
Preventing Denial-of-Service Attacks
with Packet Symmetry

by

Mike Wood

B.Math, The University of Waterloo, 2005

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L M E N T O F
T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University of British Columbia

September, 2007

© Mike Wood 2007

Abstract

Denial-of-service (DoS) attacks are a serious problem affecting the Internet

today with security firms estimating over 5000 attacks are launched per

day, leading to revenue loss and tarnished reputations for online businesses.

These attacks remain prevalent and successful because the Internet has no

mechanism to distinguish wanted from unwanted packets. The core of the

Internet impartially forwards any packet to its destination without regard

as to whether the destination actually desires said packet or not.

This thesis evaluates packet symmetry [47] as a heuristic to distinguish

wanted from unwanted traffic at the source network, to enable proactive

filtering of DoS attack traffic before it reaches the core. Packet symmetry

measures the "goodness" of outgoing traffic using the ratio of transmitted-to-

reply packets with a lower ratio implying better traffic. A packet symmetry

limiter shapes outgoing traffic to ensure the per-flow ratio of transmission-

to-reply packets never exceeds a pre-defined threshold. This empowers DoS

victims to throttle any unwanted traffic from symmetry-limited sources sim-

\ ply by not replying to those sources' requests. This power is especially im­

portant for end users and small businesses, who make up the majority of

DoS attack victims [56, 53], that cannot afford to over-provision network

resources as a means to tolerate massive flooding attacks. The net effect is

that a network governed by packet symmetry cannot be the source of flood-

i i

Abstract

ing DoS attacks, as senders are automatically rate-limited proportional to

the rate of reply. In this thesis, analysis of network traces helps derive packet

symmetry limiting principles and thresholds that effectively discern innocent

from malicious DoS traffic with few false-positives. The implementation of a

symmetry limiter prototype for the Linux kernel and corresponding deploy­

ment on a U B C research lab network evaluate the efficacy of the solution

on live traffic with encouraging performance and usability results.

i i i

Table of Contents

Abstract i i

Table of Contents iv

List of Figures v i i

Acknowledgements ix

1 Introduction 1

1.1 Motivation 1

1.2 Self-critical networks . . . 3

1.3 Preventing DoS at the source 4
r

2 Packet Symmetry Principles and Design 9

2.1 What is Packet Symmetry? . . ; 10

2.1.1 Tracking Packet Symmetry 12

2.1.2 Packet Symmetry Metric 15

2.1.3 Security Guarantee - Bootstrapping Packet Rate . . 17

2.2 Limiting Flows with Packet Symmetry 18

2.3 Where to Place a Symmetry Limiter 22

2.4 Analyzing Symmetry of Internet Protocols 25

2.4.1 Data Set 25

iv

Table of Contents

2.4.2 Traffic Analysis 26

2.4.3 Examining Asymmetric Flows 31

2.4.4 Considerations for Multicast Protocols 44

2.5 Summary 45

3 Security Evaluation 47

3.1 Threat Model 48

3.2 Effectiveness Against DoS attacks 50

3.2.1 Traditional DoS attacks 51

3.2.2 Symmetry-Aware DoS Attacks 53

3.2.3 Limits of Symmetry Limiting 59

3.3 Resilience to Attacks • 60

3.3.1 DoS your neighbour 60

3.3.2 Memory Exhaustion 61

3.4 Summary 63

4 Implementing a Symmetry Limiter 65

4.1 System Architecture 65

4.1.1 Tracking Packets 67

4.1.2 Filtering Packets • 71

4.1.3 User-level Daemon 72

4.1.4 Web Console , • • • 74

4.2 Performance Evaluation 74

4.2.1 Future Optimizations 78

4.3 Deployment Experience . 80

4.3.1 A Symmetric Observation 80

4.3.2 Asymmetric Observations 82

Table of Contents

4.3.3 Security Evaluation 85

4.4 Summary 87

5 Related Work 88

5.1 Identifying Sources \ . . . 88

5.2 DoS Attack Detection 89

5.3 Reactive DoS Defense 90

5.3.1 Victim-Based 90

5.3.2 Router-Based 91

5.4 Proactive defenses 94

5.5 Sophisticated DoS attacks 96

5.5.1 Cunning Attacks 96

5.5.2 Protocol Vulnerabilities 97

5.6 Drastic Measures • • • • 98

5.6.1 New Network architectures 99

5.6.2 Protocol Modifications 101

6 Discussion and Conclusion 103

6.1 Discussion 103

6.1.1 A Current Defense 103

6.1.2 Future Network Architectures . . 106

6.2 Conclusion 107

Bibliography 109

List of Figures

2.1 Tracking tx packets across a sliding window W 15

2.2 Limiting flows with packet symmetry 21

2.3 Packet symmetry taxonomy for network traffic 26

2.4 Data set flow distribution by protocol . 26

2.5 Distribution of flows by maximum asymmetry. 27

2.6 Evaluating window history W values 29

2.7 Maximum asymmetry vs maximum flow rate by IP protocol . 30

2.8 Finding ports with the most asymmetric flows 32

2.9 Two-stage symmetry computation. 36

2.10 A NetBIOS name registration flow 39

2.11 Triangular routing of U D P traffic 43

3.1 Symmetry limiting vs. simple DoS flood 52

3.2 Symmetry-aware DoS flooding attack 57

4.1 System architecture for Linux symmetry limiter prototype . . 66

4.2 Screen shot of symmetry-limiter web interface 75

4.3 Symmetry limiter evaluation network topology 75

4.4 Comparing symmetry limiting throughput performance. . . . 77

4.5 Symmetry of Skype VoIP traffic 81

4.6 Network topology for example DoS flood attack 86

vii

List of Figures

4.7 Effectiveness of symmetry limiting vs. a U D P flood. 86

vii i

Acknowledgements

Tremendous thanks to Andrew Warfield and Will iam Aiello for all their

dedication, insight and direction.

Many thanks to Christian Kreibich and Vern Paxson for lending network

traces, sharing Bro expertise, and assisting with packet dump analysis.

A big thank you to Michael Sanderson for all his help coordinating the

deployment on the D S G subnet, and for tolerating my inexperience as a

rookie sysadmin.

As well, thanks to Nels Anderson, Aiman Erbad, and Kan Cai for bravely

volunteering their machines to participate in our live deployment.

ix

Chapter 1

Introduction

1.1 Motivation

Denial of service (DoS) attacks are a major problem affecting the Internet

today with a recent security report estimating that an average of 5,213

attacks are launched per day [28]. These attacks are part of a growing

cybercrime industry, in which DoS attacks are used to extort money from

legitimate [11] (and illegitimate [14]) businesses. At the extreme, persistent

DoS attacks can even put a company right out of business, as was the case for

the anti-spam firm Blue Security [13]. Early DoS attacks in February 2000

against Yahoo!, Amazon and eBay [33] received significant media attention,

and seemed to trigger the adoption of over-provisioning network resources _

as a tactic to simply tolerate flooding attacks. As early as June of that year,

firm guidelines were set out to protect the critical DNS root name servers

from DoS floods, requiring each server have the capacity to sustain three

times its normal peak-load [19]. The failed DoS attacks against the DNS

root name servers in 2002 [30] and again in 2007 [39] demonstrate how over-

provisioning was and has remained a largely successful defense - but only

for those that can afford it. Consequently, the vast majority of DoS attack

victims are small companies, educational institutions, and government sites

[56, 53] that lack the funds to over-provision network resources to resist DoS

1

Chapter 1. Introduction

floods, making them the most vulnerable to attacks.

It is well understood in the computer security community that a sig­

nificant amount of computer crime, DoS attacks included, is carried out

through the. use of botnets - groups of compromised "zombie" computers

that are controlled by a remote master machine. Both the academic [10] and

industrial [28] communities report on the extremity of botnet infestation in

the Internet, with the number of compromised machines in the millions and

the number of active malicious hosts per day over fifty thousand. Making

matters worse, a botnet does not require a large number of zombies to be

capable of launching a powerful attack. A relatively small botnet of only

a thousand nodes with an average uplink bandwidth 128 Kbps can offer

an attack bandwidth exceeding 100 Mbps, capable of saturating the link to

even a modest sized corporation [10]. Notice that no one machine is respon­

sible for generating a large portion of attack traffic - the strength comes

from the aggregation of the small amount of attack bandwidth offered by

each zombie. DNS amplification attacks are even more potent, as each at­

tack packet from a zombie machine triggers a name server to send multiple

flooding packets to the target victim, generating aggregate attack strengths

exceeding 7 Gbps [71].

The threat is real and the attacks are damaging, proving costly for both

the source and destination networks. The targeted service is degraded or

unavailable, leading to revenue loss and a damaged reputation. The source

network wastes valuable bandwidth on attack traffic, requiring edge ISPs to

purchase larger capacity links from upstream carriers. Both ends may have

legal fees surrounding liability issues, as expertise from the legal commu­

nity [66, 44] suggests that further changes to computer crime laws will hold

the owners of zombie machines responsible for the damages from attacks

2

Chapter 1. Introduction

perpetrated by their machines. Such legislation may deem a corporation or

end-user negligent for lacking to implement computer security best-practices

- forcing the owner to take responsibility for all actions carried out by their

machines, not only the actions that were intended.

1.2 Self-critical networks

We introduce the concept of a self-critical network that filters its own

outgoing traffic, taking responsibility for its own actions and preventing its

clients from polluting the external network with malicious traffic. Filtering

in this manner can be highly effective, as the filtering mechanism is in close

proximity to the source of the malicious traffic to be filtered. A number of

technical advantages stem from this characteristic. Most importantly, the

filtering mechanism is close enough to the traffic source to enforce source

address integrity. This ensures further filtering occurs with high fidelity

as a source cannot masquerade as another to hide its malicious behaviour.

The source network also has complete isolated administrative control over

filtering policy and enforcement - no collaboration with other networks is

required for a network to police itself. Self-critical filtering is thus immedi­

ately deployable, with only the deploying organization having to generate

the necessary political momentum and effort from within.

Today, a number of network properties are already enforced in a self-

critical manner, though none that directly combat DoS attack traffic. Ingress

filtering [31] prevents an end host from forging (spoofing) its source IP ad­

dress. Contrary to popular belief, ingress filtering is quite widely deployed,

as the Spoofer project [15] estimates that less than seventeen percent of net

blocks are spoofable, indicating that many edge networks filter packets with

3

Chapter 1. Introduction

invalid source addresses. Self-critical filtering is also being used to combat

email spam. A O L , one of the largest North American service providers, only

allows its subscribers to send email traffic (on port 25) that passes through

an AOL-managed email server - all other email traffic is dropped [7]. Addi­

tionally, network management equipment vendors (ex. [51]) sell monitoring

and security products for ISPs that analyze and reduce the unwanted traf­

fic from the ISP's network, which indicates there is an existing market for

upstream self-criticizing firewall products. Thus, source-based filtering may

serve as a key component in the battle against DoS attacks, if a self-critical

DoS mitigation solution can be made practical.

Self-critical filtering of malicious DoS traffic at the source network could

ultimately lead to a stronger and safer Internet. However, important ques­

tions remain, such as: What exactly should a provider filter at their net­

work? What heuristic can be used to flag malicious traffic? How does the

heuristic cope without being able to observe all the aggregate attack traffic?

Can such a heuristic reduce the amount of malicious traffic coming out of

their networks and continue to support network and protocol innovation?

What incentives could drive ISPs to invest in a source-based solution, as

the filtering does not directly benefit (and may even disturb) its own sub­

scribers? This thesis considers these questions with respect to preventing

DoS activity.

1.3 Preventing DoS at the source

DoS attacks remain prevalent and successful simply due to the fact that the

Internet lacks a definition or mechanism to discern wanted from unwanted

traffic. A n end host has no means to specify that it does or does not wish

4

Chapter 1. Introduction

to receive requests from another host. Network routing is based solely on

best-effort packet forwarding - a router looks at the destination address of

a packet and forwards the packet along the path towards the destination,

without any regard as to whether the destination actually wants said packet

or not.

This thesis further evaluates packet symmetry [47] as a heuristic to mea­

sure the relative goodness of network traffic to thwart DoS attacks. The

heuristic defines good traffic as symmetric traffic, comparing the number

of packets flowing in both directions - source to destination and destina­

tion back to source - with better traffic having a more balanced exchange

of packets between the two endpoints. Packet symmetry makes the act of

communicating a necessarily cooperative endeavour, since both ends must

participate equally to maintain the goodness of the packet exchange. In this

manner, packets from one end can be thought of as "credits" for the other

end to send more packets back. Reply packets from an destination end host

are interpreted as signaling to indicate that the destination is willing to re­

ceive more traffic from the source. Conversely, a destination can throttle

undesired traffic from (potentially) malicious hosts by simply not replying

to those, hosts' requests.

The net effect is that a network governed by packet symmetry cannot be

the source of flooding DoS attacks, as senders are automatically rate-limited

proportional to the rate of reply. For a flood victim, no reply traffic gets

through their congested link, which in turn causes all symmetry-limited

subscribers to be throttled, directly combatting the attack. A symmetry

limiter need not observe all the attack traffic to detect attacks. Malice is

implicitly inferred with a lack of reply traffic from the destination host. As

such, end hosts are automatically protected from bandwidth flooding attacks

5

Chapter 1. Introduction

perpetrated by symmetry-limited botnets, as each bot can no longer send an

asymmetric flow of bandwidth consuming data to the destination without

explicit reply from that target.

DoS attacks are not a recent invention - the first large-scale attacks oc­

curred in 2000 [33] and many solutions have been proposed to combat DoS

activity since then. However, rate limiting traffic with packet symmetry

has a number of advantages over previous work. Firstly, packet symmetry

captures implicit signaling already present in the communication patterns of

most network applications. Protocols and applications do not need to change

to explicitly maintain symmetry, it already occurs naturally, which makes

deployment less invasive. Prior work tends to introduce explicit signaling

into the network, forcing routers and/or end-hosts to change existing proto­

cols or install new ones, which drastically increases the cost of deployment.

Furthermore, source-based packet symmetry filtering is a proactive solution,

preventing flooding attacks from happening in the first place, while a large

portion of prior work is reactive, detecting and then combatting attacks.

Packet symmetry limiters also empower DoS victims to thwart arbitrary re­

source exhaustion attacks, as the victim can control the attackers' flood rate

by manipulating their own reply rate, which can be as simple as inserting a

firewall rule to drop packets from the attack sources. Such fine-grained au­

tonomous control over DoS defense is key for smaller institutions, which, as

noted, comprise the majority of attack victims. Previous work also tends to

focus on high-rate in-core attacks, using probabilistic and statistical analysis

on traffic aggregates to detect DoS flooding, which can often be subverted

by sophisticated low-rate attacks. Packet symmetry also provides defense

against these sophisticated attacks, with the full comparison given in Chap­

ter 5.

6

Chapter 1. Introduction

As discussed in [32], a DoS defense solution must make both technical

and economic sense, otherwise the solution will not be widely adopted. A key

element of sensible solutions is minimal invasiveness, requiring no changes to

end hosts and little modification to routing infrastructure. Packet symmetry

goes one step further, without any need to change end hosts or routers, and

without need for new protocols or modifications to existing protocols. Thus,

packet symmetry filtering is technically feasible, enabling practical incremen­

tal deployment with increased benefit in the reduction of DoS traffic for each

and every deployment. However, the economic incentive to motivate ISPs

to deploy self-critical symmetry limiting is less concrete. Symmetry limiting'

would reduce the upstream bandwidth consumed on the ISP's peering and

upper-tier links, potentially reducing usage costs. However, the economic

gain would depend on the proportion of DoS attack traffic contributing to

the ISP's peak load under the 95*^ percentile charging model (a common

pricing model for inter-ISP relationships [76]), which may not be very sig­

nificant, especially for large networks. A stronger potential incentive for

symmetry limiting has both the subscribers and ISP alleviated from legal

responsibility for DoS activity generated by symmetry limited machines, as

the ISP could not be deemed negligent assuming symmetry limiting were to

become a network security "best practice" [66]. However, computer crime

legislation does not specifically make DoS attacks illegal [27], which pre­

vents prosecutors from securing convictions even when the perpetrators can

be identified [41]. Disappointingly, calls to amend legislation to outlaw DoS

attacks have been lingering since the major attacks in 2000 [44, 52], which

suggests expectations for imminent legislative change may be overly opti­

mistic.

Lacking concrete incentive for deployment, this thesis sets out to bolster

7

Chapter 1. Introduction

the technical argument in favour of self-criticizing DoS prevention through

source-based packet symmetry limiting. The contributions of this thesis in­

clude; (i) the derivation of a packet symmetry metric and accompanying

limiting thresholds that effectively discern wanted from unwanted flooding

traffic with few false positives; (ii) the measurement of the protection pro­

vided by symmetry limiting, demonstrating its effectiveness against modern

DoS floods; and (iii) the construction of a symmetry limiter prototype and

corresponding live deployment, highlighting the feasibility (both for perfor­

mance and usability) of the approach. In closing, the thesis includes dis­

cussion on the potential role of symmetry limiting in the current and future

Internet architectures.

8

Chapter 2

Packet Symmetry Principles

and Design

Packet symmetry defines a property of "good" network traffic as traffic

that corresponds to a conversation between two (or more) consenting hosts.

Denial-of-service (DoS) attacks remain prevalent and successful simply be­

cause the network lacks such a definition. At present, the network impar­

tially forwards any packet to its specified destination, without regard as to

whether the destination actually desires said packet or not.

Specifically, packet symmetry defines the goodness of traffic as the sym­

metry between packets flowing from source-to-destination and destination-

to-source. Reply packets from a destination host to a source host are inter­

preted as signaling by the destination that it is willing to receive more data

from the source. A destination host can throttle any traffic from unwanted

or malicious sources simply by not replying to those sources' requests.

The interpretation of reply packets as permission, given by the desti­

nation to the source to send more data, captures implicit signaling that

already exists in network traffic. Alternate proposals consider making sig­

naling explicit with new cryptographically secure DoS-resistant end-to-end

protocols. However, these proposals are not incrementally deployable as

both the source and destination ends must implement the new protocol. Us-

9

Chapter 2. Packet Symmetry Principles and Design

ing the implicit signaling already present in network traffic dynamics allows

a packet-symmetry DoS solution to be incrementally deployed at various

sites - strictly increasing the strength and value of the network with each

and every deployment.

A symmetry limiter is most effectively deployed at the source Internet

service provider (ISP), as a mechanism to rate-limit the outgoing traffic of

its own subscribers. The source ISP is in the best position to filter this

traffic, as it is close enough to ensure the source address integrity of its sub­

scribers, leading to high fidelity filtering. Packet symmetry also solves the

problem that not all attack traffic can be observed at the source network,

since DoS attacks can be widely distributed across networks of zombie com­

puters (botnets). The symmetry limiter infers a destination is under attack

when a lack of symmetry, or lack of reply packets from a destination, is ob­

served. This strategy has the added benefit that a successful DoS attack will

cut-off the attack traffic, as a lack of replies from the victim will shutdown

any symmetry-limited attackers.

2.1 What is Packet Symmetry?

Packet symmetry measures the balance of network packets flowing in both

directions of a connection, rather than measuring the raw bytes being ex­

changed. A l l packets are considered equal, meaning a large 1500 byte frame,

a small 40 byte frame, and anything in between are all counted as a single

unit. Transport and application protocols can thus achieve a high degree

of packet symmetry, while maintaining a highly asymmetric data transfer.

The key insight is that two willing participants can easily balance the flow of

packets between them, whereas if the desire to communicate is not mutual,

10

Chapter 2. Packet Symmetry Principles and Design

the flow of packets is inherently imbalanced. A packet symmetry monitor

can independently observe this natural feedback loop of packet exchange be­

tween two end points, and judge whether each end point desires more traffic

from the opposite end.

In practice, T C P - the most widely used transport protocol on the Inter­

net - has packet symmetry built into the definition of the protocol. T C P is

designed to guarantee data delivery across an unreliable (or lossy) channel

while maintaining fairness with respect to network usage and congestion. As

such, the core algorithms of T C P strongly support packet symmetry of T C P

flows. Firstly, acknowledgement (ACK) reply packets give feedback to the

sender regarding how much data has been successfully received. Although

A C K packets are cumulative, the T C P standard [3] specifies that one A C K

should correspond to no.more than two data packets - essentially mandating

T C P have a packet symmetry ratio of 2:1. For higher flow throughput, a

T C P sender can send a burst of data packets at one time, and wait for the

corresponding A C K s to be returned. The burst size is defined as the con­

gestion window, and T C P ' s slow-start algorithm ensures this window size

is increased symmetrically. The initial window size is a single packet, from

where the window size gradually ramps up as long as the A C K s coming

back do not indicate a data loss or other congestion event. Thus, with such

strong fairness and symmetric principles inherent in the protocol design, it

is expected that all services over T C P will be extremely symmetric and will

not be exposed to symmetry limiting.

