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Abstract 
11 

Traditional approaches to developing user models, especially for computer-based 

learning environments, are notoriously difficult and time-consuming because they 

rely heavily on expert-elicited knowledge about the target application and domain. 

Furthermore, because the expert-elicited knowledge used in the user model is 

application and domain specific, the entire model development process must be 

repeated for each new application. 

In this thesis, we outline a data-based user modeling framework that uses both 

unsupervised and supervised machine learning in order to reduce the development 

costs of building user models, and facilitate transferability. We apply the framework 

to build user models of student interaction with two different learning environments 

(the CIspace Constraint Satisfaction Problem Applet for demonstrating an Artificial 

Intelligence algorithm, and the Adaptive Coach for Exploration for mathematical 

functions), and using two different data sources (logged interface and eye-tracking 

data). Although these two experiments are limited by the fact that we do not have 

large data sets, our results provide initial evidence that (z) the framework can 

automatically identify meaningful student interaction behaviors, and (//) the user 

models built via the framework can recognize new student behaviors online. In 

addition, the similar results obtained from both of our experiments show framework 

transferability across applications and data types. 
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Chapter 1 

i 

Introduction 

1.1 Background and Motivation 

In this thesis we propose a user modeling framework that uses both unsupervised and 

supervised machine learning to address two of the most cited difficulties of 

developing user models for computer-based learning environments (e.g., [13, 43, 

73]): laborious effort required by application designers to construct models, and 

limited model transferability across applications. 

The user model is a fundamental component of an intelligent learning 

environment (ILE), i.e., a computer-based system that can provide adaptive support 

for students much like how human educators can adapt their instructional styles and 

strategies so as to accommodate individual students and their changing needs. The 

user model guides the adaptation process by providing the ILE with an abstract 

representation of the learner in terms of relevant traits such as knowledge (e.g., [4, 16, 

21, 54]), meta-cognitive ability (e.g., [18, 56]), learning behaviors (e.g., [9, 55]), 

learning style (e.g., [23]), and even affective state (e.g., [11, 35]). Some cognitive 

psychologists, e.g., [80], have conjectured that even human educators derive such 

models of students: 

"Two things are required for the teacher to [help and guide the 
student]: on the one hand, an adequate idea of where the student is 
and, on the other, an adequate idea of the destination. Neither is 
accessible to direct observation. What the student says and does can be 
interpreted in terms of a hypothetical model - and this is one area of 
educational research that every good teacher since Socrates has done 
intuitively." 

Unfortunately, although the benefits of personalized computer-based instruction 

are well-recognized, so are the development costs, of which a considerable part is 

devoted to the user model [13, 58, 71]. This is especially true for knowledge-based 
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user models, because they require eliciting the relevant domain and pedagogical 

knowledge from experts, a process that is often difficult and time consuming [36, 53]. 

Furthermore, pure knowledge-based approaches can typically recognize and interpret 

only expected student behaviors, and are unable to handle unanticipated ones. Thus, 

they tend to be suboptimal for novel applications for which real experts do not exist 

yet. 

To circumvent the drawbacks of knowledge-based user models, some 

researchers have turned to the field of machine learning (e.g., [7, 11, 12]) to 

approximate functions that map observable student behaviors to different classes 

(e.g., the correctness of student answers). These functions can then predict the 

outcome of future student behaviors and inform adaptive facilities. However, this 

approach typically necessitates labeled data. When labels (e.g., student answers) are 

not readily available from the system, domain experts must resort back to manual 

labeling to supply them (e.g., reviewing recorded data and categorizing observed 

behaviors into relevant behavioral classes), which is again time-consuming and error 

prone. 

1.2 Thesis Approach: A Statistical Pattern Recognition 

Approach to Building User Models for Intelligent 

Learning Environments 

The user modeling framework we propose addresses the issue of cost-intensiveness 

by taking a statistical pattern recognition approach [48]. The general procedure for 

statistical pattern recognition is: data acquisition, processing, learning, and then 

testing [48]. Our framework defines this process specifically in the context of user 

modeling for ILEs. It uses unsupervised learning to automatically identify common 

learning behaviors and then applies supervised machine learning to these behaviors to 

train a classifier user model that can inform an adaptive ILE component. A key 

distinction between our modeling approach and knowledge-based or supervised 

approaches with hand-labeled data is that human intervention is delayed until after 

unsupervised machine learning automatically identifies behavioral patterns. That is, 
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instead of having to observe individual student behaviors in search of meaningful 

patterns to model (e.g., student errors or misconceptions as in [20]) or to input to a 

supervised classifier (e.g., actions indicating motivational state as in [35] or instances 

of students misusing an existing ILE as in [7]) the developer is automatically 

presented with a picture of common behavioral patterns that can then be analyzed in 

terms of learning effects. Expert effort is potentially reduced further by using 

supervised learning to build the user model from the identified patterns. 

In addition to reducing developer workload, our approach also facilitates 

transfer across different applications and data types. In this thesis, we demonstrate 

transferability by applying our user modeling framework to 

(i) two different learning environments, the CIspace Constraint Satisfaction 

Problem (CSP) Applet for teaching A l algorithms [3] and the Adaptive Coach 

for Exploration (ACE) for teaching mathematical functions [19], and 

(ii) two different data sets, one involving interface actions only and another 

involving both interface actions and eye-tracking data. 

Both the CIspace CSP Applet and A C E are exploratory learning environments 

(ELEs) that are designed to support free, student-led exploration of a target domain 

with the premise that active discovery and construction of knowledge may promote 

deeper understandings than more controlled instruction [65] [15]. We chose ELEs as 

testbeds for our framework for two main reasons. First, previous research has shown 

the value of providing adaptive support for student exploration in these environments 

[72]. For example, while some research has shown that ELEs may enhance the 

learning experience for more adept or active students, passive students or students 

who find such unstructured environments difficult to navigate effectively may not 

learn well with them [72], and therefore may benefit from additional intelligent 

guidance on how to best use the E L E to learn. 

The second reason is that traditional user modeling approaches are particularly 

difficult for ELEs. In [71], John Self highlighted the infeasibility of developing 

knowledge-intensive user models for complex or ill-structured domains, such as 

ELEs. He demonstrated that even for a relatively simple mathematical integration 

problem, building a comprehensive knowledge-based user model that could diagnose 
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any student solution, would require analyzing an intractable number of possible 

solution paths. Some researchers have opted to design more restrictive learning 

environments that constrain student behavior and thereby minimize the number of 

elements to model (e.g., [4, 27]), but this type of restrictive learning conflicts with the 

very principle of open learning that ELEs are intended to support. In addition, 

because ELEs are a relatively novel learning paradigm, little practical knowledge 

exists about optimal learning strategies within these systems, increasing the 

difficulties of applying knowledge-based modeling approaches. Supervised machine 

learning approaches to user modeling are also unappealing for ELEs. ELEs provide 

no obvious output labels (e.g., in ELEs there is no notion of correctness and so clear 

labels such as correct/incorrect answers to questions are unavailable), and therefore 

output labels must be manually provided by application or domain experts. However, 

because the space of possible interaction behaviors within ELEs can be very large, 

manually observing distinct behaviors and interpreting them in terms of learning 

effects is especially difficult, even for experts. 

1.3 Thesis Goals and Contributions 

The overall objective of this research is to show the value of a statistical pattern 

recognition approach to user modeling in ILEs as an alternative to more knowledge-

intensive approaches that tend to be complex or time-consuming, especially in highly 

unstructured exploratory environments. In order to meet this objective, we define the 

following goals of this thesis: 

1. To outline a data-based user modeling framework that addresses the practical 

challenges faced in applying knowledge-intensive approaches to user 

modeling in ILEs, and particularly in ELEs. 

2. To evaluate our proposed framework by answering the following questions: 

i . How well does the framework automatically identify meaningful 

learning behaviors? 

i i . How well does a user model built via the framework perform at 

classifying new users online? 
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i i i . How well does the framework transfer across different applications 

and data types? 

The work in this thesis contributes to research in user modeling. Traditional 

approaches to user modeling, especially for ILEs, have been very knowledge-

intensive. Many of these approaches have relied on the lengthy and laborious process 

of hand-constructing user models based on expert knowledge or intuition. Such 

approaches are application and domain specific and therefore do not facilitate transfer 

to new applications or domains. Other approaches to user modeling for intelligent 

learning environments have used machine learning algorithms to help reduce 

developer workload. However, unlike our approach that uses both unsupervised and 

supervised machine learning, the majority of these have only made use of supervised 

algorithms that require labeled data. In certain applications, such as the ELEs that we 

experiment with in this research, labels are not readily available and therefore must be 

supplied by hand. This is again time-consuming for model developers. Very little 

research has been reported on using unsupervised machine learning to help build user 

models for ILEs. The work presented in this thesis is a step towards this direction. 

1.4 Outline 

The rest of this thesis is organized as follows. In Chapter 2 we review previous 

research on knowledge and data-based approaches to user modeling. We also discuss 

some of the approaches that have been taken for user modeling in ELEs. Chapter 3 

outlines our proposed user modeling framework and describes how we can evaluate 

user models built via our framework with limited available data. In Chapters 4 and 5 

we apply and evaluate our modeling framework on two separate ELEs. In Chapter 4, 

we apply the framework to the CIspace Constraint Satisfaction Problem (CSP) Applet 

for demonstrating an Artificial Intelligence algorithm for solving CSPs [3]. In 

Chapter 5, we demonstrate the process on the Adaptive Coach for Exploration (ACE) 

for mathematical functions [19]. Then, in Chapter 6 we compare the results we 

obtained from our two experiments and discuss the limitations of our framework and 

this research. In Chapter 7, we discuss avenues for future work. And finally, in 
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Chapter 8 we conclude with a summary of the research and contributions of this 

thesis. 
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Chapter 2 

Related Work 

In this chapter, we review common approaches to user modeling, concentrating on the 

model development processes used in these approaches for comparison with our 

approach outlined in Chapter 3. These approaches range from knowledge-based 

approaches where models are hand constructed by experts, to supervised data-based 

approaches using machine learning along with system or expert provided labeled 

data, to unsupervised data-based approaches using machine learning with unlabeled 

data. Our approach falls towards the end of this spectrum as we use an unsupervised 

machine learning component to provide labels for supervised machine learning. This 

review focuses primarily on user modeling for learning environments (also called 

'student modeling' in the literature) but also includes some relevant work on user 

modeling in other application areas. After reviewing previous approaches to user 

modeling in general, we then discuss relevant work on user modeling for exploratory 

learning environments (ELEs). 

2.1 Knowledge-Based Approaches 

By 'knowledge-based' user modeling we mean that the methods used to build an 

underlying representation of the user require explicit knowledge elicited from 

application and domain experts. In regards to intelligent learning environments 

(ILEs), estimates of the development time for a knowledge-based approach are in the 

range of 100 hours for just one hour of instruction [58], of which a considerable part 

is devoted to developing the user model. In this section we describe the development 

processes used in some of the most common knowledge-based approaches to user 

modeling in learning environments. 

A common type of knowledge-based user model is the overlay model, which 

represents a student relative to a representation of ideal expert behavior or domain 
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knowledge in the form of elements such as concepts, facts and rules (e.g., [4, 16, 21]). 

An overlay model can be used to expose missing student knowledge or deviations 

from ideal behavior by marking model elements as known, unknown or even partially 

known by the student based on observed interactions with a system. An adaptive 

system can then use this information to provide personalized support targeting the 

model elements in question. 

Developing overlay models requires, first, the often difficult problem of 

recruiting expert participation [58]. Once experts are recruited, then begins the 

lengthy process of acquiring their knowledge in the form of large sets of model 

elements [77] and actually implementing the model. The knowledge acquisition and 

implementation process can be divided into three general stages [10]: 

• Knowledge Elicitation. When the basic conceptual structure of the knowledge 

model is acquired from the expert (e.g., through systematic interviews) and 

implemented by the developer. 

Knowledge Refinement. When the initial model is debugged and extended by the 

expert (e.g., by testing the model and analyzing the results to identify errors). 

Knowledge Reformulation, when the model is adjusted to accomplish tasks (e.g., 

diagnose missing student knowledge) more efficiently. 

GUIDON [16] is an example of an adaptive system that uses an overlay model 

to teach students how to diagnose infections diseases. The model consists of over 450 

rules and facts about different diseases and their symptoms which took over four 

years of interactions with physicians to develop. Another example is the model used 

in Anderson et al.'s [4] LISP tutor, a learning environment for solving LISP 

programming problems, which consists of 500 if-then production rules detailing 

individual LISP programming steps. The authors of the LISP tutor stated that: " A 

major fraction of the tutor development has gone into developing [production] rules. 

It is a difficult task to define a set of rules that will solve a large class of problems." 

Furthermore, for even a simple problem the total number of solution paths that can be 

modeled can be intractable [71], and therefore there is no guarantee that even a large 

set of expert-defined model elements for a given domain will be complete. 
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Another knowledge-based approach to user modeling is to develop a bug library 

(e.g., [2, 20]). While the overlay model represents ideal behavior or correct expert 

domain knowledge, building a bug library requires experts to catalog as many 

erroneous user behaviors or misconceptions about a given domain (i.e., bugs) as 

possible. User behaviors can then be compared to the bug library in order to identify 

errors or misconceptions and make appropriate system adaptations. 

As with the overlay approach, defining the bug library is time-consuming for 

experts because possible bugs must be defined by intuition (comparable to the process 

of defining model elements in overly models described above), or identified through 

manual analysis of numerous examples of user behaviors [77]. For instance, over 100 

bugs were identified about arithmetic subtraction in Burton and Brown's D E B U G G Y 

system [20] through manual analysis of thousands of student tests taken on 

subtraction [77]. 

Murray and Woolf [58] did a case study in developing an ILE for static forces in 

physics in order to analyze the development process and quantify the time required 

for each step in the process. They used a knowledge-based approach to developing a 

user model for the ILE that included both expert and buggy knowledge. They found 

that in developing the environment (which consisted of approximately six hours 

worth of instruction), the domain expert (a physics tutor) spent 277 hours performing 

tasks such as designing and debugging the user model, while two knowledge-base 

managers (responsible for implementing the user model) spent 240 hours performing 

tasks such as coding and debugging the model. In addition to being time-consuming 

and laborious, overlay and bug library approaches are particularly il l suited for ELEs 

where there is no notions of correctness or well-developed theories of exploratory 

learning to help guide experts in defining correct or faulty knowledge and behaviors. 

Recently, Bayesian networks have also been employed for user modeling 

because of their capacity to manage uncertainty in the modeling task in a principled 

and mathematically sound way (e.g., [30, 57]). However, hand-coding a Bayesian 

network user model also requires expert elicited information and so this approach 

faces the same drawbacks as the overlay and bug library approaches described above. 

Here, experts must again define large sets of facts, rules and behaviors (represented as 
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network nodes), as well as the relationships between these elements (represented as 

links between network nodes). In addition, the Bayesian network formalism requires 

encoding multi-valued prior and conditional probability tables for each network node. 

Appropriate values for these probability tables can be subjectively estimated by 

experts based on theoretical or prior knowledge about the domain or the user, but this 

can be difficult especially when dealing with internal and unobservable user states or 

complex relationships [55]. In Conati et al.'s ANDES system [28, 30] for solving 

physic problems for example, Bayesian networks were developed containing 200 

interconnected nodes for simple physics problems and up to 1000 nodes for more 

complex problems. Bayesian networks may be even larger and more difficult to 

define for unstructured ELEs than for highly structured problem-solving applications 

such as ANDES. 

2.2 Supervised Data-Based Approaches 

To avoid what is sometimes called the 'knowledge bottleneck problem' [84] of 

knowledge-based approaches to user modeling (i.e., the laborious effort and extensive 

time required of experts to hand-construct user models), researchers have recently 

started investigating 'data-based' approaches for automatically learning user models 

from example user data. Most of these data-based approaches to user modeling have 

employed supervised machine learning techniques that require labeled example data 

[81]. From the labeled example data (i.e., the 'training data'), supervised machine 

learning techniques (e.g., linear regression and classification) learn mappings from 

input data (e.g., interface behaviors) to output labels (e.g., learning outcomes or user 

states). Based on the learned mappings, the models can then take newly observed data 

(i.e., the 'test data') and predict the output labels for that data. The predicted 

information can then be used to guide system adaptations. Here we describe some 

common approaches to building user models from data. 

Many researchers taking data-based approaches to user modeling view the 

supervised machine learning algorithms as 'black boxes' [12] that take in labeled data 

and produce the user model. Therefore, the key steps in the model development 

process concern specifying the input data and output labels for the learning algorithm 
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to use. Input data is typically behavioral (e.g., interface actions) and therefore often 

easily obtainable from data logs of application use [81, 84]. Once data is obtained, it 

must be processed so that only the relevant features of the data are used as input to 

the learning algorithm. These data collection and processing steps are equivalent to 

the initial steps in our proposed user modeling framework (see Chapter 3). However, 

our approach deviates from supervised data-based approaches in the need for labels 

for the input data. 

There are two general methods typically used to obtain labels for input data. In 

the first method, data labels are obtained directly from the system. In the second, 

labels are manually supplied through expert observations and analyses. Because the 

later method requires expert interpretation of the data, it could be considered a 

knowledge-based approach to user modeling. However, this method is still data-

intensive and relies on machine learning algorithms to build the models as opposed to 

hand constructing them. Therefore, we categorize this method as being a data-based 

approach. 

The question-based, Animal Watch ILE for teaching arithmetic [12] is an 

example of using a data-based approach with system-provided data labels to learn 

user models. Input data was obtained from data logs of actual students using the 

system to learn. The input data consisted of snap shots of the current state of the 

system, including the type and complexity of the current problem being solved. For 

one user model, the output label for each snap shot was the correctness of the 

student's answer. For another user model, the output label was the time taken to solve 

the problem. It should be noted that answer correctness was assessed by a previously 

developed knowledge-based overlay user model [5], however, for the purposes of the 

research in [12], correctness (as well as time) was directly extracted from the log files 

and therefore this can be considered a system-provided data label. The input data and 

corresponding output labels were then used to train supervised linear regression user 

models that could predict either the correctness of a new student's response or 

recognize when the student is having difficulty (i.e., i f their predicted response time is 

over a predefined threshold indicating potential confusion). 
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Similarly for the Reading Tutor [11], non-linear regression was used to model 

student engagement levels based on student response times in answering multiple 

choice questions about reading comprehension. That is, a non-linear regression 

function was trained with input-output sample data where the input data consisted of 

logged response times, question difficulties and student performance histories, and 

the output data labels were the correctness of student answers as determined by the 

system (since reading questions and their corresponding answers were generated 

automatically by the system by randomly removing words from sentences and then 

asking students to determine the removed word). The regression function could then 

predict how likely future student answers are at being correct and a manipulation of 

the function could be carried out to compute student engagement levels. And in the 

CAPIT system [55], the parameters of a Bayesian network user model were also 

learned from system-labeled data. In this case the input data was logged behavioral 

data and, again, the output labels were the correctness of student responses to canned 

punctuation and capitalization questions. 

Several other examples of user modeling based on supervised data-based 

approaches with system-provided labels exist outside of educational applications. An 

example is the MailCat system [70] for automatically organizing user emails. MailCat 

uses email text as input and user-chosen folders as output labels to train a text 

classifier to predict the target folder of incoming emails. Here again, obtaining the 

output labels require no additional effort from experts or model developers. Some 

recommender systems also use supervised data-based approaches with system 

provided labels to model the user. For example, the Syskill and Webert recommender 

system [63] uses a naive Bayesian classifier user model in order to make interesting 

web site recommendations to the user. The input data consists of visited web pages 

represented by the most informative words on the page. Each web page is explicitly 

labeled by the user in terms of its interestingness (by having the user rate the web 

page with a 'thumbs up' for interesting and 'thumbs down' for not interesting). 

