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Abstract 

Denial-of-service (DoS) attacks are a serious problem affecting the Internet 

today with security firms estimating over 5000 attacks are launched per 

day, leading to revenue loss and tarnished reputations for online businesses. 

These attacks remain prevalent and successful because the Internet has no 

mechanism to distinguish wanted from unwanted packets. The core of the 

Internet impartially forwards any packet to its destination without regard 

as to whether the destination actually desires said packet or not. 

This thesis evaluates packet symmetry [47] as a heuristic to distinguish 

wanted from unwanted traffic at the source network, to enable proactive 

filtering of DoS attack traffic before it reaches the core. Packet symmetry 

measures the "goodness" of outgoing traffic using the ratio of transmitted-to-

reply packets with a lower ratio implying better traffic. A packet symmetry 

limiter shapes outgoing traffic to ensure the per-flow ratio of transmission-

to-reply packets never exceeds a pre-defined threshold. This empowers DoS 

victims to throttle any unwanted traffic from symmetry-limited sources sim-

\ ply by not replying to those sources' requests. This power is especially im­

portant for end users and small businesses, who make up the majority of 

DoS attack victims [56, 53], that cannot afford to over-provision network 

resources as a means to tolerate massive flooding attacks. The net effect is 

that a network governed by packet symmetry cannot be the source of flood-
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Abstract 

ing DoS attacks, as senders are automatically rate-limited proportional to 

the rate of reply. In this thesis, analysis of network traces helps derive packet 

symmetry limiting principles and thresholds that effectively discern innocent 

from malicious DoS traffic with few false-positives. The implementation of a 

symmetry limiter prototype for the Linux kernel and corresponding deploy­

ment on a U B C research lab network evaluate the efficacy of the solution 

on live traffic with encouraging performance and usability results. 
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Chapter 1 

Introduction 

1.1 Motivation 

Denial of service (DoS) attacks are a major problem affecting the Internet 

today with a recent security report estimating that an average of 5,213 

attacks are launched per day [28]. These attacks are part of a growing 

cybercrime industry, in which DoS attacks are used to extort money from 

legitimate [11] (and illegitimate [14]) businesses. At the extreme, persistent 

DoS attacks can even put a company right out of business, as was the case for 

the anti-spam firm Blue Security [13]. Early DoS attacks in February 2000 

against Yahoo!, Amazon and eBay [33] received significant media attention, 

and seemed to trigger the adoption of over-provisioning network resources _ 

as a tactic to simply tolerate flooding attacks. As early as June of that year, 

firm guidelines were set out to protect the critical DNS root name servers 

from DoS floods, requiring each server have the capacity to sustain three 

times its normal peak-load [19]. The failed DoS attacks against the DNS 

root name servers in 2002 [30] and again in 2007 [39] demonstrate how over-

provisioning was and has remained a largely successful defense - but only 

for those that can afford it. Consequently, the vast majority of DoS attack 

victims are small companies, educational institutions, and government sites 

[56, 53] that lack the funds to over-provision network resources to resist DoS 

1 



Chapter 1. Introduction 

floods, making them the most vulnerable to attacks. 

It is well understood in the computer security community that a sig­

nificant amount of computer crime, DoS attacks included, is carried out 

through the. use of botnets - groups of compromised "zombie" computers 

that are controlled by a remote master machine. Both the academic [10] and 

industrial [28] communities report on the extremity of botnet infestation in 

the Internet, with the number of compromised machines in the millions and 

the number of active malicious hosts per day over fifty thousand. Making 

matters worse, a botnet does not require a large number of zombies to be 

capable of launching a powerful attack. A relatively small botnet of only 

a thousand nodes with an average uplink bandwidth 128 Kbps can offer 

an attack bandwidth exceeding 100 Mbps, capable of saturating the link to 

even a modest sized corporation [10]. Notice that no one machine is respon­

sible for generating a large portion of attack traffic - the strength comes 

from the aggregation of the small amount of attack bandwidth offered by 

each zombie. DNS amplification attacks are even more potent, as each at­

tack packet from a zombie machine triggers a name server to send multiple 

flooding packets to the target victim, generating aggregate attack strengths 

exceeding 7 Gbps [71]. 

The threat is real and the attacks are damaging, proving costly for both 

the source and destination networks. The targeted service is degraded or 

unavailable, leading to revenue loss and a damaged reputation. The source 

network wastes valuable bandwidth on attack traffic, requiring edge ISPs to 

purchase larger capacity links from upstream carriers. Both ends may have 

legal fees surrounding liability issues, as expertise from the legal commu­

nity [66, 44] suggests that further changes to computer crime laws will hold 

the owners of zombie machines responsible for the damages from attacks 
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Chapter 1. Introduction 

perpetrated by their machines. Such legislation may deem a corporation or 

end-user negligent for lacking to implement computer security best-practices 

- forcing the owner to take responsibility for all actions carried out by their 

machines, not only the actions that were intended. 

1.2 Self-critical networks 

We introduce the concept of a self-critical network that filters its own 

outgoing traffic, taking responsibility for its own actions and preventing its 

clients from polluting the external network with malicious traffic. Filtering 

in this manner can be highly effective, as the filtering mechanism is in close 

proximity to the source of the malicious traffic to be filtered. A number of 

technical advantages stem from this characteristic. Most importantly, the 

filtering mechanism is close enough to the traffic source to enforce source 

address integrity. This ensures further filtering occurs with high fidelity 

as a source cannot masquerade as another to hide its malicious behaviour. 

The source network also has complete isolated administrative control over 

filtering policy and enforcement - no collaboration with other networks is 

required for a network to police itself. Self-critical filtering is thus immedi­

ately deployable, with only the deploying organization having to generate 

the necessary political momentum and effort from within. 

Today, a number of network properties are already enforced in a self-

critical manner, though none that directly combat DoS attack traffic. Ingress 

filtering [31] prevents an end host from forging (spoofing) its source IP ad­

dress. Contrary to popular belief, ingress filtering is quite widely deployed, 

as the Spoofer project [15] estimates that less than seventeen percent of net 

blocks are spoofable, indicating that many edge networks filter packets with 
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invalid source addresses. Self-critical filtering is also being used to combat 

email spam. A O L , one of the largest North American service providers, only 

allows its subscribers to send email traffic (on port 25) that passes through 

an AOL-managed email server - all other email traffic is dropped [7]. Addi­

tionally, network management equipment vendors (ex. [51]) sell monitoring 

and security products for ISPs that analyze and reduce the unwanted traf­

fic from the ISP's network, which indicates there is an existing market for 

upstream self-criticizing firewall products. Thus, source-based filtering may 

serve as a key component in the battle against DoS attacks, if a self-critical 

DoS mitigation solution can be made practical. 

Self-critical filtering of malicious DoS traffic at the source network could 

ultimately lead to a stronger and safer Internet. However, important ques­

tions remain, such as: What exactly should a provider filter at their net­

work? What heuristic can be used to flag malicious traffic? How does the 

heuristic cope without being able to observe all the aggregate attack traffic? 

Can such a heuristic reduce the amount of malicious traffic coming out of 

their networks and continue to support network and protocol innovation? 

What incentives could drive ISPs to invest in a source-based solution, as 

the filtering does not directly benefit (and may even disturb) its own sub­

scribers? This thesis considers these questions with respect to preventing 

DoS activity. 

1.3 Preventing DoS at the source 

DoS attacks remain prevalent and successful simply due to the fact that the 

Internet lacks a definition or mechanism to discern wanted from unwanted 

traffic. A n end host has no means to specify that it does or does not wish 
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Chapter 1. Introduction 

to receive requests from another host. Network routing is based solely on 

best-effort packet forwarding - a router looks at the destination address of 

a packet and forwards the packet along the path towards the destination, 

without any regard as to whether the destination actually wants said packet 

or not. 

This thesis further evaluates packet symmetry [47] as a heuristic to mea­

sure the relative goodness of network traffic to thwart DoS attacks. The 

heuristic defines good traffic as symmetric traffic, comparing the number 

of packets flowing in both directions - source to destination and destina­

tion back to source - with better traffic having a more balanced exchange 

of packets between the two endpoints. Packet symmetry makes the act of 

communicating a necessarily cooperative endeavour, since both ends must 

participate equally to maintain the goodness of the packet exchange. In this 

manner, packets from one end can be thought of as "credits" for the other 

end to send more packets back. Reply packets from an destination end host 

are interpreted as signaling to indicate that the destination is willing to re­

ceive more traffic from the source. Conversely, a destination can throttle 

undesired traffic from (potentially) malicious hosts by simply not replying 

to those, hosts' requests. 

The net effect is that a network governed by packet symmetry cannot be 

the source of flooding DoS attacks, as senders are automatically rate-limited 

proportional to the rate of reply. For a flood victim, no reply traffic gets 

through their congested link, which in turn causes all symmetry-limited 

subscribers to be throttled, directly combatting the attack. A symmetry 

limiter need not observe all the attack traffic to detect attacks. Malice is 

implicitly inferred with a lack of reply traffic from the destination host. As 

such, end hosts are automatically protected from bandwidth flooding attacks 
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Chapter 1. Introduction 

perpetrated by symmetry-limited botnets, as each bot can no longer send an 

asymmetric flow of bandwidth consuming data to the destination without 

explicit reply from that target. 

DoS attacks are not a recent invention - the first large-scale attacks oc­

curred in 2000 [33] and many solutions have been proposed to combat DoS 

activity since then. However, rate limiting traffic with packet symmetry 

has a number of advantages over previous work. Firstly, packet symmetry 

captures implicit signaling already present in the communication patterns of 

most network applications. Protocols and applications do not need to change 

to explicitly maintain symmetry, it already occurs naturally, which makes 

deployment less invasive. Prior work tends to introduce explicit signaling 

into the network, forcing routers and/or end-hosts to change existing proto­

cols or install new ones, which drastically increases the cost of deployment. 

Furthermore, source-based packet symmetry filtering is a proactive solution, 

preventing flooding attacks from happening in the first place, while a large 

portion of prior work is reactive, detecting and then combatting attacks. 

Packet symmetry limiters also empower DoS victims to thwart arbitrary re­

source exhaustion attacks, as the victim can control the attackers' flood rate 

by manipulating their own reply rate, which can be as simple as inserting a 

firewall rule to drop packets from the attack sources. Such fine-grained au­

tonomous control over DoS defense is key for smaller institutions, which, as 

noted, comprise the majority of attack victims. Previous work also tends to 

focus on high-rate in-core attacks, using probabilistic and statistical analysis 

on traffic aggregates to detect DoS flooding, which can often be subverted 

by sophisticated low-rate attacks. Packet symmetry also provides defense 

against these sophisticated attacks, with the full comparison given in Chap­

ter 5. 
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As discussed in [32], a DoS defense solution must make both technical 

and economic sense, otherwise the solution will not be widely adopted. A key 

element of sensible solutions is minimal invasiveness, requiring no changes to 

end hosts and little modification to routing infrastructure. Packet symmetry 

goes one step further, without any need to change end hosts or routers, and 

without need for new protocols or modifications to existing protocols. Thus, 

packet symmetry filtering is technically feasible, enabling practical incremen­

tal deployment with increased benefit in the reduction of DoS traffic for each 

and every deployment. However, the economic incentive to motivate ISPs 

to deploy self-critical symmetry limiting is less concrete. Symmetry limiting' 

would reduce the upstream bandwidth consumed on the ISP's peering and 

upper-tier links, potentially reducing usage costs. However, the economic 

gain would depend on the proportion of DoS attack traffic contributing to 

the ISP's peak load under the 95*^ percentile charging model (a common 

pricing model for inter-ISP relationships [76]), which may not be very sig­

nificant, especially for large networks. A stronger potential incentive for 

symmetry limiting has both the subscribers and ISP alleviated from legal 

responsibility for DoS activity generated by symmetry limited machines, as 

the ISP could not be deemed negligent assuming symmetry limiting were to 

become a network security "best practice" [66]. However, computer crime 

legislation does not specifically make DoS attacks illegal [27], which pre­

vents prosecutors from securing convictions even when the perpetrators can 

be identified [41]. Disappointingly, calls to amend legislation to outlaw DoS 

attacks have been lingering since the major attacks in 2000 [44, 52], which 

suggests expectations for imminent legislative change may be overly opti­

mistic. 

Lacking concrete incentive for deployment, this thesis sets out to bolster 
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the technical argument in favour of self-criticizing DoS prevention through 

source-based packet symmetry limiting. The contributions of this thesis in­

clude; (i) the derivation of a packet symmetry metric and accompanying 

limiting thresholds that effectively discern wanted from unwanted flooding 

traffic with few false positives; (ii) the measurement of the protection pro­

vided by symmetry limiting, demonstrating its effectiveness against modern 

DoS floods; and (iii) the construction of a symmetry limiter prototype and 

corresponding live deployment, highlighting the feasibility (both for perfor­

mance and usability) of the approach. In closing, the thesis includes dis­

cussion on the potential role of symmetry limiting in the current and future 

Internet architectures. 
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Chapter 2 

Packet Symmetry Principles 

and Design 

Packet symmetry defines a property of "good" network traffic as traffic 

that corresponds to a conversation between two (or more) consenting hosts. 

Denial-of-service (DoS) attacks remain prevalent and successful simply be­

cause the network lacks such a definition. At present, the network impar­

tially forwards any packet to its specified destination, without regard as to 

whether the destination actually desires said packet or not. 

Specifically, packet symmetry defines the goodness of traffic as the sym­

metry between packets flowing from source-to-destination and destination-

to-source. Reply packets from a destination host to a source host are inter­

preted as signaling by the destination that it is willing to receive more data 

from the source. A destination host can throttle any traffic from unwanted 

or malicious sources simply by not replying to those sources' requests. 

The interpretation of reply packets as permission, given by the desti­

nation to the source to send more data, captures implicit signaling that 

already exists in network traffic. Alternate proposals consider making sig­

naling explicit with new cryptographically secure DoS-resistant end-to-end 

protocols. However, these proposals are not incrementally deployable as 

both the source and destination ends must implement the new protocol. Us-
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ing the implicit signaling already present in network traffic dynamics allows 

a packet-symmetry DoS solution to be incrementally deployed at various 

sites - strictly increasing the strength and value of the network with each 

and every deployment. 