11

s

Chapter 2. Packet Symmetry Principles and Design

2.1.1 Tracking Packet Symmetry

The packet symmetry for each network conversation, or flow, is tracked

separately from all other flows in the network. Let a flow be defined as a

five-tuple of fields from both the IP and transport layer protocols,

(sip, dip, proto, dport, sport)

where each field is represented as follows,

sip the source IP address

dip the destination IP address

proto the IP protocol number, specifying the transport

layer protocol

dport the destination port (if proto is T C P or U D P)

sport the source port (if proto is T C P or UDP)

Using both the source and destination ports allows a pair of end hosts to

maintain multiple different flows with separate packet symmetry dynamics.

Separating flows to this degree is necessary to prevent an attacker from

flooding a service on an end host by maintaining a high rate symmetric flow

to another service on that same end host.

However, tracking packets only at the full'five-tuple granularity allows

the port number and IP protocol number fields to become DoS attack vec­

tors. For both T C P and UDP, a ,port number is a 16 bit value, and in

IPv4, the IP protocol number of an 8 bit value. Thus, an attacker could

flood an end host with a large number of low-rate flows by permuting the

16 + 16 + 8 = 40 bits from these three fields, fabricating an enormous 2 4 0

different flows.

To prevent such attacks, flows are tracked at aggregate granularities as

well. The aggregate granularities are ordered from finest to coarsest in the

12

Chapter 2. Packet Symmetry Principles and Design

following table.
flow tuple , finest traffic granularity

(sip, dip, proto, dport, sport)

aggregates traffic for...

5 one flow to one service at one

destination

4 (sip, dip, proto, dport, *) all flows to one service at one

destination

3 (sip, dip, proto, all flows per transport protocol

at one destination

2

1

all flows to one destination

all flows

This ordering of finest to coarsest granularity gradually groups related flows

together to provide the subsequent limiting algorithm with several interme­

diate stages at which traffic may be rate limited, in an effort to minimize

the collateral damage on innocent flows! For instance, a client with several

malicious (i.e. asymmetric) flows to a web server will exhibit significant

asymmetry at the 5- and 4-tuple flow granularities with dport equal to 80,

which will allow symmetry limiting to focus on specifically those records

and will allow other innocent traffic (perhaps even to the same destination)

to avoid collateral damage limiting as a result of the malicious flows. The

limiting algorithm and collateral damage is further discussed in Section 2.2.

Though the 1-tuple does not provide flooding defense for any particular

destination, asymmetric traffic at the 1-tuple granularity is indicative of

network scanning or probing behaviour. Such scanning may or may not be

desirable, so the 1-tuple granularity is included for completeness, to help

combat scanning activity if needed.

13

Chapter 2. Packet Symmetry Principles and Design

Tracking Window History

Each flow-tuple granularity has a distinct pair of (tx,rx) counters to track

transmission and reply packets separately at that granularity. These coun­

ters are used to compute packet symmetry at each of the individual granu­

larities.

The (tx, rx) flow counters are maintained across a discrete time window

W, purging older data as time moves forward. The window shifts in smaller

discrete intervals of length I, purging the oldest interval of length I to make

room to include the current I length period. For enhanced security, the

window is constantly updated with the arrival of every new packet to ensure

the tracking data reflects the most up-to-date packet dynamics of the flows

being tracked. When a new packet arrives, the notion of a flow's global time

t is updated as the arrival time of that packet and the tracking window is

extended to include this newly arrived packet, such that the window length

never exceeds W. More precisely, for a packet arrival at global time t, the

tracking window includes all packets that arrived in the window

[t-(tmodl)-(W -l),t].

Figure 2.1 illustrates how the window shifts as new packets arrive, with old

intervals purged in discrete chunks of length I and the new interval extended

smoothly as global time moves forward.

Since the window is meant to track per-flow packet symmetry, the length

of I should be set long enough to give a reasonable chance that both a re­

quest packet and corresponding reply packet can be tracked within the same

window interval. This makes the purging of flow history more stable as

a relatively balanced number of requests and replies will be discarded as

older intervals are shifted out - maintaining a more steady symmetry value

14

Chapter 2. Packet Symmetry Principles and Design

W = A, I = 1 tx packet arrival *

0 1 2 3 4 5 6
t = 3.4 **-+H 1'" I » I 1 H

] j
tx = A

0 1 2 3 4 5 6
t = 3.8 Y " ' 'i' I I ' l-—H-H 1 h

! •
tx = 5

0 1 2 3 4 5 6
+*—H*-

~ix~=l

t = 4.5 «*-*H H«—I » 'i. | . i . | h
! •

Figure 2.1: Tracking tx packets across a sliding window W.

across the entire window. A typical international round-trip-time (RTT)

is on the order of 300-500ms. Thus, setting I = 2RTT = 1000ms = lsec

provides even trans-continental traffic with a very good opportunity to es­

tablish symmetry within a single window interval, with a modest cushion to

accommodate arbitrary server delay.

2.1.2 Packet Symmetry Metric

Given the (tx,rx) packet counts for a flow, the symmetry s of the flow is

computed as the rate of transmission (tx) packets to a single reply (rx)

packet. This ratio metric is a natural way to reason about the balance, or

imbalance, of packets coming from the source relative to the packets coming

from the destination. To accommodate for zero-values, s is computed as:

max(tx,l)
max(r£,l)

15

Chapter 2. Packet Symmetry Principles and Design

A symmetry-limited flow is rate limited, either by delaying or dropping

transmitted packets, to prevent the symmetry s of the flow from exceeding

a maximum threshold X.

The original packet symmetry work [47] proposed a logarithmic metric

with In (if+j)- However, this metric further exaggerates the symmetry for

lower-rate flows by adding the +1 to both counters to accommodate for zero

values. For example, a flow with tx = 10 and rx = 1 will have its logarithmic

symmetry chopped in half by adding the +1 to the rx packet count. While

the logarithmic metric succeeds in dampening the effects of larger packet

counts, a simple modification to the ratio metric to divide by the smaller

of the packet counts avoids any overflow or underflow errors. This modified

ratio metric marks the result as positive or negative to indicate which of

the transmission- or reply directions were larger, thereby communicating

the direction of the asymmetric imbalance. This modified ratio metric is

computed as:

Note that to limit both tx and rx packet symmetry, a limiter using the

modified ratio metric must delay or drop packets to ensure that —X < s' <

X. However, as the focus of this thesis is the prevention of outgoing DoS

flooding traffic, the remainder of the thesis assumes the use of this modified

ratio metric to limit outgoing tx traffic, and thus the enforcement of only

a' < X.

16

Chapter 2. Packet Symmetry Principles and Design

2.1.3 Security Guarantee — Bootstrapping Packet Rate

Both the symmetry limit, X, and the history window length, W, have im­

plications for the security and usability of symmetry limiting. A small X

will have greater impact on asymmetric DoS floods, but is also less forgiving

of innocent asymmetric behaviour, such as buggy applications or user er­

rors. A small W refreshes flow history with faster turnover, aiding recovery

for innocent asymmetry but strengthening DoS floods as the asymmetry of

flooding bursts are forgotten after shorter intervals. Similarly, a larger X

is more forgiving but reduces DoS protection. A larger W retains flow his­

tory longer, reducing the effectiveness of DoS attack bursts by lengthening

the interval between bursts, but similarly lengthens the recovery time for

innocent asymmetry. The larger W also strengthens an attack using covert

bursts, where the attacker first establishes a high-rate symmetric flow with

the target victim, and subsequently uses the high-rate reply traffic from the

victim as the "credit" to blast the destination with heavy attack traffic.

To quantify the security versus usability tradeoff for a symmetry limiter

configuration, the symmetry limit X and the history window W combine to

form the bootstrapping packet rate (PB) ~ the rate of packets per second

at which a source is granted without any reply traffic. This value embodies

the guarantee of the symmetry limiter, that all outgoing traffic cannot exceed

PB without corresponding reply traffic. Furthermore, it simplifies the above

discussion on security versus usability tradeoffs. Attack strength can be

calculated directly from multiplying PB by the number of attack machines,

and there is a clear threshold for the tolerance of innocent but asymmetric

behaviour.

The bootstrapping throughput rate is calculated as

17

Chapter 2. Packet Symmetry Principles and Design

PB = X/W packets per unit time.

For instance, a history window of W = 5 seconds and a symmetry limit of

X = 10 packets yields a bootstrapping throughput rate of PB — 10/5 = 2

packets per second.

At minimum, a sender must be able to send at least one packet to a new

destination in order to bootstrap the communication, since one side must

be allowed to "go first". As such, PB must be strictly greater than zero.

While seemingly trivial, this has important implications for the security

provided by a symmetry limiter. As PB must always be greater than zero,

symmetry-limited attackers will always have the ability to send at least

one attack packet per window length W. This means that a bandwidth

flood to saturate a link of a certain capacity will always be possible with

enough machines. However, the end goal is that symmetry limiting reduces

attack strength to the point that the cost (to the attacker) for establishing

a large enough army of zombies to attack with a certain bandwidth greatly

outweighs the benefit of launching an attack for such a bandwidth.

2.2 Limiting Flows with Packet Symmetry

Symmetry limiting enforces that the symmetry value s for each flow falls

below a predetermined threshold X. Enforcement involves rate-limiting the

transmission of a packet, either by delaying the transmission or dropping

the packet, on a flow whose tx : rx ratio would exceed the threshold X if

the packet in question were allowed to pass through the limiter.

Packets for each flow are tracked at all five granularities - the 1-tuple

through the 5-tuple. Each granularity provides valuable information regard­

ing the traffic dynamics originating from the sender, which leads to an impor-

18

Chapter 2. Packet Symmetry Principles and Design

tant question: At which granularity should symmetry limiting be enforced?

Choosing to limit all flows only at the 5-tuple granularity would ignore the

traffic dynamics encompassed by the aggregate granularities, potentially al­

lowing heavily asymmetric traffic in aggregate. Conversely, choosing to limit

all flows across all granularities can unfairly punish innocent (i.e. symmet­

ric) flows due to misbehaving asymmetric flows from the same sender, lead­

ing to collateral damage. As such, the challenge for the limiting algorithm

is to simultaneously provide strong protection against packet floods while

minimizing collateral damage to innocent traffic.

Meeting this challenge, the proposed limiting algorithm uses the different

tuple granularities to ensure that all outgoing traffic from a sender does not

exceed the X : 1 threshold for genuine reply traffic from a destination.

Recall from Section 2.1.2 that the symmetry ratio metric accounts for a

zero rx packet count by assuming a value of one, preventing the metric

from being undefined at flow startup. However, when rx = 0 symmetry

is precisely that - undefined - since there are no reply packets to compare

against the tx traffic. Wi th this in mind, the symmetry limiting algorithm

works as follows. When a packet arrives, the limiter looks up the 5-tuple

flow record for the packet. If the 5-tuple rx value is zero, then the limiter

walks up the entire tree of aggregate flow tuples, checking if this packet will

exceed the symmetry threshold X at each granularity. Otherwise, if the

5-tuple rx value is non-zero (i.e. rx > 0), the the limiter just ensures the

packet does not exceed the X threshold at the 5-tuple granularity.

This limiting algorithm both maintains the strong security guarantee of

the symmetry limiter (PB), while simultaneously maintaining innocent flows

and limiting malicious ones, even when innocent and malicious flows share

the same destination. Firstly, notice how a DoS victim is always empowered

19

Chapter 2. Packet Symmetry Principles and Design

to throttle the traffic of any symmetry-limited sender down to PB, simply by

ceasing to send any reply traffic back to the sender. Regardless of any previ­

ous flow history, a destination host can cut off all back traffic to a source, and

within one period of length at most W, all flows from that source will have

rx = 0 and thus will be throttled down to PB at the 2-tuple (sip, dip, *, *, *)

granularity. Secondly, this algorithm maintains innocent flows, as flows with

at least one reply packet in the last W time period are only limited at the

5-tuple granularity. As such, these flows cannot suffer any collateral damage

from limiting at aggregate granularities and need only maintain their own

individual symmetry below the X threshold.

Figure 2.2 illustrates this algorithm with one innocent web browsing flow

(192.168.0.1, 10.0.0.1, TCP, 80, 9876) tracked amongst several malicious

flows to the same destination. The malicious flows are marked with source

and destination ports containing 666. Notice how the 2-tuple (sip, dip, *,

*, *) granularity ensures that all traffic, innocent and malicious, is governed

by the X : 1 ratio keeping the sender's outgoing traffic always in direct

proportion to the reply traffic from the target host. Further notice that

all the outgoing packets for the web download continue to get through the

limiter, avoiding all collateral damage to the innocent flow. Only the mali­

cious traffic, having received no reply traffic, is limited at the aggregate flow

granularities.

Lastly, notice that port scanning activity is also throttled by this limiting

algorithm. Port scanning is an inherently asymmetric behaviour, sending a

large number of single-packet requests to many ports on the target host being

scanned. The typical few (if any) replies from the target host will result in

significant asymmetry at the 2-tuple (sip, dip, *, *, *) granularity, resulting in

severe limiting thereby drastically slowing the scanning rate effectively down

20

Chapter 2. Packet Symmetry Principles and Design

sip. 192.168.0.1

Alice

(tx, rx) = (8,1)
dip 10.0.0.1

Charlie

(tx,rx) = (8,1)
prot T C P

(tx, rx) = (8,1)

dport 666

(tx,rx) = (1,0)

dport 80

W W W

(tx,rx) = (7,1)

sport 666

(tx,rx) = (1,0)

sport 666

(tx, rx) = (6,0)

sport 9876

(tx,rx) = (1,1)

Figure 2.2: Limiting flows with packet symmetry. Assume the sym­

metry threshold is set at X — 8. In this example, packets for the

(192.168.0.1,10.0.0.1,TCP, 80, 9876) flow are only limited at the 5-tuple

granularity, while packets for all other flows are limited at every granularity.

For instance, a packet for a new 5-tuple flow for the source-destination pair

192.168.0.1-10.0.0.1 would be rate limited at the 2-tuple granularity, since

that granularity has reached the maximum 8:1 threshold for tx : rx packets.

21

Chapter 2. Packet Symmetry Principles and Design

to PB- Thus, symmetry limiting makes port scanning somewhat redundant,

as to achieve a high-rate port scan from behind a symmetry limiter, the

scanner must already know the available services of the destination in order

to establish symmetric connections to those services to accrue the necessary

"credits" to send the scanning packets.

2.3 Where to Place a Symmetry Limiter

Two main factors contribute to the placement of a symmetry limiter in the

network; establishing packet provenance and ease of deployment. Packet

provenance is important for effective filtering - the more confident it is in the

authenticity of packet origin, the more reliable symmetry limiting becomes.

The ease of deployment is directly correlated to the technical and economic

feasibility of the solution - a solution that is difficult to deploy (technically

or financially) is. less likely to be accepted.

Considering the points along the path from the subscriber to the ISP,

a symmetry limiter could theoretically be deployed at the end-host, at the

subscriber's point of connectivity, or at an aggregate point in the ISP in­

frastructure.

Possibilities for end-host deployment locations include the OS network

stack, a virtual machine monitor layer, or the network interface card firmware.

While deployment at the end-host guarantees packet provenance, gaining

significant deployment penetration can be challenging. Even if widespread

deployment could be achieved, persistent and capable computer criminals

will likely be able to circumvent the limiting mechanism, even at the vir­

tual machine layer [46]. For example, in Windows X P Service Pack 2 [5]

and seemingly in Windows Vista as well, Microsoft introduced a limit on

22

Chapter 2. Packet Symmetry Principles and Design

the number of half-open T C P connections in an effort to combat T C P S Y N

floods (a common DoS attack [28]). While Microsoft has the market share

to achieve widespread deployment for such a mechanism, numerous peer-

to-peer sites, such as [57], provide "patches" to subvert these limits. These

peer-to-peer applications attempt to open a large number of T C P connec­

tions in parallel, which perform poorly if not break under these limits -

hence the "patch" to circumvent the protection mechanism at the end host.

The subscriber's point of connectivity, such as the DSL or cable modem,

also essentially guarantees packet provenance. As well, the provider has rea­

sonably high assurance that the modem firmware will not be tampered with,

meaning the limiting mechanism is unlikely to be circumvented (unlike the

end-host deployment discussed in the previous paragraph). Moreover, mod­

ern ISPs typically have the infrastructure to automatically upgrade modem

firmware and thus could in theory upgrade all their subscribers' modem

firmware to perform symmetry limiting. However, having one symmetry

limiter per subscriber creates administrative challenges for the ISP. Trou­

bleshooting connectivity with a subscriber may require remote access to the

symmetry limiting functionality on the modem, which would then require

strong authentication and further complexity built into the modem firmware.

Thus, deployment at a centralized location within the ISP's network

seems most pragmatic, making both technical and economic sense. As the

limiter moves further from the subscriber, packet provenance is sacrificed but

only to the degree of customer aggregation before which address integrity

is enforced. Note that address integrity and symmetry limiting enforcement

need not occur at the same point along the path. Previously, many ingress

filtering deployments prevented spoofing at the network edge, merely ensur­

ing aggregate address integrity for the advertised B G P prefix [16] though

23

Chapter 2. Packet Symmetry Principles and Design

presently the majority of ingress filtering occurs at./24 and /16 network

prefix boundaries [15]. To increase the fidelity of packet symmetry filtering,

a hybrid architecture might involve upgrading modem firmware to perform

the simpler duty of address integrity enforcement at a per-host granularity

within the modem itself, with the symmetry limiting mechanism central­

ized further into the ISP's network. Such a hybrid scheme satisfies both

key requirements; (i) enforcing packet provenance with modem firmware

guarantees the authenticity of source address information, and (ii) easing

deployment with one or a few centralized locations reduces the cost and

simplifies the administration of the limiter.

Deploying a symmetry limiter further into the core becomes problematic,

as many end-to-end routes on the Internet are asymmetric [58]. A symmetry

limiter must be able to see all the traffic to and from the source being limited.

If reply traffic can traverse a different route from the transmitted traffic and

get missed by the limiter, such flows will be unfairly punished. Indeed,

traces of trans-Pacific network traffic from the W I D E project [25] contain

many T C P flows which are represented by only a single direction of the

communication.

The placement of the limiter does, in part, dictate how traffic can be

limited - whether the punishment for asymmetric flows is to delay or drop

packets. The original work [47] proposed to buffer and exponentially delay

packets for flows exceeding the symmetry threshold. However, this work

assumed deployment on the end-host, forcing the burden of buffering pack­

ets onto the end-host itself. Unfortunately, for the more administratively

attractive network-based deployment, the limiter cannot delay packets since

in-network packet buffering is a DoS attack vector itself! Thus, the only

practical counter-measure for a network-based symmetry limiter is to drop

24

Chapter 2. Packet Symmetry Principles and Design

packets for flows that exceed the symmetry threshold. As such, the remain­

der of this thesis assumes symmetry limiting will drop packets for flows that

exceed the symmetry threshold.

2.4 Analyzing Symmetry of Internet Protocols

This section analyzes real network traffic traces to determine reasonable

values for the symmetry limiting parameters (the asymmetry threshold X,

and the window length W), and examines the causes for outlying asymmet­

ric traffic. However, first consider the following taxonomy, represented in

Figure 2.3, which outlines how the packet symmetry metric separates all

network traffic into classes of "good" traffic and "bad" traffic. Any flow

with a symmetry value less than or equal to the symmetry threshold X is

hereby blessed as being good, and this traffic remains good as long as suffi­

cient symmetry is maintained, regardless of whether the flow is low or high

rate. When a flow's symmetry exceeds the X threshold however, it is then

immediately considered a bad or malicious flow and is subject to symmetry

limiting. The network trace analysis that quantifies where various types of

network traffic fit in this taxonomy is described below.

2.4.1 Data Set

The data set consists of two tcpdump network traces. The first is a 24-hour

capture from the 100 Mbps link that connects the International Computer

Science Institute (ICSI) to the Internet, and contains 21 G B of raw transport

and IP layer header data. The second is a 3-day capture from a 100 Mbps

link that connects the machines of six Distributed Systems Group (DSG)

lab students to the Internet, and contains 248 M B of raw transport and

25

Chapter 2. Packet. Symmetry Principles and Design

X

Symmetrici
(Good!)

High-rate asymmetric (Bad)

•PB
Low-rate asymmetric (Bad, but tolerable?)

Asymmetry

Figure 2.3: Packet symmetry taxonomy for network traffic.

ICSI DSG

Total flows 769369 27747

TCP flows 455352 59.2%

UDP flows 265169 34.5%

ICMP flows 48848 6.3%

19152 69.0%

8430 30.4%

165 0.6%

Figure 2.4: Data set flow distribution by protocol

IP layer header data. Figure 2.4 lists the number of flows in each trace,

and further breaks down the total flows by transport layer protocol. The

analysis focussed on flows at the 5-tuple granularity, and deemed a flow as

finished after two minutes of inactivity.

