
Incomplete Factorization Preconditioners for Least
Squares and Linear and Quadratic Programming

by

Jelena Sirovljevic

B.Sc, The University of British Columbia, 2005

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
T H E REQUIREMENTS FOR T H E DEGREE OF

.Master of Science

The Faculty of Graduate Studies

(Computer Science)

The University of British Columbia

August 31, 2007

© Jelena Sirovljevic 2007

11

Abstract

Many algorithms for optimization are based on solving a sequence of. symmetric
indefinite linear systems. These systems are often large and sparse, and the main
approaches to solving them are based on direct factorization or iterative Krylov-
based methods. In this thesis, we explore how incomplete sparse factorizations
can be used as preconditioners for the special case of quasi-definite linear systems
that arise in regularized linear and quadratic programming, and the case of
least-squares reformulations of these systems.

We describe two types of incomplete factorizations for use as preconditioners.
The first is based on an incomplete Cholesky-like factorization. The second
is based on an incomplete Householder QR factorization. Our approximate
factorizations allow the user to prescribe the amount of fill-in, and therefore
have predictable storage requirements. We use these incomplete factorizations
as preconditioners for SYMMLQ and LSQR, respectively, and present numerical
results for matrices that arise within an interior-point context.

i i i

Contents

Abstract i i

Contents i i i

List of Tables v

List of Figures v i

Acknowledgements v i i

1 Optimization and Linear Algebra 1
1.1 Background 1
1.2 Optimization Problems 2

1.2.1 Least Squares 2
1.2.2 Linear and Quadratic Programming 3

1.3 Linear Algebra and Preconditioning 4
1.3.1 Symmetric Quasi-Definite Systems 4
1.3.2 Gaussian Elimination • 5
1.3.3 Cholesky Factorization 6
1.3.4 Q R Factorization 6
1.3.5 Preconditioning 7

1.4 Implementation Framework 9
1.5 Other Work 9
1.6 Software Packages 11
1.7 Notation ' . . 11

2 Sparse Matrices 12
2.1 Data Structures 12

2.1.1 Triplet 12
2.1.2 Column Compressed Storage . . 12
2.1.3 Row Compressed Storage 13

2.2 Sorting with Heaps 13
2.3 Graphs and Elimination Trees 14
2.4 Sparse Triangular Solves 16
2.5 Ordering for Sparsity 17

2.5.1 Minimum Degree 17
2.5.2 Other Methods for Reordering 18

Contents iv

3 Incomplete Cholesky Factorization 19
3.1 Which Way to Look: Left, Right and Up 19
3.2 Complete Cholesky 21
3.3 Column vs. Row Storage 22
3.4 p-Incomplete Cholesky 24

4 Incomplete QR Factorization 26
4.1 Which Way to Look: Left and Right 27
4.2 Complete Householder QR 28
4.3 Dropping Strategy 29
4.4 p-Incomplete Householder QR 31

5 Incomplete Factorization Preconditioning 33
5.1 Interior-point Methods for Linear Programming 33

5.1.1 The Normal Equations 35
5.1.2 Preconditioning 36
5.1.3 Numerical Experiments 38

5.2 Least squares 41
5.2.1 Alternatives 42
5.2.2 Preconditioning 43
5.2.3 Numerical Experiments 44

Bibliography 48

V

List of Tables

5.1 Timings for factorization and SYMMLQ for various p 39
5.2 Timings for factorization and LSQR for various p 47

vi

List of Figures

2.1 Graph representation of A 15
2.2 Elimination tree 16

4.1 Orthogonal triangularization 27

5.1 Sparsity patterns of the Cholesky factor U of (a) the augmented
system (49,000 nonzeros) and of (b) the Schur complement (4.9
million nozeros) 36

5.2 Ratio of the number of iterations of SYMMLQ with and without
p-incomplete preconditioner for various p 40

5.3 Ratio of the number of nonzeros in the p-incomplete Cholesky
factor to the full Cholesky factor for various p . . 41

5.4 Ratio of the number of iterations of SYMMLQ with and without
p-incomplete preconditioner for increasing threshold values for
diagonal entries in D 42

5.5 Ratio of the number of iterations of LSQR with and without p-
incomplete QR preconditioner for various p 45

5.6 Ratio of the number of nonzeros in p-incomplete factor R and full
factor R for various p 46

V l l

Acknowledgements

There is a small group of people who have, each in their own way, contributed
significantly to all the work that went into writing of this thesis. Even though
my gratitude to them cannot be adequately expressed in words, I will make an
attempt here.

I would like to thank my supervisor Michael Friedlander who provided not
only excellent academic support but also constant encouragement and motiva­
tion throughout my research. Many thanks also to Chen Greif for reading the
thesis and providing a lot of insightful comments.

I am truly grateful to my parents and my sister, without whom I would
certainly not be who I am nor where I am today, for their unwavering support
and faith in me. All of my accomplishments are theirs as well.

I am very thankful to Thomas for shining a ray of optimism on everything
I do, and for always believing that I can do whatever I set my mind to. His
enthusiasm and ambition provided a great inspiration for the past two years.
And, of course, the daily page count of my thesis was very helpful.

To my best friends, Jelena and Ksenija, I am thankful for never giving up on
me, even during the times when it seemed that I will never leave the lab again.
I can only hope to be there for them the way they have done for me.

I had the opportunity to meet some great people and gain a few very good
friends in the past two years. Liz, who was my friend in combat through many
class projects and who provided daily entertainment in the lab; Derek, Chris
and Mike with whom even doing homework was a fun activity, and others who
will always be a part of fond memories. Past two years would have not been
the same without them.

I would also like to thank Ewout and the rest of SCL students for many
educational and riveting discussions, and for all the answers to my endless list
questions.

1

Chapter 1

Optimization and Linear
Algebra

Solving a linear system of equations,

Ax — b,
is a fundamental problem in computational mathematics. In many areas of
science, such as chemical and electrical engineering, very complicated processes
can be modeled as relatively simple linear systems. Thus, solving this problem
efficiently is essential for computational mathematics and other areas of science.

There are two distinct approaches to solving a linear system of equations.
The first is direct, and uses factorization methods such as Gaussian elimination.
The second is iterative and it relies only on matrix-vector product; it is based
on computing a sequence of increasingly accurate solution estimates. Exam­
ples of iterative approaches include Krylov-based methods such as conjugate
gradient. The approximations in these methods either converge to the solution
within some specified tolerance or the method reaches the maximum number of
iterations specified, and stops without converging.

When dealing with large sparse linear systems storage requirements are crit­
ical. Direct methods often introduce a large amount of fill-in entries. These
are the entries that were structurally not present in the original matrix, but"
are introduced in the process of computing a solution with a direct method. In
this case, storage becomes an issue and the direct methods become infeasible.
Therefore, iterative methods are necessary.

1.1 Background
The effectiveness of iterative solvers depends on the eigenvalue distribution of
the system to be solved. The purpose of a preconditioner is to make the eigenval­
ues of the preconditioned matrix better clustered than they were in the original
matrix. The prefect preconditioner would be A - 1 , where A is the original ma­
trix, because A-1 A = I which only has a single eigenvalue. In this
conjugate gradient type method would converge in a single iteration. Of course,
computing A - 1 is equivalent to solving the original system using a direct method
and defeats the purpose of using an iterative solver. Therefore, a good precondi­
tioner must satisfy two important and somewhat contradictory criteria: it must
be close to A - 1 and easy to compute.

Chapter 1. Optimization and Linear Algebra 2

Computing a factorization of. A and using the factors as preconditioners
is a common practice [25]. The problems arise when dealing with very large
sparse systems where the factorization is expensive and the factors are large and
difficult to store. The factors often contain large amounts of fill-in entries, and
thus require a lot more storage than the original matrix. In order to preserve
the sparsity, incomplete factorizations are developed which allow the user to
prescribe the amount of storage for each factor and reduce the computation
time. These incomplete factors are then used as preconditioners for iterative
methods and are thus called incomplete factorization (IF) preconditioners.

The purpose of this work is to develop IF preconditioners for two common
problem classes that arise in optimization. The first is the least squares problem

minimize \\Ax — b\\2, (1-1)
X

for which we develop an incomplete QR preconditioner. (Henceforth, we use
|| • || to denote the 2-norm of a vector.) The second problem class is linear and
quadratic programming,

minimize cTx + \xTQx
x 2 ^ (1.2)

subject to Ax = b, x > 0,

for which we develop an incomplete Cholesky UDUT preconditioner in the con­
text of interior-point algorithms. Problem (1.2) is a linear program (LP) if
Q = 0, and is a convex quadratic program (QP) if Q is symmetric semi definite.

1.2 Optimization Problems
Least-squares problems and LPs and QPs represent a large class of important
applications and arise in many areas of science and engineering. They also arise
as vital subproblems within algorithms for more general problems.

1.2.1 Least Squares

The least-squares approach solves (1.1) by minimizing the norm of the residual
r = b—Ax, where A is an m-by-n matrix and b is a vector of length m. Typically,
m~> n.

If the rank of the matrix A is n then the solution to the least squares problem
is unique. Otherwise there are infinitely many solutions of which only one
minimizes the 2-norm of x and this is usually the preferred solution [4, Chapter

!]•
Least squares problems are often regularized to improve their conditioning.

Tikhonov regularization is the most common approach, and it leads to the
problem

minimize \\\Ax - b\\2 + %52\\x\\2, (1.3)

Chapter 1. Optimization and Linear Algebra 3

where the 5 is a nonnegative parameter that weights the strength.of the regu-
larization function.

The necessary and sufficient optimality conditions for the regularized least
squares problem (1.3) lead to the linear system

' I A ' r b
_AT -51 X 0

In case where 6 = 0, we have the linear system for the unregularized least-
squares problem.

1.2.2 Linear and Quadratic Programming
Interior-point (IP) methods for (1.2) provide a very powerful way of solving LPs
and QPs [30]. Each iteration of an infeasible primal-dual IP method is based
on applying Newton's method to the perturbed optimality conditions,

-Qx + ATy + z = c
Ax = b

XZe = ue
(x,z)>0,

where ^ is a small parameter that tends to zero. In the notation above, X and
Z are diagonal matrices, X = diag(a;i,x2, ..., xn) and Z = diag(.zi, z2,.. •, zn);
e is an n-vector of all ones. Thus, the condition XZe = lie is the same as
XiZi — \i for i = 1,2,..., n. Because u —> 0, this condition eventually becomes
XiZi = 0 for i = 1,2,..., n, which means that for each i one of Xi or Zi must be
equal to zero.

Thus, each iteration of an IP method for QPs computes a search direction
(Aa;, Ay, Az) as a solution of the linear system

Q AT I' "Ax' "c - ATy~
A 0 0 Ay = b- Ax
Z 0 X Az Xz — ue

One way of computing the search direction is by first eliminating the variable
Az and reducing the above 3-by-3 system to the following 2-by-2 system

~-H AT' "Ax 'fi
A 0 Ay A

(1.4)

where H = Q + X~lZ, / i = c — ATy — z, and f2 = b — Ax. The matrix H is
symmetric positive definite because Q is symmetric semi definite and X and Z
are both diagonal with positive entries.

Similar to the least squares problem, LPs and QPs can also be regularized
to improve the conditioning of the linear systems that underly IP methods. A

Chapter 1. Optimization and Linear Algebra 4

primal-dual regularization of the QP leads to the problem

minimize cTx + \xTQx + ^p\\x\\2 + 5<5||r||2

X j

subject to Ax + 5r = b, x > 0
where the term ^p||x||2 is the primal regularization and the term 3<S||r||2 is
the dual regularization. The nonnegative scalars p and 5 are primal and dual
regularization parameters respectively.

With regularization the augmented system to be solved inside the IP method
is

\-H-pI AT

A 51
where H is as defined in (1.4), and / i and f^ are suitably defined. This system
belongs to a special category of linear systems, "discussed in Section 1.3.1, called
symmetric quasi-definite systems. Regularized systems are the focus of this
work.

Ax fi
Ay h

1.3 Linear Algebra and Preconditioning
Preconditioning is a valuable tool within optimization because it allows us to
effectively use iterative methods to solve the underlying systems. Some elemen­
tary linear algebra theory as well as some more recent ideas are necessary to
understand all the pieces in the complex process of computing a good quality
preconditioner.

1.3.1 Symmetric Quasi-Definite Systems
Symmetric quasi-definite (SQD) systems have the following block structure

-E AT]
K A F

where both E and F are symmetric positive definite matrices. These systems
have a characteristic property of being strongly factorizable, which means that
any symmetric permutation of K yields a matrix which is factorizable, i.e.,
for any permutation P, PKPT = UTDU [28]. This is particularly favorable
when dealing with large sparse matrices, as is the case here, since fill-reducing
permutations can be applied. Moreover, the permutation P can be chosen solely
on the grounds of sparsity instead of numerical stability.