A symmetry limiter is most effectively deployed at the source Internet 

service provider (ISP), as a mechanism to rate-limit the outgoing traffic of 

its own subscribers. The source ISP is in the best position to filter this 

traffic, as it is close enough to ensure the source address integrity of its sub­

scribers, leading to high fidelity filtering. Packet symmetry also solves the 

problem that not all attack traffic can be observed at the source network, 

since DoS attacks can be widely distributed across networks of zombie com­

puters (botnets). The symmetry limiter infers a destination is under attack 

when a lack of symmetry, or lack of reply packets from a destination, is ob­

served. This strategy has the added benefit that a successful DoS attack will 

cut-off the attack traffic, as a lack of replies from the victim will shutdown 

any symmetry-limited attackers. 

2.1 What is Packet Symmetry? 

Packet symmetry measures the balance of network packets flowing in both 

directions of a connection, rather than measuring the raw bytes being ex­

changed. A l l packets are considered equal, meaning a large 1500 byte frame, 

a small 40 byte frame, and anything in between are all counted as a single 

unit. Transport and application protocols can thus achieve a high degree 

of packet symmetry, while maintaining a highly asymmetric data transfer. 

The key insight is that two willing participants can easily balance the flow of 

packets between them, whereas if the desire to communicate is not mutual, 

10 
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the flow of packets is inherently imbalanced. A packet symmetry monitor 

can independently observe this natural feedback loop of packet exchange be­

tween two end points, and judge whether each end point desires more traffic 

from the opposite end. 

In practice, T C P - the most widely used transport protocol on the Inter­

net - has packet symmetry built into the definition of the protocol. T C P is 

designed to guarantee data delivery across an unreliable (or lossy) channel 

while maintaining fairness with respect to network usage and congestion. As 

such, the core algorithms of T C P strongly support packet symmetry of T C P 

flows. Firstly, acknowledgement (ACK) reply packets give feedback to the 

sender regarding how much data has been successfully received. Although 

A C K packets are cumulative, the T C P standard [3] specifies that one A C K 

should correspond to no.more than two data packets - essentially mandating 

T C P have a packet symmetry ratio of 2:1. For higher flow throughput, a 

T C P sender can send a burst of data packets at one time, and wait for the 

corresponding A C K s to be returned. The burst size is defined as the con­

gestion window, and T C P ' s slow-start algorithm ensures this window size 

is increased symmetrically. The initial window size is a single packet, from 

where the window size gradually ramps up as long as the A C K s coming 

back do not indicate a data loss or other congestion event. Thus, with such 

strong fairness and symmetric principles inherent in the protocol design, it 

is expected that all services over T C P will be extremely symmetric and will 

not be exposed to symmetry limiting. 

11 
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Chapter 2. Packet Symmetry Principles and Design 

2.1.1 Tracking Packet Symmetry 

The packet symmetry for each network conversation, or flow, is tracked 

separately from all other flows in the network. Let a flow be defined as a 

five-tuple of fields from both the IP and transport layer protocols, 

(sip, dip, proto, dport, sport) 

where each field is represented as follows, 

sip the source IP address 

dip the destination IP address 

proto the IP protocol number, specifying the transport 

layer protocol 

dport the destination port (if proto is T C P or U D P ) 

sport the source port (if proto is T C P or UDP) 

Using both the source and destination ports allows a pair of end hosts to 

maintain multiple different flows with separate packet symmetry dynamics. 

Separating flows to this degree is necessary to prevent an attacker from 

flooding a service on an end host by maintaining a high rate symmetric flow 

to another service on that same end host. 

However, tracking packets only at the full'five-tuple granularity allows 

the port number and IP protocol number fields to become DoS attack vec­

tors. For both T C P and UDP, a ,port number is a 16 bit value, and in 

IPv4, the IP protocol number of an 8 bit value. Thus, an attacker could 

flood an end host with a large number of low-rate flows by permuting the 

16 + 16 + 8 = 40 bits from these three fields, fabricating an enormous 2 4 0 

different flows. 

To prevent such attacks, flows are tracked at aggregate granularities as 

well. The aggregate granularities are ordered from finest to coarsest in the 

12 
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following table. 
flow tuple , finest traffic granularity 

(sip, dip, proto, dport, sport) 

aggregates traffic for... 

5 one flow to one service at one 

destination 

4 (sip, dip, proto, dport, *) all flows to one service at one 

destination 

3 (sip, dip, proto, all flows per transport protocol 

at one destination 

2 

1 

all flows to one destination 

all flows 

This ordering of finest to coarsest granularity gradually groups related flows 

together to provide the subsequent limiting algorithm with several interme­

diate stages at which traffic may be rate limited, in an effort to minimize 

the collateral damage on innocent flows! For instance, a client with several 

malicious (i.e. asymmetric) flows to a web server will exhibit significant 

asymmetry at the 5- and 4-tuple flow granularities with dport equal to 80, 

which will allow symmetry limiting to focus on specifically those records 

and will allow other innocent traffic (perhaps even to the same destination) 

to avoid collateral damage limiting as a result of the malicious flows. The 

limiting algorithm and collateral damage is further discussed in Section 2.2. 

Though the 1-tuple does not provide flooding defense for any particular 

destination, asymmetric traffic at the 1-tuple granularity is indicative of 

network scanning or probing behaviour. Such scanning may or may not be 

desirable, so the 1-tuple granularity is included for completeness, to help 

combat scanning activity if needed. 

13 
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Tracking Window History 

Each flow-tuple granularity has a distinct pair of (tx,rx) counters to track 

transmission and reply packets separately at that granularity. These coun­

ters are used to compute packet symmetry at each of the individual granu­

larities. 

The (tx, rx) flow counters are maintained across a discrete time window 

W, purging older data as time moves forward. The window shifts in smaller 

discrete intervals of length I, purging the oldest interval of length I to make 

room to include the current I length period. For enhanced security, the 

window is constantly updated with the arrival of every new packet to ensure 

the tracking data reflects the most up-to-date packet dynamics of the flows 

being tracked. When a new packet arrives, the notion of a flow's global time 

t is updated as the arrival time of that packet and the tracking window is 

extended to include this newly arrived packet, such that the window length 

never exceeds W. More precisely, for a packet arrival at global time t, the 

tracking window includes all packets that arrived in the window 

[t-(tmodl)-(W -l),t]. 

Figure 2.1 illustrates how the window shifts as new packets arrive, with old 

intervals purged in discrete chunks of length I and the new interval extended 

smoothly as global time moves forward. 

Since the window is meant to track per-flow packet symmetry, the length 

of I should be set long enough to give a reasonable chance that both a re­

quest packet and corresponding reply packet can be tracked within the same 

window interval. This makes the purging of flow history more stable as 

a relatively balanced number of requests and replies will be discarded as 

older intervals are shifted out - maintaining a more steady symmetry value 
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Figure 2.1: Tracking tx packets across a sliding window W. 

across the entire window. A typical international round-trip-time (RTT) 

is on the order of 300-500ms. Thus, setting I = 2RTT = 1000ms = lsec 

provides even trans-continental traffic with a very good opportunity to es­

tablish symmetry within a single window interval, with a modest cushion to 

accommodate arbitrary server delay. 

2.1.2 Packet Symmetry Metric 

Given the (tx,rx) packet counts for a flow, the symmetry s of the flow is 

computed as the rate of transmission (tx) packets to a single reply (rx) 

packet. This ratio metric is a natural way to reason about the balance, or 

imbalance, of packets coming from the source relative to the packets coming 

from the destination. To accommodate for zero-values, s is computed as: 

max(tx,l) 
max(r£,l) 

15 
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A symmetry-limited flow is rate limited, either by delaying or dropping 

transmitted packets, to prevent the symmetry s of the flow from exceeding 

a maximum threshold X. 

The original packet symmetry work [47] proposed a logarithmic metric 

with In (if+j)- However, this metric further exaggerates the symmetry for 

lower-rate flows by adding the +1 to both counters to accommodate for zero 

values. For example, a flow with tx = 10 and rx = 1 will have its logarithmic 

symmetry chopped in half by adding the +1 to the rx packet count. While 

the logarithmic metric succeeds in dampening the effects of larger packet 

counts, a simple modification to the ratio metric to divide by the smaller 

of the packet counts avoids any overflow or underflow errors. This modified 

ratio metric marks the result as positive or negative to indicate which of 

the transmission- or reply directions were larger, thereby communicating 

the direction of the asymmetric imbalance. This modified ratio metric is 

computed as: 

Note that to limit both tx and rx packet symmetry, a limiter using the 

modified ratio metric must delay or drop packets to ensure that —X < s' < 

X. However, as the focus of this thesis is the prevention of outgoing DoS 

flooding traffic, the remainder of the thesis assumes the use of this modified 

ratio metric to limit outgoing tx traffic, and thus the enforcement of only 

a' < X. 

16 
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2.1.3 Security Guarantee — Bootstrapping Packet Rate 

Both the symmetry limit, X, and the history window length, W, have im­

plications for the security and usability of symmetry limiting. A small X 

will have greater impact on asymmetric DoS floods, but is also less forgiving 

of innocent asymmetric behaviour, such as buggy applications or user er­

rors. A small W refreshes flow history with faster turnover, aiding recovery 

for innocent asymmetry but strengthening DoS floods as the asymmetry of 

flooding bursts are forgotten after shorter intervals. Similarly, a larger X 

is more forgiving but reduces DoS protection. A larger W retains flow his­

tory longer, reducing the effectiveness of DoS attack bursts by lengthening 

the interval between bursts, but similarly lengthens the recovery time for 

innocent asymmetry. The larger W also strengthens an attack using covert 

bursts, where the attacker first establishes a high-rate symmetric flow with 

the target victim, and subsequently uses the high-rate reply traffic from the 

victim as the "credit" to blast the destination with heavy attack traffic. 

To quantify the security versus usability tradeoff for a symmetry limiter 

configuration, the symmetry limit X and the history window W combine to 

form the bootstrapping packet rate (PB) ~ the rate of packets per second 

at which a source is granted without any reply traffic. This value embodies 

the guarantee of the symmetry limiter, that all outgoing traffic cannot exceed 

PB without corresponding reply traffic. Furthermore, it simplifies the above 

discussion on security versus usability tradeoffs. Attack strength can be 

calculated directly from multiplying PB by the number of attack machines, 

and there is a clear threshold for the tolerance of innocent but asymmetric 

behaviour. 

The bootstrapping throughput rate is calculated as 
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PB = X/W packets per unit time. 

For instance, a history window of W = 5 seconds and a symmetry limit of 

X = 10 packets yields a bootstrapping throughput rate of PB — 10/5 = 2 

packets per second. 

At minimum, a sender must be able to send at least one packet to a new 

destination in order to bootstrap the communication, since one side must 

be allowed to "go first". As such, PB must be strictly greater than zero. 

While seemingly trivial, this has important implications for the security 

provided by a symmetry limiter. As PB must always be greater than zero, 

symmetry-limited attackers will always have the ability to send at least 

one attack packet per window length W. This means that a bandwidth 

flood to saturate a link of a certain capacity will always be possible with 

enough machines. However, the end goal is that symmetry limiting reduces 

attack strength to the point that the cost (to the attacker) for establishing 

a large enough army of zombies to attack with a certain bandwidth greatly 

outweighs the benefit of launching an attack for such a bandwidth. 

2.2 Limiting Flows with Packet Symmetry 

Symmetry limiting enforces that the symmetry value s for each flow falls 

below a predetermined threshold X. Enforcement involves rate-limiting the 

transmission of a packet, either by delaying the transmission or dropping 

the packet, on a flow whose tx : rx ratio would exceed the threshold X if 

the packet in question were allowed to pass through the limiter. 

Packets for each flow are tracked at all five granularities - the 1-tuple 

through the 5-tuple. Each granularity provides valuable information regard­

ing the traffic dynamics originating from the sender, which leads to an impor-
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tant question: At which granularity should symmetry limiting be enforced? 

Choosing to limit all flows only at the 5-tuple granularity would ignore the 

traffic dynamics encompassed by the aggregate granularities, potentially al­

lowing heavily asymmetric traffic in aggregate. Conversely, choosing to limit 

all flows across all granularities can unfairly punish innocent (i.e. symmet­

ric) flows due to misbehaving asymmetric flows from the same sender, lead­

ing to collateral damage. As such, the challenge for the limiting algorithm 

is to simultaneously provide strong protection against packet floods while 

minimizing collateral damage to innocent traffic. 

Meeting this challenge, the proposed limiting algorithm uses the different 

tuple granularities to ensure that all outgoing traffic from a sender does not 

exceed the X : 1 threshold for genuine reply traffic from a destination. 

Recall from Section 2.1.2 that the symmetry ratio metric accounts for a 

zero rx packet count by assuming a value of one, preventing the metric 

from being undefined at flow startup. However, when rx = 0 symmetry 

is precisely that - undefined - since there are no reply packets to compare 

against the tx traffic. Wi th this in mind, the symmetry limiting algorithm 

works as follows. When a packet arrives, the limiter looks up the 5-tuple 

flow record for the packet. If the 5-tuple rx value is zero, then the limiter 

walks up the entire tree of aggregate flow tuples, checking if this packet will 

exceed the symmetry threshold X at each granularity. Otherwise, if the 

5-tuple rx value is non-zero (i.e. rx > 0), the the limiter just ensures the 

packet does not exceed the X threshold at the 5-tuple granularity. 

This limiting algorithm both maintains the strong security guarantee of 

the symmetry limiter (PB), while simultaneously maintaining innocent flows 

and limiting malicious ones, even when innocent and malicious flows share 

the same destination. Firstly, notice how a DoS victim is always empowered 
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to throttle the traffic of any symmetry-limited sender down to PB, simply by 

ceasing to send any reply traffic back to the sender. Regardless of any previ­

ous flow history, a destination host can cut off all back traffic to a source, and 

within one period of length at most W, all flows from that source will have 

rx = 0 and thus will be throttled down to PB at the 2-tuple (sip, dip, *, *, *) 

granularity. Secondly, this algorithm maintains innocent flows, as flows with 

at least one reply packet in the last W time period are only limited at the 

5-tuple granularity. As such, these flows cannot suffer any collateral damage 

from limiting at aggregate granularities and need only maintain their own 

individual symmetry below the X threshold. 

Figure 2.2 illustrates this algorithm with one innocent web browsing flow 

(192.168.0.1, 10.0.0.1, TCP, 80, 9876) tracked amongst several malicious 

flows to the same destination. The malicious flows are marked with source 

and destination ports containing 666. Notice how the 2-tuple (sip, dip, *, 

*, *) granularity ensures that all traffic, innocent and malicious, is governed 

by the X : 1 ratio keeping the sender's outgoing traffic always in direct 

proportion to the reply traffic from the target host. Further notice that 

all the outgoing packets for the web download continue to get through the 

limiter, avoiding all collateral damage to the innocent flow. Only the mali­

cious traffic, having received no reply traffic, is limited at the aggregate flow 

granularities. 