2.4.2 Traffic Analysis

The analysis was performed with a modified version of Bro [59], using a

specialized hook to capture the flow 5-tuple for every packet in a given

26

Chapter 2. Packet Symmetry Principles and Design

Cunulative distribution of naxinun flow asynnetry by IP protocol

s

ICSI trace flow distribution
*NF * * * ¥ - *-

udp
- tcp
icnp

udp99,9%
tcp 99.9X
icnp 99;

4 0 16 32 64 128 256
Haxinun flou asynnetry using IBs uindou (H = IBs)

DSG trace flou distribution

512 1824

2 A 8 16 32
HaKinun flou asynnetry using IBs uindou (H = IBs)

Figure 2.5: Distribution of flows by maximum asymmetry. ,

tcpdump trace. Bro policy scripts were written to track flow symmetry and

simulate symmetry limiting against a trace file.

The maximum value of a flow's symmetry is examined first, to determine

the proportion of flows that will be exposed to symmetry limiting at any

point in their lifetime. Figure 2.5 plots the cumulative fraction of flows with

a maximum asymmetry less than or equal to the threshold on the x-axis.

This plot indicates that nearly all flows have a maximum asymmetry less

than or equal to 8. This suggests choosing X = 8 will allow practically all

innocent traffic (assuming the traces do not contain a significant quantity

of DoS attack traffic).

Choosing a value for the window length W is more complicated than for

27

Chapter 2. Packet Symmetry Principles and Design

the symmetry threshold X, as qualitative factors (ex. the user experience)

must be considered alongside quantitative factors (ex. total packet drops).

Qualitatively, slow computer response time has been directly correlated to

increased end-user frustration [67]. This suggests W should remain small

to ensure faster recovery from asymmetric behaviour to prevent frustrated

subscribers from switching to a non-symmetry limited ISP. However, both

[22] and [42] find that frustration stemming from network usage is largely due

to longer download times for web pages with much graphical content. These

download times are unlikely to be affected by W, as T C P data transfers are

very symmetric. Quantitatively, a larger W increases the protection against

DoS floods as increasing W decreases the bootstrapping packet rate PB,

thereby reducing the amount of unacknowledged packets a sender is allowed

to produce. These qualitative and quantitative factors illustrate the security

versus usability tradeoff of symmetry limiting.

Figure 2.6 simulates symmetry limiting and compares W = 10 against

W = 30, plotting the total number of packets in each flow versus the number

of dropped packets for the flow. This plot uses only those flows from each

trace whose maximum asymmetry exceeded the X = 8 threshold to measure

the impact on symmetry-limited flows specifically. As the plot demonstrates,

extending the window to W = 30 increases the number of dropped packets

for most flows. The increase in packet drops for the longer window can be

attributed to the increased lag-time for asymmetric behaviour captured at

the beginning of the window to be purged. Thus, with the longer window,

the chances for end-points to recover from asymmetric communication is

hindered, as fewer packets get through to prompt the destination to send

replies. Balancing DoS protection and end-user responsiveness, it seems

practical to select W < 10.

28

Chapter 2. Packet Symmetry Principles and Design

Sinulated Synnetry Liniting with Varied Mindou Lengths

ICSI trace
262144
65536
16384
4896
1824
256
64
16
4
1

1 J • 1 1 | , 1 , j , 1 , 1 , 1 i ' i | a ;
o :

•

iff* • j I s 1 H o IB sec • .
H = 38 sec o -

. | |cJtJT |«j |lt ; JffcB | 1 ,
256 1824 4896

Total packets
DSG trace

16384 65536 262144.84858e

64
32
16
8
4
2
1

- i
1 ! 1

0
!' ' ' T

H s 18 sec •
H = 38 sec o - i

.
Of

m w m:
-' r

•; • • i •; \

• i i

16 32 64
Total packets

128 256 512 1824

Figure 2.6: Evaluating window history W values.

Recalling that the values for X and W determine the bootstrapping

packet rate P g , it is undesirable to choose a window length W significantly

less than the symmetry threshold X, because that will increase PB and

thus increase the attack strength of symmetry-limited DoS floods. Qualita­

tively, a PB = 1 packet per second seems reasonable for usability, allowing a

symmetry-limited host to try to ping an unreachable service once per second.

Quantitatively, Chapter 3 will evaluate the security properties of symmetry

limiting, demonstrating the effectiveness of a P g = 1 packet per second.

As such, the results of this analysis suggest the window chosen within the

interval [8,10] seconds.

Having established values for X and W, Figure 2.7 illustrates the dis-

29

Chapter 2. Packet Symmetry Principles and Design

le+87

§
E

1

Haxinun Flou Asynnetry vs. Maximum Flou Rate

ICSI trace

4 6 8 IB 28 48 68 88188
Haxinun flou asynnetry using IBs uindou <H = IBs)

DSG trace

1B88

•3
2 4 6 8 IB 2B 48 68 88 188

Haxinun flou asynnetry using 18s uindou <H = IBs)

Figure 2.7: Maximum asymmetry vs maximum flow rate by IP protocol

tribution of traffic within the packet symmetry taxonomy discussed above.

This plot is encouraging as the majority of network traffic exhibits a high

degree of packet symmetry at both low and high throughput rates. Though

the plot reveals that a number of flows exceed the X = 8 symmetry thresh­

old, recall that from Figure 2.5 these asymmetric flows form a very small

portion of the total traffic observed. Nevertheless, the following section ana­

lyzes these flows in greater detail to determine the causes for this asymmetric

behaviour.

30

Chapter 2. Packet Symmetry Principles and Design

2.4.3 Examining Asymmetric Flows

The variety of network and application protocols is wide and the causes

for asymmetric traffic are many, varying with each protocol or application.

Though, one general cause of asymmetric behaviour is the metric itself.

Packet symmetry is somewhat exaggerated for lower rate flows (i.e. rx = 1

or rx = 2, a difference of one packet will have a significant effect on the com­

puted symmetry value) which may result in the limiting of relatively low-rate

innocent but asymmetric protocols. The following analysis will show that

many of the asymmetric flows in the traces reached high asymmetry values

due to such low-rate exaggeration. Modifications to the symmetry metric

to tolerate such flows range from the naive to the complex. A simple modi­

fication uses a fixed constant c > 1 rather than 1 when accommodating for

zero packet counts, making the new metric s" = m ^ ^ ' ^ . A more complex

metric might allow short but high rate asymmetric bursts and take packet

inter-arrival-times into account. However, any such modification broadens

the definition of good (or tolerable) traffic to include greater asymmetry,

which directly amplifies the aggregate attack strength of large botnets that

simply send the maximum possible number of packets through the limiter.

As such metrics strictly reduce the effectiveness of symmetry limiting against

DoS attacks, no further exploration of such metrics is undertaken. Lastly,

the majority of these low-rate flows are link-local traffic that would not reach

an in-network ISP symmetry limiter, which negates the need to modify sym­

metry limiting to tolerate such traffic.

31

Chapter 2. Packet Symmetry Principles and Design

Figure 2.8: Finding ports with the most asymmetric flows.

32

Chapter 2. Packet Symmetry Principles and Design

Transmission Control Protocol (TCP) Outliers

Although T C P is expected to be largely a symmetric protocol, Figure 2.7

does indicate a number of T C P flows whose maximum symmetric metric

exceeds the delayed-ACK 2:1 guideline, some of which exceed 10:1 and a

very small number that get as high as 30:1. Investigation into these flows

yields the following explanations.

Some T C P asymmetry can be anticipated from typical noise associated

with communication over a lossy channel. A non-responsive (i.e. failed) end-

point will cause a T C P sender to continuously re-send the most recent un­

acknowledged packet, doubling the retransmission timeout with each send.

A typical R T T would start at 500ms, resulting in unacknowledged packets

being sent at 500ms, Is, 2s, 4s, 8s, 16s and so forth - causing a minor fluctu­

ation in flow asymmetry. A C K loss can also contribute to T C P asymmetry,

as earlier A C K s may be lost in transit with later A C K s still carrying the sig­

naling that the earlier data was received. These factors are also exaggerated

at lower packet rates, particularly for more recently started flows.

Congestion Window Issues with Idle High-Rate Flows The ma­

jority of T C P asymmetry actually stems from a bug in T C P implementa­

tions [3]. Reusing a T C P connection after a period of inactivity can cause a

T C P sender to inject an unreasonably large congestion-window-sized burst

of packets into the network. The fundamental problem is that a previously

established congestion window indicates the network congestion at the time

the data transfer took place. After a period of inactivity, neither the sender

nor receiver have any basis on which to judge the new state of congestion in

the network. The T C P standard [3] accounts for this potential issue, stating

that after a period of inactivity larger that the retransmission timeout, a

33

Chapter 2: Packet Symmetry Principles and Design

T C P sender should redo slow-start and ramp up its congestion window just

as if starting a new connection. However, the bug in many T C P stacks is

described well in [3]:

Using the last time a segment was received to determine whether

or not to decrease cwnd fails to deflate cwnd in the common case

of persistent H T T P connections [HTH98]. In this case, a W W W

server receives a request before transmitting data to the W W W

browser. The reception of the request makes the test for an idle

connection fail, and allows the T C P to begin transmission with

a possibly inappropriately large cwnd.

The vast majority of T C P asymmetry exhibited this traffic pattern, where

after a period of inactivity a single request triggered a large burst of data

from the opposite direction. Figure 2.8 suggests that most T C P asymmetry

is due to this bug, with the most asymmetric flows on port 80 (HTTP) and

port 443 (HTTPS) . The third most asymmetric T C P port is 993, used for

secure email via imap, a similar application in which a pause followed by

a request to trigger a large data download would occur, for instance when

retrieving new mail.

Drastically increasing W to retain longer flow history would prevent

limiting T C P flows in this case. However, a longer window increases the

strength of covert burst flooding attacks that establish symmetry and sub­

sequently flood the victim. Computing the symmetry value as a weighted

average across different portions of the history window, with the more re­

cent portions more heavily weighted than the older portions, combats such

an attack. However, these attacks remain strictly more powerful with the

longer window and a weighted average metric than if the window were simply

34

Chapter 2. Packet Symmetry Principles and Design

the most heavily weighted portion of the window with the metric computed

across the whole window. A l l things considered, as the standard indicates,

this is fundamentally a problem with T C P implementations, and should be

fixed there. In the meantime, a symmetry limiter would serve as a patch for

T C P stacks with this bug, as the limiter will simulate network congestion

(through limiting the oversized congestion window burst) and thus enforce

good behaviour on the flow's behalf. T C P will tolerate and recover from

these packet losses, just as it recovers from any other inferred network loss,

and will redo slow-start to gradually ramp up its congestion window fairly

and representative of the current network state.

Splitting Packets Across Discrete Window Intervals A n inherent

characteristic of tracking symmetry across a discrete window was found to

be another cause for moments of highly asymmetric T C P traffic. The asym­

metry stems from the separation of high-rate symmetric request and reply

traffic across window interval boundaries, when a significant portion of the

reply traffic ends up being tracked in a later interval than the request traffic.

When the window interval for the request traffic expires and is purged, the

reply traffic remains tracked in the later window interval. At this time, a

new low-rate symmetric packet exchange will compute a high asymmetry

value, due to the imbalance of A C K s remaining at the tail of the window.

The nature of this problem warrants a shorter window. However, de­

creasing W increases PB which means an increase in flooding attack strength.

To solve both problems, symmetry can be computed in two stages; the first

stage uses a shorter window and is subject to a lower symmetry limit, while

the second stage has a longer window with a larger symmetry limit. Figure

2.9 illustrates the process, as symmetry is first computed across W and is

subject to X ' . If the flow exceeds X' across W , only then must symmetry

35

\

Chapter 2. Packet Symmetry Principles and Design

W' = 2, X' = 2 -> P'B = 1

0 2 4 J6 |8
* 1 1 1 1
! • • . •

W~=~8, ~X~=~8 "~PB"= T ~

Figure 2.9: Two-stage symmetry computation.

be computed across the full W and compared against X. Notice that PB re­

mains constant for both stages, maintaining the same security guarantee for

the symmetry limiter. Using this two-stage symmetry computation, T C P

flows that formerly reached asymmetry values over 15:1 and some as high

as 30:1, all returned to the expected 2:1 packet ratio as defined by the T C P

standard.

I C M P Outliers

Figure 2.8 indicates a significant portion of asymmetry is due to I C M P flows.

Of the 210 total I C M P flows that exceed 8:1 asymmetry, 129 flows are sim­

ply due to non-responsive destinations. Of these 129 flows, 118 flows are the

result of unidirectional streams of 'destination unreachable' messages, 59 of

which come from a single source. The remaining 11 flows consist of unidi­

rectional streams of 'time exceeded' (exclusive) or 'echo-request' messages.

The remaining 81 flows are exchanges between only three external hosts

(responsible for 68, 10 and 3 flows each) and various internal ICSI network

addresses. The traffic largely consists of 'admin prohibited' messages from

ICSI hosts that indicate a particular T C P / U D P host or port is unreachable.

This suggests the external hosts are scanning the ICSI network for various

36

Chapter 2. Packet Symmetry Principles and Design

services, perhaps in the hopes of breaking into the network. As such, the

I C M P traffic is heavily asymmetric in the direction going from ICSI to the

external network, as the single-packet U D P scanning flows that trigger the

prohibited messages are tracked separately as U D P flows. The occasional

ping request-reply exchange between the external host and ICSI hosts is

the reason the flows appeared to have disproportionate but non-zero reply

traffic. As such, several of these I C M P flows exceed symmetry of 50:1,

with one flow reaching 85:1, and would consequently be subject to severe

symmetry limiting.

However, in this case of external hosts port scanning the internal net­

work, severely limiting the host-port unreachable I C M P traffic is in fact quite

beneficial. Fewer I C M P packets reduces the effectiveness of the scanner's re­

connaissance, as less information propagates back to the attacker. Note that

without any limiting, the I C M P return traffic maintains the scanner's sym­

metry at the 2-tuple granularity, as one U D P scanning packet generates a

corresponding I C M P unreachable packet. Thus, consider this scenario with

both the scanner and scan-ee behind respective symmetry limiters. As be­

fore, the scan-ee's I C M P traffic will be subject to heavy symmetry limiting.

This will effectively cut the scanner's scanning rate, as the scanner's out­

going U D P scan will be largely asymmetric since very few U D P replies are

returned, and hardly any I C M P unreachable messages are getting through

the scan-ee's symmetry limiter. This scenario highlights a cyclic benefit to

symmetry limiting, that scanning generates asymmetric return traffic, which

will be throttled, causing scanning traffic to become asymmetric, which will

then be throttled, reducing scanning rate, and so on.

37

Chapter 2. Packet Symmetry Principles and Design

User Datagram Protocol (UDP) Outliers

NetBIOS asymmetry Figure 2.8 shows port 137 (NetBIOS) is the most

asymmetric U D P port. However, a single machine is responsible for 198 of

the 199 flows that exceed the 8:1 threshold. These 198 flows consisted of

a repeated query to which no response is generated. The one other asym­

metric NetBIOS flow seems to represent typical NetBIOS name registration.

The flow contained relatively low-rate unicast name registration reports and

refresh notices, which largely remained under a 7:1 threshold. Momentary

bursts of additional NetBIOS activity resulted in the asymmetry jumping

over the 8:1 threshold, with only 2 peaks reaching 10:1, and 9:1, respectively.

Figure 2.10 illustrates the evolution of the symmetry value of this flow. Sim­

ulating symmetry limiting on this flow with a threshold of 8:1 resulted in

a loss of merely 3 packets - all of which were redundant copies of previous

requests.

NetBIOS is interesting, as port 137 is commonly used for virus and

worm propagation [10]. The ICSI trace reflects this observation, as a single

external host was responsible for 514 single-packet flows to various internal

ICSI machines. A symmetry limiter would likely reduce worm propagation

by drastically slowing the scanning rate to PB, as the scanning probes tend

to elicit few (if any) responses.

DNS asymmetry Only three machines are responsible for producing

the majority of the 87 DNS flows exceeding 8:1 asymmetry from the ICSI

trace as shown in Figure 2.8, each generating 47, 15, and 14 flows respec­

tively.

A complete lack of reply traffic was the cause of asymmetry for a mere

15 DNS flows. These flows typically involved repeated queries for names

38

Chapter 2. Packet Symmetry Principles and Design

Figure 2.10: A NetBIOS name registration flow.

3 9

Chapter 2. Packet Symmetry Principles and Design

for which there was no response. Several such queries were lookups for

bogon (i.e. unallocated) or blacklisted addresses [26], which is indicative of

firewall activity. Note that none of these queries had the recursion desired bit

set, which means any reply should have come from the queried destination.

This means the asymmetry was simply a result of no response coming back

from the queried DNS server, which symmetry limiting would interpret as

a success in protecting a DNS server that did not wish to be contacted by

the requesting client.

Bursty flows were another cause of DNS asymmetry. A total of 50 asym­

metric DNS flows had relatively balanced (tx, rx) total packet counts, how­

ever, each flow had a high-rate burst of mixed query and response packets

for multiple different DNS names. Such traffic is indicative of exchange be­

tween internal ICSI and external DNS servers. These flows suggest that

DNS servers should perhaps be exempt from symmetry limiting, due to the

lack of flow control to smooth out the bursts. Note that all client end-to-end

DNS traffic exhibits symmetry to a high degree, and none of the asymmetric

DNS flows are queries from end-hosts. Even more interesting is that not a

single one of the machines that produced these asymmetric DNS flows are

actually DNS servers. The three machines that produced the most asym­

metric DNS flows are file servers in the ICSI infrastructure, and the cause

for the abundant DNS traffic is unknown.

The remaining 22 asymmetric DNS flows mainly followed one of two

patterns. The first pattern has a single packet query prompt a single packet

response from the destination, after which point the source host repeats

the query multiple times afterwards, receiving no further response. Symme­

try limiting will have little effect on this traffic, since the initial symmetry

query-response exchange will succeed, with only later redundant query pack-

40

Chapter 2. Packet Symmetry Principles and Design

ets subject to minor limiting. The second pattern has a single packet query

prompt the destination to send a several packet response, causing an imbal­

ance of rx packets over tx packets. Recall from Section 2.1.2 that symmetry

limiting does not need to affect this traffic, since the goal is to prevent out­

going (tx) asymmetric behaviour - incoming asymmetric traffic need not be

limited.

Multicast DNS asymmetry Multicast DNS is part of the Zeroconf

networking initiative [24], providing a link-local namespace in the absence of

another naming (i.e. DNS) infrastructure. Applications that share and look

for shared content, such as iTunes, make use of multicast'DNS to discover

the services available on the local link.

Figure 2.8 also shows port 5353 (multicast DNS) had only 5 flows in

the D S G trace that exceed the asymmetry threshold, of a total 271 mul­

ticast DNS flows. The asymmetry occurs during the startup probing and

announcing phase of the multicast DNS protocol, where a host probes for

names it would like to register, followed by announcements indicating the

host has taken ownership of the names. This startup phase occurs anytime

the network configuration or settings may have changed for a host (i.e. eth-

ernet cable plugged in, IP address change, wake up from sleep, etc.). .First,

note that such local discovery protocols repeat probes/announcements for

robustness, as communication via the multicast address (224.0.0.251) is not

connection-oriented. A simulation of symmetry limiting on these flows shows

that the packets subject to symmetry limiting are simply repeats of previous

probes/announcements, meaning that the dropped packets are unlikely to af­

fect the application layer behaviour. Secondly, considering an ISP-managed

deployment of a symmetry limiter, it is unlikely such multicast DNS or any

other link-local traffic will be subjected to symmetry limiting, as this traffic

41

Chapter 2. Packet Symmetry Principles and Design

should not (by definition) travel further than the local link, which will be

contained entirely behind the limiter.

Asymmetry One-offs Figure 2.5 admits that a small number of U D P

flows exhibited wildly asymmetric traffic, with asymmetry exceeding 100:1,

with one reaching 799:1. This one extremely asymmetric flow is a one­

way media stream over RTP, which is a' data transfer protocol for real-time

applications. R T P separates the control and data channels, using a separate

R T S P control protocol that runs over T C P to govern the data transfer that

runs over UDP. Indeed, the 799:1 asymmetric U D P flow is a video playback

using Windows Media Player, which has a corresponding R T S P flow active

throughout the lifetime of the U D P flow.

The separate control and data channels of R T S P and R T P indeed present

a genuine case against the deployment of symmetry limiting on every uplink

to the internet. However, the threat model targeted by symmetry limit­

ing more seeks to protect such media streaming servers from attacks by

malicious clients - not to prevent media streaming servers from launching

attacks themselves. Again, the deployment model focusses on limiting out­

going traffic, not incoming. Thus, such high-throughput streaming servers

would purchase special non-symmetry-limited connections from their service

provider, naturally with additional bookkeeping to prove the legitimacy of

the service to prevent attackers from obtaining this powerful non-limited

connectivity. Under these assumptions, end hosts will be able to receive

asymmetric streams from the media server, but the server will remain pro­

tected from malicious clients.

Triangular routing appears to be the cause of another four asymmetric

flows, two of which exceed a symmetry threshold of 330:1 and the other

two exceed 450:1. However, the four flows seem to be two pairs of related

42

Chapter 2. Packet Symmetry Principles and Design

Synnetry evolution of nirrored asynnetric UDP flows

a see leee isee 2eee 2see 3eee 3588 ABBB -eee seee
Tine (seconds)

8 IBB 208 388 488 588 688
Tine (seconds)

Figure 2.11: Triangular routing of U D P traffic.

