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Abstract 
First, this thesis explores the implementation of the fast marching method as 
part of the toolbox of level set methods. This method uses Dijkstra's algo­
rithm to approximate the solution to the non-linear Eikonal equation. Functions 
for calculating signed distances and extension velocities are also implemented. 
These functions use the fast marching method in their implementation. 

Second, it explores a method for computing reachable sets on a manifold; in 
other words, the dynamics governing these reachable sets can be described by a 
Differential Algebraic Equation. It uses level set methods to solve the underlying 
Hamilton Jacobi equation of the reachable set and it ensures an accurate solution 
on the manifold by using the closest point method. The closest point method 
guarantees that the reachable set is perpendicular to the manifold at the points 
of intersection. Several two and three dimensional toy problems and a real-life 
power generator problem are explored in order to test the method. 
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Chapter 1 

Introduction 

The first purpose of this research is to add some functionality to Ian Mitchell's 
Level Set Toolbox [6], and this functionality is an implementation of the fast 
marching method. This method uses Dijkstra's algorithm to approximate the 
solution to the non-linear Eikonal equation. In addition, functions for calcu­
lating signed distances and extension velocities are also implemented. The fast 
marching method is used in the calculation of both signed distances and exten­
sion velocities. 

The second purpose of this research is to develop a method for solving reach­
able sets on a manifold. The dynamics governing the reachable set evolution can 
be described by a Differential Algebraic Equation (DAE), where the manifold 
is an algebraic constraint and the movement of the reachable set is described 
by a differential constraint. A common method used to solve reachable sets 
in a full dimensional space is the level set method. In this case the reachable 
set is represented by an implicit surface function. This research adapts these 
level set techniques in order to solve reachable sets on a manifold. This adapta­
tion uses the closest point method to ensure that the implicit surface function 
representing the reachable set is perpendicular to the manifold at all points of 
intersection. The function for calculating signed distances is used in the closest 
point method implementation. Thus, the work in the first part of the thesis is 
incorporated into second part. 

This thesis will describe fast marching methods, signed distance functions 
and extension velocities. It will then outline the implementation of these meth­
ods and show some example problems to demonstrate that the implementation 
is correct. Next, this thesis will outline the method developed to solve reach­
able sets on a manifold. It will also demonstrate the method by solving two 
toy problems. Finally, the thesis will describe a power generator example and 
demonstrate how this real life D A E can be solved with the previously described 
methods. 

1.1 Implicit Surface Functions 
In this thesis, closed surfaces are represented by implicit surface functions, <j> [7]. 
A n interface with a dimension of n — 1 is embedded as an isocontour into a 
function cj> with an input dimension of n and an output dimension of 1. The 
zero isocontour, <f>{x) = 0, is usually used to represent the interface but any 
isocontour, <p{x) = a, can be used for this purpose. These isocontours are equal 
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Figure 1.1: Implicit surface representation of an arbitrary curve. 

up to a scalar translation, <f>(x) = cj>(x) — a. This thesis uses the zero isocontour 
to represent interfaces, so the explicit representation of the interface is defined 
as T = {x | 4>(x) = 0}. The zero isocontour divides the domain into two sets. 
The set inside the interface is defined by Q,~ = {x \ cj)(x) < 0} and the set 
outside the interface is defined by f2 + = {x | <f>(x) > 0}. 

The majority of the typical geometric tasks for sets and surfaces are easily 
done with the implicit surface representation. This representation makes it 
simple to identify which side of the interface a point is on simply by looking at 
the sign of 4>(x). It is also easy to construct representations by combining several 
implicit surface representations together. For example, the intersection of the 
interiors of two interfaces can be represented by taking the maximum value 
between the two implicit surface representations at each point in the domain, 
4>z{x) = m&x.(4>\{x), <f>2{x)). The outward normal of an implicit surface function 
is defined as 

-> V4> 
N = —— 

and it. is defined over the entire domain except where \V(f>\ — 0, or where 4> I S 

not differentiate. This thesis uses finite difference techniques on a cartesian 
grid to calculate derivatives, such as those in V<f>. 
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Chapter 2 

Fast Marching Methods 

2.1 Background 
2.1.1 Fast Marching Method 
The Fast Marching Method (FMM) was originally described in [16] and inde­
pendently described in [11]. It is a numerical scheme which approximates the 
solution to the non-linear Eikonal equation [12]. This equation is of the form 

||Vu(x)|| =c(x) inQ, c{x)>0 
u = b(x) on dfl 

where fl represents the domain. The boundary is represented by dfl. In the case 
of the FMM the boundary is the interface and it is fixed throughout the entire 
calculation. The cost function is c(x) and b(x) is the boundary value function 
and they are both the given data. The cost function is defined over the whole 
domain, while the boundary function is only defined on dfl [12]. 

Equation (2.1) is defined in a continuous domain. The fast marching method 
uses a discrete method to solve a continuous problem. This discrete method is 
outlined in Algorithm 1 and it is called Dijkstra's algorithm [3]. In the algorithm 
the continuous domain fl is discretized into a graph, Q, consisting of nodes, 
Gn = {xi}, and edges, Qe. The discretized version of the boundary function, 
dfl, is the set of nodes T C Qn. Each node in Qn has a set of neighbors, M(xi) 
associated with it. Each non-boundary node, X* € Qn \ T , has a cost, C (XJ) , 

and each boundary node, x$ G T , has a boundary value, 6(XJ). The algorithm 
first initializes the value, u(xi), of each node to +00. It then sets the value of 

foreach x^ £ Qn \ T do u(xi) = +00 
for each Xj € T do u(x$) = 6(XJ) 

G<-e„ 
while Q j= 0 do 

Xj <— ExtractMin(Q) 
foreach Xj £ Af(xi) do 

U(XJ) *— Update (XJ , Af(xj), u, c) 
Algorithm 1: Generic shortest path dynamic programming algorithm. De­
pending on the choice of update function, this algorithm will produce either 
Dijkstra's algorithm or the fast marching method. 
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Figure 2.1: Dijkstra's method on a undirected discrete graph. 

each boundary node with the data. A heap more generally, a priority queue, is 
constructed, Q, which contains all the nodes in the graph. Dijkstra's algorithm 
removes the node with the minimum value and updates all of its neighbors by 
using the specified update procedure. The algorithm continues to do this until 
Q is empty. Thus, a value function is constructed by dynamic programming. 
It contains the minimum value, u(xi), at each node, a^, This minimum value 
represents the cheapest path from a boundary node to xt. 

Two key factors contribute to the effectiveness of the F M M . First, an up-
winding scheme is used to provide an approximation of the viscosity solution 
for the problem. This type of solution is a particular weak solution which is 
desirable in this case. Second, the scheme can be computed in a very fast man­
ner by marching the solution outwards from the boundary. Since an upwinding 
method is used, the value at each node increases as the solution is propagated 
outwards from boundary nodes. 

Dijkstra's algorithm is usually used to solve a single-source shortest-path 
problem on a undirected graph. In this case, the cost function is defined on 
the edges, Ge, but in the case of the fast marching method the cost function is 
defined on the nodes, Qn. Figure 2.1 demonstrates how Dijkstra's algorithm, 
Algorithm 1, works using its own update procedure as defined in Algorithm 2. In 
Algorithm 2, e(xi,Xj) represents the edge between nodes Xj and Xj. If the cost 
function is defined on the nodes then Dijkstra's method on a discrete graph will 
never update the value of a node. Thus this example defines the cost function 
on the edges, c(e(xj, Xj)), to demonstrate how the update function can change a 
value for a node. In Figure 2.1, (a) demonstrates the graph after initialization. 
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Input: Xj, M(XJ), u, c 
Output: mmx^(Xi){c{e(xj,xk))+u{xk)) 

Algorithm 2: Dijkstra's update method with costs defined on the.edges 

Input: Xj, Af(xj), u, c 
Output: C(XJ) + min a ; f c_v( a ! 3.) u{xk) 

Algorithm 3: Dijkstra's update method with.costs defined on the nodes 

The boundary node is t G T and it has a boundary value, b(t), of 0, and the 
value, u(xi), of all other nodes is initialized to +oo. The costs to travel between 
nodes is defined on the edges, (b)-(g) demonstrate the situation after each 
successive iteration of the while loop. The value of each vertex is displayed 
inside the node. The black vertices have had their final values assigned and 
are no longer in the heap Q. The grey vertex in each image currently has the 
smallest value in the heap and is next to be removed. The grey edges are the 
current minimum path from the boundary node t to all other nodes. The update 
of a node is demonstrated from (d) to (e). Node u originally has a value of 
9 and its path is t-u. Then node y is popped from the heap and updates its 
neighbours, so u has a smaller value of 7 and its new path is t-x-y-u. 