As we discussed in the previous section these systems arise, among other
places, in two important classes of optimization problems, least squares and
LPs and QPs and solving them efficiently leads to improvement to the solutions
to these problems.

It is important to note that if either E = 0 or F = 0, the system is not
strongly factorizable. For example the factorization

(1.5)
—e 1 1 —e

1 0 - i 1
£

I

€ .
1

file:///-H-pI

Chapter 1. Optimization and Linear Algebra 5

is clearly possible, but the matrix on the left is not strongly factorizable since
the symmetric permutation

0 1'
1 -e

is not factorizable. On the other hand, if the (2,2) block in the matrix on the
left in (1.5) is positive then the linear system is strongly factorizable because

l" 1
1 £ 2 . £ 2 + 7T

and for the symmetric permutation

£2 1" 1
1 - £ i . . £ 2

1
£2

-£i

1 "1

•
1 _

1 "1
£2
1

(1.6)

In the case when E = 0 or F = 0, a factorization UTBU where B is diag­
onal with 1-by-l and 2-by-2 blocks, is possible but it is much more expensive
than the above UTDU factorization of an SQD matrix. Thus, we see the sav­
ings accomplished by introducing a regularization term in linear and quadratic
programming, described earlier.

Stability of this factorization for K depends on the value

0(K) = max(||E|| 2,||F|| 2)
max(K2(E),K2(F)),

where K2{E) — \ \ E \ \ 2 \ \ E ~ 1 \ \ 2 is the spectral condition number. In other words,
if 9{K) is not too large, the factorization is stable, as shown by Gill et al. [12].
This can be generalized to say that the factorization is stable if ||A||2 is not too
large compared to both ||i£||2 and ||.F||2, and that the diagonals of both E and
F are not too ill-conditioned [12, Section 4].

In the example given in (1.6), = 1, | |E | | = e1} and = e2. Thus,
K2(E) = K2(F) = 1 and the formula for 6(K) simplifies to

9(K)
1

max(ei,£2) 2 '

Therefore, if e\ and e2 are not much smaller than 1, the method is stable.

1.3.2 Gaussian Elimination

The attractiveness of the Gaussian elimination comes from the fact that virtu­
ally no constraints are put on the matrix being decomposed, other than non-
singularity. In the process of Gaussian elimination entries in the lower triangular
part of the matrix A are zeroed out or eliminated and the end result is the upper
triangular matrix U. The operations involved in the reduction are all multiplied
together to produce a lower triangular matrix L. This is why Gaussian elim­
ination is also known as the LU factorization. Typically, L is constrained to
have unit diagonal elements, and in this case, the factorization is unique. If A
is nonsingular, then there exists a permutation P such that PA = LU.

Chapter 1. Optimization and Linear Algebra 6

1.3.3 Cholesky Factorization

Cholesky factorization can be computed as

A = RTR = UTDU, (1.7)

where U is a unit upper triangular, and D is diagonal. This is a special case of
Gaussian elimination for symmetric positive definite (SPD) matrices A which
satisfy the property xTAx > 0 for any nonzero vector x. This property of SPD
matrices allows for specialized Gaussian elimination which cuts the required
work and storage in half. Because A is symmetric, the same matrix that is
applied on the left to zero out lower triangular part of a column can be applied
on the right in order to zero out the upper triangular part of the corresponding
row. This process is repeated for each column-row pair, and the end result
is an identity matrix. The matrices applied on the left and the right are all
upper triangular and multiplying them together produces the upper triangular
Cholesky factor R such that A = RTR\ the diagonal matrix D can be introduced
to derive the right-hand factorization of (1.7).

There are three ways to compute the Cholesky factorization of matrix A: up-
looking, left-looking and right-looking. Left-looking and right-looking methods
compute the Cholesky factor column by column starting from the first and the
last column respectively. Up-looking algorithm computes the factor row by row
starting with the first row and moving down. Al l there algorithms are described
in more detail in Section 3.1.

The Cholesky factorization exists only for SPD systems, and it will fail if
the system is not SPD. In fact, attempting to compute this factorization is
the cheapest way to check whether a matrix is SPD or not. The reason if^U
factorization fails for non SPD matrices is that it attempts to compute a square
root of a negative diagonal entry. This will be clearer in Section 3.2 when the
complete algorithm is described step by step. However, here it is important
to note that if we compute a factorization of the form UTDU, U will have a
unit diagonal and all the diagonal entries will be stored in a diagonal matrix
D. Thus, if we allow negative diagonal entries, we can compute a Cholesky-like
factorization.

Therefore, Cholesky factorization can be used for symmetric indefinite sys­
tems as for SPD systems. In particular, it can be used for SQD matrices dis­
cussed in Section 1.3.1.

1.3.4 Q R Factorization

The QR factorization of an m-by-n matrix A produces an m-by-m orthogonal
matrix Q and an m-by-n upper triangular matrix R. This factorization is unique
if there is an additional constraint that all the entries on the diagonal of R are
positive.

There are three distinct ways of computing the QR factorization. The Gram-
Schmidt method multiplies A by an upper triangular matrix Ri at each step
until A is reduced to an orthogonal matrix Q. The upper triangular matrix R

Chapter 1. Optimization and Linear Algebra 7

is composed of the inverse of each Ri multiplied together. This algorithm is the
simplest way to compute the QR factorization, but even in its modified version
it is not as stable as the next algorithm presented [27, Lecture 8].

The second method for computing QR is called Householder or orthogonal
triangularization. The basis of this method is computing orthogonal reflectors
for each column in A and then applying each reflector in turn to A in order to
obtain an upper triangular matrix in the end. This method has been shown to
be more stable than the Gram-Schmidt method.

The third way of computing the QR factorization is by means of Givens
rotations. In this algorithm the nonzeros in the lower triangular part of A are
zeroed out one at a time using one rotation matrix per nonzero entry.

In this work, we choose the Householder reflections as the basis for our QR
decomposition. This method allows us to compute a "Q-less" QR factorization
since it is not necessary to store the reflectors. In terms of stability this is also
a better choice over the Gram-Schmidt method.

1.3.5 Preconditioning
As mentioned earlier, preconditioning has an important role in solving linear
systems by iterative methods. The efficiency of the iterative methods often
depends on the eigenvalues of the system being solved. In particular, the number
of iterations taken by the iterative method is equal to the number of distinct
eigenvalues, in the absence of roundoff errors.

Unfortunately, systems encountered in practice often do not have nicely clus­
tered eigenvalues and thus, iterative methods take many iterations when solving
these systems. This is where preconditioners come in. Their role is to produce
a matrix with as few eigenvalues as possible when multiplied with the original
matrix, which can then be solved by an iterative method in fewer iterations.
Since the identity matrix I has only one eigenvalue and is solved in one itera­
tion, the prefect preconditioner would be A - 1 . However, computing the inverse
of a matrix is equivalent to solving the linear system of equations directly, so
the purpose of computing a preconditioner for an iterative method is defeated.
Hence, we need to see other more suitable preconditioners, which are easier to
compute than A - 1 , but are close to it.

As was also mentioned briefly earlier, computing approximate factorizations
of the original matrix and using the factors as preconditioners is a common prac­
tice. As an extreme example, we can compute the Cholesky-like factorization

A = UTDU

of an SQD matrix A. Since A is not positive definite, D will have both positive
and negative entries. Our goal is to use this factorization as a preconditioner
for SYMMLQ, an iterative method which takes advantage of the symmetry in
the system being solved. In order to preserve the sparsity of the preconditioned
system we need to apply the Cholesky factor of the preconditioner on both sides
of our system. Thus, our preconditioner has to be symmetric positive definite.

Chapter 1. Optimization and Linear Algebra 8

In order to use the above factorization as a preconditioner, we have to modify
the factors so that they form a positive definite system. Thus, we modify the
entries of D such that

D=\D\,
with | • | defined componentwise. Thus,

A = UTDU
is symmetric positive definite, so it can be used as a preconditioner within an
iterative method for solving A. When A is used as a preconditioner, its inverse
is computed and applied to A, so we have

AA-1 = (UTDU)(UTDU)-1

= UTDD-1U-T

= UTIU r

= 1,
because DD~l — diag(Tgjj) = diag(±l) = I, where di are entries in the diagonal
matrix D. Because I is a diagonal matrix with ± 1 on the diagonal, it only has
two distinct eigenvalues: 1 and —1. When a Krylov subspace method is used to
solve this system, it converges in at most two iterations.

However, in cases of large, sparse systems computing a complete factoriza­
tion is not only expensive, but the storage requirements are often prohibitively
large. During the course of the factorization, fill-in entries are introduced that
were not present in the original matrix. Discarding some of these elements as
the factors are computed not only saves on storage, but also makes the factor­
ization faster since there are less per entry computations to be done. This is
the characterization of the incomplete factorizations.

Different ways in which elements are discarded distinguishes between various
algorithms for computing the incomplete factorizations. The elements to be left
out can be chosen according to their magnitude or their position in the matrix.
If they are chosen according to their magnitude, a certain threshold value is
established and all elements smaller than that value in magnitude are discarded.
In case of selection by position in the matrix, various strategies exist. We can
choose to keep only the entries that were structurally present in the original
matrix, in which case the storage requirements are equal to those of the original
matrix. If a small amount of additional storage is available, we can choose
to store elements of the original matrix plus a small number of fill-in entries
per column. Such strategy is called p-incomplete factorization and is the one
developed in both Cholesky and the QR factorization presented in this work.

When the p-incomplete factorization is computed, we have that

A « UTDU
and

A « UTDU,

Chapter 1. Optimization and Linear Algebra 9

where D is also absolute value of D as in the example above. Thus, we hope
that AA-1 has eigenvalues clustered about +1 and —1 and that preconditioned
system converges in close to two iterations. The closeness of this approximation
and therefore, the clustering of the eigenvalues in AA-1, depends on the close­
ness of the incomplete Cholesky factorization to the complete one. This in turn,
depends on the amount of fill-in that is left in the incomplete factorization, i.e.,
in our case the value of p in the p-incomplete factorization.

1.4 Implementation Framework
Implementation details are very important in this work, since efficiency was
one of the main criteria. Those details, in turn, depend largely on the way the
algorithms are developed and the data structures that are chosen. Therefore, it
is important to choose an appropriate base to build our methods on.

The CSparse package [8], written by Tim Davis, is a compact set of basic
tools for sparse matrices. It includes most common sparse matrix tools starting
from the basic ones like transpose, addition and multiplication up to the more
complex ones like LU, Cholesky, and QR factorizations. The entire package is
written in the C programming language and totals only about 2200 lines of code.
It also includes a mex interface which enables the user to call all the function
easily from M A T L A B .

CSparse was a good starting point for implementation of our incomplete
factorization algorithms because it already includes a sparse Cholesky and a
sparse QR factorization. The transition from complete to incomplete factoriza­
tions was not trivial but a lot of the underlying tools, like elimination trees and
sparse triangular solves which will be discussed in more detail later, translated
smoothly from complete to incomplete.

1.5 Other Work
Various algorithms have been implemented to compute the incomplete Cholesky
and incomplete QR factorizations, which differ in the approach used to compute
the factorization and the dropping strategy.

The left-looking Cholesky factorization is the most common algorithm; the
columns of the factors are computed sequentially from left to right. The distin­
guishing factor between these is the dropping strategy used to discard entries.

Meijerink and van der Vorst [18] proposed the first incomplete Cholesky
factorization that was based on retaining the sparsity of the original matrix.
This strategy allowed only the entries which were structurally present in the
original matrix to be in the factor, and is therefore called no fill-in strategy by
Jones and Plassmann [16]. A significant benefit of this approach is that memory
requirements are completely predictable, but because the dropping does not take
into account values of the entries, too much information is sometimes lost.

On the other hand, entries can be dropped based on their magnitude only,

Chapter 1. Optimization and Linear Algebra 10

by establishing a threshold value and discarding all entries smaller than that
value. This approach was implemented by Munksgaard [19]. The advantage of
this strategy over the one that preserves the sparsity is that the largest, and
therefore the most significant, elements are preserved in the factorization. The
disadvantage, which can play an important role, is that the storage requirements
are unpredictable and have to be determined "on the fly" during the factoriza­
tion. Also, the optimal threshold parameter is chosen by trial and error for each
system being solved, which involves too much user input.

An approach that combines advantages of both strategies previously de­
scribed was implemented by Jones and Plassmann [16]. Their algorithm main­
tains a fixed number of nonzero entries in each column. However, the sparsity
pattern (i.e., the location of nonzero entries) is allowed to change in the factor.
This strategy is "black-box" in the sense that it does not require any input
parameters from the user, and its memory requirements are predictable.