Lastly, notice that port scanning activity is also throttled by this limiting 

algorithm. Port scanning is an inherently asymmetric behaviour, sending a 

large number of single-packet requests to many ports on the target host being 

scanned. The typical few (if any) replies from the target host will result in 

significant asymmetry at the 2-tuple (sip, dip, *, *, *) granularity, resulting in 

severe limiting thereby drastically slowing the scanning rate effectively down 
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sip. 192.168.0.1 

Alice 

(tx, rx) = (8,1) 
dip 10.0.0.1 

Charlie 

(tx,rx) = (8,1) 
prot T C P 

(tx, rx) = (8,1) 

dport 666 

(tx,rx) = (1,0) 

dport 80 

W W W 

(tx,rx) = (7,1) 

sport 666 

(tx,rx) = (1,0) 

sport 666 

(tx, rx) = (6,0) 

sport 9876 

(tx,rx) = (1,1) 

Figure 2.2: Limiting flows with packet symmetry. Assume the sym­

metry threshold is set at X — 8. In this example, packets for the 

(192.168.0.1,10.0.0.1,TCP, 80, 9876) flow are only limited at the 5-tuple 

granularity, while packets for all other flows are limited at every granularity. 

For instance, a packet for a new 5-tuple flow for the source-destination pair 

192.168.0.1-10.0.0.1 would be rate limited at the 2-tuple granularity, since 

that granularity has reached the maximum 8:1 threshold for tx : rx packets. 
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to PB- Thus, symmetry limiting makes port scanning somewhat redundant, 

as to achieve a high-rate port scan from behind a symmetry limiter, the 

scanner must already know the available services of the destination in order 

to establish symmetric connections to those services to accrue the necessary 

"credits" to send the scanning packets. 

2.3 Where to Place a Symmetry Limiter 

Two main factors contribute to the placement of a symmetry limiter in the 

network; establishing packet provenance and ease of deployment. Packet 

provenance is important for effective filtering - the more confident it is in the 

authenticity of packet origin, the more reliable symmetry limiting becomes. 

The ease of deployment is directly correlated to the technical and economic 

feasibility of the solution - a solution that is difficult to deploy (technically 

or financially) is. less likely to be accepted. 

Considering the points along the path from the subscriber to the ISP, 

a symmetry limiter could theoretically be deployed at the end-host, at the 

subscriber's point of connectivity, or at an aggregate point in the ISP in­

frastructure. 

Possibilities for end-host deployment locations include the OS network 

stack, a virtual machine monitor layer, or the network interface card firmware. 

While deployment at the end-host guarantees packet provenance, gaining 

significant deployment penetration can be challenging. Even if widespread 

deployment could be achieved, persistent and capable computer criminals 

will likely be able to circumvent the limiting mechanism, even at the vir­

tual machine layer [46]. For example, in Windows X P Service Pack 2 [5] 

and seemingly in Windows Vista as well, Microsoft introduced a limit on 
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the number of half-open T C P connections in an effort to combat T C P S Y N 

floods (a common DoS attack [28]). While Microsoft has the market share 

to achieve widespread deployment for such a mechanism, numerous peer-

to-peer sites, such as [57], provide "patches" to subvert these limits. These 

peer-to-peer applications attempt to open a large number of T C P connec­

tions in parallel, which perform poorly if not break under these limits -

hence the "patch" to circumvent the protection mechanism at the end host. 

The subscriber's point of connectivity, such as the DSL or cable modem, 

also essentially guarantees packet provenance. As well, the provider has rea­

sonably high assurance that the modem firmware will not be tampered with, 

meaning the limiting mechanism is unlikely to be circumvented (unlike the 

end-host deployment discussed in the previous paragraph). Moreover, mod­

ern ISPs typically have the infrastructure to automatically upgrade modem 

firmware and thus could in theory upgrade all their subscribers' modem 

firmware to perform symmetry limiting. However, having one symmetry 

limiter per subscriber creates administrative challenges for the ISP. Trou­

bleshooting connectivity with a subscriber may require remote access to the 

symmetry limiting functionality on the modem, which would then require 

strong authentication and further complexity built into the modem firmware. 

Thus, deployment at a centralized location within the ISP's network 

seems most pragmatic, making both technical and economic sense. As the 

limiter moves further from the subscriber, packet provenance is sacrificed but 

only to the degree of customer aggregation before which address integrity 

is enforced. Note that address integrity and symmetry limiting enforcement 

need not occur at the same point along the path. Previously, many ingress 

filtering deployments prevented spoofing at the network edge, merely ensur­

ing aggregate address integrity for the advertised B G P prefix [16] though 
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presently the majority of ingress filtering occurs at./24 and /16 network 

prefix boundaries [15]. To increase the fidelity of packet symmetry filtering, 

a hybrid architecture might involve upgrading modem firmware to perform 

the simpler duty of address integrity enforcement at a per-host granularity 

within the modem itself, with the symmetry limiting mechanism central­

ized further into the ISP's network. Such a hybrid scheme satisfies both 

key requirements; (i) enforcing packet provenance with modem firmware 

guarantees the authenticity of source address information, and (ii) easing 

deployment with one or a few centralized locations reduces the cost and 

simplifies the administration of the limiter. 

Deploying a symmetry limiter further into the core becomes problematic, 

as many end-to-end routes on the Internet are asymmetric [58]. A symmetry 

limiter must be able to see all the traffic to and from the source being limited. 

If reply traffic can traverse a different route from the transmitted traffic and 

get missed by the limiter, such flows will be unfairly punished. Indeed, 

traces of trans-Pacific network traffic from the W I D E project [25] contain 

many T C P flows which are represented by only a single direction of the 

communication. 

The placement of the limiter does, in part, dictate how traffic can be 

limited - whether the punishment for asymmetric flows is to delay or drop 

packets. The original work [47] proposed to buffer and exponentially delay 

packets for flows exceeding the symmetry threshold. However, this work 

assumed deployment on the end-host, forcing the burden of buffering pack­

ets onto the end-host itself. Unfortunately, for the more administratively 

attractive network-based deployment, the limiter cannot delay packets since 

in-network packet buffering is a DoS attack vector itself! Thus, the only 

practical counter-measure for a network-based symmetry limiter is to drop 
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packets for flows that exceed the symmetry threshold. As such, the remain­

der of this thesis assumes symmetry limiting will drop packets for flows that 

exceed the symmetry threshold. 

2.4 Analyzing Symmetry of Internet Protocols 

This section analyzes real network traffic traces to determine reasonable 

values for the symmetry limiting parameters (the asymmetry threshold X, 

and the window length W), and examines the causes for outlying asymmet­

ric traffic. However, first consider the following taxonomy, represented in 

Figure 2.3, which outlines how the packet symmetry metric separates all 

network traffic into classes of "good" traffic and "bad" traffic. Any flow 

with a symmetry value less than or equal to the symmetry threshold X is 

hereby blessed as being good, and this traffic remains good as long as suffi­

cient symmetry is maintained, regardless of whether the flow is low or high 

rate. When a flow's symmetry exceeds the X threshold however, it is then 

immediately considered a bad or malicious flow and is subject to symmetry 

limiting. The network trace analysis that quantifies where various types of 

network traffic fit in this taxonomy is described below. 

2.4.1 Data Set 

The data set consists of two tcpdump network traces. The first is a 24-hour 

capture from the 100 Mbps link that connects the International Computer 

Science Institute (ICSI) to the Internet, and contains 21 G B of raw transport 

and IP layer header data. The second is a 3-day capture from a 100 Mbps 

link that connects the machines of six Distributed Systems Group (DSG) 

lab students to the Internet, and contains 248 M B of raw transport and 
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Figure 2.3: Packet symmetry taxonomy for network traffic. 

ICSI DSG 

Total flows 769369 27747 

TCP flows 455352 59.2% 

UDP flows 265169 34.5% 

ICMP flows 48848 6.3% 

19152 69.0% 

8430 30.4% 

165 0.6% 

Figure 2.4: Data set flow distribution by protocol 

IP layer header data. Figure 2.4 lists the number of flows in each trace, 

and further breaks down the total flows by transport layer protocol. The 

analysis focussed on flows at the 5-tuple granularity, and deemed a flow as 

finished after two minutes of inactivity. 

2.4.2 Traffic Analysis 

The analysis was performed with a modified version of Bro [59], using a 

specialized hook to capture the flow 5-tuple for every packet in a given 
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Figure 2.5: Distribution of flows by maximum asymmetry. , 

tcpdump trace. Bro policy scripts were written to track flow symmetry and 

simulate symmetry limiting against a trace file. 

The maximum value of a flow's symmetry is examined first, to determine 

the proportion of flows that will be exposed to symmetry limiting at any 

point in their lifetime. Figure 2.5 plots the cumulative fraction of flows with 

a maximum asymmetry less than or equal to the threshold on the x-axis. 

This plot indicates that nearly all flows have a maximum asymmetry less 

than or equal to 8. This suggests choosing X = 8 will allow practically all 

innocent traffic (assuming the traces do not contain a significant quantity 

of DoS attack traffic). 

Choosing a value for the window length W is more complicated than for 

27 



Chapter 2. Packet Symmetry Principles and Design 

the symmetry threshold X, as qualitative factors (ex. the user experience) 

must be considered alongside quantitative factors (ex. total packet drops). 

Qualitatively, slow computer response time has been directly correlated to 

increased end-user frustration [67]. This suggests W should remain small 

to ensure faster recovery from asymmetric behaviour to prevent frustrated 

subscribers from switching to a non-symmetry limited ISP. However, both 

[22] and [42] find that frustration stemming from network usage is largely due 

to longer download times for web pages with much graphical content. These 

download times are unlikely to be affected by W, as T C P data transfers are 

very symmetric. Quantitatively, a larger W increases the protection against 

DoS floods as increasing W decreases the bootstrapping packet rate PB, 

thereby reducing the amount of unacknowledged packets a sender is allowed 

to produce. These qualitative and quantitative factors illustrate the security 

versus usability tradeoff of symmetry limiting. 

Figure 2.6 simulates symmetry limiting and compares W = 10 against 

W = 30, plotting the total number of packets in each flow versus the number 

of dropped packets for the flow. This plot uses only those flows from each 

trace whose maximum asymmetry exceeded the X = 8 threshold to measure 

the impact on symmetry-limited flows specifically. As the plot demonstrates, 

extending the window to W = 30 increases the number of dropped packets 

for most flows. The increase in packet drops for the longer window can be 

attributed to the increased lag-time for asymmetric behaviour captured at 

the beginning of the window to be purged. Thus, with the longer window, 

the chances for end-points to recover from asymmetric communication is 

hindered, as fewer packets get through to prompt the destination to send 

replies. Balancing DoS protection and end-user responsiveness, it seems 

practical to select W < 10. 
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Figure 2.6: Evaluating window history W values. 

Recalling that the values for X and W determine the bootstrapping 

packet rate P g , it is undesirable to choose a window length W significantly 

less than the symmetry threshold X, because that will increase PB and 

thus increase the attack strength of symmetry-limited DoS floods. Qualita­

tively, a PB = 1 packet per second seems reasonable for usability, allowing a 

symmetry-limited host to try to ping an unreachable service once per second. 

Quantitatively, Chapter 3 will evaluate the security properties of symmetry 

limiting, demonstrating the effectiveness of a P g = 1 packet per second. 

As such, the results of this analysis suggest the window chosen within the 

interval [8,10] seconds. 

Having established values for X and W, Figure 2.7 illustrates the dis-
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Figure 2.7: Maximum asymmetry vs maximum flow rate by IP protocol 

tribution of traffic within the packet symmetry taxonomy discussed above. 

This plot is encouraging as the majority of network traffic exhibits a high 

degree of packet symmetry at both low and high throughput rates. Though 

the plot reveals that a number of flows exceed the X = 8 symmetry thresh­

old, recall that from Figure 2.5 these asymmetric flows form a very small 

portion of the total traffic observed. Nevertheless, the following section ana­

lyzes these flows in greater detail to determine the causes for this asymmetric 

behaviour. 
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2.4.3 Examining Asymmetric Flows 

The variety of network and application protocols is wide and the causes 

for asymmetric traffic are many, varying with each protocol or application. 

Though, one general cause of asymmetric behaviour is the metric itself. 

Packet symmetry is somewhat exaggerated for lower rate flows (i.e. rx = 1 

or rx = 2, a difference of one packet will have a significant effect on the com­

puted symmetry value) which may result in the limiting of relatively low-rate 

innocent but asymmetric protocols. The following analysis will show that 

many of the asymmetric flows in the traces reached high asymmetry values 

due to such low-rate exaggeration. Modifications to the symmetry metric 

to tolerate such flows range from the naive to the complex. A simple modi­

fication uses a fixed constant c > 1 rather than 1 when accommodating for 

zero packet counts, making the new metric s" = m ^ ^ ' ^ . A more complex 

metric might allow short but high rate asymmetric bursts and take packet 

inter-arrival-times into account. However, any such modification broadens 

the definition of good (or tolerable) traffic to include greater asymmetry, 

which directly amplifies the aggregate attack strength of large botnets that 

simply send the maximum possible number of packets through the limiter. 

As such metrics strictly reduce the effectiveness of symmetry limiting against 

DoS attacks, no further exploration of such metrics is undertaken. Lastly, 

the majority of these low-rate flows are link-local traffic that would not reach 

an in-network ISP symmetry limiter, which negates the need to modify sym­

metry limiting to tolerate such traffic. 
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Figure 2.8: Finding ports with the most asymmetric flows. 
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Transmission Control Protocol (TCP) Outliers 

Although T C P is expected to be largely a symmetric protocol, Figure 2.7 

does indicate a number of T C P flows whose maximum symmetric metric 

exceeds the delayed-ACK 2:1 guideline, some of which exceed 10:1 and a 

very small number that get as high as 30:1. Investigation into these flows 

yields the following explanations. 

Some T C P asymmetry can be anticipated from typical noise associated 

with communication over a lossy channel. A non-responsive (i.e. failed) end-

point will cause a T C P sender to continuously re-send the most recent un­

acknowledged packet, doubling the retransmission timeout with each send. 

A typical R T T would start at 500ms, resulting in unacknowledged packets 

being sent at 500ms, Is, 2s, 4s, 8s, 16s and so forth - causing a minor fluctu­

ation in flow asymmetry. A C K loss can also contribute to T C P asymmetry, 

as earlier A C K s may be lost in transit with later A C K s still carrying the sig­

naling that the earlier data was received. These factors are also exaggerated 

at lower packet rates, particularly for more recently started flows. 