4 3

Chapter 2. Packet Symmetry Principles and Design

flows, forming a triangular routing path. Figure 2.11 plots symmetry over

the lifetime of the flows against the actual packet arrival times, showing

the number of packets arriving at similar times. Each pair of flows has one

highly asymmetric outgoing flow from an ICSI address (198.162.0.0/8) and

one highly asymmetric incoming flow from a different external address but

coming back to the same internal ICSI address. The similarity in flow sym­

metry clearly suggests the two flows in each pair are related. Unfortunately,

the anonymization of the ICSI trace prevents further investigation into the

application(s) involved.

As it stands, a symmetry limiter would severely punish these asymmetric

flows that form symmetric triangular routing paths. Assuming a symmetry

limiter is only present at one end, the replying host could spoof the source

address of the middle-man on the path to make the separate flows appear

as a single flow. When all hosts are symmetry limited, all of the high-rate

asymmetric traffic will be rate limited, likely preventing these applications

from functioning correctly. However, these flows are not representative of

the majority of network applications, as these are 4 of a total 769,369 flows

observed. But more importantly, such triangularly-routed protocols are fun­

damentally unfair as without feedback (in the form of acknowledgements)

the senders are unresponsive to packet drops due to network congestion.

2.4.4 Considerations for Multicast Protocols

Multicast protocols require special consideration when it comes to symme­

try tracking. The reason for this consideration is that a multicast address

corresponds to every host subscribed to the multicast group associated with

that address. Thus, for multicast traffic, there is no longer a one-to-one

44

Chapter 2. Packet Symmetry Principles and Design

mapping between the destination address and recipients of the packet.

A naive but intuitive solution tracks any packet to a multicast address

as being received (i.e. an rx packet) by every host on the network, minus

the host that sent the packet. While simple, this approach would be rather

effective in a symmetry limiting context. Hosts in the multicast group will

benefit from the packet being an rx packet on their end, as that will enable

such hosts to participate (i.e. reply) to said multicast packet for that specific

multicast group. As well, hosts not in the multicast group can simply ignore

said packets, with no effect on symmetry limiting since limiting focusses on

outgoing tx traffic. Note this solution scales to per-flow tracking, as only

one additional symmetry-tracking record per multicast address is needed.

In this scheme, each host maintains a flow tuple tracking its own packets

sent to the multicast address (just as with any other non-multicast flow).

The difference is another global flow-tuple tracks all packets sent to the

multicast address. Then, the symmetry for the multicast flow between any

one host and the multicast address can be calculated with tx from the host's

flow-tuple, and with the rx as the difference of the global multicast address'

flow-tuple's rx value and the host's own tx value.

2.5 Summary

This chapter described the principles of packet symmetry and the algorithms

used to limit traffic using the packet symmetry metric. The two key param­

eters for symmetry limiting are the symmetry threshold X, and the tracking

window length W. Together, these parameters also form the bootstrapping

packet rate PB, which is the rate at which a sender can transmit packets

without receiving any reply. Analysis on real network traffic traces estab-

45

Chapter 2. Packet Symmetry Principles and Design

lished values for these parameters, with X = 8 packets and W € [8,10]

seconds, resulting in a PB < 1 packet per second. These values resulted in

very few (less than 1%) false positives in the analyzed traffic, the limiting of

which would not likely have negatively affected application level behaviour.

Deployment targets limiting outgoing tx traffic, which alleviates concerns

with limiting false positives due to asymmetric incoming rx traffic as well.

Though deploying a limiter at the end host could solve this problem by de­

laying (and buffering) packets of asymmetric flows, in-network deployment

is more manageable, cost-effective and the most unlikely to be circumvented.

As such, the limiter must drop (rather than delay) packets to prevent the

limiter mechanism from being attacked itself. The limiting algorithm (in

Section 2.2) provides the strong guarantee that all traffic from a symmetry-

limited sender will always be less than or equal to X : 1 in direct proportion

to the receiver's reply traffic, and in the case the receiver sends no reply traf­

fic, the sender will not be able to exceed the bootstrapping packet rate PB-

These guarantees afford the opportunity to make strong claims regarding

the DoS attack strength capable in a symmetry-limited network.

46

Chapter 3

Security Evaluation

Symmetry limiting allows an ISP to provide the strong guarantee to the rest

of the Internet that no symmetry-limited subscribers can be the source of a

DoS flooding attack. Furthermore, with symmetry limiters deployed at the

source network governing the network's outgoing traffic, a DoS victim now

has the power to control the rate of traffic it receives, simply by manipulating

its own reply rate- These are two significant wins for all DoS victims alike,

as (i) the overall volume of DoS traffic is drastically reduced and (ii) victims

of resource exhaustion DoS attacks no longer have to contact the ISP from

which the attack originates and wait for that organization to take action on

the victim's behalf - a victim need only insert a firewall rule to drop traffic

from the malicious hosts, thereby cutting of all reply traffic to the victim

simply by ignoring their incoming requests. This simplicity and localized

control over DoS defense is especially important for small businesses and

home users, who make up the majority of targeted DoS attack victims [53,

28] and do not typically have the network (or financial) provisioning to

tolerate DoS attacks.

Notice how the symmetry-limiting mechanism is designed such that the

increasing effectiveness of a flood increases the throttling by the limiter

- as fewer replies from the victim can escape the flooded link(s), fewer

transmissions are allowed to pass through the limiter due to the lack of

47

Chapter 3. Security Evaluation

reply traffic. The following sections will establish the threat model and

further evaluate the DoS protection provided by symmetry limiting.

3.1 Threat Model

Source-based symmetry limiting is a targeted defense against botnet orig­

inated DoS attack activity. It is well understood in the computer security

community that a large amount of computer crime is carried out through the

use of botnets [10]. A botnet is a group of compromised (exploited) "zom­

bie" computers that can be controlled by a remote master machine. In the

last quarter of 2006, Symantec [28] reports observing more than 6,000,000

distinct bots, with an average of just over 60,000 active bots per day. The

HoneyNet Project in 2005 [10] reported tracking botnets of varying sizes,

from hundreds to hundreds of thousands of nodes.

Defining the botnet as the DoS attack vector allows the threat model

to make certain key assumptions about the parameters that determine the

strength of attack. Particularly, the botnet master can only enlist zom­

bie machines he or she is able to exploit. Assuming all machines with any

hardware or software configuration are equally likely to be exploited, the

properties of botnet zombies and their network connectivity can be gener­

alized over global statistics on network connectivity. Note this assumption

will likely result in an over-estimate of the attack strength for a symmetry-

limited botnet, as it is more likely older and unpatched technologies are

more vulnerable to exploitation, the users of which are equally more likely

to have lower upload bandwidth. Conversely, corporate users with more

powerful uplink speeds tend to fall under the wing of a regulated IT man­

agement infrastructure, which will likely have tighter security and thus be

48

Chapter 3. Security Evaluation

less vulnerable to compromise.

Users of zombie machines are typically oblivious to (ignorant of) the fact

the computer is enlisted in a botnet. Moreover, due to the variety of mali­

cious activities an infected machine may inflict on its owner (ex. phishing)

[10], it seems extremely unlikely that the machine owner will knowingly take

action to contribute to the success of botnet related activities. This leads to

the assumption that the zombie machine owner will not attempt to circum­

vent a symmetry limiting mechanism deployed by the service provider (ex.

by tampering with the ISP cable or DSL modem), meaning that all traffic

from a symmetry-limited zombie will pass through the symmetry limiter.

Internet connections are typically asymmetric with respect to download

and upload speeds, having more bandwidth allocated for download. Large

broadband service providers offer connectivity with upload speeds ranging

from 64 Kbps to 800 Kbps, and some over 1 Mbps [62, 73]. Maintaining

the assumption that all machines are equally likely to be compromised by a

botnet master, it is reasonable to assume the average zombie provides the

median of the upload speeds, roughly approximated.as 384 Kbps.

T C P Reset and T C P F I N floods with packet sizes less than 100 bytes

are the most common DoS attacks [53]. DNS amplification attacks [71], like

the one used to put the anti-spam company Blue Security out of business

[13], similarly use small attack packets, which contain a single DNS query

for a large resource record, resulting in an amplified response of several large

packets sent to the victim. However, pure bandwidth flood attacks from a

symmetry-limited botnet will result in greater damage to a victim than these

small packet attacks, as the symmetry limiter is agnostic to the data carried

by each packet. Furthermore, the DNS amplification attacks are an example

of reflector attacks that employ source IP address spoofing to redirect the

49

Chapter 3. Security Evaluation

amplified reply to the targeted victim. Such attacks cannot be launched

from within a symmetry limited network, recalling the original requirement

for a symmetry limiter to have source address integrity. Thus, assuming the

attacker will maximize attack strength, the subsequent analysis focusses on

attacks using large packets. The ubiquity of Ethernet deployment makes it

reasonable to assume the path maximum transfer unit (MTU) , and hence

the maximum packet size, for zombie machines as 1500 bytes [38].

Many sensible service providers currently deploy ingress filtering [31]

for their subscribers. Recent analysis from [15] estimates that, as of June

2007, less than 19% of IP addresses are spoofable and less than 17% of

netblock addresses allow spoofing. It seems reasonable to assume that a

similar proportion of sensible service providers would be willing to deploy a

symmetry limiter to further ensure the integrity of their subscribers' traffic.

3.2 Effectiveness Against DoS attacks

A n army of symmetry-limited bots evokes the greatest DoS attack power

with a bandwidth flooding attack, as the symmetry limiter simply counts

the number of packets and is agnostic to packet data length. The following

list formalizes the parameters to compute the DoS flooding attack strength

of a given symmetry-limited botnet.

50

Chapter 3. Security Evaluation

N 100 - 100000 size of botnet (number of controlled

machines)

Bzombie 384 Kbps upload bandwidth of controlled zom­

bie machine

Pattack 1500 B (11.71 Kb) length of a bandwidth flood attack

packet

L > 80% percentage of symmetry-limited zom­

bies

X 8 the symmetry x : l ratio threshold

W 10 sec the window history length

3.2.1 Traditional DoS attacks
i

A naive DoS attacker will simply blast as many large packets as possible at

the victim. Considering each machine independently, the number of attack

packets allowed through the limiter will be equal to the bootstrapping packet

rate (PB) since the victim is assumed not to reply to the flooding traffic.

Thus, the attack strength, Afi00^ is computed as

•ft-flood =

PattackPB(NL) + Bzombie(N(l - L))

The attack strength equation clearly indicates attack strength is linearly

proportional to the botnet size, the proportion of limited vs. non-limited

zombies and the symmetry threshold itself. While an exponential decrease

in attack strength is desirable, this cannot be achieved when each source

host is considered independent of all other sources. Although linear, Figure

3.1 plots the attack strength in Mbps, which highlights the effectiveness of

symmetry limiting against naive attackers, showing a significant decrease in

aggregate attack bandwidth.

51

Chapter 3. Security Evaluation

£

40000

Symmetry Limiting vs. Traditional DDoS botnet attacks

Symmetry Limiting DDoS Attacks of varying botnet sizes

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
botnet size (# of zombie machines, 81% limited)

DDoS Attack by 1000 bots with varried symmetry limiting %

0.4 0.6
fraction of symmetry limited bots

Figure 3.1: Symmetry limiting vs. simple DoS flood

52

Chapter 3. Security Evaluation

A n additional deterrent for botnet masters running DoS attacks with

symmetry-limited zombies is that heavily limited machines will reveal the

identities of compromised machines. A key advantage for the botnet owner

is the stealthly nature of bot activity - the zombie owner is largely unaware

of the malicious activity perpetrated by their machine. A symmetry-limiter

exposes the identity of bot-infected machines, as periodic blasting of wildly

asymmetric traffic is a clear signature of DoS attacks. A symmetry-limiting

ISP gains the opportunity to alert the subscriber of infections or to take

more drastic action, such as blocking all traffic from the subscriber until he

or she cleans up their machine.

3.2.2 Symmetry-Aware DoS Attacks

Covert Bursts A moderately intelligent attacker may attempt a bursty

attack - establishing high rate symmetric flow(s) with the victim to build

up symmetry "credits" with which a large amount of attack traffic may sub­

sequently be sent. For instance, the attacker might request to download

a very large file from the victim to establish a high-rate symmetric data

transfer over T C P , after which the malicious sender floods the victim with

T C P S Y N packets for the same flow 5-tuple(s). In this manner, an attacker

can even momentarily exceed the symmetry threshold to at most 2X, by

abusing the limiting algorithm - first using the reply traffic to send flooding

packets at aggregate granularities, and then using the same reply traffic to.

send further flooding packets at the same 5-tuple granularity containing the

genuine reply traffic. However, as time moves forward, the previously estab­

lished symmetry of the flow is lost as the high reply rate is diminished with

the success of the flood. Moreover, the attack success prevents symmetry

53

Chapter 3. Security Evaluation

from being re-established as the victim is unable to send as many replies

back to the malicious sender. For every victim, there exists a steady state

. which maximizes the attack bandwidth while providing the victim with just

enough outgoing bandwidth to maintain the symmetry of the attack flow.

However, with a symmetry-limiter deployed at the source, the victim is in

a strong position to employ counter-measures against such an attack by

any customized policies or heuristics with which to control their own reply

rate. Thus, for such an attack, the victim has the simple task to detect and

combat such attacks by not replying to such malicious senders. Thereby

downgrading the strength of the bursty attack to the strength of the pure

flooding attack discussed in the previous section.

Collusion A more sophisticated symmetry-aware DoS attacker will at­

tempt to forge reply traffic from the victim to the zombie machines to get

more attack packets through the symmetry limiter. A n additional parame­

ter for the acknowledgement packet length is required to formalize this type

of attack.

Pack 40 B (.31 Kb) byte length of an acknowl­

edgement (reply) packet

The sophisticated attacker needs to co-ordinate collusion between his

or her bots to make sure forged back-traffic is generated from a machine

that will be capable of sending such forged packets. Although the attacker

has ultimate control over the connectivity of their own machines, directly

involving their own machines in the attack traffic stream increases the risk of

exposing their true identity on the network, making this option suboptimal

for the attacker. Symmetry-limited bots are also presumed to be ingress

filtered and consequently cannot send packets with spoofed source address

information. This leaves the attacker only the portion of their botnet that

54

Chapter 3. Security Evaluation

is not symmetry-limited with which to forge victim reply traffic.

A single forged acknowledgement may only contribute to establishing

the symmetry of at most one symmetry-limited zombie, as the source IP

address field is present in all flow tracking granularities. Thus, the ideal

collusion attack employs a greedy algorithm to assign the minimum amount

of non-limited bandwidth to generate forged acknowledgements to produce

the maximum amount of attack bandwidth from symmetry-limited zombies,

and uses any remaining non-limited bandwidth as further attack bandwidth.

For the moment, assume the attacker develops a clever distributed algo­

rithm to (i) determine which zombies are and are not symmetry limited,

and to (ii) co-ordinate the collusion of non-limited zombies to send forged

acknowledgements to disjoint sets of symmetry limited zombies. Further

assume that no zombie receives duplicate forged acknowledgements and no

forged acknowledgements are wasted by being sent without the possibility

for the symmetry-limited zombie to send a greater amount of attack traffic.

Wi th these assumptions heavily weighted in the attacker's favour, the attack

strength, Acouude, is computed as

F'pot = N(l - L) * Bzombie/Pack

Freq = NL * Bzombie/(PattackX)

A-sym = PattackX * min(Freq, Fpot)

A free = i V (l - L) * B z o m b i e - Pack * mm(Freq, Fpot)

A-collude ~ A-sym +

where the individual computations represent

55

Chapter 3. Security Evaluation

Fpot the total number of potential forged ac­

knowledgements, available to be sent by

non-symmetry-limited bots

Freq the total number of required forged ac­

knowledgements; needed to saturate the

sending links of the symmetry-limited

bots with attack traffic

Asym the aggregate attack strength of the

symmetry-limited bots

Afree the aggregate attack strength of the non-

symmetry-limited bots

Acoiiude the total aggregate attack strength of the

bot net

Figure 3.2 plots the attack strength for this symmetry-aware collusion at­

tack versus an attack of equal size without symmetry limiting. Both the non-

limited attack and collusion attack have the same attack strength, with sym­

metry limiting only becoming effective when the number of potential forged

acknowledgements becomes smaller than the number of required forged ac­

knowledgements to saturate the symmetry-limited bots' attack bandwidth.

Notice this happens when

Fpot

N(l - L) * Bzombie I Pack
PgttackX

Pack

Freq ^*

NL * Bzombie/(PattackX) >
L

Let c = pattackx then solving for L . . .
*ack

56

Chapter 3. Security Evaluation

Symmetry Limiting vs. Symmetry-Aware Colluding DDoS botnet

40000

400,
350 :

300
250
200
150
100
50
0

Symmetry Limiting DDoS Attacks of varying botnet sizes

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
botnet size (# of zombie machines, 81% limited)

DDoS Attack by 1000 bots with varried symmetry limiting %

symmetry limited — i —
no limiting —x—

0.2 0.4 0.6
fraction of symmetry limited bots

0.8

Figure 3.2: Symmetry-aware DoS flooding attack

57

Chapter 3. Security Evaluation

L

Thus, the proportion of symmetry-limited bots (L) needed to reduce the at­

tack strength significantly is dependent only on the values Pattack > Pack and

X. As shown in Figure 3.2, with Pattack = 1500, Pack = 40, X = 8 yields

c = 300, the corresponding L is 0.99667 - meaning limiting only becomes

effective when nearly 99.667% of the bots are symmetry limited. The only

parameter with any (real) freedom is the symmetry threshold X, as packet

length standards are unlikely to change. Drastically tightening the symme­

try limit to X = 2 - which would continue to permit the recommended T C P

delayed acknowledgement implementation [3] - the symmetry limiter only

comes into effect when L = 0.9868 or at 98.6% limiting coverage; still a very

high percentage of the botnet.

While these numbers initially seem discouraging, the assumptions heav­

ily favour the attacker, leading to over-estimation of the attack strength.

The attack scenario assumes no packets are lost, the network delivers pack­

ets with zero latency, and the co-ordination between colluding zombies is

precise - the timing of every forged A C K enables a symmetry-limited zom­

bie to send a full X attack packets (ex. there is no interference by innocent

use of the zombie machine by the PC ' s actual owner either). While the anal­

ysis could certainly model these factors to re-compute a more realistic attack

strength, a much less tangible but far more significant factor in executing

this attack from the attackers perspective, is the risk of exposure.

The need to forge back-traffic forces a botnet master to expose the net­

work of machines under his or her control. Current botnets leverage the

58

Chapter 3. Security Evaluation

anonymity of each bot when carrying out various computer crime. Any

one bot need only communicate with the master IRCd server. If one bot

is discovered, the identities of the other bots remain secret. However, the

co-ordination to forge back-traffic across the entire botnet requires collab­

oration between bots, both in the discovery of which zombies can forge

back-traffic, and which zombies need back-traffic forged for them, as well as

during the attack. Traditional DoS defense techniques can capitalize on this

wealth of colluding traffic to uncover the network of bots responsible for an

attack, perhaps even leading to the dismantling of the botnet.

Additionally, there is the initial effort and the technical challenges to

develop the collusion attack code. A symmetry-aware colluding DoS bot will

require features to (i) determine which bots are symmetry limited, ingress

filtered, or unfLltered, (ii) coordinate which unfiltered bots will forge back

traffic for which symmetry limited bots, and (iii) synchronize the execution

of the attack itself. This introduces significantly more control traffic into the

botnet infrastructure, adding to the risk of exposing the botnet with such

an increase in traffic exchanged between the attacking machines. Both the

effort required to develop the code for this attack and the risk of exposure

may guide the attacker by the law of diminishing returns, with the cost to

execute such an attack greater than the value of the attack itself.

3.2.3 Limits of Symmetry Limit ing

Packet symmetry enforcement adds an implicit signaling channel to the net­

work, with PB as the allowed admission rate to this channel. As the flooding

attack analysis showed, PB is linearly proportional to and is thus the limiting

factor for flooding attack strength. Recalling that the PB parameter must

59

Chapter 3. Security Evaluation

allow a source to send at least one packet to a destination host to initiate

(or bootstrap) communication that destination, it is clear PB can never be

reduced enough to defend all flooding attacks against victims of arbitrarily-

small provisioning. Tuning the parameters X and W in order to decrease

PB as a defense against pure volume-based botnet DoS attacks simply cre­

ates an arms race - as botnet sizes grow, PB must shrink proportionally.

Furthermore, shrinking PB is difficult as X must be large enough to allow

communication to proceed and W must be short enough not to significantly

degrade the user experience. However, any connection-oriented or signaled

network (ex. A T M , IP+RSVP, etc.) is attackable through denial-of-service

on its control channel. Thus, as it is futile to choose parameter values based

on attack strength, it remains most practical to define PB on the basis of

the characteristics and user acceptability of "good traffic".