The algorithm developed by Lin and More [17] follows the approach of Jones
and Plassmann but allows for some additional entries in each column. In their
case, the elements are discarded according to their sparsity pattern only and
their value is not taken into account, as opposed to the Jones and Plassmann's
approach where only the value is considered. They, however, do not take into
account the benefits of fill-reducing reorderings, which prove to be very powerful
in our implementation.

In terms of incomplete QR factorizations, much less has been done in the
past. This is mostly due to the fact that QR factorizations are more difficult
to implement in general, and especially so for sparse systems. Notable works
include CIMGS by Wang et al. [29], and a class of incomplete orthogonal factor­
izations by Bai et al. [3], with the follow-up work by Papadopoulos et al. [23].
The CIMGS algorithm is based on Gram-Schmidt method for computing the
QR factorization, and it uses some predetermined dropping set as the strategy
for dropping. As mentioned earlier, Gram-Schmidt algorithm is not as stable as
other methods of computing QR factorization. Also, CIMGS assumes that the
dropping set is available before the factorization starts, which would require the
user to provide one.

The implementation discussed in [23] uses Givens rotations algorithm for
computing QR factorization, which is more stable than the Gram-Schmidt ap­
proach. However, the sparsity pattern of the factors still has to be predeter­
mined. The choices discussed are the sparsity pattern of the original matrix A
and the sparsity pattern of ATA. This can be a disadvantage if ATA is com­
pletely dense, as is the case when A has a dense row.

In our work, we make an effort to combine some of the best qualities of these
previously developed algorithms, such as predictable storage and stability of the
factorization.

Chapter 1. Optimization and Linear Algebra 11

1.6 Software Packages
There are a few software packages available that deal with sparse matrix fac­
torizations. Ones of interest to us are the sequential packages that contain
sparse LDLT factorization with 1-by-l pivoting and those that have a sparse
QR factorization. Notable ones that include LDLT are CHOLMOD [7], LDL [6],
TAUCS [24] and WSMP [14]. For the QR factorization we single out BCSLIB-
E X T [2] and SPARSPAK [10]. There are many more software packages that
are either parallel or only deal with 2-by-2 pivoting in the factorization, and are
therefore not very comparable to implementation in the CSparse package which
is used as the basis for all the implementation in this work.

1.7 Notation

We closely follow the notation used in [8]. All matrices are denoted by capital
letters and in case of block matrices blocks are denoted by capital letter with
a subscript indicating its position in the matrix, for example An for the (1,1)
block submatrix.'

Vectors are denoted by lower case roman letters and in the cases where they
are part of a matrix their position in the matrix is indicated by the subscript
the same way as for matrices. For example, W12 is a column vector occupying
the (2,1) block of a block matrix.

Scalars are denoted by lower case Greek letters. For block matrices the
subscript notation is the same as for matrices and vectors.

12

Chapter 2

Sparse Matr ices

2.1 Data Structures
The choice of data structure for storing a matrix is very important when dealing
with algorithms for sparse matrices. Because the data structure in which the
sparse matrix is stored influences how the matrix is accessed most efficiently, it
also has a large impact on all algorithms involving this matrix.

The triplet form has three vectors, i , j , and x, each of size nnz(A) (number of
nonzeros in the matrix A), representing row indices, column indices, and values
of each entry, respectively. The following example illustrates the triplet data
structure. Given the matrix

its triple form representation is
int i[] = { 0, 2, 1, 2, 0, 1 };
int j[] = { 2, 2, 1, 0, 0, 0 };

double x[] = { 1.7, 6.9, 2.8, 5.1, 4.5, 3.2 };

(Note that the entries are not necessarily sorted in any order.)
The triplet data structure is very easy to implement, and use, but it does

not provide any special accessability to the sparse matrix. The next two data
structures are organized in a way which makes the access to the sparse matrix
easier for algorithms using this matrix.

2.1.2 Column Compressed Storage
The column compressed format (CCS) is also made up of three vectors, p, i ,
and x but their roles are slightly different than those of vectors in triplet format.
In this case, p is of length n, where n is the number of columns in A, and it
contains the column pointers of each column of A. The last entry in p is the total
number of nonzeros in the matrix. In other words, fcth entry in p represents the
vector index of i at which the kth column starts. The vector i has row indices
for each entry, and x has value of each entry.

2.1.1 Triplet

A =
4.5
3.2
5.1

0
2.8
0

1.7
0

6.9

Chapter 2. Sparse Matrices 13

The above example matrix in the column compressed form would be

i n t i [] = { 0 , 3 , 4 , 6 };

i n t j [] = { 0 , 1, 2 , 1, 0 , 2 };

d o u b l e x [] = { 4 . 5 , 3 . 2 , 5 . 1 , 2 . 8 , 1 . 7 , 6 . 9 };

A significant advantage of this format over the triplet format is that CCS
makes it easy for algorithms to access matrices by columns. For example, we
know that the kth column starts at index p [k] of i , and ends at index p [k+1] -1
of i (because the (k + l) t h column starts at p[k+l]). Therefore, the row indices
of all the entries in A;th column are stored in consecutive positions, between index
p[k] and p [k+l] - l in i , and all the values are stored between index p[k] and
index p[k+l] -1 in x.

All input and output matrices of CSparse are stored in CCS format.

2.1.3 Row Compressed Storage
Row compressed storage (RCS) is very similar to CCS except that instead of
columns the matrices are easily accessed by rows. Thus, the vector p contains
row pointers, and the vector i contains column indices. As with CCS, vector
x contains the values of entries. In the RCS format, our example matrix is
represented by

i n t i [] = { 0 , 2 , 4 , 6 };

i n t j [] = { 0 , 2 , 0 , 1, 0 , 2 };

d o u b l e x [] = { 4 . 5 , 1 . 7 , 3 . 2 , 2 . 8 , 5 . 1 , 6 . 9 };

In the same way that CCS format allows for convenient column access, the
RCS format allows for convenient row access. The fcth row starts at index p [k]
of i , and ends at index p [k+l] - l of i . Thus, the column indices and values of
all entries in kth row are stored between indices p[k] and p[k+l] -1 of i and x,
respectively.

As we will see in Section 3.3, there is an interesting connection between CCS
and RCS which will be important in the implementation of our p-incomplete
Cholesky algorithm.

2.2 Sorting with Heaps

Binary heaps are a subgroup of binary trees that satisfy some additional prop­
erties. There are two different kinds of heaps: minimum and maximum. In this
section, we discuss maximum heaps, because these are the ones that will be used
in our algorithms; the same definitions and rules apply for minimum heaps.

Binary heaps (henceforth referred to as simply heaps) are characterized by
a rule called the heap property: each node in the heap is greater than or equal
to each of its children, according to some comparison rule which is specified for
the whole data structure. This, in particular, means that the "root" (i.e., the
top node) of the heap is the largest node.

Chapter 2. Sparse Matrices 14

Heaps can be stored in a linear array of length n, where n is the number of
nodes. Building a heap has a cost of 0(n) [5]. The heap property ensures that
the first element in this array is the largest element in the heap by rearranging
elements in the array. Thus, extracting the largest element has cost of 0(1).
Extracting any other element (that is not the largest), or adding an element,
involves the process of restoring the heap property. This process has O(logn)
cost.

Sorting n elements using a heap amounts to n deletions from the heap,
where the largest element is deleted each time and the heap property is restored.
Therefore, the heapsort has the total cost of 0{n log n).

Typically, only the p largest elements (with p <C n) are required in the
context of the p-incomplete factorization. Each time, the largest element is
extracted and the heap property is restored. This process is repeated p times,
and thus, the total cost is O(plogn), and because p -C n this is O(logn).
Therefore, the total cost of building the heap and extracting p largest elements
is 0(n).

2.3 Graphs and Elimination Trees

Elimination trees are, in essence, the result of pruning graphs that represent
matrices. Thus, in order to understand the elimination trees, which play an
important role in the sparse Cholesky factorization, an introduction to some
basic concepts in graph theory is necessary.

First we establish some basic notation for graphs. A graph G = (V,E) is
defined by a set of vertices V = {1,... ,n} and a set of edges E = {(i, j) |
hj S V}. If the graph is undirected, then e E means that there is an
edge from node i to node j, and an edge from node j to node i. In a directed
graph, £ E means that there is an edge from node i to node j only. A
path between nodes VQ and Vk, denoted vo Vk, represents a sequence of nodes
(vo,..., Vk) such that (i — 1, i) 6 E for each i = 1,..., k. If a path i ~+ j exists,
the node j is reachable from node %. The set of all nodes reachable from node %
in the graph G is denoted by Reacho(i)-

A matrix A is represented by a graph in the following way. Each column
of the matrix is represented by a node in V, and each edge in E corresponds
to a nonzero entry in A. Thus, if ^ 0 then e E. Symmetric matrices
correspond to undirected graphs because in this case, if ^ 0 then ^ 0 as
well. Consider the matrix

"1 •
2 •
• 3 •

• 4
• 5

• •

Chapter 2. Sparse Matrices 15

where • represents a nonzero entry. Its corresponding graph is shown in Fig­
ure-2.1. Because A is symmetric, its graph is undirected.

Figure 2.1: Graph representation of A

The concept of reachability is used to compute the sparsity pattern of a row
in the lower triangular Cholesky factor. Each row of the factor is computed by
a sparse triangular solve

Lx = b, (2.1)

where x is a row of the factor, L is a submatrix of the computed portion of
the factor, and 6 is a column of the original matrix A. This procedure -will be
discussed in detail in Section 2.4 and in chapter on the Cholesky factorization.
Right now, we focus on how the sparsity pattern of x is computed.

Each nonzero entry bi in b has a corresponding node i in the graph G rep­
resenting the submatrix L, and each one of these nodes has its reachable set
Reacha{i). Theorem 3.1 of [8] states that solution of the sparse linear system
Lx = b has the sparsity pattern equal to the reachable set of all the nodes i, such
that bi ^ 0. In other words, the sparsity pattern of x is equal to Reacho{B),
where B = {i | 6* ̂ 0}.

In order to make the computation of the reachable sets more efficient, graphs
are pruned such that the reachability of each node is not changed. This is
accomplished by removing the cycles from the graph. End result of the pruning
is the elimination tree. Thus, the elimination tree is used to compute the sparsity
pattern of each row of the lower triangular Cholesky factor L.

Two relatively simple rules describe the procedure by which the nonzero
pattern of the Cholesky factor L can be determined. If we let denote the
entries of the original matrix A, and denote the entries of the Cholesky factor
L, dj ^ 0 implies Uj ^ 0 [8, Theorem 4.2]. Also, if there exist i, j, k such that
i < j < k, and Iji ^ 0 and 1^ ^ 0, then Zjy ^ 0 [8, Theorem 4.3].

In terms of the graph representation, if Iji ^ 0 and Ijk ^ 0> the two corre­
sponding edges are in the graph, i.e., £ E and (j, k) 6 E. Thus, there is
a path from i to k which does not traverse the edge (i, k). Therefore, this edge

Chapter 2. Sparse Matrices 16

becomes obsolete and can be pruned from the graph. By removing all cycles in
the original graph, the elimination tree, shown in Figure 2.2, is obtained. The
corresponding Cholesky factor has the following nonzero pattern

"1
2
• 3

• 4
• 5

• • 6
• • * * * 7

• * • * 8

where * represents a fill-in entry.

Figure 2.2: Elimination tree

2.4 Sparse Triangular Solves
Each iteration of a Cholesky algorithm involves the solution of a triangular sys­
tem. In this section we describe how a sparse triangular solve can be efficiently
computed in two different ways. The distinction between these two approaches
proves to be crucial for the implementation of the p-incomplete Cholesky algo­
rithm.

Because the lower triangular Cholesky factor L is stored in compressed col­
umn form, it makes sense to access it by columns. We explicitly express (2.1)
as

'hi Si '01
J21 L22 X2

where L 2 2 is (n —l)-by-(n —1) submatrix of L; l2i, x 2 and b2 are column vectors
of length n — 1 and £n, E\ and {5\ are scalars.

The solution can be computed by forming the two equations

= Pi
hi£i + L22X2 = 02,

(2.2)

Chapter 2. Sparse Matrices 17

and solving the first equation with e\ = Pi/^n and then recursively solving the
second equation.

An analogous approach can be used to solve UTx = b where U is upper
triangular. This is the same as solving xTU = bT for x, and hence the system
can be written as

= [ft bT],

which leads to the set of equations

eiwn = Pi (2.3)

Because the solution obtained in both of these approaches is the same, they
can be used interchangeably. The main difference is that the input for the
first algorithm is a lower triangular matrix L and for the second algorithm it
is an upper triangular matrix U. This distinction will be of importance in the
implementation of the p-incomplete Cholesky factorization.