Letizia [53] is another system for recommending interesting web sites to users. Here, 

the output labels are inferred by the system using heuristics (e.g., saving a web page 
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or spending a lot of time reading a web page would indicate user interest) rather than 

being explicitly provided by the user. 

Although supervised data-based approaches that make use of system-provided 

output labels can significantly reduce the time required of application and domain 

experts in building user models, when output labels are not readily available from the 

system (e.g., answers to questions or user ratings), such as in ELEs, then data labels 

must be provided by hand. The work of Baker, Corbett and Koedinger [7, 9] is one 

such example of using expert-labeled data in a supervised data-based approach to user 

modeling. In this research, the authors observed students using an ILE for solving 

scatterplot analysis problems watching for the occurrence of specific types of 

behaviors detrimental for learning that they named "gaming-the-system behaviors." 

The process of observing students first required predefining which user behaviors 

signal attempts to game the system (e.g., systematic trial-and error). Defining these 

behaviors could be done because the learning environment supported a highly 

structured, well studied, problem-solving type of pedagogical interaction. This is 

harder for ELEs where effective and detrimental interaction behaviors are less 

obvious. Once gaming behaviors were defined, two researchers observed 70 students 

using the system. The researchers made their observations through their peripheral 

vision in order to reduce any behavioral changes that could result from students 

feeling watched. A total of 563 observations were made, taking 20 seconds per 

observation for a total of approximately three full hours worth of observations. The 

gaming observations corresponded to labels of the input data (logged interface events, 

such as user actions and latency between actions). The labeled data was then used to 

train a regression model that could predict instances of gaming with relatively high 

accuracy. 

In the MOODS ILE for learning Japanese numbers [35], the authors asked 

experienced tutors/teachers to manually label recorded data (video and screen capture 

footage) in terms of pre-defined motivational variables (e.g., effort and satisfaction) 

in order to produce mappings from observable interface actions to the internal 

motivational states of students. These mappings could then be used to detect 

motivational states of new users based on their interaction behaviors. Baker et al. [8] 
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estimate that these kinds of human observations take between 1 and 10 minutes per 

classification. So this is again time-consuming and can be error prone. 

2.3 Unsupervised Data-Based Approaches 

The initial user modeling steps (data collection and preprocessing) in unsupervised 

data-based approaches are similar to that of supervised data-based approaches; 

however, because unsupervised machine learning techniques do not require output 

labels to learn models from data, these approaches avoid the high costs of obtaining 

labels, especially through manual observations. 

Most research on unsupervised data-based approaches to user modeling has 

been for non-educational applications. For example, collaborative filtering (CF) 

systems employ unsupervised learning techniques to model user preferences and 

make item recommendations based on user similarities. The research in [62] is an 

example of a CF system that can recommend interesting websites or personalize 

search query results based on a user's navigation or query behavior in relation to the 

behavior of similar users. This is done by automatically grouping similar users 

according to their navigation or query behavior using unsupervised learning 

algorithms such as clustering, and then determining which group a new user is most 

similar to in order to make appropriate recommendations or adaptations. Similarly, 

other research has demonstrated the use of unsupervised learning on (i) words in a 

document to model and automatically manage emails based on a user's organization 

of previous emails [50]; (ii) frequencies of web pages access to automatically 

personalize and adapt web sites for new users based on similar users' preferences 

[64]. 

In contrast, research on using unsupervised machine learning for user modeling 

in educational systems remains rare [73]. A notable exception is M E D D [74] which 

uses unsupervised learning to discover novel classes of student errors to Prolog 

programming problems. Student programming solutions are first compared to a data 

base of correct solutions to determine discrepancies between the students' actual 

solutions and their intended solutions. Discrepancies are then automatically grouped 

based on their similarities using an unsupervised pattern recognition algorithm 
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(clustering) in order to define common errors and build bug libraries. Like the expert-

built bug libraries in knowledge-based approaches to user modeling (see Section 2.1), 

MEDD's bug libraries can be used to identify misconceptions in a new student's 

solution and then provide adaptive feedback targeting those misconceptions. Our 

approach to user modeling differs from this in that we are modeling student 

interaction behaviors in unstructured environments with no clear definition of correct 

behavior instead of static student solutions and errors. 

The research in [46] and [76] are also related to ours because both works use 

statistical pattern recognition techniques, although they do not actually build user 

models. DIAGNOSER [46], like M E D D , uses unsupervised machine learning to 

discover errors in static student solutions to physics questions. More similar to what 

we do, [76] uses clustering on interface action frequencies, to detect behavioral 

patterns in an environment for collaborative learning. Our work differs in that we use 

higher dimensional data including action latency, measures of variance and gaze 

information. Furthermore, in both [46] and [76] the resulting patterns are given to 

instructors who can then use them to tailor instruction, whereas we take this process 

one step further to automatically build a user model. Our research is also broader 

because we show transfer of our user modeling approach across applications and data 

types. 

2.4 User Modeling in Exploratory Learning Environments 

In this section we review previous work in user modeling for exploratory learning 

environments (ELEs). 

Ecolab [54] is an E L E for primary school students to explore the relationships 

between different organisms in a simulated ecosystem. The authors used an overlay 

knowledge-based approach (see Section 2.1) to build a Bayesian network user model 

that could inform the system's adaptations. Expert knowledge was extracted from 

several science textbooks on the subject [54] and manually encoded in the user 

model. 

Bunt et al. [19] also used a knowledge-based approach and hand-constructed a 

complex Bayesian network to model effectiveness of student exploration in 
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supporting the understanding of mathematical functions in an earlier version of one of 

the two ELEs that we use as a test-bed in our research (Chapter 5), the Adaptive 

Coach for Exploration (ACE). Model construction required enumerating all possible 

sets of parameters that students could explore for each type of mathematical function 

(called the possible exploration cases), specifying the relationships between the 

exploration cases and the mathematical concepts they aim to illustrate, and manually 

defining multi-valued probability tables for the Bayesian network nodes using prior 

knowledge or estimations from experts. Though the model can handle uncertainty in a 

principled way and was shown to be quite successful in providing students with 

personalized help in exploration [19], like all knowledge-based approaches to user 

modeling, this entire time-consuming and knowledge intensive process would have to 

be repeated for each new application. 

In [56], the authors augmented the original user model for A C E [19] using a 

supervised data-based approach (see Section 2.3) in order to model the meta-

cognitive skill of self-explanation (the process by which a student generates 

explanations to one-self to clarify instructional material [24]). The authors used time 

and eye-gaze information to represent student attention patterns during interaction 

A C E and showed that modeling these patterns improves assessment of student self-

explanation. This in turn improves model assessment of the learning effectiveness of 

student exploration. The authors conducted user studies to collect interaction data 

from students using A C E that two experimenters subsequently hand-annotated for 

instances of self-explanation by analyzing audio-video footage in addition to the 

logged data. The conditional probability tables for the new self-explanation nodes 

added to the Bayesian network user model (i.e., discretized time and binary gaze-shift 

nodes) were set based on frequencies of the manually observed patterns in the 

interaction data. In addition to needing manually labeled input data, the authors were 

only able to use the portion of the original data that the two experimenters agreed 

upon to augment the model, while the rest was discarded due to lack of inter-coder 

reliability. 

Gorniak and Poole [43] also use a data-based approach to automatically learn a 

user model for the other E L E that we experiment with in our research, the CIspace 
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Constraint Satisfaction Problem (CSP) applet (see Chapter 4). They used observable 

interface actions for both the input and output data used to train a stochastic state 

space user model that could be used to predict future user actions. This approach 

would be considered a supervised data-based one with system-provided output labels 

(i.e. the future interface actions). Our work with the CIspace CSP applet differs in 

that we use an unsupervised data-based approach to map observable input data into 

unobservable user states (i.e., learning). Furthermore, unlike our approach, this 

approach does not allow for the assessment of the quality or relevance of the 

predicted actions for the interaction goals. 
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Chapter 3 

User Modeling Framework 

Understanding and detecting common learning behaviors is important for providing 

students with adaptive support in exploratory learning environments (ELEs), 

especially for those students who tend not to learn well with unstructured and 

unguided systems. However, this is very difficult due to the open interaction that 

ELEs are designed to support, making it hard to foresee which of the many possible 

student interaction behaviors may be beneficial or detrimental to learning. Of the few 

existing approaches to this problem, most have been very knowledge intensive, 

relying on expert analysis of the target E L E , instructional domain and learning 

processes (e.g., [19, 54, 57]), or on extensive observations of students (e.g., [56]). 

Because these approaches are application specific, they are difficult to generalize to 

other systems and other domains. 

In this chapter we describe our proposed data-based framework for developing 

user models for computer-based learning environments, and particularly for ELEs. 

This framework does not assume domain or application expertise, although some 

prior knowledge is necessary in order to perform certain activities. Therefore, usage 

of this framework should reduce the time and effort often required of domain, 

application and model experts to build user models for intelligent learning 

environments (ILEs). Furthermore, the data-based approach, making use of both 

unsupervised and supervised machine learning algorithms, facilitates transferability 

across applications, as long as the developer has access to data logs of student 

interactions with the learning environment of interest. 

A version of this chapter has been accepted for publication: 
Amershi, S. and Conati, C. (2007) Unsupervised and Supervised Machine Learning in User 
Modeling for Intelligent Learning Environments. To Appear in the Proceedings of the 10th 

International Conference on Intelligent User Interfaces. 
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Figure 3.1 shows the architecture of our proposed user modeling framework, 

which divides the modeling process into two major phases: offline identification 

(Section 3.1) and online recognition (Section 3.2). In the offline phase, raw, 

unlabelled data from student interaction with the target environment is first collected 

(Section 3.1.1) and then preprocessed (Section 3.1.2). The result of preprocessing is a 

set of feature vectors representing individual students in terms of their interaction 

behavior. These vectors are then used as input to an unsupervised machine learning 

technique, called 'clustering,' that groups them according to their similarity (Section 

3.1.3). The resulting groups, or 'clusters', represent students who interact similarly 

with the environment. These clusters are then analyzed by the model developer in 

order to determine which interaction behaviors are effective or ineffective for 

learning (Section 3.1.4). In the online phase, the clusters identified in the offline 

phase are used directly in a classifier user model (Section 3.2.1). The user model's 

classifications and the learning behaviors identified by cluster analysis can then be 

used to inform an adaptive ILE component that can encourage effective learning 

behaviors and prevent detrimental ones. 

In the next two sections (Sections 3.1 and 3.2), we detail the two phases 

supported by the framework including describing the algorithms we chose to 

complete these phases. Then in Section 3.3 we explain how we evaluate the user 

models that we developed for both of our experiments (see Chapters 4 and 5) with 

limited data. 
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3.1 Offline Identification 

The first phase of our modeling framework takes a statistical pattern recognition 

approach to automatically identify distinct student interaction behaviors in unlabeled 

data. The rest of this section describes the different steps of the offline phase which is 

outlined at the top of Figure 3.1. 

3.1.1 Data Collection 

The first step in the offline phase is to log data from students interacting with the 

target learning environment. Here, the developer requires knowledge (or a catalog) of 

all possible primitive interaction events that can occur in the environment so that they 

can be logged (see in Figure 3.1 the solid arrow from 'Developer' to 'Data 

Collection'). In addition to interface actions, logged data can include events from any 

other data source that may help reveal meaningful behavioral patterns (e.g., an eye-

tracker). 

An optional, but highly desirable, additional form of data to collect is tests on 

student domain knowledge before and after using the learning environment (see the 

dotted arrow in Figure 3.1 from 'Tests' to 'Data Collection'). The purpose of these 

tests is to measure student learning with the system which can facilitate the cluster 

analysis step of our framework, as we will see below. 

3.1.2 Preprocessing 

Clustering operates on data points in a feature space, where features can be any 

measurable property of the data. Therefore, in order to find clusters of students who 

interact with a learning environment in similar ways, each student must be 

represented by a multidimensional data point or 'feature vector'. The second step in 

the offline phase is to generate these feature vectors by computing low level features 

from the data collected. We suggest features including (a) the frequency of each 

interface action, and (b) the mean and standard deviation of the latency between 

actions. The latency dimensions are intended to measure the average time a student 

spends reflecting on action results, as well as the general tendency for reflection (e.g., 
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consistently rushing through actions vs. selectively attending to the results of 

actions). We compute these features from the data collected in both of our 

experiments (see Chapters 4 and 5). In our second experiment (Chapter 5) we also 

include features extracted from eye-tracking data (i.e., eye gaze movements) to 

demonstrate that a variety of input data can be used in our modeling framework. 

In high-dimensional feature spaces, like the one in our second experiment, 

natural groupings of the data are often obscured by irrelevant features. Furthermore, 

as the number of dimensions increases, pattern recognition algorithms become 

increasingly more susceptible to the "curse of dimensionality" [14]. The "curse of 

dimensionality" refers to the need for exponentially larger data sets to compensate for 

the data sparsity that results when the number of dimensions, or the volume of space 

containing the data, increases. Data sparsity can make models learned by pattern 

detection algorithms prone to overfitting (i.e., low generalizability of the model to 

new and unseen data) [78]. Therefore, especially with limited data, determining the 

most salient features and removing noisy or irrelevant ones, called 'feature selection', 

can significantly improve results of the subsequent learning algorithm. 

Dimensionality reduction can also reduce the computational costs of the 

learning task [47]. While in this research computational costs are of low impact 

because we are developing user models offline, i f we wanted to incrementally update, 

or retrain, a model online as more data is accumulated, then reducing computational 

costs would be beneficial. 

Prior domain or application knowledge can help guide manual feature selection, 

but estimates of feature utility are often unavailable or inaccurate leading to laborious 

trial-and-error evaluations of the features [47]. A substantial number of algorithms for 

automatic feature selection have been developed for supervised machine learning, but 

only recently have researchers started investigating principled ways of selecting 

features in an unsupervised setting (e.g., [22, 34, 41]). To avoid the effort and 

potential inaccuracies of manual feature selection, in our second experiment we 

employ an entropy-based unsupervised feature selection algorithm presented in [32]. 

For reference, we briefly outline this algorithm here. 
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First, we rank each of the D candidate features according to the entropy induced 

by the removal of that feature from the entire set of N available feature vectors. 

Entropy measures the amount of disorder in the data, and so the more entropy 

produced by the removal of a given feature, the more necessary it is to retain that 

feature for clustering. The entropy produced in the data by the removal of each 

individual feature, d, is computed in the following way: 

Ed = - 1 , 1 , (Stjlog S0-+ (1 - SiJ) log (1 - Sy)) (3.1) 

where Sy = S(xh Xj), ij = 1.. .TV, is the similarity between multidimensional feature 

vectors x, and Xj in the space M?'1 (i.e., excluding dimension d). Similarity is given 

by: 

Sr. = exp(-a||jc,-jc/||) and ct= -Nln0.5/2Zi2Zj\\Xj-Xj\\ (3.2) 

where ||-|| denotes the (normalized) L2 norm or the Euclidean distance between feature 

vectors in the multidimensional feature space. This formulation essentially assigns 

low entropy to nearby feature vectors (such as those that should belong to the same 

cluster) or distant feature vectors (such as those belonging to well-separate clusters), 

and high entropy otherwise. 

Next, we run forward selection on the ranked features. That is, incrementally 

larger subsets of features are evaluated in terms of their performance in clustering, 

and the subset that maximizes the quality of the clusters produced is selected as the 

final feature set. Cluster quality is defined as having maximum between-cluster 

variance and minimum within-cluster variance (see Equation 3.5 below). 

Note that because this feature selection algorithm must execute clustering on 

each candidate feature subset in order to assess cluster quality, it returns both a 

reduced feature set and the clusters resulting from clustering on that feature set. 

Therefore, clustering need not be performed again when using this automatic feature 

selection algorithm. When no feature selection is performed, or feature selection is 

done manually, then clustering must be carried out as a separate step to determine 

behavioral patterns, as described next. 
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3.1.3 Unsupervised Clustering 

After forming feature vector representations of the data, the next step in the offline 

phase is to perform clustering on the feature vectors to automatically discover 

patterns, or clusters, of interaction behaviors in terms of these features. Clustering 

works by grouping feature vectors by their similarity, where here we define similarity 

to be the Euclidean distance between feature vectors in the normalized feature space. 

Normalization is necessary to eliminate feature bias due to scaling differences along 

the feature dimensions. We use the z-score transformation for data normalization 

which transforms the data so that each dimension has a mean of 0 and standard 

deviation of 1. This makes the different dimensions comparable because the feature 

values in each dimension are expressed by the magnitude of their deviations from the 

same mean. 

We chose a partition-based algorithm called &-means [37] for clustering in both 

of our experiments. While there exists numerous clustering algorithms (see [47] for a 

survey) each with its own advantages/disadvantages, we chose A;-means because it is 

popular in pattern recognition applications and intuitive to understand. Furthermore, 

the A;-means algorithm scales up well i f a large amount of data is available because 

the time complexity is linear in the number of feature vectors. 

A -̂means takes as input feature vectors and a user-specified k value 

corresponding to the number of clusters that should be returned. Typically the k value 

is determined by intuition about the data or through cross-validation [37, 51]. 

Initially, k feature vectors are randomly selected to be the current cluster centroids. 

The remaining feature vectors are then assigned to the cluster whose current centroid 

minimizes the Euclidean point-to-centriod distance metric. After all feature vectors 

are assigned to a cluster, new cluster centroids are computed from these groupings. 

The process then repeats for a given number of iterations or until there are little or no 

changes in the clusters. 

^-means converges to different local optima depending on the selection of the 

initial cluster centroids and so several trials are typically executed and the highest 

quality clusters are used. High quality clusters are commonly defined as having 
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maximum between-cluster variance and minimum within-cluster variance. Variance 

is measured by the between and within-cluster scatter matrices respectively: 

Pb = 2Zk(ck-c)(ck-c)J (3.3) 

Pw = X* L- (xik - Ck) (xik - ckf (3.4) 

where k= I...K, with K being the number of clusters, Ck is the centroid of cluster k, 

and c is the centroid of all the data. We combine (3.3) and (3.4) based on Fisher's 

criterion [40] in discriminant analysis which reflects the ratio of between to within-

cluster scatter. We compute the trace of the resulting matrix to form a single measure 

of quality as 

t racet iV'A) (3.5) 

where the higher the value, the better the quality. 

While A:-means is intuitive to understand and efficient for large data sets (and 

therefore may be favorable for online educational technologies that have the potential 

to log large amounts of data), it does have limitations. First, &-means assumes feature 

dimensions are independent, whereas this may not always be the case in applications 

of our framework. For example, in application of our framework we suggest 

including the frequency of interface actions and the mean and standard deviation of 

the latency between actions as features (see Section 3.1.2), yet these features are not 

necessarily independent. However, violation of this independence assumption usually 

does not affect the quality of the resulting clusters [52]. Second, &-means assumes the 

clusters are elliptical, and would be unsuccessful at identifying more complex cluster 

shapes. For example, Figure 3.2 shows two concentric circles of data points. X-means 

with k set to 2 would likely return the sub-optimal clustering shown in Figure 3.3 

instead of the clustering shown in Figure 3.4 which better represents the data. In this 

case, a more computationally expensive hierarchical algorithm [37] may be best. K-

means also produces hard assignments of feature vectors to clusters, whereas it may 

be beneficial for an adaptive learning environment basing its tutorial decisions on 

cluster membership to know the uncertainty in the assignments. Here, a probabilistic 

version of &-means called Expectation Maximization [37] may be more appropriate. 

