
Hierarchical Tree Approach to Group Key
Management using the Group Diffie-Hellman

Protocol

by
Peter King Pong Au

B.Sc., University of British Columbia, 1999,

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA
April 2007

© Peter Kin Pong Au, 2007

Abstract

As a result of the increasing popularity of group-oriented peer-to-peer applications, there

is an increasing demand for security services in this kind of environment. Key

management plays an important foundation role in security services. Quite a few key

management solutions have been proposed for peer groups. However, they usually have

limited scalability. This paper considers the scalability of a group-oriented environment

and proposes a group hierarchy solution to resolve the problem.

i i

Table of Contents

Abstract ii

Table of Contents iii

List of Tables vi

List of Figures vii

Acknowledgements viii

Chapter 1 Introduction 1

1.1 Motivation. 1

1.2 Overview of Diffie-Hellman Protocol 2

1.3 Exponentiations of DH-family Protocols 4

1.4 Synopsis 5

Chapter 2 Background and Related Works 6

2.1 Background 6

2.1.1 Peer-to-peer communication 6

2.1.2 Group Key Management 8

2.2 Previous Related Works 9

2.2.1 Simple Key Distribution Centre (SKDC) : 9

2.2.2 Group Diffie-Hellman (GDH) , 10

2.2.3 Logical Key Hierarchy (LKH) 10

2.2.4 Distributed Sub-group (DS) 11

Chapter 3 Design and Algorithms 13

3.1 Overview 13

ii i

3.2 Simple Group 13

3.3 Hierarchy of Groups 14

3.4 Membership Changing 18

Chapter 4 Analysis 22

4.1 Efficient Diffie-Hellman-Based Protocols 22

4.2 Efficiency of the Protocol 23

4.2.1 Scenario 1: Balanced Binary Tree with Members in Leaf Level Only 24

4.2.2 Scenario 2: Balanced Binary Tree (BBT) with Members Equally Distributed among

Groups in the Leaf Level .30

Chapter 5 Implementation 35

5.1 Overview 35

5.2 User Interface 35

5.2.1 File Browser 36

5.2.2 Media Organization Tools 38

5.2.3 Group Browser 39

5.3 Secure P2P Communication : 42

5.3.1 Group Diffie-Hellman Implementation 42

5.3.2 Group and Group Manager 42

5.3.3 Neighbours 43

5.3.4 Group Relationships and Group Hierarchy.. 44

5.4 Media Content Sharing 44

Chapter 6 Conclusions and Future Works 52

6.1 Conclusions ; 52

6.2 Future Works 53

iv

Bibliography

List of Tables

Table 4.1 Summary of IKA for Scenario 1 28

Table 4.2 Summary of SKR for Scenario 1 28

Table 4.3 Summary of IKA for Scenario 1 31

Table 4.4 Summary of SKR for Scenario 1 31

vi

List of Figures

Figure 3.1 Simple Group 14

Figure 3.2 Hierarchy of Groups 16

Figure 3.3 Key path 17

Figure 3.4 Member leaving 19

Figure 3.5 Key refresh of parent group 20

Figure 3.6 Key refresh along key path 21

Figure 4.1 BBT with Members in Leaf Level Only 25

Figure 4.2 BBT with Members Equally Distributed in the Leaf Level 30

Figure 4.3 Total Members vs. Total Messages 32

Figure 4.4 Total Members vs. Total Rounds 33

Figure 4.5 Total Messages vs. Number of Levels 34

Figure 5.1 Application Main Menu .36

Figure 5.2 File Browser Showing the C and D Drives of a Windows File System... 37

Figure 5.3 Adding Picture Folder to Photo Album in File Browser 38

Figure 5.4 Photo Album Tool 39

Figure 5.5 Group Creation in Group Browser 40

Figure 5.6 Inviting Neighbour in Group Browser 41

Figure 5.7 Group Relationships Example 45

Figure 5.8 Group View of Group Browser of Neighbour pi 46

Figure 5.9 Neighbour View of group A from pi 46

Figure 5.10 Neighbour p2 sharing a photo album with group A 48

Figure 5.11 Photo Album "testAlbum" is marked as "shared" 48

Figure 5.12 Resource View of pi viewing p2 49

Figure 5.13 "Take Resource" operation in Group Browser 50

Figure 5.14 ; The Photo Album tool of pi after adding p2,s shared album 51

vii

Acknowledgements

I would like to thank to my supervisor, Dr. Son Vuong, for his inspiration, guidance and

encouragement for the past 5 years. It would have been impossible for me to get this far

without his support and understanding. I'm also grateful to have Dr. Alan Wagner for

being my second reader and comments he provided.

I would also like to thank my family members for their endless love, especially my wife,

Jany, for her understanding, support and patient.

Finally I want to dedicate this work to my son, Joseph, who was born during the time of

this research. He has brought me quite a few of troubles, but at the same time, given me

endless hours of happiness.

Peter Au

The University of British Columbia

viii

Chapter 1

Introduction

1.1 Motivation

The increasing popularity of distributed, group-oriented collaborative applications has

prompted the need for security services to provide communication privacy and integrity

in these contexts. Such services should be specifically geared towards group-oriented

collaborative environments and optimized for such environments. However, security

mechanisms for collaborative communication are usually complicated and expensive

compared with the mechanisms used for the non-collaborative multicasting

communication commonly found on in today's Internet.

Security requirements for group-oriented collaborative environments present some

interesting research challenges. Key management, which is the foundation of all security

requirements, plays an important role in this research area. In the past several years, quite

a number of key management solutions have been proposed for peer groups. Key

management models for peer-group operations have been addressed by several other

researchers. However, they have usually targeted on internal security issues within a

single independent group with a simple security model, such as group formation and

internal membership operations. On the other hand, the issues of external membership

changes, where security requirements can be inherited or shared between groups, remain

relatively unexplored.

1

A fully functional scalable collaborative environment requires not just reliable peer

communication within a single group, but also a security mechanism for multiple groups

interacting with each other. In a scalable collaborative environment, group is an

important concept. Each group is a collection of peers who can share the same

functionality, such as level of security. There may also be existing security relationship

between groups through inheriting or sharing mechanisms. Therefore, the security

requirements in such an environment can be much more complicated than simple peer-to-

peer security within a single group. A more sophisticated key management scheme is thus

required to address security concerns in these environments.

1.2 Overview of Diffie-Hellman Protocol

The Diffie-Hellman key agreement protocol was developed by W. Diffie and M . Hellman

in 1976 and was published in a paper called "New Directions in Cryptography" [1]. It

was subsequently proposed as an Internet standard by the Internet Engineering Task

Force (IETF) as RFC 2631 [2]. It is also known as the exponential key agreement

protocol. The protocol allows two parties to exchange a secret key through an insecure

medium without sharing any prior secrets.

The Diffie-Hellman Key Agreement Protocol requires both parties to have key pairs. By

combining the one party's private key with the other party's public key, both parties can

compute the same shared secret number. This number is usually used as a key-encryption

key to encrypt the content-encryption key, which in turn is used to encrypt the content

data.

We will now look at the Diffie-Hellman key agreement protocol in more detail. The

protocol requires two system parameters: p and g. Both parameters are considered as

public values and may be used by all users in the system. Parameter p is a prime number

(usually very large) and parameter g (also called a generator) is an integer smaller than p.

These two parameters are picked with the following property:

2

For every number n between 1 andp-l inclusive, there is a power k of g such that

n - gk mod p.

Suppose we have two parties X and Y , who want to agree on a shared key using the

Diffie-Hellman key agreement protocol. First, each party generates its own private value

(a.k.a. private key (PK)), say, a and b, respectively. Then they derive their public value

(a.k.a. public key or blind key (BK)) using the parametersp and q, as follows:

B K = £ (P K) mod/?

We simplify this procedure by using a = g mod p, as,

B K = a (P K)

Now, party X ' s public key is ga mod p = a", and party Y ' s public key is gb mod p = ab.

The parties then exchange their public keys with each other. Finally, they each combine

their own private key with the other's public key, and calculate the shared secret key as

follows:

shared secret key k - (Other's B K) (o w n P K)

Party X computes (gb)a mod p = aab, and party Y computes (ga)b mod p = aba. Because

aab = aba = k, both parties now have k as the shared secret key.