Dijkstra's algorithm is most efficiently implemented by using a min-heap 
data structure for Q. Each node in the domain is extracted only once from Q, 
and this means that it takes O(N) operations to traverse all of the N domain 
nodes. It takes C^logA^) to maintain the heap property because a node is 
added once, removed once and updated once for each neighbour and each of 
these operations is O (log AT) complexity in a min heap. Thus, by using a min-
heap data structure Dijkstra's algorithm has a complexity of 0(N\ogN). A 
backpointer array is maintained in order to determine a node's position in the 
heap in 0(1) time, and this information is needed in order to update the value 
of nodes in the heap [12]. 

The chosen update method determines how the lowest value for each node 
is defined. A one-norm approximation of this value is calculated by using Di ­
jkstra's update method on a Cartesian grid with four neighbours. The fast 
marching method is a two-norm approximation of this value. Dijkstra's update 
method with the costs defined on the nodes is described in Algorithm 3, and 
only this version of Dijkstra's update method in implemented in the Toolbox. 
The fast marching update method is described in Algorithm 4. This implemen­
tation of the fast marching method update procedure was originally described 
in [4], but Algorithm 4 is updated so that all dimensions have the same grid 
size, h, instead of a grid size of 1 which was assumed in [4]. 

2.1.2 Signed Distance Function 
A signed distance function is an implicit surface function with the additional 
property that | |Vu | | = 1. A n implicit surface function, cj>, can be turned into a 
signed distance function, u. The signed distance function will have the same zero 
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Input: Xj, JV(XJ), u, c 
for A; € 1,.., n do 

a*; = mm(u(j\fk(xj))), where A/fe(xj) is the set of Xj's two neighbours 
along the k coordinate 

a = SortAscending(a) 
m = n . 
while C(XJ)2 < Zke{i,..,m}(h(am - ak))2 do 

m = m — 1 
t = ^ ^Sfcafc + ^/m(/ic(xj)) 2 + EfcS;afca; — mEfca2, j , where E indexes 

are' {1,.., m} 
Output : £ 

Algorithm 4: Fast marching update method 

level set as the implicit surface function but it will have a gradient magnitude 
of one. 

The fast marching method can be used to solve for a signed distance function 
by choosing c(x) = 1 and V = dfl [!}. The set of boundary nodes, T , and their 
values, b(xi), must also be defined in order to run the fast marching method. In 
the case of the signed distance function, the boundary function is an interface 
which consists of the zero level set of the implicit surface function. Thus, the 
boundary nodes are the nodes which are closest to this interface. These nodes 
can be identified by checking to see if the node has at least one neighbour with 
an opposite sign. If the signs are opposite then the nodes are on different sides 
of the interface and'thus the node is a boundary node. Once a boundary node is 
identified its distance, d, from the interface is calculated to be used as its initial 
value. A n example of a boundary node with two neighbours on the other side 
of the interface can be seen in Figure 2.2. There are several other cases where 
the neighbours are in other positions; to see these examples consult [1]. 

In order to calculate the distance from a boundary node, XQ, to the interface, 
first a distance, Si, must be calculated for each neighbour Xi of xo which is on the 
other side of the interface. The node xo has up to 2n neighbours, x\, • • • ,xin, 
where n is the number of dimensions of the domain. The distance, Sj, is defined 
as the distance from XQ to the intersection point of the interface, x^, on the line 
connecting the two grid points. The value for Si is approximated by comparing 
slopes of </> along the line connecting the two grid points. The slope of (f> for the 
line segment from XQ to its neighbour x^ is compared to the slope of <j> for the 
line segment from XQ to the intersection point, ii in order to solve for Sj. Here 
is the equation comparing the two slopes 

4>(xj) - <J>(XQ) _ 0 - <j>(x0) 
Xi - x0 (Si + x 0 ) - x 0 

and here is the same equation rearranged to solve for s» 

_ h(j>(xo) 
<f>(x0) - <t>{Xi) 
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Figure 2.2: Two neighbors of the boundary node xo are on the other side of the 
interface. 

where <fi represents the implicit surface function and h represents the grid spac­
ing. 

After all Sj values are calculated the minimum value in each dimension 5j is 
kept since only the distance to the closest point on the interface is needed. Here 
is the equation which approximates the gradient of the distance function 

« i ) + G2) + + Gn) 1 

where the right side is 1 and the left side represents an upwind approximation 
to the gradient. Here is the equation rearranged to solve for d 

^ _ sis2 ••• sn 

y/(s2 • • • sn)2 + (sis3 • • • sn)2 H h (si • • • Sn-1)2 

repeat the equation for all boundary nodes and then run the F M M . 
The fast marching method returns a function u which represents a distance 

function but not a signed distance function. Fortunately, the sign at each node 
is already known because the interface moves less than a grid size, h, throughout 
the calculation so the nodes in the signed distance function have the same sign as 
those in the initial implicit surface function, <f>. Thus, each node in the distance 
function must be multiplied by its sign in 4> in order to calculated its signed 
distance value. 
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2.1.3 Extension Velocity 
One of the most fundamental level set methods solves an initial value P D E for 
motion in the normal direction. The equation for motion in the normal direction 
is 

Mt,x)+F(x)\\V4>(t,x)\\=Q 
(f>(x, t = 0) given 

It is possible that the original speed function, F, is only defined on the interface 
and needs to be extended onto all level sets. It is also possible that the speed 
function does not move the level set representation in a nice manner. The effect 
of the speed function could cause the representation to develop a large or small 
gradient magnitude, so <f> becomes very steep, flat or non-monotone.- In both 
cases the level set equation can be restated as 

4>t{t,x)+Fext{x)\\V4>{t,x)\\=0 
Fext = F on x) = 0 

where Fext is the extension velocity. Extension velocity is a common technique 
used to extend the definition a speed function from the zero level set onto 
neighboring level sets [1]. This speed function is a parameter for a level set 
method calculation. The only restriction on the extension velocity is that the 
value of the extension velocity should be equal to the value of the original speed 
function at the zero level set. This restriction is set to ensure that the motion 
of the implicit surface is the same under (2.2) or (2.3). 

The stipulation put on the extension velocity in this implementation is 

VFext-Vu = 0 2 

Fext = F on <p(t, x) = 0 

where Fext is the extension velocity and u is a signed distance function of the 
implicit surface function, <j>. The speed function, Fext, can not change in the 
normal direction of the interface but can only change tangential to the inter­
face. Thus, Fext is constant along the normal direction of the interface, so <fr's 
isosurfaces will maintain their original spacing while being evolved by (2.3). 

In this implementation, the fast marching method is used to construct an 
extension velocity and a signed distance function for an initial interface at the 
same time [1]. The signed distance function is calculated as was described in 
the previous section, but an additional function is added to the update method 
in order to calculate the extension velocity. 

Firstly, extension velocity values, Fext, must be calculated for boundary 
nodes. A method for identifying these boundary nodes was described in the 
previous section, as well as a method for calculating the distance, d, between the 
boundary node and the interface. There are two ways to calculate the extension 
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velocity value at boundary nodes. The first way returns the original speed, F, 
defined at the update node. This method must be used if the original speed is 
only defined on grid nodes. The second method assumes that a function for the 
original speed is defined throughout the entire domain or at least continuously 
near the interface. In this case, a weighted average of speed values is taken 
for the points Xi which were used to compute d. Here is the extension velocity 
equation which is equivalent to solving (2.4) locally on a grid cell 

Q = ,'Fext(xQ) - -F(xi) Fext(x0) - F(xn)\ ( d 
Si sn J \Si t 

where Fext(xo) is the extension speed for the point XQ and &i is the point where 
the interface intersects with the Cartesian grid lines as illustrated in Figure 2.2. 
Here is the equation when solved for Fext(xo) 

j[F{x1) + j*F{x2) + --- + %F(xn) 
Fext{Xo) = 1 , 1 , _ 1 

~T + 5T H + ~T 

Thus, the boundary conditions for (2.4) are defined and next the method for 
updating extension values for nodes not on the boundary needs to be defined. 
The extension values are updated at the same time as the distances are updated 
in the fast marching method. These extension values are calculated by using 
the same nodes as are used in the update of (f>. These update nodes, Xi where 
i € {1, • • • ,n}, are defined in Algorithm 4 as the nodes at which the a, values 
are chosen when XQ is being updated. A n upwinded gradient for the signed 
distance value and the extension velocity value is chosen at each node to solve 
(2.4). Here is the upwind version of (2.4) where gradients are taken assuming 
that there is a node in every dimension which is used to update (p 

u(xi) - u(x0) u(xn) - u(xp) 
h h 

(xi) - Fext(x0) Fext(xn) - Fext(x0) 
h h 

= 0 

and here is the equation rearranged to solve for .Fext^o), the extension value 
for the point XQ, 

p , s Fextjx^jujx!) - u(x0)) H h Fext(xn)(u(xn) - u(x0)) 
e x t [ X 0 ) ~ (u(Xl) - u(x0)) + ••• + (u(xn) - u(x0)) 