Thus, the choice of clustering algorithm should be informed by properties of the data 

or the type of application being studied. Although we use £-means as proof of concept 
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throughout this research, we expect that other choices of clustering algorithms can be 

substituted for /c-means in our proposed modeling framework. 
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3.1.4 Cluster Analysis 

If the clusters detected by clustering are to be used in a user model to guide the 

adaptations of a learning environment (see Section 3.2), the clusters must be analyzed 

to determine which ones represent students showing effective vs. ineffective 

interaction behaviors so that appropriate adaptations can be made. This is best done 

by using objective information about learning gains from application use (e.g., 

improvements from pre to post-tests) to determine which clusters of students were 

successful learners and which were not (see dotted arrow marked 'Test Results' 

between 'Data Collection' and 'Cluster Analysis' in Figure 3.1). If learning gains are 

unknown, then intuition or expert evaluation is required to analyze and label the 

clusters in terms of learning outcomes (illustrated in Figure 3.1 by the dotted arrow 

from 'Developer' to 'Cluster Analysis'). In this case, developer or expert workload 

may still be reduced because they avoid the time-consuming process of having to 

observe individual student interactions and then look for meaningful patterns. Instead, 

they are automatically presented with a picture of common behavioral patterns (the 

clusters) from which they can make inferences about potential learning effects (by 

comparing cluster means for example). In this research, we take the first approach 

because we had pre and post-test results for both experiments. Furthermore, this 

approach allows us to validate whether or not clustering was in fact able to recognize 

meaningful interaction behaviors. 

An additional step in cluster analysis is to explicitly characterize the student 

interaction behaviors represented by the different clusters by evaluating cluster 

similarities and dissimilarities along each of the feature dimensions. While this step is 

not strictly necessary for online recognition based on supervised learner classification 

(see Section 3.2), it is useful to help developers gain insights about the different 

learning behaviors and devise appropriate adaptive interventions targeting them. 

In this research, we use formal tests to compare clusters in terms of learning and 

feature similarity. To compare two clusters (obtained when k is set to 2), we use 

Welch's t-test (Student's t-test corrected for unequal sample variances) which 

measures the difference between the means of two distributions (e.g., the distributions 

of learning gains represented by the two clusters). We consider a p value less than .05 
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to be a statistically significant difference, and a p value between .05 and .1 to be a 

marginally statistically significant difference. A p value below .05 means that there is 

a less then 5% possibility that the difference between the distributions was caused by 

chance, and a value between .05 and 1 means there is a 5-10% possibility. We also 

compute the practical significance of a difference [79] by measuring the effect size or 

the magnitude of the difference. Effect size is independent of sample size and 

therefore computing the practical significance of a difference is especially important 

with small samples, as is the case for both of our experiments, because with small 

samples the power to find a statistically significant difference, even when one exists, 

is low. For k=2 we use Cohen's d [25] to measure effect size. We consider a large 

effect (a d value greater than .8) to be practically significant, and a medium effect (a d 

value between .5 and .8) to be marginally significant as per Cohen's standard [25]. 

To compare three or more clusters (when k>2), we use one-way analysis of 

variances (ANOVAs) to measure the statistical difference between distributions. 

Again, we use .05 for statistical significance and .1 for marginal statistical 

significance. To determine practical significance when k>2, we use partial eta-
2 2 

squared (partial n ) [25, 61] to measure effect size. We consider a partial r\ value 

greater than .14 (a large effect) to be practically significant, and a value between .06 

and .14 (a medium effect) to be marginally significant [25]. With A N O V A s , a 

significant value simply means a significant difference exists between some of the 

clusters; further pair-wise comparisons must be performed to determine where the 

significant differences lie. We use the Tukey HSD adjustments [38] for post-hoc pair-

wise comparisons to find the significant differences in this case. Here again, we 

consider statistical significance to be a pmo value less than .05. We also compute 

Cohen's d during pair-wise comparisons. 

3.2 Online Recognition 

3.2.1 Supervised Classification 

Understanding the effectiveness of a student's behavior for learning is mostly useful 

i f a learning environment can adapt its interface or generate tailored interventions to 
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improve this behavior while the student is interacting with the system. Thus, the 

second phase of our modeling framework (lower left of Figure 3.1) proposes training 

a supervised classifier user model with the distinct clusters identified in the offline 

phase to recognize, or classify, new learners as they interact with a learning 

environment. Classification information can be used to guide an adaptive component 

of the learning environment in providing online adaptations. Here we describe the 

online learner classification process.. 

The clusters of learners found by &-means in the offline phase can be used 

directly to train a classifier user model. That is, once fc-means has found clusters of 

learners offline, an online fc-means classifier user model can use those clusters to 

incrementally update the classification of a new student into one of the clusters as the 

student interacts with the learning environment. As an action occurs, the feature 

vector representing the student's behavior thus far is updated to reflect the new 

observation. For example, immediately after an action, the feature dimension 

representing the frequency of that action must be recomputed to take into account the 

current occurrence. In addition, any other feature dimensions affected by this action 

(e.g., the latency dimensions after this action) must also be recomputed. After the 

feature vector representing the student's behaviors is updated, the student's 

classification is computed by simply recalculating the distances between the updated 

vector and each cluster centroid and then assigning the feature vector to the cluster 

with the nearest centroid. 

3.3 Model Evaluation 

Ideally, any model of student learning should be evaluated by testing the model's 

ability to predict the learning outcomes for new students. However, time restrictions 

prevented us from running additional user studies to collect more data to test the 

classifier user models we developed in this research. Therefore, in both of our 

experiments (see Chapters 4 and 5) we performed leave-one-out cross validation 

(LOOCV) evaluations to make use of the available data and provide initial evidence 

of the predictive accuracies of the classifiers. Here we describe this evaluation 

strategy. 
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We performed an N fold L O O C V evaluation of the classifier user models 

generated in each experiment, where N is the total number of available data points 

(feature vectors). In each fold, one student's data was removed from the training set 

of feature vectors, and then the reduced set was re-clustered by £-means (Section 

3.1.2). Next, the removed student's data (the test data) was fed into a classifier user 

model trained on the reduced feature vector set (Section 3.2), and online predictions 

were made for the incoming actions as described in Section 3.2.1. Model accuracy is 

evaluated as actions are observed, where accuracy is measured as the percentage of 

students correctly classified into the clusters to which they were assigned in the 

offline phase. 

It should be noted, however, that by using a LOOCV strategy, we run the risk of 

altering the original clusters detected in the offline phase by using the entire feature 

vector set. Therefore, we should not expect to achieve 100% accuracy even after 

seeing all the actions because the user models are classifying incoming test data given 

the clusters found by L O O C V using the reduced set of feature vectors. In supervised 

machine learning, this issue is known as hypothesis stability [49]. In [51] the authors 

extend this notion to the unsupervised setting by defining a stability cost (SC), or 

expected empirical risk, which essentially quantifies the inconsistency between the 

original clusters and those produced by L O O C V . Thus, a low SC helps to ensure that 

the original clusters are relatively resistant to distortions caused by the removal of one 

feature vector. SC is computed by 

SC = E [min* (l/N) E, I{ n(C r (x,)) * Cx(x,)}] (3.6) 

where E [•] is the expectation operator, 

/{•} is the indicator function which is 1 when the bracketed expression is true 

and 0 otherwise, 

71 (•) denotes one of the k\ permutations of the cluster labels, where k is the 

number of clusters, 

/ = 1.. .N, where TV is the number of feature vectors, 

Cx(xj) is the offline cluster label for feature vector x„ and 

Cx'fa) is the L O O C V model prediction for feature vector x,. 
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We can estimate SC by computing the quantity inside the square brackets in equation 

3.6 for each fold of the cross validation and then taking the average. Perfect stability 

(SC=0) occurs when the training labels determined in the offline phase are unchanged 

by L O O C V and the label produced for the remaining test case is the same as the 

original offline label for that feature vector. Conversely, maximum instability (SC=1) 

occurs when none of the data labels are maintained by LOOCV. We compute the 

stability cost prior to assessing predictive accuracy to ensure that the models are 

essentially predicting what we would like it to predict, i.e., the membership of the 

removed student's behavioral patterns in one of the clusters defined in the offline 

phase. 

A second shortcoming of our evaluation method is that we computed predictive 

accuracy by measuring the correspondence between the online classifications of a 

student (i.e., using only the actions observed up to a given point during that student's 

interaction) and the final classification of that student (as either an effective or 

ineffective learner) determined by offline clustering (i.e., using all of that student's 

observed actions). A more accurate evaluation would be to measure the 

correspondence between the predicted classification up to a given point and the 

student's actual classification up to that point. One way to do this would be to 

manually label every student action as effective or ineffective for learning in order to 

compare with the predicted classifications. However, such manual labeling is 

precisely what we are trying to avoid with our modeling framework. Nevertheless, 

while this evaluation is imperfect, it still provides a lower bound of our model's 

predictive power. 
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Chapter 4 

Exploratory Learning Environment 1: 

CIspace CSP Applet 

In our first attempt at applying our user modeling framework, we experiment on an 

exploratory learning environment (ELE) called the CIspace Constraint Satisfaction 

Problem (CSP) Applet. The CSP Applet is one of a collection of interactive algorithm 

visualization (AV) tools for learning common Artificial Intelligence (Al) algorithms 

(including algorithms for search, machine learning, and reasoning under uncertainty) 

called CIspace [3]. Through the use of graphs and animations, A V s aim to better 

demonstrate algorithm dynamics than traditionally static media alone. A V systems 

that fall under the category of ELEs also enable interactive exploratory learning and 

are motivated by similar theories about the benefits of active engagement as ELEs 

[60]. However, despite theories and intuitions behind AVs, reports on their 

pedagogical effectiveness have been mixed [45]. As for ELEs in general, there is 

evidence that the impact an A V will have on a user is dependent upon the way in 

which the tool is used, as well as distinguishing characteristics of the learner such as 

varying learning abilities and learning styles [45, 75]. Such reports emphasize the 

need for ELEs that use interactive AVs to provide adaptive support for individual 

students. 

In this chapter, we demonstrate how we apply our framework (Chapter 3) to 

build a user model for the CIspace CSP Applet. We first describe the CSP Applet 

interface (Section 4.1), and then present and discuss the results of applying our 

framework to build a model for it (Section 4.2). 

A version of this chapter has been published: 
Amershi, S. and Conati, C. (2006) Automatic Recognition of Learner Groups in Exploratory 
Learning Environments. In the Proceedings of the 8 t h International Conference on Intelligent 
Tutoring Systems, pp. 463-472. 
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4.1 The CIspace CSP Applet Learning Environment 

The CIspace CSP Applet (Figure 4.1) illustrates algorithm dynamics on graphs by the 

use of color and highlighting, and graphical state changes are reinforced through 

textual messages above and below the graph. 

Fife Edit View CSP Options Help 

t 
Fine Step ; Step Auto Arc-Consistency • fieset 

Create Solve j 

Arc ( E , E>B ) is inconsistent 

I / C: l 

l {1 2 3 4}/* not(E=C) • a H { 3 4 } ] 

I' 

DOMAIN-SPLITTING HISTORY: 

fl,in{1} 
B in {2} 

Figure 4.1. CIspace CSP Applet with example CSP 

A CSP consists of a set of variables, variable domains and a set of constraints 

on legal variable-value assignments. The goal is to find an assignment that satisfies 

all constraints. The CSP Applet demonstrates the Arc Consistency 3 (AC-3) 

algorithm for solving CSPs [66]. AC-3 iteratively makes individual arcs consistent by 
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removing variable domain values inconsistent with a given constraint until all arcs 

have been considered and the network is consistent. Then, i f there remains a variable 

with more than one domain value, a procedure called domain splitting can be applied 

to that variable to split the CSP into disjoint cases so that AC-3 can recursively solve 

each case or sub-network. 

A CSP is graphically represented in the CSP Applet as a network of variable 

nodes and constraint arcs (Figure 4.1 shows an example CSP in the Applet). The CSP 

Applet provides several mechanisms for the interactive execution of the AC-3 

algorithm, accessible through the button toolbar shown at the top of Figure 4.1, or 

through direct manipulation of graph elements. Note that the applet also provides 

functionalities for creating CSP networks, but we limit our analysis to only those 

relevant to solving a predefined CSP as we believe these are most influential in 

learning and therefore these were the only mechanisms evaluated in the user study. 

The Fine Step mechanism allows the student to manually advance through the 

AC-3 algorithm at a fine scale in order for the student to analyze detailed graphical 

state changes. Fine Stepping cycles through three stages carried by consecutive clicks 

of the Fine Step button. Initially, all the arcs in the network are colored blue 

indicating that they need to be tested for consistency. In the first stage, the Applet 

automatically selects a candidate blue arc, which then appears highlighted in the 

network. In the second stage, the Applet tests the arc for consistency. If it is found to 

be consistent, the arc's color will change to green and the Fine Step cycle terminates. 

If it is inconsistent, its color changes to red and a third Fine Step is needed. In this 

final stage, the Applet reduces the domain of the connected variable to remove the 

inconsistency and turns the arc green. Arcs that could have become inconsistent as a 

result of this domain reduction need to be retested and are again turned blue. The 

effect of each Fine Step is reinforced explicitly in text through a panel above the 

graph (see message above the CSP in Figure 4.1). 

The Step mechanism executes the algorithm in coarser detail. One Step 

performs all three stages of Fine Step on an arc at once. The Direct Arc Click 

mechanism allows the student to perform a Step on a given arc by clicking directly on 

it. Therefore, this mechanism gives students more control over the algorithm than 



35 

Fine Stepping and Stepping by allowing them to decide which arc to make consistent 

rather than having the applet select arcs for them. 

The Domain Splitting mechanism allows a student to divide the network into 

smaller sub-problems by splitting a variable's domain. This is done by clicking 

directly on a node in the network and then selecting values to keep in the dialog box 

that appears (Figure 4.2). The choice of variables to split on and values to keep 

affects the algorithm's efficiency in finding a solution. 

I Split The Domain... X 

Select values to keep (in the domain of E): 

0 1 r j2 03^ CM 

Select Half Select Random 

OK Cancel 

Figure 4.2. Domain Splitting dialog box 

The Backtrack mechanism recovers the alternate sub-problem set aside by 

Domain Splitting allowing for recursive application of AC-3. After Domain Splitting 

or Backtracking, the network is updated to reflect the changes and a record of these 

actions will appear in the Domain-Splitting History panel at the bottom of the Applet 

window (see Figure 4.1). 

The Auto Arc Consistency (Auto AC) mechanism automatically Fine Steps 

through the CSP network, at a user specified speed, until it is consistent. The Auto 

Solve mechanism iterates between making the CSP consistent (by Fine Stepping) and 

automatically splitting domains until a solution is found. If the CSP has more than 

one solution, then activating this mechanism again will first Backtrack to the sub-

problem that was set aside during the last automatic Domain Split, and then iterate 

again between making the CSP consistent and domain splitting until another solution 

is found, and so on. The Stop mechanism lets the student stop execution of Auto AC 

or Auto Solve at any time. 
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The Reset mechanism restores the CSP to its initial state so that the student can 

re-examine the initial problem and restart the algorithm. 

4.2 Applying Our User Modeling Framework to the CSP 

Applet 

4.2.1 Data Collection for the CSP Applet 

The data we use for this experiment was obtained from a previous user study 

investigating the effects of learning with the CSP Applet. Because one of the goals of 

the study was to gauge user preference for the CSP Applet compared to a traditional 

method of learning using paper-based sample problems (with static images and text), 

a within-subject design was used where students were exposed to both of these media 

during the learning portion of the user study. Therefore, we cannot attribute all of the 

learning gains to just the use of the CSP Applet, as would be ideal for the objectives 

of the current research (see Section 3.1.4). However, we still see some interesting and 

significant results from attempting our user modeling approach on this data, as will be 

discussed in the following sections. 

It should also be noted that during our pilot tests, before the user study was 

conducted, we observed students misusing some of the CSP Applet features (the Step 

and Auto Solve mechanisms described in Section 4.1) and so these were subsequently 

removed from the study. It would have been useful to see i f our proposed modeling 

framework was able recognize the misuse of these features as ineffective learning 

behaviors, yet, remarkably, it was still able to identify several other candidate 

behaviors that may lead to poor learning (see Section 4.2.4). The fact that by applying 

our framework we discovered other suboptimal learning behaviors that were not 

obvious to us when we observed students in the pilot tests, highlights how difficult it 

can be to recognize distinct learning behaviors in ELEs, even by application experts. 

The user study typified a study scenario in which a student learns underlying 

concepts from text-based materials, studies relevant sample problems, and finally is 

tested for understanding of the instructional material. A total of 24 undergraduate 

computer science and engineering students participated in the user study. These 
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students had sufficient background knowledge to learn about CSPs, but had no 

previous exposure to A l algorithms. 

The study followed a within-subject design. First, all of the students were given 

one hour to read a textbook chapter on CSP problems [66]. Next, the students took a 

20 minute pre-test on the material. The pre-test was marked out of 19 total marks. 

After the pre-test, each student studied two sample problems for 12 minutes using the 

CSP Applet for one problem and the paper-based medium for the other (presentation 

order was counterbalanced to avoid ordering effects). The student then had a choice 

to study with the CSP Applet or the paper-based medium for the final sample 

problem. After studying the sample problems, students were given another 20 minute, 

19 marks post-test almost identical to the pre-test except for a few different domain 

values or arcs. 

For the current experiment, we use the following data collected from the 24 

students who participated in the user study: time-stamped logged data of user 

interactions with the CSP Applet, and results from the tests administered before and 

after the study session. From the logged data we obtained 1931 user actions over 

205.3 minutes. These actions (detailed in Section 4.1) include: 

Fine Step - Executing detailed algorithm steps (selecting an arc, testing it for 

consistency, removing variable domain values). 

• Direct Arc Click - Selecting an arc and making it consistent. 

• Auto Arc Consistency (Auto AC) - Running the AC-3 automatically. 

• Stop - Stopping A uto A C. 

Reset - Resetting the CSP to its initial state. 

• Domain Split - Selecting a variable to split and specifying a sub-network for 

further application of AC-3. 

Backtrack - Recovering the alternate sub-network set aside by DS. 

4.2.2 Preprocessing for the CSP Applet 

From the logged user study data, we computed 24 feature vectors corresponding to 

the 24 study participants. The feature vectors had 21 dimensions, resulting from 

deriving three features for each of the seven actions described in the previous section: 
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(1) the average frequency of the action, (2) the average latency after the action, and 

(3) the standard deviation of the latency after the action. Recall from Chapter 3, that 

the second dimension is an indicator of student reflection, and the third dimension is 

an indicator of selectiveness since varied latency may indicate planned rather than 

impulsive or inattentive behavior and may not be as detrimental for learning. 

Although, as a general rule of thumb, 5 to 10 times as many feature vectors as 

feature dimensions is recommended to prevent model overfitting [48], we decided not 

to perform the feature selection step (Section 3.1.2) for this experiment since the 

number of feature dimensions was still lower than the number of feature vectors. 

And, as will be discussed in the following sections, without the feature selection step, 

our framework was still able to find several meaningful behavioral patterns from the 

CSP Applet data. 

4.2.3 Unsupervised Clustering for the CSP Applet 

We applied &-means clustering to the study data with k set to 2, 3 and 4 because we 

only expected to find a few distinct clusters with our small sample size. For each trial, 

we executed &-means 20 times and used the clusters that produced the highest value 

for the discriminant criterion defined in equation 3.5 (see Section 3.1.3). The clusters 

found by k set to 4 were the same as those with k set to 3 with the exception of one 

data point forming a singleton cluster. This essentially corresponds to an outlier in the 

data, and so we report only the results for k set to 2 and k set to 3. 

