle 
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motions of the upper body. 
There is rich information encoded in the foot-ground interaction forces. Force 

platforms (often called force plates) have been widely used to measure ground reac
tion forces (GRF) for clinical gait analysis, athletic performance analysis, rehabili
tation, kinetic and biomechanics research [Tyler-Whittle 2002; Winters and Crago 
2000; Alexander 1992; Nigg and Herzog 1995; ?]. In these applications, one typically 
measures the total force and moment. In contrast, we measure the normal pressure 
distribution to extract information about locomotion and postural control. To our 
knowledge, there has been no application of the foot-ground pressure measurement 
in computer animation. 

Our work uses a novel front end: a foot pressure sensor pad. The advantage of the 
foot pressure sensor pad is that it is viewpoint free (i.e., always under your feet) and 
occlusion free. The determination of foot-ground contacts, which has been proved 
very important to full body animation in previous work, is fully automatic. The 
pressure sensor pad does have its own limitations, which we will elaborate on later. 

3.1.1 System Overview 

FootSee consists of an off-line data capture and database construction stage (Section 
3.3), an online motion recognition stage (Section 3.4), and a motion editing stage 
(Section 3.5). Figure 3.3 illustrates the main idea. 

Motion Motion Motion 
Recognition Selection -> Editing 

7\ 7^ 

Foot Pressure- . Motion 
Database Database 

. , ^— —' 

Figure 3.3: System illustration. The data in the foot pressure database and the 
motion database are properly synchronized during motion capture. 

The motion database and the foot pressure database are properly synchronized dur
ing motion capture (see Appendix B.2), so that the motion selection module fetches 
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the motion corresponding to the matching footwork. However, we can also deliber
ately change the association rules and choose to map footwork to alternate motions. 
For example, we could map a marching-in-place motion to walking. This would allow 
the user to explore a virtual environment in a limited real environment. 

3.2 Related Work 

Work related to data-driven kinematic animation systems has been discussed in Sec
tion 2.1.1. Here we focus on intuitive animation interfaces. 

A method of using footprints as a basis for generating animated locomotion was 
presented in [van de Panne 1997; Torkos and van de Panne 1998] . As the authors 
point out, appropriate timing and footprint positions are key to the success of their 
algorithms, but hard to obtain. A pressure sensor pad makes a good candidate as 
a front-end tool, replacing tedious and non-intuitive manual input. In the robotics 
community, however, there has been some work using bed pressure for monitoring 
patient activity, such as [Harada et al. 2001]. They target posture estimation while 
we aim at full body animation. 

The idea of motion synthesis based on pre-captured motion databases has been 
extensively explored recently in [Kovar et al. 2002a; Arikan and Forsyth 2003; L i 
et al. 2002; Lee et al. 2002; Park et al. 2002a; Chai and Hodgins 2005]. State-of-
the-art methods require a training or learning phase that typically lasts for several 
hours, after which, motions of a certain kind (locomotion, disco dance, or climbing) 
can be synthesized interactively, sometimes even in real time. In particular, [Lee 
et al. 2002] focused on interactive avatar control, and reported an intuitive vision-
based interface that can control an avatar to step around a stool with a 3-second 
lag. Motion recognition was done by comparing visual features extracted from online 
images of the user and the pre-rendered images of the motions in the database. [Chai 
and Hodgins 2005] demonstrated an interesting performance driven system with two 
cameras and six markers. Vision-based interfaces have been studied in the computer 
vision community for quite some time for various tasks such as motion tracking and 
motion recognition [Moeslund and Granum 2001; Bottino and Laurentini 2001]. Our 
work is related to the overall ideas of [Lee et al. 2002] but with a novel front end: a 
foot pressure sensor pad. 

3.3 Data Capture and Processing 

3.3.1 Data Capture 

The database consists of synchronized full body motion data and foot pressure data. 
Full body motions are captured by a Vicon 6 motion capture system at 60 Hz. Foot-
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Figure 3.4: Custom XSensor pressure sensor pad. 

ground pressure data is captured at 12 Hz by an XSensor pressure pad, which is 
shown in Figure 3.4. This gives us five motion frames for every foot pressure frame. 
Our motion capture volume is approximately 1.5m long, 2m wide, and 2m tall. The 
pressure sensor pad is about 0.8m long and 2m wide. Given the constraints of the 
motion capture volume and the pressure pad dimension, we selected a number of be
haviors to capture: quiescent stance with natural sway, and active motions including 
kicking, punching, stepping, weight transfer and balancing. The users were requested 
to return to quiescent stance between active motions. There was no specification for 
the duration of quiescent stance. 

We use Filmbox1 to map the Vicon marker position data onto the skeleton shown 
in Figure 3.5(b). This skeleton has 21 3-DoF (degrees of freedom) joints. The joint 
coordinates are represented by three axes (X,Y,Z), coloured red, green, and blue in 
the figure. The kinematic root shown as the black dot in Figure 3.5(b) is located at 
the intersection of the Lumbosacral angle of the spine, i.e., the base of the spine, and 
the pelvic girdle. Mapping the animation onto the skeleton converts the motion data 
from marker positions to root positions and joint angles. The root planar coordinates 
(the (x, z) coordinates) are further converted from absolute positions into relative 
positions (the difference between consecutive frames), so that transitions can easily 
be made between similar poses irrespective of planar location during later processing. 

Figure 3.4 shows our XSensor pressure sensor pad. It is made of a 160 by 64 grid 
of pressure sensors. It was originally designed for measuring the pressures of a person 
lying on a bed, and was capable of sampling the whole pad at 6 Hz. Our pad is 
specially constructed to measure the larger pressures that arise from standing and 
running. Using custom software developed to our specifications, we can sample a 
smaller region of interest at a higher rate. 

In our experiments we only sample the central 80 by 64 region to double the sam
pling rate to 12 Hz. The spatial separation of the pressure sensors is 0.5 inches. Each 
pressure pixel returns an 8-bit value representing 255 different pressure levels. The 

1 Kaydara Inc.: http://www.kaydara.com/ 
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(a) (b) (c) 

Figure 3.5: (a) A raw (top) and a labelled (bottom) foot pressure distribution image. 
Pressure level 1 is mapped to dark green and pressure level 255 is mapped to dark 
red. The black dot is the center of pressure. The coloured dots are the center of 
pressure of the same color bordered foot. The yellow foot is the left foot. The red 
foot is the right foot, (b) The skeleton model. The black dot is the kinematic root. 
The (X, Y, Z) axes of joint coordinates are represented by the red, green and blue 
axes, (c) A foot pressure image and its corresponding motion frame. The blue dot 
is the ankle position estimated from the avatar. The cyan dot is the ankle position 
estimated from the pressure data. 

upper part of Figure 3.5(a) is a sample pressure image when the subject is stand
ing still. For easy visualization, we discard 0 pressure values; we map minimum 
pressure 1 to dark green (R,G,B)=(0,127,0), and maximum pressure 255 to dark red 
(R,G,B)=(127,0,0). For quiescent stance, the pressure in all contact areas is generally 
low, so we only see green as shown in Figure 3.5(a). High pressure values usually show 
up in the heel area when there is only one foot in contact with the ground, as the red 
heel shown in Figure 3.5(c). 

3.3.2 Feature Extraction 

For motion recognition (Section 3.4), a 10-component feature vector x = (x\, a?2, •••X\o) 

is extracted from every pressure image. The feature vector consists of the velocity 
of the center of pressure (CoP) (2 components), contact area of both feet (2 com
ponents), and the first 6 Hu moments (6 components). The CoP velocity helps 
differentiate the motion directions (stepping direction, weight shifting direction etc.). 
The contact areas help differentiate motion types (one-foot-on-ground motion, e.g., 
kicking or stepping; or two-foot-on-ground motion) and bilateral motions (left-foot 
kicking or right-foot kicking). Hu moments are a set of algebraic invariants that com-
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bine regular moments ([Belkasim et al. 1991]). They are invariant under change of 
size, translation, and rotation. Hu moments have been widely used in pattern recog
nition and have been proved successful in various applications. Other measures, such 
as separation df the feet, also come to mind as useful potential candidate feature. 
However, they are not used because they contain singularities. For example, when 
one foot is in the air, the foot separation is undefined from the pressure data alone. 

We will later use the Mahalanobis distance ([Hastie et al. 2001]) of feature vectors 
as the distance metric for motion recognition. Assuming the component variables of 
the feature vector are uncorrected, the Mahalanobis distance of Xj and Xj is defined 
as 

dij = ( X J - x ^ C " 1 ^ - Xj) (3.1) 

where C = diag{aj, ...,cr2

0} is the diagonal covariance matrix computed from the 
database feature vectors. 

To compute the contact areas of the left foot and the right foot, we first need to 
know the foot to which a pressure pixel belongs. In our setup, the Vicon cameras 
are all placed in front of the subject and all the motions we capture are facing in 
approximately the same direction. With the foot orientation known, foot tracking 
and recognition is very simple. The peak pressure point and all its neighborhood 
pixels within a bounding box (a box little bigger than the subject's foot) are classified 
as one foot. The peak pressure point of the remaining pixels and its neighborhood 
pixels are classified as the other foot. It is easy to determine which foot is left and 
which is right since the orientation of the subject is relatively fixed. In case there is 
only one foot in contact with the ground, as is the case for Figure 3.5(c), we determine 
left and right by comparing the current locations to the last known locations. For 
visualization, the left foot is outlined in yellow, and the right foot is outlined in red. 
The black dot is the center of pressure. The coloured dots are the center of pressure 
of the corresponding foot. 

To perform inverse kinematics later (Section 3.5.1), we also need to estimate, the 
ankle position of the user from the pressure images. When the foot is in full contact 
with the ground, i.e., when its bounding box is sufficiently large, the centroid of the 
last three rows of the foot is taken as the ankle position. The ankle position of the 
avatar is estimated by projecting the ankle joint position onto the horizontal plane, 
and then transforming it into the pressure pad coordinates. The transformation 
between the Vicon coordinate frame and the pressure pad coordinate frame is known 
at the capture and calibration stage. Usually we align the axes of the pad and Vicon 
calibration tools to reduce this transformation to a simple translation, determined 
by the placement of the Vicon calibration tool. In Figure 3.5(c), the cyan dot is the 
estimated user ankle position, and the blue dot is the estimated avatar ankle position. 
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3.4 Motion Recognition 
The first step of the online motion synthesis is to recognize the user's motion by 
comparing the current foot-ground pressure image with the images contained in the 
foot pressure database, as illustrated in Figure 3.3. We note that there is no camera 
involved in the avatar control process once the database is constructed. The system 
"sees" the users through their feet. Our online motion recognition is based on activity 
detection and template matching. An off-line supervised learning process is carried 
out after the data capture. We describe it here rather than in the previous section 
because of its direct relevance to the motion recognition task. 

Once the data is processed as described in the previous section, we manually seg
ment the motion database into interleaved quiescent stance and active motion seg
ments. This involves a human observing the motions in the database and marking 
where each active motion starts and ends. After the motion sequence is segmented, 
the proper segmentation of the pressure image sequence is also known because it is 
captured synchronously with the motion data. We then compute the mean fj, and 
variance a2 of the features of the quiescent stance pressure images, i.e., we represent 
them as a random variable with a multidimensional Gaussian distribution N(/j,,a2). 
For new input foot pressure data, we extract the features online as before (Section 
3.3.2). We define an activity score s, for frame i as the Mahalanobis distance from 
the feature vector x to the quiescent stance cluster center //. When Sj.is large enough 
(above a chosen threshold), we conclude there is an interesting motion possibly going 
on. 

frame x, 

-- x, - - -
V v ' 

feature window X, 

Figure 3:6: The composition of the feature window Xi for frame x». 

If a possible activity is detected, the feature vector of the current pressure frame i 
along with those of k look-ahead frames and I look-back frames are grouped together 
as a feature window X for the current motion: Xi = ( X J _ ; , . . . X j , x i + f c ) , as shown 
in Figure 3.6. The feature windows of the onsets of all the interesting motions in 
the database (denoted as Xy) are candidates that we will compare with the current 
feature window. We then define the motion distance of two feature windows as 

k 
Di,j' = ^ wjdi+j,i'+j (3-2) 

3=-l 

where d,̂ / is defined in Equation 3.1, and Wj is the weight computed from a simple 
linear hat function centered at j = 0, i.e., Wj = 1 + j/(I + 1) for j <= 0, Wj = 
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1 — j/(k + 1) for j >— 0, as shown in Figure 3.7. The motion X# with the minimum 
motion distance to the current feature window Xi is recognized as the matching 
motion, and is selected for motion editing in the next step. To reduce false positives, 
i.e., a quiescent stance recognized as an active motion, a special quiescent stance 
motion is constructed by repeating p for (I + k + 1) frames, i.e., XQ = (fx, ...fi,y). 
If this quiescent stance motion is the best matching motion, the current frame is 
considered to be quiescent stance with a large sway, and no transition will be made. 

Figure 3.7: The linear hat function for weights used in computing motion distance. 

During an active motion, we monitor the motion distance between the current input 
feature window and that of the recognized motion, rather than simply playing back 
the most similar motion to the end. The reason is twofold. First, similar behaviors 
may have different durations. This is especially true for the weight-transfer motions 
in our experiments. The user may shift their weight to a specific location (e.g., left 
leg), then remain in that pose for a while, and then shift the weight back, each time 
with different intermediate durations. If we find strong evidence that the selected 
motion is too slow or too fast compared to the user input, we perform timewarping 
(Section 3.5.3) to speed up or slow down the motion selected from the database, 
in order to be comparable to the currently observed motion. A second reason we 
monitor the motion distance is to belatedly identify mismatches. In such a case we 
need to perform a new search to identify a better motion. We always identify a good 
timewarp before giving up on the current motion and jumping to a new motion. An 
important point is that we cannot judge the quality of the current best match by 
Dij/, but rather we normalize it and use Di^ j(SJ + Si>) as an indication of the,quality 
of the best match. This is because for highly dynamic motions (motions with high 
activity scores) even a very good match may have large distance to the user motion, 
while a relatively subtle motion may have small distance to a bad match. 

In our experiments, we use k = 10 look-ahead frames and I = 6 look-back frames. 
We initialize a motion buffer with 5 motion frames (the duration of 1 pressure frame). 
Subsequent synthesized motions are placed into the buffer at 60 Hz. A l l the transition 
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decisions plus the synthesis of the first motion frame after a transition can be made 
before the motion buffer underflows. The total latency of the system is 12 pressure 
frames: 1 frame of buffering, 10 look ahead frames, 1 current frame. This corresponds 
to one second at our pressure sampling rate of 12 Hz. We note that the recognition 
algorithm has a resolution of 12 Hz, the same frequency as the pressure data. 

The current algorithm for organizing and searching data is sufficient for our test 
database. As the database grows larger, better algorithms may be needed. For 
instance, motion graphs techniques [Kovar et al. 2002a; Lee et al. 2002; Arikan and 
Forsyth 2003] may be used to construct transition locations. Hierarchical classification 
and organization of the motion database could also be exploited to help accelerate 
search speed [Lee et al. 2002]. 

3.5 Motion Editing 

The motion recognition module identifies and outputs the motion in the database 
corresponding to the best-matching input pressure images. When there is a transition, 
either due to activity changes caused by user performance or by recognition mistakes, 
the current motion has to be smoothly blended into the new motion. Simple spherical 
linear interpolation of joint angle quaternions and displacement mapping [Bruderlin 
and Williams 1995] are currently used where applicable. Special manipulations, such 
as inverse kinematics and timewarping, are also used to maintain time and spatial 
constraints. One of the most important constraints to be satisfied is the foot-ground 
contact constraint. Because of the responsive requirements of performance animation, 
we choose algorithms that are as simple as possible. 

3.5.1 Inverse Kinematics for Stepping 

It is unlikely that the length and direction of a step taken at runtime will be exactly 
the same as those of the steps stored in the database. When the stepping error accu
mulates over time, the avatar could drift further and further away from the location 
of the real user. We developed an analytical inverse kinematics (IK) algorithm to 
modify the stepping motions selected from the database to exactly match the user's 
step length when a large position error is detected. The IK has the following steps, 
for which we will shortly give the rationale: 

1. The root orientation and planar (x,z) position remain unchanged. 

2. The hip joint angles are modified to meet stepping length changes. 

3. After the hip joint angles are edited, some constraints will be violated, causing 
problems such as rotation of the foot during stance, and ground penetration 

42 



during swing. The ankle and knee joint angles are modified to keep these 
constraints satisfied. 

The step length, step direction and step height are mainly a function of the ori
entations of the pelvic girdle, the left and the right hips, and the left and the right 
knees. In our experiments, the user is always facing the same direction, and so the 
orientation of the pelvic girdle (the root orientation) does not change much. We thus 
leave the pelvic orientation fixed in our IK. Steps 2 and 3 are justified by the fact that 
we consider only flat terrain in our experiments, and so the knee flexion-extension 
characteristics for different steps do not vary greatly. The hip angles are thus chosen 
to adapt the step length, and ankle and knee angles are used to maintain constraints. 

Based on the above observations, we designed a fast IK algorithm detailed in Ap
pendix C. When the step length change needed is small, it can be achieved in one 
stepping motion; when the change needed is large, we distribute the correction into 
several steps. Other IK algorithms could be used [Kovar et al. 2002b; Lee and Shin 
1999]. Example-based IK may also be highly suitable [Rose et al. 2001]. 

3.5.2 Foot-ground Contact Satisfaction 

The foot-ground contact is a hard constraint that needs to be satisfied at all times 
and treated explicitly whenever an edit may change the foot location and orientation. 
Simple blending between two stance poses that have the feet placed differently will 
result in foot sliding from one position to the other. Foot slippage and excessive 
rotation are visually very disturbing.2 There are many techniques for dealing with 
this problem, which is also known as footskate. Some methods only allow transitions 
during changes of contact [Lee et al. 2002], while others have addressed this problem 
more generally [Kovar et al. 2002b]. 

We distinguish between two cases according to whether one or both feet remain 
in contact with the ground during a transition. Suppose we want to transition from 
motion frame i to frame j. If during the transition only one foot keeps in contact 
with the ground, the solution is simple. We treat the stance foot as the kinematic 
root. Only the stance ankle needs to be kept fixed and all the other joints are simply 
blended over time to the target configuration. 

If both feet are in contact with the ground during the transition, we have two con
straints that we have to maintain. The displacements of the lower-body configuration 
between frame i and frame j, including lower-body rotations and root translations, 
denoted A ^ , are computed. The configurations of frame j and its subsequent frames 
are then displaced by Ajj . The original constraints are maintained without visible 
degradation of the motion quality. A's of subsequent transitions are composed to-

2 This supports our hypothesis that foot-ground interaction is constantly regulating our full body 
motions, and justifies our interface from another perspective. 
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gether with the current displacements should they occur. Over time, the lower body 
displacements A will accumulate and cause visible artifacts. We smoothly reset these 
displacements to zero, whenever one foot-ground contact breaks, such as in kicking or 
stepping motions. If there is no kicking or stepping in the database, an optimization 
routine such as [Lee and Shin 1999] could be invoked regularly to find a configura
tion as close as possible to the target motions while maintaining the foot contact 
constraints. 

3.5.3 Timewarping 

The duration and target frame for timewarping is decided at the motion recognition 
phase (Section 3.4). If we want to generate n motion frames for m frames fetched 
from the database, we need to slow down (n > m) or speed up (n < m) the ongoing 
motion. We need to resample the original joint angle trajectories. Define ji = \j^rn\ > 
and a, = — j , . Then the zth synthesized frame should be the (^ra)th frame in 
the original motion sequence, which we estimate by a linear interpolation of frame ji 
and frame ji + 1 with interpolation coefficient a;. 

Because the location of the root link is recorded in terms of displacement relative 
to the previous frame (Section 3.3.1), we need to accumulate them properly instead 
of simply resampling from surrounding frames. For this we use p ' j as the relative root 
(x, z) position for frame v. 

when n < m. The same idea is used to compute p'^ when n > m. 
If the latency requirement can be lifted, for instance, in an off-line performance-

driven animation system, we would have global knowledge of the motion, including 
knowledge of all upcoming motion, and thus perform a true dynamic timewarping 
algorithm, such as that in [Bruderlin and Williams 1995]. 

Currently FootSee can control an avatar with a fixed latency of one second and render 
it at 60 Hz, on a dual-CPU (1.78 GHz Intel) machine. The C P U usage is under 10% 
during a typical session, leaving the C P U mostly free for other tasks such as dynamic 
simulation and game A L We employ hardware rendering techniques to off-load the 
graphics rendering from C P U to GPU. 

Figure 3.8 shows example frames from animations generated by FootSee. The 
lower left corner of each image shows the input foot pressure image. The lower right 
corner shows the corresponding pressure image of the best matching motion from the 

P'fc + (1 - <*i)p'i, (3-3) 
k=ji-!+2 

3.6 Results 
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database. The upper right corner is the controlled avatar. For comparison purposes, 
we also captured the motions of the real user. These can be seen in the upper left 
corner of each image. The motion of the user is rendered with a 1 second lag in order 
to be synchronized with the output of FootSee. More examples are available in the 
video http://www.cs.ubc.ca/~kkyin/animation/Yin_SCA03.avi. 

The database for this example consists of approximately 5.5 minutes of data. The 
motions are captured from a subject with no formal martial arts training. Each action 
typically lasts from 1 to 3 seconds. The active motions were performed randomly and 
repeatedly with 49 occurrences in total. We count a match as being correct if both the 
motion type and the motion extent of the user action and the avatar action match. 
Thus, a low punch matched to a high punch, or a right forward step matched to a 
right side step is counted as a mismatch. The recognition rate for four sessions with 
more than 10 minutes of motion is 80%. There are three typical types of errors. The 
first type is failure of recognizing upper body movement variations. For example, 
in Figure 3.8(1) a middle punch is matched to a high punch. The second type is 
confusion of low kicks and small steps. We found that the pressure images of the 
onsets of small kicks and steps are actually very similar. The third'type is missing 
slow vertical weight transfers. The pressure images of slow downward weight transfer 
are sometimes very similar to those of quiescent stance. The same subject from whom 
we captured the database motions is used to test the system. 

3.7 Discussion 
In this chapter, we have developed a new interface for interactive avatar control and 
low-cost performance-driven animation, using a foot pressure sensor pad and pre-
captured pressure and motion databases. It is intuitive, non-intrusive and reasonably 
robust. The novel use of foot pressure pads for performance animation points to 
possibilities of using other partial information for performance animation [Chai and 
Hodgins 2005]. 

One cannot completely reconstruct all full body motions from foot pressure mea
surements alone, but we can get plausible motions using a well chosen database. The 
performance we have demonstrated may be sufficient for many applications such as 
virtual reality, video games, and performance-driven animation. 

The system exhibits a trade-off between responsiveness and accuracy. Some recog
nition mistakes can be resolved if we allow for longer latency, and therefore make 
decisions using more information than onsets. Motion editing faces the same trade
off as well. If we know exactly where we are going before we step, the IK result will 
be better. In our situation, the leg may already be half way in the air before we see 
the stepping error. 

Where possible, we select simple, fast, and easy to implement algorithms, despite 
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(a) rightward weight trans- (b) leftward weight trans- (c) downward weight trans
fer fer fer 

(d) backward weight trans
fer 

(e) middle kick (f) high kick 

(g) forward stepping (h) rightward stepping (i) leftward stepping 

(j) low punch (k) high punch (1) middle punch 

Figure 3.8: Sample frames generated by FootSee. Within each image, the lower 
left shows the input foot pressure image. The lower right shows the corresponding 
pressure image of the best matching motion. The upper right shows the controlled 
avatar. For comparison purpose, we render the motion of the user in the upper left, 
in sync with FootSee. 
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the availability of more sophisticated ones. For instance, our motion recognition 
algorithm needs negligible training time and a very small amount of training data. 
It is interesting that the meta-analysis of [Phillips and Newton 2002] suggests that 
more complex recognition algorithms do not necessarily work better. Our goal was to 
quickly develop a practical system to test this approach to performance animation, 
and to add complexity only when existing techniques fail. 