2.5 Ordering for Sparsity
Factorizations of sparse matrices often introduce a large amount of fill-in in their
factors. The fill-in entries are those that were structurally zero in the original
matrix, but are nonzero in one of the factors. Large amounts of fill-in are un­
desirable in any factorization since they slow down the algorithms and increase
the amount of storage necessary for the factors. It is well known that certain
permutations introduce smaller amount of fill-in than others. Unfortunately,
finding the optimal permutation is an NP-complete problem [31], and therefore
impossible in practice. The upside is that there are many relatively inexpensive
algorithms which do very well in approximating the optimal ordering. The most
common one of these algorithms is approximate minimum degree ordering, but
others, such as nested dissection ordering and bandwidth reduction algorithms,
are used as well.

2.5.1 M i n i m u m D e g r e e

The minimum degree (MD) reordering algorithm considers a matrix in terms of
its graph representation, where each node is a column of the matrix, and each
edge represents a nonzero entry. The degree of each node is the number of edges
that are incident on it; equivalently, the degree of each node is the number of
nonzeros in column represented by that node.

At each step of the MD algorithm a node is chosen and removed from the
graph along with all of its adjacent edges [9]. The node chosen is the one with the
minimum degree, and thus, the algorithm is considered greedy. In theory, this
algorithm works only on symmetric matrices which have corresponding graphs

£l X^
^ 2 2

Chapter 2. Sparse Matrices 18

that are undirected. In practice, if A is not symmetric, the method is used on
ATA as is done in CSparse as a pre-processing step for QR factorization.

In practice, this method has storage requirements that dramatically exceed
that of the original graph representing matrix and is therefore not very practical.
Instead, the approximate minimum degree (AMD) algorithm is used. This
method works on the quotient graphs instead of the original graphs representing
the matrix [8, Chapter 7]. Since quotient graphs require at most as much storage
as the original graph, AMD is more favorable when working on large systems.

An advantage of the MD algorithm, and therefore AMD as well, over other
methods of reordering is that it does not consider the values of the entries in
the matrix. This means that the reordering can be completed before the factor­
ization is started, which simplifies the factorization itself greatly. Furthermore,
this means that for sets of matrices with the same nonzero pattern, which are
often encountered in practice, reordering needs to be done only once per set.

2.5.2 Other Methods for Reordering
Nested dissection ordering is another method for reducing the fill-in in factor­
ization of sparse matrices. This method is less commonly used in practice since
it is more difficult to get the same results as the minimum degree algorithm [15].

The algorithm works on the basis of choosing and removing a set of separator
nodes S which divide the graph into two disconnected subgraphs of roughly the
same size [9]. These subgraphs are then divided by the same method and the
procedure can be repeated many times. Grouping the nodes in each subgraph
together and numbering the separator nodes of each separation last reduces
fill-in during the factorization.

Bandwidth reduction algorithms reduce the amount of fill-in in the factors
by reducing the bandwidth of the factored matrix. The term bandwidth refers
to the number of nonzeros between the first and last nonzero in each row. The
most popular of these algorithms is the reverse Cuthill-McKee [25, Chapter 3]
ordering which is based on traversing level sets of nodes according to their
degree.

Chapter 3

Incomplete Cholesky
Factorization

Every positive definite matrix A can be factorized as

A = UTU. (3.1)

If we require U to be triangular, as we do here, then (3.1) can be considered as
a special case of LU factorization. There are three ways to compute a Cholesky
factorization: up-looking, left-looking and right-looking, and the distinction
between the three approaches is made based on the order in which the factor is
computed. The next section describes all three methods and explains why one
was chosen over the others.

3.1 Which Way to Look: Left, Right and U p
The left-looking Cholesky algorithm is used most commonly. This method pro­
duces a lower triangular factor L, which is computed one column at the time,
starting from the first column. It is based on the following decomposition of the
original matrix and the factors

i n
L31 I32 3̂3

r
'22

h31

3̂2

^33j

An ai2

a-12 0,22

A31 a32 A,

A31
T

a32
33

In the context of sparse matrix computation, this algorithm requires the nonzero
pattern of all columns of L to be computed before the numerical factorization
starts. It also requires the access to the numerical values of the entries of kth

row when the fcth column is computed. These requirements make the algorithm
more complicated and more expensive than other algorithms presented in this
section.

The right-looking algorithm is similar to the left-looking algorithm, except
that the columns are computed starting at the last column and moving left. It
is based on the following decomposition

a n T 1

ail 'in 'hi
_ai2 A22. I21 L22 L22

Thus, when fcth column, I21 above, is being computed, columns k +1 through n
(submatrix £22), axe assumed to be completed, and are used in the computation

Chapter 3. Incomplete Cholesky Factorization 20

of fcth column. The three equations following from above decomposition form
the basis for this algorithm

an = l\x

O l 2 = ^11^12

^22 = ^12^12+ •^22^22 •

The algorithm used in implementation of the complete Cholesky factoriza­
tion is known as the up-looking Cholesky. This means that the lower triangular
Cholesky factor L i s computed one row at the time starting from the first row,
and moving down. The following block decomposition demonstrates how one
row of L is computed

n — 1 1 n - 1 1 n - 1 1
n - 1 ffll2 = L11 '12

1 T
.Ol2 022 Jl2 *22.

Thus, when the fcth row (represented by iT^j is being computed, it is assumed
that rows 1 through k — 1 (represented by Ln) have already been computed, and
that they can be used in the computation. From the above decomposition three
equations can be formed that essentially constitute the up-looking algorithm

An = L n L u

ai2 = Lui 12

022 — ^12^12 + ^22-

(3.2)

(3.3)

(3.4)

Most of the work in this algorithm lies in the sparse triangular solve (3.3).
Because this triangular solve is computed with a lower triangular matrix L n ,
the algorithm used to compute it is the one that solves Lx = b for x, i.e.,
algorithm described by (2.2) in Section 2.4.

In the p-incomplete Cholesky factorization, a variation of the up-looking
Cholesky is implemented. In this case, an upper triangular factor U is computed,
and the algorithm is based on decomposition

n — 1 1 n — 1 1 n - 1 1
n - 1 'An 012 = U[i Un "12

1 .0-12 022. «12 . k>22_ W22_

Thus, there are three equations that construct this version of the up-looking
Cholesky algorithm

An = U&Uu
012 = U11U12

022 = Ui2Ui2 + w| 2 .

(3.5)

(3.6)

(3.7)

An important observation here is that the triangular solve, equation (3.6),
is computed with an upper triangular matrix Un, instead of the lower trian­
gular matrix as in (3.3). This change was crucial for implementation of the

Chapter 3. Incomplete Cholesky Factorization 21

Algorithm 1: Numeric phase of a complete Cholesky factorization.
Input: Sparse matrix A
Output: Lower triangular matrix L
for k=l,... ,n do

Compute nonzero pattern of L(k,:);
x = A(l : k, k);
d = A(k,k);
foreach Nonzero entry L(k, i) do

L(k,i) = x(i)/L(i,i);
x = x — L(:, i) * L(k, i);
d = d — L(k,i) * L(k,i);
Store L(k, i);

L(k,k) = Vd;
Store L(k, k);

p-incomplete Cholesky algorithm, and the reasons for this will become more
clear in Section 3.3 when we discuss storage issues encountered while imple­
menting the incomplete factorization.

3.2 Complete Cholesky
The method for implementing the complete Cholesky factorization is based on
solving the system of equations (3.2)-(3.4). Some of the main concepts from the
implementation of this algorithm apply directly for the incomplete factorization
and thus, the complete algorithm is described in more detail below.

The Cholesky factorization is divided into symbolic and numerical phases.
Characteristics of the factorization which only depend on the sparsity pattern of
the input matrix are computed in the symbolic phase. One of the components
that depends on the sparsity pattern of the original matrix only is the elimi­
nation tree, which is used to compute the sparsity pattern of each row of the
factor L. Fill-reducing reordering of the matrix is also computed in the symbolic
portion of the method, using the approximate minimum degree algorithm. This
approach of computing the reordering separately from the numerical factoriza­
tion provides a benefit for sets of matrices with the same pattern and different
values of entries. In this case, the reordering has to be performed only once for
the whole set.

The numerical part of the factorization is summarized in Algorithm 1. This
process is described in detail because this is where the bulk of the work of
the entire method lies. For each row of the factor, the numerical factorization
can be divided into three main parts. The first part is computing the sparsity
pattern of a row. Sparsity pattern is computed from the elimination tree using
the idea of reachability, discussed in Section 2.3. In this portion of the method,
contents of the upper triangular part of the column of A corresponding to the

Chapter 3. Incomplete Cholesky Factorization 22

row currently being computed are copied into a dense vector x. From here
onward, all the computation is done using this dense vector, in order to allow
sufficient space for possible fill-in elements. Because the input matrix A is
assumed to be symmetric, only its upper triangular part is accessed.

Once the nonzero pattern of a row of L has been computed, a sparse trian­
gular solve is used to compute the values of the entries in this row. Referring
to the set of equations (3.2)-(3.4), which are the basis of this algorithm, this
triangular solve corresponds to (3.3). The row being computed is the transpose
of the solution to this equation, i.e., lT2. As the name up-looking Cholesky sug­
gests, computation of this row requires looking up at the rows that have already
been computed, in other words the submatrix L22 from (3.3).

The final step is the computation of the diagonal entry, which is omitted
from the triangular solve. Computing the scalar d corresponds to computing
2̂2 m (3-4). The square root of d is then the diagonal entry £22-

3.3 Column vs. Row Storage

The main issue in implementing the p-incomplete algorithm came from the
fact that the complete Cholesky factorization in CSparse is computed in a row
fashion. The goal was to keep p fill-in entries per row of the matrix, and since
these entries were chosen according to their magnitudes, it was impossible to
predict column indices of these entries.

Because the matrix is stored CCS format, entries in one column are stored
in consecutive positions, and the columns are stored consecutively as well. In
other words, all entries in the first column are stored at the beginning of the
array, followed by all entries in the second column and so on. When computing
the p-incomplete factorization, we chose p fill-in elements in a row according
to their magnitude, and therefore we do not know which column they belong
to ahead of time. Thus, we do not know where they belong in the array, and
cannot leave adequate space for them.

To illustrate this issue, we go back to the example considered previously in
Section 2.3:

"1 • • •
2 • •
• 3 • •

• 4 .
• 5 • '

• • 6
• • 7

• • 8
It turns out that its complete Cholesky factor will have the following nonzero

Chapter 3. Incomplete Cholesky Factorization 23

pattern
[1

2
• 3

• 4
• 5

• • 6
• • * * * 7

• * • • . * 8
We would like to compute p-incomplete factorization of the above matrix, with
p = 2. When computing row seven of this factor, which has three fill-in elements
marked by *, suppose that we decide to keep elements (7,4) and (7,6) as these
are the two largest in magnitude. Because the matrix is accessed by columns,
and computed by rows, column pointers need to be computed before the fac­
torization so that the algorithm can access the matrix by columns. In order
to do this, we have to know how many entries there will be in each column at
the end of the factorization. In the complete factorization, this is easy, since all
fill-in entries are kept. In our case, however, we would have to know before the
factorization that the entries (7,4) and (7,6) will be kept in the end, and leave
space for them in columns 4 and 6 respectively. But the decision to keep these
entries was made after the row was already computed, and thus, the conflict is
clear.

The solution to this problem is to compute the factor column-by-column
instead. This way we keep p largest fill-in entries per column, and each time an
entry (fill-in or not) is computed it is stored in the next position in the array.

The easiest way to implement this change while still preserving the structure
of the original algorithm, is to change the way the matrices are stored. If a
matrix A is stored in column compressed form, but viewed in terms of row
compressed form, the transpose of the matrix, AT, is obtained. This switch
simply means that the row and column indices are interchanged, which is the
definition of the transpose.

Therefore, if our lower triangular matrix L is stored by rows, but we view it
by columns, we obtain upper triangular matrix U = LT. Now, the transpose of
that UT is a lower triangular matrix which is stored by columns. Thus, when
we compute the factorization, we compute columns instead of the rows.

This change in storage has the most effect on the sparse triangular solve part
of the algorithm. In the complete Cholesky algorithm, a row was computed by
the sparse triangular solve of the form Lnli2 = 012, where the transpose of I12
was the new row. After the change in storage, in the p-incomplete factoriza­
tion, we compute the column using the variation of the sparse triangular solve
^ n w i 2 = a i2> where ui2 is the new column. Prom Section 2.4 and the above dis­
cussion, we can deduce that the two vectors, lj2

 a n d U12, are simply transposes
of each other, and thus, the factor U (if the complete factorization is computed)
is just a transpose of the factor L in the complete Cholesky factorization.