3.3 Resilience to Attacks

The symmetry limiter is naturally resilient - being designed such that in­

creasing attack power merely strengthens the defensive response. However,

this section explores ways in which an attacker could attempt to attack the

symmetry mechanism itself.

3.3.1 DoS your neighbour

A n attacker cannot deny service to his or her fellow subscribers by spoof­

ing source address information and corrupting their outgoing flows. A

symmetry-limited network is assumed to ensure the integrity of source ad­

dress information. Modern network equipment vendors (ex. [51]) ship prod­

ucts that make achieving network integrity a top priority, as source address

60

Chapter 3. Security Evaluation

information is crucial for proper management of IP-based services. Thus, it

is reasonable to assume source address information is not spoofable, which

prevents an attacker from poisoning a neighbouring subscriber's symmetry.

3.3.2 Memory Exhaustion

A n attacker could attempt to deny connectivity to other symmetry-limited

subscribers by consuming all the available memory of the symmetry lim­

iter. A symmetry limiter helps avoid such an attack as the per-flow state

required to track packet symmetry is minimal. The memory requirements

for a (simplified) symmetry tracking data structure breakdown as follows:

flow tuple...

sip + dip (IPv6) 2 * 16 bytes = 32 bytes

prot 8 bits = 1 bytes

sport + dport 2 * 2 bytes = 4 bytes

window counters ...

tx + rx 2 * 8 bytes = 16 bytes

window intervals ...

tx + rx 2 * 10 * 4 bytes = 80 bytes

window timestamps ...

tx + rx 2 * 4 bytes = 8 bytes

pointer to aggregate record ...

parent 4 bytes

total 145 bytes / flow tracking record.

This minimal state allows a symmetry-limited network to support a large

number of flows. For instance, with only 512 M B of R A M dedicated to sym-
. , , . , .. , 512MB*W24KB/MB*1024B/KB metry tracking, a symmetry limiter can support i45B/rec :

61

Chapter 3. Security Evaluation

3702558 flow records in total. In the worst case with all flows from com­

pletely different sources (i.e. none of the aggregate flow tracking records

are shared by finer grained flow records) and each flow with 5 separate

flow records, the limiter can track at minimum 3702558/5 = 740511 flows.

Under normal conditions, many flows will share flow tuples at coarser gran­

ularities, especially the 1-tuple for all flows coming from any one sender.

A system administrator can thus configure the symmetry limiter accord­

ing to the client-demand on the network, both in terms of the number of

subscribers and the expected flows-per-subscriber.

The maximum flow capacity for the symmetry limiter extends the "good

traffic" definition beyond just packets-per-flow to flows-per-client as well.

A n administrator may configure the system to allow 100 flows per client,

allowing one limiter to support a network of nearly 7500 subscribers. Many

clients will likely consume far fewer than 100 flows at a time, while other

clients may at times exceed this threshold. Under normal operation, the

limiter can remain agnostic to imbalances such as this. However, under

conditions of extreme stress (i.e. memory exhaustion), discarding finer-

grained records while retaining coarser-grained tracking records is made easy

by the tree-structured organization of flow tuples. Furthermore, only those

clients consuming more than their "fair share" of flows can be collapsed

in this manner - punishing only the heavy consumers of the network with

coarser grained tracking.

A clever attacker might attempt to exploit this memory conservation

defense to execute a DoS attack. If the attacker could force tracking down

to the 1-tuple (s i p , * , * , * , *) granularity, he or she could establish a high

rate 1:1 symmetric flow with another machine outside the symmetry lim­

iter, which would enable the attacker to use the remaining X — 1 packets to

62

Chapter 3. Security Evaluation

flood some other completely different destination IP address (since memory

has been consumed to the point that only 1-tuple records are retained). To

thwart such an attack, the limiter simply does not generalize flow tuples

beyond the 2-tuple (s i p , d i p , * ,* ,*) granularity, ensuring that all destina­

tions (i.e. potential victims) are tracked separately. This essentially places

a cap on the maximum number of concurrent connections per client for

a symmetry limited network. However, considering again only 512 M B of

symmetry-tracking R A M , under extreme memory pressure, the limiter could

support each of the 7500 clients with / = 492 flows to unique destination IP

addresses (where / is calculated from (1 + /) * 7500 = 3702558), dropping

any flows that exceed this limit.

Note the attacker would also require the ability to spoof source address

information for this attack to be successful, since the memory collapsing

mechanism ensures each sender only receives a fair-share of flow-tracking

records at each granularity. As discussed above, it is assumed that source

address information is unforgeable, making this attack impossible in the first

place.

3.4 Summary

This chapter evaluated the effectiveness of DoS protection provided by sym­

metry limiting, assuming the parameter values for the symmetry threshold

X and the window length W as established in Chapter 2. Both traditional

bandwidth flooding and covert burst DoS attacks are severely limited with

packet symmetry. Though symmetry-aware colluding DoS attacks could the­

oretically use forged back-traffic to maintain symmetry and execute powerful

DoS attacks with symmetry-limited machines, the complexity to build the

63

Chapter 3. Security Evaluation

attack code as well as the risk of exposing the precious botnet are strong

deterrents against these collusion attacks. The minimal state used to track

packet symmetry allows a symmetry-limited network to support a large num­

ber of flows while simultaneously resisting memory exhaustion attacks on

the tracking mechanism itself.

64

Chapter 4

Implementing a Symmetry

Limiter

A symmetry limiter prototype was built to evaluate the effects of symmetry

limiting on the traffic dynamics on a live network. As per the ISP network

deployment strategy, the prototype tracks and limits packets across a Linux

network bridge. The values for the symmetry threshold X, the tracking

window length W and the window interval length I are configurable, but

the default values for the system are those derived from the traffic analysis

(X = 8, W = 10s, I = Is). The symmetry metric is computed as a flat value

across the entire window, rather than the two-stage computation suggested

to tolerate buggy T C P stacks in the analysis of asymmetric T C P flows.

The implementation also does not implement any special flow tracking for

multicast addresses, treating all IP addresses as the same.

4.1 System Architecture

The high-level algorithm used by the symmetry limiter is relatively simple.

The system prevents the packet symmetry metric max^ ' i) from Section

2.1.2 for any flow from exceeding the asymmetry threshold X. As such, for

each IP packet received, the limiter (i) looks up the finest granularity flow

record for the given packet (creating the records if they do not exist), (ii)

65

Chapter 4. Implementing a Symmetry Limiter

Subscribers

Web Console
(httpd)

user

kernel

packets in Filter
(ebt_symtrack)

Monitor
(symtrackd)

Track
(br symtrack)

>

packets out

Figure 4.1: System architecture for Linux symmetry limiter prototype

checks if the packet causes the Tx :Rx ratio to exceed the X : 1 threshold,

and if so, drops the packet, (iii) otherwise, updates the flow record counters

and forwards the packet.

Figure 4.1 captures the overall system architecture for the symmetry

limiter prototype. The architecture separates the tracking and limiting re­

sponsibilities for better encapsulation, making a clear division between pa­

rameters to tune symmetry tracking and those to tune symmetry limiting.

A user-space daemon is responsible for pulling tracking and limiting data

from the fast in-kernel data path, making this data available for display via

the web interface, as well as potential further analysis.

The use of a Linux network bridge allows a limiter to be transparently

G6

Chapter 4. Implementing a Symmetry Limiter

deployed on any link joining two (or more) networks. Neither end hosts

nor routing infrastructure require any configuration changes - the limiter

simply bridges two networks, and any limited traffic just looks like any other

network loss.

Performance was a key factor in the design. The system must achieve

high throughput for source-based symmetry limiting to be practical. A

corner stone of the argument in favour of packet symmetry is that symmetry

limiting does not negatively affect innocent users. However, a significant

degradation in throughput or performance would have a negative on all

users - innocent and malicious alike. As such, careful attention was paid

to optimizing the data path that packets traverse through the symmetry

limiter. The individual performance considerations for each module are

discussed in the sections below.

4.1.1 Tracking Packets

The packet symmetry tracking module (br_symtrack) uses the Netfilter eth-

ernet bridge to hook into the arrival of packets traveling across the bridge.

This Netfilter ethernet bridge is built into 2.6 Linux kernels, and can be

patched into earlier kernel versions. The tracking module can be loaded

dynamically into (and out of) the kernel, however, flow tracking data is not

persistent across loads and unloads. This module consists of 1767 lines of

, documented C code and took three months to develop.

Flows are tracked at all flow-tuple granularities, from the full 5-tuple to

the source-only 1-tuple. The flow tuples at each of the 4 aggregate granu­

larities are shared by all of the flows at that granularity. Thus, flow tuples

are organized in a tree structure, branching out at each successive granu-

67

Chapter 4. Implementing a Symmetry Limiter

larity. The tree is bidirectional - child flow tuples have a pointer to their

parent, and a parent has a linked-list of pointers to all its children. A single

global record tracks the packet, symmetry of the entire network, which could

be considered the 0-tuple granularity. A l l 1-tuples have this global record

as their direct parent, making the 0-tuple record the root of the tree of all

tracking records.

Flow tracking occurs from finest-to-coarsest granularity. For a given

packet, the tracking module first looks for the corresponding 5-tuple. If

that is not found, then the 4-tuple is searched for, and so forth, until the 0-

tuple global record is reached. When appropriate tuple is found (note that

we will always find the 0-tuple), all missing finer-granularity flow-tuples

above the one found are created, up to the full 5-tuple granularity (or a

configurable finest-granularity setting). Any new records have the proper

parent-child links set such that the flow tuple tree remains consistent. Then,

the (tx, rx) counters are updated to reflect this new packet, traversing the

finest to coarsest tuple for the packet. The window history is updated for

each flow tuple, using the arrival time of the new packet as the current time.

This process optimizes the data path by maximizing the work done for the

first packet seen in a flow, and minimizing the per-packet maintenance to

continue tracking the flow. Once the first packet has been seen, all flow-tuple

granularities have been created for that flow, and each subsequent packet

merely traverses its branch in the tree from finest-to-coarsest granularity,

updating the windowed counters along the way.

A single hashtable stores all the flow-tuples, using chaining to resolve

collisions. The size of the hashtable defaults to use 1/16384 of memory, as

suggested by the Linux tcp.c code, but this can be configured at compile

time. A tracking record at any granularity is expired and purged, having

68

Chapter 4. Implementing a Symmetry Limiter

its memory reclaimed, after 30 seconds of inactivity (though this expiration

time is configurable and can be changed dynamically).

A single global read-write spin-lock is responsible handling concurrent

access to flow tracking records. While this choice favours the assurance of

correctness over performance for the tracking module, other components

in the architecture take this into account to control any potential negative

effects on performance.

Flow tracking data is exported using the /proc pseudo file system, with

separate files for each flow-tuple granularity, and one file for all granularities.

files in /proc/br_symtrack/...

counters_src 1-tuple counter records

counters_src_dst 2-tuple counter records

counters_src_dst_prot 3-tuple counter records

counters_src_dst_prot_dport 4-tuple counter records

counters_src_dst_prot_dport_sport 5-tuple counter records

counters_all all counter records

To optimize the data path, the seq-file subsystem is used to export data

to /proc. This subsystem sets up data access as a pull operation - data

moves from kernel to user space only when data is requested (i.e. via a file

read on one of the above /proc files). The seq-file A P I presents an iterator

interface for the kernel module on which to map the data to be exported.

The global spin-lock is held with a write-lock while this iterator traverses

the hashtable of flow tuples. This allows the traversal to purge stale tracking

records while active flow records are written as output. Again, although this

locking strategy favours correctness over performance, other components

69

Chapter 4. Implementing a Symmetry Limiter

are sensitive to this choice and coordinate their actions to prevent'possible

performance issues.

The tracking module provides a public A P I for the limiting module to

lookup and query flow records with respect to their packet symmetry. The

flow tracking structure also contains extra windowed counters to store the

packet drops for that granularity. The tracking module exports a function to

update these counters, thus tightly coupling packet dropping data to the flow

records, while remaining orthogonal to the actual packet drop enforcement

module. As packet dropping counters are stored in the tracking module, the

module also pushes changes to flow limiting status to user space via another

character device, /dev/symtrackJivelog. The tracking module exports the

flow-tuple along with the starting and ending times when the flow tuple

experienced limiting. The tracking module assumes that limiting starts

when the flow's packet drop, counters are incremented above 0 for the first

time, and that limiting ends when these drop counters return to 0 again.

The flow tracking data structure consumes a total of 320 bytes. This

is larger than the size suggested in Section 3.3.2 as extra memory is con­

sumed with the fields to store the record in the hashtable, the linked-list

pointers for parent-to-child tree traversal, the extra packet drop windowed

counters, the limiting state bits, and padding between each field. Though

this makes the actual record size a little over twice that of the predicted

tracking structure, this level of memory usage still scales to support a large

number of flows. Considering the worst case with completely independent

flows (i.e. no sharing of aggregate flow-tuple records), with 512 M B R A M ,

this tracking module prototype can support 512 * 1024 * 1024 bytes / 320

bytes per records = 1,677,721 flow records, which supports a minimum of

1,677,721/5 = 335,544 total flows. Estimating the average number of flows-

70

Chapter 4. Implementing a Symmetry Limiter

per-client at 100, such a limiter can still support over 3300 clients. This

result is encouraging for the scalability of symmetry limiting, suggesting a

special-purpose symmetry-limiter network appliance may scale to the needs

of modern ISPs.

4.1.2 Filtering Packets

The filtering module (ebt_symtrack) is an extension module for the ebtables

ethernet bridge firewall. This module uses the public A P I of the tracking

module to query for flow tracking data, consequently dropping packets for

flows that exceed a symmetry threshold. The symmetry threshold is a dy­

namically configurable value possessed by the filtering module. This module

consists of 194 lines of documented C code and was developed in tandem

with the tracking module (br_symtrack).

Ebtables is essentially the equivalent of the iptables firewall, only at

the ethernet layer. It provides three chains, or tables, for ethernet frame

arrival; I N P U T for frames destined to the machine, O U T P U T for frames

sent from the machine, and F O R W A R D for frames passing through the

machine (i.e. bridged frames). The F O R W A R D chain is the one used by

the filtering module: Rules can be added to each of these chains, where

each rule examines properties of the frame (i.e. M A C or IP addresses),

and based on these properties the frame can be accepted or dropped. The

filtering module adds a new rule type to ebtables that accepts or drops

frames based on the symmetry for the flow to which the frame corresponds.

This symmetry limiting rule provides options to configure the symmetry

threshold X, as well as the flow-tuple granularity at which limiting is to

occur. B y default, the limiter uses the finest-granularity limiting strategy

71

Chapter 4. Implementing a Symmetry Limiter

discussed earlier, but allows a specific flow-tuple granularity to be chosen.

There is no default value for the limiting threshold X, forcing the calling

system to specify this value explicitly.

The filtering module is relatively simple compared to the tracking mod­

ule. The symmetry limiting rule implementation simply uses the per-packet

hook of the ebtables rule framework to decide whether to accept or drop a

given packet. In this hook, the module merely calls into the tracking module

to lookup the tracking record for the flow that corresponds to the packet

in question (which is provided as an argument to the hook callback).' If

the flow's symmetry exceeds the threshold specified by the rule, the rule

marks the packet to be dropped, otherwise the packet is marked as being

accepted by the symmetry rule, and goes on for further processing by any

remaining rules in the F O R W A R D chain. The filtering module also uses

the public A P I to increment the packet drop counters for flows that are

subjected to symmetry limiting, providing valuable feedback to the tracking

module regarding limiting behaviour.

4.1.3 User-level Daemon

The user-level daemon process acts as the control centre for the symmetry

limiting architecture. It consists of 1783 lines of documented Python code

and was developed in less than one month. This process sets the ebtables

rules to limit flows based on symmetry, specifying at which threshold and

granularity to limit. The daemon is also responsible for marshaling the

tracking and limiting data from kernel space to user space, reading directly

from the /proc/brsymtrack/'counters... files and from /dev/symtrackJivelog.

The interval at which the kernel data is read is configured on startup, and

72

Chapter 4. Implementing a Symmetry Limiter

defaults to poll once every 2 seconds. At present, the kernel data is simply

copied to user space and stored in the file system for use by the other system

components.

It is important that the polling interval used to fetch tracking data from

the kernel is not too short, given the locking strategy employed by the kernel

tracking module. Extremely frequent reads to the /proc/br.symtrack/'counters.

files could cause a severe performance degrade, recalling that the kernel

tracking module holds an exclusive write-lock while writing tracking data

output. Thus, centralizing the access to the kernel data with this daemon

process prevents an attacker from exploiting this implementation decision.

The system administrator controls this polling interval, allowing it to be

configured to scale as needed. This default value of 2 seconds was chosen

rather arbitrarily to provide instantaneous-enough access to tracking data.

However, this value has seemed to have little negative effect on overall sys­

tem performance.

A n additional mechanism built into the system purely for the sake of

encouraging deployment is the ability to exempt a specific flow granularity

from symmetry limiting. This feature is implemented by the daemon pro­

cess, by inserting an additional ebtables rule per exempt flow just ahead of

the symmetry limiting rule in the F O R W A R D chain. Each of the flow ex­

emption rules simply check that the IP address and port number information

matches those of the exempt flow granularity, and accept the packet, stop­

ping the traversal of the remaining ebtables rules. To set new exemptions,

the daemon checks certain drop-box files, at the same polling interval used

to read the tracking data, for requests to exempt specific flows from sym­

metry limiting. These requests are simply ascii text detailing the flow-tuple

to be exempt and a time delta of how long the exemption should remain

73

Chapter 4. Implementing a Symmetry Limiter

active. Thus, the daemon also regularly checks all flow exemptions for any

that have expired, promptly removing that flow's exemption rule from the

ebtables chain.

4.1.4 Web Console

The main purpose of the web interface was to make symmetry tracking data

accessible to the end user. This dynamic A J A X front end provides access

to the flow tracking data.in real-time, with a configurable refresh rate, as

shown in Figure 4.2. For privacy, a symmetry limited client is only given the

flow tracking data for its own flows. Only a system administrator connecting

directly to the symmetry limiter machine is able to view the tracking data

for all flows traversing the bridge. The web interface consists of 1731 lines

of H T M L and Javascript code and was developed over the course of two

months.

The interface also allows end-users to request limiting exemptions for

flows that may be exceeding the symmetry threshold. Recall again this

mechanism is only incorporated to encourage and facilitate experimental

deployment, since an end-user would always have the ability to turn off

the mechanism at any time. Such an exemption mechanism available to

all clients should not be incorporated into a commercial deployment, as

attackers could simply turn off limiting for their attacks.

4.2 Performance Evaluation

The Emulab system [79] was used to create a network topology to build

and evaluate the symmetry limiter prototype. The experimental network

topology is given in Figure 4.3. Machine B was configured as a bridge

74

Chapter 4. Implementing a Symmetry Limiter

SymTrack
A packet symmetry monitor and firewall,

Goto: SvmtfgtcK limit History
Ust'updated:'April 9, 2007 IS; 15:04 PDT.
Refresh rate: 3 sees '

'Show: all exempt• non-exempt limited
Granularity: all1 srcr-jjat proto -

Source filter Destination, filter if age iSorT r

j J L ' J 1

SRC DST Protocol 1X/RJC K : i Dropped Exempt
198,: 162; 52.1391 / • 128.189.253:222 / * • 57 TSQ 1.1 no
198:162.52:139 / * 128.109:253.222 / .TCP (6) 57, / 50 1.1, . 0/0" no
ISA 162 32 3 39/ * ;i2B.189.253.222,/ 64653 TCP,*(6J 57 t 50 0 7 0, ..J1.1?, „„„„.
.198:162.52.139 / 22 12B.1B9:253.222/ 64653 TCP. (6) 577-50 : . i 0/0 no
198.162.52.139 / • 142.103.6.6"'/ ' UDP, (17) 9/9'' .I'.O .0/0 no
198.162.52.139/ * 142.103.6:6/ * 9/9 i.o- 0/0' no
198;162.52.1397'32829- 142.103.6.6 / 53 UDP (17) 9 / 9 I;Q 0 / 0' no
198:162.52.139/ * 142.103.6.6 / 53 UDP (17) '9/9 I-.O 0/0 no
193:162.52:139/ • * / * * ,15137'2279 -1.5 D/0 no
198.162:52.139/ * 204.152:191.37y 80 TCP (6) 1447 / 2220 -1;5 0 / 0" no
19«. 162.52.139 V 37427 204.152.191:37'/ 80 TCP {6̂ :,:14477'2220 -1.5 o /:o no
198.162.52.139 /,* 204.152.191.37 / * 1447 / 2220̂ •1:5 0'/ 0 no
I9a.i62.52.13971* 204.152.191.37/ * TCP, (6) 1447 /2220 -t.5 . 0 / 0 no

Full Src Addr
00":13:20:'CC:BA:D7
198,162.52.139/*'
Full Dst Addr
00;OEipC:4D:ip:F2'
204.152.191:37/80,
IP Protocol
Transmission Control .
Dst IANA Port App
World Wide Web HTTP

Figure 4.2: Screen shot of symmetry-limiter web interface.