2.2 I m p l e m e n t a t i o n 

This section discusses some general implementation choices. It also states and 
describes how to use the three methods which were added to Ian Mitchell's Level 
Set Toolbox [6]. 
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2.2.1 Implementation Choices 
The purpose of this implementation is to add new functionality to Ian Mitchell's 
Level Set Toolbox [6]. Previously, the toolbox only had functions to solve time-
dependent Hamilton-Jacobi PDEs, but this new functionality allows some static 
Hamilton-Jacobi PDEs to be solved. Since the toolbox is implemented fully 
in Matlab, the new fast marching method was also implemented in Matlab 
so that the portability of the toolbox would not be lost. Unfortunately, this 
implementation was extremely slow and even optimizing the code with help from 
Matlab's profiler could not speed up the implementation very much. Thus, the 
code had to be re-implemented in C and called from Matlab through a M E X 
interface. This greatly increased the speed of execution. A n option was to only 
implement the heap in C, because in Matlab the heap was the slowest part 
of the code. This option was not chosen because Dijkstra's method is heavily 
dependent on heap functions. In Algorithm 1 each ExtractMin call requires 
one heap function call and each Update call requires up to four heap function 
calls. Thus, 5iV heap function calls would be made for a graph with N grid 
nodes, so making these calls through M E X interfaces would have added too 
much overhead to program execution. 

2.2.2 Dijkstra 
This method implements Algorithm 1 and it allows for a specific update function 
to be chosen. 

value = d i j k s t r a ( g r i d , bdryData, bdryMask, cost , update_func) 

The g r i d parameter is a grid structure as defined in Ian Mitchell's Level 
Set Toolbox [6]. Each dimension in the grid must have the same gr id .dx 
value. The bdryData parameter is the array defining costs at boundary nodes 
and the bdryMask is a boolean array defining the boundary nodes. The cost 
parameter is an array which defines the cost to travel to a node from one of its 
neighbors. A l l three matrices must have the same size as defined in the grid 
structure. Finally the update_f unc string specifies the desired update function 
to be used. The fast marching method, Algorithm 4, can be specified by the 
string 'fmm', and Dijkstra's update procedure, Algorithm 3, can be specified 
by the string ' d i j k s t r a ' . 

2.2.3 Signed Distance 
This method computes a signed distance function for a given implicit surface 
function. The method first determines which nodes are boundary nodes and 
calculates the value at these nodes. The signedDistan.ee function then calls 
the d i j k s t r a function and passes in the boundary nodes and boundary values as 
parameters. The d i j k s t r a function computes a signed distance representation 
of the implicit surface function. The specifics of the method are explained in 
Section 2.1.2. 

http://signedDistan.ee
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signed_dist = signedDistance(grid, in i tFunc) 

The g r i d parameter has the same constraints as in d i j k s t r a . The in i tFunc 
parameter defines an implicit surface function. This array must have the same 
dimensions as defined in the grid structure. 

2.2.4 Extension Velocity and Signed Distance 
This method uses a fast marching method to construct a signed distance function 
and an extension velocity for an implicit surface function and an initial speed 
function. The specifics of the method are discussed in Section 2.1.3. 

[ex t_veloc i ty , signed_dist] = 
ex tendVeloc i ty(gr id , i n i tFunc , speedOption, speed_func) 

The g r i d parameter has the same constraints as in d i j k s t r a . The in i tFunc 
parameter defines an implicit surface function. This array must have the same 
dimensions as defined in the grid structure. The speedOption parameter speci­
fies whether the speed at boundary nodes will be calculated at only those nodes 
(1) or whether they will be averaged by speeds from the surrounding interface 
(2) . The difference between the two choices is discussed in Section 2.1.3. F i ­
nally, the speed_f uxic parameter must be defined. This parameter can either be 
a function handle or an array. If the parameter is a function handle then it refers 
to a Matlab method which will calculate the speed at a domain node. This func­
tion handle has one parameter, gr idPoint , a vector representing a point in the 
domain. The prototype for speed_func is speed = speed_func(gridPoint). 
If the parameter is an array then it defines the speed at each grid node and 
the array must have the same dimensions as defined in the grid structure. In 
the case when speedOption is 1 then both types of speed_func parameters can 
be passed in, otherwise only a function handle can be used as a parameter for 
speed_func. 

2.3 Examples 
The purpose of this section is to use some example problems to test the imple­
mentation of the methods described in Section 2.2. 

2.3.1 Shape From Shading 
This section describes the function fmmPublish/examples/shapeFromShading. 

In general, the shape from shading method allows the shape of a surface to 
be determined from a shaded image of the surface. In this particular case, an 
Eikonal equation is being solved to determine a viscosity solution for a Lam-
bertian surface illuminated by a single distant light source. The test problems 
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Figure 2.3: Surface (left) and contour (right) plots for the smooth solu­
tion of the shape from shading problem. They are generated by the call 
shapeFromSliading(41, 1, 'fmm')- The domain of this example is 41 by 41 
nodes. The fast marching method is used as the update method to solve the 
problem. 

were given in [8], while their analytical solutions were given in [9]. The Eikonal 
equation is defined on a two dimensional domain from [0, +1]2. 

The cost function is 

c (x, y) = 27ry [cos (27rx) sin (2wy)]2 + [sin (27rx) COS (2iry)]2. 

Boundary nodes are defined on the exterior of the domain as well as on 
five interior nodes. The interior boundary nodes are defined at the following 
points in the domain: (§, | | , (f, § } , ($, f ) , (§ , f ) , (|, | ) . The value of the 
exterior boundary nodes is always zero. The boundary value at the interior 
nodes depends on the type of solution desired. A smooth solution defines the 
values as [+1, +1, —1,-1,0] respectively, with the resulting analytical solution 

T (x, y) = sin (27rx) sin (27ry). 

The continuous but not smooth solution defines the values as 
[+1, +1, +1, +1, +2] respectively, with the resulting analytical solution 

T{x,y)={ max 
| sin(2-7rx) sin(27ry) | \ 

1 + cos(27rx) cos(27ry) J 
[ | sin(27rx) sin(27ry) |, 

if 
\x + y- 1| < 

F-2 /1 < 3, 
otherwise 

The smooth solution for the shape from shading problem viewed in Figure 2.3 
is generated by the function call below. This function call also generates a 
continuous but not smooth solution and its results can be viewed in Figure 2.4. 
The domain for both figures is 41 by 41 nodes and both examples use 'fmm' 
update procedure. They both demonstrate the use of d i j k s t r a . 

http://D0.EtM0.B0J1
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Figure 2.4: Surface (left) and contour (right) plots for the continuous but not 
smooth solution of the shape from shading problem. They are generated by the 
call shapeFromSliading(41, 2, 'fmm'). The domain of this example is 41 by 
41 nodes. The fast marching method is used as the update method to solve the 
problem. 

[value, g] = 
shapeFromShading(numNodes, isSmoothSolution, update_func) : 

The function above demonstrates the fast marching method by using it to solve 
the shape from shading problem. The numNodes parameter allows the user to 
specify the number of grid nodes in each dimension. This parameter has a pre­
condition of numNodes = 4m — 1, where m > 1, which is applied to ensure that 
the interior boundary conditions occur at nodes. The isSmoothSolution pa­
rameter specifies whether the smooth solution is desired (true) or whether the 
merely continuous one is desired (false). Finally the update.func parameter 
specifies the desired update function to be used in method. The fast march­
ing method can be specified by 'fmm' and Dijkstra's update procedure can be 
specified by ' d i j k s t r a ' . 