Congestion Window Issues with Idle High-Rate Flows The ma­

jority of T C P asymmetry actually stems from a bug in T C P implementa­

tions [3]. Reusing a T C P connection after a period of inactivity can cause a 

T C P sender to inject an unreasonably large congestion-window-sized burst 

of packets into the network. The fundamental problem is that a previously 

established congestion window indicates the network congestion at the time 

the data transfer took place. After a period of inactivity, neither the sender 

nor receiver have any basis on which to judge the new state of congestion in 

the network. The T C P standard [3] accounts for this potential issue, stating 

that after a period of inactivity larger that the retransmission timeout, a 

33 



Chapter 2: Packet Symmetry Principles and Design 

T C P sender should redo slow-start and ramp up its congestion window just 

as if starting a new connection. However, the bug in many T C P stacks is 

described well in [3]: 

Using the last time a segment was received to determine whether 

or not to decrease cwnd fails to deflate cwnd in the common case 

of persistent H T T P connections [HTH98]. In this case, a W W W 

server receives a request before transmitting data to the W W W 

browser. The reception of the request makes the test for an idle 

connection fail, and allows the T C P to begin transmission with 

a possibly inappropriately large cwnd. 

The vast majority of T C P asymmetry exhibited this traffic pattern, where 

after a period of inactivity a single request triggered a large burst of data 

from the opposite direction. Figure 2.8 suggests that most T C P asymmetry 

is due to this bug, with the most asymmetric flows on port 80 (HTTP) and 

port 443 (HTTPS) . The third most asymmetric T C P port is 993, used for 

secure email via imap, a similar application in which a pause followed by 

a request to trigger a large data download would occur, for instance when 

retrieving new mail. 

Drastically increasing W to retain longer flow history would prevent 

limiting T C P flows in this case. However, a longer window increases the 

strength of covert burst flooding attacks that establish symmetry and sub­

sequently flood the victim. Computing the symmetry value as a weighted 

average across different portions of the history window, with the more re­

cent portions more heavily weighted than the older portions, combats such 

an attack. However, these attacks remain strictly more powerful with the 

longer window and a weighted average metric than if the window were simply 

34 



Chapter 2. Packet Symmetry Principles and Design 

the most heavily weighted portion of the window with the metric computed 

across the whole window. A l l things considered, as the standard indicates, 

this is fundamentally a problem with T C P implementations, and should be 

fixed there. In the meantime, a symmetry limiter would serve as a patch for 

T C P stacks with this bug, as the limiter will simulate network congestion 

(through limiting the oversized congestion window burst) and thus enforce 

good behaviour on the flow's behalf. T C P will tolerate and recover from 

these packet losses, just as it recovers from any other inferred network loss, 

and will redo slow-start to gradually ramp up its congestion window fairly 

and representative of the current network state. 

Splitting Packets Across Discrete Window Intervals A n inherent 

characteristic of tracking symmetry across a discrete window was found to 

be another cause for moments of highly asymmetric T C P traffic. The asym­

metry stems from the separation of high-rate symmetric request and reply 

traffic across window interval boundaries, when a significant portion of the 

reply traffic ends up being tracked in a later interval than the request traffic. 

When the window interval for the request traffic expires and is purged, the 

reply traffic remains tracked in the later window interval. At this time, a 

new low-rate symmetric packet exchange will compute a high asymmetry 

value, due to the imbalance of A C K s remaining at the tail of the window. 

The nature of this problem warrants a shorter window. However, de­

creasing W increases PB which means an increase in flooding attack strength. 

To solve both problems, symmetry can be computed in two stages; the first 

stage uses a shorter window and is subject to a lower symmetry limit, while 

the second stage has a longer window with a larger symmetry limit. Figure 

2.9 illustrates the process, as symmetry is first computed across W and is 

subject to X ' . If the flow exceeds X' across W , only then must symmetry 
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Figure 2.9: Two-stage symmetry computation. 

be computed across the full W and compared against X. Notice that PB re­

mains constant for both stages, maintaining the same security guarantee for 

the symmetry limiter. Using this two-stage symmetry computation, T C P 

flows that formerly reached asymmetry values over 15:1 and some as high 

as 30:1, all returned to the expected 2:1 packet ratio as defined by the T C P 

standard. 

I C M P Outliers 

Figure 2.8 indicates a significant portion of asymmetry is due to I C M P flows. 

Of the 210 total I C M P flows that exceed 8:1 asymmetry, 129 flows are sim­

ply due to non-responsive destinations. Of these 129 flows, 118 flows are the 

result of unidirectional streams of 'destination unreachable' messages, 59 of 

which come from a single source. The remaining 11 flows consist of unidi­

rectional streams of 'time exceeded' (exclusive) or 'echo-request' messages. 

The remaining 81 flows are exchanges between only three external hosts 

(responsible for 68, 10 and 3 flows each) and various internal ICSI network 

addresses. The traffic largely consists of 'admin prohibited' messages from 

ICSI hosts that indicate a particular T C P / U D P host or port is unreachable. 

This suggests the external hosts are scanning the ICSI network for various 
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services, perhaps in the hopes of breaking into the network. As such, the 

I C M P traffic is heavily asymmetric in the direction going from ICSI to the 

external network, as the single-packet U D P scanning flows that trigger the 

prohibited messages are tracked separately as U D P flows. The occasional 

ping request-reply exchange between the external host and ICSI hosts is 

the reason the flows appeared to have disproportionate but non-zero reply 

traffic. As such, several of these I C M P flows exceed symmetry of 50:1, 

with one flow reaching 85:1, and would consequently be subject to severe 

symmetry limiting. 

However, in this case of external hosts port scanning the internal net­

work, severely limiting the host-port unreachable I C M P traffic is in fact quite 

beneficial. Fewer I C M P packets reduces the effectiveness of the scanner's re­

connaissance, as less information propagates back to the attacker. Note that 

without any limiting, the I C M P return traffic maintains the scanner's sym­

metry at the 2-tuple granularity, as one U D P scanning packet generates a 

corresponding I C M P unreachable packet. Thus, consider this scenario with 

both the scanner and scan-ee behind respective symmetry limiters. As be­

fore, the scan-ee's I C M P traffic will be subject to heavy symmetry limiting. 

This will effectively cut the scanner's scanning rate, as the scanner's out­

going U D P scan will be largely asymmetric since very few U D P replies are 

returned, and hardly any I C M P unreachable messages are getting through 

the scan-ee's symmetry limiter. This scenario highlights a cyclic benefit to 

symmetry limiting, that scanning generates asymmetric return traffic, which 

will be throttled, causing scanning traffic to become asymmetric, which will 

then be throttled, reducing scanning rate, and so on. 
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User Datagram Protocol (UDP) Outliers 

NetBIOS asymmetry Figure 2.8 shows port 137 (NetBIOS) is the most 

asymmetric U D P port. However, a single machine is responsible for 198 of 

the 199 flows that exceed the 8:1 threshold. These 198 flows consisted of 

a repeated query to which no response is generated. The one other asym­

metric NetBIOS flow seems to represent typical NetBIOS name registration. 

The flow contained relatively low-rate unicast name registration reports and 

refresh notices, which largely remained under a 7:1 threshold. Momentary 

bursts of additional NetBIOS activity resulted in the asymmetry jumping 

over the 8:1 threshold, with only 2 peaks reaching 10:1, and 9:1, respectively. 

Figure 2.10 illustrates the evolution of the symmetry value of this flow. Sim­

ulating symmetry limiting on this flow with a threshold of 8:1 resulted in 

a loss of merely 3 packets - all of which were redundant copies of previous 

requests. 

NetBIOS is interesting, as port 137 is commonly used for virus and 

worm propagation [10]. The ICSI trace reflects this observation, as a single 

external host was responsible for 514 single-packet flows to various internal 

ICSI machines. A symmetry limiter would likely reduce worm propagation 

by drastically slowing the scanning rate to PB, as the scanning probes tend 

to elicit few (if any) responses. 

DNS asymmetry Only three machines are responsible for producing 

the majority of the 87 DNS flows exceeding 8:1 asymmetry from the ICSI 

trace as shown in Figure 2.8, each generating 47, 15, and 14 flows respec­

tively. 

A complete lack of reply traffic was the cause of asymmetry for a mere 

15 DNS flows. These flows typically involved repeated queries for names 
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Figure 2.10: A NetBIOS name registration flow. 
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for which there was no response. Several such queries were lookups for 

bogon (i.e. unallocated) or blacklisted addresses [26], which is indicative of 

firewall activity. Note that none of these queries had the recursion desired bit 

set, which means any reply should have come from the queried destination. 

This means the asymmetry was simply a result of no response coming back 

from the queried DNS server, which symmetry limiting would interpret as 

a success in protecting a DNS server that did not wish to be contacted by 

the requesting client. 

Bursty flows were another cause of DNS asymmetry. A total of 50 asym­

metric DNS flows had relatively balanced (tx, rx) total packet counts, how­

ever, each flow had a high-rate burst of mixed query and response packets 

for multiple different DNS names. Such traffic is indicative of exchange be­

tween internal ICSI and external DNS servers. These flows suggest that 

DNS servers should perhaps be exempt from symmetry limiting, due to the 

lack of flow control to smooth out the bursts. Note that all client end-to-end 

DNS traffic exhibits symmetry to a high degree, and none of the asymmetric 

DNS flows are queries from end-hosts. Even more interesting is that not a 

single one of the machines that produced these asymmetric DNS flows are 

actually DNS servers. The three machines that produced the most asym­

metric DNS flows are file servers in the ICSI infrastructure, and the cause 

for the abundant DNS traffic is unknown. 

The remaining 22 asymmetric DNS flows mainly followed one of two 

patterns. The first pattern has a single packet query prompt a single packet 

response from the destination, after which point the source host repeats 

the query multiple times afterwards, receiving no further response. Symme­

try limiting will have little effect on this traffic, since the initial symmetry 

query-response exchange will succeed, with only later redundant query pack-
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ets subject to minor limiting. The second pattern has a single packet query 

prompt the destination to send a several packet response, causing an imbal­

ance of rx packets over tx packets. Recall from Section 2.1.2 that symmetry 

limiting does not need to affect this traffic, since the goal is to prevent out­

going (tx) asymmetric behaviour - incoming asymmetric traffic need not be 

limited. 

Multicast DNS asymmetry Multicast DNS is part of the Zeroconf 

networking initiative [24], providing a link-local namespace in the absence of 

another naming (i.e. DNS) infrastructure. Applications that share and look 

for shared content, such as iTunes, make use of multicast'DNS to discover 

the services available on the local link. 

Figure 2.8 also shows port 5353 (multicast DNS) had only 5 flows in 

the D S G trace that exceed the asymmetry threshold, of a total 271 mul­

ticast DNS flows. The asymmetry occurs during the startup probing and 

announcing phase of the multicast DNS protocol, where a host probes for 

names it would like to register, followed by announcements indicating the 

host has taken ownership of the names. This startup phase occurs anytime 

the network configuration or settings may have changed for a host (i.e. eth-

ernet cable plugged in, IP address change, wake up from sleep, etc.). .First, 

note that such local discovery protocols repeat probes/announcements for 

robustness, as communication via the multicast address (224.0.0.251) is not 

connection-oriented. A simulation of symmetry limiting on these flows shows 

that the packets subject to symmetry limiting are simply repeats of previous 

probes/announcements, meaning that the dropped packets are unlikely to af­

fect the application layer behaviour. Secondly, considering an ISP-managed 

deployment of a symmetry limiter, it is unlikely such multicast DNS or any 

other link-local traffic will be subjected to symmetry limiting, as this traffic 
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should not (by definition) travel further than the local link, which will be 

contained entirely behind the limiter. 

Asymmetry One-offs Figure 2.5 admits that a small number of U D P 

flows exhibited wildly asymmetric traffic, with asymmetry exceeding 100:1, 

with one reaching 799:1. This one extremely asymmetric flow is a one­

way media stream over RTP, which is a' data transfer protocol for real-time 

applications. R T P separates the control and data channels, using a separate 

R T S P control protocol that runs over T C P to govern the data transfer that 

runs over UDP. Indeed, the 799:1 asymmetric U D P flow is a video playback 

using Windows Media Player, which has a corresponding R T S P flow active 

throughout the lifetime of the U D P flow. 

The separate control and data channels of R T S P and R T P indeed present 

a genuine case against the deployment of symmetry limiting on every uplink 

to the internet. However, the threat model targeted by symmetry limit­

ing more seeks to protect such media streaming servers from attacks by 

malicious clients - not to prevent media streaming servers from launching 

attacks themselves. Again, the deployment model focusses on limiting out­

going traffic, not incoming. Thus, such high-throughput streaming servers 

would purchase special non-symmetry-limited connections from their service 

provider, naturally with additional bookkeeping to prove the legitimacy of 

the service to prevent attackers from obtaining this powerful non-limited 

connectivity. Under these assumptions, end hosts will be able to receive 

asymmetric streams from the media server, but the server will remain pro­

tected from malicious clients. 

Triangular routing appears to be the cause of another four asymmetric 

flows, two of which exceed a symmetry threshold of 330:1 and the other 

two exceed 450:1. However, the four flows seem to be two pairs of related 
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Synnetry evolution of nirrored asynnetric UDP flows 
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Figure 2.11: Triangular routing of U D P traffic. 
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flows, forming a triangular routing path. Figure 2.11 plots symmetry over 

the lifetime of the flows against the actual packet arrival times, showing 

the number of packets arriving at similar times. Each pair of flows has one 

highly asymmetric outgoing flow from an ICSI address (198.162.0.0/8) and 

one highly asymmetric incoming flow from a different external address but 

coming back to the same internal ICSI address. The similarity in flow sym­

metry clearly suggests the two flows in each pair are related. Unfortunately, 

the anonymization of the ICSI trace prevents further investigation into the 

application(s) involved. 

As it stands, a symmetry limiter would severely punish these asymmetric 

flows that form symmetric triangular routing paths. Assuming a symmetry 

limiter is only present at one end, the replying host could spoof the source 

address of the middle-man on the path to make the separate flows appear 

as a single flow. When all hosts are symmetry limited, all of the high-rate 

asymmetric traffic will be rate limited, likely preventing these applications 

from functioning correctly. However, these flows are not representative of 

the majority of network applications, as these are 4 of a total 769,369 flows 

observed. But more importantly, such triangularly-routed protocols are fun­

damentally unfair as without feedback (in the form of acknowledgements) 

the senders are unresponsive to packet drops due to network congestion. 