Later researchers extended the two-party Diffie-Hellman protocol to n-parties. They

called it the "natural" extension [8] to two-party Diffie-Hellman protocol by generalizing

the calculation to n-parties. The shared secret key, usually referred to as the group key

(GK) in a group setting, is calculated as follows:

G K = a P K ' P K 2 P K 3 - P K n

3

More information regarding the Group Diffie-Hellman Protocol can be found in the later

section "Previous Related Works".

1.3 Exponentiations of DH-family Protocols

The Diffie-Hellman key agreement protocol is also known as the exponential key

agreement protocol because of its exponentiation requirement.

As described in the last section, given two system parameters, p and g, the blink key (BK)

is an exponentiation, B K = a (P K) , where a is called the exponentiation base, which is

equal to g mod p. After the two parties have exchanged the blink keys with each other,

they calculate the shared secret key k using another exponentiation, k = (Other's B K) (o w n

P K) . Therefore, to successfully complete a 2-party Diffie-Hellman key agreement protocol,

each party needs to compute at least two exponentiations.

In n-parties Diffie-Hellman agreement protocol, the shared group key (GK), as described

in the last section, is calculated as G K = a PK> P K 2 P K3 P K n. To calculate this group key,

intermediate values are passed between group members to gather the private keys, and

multiple exponentiations are necessary to complete the protocol. Because exponentiation

is costly, the number of exponentiations in the system becomes one of the important

measures in the protocol complexity.

4

1.4 Synopsis

In this work, we address the key management security requirements of a dynamic,

scalable, collaborative environment in a hierarchical security model, where the security

level of different groups can be inherited or shared. We use one of the well-known

solutions to peer-group key management, the Diffie-Hellman Key Exchange Protocol, to

address the internal key exchange between peers within each group. We then apply the

same protocol in a special way to address inter-group key management issues, by

arranging groups in a hierarchical tree structure according to inheritance of different

levels of security requirements in the collaborative environment.

This thesis is divided into six sections. In Chapter 2, we briefly review the Diffie-

Hellman Key Exchange Protocol and the various extensions devised by other researchers,

and describe how it is applied to our work. In Chapter 3, we describe our proposed new

design and algorithm regarding the organization of peer groups in a hierarchical tree

structure and how the Diffie-Hellman Key Exchange can be extended for use in this tree

structure. In Chapter 4, we do some analysis on the proposed design. Chapter 5 explains

the implementation of our design in a media-sharing application. In the final section, we

describe further possible research works and provide conclusions based on our results.

5

Chapter 2

Background and Related Works

2.1 Background

2.1.1 Peer-to-peer communication

The Peer-to-peer communication model has a history as old as the Internet. The original

Internet, ARPANET, the purpose of which was to share resources around the U.S., was

built based on a peer-to-peer system. The first few hosts on the A R P A N E T - U C L A , SRI,

UCSB, and the University of Utah - were independent hosts with equal status. The

A R P A N E T connected them together not in a master/slave or server/client relationship,

but rather as equal peers [25]. Two long-established networks that are still in use today,

DNS and Usenet, have peer-to-peer components. However, the rise of the commercial

Internet with its millions of home users during 1990s changed the networking model

significantly. Server/client-based networking protocols such as SLIP and PPP became

common when using slow-speed modem connection. Also server/client-based application

protocols, such as Telnet and FTP, became popular. The networking patterns switched

more to downloading data rather than sharing resources. Eventually, asymmetric high

speed network links, such as A D S L and cable networks, became common during the late

1990s.

However, server/client-based communication requires a centralized server to handle

intensive tasks, which can easily become a bottleneck and a point of failure. In recent

years, peer to peer communication has come back into the picture as the "future"

communication model. During the late 1990s and early 2000s, peer-to-peer technology

was once again becoming popular through some popular file-sharing applications such as

6

Napster[26] and KaZaA[27], and later in the popular file sharing protocol, BitTorrent[28].

Peer-to-peer telephony applications such as Skype[30], and peer-group-oriented

applications such as video conferencing and internet broadcasting sport events [31][32],

are also becoming known to Internet users.

A true peer-to-peer network should have all nodes or peers joined together dynamically

to participate in some or all intensive tasks that would otherwise be handled by the

centralized server. A decentralized peer-to-peer network has several advantages over a

centralized server/client network. Theoretically, a decentralized peer-to-peer network is

able to scale indefinitely without a significant increase in search time or network

bandwidth. It distributes the workload over individual nodes or peers, where their number

should always increase in direct proportion to the network size.

Security became a major concern during the late 1990s as the Internet became popular

among the general public, and people began to rely on the computers for important

communications and tasks. As server/client-based networks and applications have been

dominant since the Internet started to become commercialized, most mature security

technologies are based on the server/client communication model. As peer-to-peer-based

networks and applications have become more popular, further research into security

issues in the peer-to-peer environment has been stimulated.

W. Diffie and M . Hellman first published the two-party Diffie-Hellman Key Exchange

Protocol [1] in 1976, whereas the first public key cryptosystem was published two years

later by Rivest et al. [15]. Since then, various solutions have been proposed to apply the

Diffie-Hellman key generation and management concept in a multi-party setting, that is,

in a peer-to-peer environment. The main difficulty is to efficiently apply the concept

without causing an exponential growth in complexity. During the past 30 years, quite a

number of researchers have been working on and proposing new solutions.

7

2.1.2 Group Key Management
In peer-to-peer environment, communication between peers is called group

communication. One of the ways to protect group communication is encryption. An

encryption algorithm takes an input data, such as a group message, and performs some

conversions on it using a key to generate a ciphered data. The key is a carefully selected

number chosen from a large range of values, so that there is no easy way to recover the

original data from the ciphered data other than by knowing the key. The messages are

protected by encryption using the chosen key, which in the context of group

communication is called group key. Only those who know the group key are able to

recover the original data.

A secured group communication is relying on a properly selected group key. Therefore,

group key management plays an important role in the secured group communication. One

of the most important aspects in key management is how the keys are created and then

transported to the authenticated peers. Basically, there are two different models used for

key creation and transportation: key distribution and key contribution. In key

distribution, a centralized key server is responsible for creating and distributing keys to

authenticated users. This server is also usually responsible for authenticating users at the

time of distributing keys. Since this process matches the server/client communication

model well, most server/client-based networks and applications employ key distr ibution

as their primary key management model. In key contribution, users contribute their own

secrets to generate the group key by communicating with each other. There is more

communication overhead in key contribution, as users need to contact each other at least

once in the initialization stage. Authentication is also usually more complicated. However,

key computations are distributed among users, avoiding computation bottleneck and a

single point of failure.

In peer-to-peer settings, either model has its pros and cons. Some people use the

traditional server-client key distribution model, as it is relatively more efficient; on the

other hand, some people whose work is based on a more pure peer-to-peer approach use

8

the key contribution model. We will look at several different approaches to key

management in the peer-to-peer environment in the next section.

2.2 Previous Related Works

A number of approaches to peer-group key management have been proposed. In general,

these approaches can be divided into four main categories:

1. Simple Key Distribution Centre (SKDC)

2. Group Diffie-Hellman (GDH)

3. Logical Key Hierarchy (LKH)

4. Distributed Sub-group (DS)

2.2.1 Simple Key Distribution Centre (SKDC)
SKDC is the earliest and simplest solution to the peer-group key management problem.

The approach is based on the key distribution model. It uses a centralized key

assignment method, where a Group Controller (GC), sometimes called Key Distribution

Centre (KDC), is responsible for creating, assigning, and managing all keys. Some of the

well-known examples are Kerberos developed by MIT [3] [4], and the Group Key

Management Protocol (GKMP) by Harney and Muckenhirn [5] [6]. Also, there are some

more recent researchers who have proposed some centralized key management schemes

in a multicast or group environment such as [32] [33] [34] [35] [36]. SKDC basically

applies the key management of the traditional server-client communication model to a

peer-group environment. However, this server-client model also brings with its known

server-client communication problems, such as a central bottleneck and a single point of

failure. Therefore, some researchers such as Poovendran et al. [37] raised the problem of

fault-tolerance of G K M P . Some other researchers would not consider this as a proper

solution to the peer group environment at all, as it defeats the advantages of peer-to-peer

communication [29].