Figure 4.3 shows the two clusters found by A>means with k set to 2 (one cluster 

is marked with crosses while the other is marked with circles). For visualization 

purposes, Principal Components Analyses was done on the feature vectors to project 

the data from the 21D space to 2D. Therefore, low within-cluster variance and high 

between-cluster separation (as per the discriminant criterion) may not be entirely 

visible in the figure. One of the clusters found by &-means in this case consisted of 

four members, while the other had 20. 
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Figure 4.3. Clusters resulting from &-means clustering (k=2) on the CIspace CSP 

Applet data 

The three clusters found by A:-means with k set to 3 are also projected onto 2D, 

and shown in Figure 4.4. Again, one of the clusters (marked by circles) had four 

members. The second cluster (marked by crosses) had 12 members, and the third 

cluster (marked by asterisks) had eight members. 
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U + + 

, r- + 

+ 
Low Learning 2 
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O High Learning 

Figure 4.4. Clusters resulting from &-means clustering (fc=3) on the CIspace CSP 

Applet data 
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4.2.4 Cluster Analysis for the CSP Applet 

Cluster Analysis Results (k=2) 

Recall from Chapter 3 (Section 3.1.4) that when k=2, we use Welch's t-test to 

measure statistical significance, and Cohen's d to measure practical significance. We 

determine a p value less than .05 to be statistically significant, a p value between .05 

and .1 to be marginally statistically significant, and a d value greater than .8 (i.e. a 

large effect size) to be practically significant. A statistically and practically significant 

difference (/*(4.23)=2.69, p=.Q26, d=\.2\) was found in learning gains, from pre to 

post tests, between students in the two clusters found by /(-means with k set to 2. The 

cluster with high average learning gains (HL from now on) consisted of four students 

(mean learning gain=7.0 marks, standard deviation=2.68 marks), and the cluster with 

low average learning gains (LL from now on), had 20 students (mean learning 

gain=3.08 marks, standard deviation=2.62 marks) (see Figure 4.3 in Section 4.2.3). 

In order to characterize the H L and L L clusters in terms of student interaction 

behaviors, we computed the differences between the clusters along each of the 21 

dimensions. Table 4.1 summarizes these differences. Feature dimensions where 

statistically or practically significant differences were found, and the corresponding 

significant values, are highlighted in bold. 
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Table 4.1. Pair-wise comparisons between H L and L L clusters along each of the 21 

feature dimensions 

Feature Description 
HL 

average 

L L 

average 
df t P Cohen's d 

Fine Step frequency .025 .118 17.4 3.82 6e-4* 1.34* 

Fine Step latency average 10.2 3.08 3.25 3.91 .013* 1.90* 

Fine Step latency SD 12.2 4.06 4.01 4.48 .005* 2.04* 

Direct Arc Click frequency .050 .036 3.74 .057 .299 .267 

Direct Arc Click latency average 4.18 5.71 5.47 .782 .233 .331 

Direct Arc Click latency SD 3.63 5.74 11.14 .968 .177 .362 

Auto AC frequency .007 .003 3.30 1.45 .118 .700 

Auto AC latency average 23.7 36.9 22.0 .955 .175 .316 

Auto AC latency SD 20.4 12.8 4.07 .648 .276 .294 

Stop frequency .003 7e-4 3.84 2.03 .058 .935* 

Stop latency average 1.75 1.60 16.4 .132 .448 .047 

Stop latency SD 1.06 0 3.0 2.33 .051 1.16* 

Reset frequency .010 .008 3.89 .481 .329 .221 

Reset latency average 46.6 11.4 3.14 1.76 .086 .866* 

Reset latency SD 24.4 9.56 7.75 3.81 .003* 1.51* 

Domain Split frequency .003 .009 21.5 2.42 .012* .783 

Domain Split latency average 6.75 4.61 5.64 1.11 .156 .465 

Domain Split latency SD 1.37 3.04 14.92 1.66 .059 .596 

Backtrack frequency 8e-4 .002 22.0 1.25 .113 .413 

Backtrack latency average 1.75 3.68 19.8 .820 .211 .281 

Backtrack latency SD 0 3.27 19.0 1.66 .057 .524 

Significant atp<.05 or d>.% (feature description and values in bold) 

Discussion of Cluster Analysis Results (k=2) 

Here, we interpret the differences along the individual feature dimensions (listed in 

Table 4.1) where significant (statistically or practically), or marginally significant 

(statistically) differences were found, or where the results from a combination of 

dimensions were sensible. 

The results on the use of the Fine Step feature are quite intuitive (see Fine Step 

entries in Table 4.1). From the first boxplot in Figure 4.5, we can see that the students 
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in the L L cluster (LL students from now on) used this feature significantly more 

frequently than the H L students. In addition, both the latency averages and standard 

deviations after a Fine Step were significantly shorter for the L L cluster indicating 

that L L students Fine Stepped frequently and consistently too quickly (given by the 

combination of low Fine Step latency and standard deviation). This supports that L L 

students may be using this feature mechanically, without pausing long enough to 

consider the effects of each Fine Step, a behavior that may contribute to the low 

learning gains achieved by these students. 

Frequency 
(p<.0006) 

Pause Average 
(FX012) 

Pause SD 
(p<005) 

H_ LL H_ LL 

Figure 4.5. Fine Step boxplots between H L (white) and L L (gray) clusters. From left 

to right: frequency, latency average, and latency standard deviation 

The H L cluster of students used the Auto AC feature more frequently than the 

L L cluster (see 'Auto AC frequency' in Table 4.1), although the difference is not 

statistically significant. In isolation, this result appears unintuitive considering that 

simply watching the AC-3 algorithm in execution is an inactive form of learner 

engagement [60]. However, in combination with the significantly higher frequency of 

Stopping (see 'Stop frequency' in Table 4.1), these behaviors suggests that the H L 

students could be using these features to forward through the AC-3 algorithm in 

larger steps to analyze it at a coarser scale rather than just passively watching the 
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algorithm progress. Figure 4.6 shows boxplots of the Auto AC and Stop frequencies 

between the H L and L L clusters. 

Auto AC Frequency Stop Frequency 
(P<05) 

Figure 4.6. Auto AC frequency boxplot (left) and Stop frequency boxplot (right) 

between H L (white) and L L (gray) clusters 

The H L students also paused longer and more selectively after Resetting than 

the L L students (see 'Reset latency average' and 'Reset latency SD' entries in Table 

4.1). With the hindsight that these students were successful learners, we can interpret 

this behavior as an indication that they were reflecting on each problem more that the 

L L students. However, without the prescience of learning outcomes, it is likely that 

an application expert or educator observing the students would overlook this less 

obvious behavior. 

There was also a significant difference in the frequency of Domain Splitting 

between the HL and L L clusters of students, with the L L cluster frequency being 

higher (see 'Domain Split frequency' in Table 4.1). As it is, it is hard to find an 

intuitive explanation for this result in terms of its connection with H L versus L L 

student learning. However, analysis of the clusters in the following section shows 

finer distinctions along this dimension, as well as along the latency dimensions after a 

Domain Split action, between the three different clusters found by A:-means with k set 

to 3. These latter findings are more revealing, indicating that there are likely more 

than two common learning patterns. 
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Cluster Analysis Results (k=3) 

For comparing three clusters (see Section 3.1.4), we use one-way A N O V A to 

measure statistical significance (a p value less than .05), and partial n 2 to measure 

practical significance (a partial r\2 greater than .14, i.e., a large effect size). In 

addition, we use Tukey's HSD adjustments for post-hoc pair-wise comparisons (with 

PHSD less than .05 being statistically significant), and Cohen's d for measuring pair-

wise effect sizes (with a d value greater than .8 being practically significant). 

Of the three clusters found by &-means with k set to 3 (see Figure 4.4 in Section 

4.2.3), one cluster consisted of the same four students as was found by A:-means with k 

set to 2 (mean learning gain=7.0 marks, standard deviation=2.68 marks), one 

consisted of eight students (mean learning gain=2.94 marks, standard deviation=2.56 

marks), and one consisted of 12 students (mean learning gain=3.17 marks, standard 

deviation=2.77 marks). Here, we again found a statistically and practically significant 

difference (F(2,21)=3.58, /?=.045, partial r|2=.254) in learning gains between the 

clusters. The cluster of four students showed significantly (statistically and 

practically) higher learning gains than both of the other two clusters (/?HSD=-029, 

d=\.21 for the cluster with eight students, and/?HSD=-029, d=\.\6 for the cluster with 

12 students). No significant differences in learning gains were found between the two 

clusters of students with lower learning gains, suggesting that students may 

use/misuse the CSP Applet E L E in a variety of distinctive ways. Hereafter, we will 

refer to the cluster with four students as ' H L ' (high learners), the cluster with eight 

students as ' L L 1 ' (low learners 1), and the cluster with 12 students as ' L L 2 ' (low 

learners 2). 

Table 4.2 summarizes the three-way comparisons amongst the three clusters 

along each of the 21 dimensions. Feature dimensions with statistically or practically 

significant differences, and the corresponding significant values, are highlighted in 

bold. Table 4.3 summarizes the post-hoc pair-wise comparisons between the clusters 

(i.e., H L compared to LL1 , HL compared to LL2, and LL1 compared to LL2) along 

each of the dimensions. Here, feature dimensions along which any of the pair-wise 
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comparisons showed significant differences is highlighted in bold. Again, the 

significant values are also highlighted in bold. 

Table 4.2. Three-way comparisons between HL, L L 1 , and LL2 clusters along each of 

the 21 feature dimensions 

Feature Description 
H L 

average 

LL1 

average 

LL2 

average 
F P partial r\2 

Fine Step frequency .025 .111 .122 1.98 .162 .159* 

Fine Step latency average 10.2 3.07 3.08 20.4 le-5* .660* 

Fine Step latency SD 12.2 4.82 3.55 12.1 3e-4* .536* 

Direct Arc Click frequency .050 .018 .046 1.55 .237 .128 

Direct Arc Click latency 

average 
4.18 6.66 5.07 .512 .606 .047 

Direct Arc Click latency SD 3.63 5.06 6.18 .227 .799 .021 

Auto AC frequency .007 .003 .004 2.66 .093 .202* 

Auto AC latency average 23.7 16.8 50.4 1.11 .347 .096 

Auto AC latency SD 20.4 8.95 15.4 .481 .625 .044 

Stop frequency .003 3e-4 9e-4 3.00 .071 .222* 

Stop latency average 1.75 .375 2.42 .676 .519 .060 

Stop latency SD 1.06 0 0 15.8 6e-4* .600* 

Reset frequency .010 .008 .008 .160 .853 .015 

Reset latency average 46.6 18.7 6.52 6.94 .005* .398* 

Reset latency SD 24.4 14.2 6.43 5.09 .016* .327* 

Domain Split frequency .003 .018 .003 12.0 3e-4* .532* 

Domain Split latency average 6.75 8.68 1.89 12.0 3e-4* .533* 

Domain Split latency SD 1.37 6.66 .622 27.7 le-6* .725* 

Backtrack frequency 8e-4 .004 .002 .701 .508 .063 

Backtrack latency average 1.75 8.90 .202 3.21 .061 .234* 

Backtrack latency SD 0 7.96 .138 2.92 .076 .218* 

* Significant at p<.05 or partial r\2>.\4 (feature description and values in bold) 
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Table 4.3. Post-hoc pair-wise comparisons between HL, L L 1 , and LL2 clusters along 

each of the 21 feature dimensions 

Feature Description 
HL vs. LL1 HL vs. LL2 LL1 vs. LL2 

Feature Description 
/>HSD d Pwsn d Pwso D 

Fine Step frequency .142 1.10* .078 1.48* .691 .106 

Fine Step latency average le-5* 1.98* le-5* 1.85* .818 .007 

Fine Step latency SD .001* 1.68* le-4* 2.33* .395 .356 

Direct Arc Click frequency .216 .618 .751 .065 .147 .616 

Direct Arc Click latency average .389 .454 .667 .221 .449 .295 

Direct Arc Click latency SD .670 .254 .516 .420 .661 .126 

Auto AC frequency .046* .745 .076 .666 .595 .228 

Auto AC latency average .72 .476 .403 .522 .198 .471 

Auto AC latency SD .386 .466 .631 .187 .491 .262 

Stop frequency .031* 1.21* .081 .783 .449 .296 

Stop latency average .552 .966* .692 .169 .287 .387 

Stop latency SD 5e-5* 1.16* 3e-5* 1.16* .823 0 

Reset frequency .562 .276 .620 .187 .744 .070 

Reset latency average .031* .673 .002* 1.01* .194 .867 

Reset latency SD .136 1.08* .007* 1.84* .125 .601 

Domain Split frequency .003* 1.91* .820 .011 2e-4* 1.69* 

Domain Split latency average .350 .483 .019* 1.24* le-4* 1.79* 

Domain Split latency SD le-4* 2.83* .488 .527 0* 2.73* 

Backtrack frequency .358 .611 .721 .220 .342 .365 

Backtrack latency average .167 .745 .667 .648 .028* .934* 

Backtrack latency SD .118 .867* .811 .556 .042* .851* 

* Significant atPHSD<-05 or d>.$ (feature description and values in bold) 

Discussion of Cluster Analysis Results (k=3) 

Here, we again interpret the results (see Tables 4.2 and 4.3) of individual or 

combinations of dimensions in order to characterize the interaction behaviors of 

students in each of the three clusters found by &-means with k set to 3. 

Similar distinguishing Fine Step behaviors, as were identified by A:-means with k 

set to 2, were also found between the H L cluster of students and both L L clusters. 

First, there was a trend of both the LL1 and LL2 clusters having a higher frequency of 
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Fine Stepping than the HL cluster (see H L , LL1 and LL2 averages of the 'Fine Step 

frequency' dimension in Table 4.2). This, however, was only practically significant 

and not statistically significant (see 'Fine Step frequency' in Tables 4.2 and 4.3). 

Second, the average latency after a Fine Step was significantly longer for the H L 

students than for both the LL1 and LL2 students (see 'Fine Step latency average' 

entries in Table 4.2, and in Table 4.3 under ' H L vs. L L 1 ' and ' H L vs. LL2 ' ) . And 

third, the standard deviation of the latency after a Fine Step was significantly higher 

for the HL students than for both the LL1 and LL2 students (see 'Fine Step latency 

SD' entries in Table 4.2, and in Table 4.3 under ' H L vs. L L 1 ' and ' H L vs. LL2 ' ) . As 

for the L L cluster found when k was set to 2, the latter two results show that L L 

students consistently tend to pause for a shorter duration after a Fine Step than H L 

students. Given that both the L L clusters showed low learning gains, these results 

would again suggest that L L students are typically less attentive to the results of a 

Fine Step action and this behavior may negatively affected their learning. Figure 4.7 

illustrates the cluster differences along the Fine Step dimensions. 

Frequency 
(NA) 

Pause Average 
(F=20.36p FX00001) 

Pause SD 
(F=12.11, p<-0003) 

LL2 H . LL1 LL2 

Figure 4.7. Fine Step boxplots between HL (white), LL1 (light gray), and LL2 (gray) 

clusters. From left to right: frequency, latency average, and latency standard deviation 
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The Auto AC frequency, Stop frequency, and Reset latency average and SD 

differences, between the H L and L L clusters found by &-means with k set to 2, were 

also replicated between the H L and L L clusters (both LL1 and LL2) with k set to 3. 

That is, the H L students used the Auto AC feature more frequently than the L L 

students. Unlike with the two clusters found with k set to 2 however, this difference 

was significant (see 'Auto AC frequency' entry in Table 4.2), with the significant 

difference being between the H L and LL1 clusters (see 'Auto AC frequency' entry in 

Table 4.3 under ' H L vs. LL1 ' ) . And again, the H L students Stopped the Auto AC 

feature more frequently than both the LL1 and LL2 students (see the 'Stop frequency' 

averages under ' H L average', 'LL1 average' and 'LL2 average' in Table 4.2). This 

difference was significant (see 'Stop frequency' entry in Table 4.2) with the 

significant difference again being between the H L and LL1 clusters (see 'Stop 

frequency' entry in Table 4.3 under ' H L vs. LL1 ' ) . Like with the analysis of the 

clusters found with k set to 2, the combination of frequently starting and Stopping the 

Auto AC feature may indicate that the H L students were using these features to 

selectively forward through the AC-3 algorithm to learn. Finally, the H L students 

paused longer and more selectively after Resetting than both the LL1 and LL2 

students (see 'Reset latency average' and 'Reset latency SD' entries in Tables 4.2 and 

4.3), suggesting the H L students may be reflecting more on each problem. 

This clustering also reveals several additional patterns, not only between the 

H L and L L clusters, but also between the two L L clusters, indicating that k=3 was 

better at discriminating between different learning patterns. For example, the clusters 

found with k set to 2 showed that the L L students used the Domain Split feature more 

frequently than the H L students, however, the clustering results from k set to 3 reveals 

a more complex pattern. This pattern is most easily visualized in the boxplots in 

Figure 4.8. An A N O V A showed that a significant difference did exist along the 

'Domain Split frequency' dimension (see corresponding entry in Table 4.2), but the 

pair-wise comparisons revealed that only the LL1 cluster made significantly more 

frequent use of the Domain Split feature (see 'Domain Split frequency' entries in 

Table 4.3 under ' H L vs. L L 1 ' and 'LL1 vs. LL2 ' ) . Furthermore, although the H L and 

LL2 clusters used the Domain Split feature comparably frequently, the H L students 



49 

paused for significantly longer than the LL2 students after each Domain Split (see 

'Domain Split latency average' entries in Table 4.2, and in Table 4.3 under ' H L vs. 

LL2' ) . This feature is intended to require thought about efficiency in solving a CSP 

given different possible Domain Splits, and so longer pauses may be needed to 

thoroughly consider the choices. This would support the fact that the H L students 

showed higher learning gains than the LL2 students. However, it is interesting that 

the LL1 students paused for just as long after Domain Splitting as the H L students 

(i.e., significantly longer than the LL2 students as reported for the 'Domain Split 

latency average' dimension in Table 4.3 under 'LL1 vs. LL2 ' ) , and more selectively 

than both the H L and LL2 students (see 'Domain Split latency SD' entries in Table 

4.2, and in Table 4.3 under ' H L vs. L L 1 ' and 'LL1 vs. LL2 ' ) , yet still had low 

learning gains. The LL1 cluster is also characterized by longer pauses after 

Backtracking than both the H L and LL2 clusters (see HL, LL1 and LL2 averages for 

the 'Backtrack latency average' dimension in Table 4.2). Long pauses after each of 

these actions (i.e., Domain Splitting and Backtracking) may indicate that the LL1 

students were confused about these applet features or the concepts of domain splitting 

and backtracking. Once again, these complex behaviors may be difficult to identify 

through mere observation. 
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DS Frequency 
(F=11.96, p<0003> 

DS Pause Ave. DS Pause SD Backtrack Pause Ave. Backtrack Pause SD 
F=12.00, p<0003> (F=2?.68, p^OOOOl) , (F=*3.21. p<-06) , , (F=2.92 p<.07) 

H_ LL1 LL2 H_ LL1 LL2 H_ LL1 LL2 H_ LL1 LL2 H_ LL1 LL2 

Figure 4.8. Domain Split and Backtrack boxplots between H L (white), LL1 (light 

gray), and LL2 (gray) clusters. From left to right: Domain Split frequency, Domain 

Split latency average, Domain Split latency standard deviation, Backtrack latency 

average, and Backtrack latency standard deviation 

4.2.5 Supervised Classification for the CSP Applet 

In this section we evaluate both a two and three-class &-means classifier user model 

(see Section 3.2.1) trained with clusters detected in the offline phase of our user 

modeling framework (described in the previous sections). These classifier user 

models can then take online data on a new student's interaction with the CSP Applet 

(represented as a sequence of feature vectors), and recognize or classify that student 

into one of the clusters detected in the offline phase. To evaluate both of the models, 

we followed the model evaluation process described in Section 3.3. That is, we 

performed a 24-fold leave one out cross validation (LOOCV) of the classifier models 

constructed for the CSP Applet via our user modeling framework. For both models, 

we first tested the stability of the original clusters (detected in the offline phase) 

against distortions caused by the removal of one data point using the L O O C V 

strategy. Recall that this is done by computing the stability cost (see Equation 3.6 in 

Section 3.3) which measures the inconsistency between the original clusters and those 

produced using the L O O C V strategy. We then evaluated the predictive accuracies of 

the models, or the percentage of students correctly classified into the clusters in which 
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they were originally assigned to in the offline phase, in order to provide evidence of 

each model's ability to generalize to unseen data. 