3.8 Future Work 

We would like to remove some of the current limitations in future work. The current 
foot tracking and recognition (Section 3.3.2) only works for a fixed facing direction. 
If the user changes his facing direction during database capture and online control, 
we may need to estimate the orientation of the feet from the pressure data as well. 
By carefully exploiting the foot spatial and temporal coherence, this may or may not 
be a hard problem. 

Although currently FootSee is neither truly real-time nor highly accurate, it pro
vides a solid point of departure. We would like to try higher pressure sensor density, 
higher pressure range and resolution, and higher capture rate, which should improve 
accuracy and reduce latency. We would also like to experiment with additional in
ference algorithms, and modelling of behavior dynamics to recognize motions and 
arbitrate ambiguities, for applications that can afford longer latency. 

We would like to combine other non-intrusive sensing techniques with FootSee. 
For example, a camera can probably see the arm motions better than FootSee, while 
FootSee can resolve many ambiguities that a camera cannot. 

Despite these current limitations, we believe FootSee is a promising technique 
that provides an intuitive and easy-to-use interactive interface for many types of 
applications, including interactive video games, avatar control, sports training, and 
performance-driven animation. 
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Chapter 4 

Data-Driven Kinematic Animation of 
Interactive Balancing 

A good, animation interface equips users with the ability to control motion synthesis 
with ease. However, the ability to truly interact, such as being able to push a virtual 
avatar, is still lacking, as already stated in Chapter 2. Back-end algorithmic support 
is needed for the avatar to respond to users' input and recover from disturbances. 

In this chapter, we describe a new data-driven approach for producing interactive 
dynamic balancing behaviors for an animated character. The result is a character 
that can interactively respond to single or multiple pushes in various directions and 
of varying magnitudes. Figure 4.1 provides an overview of the system. A database of 
captured responses to pushes is used to create a model that supports hip, arm, and 
stepping strategies for balance recovery. An interactive push is modelled as a force 
impulse, which is then used to compute a momentum-based motion index in order to 
select the most appropriate recovery motion from the database. The selected motion 
is then adapted in order to provide a response that is specifically tailored to the given 
force impulse while preserving the realism and style of the original motion. Based 
on a relatively small motion database, our system is effective in generating various 
interactive balancing behaviors, for single and multiple pushes. An example result is 
shown in Figure 4.2, where two forward steps are synthesized as a response to two 
pushes initiated by a user. 

This chapter is structured as follows. Section 4.1 gives motivation and related work. 
Section 4.2 presents necessary background. For the actual system, we first construct 
a motion database (Section 4.3) which is populated with motion data from a series 
of experimental pushes applied to a human subject. In the online phase, a user can 
then interactively apply a push of a desired magnitude and direction. A motion 
selection algorithm (Section 4.4) then selects a matching motion from the database 
according to the momentum perturbation, as well as possible environmental or ZMP 
constraints. For example, a stepping strategy cannot be used when balancing on a 
beam. Once a motion is selected, it is adapted in order to more precisely match the 
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Figure 4.1: Kinematic balance system block diagram 

Figure 4.2: An example result. Two user-generated pushes (through a graphical user 
interface) result in two animated recovery steps. 

current perturbation strength and direction. Finally, the result is blended with the 
ongoing motion in order to generate a plausible animation, while at the same time 
satisfying existing foot-ground contact constraints (Section 4.5). The algorithm is 
tested in Section 4.6. 

4.1 Motivation and Related Work 

Kinematic methods and dynamic methods each have their own merits as means for 
creating realistic interactive character animations. Kinematic methods driven by 
motion capture data offer realism while being limited in their generality. Methods that 
explicitly model dynamics have the promise of being more general, but require solving 
difficult control or optimization problems in order to deal with the active nature of 
human motion. In this chapter, we apply a data-driven approach to a restricted class 
of dynamic interactions with the environment, namely that of a character receiving 
unexpected pushes. We show that a data-driven approach to this problem yields a 
simple and effective solution for this case, and we expect that a similar methodology 
may be useful in constructing models of other types of dynamic interaction with the 
environment. 

Human balance movements are classified as semi-automatic movements in the 

49 



movement sciences. These are non-trivial motor tasks that are learned in early child
hood. Once acquired, humans can quickly select an appropriate motor plan from 
a repertoire of balancing motions in response to unexpected external perturbations. 
We develop an analogous data-driven approach for interactive balancing wherein a 
dynamic perturbation triggers the selection of a suitable balancing motion from a 
motion database, which is then further tailored for the particular perturbation. 

Human balancing behaviors are of interest to a broad range of research areas, 
including biomechanics, robotics, and computer animation. 

4.1.1 Biomechanics 

The biomechanics and motor control community has been studying the human bal
ance problem continually and extensively [Hoogvliet et al. 1997; Horak et al. 1997; 
Hsiao and Robinovitch 1998; Hsiao and Robinovitch 1999; Shumway-Cook and Wool-
lacott 2001; Maki et al. 2003; Patla 2003]. However, a thorough understanding of the 
underlying neural control mechanism and musculoskeletal dynamic system has yet to 
be found. A common starting point has been the study of natural body sway and 
postural adjustments under small perturbations. For larger perturbations, various 
balancing strategies have been observed and analyzed, including the hip strategy, the 
arm rotation strategy, as well as change-of-support strategies such as stepping. 

Two important concepts related to balance control are commonly used in the biome
chanics literature. Humans regulate their body muscles to adjust the net Ground 
Reaction Force (GRF) between foot and ground to regain balance. The point of ap
plication of the G R F is constrained to be within the foot support polygon, and the 
GRF can only push but not pull the foot. The Center of Pressure (CoP) is defined as 
the point on the ground where the resultant normal G R F acts. It is mathematically 
equivalent to the Zero Moment Point (ZMP) (see Section 4.1.3) commonly used in 
the robotics literature [Goswami 1999]. 

4.1.2 Robotics 

Biped balancing is a topic of considerable interest in robotics [Goswami 1999; Safonova 
et al. 2003; Goswami and Kallem 2004; Popovic et al. 2004; Abdallah and Goswami 
2005; Komura et al. 2005b]. For humanoid robots, reference trajectory tracking based 
on regulation of various balance indices, such as momentum, ZMP, or CoM, forms the 
framework for the majority of the work [Kudoh et al. 2002; Lee et al. 2002; Ito et al. 
2003; Kagami et al. 2000; Kajita et al. 2003a; Kajita et al. 2003b]: This framework 
is intended to deal with small perturbations caused by imperfections or by noise in 
the underlying dynamical system and the environment. Balance recovery from large 
perturbations remains a goal to be achieved. Our work in this chapter provides a 
solid starting point for an improved understanding of balance behaviors. 

50 



4.1.3 Computer animation 

Balance is an essential feature that makes human character animations realistic. 
Spacetime optimization [Witkin and Kass 1988; Cohen 1992] and simulation meth
ods [Hodgins et al. 1995; Pollard and Behmaram-Mosavat 2000; Faloutsos et al. 2001; 
Zordan and Hodgins 2002; Fang and Pollard 2003] emphasize the physical plausibility 
of motions, by incorporating dynamic constraints into the modelling and simulation 
procedure. These methods are usually computationally expensive and do not account 
for style. In contrast, motion editing techniques use measured motion data and em
phasize rapid or interactive generation of new motions [Park et al. 2002b; Arikan and 
Forsyth 2003; Kovar et al. 2002a; Lee et al. 2002; L i et al. 2002; Arikan et al. 2003]. 
Recent developments are combining the advantages of both techniques, e.g., [Abe 
et al. 2004; Safonova et al. 2004], either to reduce the computation and increase the 
realism of synthesized motions, or to generalize motion capture data while preserving 
dynamic effects. 

Recent results based on explicitly characterizing momentum patterns [Liu and 
Popovic 2002; Abe et al. 2004] are particularly relevant to our work in this chap
ter. To preserve the dynamic behavior of the input motion, [Liu and Popovic 2002] 
introduce a spline-based parameterization for the linear and angular momentum pat
terns of a captured motion. A family of similar motions are first optimized off-line, 
and then interpolated online to generate new motions. In this chapter, we also treat 
the momentum characteristics as a significant tool for modelling dynamic motions. 
We focus on applying fast and simple transformations that preserve the momentum 
characteristics as much as possible. Our approach works for momentum patterns such 
as the example shown in Figure 4.3, while the work of [Liu and Popovic 2002] uses 
a more constrained parameterization of momentum pattern tailored to a particular 
class of motion. 

The Zero Moment Point (ZMP) is a balance index that is widely used in robotics, as 
discussed in Section 2.2.1. For physically plausible motions, the ZMP always remains 
inside, or on the boundary of, the support polygon, even when the character is falling. 
Key-framed animations and captured motions can violate the ZMP constraint due to 
errors and noise introduced during the modelling, capture and processing procedures. 
[Tak et al. 2000; Shin et al. 2003] each describe an interesting approach that modifies 
voluntary motions to make them satisfy the ZMP constraint exactly at all times. 
The reasoning behind using the ZMP in computer graphics is that while computer-
generated motions may well be physically impossible, they look better when they are 
physically plausible. 

Unlike previous work, we do not attempt to edit motions based on their ZMP con
straints for several reasons. First, it is not obvious how to associate a computed ZMP 
pattern with the multimodal (hip, arm, stepping) balance strategies that we wish to 
support. Second, we do not know the perturbation forces for the balance-recovery 
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Figure 4.3: Total linear momentum of an arm-rotation balance strategy plotted as 
a function of time. The arms rotate three times before the subject recovers. The red 
and green curves are the X and Z components of the linear momentum. A Y-up right 
hand coordinate system is used. The broken segment labelled by the black arrow is 
due to motion capture noise. 

motions that we capture, so we cannot precisely reconstruct the ZMP trajectories 
for these motions. Lastly, the computations for the ZMP are based on accelerations 
and are thus sensitive to noise in the captured data. In addition, it requires a model 
of the mass and inertial properties of the links, which may be difficult to estimate 
accurately The issues in computing ZMP locations from motion data also arise in 
the work of [Tak et al. 2000; Shin et al. 2003], where terms are dropped from the 
ZMP equation in order to obtain a simpler and more robust estimate of the ZMP. 
In this chapter, we design transformations to respect ZMP constraints, rather than 
explicitly computing the ZMP. 

Most recently, [Arikan et al. 2005] describe experiments with animation synthesis 
of pushing response. They parameterize push impulses as six dimensional vectors 
(three dimensions for the location on the body being pushed and three for the veloc
ity of this location). Then a user-trained oracle selects a response motion from the 
database that will give the best visual quality when the necessary kinematic transi
tions and deformations are applied. They use a large database, captured from human 
push experiments consisting mainly of stepping balance responses, and can deal with 
unconstrained pushes on the upper body. Dynamic properties of the motions, such 
as the momentum characteristics and the ZMP constraint, are not directly taken into 
account. 
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4.2 Background 

4.2.1 Balance Strategies 

We capture hip, arm, and stepping balance strategies to populate our motion database. 
A hip strategy is characterized by body sway resembling a two link inverted pendu
lum by bending at the hip. This is typically elicited during perturbations that are 
large, on compliant support surfaces, or when the task requires a large or rapid shift 
in CoM. An arm strategy is characterized by rapid arm rotation. This is typically 
elicited during perturbations too large to recover by just lower limb strategies, and 
with environment constraints (i.e., standing on a ledge) or instructions that prevent 
stepping. A stepping strategy is characterized by asymmetrical loading and unloading 
of the legs to move the base of support under the falling CoM. This is typically elicited 
when there are no surface or instructional constraints, or when the perturbations are 
extremely large and in-place balance is not possible. 

Although every strategy has its own kinematic and dynamic characteristics, they 
form a continuum of mixed strategies in the postural and balance response space, 
instead of being discrete strategies. In classifying the type of strategy that is observed 
in a given motion, we order the balance strategies as follows, from weak to strong: 
(1) hip strategy; (2) arm strategy; and (3) stepping strategy. We classify a motion 
according to the strongest balance strategy that is displayed. For example, if the 
subject rotated her arms as well as stepping, we label the motion as being a stepping 
strategy. 

4.2.2 Momentum 

For the captured motions that recover from pushes, we need to estimate the mo
mentum perturbation injected by the external force. Linear and angular momentum 
(about the CoM), denoted as P and Hc, can be calculated as follows: 

where ra is the total mass, c is the location of the CoM, y is the velocity of the CoM. 
Quantities with subscript i represent the quantity for just the ith link of the rigid body 
system, e.g., u>i is the angular velocity of the ith segment, lj is the moment of inertia 
of the ith segment. The vector pointing from c to C j is denoted C C J . We estimate 
mass-inertia parameters by approximating each limb of the motion capture subject 
with cylinders of matching sizes. We then estimate a uniform density to match the 
total mass of the virtual character with that of the motion capture subject. 

(4.1) 
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The rate of change of linear and angular momentum can be calculated as follows: 

f + fperturb + = P 

CS X fperturb + C p X f + (0, ty, 0) T = Hc 

(4.2) 

where the external perturbation force iperturb applies at point s. cs is the vector 
pointing from the CoM c to s. The resultant GRF f applies at the CoP p , and ty is 
the resultant moment around the vertical axis exerted by GRF. We only consider the 
instability about horizontal axes. That is, we do not model the rotation about the 
vertical axis that a strong off-axis push might introduce, such as a push to the right 
shoulder. 

For all our captured balancing motions, we apply perturbations to a neutral stance 
pose. The pushes are applied at a consistent height and towards the central vertical 
axis of the character. We model the perturbations as impacts, that is, impulses of 
short duration that therefore do not allow the subject to have actively modulated 
the GRF during the course of the perturbation. During a perturbation, we thus 
assume that the GRF continues to go through the CoM and counteracting gravity, 
and therefore has no effect about horizontal axes for both P and Hc. This allows for 
the following approximation: 

We can thus use Equation 4.1 to compute the maximum momentum of the system 
during a perturbation and its subsequent recovery. This provides an estimation of 

Equation 4.3 holds, and the balancer only removes momentum from the system. 

4.2.3 Push Impulse Parametrization 

We parameterize the push impulse and the corresponding captured balancing motion 
using the polar coordinate plot shown in Figure 4.4. The polar angle 6 represents the 
perturbation direction. The polar radius r represents the perturbation magnitude. 
We estimate the direction and magnitude of perturbation impulses according to Equa
tion 4.1. The color represents the balance strategy: hip strategies are shown in yellow; 
arm strategies are shown in orange; stepping strategies are pink. At runtime, users 
specify pushes to the virtual character by clicking on this plot. 

4.3 Motion Capture and Database Construction 

We captured six sessions of balancing motions, each being one to two minutes in 
duration, at 60Hz, using a Vicon optical motion capture system. The balancing 

(4-3) 

the momentum perturbation injected by the external force, with the assumptions that 
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Figure 4.4: Parametrization of push impulses. This is representative of the GUI used 
to specify pushes at run time. A similar plot also serves as a visualization tool for 
the motion database, with the colour indicating the type of balance strategy that is 
invoked for a push of the given magnitude and direction. 

subject was asked to balance naturally, and not to fake vigorous balancing motions 
in response to small perturbations. An assistant who served as a "pusher" was asked 
to push through the subject's central vertical axis, so as not to cause unnecessary 
momentum about the vertical axis. He was asked to deliver the pushes at a consistent 
height towards the middle of the torso, in order to make the relationship between the 
linear and angular momentum consistent across all perturbations. The pusher was 
requested to vary the magnitude and direction of the applied pushes. The pushes were 
to be with sufficient force to make the subject visibly move but sufficiently small so 
that the subject would never be close to falling. 

We hand-segmented the resulting data into distinct balance-motion clips and hand-
classified the balance strategy invoked by the subject. Our motion database consists 
of a total of 66 motion clips. The data is passed through a series of automatic post
processing stages. For stepping motions, foot-ground contacts and breaks are detected 
using a position/velocity threshold algorithm. The foot-ground contact information 
is used later by the motion selection and motion blending algorithm to favor plausible 
matches and smooth transitions. 

We parameterize the push-response motions using the polar coordinates described 
earlier. For motions involving stepping, an interesting artifact is that a separate 
subject-controlled sideways shift of the momentum occurs in order to shift the center 
of mass (CoM) over the stance foot in preparation for stepping. Our momentum 
estimate produced by Equation 4.1 will therefore implicitly include this secondary 
effect, thereby potentially introducing an error in terms of estimating the magnitude 
and direction of the momentum perturbation applied by the push. Empirically and 
intuitively, the shift of CoM from the start to the end of the stepping conforms well 
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with the real perturbation direction. Hence, we choose the direction of the CoM shift 
as the polar angle for stepping strategies. The perturbation magnitude estimated 
from Eq. 4.1 is then projected onto this new direction. For consistency, we can apply 
the same direction and magnitude correction for in-place balance strategies as well 
(i.e., hip and arm strategies). The CoM shifts for in-place balance motions agree 
very well with the perturbation direction from Equation 4.1. Thus, there is no harm 
in applying this operation for in-place motions, while it improves the estimate for 
stepping motions. 

Finally, we exploit symmetry to increase the number of motions in the database 
even further. A motion is mirrored with respect to the sagittal plane to produce its 
mirror motion. For all motions classified as being in-place balance strategies, we also 
interpolate a motion and its mirror motion in order to get a motion that is neutral 
with respect to the sagittal plane. 

4.4 Motion Selection 

Given a user-specified momentum perturbation and environmental constraints, we 
first employ a nearest neighbor (NN) algorithm to find the best matching balance mo
tion for subsequent transformation and blending. We choose to use a NN algorithm 
over other potentially more sophisticated scattered data interpolation techniques be
cause of two concerns. Firstly, interpolation does not work on push reactions us
ing different balance strategies and inconsistent performances. Secondly, our motion 
database is sparse and sample motions are not evenly distributed. 

Environmental constraints, such as that of a character standing on a balance beam 
can be used to further constrain the strategies that the character can adopt. We 
first enumerate the allowed strategies and then apply the NN algorithm among the 
motions that use the allowed strategies. We now describe in detail how the NN 
algorithm chooses a matching motion based on an input perturbation momentum. 

For every pose f2 in the database, we define a maximum recoverable momentum 
r(fi) that this pose can regain balance from, i.e., there is a trajectory in the database 
such that the character returned to a stable neutral pose successfully from this pose 
with momentum r(Q). Usually we just define r(Cl) to be the actual momentum that 
this pose has in the database motion projected onto the perturbation direction as 
described previously. It is not necessarily the true upper bound for the recoverable 
momentum for this pose, but it is an estimate of what we can deal with given only 
the data found in the database. For every motion snippet, denote the initial pose 
as r_0, and the pose where the character reaches the maximum momentum as Qm, 
where 0 and m are the frame index for the first pose and the pose with maximum 
momentum. Then we set 

r(Qi) = r(ttm) for i £ [0, m) (4.4) 
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This modification says that all the frames before O m are further away from the balance 
constraint boundary, so they should recover from at least momentum r(Qm). In case 
where we could deliver the perturbation instantly during our experiments, m would 
be zero and this operation would not be necessary. 

In later motion adaptation process(Section 4.5), we only allow constraint-respecting 
motion transformations. For this purpose, we define a relationship operator be
tween two momenta such that P i P 2 denotes that the difference between their 
aligned polar radius is greater or equal to zero. Section 4.5.2 will describe in detail 
how we align momenta of different directions for different strategies. 

We begin by defining the pose distance between two poses as dp(£l,Cl'), which we 
take to be a weighted sum of the squared joint angle differences. Denote the distance 
between two momenta as dm(P, P'). We will take this to be a weighted sum of the 
squared differences of their polar coordinates, properly normalized and aligned. 

dm{P,P') = {-^-f + k ( ^ - f (4.5) 

We take A0max = TT, and Armax be the largest momentum in the motion database. 
Weight k is determined experimentally. 

Given an input momentum P applied to pose VL with momentum m(fl), we wish 
to find a new pose Ci,' by 

min (w * dp(Q, ft') + dm(r(Q'), m(__) + P)) 
Q ' (4.6) 

s.t. r(n') )p m(__) + P 

where weight w is determined experimentally. m(fl) is defined as: 

m(J.) = < _ , . (4.7) v 1 \ r(n) otherwise v ' 

Motion selection upon an initial push from a static neutral pose, and motion selection 
for a second response upon another push during the balancing of a first push are 
treated in almost the same way. The only difference is that in Equation 4.7 m(Q) — 0 
when _~2 = O 0 . When the balancer is in the static neutral pose, the momentum should 
be zero because no push has been delivered yet. 

If there are N motions in the database, and K frames for each motion, then a naive 
search algorithm for Q! would be 0(NK). However, we can reduce the computation 
by pruning away entire motions. First, only a handful of motions in the database are 
close to the direction of m(iT) + P, and other motions need not to be considered at 
all. Second, if for a motion J of Kj frames, r(Cljo) ^ m(f_) + P, then motion J is 
immediately eliminated, since r(VLjo) ^= r(Clji), for all i G [0,.?O]. For a momentum 
perturbation applied to a neutral pose, the lookup is further simplified because the 
best matching pose defaults to QJQ, i.e., the Oth frame of motion J , due to the fact 
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that we captured all the motions from a common starting neutral pose. It is only 
for a second push occurring during the course of recovering from a first push that we 
need to search within a motion. 

4.5 Motion Adaptation 

After a best matching motion is selected from the motion database, we need to adapt 
this motion to make up the difference of momenta between the user input and the 
selected database perturbation. The basic principle is that we only transform the 
motion in the direction that poses less of a challenge to the underlying dynamic 
system, in terms of dynamic constraints (ZMP and torque limits) and kinematic con
straints (joint angle limits). For example, if a motion is captured under a perturbation 
momentum A P , then an adaptation of this motion is very likely to handle a pertur
bation momentum AP/2. In contrast, extrapolating this motion to recover from a 
perturbation momentum 2 A P may lead to implausible results, without formulating 
all the constraints into the algorithm explicitly. The relationship operator defined 
in Section 4.4 allows us to check the validity of a transformation. A transformation 
is allowed when Paginal Pnew, which means the difference between the momenta's 
aligned polar radius, hereafter denoted as A r a , is greater or equal to zero. 

We consider two types of motion transformations. The first is to adapt a motion 
to deal with a push from the same direction but with smaller magnitudes. We call 
this scaling adaptation. The second is to adapt a motion to deal with a push from a 
different direction. We refer to it as the rotation adaptation. 

4.5.1 Scaling 

If the perturbation magnitudes do not match, we apply a scaling transformation on 
the selected motion. We represent joint rotations using exponential maps q, i.e., the 
rotation axis scaled by the rotation angle about the axis ([Grassia 1998]). Scaling of 
q by a scalar a amounts to scaling of the rotation magnitude. 

q' = aq (4.8) 

where 0 < a < 1, with corresponding scaling of the relative root joint displacements 
as well. We further apply an empirically-derived linear warp of the motion in time, 
observing that smaller perturbations allow a faster recovery. We can speed up the 
scaled down motions, ideally according to some space-time relationships for various 
balance strategies. We use a simple relationship that warps the time by (1 + e/2) 
while scaling in space by (1 — e). To achieve the original momentum scale factor, we 
solve for e according to: 

( l - c ) * ( l + £) = a (4.9) 

Figure 4.5 shows the effects of the scaling operation on linear momentum. 
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Figure 4.5: The X and Z components of the linear momentum with respect to time 
of the original (red and green) motion and the scaled motion (blue and yellow). Each 
dot represents one frame of the motion. 

4.5.2 Rotation 
If the direction of perturbations do not match, we perform a rotation transformation 
on the selected motion. If the perturbation is rotated about the vertical axis by an 
angle, the output motion and its momentum should also rotate. For example, if we 
push someone forward, she steps forward. If we push her to the left, then we expect 
her to step to the left. Of course we can push her in such a way that makes her to 
rotate to the left and then step forward. However as described in Section 4.3, we 
do not consider perturbation momentum around the vertical axis. Thus by rotation 
we do not refer to the character rotating her facing direction, but rather we refer to 
rotating the perturbation momentum and its corresponding balance recovery motion. 