2.3.2 Extension Velocity of a Circle 
This section describes the function 
fmmPublish/examples/circleExtensionVelocity. 

The purpose of this function is to demonstrate how an extension velocity and 
a signed distance function can be calculated from an initial function. The initial 
function chosen in this example is the signed distance from a circle multiplied 
by a factor of 5. The circle has a radius of 1 and is centered at [0,0]. The initial 
function is specified by the following equation 

4>(x,0) = 5( | | a - | | 2 - l ) . (2.5) 

Thus, the initial function will be a cone with steep walls and a gradient mag­
nitude of 5 as demonstrated in Figure 2.6. The domain of this initial function is 
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Figure 2.5: Original (left) and extension (right) velocity func­
tions of Equation (2.5). The images are generated by the call 
c i r c l eEx tens ionVeloc i ty (41 , 2). 

Figure 2.6: Initial (left) and signed distance (right) functions for the im­
plicit surface function in (2.5). The images are generated by the call 
c i r c l eEx tens ionVeloc i ty (41 , 2). Note the vertical scale. 

calculated in a 2-dimensional space of [—1.5,+1.5]. The original speed at each 
grid point Xj is the two-norm of that position, F(x;) = ||x»||. A n extension 
velocity is not allowed to change normal to the interface and the original speed 
doesn't change tangential to the interface. The original speed is denned as 1 on 
the entire interface which is a circle with a radius of 1, so the extension velocity 
will be a flat plane at 1. The signed distance will be a shallower cone than the 
initial function and it will have a gradient magnitude of 1. 

The extension velocity can be seen in Figure 2.5 and the signed distance 
for the problem described above can be seen in Figure 2.6. They are gener­
ated by the c i r c l eEx tens ionVeloc i ty function which demonstrates the use of 
extendVelocity. 

[ex t_veloc i ty , s igned_dist , gr id] = 
c i rc leExtens ionVeloci ty(nodes , speedOption) : 

The numNodes parameter allows the user to specify the number of grid nodes 
in each dimension. The speedOption parameter specifies whether the speed at 
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boundary nodes will be calculated at only those nodes (1) or whether they will 
be averaged from speeds from the surrounding interface (2). See Section 2.1.3 
for further details about the speed options. 

2.3.3 Movement of a Circle in Normal Direction 
This section describes the function fmmPublish/examples/normalCircle. 

The purpose of this function is to demonstrate how to solve a level set equa­
tion, for example a time dependent Hamilton-Jacobi equation, while updating 
its velocity with an extension velocity. The Level Set Toolbox is used to handle 
the time dependent P D E . This section demonstrates the capability of combining 
the code from this thesis with the features already in the Toolbox. 

In this example, an initial function, <j>, is five times a signed distance to' a 
circle with radius 1 centered at [0,0]: (p(x, 0) = 5(||x||2 — 1). This initial function 
will be a cone and its walls will have a gradient magnitude of 5. The domain 
of this initial function is calculated in a 2-dimensional space of [—1.5,+1.5]2. 
The level set equation, (2.2), moves the initial function in its normal direction. 
Thus, the surface at the zero level set will be a circle and will expand into a 
larger circle which is still centered at the origin. 

In this case, the initial speed function at each grid point is the two-norm 
of that position, F(x) = \\x\\2- Thus, without the extension velocity the initial 
cone will move faster the further away it is from the origin. This will result in 
the cone becoming more shallow. The result with the extension velocity will be 
slightly different. A n extension velocity is not allowed to change normal to the 
interface and the original'velocity doesn't change tangential to the interface. 
The original velocity is defined as 1 on the entire interface, so the extension 
velocity will have a value of 1 throughout the entire domain. Thus, the walls of 
the cone will move at approximately the same rate and the gradient magnitude 
of the walls should remain near 5. The bottom of the cone will flatten out. 

The different results which the extension velocity causes in the normalCircle 
example can be viewed in Figures 2.7 and 2.8. Both figures demonstrate that 
without an extension velocity the gradient magnitude decreases with time and 
with an extension velocity the gradient magnitude remains the same for most 
nodes. 

[g, speedStore] = normalCircle(useExtVel, accuracy, numNodes) 

The method above computes an implicit surface function at four timesteps and 
at each timestep the contours of the function are plotted. The implicit functions 
for each timestep are returned in a cell vector called speedStore. The grid 
which represents the domain of the implicit function is also returned. This grid 
parameter is a grid structure as defined in Ian Mitchell's Level Set Toolbox [6]. 
useExtVel is a boolean parameter which is true if an extension velocity will 
be used and false otherwise. The accuracy parameter specifies the degree of 
accuracy used to solve the level set method. The choices are 'low', 'medium', 
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I - 0.125 1.0 1.0.125 

Figure 2.7: Contour plots for a circle moving in its normal direction. The left im­
age demonstrates the level set method run with its regular speed, F(x) = ||a-||2. 
It is generated by the call normalCirc le (0 , 'medium', 41). The contours 
become further apart as the cone shaped surface becomes shallower. The right 
image demonstrates the level set method with an extension velocity. It is gen­
erated by the call no rma lCi rc l e (1 , 'medium', 41). The contours stay the 
same width apart because the whole surface is moving in its normal direction 
at the same rate. 

' h i g h ' and 'veryHigh ' . The numNodes parameter allows the user to specify 
the number of grid nodes in each dimension. 
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Figure 2.8: Ordered gradient magnitude plots for the surface at different times. 
In the plots the nodes are sorted by gradient magnitude. The left image demon­
strates the level set method run with its regular velocity. It is generated by 
the call normalCirc le(0 , 'medium', 41). The most common gradient mag­
nitude decreases as the surface gets shallower. The right image demonstrates 
the level set method with an extension velocity. It is generated by the call 
normalCirc le(1 , 'medium', 41). The most common gradient magnitudes 
are all 5. 
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Chapter 3 

Reachable 
Manifold 

Sets on a 

3.1 Background 

3.1.1 Differential Algebraic Equations 
A D A E is a differential equation which is comprised of algebraic (no derivative is 
present) and differential (derivatives are present) terms [2]. Here is the general 
implicit form for a D A E : 

where dF/dy' may be singular or nonsingular depending on the index of the 
D A E . The index of a D A E refers to the number of times differentiation must 
be carried out on the system until an ordinary differential equation is obtained 
for y. In other words, the number of differentiations required to solve uniquely 
for y' in terms of y and t [2]. This research only deals with DAEs of index-1, 
since we need to differentiate the algebraic term in order to specify the velocity 
field. More specifically this research deals with semi-explicit DAEs of index-1 
or in other words an O D E with constraints where the constraints represent a 
manifold on which the system state evolves. The general form for this type of 

where x represents the differential variables and z represents the algebraic vari­
ables. In this form it is easy to identify g as the constraint function since its 
equation does not contain derivatives. 

3.1.2 Closest Point Method 
The closest point method [10] allows a P D E to be extended off the manifold 
onto the entire domain. The problem, which is originally only defined on the 
surface, is embedded onto the whole cartesian grid so that standard level set 
techniques can be used to solve it. The solution on the manifold can then be 
obtained by only considering the results along the manifold. This approach is 

F{t,y,y')=0 

D A E is 

x' — f(t,x,z) 
0 = g(t, x, z) 

(3.1) 
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an alternative to either parameterizing the constraint manifold or triangulating 
the constraint manifold in order to solve the P D E . The embedding approach 
is accurate and the P D E is easy to solve numerically once the embedding is 
complete because there are a lot of well known techniques for solving PDEs on 
Cartesian grids. Fortunately, the embedding approach used in the closest point 
method is easy to implement as well. 

The embedding approach creates an extended function, which involves re­
placing surface gradients, defined only on the manifold surface, with standard 
gradients which are defined on the entire computation domain, A require­
ment for this procedure is that the embedded P D E must be a natural extension 
of the surface P D E . The simplest way to meet this requirement is for the gradi­
ent to be constant along the direction normal to the surface. This means that 
the gradient will only change in the direction of the surface and no artificial 
rates of change will be added to the P D E . 

The closest point method uses an extended function which is created by 
composing the original surface function onto a closest point operator. A simple 
and accurate way to define this closest point operator, CP(x), for a point, x, is 
to have the operator return the closest point to x on the surface. This operator is 
used before each timestep in the level set solve to reinitialize the implicit surface 
function, <j>, as 4>(CP(x)). This will ensure that for a point on the surface, XQ, 
all points, xn, along its normal direction will have the same function value, 
4>{XQ) = 4>{xn). Thus, the gradient of 4>(CP(x)) will be constant along the 
normal direction and will only be able to change in directions tangential with 
the surface. 