A"-means Classifier Model Evaluation {k=2) 

The estimated stability cost of using the L O O C V strategy to evaluate the classifier 

user model trained with the two clusters found with k set to 2 is 0.05 (averaging over 

the 24-folds). As discussed in Section 3.3, a low cost indicates that the two clusters 

(HL cluster=4 students, L L cluster=20 students) found by ft-means clustering are 

relatively stable during the L O O C V evaluation. Therefore, a classification by the 

model means that the new student's learning behaviors are similar to those of either 

the H L or L L clusters identified in the offline phase and described in Section 4.2.4. 

Figure 4.9 shows the performance of the two-class A>means classifier user 

model in predicting the correct classifications of new students (using the LOOCV 

strategy) as they interact with the CSP Applet. The percentage of correct 

classifications is shown as a function of the percentage of student actions the model 

has seen (solid line labeled 'Overall' in the figure's legend). The figure also shows 

the model's performance in classifying H L students into the HL cluster (dashed line) 

and L L students into the L L cluster (dotted line). For comparison purposes, the figure 

also shows the performance of a baseline model using a most-likely class 

classification method where new student actions are always classified into the most-

likely, or largest, class. Therefore, this baseline model always classifies new student 

actions into the L L cluster (20 students). This is shown in Figure 4.9 by the dashed 

line straight across at the 83.3% (20 out of 24) classification accuracy level. 
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Figure 4.9. Performance of the CSP Applet user models (k=2) over time 

These trends show that the overall accuracy of this classifier user model 

improves as more evidence is accumulated, converging to 87.5% after seeing all of 

the student's actions. Initially, the classifier user model performs slightly worse than 

the baseline model, but then outperforms the baseline model after seeing about 30% 

of the student's actions. The accuracy of the classifier model in recognizing L L 

students remains relatively consistent over time, converging to approximately 90%. In 

contrast, the accuracy of the model in recognizing HL students begins very low, 

reaches relatively acceptable performance after seeing approximately 40% of the 

student's actions, and eventually converges to approximately 75% after seeing all of 

the student's actions. It should be noted that the baseline approach would consistently 

misclassify H L students and thus interfere with the unconstrained nature of E L E 

interaction for these students. 

The L L and H L cluster accuracies effectively measure the sensitivity and 

specificity of the classifier user model, respectively. That is, the L L cluster accuracy 

measures how well the model detects behaviors that may be suboptimal for learning 
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when the learning outcomes for the student are poor, and the H L cluster accuracy 

measures the performance of the model at recognizing effective learning behaviors 

when the student's learning gains are indeed high. Table 4.4 shows the accuracy, 

sensitivity, and specificity of the classifier user model averaged over time, as well as 

the accuracy of the baseline model averaged over time. 

Table 4.4. Classification accuracies of the CSP Applet user models (k=2) averaged 

over time 

A -̂means Classifier Baseline Model User Model Baseline Model 

Overall Accuracy 88.3% 83.3% 
Sensitivity (True Positive Rate) 93.5% 100% 
Specificity (True Negative Rate) 62.6% 0% 

The accuracy results show that the classifier user model built via our modeling 

framework would outperform a baseline model that uses the most-likely class 

classification method (88.3% accuracy averaged over time for the classifier user 

model compared to 83.3% accuracy for the baseline model). Furthermore, the high 

sensitivity result of the classifier user model (93.5%) shows that this model would be 

almost as good as the baseline model for quickly recognizing when a student behaves 

in ways ineffective for learning, essential for providing adaptive support for students 

who do not learn well with a given learning environment. However, the relatively low 

specificity (62%) of the classifier model, although better than that of the baseline 

model, may result in the system interfering with an H L student's natural learning 

behavior, thus hindering student control, one of the key aspects of ELEs. The 

imbalance between sensitivity and specificity is likely due to the distribution of the 

sample data [82] as the H L cluster has fewer data points than the L L cluster (4 

compared to 20). This is a common phenomenon observed in classifier learning. 

Collecting more training data to correct for this imbalance, even i f the cluster sizes 

are representative of the natural population distributions, may help to increase the 

specificity rate of the classifier user model [82]. 
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.rv-means Classifier Model Evaluation (k=3) 

The stability cost for using the L O O C V strategy to evaluate the three-way classifier 

user model is estimated at 0.09. The stability cost for this classifier is slightly higher 

than for the two-class classifier, although it is still quite low. This is likely due to the 

decreased cluster sizes with the higher k value (HL cluster=4 students, L L 1 cluster=8 

students, LL2 cluster=12 students). With smaller clusters, removing a data point is 

more likely to produce different clusterings during L O O C V than with larger clusters, 

and therefore smaller clusters are less stable. 

Figure 4.10 shows the overall prediction accuracy as a function of the number 

of observed student actions for this classifier user model (solid line). For comparison 

purposes, the figure also shows the performance of a most-likely class baseline user 

model (dashed line) which always classifies student actions into the largest class 

(LL2, with 12 students). Again, the classifier user model's accuracy improves with 

more observations, starting off at about 50% accuracy, but then reaching 

approximately 83.3% after seeing all of the actions. After seeing approximately 30% 

of the student actions, the classifier user model outperforms the baseline model which 

has a consistent, 50% (12 out of 24) accuracy rate. 
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Figure 4.10. Performance of the CSP Applet user models (k=3) over time 

Figure 4.11 shows the prediction accuracy trends for the individual clusters. For 

the HL cluster, the classification accuracy (dashed line) again begins very low, but 

reaches 75% after seeing about 40% of the actions, and then eventually reaches 100% 

after seeing all of the actions. The accuracy of the model at classifying LL1 students 

(dotted line), also begins low, but then reaches approximately 75% after seeing about 

60% of the actions, and converges to approximately 85%. The accuracy for the LL2 

students (solid line), remains relatively consistent as actions are observed, eventually 

reaching approximately 75%. 
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Figure 4.11. Performance of the CSP Applet user models (k=3) over time for the 

individual clusters 

Table 4.5 reports the overall accuracy, sensitivity (averaged over both the L L 

clusters) and specificity of the three-way classifier user model averaged over time, as 

well as the overall accuracy of the baseline model. Again, the overall accuracy of the 

classifier user model is higher than the baseline model (66.2% compared to 50%). As 

with the increase in the stability cost, the lower accuracy, sensitivity and specificity of 

this classifier user model is likely an artifact of the fewer data points within each 

cluster. Further supporting this hypothesis is the fact that the LL2 cluster, which had 

12 members, had the highest classification accuracy (80.3% averaged over time) (as 

seen in Figure 4.11), whereas the H L and LL1 clusters, which had only 4 and 8 

members respectively, had visibly lower classification accuracies (66.3% and 44.9% 

averaged over time, respectively) (see Figure 4.11). Therefore, as the number of 

clusters increases, more training data should be collected and used when applying our 

user modeling framework. 

file:///J_J_


Table 4.5. Classification accuracies of the CSP Applet user models (k=3) averaged 

over time 

^-means Classifier 
User Model Baseline Model 

Overall Accuracy 66.2% 50.0% 
Sensitivity (True Positive Rate) 66.1% 100.0% 
Specificity (True Negative Rate) 66.3% 0.0% 
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Chapter 5 

Exploratory Learning Environment 2: 

ACE 

The second application we use to test our proposed user modeling framework on is 

the Adaptive Coach for Exploration (ACE) [19], an intelligent E L E for the domain of 

mathematical functions. A C E ' s interface provides tools to support student-led 

exploration of the target domain while an adaptive Coach guided by a knowledge-

based user model (see Section 5.1) provides tailored suggestions on how to improve 

exploration. 

The A C E environment is comprised of three units, each designed to present 

concepts pertaining to mathematical functions in a distinct manner. The Machine Unit 

lets students feed various input values into a function and then observe the output 

values produced, with the aim of demonstrating the relationship between function 

inputs and outputs. Within the Arrow Unit, the student makes the connection between 

inputs and outputs herself by drawing lines between values in the given sets. A C E ' s 

Plot Unit offers the widest range of exploratory activities out of all the units by 

enabling students to experiment with textual as well as graphical function 

representations. This makes the Plot Unit an ideal candidate to evaluate our modeling 

framework and, therefore, we focus on the Plot Unit for the rest of this research. 

In this chapter, we first describe ACE ' s Plot Unit and the interface actions that 

make up possible student interaction behaviors (Section 5.1). Then we present the 

results of applying our user modeling framework outlined in Chapter 3 to A C E 

(Section 5.2). 

A version of this chapter has been accepted for publication: 
Amershi, S. and Conati, C. (2007) Unsupervised and Supervised Machine Learning in User 
Modeling for Intelligent Learning Environments. To Appear in the Proceedings of the 10th 

International Conference on Intelligent User Interfaces. 
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A C E ' s Plot Unit interface (see Figure 5.1) is divided into three components. Function 

exploration occurs within the top-left panel of the interface. Directly below this is a 

panel through which A C E ' s Coach displays tailored, on-demand hints to guide the 

student's exploration. The component at the right contains hypertext help pages about 

A C E ' s interface and the functions that can be explored. 

File Go To Coaching Tools 

next #»x#*f o** 

[\ <\ % m~ 1 1 tx-3 *2,3 III MM ; . 

Gel Hint 

Before you leave this example, why don't you try scaling the 
function by a large positive value. 
Think about how this affects the function equation. 

m 

The Plot Unit 

In the Plot unit, you will get a sense of what a function 
looks like when plotted on a graph-
Notice also how the equation changes as you move the 
function around the screen and change its parameters. 

• What do 1 do? 

• What win I lean? 

Tift ACE r » p Pares 

Figure 5.1. A C E interface 

The main exploration component of the Plot Unit (see Figure 5.2), visually 

demonstrates the relationship between mathematical equations and their 

corresponding plots in a Cartesian coordinate plane. Given a new function, students 

can experiment with different function parameters by editing the equation at the 

bottom of the panel (an equation change action) and analyzing the effects of the 

changes on the plot, or they can directly manipulate the plot (a plot move action) and 

examine how the equation parameters adjust to reflect the transformation. The middle 
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magnifying glass button on the toolbar next to the function equation (see the 

magnifying glass icons at the lower left of Figure 5.2) lets the student reset the 

current function to its initial parameter values at any time. 

Zooming capabilities are also accessible through the toolbar next to the function 

equation (see the zoom-in, '+', and zoom-out, magnifying glass icons at the lower 

left of Figure 5.2). These allow students to inspect the plot at different scales. 

Figure 5.2. Main exploration component of ACE ' s Plot Unit 

A C E ' s Plot Unit provides three types of functions, or exercises, for the student 

to explore: constant, linear and power functions. Each function type has an associated 

set of 'exploration cases' that together illustrate the full range of function attributes. 

For example, constant functions are defined by a single parameter that specifies the y-

intercept attribute of the function. Therefore, in order to gain a broad understanding 

of constant functions, the student should study the two relevant exploration cases: 

positive intercepts and negative intercepts. In another example, linear functions are 

defined by two parameters specifying the function slope and the y-intercept. Here, the 
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student should study the following relevant exploration cases: positive and negative 

intercepts, and positive, negative and zero slopes. 

A standard curriculum is pre-defined for the Plot Unit and contains several 

exercises for students to explore. Students can advance sequentially through this 

curriculum by using the next exercise button at the top right of the coordinate plane 

(see Figure 5.2). The forward arrow on the button toolbar (top left of the coordinate 

plane in Figure 5.2) is equivalent to the next exercise button. Correspondingly, the 

backward arrow button steps backwards through the curriculum. Students are also 

free to explore the exercises in any order by using the Lesson Browser tool 

(accessible by clicking on the scroll icon on the toolbar). The Lesson Browser (see 

Figure 5.3) outlines the curriculum and lets the student decide which exercise to 

examine next. 

The A C E interface also offers an Exploration Assistant tool (accessible by 

clicking on the street-sign icon on the toolbar) that can help students monitor and 

strategically plan their exploration within each exercise. The tool displays the relevant 

exploration cases for the current function type, and marks the cases that the student 

has already explored. For example, Figure 5.4 shows that the student has explored the 

positive intercept and negative intercept cases of a linear function, but has not yet 

experimented with the zero, positive or negative slope cases. This kind of monitoring 

[42] is an important meta-cognitive activity believed to benefit learning by helping 

students be proactive in their exploration. 
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Figure 5.3. Lesson Browser Figure 5.4. Exploration Assistant 

A C E includes a knowledge-based user model of student exploration behavior 

(see Section 2.4) that guides the Coach's hints and interventions to improve those 

behaviors that are deemed to be suboptimal [17]. The model is a hand-constructed 

Dynamic Bayesian Network (DBN) that includes nodes to represent all possible 

exploration cases, nodes to represent student understanding of related mathematical 

concepts, and links representing how exploration of relevant cases relate to concept 

understanding. To assess whether a case has been explored effectively, the network 

includes information on student actions (only the plot move and equation change 

actions described above) and the latency between these actions. The latter is used as 

an estimate of a student's active reasoning on each exploration case. The network 

parameters (i.e., multi-valued prior and conditional probability tables for each node) 

were manually defined using prior knowledge or estimations. 

On demand hints can be obtained from the Coach using the Get Hint button 

below the plot panel, which displays increasingly detailed hints on what cases to 

explore next based on the model's current assessment of the student's progress (see 

text at the bottom of Figure 5.1). In addition, the Coach intervenes through a dialog 

window (see Figure 5.5) i f the student tries to move to a new exercise before 

sufficiently exploring the current one. In this situation the Coach tries to encourage 
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the student to continue exploring the current exercise by offering them a hint i f they 

stay. However, in keeping with the theme of student-controlled exploration, the 

student ultimately decides whether or not to move on by selecting either the Stay or 

Move On button presented in the dialog window. 

I donT think you I M V « *xplor«d tl.i* n t r t t t i «rw>uQr» 

i* yow tt*y, y*u c*n Q « * him. 

Stay j Movif or* 

Figure 5.5. Example Coach intervention 

5.2 Applying Our User Modeling Framework to ACE 
5.2.1 Data Collection for ACE 

The data we use for the current research was obtained from a previous user study 

investigating how to model meta-cognitive behaviors of students using the A C E Plot 

Unit [31, 56]. The particular meta-cognitive behavior studied is known as self-

explanation [24]. Self-explanation is the domain-independent skill of self-generating 

interpretations and reasoning about instructional material. This behavior has been 

shown to improve learning [24, 26, 39] and so is modeled in A C E ' s D B N (discussed 

above in Section 5.1) as one of the factors that determine the effectiveness of a 

student's exploration. 

The original A C E ' s user model used only the latency between two actions as 

implicit evidence of a self-explanation episode. However, latency alone is not a 

robust measure of self-explanation as it does not even assure that the student is 

attending to the material. For this reason, eye-tracking data was obtained during the 

user study to investigate whether the addition of specific eye-gaze patterns would 

better estimate self-explanation of individual exploration cases. The eye-gaze patterns 

explored were direct and indirect gaze shifts between the plot and equation areas, 

because, intuitively, shifting attention between the plot and equation areas is a good 

indication of self-explanation of the current exploration case. Figure 5.6 shows an 

example of a direct gaze shift pattern after an exploratory action in the Plot Unit. Here 
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the student's gaze starts from the function equation and shifts directly to the plot 

region, suggesting that the student was trying to understand the connection between 

the equation and plot. An indirect gaze shift is defined as moving from one of these 

regions, to a non-salient region and then to the other salient region. 

5 

4 

3 

Figure 5.6. Example gaze shift 

A total of 36 students participated in the user study. The participants were all 

university students that had not taken high school calculus or college level math. 

Before using A C E , each student took a 15 minute pre-test on mathematical functions. 

Then the student interacted with A C E for as much time as needed to experiment with 

all the units. Each unit was equipped with several exercises for the student to explore, 

with the Plot Unit providing three exercises corresponding to the three available types 

of functions (constant, linear, and power). While using A C E , students were asked to 

follow a think-aloud protocol in which they should try to verbalize all of their 

thoughts. The student's gaze was tracked by a head-mounted, Eyelink I eye-tracker 

developed by SR Research Ltd., Canada. In addition, all student interactions with 

A C E were time-stamped and logged, and were synchronized with the raw data from 

the eye tracker. Finally, the students took another 15 minute post-test that differed 

from the pre-test only on parameter values and question ordering. 

For the research presented in this thesis we only used the data involving A C E ' s 

Plot Unit from the previous user study. The pre and post-tests used in the previous 
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study were devised in such a way as to evaluate relevant knowledge gained from each 

A C E unit separately. This allowed us to extract the test results for only the Plot Unit. 

For the purposes of the current research, we use 3783 interface actions (recorded over 

673.7 minutes) obtained from the previous study's log files, along with the 

accompanying gaze shift data computed from the eye-tracker. The 13 types of 

interface actions (detailed in the previous section) include: 

• Plot Move (PM) - Dragging the function plot around the screen. The parameters 

of the function's equation are automatically adjusted to reflect the transformation. 

Equation Change (EC) - Editing the function equation. A C E transforms the 

function plot accordingly. 

Reset - Resetting the function to its initial parameters. 

Next Exercise (NE) - Stepping sequentially forward to the next exercise in the 

pre-defined curriculum by clicking on the NE button. 

Step Forward (SF) - Same as NE action, but done by clicking on the forward 

arrow button. 

Step Back (SB) - Stepping backwards to the previous exercise by clicking on the 

backward arrow button. 

• Lesson Browser (LB) - Opening the LB tool which outlines the curriculum and 

allows the student to jump to any exercise within the curriculum. 

Exploration Assistant (EA) - Opening the EA tool which displays the exploration 

cases already examined by the student and remaining to be examined. 

Get Hint (GH) - Requesting a hint from the Coach. 

Stay - Adhering to the Coach's advice to continue exploring the current exercise. 

Move On (MO) - Ignoring the Coach's advice to stay on the current exercise and 

moving on to another one. 

Help - Using the hypertext help pages. 

Zoom - Zooming into or out of the graph region. 

The data from the previous user study was also used to build a new version of 

the A C E user model [29] using a supervised data-based approach with hand-labeled 

data (see Section 2.4). This new model used gaze information, in addition to latency 

between actions, to assess effectiveness of student exploration for learning. The use 
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of the gaze information was limited to direct and indirect gaze shifts only after an 

equation change or plot move action. Although gaze shifts may also be relevant after 

other interface actions, this work was limited to equation changes and plot moves 

because of the effort required to generate the hand labeled data necessary to train the 

user model. Two researchers (to assure coding reliability) labeled each student's 

verbalizations after every equation change and plot move as an instance of reflection 

or speech not conducive to learning. Then, they mapped the labels onto 

presence/absence of gaze shifts and latency until the next action. This new model 

showed better performance in assessing effectiveness of student exploration than 

models using only action occurrences or action occurrences plus latency information, 

showing the value of eye-tracking data for this type of assessment. In the following 

sections, we compare the results of applying our framework to the data described 

above, with the results obtained by the supervised data-based approach in [29]. 

5.2.2 Preprocessing and Unsupervised Clustering for ACE 

We extracted two different sets of features from the A C E study data. The first set 

(FeatureSetl) consisted only of interface features, i.e. frequencies of each of the 13 

possible interface actions (see Section 5.2.1) and the mean and standard deviation of 

the latency between actions. Recall that the latency dimensions are intended to 

measure the average time a student spends reflecting on the results on an action, as 

well as the general tendency of the student to spend time reflecting on that action. 