® 1 Gbps 1 Gbps
* < £ > < £)

Figure 4.3: Symmetry limiter evaluation network topology.

between host S and D. A l l machines were equipped with Pentium IV 3200

M H z processors, 1024 M B of R A M , and ran a standard image of Fedora

Core 4. The machines were connected on a VLAN-switched network with 1

Gbps links.

The following experiment determines the performance impact of the sym­

metry limiting prototype on network throughput. As the prototype targets

deployment on a Linux bridge, the maximum throughput of the system is

confined to the maximum throughput of the Linux bridging architecture. As

75

http://I9a.i62.52.13971*

Chapter 4. Implementing a Symmetry Limiter

such, the evaluation methodology first measures the throughput of the raw

Linux bridge. This forms the baseline to which symmetry limiting through­

put is compared.

The ttcp benchmark was used to measure the T C P throughput achieved

between S and D. The baseline configuration uses the raw ethernet bridge

setup as described above. The symmetry limiting configuration uses the full

prototype architecture of symmetry tracking and limiting modules, as well as

the daemon process with the default polling rate of 2 seconds. Four separate
i.

runs measure the effect of junk flooding traffic on throughput performance,

both for the baseline and symmetry limiting configurations. The data points'

measured 0, 4000, 8000, and 16000 packets per second of noise traffic. The

noise traffic consisted of packets with randomly generated IP and layer 4

header information to increase the workload of the symmetry limiter to

create records and track these additional flows. A single trial consisted of

sending 262144 packets, which took roughly 25 seconds for each trial. Five

trials were conducted for each run, and the average throughputs are reported

in Figure 4.4. Symmetry limiting throughput degrades equally with the

throughput of the raw Linux bridge, independent of extraneous noise traffic,

which one would expect to slow symmetry tracking to some degree. As such,

this result is promising and suggests that symmetry limiting imposes a small

and constant per-packet overhead.

Also of interest, oprofile results indicate that the limiter spends the ma­

jority of its C P U cycles in two functions of the tracking module; the flow

tuple lookup function used to find a tracking record in the hashtable, and

the packet parsing function used to pull the flow-tuple fields out of the raw

packet data. This suggests that the single-lock strategy combined with the

2 second polling rate does not impact performance significantly - otherwise

76

Chapter 4. Implementing a Symmetry Limiter

Effect of Synnetry Liniter Prototype on Throughput

788

» 5B8

3 O
k
a.
u
t

388

288

188

1
1 1 1 l

synne
baseline — i —

try Uniting — * —

•

6888 8888 18888 12868
Noise Traffic (packets per second)

14888 16888

Figure 4.4: Comparing symmetry limiting throughput performance.

77

Chapter 4. Implementing a Symmetry Limiter

one would expect significant time spent in the iterator routine used to write

tracking data to user space.

4.2.1 Future Optimizations

Although the performance of the prototype is rather encouraging, there are a

number of optimizations that would improve performance to an even greater

extent. As suggested by the oprofile results, the largest gains could be made

by improving the hash lookup and packet parsing code.

The time spent in the hash lookup function could be reduced drastically

(nearly 50%) by introducing tighter coupling between the tracking and limit­

ing modules. Currently, the same hash lookup occurs twice for every packet

that is not dropped due to symmetry limiting - the first time in the limiting

module to verify the flow is not over symmetry, and the second time in the

tracking module to update the flow tracking structures. While this embod­

ies good software design principles of encapsulation and separation-of-duty,

it is also slower. A n optimization might use another field in the packet's

socket buffer structure (which is passed to both the tracking" and limiting

callbacks), to store the pointer to the symmetry tracking record for that

packet. The limiting module, having done the initial hash lookup, could set

this pointer and the tracking module could check this field before doing its

own lookup. This would optimize the common-case, as for all packets but

the very first packet for a flow, the tracking record should be found by the

limiting module and this pointer-sharing should succeed.

The packet parsing code could also be optimized by tighter coupling.

Currently, the full 5-tuple of fields are always parsed from the raw packet

data, after which the mask of the desired flow-tuple granularity is generi-

78

Chapter 4. Implementing a Symmetry Limiter

cally applied. This could be trivially optimized by taking the granularity

mask into account while parsing the raw packet fields, again likely reducing

the cycles spent in this function. Notice that the packet parsing also occurs

twice per-packet, which could be reduced similar to the hash lookup func­

tion by sharing results across the tracking and limiting modules. However,

independent parsing of the packet buffer would allow the tracking module

to verify the tracking record in the packet buffer actually corresponds to the

correct flow.

Although the performance measurements do not indicate the single-lock

strategy as a bottleneck, additional improvements could certainly be made

there as well. Firstly, with sufficient memory space available, purging stale

records is perhaps not as important as high flow throughput. Thus, if the

iterator to output tracking data is changed to no longer purge stale records,

that process would only require a read-lock, which can be held while existing

flows continue to pass through the limiter. This would still prevent new flows

from being created while the output was being written since creation (like

deletion) requires a global write lock to the hashtable to prevent parent

records from being deleted while new children are created. A three-lock

hierarchy might.solve this problem, where only the first lock is needed to

read the hashtable, the first and second locks are needed to create new flow

records, and all three locks are required to delete records.

To further optimize the data exchange between kernel and user space,

the /proc pseudo-files could export binary data rather than ascii character

data. Simply writing the raw bytes of the flow tracking structure would

save C P U time consumed by the string formatting routine currently used to

produce a relatively human-readable representation of the data. However,

as with the previous optimization, the kernel-to-user space data transfer has

79

Chapter 4. Implementing a Symmetry Limiter

yet to become a system bottleneck.

4.3 Deployment Experience

To evaluate symmetry limiting against real traffic, the prototype was de­

ployed on a network bridge between the U B C Distributed Systems Group

(DSG) lab network and the external internet. The bridge machine ran an

unmodified Linux 2.6.16 kernel on a 2.26GHz Intel P4 processor with 631

M B of R A M . The symmetry tracking and limiting modules were run on

this machine, along with the web server to provide the symmetry-limited

machines access to the live tracking and limiting data for their flows.

Live deployment affords the analysis of symmetry limiting effects on live

traffic dynamics, which is important as such effects cannot be simulated in

the analysis of network traces. A secondary aim is to discover protocols or

applications with asymmetric behaviour that were not represented in the

network traces examined. Consequently, the focus of deployment is more

to evaluate any usability effects of symmetry limiting, i.e. determining if

any protocols or applications actually break subject to symmetry limiting

dynamics. Catching real attack traffic is of much less concern, as the user

base of computer systems researchers are unlikely to mount real attacks.

As the results show, symmetry limiting had little to no effect on end-user

experience, even in light of some traffic being limited.

4.3.1 A Symmetric Observation

A n original concern was that voice-over-IP (VoIP) traffic may exhibit signifi­

cant asymmetry. The nature of VoIP applications - high real-time demands

to deliver voice data immediately combined with mild tolerance for data

80

Chapter 4. Implementing a Symmetry Limiter

Synnetry of VoIP traffic: R 18 ninute ca l l with Skype

ID a.

"O
1.4
1.2
1

8.8
8.6
8.4
8.2
8

Packets transnitted and received for the call duration
iiiillWIMMIIIIIIiiwn

188 288 788
tins (seconds)

Flou asynnetry for the call duration

iiiiiiiiiiiiiitiiiMii<iiiiiiiiiiiiiiiii>iiiiiiiiiiiLiiii»ii>iiiiiiiii<iiiiirf*%H<irfMBiiiHWiiiiriiiiiiiiiiiiiit^i[iiiiiiiniiiiiiiiiiiiiii>iiiiMii[iniii^ -

188 288 388 488
tine (seconds)

788

Figure 4.5: Symmetry of Skype VoIP traffic. Although several periods of

one-way conversation occurred during the call, tx:rx packet symmetry re­

mains steady around 1:1 for the entire call duration.

81

Chapter 4. Implementing a Symmetry Limiter

loss - lead most VoIP implementations to use U D P as an underlying trans­

port protocol, avoiding possible transmission delay due to T C P congestion

control algorithms. However, experience with Skype [70], a popular (free)

multi-platform VoIP application which uses U D P as underlying transport,

showed that VoIP is highly symmetric, maintaining a nearly 1:1 Tx :Rx ra­

tio throughout entire calls. Figure 4.5 illustrates the symmetry exhibited by

Skype's VoIP traffic for one call placed through a D S G symmetry-limited

machine. This near-perfect packet symmetry is suggestive of an 'always-on'

mode for VoIP operation - that a VoIP client need not distinguish between

on or off periods in which to send or not send sound traffic. Rather, it simply

sends all sound traffic from the source end, considering ambient background

noise equally valid as part of the conversation.

4.3.2 Asymmetric Observations

Multicast DNS

Traffic to U D P port 5353 was frequently limited - between zero and 5 times

per day. Port 5353 is the standard port for multicast DNS (mDNS) [23],

an extension to DNS to perform queries over IP Multicast to provide zero-

configuration transparent connectivity to a variety of devices on the local

link. The protocol has been designed with multiplicatively increasing in­

tervals between queries as well as a need-to-know query policy to mini­

mize bandwidth and C P U consumption for smaller less powerful devices

(i:e. cell phones, PDAs, etc.). However, when network connectivity for a

device changes (i.e. connects to network, wakes from sleep, etc.), it must

perform the mDNS start up phase. During start up, the machine first must

probe the local link for any other machines with conflicting names as the

82

Chapter 4. Implementing a Symmetry Limiter

machine starting up. Probes may contain multiple DNS questions in a single

packet, and thus may only require a single packet (we observed only single

packet probes). Each probe request must be separated by 250 ms intervals.

If no conflicting responses are received, the machine then moves to the an­

nouncing phase, during which the responder must send at least 2 responses

containing all the machine's link-local resource records. The responses have

multiplicatively increasing delays, starting from 1 second and doubling for

each subsequent response.

For the D S G deployment, symmetry limiting only occurred during start

up of a responder. The start up phase is the most asymmetric portion of

the protocol, as probing with no conflicts followed by announcing leads to

a short but high rate datagram stream from the responder to the multicast

address, with no back traffic to signal to the symmetry limiter that this is

desired. However, this presents little concern to using symmetry as a DoS

defense mechanism. Firstly, the bootstrapping packet rate allows a one-

packet resource record set to complete a no-conflict start up phase without

experiencing any limiting (3 probe packets and 2 response packets). From

the D S G traces, no mDNS packet seen was more than 350 bytes and mDNS

allows up to M T U sized datagrams as an extension, indicating there is sig­

nificant room for larger resource record sets that fit within a single packet.

Thus, without any changes to symmetry limiting, the basic usage of mDNS

is supported.

The limiting that actually occurred, however, seems to be caused by

buggy (or misbehaving) mDNS clients. During what appears to be the start­

up phase of mDNS, the client sent unsolicited mDNS responses (responses to

no queries) as well as disobeyed the recommendation (an R F C "SHOULD")

to group queries and responses into the smallest number of network packets

83

Chapter 4. Implementing a Symmetry Limiter

possible. As such, the client essentially performed two simultaneous start-up

phases, probing for different resource record sets in each case, rather than

simply using one start-up phase to probe for all records. Although the pro­

totype does not support special symmetry tracking for multicast addresses,

including such special tracking would not prevent the flows described above

from being limited. No back-traffic from other mDNS responders on the lo­

cal link was observed. As such, the flows would remain equally asymmetric

and be subjected to the same limiting.

T C P Asymmetry

Several T C P flows experienced symmetry limiting for the use of large con­

gestion windows after a relatively long period of inactivity cause several

bursts of asymmetric T C P traffic. As discussed earlier in Section 2.4.3, this

problem is a known implementation bug in T C P stacks [3], which manifests

particularly with the re-use of idle T C P connections for persistent H T T P

transfers.

Another cause of asymmetric T C P traffic that was not represented in the

trace analysis is the opening and/or closing of several T C P connections in

parallel. Several peer-to-peer file sharing or content distribution applications

demonstrate this behaviour on start up, shutdown or when new content is

requested from multiple peers. The actual observed limiting was caused by

an RSS feed reader application closing all its outstanding T C P connections,

presumably on shutdown. This occurred after an extended period of inac­

tivity, perhaps while the end-user read the available feeds. After this idle

period, the sliding window history was lost. While the first X T C P FINs

got through the limiter unscathed, these X F I N packets push the 1-tuple

84

Chapter 4. Implementing a Symmetry Limiter

granularity's asymmetry to the X : 1 threshold, and due to the limiting

algorithm's traversal of all aggregate flow records for 5-tuples with rx — 0,

subsequent F I N packets were dropped.

Thus, the symmetry threshold also places an upper bound on connec­

tion parallelism, preventing the number of outstanding T C P S Y N or F I N

requests from exceeding X. This is reminiscent of Microsoft's limit on half-

open T C P connections [5] which was to the great discontent of Windows-

based peer-to-peer application users, prompting the users to find means to

subvert the throttling mechanism [57]. This suggests users would be less

than tolerant of their peer-to-peer applications malfunctioning due to sym­

metry limiting. However, such limiting could be prevented by only limiting

at 2-tuple and finer granularities. While this prevents symmetry limiting

from actively blocking host scanning activity, this represents a tradeoff for

a system administrator to balance.

4.3.3 Security Evaluation

Having a symmetry limiter prototype deployed, it seemed prudent to demon­

strate the effectiveness of symmetry limiting against a DoS flooding attack.

Rather than using genuine DoS attack tools from the wild, this experiment

uses the same ttcp program to create the innocent flow and the malicious

DoS flood that attempts to block the innocent flow from completing. The

network topology used for this experiment is given in Figure 4.6, with each

machine connected on a switched V L A N with 100 Mbps links.

Figure 4.7 demonstrates the effectiveness of symmetry limiting against

a U D P DoS flood. The scenario is the same for both plots in the figure;

the innocent ttcp transfer begins at time zero, and after 10 seconds a U D P

85

Chapter 4. Implementing a Symmetry Limiter

Figure 4.6: Network topology for example DoS flood attack.

fl Sinple DoS Ewanple: UDP Flood

R DoS flood uithout synnetry Uniting
9688

-a 88BB

4888

! ! ! ! ' 1

V Iff : Wf y ml ; ; flood — x —
....

i ; ' i n i i H i i i i n m i i i i m i i n i i i i i i i i m i i i i i r t l i i M i i i i i w i n min i l imn nun ii inii mini

8 5 18 15 28 25 38 35
Elapsed Tine (seconds)

R DoS flood uith synnetry Uniting

+
8 1 1 twgoaracMacxaaai]̂ ^ 1

8 5 IB 15 28 25 38 35
Elapsed Tine (seconds)

Figure 4.7: Effectiveness of symmetry limiting vs. a U D P flood.

86

Chapter 4. Implementing a Symmetry Limiter

flood is started. In the first plot without symmetry limiting enabled, the

U D P flood completely saturates the link through the bridge and prevents

the innocent transfer from making any progress. Note that the U D P flood

packet rate is much lower that the T C P transfer since the U D P flood uses

larger 8192 byte packets while the T C P transfer uses standard 1500 byte

packets. In the second plot with symmetry limiting enabled, although the

U D P flood slightly hinders the data transfer's performance slightly, this

innocent flow maintains a high throughput as the U D P flood is throttled

down to essentially PB = 1 packet per second.

4.4 Summary

This chapter discusses the implementation and deployment of a symmetry

limiter prototype. The prototype tracks and limits flows across a Linux

bridge and provides a web interface to view the tracking and limiting data.

The performance evaluation suggests the symmetry limiting mechanism im­

poses a small and constant per-packet overhead on the network, which builds

confidence in the scalability of in-network symmetry limiter deployment.

The live deployment of the prototype on the link connecting the U B C Dis­

tributed Systems Group lab network to the external Internet illustrated

the minimal and largely innocuous effect of symmetry limiting on applica­

tion level networking. Lastly, the prototype demonstrated the effectiveness

of symmetry limiting against an example DoS attack, maintaining high-

throughput for an innocent symmetric flow in the face of a malicious band­

width flood.

87

Chapter 5

Related Work

5.1 Identifying Sources

Ingress filtering [31] pioneered the use of a good-traffic definition for source-

based filtering by only allowing an end host to send packets with a genuine

source address (an address that starts with a prefix that is advertised by

the network). Although the initial acceptance and deployment of ingress

filtering was low, the Spoofer project [15] currently estimates that less than

twenty percent of net blocks are spoofable, indicating that ingress filtering

is widely deployed today. However, this provides aggregate source address

authentication - a source behind the ingress port can still masquerade as

another host on the same network. Precise binding of an IP address to a

machine requires the end host have a dedicated physical link that is not

shared with other hosts, as in a switched L A N . Access servers, where a

P C connects to a server using a login-password or other credential, to gain

access to the-network can also provide finer-grained control over source ad­

dress binding. As discussed, symmetry limiting requires fine-grained source

address integrity to prevent malicious hosts from denying service to other

innocent hosts on the same network.

Traceback [12] and packet marking schemes [65] reconstruct reverse paths

from victim to attacker(s), assuming IP address information can (and will)

88

Chapter 5. Related Work

be spoofed. However, the probabilistic nature of these schemes requires a

large volume of traffic to be observed before enough path information can

back propagate to each hop along the path. This impedes victims of smaller

scale attacks from using these techniques, and the period of observation

delays the investigation and response to large scale attacks.

5.2 DoS Attack Detection

Change-point monitoring [77] uses stateless, flow-independent statistics to

detect DoS activity. The solution tracks T C P S Y N / F I N and S Y N / S Y N -

A C K pairs, which are inherently unbalanced for the most common DoS

attack, the T C P S Y N flood. Like packet symmetry, change-point monitoring

is also effective when deployed at the source network, since disproportionate

S Y N - A C K s will return to the attacker's network. However, this solution

is tightly coupled to T C P protocol semantics and specifically detects S Y N -

floods only. Attackers can remain undetected by simply launching U D P -

based attacks. On the other hand, symmetry limiting is agnostic to protocol

and can thwart flooding attacks regardless of the IP protocol used.

The M U L T O P S data structure [35] is designed to detect and combat

bandwidth DoS attacks agnostic to protocol, using the balance of incoming

and outgoing packet rates. M U L T O P S is a tree that tracks packet rates

for aggregate IPv4 address blocks at byte-level granularity. The tree ex­

pands and contracts within a confined memory space, moving from coarser

to finer prefixes as packet rates for those prefixes increase. This strategy is

meant to thwart attacks against the M U L T O P S structure itself. However,

initially tracking at coarser granularity allows attackers to hide malicious

traffic within a larger body of normal-looking traffic. As such, symmetry

89

Chapter 5. Related Work

limiting only moves from finer to coarser tracking during periods of extreme

stress. The finer per-flow symmetry limiting prevents attackers from hiding

attack flows within a larger body of relatively balanced flows, as each flow

is tracked separately and is subject to independent limiting.

5.3 Reactive DoS Defense

Reactive filtering solutions typically operate in two stages; first detecting an

attack and then taking action (filtering) to combat the attack. Symmetry

limiting already has an advantage over these solutions in being proactive

- symmetry limiting operates in an always-on mode without any threshold

to detect attacks that trigger countermeasures. Furthermore, most of the

solutions discussed below suffer from the need for a large initial deployment

in order to be effective. While (for the most part) technically sound, the

solutions are not economically viable due to the critical mass of source- and

destination-end hosts or routers needed to have a significant impact on DoS

attacks today. Some techniques are further hampered with requirements

for ongoing collaboration of nodes that reside in separate administrative

boundaries - adding much to the initial cost of deployment. Symmetry

limiting has the benefit of providing immediate benefit to a deploying ISP,

with each and every independent deployment increasing the strength and

value of the network.

5.3.1 Vict im-Based

Hop-count filtering [43]-is a victim-based DoS solution that filters packets

with spoofed source IP addresses on the assumption the spoofed packet will

have an incorrect hop-count value. The hop-count can be effectively deduced

90

Chapter 5. Related Work

from the T T L value observed at the destination under the assumptions that

(i) Internet hosts are at most 30 hops apart and (ii) various operating sys­

tems use customary initial T T L values. However, this scheme requires an

initial phase to build a table containing the correct hop-count values for the

IP addresses of desired clients (not to mention a process to identify those

desired clients). As well, this table remains a challenge to maintain through­

out the lifetime of the service. Those issues aside, widespread deployment of

this solution simply creates an arms race for attackers to devise attack code

to automatically generate the correct hop-count values of desired clients. As

well, [53] shows that the majority of DDoS attacks do not make use of IP

spoofing.

5.3.2 Router-Based

ACC-Pushback [40, 50] has each router locally monitor the ambient packet

drop rate of each link coming into the router. A link is determined to be

under attack if the drop rate exceeds a pre-defined threshold (the default is

10%). The router locally calculates a,rate limit for each aggregate flow (i.e.

IP address prefix) to bring said ambient drop rate back within the acceptable

range. The rate limit is then pushed upstream to other ACC-Pushback

routers closer to the source of the attack traffic. Unfortunately, innocent

traffic falling in the same aggregate as malicious traffic is also rate-limited,

possibly resulting in significant collateral damage. As well, A C C routers

authenticate each other based on a T T L value of 255. Thus, Pushback must

be deployed on direct neighbouring routers for upstream filtering to occur,

which presents economic and political challenges for widespread deployment.