This closest point operator will create a well defined and smooth function 
near the surface, but may have discontinuities away from the surface where 
a point is equidistant from two points on the surface. The greater the local 
curvature in the manifold the closer the discontinuity will be to the manifold, 
but the discontinuity should be at least several grid cells away from the manifold 
in order to achieve accurate results. The closest point method allows for a variety 
of difficult surfaces to be represented such as open and closed surfaces in any 
codimension. The codimension of a surface with dimension p in a domain of 
dimension n is n — p. We only study codimension 1 surfaces in this thesis, but 
the closest point method should work for higher codimensions. 

Research in [15] describes a method for calculating the closest point operator. 
This method uses Voronoi Regions to calculate the operator. Analytic calcu­
lation, using standard numerical optimization techniques or using a tree-based 
algorithm for triangulated surfaces are options suggested in [10] in order to cal­
culate the closest point operator. The research in the thesis solves a constrained 
non-linear optimization problem in order to determine the closest points. 

3.1.3 Reachable Sets 
Model checking is a method used to verify or validate complex engineering sys­
tems. A common form of model checking is to verify whether a model in evo­
lution can enter into an unsafe state. This form of model checking involves the 
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computation of a reachable set of which there are two types: forwards reachable 
sets and backwards reachable sets. Computing forwards reachable sets involves 
evolving an initial set of states forward in time in order to determine the set 
of states reached by their trajectories. Computing backwards reachable sets 
involves declaring a set of target states and then determining the set of start 
states whose trajectories reach that target set. In [14], a method was devel­
oped to solve backwards reachable sets using level set methods. This method 
expresses the reachable set problem as a Hamilton Jacobi equation. Level set 
methods are a well known technique for solving the Hamilton Jacobi Equation 
(HJE), thus they can be used to solve backwards reachable sets. 

In order to solve for the backwards reachable set, a continuous system with 
dynamics, x = f(x), is defined in order to move a set of initial conditions: The 
backwards reachable set is the subset of these initial conditions that are driven 
into the target set, TQ. The state of the system is defined by x and the target 
set is defined as a zero sublevel set 

To = {x € SR" | <j>o{x) < 0} 

of a scalar function (fi(x,0) = <fio{x)- The backwards reachable set is defined as 
T (T ) over a finite horizon r < oo, the trajectory of the system is defined by 
a;(-) and the state of the trajectory at time r is defined by X{T). Thus, a formal 
definition of the reachable set, T ( T ) , is the set of a;(0) such that X(T) € %. It 
can also be defined in implicit surface notation as a zero sublevel set 

T( r ) = { i £ S n | <t>(x, -T) < 0} 

where 4>(x,t) is the solution to the following H J E which is solved backwards in 
time from t = 0 to t = —r < 0 

0 = Dt(t>(x,t) + f(x,t)-V(j>(x,t) (3.2) 

The reachable tube is another object sought from this algorithm. The reach 
set is the set of states occupied by trajectories at a specific point in time r; 
alternatively, the reach tube is the set of states that have been traversed by the 
trajectories from t = 0 to t = T [5]. More formally, it is the set of x(0) such 
that x(s) € % for some s € [0, r]. The following H J E computes the reach tube 

0 = A<A(x, t) + min[0, f(x, t) • V<j>(x, t)\ (3.3) 

The minimization with zero in the second term constrains the temporal 
derivative to a positive sign. This restriction keeps the reachable tube from 
shrinking as t —» — oo. 

This research calculates reachable tubes for the two-dimensional toy problem 
in Section 3.3.1 and it calculates reachable sets for the three-dimensional toy 
problem in Section 3.3.2. 
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3.2 Implementation 

3.2.1 Level Set Methods 
The implementation is accomplished by using Ian Mitchell's Level Set Toolbox 
for Matlab [6]. The toolbox uses upwinding schemes to solve H J E which move 
under a convective field such as (3.2) and (3.3). The solutions displayed in 
this work will use second order accuracy unless otherwise stated. The convec­
tive field is approximated by termConvection, the upwinding spatial derivative 
is approximated by upwindFirstEN02 and the temporal derivative is approx­
imated by odeCFL2. The function termRestrictUpdate is used in order to 
restrict the temporal derivative to a positive sign such as required in (3.3). If 
the restriction is used then a reach tube is calculated, otherwise a reach set is 
calculated. 

3.2.2 Differential Algebraic Equations 
The D A E specifies the velocity field required by termConvection. Since the 
D A E required for this research is an O D E with constraints, the constraint term 
must be differentiated with respect to t in order to specify a velocity field for all 
variables. Here is the velocity field, which is derived from differentiating (3.1) 
and rearranging to solve for z', 

f(t,x,z) 

_ dg(t,x,z) \ _ dg(t,x,z) 
dx J \ i > / dt 

dg(t,x,z) 
dz 

3.2.3 Closest Point 
i 

This implementation of the closest point operator assumes that the constraint 
surface is represented by an implicit surface function. That implicit surface 
function is then used to compute a signed distance function using the methods 
in Chapter 2.1.2. 

Algorithm 5 demonstrates how the closest point operator is computed us­
ing the signed distance function and the implicit surface function. Table 3.1 
describes the parameters used in the closest point operator algorithm, while 
Tables 3.2 and 3.3 describe the inputs and outputs for the functions used in the 
closest point operator algorithm. 

The algorithm takes in a signed distance representation of the manifold, 
signedDist. It then sorts, SortAscending, the nodes in this representation 
depending on the absolute value of their distance.1 The nodes are then traversed 

1 A topological sort, where each node occurred after its neighbour of lowest value, would 
be faster than a strict sort by distance but in practice the optimization routine dominates 
running time. Thus, the fraction of time saved by using a topological sort is negligible. 

dx 
H 
dz 
~di 
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Input: signedDist, constraint 
sorted = SortAscending(Abs(signedDist)) 
foreach Xj £ sorted do 

if IslnterfaceNeigh(xj, signedDist) then 
x — TravelGradient(xj, signedDist) 

else 
xs = SmallestNeigh(a-j, signedDist) 
x = closestPoint(x s) 

x<?p = CpOptimizedj, x, constraint) 
closestPoint(XJ) — Xcp 

Output : closestPoint 
Algorithm 5: Algorithm which computes the closest point operator. 

Parameter Name Type Description 
signedDist Array Signed distance representation of 

the manifold 
constraint Function handle Functional representation of the 

implicit surface function for the 
manifold 

sorted Vector Sorted list of nodes depending on 
their distance to the manifold 

closestPoint Cell vector with ar­ Closest point on the manifold for 
ray elements each grid node 

Table 3.1: Description of parameters used in the closest point operator algo­
rithm. 

in their sorted order from the smallest distance to the manifold. If the node is 
adjacent to the interface, Islnterf aceNeigh, then the algorithm takes steps, 
on the order of Ax, along the gradient until the interface is reached. This step 
was needed in order to give an accurate initial point x for the optimization 
problem. To compute the initial guess for nodes which are not adjacent to the 
interface first the neighbor which is closest to the interface, SmallestNeigh, is 
found. The initial guess becomes this neighbor's closest point, closestPoint, 
which has already been computed. The initial guess, x, is used in a nonlinear 
constrained optimization problem, CpOptimize, which finds the.closest point on 
the manifold. Here is the optimization problem: 

min | | x c p - X i | | 2 

subject to 0 =constraint(xcp) 

where xcp is the closest point on the interface for node Xj and constraint (x) is 
the function representing the manifold. The constrained optimization problem 
is solved using Matlab's fmincon function. 

The closest point function is composed with </> to reinitialize ^ as an em-
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Function Name Inputs 
SortAscending A List of real numbers 
Is lnterfaceNeigh A grid node, signedDist 
TravelGradient A grid node, signedDist 
SmallestNeigh A grid node, signedDist 
CpOptimize A grid node, an initial guess for position of closest 

point, constraint 

Table 3.2: Description of functions and their input parameters used in the closest 
point operator algorithm. 

Function Name Outputs 
SortAscending List sorted in ascending order 
Is lnterfaceNeigh True if the node is beside the interface, false other­

wise 
TravelGradient Estimated position of closest point on manifold along 

the gradient 
SmallestNeigh The neighboring node with the smallest signedDist 

value 
CpOptimize Closest point on the manifold to the grid node 

Table 3.3: Description of functions and their output parameters used in the 
closest point operator algorithm. 
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bedded surface. The closest point function returns a point, xo = CP(xn), on 
the manifold, but this point is not necessarily a grid node. Thus, the function 
value of <p(xo) must be interpolated in order to reinitialize <f> at each node. The 
method used for this interpolation calculation is Matlab's interpn with cubic 
accuracy. 