This feature set is analogous to the one used in our first experiment (Chapter 4). We 

chose this feature set in order to evaluate how our modeling framework transfers 

across different applications using the same type of input data. 

The second feature set (FeatureSet2) included features distilled from the eye-

tracking data in addition to the above interface features. We chose this set for two 

reasons. First, we wanted to evaluate how our approach works on a range of different 

data sources. Second, we wanted to see if we could reproduce results in [29], showing 

that eye-tracking information improves assessment of the effectiveness of student 

exploration (see Section 5.2.1). In particular, we hypothesized that eye-tracking data 

would improve the performance of clustering in identifying groups of students with 
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distinct learning proficiency. Figures 5.7a and 5.7b show an example of how the 

inclusion of eye-tracking data helps to reveal clusters of similar behavioral patterns. 

The histogram on the left shows the distribution of the time spent reflecting on the 

results of a particular action over all of the students. No clusters are visible within this 

roughly Gaussian distribution. However, two clusters are apparent within the plot of 

gaze shifts against time after the same action on the right in Figure 5.7b (one cluster 

is marked with crosses while the other is marked with circles). And in fact these two 

clusters are identified by clustering, using FeatureSet2, and are discussed in detail 

later in this section. 
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Figures 5.7a and 5.7b. Histogram of time spent after an action (left), plot of gaze shift 

versus time with two visible clusters (right) 

Although in [29] the authors only considered gaze shifts after plot move and 

equation actions, they may be relevant after most A C E interface actions. For 

example, after a next exercise action, a new function appears on the screen requiring 

attention to both the plot and equation regions in order to understand the connection 

between the new function equation and its plot. In another example, when the Coach 

presents a hint after a get hint action (e.g., "Why don't you try a large negative 

number as the input?"), the student may attend to the graph and equation regions 

while considering the Coach's advice and deciding whether or not to follow the 

suggestion. Since, contrary to the supervised data-based approach in [29], considering 

more actions in our approach does not involve much extra work, we included gaze 
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shift information for all of the 13 interface actions in FeatureSet2 by computing the 

mean and the standard deviation of the number of indirect and direct gaze shifts as 

additional features. It should be noted, however, that we do not see a meaningful 

connection between the Lesson Browser and the current function, and so we 

hypothesize that associations between gaze shift patterns and the use of this tool may 

be inappropriate. However, we retain gaze shift features for this tool in order to 

evaluate this conjecture with the results from feature selection. 

FeatureSetl and FeatureSet2 included 39 and 91 possibly influential features, 

respectively. With only 36 feature vectors corresponding to the 36 study participants, 

these high-dimensional feature spaces can result in data sparseness and may degrade 

the performance of clustering. Therefore, as outlined in our modeling framework 

(Chapter 3), we performed entropy-based feature selection (see Section 3.1.2) on each 

set in order to isolate the most discriminatory features. Recall that the feature 

selection method we use returns both a set of relevant features, as well as the resulting 

clusters using that feature set. It does this by, first, ranking each feature in a set 

according to the entropy (see Equation 3.1 in Section 3.1.2) induced by the removal 

of that feature from the data. Next, forward selection is run on the ranked features 

using the cluster quality criterion, defined as maximum between-cluster variance and 

minimum within-cluster variance (see Equation 3.5 in Section 3.1.2), to assess feature 

subset performance in clustering. As for our first experiment, we used k set to 2, 3 

and 4 for the A>means clustering executed during forward selection. Again, we chose 

these values because our data set was relatively small and so we only expected to find 

a few clear groups with distinct learning outcomes. 

Table 5.1 shows the number of features selected as relevant by feature selection 

on FeatureSetl and the number of students assigned to each of the resulting clusters 

for each case (i.e., for k set to 2, 3 and 4). Figures 5.8 to 5.10 show the resulting 

clusters for each case projected from the original spaces (selected by feature selection 

on FeatureSetl) onto 2D for visualization purposes. As the table shows, most of the 

interface related features (between 34 and 37 features) were retained by the automatic 

feature selection method that we used (see the number of features selected in Table 

5.1). The features that were removed were all related to the standard deviations of the 
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latency after some of the interface actions. For example, when k was set to 2, the only 

four features found to be irrelevant were the standard deviations of the latency after 

Lesson Browser, Exploration Assistant, Get Hint, and Stay actions. Note that while 

the general rule of thumb would suggest using between 3 to 7 features (for 36 feature 

vectors) for model learning [48], because we are trying to reduce the time and effort 

required of application and domain experts with our user modeling framework, we 

decided against the time-consuming and potentially inaccurate manual analysis of the 

features that would have been required to reduce the dimensionality of the feature 

space further (see Section 3.1.2). 

Table 5.1. Number of features selected and cluster sizes for FeatureSetl 

# selected / 
total 

features 

Cluster 1 
size 

Cluster 2 
size 

Cluster 3 
Size 

Cluster 4 
Size 

2 35/39 28 8 

3 34/39 7 13 U, 

4* 37/39 5 9 2 18 

* Two data points, forming singleton clusters, were removed. 
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Figure 5.8. Clusters resulting from &-means clustering (k=2) on the features selected 

from FeatureSetl 
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Figure 5.9. Clusters resulting from &-means clustering (k=3) on the features selected 

from FeatureSetl 
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Figure 5.10. Clusters resulting from &-means clustering (k=4) on the features selected 

from FeatureSetl 

Table 5.2 shows the number of features selected from FeatureSet2 and the 

number of students assigned to each of the resulting clusters for each case (i.e., for k 

set to 2, 3 and 4). Again, Figures 5.11 to 5.13 show the resulting clusters for each case 

projected onto 2D. 
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Table 5.2. Number of features selected and cluster sizes for FeatureSet2 

k 
# selected / 

total 
features 

Cluster 1 
size 

Cluster 2 
size 

Cluster 3 
size 

Cluster 4 
Size 

2 36/91 11 25 

3 33/91 10 10 16 

4 37/91 8 8 4 16 
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Figure 5.11. Clusters resulting from A;-means clustering (k=2) on the features selected 

from FeatureSet2 
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Figure 5.13. Clusters resulting from &-means clustering (k=4) on the features selected 

from FeatureSet2. 

Approximately one third of the same features from FeatureSet2 were found to 

be relevant by feature selection for each of the three cases, i.e., k set to 2, 3 and 4 (see 

the number of features selected in Table 5.2). Again, we decided against performing 

manual feature selection to reduce the number of feature dimensions further. As we 

shall see in the following Cluster Analysis section, we only found significant 
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differences in student learning gains between the two clusters obtained by feature 

selection (and consequent A:-means clustering) on FeatureSet2 with k set to 2 (see 

Figure 5.11). Therefore, for the rest of this section we focus on the feature selection 

results from this case. Table 5.3 lists the top 36 features selected by feature selection 

from FeatureSet2 (k=2) and their rank. Table 5.4 lists the 55 (ranked) features 

discarded by feature selection for this case. It is important to note that the rankings 

obtained do not necessarily relate directly to the relevance of each individual feature. 

For example, some features may only be important in combination with another top 

ranked feature or subset of features and may be inconsequential independently. In 

light of this, we do not take rank into consideration when discussing the selected 

features in this section. 

Table 5.3 Features selected from 

FeatureSet2 (k=2) 

Relevant Features 

Rank Feature Description 

14 PM frequency 
31 EC frequency 
9 EC latency average 
30 EC latency SD 
21 EC indirect average 
19 EC indirect SD 
8 Reset frequency 

36 Reset latency SD 
20 NE frequency 
5 NE latency average 
18 NE latency SD 
6 NE indirect average 
7 NE indirect SD 
10 NE direct average 
22 NE direct SD 
27 SF frequency 
2 SF latency average 
1 SF latency SD 

28 SB frequency 
23 SB latency average 
33 SB indirect average 
32 LB frequency 
11 EA frequency 
26 EA latency average 
13 GH frequency 

Table 5.4 Features discarded from 

FeatureSet2 (k=2) 

Irrelevant Features 

Rank Feature Description 

40 PM latency average 
67 PM latency SD 
45 PM indirect average 
50 PM indirect SD 
66 PM direct average 
72 PM direct SD 
81 EC direct average 
84 EC direct SD 
51 Reset latency average 
58 Reset indirect average 
42 Reset indirect SD 
53 Reset direct average 
38 Reset direct SD 
46 SF indirect average 
49 SF indirect SD 
47 SF direct average 
52 SF direct SD 
61 SB latency SD 
62 SB indirect SD 
63 SB direct average 
64 SB direct SD 
70 LB latency average 
76 LB latency SD 
54 LB indirect average 
37 LB indirect SD 
55 LB direct average 
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Rank Feature Description 

3 Stay latency average 
25 Stay indirect average 

4 MO frequency 
34 MO latency average 
35 MO latency SD 

12 Help frequency 
24 Help latency average 

17 Zoom frequency 
29 Zoom latency average 
15 Zoom latency SD 
16 Zoom direct SD 

Rank Feature Description 

65 LB direct SD 

77 EA latency SD 
48 EA indirect average 
73 EA indirect SD 
44 EA direct average 
39 EA direct SD 

75 GH latency average 
74 GH latency SD 
71 GH indirect average 
68 GH indirect SD 
79 GH direct average 
78 GH direct SD 

59 Stay frequency 
82 Stay latency SD 
91 Stay indirect SD 
69 Stay direct average 
86 Stay direct SD 

80 MO indirect average 
85 MO indirect SD 
89 MO direct average 
90 MO direct SD 

47 Help latency SD 
60 Help indirect average 
83 Help indirect SD 
88 Help direct average 
87 Help direct SD 

57 Zoom indirect average 
43 Zoom indirect SD 
56 Zoom direct average 

Feature selection reveals that all action frequencies are important in cluster 

formation, except in the case of a stay action (see 'Stay frequency' in Table 5.4). 

Gaze shift dimensions are only identified as important in the presence of the 

corresponding latency dimensions after an action. For example, indirect gaze shifts 

were found to be relevant in addition to the latency dimensions after an equation 

change action (see EC in Table 5.3), and similarly for next exercise, step back, stay, 

and zoom actions (see NE, SB, Stay, and Zoom in Table 5.3). Conversely, latency was 

found to be relevant independently of gaze shift features after some actions (namely 

after reset, step forward, Exploration Assistant, move on, and help actions, see 

corresponding entries in Table 5.3). This agrees with the findings in [56] that gaze 

shifts may be important mostly in discriminating between time spent self-explaining 
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the results of an action and idle time. Also, gaze shifts were not found to be relevant 

when using the Lesson Browser tool as was anticipated (see LB in Table 5.4). 

Interestingly, neither latency nor gaze shifts were found to be relevant after a 

function plot move (see PM entries in Table 5.4). Given that both plot moves and 

equation changes are exploratory actions requiring equivalent self-explanations, this 

result is unintuitive especially considering that latency and gaze shifts were found to 

be important after equation changes. This could be an artifact of the forward selection 

strategy used. Forward selection can efficiently search through the exponential space 

of possible feature subsets, but it may prematurely rule out certain features that may 

only be important in combination with features not yet included in the subset (i.e. 

lower ranked features). To test our hypothesis that the plot move latency and gaze 

shift features were indeed important, we attempted clustering on the same feature set 

with the addition of these features. No significant differences in learning gains were 

found between any of the clusters (see Table 5.5). This does not rule out the 

possibility that these plot move features are important. It is possible that the plot move 

latency and gaze shift features may be important in combination with some of the 

other features removed by feature selection. Alternatively, only some subset of the 

plot move latency and gaze shift features may be important. For example, since the 

plot move latency average and plot move latency standard deviation features were 

retained by feature selection in FeatureSetl, adding only these, and not the gaze 

features, to FeatureSet2 and re-attempting clustering could reveal significant 

differences in learning gains. Attempting our user modeling framework on alternative 

feature sets, such as this, will be discussed further in the Future Work section (see 

Chapter 7). Nevertheless, as will be discussed in the following section, clustering was 

in fact able to find distinct learner groups using only the features returned by feature 

selection. Therefore, these findings could challenge out prior beliefs about the utility 

of plot move exploratory actions for learning. 
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Table 5.5. Summary of clustering results for FeatureSet2 (after feature selection and 

with PM latency and gaze shift features added) 

k 
Cluster 1 
size/ave. 
learning 

Cluster 2 
size/ave. 
learning 

Cluster 3 
size/ave. 
learning 

Cluster 4 
size/ave. 
learning 

df(s) T orF P 
d or 

partial r\2 

2 21/1.33 15/2.27 31.1 .922 .182 .310 

3* 6/2.17 19/.684 10 .v20 2,32 2.48 .101 .138 

4 7/3.86 20/.900 3/1.00 * : oo 3,31 1.84 .160 .131 

* Two data points, forming singleton clusters, were removed. 

5.2.3 Cluster Analysis for ACE 

As dictated by our framework, in this phase we first compare the clusters returned by 

feature selection on FeatureSetl and FeatureSet2 in terms of student learning gains 

(derived from the pre and post-test scores available from the user study described 

earlier). When significantly (or marginally significantly) different learning gains were 

found, we then compared the clusters in terms of differences in behavioral patterns. 

Recall from Section 3.1.4 that we use Welch's t-test and Cohen's d to measure 

statistical and practical significance when comparing two clusters (i.e., when k=2) in 

terms of learning gains or behaviors, and we use A N O V A s and partial r\ when 

comparing greater than two clusters (i.e., when k>2). We also use Tukey's HSD 

adjustments and Cohen's d for post-hoc pair-wise comparisons when a significant 

difference is detected by an A N O V A or by partial n . 

Cluster Analysis Results 

Tables 5.6 and 5.7 show the results from comparing average learning gains between 

the clusters found using FeatureSetl and FeatureSet2, respectively. The tables report 

the average learning gains for each cluster, along with the results from the statistical 

and practical significance tests. 
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Table 5.6. Summary of learning gains comparisons between the clusters found using 

FeatureSetl 

k 
Cluster 1 

ave. 
learning 

Cluster 2 
ave. 

learning 

Cluster 3 
ave. 

learning 

Cluster 4 
ave. 

learning 
df(s) t orF P d or 

partial r\2 

2 1.39 2.88 10.0 1.12 .144 .471 

3 1.88 .692 2 >() 2,33 1.33 .280 .074 

4 1.80 .556 2.50 3.00 3,30 .627 .603 .059 

Table 5.7. Summary of learning gains comparisons between the clusters found using 

FeatureSet2 

k 
Cluster 1 

ave. 
learning 

Cluster 2 
ave. 

learning 

Cluster 3 
ave. 

learning 

Cluster 4 
ave. 

learning 
df(s) / or F P d or 

partial r\2 

2 2.91 1.20 

: <i 

17.9 1.55 .068* .571* 

3 .300 2.20 : <i 2,33 1.60 .217 .089 

4 2.50 2.89 2.75 .500 3,32 1.70 .187 .137 

* Significant at p<.05, d>.$, or partial r\ >.14 (feature description and values in bold) 

Table 5.6 shows that for all values of k, we found no significant differences in 

learning gains amongst the clusters found using FeatureSetl. Therefore we cannot use 

these clusters as the basis for the online modeling phase. Interestingly, in our first 

experiment (see Chapter 4), we were able to find distinct clusters of learners using 

only interface actions on a data set comparable in size to the data set we are using 

here. We hypothesize that this discrepancy is due to the differences in the nature of 

the domains and the interfaces of the two learning environments. This is discussed 

further in our comparison of our two experiments in Chapter 6. 

Table 5.7 shows that we did find a marginally significant difference in learning 

gains between the two clusters returned by &-means (with k set to 2) on FeatureSet2. 

Therefore, in the following Discussion of Cluster Analysis Results section, we 

proceed to characterize these two clusters in terms of the interaction behaviors they 

represent. Hereafter, we refer to the cluster with high and low average learning gains 

(Cluster 1 and Cluster 2, in Table 5.7) as the ' H L ' and ' L L ' clusters respectively. 

Table 5.8 presents the results of the pair-wise analysis we did on each of the 36 
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feature dimensions. Significant values, andthe corresponding feature dimensions are 

highlighted in bold. 

Table 5.8. Pair-wise comparisons between H L and L L clusters along each of the 36 

feature dimensions 

Feature Description 
H L 

average 

L L 

average 
Df t P Cohen's d 

PM frequency .024 .034 25.6 1.23 .116 .418 

EC frequency .015 .019 19.8 .850 .203 .305 

EC latency average 21.8 16.1 15.3 1.78 .047* .677 

EC latency SD 10.4 6.08 11.5 1.56 .073 .636 

EC indirect average 1.21 .440 12.6 2.57 .012* 1.02* 

EC indirect SD 1.12 .556 13.0 2.24 .022* .886* 

Reset frequency 0 .001 24.0 2.60 .008* .735 

Reset latency SD 0 .051 24.0 1.44 .082 .406 

NE frequency .005 .009 33.2 2.73 .005* .827* 

NE latency average 18.7 13.2 21.3 3.01 .003* 1.07* 

NE latency SD 10.3 7.44 18.8 1.64 .059 .594 

NE indirect average 1.74 .625 16.0 5.79 le-5* 2.18* 

NE indirect SD 2.09 .715 13.5 5.03 le-4* 1.97* 

NE direct average 1.30 .201 10.6 3.36 .003* 1.41* 

NE direct SD 1.79 .362 10.8 3.01 .006* 1.25* 

SF frequency .008 .011 30.3 1.90 .034* .621 

SF latency average 7.65 4.65 15.4 2.71 .008* 1.03* 

SF latency SD 9.96 5.83 19.3 2.37 .014* .858* 

SB frequency 0 2e-4 24.0 1.20 .122 .338 

SB latency average 0 .400 24.0 1.68 .053 .475 

SB indirect average 0 .040 24.0 1.00 .164 .283 ' 

LB frequency 0 6e-4 24.0 1.87 .037* .528 

EA frequency le-4 .001 27.6 2.22 .018* .640 

EA latency average 5.27 5.65 16.7 .072 .472 .027 

GH frequency 3e-4 4e-4 34.0 .311 .312 .155 

Stay latency average 6.55 2.54 14.5 2.01 .032* .775 

Stay indirect average .152 .100 22.5 .389 .350 .136 
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Feature Description 
HL 

average 

L L 

average 
Df t P Cohen's d 

MO frequency .003 .005 32.1 2.31 .014* .744 

MO latency average 2.23 232 24.0 1.00 .163 .283 

MO latency SD 2.76 400 24.0 1.00 .163 .283 

Help frequency .002 .001 14.3 .745 .234 .288 

Help latency average 2.45 7.28 33.1 1.94 .030* .587 

Zoom frequency 4e-4 .021 24.1 2.62 .008* .741 

Zoom latency average .374 1.98 29.9 2.92 .009* .961* 

Zoom latency SD .700 2.70 22.6 2.24 .017* .785 

Zoom direct SD 0 .101 24.0 2.41 .012* .683 

Significant at/K.05 or d>.% (feature description and values in bold) 

Discussion of Cluster Analysis Results 

In this section, we discuss some of the most interesting findings obtained from our 

pair-wise analysis (presented in Table 5.8). 

Some of our findings are consistent with results in [29], as we were hoping. 

First, there were no statistically significant differences in the frequency of plot move 

or equation changes between the H L and L L clusters (see 'PM frequency' and 'EC 

frequency' entries in Table 5.8), consistent with finding in [29] that sheer number of 

exploratory actions is not a good predictor of learning in this environment. Second, 

after an equation change, the L L students would pause for a significantly shorter 

duration than the H L students on average (see 'EC latency average' in Table 5.8). In 

[29], the authors determined 16 seconds to be an optimal threshold between 

occurrences of effective reflection on exploration cases and other verbalizations not 

conducive to learning. Consistent with this result, the second boxplot in Figure 5.14 

shows that the average latency by the students in the H L cluster were mostly above 

this threshold, whereas with the L L cluster the latency averages were centered about 

the threshold. 
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p < .04 p<.07 p<.01 p<-02 

Figures 5.14. Equation Change boxplots between H L (gray) and L L (white) clusters. 