Chapter 3. Incomplete Cholesky Factorization 24

Algorithm 2: Numeric phase of our p-Incomplete Cholesky factorization.
Input: Sparse matrix A, p, diagonal tolerance
Output: Upper triangular matrix U, diagonal matrix D
for k—1,... ,n do

Compute nonzero pattern of [/(:, k);
x = A(l : k, k);
ix = sparsity pattern of triu(A(:, k));
d = A(k, k);
foreach Nonzero entry U(i, k) do
|_ x = x — U(:, i) * x;

foreach Nonzero entry U(i, k) do
x(i)=x(i)/D(i);
d = d-U(k,i)*U(k,i);

|_ Mark all fill-in entries;
Store all fill-in entries in heap;
Extract p largest fill-in from heap;
Store fill-in and non fill-in in U;
If d is small, modify it;

_ Set D(k) = d;

3.4 p-Incomplete Cholesky
The p-incomplete factorization takes the best qualities from other incomplete
factorizations described previously in Section 1.5. Since only p fill-in elements
per column are allowed in addition to the elements in the original matrix, the ad­
ditional storage requirements are not only predictable, but are also determined
by the user. On the other hand, the largest, and therefore, the most significant,
fill-in entries are preserved, which ensures that the incomplete factor is as close
as possible to the complete factor, for a particular p.

It is important to note that the p-incomplete Cholesky factorization imple­
mented here is of the form UTDU, where U is an unit upper triangular, and
D is a diagonal matrix. Unlike the complete Cholesky factorization described
in the previous section which only works for SPD systems, this p-incomplete
factorization can be used for indefinite systems as well. In particular, we are
interested in factoring SQD systems, in which case the diagonal factor will have
both positive and negative entries.

Similarly to the complete factorization, the p-incomplete factorization is di­
vided into symbolic and numeric parts. Symbolic factorization computes the
elimination tree and the fill-reducing ordering, which depend on the sparsity
pattern of the original matrix only, and not on the values of the entries. The
numerical p-incomplete factorization is summarized in Algorithm 2 and is de­
scribed in more detail below.

The numerical part of the factorization begins similarly to that of the com­
plete factorization algorithm, by computing the sparsity pattern of the fcth col-

Chapter 3. Incomplete Cholesky Factorization 25

umn of the factor. It is important to note that initially we compute the sparsity
pattern of the complete column, and later decide which entries to keep accord­
ing to their magnitude. Once the pattern is computed, we go through the fcth

column of the original matrix, and scatter the values and row indices into dense
vectors x and ix respectively. These will be used to store all the values and
their row indices (including those for fill-in entries) during the triangular solve,
and therefore they need to be dense.

The next phase is to compute the values of all entries in the kth column
by means of a sparse triangular solve. As described in the previous section,
triangular solve used here is one that solves UTx = b, unlike the complete
Cholesky factorization where Lx = b is solved for x. Both algorithms, are
described in more detail in Section 2.4.

Once all the entries have been computed, we must choose which p fill-in
entries will be kept. In case where the total number of fill-in entries in a column
is less than'p, all of the entries are kept. Otherwise, all fill-in entries of a column
are stored in a maximum heap and p largest elements are extracted from the
heap one by one. As discussed in Section 2.2, this operation is very efficient
because p is typically much smaller than the total number of fill-in entries. The
fill-in entries chosen are then marked to be stored in the factor U.

After choosing and marking p elements to keep, those and all entries struc­
turally present in A are stored in the factor U. Finally, the diagonal entry
is computed and stored in the diagonal matrix D. Because of the successive
dropping in each column some of the diagonal entries become very small. If
the magnitude of the diagonal entry is smaller than the specified tolerance, the
entry is modified. In the current implementation this tolerance is a user in­
put. In future implementations, we would prefer to base it on considerations of
keeping the norm of the factors bounded. In our numerical experiments (Sec­
tion 5.1.3), this modification is important for some systems, but for majority
of the problems tested it does not create significant improvement in terms of
preconditioning.

As discussed previously in Section 1.3.3, the p-incomplete Cholesky factor­
ization is applied to SQD systems, in which case the diagonal entries are both
positive and negative. In this case, U7!/ Cholesky factorization would not work,
as it would break down as soon as it encounters a negative diagonal entry. In
UTDU Cholesky this is not an issue, since the diagonal entries are stored in a
separate diagonal matrix D. In this case, factor U is unit upper triangular, and
thus, unique.

26

Chapter 4

Incomplete Q R
Factorization

Given an m-by-n matrix A, its QR factorization is given by

A = QR, (4.1)

where Q is orthogonal, and R is upper triangular. In this chapter, we consider
methods for computing the "thin" QR decomposition; in this case, Q is m-by-n
with orthogonal columns, and R is n-by-n upper triangular.

The QR factorization is a tool most commonly used to solve the generic least-
squares problems which minimize the 2-norm of the residual and are formulated
as

minimize ||Ax — (4 . 2)
X

The factor Q of A has orthogonal columns, and any vector can be multiplied
by it without changing its 2-norm. Therefore, we can compute the QR factor­
ization of A and use the factor Q to reformulate the least squares problem (4.2)
as

minimize ||QT.Ax —
X

Because Q has the property that QTQ = I, we have that QTA = R, and thus,
the above least squares problem is simplified into a problem with an upper
triangular system, which is much easier to solve.

In this work, however, QR factorization is used to precondition least squares
problems and use an iterative solver, LSQR, to solve the preconditioned system.
In this case, only the factor R is needed to solve (4.2) as

minimize || ART 1?/— c|| and Rx = y.
X

In this case the factor Q does not need to be stored.
As described in Section 1.3.4, QR decomposition can be computed in three

ways. The algorithm presented here is based on the Householder reflection
method, otherwise known as orthogonal triangularization.

Orthogonal triangularization works on the basis of successively computing
orthogonal reflectors corresponding to each column of the original matrix A,
and then applying each reflector to A. Figure 4.1 shows the results of applying

Chapter 4. Incomplete QR Factorization 27

X X X

Qi
X X X

Qi
X X X

Q3

X X X

x X X Qi 0 X X Qi 0 X X Q3 0 X X

X X X 0 X X 0 0 X 0 0 X

X X X 0 X X 0 0 X 0 0 0

Figure 4.1: Orthogonal triangularization

orthogonal matrices, Qi, Qo,, and Qs to the original matrix. Each Qj is of the
form

Qj
h o
.0 FiV

where Fj is a (n — j + l)-by-(n — j + 1) Householder reflector that zeros out
the lower triangular part of column j. Because of the identity matrix in the
(1,1) block, Qj only affects columns j through n; Qj does not touch columns
1 through j — 1 which already had their appropriate entries zeroed out by Qi
through Qj-i-

Each reflector F has a special structure which zeros out all the entries below
the main diagonal and puts their weight in the diagonal entry. For example, if
we denote by Xj the lower triangular part of column j, including the diagonal
entry, then after applying Fj, the column will contain on the diagonal
and zeros below the diagonal. The upper triangular part of the column is left
unchanged.

The structure of F that makes this possible is

F = I-(3vvT with (3 = 2/\\v\\, (4.3)

where (3 and v are chosen such that for any x,

Fx = ± | | x | | e i , (4.4)

with ei = (1,0,..., 0)T. The decision on whether to use + or — is made based on
the sign of X\, the first entry in column x. More details on this whole procedure
are available in [27, Lecture 10].

The order in which the reflectors are computed and applied distinguishes
between two different algorithms described in the next section!

4.1 Which Way to Look: Left and Right

Algebraically, the order in which the Householder reflectors are computed and
applied does not have any effect on the end result of the factorization when
computing a complete QR factorization. However, the distinction turns out
to be crucial when implementing the incomplete QR factorization. There are
two ways algorithms for computing the sparse Householder QR factorization:
left-looking and right-looking.

Chapter 4. Incomplete QR Factorization 28

Both algorithms compute the upper triangular matrix R corresponding to
factor R in (4.1), and lower triangular matrix V which holds all the reflection
vectors v (see (4.3)). The orthogonal matrix Q can be built from the matrix V,
but will not be stored in practice.

The kth column Rk of R and fcth column 14 of V are computed simultane­
ously. We begin with the original matrix A and at each step compute a reflector
from the lower-triangular part of fcth column Ak of A, as described in the ex­
ample above. We have a choice between applying this reflector to all columns
immediately, or storing the reflector and then applying all the reflectors at once
to each column. This is where the two algorithms take different approaches.

In the left-looking Householder QR algorithm, all the reflectors are computed
and stored in V. When computing columns Rk and Vk, all of V i , . . . , I4_i are
applied to Rk and Vk at once. After that, a reflector is computed from Vk, which
is simply Ak modified by all the reflections, and stored back into Vk.

Each time one of the reflectors is applied to a column, there is a possibility of
fill-in being introduced into that column. This result comes from [8, Theorem
5.2], which states that the sparsity pattern of any row Vi, after applying the
Householder reflector F, is the union of all rows modified by that Householder
vector.

Thus, there is a chance that columns will become denser as each successive
reflection is applied. In fact, the end result can be a completely dense column.
Because the sparsity pattern of the reflector computed from Vk is the same as
the sparsity pattern of that column, there is a possibility that the reflector will
be completely dense. Therefore the matrix V which holds all the reflectors could
become very dense, and for large initial A, storage becomes an issue. In some
cases, if A is large and structured in such a way that reflectors become very
dense, storing V can be impossible.

The right-looking Householder QR algorithm computes the reflector from
Vk, and applies it to columns k + 1 through n immediately. Once the reflector
is computed and applied to all the appropriate columns, it does not have to be
stored. Instead, we store the result of applying the reflector to each column. In
this case, we can choose to make each result as sparse as we would like. The
trade-off between this strategy and the one in which the sparse reflectors are
stored themselves, is discussed in Section 4.3.

Because we only use the matrix R for preconditioning and the right-looking
method allows us to compute the "Q-less" QR factorization, we use this variant
in the implementation of our p-incomplete Householder QR factorization.

4.2 Complete Householder Q R

As with algorithms for sparse Cholesky, sparse QR factorization algorithms
proceed in two phases—symbolic and numeric. The symbolic factorization of
A is computed first because it does not depend on the numerical values of the
entries. The elimination tree of ATA is used to compute the sparsity patterns of
R and V. To see why this can be done, we consider the fact that ATA = RTR,

Chapter 4. Incomplete QR Factorization 29

where R is the QR factor of A. More details on this can be studied in proof
of Theorem 5.3 in [8]. Symbolic phase computes the total number of entries in
R and V which is needed for allocating enough space for these matrices in the
numerical factorization. The bulk of the work of the method, however, lies in
the numeric phase.

The numerical phase of the Householder QR factorization is computed ac­
cording to Algorithm 3. In this section, we describe the work done to compute
the fcth column of the factor.

First, sparsity patterns of the kth column Rk of R and the kth column Vk
of V are computed. Computing the pattern of Rk is done by first finding the
leftmost entry in the row corresponding to each entry in the fcth column of A,
and then traversing the elimination tree from that node to the root node. In
other words, we go down Ak, and for each nonzero entry in Ak we find the
leftmost entry in its row. Then we traverse the elimination tree from the node
denoting the column index of this leftmost entry all the way up to the root.
Each node encountered in the traversal is a row index of a nonzero entry in Rk •
If the entry is below diagonal, i.e., its row index is less than fc, then it is added
to the pattern of Vk- During this process, all nonzero entries of Ak are assigned
to a working vector x of length n.

The second step is to compute a value for each entry in the sparsity pattern.
Since x holds Ak, all the reflectors corresponding to columns 1 through fc — 1
are applied to x. Then, row indices and values for each nonzero entry of Rk
(known from the pattern computed in the previous step) are copied from x to
R. Values of entries in Vk are stored next. This is accomplished by keeping
track of the number of entries present in V at the beginning of column k, and
the number of entries at the end of column fc. The difference between these two
is clearly the number of nonzeros in Vk •

The last step, once all the reflectors have been applied and all entries stored
in their corresponding matrices, is to compute the reflector v and scalar /?, such
that (4.4) is satisfied with x — Vk-

It is important to note that in the process of computing Rk and Vk, all
reflectors V i , . . . , I4_i are applied to Rk and 14 first. Only then is the reflector
Vfc computed. This is the characteristic of the left-looking algorithm described
in the previous section.

4.3 Dropping Strategy

For a large matrix A, storing a possibly dense complete factor Q might be in-
feasible. Incomplete factorization deals with this problem by dropping entries
according to some pre-established rule. The sparsity of the end result depends
largely on the dropping rule chosen. On the other hand, the quality of incom­
plete factorization has to be considered, since dropping too many entries might
result in a factorization that is too far away from the complete one and therefore
not very useful for preconditioning.