We apply separate algorithms for rotation of in-place balance recovery motions and 
stepping motions, as will be described shortly. Hence, the calculation for the aligned 
magnitude difference between two momenta Ara will also be different. Figure 4.6 
shows an example of the effects of rotation operation on angular momentum. Linear 
momentum transforms similarly. 

In-place rotation 

For in-place balance motions, the foot support polygon is fixed and not radially 
equidistant. In Figure 4.7, if we want to rotate motion 1 towards the sagittal plane 
X, we interpolate motion 1 and its sagittal-plane-neutral motion 3. Given a new user 
input, the green triangle, its magnitude difference Ara from the database sample 1 is 
the distance marked by the bracket in the illustration: A r a = r i

s i

s

i | ^ 1 — r 2 , where rx 

is the momentum indicated by the orange dot 1, and r 2 represents the momentum of 
the green triangle. 

The motivation for the projection of the original momentum onto the new direction 
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Figure 4.6: Angular momentum about CoM of the original (red) and rotated (green) 
motions. Horizontal axis is the X component. Vertical axis is the Z component. 
Each dot represents one frame of the motion. Left: in-place rotation. Right: stepping 
rotation. 

Figure 4.7: For in-place strategies, the momenta difference between the orange dot 1 
and the triangle is Ara. 

is as follows. Because we wish to respect constraints during motion adaptations, only 
rotations to less constrained directions are allowed. In Figure 4.8, direction 1 is the 
direction of the original motion with a shorter radius, and suppose now we wish to 
rotate it to direction 2. Since the support polygon has a longer extent in direction 2, 
the dynamical system has a larger stability margin and hence a longer time to remove 
perturbation momentum before it hits the ZMP boundary (i.e., foot support polygon 
boundary). Thus it is reasonable to say that the rotated new motion is physically 
valid given the same amount of perturbation momentum. However, we cannot justify 
the validity of a motion rotated from direction 2 to 1 because we may lose the ability 
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to recover balance due to the more constrained nature of the support polygon in this 
direction. If motion 2 already hits the boundary of various constraints, such as the 
ZMP constraint, then the rotated motion now in direction 1 will likely be implausible 
physically because the ZMP will shoot outside of the foot support polygon. That 
being said, we can still rotate a motion from direction 2 to 1, if we take into account 
the loss of recoverability when calculating Ara during our motion selection phase 
(Section 4.4), by properly projecting the database momentum onto direction 1. 

Figure 4.8: Foot support polygon. 

Stepping rotation 

For stepping motions, the goal is to change the stepping direction. The foot support 
polygon changes during the course of the motion. We thus do not need to project 
momentum for the rotation adaptation, and Ara would just be the difference between 
the polar radius of the two momenta: Ara = r\ — r2. 

We denote the rotation about the vertical axis Y by matrix R, then 

q = R*q (4.10) 

with corresponding rotation of the relative root joint displacements as well. 
For single DoF joints such as the elbow, we keep the original joint rotations un

changed because the above operation will introduce additional degrees of freedom 
and render the transformed motion unrealistic when the rotation angle in R is large. 
For knee joints, such cancelling will move the foot position; we thus displace the hip 
joints accordingly to counteract such effects. 

4.5.3 B l e n d i n g 

Selected and transformed motions from the database have to be blended with the 
current pose or motion in order to ensure a smooth transition. We use simple lin
ear blending techniques together with simple root displacement techniques. Better 
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blending, foot skating elimination, and IK algorithms ([Rose et al. 1998; Kovar et al. 
2002b]) could also be applied as necessary. 

Certain constraints, such as foot-ground contact constraints, also have influence on 
the motion selection phase (Section 4.4). For example, a stepping pose f. with the 
left foot in air cannot be easily blended to a stepping pose Cl' with the right foot in 
air. To disallow such blending, we set dp(Q, __') = oo in Equation 4.6. 

We tested our algorithm using a database consisting of 66 captured balance behaviors, 
shown in Figure 4.9. Users apply interactively perturbations by clicking in the circle 
of the GUI to specify the desired direction and magnitude, shown as the green arrow 
in Figure 4.9. The resulting selected and adapted balance motions along with the 
perturbations were then computed and animated in 3D in real-time. 

Figure 4.9: The motion database used for testing. The color scheme is the same as 
that of Figure 4.4. Balance recovery motions using hip strategies are shown in yellow; 
arm strategies are shown in orange; stepping strategies are pink. 

Figure 4.10 shows a number of motions interactively generated from user inputs. 
We label each motion with the directions of the perturbations and the strategies of 
the matching database motions. For example, Figure 4.10(a) is a motion generated 
by a forward push then followed by a second backward push. The first matching 
motion is a balance response using hip strategy, the second matching motion is a 
balance response using arm strategy. Figure 4.10(f) is a backward stepping followed 
by a forward stepping. The forward stepping is shown in a different color and in
terlaced with the first backward stepping. More examples are available in the video 

4.6 Results and Discussion 
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(a) forward hip backward arm (b) forward hip forward step 

(c) forward hip forward left step (d) forward step forward step 

(e) forward step forward step (f) backward step forward step 

Figure 4.10: Balance behaviors under perturbations of different directions and mag
nitudes. Each motion is labelled with the directions of the perturbations and the 
strategies of the matching database motions. 

http: / / www .cs.ubc.ca/ ~kkyin / animation / Yin_P G05. wmv. 
Although our motion database only contains balance behaviors under single pushes, 

our system successfully generated motions that respond to multiple pushes, as well 
as to single pushes. This is important, because it is prohibitive to properly sample 
the space of all possible multiple-push scenarios. 

Our system is fast and effective, even when using a relatively small motion database. 
It should be useful for interactive video games, fast balance behavior choreography, 
autonomous avatar control in virtual reality applications, and reference trajectory 
formation for humanoid robots. 

In the future, we plan to investigate the other dimensions of the perturbation 
momentum we neglected in this work. For example, we wish to consider perturba
tions from different heights, and with an angular component around the vertical axis. 
We are also interested in studying responses to pushes during walking and running. 
The current blending of a response under a second push into the first response can 
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introduce physical implausibility, and this needs to be resolved for real robotics appli
cations. More formal user evaluation of the results would be useful. We also plan to 
explore more interactive motor task synthesis using this kind of data-driven approach, 
with dynamic indices and constraint-respecting transformations. 

64 



Chapter 5 

Dynamic Animation of Small 
Perturbations 

Kinematic modelling is fundamentally limited by its kinematic nature. This limita
tion becomes increasingly apparent as we allow for richer user interactions, which will 
trigger various interesting dynamic behaviours. Beginning in this chapter, we focus 
on dynamic modelling of character animation. In this chapter, dynamic modelling 
refers to the full forward dynamics simulation of virtual characters. Our investiga
tion will move from the simulation of small perturbations to the simulation of large 
perturbations (pushes). In this chapter, we will start by incorporating basic motor 
control principles to be able to simulate the effect of small external force perturbations 
applied to motion capture examples. 

We propose a simple biologically inspired controller for motion perturbations. Mo
tion capture is widely used for character animation. One of the major challenges 
of this technique is how to modify the captured motion in plausible ways. Previous 
work has focused on transformations based on kinematics and dynamics, but has not 
explicitly taken into account the emerging knowledge of how humans control their 
movement. We show how this can be done using a simple human neuromuscular 
control model. 

Our model of muscle forces, as illustrated in Figure 5.1, includes a feedforward 
term, and a low-gain feedback term. The feedforward component is estimated from 
motion capture data using inverse dynamics. The feedback component generates 
reaction forces to unexpected external disturbances. The perturbed animation is 
then resynthesized using forward dynamics. This allows us to create animation where 
the character reacts to unexpected external forces in a natural way (e.g.,when the 
character is hit by a flying object) and still retain the quality of the captured motions. 
This technique is applicable to applications such as interactive sports video games. 
An example result is shown in Figure 5.2, where the captured motion of a football 
player responds to the impact of a ball on the arms. 

We first outline the motivation for explicitly taking into account motor control in 
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Figure 5.1: Our model of the muscle forces. 
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Figure 5.2: An example result. A captured motion responds to a ball hit. 

a simulation framework in Section 5.1. Closely related work follows in Section 5.2. A 
simple human neuromuscular control model is then proposed in Section 5.3. We de
scribe our dynamics simulation framework in Section 5.4. In Section 5.5 we describe 
how the dynamic system is coupled with the proposed motor control model, i.e., how 
the feedforward torques are estimated from motion capture data, and how the feed
back torques are computed during the forward simulation. Section 5.6 demonstrates 
that captured motions can be made to respond to unexpected small perturbations in 
a natural way. Finally, a discussion of limitations and possible future work is given 
in Section 5.7. 

5.1 Motivation for Motion Perturbation 
Motion capture is increasing in popularity for realistic and stylistic human-like figure 
animation. However, the amount of motion that can affordably be captured is limited. 
In applications such as sports video games, the lack of variation between similar 
motions, or the lack of changes due to novel situations greatly reduces the sense of 
realism. 

Generalizing motion capture examples using kinematic motion editing is relatively 
cheap, but ignores dynamic constraints. Dynamic motion transformations can guar
antee physical plausibility, and interactions between characters and their environment 
can be handled naturally. However, dynamic human simulation still suffers from be-
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ing unrealistic. The lack.of realism may be attributed in large part to the lack of 
human motion control models. 

The difficulty of the dynamic simulation approach is no longer the cost of the 
forward dynamics computations. Real time dynamic simulation of a humanoid is 
common [Kanehiro et al. 2004]. Rather the difficulty lies with creating realistic dy
namic models and controllers. One approach to resolving the motor control problem 
is to manually design motor controllers for various motor skills. This is often tedious 
and difficult, and the resulting motion is often of low quality. Another approach is 
to use optimal control theory to solve for an optimal motion. This presents other 
problems. The goal of the optimization, as represented by an objective function, is 
often not clear. Empirical objectives are used, and there is no direct way to incor
porate stylistic details. Optimization of a high dimensional nonlinear system is also 
computationally expensive. 

It would be useful if at least a part of the control can be estimated from motion 
capture data. One way forward may be to explicitly take into account human mo
tor control mechanisms for human character simulation. Ideally one would like to 
directly infer motor control mechanisms from motion capture data. Motion capture 
data encapsulates much knowledge of how humans control their movements, and also 
contains rich style information. We can also borrow from research in human motor 
control from neuroscience, biomechanics and other related movement sciences. Hu
man motor control is still an active and contentious research topic. Nevertheless, 
even simplified models and general principles of human motor control can be useful 
in increasing the realism of computer animation. 

We propose a way to incorporate a simple human neuromuscular control model into 
dynamic simulation systems. Original motion capture animations can be modified 
adaptively according to small unexpected disturbances rising from a dynamically 
changing environment. In this chapter, we focus on modifying upper body motions 
alone, and allow the legs to follow the original motion capture trajectories. 

5.2 Related Work 

5.2.1 Physics-based Animation 

Skilled specialists have successfully designed motor controllers for dynamic human 
simulation by hand [Hodgins et al. 1995]. [Faloutsos et al. 2001] showed that such 
controllers are composable using machine learning techniques. Incorporating motion 
capture into dynamic simulations makes the control problem easier to solve, which in 
its simplest form is to directly use a tracking controller connected to a motion capture 
device as done by Zordan and Hodgins [1999]. Due to the similarity of this work to 
our own, we will differentiate them after discussing the related work from neuroscience 
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and movement science. Adjusting controller parameters results in force-based editing 
techniques [Pollard and Behmaram-Mosavat 2000]. 

Motor learning can be achieved through search, [van de Panne and Fiume 1993; 
Grzeszczuk and Terzopoulos 1995; Grzeszczuk et al. 1998] are able to synthesize motor 
control for basic motion tasks such as serpentine movement for fish, or locomotion 
for 2D characters for situations where balance is not a significant issue. The body 
configuration and optimization criteria are provided by the user. It is unclear how 
one could scale this technique to more complex systems such as humans. It is not 
straightforward to introduce explicit motion control knowledge into this framework, 
nor to model perturbation recovery from the environment. 

5.2.2 Biologically Based Motor Control 

A fact of biological motor systems is that neurons are slow when seen in the context 
of controlling movement. Sensory feedback through the periphery is delayed by a 
significant amount. For example, the delay in applying visual feedback to arm move
ments ranges from 150-250ms. Even a spinal reflex loop involving as few as three 
neurons can take on the order of 30-50ms. These are very large delays when com
pared with the total movement duration of very fast (150ms) to intermediate (500ms) 
movements [Kawato 1999]. Such delays can result in instability when trying to make 
rapid movements using high-gain feedback control. As a result, the high-gain feedback 
controllers which are widely used in robotics and control engineering are unrealistic 
for biological systems. 

During the last decade, it has become increasingly accepted that the brain utilizes 
internal models of dynamics in planning and controlling motion (Section 2.3.2). The 
internal model theory proposes that the brain needs to acquire an inverse dynam
ics model of the object to be controlled through motor learning, after which motor 
control can be executed using feedforward muscle forces, in a largely open-loop man
ner [Kawato 1999; Mussa-Ivaldi 1999]. This explains why human movements show 
highly stereotyped and stylized patterns, although almost any task can in principle 
be achieved in infinitely many different ways. This also explains the observation that 
well-trained movements exhibit relatively low joint stiffness, i.e., changes in net torque 
at the joint due to displacements from the reference motion are small. During motor 
learning the stiffness is higher and the speed and accuracy are lower, due to the lack 
of good internal models [Gomi and Kawato 1997]. 

Internal dynamics models consist of forward models and inverse models. Forward 
models predict the behavior of the body and world with its knowledge about the body 
dynamics and environment. Inverse models invert the system by estimating the motor 
command which will cause a desired change in state. Forward models are important 
in motor planning in biological systems, since they can provide fast, internal predictive 
feedback instead of relying only on the delayed feedback from the periphery. How 
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Figure 5.3: Our reference model of the motor system. Modules in dashed boxes are 
not implemented. 

these models are used by the brain for planning motion is mostly unknown, and is 
currently the subject of active investigation [Harris and Wolpert 1998]. 

The feedforward neural commands from CNS internal models will be corrupted 
when descending to the muscles. The noise is signal-dependent and is usually assumed 
to increase with the mean level of the signal [Harris and Wolpert 1998]. Signal-
dependent noise well explains many well-known facts and models in movement science 
literature, such as Fitt's law, minimum-jerk theory, and minimal-variance theory. 
There is also noise in the execution of a motion. The actual limb positions will drift 
from the desired trajectory planned by the CNS. Feedback control thus needs to be 
incorporated. 

The intrinsic mechanical properties of muscles and tendons produce proportional 
(stiffness) and derivative (viscosity) feedback forces without delay [Hall 1998]. Our 
model uses this muscle property as a low-gain feedback controller to stabilize the 
limb along the desired trajectory. The muscle force-length relationships can be quite 
complex, but it is well known that muscle stiffness increases with generated force [Wise 
and Shadmehr 2002]. A simple model of this non-linear relationship is the bilinear 
model of muscle impedance [Hogan 1990; Winters and Crago 2000]. This model 
implies that the effective stiffness is proportional to the neural input, and hence the 
generated muscle forces. We assume that muscle viscoelasticities also increase in a 
similar way and are small for well-trained movements. 

5.3 Our Motor Control Model 

Figure 5.3 shows our reference motor control model. The internal model is treated as 
a black box whose output is the feedforward motor command ip and desired trajectory 
qd- The muscle-tendon system is driven by the motor command and generates the 
force £. Muscle force and external force act upon the human inertial dynamic system 
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and produce the actual trajectory. There are three feedback paths: © muscle-tendon 
feedback; © reflexes; and (D voluntary reactions. 

The precise details of the internal models are not necessary for our purposes. It is 
sufficient to know the role of feedforward torques in generating human motion, and 
the use of low-gain feedback. Instead of computing the feedforward torques from 
complex internal models, we estimate them directly for a given motion from motion 
capture data (Section 5.5) by inverse dynamics. 

Among the three feedback loops, we only implement the muscle-tendon feedback, 
which has essentially zero delay. Reflexes have >30 ms delay, and voluntary reactions 
involves cortical replanning and have even longer delay. Our assumption is that for 
short duration unexpected disturbances such as being hit by a ball, the brain has 
no time to complete the long latency feedback loops and replan the motion. The 
trajectory is mainly restored by the low-gain muscle-tendon feedback forces. Thus 
we omit the long latency feedback modules and only consider the muscle feedback 
module. The muscle feedback controller we use is a hard-wired, low-gain and signal-
dependent feedback controller (Equation 5.6). For well-trained unperturbed motions, 
muscle feedback has low gain, as discussed in Section 5.2.2. We can estimate the 
muscle force £ by applying inverse dynamics to the motion capture data, and use £ 
as an approximation of feedforward command ip (Section 5.5.2). 

We can contrast our approach to that of [Zordan and Hodgins 2002], which solves a 
similar problem. [Zordan and Hodgins 2002] simulate motion capture-driven motions 
that hit and react. They use a high-gain tracking controller when there is no external 
impact. The high stiffness parameters make the simulations appear overly strong and 
inflexible when contact is made. Therefore, the gains of the affected joints have to 
be reduced explicitly to allow the dynamics of the impact to influence the motion in 
a natural manner. Their high-gain tracking controller is similar to what is used in 
robotics, while based on all the previous discussions, we know that biological systems 
use a feedforward controller to do most of the work, and only use low-gain feedbacks 
to deal with neuromuscular noise. Upon perturbation, muscle stiffnesses actually 
increase due to the stretch reflex (the most important and most studied spinal reflex, 
see Section 2.3.2). We base our work on the fundamental characteristics of biological 
systems. We use feedforward forces to do most of the work. The low-gain feedback 
needs only to correct for simulation drift. Upon perturbation, the simple muscle 
stiffness model can model reaction and restoration, without a manually designed 
gain-scheduling controller as used in [Zordan and Hodgins 2002]. Extensions to more 
accurate, complex and biologically correct motor control models are also easier with 
our approach. For example, we can relatively easily incorporate a stretch reflex by 
changing the current muscle stiffness model to that of [Perreault et al. 2000]. Finally, 
our system simulates the perturbations in real-time, while [Zordan and Hodgins 2002] 
was an off-line system at the time of publication. 

In general, impacts and other disturbances to the upper body may require the 
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lower body motion to change as well, to maintain balance and posture. [Zordan and 
Hodgins 2002] demonstrate how the lower body can be controlled separately using a 
balance controller that maintains the CoM within the support polygon. The control 
schemes only work when both feet are on the ground. Zordan's approach cannot be 
adopted directly into our system. The motions we use are highly dynamic full body 
motions involving stepping. For such motions, maintaining balance in a human-like 
way that is close to the quality of the original motion capture data is an unsolved 
problem. We will investigate this problem in following chapters. 

5.4 Dynamics Framework 

To incorporate the above proposed control model into dynamic simulations, we de
velop our own dynamic simulator. This in-house simulator provides us significant 
flexibility. Our dynamics simulation uses a velocity based Newton-Euler type for
mulation in maximal coordinates. Hereafter we only give a brief description of this 
framework, and refer the readers to Appendix D for more details. A Lagrange multi
plier approach is used for computing constraint forces, inspired by the work of [Baraff 
1996]. We extend this approach by allowing the simulator to solve both forward and 
inverse dynamics problems. Contact and collision are handled as linear complemen
tarity problem (LCP). 

5.4.1 Equations of Motion 

We formulate the equations of motion in a full-coordinate constraint-based matrix 
form, instead of in reduced (generalized) coordinates. In the Lagrange multiplier 
approach, the velocity of each body is parameterized by a full six coordinate repre
sentation. Each joint in an articulated body is represented by a constraint equation, 
which is a linear equation on the velocities of the bodies. For a system with many 
constraints and many bodies we construct one large jacobian matrix J , containing all 
of the constraint equations, and concatenate the velocities of all of the bodies into a 
single vector v. 

The row space of J is the space of constraint forces. Similarly we introduce an 
analogous matrix H whose row space is the space of all possible "muscle forces", or 
more precisely "joint torques", which the muscles surrounding a joint can apply to 
their neighboring bodies. Combining these forces and torques with the Newton-Euler 
equations of motion gives us the following matrix equation: 

M - J r - H T ' 

J 0 0 

1 a 
A "fx" 

- T 
0 

(5.1) 
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Here M is the mass-inertia matrix of the bodies in the system (a block diagonal matrix 
with each block corresponding to one rigid body link), a is the acceleration vector of 
the bodies, and vector f- contains external forces such as gravity and perturbation 
forces. 

Discretize Equation 5.1, we obtain: 

M - J T - H T ' 
J 0 0 

hX 
hr 

M v t + hix (5.2) 

where h is the time step size, v t and vt+h are the velocity of the rigid bodies at time 
t and t + h. To counteract drift at the joints due to numerical error, we use a Baum-
garte stabilization scheme [Baumgarte 1972]. c e stands for the equality constraint 
stabilization quantity. 

Equation 5.2 is a unified expression that is true for both forward and inverse dy
namics. We now rearrange this equation to reflect the known and unknown variables 
in these two types of problems. 

5.4.2 Forward Dynamics 

In forward dynamics with known control, the muscle force multipliers r are known 
quantities. Moving H T r to the right hand side of Equation 5.2 gives 

"M - J T " ' M v ( + hk 
J 0 h\ 

(5.3) 

where k = fx + H T r . Solving this equation at each time step gives us the updated 
velocity of the system. 

5.4.3 Inverse Dynamics 

Inverse dynamics is the process of finding a set forces that explain a given motion. The 
inverse dynamics equations we solve are another form of Equation 5.1. We move M a 
to the right hand side of the equation (because the acceleration is a known quantity). 
Assuming the constraint equations Ja = 0 are satisfied by the given motion, we no 
longer need the second row of Equation 5.1. We are left with: 

= M a - fx (5.4) 

If we can estimate the mass properties of the bodies of our articulated figure, along 
with the accelerations of its component bodies, then Equation 5.4 can be solved to 
determine the muscle forces multipliers r. 

[ J T H T ; 
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5.5 Integrating Motor Control with Dynamic Simula
tion 

We have developed a general-purpose rigid body simulation system as described in 
the previous section. The simulator is fast enough to simulate the dynamics of our 
54-DoF character in real time. We now show how to extend it to meet the require
ments of motor control. The integration of our motor control method and dynamic 
simulation consists of two main components. The first is a preprocessing stage, where 
we use inverse dynamics to estimate the feedforward torques from the motion capture 
data. The second component, which happens during the dynamics simulation, is the 
calculation of the actual muscle torques, which are a combination of the precomputed 
feedforward torques and feedback torques. The feedback torques depend on the dif
ference between the motion capture trajectories and the current state in the dynamic 
simulation. This difference can be either caused by simulation inaccuracies, or by 
dynamic perturbations from the environment. 

5.5.1 Algorithm Summary 

Our approach can be summarized by the following steps, the details of which then 
follow. 

• Preprocessing: inverse dynamics. 

— Estimate the mass matrix M for rigid bodies which approximate the shape 
of the character. 

— Fit a smooth curve to the position data. 

— Sample the accelerations of the rigid bodies at the rate at which we wish 
to run the dynamic simulation. 

— For each sampled time step: 

* Compute J and H given the positions of the rigid bodies. 
* Solve the inverse dynamics equation to determine the muscle torque 

multipliers r, and store them. 

* Store the current joint angles 9^ and joint velocities 9^. 

• For each step during forward simulation: 

— Compute the current joint angles 9 and joint velocities 9. 
— Compute the feedback torques 7 1 , j n , using Equation 5.6. Compute the 

feedforward torques ipi, ...,tpn, using Equations 5.7. 

— Compute the total external force e. 
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— Solve the dynamics Equation 5.3 to determine the state of the system at 
the next time step. 

5.5.2 Inverse Dynamics Preprocessing 

Before beginning our dynamic simulation, we estimate a set of feedforward muscle 
torque multipliers r for each time step. Given the mass matrix M, the constraint 
jacobian J, the matrix H, the external force vector e, and the acceleration a, we can 
calculate r using Equation 5.4. 