2.4.4 Considerations for Multicast Protocols 

Multicast protocols require special consideration when it comes to symme­

try tracking. The reason for this consideration is that a multicast address 

corresponds to every host subscribed to the multicast group associated with 

that address. Thus, for multicast traffic, there is no longer a one-to-one 
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mapping between the destination address and recipients of the packet. 

A naive but intuitive solution tracks any packet to a multicast address 

as being received (i.e. an rx packet) by every host on the network, minus 

the host that sent the packet. While simple, this approach would be rather 

effective in a symmetry limiting context. Hosts in the multicast group will 

benefit from the packet being an rx packet on their end, as that will enable 

such hosts to participate (i.e. reply) to said multicast packet for that specific 

multicast group. As well, hosts not in the multicast group can simply ignore 

said packets, with no effect on symmetry limiting since limiting focusses on 

outgoing tx traffic. Note this solution scales to per-flow tracking, as only 

one additional symmetry-tracking record per multicast address is needed. 

In this scheme, each host maintains a flow tuple tracking its own packets 

sent to the multicast address (just as with any other non-multicast flow). 

The difference is another global flow-tuple tracks all packets sent to the 

multicast address. Then, the symmetry for the multicast flow between any 

one host and the multicast address can be calculated with tx from the host's 

flow-tuple, and with the rx as the difference of the global multicast address' 

flow-tuple's rx value and the host's own tx value. 

2.5 Summary 

This chapter described the principles of packet symmetry and the algorithms 

used to limit traffic using the packet symmetry metric. The two key param­

eters for symmetry limiting are the symmetry threshold X, and the tracking 

window length W. Together, these parameters also form the bootstrapping 

packet rate PB, which is the rate at which a sender can transmit packets 

without receiving any reply. Analysis on real network traffic traces estab-
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lished values for these parameters, with X = 8 packets and W € [8,10] 

seconds, resulting in a PB < 1 packet per second. These values resulted in 

very few (less than 1%) false positives in the analyzed traffic, the limiting of 

which would not likely have negatively affected application level behaviour. 

Deployment targets limiting outgoing tx traffic, which alleviates concerns 

with limiting false positives due to asymmetric incoming rx traffic as well. 

Though deploying a limiter at the end host could solve this problem by de­

laying (and buffering) packets of asymmetric flows, in-network deployment 

is more manageable, cost-effective and the most unlikely to be circumvented. 

As such, the limiter must drop (rather than delay) packets to prevent the 

limiter mechanism from being attacked itself. The limiting algorithm (in 

Section 2.2) provides the strong guarantee that all traffic from a symmetry-

limited sender will always be less than or equal to X : 1 in direct proportion 

to the receiver's reply traffic, and in the case the receiver sends no reply traf­

fic, the sender will not be able to exceed the bootstrapping packet rate PB-

These guarantees afford the opportunity to make strong claims regarding 

the DoS attack strength capable in a symmetry-limited network. 
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Security Evaluation 

Symmetry limiting allows an ISP to provide the strong guarantee to the rest 

of the Internet that no symmetry-limited subscribers can be the source of a 

DoS flooding attack. Furthermore, with symmetry limiters deployed at the 

source network governing the network's outgoing traffic, a DoS victim now 

has the power to control the rate of traffic it receives, simply by manipulating 

its own reply rate- These are two significant wins for all DoS victims alike, 

as (i) the overall volume of DoS traffic is drastically reduced and (ii) victims 

of resource exhaustion DoS attacks no longer have to contact the ISP from 

which the attack originates and wait for that organization to take action on 

the victim's behalf - a victim need only insert a firewall rule to drop traffic 

from the malicious hosts, thereby cutting of all reply traffic to the victim 

simply by ignoring their incoming requests. This simplicity and localized 

control over DoS defense is especially important for small businesses and 

home users, who make up the majority of targeted DoS attack victims [53, 

28] and do not typically have the network (or financial) provisioning to 

tolerate DoS attacks. 

Notice how the symmetry-limiting mechanism is designed such that the 

increasing effectiveness of a flood increases the throttling by the limiter 

- as fewer replies from the victim can escape the flooded link(s), fewer 

transmissions are allowed to pass through the limiter due to the lack of 
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reply traffic. The following sections will establish the threat model and 

further evaluate the DoS protection provided by symmetry limiting. 

3.1 Threat Model 

Source-based symmetry limiting is a targeted defense against botnet orig­

inated DoS attack activity. It is well understood in the computer security 

community that a large amount of computer crime is carried out through the 

use of botnets [10]. A botnet is a group of compromised (exploited) "zom­

bie" computers that can be controlled by a remote master machine. In the 

last quarter of 2006, Symantec [28] reports observing more than 6,000,000 

distinct bots, with an average of just over 60,000 active bots per day. The 

HoneyNet Project in 2005 [10] reported tracking botnets of varying sizes, 

from hundreds to hundreds of thousands of nodes. 

Defining the botnet as the DoS attack vector allows the threat model 

to make certain key assumptions about the parameters that determine the 

strength of attack. Particularly, the botnet master can only enlist zom­

bie machines he or she is able to exploit. Assuming all machines with any 

hardware or software configuration are equally likely to be exploited, the 

properties of botnet zombies and their network connectivity can be gener­

alized over global statistics on network connectivity. Note this assumption 

will likely result in an over-estimate of the attack strength for a symmetry-

limited botnet, as it is more likely older and unpatched technologies are 

more vulnerable to exploitation, the users of which are equally more likely 

to have lower upload bandwidth. Conversely, corporate users with more 

powerful uplink speeds tend to fall under the wing of a regulated IT man­

agement infrastructure, which will likely have tighter security and thus be 
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less vulnerable to compromise. 

Users of zombie machines are typically oblivious to (ignorant of) the fact 

the computer is enlisted in a botnet. Moreover, due to the variety of mali­

cious activities an infected machine may inflict on its owner (ex. phishing) 

[10], it seems extremely unlikely that the machine owner will knowingly take 

action to contribute to the success of botnet related activities. This leads to 

the assumption that the zombie machine owner will not attempt to circum­

vent a symmetry limiting mechanism deployed by the service provider (ex. 

by tampering with the ISP cable or DSL modem), meaning that all traffic 

from a symmetry-limited zombie will pass through the symmetry limiter. 

Internet connections are typically asymmetric with respect to download 

and upload speeds, having more bandwidth allocated for download. Large 

broadband service providers offer connectivity with upload speeds ranging 

from 64 Kbps to 800 Kbps, and some over 1 Mbps [62, 73]. Maintaining 

the assumption that all machines are equally likely to be compromised by a 

botnet master, it is reasonable to assume the average zombie provides the 

median of the upload speeds, roughly approximated.as 384 Kbps. 

T C P Reset and T C P F I N floods with packet sizes less than 100 bytes 

are the most common DoS attacks [53]. DNS amplification attacks [71], like 

the one used to put the anti-spam company Blue Security out of business 

[13], similarly use small attack packets, which contain a single DNS query 

for a large resource record, resulting in an amplified response of several large 

packets sent to the victim. However, pure bandwidth flood attacks from a 

symmetry-limited botnet will result in greater damage to a victim than these 

small packet attacks, as the symmetry limiter is agnostic to the data carried 

by each packet. Furthermore, the DNS amplification attacks are an example 

of reflector attacks that employ source IP address spoofing to redirect the 
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amplified reply to the targeted victim. Such attacks cannot be launched 

from within a symmetry limited network, recalling the original requirement 

for a symmetry limiter to have source address integrity. Thus, assuming the 

attacker will maximize attack strength, the subsequent analysis focusses on 

attacks using large packets. The ubiquity of Ethernet deployment makes it 

reasonable to assume the path maximum transfer unit (MTU) , and hence 

the maximum packet size, for zombie machines as 1500 bytes [38]. 

Many sensible service providers currently deploy ingress filtering [31] 

for their subscribers. Recent analysis from [15] estimates that, as of June 

2007, less than 19% of IP addresses are spoofable and less than 17% of 

netblock addresses allow spoofing. It seems reasonable to assume that a 

similar proportion of sensible service providers would be willing to deploy a 

symmetry limiter to further ensure the integrity of their subscribers' traffic. 

3.2 Effectiveness Against DoS attacks 

A n army of symmetry-limited bots evokes the greatest DoS attack power 

with a bandwidth flooding attack, as the symmetry limiter simply counts 

the number of packets and is agnostic to packet data length. The following 

list formalizes the parameters to compute the DoS flooding attack strength 

of a given symmetry-limited botnet. 
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N 100 - 100000 size of botnet (number of controlled 

machines) 

Bzombie 384 Kbps upload bandwidth of controlled zom­

bie machine 

Pattack 1500 B (11.71 Kb) length of a bandwidth flood attack 

packet 

L > 80% percentage of symmetry-limited zom­

bies 

X 8 the symmetry x : l ratio threshold 

W 10 sec the window history length 

3.2.1 Traditional DoS attacks 
i 

A naive DoS attacker will simply blast as many large packets as possible at 

the victim. Considering each machine independently, the number of attack 

packets allowed through the limiter will be equal to the bootstrapping packet 

rate (PB) since the victim is assumed not to reply to the flooding traffic. 

Thus, the attack strength, Afi00^ is computed as 

•ft-flood = 

PattackPB(NL) + Bzombie(N(l - L)) 

The attack strength equation clearly indicates attack strength is linearly 

proportional to the botnet size, the proportion of limited vs. non-limited 

zombies and the symmetry threshold itself. While an exponential decrease 

in attack strength is desirable, this cannot be achieved when each source 

host is considered independent of all other sources. Although linear, Figure 

3.1 plots the attack strength in Mbps, which highlights the effectiveness of 

symmetry limiting against naive attackers, showing a significant decrease in 

aggregate attack bandwidth. 
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Figure 3.1: Symmetry limiting vs. simple DoS flood 
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A n additional deterrent for botnet masters running DoS attacks with 

symmetry-limited zombies is that heavily limited machines will reveal the 

identities of compromised machines. A key advantage for the botnet owner 

is the stealthly nature of bot activity - the zombie owner is largely unaware 

of the malicious activity perpetrated by their machine. A symmetry-limiter 

exposes the identity of bot-infected machines, as periodic blasting of wildly 

asymmetric traffic is a clear signature of DoS attacks. A symmetry-limiting 

ISP gains the opportunity to alert the subscriber of infections or to take 

more drastic action, such as blocking all traffic from the subscriber until he 

or she cleans up their machine. 

3.2.2 Symmetry-Aware DoS Attacks 

Covert Bursts A moderately intelligent attacker may attempt a bursty 

attack - establishing high rate symmetric flow(s) with the victim to build 

up symmetry "credits" with which a large amount of attack traffic may sub­

sequently be sent. For instance, the attacker might request to download 

a very large file from the victim to establish a high-rate symmetric data 

transfer over T C P , after which the malicious sender floods the victim with 

T C P S Y N packets for the same flow 5-tuple(s). In this manner, an attacker 

can even momentarily exceed the symmetry threshold to at most 2X, by 

abusing the limiting algorithm - first using the reply traffic to send flooding 

packets at aggregate granularities, and then using the same reply traffic to. 

send further flooding packets at the same 5-tuple granularity containing the 

genuine reply traffic. However, as time moves forward, the previously estab­

lished symmetry of the flow is lost as the high reply rate is diminished with 

the success of the flood. Moreover, the attack success prevents symmetry 
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from being re-established as the victim is unable to send as many replies 

back to the malicious sender. For every victim, there exists a steady state 

. which maximizes the attack bandwidth while providing the victim with just 

enough outgoing bandwidth to maintain the symmetry of the attack flow. 

However, with a symmetry-limiter deployed at the source, the victim is in 

a strong position to employ counter-measures against such an attack by 

any customized policies or heuristics with which to control their own reply 

rate. Thus, for such an attack, the victim has the simple task to detect and 

combat such attacks by not replying to such malicious senders. Thereby 

downgrading the strength of the bursty attack to the strength of the pure 

flooding attack discussed in the previous section. 

Collusion A more sophisticated symmetry-aware DoS attacker will at­

tempt to forge reply traffic from the victim to the zombie machines to get 

more attack packets through the symmetry limiter. A n additional parame­

ter for the acknowledgement packet length is required to formalize this type 

of attack. 

Pack 40 B (.31 Kb) byte length of an acknowl­

edgement (reply) packet 

The sophisticated attacker needs to co-ordinate collusion between his 

or her bots to make sure forged back-traffic is generated from a machine 

that will be capable of sending such forged packets. Although the attacker 

has ultimate control over the connectivity of their own machines, directly 

involving their own machines in the attack traffic stream increases the risk of 

exposing their true identity on the network, making this option suboptimal 

for the attacker. Symmetry-limited bots are also presumed to be ingress 

filtered and consequently cannot send packets with spoofed source address 

information. This leaves the attacker only the portion of their botnet that 
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is not symmetry-limited with which to forge victim reply traffic. 

A single forged acknowledgement may only contribute to establishing 

the symmetry of at most one symmetry-limited zombie, as the source IP 

address field is present in all flow tracking granularities. Thus, the ideal 

collusion attack employs a greedy algorithm to assign the minimum amount 

of non-limited bandwidth to generate forged acknowledgements to produce 

the maximum amount of attack bandwidth from symmetry-limited zombies, 

and uses any remaining non-limited bandwidth as further attack bandwidth. 

For the moment, assume the attacker develops a clever distributed algo­

rithm to (i) determine which zombies are and are not symmetry limited, 

and to (ii) co-ordinate the collusion of non-limited zombies to send forged 

acknowledgements to disjoint sets of symmetry limited zombies. Further 

assume that no zombie receives duplicate forged acknowledgements and no 

forged acknowledgements are wasted by being sent without the possibility 

for the symmetry-limited zombie to send a greater amount of attack traffic. 

Wi th these assumptions heavily weighted in the attacker's favour, the attack 

strength, Acouude, is computed as 

F'pot = N(l - L) * Bzombie/Pack 

Freq = NL * Bzombie/(PattackX) 

A-sym = PattackX * min(Freq, Fpot) 

A free = i V ( l - L) * B z o m b i e - Pack * mm(Freq, Fpot) 

A-collude ~ A-sym + 

where the individual computations represent 
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Fpot the total number of potential forged ac­

knowledgements, available to be sent by 

non-symmetry-limited bots 

Freq the total number of required forged ac­

knowledgements; needed to saturate the 

sending links of the symmetry-limited 

bots with attack traffic 

Asym the aggregate attack strength of the 

symmetry-limited bots 

Afree the aggregate attack strength of the non-

symmetry-limited bots 

Acoiiude the total aggregate attack strength of the 

bot net 

Figure 3.2 plots the attack strength for this symmetry-aware collusion at­

tack versus an attack of equal size without symmetry limiting. Both the non-

limited attack and collusion attack have the same attack strength, with sym­

metry limiting only becoming effective when the number of potential forged 

acknowledgements becomes smaller than the number of required forged ac­

knowledgements to saturate the symmetry-limited bots' attack bandwidth. 