There are three possible strategies for dropping elements during the factor-

Chapter 4. Incomplete QR Factorization 30

Algorithm 3: Numeric phase of the left-looking complete Householder
QR factorization.

Input: Sparse matrix A
Output: Upper triangular sparse matrix R, lower triangular sparse

matrix V
for k=l,... ,n do

Compute nonzero pattern of R{:, k);
Compute nonzero pattern of V(:, k);
Store A(:,k) in x;
foreach Nonzero entry R(i,k) do

Apply reflector V(:,i) to R(i,k);
Store result in x;
Copy x(i) to R(i,k);

foreach Nonzero entry V(i, k) do
|_ Copy x(i) to V(i, k);

Compute reflector V(:, k) and
Finalize and return;

ization, each with its own benefits and drawbacks. Here we describe all three
and give reasons why one is chosen over the other two.

The first strategy involves computing complete reflectors, the same way it
was done in the complete factorization, and applying these full reflectors to
all the appropriate columns according to the right-looking rule described in
Section 4.1. The full results of these reflections are then stored in the matrix
R and dropping is done as a post-processing step, once all the reflectors have
been applied to all the appropriate columns.

While this strategy has the benefits of being the closest to the complete fac­
torization (because the entries are computed exactly and dropped at the very
end) and being the simplest one to implement, it also has some undesirable qual­
ities. Since all the reflectors and all the reflections are computed completely,
there are no improvements in speed and efficiency of the algorithm as compared
to the complete algorithm. Also, a complete factor R is stored in the interme­
diate steps, before the dropping process, and therefore there are no savings in
memory requirements either.

The second strategy is to compute full reflectors, and drop all but p largest
fill-in entries each time a reflector is applied to a column. Of course, since the
reflectors are computed from those columns from which the entries were already
dropped, they will be sparser than the complete reflectors.

The benefit of this strategy is that throughout the computation only the
incomplete results are stored. This means that the storage required is set to
the number of entries in A plus p fill-in entries per column. Also, since the
reflectors are sparse less entries are affected by each reflector, and therefore less
computation needs to be done. This improves the speed of the overall algorithm.
On the other hand, the entries are dropped each time a reflector is applied is to

Chapter 4. Incomplete QR Factorization 31

a column, which makes the factorization less exact and therefore further from
the complete factorization.

Third and final strategy considered here is computing the reflectors and then
dropping entries before they are applied to all the appropriate columns. In this
case, the entries are dropped from the results as well, the same way as in the
previous approach. The benefit is that the reflectors are sparse and so when
they are applied to each column the results are sparser than they would be
when complete vectors are applied. Therefore, there is even more improvement
in speed as compared to the previous method. The drawback is that the factors
become too sparse and thus, too far away from the complete factorization.

Considering all the benefits and drawbacks of all three methods, we chose the
second method as the basis for our implementation of p-incomplete Householder
QR factorization. It is close enough to the complete factorization to be consid­
ered useful in preconditioning, and the storage requirements are predictable.

4.4 p-Incomplete Householder Q R
The p-incomplete Householder QR factorization algorithm uses the same drop­
ping rule that was previously used in the Cholesky factorization: for each column
we drop all but the p largest fill-in elements. The difference for the QR factor­
ization is that elements from each column are dropped numerous times, more
precisely each time a reflector is applied to the column, as opposed to dropping
only once as in the p-incomplete Cholesky factorization.

Our implementation is described in detail in Algorithm 4, which is described
in more detail below. The starting point for this implementation is the complete
Householder QR summarized in Algorithm 3. The major distinction between the
two is that the complete algorithm is left-looking and the incomplete algorithm
is right-looking.

Similarly to the complete Householder factorization, the first step in p-
incomplete factorization is to compute the sparsity pattern of each column.
While the sparsity pattern of each column in the complete algorithm is com­
puted on the fly, i.e., for each column separately, in the incomplete algorithm
•the entire sparsity patterns of both R and V are computed at once. The reason
for this is that the columns are computed from left to right, starting at the first
column, but the reflectors are applied to columns on the right, which have not
been computed yet. Therefore, we need to know the sparsity pattern of these
columns in order to know how to apply the reflectors, i.e., to know which entries
will be affected by each reflector. We compute the sparsity pattern of the full
factorization and decide which p entries to keep later on, during the numerical
factorization.

The next step is to prepare for the numerical factorization by copying all
entries in upper triangular part of A into R, and all entries in the lower tri­
angular part of A into V. This way the reflectors can be applied directly to
the appropriate columns in these matrices, and there is no need for a working
vector, like vector x in Algorithm 3.

Chapter 4. Incomplete QR Factorization 32

Algorithm 4: Numeric phase of the right-looking p-incomplete House­
holder QR factorization.

Input: Sparse matrix A
Output: Upper triangular sparse matrix R, lower triangular sparse

matrix V
for k—1,... ,n do

Compute nonzero pattern of R(:, k);
Compute nonzero pattern of V(:,k);

for k=l,... ,n do
Copy A(l : k, k) into R(l : k, fc);

_ Copy A(k + l:n,k) into V(k + 1 : n, fc);

for k=l,... ,n do
Compute Householder reflector v and (3;
Apply v and (3 to all columns fc + 1 through n of R and V;
Mark fill-in vs. non fill-in entries in R and V;
Put all fill-in into a heap for R and V;
Extract largest p fill-in from R heap and V heap;
Store p largest fill-in and original entries in R and V;

Finalize and return;

Once R and V have been initialized, we can begin the numerical part of
the computation. First, a Householder reflector v and a scalar (3 are computed
which satisfy (4.3) and (4.4), with x = Vk- Then v and j3 are applied to all
columns to the right of the current column in both R and V, i.e., if the column
being computed is fc, the Householder reflector is applied to Rk+i, • • • ,Rn and
Vfc+i, ••-,Vn.

Since our strategy for computing p-incomplete factorization is to drop after a
reflector is applied to a column, the next step is to decide which p fill-in elements
should be kept in addition to the elements which were already structurally
present in A. This is done by storing all fill-in elements from Rk and all fill-in
elements from Vk into two separate heaps described in Section 2.2. The largest
element is then extracted from each of the heaps p times, and the heap property
is restored each time.

The chosen p fill-in elements for each of Rk and Vk are then stored along
with the non fill-in elements in their respective matrices.

In order to see the distinction between this incomplete algorithm and the
complete algorithm described previously, it is important to note that each of
the reflectors is computed first and then applied to all the appropriate columns.
This is the characteristic of the right-looking algorithm described in Section 4.1.

33

Chapter 5

Incomplete Factorization
Preconditioning

This chapter describes the results of applying our incomplete factorizations
to precondition systems that arise in solving linear programs and linear least
squares problems.

5.1 Interior-point Methods for Linear
Programming

Interior-point (IP) methods are an effective way of solving LPs and QPs. The
IP methods work on the basis of satisfying the inequality constraints strictly,
which is where their name initially came from [30]. Primal-dual methods are
a subgroup of IP methods which simultaneously solve the primal and the dual
of an LP or a QP. In this section, we summarize the steps of a primal-dual IP
method for an LP, but the same ideas can be easily extended to QPs.

An LP in standard form is given by

minimize cTx
(P)

subject to Ax = b, x > 0,

and its dual is given by

maximize. bTy
v ' z t (D) subject to ATy + z = c, z > 0,

where y is the vector of dual variables, and z is the vector of dual slacks. Duality
theory, which explains the relationship between feasible sets of (P) and (D),
states that dual objective gives a lower bound on the primal objective and vice
versa [30]. In particular, this means that the two objective functions coincide
at the solution, i.e., given x* that solves (P), and (y»,z*) that solves (D), we
have that cTx* — 6Ty* and that x^z* = 0.

Solutions to (P) and (D), must satisfy the following optimality conditions,

{

Chapter 5. Incomplete Factorization Preconditioning 34

otherwise known as Karush-Kuhn-Tucker conditions:

ATy + z c,

Ax = b,

(x,z) > 0.

,71,

(5.1a)
(5.1b)
(5.1c)
(5.1d)

Conditions (5.1a) and (5.1b) are feasibility conditions for the primal and the
dual respectively, and (5.1c) is the complementarity condition, since it states
that x and z must have zeros in complementary positions. A triple (x*, y*, z*)
is a primal-dual solution of LP if and only if it satisfies (5.1a)-(5.1d).

Primal-dual interior point methods find.the solution to system of equa­
tions (5.1a), (5.1b) and (5.1c), and enforce the nonnegativity condition (5.Id).
This is accomplished by the mapping

F(x,y,z)
ATy + z - c

Ax -b
XZe

0 and (x, z) > 0, (5.2)

where X = diag(xi, X2, • • - ,xn), Z = diag(^i, Z2, • • •, zn) and e = (1,1,..., 1)T

and applying.Newton's method. Each iteration of Newton's method for (5.2)
requires the solution of the system

J(x,y,z)
Ax
Ay
Az

= -F(x,y,z),

where J is the Jacobian of F. Substituting in F from (5.2), and its corresponding
Jacobian, we get

(5.3)

The central path is defined by the set of solutions of (5.2), where the comple­
mentarity condition is changed to

"0 AT 'Ax' c — ATy — z
A 0 0 Ay — b-Ax
Z 0 X _Az_ XZe

Thus, (5.3) becomes

i = l ,2 , . . . ,n .

"0 AT I' 'Ax' c — ATy — z
A 0 0 Ay = b — Ax
Z 0 X Az XZe — pe

Eliminating Az from the above produces a 2-by-2 system

-X~lZ AT

A 0
"Ax c - ATy — z + nX~le - Ze
Ay b-Ax

(5.4)

Chapter 5. Incomplete Factorization Preconditioning 35

which is usually referred to as the augmented system.
In order to improve the conditioning of the linear algebra subproblems, the

LP can be regularized and an interior point method applied to the problem

minimize cTx + ±p\\x - Xk\\2 + h$\\r + yk\\2

x,r
subject to Ax + 5r = b, x > 0,

where Xk and yk are approximate solutions. This approach is based on us­
ing proximal-point terms to regularize the LP. They have the benefit that the
solution of the original LP is recovered as Xk —» x* and yk —» y*. The proximal-
point term ^p\\x — Xk\\2 is the primal regularization, and the proximal-point
term ^5\\r + yk\\2 is the dual regularization, where the nonnegative scalars p
and S are primal and dual regularization parameters, respectively. Primal-dual
IP methods are used on regularized LPs as well, and the procedure is identical
to the one described step by step above, except that the regularization terms
are included. The augmented system obtained for this problem is -

. '-X~lZ-pI AT~
A 61

The matrix in (5.5) is symmetric quasi-definite (see Section 1.3.1) because both
X~XZ + pi and SI are positive definite. This comes from the fact that both
X and Z are diagonal matrices with positive entries and therefore so is X~XZ.
Also, p and S are nonnegative. Thus, the system is strongly factorizable and a
Cholesky factorization exists for all symmetric permutations.

5.1.1 The Normal Equations
By eliminating Ax from (5.4), we obtain the normal equations

AH-1ATAy = AH~1f1 + f2,

where H = X~XZ, f i = c - ATy - z + p,X'xe - Ze, and f2 = b - Ax. The
matrix AH-1 AT is symmetric positive definite and a Cholesky factorization can
be applied to solve it. However, Gill et al. [11] showed that even if the original LP
and the augmented system are well conditioned, these normal equations can be
ill-conditioned. Therefore, solving the augmented system directly is numerically
favorable.

A second reason as to why the augmented system is better than the normal
equations comes from comparing the sparsity patterns of the two systems. In a
case where A has one dense or nearly dense column, AH-1 AT is dense and thus
its Cholesky factor is dense as well. On the other hand, symmetric permutations
can be applied to the augmented system in order to minimize fill-in in the
Cholesky factors. Figure 5.1 shows Cholesky factors of the augmented system
of the Netlib LP lp_cre_a, and its Schur complement. The figure on the left is
the (m+n)-by-(m+n) factor of the augmented system, which has 49,000 nonzero
entries; the figure on the right is the n-by-n factor of the Schur complement,

Ax
Ay

c - ATy - z + p,X~le - Ze
b — Ax (5.5)

Chapter 5. Incomplete Factorization Preconditioning 36

which has 4.9 million nonzero entries. In practice, there exist methods for
handling dense columns, for example see [1], but they are not further discussed
in this work. Instead, we focus on solving the augmented system.