We first estimate the accelerations of the rigid bodies in each frame by fitting a 
cubic spline to the position data, and then finding the second derivative of the curve. 

One problem in evaluating Equation 5.4 is that the mass properties of the char
acter's component rigid bodies are unknown. We deal with this by approximating 
the shape of the character with polyhedra and computing the mass matrix for these, 
assuming the density of water (the body's average density is reasonably close to that 
of water). Another option to consider for future work is to use the approach described 
by Shin et al. [2003]. 

Another problem is that we do not know the ground reaction forces for the full body 
motions that we have access to. For this reason, and because maintaining balance 
during highly athletic motions is an unsolved problem, we simply constrain the root 
joint to move along the motion capture path. We can thus omit the contact dynamics 
with the floor. For future work, we can consider capturing ZMP trajectories together 
with full body motions, using the pressure sensor pads described in Section B.1. 

In order to compute J and H, we require a kinematic model of the character to 
tell us the location and type of each joint. In our experiments, we use the kinematic 
model shown In Figure 5.4(a). 

Using Equation 5.4, we precompute feedforward torque multipliers for each of the 
frames in the animation before beginning the forward simulation. The total feed
forward torque is given by H T r . The dimension of r is the sum of the degrees of 
freedom, which we denote with n. For the next section, we need to break this down 
into smaller components T i , r n , each of which corresponds to one degree of freedom 
of the joints. 

H T T = [ h ! h 2 . . . h j 

= h i T i + h 2 r 2 + . . . + h n r n 

We store Tj's instead of hiXj 's, because the orientation of the joints with respect 
to the world, i.e., hi 's, may be different in forward simulation than in the original 
motion capture animation. 

(5.5) 
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5.5.3 Combining Feedback and Feedforward Torques 

The muscle torques applied during forward simulation are a combination of the feed
forward torque (as described in the previous section) and the feedback torque, which 
models the muscle dynamics of our motor control model. 

Individual feedback torques are calculated for each degree of freedom of all of the 
joints. Let $i,#2, • ••0n be joint angles corresponding to each degree of freedom, and 
0i,02, •••0n be joint velocities. The joint angles Qd\,0d2i •••Odn are the "desired" joint 
angles - the joint angles from the motion capture data. 

The feedback torque compensates for small drift and disturbances during the sim
ulation. It is given by 

7 i = h i | r i | ( f c a i ( ^ - ^ ) + fc*(^-i-^)) (5-6) 

where kSi and are the stiffness and damping constants for each DoF. Partial 
measurements of these parameters are available (e.g., [Latash and Zatsiorsky 1993]), 
but complete data for humans is still unavailable to our knowledge. However, we do 
not require high accuracy for animation applications. We experimentally determine 
only one pair of these constants, and scale other gains according to the moment of 
inertia of the chain of bodies affected by that joint [Zordan and Hodgins 2002]. Note 
that the stiffness and damping gains in Equation 5.6 are scaled by the magnitude of 
the muscle torque multiplier |r;|, as observed empirically in muscle biomechanics and 
discussed in Section 5.2.2. 

The feedforward torques are computed by 

ipi = hiTi (5.7) 

Our total muscle torques are given by the sum of the feedforward and feedback 
torques: 

n 

£ = J > . + ^) (5-8) 
t=i 

The muscle torques are added into the dynamics equation along with any other 
external forces, such as gravity and perturbations. 

5.6 Results 

Figure 5.4(a) shows the skeleton model we use in our simulation and rendering. It 
has 54 rotational DoFs in total. Figure 5.4(b) is a close-up of the kinematic root. It 
is a joint approximately located at the Lumbosacral angle of the spine. The dynamic 
simulation runs in real-time on a dual-CPU (1.78 GHz Intel) machine when there is 
no contact, or when there are simple contacts. The frame rate drops somewhat when 
complex contacts happen. 
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(a) (b) 

Figure 5.4: (a) The skeleton model used in the character simulation. Each sphere 
represents a rotational joint. The total rotational degrees of freedom is 54. Red, 
green and blue axes represent the X, Y, Z joint rotation axes when the corresponding 
DoF is present, (b) A close-up of the kinematic root. 

We perform perturbation experiments on captured arm motions as well as full 
body motions from football games. Figure 5.5 shows motion perturbation on an arm 
motion sequence. Figure 5.6 shows motion perturbations on two sequences of full body 
motion. In both cases, the simulated skeleton responds to external disturbances and 
returns to the original motion in a natural fashion. More examples are available in 
the video http://www.cs.ubc.ca/~kkyin/animation/Yin_PG03.avi. 

For all the experiments, dynamic simulation is used even during times when there 
is no perturbation. In a real application where computation cycles should be saved 
whenever possible, a hybrid kinematic and dynamic system is preferable [Zordan et al. 
2005]. That is, when there is no perturbation, motion examples can be played back 
kinematically. When a perturbation occurs, dynamic simulation is activated using 
initial conditions that are estimated from the kinematic trajectories. 

5.7 Discussion and Future Work 

Motor control is one of the major challenges in physically based human simulation. 
To our knowledge, our work is the first that tries to address this problem by explicitly 
incorporating human neuromotor control models into the human simulation system. 
We test our approach with motion perturbation tasks on motion capture data, and 
the results are promising. 
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The principal limitation of this work is that the implemented motor control model 
is very simple. Spinal and supraspinal feedback pathways are missing. This limits us 
to modelling short duration disturbances that do not endanger balance, and that do 
not involve motion replanning. We plan to address the longer latency (and also more 
complex and less well understood) feedback pathways in our future work. 

Despite the simplicity of the implemented motor control model, animation with 
realistic responses to small perturbations can be generated, in real time. Applications 
such as interactive video games can thus benefit from an enriched motion repertoire. 
We believe that using a biologically based motor control model is the ultimate way to 
solve control problems in the dynamic modelling of character animation. In the future, 
it would be interesting to implement more modules of the proposed computational 
motor control model, and apply them to more challenging motion transformation 
tasks, such as generating realistic balance recoveries, dodges and falls in a real-life 
interactive sports video game. 

Figure 5.5: A simulated arm reacts to the impact of a ball hitting (between frames 2 
and 3). The frames should be read from left to right and top to bottom. The arm, 
represented by 3 links, is fixed to the world at the shoulder (the lower end). The 
arm in the original motion is extending its elbow joint, and shown on the left in each 
frame for comparison. 
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Figure 5.6: First and second row: an original motion and its perturbed motion, 
respectively. The impact occurs between frames 1 and 3. Third and fourth row: 
another captured motion and its perturbed motion, respectively. The impact occurs 
between frames 1 and 4. The ball has a radius of 10cm and a density of 1000kg/m3. 

78 



Chapter 6 

Dynamic Animation of Interactive 
Balancing 

We neglect the problem of balance in the previous chapter. In this chapter, we 
develop, integrate, and evaluate character balance controllers that, from an initial 
standing pose, can recover from unexpected external perturbations of varying magni
tudes in arbitrary directions. This chapter can also be viewed as a dynamic parallel 
of Chapter 4. The supported balance strategies include ankle and.hip strategies for 
in-place balance, single-step, double-step, and multi-step balance recovery. These 
strategies are further integrated with a walking controller. The limitations of each 
type of controller are mapped out in terms of the maximum push magnitudes and 
directions they can sustain. The controller construction can be informed using mo
tion capture data if desired. Results are provided for a 30-DoF humanoid simulation 
that can be controlled at interactive rates. An example result is shown in Figure 
6.1, where a double stepping controller constructed from a motion capture example 
recovers from a large push. 

The control of balance for humanoids is an important and challenging problem. In 
this chapter, we focus specifically on the problem of balance recovery for small and 
large pushes during quiescent stance. The response to a push may come in many 
different forms, depending on the magnitude and direction of the push. Small pushes 
may require no stepping. Larger pushes may require a single step, double step, or 
possibly multiple steps before slowing to a stop. We present a system that integrates 
all of these strategies and document their performance limitations. 

A particular contribution of this work is the omnidirectional nature of our con
trollers. Related work has most often focussed on modeling control in response to 
forward pushes in the sagittal plane. The control models we develop and demonstrate 
can respond to a wide range of push magnitudes and directions. We note that de
veloping controllers for large lateral and diagonal pushes is a challenging task. The 
design of the stepping strategies can be tailored using motion capture data. Impor
tant parameters are precomputed in an offline optimization step in order to provide 
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Figure 6.1: An example result. A double stepping controller reconstructed from 
motion capture data responds to a 600N, 0.2s forward push to the torso. 

response in real-time. 
The remainder of the chapter is structured as follows. Section 6.1 summarizes the 

closely related work. Section 6.2 describes the in-place balance controllers, includ
ing ankle strategy and hip strategy. Section 6.3 gives the details of the stepping 
controllers, including single-step, double-step, and multi-step strategies. Section 6.4 
shows how to integrate various sub-controllers into a more powerful multi-strategy 
balance controller. We show the simulation results in Section 6.5. Lastly, Section 6.6 
summarizes this chapter and discusses possible future directions. 

6.1 Related Work 

The literature in robotics, control, and biomechanics related to balance control for 
humans and humanoid robots is vast, and thus we necessarily restrict ourselves to a 
discussion of representative papers, as well as the specific work that is most related 
to ours. 

6.1.1 Common Points of Reference 

There are several balance measures and control mechanisms that are commonly used 
in much of the work in this area. In robotics, various balance measures have been 
developed, including: zero moment point (ZMP) [Vukobratovic and Juricic 1969], 
foot rotation indicator (FRI) [Goswami 1999], and zero rate of change of angular mo
mentum (ZRAM) [Goswami and Kallem 2004]. With appropriate controller designs, 
these measures have been used to maintain balance for humanoid robots, most typi
cally in the context of walking and relatively small disturbance [Kagami et al. 2000; 
Okumura et al. 2003]. Linear and angular momenta are commonly used quantities in 
motion and balance control. These measures are often used in combination with a ref
erence trajectory that comes from motion capture data or an optimization procedure. 
Lastly, inverted pendulum models (IPMs) are often used as a tool to analytically 
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predict the motion of the center of mass during both quiescent stance and walking. 
For walking, IPMs can be used to help inform where the next foot-placement should 
be in order to retain balance during walking. More recently, the Capture Point and 
Capture Region have been proposed to predict when and where to take a step for a 
linear IPM augmented with a flywheel [Pratt et al. 2006]. 

6.1.2 Data-Driven Approaches to Balance Control 

In recent years there has been considerable interest in using motion-captured reac
tions to pushes and generalizing these to new pushes that have not been previously 
observed. These techniques directly rely on a family of captured reactions and aim 
to interpolate and blend between them as necessary using momentum-based inverse 
kinematics and motion blending [Arikan et al. 2005; Yin et al. 2005; Komura et al. 
2005a]. Although some try to take some dynamics into account, these techniques are 
kinematic. Thus while they may be adequate for purposes of computer animation, 
their use in interactively controlling the motion of fully dynamic humanoids remains 
unproven. See Chapter 4 for a detailed investigation. 

6.1.3 Balance Without Stepping 

The problem of in-place balance has seen a number of approaches, although they 
share many common elements. PD controllers based on CoM regulation using the 
ankles and hips have proven to be good models for sagittal plane balance control 
[Wooten 1998; Zordan and Hodgins 2002; Zhao and van de Panne 2005]. Recovery 
from large forward pushes during quiescent stance is an interesting case where a 
two-phase balance strategy becomes effective [Abdallah and Goswami 2005]. In the 
reflex phase, the body deliberately moves away from the ideal posture to absorb a 
disturbance force and maintain controllability. The recovery phase attempts to restore 
the body to its original posture as the disturbance force subsides. The motions do 
not involve any stepping. In [Kudoh et al. 2002], an optimization procedure based on 
quadratic programming is combined with PD control, which can boost the magnitude 
of pushes a humanoid robot can cope with. The focus is primarily on forward pushes 
in both [Abdallah and Goswami 2005] and [Kudoh et al. 2002]. 

6.1.4 Balance During Walking 

The control of walking naturally involves issues of balance and has seen the use of 
many different approaches. Some representative examples with a particular focus on 
stepping control and balance are as follows. Seminal early work explores the use of 
a linear feedback strategy for swing-leg stride-length control to stabilize the dynamic 
walk of stilt-type bipeds [Miura and Shimoyama 1984]. In [Sugihara and Nakamura 
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2002], a balancing method with modification of pre-designed motion trajectories is 
presented. They use an Inverted Pendulum Model (IPM) to calculate desired CoG 
displacements upon disturbances, and then use the CoG Jacobian to coordinate the 
full body to recover the reference trajectory. Sensory reflexes, including a ZMP 
reflex, a landing-phase reflex, and a body-posture reflex, are used to stabilize a walk 
pattern generated off-line in [Huang and Nakamura 2005]. Feedback methods using 
the A M P M model (Angular Momentum inducing inverted Pendulum Model) have 
been proposed for bipeds to counteract external sagittal plane perturbations during 
walking [Komura et al. 2005b]. With this model, the walking steps are unchanged 
from the original feedforward motion. Limit cycle control, as described in [Laszlo 
et al. 1996], uses local linear return-map models to stabilize walking simulations onto 
a limit cycle. Our work relies on the limit cycle control strategy of Laszlo et al. [1996] 
for our multiple-step balance recovery controllers and our walking controller. We treat 
multiple-step recovery as a type of walking wherein the target speed is successively 
decreased over a sequence of steps until the character's translational momentum falls 
within the domain of our in-place controller. 

6.1.5 Stepping Response Models 

The stepping controller in [Kudoh et al. 2006] is the closest related work to our own. 
Essential parameters are first extracted from a sequence of motion captured human 
stepping examples to construct an appropriate inverted pendulum model (IPM). At 
the start of a stepping action, the trajectory of the CoM is determined by the IPM. 
Lower body motion is then generated by using inverse kinematic solutions for the 
support chain (stance ankle to CoM) as well as using IK to place the swing foot at 
a desired point along a target trajectory. A final optimization procedure addresses 
the dynamic consistency of the balance motion. Results are presented for significant 
forward disturbances in the sagittal plane during both quiescent stance and walking. 

Like the work in [Kudoh et al. 2006], we employ a stepping strategy as necessary 
to deal with large perturbations. As in their work, we also integrate this with in-
place balance strategies. However, our work employs specific response models for 
single-step, double-step, and multi-stepping strategies. We model the domains over 
which these various strategies can be enacted. Importantly, we test and document the 
performance of our controllers for perturbations from all possible directions. We thus 
address the challenge of designing controllers for large-magnitude diagonal pushes. 
For lateral pushes, our control model mimics the human strategy of stepping with the 
right leg for a push to the left. Although this at first seems counterintuitive, it reflects 
the fact that a push to the left will naturally unload the right leg, thus leaving it free 
to perform a cross-step to the left in order to retain balance. Our control strategies 
can be informed by motion capture data. In Section 6.5 we make specific performance 
comparisons of our controller with some of the controllers reported in the literature, 
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to the extent that this is possible. 

6.1.6 Overview of Human Balance Strategies 

The biomechanics and motor control community has studied human balance in con
siderable depth. Studies of how we control the equilibrium of the body in the face of 
gravity and environmental disturbances have led to the concept of movement strate
gies [Winter 1995; Horak et al. 1997; Shumway-Cook and Woollacott 2001; Maki et al. 
2003; Patla 2003]. Postural strategies describe general sensorimotor solutions to the 
control of posture, including not only muscle synergies but also movement patterns, 
joint torques, and contact forces. From human subject experiments, various balanc
ing strategies have been observed in response to external perturbations, including an 
ankle strategy, a hip strategy, as well as change-of-support strategies such as stepping. 

The ankle strategy uses distal to proximal muscle activation, primarily at the ankle 
and the knee. It is characterized by body sway resembling a single-segment-inverted 
pendulum and is typically elicited during small shifts on flat support surfaces or 
perturbations of CoM when the task requires maintenance of upright posture. 

The hip strategy uses early proximal hip and trunk muscle activation. It is char
acterized by body sway resembling a double-segment inverted pendulum divided at 
the hip. It is typically elicited during perturbations that are large combined with a 
lack of a surface to support a step, on compliant support surfaces, or when the task 
requires a large or rapid shift in CoM. 

The stepping strategy uses early activation of hip abductors and ankle co-contraction. 
It is characterized by asymmetrical loading and unloading of the legs to move the base 
of support under the falling CoM. This is typically elicited when there are no sur
face or instructional constraints, or when the perturbations are extremely large and 
in-place balance is not possible. Multiple steps may occur during balance recovery. 

6.2 In-place Controllers 

We now describe our controllers. We begin with balance control without stepping, 
which is the most limited in terms of its ability to react to a push. 

6.2.1 Ankle Strategy 

Biomechanically, the ankle strategy is the process of using ankle plantarflexors and 
dorsiflexors, and invertors and evertors to adjust the CoP to provide the needed 
moment to push the perturbed CoM to the desired location. The ankle strategy 
can be viewed as an equilibrium point tracking mechanism. We implement it as a 
proportional derivative (PD) controller that produces a virtual force f regulating CoM 
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position p and velocity p. 

f = kp(pdesired - p) - kdp (6.1) 

The virtual torque needed from a joint (ankles, knees and hips) is defined by: 

T„ = f x r (6.2) 

where r is the vector from the CoM to the individual joint center. The virtual torque 
is then transformed by R, the matrix that relates the global coordinate system to the 
joint's coordinate system, into actual joint torques: 

Tj = RTV 

Ankle Strategy T w o - P h a s e Hip Strategy 

Figure 6.2: Left: Ankle strategy; Right: Hip strategy 

6.2.2 Hip Strategy 

Hip flexors/extensors and abductors/adductors are more effective in displacing the 
CoM. In addition, from Section 6.1 and [Abdallah and Goswami 2005], the rotation 
of the hip induces angular momentum which shifts the ZMP inward with respect to 
the foot support boundary. The hip strategy consists of a reflex phase and a recovery 
phase [Abdallah and Goswami 2005], as illustrated on the right of Figure 6.2. 

We implement this mechanism as simple linear synergy that co-activates the hips 
based on ankle torques computed from the ankle strategy: 

where Tvh is the virtual hip torque, rva is the virtual ankle torque. In our experiments, 
we used s = —3.0. Due to kinematic constraints, the hip strategy is primarily effective 
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for forward pushes [Winter 1995], and thus we only apply the hip torque when the 
sagittal component of the joint torque is larger than —50Nm. 

To facilitate the self-induced rotation, the hip position gain (i.e., kp, see Equa
tion 6.3) is lowered to 20% of its original value during the yielding phase, and regains 
its strength as a linear function of time over 3X = 2.0 seconds during the recovery 
phase. The virtual character transitions to the recovery phase when the CoM veloc
ity rotates by more than 90 degrees, i.e., p t • p 0 <= 0, where po is the original CoM 
velocity, and p t is the current CoM velocity. This separates the hip strategy into two 
distinct phases. 

6.3 Stepping Controllers 

Pushes of large magnitude require a stepping strategy. We classify our stepping 
controllers into three types, based on how many steps the controller evokes before 
returning to a static upright posture. 

• Single step: Only steps once, and recovers to an upright posture with a staggered 
foot stance. 

• double step: Steps twice, and brings the trailing foot next to the stepping foot 
when returning to the upright posture. 

• multi-step: Takes more than two steps to recover, with the number of steps 
being determined on the fly. The final quiescent stance pose is similar to the 
starting pose. 

A l l of the stepping controllers are characterized by three phases: 

• Phase 1: Change of support. In this phase, the controller decides where and 
how to lift-and-place the swing foot to change the foot support polygon. This 
is repeated multiple times for double-step and multi-step control. 

• Phase 2: Reduction of momentum of the system. In this phase, the controller 
removes momentum either through stiffness and CoM velocity regulation in 
single and double stepping, or through up-vector regulation [Laszlo et al. 1996] 
in the case of multi stepping. 

• Phase 3: Return to the upright posture. The controller steers the character 
back to an upright posture. 

We now describe the various components of the stepping control in more detail. 
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6.3.1 Where and How to Step 

The basic control representation used for stepping and walking is a pose control graph 
(PCG), which is a type of finite state machine as shown in Figure 6.3. Each state 
Pi specifies a set of desired joint angles for the character, and the joints are driven 
toward the desired angles through the use of PD controllers: 

T = kp(8desired -8)- kd8 (6.3) 

Figure 6.3 shows a typical P C G for stepping. It first lifts the left leg as shown on the 
left, and then steps down as shown on the right. State Pn can be the same as P\ for 
a cyclic graph, usually for cyclic motions such as walking. 

The state transition conditions in the P C G are time-based or sensor-based. In the 
P C G in Figure 6.3, a transition occurs from pose P i to pose P2 after 0.3s. The sensor 
based transition conditions we use in this work include foot contact and CoM velocity. 
For example, in the P C G for multistepping and walking, P2 will transition to P 3 , the 
symmetric counterpart of P i , after the swing foot contacts the ground. CoM velocity 
is monitored to allow a transition to Phase 3 of the stepping controllers when this is 
deemed feasible based upOn a velocity threshold. The P C G provides a base motion 
upon which control adjustments are then layered. 

The P C G contains a small number of poses (n = 4) and can be designed either 
manually as in [Laszlo 1996], or they can be extracted from motion capture data. In 
order to extract key poses from motion capture data, we employ kinematic centroid 
segmentation [Jenkins and Mataric 2003] to extract the key 'leg lift' and 'foot place
ment' poses, which are used as poses P i and P2 respectively. Additionally, we allow 
continuous tracking of the upper body motion data as a function of time in order to 
more precisely replicate a particular desired arm, torso, and head movements during 
a motion. 

Given a base P C G , balance control is layered on top of it by modifying the control 
variables, i.e., target joint angles, of the swing hip, which thereby parameterizes the 
placement of the swing foot. This type of foot placement strategy is implicit in most 
inverted pendulum models used for human balance and walking [Winter 1995; Kajita 
et al. 2003a; Kudoh et al. 2006]. The two Euler angles of the swing hip are 8S for 
the sagittal angle and 8i for the lateral angle! The control variables for the stepping 
thus consist of c = (8s,8i)T. We compose the final desired hip angles by adding the 
control variable hip angles to the hip angles from the base P C G . 

Given the above general control framework, a first key decision to be made is which 
leg should take the first step required to recover balance? Upon an unexpected push, 
it is most natural to step using the leg which is unloaded by the push [Maki et al. 
1996]. More formally, we determine this using the sign of p • e, where p is the CoM 
velocity at the beginning of a step, and e is the load line from the right foot to the 
left foot. A positive value implies a push with a component to the left, and thus will 
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Figure 6.3: A pose control graph represents the basic control for stepping and walking, 
and is a finite state machine. The states Pi specify desired poses. State transitions 
are either time-based or sensor-based. 

unload the right leg which should then be the leg to take a step. 
A second problem to solve when pushed is that of determining where to step to help 

recover balance. This will typically be a function of the current motion of the CoM. 
As in [Laszlo et al. 1996] we apply an offline search procedure to compute solution 
families and then use a function approximator to replace the search procedure with 
an oracle that can then efficiently provide answers for online use. 

The search procedure works in a simple and effective fashion as follows. A set of four 
simulations is carried out for each step, two of which sample the result of step sizes of 
L + AL and L — AL, where L is a default step length in the sagittal plane. A further 
two simulations sample the effect of making lateral perturbations of —AW7 and AW 
to the default target step placement. For each simulation, a desired target quantity 
called the regulation variable (RV) is measured, thus allowing the construction of a 
simple finite-difference-based linear model of how variations in foot-placement affect 
the regulation variable, which is the quantity we wish to control. For single and double 
stepping controllers, the RV used is the final CoM velocity. For multi stepping and 
walking controllers, the RV consists of the trunk angles with respect to the vertical. 
The above description captures the spirit of the control strategy, and we refer the 
reader to [Laszlo et al. 1996] for additional details. 