Max-min server-centric throttles [82] is a simplified version of Pushback

91

Chapter 5. Related Work

where no aggregate flow is specified, but all the traffic through a router

destined for a particular host is limited to a particular (fair) rate. When

the destination is under stress, the rate is pushed out fc-hops from the des­

tination towards source-hosts so malicious traffic is limited. The key insight

is the distributed computation of k that maximizes the limiting of attack

traffic and minimizes the limiting of innocent traffic. Though, regardless of

how minimal, innocent traffic behind the kth hop becomes collateral dam­

age. Deployment is also hindered by the complex control feedback loops

required to monitor and compute k, loops which must cross administrative

boundaries. As well, the system does not address widely distributed attacks

in which different attack aggregates have a different optimal values of k.

Active Internet Traffic Filtering [8] is another router-based solution, but

avoids collateral damage by tracking per-flow behaviour. A I T F targets de­

ployment at the network edge, preferably at ISP edge routers. Each A I T F

router appends their IP address and a random nonce into a section between

the IP header and T C P header. The chain of IP addresses form the path

needed by an A I T F router at the victim end to contact the appropriate A I T F

router at the source end of the attack to request filtering. The authors admit

the (gratuitous) use of random numbers as an authentication mechanism al­

lows malicious hosts to forge messages and hinder the effectiveness of A I T F .

And again, A I T F requires deployment at both source and destination ends

to be effective, adding the challenge of building political momentum and

economic backing for the solution to the deployment strategy.

Congestion puzzles [78] are another router-based defense mechanism, in

which the client must solve cryptographic puzzles at a rate equal to the

desired sending data rate. In theory, this currency-based approach forces

a client to pay for consumed bandwidth with its own computing power.

92

Chapter 5. Related Work

However, an attacker can coax a large number of otherwise innocent clients

into solving many puzzles on the attacker's behalf, allowing the attacker to

gain an unreasonably large flow rate. Unlike the previous solutions, this

scheme requires widespread deployment in both routers and end hosts, as

end hosts must implement a congestion-puzzle-aware protocol directly in the

OS network stack.

D - W A R D [54] proposes source-based DoS filtering using per-flow out­

bound and inbound packet rates to detect attacks. While T C P is subject to

balanced outbound and inbound packet rates, I C M P and U D P are subject

simply to maximum rates since acknowledgements are not explicitly built

into these protocols. As such, the mechanism is vulnerable to low-rate U D P

attacks that simply consume the maximum rate. Flows are also considered

guilty-before-proven-innocent, potentially resulting in innocent clients being

denied service while the network suffers from even mild congestion. Further­

more, the router-based deployment assumes IP spoofing is possible, leaving

. the mechanism vulnerable to memory exhaustion attacks. The complexity

of building per-flow tracking into a router also hinders overall performance

- a penalty innocent sources may be unwilling to pay.

Reactive router-based DoS defense mechanisms are also vulnerable to

low-rate attacks [80], where the attack maintains a sending rate below the

threshold for attack detection, thereby avoiding the countermeasures alto­

gether. Pushback is vulnerable to attacks that maintain the drop rate of

a target router just below the attack classification threshold. Flow-based

schemes (i.e. R E D P D) can be subverted with bursty on-off attack schemes,

where the on period is short and the off period is long. These attacks

mainly focus on generating T C P congestion, which forces non-malicious

T C P senders to back off. These attacks however use probing traffic to get

93

Chapter 5. Related Work

feedback from the network to determine, in the Pushback case, the drop rate

of a particular link. This probing traffic is by definition heavily asymmetric

and will be severely punished by a symmetry limiter.

5.4 Proactive defenses

T C P service protection is explored in [29] and [20]. Both techniques push

the T C P handshake away from the target to perimeter edge-routers of the

victims ISP, where greater bandwidth and redundancy can potentially ab­

sorb an attack. In [29], a database stores a hash of the path (router hops)

taken by the T C P S Y N packet to allow remaining traffic along that path to

pass through the perimeter routers unabated. However, attackers can pig­

gyback flooding traffic on a validated path already stored in the database.

In C A T [20], the victim's direct ISP is not necessarily assumed to be provi­

sioned enough to absorb an attack. Peered ISPs cooperate to push the T C P

handshake to an ISP along the path that has the necessary provisioning.

C A T hinges on the assumption that ISPs in an economic relationship are t

mutually trusting. While there exists indirect economic incentive for transi­

tively connected ISPs, political momentum and startup investment, as well

as the modifications required to B G P , inhibit the acceptance and deploya-

bility of the solution. Lastly, both these solutions only provide protection

for connection exhaustion of T C P services - bandwidth floods remain a real

and viable threat.

The use of routing overlay networks to combat DoS attacks is explored

in [45, 4, 49]. In SOS [45], a target only communicates directly with a small

number of secret servlet nodes. Routers near the target are configured to

accept traffic only from said secret servlets' IP addresses. A hash func-

94

Chapter 5. Related Work

tion then determines the machines in the overlay that will act as the secret

beacon nodes - the only other nodes that know the identities of the secret

servlet nodes. Clients are authenticated (SSL or TLS) at designated entry

points into the routing overlay, and the overlay eventually delivers the re­

quest through a beacon, then a servlet, and finally to the target. Mayday [4]

generalizes SOS with a filter ring of routers located at the core-edge bound­

ary of the target's network, which are routed to by the overlay nodes. These

systems count on strong assumptions regarding the secrecy of all servlets

and beacons in the network. Protecting the target machine by keeping the

target's address information secret advocates security-through-obscurity -

a well known blunder in designing secure systems. Once an attacker com­

promises the servlet or target's IP address, the malicious host(s) can simply

send packets directly, skipping the overlay altogether. In [49], end-hosts

specify the characteristics of traffic they are willing to accept, relying on

well-provisioned edge routers to perform filtering on their behalf. A n end-

host is represented by a public and private identifier; the public identifier is

widely distributed for general use, and the private identifier is known only to

the routing overlay. Like SOS and Mayday, compromise of the private iden­

tifier or simply the IP address of the target renders the system completely

useless, as attackers can send arbitrary traffic directly to the victim. •

Firebreak [32] provides DDoS protection by taking IP reachability out of

the hands of end-hosts, forcing end hosts to tunnel communication through

firebreak boxes. The approach improves upon previous routing overlays, as

attackers cannot simply skip the overlay to send IP packets directly to the

protected host - such packets are consumed by routing/forwarding black-

holes within the firebreak fabric. However, the approach remains a security-

by-obscurity solution, as an attacker now simply requires a non-firebreak

95

Chapter 5. Related Work

monitored connection, and the knowledge of at least one of the firebreak

machine's unicast addresses. Wi th this knowledge, the attacker can forge

packets as if they originated from a firebreak node, and successfully flood

the link of protected hosts. The authors also admit the solution requires

significant initial deployment to be effective.

P R I M E D applies the community-of-interest approach to DoS protection

[74], providing a framework to allow customers to specify good and bad

communities of interest. Here, a community of interest is a portion of the

IP address space and the end host categorizes communities on their inno­

cence or malice. The end-host also specifies traffic regulation policy for each

community based on the community categorizations. However, the "good

clients" are identified using heuristics during an initial learning or quaran­

tine phase. It remains unclear as to whether such a learning phase could

be completely free of malicious traffic, or whether a finite phase could ever

identify all innocent clients. Admittedly, the solution perpetuates an arms

race in the development of heuristics to discern good from bad clients and

the counter-attacks for attackers to fool said heuristics.

5.5 Sophisticated DoS attacks

5.5.1 Cunning Attacks

Reflector attacks [60] occur when the attacking machines coerce high-capacity

servers into blasting the victim on their behalf. Attackers send forged T C P

data requests to the server using the victim's IP address as the source ad­

dress, causing the destination server to send the reply traffic to the victim

- not back to the attacker. Well-crafted attack packets requesting large

objects from the servers can elicit massive amounts of traffic for the unfor-

96

Chapter 5. Related Work

tunate victim. Such attacks are attractive (from the attacker's perspective)

since there are a high-number of potential reflector servers throughout the

internet with high bandwidth links. Fewer slaves are required when one

slave can elicit flooding from several well-provisioned servers. The reflector

also provides a layer of indirection between the victim and the source of at­

tack (the slaves), thus increasing the difficulty in tracing back to the attack

source. However, since all reply traffic is reflected to the target victim, the

forged request traffic will be subject to symmetry limiting, thereby reducing

the attack strength. As well, attackers must be able to spoof source address

information to trick the reflector into sending reply traffic to the victim -

which is also preventable with a symmetry limiter.

Low-rate denial of service attacks are examined in [48] and [80]. The

key insight is that well-timed short-lived but high-rate bursts can trick T C P

senders into falsely detecting congestion and forcing senders into perpetual

congestion recovery. The attacks claim to be low-rate since the average

attack rate is low due to the relatively lengthy idle periods between each

high-rate burst. However, these short-but-high-rate bursts are are heavily

asymmetric and would be severely limited by a symmetry limiter, crippling

the potency of such attacks.

5.5.2 Protocol Vulnerabilities

A T C P receiver can take advantage of the T C P vulnerabilities discussed

in [64] to cause a T C P sender to inject unreasonably large bursts of data

into the network, resulting in severe congestion collapse [68]. ACK-spli t t ing

causes a sender to rapidly expand the congestion window far beyond the

bottleneck capacity of the network. Similarly, optimistic acknowledgements

9 7

Chapter 5. Related Work

cause a sender to both expand the congestion window and transmit massive

chunks of new data using the enlarged congestion window, even when previ­

ous data has not been received at the destination end. These attack vectors

are unfortunate vulnerabilities of T C P itself, and end-hosts must tune their

T C P sending behaviour to defend against such attacks. A symmetry limiter

at the malicious receiver's network does provide additional benefit for the

sender, keeping the optimistic acknowledgement increase to a linear factor,

rather than exponential. Moreover, when a sender detects this malicious

receiver behaviour, the symmetry limiter enables the sender to throttle the

malicious receiver simply by discontinuing communication with that host.

Source routing in IPv4 allows a sender to create a routing loop in the

network by repeating the same addresses in the source route. The attacks

are known as Routing Header Type 0 or RHO attacks, and the best solution

remains to simply reject any source-routed packets. As such, there is signif­

icant momentum for the feature to be disable or removed from IPv6 [1]. As

these routing loops can be caused by a small number of packets, symmetry

limiting does not aid in combating such attacks.

5.6 Drastic Measures

As existing protocols and network infrastructure were not designed with

security in mind and due to the prevalence of malicious activity on the

Internet, it has become somewhat fashionable in the research community

to consider modifying standardized protocols and even building completely

new Internet architectures from the ground up, with security as a principle

design goal. However, much like the previous solutions discussed, the critical

mass of political and economic backing required to get such solutions widely

98

Chapter 5. Related Work

deployed significantly hinders their viability.

5.6.1 New Network architectures

In [37], the authors overhaul network addressing to mitigate the threat of

denial-of-service attacks. Key changes to addresses include hop-by-hop do­

main name addressing, separate address spaces for clients and servers, for­

bidding client-to-client and server-to-server communication, and adding a

state-setup bit to the IP protocol. The hop-by-hop addressing prevents

source address spoofing and simplifies Pushback-esque techniques. The state

setup bit is meant to aid filtering of connection exhaustion attacks (i.e. T C P

S Y N floods). Forbidding client-to-client or server-to-server communication

aims to slow virus and worm propagation, forcing a layer of indirection out

of the monoculture. However, forbidding communication between two types

of machines drastically reduces flexibility of network evolution, and more­

over, viruses and worms can still spread via tunneled communication - a

worm needs only one compromised client and one compromised server in

order to compromise any remaining machine. Although addresses would be

traceable, a machine is still able to send a flooding attack to any other host

on the network. And the accountability argument does not stand, since cur­

rent DDoS attacks do not spoof source addresses [53], as the true attacker's

identity is hidden by the botnet already.

Capability-based schemes [81, 6] prevent an end host from sending un­

wanted traffic to a destination using cryptographically secure capabilities,

where a capability is granted by the destination to a. particular sender.

Capability-carrying packets can be verified at each capability-enabled router

along the path, providing defense-in-depth against abusive sources that may

99

Chapter 5. Related Work

be attempting to consume more bandwidth than they have been explicitly

granted. A small portion of bandwidth is allocated for end-hosts to nego­

tiate capabilities, and as part of an incremental deployment strategy, this

bandwidth is shared by legacy (non-capability-aware) traffic. Unfortunately,

the shared capability-acquisition and legacy-traffic channel is left vulnerable

to attack. Flooding this channel results in a denial-of-capability (DoC) at­

tack, preventing new connections from being established as new capabilities

cannot be negotiated.

Currency based schemes [75, 9] attempt to bootstrap the DoC problem,

forcing senders to "pay" for the consumption of destination resources via the

consumption of their own bandwidth or computing power. DoS-resistant key

exchange protocols [2] establish capabilities in a similar DoC resistant man­

ner. However, such defense remains governed by the currency possessed by

the requestor (or the attacker), not the provisioning of the victim "host. At­

tackers can consume a greater portion of the victim's resources by obtaining

a greater share of the currency, either bandwidth or computing power. Fur­

thermore, these techniques are geared towards resource exhaustion attacks

and provide no defense against pure bandwidth flooding attacks. On the

contrary, a symmetry limiter is a practical mechanism to protect a capabil­

ity negotiation channel from DoS floods, thereby preventing DoC attacks.

Widely deployed symmetry limiters could protect the capability channels

using a tight threshold specific to the capability negotiation protocol.

Similar to packet symmetry, predicate routing [63] defines what is al­

lowed or good in the network and rejects everything else. The network

topology is modelled in terms of uni-directional links of source-destination

pairs. Associated with each link are boolean disjunctive predicates that

specify which attributes of packets are allowed (or disallowed) to traverse

100

Chapter 5. Related Work

the link. Attributes include protocol fields such as IP addresses, protocol

type, and port numbers. The predicates enable any node to locally deduce

a packet's path simply from the packet's attributes. Local filtering decisions

can be made based on this deduced and genuine path information. However,

to make a local decision, the node must obtain all of the predicates in the

network and run a linked-state-like algorithm to determine packet paths. As

well, once a packet reaches a non-predicate-enabled router, all bets are off

as to the integrity of any inferences on packet origin and path.

S A N E [21] bolts a secure routing framework on to the data link layer,

as a solution to secure services for enterprise networks. A centralized Do­

main Controller (DC) hands out capabilities (encrypted address routes) for

services on the network. Switches and end hosts never learn the network

topology - each node is privy only to its neighbours addresses due to the

encrypted route data. A host must authenticate with the D C before it can

acquire a capability. Once authenticated, the D C knows the machine's ex­

act location and can mitigate flooding attacks via rate limiting or capability

revocation. However, this solution targets enterprise networks and requires

significant hardware upgrade, a cost that may deter enterprises from this

approach.

5.6.2 Protocol Modifications

The brittleness of the Internet routing infrastructure is surveyed in [55]. As

end-host software continues to be patched, routing attacks are suspected

to become more common as a means to disrupt the Internet. Of greatest

importance, security enhancements to routing protocols often sacrifice per­

formance for better security, leading to impractical solutions for the real

101

Chapter 5. Related Work

world. Future improvements to the routing infrastructure must ensure the

cryptography used is fast to make deployment feasible. De-coupling of con­

trol and data channels would also improve security, preventing data traffic

from masquerading as control traffic. Also, routing security decisions are

strictly boolean (i.e. allow or deny), where as a continuous scale of trust

would make the protocols more flexible and robust. Firewalls and intrusion

detection systems should also be integrated into the routing system, provid­

ing greater defense-in-depth. But again, all such improvements must focus

on high performance requirements in order to make deployment feasible.

As previously discussed, the symmetry limiting mechanism is fundamen­

tally very simple - simple enough to be implemented in hardware or F P G A .

From this, and the performance results of the Linux prototype, a symmetry

limiter built in specialized hardware seems a viable approach to achieving

an extremely high-performance solution.

Re-feedback [17] and explicit congestion notification (re-ECN) [18] ex­

plore simple modifications to IPv4 and IPv6 protocols that enable a network

link to make accurate and truthful predictions regarding potential conges­

tion of the remaining upstream path. These modifications enable E C N po-

licers anywhere along the path to enforce QoS or DDoS protection policies.

This requires a sender (or other upstream node) to set the ECN-bit(s) in

the IP header when a congestion event occurs, namely when there is lack

of reply traffic. This approach simply makes congestion events explicit in

the IP header - signaling which is implicitly inferred by a symmetry limiter

without requiring any protocol changes.

102

Chapter 6

Discussion and Conclusion

6.1 Discussion

6.1.1 A Current Defense

The packet symmetry metric, as presented in this thesis, provides practical

defense against malicious DoS activity and leaves the vast majority of inno-

' cent network traffic unscathed. While a handful of protocols or communi­

cation patterns break with symmetry limiting, the overall strategy is sound;

link-local asymmetry, such as multicast DNS or syslog streams, can occur

entirely behind a symmetry limiter; the threat model protects, rather than

limits, media streaming servers sending high-rate one-way flows to clients;

and limiting asymmetric I C M P messages generated by port scanning be­

haviour is a good security practice, slowing the scanning rates of malicious

hosts. However, packet symmetry retrofits a fundamental principle on a

network with protocols and applications that were not originally designed

with this principle in mind. As such, the threshold values chosen in this

thesis reflect the need to provide leeway to be more tolerant of innocent but

less symmetric traffic patterns. In turn, these looser symmetry thresholds

diminish the strength of protection - a common problem when security is

implemented as an after-thought.

Notice that if security properties (such as packet symmetry) were built

103

Chapter 6. Discussion and Conclusion

into the network infrastructure, the network would be automatically self-

critical. A l l end-hosts and routers would be forced to adhere to the security

guarantees designed into the protocols they had to use to communicate with

any other machine. However, building in security as after-thought leaves net­

work operators with the option to implement self-critical filtering manually,

with ho requirement to implement such filtering. As such, the argument

to deploy self-critical network filtering is socialist in nature, relying on the

altruism of the ISP to take on the responsibility (and cost!) of filtering its

own outgoing malicious traffic for the greater good. The density of broad­

band users has been directly correlated to the proportion of botnet enlisted

machines [28], which suggests broadband ISPs are fueling botnet growth

and have a social duty to protect the value of the network by combating

this malicious activity. Unfortunately, altruism is not an abundant quality

in many corporations with their main focus on maximizing profits. This

leads back to the question of what direct financial incentive could motivate

an ISP to deploy a symmetry limiter?

The momentum to deploy self-critical networking filters suffers from a

catch-22 - many deployments will lead to further deployments, but no de­

ployments prevents anyone from deploying. Ingress filtering once suffered

from the same vicious cycle [36], though eventually the critical mass of

momentum was formed as ISPs realized enforcing source address integrity

actually helped in administering their own network [72], and today over 80%

of net block addresses are non-spoofable (i.e. ingress filtered) [15]. Unfortu­

nately, symmetry limiting lacks this direct incentive by adding complexity

to network administration, since innocent (i.e. non-DoS) packets can be

dropped and cause some applications (ex. peer-to-peer file sharing) to mal­

function. Though the ISP might like to limit such asymmetric traffic in

104

Chapter 6. Discussion and Conclusion

the first place, the provider must cater to the demands of the consumer and

provide connectivity that allows such applications to function correctly, oth­

erwise the consumer will simply switch to a different and more permissive

ISP.

One concrete financial incentive for an ISP to deploy self-critical packet

symmetry limiters could come from the legal community, if the calls to

update computer crime legislation to specifically outlaw DoS attacks are

answered [66, 44, 52]. Presently, computer crime legislation does not specify

DoS attacks as a crime, preventing prosecutors from securing convictions

even when the perpetrators can be identified [41]. If DoS attacks were made

illegal, not only could the attackers be convicted, but the' attack victims

would have the legal grounds on which to sue for damages incurred as a re­

sult of the attack. Sorting out who is liable for the damages of a botnet-based

DoS attack may be less clear - is the botnet mastermind solely responsible

for the attack, or are the zombie machine owners partly responsible for a lack

of following network security best-practices and allowing their machine to

be compromised? In this light, self-critical symmetry limiting could provide

both the subscribers and the ISP with the clear financial benefit of being

absolved of legal liability for DoS attacks perpetrated by their subscribers,

since the contribution of each subscriber to a flooding attack is at most the

packet bootstrapping rate PB (see Section 2.1.3). Following similar logic,

spammers have been arrested and taken to court [61, 69], with perpetrators

typically charged under extortion or fraud legislation. Nevertheless, perhaps

in an effort to avoid liability concerns, A O L , one of the largest North Amer­

ican service providers, now takes self-critical action on its outgoing email

to reduce the amount of spam generated by its subscribers [7]. Note that

for symmetry limiting to absolve an organization of negligence, the method-

105

Chapter 6. Discussion and Conclusion

ology (including the parameter values to establish PB) would have to be

recognized as a best-practice by the networking community. This recog­

nition would require a critical mass of political momentum to bolster the

packet symmetry solution, which may be further complicated with support

for the many other DoS protection and prevention solutions proposed in the

past (see Chapter 5).