5.1.2 Preconditioning
Many good iterative tools are available readily, but the one chosen for solving
SQD systems in this work is SYMMLQ, which takes advantage of the symmetry
of the system. SYMMLQ [21] is a conjugate-gradient type iterative method for
solving systems of linear equations

Ax = b,

where A is symmetric but not necessarily positive definite. It attempts to solve
the linear system within the tolerance specified, and either converges or stops
when it reaches the maximum number of iterations specified. Throughout this
work a default tolerance of 1 0 - 6 is maintained and the maximum number of
iterations is 5000. SYMMLQ was chosen as an iterative solver, over MIN-
RES, because in this work we are dealing with ill-conditioned systems that are
compatible, and SYMMLQ has been shown to produce smaller residuals than
MINRES in this case [26].

Because it falls into the category of Krylov subspace methods, the number
of SYMMLQ iterations depends on the clustering of eigenvalues of the system
being solved. As discussed in the example in Section 1.3.5, if the matrix has
only two distinct eigenvalues, a Krylov subspace method converges in at most
two iterations. Therefore, the goal of preconditioning is to produce systems that
have tightly clustered eigenvalues.

Chapter 5. Incomplete Factorization Preconditioning 37

The procedure for solving an SQD system

K
-E A7]
A F (5.6)

is the following. First, we use the approximate minimum degree (AMD) reorder­
ing algorithm (see Section 2.5.1) to compute a permutation P which orders (5.6)
in a way that minimizes fill-in in the factors. In the cases where we have sets
of matrices with the same sparsity pattern but different values, we can do this
reordering only once.

The next step is to compute a p-incomplete Cholesky UTDU — PTKP using
Algorithm 2 in Section 3.4. The factorization produces an incomplete unit upper
triangular factor U and a diagonal factor D. Since SQD systems are indefinite,
D has both positive and negative entries. SYMMLQ requires the preconditioner
to be positive definite and therefore, the signs of any negative entries in D have
to be flipped such that only positive entries are present. In other words, we
compute

D = \D\,

so that UTDU is symmetric positive definite (SPD). If the factorization is com­
plete, multiplying the inverse of this SPD matrix with the original system gives
a diagonal matrix with ± 1 entries, I = d iag(± l) , as shown in Section 3.4. In the
p-incomplete case, this product is an approximation to 7, where the closeness
of the approximation depends on the value of p.

In some cases, entries in D maybe be very small in magnitude, because of
the inexactness of the p-incomplete factorization. If this is the case, the entries
are modified to equal some specified threshold. Currently, this threshold value
is chosen by the user, but in the future implementations it should be chosen
such that the norm of the factor U is bounded. The effect of this modification
on the quality of the preconditioner is shown in Section 5.1.3.

The last step in the preconditioning procedure is to use

Mi = UTD%,

as a preconditioner for SYMMLQ. With this preconditioner, SYMMLQ is ac­
tually solving the preconditioned system

M~%AM~%y = M~H,

where
M = M1MT=UTDU.

Because M is an approximation to A, we expect AM~% to be an ap­
proximation to I, which we know only has two eigenvalues. Therefore, we
expect this product to have better eigenvalue clustering than the original sys­
tem. Because the closeness of the approximate factorization to the complete
factorization depends on the value of p, we expect the eigenvalue clustering to
improve as p is increased.

Chapter 5. Incomplete Factorization Preconditioning 38

5.1.3 Numerical Experiments

Figure 5.2 shows the results of applying the preconditioner with various values
of p to SYMMLQ. The horizontal axis represents the values of p. The vertical
axis represents the ratio of the number of iterations taken by SYMMLQ when a
p-incomplete preconditioner is applied and the number of iterations taken when
no preconditioner is applied. We expect the number of iterations to be the
highest when no preconditioner is applied, and the number of iterations with
the preconditioner to be a small fraction of that, depending on the value of p.
The problems tested here come from the Netlib library of LPs [20], and the
figure shows, for each LP, results of applying SYMMLQ to a single SQD system
drawn from the tenth iteration of the IP method.

Each line in Figure 5.2 represents one LP, and we can see that for most of
them we get the results we expected, i.e., the ratio is small even for small values
of p. For five out of eight problems shown in the figure the number of iterations
of SYMMLQ with p-incomplete preconditioner is less than 25% of that for the
unpreconditioned system for each value of p, which can be seen by the clustering
on the bottom of the graph. Thus, even for very small values of p, the number
of iterations taken by SYMMLQ is decreased drastically when a preconditioner
is used. In most cases, even with p = 0, meaning that no fill-in was allowed
in the factors, number of iterations taken for the preconditioned system is only
20% of the number of iterations taken for the original system.

SQD systems tend to get more ill-conditioned with each iteration of IP
method, and because our SQD system come from the tenth iteration, we do
not get the results we expected for some of the test problems. For example,
lp_agg, lp_agg2, and lp_agg3 have ratios that oscillate with the value of p,
meaning the the number of iterations goes up as p is increased, which is ex­
plained by the extreme ill-conditioning of these systems at the advanced stage
of the IP method.

The drastic reduction in the number of iterations of SYMMLQ for the pre­
conditioned system is, of course, a great result, but the trade-offs of this ap­
proach must be considered as well. First, we need to consider the time taken
to compute the preconditioner. This is equivalent to the time taken to compute
the Cholesky factorization of the SQD system, and this should be less than the
time taken for the additional SYMMLQ iterations needed if the preconditioner
is not applied. From Table 5.1, we can see that this is the case for all of our
problems. Factorization time goes up only slightly as p is increased, but the
time taken by SYMMLQ to compute the solution goes down by a factor of 2 or
3 each time p is increased by 2, in most cases. For p = 10, the reduction factor
varies from 2 to as high as 15 for lp_scsd8. Only one problem, lp_agg3, shows
the increase in time as p is increased.

Secondly, the number of nonzeros in the factor goes up as the value of p
is increased and thus, more storage is required. From Figure 5.3, we can see
that for most of our problems the storage required is only 20-50% (for various
values of p) of the storage required for the complete factorization. Looking at
the same problems in Figure 5.2, we see that the number of iterations of the pre-

Chapter 5. Incomplete Factorization Preconditioning 39

No Brecon W i t h p-incomplete precon
Name n + m i tns T P itns fact T S Y M M L Q T to ta l T

lp-agg 1103 1218 0.54 0 4603 0.02 25.25 25.27
2 1827 0.22 10.20 10.42
4 2443 0.22 13.55 13.77
6 536 0.02 3.01 3.03
8 180 0.02 1.14 1.16

10 56 0.02 0.31 0.33
lp_agg2 1274 2297 1.18 0 2002 0.03 13.13 13.16

2 3505 0.23 22.31 22.54
4 2315 0.03 15.28 15.31
6 817 0.03 5.42 5.45
8 359 0.03 2.40 2.43

10 194 0.03 1.25 1.28
lp^agg3 1274 1927 0.97 0 2636 0.03 16.52 16.56

2 4688 0.23 30.99 31.22
4 4332 0.03 28.34 28.37

' 6 3956 0.23 25.53 25.76
8 320 0.03 2.32 2.35

10 318 0.03 2.12 2.15
lp_d6cube 6599 3347 36.29 0 325 2.12 11.41 13.53

2 944 2.11 32.81 34.92
4 303 2.10 10.55 12.65
6 127 2.31 4.53 6.84
8 134 2.11 5.03 7.14

10 142 2.10 5.10 7.20
lp-scsd6 1497 4966 2.82 0 151 0.04 1.16 1.20

2 109 0.03 0.86 0.89
4 123 0.03 0.89 0.92
6 38 0.03 0.29 0.32
8 26 0.24 0.06 0.30

10 8 0.24 0.02 0.26
lpjscsd8 3147 4687 13.79 0 412 0.55 5.71 6.26

2 99 0.35 1.47 1.82
4 61 0.54 0.68 1.22
6 48 0.54 0.63 1.17
8 73 0.55 0.94 1.49

10 27 0.54 0.33 6.87
lp_ship081 5141 4536 16.37 0 1193 1.19 26.50 27.69

2 831 1.24 18.36 19.60
4 615 1.20 13.54 14.74
6 661 1.40 14.77 16.17
8 443 1.20 9.89 11.09

10 430 1.20 9.62 10.82
lp. t russ 9806 4416 41.83 0 836 4.45 37.51 41.96

2 321 4.25 14.71 18.96
4 147 4.20 6.60 10.80
6 132 4.20 5.99 10.19
8 96 4.22 4.51 8.73

10 77 4.46 3.90 8.36

Table 5.1: Timings for factorization and SYMMLQ for increasing p on various
LP problems. "T" denotes time in seconds.

Chapter 5. Incomplete Factorization Preconditioning 40

Figure 5.2: Ratio of the number of iterations of SYMMLQ with and without
p-incomplete preconditioner for various p. For five out of eight problems number
of iterations with p-incomplete preconditioner is less than 50% of the number
of iterations without the preconditioner.

conditioned system has 70-90% decrease as compared to the unpreconditioned
system. In other words, the storage required for the p-incomplete preconditioner
is only a fraction of the storage required for the complete factorization, and the
number of iterations is drastically reduced as compared to the unpreconditioned
system. Therefore, we conclude that this increased storage requirements is a fair
price to pay for such a drastic decrease in the number of iterations. In the cases
where even this increase in storage is infeasible, we can use p = 0 which does
not require any additional storage, and the decrease in the number of iterations
is still 75-80% in most cases. For some problems, however, p-incomplete pre­
conditioner with p = 0 gives very poor results, as can be seen for lp.agg and
lp_agg2 in the figure.

As mentioned earlier, the diagonal entries in D sometimes need to be modi­
fied in order to improve the norm of the triangular factor of the preconditioner.
Figure 5.4 shows that this has the most effect on the systems which are ill-
conditioned to begin with, namely lp_agg, lp_agg2 and lp_agg3. For these
systems increasing the minimum magnitude threshold for the diagonal entries
improves the conditioning of UTDU, and thus, reduces the number of itera­
tions necessary when this preconditioner is applied. For the other five systems
clustered on the bottom of the figure, the ratio of number of iterations for the
preconditioned system and the number of iterations for the unpreconditioned

Chapter 5. Incomplete Factorization Preconditioning 41

1

g 21
 1 1 1 1 I

0 2 4 6 8 10

Figure 5.3: For each problem, ratio of the number of nonzeros in the p-
incomplete Cholesky factor to the full Cholesky factor for various p.

system remains low, about 10-15% regardless of the magnitudes of the diagonal
entries in D. Thus, we conclude that modifying the entries in D in this way,
does not have a significant effect on the majority of the problems tested, but
does show an improvement for the problems that are known to be extremely
ill-conditioned.

5.2 Least squares

The goal of the least-squares (LS) problem, introduced in Section 1.2.1, is to
minimize the 2-norm of the residual

r = b — Ax.

Regularization is often introduced into LS problems in order to improve condi­
tioning and thus they are usually encountered in the form

niinimize | | | Ax - b\\2 + ^5\\x\\2. (5.7)

By differentiating (5.7) and equating it to zero, we get the first order optimality
conditions

—ATr + Sx = 0 and r = b — Ax.

Chapter 5. Incomplete Factorization Preconditioning 42

Figure 5.4: For each problem, ratio of the number of iterations of SYMMLQ with
and without the p-incomplete preconditioner, for increasing threshold values for
diagonal entries in D. Larger threshold values imply triangular factors with
smaller norm.

Combining these two linear equations together gives the linear system

" I A ' r ~b~
AT -SI X _0_

This system is in the category of SQD systems, discussed in Section 1.3.1, be­
cause both I and SI are symmetric positive definite matrices.

The regularized augmented system (5.5) can be reformulated as the least
squares problem

min imize
x

(H + pI)-iAT

sfSI
(H + pI)-ih

where H = -X~XZ, fx = c- ATy - z + uX~1e - Ze, and h = b- Ax. It is
important to note that this reformulation is only possible for the dual regularized
augmented system. In other words, if the (2,2) block of (5.5) is 0, it would not
be possible to compute 1 /y/S, and thus, the LS reformulation would fail.

5.2.1 Alternatives

The most common way of solving the generic LS problem

minimize —6||2 (5.8)

Chapter 5. Incomplete Factorization Preconditioning 43

is via the normal equations method [13]. This method solves (5.8) by first
computing

C = ATA and d = ATb.
Then a Cholesky factorization of C is computed

C = GGT,

and the equation
Gy = d

is solved for y. Finally,
GTx = y

is solved for x, where x is the least squares solution.
The problems that arise in this method are similar to the problems discussed

in Section 5.1.1, where the Cholesky factor of the symmetric positive definite
matrix ATA is very dense. Also, in general, it is not a good idea to form this
matrix as loss of information might occur in this process [13].