In order to make the stepping controllers operable in real time, we precompute 
solutions for a family of planar pushes that span a range of directions and magnitudes 
and then use a function approximator to build a predictive model. Given a set of 
planar pushes of different directions and magnitudes fj = (fix,fiz)T, we record the 
planar CoM velocities Vj = (vix,ViZ)T as the state variable, right after the push ends 
and just before any balance controller starts to execute. We use a Y-up coordinate 
system, and the y component of the velocity is discarded. Using the search technique, 
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we record the controls c$ = {6is,Qu)T required to minimize the final C O M velocity 
for each example push. Using a small set of samples, we then construct a function 
C j ( v j ) using a thin-spline function approximator. Figure 6.4 shows an example of 
the resulting control surface for a single-step controller. Given a new body state, 
the controls are readily predicted using the function approximator, which enables 
real-time online control. 
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Figure 6.4: Thin plate interpolation of control points for single stepping. Left figure 
shows hip sagittal angle # s (v ; ) ; right figure shows hip lateral angle #J(VJ). 

6.3.2 Single and Double Stepping 

Our single and double stepping controllers share the same mechanism for Phase2 and 
Phase3, after touchdown of the swing foot: 

• Reduction of momentum of the system. This is achieved in two ways. First, 
the position gains for the swing foot and knee are dropped to zero upon ground 
contact in order to reduce impact, and regains its original values linearly over 
time in B2 = 0.5 seconds. Second, active torques are added to regulate the CoM 
velocity, i.e., Equation 6.1 with only the damping term. 

• Return to the upright posture. When the velocity of the CoM is below a thresh
old 7 = 0.15m/s, we deem it is now safe to start to return to the desired upright 
posture. A kinematic planner calculates desired ankle and hip angles based on 
the current foot configuration and straightened knees. This new pose is added to 
the P C G to steer the character back to this posture over a duration of /33 = 0.5 
seconds. 

These two phases follow the philosophy of Section 6.2.2 and [Abdallah and Goswami 
2005]. Reduction of momentum and recover of the upright posture can be conflicting 
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goals in balance tasks upon large pushes. Separating them into two phases results in 
a more successful and robust balance controller. 

6.3.3 Multi Stepping Controller 

The single-step and double-step controllers both provide rapid stops, i.e., they bring 
the motion to rest as quickly as possible. Another strategy we investigate is a more 
gradual stop whereby the momentum caused by external forces is gradually dissipated. 
For this we employ the walking controller proposed in [Laszlo et al. 1996]. 

In [Laszlo et al. 1996], a P C G gives the basic open-loop controller for walking. Local 
linear models are then constructed through preview simulations to stabilize a set of 
regulation variables (RVs), and hence the walking itself, onto a limit cycle. Different 
open-loop controllers and different RVs can be used to achieve different styles as well 
as controlling the walking direction. For our purposes here, we only use a straight-
line forward-walking controller, with the up-vector as the RVs. The up-vector is a 
vector aligned with the principal axis of the torso, and measures the torso lean in 
the sagittal and frontal planes. To begin a walk, the torso typically leans forwards. 
Upon being pushed forward, the torso will lean forward substantially. For each step, 
instead of commanding the feedback controller to regulate the up-vector about a fixed 
target value as in a cyclic walking controller, we decrease it over time with the goal 
of achieving a gradual stop: 

RVn = a * RVn-! 0 < a < 1 

where n is the counter for the number of steps. We set a — 0.9. When the velocity 
of the CoM along the walking direction falls below a threshold 7 = 0.15m/s, we 
execute Phase 3 as described in Section 6.3.2 for the single and double stepping in 
order to achieve a full stop and postural recovery. This approach can also cope well 
with multiple pushes sustained during the gait. 

6.4 Multiple Strategy Integration 

Given the in-place, single-step, double-step, and multi-step control strategies, we 
next develop a model that experimentally evaluates the capabilities of each of these 
strategies for pushes of arbitrary direction. These models provide a reference for com
paring the performance of our implemented control strategies with other published 
performance data (where available). They also enable us to design a controller that 
integrates the various balance strategies in a robust way. 

We record the maximum push f a controller can deal with in each of five chosen 
directions. We denote points for strategy Si as , j = 1,2,3,4,5, and denote the 
convex hull of these points as H.(Si). We only deal with half the plane (pushes with 
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a component to the right) because the lateral symmetry of our character allows us 
to mirror the controls to cover the remaining directions. The convex hulls of the 
controllers nest as shown in Figure 6.6. This suggests an integrated controller that 
can utilize multiple balance strategies by choosing an appropriate strategy based on 
the direction and magnitude of the observed push. 

We order the strategies Si by their balance recovery capabilities from low to high, 
i.e., in-place strategy (ankle and hip strategies coactivated), single stepping, and dou
ble stepping. The domain of a particular strategy -.(£*) is defined as Cl(Si) = 
H(Si) — H(Si-{). The sample points C(Si) used to define a strategy initially consists 
of the points on its domain boundary, i.e., the 10 points C(Si) = ŝ . U S j _ i . . We desire 
that the controls interpolated from C(Si) work for all points s € ti(Si). To verify 
this, we run the controllers on a densely-sampled grid of test perturbations within the 
bounding box of its domain. We denote a successful balance recovery with a '+', and 
a failure with a ' x ' , as shown in the lower row of Figure 6.5. The middle column is 
the result for the single-step controller. As we can see, the small number of boundary 
point samples are already enough for the controller to work for the whole domain. 

For the double stepping controller there exist regions where the initial small set of 
boundary point samples is insufficient to guarantee success over the full domain that 
they enclose. This is perhaps because the sample points are widely scattered across a 
large region and that the double-stepping motion is simply more complex in nature. 
We' remedy this by adding more sample points in the interior of C(Si). The centroids 
of the failure region are chosen as points for placing additional samples. We do this 
iteratively until the controller works for the whole domain. 

We emphasize that this integration method is independent of the different sub-
controllers themselves, as long as each sub-controller defines a clear domain. For 
example, we can potentially replace our single-stepping controller with that reported 
in [Kudoh et al. 2006]. 

6.5 Results 

Figure 6.6 illustrates the nested capabilities of the various types of balance strategies. 
Not included in this figure is the ability to do multistepping, i.e., to take multiple 
walking steps to dissipate the momentum acquired from the push. The shape of the 
controller domains has been characterized using a series of simulations in a set of 
8 directions and recording the maximum push magnitude for which a! given control 
strategy can succeed. These data points are illustrated and are used as the basis for 
constructing the control envelopes. 

A l l controllers are tested with the simulation engine ODE (Open Dynamics Engine, 
http://ode.org/), on a full 3D human model with 30 internal DoFs. We refer readers 
to [Laszlo et al. 1996; Zhao 2004] for the detailed kinematic and dynamic parameters 
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Figure 6.5: Left column: in-place strategy. Middle column: single stepping. Right 
column: double stepping. Upper row: the control points for each strategy. Lower row: 
Nested polygon outlines the domain of a controller. Green '+' marks the successful 
region of the controller. Red ' x ' marks the failure region. The interval between the 
marks are 50 N. 

of this humanoid model. Before the perturbations are applied, the virtual character 
adopts a standard quiescent stance pose that has the feet placed at shoulder width. 
The pushes we apply are impact forces of 0.2 seconds at the chest level. During the 
pushes, we delay the activation of the stepping controllers until the end of the 0.2s 
push in order to mimic the latency of human sensory-motor feedback loops [Kawato 
1999]. 

For all the controllers, the recoverable backward pushes are significantly less than 
those of the forward or sideways pushes. This conforms with our motion capture 
experiments with real humans, and we deem it to be a consequence of the anthro
pomorphic model. Also from the success of the relatively sparse control points for 
the stepping controllers, we conclude that our stepping controllers are smooth and 
robust, with respect to variations of push directions and magnitudes. 

We now quantitatively compare our results to other results from the literature. 
[Wooten 1998] applied pushes below 150 N from different directions over a 0.25 second 
interval. In [Kudoh et al. 2002], 500 N forward push, 300 N backward push, and 
200 N sideways push, each last 0.1 seconds are tested. The disturbance forces used in 
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Figure 6.6: The domains of the various balance control strategies implemented in our 
system. The vertical and horizontal axes represent the forward (sagittal) and lateral 
magnitude of a 200ms push. The interior of the labeled regions represent the range 
of pushes that can be accommodated by each type of control strategy. 

[Abdallah and Goswami 2005] is 300 N for 0.1 seconds. The perturbations reported 
in [Komura et al. 2005b] range from 0.1 kg-m/s to 0.2 kg-m/s in linear momentum1, 
and 12.0 kg • vn? js to 24.0 kg - m?/s in angular momentum. The maximum push 
reported in [Kudoh et al. 2006] is 300 N forward for 0.4 seconds to the CoM. 

A summary comparison of published results is shown in Table 6.1. We note that 
a performance comparison of balance controllers based solely on the magnitude of 
pushes may be misleading, because the directions, locations, and durations of the 
pushes may be different, and the underlying kinematic and dynamic models are usu
ally different. Since from a static state, the linear momentum injected into a system 
is A P = fAt — mAv, we believe that the maximum CoM velocity caused by the 
push, i.e., the momentum normalized by the total mass, is possibly a better choice for 
performance comparison. Quantitatively, for forward pushes with our controller the 
maximum recoverable CoM velocity is 1.27m/s; for pushes sideways, the maximum 
velocity is 1.24m/s; for backward pushes, it is 0.84m/s. 

We also tested the robustness of our controllers with respect to model variations, 
such as limb mass and limb length. We can decrease the mass of every limb up to 
5% and the control for the single stepping works without any changes. If we decrease 
the mass by 10%, one out of the ten control points fails, and small adjustments (< 2 
degrees computed automatically) are needed to make them work again. If we decrease 
the mass by 50%, the automatic control search algorithm fails to return meaningful 
control for two out of the ten control points. We also tried to increase the shank 

1 Judging from the magnitudes, there may be an error in the reported numbers. 
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paper model maximum Dushes experimented controller 
direction A P (kg • m/s) 

[Wooten 1998] humanoid forward 20 omnidirectional 
sideways 30 in-place only 
backward 16.25 

[Kudoh et al. 2002] humanoid forward 50 omnidirectional 
sideways 20 in-place only 
backward 30 

[Abdallah and Goswami 2005] single leg forward 30 single direction 
plus H A T in-place only 

[Komura et al. 2005b] humanoid forward 0.21 single direction 
during gait 

[Kudoh et al. 2006] humanoid forward 120 single direction 
ours humanoid forward 120 omnidirectional 

sideways 110 multiple strategies 
backward 70 

Table 6.1: Summary of work dealing with push recovery. 

length, for which the unaltered control can support a 6% shank length increase. 
Figure 6.7 shows initial and final foot configurations resulting from pushes of var

ious magnitudes and directions. Figure 6.8 shows selected key poses from some of 
the simulated motions. For the complete motions, we refer the reader to the video 
http: //www.cs.ubc.ca/ ~kkyin/animation/Yin_SUB07.mov. 

6.6 Discussion and Future Work 

We have presented an omnidirectional, multi-strategy control framework for hu
manoid balance in response to unexpected external pushes. The stepping strategies 
rely on learning a model of where to step as a function of the CoM velocity resulting 
from pushes. The design of the stepping controllers can be informed by motion cap
ture examples. The resulting balance controllers work in real-time to maintain the 
balance of a 30-DoF simulation of a humanoid. The domains of the various control 
strategies are characterized in detail, and we compare our results with a summary of 
other published push recovery strategies. We qualitatively compare our results with 
motion capture examples as well. 

In the future, we wish to deal with a number of outstanding issues. The swing leg 
can collide with the stance leg during the course of balance recovery. This behavior 
can be predicted and corrected for. Additional strategies can be added, such as an 
arm rotation strategy. The demonstrated balancing skills should be integrated with 
models of other motor skills. 
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(a) (b) (c) (d) 

Figure 6.7: Initial (light grey) and final (dark grey) foot configurations for a variety 
of pushes (red arrows). The left two figures show single step responses. The right 
two figures show double step responses. In all cases shown the right leg steps first. 
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Figure 6.8: First row: single stepping upon a forward lateral push. Second row: 
double stepping upon a backward lateral push. Read from right to left. Third row: 
double stepping upon a forward push. Last row: the motion capture data used to 
construct the controller for the response in the third row. 
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C h a p t e r 7 

D y n a m i c A n i m a t i o n o f L o c o m o t i o n : 
S I M B I C O N 

The previous chapter dealt with pushes to standing characters, and the goal was to 
stop the movement of the body and to rapidly recover balance. This chapter looks 
at the more general problem of walking and running with different gaits and styles, 
while being robust to pushes and terrain changes. 

Physics-based simulation and control of biped locomotion is difficult because bipeds 
are unstable, underactuated, high-dimensional dynamical systems. We develop a sim
ple control strategy that can be used to generate a large variety of gaits and styles in 
real-time, including walking in all directions (forwards, backwards, sideways, turning), 
running, skipping, and hopping. Controllers can be authored using a small number 
of parameters, or their construction can be informed by motion capture data. The 
controllers are applied to 2D and 3D physically-simulated character models. Their 
robustness is demonstrated with respect to pushes in all directions, unexpected steps 
and slopes, and unexpected variations in kinematic and dynamic parameters. Direct 
transitions between controllers are demonstrated as well as parameterized control of 
changes in direction and speed. Feedback-error learning is applied to learn predic
tive torque models, which allows for the low-gain control that typifies many natural 
motions as well as producing smoother simulated motion. 

Section 7.1 provides an overview of approaches, including our proposed approach. 
Closely related work is visited in Section 7.2. Section 7.3 describes our balance control 
strategy. Section 7.4 and 7.5 describes the controller design process, either manually 
or from motion capture examples. Detailed experimental results and discussions are 
given in Section 7.7. We conclude the chapter with a discussion of future work in 
Section 7.8. 
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7.1 Overview 

Locomotion is at the heart of many motions, both real and animated. Animated 
motion is most often created directly by animators using keyframing, or by capturing 
and then processing human motion. However, these approaches fail to scale to the 
very large set of possible motions that might arise in a realistic environment. For 
example, there are an infinite number of ways in which two characters might bump 
into each other or in which a character may move through a constrained, unpredictable 
environment. Algorithmic approaches have the potential to be more general and 
capable of generating families of motions rather than individual motions. 

A subset of algorithmic approaches take physics into account. These include trajec
tory optimization methods, or alternatively, developing controllers to drive forward 
dynamics simulations. Controller-based approaches have the advantage that they 
can synthesize motion at interactive rates and produce motion by using feedback 
strategies to continually adapt to the real-world as necessary. 

The control of walking and other biped locomotion gaits has been of long-standing 
interest to the robotics and computer graphics communities. It is a challenging prob
lem for many reasons. Walking bipeds are unstable and underactuated, and their 
control involves high-dimensional states and high-dimensional actions. Locomotion 
involves joint limit constraints, torque-limit constraints, contact constraints, and con
tact impacts. Locomotion may have a number of contradictory goals, including ro
bustness and energy usage. Lastly, while data-driven approaches have been very 
successful at generating kinematic models of locomotion, it is unclear whether such 
strategies can be successfully adopted to learn control strategies for dynamic simula
tions. 

There exists a vast literature related to the control of bipedal walking, much of 
it in the robotics, control, and biomechanics communities. Common approaches to 
locomotion control include: (a) the use of passive walking as a starting point for the 
design of active walkers; (b) the use of "zero moment point" control; (c) using a fixed 
control architecture and applying parameter search to find the parameter settings that 
yield successful walking gaits; and (d) developing feedback laws based upon insights 
into balance and locomotion. Our proposed framework, named SIMBICON 1 , builds 
on the last of these approaches. 

7.1.1 Overview of Our Approach 

The starting point is the use of a simple finite state machine or pose control graph, 
the same as in the last chapter. Each state consists of a body pose representing target 
angles with respect to their parent links for all joints. A l l individual joints attempt 
to drive towards their target angles using proportional-derivative (PD) controllers. 

S I M B I C O N is an acronym for SIMple Biped CONtrol. 
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Figure 7.1: An example result. A walk controller reconstructed from motion capture 
data responds to a 350N, 0.2s diagonal push to the torso. 

Transitions between states occur after fixed durations of time, or after a new foot 
contact has been established. Walking gaits can be modeled using as few as four 
states, while running gaits can be modeled using as few as two states. 

The pose control graph as described thus far does not have any notion of balance 
and thus does not produce robust locomotion. However, a small set of modifications 
to this basic design does result in robust locomotion. First, we require that both the 
torso and the swing-leg femur (i.e., swing hip) have target angles that are expressed 
with respect to the world frame, unlike the remaining links which have target joint 
angles expressed with respect to their parent links. In order to make the resulting 
torques be physically realizable without the use of external torques, the stance-hip 
torque is left as a free variable. Second, a feedback term is added to continuously 
modify the swing hip target angle as a linear function of the center of mass (CoM) 
position and velocity. This provides a robust balancing behavior by changing the 
future point of support. In contrast, we only adjust controls once per cycle for the 
limit cycle walking controller in the last chapter. 

We can mimic the style of motion capture data by replacing the individual control 
states with tracking of a desired motion, using the same mix of local-and-world co
ordinate tracking. While such tracking normally requires high gains and a resulting 
stiff and reactive motion, we can apply feedback error learning (FEL) in order to 
produce a control solution that relies largely on predictive feed-forward torques. As a 
result, the final motion requires only low-gain feedback and exhibits considerably less 
unnatural oscillation because of the anticipatory nature of the predictive torques. 

The resulting controllers can be applied to 2D and 3D bipeds of human proportion 
and mass distributions to produce many different styles of locomotion using physics-
based forward dynamics simulations. Only physically-valid internal torques are used 
to produce the motion, and thus the approach may also extend to humanoid robots. 
Individual controllers are robust to large pushes and significant terrain variation. 
Controllers can be interpolated and parameterized. Direct transitions between many 
of the controllers are demonstrated. An example result is shown in Figure 7.1, where 
a walking controller constructed from a motion capture example recovers from a large 
push. 
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7.2 Related Work 

The wealth of literature on walking control precludes an exhaustive review of the 
literature. Our discussion aims to touch on the major categories of techniques, as 
well as focussing on the specific work that is closest to our own. 

The seminal work of Raibert, Hodgins, and colleagues [Raibert 1986; Raibert and 
Hodgins 1991; Hodgins 1991; Hodgins et al. 1995] contains key insights into producing 
robust hopping and running gaits. At the heart of this research is a three-way decom
position of control of hopping height, control of torso pitch, and control of hopping 
speed. Swing foot placement provides the basic mechanism for controlling balance 
from stride to stride. The algorithms are applied to the control of running for biped 
robots in [Raibert 1986; Raibert and Hodgins 1991; Hodgins 1991], walking for biped 
robots in [Hodgins 1991], and running for human characters in [Hodgins et al. 1995; 
Hodgins arid Pollard 1997]. We are unaware of demonstrations of the algorithm being 
used to control walking for virtual humans. We note that the control of swing foot 
placement is also found in other walking algorithms such as [Miura and Shimoyama 
1984; Laszlo et al. 1996; Kuo 1999]. 

Our control framework integrates a number of the ideas from previous work, while 
being identical to none. We differ in several respects from the Raibert-style hopping 
control. The balance feedback mechanism we propose makes continuous adaptations 
during a locomotion cycle, and uses both the position and velocity of the center of 
mass. This latter information helps establish the current phase of an ongoing step, 
and thus it is more informative than the velocity alone. [Hodgins 1991; Raibert and 
Hodgins 1991] use only the velocity for control of hopping, sampled once per hop, and 
use of a fixed step length for walking. We note that [Miura and Shimoyama 1984] is an 
example of an inverted pendulum control strategy that employs continuous feedback 
based on the inverted-pendulum body angular position and angular velocity. The 
framework we propose is simpler in many respects and will be demonstrated to be 
capable of producing a significantly larger variety of gaits. 

A widely-studied class of control algorithm can be developed by computing and then 
tracking trajectories that are known to be physically feasible and therefore satisfy the 
zero-moment-point (ZMP) constraint [Vukobratovic and Juricic 1969]. Small distur
bances to the motion can be accomodated by adjusting the ZMP dynamically during 
the motion. This approach has been shown to work well for the walking control of 
real robots such as the Honda Asimo P3 [Kaneko et al. 2002; Honda Motor Co. 2006; 
Kim et al. 2006]. Target trajectories can be derived through an optimization process, 
often informed by motion capture data [Dasgupta and Nakamura 1999; Popovic and 
Witkin 1999]. ZMP approaches need to include swing-foot placement if they are to 
deal with large disturbances. [Pai 1990; Pai 1991] present an interesting approach to 
specify the control of human-like walking. They do not specify walking in terms of 
desired trajectories but rather more weakly as a collection of assertions to hold. 
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Control can also be achieved by defining a parameterized control policy and then 
searching for parameter values that yield appropriate control behaviors. Our stepping 
controller in Chapter 6 belongs to this category. Searching directly in the often high-
dimensional parameter space is known as policy search, and this has been applied 
with some success [Taga et al. 1991; van de Panne and Fiume 1993; Auslander et al. 
1995; van de Panne et al. 1994; Tedrake et al. 2004; Sharon and van de Panne 2005]. 
To date, these techniques have not been able to demonstrate the scalability and 
robustness needed to make it a useful, widely applicable locomotion control technique 
for animation and robotics. 

Reinforcement learning (RL) offers a long-term promise of being able to learn con
trol strategies in a principled way. It has been applied in a number of ways to the con
trol of walking [Tedrake et al. 2004; Nakanishi et al. 2003; Morimoto et al. 2004; Smith 
1998; Morimoto and Atkeson 2003; Morimoto et al. 2005]. The high-dimensionality 
of the state spaces involved in the control of locomotion remains problematic, how
ever, as does the need to design an appropriate reward function. The solutions do not 
exhibit the compactness and transparency which would afford control to animators in 
shaping the results. Many of the control strategies sample the state only once per step 
when computing a control decision, similar to using a Poincare map [Morimoto et al. 
20Q5]. Work in this area usually works with simplified models instead of humanoids, 
with [Smith 1998] being a notable exception. 

Lastly, there is a body of work that uses special strategies that forego some of the 
physical fidelity in order to achieve desired plausible motions. One choice is to allow 
the addition of external forces as in [Wrotek et al. 2006]; another is to blend kinematic 
and dynamic motions resulting in a hybrid system [Zordan et al. 2005]. Other com
mercial systems use undocumented strategies, such as [NaturalMotion]. SIMBICON 
produces balanced locomotion behaviors directly with a forward dynamics simulation, 
and thus avoids the complications that mixed kinematic/dynamic solutions use. 

The integration of a limited number of carefully crafted control strategies is demon
strated in [Wooten 1998; Faloutsos et al. 2001]. The interesting recent work of [Sok 
et al. 2007] parallels many of our goals and makes use of an optimization process 
to produce controllers for planar articulated characters that are capable of imitating 
motion capture data. 

7.3 Balance Control Strategy 

The control strategy can be described in terms of three elements: a pose-control 
graph, torso and swing-hip control, and balance feedback. Each of these elements is 
now described in further detail. 
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Figure 7.2: Finite state machine for walking. 

7.3.1 Finite State Machine 

Our controllers are based on finite state machines, with each state having its own 
target pose for internal joint angles, as shown in Figure 7.2. For symmetric gaits, 
pairs of states will be left-right symmetric, e.g., states 0 and 2, 1 and 3. Transitions 
between states happen after an elapsed time, e.g., state transition 0 —• 1, or after 
foot contact, e.g., 1 —> 2. If a foot contact has already occurred before entering a 
state having an outbound foot-contact transition, then the controller simply spends 
no time in that state. In any given state, the joints apply torques computed by 
proportional-derivative control, r = kp(6d — 6) — kd6, in order to drive each joint to its 
desired local angle. The poses represent a desired set of joint angles and are typically 
not actually achieved. For example, while in state 1 in Figure 7.2, the biped's pose in 
practice has its swing leg extended forwards. However, its target state has the swing 
leg extended backwards and thus has a net effect of moving the swing leg backwards 
and down, bringing it into contact with the ground. 