9

2.2.2 Group Diffie-Hellman (GDH)
It has been 30 years since the 2-party Diffie-Hellman key agreement protocol was first

proposed [1]. In the meantime, quite a few researchers have extended the protocol to the

group setting. G D H is an approach applying the renowned two-party key agreement

protocol in a generalized, n-party environment, where all peers talk to each other to agree

on a common group key. Some of the earlier notable examples are Ingemarson et al [13]

and Burmester and Desmedt [14]. We can also find some recent examples using G D H

such as Cliques by Steiner et al. [7] [8] [9], and also the Octopus protocol [10]. G D H -

family protocols are based on a pure key contribution concept, honouring the peer-to-

peer communication model and taking advantage of it. Bresson et al. [16] [17] [18] [19]

[20] showed that solving the Group Computational Diffie-Hellman problem is at least as

hard as solving the Two-party Computational Diffie-Hellman problem. So, the security of

GDH is ensured. However, some of the research results are only of theoretical interest,

while others have demonstrated a scalability issue [10].

2.2.3 Logical Key Hierarchy (LKH)
Scalability has long been an issue in key management in a peer-group setting. L K H is an

approach that takes advantage of a data tree structure to minimize size, storage and

computational cost. In general, the peers would be arranged at the leaf level of a

hierarchy tree. Intermediate keys are computed up the tree, from the leaves to the root,

until the final group key is agreed upon at the root of the tree. In some cases, intermediate

keys are useful.in membership operations of the group. There have been quite a few of

variants and theoretical studies in this area, especially in key trees [22] [24], key graphs

[23], and Hierarchy Binary Tree proposed by Wallner et al. [38] and Caronni et al. [39]

[40]. Some researchers put the idea forward in more practical approaches. Examples

include the One-way Function Tree by D. McGrew and A . Sherman [11] [41], and also

the Tree-based Group Diffie-Hellman (TGDH) by Y . Kim et al. [12] [21]. For these

contributions, peers are organized in one single group. The group keys are either

managed by a single group controller, or the keys are both contributed and distributed by

10

the members themselves. The single group controller becomes a crucial point of failure.

The entire group will be affected i f there is a problem with the controller such as

mechanical malfunction. If the group keys are distributed by the members themselves,

some researchers criticize that, as the group grows larger, too much key-refreshing

overhead makes the approach impractical [43].

2.2.4 Distributed Sub-group (DS)
Some researchers proposed to split the large group into smaller sub-groups. Examples of

these contributions include Iolus [44] and Intra-domain Group Key Management [45].

Each sub-group has a different sub-group controller, minimizing the problem of

concentrated work. This distributed control collaborates to avoid the central failure, so

that local sub-group failure might not affect the whole system.

Iolus, proposed by Suvo Mittra [44], is a framework with a hierarchy of agents that split

peers into different sub-groups. Each sub-group is managed by a Group Security Agent

(GSA), and all GSAs are grouped together to form a top-level group which is also

controlled by a top-level GSA. Iolus uses independent keys for each group. The lack of a

global group key makes key refreshing in a sub-group to be treated locally. The drawback

is that i f a peer needs to transmit a piece of data from one group to the other, the

encrypted data is needed to be translated as it is traveling across group boundary, as there

are no common group keys that are known to the peers of different sub-groups [42].

On the other hand, Intra-domain Group Key Management, proposed by Hardjono et al.

[45], is an intra-region group key management scheme. There are two region levels, one

trunk region, and one or more leaf region. The leaf region is further divided into

administratively scoped areas. There are one Domain Key Distributor (DKD) and many

Area Key Distributors (AKD) for each administratively area. The D K D and A K D s are

placed in an extra level group called All-KD-group. The All-KD-group is used for D K D

to transmit key-refreshing messages to the AKDs. A l l areas in the domain use the same

group key. For this reason, data do not need to be translated when passing from one area

to another. Also, D K D does not need to keep track of all group members, but only keep

11

track of the AKDs. Nonetheless, since Intra-domain Group Key Management employs a

D K D as a single controller, it presents the problem of a single point of failure i f the D K D

is interrupted [42].

12

Chapter 3

Design and Algorithms

3.1 Overview

The key distribution model is efficient as there is a central key distribution node or

server to generate and manage the keys. However, it is limited by the traditional server-

client communication disadvantages, defeating the advantages of peer-to-peer

communication. On the other hand, key contribution model retains all the advantages of

peer-to-peer communication, but is known to be inefficient and not very scalable. We

propose an approach that is based on both key distribution and key contribution and

also takes advantage of LKH to yield a simple but highly efficient and scalable key

agreement method that is effective in a group-oriented collaborative environment.

Inspired by the model of DS, we also make use of the logical or intermediate keys in

LKH to create a multi-level security environment.

3.2 Simple Group

To form a group with a limited number of group members, key agreement using the key

contribution concept would yield the best advantages. Therefore, a small local group is

formed using one of the known key contribution methods to form a group and generate

its corresponding group key. The key can be generated by any known key agreement

method that makes use of the key contribution concept, for example, one of the proved

Group Diffie-Hellman Protocols [7] [8] [9] [10]. However, because a key agreement

13

protocol using the key contribution concept has the problem of scalability, the number

of members who can come together to share the same group key would be very limited.

As an example, say members M i , M 2 and M3 come together to form group A. By

exchanging the necessary information between each member, they generate a group key

K A (See Figure 3.1).

C K A

L
M , M 2 M 3

Figure 3.1 Simple Group

Using the Group Diffie-Hellman Protocol,, with K i , K 2 and K 3 as the corresponding

secrets (private keys) of M i , M2 and M 3 > the members exchange the corresponding blind

key (public key) BKi= a K 1 , BK 2= a ^ and BK 3= a K 3 between each others. The group

key K A is then calculated by each member as follows:

K A = < X K 1 K 2 K 3

Now M i , M 2 and M 3 can communicate securely with each other by using the group key

K A .

3.3 Hierarchy of Groups

In a fully functional scalable collaborative environment, the number of members should

not be limited, and security controlled by a single group key is not a favourable feature

14

when different types of members require different levels of security control. Say

members of two different groups want to communicate with each other in a traditional

key agreement method. There is no choice but to discard the old group key, and generate

a new group key that includes contributions from all members of these two groups. This

leads to the formation of a bigger group containing all members from both groups. This

method is inflexible and may not be feasible when the number of members reaches to a

level where scalability and efficiency become issues. Also, it is not possible for each

original group to maintain their existing privacy as the old group keys have been

discarded or deemed unusable. In a fully functional scalable collaborative environment,

this is not a favourable scenario.

Therefore, we introduce a concept of group hierarchy that can provide security in

different levels (or areas), but still allow different members from different levels (or areas)

to communicate securely with each other. This technique also gives the whole

environment more room to scale, because the number of members in each group is

limited but the total number of groups is unlimited.

Referring to the example from the previous section, say there are other members who

have formed another group B, with group key K B , using a similar group agreement

protocol to that used in group A. If a member of group B wants to communication with

members of group A, a super-group C will be formed (see Figure 3.2), with group A and

group B as members. A group key Kc is generated using the same key agreement method

as in group A and B, with group key K A and K B as secret. The necessary message

exchanges required by the key agreement protocol could be done by a group leader of

each group. This group leader can be elected at the time the group is formed, or by any

other election process after the group is formed. After the necessary message exchanges

between the two group leaders, a new super-group key Kc is generated and known to

both group leaders. The group leaders then forward this new super group-key Kc to their

group members. To hide this new group key Kc from external entities, the new key Kc

will be encrypted by group key K A (for members of group A) or K B (for members of

group B).

15

Figure 3.2 Hierarchy of Groups

Using the Diffie-Hellman protocol, the leader of group A calculates the blind key B K A =

a ^ and the leader of group B calculates the blind key B K B = a K B . They exchange these

blind keys and can each calculate group key Kc, as follows:

K c = a K A K B

The leader of group A will then encrypt this new group key Kc by K A and send it to all

members of group A . The leader of Group B will do the same, using K B to encrypt

instead.