As mentioned in the previous chapter, another way of solving LS problems is
computing the QR factorization of the matrix A and then solving the problem

minimize \\QTAx — QTb\\,
X

where Q is the orthogonal factor. Since A = QR and Q~l = QT, we know that
QTA = R, which is an upper triangular matrix. Therefore the above problem is
simplified to a problem with a triangular matrix, which is a lot easier to solve
than a general system.

Similar problems arise in this method as in the previous one, when applied
to a large sparse system, because again we have to compute the full QR factor­
ization where the factors could be arbitrarily dense.

5.2.2 Preconditioning

We now turn to iterative solvers for sparse linear least squares problems and
use the iterative method LSQR [22] to solve this problem. LSQR is similar to
SYMMLQ, discussed in Section 5.1.2, in the sense that they are both Krylov
subspace methods, which in a nutshell means that their convergence rates de­
pend on the clustering of the eigenvalues of the problem. Thus, the goal of our
approach is improve the efficiency of this method by means of preconditioning
the least squares problem with a preconditioner which improves the eigenvalue
clustering of the problem.

To accomplish this, we precondition the linear least squares problem (5.7)
with the factor R of the QR factorization. Thus, we get

minimize ^\\AR~1y - b\\2 + h52\\y\\2 and Rx = y.
y

Because A = QR, we know that

Q = AR'1,

Chapter 5. Incomplete Factorization Preconditioning 44

and because Q is orthogonal its eigenvalues are all on the unit circle. Therefore,
we expect our Krylov subspace method to converge with one iteration on this
preconditioned system.

However, we are interested in computing the p-incomplete QR factorization,
and thus the preconditioned system AR-1 is an approximation to Q, rather
than Q exactly. The closeness of this approximation depends on the value of p,
i.e., the more fill-in entries we keep in the factor, the closer it will be to the true
factor. As it turns out, even with very small value of p, the approximation is
good enough to dramatically reduce the number of iterations taken by LSQR.
We will see more on this in Section 5.2.3.

The procedure for preconditioning starts off with computing the AMD re­
ordering of the symmetric positive definite system ATA. This reordering turns
out to minimize the fill-in in the QR factorization of A itself, because the
Cholesky factorization of ATA is RTR, where R is the same as the upper tri­
angular QR factor of A. In the case that A has one or more dense rows, these
rows are removed before forming ATA. A row is considered dense if it has more
than 10\/ft entries, where n is the number of columns in A.

The next step is to compute p-incomplete QR factorization of reordered
matrix A. The value of p is decided upon by the user, according to the amount
of storage available and the quality of the preconditioner desired. In general,
quality of the preconditioner is proportional with the value of p and the memory
storage is, of course, inversely proportional. In some cases, the diagonal entries
of the p-incomplete factor R are then modified using a user defined threshold
value, in order to improve the conditioning of the preconditioner and finally, the
factor is passed to LSQR.

The results of this procedure are presented in the next section.

5.2.3 Numerical Experiments
Results of preconditioning LSQR with a p-incomplete QR factorization turn
out to be even better than the ones seen in Section 5.1.3 for preconditioning
SYMMLQ with an incomplete Cholesky factorization. Figure 5.5 shows that
even for a very small p, such as p = 2, the number of iterations of LSQR taken
for the preconditioned problem is less than 10% of that for the unpreconditioned
problem, in most cases. Again, like in Section 5.1.3, we have some deviations
from this trend, but in this case even the ill-conditioned systems that created
trouble for SYMMLQ work well in preconditioned LSQR. In fact, all but one
problem (lp_scsd6), require less than 10% of iterations of the unpreconditioned
system for p = 4.

The trade-offs in this case are very similar to those described in Section 5.1.3
for preconditioning SYMMLQ. The number of nonzeros in the factor goes up
as p is increased. However, as Figure 5.6 shows, for p = 2 and p = 4 which
were shown to be sufficient for drastic reduction of the number of iterations, the
number of nonzeros in the factor is less than 10% of the number of nonzeros in
the full QR factor, in most cases. This is definitely a small sacrifice for such a
large reduction in the number of iterations of LSQR.

Chapter 5. Incomplete Factorization Preconditioning 45

Figure 5.5: For each problem, ratio of the number of iterations of LSQR with
and without p-incomplete QR preconditioner for various p.

The other trade-off that needs to be considered here is the time it takes to
compute the p-incomplete QR factorization. This turns out to be significantly
longer than the time for computing a p-incomplete Cholesky factorization for the
same system. The main cause of such a high factorization time is the repeated
application of the Householder reflectors to each column, and the dropping pro­
cedure needed each time a reflector is applied to a column. In comparison, our
implementation of the Cholesky factorization computes the whole column at
once, and drops the entries only once per column. Table 5.2 shows the times for
factorization and the time that LSQR takes to solve the preconditioned system.
In all cases, the number of iterations and therefore the time for LSQR is reduced
by a large factor as p is increased. However, factorization time alone is signif­
icantly longer than the time to solve the unpreconditioned system. Therefore,
we see that we have a high quality preconditioner, but its implementation seems
to be slow.

Chapter 5. Incomplete Factorization Preconditioning 46

Figure 5.6: For each problem, ratio of the number of nonzeros in p-incomplete
factor R and full factor R for various p.

Chapter 5. Incomplete Factorization Preconditioning 47

No precon W i t h p-incomplete precon
Name m n itns T P itns nnz(R) fact T L S Q R T tota l T

lp-agg 1103 488 1895 0.90 0 1867 511 19.27 1.79 21.07
2 274 1463 19.23 0.67 19.90
4 1 2416 22.80 0.01 22.81
6 1 3350 23.77 0.01 23.78
8 1 4164 23.85 0.01 23.86

lp-agg2 1274 516 2838 3.62 0 5000 538 29.07 14.52 43.59
2 28 1548 26.92 0.02 26.94
4 5 2552 27.63 0.01 27.64
6 3 3532 28.81 0.01 28.82
8 1 4492 30.00 0.01 30.01

lp_agg3 1274 516 4481 5.66 0 5000 538 28.55 15.04 43.59
2 7 1548 29.13 0.01 29.14
4 1 2543 27.89 0.01 27.90
6 1 3533 29.28 0.01 29.29
8 1 4491 29.97 0.01 29.98

lp.d6cube 6599 415 2279 10.82 0 5000 1968 75.61 32.28 107.89
2 7 2553 76.76 0.01 76.77
4 1 3303 77.42 0.01 77.43
6 1 4090 77.64 0.01 77.65
8 1 4904 77.97 0.01 77.98

lp-scsd6 1497 147 1197 1.25 0 1192 181 2.35 1.86 4.21
2 1864 400 2.48 3.31 5.79
4 2972 642 2.62 5.46 8.08
6 2018 879 2.42 3.83 6.25
8 2698 1122 2.44 5.11 7.55

lp_scsd8 3147 397 5000 7.82 0 5000 418 34.70 13.82 48.52
2 5000 995 34.21 14.78 48.99
4 5 1723 34.30 0.01 34.31
6 3 2451 34.66 0.01 34.67
8 17 3148 35.22 0.22 35.44

lpjship081 5141 778 1969 4.25 0 2113 802 216.07 9.46 225.53
2 1 1684 209.89 0.01 209.90
4 4 2781 212.61 0.01 212.62
6 4 3986 212.99 0.01 213.00
8 4 5441 215.66 0.20 215.86

lp. t russ 9806 1000 4378 16.88 0 5000 1774 637.61 35.39 673.01
2 5000 3019 637.32 37.84 675.16
4 823 4668 641.30 6.87 648.17
6 235 6221 649.31 2.08 651.39
8 9 7908 649.50 0.03 649.53

Table 5.2: Timings for factorization and LSQR for increasing p on various LP
problems. "T" denotes time in seconds.

48

Bibliography

[1] Knud D. Andersen. A modified schur-complement method for handling
dense columns in interior-point methods for linear programming. ACM
Trans. Math. Softw., 22(3):348-356, 1996.

[2] Cleve Ashcraft, Roger G. Grimes, and John G. Lewis. Accurate symmetric
indefinite linear equation solvers. SI AM J. Matrix Anal. Appl, 20(2) :513-
561, 1999.

[3] Zhong-Zhi Bai, Iain S. Duff, and Andrew J. Wathen. A class of incomplete
orthogonal factorization methods. I: Methods and theories. Bit Numerical
Mathematics, 41(l):53-70, 2001.

[4] Ake Bjorck. Numerical Methods for Least Squares Problems. Society of
Industrial and Applied Mathematics, Philadelphia, 1996.

[5] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc­
tion to Algorithms. MIT Press, Cambridge, MA, USA, 1990.

[6] Timothy A. Davis. Algorithm 849: A concise sparse Cholesky factorization
package. ACM Trans. Math. Softw., 31(4):587-591, 2005.

[7] Timothy A. Davis. CHOLMOD users' guide, http://www.cise.ufl.edu/
research/sparse/cholmod/, 2005.

[8] Timothy A. Davis. Direct methods for sparse linear systems, volume 2 of
Fundamentals of Algorithms. Society for Industrial and Applied Mathe­
matics (SIAM), Philadelphia, PA, 2006.

[9] Iain S. Duff, Albert M. Erisman, and John K. Reid. Direct Methods for
Sparse Matrices. Oxford University Press, New York, NY, 1986.

[10] Alan George and Joseph W. Liu. Computer Solution of Large Sparse Pos­
itive Definite. Prentice Hall Professional Technical Reference, 1981.

[11] Philip E. Gill, Walter Murray, Dulce B. Ponceleon, and Michael A. Saun­
ders. Preconditioners for indefinite systems arising in optimization. SIAM
J. Matrix Anal. Appl, 13(1):292-311, 1992.

[12] Philip E. Gill, Michael A. Saunders, and Joseph R. Shinnerl. On the sta­
bility of Cholesky factorization for symmetric quasidefinite systems. SIAM
J. Matrix Anal. Appl., 17(l):35-46, January 1996.

http://www.cise.ufl.edu/

Bibliography 49

Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns
Hopkins University Press, Baltimore, second edition, 1989.

Anshul Gupta. Improved symbolic and numerical factorization algorithms
for unsymmetric sparse matrices. SIAM J. Matrix Anal. Appl., 24(2):529-
552, 2002.

Bruce Hendrickson and Edward Rothberg. Improving the run time and
quality of nested dissection ordering. SIAM Journal on Scientific Comput­
ing, 20(2):468-489, 1998.

Mark T. Jones and Paul E. Plassmann. An improved incomplete Cholesky
factorization. ACM Trans. Math. Softw., 21(1):5-17, 1995.

Chih-Jen Lin and Jorge J. More. Incomplete Cholesky factorizations with
limited memory. SIAM J. Comput, 21(l):24-45, 1999.

J A. Meijerink and Henk A. van der Vorst. An iterative solution method
for linear systems of which the coefficient matrix is a symmetric M-matrix.
Mathematics of Computation, 31 (137): 148-162, 1977.

N. Munksgaard. Solving sparse symmetric sets of linear equations by pre­
conditioned conjugate gradients. ACM Trans. Math. Softw., 6(2):206-219,
1980.

NETLIB linear programming library, http://www.netlib.org/lp/data/,
2006.

Christopher C. Paige and Michael A. Saunders. Solution of sparse indef­
inite systems of linear equations. SIAM Journal on Numerical Analysis,
12(4):617-629, 1975.

Cristhopher C. Paige and Michael A. Saunders. LSQR: An algorithm for
sparse linear equations and sparse least squares. ACM Trans. Math. Soft­
ware, 8:43-71, 1982.

Andreas T. Papadopoulos, Iain S. Duff, and Andrew J. Wathen. A class
of incomplete orthogonal factorization methods. II: Implementation and
results. Bit Numerical Mathematics, 45(1):159-179, 2005.

Vladimir Rotkin and Sivan Toledo. The design and implementation of a
new out-of-core sparse cholesky factorization method. ACM Trans. Math.
Softw., 30(l):19-46, 2004.

Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003.

Michael A. Saunders. Notes 2: Iterative Methods for Symmetric Ax = b.
http://www.stanford.edu/class/msande318/, 2007.

http://www.netlib.org/lp/data/
http://www.stanford.edu/class/msande318/

Bibliography 50

[27] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. Society
of Industrial and Applied Mathematics, Philadelphia, 1997.

[28] Robert J. Vanderbei. Symmetric quasidefinite matrices. SIAM J. Optim.,
5(1):100-113, 1995.

[29] Xiaoge Wang, Kyle A. Gallivan, and Randall Bramley. CIMGS: An in­
complete orthogonal factorization preconditioner. SIAM J. Sci. Comput,
18(2):516-536, 1997.

[30] Stephen J. Wright. Primal-Dual Interior-Point Methods. Society of Indus­
trial and Applied Mathematics, Philadelphia, 1997.

[31] Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM
Journal on Algebraic and Discrete Methods, 2(l):77-79, 1981.