7.3.2 Torso and Swing-hip Control 

The stance hip and swing hip are handled separately, as illustrated in Figure 7.3(a). 
First, there is a need to control the orientation of the torso with respect to the world 
frame. This can be accomplished using a virtual PD controller that operates in the 
world frame to compute a net torso torque r i o r s o , as shown in the figure. Second, there 
is also a need to decouple swing foot positioning from the current torso pitch angle. 
This is accomplished through controlling the swing hip with respect to the world 
coordinate frame. The swing hip torque, rg, is thus also computed using a virtual 

101 



PD controller that operates in the world frame. Last, there is a requirement that 
the virtual torques rtorso and TB be realisable using only internal torques. We require 
that the desired value of Ttorso is in fact the net torque seen by the torso, —TA — TB-

This is accomplished by computing the stance hip torque as = — rtorso — TB-

7.3.3 Balance Feedback 

The last component of the control strategy is to apply a balance feedback strategy to 
the swing foot placement. We employ a feedback law of the form 

Od = Qdo + cdd + ĉ t-
to the swing hip, where 6d is the target angle used for PD control at any point in 
time, is the default fixed target angle as described in the FSM, ci is the horizontal 
distance from the stance ankle to the center of mass (CoM) as shown in Figure 7.3(b), 
and v is the velocity of the center of mass. The midpoint of the hips can be used as 
a simple and effective proxy for estimating the position and velocity of the center of 
mass. We use this simplification in both 2D and 3D. 

The feedback gain parameter cd is important for providing balance during low-speed 
gaits or in-place stepping. Consider a situation for an in-place (desired zero velocity) 
walking gait with current velocity v = 0, and two possible CoM positions da = +10cm, 
db = —10cm. In the first case, there is a need to step forward quickly, while in the 
second case there is a need to step backwards quickly in order to recover balance. 
The combination of (d, v) provides complete information about the current position 
in the gait cycle, i.e., the current phase, whereas v alone only provides information 
with regards to the current velocity error. 
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In order to extend the control scheme to 3D, the control strategy is applied in 
both the sagittal and coronal planes. Balance feedback in the coronal plane uses an 
analogous measure of d, v in order to make alterations to the lateral placement of the 
swing foot using the swing hip. 

The balance feedback can be extended more generally to multiple joints using the 
form 

#d = $d0 + F 
d 
v (7.1) 

where F is an n x 2 matrix with feedback coefficients to the desired target joints. 
We use this more general structure to add stance ankle feedback for quiescent stance 
poses, for example. 

In the two following sections, we provide details on how the control parameters are 
set and the creation of controllers that imitate locomotion styles from motion capture 
data. 

7.4 Manual Controller Design 

Given the controller architecture described in the previous section, we need methods 
for choosing the number of states and the parameters of each state. The resulting pa
rameters should satisfy the requirements of the animator or control-system designer. 
Unfortunately, it is difficult to precisely pin down such requirements. Criteria for 
locomotion may include measures of style, robustness to perturbation, and energetic 
efficiency, all of which may push the solution in different directions and with design 
compromises that will be unknown in advance. Therefore, before resorting to more 
complex schemes, we first investigate manual interactive design of the required finite 
state machine. 

The control parameters can be grouped into several categories: (a) number of states 
and state-transition parameters; (b) the balance feedback gains, cd and c„; (c) the 
target poses for each state; (d) the initial state for using the controller; and (e) the 
joint limits, torque limits, and PD-controller gains. In our work, we fix the parameters 
belonging to category (e) and document these in the results section. The remainder 
of our discussion focuses on the other parameters. 

The choice of the number of states reflects the detail with which to model the 
various phases of a locomotion gait. We use four states to model our walking gaits, 
consisting of two symmetric walking steps. Each step has two states, the first of 
which lifts the swing foot upwards and forwards for a fixed duration of time, and the 
second of which drives the swing foot towards the ground until contact is made. This 
model is capable of many different walking styles, both forwards and backwards. The 
FSM states also serve as a coarse model of the phase of the motion when switching 
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states 0,2 states 1,3 

Figure 7.4: Graphical interface for adjusting controller parameters. Sliders on the 
left control At, Cj, and cv. 

between controllers. Thus, if a request is made to switch from one walk style to 
another, this is done by transitioning from state n of one controller to state n + 1 
of another controller. For this reason, while our running gaits can be modeled using 
simple two-state controllers (one for each running step), we add two zero-duration 
dummy states in order to have the same four-state structure as for the walking gaits. 
This allows for transitions between walking and running gaits. Our skipping controller 
will have 8 states, reflecting its more complex sequence of actions. 

We begin controller design using the planar biped model, and then use the result
ing parameters as a starting point for the design of corresponding 3D controllers. We 
use a graphical user interface (GUI) to allow a user to directly explore the param
eters settings associated with each of the controllers states, as shown in Figure 7.4. 
Users can immediately observe the effect of parameter changes reflected in an ongo
ing simulation. Three sliders on the left of each state GUI are used to set the state 
duration, a, and cv parameters. The target pose parameters are set by using the 
handle points on the stick figure. The target poses for the torso and the swing femur 
are interpreted with respect to the world frame. The target pose angle for the stance 
femur is ignored by the controller, given that the stance hip torque is treated as a 
free parameter whose value is determined from the torso and swing-hip torques. A l l 
the remaining joint angles define target angles with respect to their parent's coordi
nate frame. The interface readily exposes the key-frame like nature of many of the 
controller parameters. 

The most important parameters for each state are the state duration At and the 
target angles for the swing hip and swing knee. Because the resulting motion style is 
most heavily dependent on only these three parameters per state, it becomes relatively 
easy for users to interactively explore their settings to yield desired motions. The 
ankles make a significant contribution to some styles, such as the skipping gait. The 
stance knee is usually almost straight. The torso is usually desired to be vertical. The 
balance feedback gains are set in a similar fashion across many of our controllers. 
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The design of a stepping-in-place gait for 2D locomotion represents a good starting 
point that can then be modified for the design of other motions. The target angles, 
as shown in Table 1, look very much like a simple pair of keyframes, one in a standing 
posture, and another with the swing leg in the air in a bent pose as one might expect 
for stepping-in-place. This leaves very few remaining parameters to set, principally 
the duration of the leg lift pose and the balance feedback gains for the swing hip. 

Small changes (±15°) to the desired torso pitch can be easily accomodated by 
treating the extra torque produced by gravity as a disturbance. During locomotion, 
the torso may exhibit a somewhat unnatural bobbing motion. This is the result of 
the torso servo always reacting to the motion of the hip, rather than anticipating it. 
We address this in the section on feedback-error learning. 

A reasonable choice of initial state is required in order for a controller to function 
as designed. In practice, the balance feedback terms endow the controllers with 
relatively large basins of attraction, as demonstrated by their robustness to external 
pushes and changes in terrain, and the ability to transition directly between many of 
the controllers. We begin our walking controllers from a double stance state with a 
moderate forward velocity (lm/s), although we note that our basic forward walking 
controller can begin just as well from rest. We note that symmetric controllers can 
exhibit asymmetric gaits from some initial states while producing symmetric gaits 
from other initial states. This difficulty can be overcome by using initial states closer 
to the desired limit cycle. 

7.5 Controllers from Motion Capture Data 

An alternative to manual design is to use motion capture data as the basis for devel
oping a controller. This allows a kinematic motion to be imported into a dynamic 
setting. Whereas kinematic motion capture data cannot be made to stumble for an 
unseen step or respond to a push, a style-mimicing controller allows for these effects. 

We develop style-mimicing controllers as follows. Given 3-7 cycles of motion cap
ture walking data, we apply Fourier analysis to a representative joint, such as the 
right hip, in order to extract the period T of the walking cycle, which is estimated 
using the primary frequency u of the Fourier transformation. We then select the next 
several largest Fourier coefficients corresponding to frequencies that are an integer 
multiple of co. When the reconstruction error reaches a preselected accuracy, we dis
card the remaining Fourier components. This filters the original motion capture data 
to a smooth periodic motion © that reflects an averaged walk cycle of the given style 
and represents it using a compact set of coefficients. 

The extremal points of 6 are detected automatically. The time tm of the largest 
right hip flex is assigned a fixed phase (/>(tm) = 0.25 in the walk cycle, where <f> G 
[0,1]. States 1 and 3 are discarded from the FSM in Figure 7.2. The remaining two 
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states serve the purpose of differentiating between the left-stance and the right-stance 
phases. The transition between the states occurs on foot contact, which is expected 
to occur at approximately <f> = 0.5 and </>=!. The double-stance phase is considered 
to be part of the stance phase that has just begun. 

The trajectory 0 serves as a target trajectory in place of the target poses used in 
the manually-designed controllers. Within each state, the joint angles individually 
track the motion capture trajectories 9do = Q(<f>(t,T)) using PD-controllers. The 
phase is reset to 0 or 0.5 upon transitioning to the next state. As is the case for the 
manually-designed controllers, the torso angle and swing-hip angle do their tracking 
with respect to the world frame. Similarly, the stance hip does not track its motion-
captured counterpart and, as before, its torque is computed from the known torso and 
swing-hip torques. The PD-controller, however, is changed from r = kp(9d — 9) — kd9 
to r = kp(9d — 9) — kd(9 — 9d)- The 9d term helps in tracking the target trajectory 
with minimal time lag. 

Controllers based on motion capture data apply balance feedback to both the swing 
hip and, for slow walks, to the stance ankle using Equation 7.1. While a fairly broad 
range in values result in stable gaits, we currently tune these by hand in order to 
yield a robust gait and a strongly-attracting limit cycle which will be required for the 
successful application of feedback error learning, as will be discussed later. 

The controller will not perfectly imitate the motion capture reference motion for a 
number of reasons. First, the original motion capture data may contain noise from 
data capture and data processing and may not be dynamically consistent. Second, 
the physical system parameters of the simulated human may not exactly match that 
of the motion-capture actor. This includes link dimensions, joint placement, mass and 
inertial parameters, and joint gains. Additionally, we forego tracking of the stance 
hip angles in order to insert the balance-feedback mechanism. The resulting motion 
is thus encouraged to imitate the overall style of the reference motion, but does not 
precisely match other parameters that could also be used to characterize gaits, such 
as step-length or velocity. Lastly, in order to closely follow the reference motions, the 
tracking control requires high-gain PD controllers. These can be lowered using the 
feedback-error learning scheme discussed in the following section. 

7.6 Feedback Error Learning 

The controllers described thus far produce motions that are quite robust to distur
bances and are able to closely track reference trajectories. However, the high gains 
used in the feedback loops are representative of stiff movements. Also, the torso pitch 
angle may oscillate about its desired position because it is always reacting to the 
movement of the hip rather than anticipating it. 

Human motor control commonly increases the mechanical impedance of the control 
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as a strategy for producing robust motions in environments where perturbations are 
expected, and uses low-impedance control when the environment is highly predictable 
[Takahashi et al. 2001]. The low-impedance control in predictable environments can 
be achieved by using anticipatory "feed forward" torques together with low-gain feed
back. The latter is still necessary to deal with small deviations from the desired 
trajectory that may always be expected. The feed-forward torques are also thought 
to be necessary in order to deal with the slowness of the human nervous system, 
as compared to the fast response that would be required for purely feedback-based 
control (Section 2.3.2). 

Previous work using tracking of upper-body motion capture trajectories requires 
high-gains in order to track well [Zordan and Hodgins 2002]. At the instant of an 
unexpected impact, the gain is lowered for a short duration in order to mimic the low-
impedance control normally exhibited during skilled motion, before being increased 
again to resume tracking. The ephemeral low-gain portion of the motion is implausible 
in that it would not track the default motion in the absence of the disturbance. In 
Chapter 5 we use inverse dynamics in order to estimate the feed-forward torques that 
would normally be in effect during skilled motion, although we do not deal with issues 
of balance there. In contrast, in this chapter we apply feedback error learning (FEL) 
in order to learn feed-forward torques, which then allow our controllers to operate 
with low tracking gains. Because the low-gain motions are less robust than the high-
gain motions, we can optionally increase the gains for some time after impact after 
a reaction-time delay (150ms) in order to simulate a natural perturbation-recovery 
reaction. 

Feedback error learning is a form of adaptive control and allows for the learning 
of the inverse dynamics of a system in order to reproduce given motion trajectories 
[Kawato et al. 1987; Nakanishi and Schaal 2004]. In its most general form, the 
feed-forward function learns r = /(x, x, x), where x, x is the current system state 
(positions and velocities) and x is the vector of commanded accelerations. We move 
away from this general form and instead learn the feed-forward torques as a function 
of the current phase of the motion: r = /(</>). We estimate c\> using <f> = t/T, 
where t is the current elapsed time in a given state and T is the current estimate 
of the period. For repetitive motions such as a walk cycle, these simplifications 
work well. To our knowledge, F E L has not been successfully applied to a dynamical 
system as complex as a fully simulated virtual character capable of a variety of robust 
locomotion behaviors. 

Our implementation of F E L divides the phase <fi uniformly into N bins. We use 
N = 20 — 1000. The current phase bin is given by n = tN'/T. Each bin uses a 
low-pass filter of the form 

vf

ff =.(1 - a)vff + a(vff + vfb) (7.2) 

to update the feed-forward torques. Here Vff and represents the feed-forward and 
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feed-back torques applied for that phase of the motion corresponding to bin n. We use 
a learning rate of a = 0.1. The feed-forward values are initialized to zero. During the 
learning process (and afterwards), it is the sum of feed-forward and feedback torques 
that is applied, i.e., Vff + Vfb- F E L can be applied to one joint at a time, or to all 
joints simultaneously. 

High learning rates may yield to convergence problems because the use of feed
forward torques will influence the resulting motions. While it is difficult to obtain 
analytic guarantees of convergence of F E L for complex dynamical systems, we have 
not experienced any convergence problems with our chosen learning rate. It is also 
useful to limit the magnitude of the feed-forward torques because some predictable 
disturbances can never be fully accomodated. An example of this is the force im
pulse caused by foot contact, which instantaneously creates a small change in angular 
velocity for the torso and requires an equivalently instantaneous control impulse in 
order to fully ensure that the torso never exhibits any pitch. 

7.7 Results 

We apply the SIMBICON framework to simulated 2D and 3D bipeds having human
like proportions and mass distributions. Figure 7.5 shows the models and their degrees 
of freedom. 

The 7-link planar biped has a 70 kg trunk, 5 kg upper legs, 4 kg lower legs, 
and 1 kg feet. The respective largest dimensions are 48 cm, 45 cm, 45 cm, and 
20 cm. A combined head-arms-trunk (HAT) model is used, as is common in the 
walking simulation literature. The 2D biped is simulated using an optimized version 
of the Newton-Euler equations of motion. A spring-and-damper penalty-force ground 
contact model is applied to points at the front and back of the feet. PD gain values of 
kp = 300 Nm/rad, kj = 30 Nms/rad are used for all joints. Joint limits are enforced 
on the hips and knees. Ground stiffness parameters are kp = 100000 N/.m, = 
6000 Ns/m. We use a Coulomb friction model with a friction coefficient of 0.65. A 
time step of 0.0001 s is used. We use torque limits of lOOOATm, which can be lowered 
to 370 Nm for all motions except the fast run. The basic walk controller supports a 
torque limit of 90 Nm, below which it becomes weak-kneed and falls. With control, 
the simulation runs 5 times faster than real-time unoptimized on a 1.8 Ghz CoreDuo 
PC. 

The parameters for the 3D biped model are the same as used in [Laszlo et al. 
1996]. We scale the limb lengths to match our motion capture subject. The 3D 
biped is simulated using Open Dynamics Engine [ODE] version 0.6. Our simulation 
time step is 0.005 s. Contacts are modeled using constraints and an approximated 
Coulomb friction cone, solved as a linear complementarity problem (LCP). We use 
a friction coefficient of 0.8, which is typical for a rubber sole. The coefficient of 
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Figure 7.5: Degrees of Freedom (DoF) of models. Left: 2D model with 6 internal 
DoFs, 9 DoF in total. Right: 3D model with 28 internal DoFs, 34 DoF in total. 

restitution for collisions is assumed to be zero. Torque magnitudes are limited to kp 

The largest kp value is 1000, used for the waist joints. A l l other joints use kp — 300 
or less. We use fed = 0.1kp. With control, the unoptimized simulation runs 1.2 times 
faster than real time on a 3.2 Ghz Pentium 4. 

7.7.1 2D Biped Locomotion 

A set of 12 periodic gaits have been authored using the GUI described in Section 7.4. 
The parameters for these controllers are given in Table 7.1. We designed these gaits 
to achieve a wide variety of motion styles using a small number of states. They 
have not been designed to be optimal gaits with respect to any given criterion. We 
have also authored acyclic controllers for stopping and remaining balanced on two 
feet, stopping and remaining balanced on one foot, and taking a single large step in 
the middle of a longer walking sequence. A subset of the motions are illustrated in 
Figure 7.6. 

The running controllers do not have a strong preference to run at a particular 
speed. As such, they can be 'pushed' to run at various speeds. Parameterized control 
of speed is likely feasible, although was not investigated. As compared to [Raibert 
and Hodgins 1991], our framework uses no explicitly-computed injection of energy 
to maintain a given flight time during running or skipping. The control laws are 
identical for all FSM states, modulo the change of legs fulfilling stance-leg and swing-
leg roles, and are governed by the target angles and feedback gains. This supports 
a style of running that, qualitatively speaking, looks less like hopping than previous 
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work [Hodgins et al. 1995; Hodgins and Pollard 1997]. 

Controller Transitions 

Controllers are bound to keystrokes and it is possible to interactively request transi
tions between the controllers. This is accomplished during state transitions, jumping 
from state n of controller A to state n + 1 of controller B. An example of the kind 
of transitions that be successfully executed is as follows: walk —> in-place walk —> 
stand —> back-flip —• in-place walk —• walk —> big-step —> walk —> in-place walk —> 
high-step walk —> in-place walk —> scissor hop —> walk —> skip —> walk —> bent walk —*• 
walk —> crouch walk. —• walk —• in-place walk —• backwards walk —> in-place walk —> 
back-and-forth stepping walk —*• run fast run. A portion of this is shown in the 
video http://www.cs.ubc.ca/~kkyin/animation/Yin_SIG07.mov. 

In the absence of specially-designed transition motions, not all controller transitions 
are feasible. For two controllers whose motions are significantly different, the basins of 
attraction for each may not overlap as needed for direct transitions. Direct transitions 
are possible between many of the walking and running gaits. However, some gaits 
are significantly more sensitive to the required initial state, such as the backwards 
walk which first requires transitioning to the in-place walk. The "scissor hop" is 
particularly sensitive to its initial state. Its basin of attraction does not fully overlap 
the limit cycle of the in-place walk, and thus requires being in a particular phase 
of its walk cycle in order to ensure a successful entry transition. The controllers for 
standing on one foot also has a very limited basin of attraction due to its need to 
balance without stepping. 

110 

http://www.cs.ubc.ca/~kkyin/animation/Yin_SIG07.mov


Figure 7.6: A subset of the manually-designed controllers for the planar biped, (a) 
walk; (b) high-step walk; (c) bent walk; (d) scissor hop; (e) crouch walk; (f) backwards 
walk, right-to-left; (g) fast run; (h) skipping; (i) big step. 
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Figure 7.7: A single controller for a planar biped responds to unanticipated changes 
in terrain. 

Robustness 

The robustness of the walk controller to variations in terrain is shown in Figure 7.7. 
The terrain includes unanticipated downward steps of 20cm and slopes of ±6 degrees. 
The robustness of the gaits with respect to unanticipated pushes was tested by apply
ing 10 pushes at 5s intervals, which serves to sample various phases of the gait while 
also allowing the biped time to fully recover between pushes. Any single stumble 
from which the biped cannot recover is deemed a failure. The walking controller can 
withstand 0.1s duration pushes of up to 600N forwards and 500N backwards at all 
10 sampled points in the locomotion cycle. Other gaits are more sensitive to dis
turbances. For example, the skipping gait can withstand 0.1s duration pushes of up 
to 40A^ forwards and 50^ backwards. Larger pushes, as measured by their induced 
change in momentum, FAt, can be sustained by increasing A i and decreasing F. 
Specific portions of the walk cycle can also withstand larger pushes. 

Feedback Error Learning 

The application of feedback error learning to the 2D biped torso decreases its oscil
lation amplitude from 5° to 0.5° for a walking gait and unchanged feedback gains. 
Figure 7.8 illustrates the learned torque and the decreased amplitude of the feedback 
torques. Footstrike events occur at time t = 0 and t = 0.36 on the graph and cannot 
be fully anticipated due to their impulsive nature. 

7.7.2 3 D B i p e d L o c o m o t i o n 

Manual Controller Design 
Controllers for 3D walking require twice the number of parameters as for 2D control 

because of the need for lateral (coronal-plane) control. Manually-designed controllers 
have been developed for two-foot hopping, three styles of forward walking, walking 
up a slope of 20 degrees, two styles of forward running, a sideways-walk Tai Chi 
movement, and skipping. Figure 7.9 illustrates the Tai Chi "cloud hands". Direct 
transitions are possible between most of the walking and running gaits. Many of our 
2D control strategies work directly when applied to the 3D model and applying a 
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Figure 7.8: Feedback error learning (FEL) applied to the 2D biped torso. Illustrated 
are the feedback torques, before and after F E L , and the learned feed-forward torque. 

common set of feedback gains for the lateral hip movement that is responsible for 
lateral balance. There is some variation in the style of the 2D and 3D motions, 
likely because our 2D and 3D models have different masses and proportions. For the 
few cases where the difference in models is problematic, minor adjustments to target 
angles and gains are sufficient to achieve a functional 3D motion. 

Figure 7.9: Knee-bent sideways walking with hands circling in opposite phase for 
the "cloud hands" Tai Chi movement. Every third frame. 

Motion Capture Imitation 

We have developed seven controllers from motion capture data, including four differ
ent types of in-place walking (normal, wide-stance, bent-trunk, high-knee), forwards 
walking, backwards walking, and sideways walking. Figure 7.10 shows comparisons 
of the original captured motions and the motion resulting from the controllers. 
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(a) High-knee walking every fourth frame: Upper row - mocap; Lower row - simulation 
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(b) Wide-stance walking every third frame: Upper row - mocap; Lower row - simulation 

y u y y y y y y y y y y y y 

(c) Backward walking every third frame, read from right to left: Upper row - mocap; Lower row 
- simulation 

(d) Torso-bent walking every third frame: Upper row - mocap; Lower row - simulation 

Figure 7.10: Imitation of motion capture data. Each box compares the original 
motion (top) and the controller motion (bottom). The boxes from top to bottom: 
high knee walk; wide stance walk; backwards walk, right-to-left; bent-forwards walk. 
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If necessary, we use a small amount of manual tuning to make the tracking-based 
controller functional. Some of the original in-place stepping gaits exhibit only a small 
amount of swing-foot clearance during the step. This can cause a failure in the 
tracking-based controller to lift the swing foot off the ground. A simple correction 
is to add a constant swing-hip offset so that the swing foot lifts off the ground as 
desired. Manual tuning of the balance feedback gains for the swing hip, both sagittal 
and lateral, is sometimes necessary. Section 7.7.3 describes the types of artifacts that 
are seen when the gains are misadjusted. The in-place high-stepping walk requires 
use of sagittal balance feedback gains for the stance ankle because of the time spent 
balanced on the stance foot and the large shift in the CoM caused by the high lift of 
the swing leg. An unnatural aspect of some of our walking results is that they may fail 
to properly mimic aspects of the ankle motion and foot toe-off. We speculate that 
this may resolved with additional tuning of the ankle PD-gains and ankle balance 
feedback gains. We have not yet tried to replicate running motions from motion 
capture data, although we are optimistic that this would work. 

We speculate that there will be several categories of motions where our motion-
capture-to-controller methodology will fail. Acrobatic motions have significant flight 
phases and therefore rely on accurately achieving specific linear and angular momen
tum upon takeoff. Our balance control feedback does not provide these. Dynamic 
motions that do not involve periodic stepping motions are likely to be problematic. 
Lastly, dynamic motions that do not involve any stepping require a ZMP approach 
or an approach that can exploit other parts of the body to help maintain balance. 