From left to right: frequency, latency average, latency standard deviation, indirect 

average, and indirect standard deviation 

Because with clustering we are able to incorporate all interface actions and 

associated gaze data simply by including them in the multi-dimensional feature 

vectors, we also found patterns additional to the ones found in [29]. For example, the 

students in the HL cluster were more varied in how often they would indirectly gaze 

shift after an equation change (see 'EC indirect SD.' in Table 5.8, and the last boxplot 

in Figure 5.14). This selective behavior suggests that students need not reflect on the 

results of every exploratory action in order to learn well so long as they do not 

consistently refrain from reflection. In addition, the L L students paused less and made 

significantly fewer indirect gaze shifts after an equation change than the H L students 

(see 'EC latency average' and 'EC indirect average' in Table 5.8, and the second and 

fourth boxplots in Figure 5.14). These results are consistent with less reflection by the 

L L students compared to the H L students and may account for some of the difference 

in learning gains. It should be noted that in [29], individual gaze shifts, not multiple 

gaze shifts, were found to predict student reasoning. In that research, gaze behavior 

was studied only in the context of plot moves and equation changes because of the 

effort of labeling data. The fact that we are using all interface actions and 
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accompanying gaze data may account for this discrepancy in using multiple gaze 

shifts. We found similar differences in the latency and gaze shifting behaviors of the 

two clusters when a new function appeared on the screen after a next exercise action 

(see NE latency and gaze entries in Table 5.8). 

When the Coach suggested that a student spend more time exploring the current 

exercise, L L students chose to ignore the suggestion and move on to another exercise 

significantly more frequently than H L students (see 'MO frequency' in Table 5.8). 

This result is intuitive since the Coach's suggestions are intended to promote effective 

learning [17] and so ignoring them would be expected to adversely affect students. 

The frequency of stay actions were not found to be relevant by feature selection (see 

Table 5.4), however when they did occur, H L students paused for significantly longer 

than L L students (see 'Stay latency average' in Table 5.8). This is another intuitively 

good behavior, possible showing that the H L students followed the Coach's advice 

more carefully by spending additional time pondering over the current exercise before 

taking additional actions. 

While the above patterns are quite intuitive, this approach was also able to 

identify additional patterns that do not have an obvious relation to learning. For 

example, the L L students advanced sequentially through the curriculum using the next 

exercise and step forward buttons significantly more frequently than the H L group 

(see 'NE frequency' and 'SF frequency' in Table 5.8). Considering that every student 

examined all three available exercises, intuition would suggest that there should be no 

differences between the clusters along these dimensions. However, further 

examination of the clusters reveals that the L L students also made use of both the step 

back feature and the Lesson Browser tool to navigate through the curriculum, whereas 

none of the H L students performed these actions. Since the L L students showed lower 

learning gains after interacting with A C E , it is probable that these students were 

moving impulsively back and forth through the curriculum. This hypothesis is 

substantiated by the fact that the Coach's suggestion to continue exploring the current 

exercise (computed by combining the frequencies of move on and stay actions) 

appeared more frequently (/(25.66)= 1.57, j?=.063, cK536) to the L L students than to 

the HL students. As this pattern involved several interface features (i.e., next exercise, 
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step forward, step back, Lesson Browser, move on and stay) it may have been 

difficult to observe, even by application experts. 

Similarly, there were unintuitive differences in the use of the zooming features 

between the two groups (see 'Zoom' features in Table 5.8). The L L students zoomed 

into or out of the plot region significantly more frequently than the H L students. The 

HL group students paused for a consistently shorter duration after zooming than the 

L L students on average. Although zooming may not have clear pedagogical benefits, 

this behavior may suggest confusion on the part of the L L students resulting in the 

need for more detailed inspection of the plot. This is consistent with the finding 

related to help page exploration. Here, L L students paused for significantly longer 

after navigating to a help page then the H L students (see 'Help latency average' in 

Table 5.8) indicating that these students may have felt confused about how to use 

A C E or about the domain concepts and so required more help than the H L students. 

Unsupervised clustering also detected patterns that may reveal the inadequacy 

of some of A C E ' s interface tools. First, cluster analysis showed no differences 

between the groups in their use of the get hint feature. And in fact, very few students 

in either group requested exploration hints from the Coach. This result could suggest 

that the students preferred to explore independently, or that they had little confidence 

in the Coach's hints, or that they simply were not aware or did not know how to use 

this feature. Therefore, this result implies that further investigation is necessary to 

evaluate the benefits of the Coach's get hint feature. Also, the L L students used the 

Exploration Assistant tool significantly more frequently than the H L students (see 

'EA frequency' in Table 5.8), but still had lower learning gains. This suggests that the 

Exploration Assistant had little impact on overall learning contrary to its intended 

purpose of helping students better plan their exploration. 

5.2.4 Supervised Classification for ACE 

In this section we discuss the performance of a A:-means-based online classifier user 

model (Section 3.2.1), trained with the clusters found in the offline phase, at 

recognizing students as belonging to either the L L or H L clusters. We performed a 

36-fold leave one out cross validation (LOOCV) to evaluate how well the model 
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generalizes to unseen data (see Section 3.3). Recall that we use an L O O C V strategy 

because of our small sample size. Because we are using an L O O C V strategy, we must 

estimate the stability cost (see equation 3.6 in Section 3.3) with respect to the clusters 

detected in the offline phase (as described in Section 3.2.2) before we can draw 

conclusions about the predictive accuracy of the user model 

^T-means Classifier Model Evaluation 

The estimated stability cost for this &-means classifier user model was 0.062 after 

averaging the costs calculated over the 36 folds of the L O O C V evaluation (recall that 

0 is considered perfect stability and 1 is considered maximum instability [51]). This 

means that the characteristic behaviors of the two clusters identified in the offline 

phase are reasonably preserved during our L O O C V evaluation. 

Figure 5.15 shows the average percentage of correct predictions as a function of 

the percentage of actions seen by the &-means online classifier model (solid line). The 

accuracy of the model (averaged over all of the students) converges to 97.2% after 

seeing all of the students' actions. For comparison, the figure also shows the 

performance of a most-likely class baseline model that always classifies new student 

actions into the most-likely (or largest) class. In this case, the L L group is the largest 

class (25 out of 36 students), and therefore the baseline model accuracy is shown by 

the dashed line straight across the figure at the 69.4% (25/36) accuracy level. The 

figure shows that the &-means classifier model outperforms the baseline model after 

seeing only 2% of the student actions. The figure also shows the /V-means classifier 

model's performance over both the H L and L L clusters (dashed and dotted lines, 

respectively). The accuracy for the L L group remains relatively stable over time, 

whereas the performance for the H L group is initially poor but increases to over 80% 

after seeing about 45% of the actions. 
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Figure 5.15. Performance of the A C E user models over time 

Table 5.9 shows the accuracy, sensitivity, and specificity of the &-means 

classifier model averaged over time, and the accuracy of the baseline model averaged 

over time. As in our first experiment (see Chapter 4), the results show that the k-

means based model outperforms the baseline model (86.3% accuracy for the &-means 

classifier model averaged over time compared to 69.4% accuracy for the baseline 

model). And again, the results indicate that while the A>means classifier model would 

be very effective in detecting behaviors that eventually result in suboptimal learning, 

it would more often interfere with learners that show these behaviors sporadically but 

may eventually be successful. As in our first experiment, this imbalance in accuracy 

is likely the result of the smaller sample of data from the HL cluster compared to the 

L L cluster. Correcting this imbalance may help increase the specificity rate of the 

model [82]. 



Table 5.9. Classification accuracies of the A C E user models averaged over time 

^-means Classifier Baseline Model User Model Baseline Model 

Overall Accuracy 86.3% 69.4% 
Sensitivity (True Positive Rate) 94.2% 100% 
Specificity (True Negative Rate) 68.3% 0% 
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Discussion 

One of the goals of this thesis is to show that our proposed modeling framework 

works on different domains and data sets, therefore, in this chapter, we compare and 

contrast the experimental results we obtained by applying the framework (Chapter 3) 

to two different exploratory learning environments (ELEs) and using two different 

types of input data (Section 6.1). At the end of the chapter, we discuss some of the 

limitations of our research (Section 6.2), including the limitations of our experiments, 

modeling framework and evaluation method. 

6.1 Comparison of Experiments 

6.1.1 Offline Phase 

In our first experiment (Chapter 4), we applied our modeling framework to model 

student interactions with the CIspace CSP Applet, an E L E to support learning of an 

A l algorithm for constraint satisfaction problems (CSPs). In our second experiment 

(Chapter 5), we applied the framework to an E L E for learning mathematical functions 

called the Adaptive Coach for Exploration (ACE). The interfaces of both of these 

learning environments provide various interaction mechanisms that allow for 

uninhibited student exploration of the target domain. 

The first step of our modeling framework (see 'Data Collection,' Section 3.1.1) 

involves collecting data from students interacting with the target E L E . For both of our 

experiments, we used logged interaction and (pre and post) test data collected from 

previous user studies involving the target ELEs. In our second experiment, we also 

used eye-tracking data collected during the A C E user study. A total of 24 students 

participated in the CSP applet user study, and 36 in the A C E user study. 
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The second step of the framework (see 'Preprocessing,' Section 3.1.2) entails 

processing the collected data to form feature vector (multi-dimensional data point) 

representations suitable for the subsequent unsupervised machine learning step. In our 

first experiment, we computed 24 feature vectors corresponding to the 24 CSP Applet 

user study participants. Each of these 24 feature vectors had 21 feature dimensions 

pertaining to student interface actions (via the available interaction mechanisms in the 

target ELE), including the frequencies of each action, and the means and the standard 

deviations of the latency between actions. In our second experiment with A C E , we 

computed 36 feature vectors. In this case, we tried two different sets of features (39 

features in the first set, and 91 in the second). The first feature set was analogous to 

the CSP Applet feature set in that it only included interface related features. In the 

second feature set, we included gaze features extracted from eye-tracking data 

collected during the A C E user study in addition to the interface features. 

In both of our experiments, our sample sizes were relatively small (24 and 36 

feature vectors, respectively). In our second experiment, the number of feature 

dimensions in the two feature sets that we tried (39 and 91 dimensions, respectively), 

was greater than the number of samples that we had collected. Due to the 

combination of high-dimensionality and small sample size in this second experiment, 

the user models we were attempting to build via our modeling framework would have 

been at a very high risk of over-fitting. Therefore, in this case we applied an 

automatic entropy-based feature selection algorithm (Section 3.1.2) on both feature 

sets in order to reduce the dimensionality of the feature vectors. Feature selection 

reduced the number of feature dimensions to an average of 35 (averaged over the 

number of features selected for each of the three k values we experimented with, i.e., 

k set to 2, 3 and 4) for both the first and second feature sets. 

After forming feature vector representations of the data, the next step in our 

modeling framework is to cluster the feature vectors using an unsupervised machine 

learning algorithm (see 'Clustering,' Section 3.1.3). In both of our experiments, we 

chose a popular algorithm called &-means to cluster the feature vectors. We 

experimented with k values of 2, 3 and 4 in both experiments because our sample 

sizes were small and, therefore, we only expected to find a few clear clusters. We 
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always ran &-means 20 times and then chose the highest quality clusters (i.e., having a 

maximum between-cluster and minimum within-cluster variance) as the final clusters. 

To help guide the developer in designing appropriate interface adaptations 

(which would be informed by the user model's online predictions), the clusters 

produced by the clustering step of our user modeling framework must be analyzed in 

terms of learning outcomes and behavioral characteristics (see 'Cluster Analysis,' 

Section 3.1.4). Because in both of our experiments we had test results prior and 

subsequent to students using the target E L E (i.e., the pre and post-tests), we were able 

to use these to objectively distinguish between effective and ineffective learner 

groups (i.e., clusters), and to validate the behavioral characteristics we identified by 

analyzing the differences between the clusters along each of the feature dimensions. 

If test results were not available, expert intuition would have been necessary to label 

the clusters in terms of learning outcomes. 

In both of our experiments, cluster analysis demonstrated that unsupervised 

clustering was able to identify distinct clusters of students (i.e., clusters of students 

showing differences in learning outcomes from pre to post-tests). In addition, cluster 

analysis revealed several characteristic learning behaviors of the distinct clusters. 

Some of these characteristic behaviors were intuitive and thus reasonably explained 

either the effective or ineffective learning outcomes. However, as expected, some of 

the behaviors did not have obvious learning implications, requiring consideration of 

combinations of dimensions (as A>means does to determine its clusters), or knowledge 

of the student learning outcomes being explained. These latter behaviors would have 

been difficult to recognize and label by hand, even by application experts. 

There are, also, two discrepancies between the results from our experiments that 

need to be examined: 

1. Clustering found distinct clusters when k was set to 2 and 3 in our first 

experiment with the CSP applet, but only found distinct clusters for k set to 2 

in our second experiment with A C E . 

2. Clustering was able to find clusters within the CSP applet data using interface 

actions alone, whereas clustering only found distinct clusters within the A C E 

data when using the second feature set that we tried (i.e., that included 
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interface and eye-tracking data), and not using the first feature set (i.e., that 

only included interface actions). 

Both of these discrepancies could be due to differences in the domains targeted by the 

two different learning environments, and their consequent interfaces. The A l 

algorithm that the CSP Applet is designed to demonstrate is more complex compared 

to the relationship between mathematical functions and their graphs that A C E 

demonstrates. As a result, the CSP Applet interface includes several mechanisms that 

allow the student to visualize and reflect on the workings of the A l algorithm, 

whereas A C E only provides two such mechanisms: plot moves and equation changes. 

Therefore, there may be a variety of different ways in which students could learn 

using the CSP applet's interface mechanisms (as is evident from the cluster analysis 

for this experiment, see Section 4.2.4), whereas there may be fewer such possibilities 

with A C E ' s interface, resulting in only two distinct clusters being identified for the 

latter. Furthermore, considering the variety of possible learning behaviors with the 

CSP Applet, interface actions alone may better able to capture student learning and 

reflection during exploration than interface actions alone in A C E . This hypothesis is 

consistent with the results in [29] showing that gaze patterns, together with action 

latency, predict student reflection and learning in A C E better than sheer number of 

actions or action latency alone. Additional data may be necessary [48] to detect 

distinct clusters of learners with A C E using only this first feature set. 

6.1.2 Online Phase 

The final step of our proposed framework calls for using the clusters detected by the 

unsupervised clustering step to directly train a supervised, &-means based, online 

classifier user model (see 'Supervised Classification,' Section 3.2.1). We used the 

same procedure in both of our experiments to evaluate the classifier user models we 

built via our modeling framework (see 'Model Evaluation,' Section 3.3). Each user 

model was evaluated using a leave-one-out cross validation (LOOCV) strategy. 

Cluster stability over L O O C V was first measured to substantiate the results of the 

online predictions. In all cases, cluster stability was high (i.e., the stability cost was 

less than .1 in all cases, where 0 indicates perfect stability and 1 indicates maximum 
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instability), indicating that the characteristic cluster behaviors we identified during 

the cluster analyses were reasonably preserved using the L O O C V strategy. 

Table 6.1 summarizes the accuracy results from the evaluation of each of the k-

means based classifier user models that we developed via our framework for the CSP 

Applet and A C E . The table also shows the accuracies of the corresponding baseline 

models that used most-likely-class classification strategies. In all cases, the &-means 

based user models outperformed the corresponding baseline models on predicting the 

correct class for new student behaviors. 

Table 6.1. Summary of classification accuracies averaged over time 

CSP 
(k=2) 

CSP 
(A=3) 

A C E 

Overall Accuracy 88.3% 66.2% 86.3% 

Sensitivity (True Positive Rate) 93.5% 66.1% 94.2% 
Specificity (True Negative Rate) 62.4% 63.3% 68.3% 

Baseline Accuracy 83.3% 50.0% 69.4% 

In addition, our evaluations show that both of the two-class (k=2) A:-means based 

classifier user models developed were able to achieve comparably good overall 

predictive accuracy on new student behaviors (88.3% in the first experiment with the 

CSP Applet, and 86.3% in the second experiment with ACE) . In both cases, the 

accuracies were higher for predicting ineffective learning behaviors than for 

predicting effective ones (i.e., the sensitivity rates were higher than the specificity 

rates). Therefore, the two-class classifier user models built using our modeling 

framework would be useful in providing adaptive help for students who show 

ineffective learning behaviors, but may also sometimes interfere with those students 

who show these behaviors sporadically but eventually learn well. This is likely due to 

the imbalance in the distribution of the sample data [82] as the number of students 

clustered in the effective learner groups were fewer than those in the ineffective 

learner groups in both experiments. 

In contrast to the two-class classifiers, the overall predictive accuracy of the 

three-class (&=3) &-means based classifier user model built from the three distinct 
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clusters found in our first experiment (with the CSP applet), was only 66.2% despite 

the stability of the clusters. This is likely attributable to the smaller cluster sizes 

resulting from the larger k value in this case. In this case, the sensitivity rate reported 

in Table 6.1 for Jc=3 on the CSP Applet data was computed by combining the 

accuracy results for the two groups that showed ineffective learning behaviors in this 

case. The individual accuracies for these two groups were 80.9% and 44.9% averaged 

over time. Therefore, this classifier user model would be most useful for recognizing 

students behaving in the ineffective ways characterized by the first (larger) group, but 

not by the second (smaller) group. 

6.2 Limitations 

6.2.1 Of the Data Collected and Used for Our Experiments 

The main limitation of the research presented in this thesis is that both of the data sets 

we collected and used in our two experiments were small. According to the general 

rule of thumb for model learning, which suggests between 5 to 10 times as many data 

samples as feature dimensions [48], the number of feature dimensions we used in 

each experiment was relatively high in comparison to the number of samples in both 

of our data sets, even after automatic feature selection in our second experiment. We 

initially tried to collect additional data for the CIspace CSP Applet experiment, but 

we had difficulty finding subjects with the appropriate background to participate. 

Time constraints also prevented us from collecting additional sample data as both of 

the user studies in our experiments were quite time-consuming (three hours for the 

CIspace CSP Applet user study and 80 minutes for the A C E user study). The A C E 

user study would have been especially time-consuming as only one subject could 

participate in the study at a time due to the use of the eye-tracker. Although in both of 

our experiments &-means clustering was still able to detect clusters of users 

distinguished by characteristic interaction behaviors and significant differences in 

learning outcomes, even with our small sample sizes, more data is necessary to better 

evaluate our framework and substantiate our results. Experimenting with more data 

would also help verify our hypothesis that more data would indeed improve the 
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performance of the classifier user models, particularly for the smaller clusters such as 

those corresponding to the students with high learning gains (as in both of our 

experiments), and those resulting from clustering with a k value greater than 2 (as in 

our first experiment). 

6.2.2 Of^-means 

While the A:-means algorithm that we chose to use for the unsupervised clustering and 

supervised classification steps of our user modeling framework is intuitive to 

understand and easy to implement, it also has some limitations. First, &-means 

clustering makes the assumption that feature dimensions are independent. However, 

in practice, violation of this assumption will usually not affect the quality of the 

clusters resulting from unsupervised machine learning [52]. This is also evident in the 

experiments presented in this thesis as A;-means clustering was able to discover 

meaningful interaction behaviors in both cases even though some of the feature 

dimensions we used (e.g., the action frequency and latency dimensions in both of our 

experiments) may not have been independent. Feature independence is therefore a 

common assumption made, especially in high-dimensional data [52, 76]. 