Now each member will have 2 group keys, the local group key (KA or KB) and the super

group key (Kc). Members can then communicate securely, using either the local group

key (for information shared within the same local group) or the super-group key (for

information shared with members of the other group).

Note that the role of group leader can be taken by any one of the members, which is an

important characteristic to eliminate the possibility of a single point of failure and an

efficiency bottleneck.

16

The same idea can be applied to formation of other local groups or super-groups into a

hierarchy of groups with different levels (or areas) of security, creating a flexible and

scalable collaborative environment.

Note that each member in the environment will know a set of group keys along a path

from their local group to the root group. For example, in Figure 3.3, Mi would know its

local group key K A and also all of the group keys along the path to the root group, that is,

Kc, K D and K F . This gives Mi the flexibility to encrypt data or messages at different levels

of security, depending on its target audience. We call the path that leads from the local

group to the root group, the key path.

K A

M i M 2 M

K R

L
M 4 M M 6

M 7

K F

K c

M 8 M ,

Figure 3.3 Key path

17

3.4 Membership Changing

For a scalable collaborative environment, membership operations like membership

addition, deletion, merging of groups and group division are quite common. But in a

scalable collaborative environment with many groups and memberships, we do not want

each membership operation affecting every member in the whole environment. One of

the goals of our protocol is to restrict the impact of membership operations only to those

members who are immediately related to the group where the membership operation is

occurring. This does not mean other members will be unaware of the membership

changes, but they should at least not get involved in the key re-calculation process

resulting from the change in membership. What they will get is just a notice of

membership change and the new key(s) that have been created because of the

membership change (and of course the information regarding the old key(s) that should

be discarded).

Referring again to our previous example, say member M 3 is going to be removed from

group A as depicted in Figure 3.4. Group key K A undoubtedly needs to be refreshed to

maintain the privacy of group A. The remaining members Mi and M2 would need to get

involved to contribute the new group key. Say Mi and M2 have got together and create a
ly- 1 » iffy »

new group key K A ' by exchanging new blind keys BK] '= a , BK2= a where,

K A ' = aKi'K2'

18

<CTT Ka' Kb

Figure 3.4 Member leaving

Group key Kc of group C, which is the parent group of group A, will now need to be

refreshed because it is one of the known group keys to M 3 , the deleted member, or, in our

terminology, it is one of the keys along the key path of M3. Members or member groups

of group C now need to get involved to refresh the group key of group C. In our example,

we have two member groups, A and B , belonging to group C, therefore the group leaders

of groups A and B will take the responsibility of refreshing the group key of group C.

The group key of group C should be calculated based on the group key from group A and

group B . We already have a new group key K A ' . On the other hand, K B has never been

made known to M3. So, if is safe to calculate the new group key K c ' by using the new

group key K A ' with the old key K B , as follows:

K c ' = a K A K B

19

Note that we don't want to refresh K B , and that it is not necessary to, because refreshing

K B would require the involvement of all members from group B , which violates our idea

of not impacting members that do not immediately belong to the group with the

membership changes.

Now we have a new group key K c ' (see Figure 3.5), and the leader of group A and group

B will encrypt this new group key K c ' with the corresponding local group key (K A ' or K B)

and send it to their members.

Figure 3.5 Key refresh of parent group

Similar key refreshing of all keys along the key path of group A will happen subsequently,

as shown in Figure 3.6. This protocol requires only the group keys along the key path of

the group where the membership operation happens to refresh. Only members of the

group where the membership operation happens, plus the group leaders of sibling groups

along the key path would need to get involved in the key refreshing process. This

20

procedure significantly reduces the number of members affected because of the

membership changes, and also reduces the number of exponential calculations required

by the key-refreshing process. The analysis of the advantages of this procedure can be

found in the later section "Efficiency of the Protocol" of next chapter.

c K A ' c K B

/
M , M 2

/
m /

M 4 M 5

\
M 6

M 7 M 8 M 9

members other than from group A are not Involved In kê raABshing prooass

Figure 3.6 Key refresh along key path

21

Chapter 4

Analysis

4.1 Efficient Diffie-Hellman-Based Protocols

K. Becker et al. in a research report [10] defined and proved lower bounds of some of the

characteristics of the Diffie-Hellman-based protocols. In other words, they found out

what an efficient Diffie-Hellman-based protocol should, consist of, by dividing Diffie-

Hellman-Based protocols into broadcasting and non-broadcasting types. Because in our

approach we need to broadcast some of the messages, we are more interested in the

broadcasting type.

Becker et al. [10] defined the lower bounds of any efficient Diffie-Hellman-based

protocol as follows:

Total number of messages >= N
Total number of rounds >= log N

where N is the total number of members involved in the protocol.

In other words, a Diffie-Hellman-based protocol with the following complexities would

be considered to be an efficient protocol:

Total number of messages = 0(N)
Total number of rounds = 0(log AO

22

We will use these lower bounds and complexities as the basis for analysis of the

efficiency of our protocol.

4.2 Efficiency of the Protocol

For all key exchange protocols, there are usually 2 types of key-refreshing processes.

First is the Initial Key Agreement (IKA) process, where all members come together to

agree upon the first group key(s). This process happens in the very first stage where all

peers just come together and nobody knows each other. Second is the Subsequent Key

Refreshing (SKR) process, which happens after IKA produces the first group key.

Several situations require SKR, for example, various different membership changes and

key expiration.

As we employ the Key Contribution concept, the IKA process is usually more resource-

consuming, as it has no choices but all members are required to contribute towards the

initial group key(s). Therefore, there is not much streamlining we can do, since every

member needs to be involved at least once during the process. Based on the principle of a

scalable collaborative environment as described above, a group hierarchy is formed

voluntarily when necessary. Therefore, an arbitrary initial formation requiring IKA is not

meaningful. However, we still describe the IKA, assuming there is some arbitrary

number of members coming together to form a tree structure according to our approach.

But this is just for comparison purposes and does not reflect the principles we mentioned

earlier.

On the other hand, for all efficient G D H protocols, the number of members participating

in the SKR process is a crucial factor in the protocol's efficiency. Our approach to

improving the efficiency of the G D H protocol is to reduce the number of members taking

part in the key-refreshing process. Only members of the group where the membership

operation occurs, plus the group leaders of sibling groups along the key path, would need

23

to get involved in the key-refreshing process. This significantly reduces the number

messages being passed around and the number of exponential calculations, which

improves efficiency.

The following notations are used throughout this section:

N
n
b
d
T

Total number of members
Number of members in the group where key refreshing is necessary
Number of groups at the leaf level of the hierarchy tree
Level of the hierarchy tree
Total number of groups

Different possible settings and scenarios are discussed in this section. The settings are

arbitrary but can easily be created and enforced through application or administration

policies. For each scenario, we look at the three common measures of communication

protocol complexity:

1. Total messages

2. Total number of rounds

3. Number of broadcast messages

The two key refreshing-processes, IKA and SKR, will be analyzed in each measure.

4.2.1 Scenario 1: Balanced Binary Tree with Members in Leaf Level Only

We first look at a Balanced Binary Tree (BBT) which is the simplest and easiest case to

understand (See Figure 4.1). We organize the hierarchy of groups into a BBT, and

members are only allowed to join groups at the leaf level, which makes the case even

simpler but still realistic and practical.

In this scenario, all non-leaf groups will use an efficient 2-party D H algorithm to generate

the group key. Because of the nature of 2-party D H algorithm, where n is always 2, the

complexity is constant for all non-leaf groups, which is 0(1).

24

Figure 4.1 BBT with Members in Leaf Level Only

Analysis of Total Messages in the case of IKA

Based on the process described in the previous section, an optimized GDH process within

the affected group would require 0(n) messages to refresh the group key [10]. Let leaf

groups Gy, G2, ... and G^ have «/, t%2, ni, ... and rib members respectively. Because each

leaf group needs to do a local IKA itself to find a local group key, the total number of

messages would be 0(n; + ri2 + rii + ... + rib) - 0(N). We then need to create all sub

group keys above the leaf level. For a BBT, there are 7/2 sub-groups above the leaf level.