Parameterization 

The robust nature of our controllers means that once a controller has been,con
structed, either manually or from motion capture data, additional control strategies 
can then be layered on top. High-level controllers can be developed to control walking 
styles or walking directions. Much of this kind of control can be added in an intuitive 
fashion as displacements to the target poses or target motions. For example, to add 
a lateral component to straight line walking, we add an antisymmetric displacement 
angle to the lateral target hip angles for all the poses in the P C G . If instead we add 
symmetric displacement angles to each lateral hip angle, this produces a straight walk 
with altered stance width. The result is shown in Figure 7.11(b), with the addition 
of an external push. A wide-stance in-place walk reconstructed from motion capture 
data is made to walk diagonally forward and to the left through the simple addition 
of offsets to the swing-hip target angles. It then reacts to a large push diagonally to 
the right. 

Controllers can cope with unanticipated gentle slopes and small steps. Steeper 
slopes or larger steps require adding a displacement A9hiP = k6s to the target hip 
angles to insure foot clearance, where 9S is the angle of the slope. For sufficiently steep 
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(a) Turning behavior applied to a slow forward walk controller reconstructed from motion capture 
data. Turning behavior is generated by feeding a sinusoid 0.9 * sin(7rt/12) in radians as the desired 
facing direction. Front-view and side-view. 

(b) A wide-stance in-place walking reconstructed from mocap is perturbed 0.08 radian sagit-
tally (sagittal swh+ = 0.08) and 0.1 radian laterally (left lateral swh+ = 0.1) to walk left-forward. 
Then a right-forward push of magnitude (—250.ZV, 250.ZV) lasting 0.2s is exerted on the chest at 
phase 0 = 0.6. Side-view and front-view. 

Figure 7.11: Variations in locomotion, illustrated using footprints. 

slopes, the ankle angles also need to be adapted. The result is shown in Figure 7.12. 
Turning is generated by modulating the desired facing angle. The desired facing 

direction in Figure 7.11(a) is varied according to 0.9 * sin(7r£/12) in radians. The 
stance hip is then used to achieve the desired facing direction. A light backpack can 
be worn with an unchanged, vertical torso target pitch. Heavier backpacks need to be 
accomodated by pitching the torso forward accordingly. Interpolation between gaits 
can be achieved by interpolating between parameters of the corresponding controller 
states. For example, a Japanese bow can be generated by interpolating a straight-up 
walking and a torso-bent walking. Since the balance controller only uses the lower 
limbs, the upper body is left free for different styles or additional tasks. For example, 
we can choose to keep the arms straight down or to swing them naturally. Figure 7.9 
illustrates Tai Chi cloud hands. 
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Figure 7.12: Climbing a slope of 20 degrees. Is lapse. 

Robustness 

A robust balance controller also means that the locomotion can deal with unex
pected environmental disturbances automatically. For the 3D walk controller given 
in Table 7.1, the largest recoverable pushes as measured in eight evenly-sampled direc
tions are (0,340), (230,230), (330,0), (220,-220), (0,-270), (-190,-190), (-240,0), 
(—190,190), as illustrated in Figure 7.13, where each pair defines the (lateral,sagittal) 
push magnitudes in Newtons. The pushes are applied at chest height at a phase an
gle of (p = 0.1 and have a duration of 0.4s. These numbers are comparable with 
specially developed push recovery controllers described in [Kudoh et al. 2006], which 
are only demonstrated in the sagittal plane and are computed offline using quadratic 
programming. We also tested the robustness with respect to kinematic and dynamic 
model variations. For example, we have increased the femur length by 10% for the 
walking gait defined in Table 7.1 while maintaining both the style and stability of the 
gait. Larger changes can be accomodated, first resulting in a change of style while 
still being robust. Dynamic parameters such as the mass and inertia have minimal 
effects as long as the PD controller gains are scaled accordingly. Some gaits are par
ticularly sensitive to some parameters. For example, the fast running gaits tend to 
be sensitive to the balance feedback gains. Stairs can cause problems because the 
controllers cannot "see" an upcoming step, and the resulting toe stub or ill-placed 
foot can cause a fall. 

Integration with Interactive Balancing 

An integration of the dynamic in-place and stepping balancing system described in 
Chapter 6 with the SIMBICON framework is demonstrated in http://www.cs.ubc.ca 
/~kkyin/animation/MultiStepping.mov. SIMBICON enables the multistepping strat
egy to be realtime. 
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Figure 7.13: The largest pushes from eight representative directions at the chest level 
recoverable when applied at 0 = 0.1 for 0.4s. Character facing to the right (positive z 
axis). 

Feedback Error Learning 

Feedback error learning has been successfully applied to the upper-body joints and 
the virtual torso torque for all manually-designed FSM controllers. We limit the 
maximum feedforward torques to be |A0fcp|, where kp is the PD spring constant 
and AB = 0.2 radians. The feedforward torque will thus be capable of eliminating 
oscillations of approximately 0.2 radians in magnitude. We experiment with various 
resolutions for representing the feedforward torque, using phase bins that correspond 
to At^ G [0.5,25] ms. For the 3D walk controller given in Table 7.1, we test several 
different resolutions and computed the energy ratio of the feedback torques to the feed
forward torques, r = jjĵ jj after FEL. For At^ = 0.5ms, r « 2.5%; At^ = 5ms, r « 
3.5%; At^ = 25ms, r PH 14%. Because ddo is discontinuous for the lower-body joints 
for the manually-designed controllers, we do not apply F E L to these joints. The large 
discontinuities in the desired joint angles that occurs upon transitioning to a new 
F S M state are not suitable for modeling directly using a feed-forward torque. This 
can be circumvented by treating the output of a simulation as being the equivalent 
of motion capture data, and applying the strategy that we shall describe next. 

Feedback error learning can also be applied to controllers that track motion cap
ture data. F E L can be applied directly to the upper-body joints and the virtual torso 
torque. Applying F E L to the lower limbs requires two adaptations to the basic F E L 
learning process. First, for all joints using balance feedback, the joint angle tracking 
torques need to be decoupled from the balance-feedback torques. Therefore it is es
sential to apply F E L based only on the component of the torque that is used to track 
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the joint angle target trajectory, and not the component that is added to achieve 
balance control. Second, despite the use of smooth target-angle trajectories, there re
mains a discontinuity at the instant of stance-leg/swing-leg exchange. To accomodate 
this, we adapt the desired trajectory towards the realized simulation trajectory using 
a displacement trajectory. The displacement trajectory 59 is initialized to zero and 
is modified over time according to 59' = (1 — a)59 + a(9 — 9d). Each of 59,9,9d are 
functions of phase and are modeled using phase bins in the same way as feed-forward 
torques. It can be seen that 59 remains unchanged when it correctly predicts the 
tracking error 9 — 9d. 

In the video http://www.cs.ubc.ca/~kkyin/animation/Yin_SIG07.mov, we show 
several comparisons between walks based on motion capture data, simulated using 
(a) feedback control alone, and (b) using combined feedback and feedforward control. 
The latter motions exhibit smoother, more stable motion while having PD constants 

are the same or lower. 

7.7.3 Setting the Balance Feedback Gain Parameters 

cd, Cy are usually within the range of [0,1]. For our basic 3D walk controller we use 
cd = 0.5 and Cy = 0.2 for the swing hip in all states, in both the coronal and sagittal 
planes. When changing parameter values, implementors may observe phenomena 
such as period doubling [Vakakis and Burdick 1990; Buhler and Koditschek 1988]. 
We use a stability analysis to provide an indication of the sensitivity of the results 
with respect to some of the parameters. Beginning from a fixed initial state, we 
change one selected parameter across all four states to find its viable range, while 
fixing all other parameters to their nominal values. The stable range of parameters 
is: [—0.71,1.4] for cd and [0.03,0.59] for cv in the sagittal plane; [—1.29,1.13] for cd and 
[-0.06,0.48] for Cy in the coronal plane. For most operating points within these ranges, 
stable limit cycles can be achieved. For operating points near the upper limits, period 
doubling and chaotic behavior develop on occasion. When Cy is below the lower limit, 
the velocity of the character accumulates until it falls. When cv is above the upper 
limit, usually the character will rock back and forth(or left and right) with increasing 
amplitudes until the oscillations destroy the walking. 

7.7.4 Limitations 

Figure 7.14 is the ground reaction force recorded from our simulation of a normal 
walk reconstructed from a motion capture example. As we can see there are unreal-
istically large forces when the stance leg and swing leg switch roles. However, other 
parts of the G R F pattern are qualitatively similar to data reported in [Medved 2001; 
Rose and Gamble 2006], which give the recorded GRF from human walking. To re
duce the impact forces for additional fidelity in imitating human walk cycles, several 
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issues need to be addressed. The current controllers do not explicitly model some 
phases of motion such as double-stance and toe-off. Extra states dedicated to these 
particular phases are desirable. Velocity matching is needed to reduce impacts in hu
man locomotion [Hodgins et al. 1995]. A better foot ground contact model that has 
compliance to imitate human soles and shoes would likely help. Lastly, a foot model 
having internal joints is likely needed if a fully natural toe-off behavior is desired. 

350 I 1 1 1 1 1 1 1 r 

11 I I I I I 1 I I I I 
• 10 20 30 40 50 60 70 80 90 100 

Gait Cycle (%) 

Figure 7.14: Ground reaction force recorded from simulation of a normal walk re
constructed from a motion capture example. 

The pipeline for producing controllers from motion capture data is not fully auto
mated in that we still manually tune the required feedback gain constants, and has 
only been tested on styles of walking. The current gaits are not optimized for energy 
efficiency. We do not model the reaction-time delays of human motion. As a result, 
some of our motions are stable in a way that human motions may not be, such as 
being able to accomodate unanticipated 20cm downwards steps. 

The available suite of mathematical tools for the stability analysis of high-dimensional, 
non-linear dynamical systems is limited [Strogatz 1994]. Two practical options for 
analysis are to work with a simplified version of the system dynamics, or to rely on 
simulation-based experiments. We have chosen the latter option. 

7.8 Discussion 

The control of bipedal locomotion is a challenging problem. The need in animation 
to model multiple gaits, stylized motions, reaction to variable terrain, and reactions 
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to external forces exacerbate this challenge. The framework presented in this paper 
addresses many of these challenges. We have further shown how to develop a variety of 
walking controllers from motion capture data and how to implement feedback error 
learning to achieve motions that are driven by feed-forward torques and low-gain 
feedback. 

There are a large number of directions that can be pursued. We wish to develop 
libraries of 'downloadable skills' that can be shared. This requires file formats for 
exchanging controllers which describe both the controller itself and its basin of at
traction [Faloutsos et al. 2001]. We wish to apply the control schemes to humanoid 
robots. Basic locomotion skills should be integrated with other skills that let the sim
ulated characters interact with their environment in a rich variety of ways. Methods 
are needed for planning motions using the controllers we have developed. 

Autonomous characters (or robots) should exhibit more sophisticated anticipation 
and response with respect to its environment. This includes better adaptation to the 
terrain as well as navigating among moving objects and people. In the current work we 
have explored a model of simply switching between controllers. A more sophisticated 
scheme could exploit the continuous parameterizations obtained by interpolating be
tween controllers. Alternatively, a system could be developed to identify and learn 
(through optimization) new acyclic transition motions that would lead to more agile 
behaviors. We wish to more thoroughly examine the effect of differences between the 
physical parameters of the motion capture subject and those of the simulation model. 
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state A t cd Cv tor swh swk swa stk sta 

walk 
0,2 0.30 0.00 0.20 0.0 0.40 -1.10 0.20 -0.05 0.20 
1,3 fc 2.20 0.00 0.0 -0.70 -0.05 0.20 -0.10 0.20 

in-place walk 
0,2 0.30 0.00 0.40 0.0 0.62 -1.10 0.20 -0.05 0.20 
1,3 fc 1.55 0.00 0.0 -0.10 -0.05 0.20 -0.10 0.20 

fast walk 
0,2 0.27 0.00 0.20 -0.1 0.73 -1.83 0.20 -0.05 0.20 
1,3 fc 2.00 0.00 -0.1 -0.70 -0.05 0.20 -0.10 -0.06 

highstep walk 
0,2 0.30 0.00 0.20 0.0 1.00 -2.40 0.20 -0.05 0.20 
1,3 fc 2.00 0.00 0.0 -0.70 -0.05 0.20 -0.10 0.20 

half bent walk 
0,2 0.23 0.00 0.20 -0.2 0.62 -1.10 0.00 -0.05 0.00 
1,3 fc 0.60 0.00 -0.2 -0.10 -0.05 0.00 -0.10 0.00 

bent walk 
0,2 0.30 0.00 0.20 -0.6 0.80 -1.10 0.00 -0.05 0.00 
1,3 fc 0.60 0.00 -0.6 -0.10 -0.05 0.00 -0.10 0.00 

crouch walk 
0,2 0.30 0.00 0.20 -0.2 1.10 -2.17 0.62 -0.97 0.44 
1,3 fc 2.20 0.00 -0.3 -0.70 -0.05 0.20 -0.92 0.44 

scissor hop 
0,2 0.27 0.00 0.77 -0.2 0.70 -0.58 0.20 -0.05 0.09 
1,3 fc 0.11 0.01 -1.0 -0.82 -0.27 0.20 -0.10 0.12 

backwards leaning backwards walk 
0,2 0.22 0.00 0.28 0.2 0.37 -1.41 0.00 -0.05 0.00 
1,3 fc 0.60 0.00 0.3 -0.10 -0.05 0.00 -0.10 0.00 

fast run 
0,1 0.15 0.00 0.20 -0.2 1.08 -2.18 0.20 -0.05 0.27 

run 
0,2 0.21 0.00 0.20 0.0 0.80 -1.84 0.20 -0.05 0.27 
1,3 0.00 0.00 0.20 -0.2 1.08 -2.18 0.20 -0.05 0.27 

skipping gait 
0,4 0.19 0.00 0.40 0.0 1.04 -1.75 0.20 -0.19 0.20 
1,5 0.12 0.00 0.40 0.0 2.25 -2.18 0.20 -0.05 -1.60 
2,6 0.26 0.00 0.04 0.0 2.44 -2.09 0.20 -0.05 0.20 
3,7 fc 0.18 0.37 0.0 -0.46 -0.05 0.20 -0.10 0.20 

SD walk 
0,2 0.3 0.5 0.2 0 0.5 -1.1 0.6 -0.05 0 
lat 0.5 0.2 0 0 0 0 0 0 
1,3 fc 0.5 0.2 0 -0.1 -0.05 0.15 -0.1 0 
lat 0.5 0.2 0 0 0 0 0 0 

SD run 
0,1 0.3 0.5 0.2 0 0.5 -1.1 0.6 -0.05 0 
lat 0.5 0.2 0 0 0 0 0 0 

Table 7.1: 2D and 3D locomotion parameters for the periodic, left-right symmetric 
gaits. The columns from left to right represent the state numbers, state dwell du
ration, position and velocity balance feedback coefficients, and the torso, swing-hip, 
swing-knee, swing-ankle, stance-knee, and stance-ankle target angles. A l l angles are 
expressed in radians. The 2D and 3D runs have only two states. 
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C h a p t e r 8 

C o n c l u s i o n s 

This thesis has outlined several ways to generalize character animation from motion 
capture data. Depending on the application, some of them are more successful than 
others. Kinematic modelling is more successful where the necessary knowledge and 
insights are not available to help reconstruct a controller for dynamic simulation. 
The main issues are how to parametrize or index the precaptured motions, properly 
select matching examples, and seamlessly adapt and blend those example motions. 
Dynamic modelling is more successful in permitting wider generalization and bigger 
user interactions that guarantees physical realism, and requires less example data. 

8.1 Contributions 

FootSee is a novel interface for interactive avatar control and low-cost performance-
driven animation, using a foot pressure sensor pad and pre-captured pressure and 
motion databases. It is intuitive, non-intrusive and reasonably robust. We believe 
FootSee is a promising technique that provides an intuitive and easy-to-use interactive 
interface for many types of applications, including interactive video games, avatar 
control, sports training, and performance-driven animation. 

Our data-driven kinematic balancing system is fast and effective, even when using a 
relatively small motion database. It is useful for interactive video games, fast balance 
behavior choreography, autonomous avatar control in virtual reality applications, and 
reference trajectory formation for humanoid robots. It successfully generated motions 
that respond to multiple pushes, as well as to single pushes, although the motion 
database only contains balance behaviors under single pushes. Multiple strategies, 
including arm rotation strategy which has not been successfully reproduced in our 
dynamic approaches, are demonstrated. The results show that a data-driven approach 
can be quite powerful, when accurate physical realism is not required, or when the 
motor task is beyond our understanding to implement dynamically 

Motor control is one of the major challenges in physically based human simulation. 
To our knowledge, our work is the first that tries to address this problem by explicitly 
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incorporating human neuromotor control models into the human simulation system. 
We test our approach with motion perturbation tasks on motion capture data, and 
the results are promising. Applications such as interactive video games can thus 
benefit from an enriched motion repertoire. 

Our dynamic in-place and stepping balancing system is omnidirectional, while re
lated work has most often focussed on modeling control in response to forward pushes 
in the sagittal plane. The control models we develop and demonstrate can respond in 
realtime to a wide range of push magnitudes and directions, with multiple strategies. 

In the dynamic locomotion framework SIMBICON, we integrate and build on pre
vious insights to develop a simple new strategy for the control of balance during 
locomotion. We show that this can be used to develop controllers for a wide vari
ety of 2D and 3D biped gaits. To our knowledge, we are the first to demonstrate 
a large set of integrated, physically-simulated bipedal skills, including many styles 
of walking, omni-directional push-recovery while walking, running, stylized running 
(scissor hop), and skipping. In addition, we develop and demonstrate controller-based 
imitation of motion-captured gaits which exhibit robust balancing behavior. Lastly, 
we demonstrate that feedback error learning can be used to produce anticipatory, 
low-gain locomotion control. The simple framework opens the door to developing 
significantly wider sets of locomotion skills for physically-simulated characters and 
bipedal robots. 

8.2 Future Work 

There are many promising directions for future research. 
For the FootSee system described in Chapter 3 , we would like to combine other 

non-intrusive sensing techniques with FootSee. For example, a camera can probably 
see the arm motions better than FootSee, while FootSee can resolve many ambigu
ities that a camera cannot. Chai and Hodgins [2005] demonstrated an interesting 
performance driven system with two cameras and six markers. Our initial intention 
for the foot pressure sensor pad was to extract the dynamic force-ground interaction 
information to aid the dynamic modelling process of balance and walking controller, 
or to do dynamic performance-driven animation (cell Al in Table 1.1). This remains 
an interesting direction to pursue. 

For the data-driven balancing system in Chapter 4, we plan to explore more inter
active motor task synthesis using this kind of data-driven approach, with dynamic 
indices and constraint-respecting transformations. 

Our approach to using insights into human motor control in Chapter 5 is very 
simple: only muscle-tendon feedback is considered; spinal and supraspinal feedback 
pathways are missing. Longer latency feedback pathways, which are also more com
plex and less well understood, can realize reflex-like rapid movements and phase-

124 



dependent functionally correct responses. Although the SIMBICON framework in 
Chapter 7 exhibits some degree of reflex-like stepping, the richness cannot compare 
with the response repertoire of real humans, and the responses are not always appro
priate for different stages of a gait cycle. 

Synergy learning (Section 2.3.2) is potentially a very useful concept that not only 
can accelerate the learning process, but also makes the synthesized motion less robotic 
and more human like. However, how to learn, represent and exploit synergy is not 
clear. A starting point may be to analyze torques computed by inverse dynamics on 
motion captured data. 

The SIMBICON framework given in Chapter 7 opens significant opportunities for 
future study. We wish to develop libraries of controllers that can be shared. One 
way to do this is to enable formats for exchanging controllers which describe not only 
the controller itself but also its basin of attraction. This moves towards a workable 
implementation of downloadable skills for autonomous characters. We also wish to 
apply the control schemes to humanoid robots. 

Autonomous characters (or robots) should exhibit more sophisticated anticipation 
and response with respect to its environment. This includes better adaptation to the 
terrain as well as navigating among moving objects and people. In SIMBICON we 
have explored a model of simply switching between controllers. A more sophisticated 
scheme could exploit the continuous parameterizations obtained by interpolating be
tween controllers. Alternatively, a system could be developed to identify and learn 
(through optimization) new acyclic transition motions that would lead to more agile 
behaviors. We wish to more thoroughly examine the effect of differences between the 
physical parameters of the motion capture subject and those of the simulation model. 

In this thesis we basically use a reactive change-of-support strategy to reposition 
the swing leg for balance control. Momentum control, as briefly mentioned in Sec
tion 2.2.1, and in recent work of Lee and Goswami [2007], can capture the critical 
angular behaviours of human movements, such as windmilling effects of the trunk 
and arms when we are about to lose balance. SIMBICON can serve as a base layer 
of control, on top of which the momentum control can sit. 

In both dynamic balancing systems, the swing leg can collide with the stance leg 
during the course of balance recovery. This behavior can likely be predicted and 
corrected for. 

Quantifying the quality of motions, either by user studies or computational tech
niques [Reitsma and Pollard 2003; Harrison et al. 2004; Ren et al. 2005], will help to 
justify our results and compare with results from other research groups. 
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A p p e n d i x A 

M o r e A b o u t B a l a n c e Indices 

A . l GRF and CoP 

Here we prove that the tangential (to the ground) torque generated by the normal 
ground reaction forces is zero. In Figure 2.4(a) ini = (0, / n j B ,0) T denotes the normal 
force at ground point q» = (qix,0, q i z ) T , then the definition of the CoP p = (px, 0,pz)T 

is as follows: 

Px = 

Pz = 

Z~2 Qix fniy 

fniy 

Z~2 Qiz fniy 

Z~2 fniy 

So the resultant tangential torque of these normal forces at p is: 

Z~2 (Pz Q i z ) f n i y 

0 
. E ( P x - Qix ) fniy . 

= (0,0,0)3 

(A.l) 

(A.2) 

A.2 ZMP 

The ZMP is defined as that point on the ground at which the net moment of the 
inertial forces and gravity forces has no component along the horizontal axes. The 
fundamental reason for caring about the horizontal net moment can be explained 
by D'Alembert's Principle. Intuitively, we know from the last section that ground 
reaction force has no tangential moment at the CoP, and mathematically the ZMP and 
the CoP are equivalent ([Goswami 1999]), so inertial forces and gravity forces cannot 
have horizontal moment either at the CoP, if the system is in dynamic equilibrium. 

D'Alembert's Principle states that the sum of all forces: external forces and inertial 
forces, inside a dynamic system is equal to zero. Or alternatively the virtual work 
done by external forces to a system is equal to the virtual work done by inertial forces. 
We can write out the rotational dynamic equilibrium about any stationary reference 
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point o as follows, when the gravity and the GRF are the only external 
forces: r 

t + O p X f + ^2 OCi X m i S = ^ H j + ^2 o c i X m i S i i (A.3) 

where m-i is the mass of link i; Cj is the Center of Mass (CoM) location; a, is the CoM 
linear acceleration. H j = IJOJJ + u>i x IjO-j is the rate of change of angular momentum 
about the CoM of the ith segment, where aij is the angular acceleration and u>i is the 
angular velocity, p is the CoP. t is the resultant ground reaction torque at p , and f 
if the resultant ground reaction force at p . 