Nevertheless, when the independence assumption is violated, principal component 

analysis (PCA) [37] could be used to generate independent features (i.e., the principal 

components) and reduce the dimensionality of the feature space before performing k-

means clustering. A drawback of this is that in the Cluster Analysis section of our 

user modeling framework (Section 3.1.4), we interpret the clusters produced by k-

means by analyzing them along each of the feature dimensions, but the independent 

features that P C A produces may not correspond to meaningful quantities [33] making 

this task difficult. Even i f we project the data back to the original feature space before 

Cluster Analysis, we may not see differences along the original feature dimensions as 

clustering was done in the reduced feature space. 

Another assumption that A:-means makes is that the actual clusters in the data are 

elliptical, compact and well-separated [47]. Unlike with the independence 

assumption, i f this assumption is violated, then ft-means clustering will fail to 

discover meaningful clusters in the data. For example, Figure 6.1 shows the two 
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distinct clusters of students found by &-means clustering (with k set to 2) on student 

interaction behaviors (as represented by the feature vectors) in our experiment with 

the CIspace CSP Applet (see Section 4.2.3). These clusters are visibly elliptical and 

well-separated, as dictated by A:-means. And, as it turns out, one of these clusters of 

students (marked by crosses, '+', in Figure 6.1) did indeed show significantly higher 

learning gains (from pre to post-test) than the other cluster (marked by asterisks , '* '). 

However, i f we were to divide the data points by considering learning gains and not 

interaction behaviors, then the data would take on a more complex terrain in the 

feature space, as shown in Figure 6.2. In this figure we used a threshold value of 5.75 

marks to divide between 'high learners' and 'low learners' since this was the average 

learning gain observed. Clearly, these two clusters of learners are no longer well-

separated in the feature space and, consequently, A>means clustering would not have 

been able to find them. However, our modeling framework is not restricted to using k-

means for clustering. It could instead use a more flexible, but computationally more 

expensive, clustering algorithm such as hierarchical clustering [47] to discover 

meaningful clusters. 

+ Hgh Learners 
* Lew Learners 

J * 

. , , : , , : , 1 
-6 -4 -2 0 . 2 4 6 

Figure 6.1. /T-means clusters (k=2) from CIspace CSP Applet data 
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Figure 6.2. Division of CIspace CSP Applet data points by thresholding learning 

gains 

Unfortunately, using complex or irregularly shaped clusters, such as those 

shown in Figure 6.2, to train our &-means based online classifier, poses a different 

problem. Our &-means based online classifier makes its classifications by assigning 

incoming data points to the cluster whose centroid is nearest, as measured by 

Euclidean distances (see Section 3.2.1). However, centroids are poor representations 

of clusters when their shapes are complex or irregular, and therefore making 

classifications this way may be ineffective. A possible solution to this problem is 

discussed in detail in the following chapter on Future Work (Chapter 7). 

Another limitation of &-means is that a A:-means-based classifier user model can 

only make hard classifications, whereas when making decisions about how to provide 

adaptive support we may like to take into account the certainty of our predictions. To 

do this we could use a probabilistic variant of &-means called Expectation 

Maximization (EM) [37] to determine the membership of every data point in each 

cluster. 
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6.2.3 Of Our Cluster Analysis Method 

The main bottleneck in our user modeling framework is the Cluster Analysis step 

(Section 3.1.4), as this step requires manual analysis of the different clusters on each 

feature dimension. An alternative approach would be to automatically mine for 

characteristic cluster behaviors in the form of association rules [68] using an 

unsupervised rule learning algorithm such as the popular Apriori algorithm [1]. 

Association rules are of the form [x/, x2,..., x„]=> xm, where the x,'s in the body of the 

rule (left hand side) and the head of the rule (right hand side) are feature dimensions. 

Intuitively, association rules are 'if-then' correlations in the data. An example 

association rule for the high learning (HL) cluster found by &-means with k set to 2 in 

our first experiment with the CIspace CSP applet (see Section 4.2.4) would be " i f a 

student is observed using the Auto AC feature very frequently, then the student is 

likely to use the Stop feature frequently." Automatically learning association rules 

such as this could help reduce the time and effort required to manually analyze and 

characterize the clusters in the Cluster Analysis step of our modeling framework. 

Furthermore, the algorithms for automatically learning these rules were designed for 

sparse data sets (i.e., that have high-dimensional spaces and few data points), such as 

the data sets that we used in both of our experiments. 

One drawback of using rule learning algorithms is that most of them require that 

continuous feature dimensions, such as the ones that we use in our experiments (e.g., 

action frequencies), be manually discretized before rules can be discovered. 

Discretizing continuous attributes can result in information loss [6]. Our approach of 

manually analyzing the clusters returned by /t-means clustering does not require 

discretization of the data. Another, more major, drawback to rule learning is that 

association rules are descriptive in nature [59] (i.e., they try to summarize information 

and extract patterns), whereas we are trying to do a predictive task (i.e., we are trying 

to build user models for online predictions). There is no obvious way of using the 

learned association rules for online predictions of student learning outcomes. 
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6.2.4 Of Any Classifier User Model 

One of the drawbacks of developing any user model for classifying students as either 

effective or ineffective learners, is that it does not allow isolation of the specific 

suboptimal behaviors that are causing the student to be classified in a specific class of 

learners at any given time. Thus, an adaptive E L E informed by a classifier user model 

would not be able to generate precise interventions targeting the suboptimal behavior 

that the student is currently showing. However, an adaptive E L E could use the 

classifier's results for general hints and interface adaptations to promote more 

effective learning behavior. Such adaptations are discussed further in the following 

chapter on Future Work (see Chapter 7). 

6.2.5 Of Our Model Evaluation Method 

A caveat discussed prior to describing our model evaluation method in Section 3.3 is 

that we cannot ensure the effectiveness of the models built via our framework in a 

real world setting without performing live adaptations based on those models for new 

students interacting with the ELEs. This would require developing an adaptive 

support facility that uses the classification information derived from our models in a 

meaningful way. This is indeed the long term goal of this research. However, we took 

efforts to validate the results of our evaluation strategy by measuring the stability of 

the clusters used to train the online classifiers prior to assessing each user model's 

predictive accuracy. 
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Future Work 

The next step of this research is to address the limitations discussed in the previous 

chapter (see Chapter 6). In particular, we would like to collect more data to strengthen 

the results of our experiments. In addition, we would like to experiment with 

alternative methods for the clustering and cluster analysis steps of our user modeling 

framework. For instance, we plan to use hierarchical clustering [47] or expectation 

maximization [37] instead of £-means clustering, and automatically learn association 

rules [68] instead of manually analyzing the clusters. 

One of the limitations of A:-means discussed in Chapter 6 (see Section 6.2.2) is 

that A>means clustering will fail when the actual clusters in the data are irregularly 

shaped and not well-separated. Computationally more expensive clustering 

algorithms, such as hierarchical clustering [47], could be used in these cases, 

however, a A:-means based classifier trained with irregularly shaped clusters would 

poorly predict the classes of incoming data points (i.e., new students) as it uses 

distances to cluster centroids to make its predictions (see Section 3.2.1). 

An alternative to using A>means for classification in our user modeling 

framework, particularly when clusters are complex or not well-separated (as can 

occur when using algorithms such as hierarchical clustering for example), is to use 

Gaussian Processes (GPs) [67]. We now briefly describe how to build a GP-based 

online classifier [83] user model. We then present preliminary results of building and 

testing a GP-based online classifier for the CIspace CSP Applet E L E (see Chapter 4). 

For simplicity, we restrict our GP user model to handle only binary classifications. 

Consider a fully connected graph over the training data, where the graph nodes 

are the feature vectors. The edges of the graph correspond to similarity weights w,y 

(given by a radial basis function) between feature vectors / and j, much like how k-
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means clustering measures similarities between data points in a Euclidean feature 

space (see Section 3.1.3). We can then define.an error function over the graph: 

E(f) = V2ZiJ w y(/(/)-/(/ ')) 2 (7.1) 

such that minimization of this error function will result in a GP-based classifier user 

model, / , that can assign similar labels to similar feature vectors. Thus, like the k-

means based classifier user model that uses cluster distances to make predictions, the 

GP user model also exploits the structure in the training data to make its online 

classifications. However, unlike the &-means based classifier, the GP model does not 

require that the training data (i.e., the clusters) be compact or well-separated. 

To demonstrate that a GP-based user model can work with well-separated 

training data, as well as complex training data, we developed and evaluated two GP 

user models with the CSP Applet data. Like the &-means based classifier we 

developed for the CSP Applet in this research (see Section 4.2.5), our first GP-based 

user model was trained with the elliptical and well-separated clusters found by k-

means clustering (with k set to 2) on the CSP Applet user study data (see Figure 6.1 in 

Chapter 6). Our second GP classifier model was trained with the complex clustering 

obtained by thresholding the learning gains of the students represented in the data 

(see Figure 6.2 in Chapter 6). 

To evaluate each of these GP-based user models, we performed a 24-fold leave-

one-out-cross-validation over the training data since we only had 24 data points (see 

Section 3.3). Figure 7.1 shows that the performance of our first GP-based user model 

(solid line) in predicting the correct classes of new students as they interact with the 

CSP Applet, is comparable to the performance (two-class) A>means based user model 

(dashed line), as would be.expected since &-means can also handle well-separated 

data. The accuracy of the GP-based user model, averaged over time, is 91.5%, 

whereas that of the /V-means user model is 88.3% (see Section 4.2.5). 
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Figure 7.1. Performance of &-means and GP-based user models trained with the k-

means clusters 

In contrast, when using the clusters obtained by thresholding the students' 

learning gains (see Figure 7.2), the &-means based classifier (dashed line) is no better 

than chance at predicting the classes of incoming data points, whereas that GP-based 

classifier performs at least moderately (solid line). The accuracy of this GP user 

model averaged over time is 63.4%, whereas the A>means classifier model is only 

42.6%. 
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Figure 7.2. Performance of the A:-means and GP-based user models trained with the 

complex clustering obtained by thresholding learning gains 

Therefore, since the GP-based classifier user model can handle compact and 

well-separated clusters just as well as the &-means classifier and can also handle 

complex or irregularly shaped clusters, the GP-based classifier could be substituted 

for the &-means based classifier in the 'Supervised Classification' step of our user 

modeling framework (see Section 3.2.1). 

In the future, we would also like to experiment with a variety of other features 

than the ones we included in the experiments presented in this thesis. In both of our 

experiments, we included features pertaining to interaction behaviors (i.e., action 

frequencies and latencies) in the feature vector representations of students (see 

Section 3.1.2). However, other features could also be distilled from data logs. The 

Educational Data Mining Working Group at Intelligent Tutoring Systems 2006 

produced a list of such features [44], some of which we could include in future 

applications of our framework (e.g., action sequences). In our second experiment, we 

also included specific eye-gaze features (i.e., the mean and standard deviation of the 

number of indirect and direct gaze shifts) in the feature vector representations of 

students (see Section 5.2.2), but other possible eye-gaze features could also reveal 
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interesting learning behaviors. For example, we could experiment with removing the 

distinction between indirect and direct gaze shifts when computing the eye-gaze 

features. We could also use binary gaze shift features, comparable to the approach 

taken in [56], where every interface action is either accompanied by a gaze shift or 

not. And, in Section 5.2.2, we discussed the possibility of experimenting with 

manually adding back certain eye-gaze features (i.e., gaze shifts after plot move 

actions) that were removed by automatic feature selection but that we believed were 

relevant. 

Our long term goal is to design an adaptive support facility that takes as input 

the online classification information from the user models build via our framework. 

For example, an adaptive E L E could employ a multi-layered interface design [69], 

where each layer's mechanisms and help resources are tailored to facilitate learning 

for a given learner group. Then, based on a new learner's classification, the E L E 

could select the most appropriate interface layer for that learner. For instance, the 

CIspace CSP Applet E L E (Chapter 4) may select a layer with Fine Step disabled or 

with a subsequent delay to encourage careful thought for those students classified as 

ineffective learners (see Section 4.2.4) by the two-class &-means based classifier user 

model developed using our modeling framework in our first experiment. Similarly, 

for the three-class case, the CSP Applet E L E could disable or introduce a delay after 

Fine Step for students classified into either of the ineffective learner groups. 

Additionally in this case, the Applet could also include a delay after Domain Splitting 

for students classified into the LL2 (low learning 2) group as these students were 

consistently hasty in using this feature (see Section 4.2.4). The other ineffective 

learner group, LL1 (low learning 1), discovered by our framework in this experiment 

was characterized by lengthy pauses after Domain Splitting as well as Backtracking 

indicating confusion about these Applet mechanisms or concepts (see Section 4.2.4). 

Therefore, general tips about Domain Splitting and Backtracking could be made more 

prominent for these particular students for clarification purposes. 

After developing adaptive systems that can use the classifier user models' 

predictions, we can then empirically evaluate the effectiveness of the user models in a 

real world setting. To give credence to our approach, we would also like to compare 
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the performance of adaptive ELEs that use models constructed via our modeling 

framework against those built by traditional knowledge-based or supervised methods 

with hand-labeled data. 
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Chapter 8 

Conclusions 

Traditional approaches to user modeling for intelligent learning environments (ILEs) 

rely heavily on expert knowledge and intuition about the target application and 

domain. This type of knowledge can be difficult and time-consuming to elicit, 

especially when the elements being modeled (such as effective or ineffective learning 

behaviors) are complex or hard to determine through standard observations, as is 

often the case with exploratory learning environments (ELEs) because of the highly 

unstructured and unconstrained learning paradigm that they support. Some data-based 

approaches to user modeling that use supervised machine learning techniques have 

been able to reduce these development costs, but mostly when labels for the data are 

readily available from the application (e.g., student answers in more controlled, 

problem-solving learning environments). However, when labels are not readily 

available, they must be manually supplied, often through video or live observations 

and laborious data analyses. In this thesis, we devised a data-based user modeling 

framework for intelligent learning environments that utilizes both unsupervised and 

supervised machine learning to address some of the practical difficulties of 

constructing user models, particularly for unstructured ELEs. 

8.1 Satisfaction of Thesis Goals 

8.1.1 Presentation of User Modeling Framework 
The first goal of this thesis was to outline a data-based framework for user modeling 

that addressed the practical challenges of building user models for learning 

environments, and especially for ELEs. These challenges include (/) the unavailability 

of explicit evidence of learning in ELEs (such as the correctness of student answers), 

making supervised machine learning approaches that use system-provided labels 

unsuitable, (//) the difficulty of recognizing meaningful learning behaviors in highly 

unstructured exploratory environments, even for application experts, making 
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knowledge-based or supervised approaches that require hand-labeled data costly and 

unappealing, (iii) the novelty of the exploratory learning paradigm, making experts 

hard to even find. 

In Chapter 3, we presented a framework that takes a statistical pattern 

recognition approach to user modeling, making use of both unsupervised and 

supervised machine learning in order to address these aforementioned challenges. The 

framework advocates using unsupervised machine learning to automatically detect 

distinct behavioral patterns of users interacting with a learning environment. 

Therefore, instead of experts having to observe and search for meaningful learning 

behaviors, they are automatically presented with a picture of common patterns which 

they can then analyze in terms of their effects on learning. In addition, the behavioral 

patterns identified by unsupervised learning can be used directly to train a classifier 

user model by using a supervised machine learning technique. The online 

classifications by this user model can then inform the adaptations of an intelligent 

learning environment. Therefore, by maintaining a data-based design, and employing 

unsupervised as well as supervised machine learning, this framework is intended to 

reduce some of the costs faced by user model developers. 

8.1.2 Framework Evaluation 
Our second thesis goal was to evaluate our user modeling framework by answering 

the following three questions: 

i . How well does the framework automatically identify meaningful learning 

behaviors? 

i i . How well does a user model built via the framework perform at classifying 

new users online? 

i i i . How well does the framework transfer across different applications and data 

types? 

In order to answer these questions, we implemented the techniques prescribed in the 

framework, applied them to two different ELEs and using two different data sources 

(interaction logs and eye-tracking data), and then analyzed the experimental results. 
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The answer to the first question can be determined by the results of completing 

the 'Cluster Analysis' step of our user modeling framework during our two 

experiments (see Section 4.2.4 for the CSP Applet, and Section 5.2.3 for ACE) . In 

both experiments, we show that unsupervised machine learning (i.e., clustering) was 

able to identify several behaviors either beneficial or detrimental for learning out of 

the multi-dimensional sets of behaviors related to exploration. Some of these 

behaviors easily explained either successful or poor learning outcomes. Others (such 

as those pertaining to eye-gaze behaviors in our second experiment with ACE) 

confirmed the results of previous research. And finally, some of these required more 

complicated analyses of several interrelated behaviors to accurately explain the 

learning outcomes. Discovering these complex behaviors would have been a difficult 

task to perform manually, even by application experts. Thus, the Cluster Analysis 

results from our two experiments demonstrate the utility of using our framework to 

automatically identify meaningful learning behaviors. 

Answering the second question requires evaluation of the predictive accuracies 

our classifier user models. As discussed earlier (see Section 6.2.5), the best way to 

assess the effectiveness of any user model would be to implement an intelligent 

learning environment (ILE) that could use the model's predictions to make live 

adaptations and then test the ILE in a real world setting. However, our less than ideal 

evaluation method (he., using leave-one-out-cross-validation (LOOCV) due to our 

limited sample sizes), still provides us with initial evidence of the predictive 

performance of our classifiers. In addition, we took efforts to ensure that we did not 

misrepresent the predictive accuracies of our classifiers by using a L O O C V 

evaluation strategy. We did this by measuring the stability of the training data (i.e., 

the clusters) over the folds of L O O C V when evaluating each of our models. In all 

cases, our classifier user models were determined to be reasonably stable. Also, all of 

the classifier user models outperformed baseline user models that used most-likely 

class classification strategies for making predictions. Both of the two-class classifier 

user models that we developed (one for each ELE) achieved good overall predictive 

accuracy on new user data, especially in detecting behaviors detrimental for learning. 

However, the predictive accuracy of the three-class user model developed for the CSP 



106 

Applet E L E in our first experiment was noticeably lower. This was likely attributable 

to the smaller clusters used to train this user model, and therefore, we hypothesize 

that the performance of this classifier will improve with additional data. 

The comparable results of applying our framework to two different ELEs, for 

two different instructional domains, and using different types of input data, answers 

the third question. Specifically, we were able to follow our framework to build a user 

model for both the CIspace Constraint Satisfaction Problem (CSP) Applet, in Chapter 

4, which uses interactive visualizations to help students understand a constraint 

satisfaction algorithm in artificial intelligence, and the Adaptive Coach for 

Exploration (ACE) in Chapter 5 which supports the exploration of mathematical 

functions. Furthermore, we were able to apply the framework to both logged 

interaction data and eye-tracking data. This, and the answers to our first two 

questions, show that the framework is flexible and domain/application independent. 

8.2 Conclusion 

Detecting learner groups and understanding their characteristic behaviors is important 

to provide adaptive support for those students who tend to not learn well with 

unstructured and unguided exploratory learning environments, but it is also very 

difficult. This is due to the very openness of the interaction that ELEs are designed to 

support, making it hard to foresee which of the many possible student behaviors may 

be detrimental to learning. The few existing approaches to this problem have been 

very knowledge intensive, relying on time-consuming, detailed analysis of the target 

system, instructional domain and learning processes. Since these approaches are so 

domain/application specific, they are difficult to generalize to other domains and 

applications. 

In this thesis we have outlined a data-based user modeling framework that uses 

both unsupervised and supervised machine learning. We also experimented with 

applying the framework to build user models for two different ELEs. The results we 

obtained allow us to argue that unsupervised machine learning is valuable in reducing 

the practical difficulties of user modeling, especially in highly unstructured learning 



107 

environments. In addition, we have proposed some ideas for future research in this 

area. 
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