Each sub-group key is generated by an efficient 2-party DH algorithm that requires a

fixed number of messages, which is 0(1). Therefore, we need T/2 • O(l) = 0(772)

messages to create all sub-group keys above the leaf level. After each creation of parent

keys, we need to broadcast that parent key back to the corresponding members. In total,

we need another 0(7/2) messages, because there are 7/2 parent keys (7/2 sub-groups

above leaf level) that need to be broadcast. We add up all of these numbers to obtain the

total number of messages, as follows:

25

Total messages: O(A0 + 0(772 + 772)

0(N+T)

or 0(N+(2-b-l))

0(N+b)

forT= 2 - 6 - 1

Analysis of Total Messages in the case of SKR

Based on the process described in the previous section, an optimized G D H process within

the affected group would require 0(n + 1) messages to refresh the group key (one

additional message is for the new member when that member is added). A l l parent keys

along the key path are required to refresh. For each parent key along the key path to

refresh, an efficient 2-party D H algorithm (the original DH) would require a fixed

number of messages, which is 0(1). If there are d levels of the tree (the length of the key

path), we would need 0(d) messages to refresh all of the parent keys. For each group, we

need to broadcast the parent key back to the corresponding group members, which need

another 0(2d) messages (one for each side of the child tree, using different keys to

encrypt). We add up all of these numbers to obtain the total number of messages, as

Analysis of Total Rounds in the case of IKA

Similar arguments to those in the above analysis in "Total messages in the case of I K A "

can be applied in "Total Rounds". Here, however, all of the IKA of the local leaf groups

are done in parallel. Therefore, the groups with most rounds will dominate this stage.

Assuming we are using an optimized G D H protocol as described in Becker[10], which

requires 0(lg n) rounds, we need 0(lg (max(«/, «2, nj, . . . , « &))) rounds for all of the

leaf-level groups to finish the IKA process. Now, after the last leaf-level group finishes

follows:

Total messages:

or

0(n + 1) + 30(d)

0(n + 3d)

0(n + 3- lg b)

0(n + lg b)

for d=\gb

26

calculating its group keys, the groups in the (d - 1) level start simultaneously and

calculate their group keys in parallel, so do all higher levels. Because all non-leaf level

groups require constant time to complete their 2-party DH algorithm, and we have d

levels, d • 0(1) = 0(d) rounds are required for all non-leaf groups to calculate their group

keys. At the end, the final broadcast messages of the root key need 0(d) rounds to

complete. Therefore, the total number of rounds can be calculated as follows:

Total rounds: 0(lg (max(«/, 112, n3, nb)))+ 0(d + d)

0(lg (max(n;, n2, n3,...,nb)) + 2d)

or 0(lg (max(«/, n2, n3, nb)) + 2 lg b) ford = \gb

0(lg (max(«/, n2, n3, ..., nb)) + lg b)

Analysis of Total Rounds in the case of SKR

Similar arguments to those in the above analysis in "Total Messages in the case of SKR"

can be applied here. We have 0(lg(n + 1)) to refresh the group key (one additional

message is for the new member when a new member is added). Then, we would need 0(d)

messages to refresh all of the parent keys along the key path. At the end, the final

broadcast messages needs only one round to complete. Therefore, the total number of

rounds can be calculated as follows:

Total rounds: 0(lg (n + 1)) + 0(d + d)

0(lg n + 2d)

or 0(lgn + 21gZ?) ioxd = \gb

0(\gn + \gb)

Analysis of Broadcast Messages in the case of IKA

All sub-group keys, plus the group key, need to be broadcast back to the corresponding

members, yielding the following:

27

Broadcast messages: 0(7)

or 0(2-6-1)

0(b)

Analysis of Broadcast Messages in the case of SKR

All sub-group keys along the key path, plus the group key, needed to be broadcast back to

the corresponding members, yielding the following:

Broadcast messages: 0(d)

or 0(lg b)

Summaries

Our analysis for Scenario 1: Balanced Binary Tree with Members in Leaf Level Only, is

summarized in Table 4.1 and Table 4.2.

Messages: 0(N+b)
Rounds: 0(lg (max(n/, n2, n3,...,nb)) + lg b)

Broadcasts: 0(b)
Table 4.1 Summary for IKA of Scenario 1

Messages: 0(n + lg b)
Rounds: 0(lg n + gb)

Broadcasts: 0(\gb)
Table <• .2 Summary for SKR of Scenario 1

General Analysis for Scenario 1

IKA is obviously more costly than SKA. Actually, IKA in this scenario is not efficient as

described by Becker [10], where an efficient Diffie-Hellman-based protocol should have

0(N) complexity in Total Messages. However, this higher IFA complexity is offset by a

28

lower complexity in SKR, where the complexity depends on the number of members in

the local affected group, rather than on the whole member population.

In fact, the efficiencies of SKR in this scenario are generally based on two characteristics:

the number of levels (or the number of leaf groups, where d=lg b) and the number of

members in the group where key refreshing is necessary. The number of level is a fixed

number based on the arbitrary application policy setting. So, the only other significant

factor will be the number of members in the affected group.

For total messages, we need 0(n + d) total messages to complete the process. The

efficiency depends on the number of members in the affected group. The worst case

scenario would be n = N, i.e., all members happens to be in the affected group. Then, we

have 0(N + d). But this case does not make sense. It would be meaningless to create

parent keys and broadcast to other branches that have no members in them. We can easily

avoid this situation i f we have a good application level policy to prevent overcrowding a

single group, and, for optimized performance, to evenly distributed members among the

leaf groups.

In the next scenario, we assume that members are evenly distributed among all groups in

the leaf level.

29

4.2.2 Scenario 2: Balanced Binary Tree (BBT) with Members Equally
Distributed among Groups in the Leaf Level

It is not completely unrealistic to assume all members are evenly distributed among all

groups in the leaf level, as shown in Figure 4.2; this could be done easily through an

application level policy of regarding member joining. In this scenario, we will always

have n = Nib members, as all leaf groups have the same number of members. Since all

other assumptions and constrains are the same as in the last scenario, we can just

substitute n = Nib into the formulae in the last scenario.

c
M ,

c Kc

Kn

K A

M 2

L
M , M 4

K B

K c

K E

M 6
M 7 M 8 M o

Figure 4.2 BBT with Members Equally Distributed in the Leaf Level

30

Summaries
i

Our analysis for Scenario 2: Balanced Binary Tree (BBT) with Members Equally

Distributed among Groups in the leaf level, is summarized in Table 4.3 and Table 4.4.

Messages: 0(N+b)
Rounds: 0(\g N/b +lgb)

Broadcasts: 0(b)
Table 4.3 Summary for IKA of Scenario 2

Messages: 0(N/b +\gb)
Rounds: 0(lg Nib +\gb)

Broadcasts: 0(lg b)
Table <• .4 Summary for SKR of Scenario 2

General Analysis for Scenario 2

As we have assumed all members are evenly distributed among all groups in leaf level,

we can do a more thorough analysis by looking at the growth of several key

characteristics as the number of members increases.

For a 3-level BBT (b = 8), we plot N against (Nib + lg b), i.e., total members vs. total

messages, in Figure 4.3.

31

2500i

Total

Total Members

Figure 4.3 Total Members vs. Total Messages

We can clearly see a linear relationship in Figure 4.3, but it has a slope significantly less

than 1, which indicates that 0(N/b + lg b) grows considerably slower than O(n). Actually,

for b > 1, 0(N/b + lg b) < 0{N).

32

Let us take a look at the number of rounds. In Figure 4.4, we have a graph showing TV

plotted against (lg (N/b) + lg b), i.e., total members vs. total rounds. In this graph, we can

see that the total number of rounds is optimized as N gets larger.

Total Members

Figure 4.4 Total Members vs. Total Rounds

33

Let us look at the effect of the number of levels. If we fix the total number of members

and vary the number of levels of the BBT, we can analyze how the number of levels

affects the total messages. Say for a fixed total number of members ./V = 20000, we plot

(Nib + lg b) against b, i.e., total messages vs. number of levels, as in Figure 4.5.