3.3 Examples 

The validity of the method developed in this research is demonstrated in some 
simple toy problems. Matlab's D A E solver can be used to generate sample 
trajectories for semi-explicit DAEs. of index-1. A trajectory's position at specific 
times can be calculated from these trajectories and compared to the implicit 
surface calculated by the level set implementation. These problems are easy to 
conceptualize and visualize thus the results of our level set implementation can 
be clearly grasped. 

A l l examples are calculated on a Linux box with a Trison Pentium 4 3GHZ 
processor, I G R A M and 80G Harddrive. The software used was Suse linux 10.1, 
Kernel version 2.6.16.27-0.9-smp, Matlab 7.3.0.298 (R2006b) and G C C version 
4.1.0. 

3.3.1 Two-dimensional D A E Toy Problem 
The D A E for the two-dimensional toy problem is as follows 

xi = sm(nx2) ^ " 
X2 = 1.5 + Xi 

where the first equation is the constraint. In order to derive the velocity field 
the constraint is differentiated. The velocity field is as follows 

ii = vi = ivy? cos(nx2) 

X2 = v2 = 1.5 + Xi • 

The constraint surface is a sine curve in the vertical direction, while the dynam­
ics move along the sine curve faster on the right side of the curve than on the 
left. 

The implicit surface representing the initial reach set is a hyperplane with 
a normal of [0,1] which passes through the origin. The problem was defined on 
a domain of [—1.5,-1-1.5] x [—0.2, +3.7], while the distance between grid nodes 
is defined as 0.02. The P D E is executed from 0 to 3 time units and reachable 
sets are calculated every 0.25 time units. The toy example is calculated using 
the closest point method and without using the method in order to demon­
strate the purpose of the method. It takes'620 seconds to solve the problem 
using the closest point method and 130 seconds to solve it without using the 
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closest point method. The closest point method takes additional time for calcu­
lation because it has to interpolate the closest point values for all nodes at each 
timestep. Figure 3.1 demonstrates that the implicit surface which uses the clos­
est point method is perpendicular to the constraint surface, while the implicit 
surface which does not use the method is not perpendicular to the constraint. 
The solution using the closest point method is calculating the reachable set on 
the manifold, while the solution without the closest point method is calculating 
the reachable set for the whole domain. The calculation solely on the mani­
fold makes it much clearer to view where the reachable set intersects with the 
manifold and it makes it more numerically stable as well. 

The closest point method also improves the quantitative solution as time pro­
gresses in the calculation. This improvement is shown by using Matlab's D A E 
solver on (3.4) to very accurately estimate the position of the trajectory at each 
timestep, then the implicit surface value is interpolated at each position of the 
estimated trajectory. The values at each timestep can be seen in Table 3.4, and 
since the reach set interface is defined as the zero level set all values should be 
zero. In the first couple of timesteps the method which does not use the closest 
point method has a slight advantage, but midway through the calculation that 
method loses its advantage and becomes far more inaccurate. The closest point 
method allows the level set calculation to maintain better accuracy throughout 
the calculation. 

A convergence plot for t = 3.0 time units, in Figure 3.2, shows superlinear 
convergence for the two dimensional toy example. The numerical values for 
the rates of convergence are calculated in Table 3.5. We are not sure why the 
convergence rate becomes negative when 600 grid nodes are used. These values 
average out to a convergence rate of 1.3910, which is not quite the quadratic 
rate expected from the second order accurate scheme used in this research. This 
may be due to a slight mis-approximation in the closest point calculation where 
some closest points are slightly off the constraint surface. 

3.3.2 Three-dimensional D A E Toy Problem with 
Codimension 1 

The D A E for the three-dimensional toy problem is as follows 

X \ = sin(7ra;2). 
x 2 = x 3 

X3 = - X 2 

where the first equation is the constraint and the last two equations are the 
differential equations. In order to derive the velocity field the constraint is 
differentiated. The velocity field is as follows 
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Timestep (time units) No Closest Point Closest Point No C P - C P 
0.00 0.0000 0.0000 0.0000 
0.25 0.0000 0.0009 -0.0009 
0.50 0.0001 0.0008 -0.0008 
0.75 0.0005 0.0010 -0.0005 
1.00 0.0010 0.0017 -0.0007 
1.25 0.0069 0.0129 -0.0060 
1.50 0.0509 . 0.0109 0.0400 
1.75 0.1723 0.0157 0.1566 
2.00 0.2439 0.0076 0.2363 
2.25 0.2338 0.0098 0.2240 
2.50 0.2565 0.0116 0.2450 
2.75 0.2571 0.0125 0.2446 
3.00 0.2634 0.0217 0.2418 

Table 3.4: Interpolated implicit surface value for each timestep of the two-
dimensional toy D A E problem. Values using the closest point method and 
values without using the method are compared. 

Number Grid Nodes Error Rate 
75 0.04923 -
150 0.0078 2.6580 
300 0.002721 1.5193 
600 0.002729 -0.0042 

Table 3.5: Convergence of error for the last timestep, t = 3.0 time units, for the 
two dimensional toy example. -
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ii = v\ = 7ri>2 cos(7ra2) 
X2 = V2 = X3 

X3 = V3 = - X 2 

The constraint surface is a sine curve in the X2 direction, while the dynamics 
move along the sine curve in a clockwise circle in the X2 versus £ 3 plane. 

The initial reachable set is a cuboid (a rectangular box) which has an in­
finite length in the x\ dimension. The upper corner of the rectangle is at 
(xi, 0.25,0.75) and the lower corner of the rectangle is at (x\, —0.25,0.25). The 
problem was defined on a domain of [—1.0,+1.0]3, while the distance between 
grid nodes is defined as 0.05. The P D E is executed from 0 to 27T time units 
and reachable sets are calculated every 7r /4 time units. The toy example is cal­
culated using the closest point method and without using the method in order 
to demonstrate the purpose of the method. It takes 848 seconds to solve the 
problem using the closest point method and 392 seconds to solve it without 
using the closest point method. 

The closest point method also slightly improves the quantitative solution for 
the three-dimensional example. This improvement is shown by using Matlab's 
D A E solver to calculate the position of many sample trajectory at each timestep. 
These trajectories are initiated from points along the target set, these points 
have a spacing of 0.02. For each trajectory, the implicit surface value at each 
position is interpolated. The average values at each timestep can be seen in 
Table 3.6 and the maximum value at each timestep can be seen in Table 3.7, 
since the constraint surface is defined as the zero level set all values should 
be zero. On average at each timestep the solution which uses the closest point 
method is better than the solution which does not use the method. On the other 
hand, the maximum value is higher at each timestep when using the closest point 
method. 
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Timestep (time units) No Closest Point Closest Point No C P - C P 
0.00 0.0003 0.0004 0.0000 
0.7854 0.0103 0.0083 0.0020 
1.5708 0.0163 0.0151 0.0012 
2.3562 0.0213 0.0191 0.0023 
3.1416 0.0256 0.0205 0.0052 
3.9270 0.0300 0.0252 0.0048 
4.7124 ' 0.0334 0.0316 0.0018 
5.4978 0.0371 0.0343 0.0028 
6.2832 0.0404 0.0380 0.0024 

Table 3.6: The average interpolated implicit surface value for multiple O D E 
trajectories at each timestep of the three-dimensional toy D A E problem. Val­
ues using the closest point method and values without using the method are 
compared. 

Timestep (time units) No Closest Point Closest Point No C P - C P 
0.00 0.0036 0.0036 0.0000 
0.7854 0.0479 0.0483 -0.0003 
1.5708 0.0595 0.0645 -0.0050 
2.3562 0.0695 0.0757 -0.0062 
3.1416 0.0759 0.0799 -0.0039 
3.9270 0.0827 0.0963 -0.0136 
4.7124 0.0877 0.1014 -0.0137 
5.4978 0.0933 0.1158 -0.0225 
6.2832 0.0979 0.1273 -0.0294 

Table 3.7: The maximum interpolated implicit surface value for multiple O D E 
trajectories at each timestep of the three-dimensional toy D A E problem. Val­
ues using the closest point method and values without using the method are 
compared. 