Notice this happens when 

Fpot 

N(l - L) * Bzombie I Pack 
PgttackX 

Pack 

Freq ^* 

NL * Bzombie/(PattackX) > 
L 

Let c = pattackx then solving for L . . . 
*ack 

56 



Chapter 3. Security Evaluation 

Symmetry Limiting vs. Symmetry-Aware Colluding DDoS botnet 
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Figure 3.2: Symmetry-aware DoS flooding attack 
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L 

Thus, the proportion of symmetry-limited bots (L) needed to reduce the at­

tack strength significantly is dependent only on the values Pattack > Pack and 

X. As shown in Figure 3.2, with Pattack = 1500, Pack = 40, X = 8 yields 

c = 300, the corresponding L is 0.99667 - meaning limiting only becomes 

effective when nearly 99.667% of the bots are symmetry limited. The only 

parameter with any (real) freedom is the symmetry threshold X, as packet 

length standards are unlikely to change. Drastically tightening the symme­

try limit to X = 2 - which would continue to permit the recommended T C P 

delayed acknowledgement implementation [3] - the symmetry limiter only 

comes into effect when L = 0.9868 or at 98.6% limiting coverage; still a very 

high percentage of the botnet. 

While these numbers initially seem discouraging, the assumptions heav­

ily favour the attacker, leading to over-estimation of the attack strength. 

The attack scenario assumes no packets are lost, the network delivers pack­

ets with zero latency, and the co-ordination between colluding zombies is 

precise - the timing of every forged A C K enables a symmetry-limited zom­

bie to send a full X attack packets (ex. there is no interference by innocent 

use of the zombie machine by the PC ' s actual owner either). While the anal­

ysis could certainly model these factors to re-compute a more realistic attack 

strength, a much less tangible but far more significant factor in executing 

this attack from the attackers perspective, is the risk of exposure. 

The need to forge back-traffic forces a botnet master to expose the net­

work of machines under his or her control. Current botnets leverage the 
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anonymity of each bot when carrying out various computer crime. Any 

one bot need only communicate with the master IRCd server. If one bot 

is discovered, the identities of the other bots remain secret. However, the 

co-ordination to forge back-traffic across the entire botnet requires collab­

oration between bots, both in the discovery of which zombies can forge 

back-traffic, and which zombies need back-traffic forged for them, as well as 

during the attack. Traditional DoS defense techniques can capitalize on this 

wealth of colluding traffic to uncover the network of bots responsible for an 

attack, perhaps even leading to the dismantling of the botnet. 

Additionally, there is the initial effort and the technical challenges to 

develop the collusion attack code. A symmetry-aware colluding DoS bot will 

require features to (i) determine which bots are symmetry limited, ingress 

filtered, or unfLltered, (ii) coordinate which unfiltered bots will forge back 

traffic for which symmetry limited bots, and (iii) synchronize the execution 

of the attack itself. This introduces significantly more control traffic into the 

botnet infrastructure, adding to the risk of exposing the botnet with such 

an increase in traffic exchanged between the attacking machines. Both the 

effort required to develop the code for this attack and the risk of exposure 

may guide the attacker by the law of diminishing returns, with the cost to 

execute such an attack greater than the value of the attack itself. 

3.2.3 Limits of Symmetry Limit ing 

Packet symmetry enforcement adds an implicit signaling channel to the net­

work, with PB as the allowed admission rate to this channel. As the flooding 

attack analysis showed, PB is linearly proportional to and is thus the limiting 

factor for flooding attack strength. Recalling that the PB parameter must 
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allow a source to send at least one packet to a destination host to initiate 

(or bootstrap) communication that destination, it is clear PB can never be 

reduced enough to defend all flooding attacks against victims of arbitrarily-

small provisioning. Tuning the parameters X and W in order to decrease 

PB as a defense against pure volume-based botnet DoS attacks simply cre­

ates an arms race - as botnet sizes grow, PB must shrink proportionally. 

Furthermore, shrinking PB is difficult as X must be large enough to allow 

communication to proceed and W must be short enough not to significantly 

degrade the user experience. However, any connection-oriented or signaled 

network (ex. A T M , IP+RSVP, etc.) is attackable through denial-of-service 

on its control channel. Thus, as it is futile to choose parameter values based 

on attack strength, it remains most practical to define PB on the basis of 

the characteristics and user acceptability of "good traffic". 

3.3 Resilience to Attacks 

The symmetry limiter is naturally resilient - being designed such that in­

creasing attack power merely strengthens the defensive response. However, 

this section explores ways in which an attacker could attempt to attack the 

symmetry mechanism itself. 

3.3.1 DoS your neighbour 

A n attacker cannot deny service to his or her fellow subscribers by spoof­

ing source address information and corrupting their outgoing flows. A 

symmetry-limited network is assumed to ensure the integrity of source ad­

dress information. Modern network equipment vendors (ex. [51]) ship prod­

ucts that make achieving network integrity a top priority, as source address 
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information is crucial for proper management of IP-based services. Thus, it 

is reasonable to assume source address information is not spoofable, which 

prevents an attacker from poisoning a neighbouring subscriber's symmetry. 

3.3.2 Memory Exhaustion 

A n attacker could attempt to deny connectivity to other symmetry-limited 

subscribers by consuming all the available memory of the symmetry lim­

iter. A symmetry limiter helps avoid such an attack as the per-flow state 

required to track packet symmetry is minimal. The memory requirements 

for a (simplified) symmetry tracking data structure breakdown as follows: 

flow tuple... 

sip + dip (IPv6) 2 * 16 bytes = 32 bytes 

prot 8 bits = 1 bytes 

sport + dport 2 * 2 bytes = 4 bytes 

window counters ... 

tx + rx 2 * 8 bytes = 16 bytes 

window intervals ... 

tx + rx 2 * 10 * 4 bytes = 80 bytes 

window timestamps ... 

tx + rx 2 * 4 bytes = 8 bytes 

pointer to aggregate record ... 

parent 4 bytes 

total 145 bytes / flow tracking record. 

This minimal state allows a symmetry-limited network to support a large 

number of flows. For instance, with only 512 M B of R A M dedicated to sym-
. , , . , .. , 512MB*W24KB/MB*1024B/KB metry tracking, a symmetry limiter can support i45B/rec : 
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3702558 flow records in total. In the worst case with all flows from com­

pletely different sources (i.e. none of the aggregate flow tracking records 

are shared by finer grained flow records) and each flow with 5 separate 

flow records, the limiter can track at minimum 3702558/5 = 740511 flows. 

Under normal conditions, many flows will share flow tuples at coarser gran­

ularities, especially the 1-tuple for all flows coming from any one sender. 

A system administrator can thus configure the symmetry limiter accord­

ing to the client-demand on the network, both in terms of the number of 

subscribers and the expected flows-per-subscriber. 

The maximum flow capacity for the symmetry limiter extends the "good 

traffic" definition beyond just packets-per-flow to flows-per-client as well. 

A n administrator may configure the system to allow 100 flows per client, 

allowing one limiter to support a network of nearly 7500 subscribers. Many 

clients will likely consume far fewer than 100 flows at a time, while other 

clients may at times exceed this threshold. Under normal operation, the 

limiter can remain agnostic to imbalances such as this. However, under 

conditions of extreme stress (i.e. memory exhaustion), discarding finer-

grained records while retaining coarser-grained tracking records is made easy 

by the tree-structured organization of flow tuples. Furthermore, only those 

clients consuming more than their "fair share" of flows can be collapsed 

in this manner - punishing only the heavy consumers of the network with 

coarser grained tracking. 

A clever attacker might attempt to exploit this memory conservation 

defense to execute a DoS attack. If the attacker could force tracking down 

to the 1-tuple ( s i p , * , * , * , * ) granularity, he or she could establish a high 

rate 1:1 symmetric flow with another machine outside the symmetry lim­

iter, which would enable the attacker to use the remaining X — 1 packets to 
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flood some other completely different destination IP address (since memory 

has been consumed to the point that only 1-tuple records are retained). To 

thwart such an attack, the limiter simply does not generalize flow tuples 

beyond the 2-tuple ( s i p , d i p , * ,* ,*) granularity, ensuring that all destina­

tions (i.e. potential victims) are tracked separately. This essentially places 

a cap on the maximum number of concurrent connections per client for 

a symmetry limited network. However, considering again only 512 M B of 

symmetry-tracking R A M , under extreme memory pressure, the limiter could 

support each of the 7500 clients with / = 492 flows to unique destination IP 

addresses (where / is calculated from (1 + / ) * 7500 = 3702558), dropping 

any flows that exceed this limit. 

Note the attacker would also require the ability to spoof source address 

information for this attack to be successful, since the memory collapsing 

mechanism ensures each sender only receives a fair-share of flow-tracking 

records at each granularity. As discussed above, it is assumed that source 

address information is unforgeable, making this attack impossible in the first 

place. 

3.4 Summary 

This chapter evaluated the effectiveness of DoS protection provided by sym­

metry limiting, assuming the parameter values for the symmetry threshold 

X and the window length W as established in Chapter 2. Both traditional 

bandwidth flooding and covert burst DoS attacks are severely limited with 

packet symmetry. Though symmetry-aware colluding DoS attacks could the­

oretically use forged back-traffic to maintain symmetry and execute powerful 

DoS attacks with symmetry-limited machines, the complexity to build the 
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attack code as well as the risk of exposing the precious botnet are strong 

deterrents against these collusion attacks. The minimal state used to track 

packet symmetry allows a symmetry-limited network to support a large num­

ber of flows while simultaneously resisting memory exhaustion attacks on 

the tracking mechanism itself. 
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Chapter 4 

Implementing a Symmetry 

Limiter 

A symmetry limiter prototype was built to evaluate the effects of symmetry 

limiting on the traffic dynamics on a live network. As per the ISP network 

deployment strategy, the prototype tracks and limits packets across a Linux 

network bridge. The values for the symmetry threshold X, the tracking 

window length W and the window interval length I are configurable, but 

the default values for the system are those derived from the traffic analysis 

(X = 8, W = 10s, I = Is). The symmetry metric is computed as a flat value 

across the entire window, rather than the two-stage computation suggested 

to tolerate buggy T C P stacks in the analysis of asymmetric T C P flows. 

The implementation also does not implement any special flow tracking for 

multicast addresses, treating all IP addresses as the same. 

4.1 System Architecture 

The high-level algorithm used by the symmetry limiter is relatively simple. 

The system prevents the packet symmetry metric max^ ' i ) from Section 

2.1.2 for any flow from exceeding the asymmetry threshold X. As such, for 

each IP packet received, the limiter (i) looks up the finest granularity flow 

record for the given packet (creating the records if they do not exist), (ii) 
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Figure 4.1: System architecture for Linux symmetry limiter prototype 

checks if the packet causes the Tx :Rx ratio to exceed the X : 1 threshold, 

and if so, drops the packet, (iii) otherwise, updates the flow record counters 

and forwards the packet. 

Figure 4.1 captures the overall system architecture for the symmetry 

limiter prototype. The architecture separates the tracking and limiting re­

sponsibilities for better encapsulation, making a clear division between pa­

rameters to tune symmetry tracking and those to tune symmetry limiting. 

A user-space daemon is responsible for pulling tracking and limiting data 

from the fast in-kernel data path, making this data available for display via 

the web interface, as well as potential further analysis. 

The use of a Linux network bridge allows a limiter to be transparently 

G6 



Chapter 4. Implementing a Symmetry Limiter 

deployed on any link joining two (or more) networks. Neither end hosts 

nor routing infrastructure require any configuration changes - the limiter 

simply bridges two networks, and any limited traffic just looks like any other 

network loss. 

Performance was a key factor in the design. The system must achieve 

high throughput for source-based symmetry limiting to be practical. A 

corner stone of the argument in favour of packet symmetry is that symmetry 

limiting does not negatively affect innocent users. However, a significant 

degradation in throughput or performance would have a negative on all 

users - innocent and malicious alike. As such, careful attention was paid 

to optimizing the data path that packets traverse through the symmetry 

limiter. The individual performance considerations for each module are 

discussed in the sections below. 

4.1.1 Tracking Packets 

The packet symmetry tracking module (br_symtrack) uses the Netfilter eth-

ernet bridge to hook into the arrival of packets traveling across the bridge. 

This Netfilter ethernet bridge is built into 2.6 Linux kernels, and can be 

patched into earlier kernel versions. The tracking module can be loaded 

dynamically into (and out of) the kernel, however, flow tracking data is not 

persistent across loads and unloads. This module consists of 1767 lines of 

, documented C code and took three months to develop. 

Flows are tracked at all flow-tuple granularities, from the full 5-tuple to 

the source-only 1-tuple. The flow tuples at each of the 4 aggregate granu­

larities are shared by all of the flows at that granularity. Thus, flow tuples 

are organized in a tree structure, branching out at each successive granu-

67 



Chapter 4. Implementing a Symmetry Limiter 

larity. The tree is bidirectional - child flow tuples have a pointer to their 

parent, and a parent has a linked-list of pointers to all its children. A single 

global record tracks the packet, symmetry of the entire network, which could 

be considered the 0-tuple granularity. A l l 1-tuples have this global record 

as their direct parent, making the 0-tuple record the root of the tree of all 

tracking records. 

Flow tracking occurs from finest-to-coarsest granularity. For a given 

packet, the tracking module first looks for the corresponding 5-tuple. If 

that is not found, then the 4-tuple is searched for, and so forth, until the 0-

tuple global record is reached. When appropriate tuple is found (note that 

we will always find the 0-tuple), all missing finer-granularity flow-tuples 

above the one found are created, up to the full 5-tuple granularity (or a 

configurable finest-granularity setting). Any new records have the proper 

parent-child links set such that the flow tuple tree remains consistent. Then, 

the (tx, rx) counters are updated to reflect this new packet, traversing the 

finest to coarsest tuple for the packet. The window history is updated for 

each flow tuple, using the arrival time of the new packet as the current time. 

This process optimizes the data path by maximizing the work done for the 

first packet seen in a flow, and minimizing the per-packet maintenance to 

continue tracking the flow. Once the first packet has been seen, all flow-tuple 

granularities have been created for that flow, and each subsequent packet 

merely traverses its branch in the tree from finest-to-coarsest granularity, 

updating the windowed counters along the way. 