Total
Messages

3000

2500

2000

1500

1000

500

0 1 1 1 1 1 1 iT iWf iHf f t ' i ' iV i ' iV i 1 1 1 * 11 * * * 1 1 iTiYiViYiTrrrrrrri 1 u 1 1 1 1 M 1 1 1 1 1 1 1 1

M c v i T - Q i ? 5 ' 5 r c N i t - . o) c o ' q F c N i C N i T - c o

Total Levels

Figure 4.5 Total Messages vs. Number of Levels

With the total number of members fixed and the number of levels increasing, we can see

that there is a drastic decrease in the total number of messages. However, this number

will.be get optimized pretty quickly, and further increases in the number of levels will not

help, but will actually increase the number of messages. In fact, it is unrealistic to have

the number of levels approaching or exceeding the total number of members.

34

http://will.be

Chapter 5

Implementation

5.1 Overview

To test our research in a more realistic environment, we have implemented our approach,

using Java, in a media-sharing application where users can securely share their media

data, such as pictures and homemade video, with each other. As in our research approach,

users can create different levels of hierarchy and media can be shared with different

groups of users using different levels of security.

This application offer basic features for users to select, organize and display media

content. Besides these basic functionalities, it integrates with a peer-to-peer (P2P)

communication module that is able to communicate and share media content with other

users in the model described in this research.

5.2 User Interface

Figure 5.1 shows the main menu of the application interface. The application interface is

organized similar to other media organization software, where users can add existing

media content into the program and do some basic organization. The application is

intended to run in full screen like other common media organization software. The main

menu provides a list of several tools and major operations, such as Photo Album, File

35

Browser, Settings, Exiting, etc. Users can use the mouse cursor to highlight and initiate

the selected tools or operations.

Start
Photo Album

File Browser

Group Browser

General Settings

Exit MeSecShare

Figure 5.1 Application Main Menu

After a particular tool or operation is initiated, depending on the tool or operation, the

interface usually rearranges itself into 2 or 3 horizontally aligned panels. The left panel

features a list of available operations; the centre panel is the main display panel for the

tools; and the optional right panel contains additional information.

5.2.1 File Browser
File Browser tool can be selected from the main menu, and is provided for users to search

and select media data. When they find the specific media data, they can add them to

media organization tools such as Media Library or Photo Album.

The first time the File Browser tool is started, it displays the file listing of the user's file

system root. From there, users may navigate to other parts of the file system and select

36

their favour media data files. Figure 5.2 shows the File Browser tool as it first starts, with

a typical file system root in Microsoft Windows.

Figure 5.2 File Browser Showing the C and D Drives of a Windows File System

When the users navigate through the file system and find a favourite media data file or

folder, they can highlight the particular file or folder and select the "Add to..." operation

from the left panel; a popup window will ask where the highlighted content should be

added to. A list of media organization tools is provided for user to choose from and they

can select the appropriate tool to handle the media type they have selected. For example,

in Figure 5.3, the user finds the " M y Pictures" folder containing some favourite picture

files, and wishes to add them to the Photo Album tool. They then highlight the " M y

Pictures" folder and select the "Add to..." operation from the left panel. A popup

window appears and the user selects "Photo Album" as the destination. "My Pictures"

will then be added to "Photo Album".

37

Figure 5.3 Adding Picture Folder to Photo Album in File Browser

5.2.2 Media Organization Tools
The application can accommodate several different media organization tools to properly

handle and organize different types of media data. We have implemented a Photo Album

tool to handle and organize the various picture types of media files.

In the last section, we mentioned that users are able to select their favourite media files or

folders and add them to the appropriate media organization tool. In the Photo Album tool,

each folder added by users through the File Browser tool will become an album. A l l of

the added albums are listed in the initial page of the Photo Album tool. Users can select

and open the specific album and view the media content of that album. Figure 5.4 shows

the pictures files in the " M y Pictures" album.

38

Figure 5.4 Photo Album Tool

5.2.3 Group Browser
The Group Browser tool is the portal to the secure P2P communication and media-

sharing features of our application. Its main purpose is to give users an interface to

browse through the groups, peers and their shared media resources. It also provides

functionalities to manipulate hierarchy, group and peer relationships, which is an

implementation of our research approach.

If the user has not created a group and has not been asked to join a group, the Group

Browser offers them a choice to create a new group, as shown in Figure 5.5. After the

user has created a new group, they will automatically become the manager of the new

group. The group manager has the capability of inviting other peers to join its group, so

that a group with multiple members can be formed. Figure 5.6 shows a group manager

inviting a new peer to join his or her group. Neighbours, which are peers that have

39

established secure relationships, can then start to securely share media content with each

other.

Group Browser (p1)
Groups that I joined or am managing

Mam Menu

Refresh

Figure 5.5 Group Creation in Group Browser

40

Group Browser (p1)
Neighbours of Group GroupA

B a c k No neighbours found in this group currently.

R e f r e s h

Figure 5.6 Inviting Neighbour in Group Browser

Besides inviting peers, the group manager is also able to invite other groups to join as its

group's child group. This process establishes the hierarchy of group relationships. The

child group's members then have the right to communicate and share media content with

the parent group's member at the secure level of the parent group. We discuss the group

relationships and hierarchy in the next section.

The Group Browser has 3 basic views: group, neighbour and resource. In group view,

users can browse the groups they manage or join (called principal groups), and other

groups that have relationships (called related groups). By clicking on a specific group,

users can access the neighbour view in which they can see all of the neighbours within

that specific group. By clicking on a specific neighbour, users go into the resource view,

which shows all of the resources that this particular neighbour is sharing. From this view,

users can add other neighbours' shared resources into their own media organization tools.

We discuss this procedure in more detail in Section 5.4.

41

5.3 Secure P2P Communication

This media-sharing application has an implementation of our research approach to create

a secure P2P communication environment so that neighbours can communicate and share

media content securely. We now look at this implementation in more detail and explain

how the secure P2P Communication works in this application.

5.3.1 Group Diffie-Hellman Implementation

A l l groups will perform a group Diffie-Hellman (GDH) key agreement to create a group

key, which is used in the secure communication between neighbours. After a certain

period of time, which is an application setting, the system will do a key refreshing to

create a new key. The key agreement is implemented using the Java Security package

with the Java Cryptography Extension (JCE). We have evaluated several optimizations of

GDH [7] [8] [9] [10] and their key-refreshing processes. We did not implement all of the

optimizations, however, as the performance of G D H within a single group is not a major

measurement of our research approach. Rather, we concentrate on how well the hierarchy

groups work, and their practicality.

5.3.2 Group and Group Manager

A group is formed when a peer starts a new group. The peer who creates the new group

will automatically become the group manager. At the application level, the group

manager is responsible for the general administration of the group. Therefore, the group

manager has the following privileges:

1. Naming the group

2. Inviting another peer to join the group

3. Inviting another group to become the group's child group

Other privileges that the group manager should have but that have not been implemented

as of the latest version, include the following:

42

1. Renaming the group

2. Removing neighbour from the group

3. Removing child group

4. Destroying the group

At the secure communication level, the group manager has the same responsibility as the

group leader as discussed in Section 3 regarding the design of our research approach and

the algorithms involved. In general, the group manager has the following responsibilities:

1. Initiating the Initial Key Agreement (IKA) process

2. Expiring the old key and initiating the Secondary Key Refreshing (SKR) process

3. Taking part in the key-refreshing process of other groups

4. Encrypting any new parent group keys and distributing them to the group

members

5.3.3 Neighbours
A neighbour is a peer with whom a secure connection has been established. It could be

another member of the group the user belongs to, or of the group that has a relationship

with the group the user belongs to. In other words, a neighbour should have one or more

group keys associated with it that the user can use to securely communicate with it.

A group key is first generated by performing the IKA within the specific group. The

group manager has the privilege of inviting a new peer to join the group. When the group

manager invites the first member, an IKA occurs between the group manager and the new

peer, and a new key is generated for the group. Communication between the group

manager and the new peer, now a neighbour, is secured. The group manager can

subsequently invite other peers to join. SKR occurs every time a new peer joins, and an

updated group key is generated.