If we take p as o, Equation A,3 can be reduced to 

^ H» + ^ P C , x imai - ^ p c , x m ; g = (0, *, 0) T (A.4) 

We see the CoP actually satisfies the ZMP definition, thus they are equivalent. In 
robotics, people usually use the ZMP, while in biomechanics (Section 2.3.1) people 
usually use the CoP. From now on we will denote the ZMP as z , and the CoM of each 
link as p^. We rewrite the ZMP equation for systems with no external forces other 
than gravity and GRF acted upon as: 

^ ( m ; ( p ; - z ) x a» + IjOJi + Ui x \iLUi) - ^ m j ( p ; - z ) x g = (0, * , 0) T (A.5) 

i i 

Solving z with g = (0, —9.8,0)T gives 

J2i mi(piX(aiy + 9.8) - piyaix) + J2i(Uca + ^% x \m)z 

(A.6) iZi mi(aiy + 9.8) 
= E j m(Piz(aiy + 9-8) - Piydjz) - zZjiUctj + UjX \jUi)x 

E i m i ( a i 3 / + 9 - 8 ) 

When there is a perturbation force f acting at s, the above ZMP equations change 
to: 

= _Ci m(PiX(aiV + 9-8) - Piy(iiX) + zZiihaj + UJJ X \JUJ)z + fxsy - fysx 

E i m i K + 9 - 8 ) - / y , A 7 ) 

= E i mi(Piz(aiy + 9-8) - Piyaiz) - EiPi a » + U^i)x + fzsy - fysz 

Ei^i(«iy + 9 . 8 ) - / y 

We can also write the above equations in terms of C O M position, velocity, acceler
ation, and the moment around C O M . 

mpx(ay + 9.8) TYipy(lx ~\~ tz -\- fxSy fySx 

Zrr. = 
m(ay + 9.8) - fy 

_ mpz(ay + 9.8) - mpyaz -tx + fzsy - fysz . . 
m(ay + 9.8) - /„ ^ 

t = ^ ( l i « i + LOi X \iUJi) + ^ PPi X m i a i 
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The denominator of the above equations is actually the Y component of the GRF, 
which should be greater than zero. ZMP is the point where the horizontal moment 
of external forces and inertial forces balance. The ZMP concept is very important to 
robot balance control. We want to emphasize that ZMP inside foot boundary is a 
necessary but not sufficient condition for balance. For a physically plausible motion, 
ZMP is always inside or on the edge of the foot boundary, because according to 
D'Alembert's principle, a dynamic system is always in dynamic equilibrium. 

A.3 FRI 

The FRI point is a point on the ground at which the resultant moment of the 
force/torque impressed on the foot is normal to the ground surface [Goswami 1999]. 
Impressed force/torque means the force and torque at the ankle joint, other external 
forces on the foot, plus the weight of the foot, but not the GRF. Suppose there is 
only one foot in contact with the ground, and the body index for the foot is 0. We 
denote the ankle torque as To, ankle force as fo, ankle joint location as a, foot CoM 
as Oo, foot mass as mo- Then FRI point r is defined mathematically as the point on 
ground that satisfies: 

r 0 + ra x f0 - ro 0 x m0g = (0, *,0) T (A.9) 

Using D'Alembert's principle we can calculate FRI as follows: 

_ 9.8mop0, + J2i=i mi{Pix(aiv + 9-8) ~ Piyaix) + z~2i=i(U<Xi + UjX \jU>i)z 

9.8mo + E L i ^ K + 9 - 8 ) 
^•8mQp0x + Er=i m%(Pi,(<ky + 9 - 8 ) -P i»Q - EHiP^ + ̂  x 

T z ~ 9.8m0 + Y2=x mi(aiv + 9-8) 

FRI and ZMP are closely related. From Equation A.6 we can easily get Equation 
A. 10 by setting ao = ao = u>o — 0. Unlike the ZMP, the FRI can be outside of the 
support polygon. It is where the net ground reaction force would have to act to keep 
the foot stationary. Intuitively, we can think of the FRI as the virtual ZMP when the 
foot is infinitely large and static. It has the following properties: 

• The FRI point indicates the occurrence of foot rotation. 

• The location of the FRI point indicates the magnitude of the unbalanced mo
ment on the foot. 

• The FRI point indicates the direction of foot rotation. 

• The FRI point indicates the stability margin of the robot. 
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A p p e n d i x B 

Hardware used in O u r E x p e r i m e n t s 

B.1 Equipment 

• 

Figure B.1: (a) Typical setup of the Vicon6 motion capture system for full body 
motion capture, (b) XSensor pressure sensor bed pad. 
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For motion capture, we use the Vicon6 motion capture system1. It consists of a 
Vicon6 datastation and six MCam2 infrared cameras. Since the capture resolution 
reduces when the capture frequency increases, we use 60 or 120 Hz for full body 
motion capture to get the largest resolution (3160x1024 for 60Hz). A typical setup 
for full body motion capture is shown in Figure B.l(a). 

For foot-ground pressure capture, we use the XSensor2 pressure sensor bed pad 
(Figure B.1(b)).The bed pad is capable of capturing an area of 0.8mx2m at 6 Hz, or 
0.8mxlm at 12 Hz, with a spatial resolution (center-to-center spacing of individual 
pressure sensors) of 0.5 inch. There are four pressure ranges where we can get cali
brated data: 0-30 psi, 0-50 psi, 0-80 psi, 0-100 psi. According to our experience, 0-50 
psi is good for normal 2 feet balancing, walking etc. 0-80 psi is good for balancing on 
one foot, jumping etc. 0-100 psi is good for high dynamic motions. 0-30 psi is good 
for very static motions and can give better accuracy The foot pads are capable of 
capturing two 7.5W North American shoe-size (23.5 cm) feet, at 50 Hz onto a smart 
media card, or 20 Hz onto a hard drive directly. The spatial resolution is 7 mm. It 
can return calibrated data for the 0-80 psi pressure range. A l l the pads can return 
raw pressure data in 0-255 byte format as well. 

B.2 Synchronization between Vicon and XSensor 

ib< 

Ground: 7 1 

- • la 
- • 7:Ground 
- • 3 : Start 

5 :Stop 

Figure B.2: Sync circuit 

The original function of the Vicon JI connector is to allow the remote control of 
data capture from external switches or photoelectric sensors ([Vicon]). Connecting 
Start (pin 3) or Stop (pin 5) to Ground (pin 7) will initiate the selected function.Pin 1 

1 Vicon Motion Systems Ltd: http://www.vicon.com/ 
2XSensor Technology Corporation: http://www.xsensor.com/ 
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generates a negative going T T L gated reference signal, which is aligned to the camera 
Horizontal Synchronization (HD) signal and present when cameras are performing. 
That is to say, we have a 60 Hz signal coming out of Pin 1 if we capture at 60 Hz. The 
first generation of our synchronization circuit directly feeds this signal to a homemade 
frequency divider, and a 12 Hz sync signal is carried into the X2 Sync IN socket by 
a 3.5mm stereo audio jack ([XSensor]). 

The problem with the first generation circuit is that although motion and pressure 
frames are synchronized, the start time of the two captures are not. This is because 
the sync signal from Pin 1 is active as soon as we start the "live monitor" in Vicon 
Workstation. We did the start time alignment by manual synchronization. At the 
beginning of each trial, we asked the subject to do one or two stomps on the pressure 
pad. Later we watch the motion and the pressure data to synchronize the stomps. 

Figure B.2 shows our second generation sync circuit. What we want is to activate 
the sync signal only when we start the actual Vicon capture. We combine the standard 
Vicon remote/external triggering switch box with our first generation sync circuit, 
using an on-off double pole double throw rocker switch. 

For future work, a third generation synchronization will get rid of the frequency 
divider circuit. A standard serial port will carry the 60 Hz sync signal into the 
computer and interrupt our software whenever a pulse arrives. Our software will 
then do a more flexible frequency manipulation and call the XSensor API function 
Sample() when needed. 

B.3 XSensor Setup 

In setting up and using the XSensor hardware and in testing our own software, we 
encountered several issues. 

• The XSensor electronics box is able to control only one task at a time, with first 
priority given to the XSensor software, i.e. when the XSensor program is open, 
regardless of whether or not it is in recording mode, other programs which try 
to access the X2 electronics box through the XAPI.dl l may act unpredictably. , 

• The XSensor pad is sensitive to electromagnetic conductive surfaces. The area 
around the pad should be cleared in order to ensure that noise from external 
devices does not interfere with data capture. The amount of noise that may 
appear from devices such as USB hubs can be rather significant. The metal 
surface of the floor in the lab will also impact pressure readings; avoid this by 
using a barrier between the floor and the bottom of the pad (e.g. a large piece 
of cardboard, hard carpeting etc.). 
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A p p e n d i x C 

Inverse K i n e m a t i c s A l g o r i t h m for 
F o o t S e e 

As stated in Chapter 3, we developed an analytical inverse kinematics (IK) algorithm 
to modify the stepping motions selected from the database to match the user's step 
length when a large position error is detected. The IK has the following steps: 

1. The root orientation and planar (x, z) position remain unchanged. 

2. The hip joint angles are modified to meet stepping length changes. 

3. After the hip joint angles are edited, some constraints will be violated, causing 
problems such as rotation of the foot during stance, and ground penetration 
during swing. The ankle and knee joint angles are modified to keep these 
constraints satisfied. 

The rationale for the design is as follows. The step length, step' direction and 
step height are mainly a function of the orientations of the pelvic girdle, the left 
and the right hips, and the left and the right knees. In our experiments, the user is 
always facing the same direction, and so the orientation of the pelvic girdle (the root 
orientation) does not change much. We thus leave the pelvic orientation fixed in our 
IK. 

Next to the shoulder joint, the hip joint is the most movable of all joints. It is 
a ball-and-socket type of joint (3 DoF). The knee joint is primarily a hinge type of 
joint, combined with a small amount of gliding and rolling [Moore and Dalley 1999]. 
It is usually treated in computer graphics as a 1-DoF joint allowing only flexion 
and extension. Although our skeleton model treats all joints as 3-DoF joints, the 2 
extra joint angles of the knees remain small all the time. Because we consider only 
flat terrain, the knee flexion-extension characteristics for different steps do not vary 
greatly in our experiments. Figure C. 1 shows the joint angles of two steps we captured. 
One is a right forward stepping, the other is a right side stepping. The patterns for 
knee angles are quite similar: a flexion in toe-off, followed by an extension in strike, 
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(a) right forward stepping (b) right side stepping 

Figure C l : The joint angles of the right leg for two steps. The horizontal coordinate 
is the frame number. The vertical coordinate is the joint angle. In both figures, 
the top red curve is the knee joint angle. The bottom red curve is the hip flexion-
extension. The blue curve is the hip abduction-adduction. The green curve is the 
hip axial rotation. Please refer to Figure 3.5(b) for the joint angles' corresponding 
rotation axes which are coloured accordingly. 

followed by a flexion in opposite toe-off, followed by an extension in opposite strike 
[Rose and Gamble 1994]. So basically there are two peaks in the knee angle curves. 
The hip angles, however, vary with the stepping length and direction more directly. In 
side stepping, there is more abduction-adduction; while in forward stepping there is 
more flexion-extension. Therefor, the hip angles are chosen to adapt the step length, 
and ankle and knee angles are used to maintain constraints. 

Based on the above assumptions, we designed the fast IK algorithm shown in Figure 
C.2. In Figure C.2(a), we know the initial joint positions of the leg, thus we can 
compute the hip-ankle vector a, and the projected hip-ankle vector b (a projected 
onto the horizontal plane through the ankle). Suppose we want to shift the ankle 
position by c to get to a new location estimated from the new pressure data, keeping 
the knee joint angle unchanged and allowing the hip position to only move vertically 
(which is equivalent to the first assumption). The new hip-ankle vector e can be 
computed, because d can be computed from b and c, and the length of e equals the 
length of a. With a and e available, we compute the quaternion q that rotates a to 
e. 

q= (ksin(0/2),cos(0/2)) ( C l ) 

where 
6 - arccos( „ a„"„ e „) (C.2) 

||a|| ||e|| 
and 

k = ___2i__L (c.3) 
a x e 
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q is then concatenated with the quaternion computed from the original hip joint 
angles, so the ankle can be transformed to the new location. This completes the IK 
for a single leg. 

However, stepping involves two legs. Say we want to shift the ankle of the leading 
leg by c. We cannot just ask one leg to try to make this shift because it will likely 
change the root's vertical position. The other leg will be affected by this root shift, 
and since its configuration is not changed, its ankle will be likely moved up into the 
air or down under the ground. So we need to distribute the shift c to both legs with 
two requirements: 

1. The sum of the shifts from the two ankles equals c. 

2. The vertical translation of the right hip equals that of the left hip, because both 
of them are connected to the pelvic girdle (see the green bi-directional arrow in 
Figure 0.2(c)). 

From requirement 1, we simply let the shift for the leading leg to be ac, and the 
shift of the stance leg to be (a — l)c, see Figure C.2(b). Then by requirement 2, we 
equate the vertical shifts of the two hips. It happens that a has a simple closed-form 
solution for this hip constraint (see Appendix C l ) . 

(a) One-leg IK (b) Planar illustration (c) Two-leg IK 

Figure C.2: IK algorithm illustration. Dots are original joint locations, stars are new 
joint locations. 

Although we compute the pose difference by shifting both ankles, i.e., by shifting 
the dots to the imaginary hollow stars in Figure C.2(b), we do not really shift both 
ankles in the synthesized motion since the stance ankle has to remain fixed. The 
kinematic root is temporarily switched to the stance ankle after the leading leg takes 
off, and we perform a displacement mapping from the original hip rotations to the 
desired hip rotations during the swing phase of the leading leg, until its touchdown. 
The pose of the lower body is transformed so that we get a step from the left dot to 
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the solid star in Figure C.2(b). The imaginary dashed step was used for the IK pose 
computation, while the parallel solid step is the actual step that satisfies both the 
stance ankle constraint and the stepping ankle displacement requirement. 

During the step transformation, two constraints have to be kept. First, due to the 
hip rotation shift, the stance ankle rotation has to be shifted in the reverse direction 
(opposite of q) to counteract the hip rotation displacement and remain stable. Second, 
our IK basically keeps the knee flexion from the original stepping. However, a large 
ankle displacement c may need different knee flexion amplitudes to guarantee certain 
foot clearance for the swing foot (this can be seen from Figure C l ) . We constantly 
check how close the swing foot is to the ground. When there is danger of the foot 
hitting the ground during the swing, the knee is flexed allowing the foot to follow the 
height of its original swing motion (see Appendix C.2). Figure 3.8(h) is an example of 
our IK. The original motion is a step to the right (see pressure data), and is modified 
to a right backward stepping by the IK to match the input pressure data. 

C l Derivation of a 

Denote the hip position as h, the ankle position as a. As illustrated in Figure C.2(a), 
the hip vertical translation t is calculated as follows 

_ = | | b v - a j - vW - I IdH 2 (C.4) 

Equate the left hip translation with the right hip translation, we can get an equation 
of this form 

y/aa2 + b\Ct + ci — yj act2 + b2a + c 2 + d = 0 (C5) 

The above equation can be deduced to a quadratic equation 

Ac? + Ba + C = 0 

We pick the solution in [0,1]. In case the two solutions are both in this range, 
we pick the one closer to 0.5. There are cases when both solutions are out of the 
range [0,1], and the resulting animation is often weird. This is because the needed 
correction is too large (this often means a wrong match just happened), while the 
kinematics is satisfied, other constraints such as center of mass should stay in the 
feet support polygon is violated. In this case, we reduce the correction to be made in 
this step recursively until we get a reasonable solution for a, and the stepping error 
is distributed into IKs for the following steps as well, rather than trying to correct 
the error in one unrealistic step. 
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C.2 Flexion of Knee 

Denote the orientation of the knee joint as q = {qx,<ly,<lz,qw), its inverse as q' = 
(—qx,—q.y,—qz,qw), the ankle joint position in the knee joint coordinate frame as 
s = (sx,sy,sz). In our case, s = (0, sy,0). From forward kinematics of the leg, 
we know we want to flex the knee to achieve an ankle height shift 5y. Denote the 
transformation of a vector s by a quaternion q as: 

q(s) = q <8> (sx, Sy, sz, 0) <g> q', 

where <g> means quaternion multiplication. Denote the knee flexion angle we want as 
0, then the quaternion corresponding to this flexion is q# = (sin(0), 0,0, cos{0)), since 
the flexion axis is the X = (1,0,0) for our skeleton model. From 

n(q®q*)(s)]-nq(s)] = <fy, (c.6) 

where Y(.) fetches the Y component of a vector. The above equation expands to 

acos{0)2 + bsin(9)cos(0) + c = 0, (C.7) 

where 
2 2 , 2 2 

a = Qx-Qv + Qz-Qw 

b = 2{qxqw + qyqz) 

Sy 
2sy 

The solutions for Equation C.7 are: 

Aca-adi 
01 = arctani — ) 

bdi 

Aca-ad2, 
02 — arctan( — ) 

where 

a = a2 + b2 

B = Aac — 2b2 

7 = 2Vb4 - 4b2ac - Ab2c2 

dl = 8 + j 

d2 = B - 7 

Between (^1,̂ 2), we choose the one with smaller amplitude as the solution. Note 
in our forward kinematics, q w o r i d = ^parent-world <8> <liocai> the new knee local rotation 
should be q n e w j o c a i = ^.oiddocai ® <ie-
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A p p e n d i x D 

De ta i l s o f O u r D y n a m i c s S i m u l a t o r 

Our rigid body simulator is based on a Lagrange multiplier approach for computing 
constraint forces, inspired by the work of [Baraff 1996]. We extend this approach by 
allowing the simulator to solve both forward and inverse dynamics problems. Contact 
and collision are handled as linear complementarity problem (LCP). We refer the 
readers to [Cline 2002; Cline et al. 2002] for more details. 

D.l Equations of Motion 

We formulated the equations of motion as a full-coordinate constraint-based matrix 
form, instead of in reduced (generalized) coordinates. In the Lagrange multiplier 
approach, the velocity of each body is parameterized by a full six coordinate repre
sentation. Each joint in an articulated body is represented by a constraint equation, 
which is a linear equation on the velocities of the bodies. Constraint i between bodies 
a and b is given by the equation: 

j m V a +jiftV 6 = 0, (D.l) 

where the Jacobian matrices j have six columns and one row for each degree of freedom 
they remove from the system (the number of rows is referred to as the degree of the 
constraint). For a system with many constraints and many bodies we construct one 
large jacobian matrix J, containing all of the constraint equations, and concatenate 
the velocities of all of the bodies into a single vector v. For example, if we had a 
chain of four rigid bodies connected by three joints, the constraint equation would 
appear as follows: 

= 0 (D.2) 
jla jib 0 0" 

Jv = 0 0 
.0 0 J3c J3__ |v_| 
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If the constraint is workless (i.e., a frictionless joint), then the constraint forces are 
multiples of the rows of J. The sum of all constraint forces is given by 

fc = J T A, (D.3) 

where A is a vector of Lagrange multipliers. 
The row space of J is the space of constraint forces. We now wish to introduce an 

analogous matrix H whose row space is the space of all possible "muscle forces", or 
more precisely "joint torques", which the muscles surrounding a joint can apply to 
their neighboring bodies. The rows of H correspond to equal and opposite torques 
applied at the joint. Similar to equation D.3, the muscle forces are given by 

f-m = H r. (D.4) 

Combining the constraint equations with the Newton-Euler equations of motion gives 
us the following matrix equation: 

M - J T - H T ' 
J 0 0 

- a 
A — '•x A 

0 
T 

(D.5) 

Here M is the mass-inertia matrix of the bodies in the system (a block diagonal matrix 
with each block corresponding to one body), a is the acceleration vector of the bodies, 
and vector fx contains external forces such as gravity and perturbation forces l . 

Discretize Equation D.5, we have 

M - J r - H T 

J 0 0 
h\ 
hr 

Mv t + Mx (D.6) 

where h is the time step size, v t and vt+h are the velocity of the rigid bodies at time t 
and t+h. To counteract drift at the joints due to numerical error, we use a Baumgarte 
stabilization scheme [Baumgarte 1972]. c e stands for the equality constraint stabi
lization quantity. The Post-step stabilization scheme described in [Ascher et al. 1995; 
Cline and Pai 2003] is another option, where after each simulation step we project the 
position of the bodies onto the constraint manifold. Post-step stabilization is slower 
than Baumgarte, but is more accurate and stable. 

Equation D.6 is a unified expression that is true for both forward and inverse 
dynamics. We will later rearrange this equation to reflect the known and unknown 
values in these two types of problems. 

1 We also put negative angular bias force into external forces to simplify the left hand side matrix. 
The angular bias force [to] \u) is the force which must be applied to a rigid body to produce zero angular 
acceleration. 
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D.2 Details of Matrices J and H 

For a joint connecting one body to another, the matrices J and H both have twelve 
columns (they multiply with a vector [vTuaubub]T containing the linear and angular 
velocities of both bodies that the joint is connected to). The number of rows in J 
is the number of degrees of freedom (DoF) that the joint removes from the system, 
while the number of rows of H is the number of degrees of freedom in the rotation of 
the joint. These two numbers always add up to six. For instance, in a hinge joint, 
there is one degree of rotation freedom, and five DoFs are removed from the system. 
For a ball joint, there are three degrees of rotational freedom, and three DoFs are 
removed. If we recall that the rows of these matrices are used as force basis vectors, 
we can also note that the first and second halves of these vectors must correspond 
to equal and opposite forces applied to the pair of bodies. This constraint restricts 
the row space of J and H to a six-dimensional subspace of R 1 2 . The row space J and 
H must always span this entire 6D subspace containing all equal-and-opposite force 
pairs. 

In our implementation, we follow the convention for describing rigid body velocities 
that is described by Baraff and Witkin [1997]. The velocity of a rigid body is given 
as a vector v = [VTLUT]T, where vT is the velocity of the centre of mass of the object, 
given in world coordinates, and to is the world coordinates of the angular velocity 
vector. Under this convention, our matrices J and H has the following structure: 

• 1 0 0 - 1 0 0 
o i o — r J o - i o 
0 0 1 0 0 -1 
0 0 0 eT 0 0 0 
0 0 0 et 0 0 0 

(D.7) 
LO 0 0 ef 0 0 0 - E | J 

where r a is the vector from the centre of mass of body A to the joint, and r̂ , is the 
vector from body B's centre of mass to the joint. The notation [r] denotes the 3 x 3 
skew-symmetric cross product matrix of vector r. The axis vectors ei, e%, axe three 
orthogonal vectors in world coordinates, some of which are the free rotation axes of 
the joint, and some of which may be axes that joint bodies are constrained not to 
rotate around. Which of the rows of the above matrix belong to J and which belong 
to H depends on the type of the joint. 

D.3 Forward Dynamics 

In forward dynamics with known control, the muscle force multipliers r are known 
quantities. Moving H T r to the right hand side of Equation D.6 gives 

"M - J T " Vt+h ' M v t + Kk 
J 0 

(D.8) 

where k = fx + H T T . Solving this equation at each time step gives us the updated 
velocity of the system. 
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D.3.1 Accommodating Stiffness 

In order for the techniques to work for large time steps and achieve real-time simu
lation, an implicit integrator is essential. We use an implementation of the linearly 
implicit time stepping method as described by Anitescu and Potra [2002]. Fortunately 
this requires only small modifications to an explicit integrator. The main requirement 
of this implicit method is that we must calculate the gradients of the stiff forces with 
respect to changes in the position and velocity of the rigid bodies. 

To derive the linearly implicit method, we start with a backward Euler discretiza
tion of rigid body dynamics equation: 

M ( V T + \ ~ V T ) = k ( P m , v m , t + h) (D.9) 

The difficulty in solving this is that the force vector k is not known unless the position 
and velocity vectors Pt+h and vt+h are known. We make the linear approximation 
(hence the term "linearly implicit") that 

k(pt+h,vt+h,t + h) » 
k(pt, v t , t) + Vpkh -vt+h + Vvk(vt+h - v t ) , 

where V p k and V^k are the gradients of the function k with respect to change in 
position and velocity, respectively, and evaluated at (p t ,v t ,£ ) . 

If we substitute this into equation D.9 and move all of the terms with vt+h to the 
left hand side, we obtain 

(M - h2Vpk - hVvk)vt+h = 

Mv t - KVvkvt + h k(pt, v t , t) 

It is convenient to use the notation 

M = M - h2Vpk - hVvk (D.12) 

and 

k = k ( p t , v t ) « ) - V „ k v t (D.13) 

so that the linearly implicit equation for forward dynamics closely resembles Equation 
D.8. The implicit version is: 

"M - J T ' Mv t + hk 
J 0 hX 

(D.14) 

In our implementation, we calculate the force gradients V p k and V„k using automatic 
differentiation techniques [Nocedal and Wright 1999]. 
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