A single hashtable stores all the flow-tuples, using chaining to resolve 

collisions. The size of the hashtable defaults to use 1/16384 of memory, as 

suggested by the Linux tcp.c code, but this can be configured at compile 

time. A tracking record at any granularity is expired and purged, having 
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its memory reclaimed, after 30 seconds of inactivity (though this expiration 

time is configurable and can be changed dynamically). 

A single global read-write spin-lock is responsible handling concurrent 

access to flow tracking records. While this choice favours the assurance of 

correctness over performance for the tracking module, other components 

in the architecture take this into account to control any potential negative 

effects on performance. 

Flow tracking data is exported using the /proc pseudo file system, with 

separate files for each flow-tuple granularity, and one file for all granularities. 

files in /proc/br_symtrack/... 

counters_src 1-tuple counter records 

counters_src_dst 2-tuple counter records 

counters_src_dst_prot 3-tuple counter records 

counters_src_dst_prot_dport 4-tuple counter records 

counters_src_dst_prot_dport_sport 5-tuple counter records 

counters_all all counter records 

To optimize the data path, the seq-file subsystem is used to export data 

to /proc. This subsystem sets up data access as a pull operation - data 

moves from kernel to user space only when data is requested (i.e. via a file 

read on one of the above /proc files). The seq-file A P I presents an iterator 

interface for the kernel module on which to map the data to be exported. 

The global spin-lock is held with a write-lock while this iterator traverses 

the hashtable of flow tuples. This allows the traversal to purge stale tracking 

records while active flow records are written as output. Again, although this 

locking strategy favours correctness over performance, other components 
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are sensitive to this choice and coordinate their actions to prevent'possible 

performance issues. 

The tracking module provides a public A P I for the limiting module to 

lookup and query flow records with respect to their packet symmetry. The 

flow tracking structure also contains extra windowed counters to store the 

packet drops for that granularity. The tracking module exports a function to 

update these counters, thus tightly coupling packet dropping data to the flow 

records, while remaining orthogonal to the actual packet drop enforcement 

module. As packet dropping counters are stored in the tracking module, the 

module also pushes changes to flow limiting status to user space via another 

character device, /dev/symtrackJivelog. The tracking module exports the 

flow-tuple along with the starting and ending times when the flow tuple 

experienced limiting. The tracking module assumes that limiting starts 

when the flow's packet drop, counters are incremented above 0 for the first 

time, and that limiting ends when these drop counters return to 0 again. 

The flow tracking data structure consumes a total of 320 bytes. This 

is larger than the size suggested in Section 3.3.2 as extra memory is con­

sumed with the fields to store the record in the hashtable, the linked-list 

pointers for parent-to-child tree traversal, the extra packet drop windowed 

counters, the limiting state bits, and padding between each field. Though 

this makes the actual record size a little over twice that of the predicted 

tracking structure, this level of memory usage still scales to support a large 

number of flows. Considering the worst case with completely independent 

flows (i.e. no sharing of aggregate flow-tuple records), with 512 M B R A M , 

this tracking module prototype can support 512 * 1024 * 1024 bytes / 320 

bytes per records = 1,677,721 flow records, which supports a minimum of 

1,677,721/5 = 335,544 total flows. Estimating the average number of flows-
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per-client at 100, such a limiter can still support over 3300 clients. This 

result is encouraging for the scalability of symmetry limiting, suggesting a 

special-purpose symmetry-limiter network appliance may scale to the needs 

of modern ISPs. 

4.1.2 Filtering Packets 

The filtering module (ebt_symtrack) is an extension module for the ebtables 

ethernet bridge firewall. This module uses the public A P I of the tracking 

module to query for flow tracking data, consequently dropping packets for 

flows that exceed a symmetry threshold. The symmetry threshold is a dy­

namically configurable value possessed by the filtering module. This module 

consists of 194 lines of documented C code and was developed in tandem 

with the tracking module (br_symtrack). 

Ebtables is essentially the equivalent of the iptables firewall, only at 

the ethernet layer. It provides three chains, or tables, for ethernet frame 

arrival; I N P U T for frames destined to the machine, O U T P U T for frames 

sent from the machine, and F O R W A R D for frames passing through the 

machine (i.e. bridged frames). The F O R W A R D chain is the one used by 

the filtering module: Rules can be added to each of these chains, where 

each rule examines properties of the frame (i.e. M A C or IP addresses), 

and based on these properties the frame can be accepted or dropped. The 

filtering module adds a new rule type to ebtables that accepts or drops 

frames based on the symmetry for the flow to which the frame corresponds. 

This symmetry limiting rule provides options to configure the symmetry 

threshold X, as well as the flow-tuple granularity at which limiting is to 

occur. B y default, the limiter uses the finest-granularity limiting strategy 
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discussed earlier, but allows a specific flow-tuple granularity to be chosen. 

There is no default value for the limiting threshold X, forcing the calling 

system to specify this value explicitly. 

The filtering module is relatively simple compared to the tracking mod­

ule. The symmetry limiting rule implementation simply uses the per-packet 

hook of the ebtables rule framework to decide whether to accept or drop a 

given packet. In this hook, the module merely calls into the tracking module 

to lookup the tracking record for the flow that corresponds to the packet 

in question (which is provided as an argument to the hook callback).' If 

the flow's symmetry exceeds the threshold specified by the rule, the rule 

marks the packet to be dropped, otherwise the packet is marked as being 

accepted by the symmetry rule, and goes on for further processing by any 

remaining rules in the F O R W A R D chain. The filtering module also uses 

the public A P I to increment the packet drop counters for flows that are 

subjected to symmetry limiting, providing valuable feedback to the tracking 

module regarding limiting behaviour. 

4.1.3 User-level Daemon 

The user-level daemon process acts as the control centre for the symmetry 

limiting architecture. It consists of 1783 lines of documented Python code 

and was developed in less than one month. This process sets the ebtables 

rules to limit flows based on symmetry, specifying at which threshold and 

granularity to limit. The daemon is also responsible for marshaling the 

tracking and limiting data from kernel space to user space, reading directly 

from the /proc/brsymtrack/'counters... files and from /dev/symtrackJivelog. 

The interval at which the kernel data is read is configured on startup, and 
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defaults to poll once every 2 seconds. At present, the kernel data is simply 

copied to user space and stored in the file system for use by the other system 

components. 

It is important that the polling interval used to fetch tracking data from 

the kernel is not too short, given the locking strategy employed by the kernel 

tracking module. Extremely frequent reads to the /proc/br.symtrack/'counters. 

files could cause a severe performance degrade, recalling that the kernel 

tracking module holds an exclusive write-lock while writing tracking data 

output. Thus, centralizing the access to the kernel data with this daemon 

process prevents an attacker from exploiting this implementation decision. 

The system administrator controls this polling interval, allowing it to be 

configured to scale as needed. This default value of 2 seconds was chosen 

rather arbitrarily to provide instantaneous-enough access to tracking data. 

However, this value has seemed to have little negative effect on overall sys­

tem performance. 

A n additional mechanism built into the system purely for the sake of 

encouraging deployment is the ability to exempt a specific flow granularity 

from symmetry limiting. This feature is implemented by the daemon pro­

cess, by inserting an additional ebtables rule per exempt flow just ahead of 

the symmetry limiting rule in the F O R W A R D chain. Each of the flow ex­

emption rules simply check that the IP address and port number information 

matches those of the exempt flow granularity, and accept the packet, stop­

ping the traversal of the remaining ebtables rules. To set new exemptions, 

the daemon checks certain drop-box files, at the same polling interval used 

to read the tracking data, for requests to exempt specific flows from sym­

metry limiting. These requests are simply ascii text detailing the flow-tuple 

to be exempt and a time delta of how long the exemption should remain 
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active. Thus, the daemon also regularly checks all flow exemptions for any 

that have expired, promptly removing that flow's exemption rule from the 

ebtables chain. 

4.1.4 Web Console 

The main purpose of the web interface was to make symmetry tracking data 

accessible to the end user. This dynamic A J A X front end provides access 

to the flow tracking data.in real-time, with a configurable refresh rate, as 

shown in Figure 4.2. For privacy, a symmetry limited client is only given the 

flow tracking data for its own flows. Only a system administrator connecting 

directly to the symmetry limiter machine is able to view the tracking data 

for all flows traversing the bridge. The web interface consists of 1731 lines 

of H T M L and Javascript code and was developed over the course of two 

months. 

The interface also allows end-users to request limiting exemptions for 

flows that may be exceeding the symmetry threshold. Recall again this 

mechanism is only incorporated to encourage and facilitate experimental 

deployment, since an end-user would always have the ability to turn off 

the mechanism at any time. Such an exemption mechanism available to 

all clients should not be incorporated into a commercial deployment, as 

attackers could simply turn off limiting for their attacks. 

4.2 Performance Evaluation 

The Emulab system [79] was used to create a network topology to build 

and evaluate the symmetry limiter prototype. The experimental network 

topology is given in Figure 4.3. Machine B was configured as a bridge 
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Figure 4.3: Symmetry limiter evaluation network topology. 

between host S and D. A l l machines were equipped with Pentium IV 3200 

M H z processors, 1024 M B of R A M , and ran a standard image of Fedora 

Core 4. The machines were connected on a VLAN-switched network with 1 

Gbps links. 

The following experiment determines the performance impact of the sym­

metry limiting prototype on network throughput. As the prototype targets 

deployment on a Linux bridge, the maximum throughput of the system is 

confined to the maximum throughput of the Linux bridging architecture. As 
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such, the evaluation methodology first measures the throughput of the raw 

Linux bridge. This forms the baseline to which symmetry limiting through­

put is compared. 

The ttcp benchmark was used to measure the T C P throughput achieved 

between S and D. The baseline configuration uses the raw ethernet bridge 

setup as described above. The symmetry limiting configuration uses the full 

prototype architecture of symmetry tracking and limiting modules, as well as 

the daemon process with the default polling rate of 2 seconds. Four separate 
i. 

runs measure the effect of junk flooding traffic on throughput performance, 

both for the baseline and symmetry limiting configurations. The data points' 

measured 0, 4000, 8000, and 16000 packets per second of noise traffic. The 

noise traffic consisted of packets with randomly generated IP and layer 4 

header information to increase the workload of the symmetry limiter to 

create records and track these additional flows. A single trial consisted of 

sending 262144 packets, which took roughly 25 seconds for each trial. Five 

trials were conducted for each run, and the average throughputs are reported 

in Figure 4.4. Symmetry limiting throughput degrades equally with the 

throughput of the raw Linux bridge, independent of extraneous noise traffic, 

which one would expect to slow symmetry tracking to some degree. As such, 

this result is promising and suggests that symmetry limiting imposes a small 

and constant per-packet overhead. 

Also of interest, oprofile results indicate that the limiter spends the ma­

jority of its C P U cycles in two functions of the tracking module; the flow 

tuple lookup function used to find a tracking record in the hashtable, and 

the packet parsing function used to pull the flow-tuple fields out of the raw 

packet data. This suggests that the single-lock strategy combined with the 

2 second polling rate does not impact performance significantly - otherwise 
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Figure 4.4: Comparing symmetry limiting throughput performance. 
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one would expect significant time spent in the iterator routine used to write 

tracking data to user space. 

4.2.1 Future Optimizations 

Although the performance of the prototype is rather encouraging, there are a 

number of optimizations that would improve performance to an even greater 

extent. As suggested by the oprofile results, the largest gains could be made 

by improving the hash lookup and packet parsing code. 

The time spent in the hash lookup function could be reduced drastically 

(nearly 50%) by introducing tighter coupling between the tracking and limit­

ing modules. Currently, the same hash lookup occurs twice for every packet 

that is not dropped due to symmetry limiting - the first time in the limiting 

module to verify the flow is not over symmetry, and the second time in the 

tracking module to update the flow tracking structures. While this embod­

ies good software design principles of encapsulation and separation-of-duty, 

it is also slower. A n optimization might use another field in the packet's 

socket buffer structure (which is passed to both the tracking" and limiting 

callbacks), to store the pointer to the symmetry tracking record for that 

packet. The limiting module, having done the initial hash lookup, could set 

this pointer and the tracking module could check this field before doing its 

own lookup. This would optimize the common-case, as for all packets but 

the very first packet for a flow, the tracking record should be found by the 

limiting module and this pointer-sharing should succeed. 

The packet parsing code could also be optimized by tighter coupling. 

Currently, the full 5-tuple of fields are always parsed from the raw packet 

data, after which the mask of the desired flow-tuple granularity is generi-
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cally applied. This could be trivially optimized by taking the granularity 

mask into account while parsing the raw packet fields, again likely reducing 

the cycles spent in this function. Notice that the packet parsing also occurs 

twice per-packet, which could be reduced similar to the hash lookup func­

tion by sharing results across the tracking and limiting modules. However, 

independent parsing of the packet buffer would allow the tracking module 

to verify the tracking record in the packet buffer actually corresponds to the 

correct flow. 

Although the performance measurements do not indicate the single-lock 

strategy as a bottleneck, additional improvements could certainly be made 

there as well. Firstly, with sufficient memory space available, purging stale 

records is perhaps not as important as high flow throughput. Thus, if the 

iterator to output tracking data is changed to no longer purge stale records, 

that process would only require a read-lock, which can be held while existing 

flows continue to pass through the limiter. This would still prevent new flows 

from being created while the output was being written since creation (like 

deletion) requires a global write lock to the hashtable to prevent parent 

records from being deleted while new children are created. A three-lock 

hierarchy might.solve this problem, where only the first lock is needed to 

read the hashtable, the first and second locks are needed to create new flow 

records, and all three locks are required to delete records. 

To further optimize the data exchange between kernel and user space, 

the /proc pseudo-files could export binary data rather than ascii character 

data. Simply writing the raw bytes of the flow tracking structure would 

save C P U time consumed by the string formatting routine currently used to 

produce a relatively human-readable representation of the data. However, 

as with the previous optimization, the kernel-to-user space data transfer has 
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yet to become a system bottleneck. 

4.3 Deployment Experience 

To evaluate symmetry limiting against real traffic, the prototype was de­

ployed on a network bridge between the U B C Distributed Systems Group 

(DSG) lab network and the external internet. The bridge machine ran an 

unmodified Linux 2.6.16 kernel on a 2.26GHz Intel P4 processor with 631 

M B of R A M . The symmetry tracking and limiting modules were run on 

this machine, along with the web server to provide the symmetry-limited 

machines access to the live tracking and limiting data for their flows. 