43

5.3.4 Group Relationships and Group Hierarchy
A group relationship is established when a group manager invites another group to join as

a child group. One group manager can send an invitation to another group manager to

join. The invitation would contain the group name of the invitee group. The other group

manager can accept the invitation only i f the invitee group is managed by it.

When the group relationship is being established, the parent group manager will initiate

the SKR of the parent group to refresh the parent group key. The child group manager

will get involved in the SKR on behalf of the child group. When the new parent group

key is generated, the child group manager will encrypt it by the current child group key

and distribute it to the group members. The group members are then able to communicate

with the parent group's members using the new parent group key.

Each group manager is free to establish parent-child relationships with other groups.

Hence, a group hierarchy is formed. The SKR process is carried out as discussed in

Section 3.

5.4 Media Content Sharing

Sharing media content is simple, once neighbours and group relationships are properly

set up, as described in the last section. Let us look at a simple example of five peers

forming two groups where these 2 groups have a parent-child relationship. These

relationships are shown in Figure 5.7.

44

c
L
p5

GroupB

p4*

p i * p2 p3

the group manager

Figure 5.7 Group Relationships Example

Figure 5.7 shows the neighbours and group relationships in our five-peer example.

Neighbours pi and p4 are the group managers of groupA and groupB respectively.

Neighbours p2 and p3 are members of group A, and neighbour p5 is member of groupB.

GroupA is the parent group of groupB; to see it another way, groupB is the child group of

groupB.

In our example, Figure 5.8 shows the group browser of neighbour pi using group view.

The view presents pi a manager of groupA, and groupA having a child group called

groupB. A l l group names are clickable in this view. By clicking on a group name, we go

into the neighbour view of that particular group. Figure 5.9 shows the neighbour view of

groupA. We can see that neighbours p2 and p3 are shown as the neighbours of pi in

groupA. Note that the peer would not see itself listed in its own neighbour view.

45

Group Browser (p1)
Groups that I joined or am managing

M a i n M e n u

R e f r e s h

C r e a t e g r o u p

* g r o u p A (M a n a g i n g)

• * [c h i l d g r o u p s]

g r o u p B

Figure 5.8 Group View of Group Browser of Neighbour pi

Group Browser (p1)
Neighbours of Group groupA

Back P3

P2
R e f r e s h

I n v i t e N e i g h b o u r

Figure 5.9 Neighbour View of groupA from pi

46

Each neighbour is able to share its added media resource with other neighbours. Adding a

media resource means that the media content has been added to one of the media

organization tools. When sharing the media content, a neighbour can pick either the

group that it creates or joins (principal group), or any other group that has a relationship

with his principal group (related group).

Let us return to our example and go to neighbour p2. Figure 5.10 shows the Photo

Album tool of neighbour p2. Neighbour p2 has an album called "testAlbum" added to his

or her Photo Album tool and wishes to share this album with other neighbours. A popup

window is displayed to let the user to pick one of the principal or related groups of p2

where the media resource is to be shared on that group security level. Let us select

groupA, the principal group of p2, in the popup window and press the " O K " button. The

Photo album "testAlbum" is marked to be shared, as shown in Figure 5.11. The album

information panel on the left shows the photo album is shared to groupA.

47

Photo Album
Photo Album Listing Page

Main Menu

Remove
Please choose a group where testAlbum will be shared.

Album Info

OK Cancel

Figure 5.10 Neighbour p2 sharing a photo album with groupA

Photo Album
Photo Album Listing Page

Main Menu

Close Info

Album Information
Name:
testAlbum
Location
C. vljcicumftits and ^tlting'jVF&IehM

Dimension:
N/A
Shared by:
None

Shared to:
groupA

Figure 5.11 Photo Album "testAlbum" is marked as "shared"

48

After neighbour p2 shares its photo album, the application will automatically notify other

(related) neighbours of its new shared resource. We now go back to neighbour pi in

Figure 5.12, which shows the resource view of pi viewing its neighbour p2. We can see

that p2 is sharing a photo album resource item called "testAlbum".

Group Browser (p1)
Shared resources of neighbour p2

B a c k

R e f r e s h

« P 2
• * Photo A l b u m

tes tA lbum

Figure 5.12 Resource View of pi viewing p2

49

Neighbour pi can now add p2,s "testAlbum" to its own photo album. By highlighting the

shared resources "testAlbum", users will get a "Take Resource" operation on the left

panel. They can then use this operation to add the "testAlbum" to their own Photo Album

tool. Figure 5.13 shows this operation.

Group Browser (p1)
Shared resources of neighbour p2

Back * p 2

= * Photo A l b u m

R e f r e s h tes tA lbum

Figure 5.13 "Take Resource" operation in Group Browser

50

In the Photo Album tool of pi shown in Figure 5.14, we can see that the photo album

"testAlbum" of neighbour pi has now been added to the Photo Album tool of neighbour

p2. The right information panel indicates that the album is shared by p2. The content of

the shared photo album will begin to transfer to pi as soon as the album is first shared

using the security level of groupA.

Photo Album
Photo Album Listing Page

Main Menu

1os© InTo

Shared to:

Figure 5.14 The Photo Album tool of pi after adding p2's shared album

51

Chapter 6

Conclusions and Future Works

6.1 Conclusions

There is a trend toward increased use of peer to peer applications. One can easily foresee

that peer-to-peer communication will become as mainstream a communication model as

the server-client model because of its advantages. However, the security of peer-to-peer

communication has not matured sufficiently to warrant the trust of the majority of

Internet users.

Security requirements for the peer-to-peer environment present quite a number of

interesting research challenges. Key management, which is the heart of the security

process, plays an important role in this research area. We propose a functional key

management model for a collaborative peer-to-peer environment, focusing on reducing

the number of affected peers in the secondary key refreshing process, in order to make

the environment more scalable. The key management model also introduces the idea of a

hierarchy of security levels, which makes the environment more practical and realistic.

Our research approach is inspired by both the Logical Key Hierarchy (LKH) and the

Distributed Sub-group (DS) concepts. We take advantages of both concepts, and merge

them into a model that minimizes the drawbacks of the two concepts. Our approach takes

the advantage of data tree structure of LKH that minimize size, storage and

computational cost, and organizes the peers into sub-groups, which distributes the key

management works to multiple sub-group managers and avoids the single point of failure

52

problem. The localization of the key refreshing also minimizes the overhead of the key-

refreshing process.

We have also implemented a media-sharing application using our research approach,

where users can securely share their media content with each other in a group hierarchy

environment using different security levels. The application is a partial proof-of-concept

implementation, which shows that our approach is practical, and demonstrates the

usefulness of grouping and levels of security.

6.2 Future Works

Chapter 3 describes our proposed new design and its algorithms, using examples and

descriptive language. The algorithms can be formalized, and some protocol verification

can be done.

The security of the Group Diffie-Hellman problem has been verified and proved to be a

computational hard problem [16]. Our design is based on the Group Diffie-Hellman-

based protocol for creating a group key for each individual group, so the security of our

protocol has the same level of security. However, there are some variants that might

affect the integrity of the security, for example, re-using the old group key to contribute

to the new group key in the higher level, broadcasting the new group key, etc. Each of

these variants can be more thoroughly analyzed in the future.

We have made a few assumptions when analyzing the algorithms in Chapter 5. As these

assumptions create some ideal situations, the efficiency of the proposed protocol might in

practice be slightly different from the data. While the real environment might never be

able to be described and theoretically analyzed, there are a few other practical scenarios

that more closely resemble the real environment that may be interesting to analyze further.

53

The media-sharing application implemented in this research can be potentially improved

in quite a few areas. For example, implementing other media tools besides Photo Album,

a better implementation of the GDH-based protocol, and a relational database to make the

application more scalable, etc., might be explored.

Statistics could be collected from practical usage of the application. These statistics

would help in analyzing the protocol from a practical point of view, to complement the

theoretical analysis done in this research.

54

Bibliography

[1] W. Diffie and M . E. Hellman. New Directions in Cryptography, IEEE Transactions

on Information Theory, IT-22(6):644-654, November 1976.

[2] E. Rescorla. Diffie-Hellman Key Agreement Method, RFC 2631, IETF, June 1999.