Chapter 3. Reachable Sets on a Manifold 29 

(•3 

-1.5 -1 -0.5 0 0.5 1 1.5 

t = 3 

-1.5 -1 -0.5 0 0.5 1 1.5 

Figure 3.1: Reachable set plots for the two dimensional toy example. The top 
image doesn't use the closest point method, while the bottom image does use 
the method. In both images, the dotted curve represents the manifold, the stars 
represent the solution calculated using Matlab's D A E solver at intervals of 0.25 
time units and the solid curves represent the reachable set solution at intervals 
of 0.25 time units. Notice how the reachable set is perpendicular to the manifold 
near the manifold when using the closest point method. 
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Figure 3.2: Convergence rates for the last timestep, t — 3.0 time units, for the 
two dimensional toy example. The x-axis defines the number of grid nodes in 
the xi dimension of the grid, they are as follows 75, 150, 300 and 600. 
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Figure 3.3: Reachable set plots for the three dimensional toy example in 3D. In 
both images, the red surface (darker surface) is the manifold, the green curve 
(lighter curve) is the reachable set on the manifold and the blue dots represent 
the solution calculated using Matlab's D A E solver. The top image represents the 
system at the starting time, t = 0 time units, and the bottom image represents 
the system at the end time, t = 2ir time units. 
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Figure 3.4: Plot of the reachable set on the manifold in x2 versus x3 dimensions 
for the three dimensional toy example. The top image doesn't use the closest 
point method, while the bottom image does use the method. 
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Figure 3.5: Plot of the reachable set on the manifold in s, the horizontal distance 
along the manifold from the origin in the x2 dimension, versus X3 dimensions 
for three dimensional toy example. The top image doesn't use the closest point 
method, while the bottom image does use the method. 
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Chapter 4 

Predicting Voltage 
Instability of a Power 
System 

4.1 Background 
Voltage instability is an important factor to consider when constructing power 
systems. In the case of a load variation or an event disturbance the system 
should be able to maintain an acceptable level of voltage. Failure to maintain 
this level can result in a brown out, which can damage electrical equipment. 
A numerical method for predicting voltage instability was introduced in [13], 
and this method models the voltage dynamics by a nonlinear hybrid automata. 
The automaton combines continuous voltage dynamics with discrete operations . 
of the power system. The research in this thesis focuses on numerical methods 
for solving the continuous component of the voltage dynamics, which can be 
modeled with a D A E . 

The following D A E which models these continuous voltage dynamics was 
introduced in [17] 

, •, Xj+x'^, , xd-x'dE2+x'Q(E) , „ . 
T d o E = — E + — E> + E f d ' 
TEFD = -(EFD - E°FD) - K {EQ(E) - E R } , ( 4 1 } 

0 = E'2E2 - {x'Pf - {x'Q(E) + E2}2 

= g(E',E;x1), 

where 

Ea(E) = ^{x1P)2 + {x1Q(E)+E2}2, 

. x' = xi+xd, (42) 
P = P 

1 — ± mi 

Q(E) -Qo + HE + BE2. 

The physical meaning and values of the variables and parameters are described 
in Table 4.1. 
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Several surfaces are defined for the D A E of (4.1). The first is the constraint 
surface 

L = {(£', Efd, E) € SR3 \g(E', E) = 0 } , 

which consists of a two-dimensional manifold in a three-dimensional space. The 
second surface 

Efd,E) e dg_ 
dE 

(£ ' ,£) = o } 

is a singular surface in which the model breaks down because the solution does 
not hold uniqueness properties. The constraint from (4.2) is differentiated in 
order to derive the following velocity field 

TdoE = —E + — + Efd, 

TEfd = -(Efd - E°fd) - K {EG(E) - Er} , (4.3) 

E'E'E 
E • 

2{x'Q{E)+E2)-E'2 

The denominator for E provides the equation for ^ = 2(x'Q(E) + E2) — 
E12, and the singular surface occurs where 2(x'Q(E) + E2) — E'2 = 0. In 
mathematical terms this part of the surface needs to be modeled with a D A E 
with a index higher than one. 

4.2 Closest Point Method used as an Extension 
Velocity 

The singular surface S is a challenge: not only is the model inaccurate at S, 
but as we approach 5 the O D E (4.3) equivalent to the D A E (4.1) becomes i l l 
conditioned (the term for E blows up) so something must be done to the O D E 
in order to make it behave in an acceptable manner. Some of the undesirable 
states of the power system are defined by the unsafe set 

G = {(E',Efd,E)\E<Ec} 

The states in G are physically unacceptable for operations because the load bus 
voltages in those states are too low. Thus, these unsafe states can be used to 
define the target set, % = G, which is shown in Figure 4.1. The dynamics in 
the target set can be damped out because they are irrelevant to computing the 
reach set outside the target set. The following equations are used to damp out 
the dynamics 
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Description Name Value 
generator voltage behind transient reactance E' 
field excitation Efd 
load bus voltage E 
generator bus voltage EG 
open-circuit transient time constant T' 5s 
transmission reactance (two routes) Xi 0.1 
d-axis synchronous reactance Xd 1.2 
d-axis transient reactance x'd .0.2 
time constant of first-order model of A V R T 1.5s 
nominal field excitation ^fd 1.6 
gain constant of first-order model of A V R K 7 
set-point value of generator bus voltage Er 1 
mechanical input power to generator P 1.0 
constant reactive power of load Qo 0.5P m 

current source of load H 0 
impedance load B 0 
critical value of load bus voltage Ec 0.7 

Table 4.1: Physical Meaning of Variables and Parameters in Nonlinear Hybrid 
Automaton [13] 

<t>o < -2e 

2e < cj>0 < 0 

e < 0 

F(x) = H(MF(x) 

where e = 2h and h represents the grid spacing [7]. This damping function is 
equal to 1 everywhere outside the target set, so outside the target set the func­
tion being damped stays the same. Inside the target set the damping function 
smoothly and quickly damps out F(x) to essentially zero. The function goes 
to zero within four grid cells. The implementation in this research uses cj>o(x) 
not CP(4>o(x)) as input to the damping function. The initial 4>o{x) function 
is smoother, thus after damping this function it produces better results in the 
reach tube calculations. 

Unfortunately, not air of the singular surface is inside the target set, so 
another technique needs to be used to make the dynamics outside the target 
set behave in an acceptable manner. The extension velocity method, described 
in [1] and in Section 2.1.3, extends a speed function, which moves the interface 
in its normal direction, off an interface. This method maintains the signed 
distance property for the level sets representing the interface. Several attempts 
were made to adapt this well known extension velocity method to the case 

f 0 

1 , (00 + e) , 1 . 
2 + 2e + 2 7 r S m l e 
1 
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of extending velocities off manifolds. This proved difficult and inappropriate 
for several reasons. . In order to calculate the extension velocity the velocity 
function had to be converted to a speed function in the normal direction of 
the implicit surface representing the reach tube. This conversion had to be 
done at each timestep because the reach tube is evolving at each timestep. 
After the conversion into a speed function, the extension velocity method was 
used to extend the speed function two times. It was firstly used to extend the 
speed function in the normal direction of the constraint manifold and then the 
resulting speed function was extended in the direction of the reach set implicit 
surface. This conversion seemed inappropriate for the case of extending off the 
constraint manifold since the extension velocity was being converted to a speed 
function in the normal direction of the reach set and not in the normal direction 
of the constraint manifold. Another reason the conversion was inappropriate 
is that even though the velocity function and the manifold, do not change over 
time, a calculation was being done at every timestep to try and extend the 
velocity function off of the manifold. This calculation at every timestep was an 
unnecessary amount of overhead. 

A second attempt was made at extending the velocity field off of the con­
straint manifold. This attempt involved using the previously described extension 
velocity method to extend each component of the initial velocity field separately 
off of the constraint manifold. This extension only had to be done once before 
the level set calculation began because the constraint manifold and the initial 
velocity do not change throughout the level set calculation, and this extension 
could be done separately on each component of the velocity field because the 
components are independent of each other, This extension got rid of the sin­
gularity problems in the dynamics and maintained the correct dynamics on the 
manifold. Unfortunately, running these extension velocity functions took a lot 
of extra time and this extra time seemed wasteful when a closest point function 
was already being computed to reinitialize the implicit surface function repre-. 
senting the.reach tube. Thus a new extension velocity method is proposed in 
this research which makes use of the closest point function. 