6.1.2 Future Network Architectures

Initiatives to develop the next-generation Internet architecture [34] are gen­

erating significant activity in the research community. The related work

chapter of this thesis notes several proposals for new DoS-resistant archi­

tectures, using new cryptographically secure protocols, building explicit sig­

naling and control directly into the network fabric. However, these initia­

tives are clearly not focussed solely on DoS attack prevention. A complete

redesign of the network presents the opportunity to consider several key

and fundamental design properties of the network, including how to spec­

ify names, how to organize routing to support mobility, multi-homing and

network heterogeneity, as well as the direct integration of authentication,

access control and other security paradigms. As the Internet may well be in

store for a complete and total redesign, that begs the question; does packet

symmetry have a role in the network architecture of the future?

The analysis in this thesis suggests that symmetry should be a funda­

mental design property of network protocols and as such be an integral part

of a next-generation Internet. However, not all protocols need to implement

perfectly symmetric communication - mainly signaling and control protocols

should be designed to exhibit symmetry to a very high degree (i.e. 1:1) to al-

106

Chapter 6. Discussion and Conclusion

low strong protection for session-establishing control channels. This prevents

denial-of-capability attacks that flood a control channel with bogus requests,

blocking innocent clients from establishing new connections to protected ser­

vices. Note as well that the metric need not be packet symmetry specifically,

as the next generation network may not even be packet switched. Funda­

mentally, a generic-symmetry limiting mechanism that enforces a balance of

outgoing-to-incoming traffic units should be widely deployed at the network

edge. These modules cannot- be deployed on the end host since the end

host cannot be trusted - even with virtual machine systems, trusted com­

puting platforms, and tamperproof hardware, a client always has ultimate

control over their machine, and could thus subvert a protection mechanism.

Therefore, while the metric may not be exactly as described here, nor the

thresholds the same, symmetry seems a fundamentally useful property to

consider for modern network design.

6.2 Conclusion

This thesis evaluated and further developed packet symmetry [47] as a

proactive source-based filtering mechanism to prevent DoS attacks. The

packet symmetry metric captures the implicit signaling already present in

network communication protocols and applications, requiring no changes to

end hosts or routing infrastructure for deployment. Analysis of real net­

work traces lead to the development of a packet symmetry threshold that is

effective in discerning good from malicious traffic with extremely few false-

positives. A thorough security evaluation showed that symmetry-limiting

defends well against flooding DoS attacks and enables victims to manage

defense against resource-exhaustion attacks with local administration. Fur-

107

Chapter 6. Discussion and Conclusion

ther analysis demonstrated the mechanism's own resilience against attacks.

The symmetry limiter prototype for the Linux kernel proved the feasibil­

ity of the approach, both in terms of performance and usability. Deployment

on a network bridge allows a symmetry limiter to be easily incorporated into

a network without requiring any modifications to end hosts or routers. The

solution is immediately deployable and provides incremental benefit with in­

creased deployment. Widely deployed symmetry limiting may serve as both

a temporary solution for the current Internet architecture, as well as a cor­

ner stone for a next-generation secure network architecture, bootstrapping

protection for control or capability-acquisition channels.

108

Bibliography

[1] J . Abley Afilias and P. Savola. Deprecation of type 0 routing headers

in IPv6. May 2007. Internet draft, work in progress.

[2] Will iam Aiello, Steven M . Bellovin, Matt Blaze, John Ioannidis, Omer

Reingold, Ran Canetti, and Angelos D. Keromytis. Efficient, DoS-

resistant, secure key exchange for internet protocols. In CCS '02: Pro­

ceedings of the 9th A CM conference on Computer and communications

security, pages 48-58, New York, N Y , USA, 2002. A C M Press.

[3] M . Allman, V . Paxson, and W . Stevens. R F C 2581: T C P congestion

control, Apr i l 1999.

[4] D . G . Andersen. Mayday: Distributed Filtering for Internet Services.

4th USENIX Symposium on Internet Technologies and Systems USITS,

2003.

[5] Starr Andersen. Changes to functionality in Microsoft Windows

X P Service Pack 2: Part 2: Network protection technologies.

http://technet.microsoft.eom/en-us/library/bb457156.aspx#EHAA,

cited Jul 22, 2007.

[6] Tom Anderson, Timothy Roscoe, and David Wetherall. Preventing

internet denial-of-service with capabilities. SIGCOMM Comput. Com-

mun. Rev., 34(l):39-44, 2004.

109

http://technet.microsoft.eom/en-us/library/bb457156.aspx%23EHAA

Bibliography

[7] A O L port 25 faq. http://postmaster.aol.com/faq/port25faq.html, cited

Aug 1, 2007.

[8] K . Argyraki and D.R. Cheriton. Active internet traffic filtering: real­

time response to denial-of-service attacks. Proceedings of the General

Track. 2005 USENIX Annual Technical Conference, pages 135 - 48,

2005.

[9] T. Aura, P. Nikander, and J . Leiwo. DoS-resistant authentication with

client puzzles. Proceedings of the 8th International Workshop on Se­

curity Protocols, Lecture Notes in Computer Science, Cambridge, UK,

April, 2000.

[10] Paul Bacher, Thorsten Holz, Markus Kotter, and Georg

Wicherski. Know your enemy: Tracking botnets.

http://www.honeynet.org/papers/bots, March 2005.

[11] B B C News: Blackmailers target $ lm website.

http://news.bbc.co.Uk/l/hi/technology/4621158.stm, cited Aug

1, 2007.

[12] S. Belovin, M . Leech, and T. Taylor. I C M P traceback messages, March

2000. Internet draft, work in progress.

[13] Scott Berinato. Attack of the bots.

http: / / www.wired.com / wired / archive/14.11 /botnet .html?

pg=l&topic=botnet&;topic_set=, cited Aug 1, 2007.

[14] Scott Berinato. How a bookmaker and a whiz kid took on an extortion­

ist - and won. http://www.csoonline.com/read/050105/extortion.html,

cited Aug 1, 2007.

110

http://postmaster.aol.com/faq/port25faq.html
http://www.honeynet.org/papers/bots
http://news.bbc.co.Uk/l/hi/technology/4621158.stm
http://www.wired.com
http://www.csoonline.com/read/050105/extortion.html

Bibliography

[15] Robert Beverly. A N A Spoofer Project - State of IP Spoofing.

http://spoofer.csail.mit.edu/summary.php, cited Aug 14, 2007.

[16] Robert Beverly and Steven Bauer. The Spoofer Project: Inferring the

Extent of Source Address Filtering on the Internet. USENIX SRUTI:

Steps to Reducing Unwanted Traffic on the Internet Workshop, pages

pp. 53-59, July 2005.

[17] Bob Briscoe, Arnaud Jacquet, Carla D i Cairano-Gilfedder, Alessandro

Salvatori, Andrea Soppera, and Martin Koyabe. Policing congestion

response in an internetwork using re-feedback. In SIGCOMM '05: Pro­

ceedings of the 2005 conference on'Applications, technologies, architec­

tures, and protocols for computer communications, pages 277-288, New

York, N Y , USA, 2005. A C M Press.

[18] Bob Briscoe, Arnaud Jacquet, Alessandro Salvatori, and Martin Koy­

abe. Re -ECN: Adding accountability for causing congestion to T C P / I P .

IETF Internet-Draft, October 2006.

[19] R. Bush, D. Karrenberg, M . Kosters, and R. Plzak. R F C 2870: Root

name server operational requirements, June 2000.

[20] M . Casado, A . Akella, Pei Cao, N . Provos, and S. Shenker. Cookies

along trust-boundaries (CAT): accurate and deployable flood protec­

tion, pages 15-22, San Jose, C A , USA, 2006.

[21] Martin Casado, Tal Garfinkel, Aditya Akella, Michael Freedman, Dan

Boneh, Nick McKeown, and Scott Shenker. S A N E : A protection ar­

chitecture for enterprise networks. Proceedings of the 15th USENIX

Security Symposium, August 2006.

I l l

http://spoofer.csail.mit.edu/summary.php

Bibliography

[22] I. Ceaparu, J . Lazar, K . Bessiere, J . Robinson, and B . Shneiderman.

Determining causes and severity of end-user frustration. International

Journal of Human-Computer Interaction, 17(3):333 - 56, 2004//.

[23] S. Cheshire and M . Krochmal. Multicast DNS. IETF, August 2006.

Internet draft - work in progress.

[24] Stuart Cheshire. Zero configuration networking (zeroconf).

http://www.zeroconf.org/, cited Jun 19, 2007.

[25] K . Cho, K . Mitsuya, and A . Kato. Traffic Data Repository at the W I D E

Project. Proceedings of USENIX 2000 Annual Technical Conference:

FREENIX Track, 2000.'

[26] CompleteWhols - Using IP Lists, http://www.completewhois.com/ bo-

gons/bogons_usage.htm, cited Jul 2, 2007.

[27] Tom Espiner. CPS pushing for teen DoS trial to re­

turn to court. http://management.silicon.com/government/

0,39024677,39155404,00.htm?r=2, cited Aug 2, 2007.

[28] Dean Turner et al. Symantec Internet Security Threat Re­

port. Technical Report X I , Symantec Corporation, March 2007.

http: / /eval.symantec.com / mktginfo / enterprise / white_papers / ent-

whitepaperJnternet_security_threat_report_xi_03_2007.en-us.pdf.

[29] Hikmat Farhat. Protecting T C P services from denial of service attacks.

In LSAD '06: Proceedings of the 2006 SIGCOMM workshop on Large-

scale attack defense, pages 155-160, New York, N Y , USA, 2006. A C M

Press.

112

http://www.zeroconf.org/
http://www.completewhois.com/
http://management.silicon.com/government/

Bibliography

[30] Rik Farrow. DNS root servers: Protecting the internet.

http://www.spirit.com/Network/netll02.html, cited Aug 1, 2007.

[31] P. Ferguson and D. Senie. R F C 2827: Network ingress filtering: Defeat­

ing denial of service attacks which employ IP source address spoofing,

May 2000.

[32] P. Francis. Firebreak: A n IP Perimeter Defense Architecture. Cornell

University Library, December 2006. http://hdl.handle.net/1813/5753.

[33] Lee Garber. Denial-of-service attacks rip the internet. Computer,

33(4):12-17, 2000.

[34] G E N I : Global environment for network innovation.

http://www.geni.net/news.html, cited Jul 5, 2007.

[35] Thomer M . G i l and Massimiliano Poletto. M U L T O P S : A data structure

for bandwidth attack detection. 10th USENIX Security Symposium,

August 2001.

[36] A . Greenhalgh, M . Handley, and F . Huici. Using Routing and Tunneling

to Combat DoS Attacks. Proc. Usenix workshop on Steps to Reducing.

Unwanted Traffic on the Internet, 2005.

[37] Mark Handley and Adam Greenhalgh. Steps towards a DoS-resistant

internet architecture. In FDNA '04: Proceedings of the ACM SIG-

COMM workshop on Future directions in network architecture, pages

49-56, New York, N Y , USA, 2004. A C M Press.

[38] C. Hornig. R F C 894: Standard for the transmission of IP datagrams

over Ethernet networks, Apr i l 1984.

113

http://www.spirit.com/Network/netll02.html
http://hdl.handle.net/1813/5753
http://www.geni.net/news.html

Bibliography-

lid] I C A N N factsheet - root server attack on 6 February 2007.

http://www.icann.org/announcements/factsheet-dns-attack-

08mar07.pdf, cited Aug 1, 2007.

[40] J . Ioannidis and S.M. Bellovin. Implementing pushback: router-based

defense against DDoS attacks. Ninth Annual Symposium on Network

and Distributed System Security, February 2002.

[41] Is Canada losing the fight against online thieves?

http://www.cbc.ca/news/background/tech/online-crime-war.html, /

cited Aug 2, 2007, May 2007.

[42] J .A. Jacko, A . Sears, and M.S. Borella. The effect of network delay and

media on user perceptions of web resources. Behaviour and Information

Technology, 19(6) :427 - 39, November 2000.

[43] Cheng Jin, Haining Wang, and Kang G . Shin. Hop-count filtering: an

effective defense against spoofed DDoS traffic. In CCS '03: Proceedings

of the 10th ACM conference on Computer and communications security,

pages 30-41, New York, N Y , USA, 2003. A C M Press.

[44] M . E . Kabay. Distributed denial-of-service attacks, contributory negli­

gence and downstream liability. Ubiquity, 1(2):3, 2000.

[45] A . D . Keromytis, V . Misra, and D. Rubenstein. SOS: secure overlay

services. Proceedings of the 2002 conference on Applications, technolo­

gies, architectures, and protocols for computer communications, pages

61-72, 2002.

114

http://www.icann.org/announcements/factsheet-dns-attack-
http://www.cbc.ca/news/background/tech/online-crime-war.html

Bibliography

[46] S.T. King and P . M . Chen. Subvirt: implementing malware with virtual

machines. IEEE Symposium on Security and Privacy, page 14 pp., May

2006.

[47] C. Kreibich, A . Warfield, J . Crowcroft, S. Hand, and I. Pratt. Using

packet symmetry to curtail malicious traffic. HotNets: Proceedings from

the Fourth Workshop on Hot Topics in Networks, 12, 2005.

[48] Aleksandar Kuzmanovic and Edward W . Knightly. Low-rate T C P -

targeted denial of service attacks: the shrew vs. the mice and elephants.

In SIGCOMM '03: Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer communications,

pages 75-86, New York, N Y , USA, 2003. A C M Press.

[49] Karthik Lakshminarayanan, Daniel Adkins, Adrian Perrig, and Ion Sto-

ica. Taming IP packet flooding attacks. SIGCOMM Comput. Commun.

Rev., 34(l):45-50, 2004.

[50] Ratul Mahajan, Steven M . Bellovin, Sally Floyd, John Ioannidis, Vern

Paxson, and Scott Shenker. Controlling high bandwidth aggregates in

the network. SIGCOMM Comput. Commun. Rev., 32(3):62-73, 2002.

[51] MANAne t reverse firewall, http://www.cs3-inc.com/ps_rfw.html, cited

Aug 1, 2007.

[52] Many countries said to lack computer crime laws.

http://archives.cnn.com/2000/TECH/computing/07/26/

crime.internet.reut/index.html, cited Aug 2, 2007.

[53] Z. Morley Mao, Vyas Sekar, Oliver Spatscheck, Jacobus van der Merwe,

and Rangarajan Vasudevan. Analyzing large DDoS attacks using mul-

115

http://www.cs3-inc.com/ps_rfw.html
http://archives.cnn.com/2000/TECH/computing/07/26/

Bibliography

tiple data sources. In LSAD '06: Proceedings of the 2006 SIGCOMM

workshop on Large-scale attack defense, pages 161-168, New York, N Y ,

USA, 2006. A C M Press.

[54] J . Mirkovic, G . Prier, and P. Reiher. Attacking DDoS at the source.

Proceedings 10th IEEE International Conference on Network Protocols,

pages 312 - 21, 2002.

[55] D. Montgomery and S. Murphy. Toward secure routing infrastructures.

IEEE Security and Privacy, 4(5):84 - 7, Sept.-Oct. 2006.

[56] David Moore, Colleen Shannon, Douglas J . Brown, Geoffrey M . Voelker,

and Stefan Savage. Inferring internet denial-of-service activity. ACM

Trans. Comput. Syst., 24(2):115-139, 2006.

[57] Optimize vista for BitTorrent, eMule, P 2 P T V .

http://torrentfreak.com/optimize-vista-for-bittorrent-emule-p2ptv/,

cited Jul 22, 2007.

[58] Vern Paxson. End-to-end routing behavior in the internet. IEEE/ACM

Trans. Netw., 5(5):601-615, 1997.

[59] Vern Paxson. Bro: A system for detecting network intruders in real­

time. Computer Networks, 31(23-24):2435-2463, 1999.

[60] Vern Paxson. A n analysis of using reflectors for distributed denial-

of-service attacks. SIGCOMM Comput. Commun. Rev., 31(3):38-47,

2001.

[61] Pharmacy spam king rizler sentenced to 30 years.

http://www.govtech.com/gt/128786?topic=117677, cited Aug 10,

2007.

116

http://torrentfreak.com/optimize-vista-for-bittorrent-emule-p2ptv/
http://www.govtech.com/gt/128786?topic=117677

Bibliography

[62] Rogers high-speed internet services, http://www.rogers.ca, cited Jul 6,

2007.

[63] Timothy Roscoe, Steve Hand, Rebecca Isaacs, Richard Mortier, and

Paul Jardetzky. Predicate routing: enabling controlled networking.

SIGCOMM Comput. Commun. Rev., 33(l):65-70, 2003.

[64] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson.

T C P congestion control with a misbehaving receiver. SIGCOMM Corn-

put. Commun. Rev., 29(5):71-78, 1999.

[65] Stefan Savage, David Wetherall, Anna Karl in, and Tom Anderson.

Practical network support for IP traceback. In SIGCOMM '00: Pro­

ceedings of the conference on Applications, Technologies, Architectures,

and Protocols for Computer Communication, pages 295-306, New York,

N Y , USA, 2000. A C M Press.

[66] Michael B . Scher. On doing 'being reasonable'. ;login, December 2006.

[67] L . M . Schleifer and B . C . Amick III. System response time and method

of pay: stress effects in computer-based tasks. International Journal of

Human-Computer Interaction, 1(1):23 - 39, 1989.

[68] Rob Sherwood, Bobby Bhattacharjee, and Ryan Braud. Misbehaving

T C P receivers can cause internet-wide congestion collapse. In CCS '05:

Proceedings of the 12th ACM conference on Computer and communica­

tions security, pages 383-392, New York, N Y , USA, 2005. A C M Press.

[69] Six held over net scam, http://www.australianit.news.com.au/story/

0,24897,22214435-15306,00.html, cited Aug 10, 2007.

117

http://www.rogers.ca
http://www.australianit.news.com.au/story/

Bibliography

[70] Skype. http://www.skype.com, cited Apr 15, 2007.

[71] SSAC Advisory SAC008 DNS Distributed Denial of Service (DDoS) At­

tacks, http: / / www.icann.org/committees/security/dns-ddos-advisory-

31mar06.pdf, cited Aug 1, 2007.

[72] Telus inc., Apr i l 2007. Personal correspondance.

[73] Verizon high-speed internet, http://www.verizon.com, cited Jul 6, 2007.

[74] Patrick Verkaik, Oliver Spatscheck, Jacobus Van der Merwe, and

Alex C. Snoeren. Primed: community-of-interest-based ddos mitiga­

tion. In LSAD '06: Proceedings of the 2006 SIGCOMM workshop on

Large-scale attack defense, pages 147-154, New York, N Y , USA, 2006.

A C M Press.

[75] Michael Walfish, Mythi l i Vutukuru, Hari Balakrishnan, David Karger,

and Scott Shenker. Ddos defense by offense. In SIGCOMM '06: Pro­

ceedings of the 2006 conference on Applications, technologies, architec­

tures, and protocols for computer communications, pages 303-314, New

York, N Y , USA, 2006. A C M Press.

[76] Jianping Wang. Traffic regulation under the percentile-based pricing

policy. In InfoScale '06: Proceedings of the 1st international conference

on Scalable information systems, page 4, New York, N Y , USA, 2006.

A C M Press.

[77] Member-Haining Wang, Member-Danlu Zhang, and Fellow-Kang G .

Shin. Change-point monitoring for the detection of DoS attacks. IEEE

Trans. Dependable Secur. Comput, 1(4): 193-208, 2004.

118

http://www.skype.com
http://www.icann.org/
http://www.verizon.com

Bibliography

[78] XiaoFeng Wang and Michael K . Reiter. Mitigating bandwidth-

exhaustion attacks using congestion puzzles. In CCS '04-' Proceedings of

the 11th ACM conference on Computer and communications security,

pages 257-267, New York, N Y , USA, 2004. A C M Press.

[79] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-

ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet

Joglekar. A n integrated experimental environment for distributed sys­

tems and networks. In Proc. of the Fifth Symposium on Operating

Systems Design and Implementation, pages 255-270, Boston, M A , De­

cember 2002. U S E N I X Association.

[80] Y . X u , R. Guerin, and R. Guerin. On the robustness of router-based

denial-of-service (DoS) defense systems. Computer Communication Re­

view, 35(3):47 - 60, July 2005.

[81] Xiaowei Yang, David Wetherall, and Thomas Anderson. A DoS-limiting

network architecture. In SIGCOMM '05: Proceedings of the 2005 con­

ference on Applications, technologies, architectures, and protocols for

computer communications, pages 241-252, New York, N Y , USA, 2005.

A C M Press.

[82] D . K . Y . Yau, J.C.S. Lui , and Feng Liang. Defending against distributed

denial-of-service attacks with max-min fair server-centric router throt­

tles. IEEE 2002 Tenth IEEE International Workshop on Quality of

Service (Cat. No.02EX564), pages 35 - 44, 2002//.

119