[3] B. Clifford Neuman and Theodore Ts'o. Kerberos: An Authentication Service for

Computer Networks, IEEE Communications, 32(9):33-38. September 1994.

[4] John T. Kohl and B. Clifford Neuman. The Kerberos Network Authentication

Service (V5), RFC 1510, IETF, September 1993.

[5] H . Harney and C. Muckenhirn. Group Key management Protocol (GKMP)

Architecture, RFC 2094, IETF, July 1997.

[6] H. Harney and C. Muckenhirn. Group Key management Protocol (GKMP)

Specification, RFC 2093, IETF, July 1997.

[7] M . Steiner, G. Taudik, and M . Waidner. Cliques: A New Approach to Group Key

Agreement, Technical Report RZ 2984, IBM Research, December 1997.

[8] M . Steiner, G. Tsudik, and M . Waidner. Diffie-Hellman Key Distribution Extended to

Group Communication, SIGSAC: 3rd A C M Conference on Computer and

Communications Security, pages 31-37. A C M SIGSAC, 1996.

[9] M . Steiner, G. Tsudik, and M . Waidner. Key Agreement in Dynamic Peer Groups,

IEEE Transactions on Parallel and Distributed Systems, March 2000.

55

[10] K. Becker and U . Wille. Communication Complexity of Group Key Distribution, 5th

A C M Conference on Computer and Communications Security, San Francisco, California,

November 1998, pp. 1-6, A C M Press.

[11] D. A . McGrew and A . T. Sherman. Key Establishment in Large Dynamic Groups

Using One-Way Function Trees, Technical Report No. 0755, TIS Labs at Network

Associates, Inc., Glenwood, M D , May 1998.

[12] Y . Kim, A . Perrig, and G. Tsudik. Simple and Fault-Tolerant Key Agreement for

Dynamic Collaborative Groups, 7th A C M Conference in Computer and Communication

Security 2000, pages 235-241, November 2000.

[13] I. Ingemarson, D. Tang, and C. Wong. A Conference Key Distribution System, IEEE

Transactons on Information Theory, 28(5), 1982, 714-720.

[14] M . Burmeester, Y . Desmedt. A Secure and Efficient Conference Key Distribution

System, Advances in Cryptology - EUROCRYPT'94, LNCS 950, Berlin: Springer 1994,

pages 275-286.

[15] R. L. Rivest, A . Shamir, and L. M . Adleman. A Method for Obtaining Digital

Signatures and Public-key Cryptosystems, Communications of the A C M , 21(2): 120-126,

February 1978.

[16]] E. Bresson, O. Chevassut and D. Pointcheval. The Group Diffie-Hellman Problems,

9th Annual International Workshop on Selected Areas in Cryptography of the A C M ,

pages 325-338, 2002.

[17] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably

Authenticated Group Diffie-Hellman Key Exchange, Proceedings of A C M CCS '01,

pages 255-264. A C M Press, November 2001.

56

[18] E. Bresson, O. Chevassut, and D. Pointcheval. Provably Authenticated Group Diffie-

Hellman Key Exchange - the Dynamic Case, Proceedings of Asiacrypt '01, volume 2248

of LNCS, pages 290-309. Springer-Verlag, December 2001.

[19] E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic group Diffie-Hellman Key

Exchange under Standard Assumptions, Proceedings of Eurocrypt '02, volume 2332 of

LNCS, pages 321-336. Springer-Verlag, May 2002.

[20] E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-hellman Key Exchange

Secure Against Dictionary Attacks, Proceedings of Asiacrypt '2002. Springer, December

2002.

[21] Y . Kim, A. Perrig, and G. Tsudik. Tree-based Group Key Agreement, A C M

Transactions on Information and System Security, Vol . 7, Issue 1, pages 60-96, February

2004.

[22] X . L i , R. Yang, M . Gouda, and S. Lam. Batch Updates for Key Trees. Technical

Report, University of Texas, Austin, September 2000.

[23] C. K. Wong, M . Gouda, and S. Lam. Secure Group Communications Using Key

Graphs, Proceedings of SIGCOMM, September 1998.

[24] X . L i , Y . Yang, M.Gouda, and S. Lam. Batch Rekeying for Secure Group

Communications, Proceedings of Tenth International World Wide Web Conference

(WWW10), (Hong Kong, China), May 2001.

[25] Nelson Minar, Marc Hedlund, Clay Shirky, Tim O'Reilly, et. al. Peer-to-Peer:

Harnessing the Power of Disruptive Technologies, edited by Andy Oram, O'Reilly Press,

First Edition February 2001.

[26] Napster. Mar 2, 2007. Napster, March 2, 2007 <http://www.napster.com>

57

http://www.napster.com

[27] KaZaA. Mar 2, 2007. KaZaA, March 2, 2007 <http://www.kazaa.com>

[28] BitTorrent. Mar 2, 2007. BitTorrent March 2, 2007 <http://www.bittorrent.com>

[29] M . Amnefelt and J. Svenningsson. Keso - A Scalable, Reliable and Secure

Read/write Peer-to-peer File System, 2004.

[30] Skype. Mar 2, 2007, Skype March 2, 2007 <http://www.skype.com>

[31] S. Paul. Multicast on the Internet and its applications, Kluwer Academic Publishers,

1998.

[32] W. Trappe, J. Song, R. Poovendran, and K.J.R. Liu. Key Distribution for Secure

Multimedia Multicasts via Data Embedding, Proc. IEEE ICASSP'01, pp. 1449-1452,

May 2001.

[33] D . M . Wallner, E.J. Harder, and R.C. Agee. Key Management for Multicast: Issues

and Architectures, Internet Draft Report, Sept. 1998.

[34] M . Waldvogel, G. Caronni, D. Sun, N . Weiler, and B. Plattner. The VersaKey

Framework: Versatile Group Key Management, IEEE Journal on selected areas in

communications, vol. 17, no. 9, pp. 1614-1631, Sep. 1999.

[35] A . Perrig, D. Song, and D. Tygar. E L K , A New Protocol for Efficient Large-group

Key Distribution, Proc. IEEE Symposium on Security and Privacy, pp. 247 -262, 2001.

[36] S. Banerjee and B. Bhattacharjee. Scalable Secure Group Communication over IP

Multicast, JSAC Special Issue on Network Support for Group Communication, vol. 20,

no. 8, pp. 1511 -1527, Oct. 2002.

58

http://www.kazaa.com
http://www.bittorrent.com
http://www.skype.com

[37] R. Poovendran, S. Ahmed, S. Corson, and J. Baras. A Scalable Extension of Group

Key Management Protocol, Technical Report TR 98-14, Institute for Systems Research,

1998.

[38] D.Wallner, E. Harder, and R. Agee. Key Management for Multicast: Issues and

Architectures, RFC 2627, June 1999.

[39] M.Waldvogel, G. Caronni, D. Sun, N.Weiler, and B. Plattner. The VersaKey

Framework: Versatile Group Key Management. IEEE Journal on Selected Areas in

Communications (Special Issue on Middleware), 17(8):1614—1631, August 1999.

[40] G. Caronni, M . Waldvogel, D. Sunand, and B. Plattner. Efficient Security for Large

and Dynamic Multicast Groups. Workshop on Enabling Technologies, (WETICE 98),

IEEE Comp Society Press, 1998.

[41] D. Balenson, D. McGrew, and A. Sherman. Key Management for Large Dynamic

Groups: One-Way Function Trees and Amortized Initialization, IETF Internet draft,

August 2000.

[42] M . Burmester and Y . Desmedt. A Secure and Scalable Group Key Exchange System,

Information Processing Letters, 94(3), pp. 137-143, 2005.

[43] S. Rafaeli. A Decentralized Architecture for Group Key Management. Computing

Department, Lancaster University, September 2000.

[44] S. Mittra. Iolus: A Framework for Scalable Secure Multicasting, A C M SIGCOMM,

volume 27,4 of Computer Communication Review, pages 277-288, A C M Press, New

York, September 1997.

[45] T. Hardjono, B. Cain, and I. Monga. Intra-Domain Group Key Management Protocol,

IETF Internet draft, September 2000.

59