This new method for extending velocities off of the constraint manifold as­
sumes that the dynamics are well defined on the manifold but may.have problems 
somewhere else in the domain. The simple solution proposed in this research 
is to use the closest point operator,.described in Section 3.1.2, to extend each 
component of the velocity function off of the manifold. For example, if the 
dynamics F(x) are unsuitable for the HJE's (3.2) or (3.3) we replace it by 

. . . Fext(x) = F(CP(x)) •' (4.4) 

The initial velocity function is parallel to the manifold on the manifold, so off 
of the manifold the extension velocity function will be parallel to the closest 
part of the manifold. The dynamics are well behaved on the entire manifold 
because the singular surface, S, only intersects with the manifold inside the 
target set and the dynamics inside the target set have already been damped 
out. Thus, extending these well behaved dynamics off of the manifold will 
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create well behaved dynamics throughout the entire domain. 
Two types of figures are generated to show the validity of the method. Fig­

ure 4.2 compares trajectory simulations generated in three different ways by 
Matlab's D A E / O D E solver. The first method for computing the trajectories 
uses Matlab's D A E solver with the dynamics described in (4.1). The second 
method for computing the trajectories uses Matlab's ODE solver with the dy­
namics described in (4.3). The final method also uses Matlab's O D E solver 
but it uses the extension velocity dynamics described in (4.4). These extension 
velocity dynamics are only defined on a discrete grid, so values off the grid must 
be interpolated by interpn. In the figure, all three trajectories are practically 
indistinguishable, and this similarity shows that the extension velocity method 
does not perturb the dynamics significantly. 

Figure 4.3 calculates some sample trajectories using the interpolated ex­
tension velocity, and the starting points of these trajectories are shifted off of 
the manifold. These shifted trajectories remain parallel to the solutions on the 
manifold and this shows that the extension velocity contains dynamics which are 
constant in the normal direction of the manifold. This consistency in the nor­
mal direction ensures that extension velocity is a natural extension of the initial 
surface velocity. Thus, the extension velocity technique used in this research 
removes the singularities in the domain, and creates well behaved dynamics 
throughout the entire domain. 

4.3 Implementation 
The implementation of the power generator problem is similar to the imple­
mentation of the two toy examples in Chapter 3. The first difference is that 
the closest point operator is used to extend the velocities off the manifold as 
described in the previous section. This extension is only done once during ini­
tialization. The second difference is that all derivative approximations are third 
order accurate. 

4.4 Examples 
The D A E for the Power Generator was described in (4.1) and the O D E which 
represents the velocity field was described in (4.3). 

The initial reachable tube is a hyperplane with a normal of (1,0,0) passing 
through the point (Ec, 0,0). The zero level set of the initial reach tube is a plane 
spanning the E' and Efd dimensions, and this plane divides the E dimension 
at Ec. This zero level set can be seen in Figures 4.1 and 4.4. The problem was 
computed on a domain of [+0.5,+1.7] x [+0.8,+1.8] x [-0.1,+0.7], while the 
distance between grid nodes is defined as 0.02. The domain values in the Efd 
dimension were scaled down by a factor of 10 compared to the original problem 
specifications in [13] and in [17]. The P D E is executed from 0 to 5 time units 
and reachable tubes are calculated every 0.2 time units. It takes 2806 seconds to 
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solve the problem using the closest point method when the closest point function 
has already been precomputed. The problem cannot be calculated without the 
closest point method. 

Figures 4.4, 4.5 and 4.6 demonstrate the reachable tube at every integer time 
unit of the calculation. These figures show that the closest point reinitialization 
for the implicit surface function forces the reach tube to remain perpendicular 
to the manifold throughout the calculation. Figure 4.7 shows several views of 
the reach tube at the final timestep, t = 5. Figure 4.8 compares the interface for 
the reachable tube at the final timestep with simulations calculated by Matlab's 
D A E solver using the dynamics described in (4.1). This figure shows that the 
level set calculation is doing a poor job calculating the reachable tube. The 
calculation is overestimating the size of the reachable set, so a lot of safe tra­
jectories are being lost. Several ways to improve the quality of the results could 
be to increase the grid resolution or to increase the accuracy of the calculation. 
The closest point function could also be slightly inaccurate, so improvements to 
the closest point method in order to calculate the closest points more accurately 
could improve the results. 
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Figure 4.1: Target set and singular set plots for the power generator problem. 
The top image is a top view of the intersecting surfaces and the bottom image 
is a side view of the intersecting surfaces. In these images, the red surface is the 
constraint manifold, the green surface is the interface for the target set, the blue 
surface represents the target set and the yellow surface represents the singular 
set. 
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Figure 4.2: Trajectory simulations generated in three different ways by Mat­
lab's D A E / O D E solver. The blue trajectories are calculated by Matlab's O D E 
solver using the dynamics described in (4.3), the red trajectories are calculated 
by Matlab's D A E solver using the dynamics described in (4.1) and the yellow 
trajectories were calculated by Matlab's ODE solver using the extension velocity 
dynamics. The side view (top) demonstrates that the three trajectories are very 
similar when looking at them head on, but the top view (bottom) demonstrates 
that the dynamics force the trajectories slightly off of the constraint manifold 
in the bottom left hand corner of the plot. 
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Figure 4.3: Sample trajectories using the interpolated extension velocity. The 
top image is a side view of the trajectories on the manifold and the bottom 
image is a top view of the trajectories. The middle set of trajectories is on the 
manifold and the outer two sets of trajectories are shifted off of the manifold by 
0.1 units in the E' dimension. The trajectories remain parallel to the manifold 
after the shift off of the manifold. 
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Figure 4.4: View of reach tube at t = 0 (top) and t = 1 (bottom). In this 
image, the red surface (darker surface) is the manifold, the green surface (lighter 
curve) is the interface for the reachable tube and the blue surface represents the 
reachable tube. 
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Figure 4.5: View of reach tube at t = 2 (top) and t = 3 (bottom). In this 
image, the red surface (darker surface) is the manifold, the green surface (lighter 
curve) is the interface for the reachable tube and the blue surface represents the 
reachable tube. 



Chapter 4. Predicting Voltage Instability of a Power System 45 

1*4 

Figure 4.6: View of reach tube at t = 4 (top) and t = 5 (bottom). In this 
image, the red surface (darker surface) is the manifold, the green surface (lighter 
curve) is the interface for the reachable tube and the blue surface represents the 
reachable tube. 
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Figure 4.8: The plot compares the interface for the reachable tube at the final 
timestep with simulations calculated by Matlab's D A E solver using the dynam­
ics described in (4.1). The red surface represents the constraint manifold, the 
green surface represents the interface for the reachable tube and the blue lines 
represent the trajectories calculated by the D A E solver. 
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This thesis has made two contributions to the intellectual community. Firstly, 
it has added the fast marching method, signed distance and extension velocity 
functionality to Ian Mitchell's Level Set Toolbox. These functions use Dijkstra's 
algorithm to solve the non-linear Eikonal equation. This algorithm traverses 
each node in the grid once and it relies on a min-heap data structure to traverse 
these nodes in an optimal 0(N log N) time. The methods were implemented in 
Matlab in order to work with the Level Set Toolbox, but the min-heap struc­
ture's operation time was very slow in this language so the functions had to be 
reimplemented in C and connected to Matlab via a M E X interface. This greatly 
improved the running time for all three methods. The implementation of the 
methods was proved accurate by running some well known example problems. 

Secondly, a method was developed, proven and tested for calculating reach­
able sets on manifolds or equivalently DAEs. The algebraic constraint of the 
D A E represents the manifold and the differential constraint represents the dy­
namics of the reachable set. A common practice for solving reachable sets in 
a full dimensional space is to represent the reachable set surface as an implicit 
surface function and to use level set methods to evolve the surface. The research 
in this thesis extends the level set computational technique by reinitializing the 
implicit surface function at each timestep with the closest point method.. This 
method naturally extends surface gradients off of the constraint manifold onto 
the entire computational domain, and it does so by assigning each point in the 
implicit surface function the same value as the value of the closest point on the 
constraint manifold. This procedure ensures that the gradients of the implicit 
surface function are constant in the normal direction of the constraint manifold. 
The closest point method was proven effective by solving two toy D A E problems 
and comparing the results to those calculated when the closest point method 
was not used. 

This method for solving reach sets on manifolds is used to solve a real life 
power generator example where the voltage dynamics are modeled with a D A E . 
This D A E has an additional problem that the model in inaccurate for a subset 
of the domain. In this subset the actual dynamics are index-2 or higher so the 
index-1 D A E which is being used to model the dynamics becomes singular at 
these points. Two fixes are done to the model to deal with the singular surface. 
The first fix damps out the dynamics inside the target set, since this set of 
points have already been marked as unsafe. The second fix uses the closest 
point method to extend the well modeled dynamics on the manifold throughout 
the entire domain; thus suggesting that the closest point method can be used 
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to extend both surface functions and velocity functions off of a manifold onto 
the entire domain in a manner which yields motion on the manifold consistent 
with the original dynamics. 
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