Live deployment affords the analysis of symmetry limiting effects on live 

traffic dynamics, which is important as such effects cannot be simulated in 

the analysis of network traces. A secondary aim is to discover protocols or 

applications with asymmetric behaviour that were not represented in the 

network traces examined. Consequently, the focus of deployment is more 

to evaluate any usability effects of symmetry limiting, i.e. determining if 

any protocols or applications actually break subject to symmetry limiting 

dynamics. Catching real attack traffic is of much less concern, as the user 

base of computer systems researchers are unlikely to mount real attacks. 

As the results show, symmetry limiting had little to no effect on end-user 

experience, even in light of some traffic being limited. 

4.3.1 A Symmetric Observation 

A n original concern was that voice-over-IP (VoIP) traffic may exhibit signifi­

cant asymmetry. The nature of VoIP applications - high real-time demands 

to deliver voice data immediately combined with mild tolerance for data 
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Synnetry of VoIP traffic: R 18 ninute ca l l with Skype 
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Figure 4.5: Symmetry of Skype VoIP traffic. Although several periods of 

one-way conversation occurred during the call, tx:rx packet symmetry re­

mains steady around 1:1 for the entire call duration. 
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loss - lead most VoIP implementations to use U D P as an underlying trans­

port protocol, avoiding possible transmission delay due to T C P congestion 

control algorithms. However, experience with Skype [70], a popular (free) 

multi-platform VoIP application which uses U D P as underlying transport, 

showed that VoIP is highly symmetric, maintaining a nearly 1:1 Tx :Rx ra­

tio throughout entire calls. Figure 4.5 illustrates the symmetry exhibited by 

Skype's VoIP traffic for one call placed through a D S G symmetry-limited 

machine. This near-perfect packet symmetry is suggestive of an 'always-on' 

mode for VoIP operation - that a VoIP client need not distinguish between 

on or off periods in which to send or not send sound traffic. Rather, it simply 

sends all sound traffic from the source end, considering ambient background 

noise equally valid as part of the conversation. 

4.3.2 Asymmetric Observations 

Multicast DNS 

Traffic to U D P port 5353 was frequently limited - between zero and 5 times 

per day. Port 5353 is the standard port for multicast DNS (mDNS) [23], 

an extension to DNS to perform queries over IP Multicast to provide zero-

configuration transparent connectivity to a variety of devices on the local 

link. The protocol has been designed with multiplicatively increasing in­

tervals between queries as well as a need-to-know query policy to mini­

mize bandwidth and C P U consumption for smaller less powerful devices 

(i:e. cell phones, PDAs, etc.). However, when network connectivity for a 

device changes (i.e. connects to network, wakes from sleep, etc.), it must 

perform the mDNS start up phase. During start up, the machine first must 

probe the local link for any other machines with conflicting names as the 
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machine starting up. Probes may contain multiple DNS questions in a single 

packet, and thus may only require a single packet (we observed only single 

packet probes). Each probe request must be separated by 250 ms intervals. 

If no conflicting responses are received, the machine then moves to the an­

nouncing phase, during which the responder must send at least 2 responses 

containing all the machine's link-local resource records. The responses have 

multiplicatively increasing delays, starting from 1 second and doubling for 

each subsequent response. 

For the D S G deployment, symmetry limiting only occurred during start 

up of a responder. The start up phase is the most asymmetric portion of 

the protocol, as probing with no conflicts followed by announcing leads to 

a short but high rate datagram stream from the responder to the multicast 

address, with no back traffic to signal to the symmetry limiter that this is 

desired. However, this presents little concern to using symmetry as a DoS 

defense mechanism. Firstly, the bootstrapping packet rate allows a one-

packet resource record set to complete a no-conflict start up phase without 

experiencing any limiting (3 probe packets and 2 response packets). From 

the D S G traces, no mDNS packet seen was more than 350 bytes and mDNS 

allows up to M T U sized datagrams as an extension, indicating there is sig­

nificant room for larger resource record sets that fit within a single packet. 

Thus, without any changes to symmetry limiting, the basic usage of mDNS 

is supported. 

The limiting that actually occurred, however, seems to be caused by 

buggy (or misbehaving) mDNS clients. During what appears to be the start­

up phase of mDNS, the client sent unsolicited mDNS responses (responses to 

no queries) as well as disobeyed the recommendation (an R F C "SHOULD") 

to group queries and responses into the smallest number of network packets 
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possible. As such, the client essentially performed two simultaneous start-up 

phases, probing for different resource record sets in each case, rather than 

simply using one start-up phase to probe for all records. Although the pro­

totype does not support special symmetry tracking for multicast addresses, 

including such special tracking would not prevent the flows described above 

from being limited. No back-traffic from other mDNS responders on the lo­

cal link was observed. As such, the flows would remain equally asymmetric 

and be subjected to the same limiting. 

T C P Asymmetry 

Several T C P flows experienced symmetry limiting for the use of large con­

gestion windows after a relatively long period of inactivity cause several 

bursts of asymmetric T C P traffic. As discussed earlier in Section 2.4.3, this 

problem is a known implementation bug in T C P stacks [3], which manifests 

particularly with the re-use of idle T C P connections for persistent H T T P 

transfers. 

Another cause of asymmetric T C P traffic that was not represented in the 

trace analysis is the opening and/or closing of several T C P connections in 

parallel. Several peer-to-peer file sharing or content distribution applications 

demonstrate this behaviour on start up, shutdown or when new content is 

requested from multiple peers. The actual observed limiting was caused by 

an RSS feed reader application closing all its outstanding T C P connections, 

presumably on shutdown. This occurred after an extended period of inac­

tivity, perhaps while the end-user read the available feeds. After this idle 

period, the sliding window history was lost. While the first X T C P FINs 

got through the limiter unscathed, these X F I N packets push the 1-tuple 
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granularity's asymmetry to the X : 1 threshold, and due to the limiting 

algorithm's traversal of all aggregate flow records for 5-tuples with rx — 0, 

subsequent F I N packets were dropped. 

Thus, the symmetry threshold also places an upper bound on connec­

tion parallelism, preventing the number of outstanding T C P S Y N or F I N 

requests from exceeding X. This is reminiscent of Microsoft's limit on half-

open T C P connections [5] which was to the great discontent of Windows-

based peer-to-peer application users, prompting the users to find means to 

subvert the throttling mechanism [57]. This suggests users would be less 

than tolerant of their peer-to-peer applications malfunctioning due to sym­

metry limiting. However, such limiting could be prevented by only limiting 

at 2-tuple and finer granularities. While this prevents symmetry limiting 

from actively blocking host scanning activity, this represents a tradeoff for 

a system administrator to balance. 

4.3.3 Security Evaluation 

Having a symmetry limiter prototype deployed, it seemed prudent to demon­

strate the effectiveness of symmetry limiting against a DoS flooding attack. 

Rather than using genuine DoS attack tools from the wild, this experiment 

uses the same ttcp program to create the innocent flow and the malicious 

DoS flood that attempts to block the innocent flow from completing. The 

network topology used for this experiment is given in Figure 4.6, with each 

machine connected on a switched V L A N with 100 Mbps links. 

Figure 4.7 demonstrates the effectiveness of symmetry limiting against 

a U D P DoS flood. The scenario is the same for both plots in the figure; 

the innocent ttcp transfer begins at time zero, and after 10 seconds a U D P 
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Figure 4.6: Network topology for example DoS flood attack. 
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Figure 4.7: Effectiveness of symmetry limiting vs. a U D P flood. 
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flood is started. In the first plot without symmetry limiting enabled, the 

U D P flood completely saturates the link through the bridge and prevents 

the innocent transfer from making any progress. Note that the U D P flood 

packet rate is much lower that the T C P transfer since the U D P flood uses 

larger 8192 byte packets while the T C P transfer uses standard 1500 byte 

packets. In the second plot with symmetry limiting enabled, although the 

U D P flood slightly hinders the data transfer's performance slightly, this 

innocent flow maintains a high throughput as the U D P flood is throttled 

down to essentially PB = 1 packet per second. 

4.4 Summary 

This chapter discusses the implementation and deployment of a symmetry 

limiter prototype. The prototype tracks and limits flows across a Linux 

bridge and provides a web interface to view the tracking and limiting data. 

The performance evaluation suggests the symmetry limiting mechanism im­

poses a small and constant per-packet overhead on the network, which builds 

confidence in the scalability of in-network symmetry limiter deployment. 

The live deployment of the prototype on the link connecting the U B C Dis­

tributed Systems Group lab network to the external Internet illustrated 

the minimal and largely innocuous effect of symmetry limiting on applica­

tion level networking. Lastly, the prototype demonstrated the effectiveness 

of symmetry limiting against an example DoS attack, maintaining high-

throughput for an innocent symmetric flow in the face of a malicious band­

width flood. 
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Related Work 

5.1 Identifying Sources 

Ingress filtering [31] pioneered the use of a good-traffic definition for source-

based filtering by only allowing an end host to send packets with a genuine 

source address (an address that starts with a prefix that is advertised by 

the network). Although the initial acceptance and deployment of ingress 

filtering was low, the Spoofer project [15] currently estimates that less than 

twenty percent of net blocks are spoofable, indicating that ingress filtering 

is widely deployed today. However, this provides aggregate source address 

authentication - a source behind the ingress port can still masquerade as 

another host on the same network. Precise binding of an IP address to a 

machine requires the end host have a dedicated physical link that is not 

shared with other hosts, as in a switched L A N . Access servers, where a 

P C connects to a server using a login-password or other credential, to gain 

access to the-network can also provide finer-grained control over source ad­

dress binding. As discussed, symmetry limiting requires fine-grained source 

address integrity to prevent malicious hosts from denying service to other 

innocent hosts on the same network. 

Traceback [12] and packet marking schemes [65] reconstruct reverse paths 

from victim to attacker(s), assuming IP address information can (and will) 

88 



Chapter 5. Related Work 

be spoofed. However, the probabilistic nature of these schemes requires a 

large volume of traffic to be observed before enough path information can 

back propagate to each hop along the path. This impedes victims of smaller 

scale attacks from using these techniques, and the period of observation 

delays the investigation and response to large scale attacks. 

5.2 DoS Attack Detection 

Change-point monitoring [77] uses stateless, flow-independent statistics to 

detect DoS activity. The solution tracks T C P S Y N / F I N and S Y N / S Y N -

A C K pairs, which are inherently unbalanced for the most common DoS 

attack, the T C P S Y N flood. Like packet symmetry, change-point monitoring 

is also effective when deployed at the source network, since disproportionate 

S Y N - A C K s will return to the attacker's network. However, this solution 

is tightly coupled to T C P protocol semantics and specifically detects S Y N -

floods only. Attackers can remain undetected by simply launching U D P -

based attacks. On the other hand, symmetry limiting is agnostic to protocol 

and can thwart flooding attacks regardless of the IP protocol used. 

The M U L T O P S data structure [35] is designed to detect and combat 

bandwidth DoS attacks agnostic to protocol, using the balance of incoming 

and outgoing packet rates. M U L T O P S is a tree that tracks packet rates 

for aggregate IPv4 address blocks at byte-level granularity. The tree ex­

pands and contracts within a confined memory space, moving from coarser 

to finer prefixes as packet rates for those prefixes increase. This strategy is 

meant to thwart attacks against the M U L T O P S structure itself. However, 

initially tracking at coarser granularity allows attackers to hide malicious 

traffic within a larger body of normal-looking traffic. As such, symmetry 
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limiting only moves from finer to coarser tracking during periods of extreme 

stress. The finer per-flow symmetry limiting prevents attackers from hiding 

attack flows within a larger body of relatively balanced flows, as each flow 

is tracked separately and is subject to independent limiting. 

5.3 Reactive DoS Defense 

Reactive filtering solutions typically operate in two stages; first detecting an 

attack and then taking action (filtering) to combat the attack. Symmetry 

limiting already has an advantage over these solutions in being proactive 

- symmetry limiting operates in an always-on mode without any threshold 

to detect attacks that trigger countermeasures. Furthermore, most of the 

solutions discussed below suffer from the need for a large initial deployment 

in order to be effective. While (for the most part) technically sound, the 

solutions are not economically viable due to the critical mass of source- and 

destination-end hosts or routers needed to have a significant impact on DoS 

attacks today. Some techniques are further hampered with requirements 

for ongoing collaboration of nodes that reside in separate administrative 

boundaries - adding much to the initial cost of deployment. Symmetry 

limiting has the benefit of providing immediate benefit to a deploying ISP, 

with each and every independent deployment increasing the strength and 

value of the network. 

5.3.1 Vict im-Based 

Hop-count filtering [43]-is a victim-based DoS solution that filters packets 

with spoofed source IP addresses on the assumption the spoofed packet will 

have an incorrect hop-count value. The hop-count can be effectively deduced 
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from the T T L value observed at the destination under the assumptions that 

(i) Internet hosts are at most 30 hops apart and (ii) various operating sys­

tems use customary initial T T L values. However, this scheme requires an 

initial phase to build a table containing the correct hop-count values for the 

IP addresses of desired clients (not to mention a process to identify those 

desired clients). As well, this table remains a challenge to maintain through­

out the lifetime of the service. Those issues aside, widespread deployment of 

this solution simply creates an arms race for attackers to devise attack code 

to automatically generate the correct hop-count values of desired clients. As 

well, [53] shows that the majority of DDoS attacks do not make use of IP 

spoofing. 

5.3.2 Router-Based 

ACC-Pushback [40, 50] has each router locally monitor the ambient packet 

drop rate of each link coming into the router. A link is determined to be 

under attack if the drop rate exceeds a pre-defined threshold (the default is 

10%). The router locally calculates a,rate limit for each aggregate flow (i.e. 

IP address prefix) to bring said ambient drop rate back within the acceptable 

range. The rate limit is then pushed upstream to other ACC-Pushback 

routers closer to the source of the attack traffic. Unfortunately, innocent 

traffic falling in the same aggregate as malicious traffic is also rate-limited, 

possibly resulting in significant collateral damage. As well, A C C routers 

authenticate each other based on a T T L value of 255. Thus, Pushback must 

be deployed on direct neighbouring routers for upstream filtering to occur, 

which presents economic and political challenges for widespread deployment. 

Max-min server-centric throttles [82] is a simplified version of Pushback 
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where no aggregate flow is specified, but all the traffic through a router 

destined for a particular host is limited to a particular (fair) rate. When 

the destination is under stress, the rate is pushed out fc-hops from the des­

tination towards source-hosts so malicious traffic is limited. The key insight 

is the distributed computation of k that maximizes the limiting of attack 

traffic and minimizes the limiting of innocent traffic. Though, regardless of 

how minimal, innocent traffic behind the kth hop becomes collateral dam­

age. Deployment is also hindered by the complex control feedback loops 

required to monitor and compute k, loops which must cross administrative 

boundaries. As well, the system does not address widely distributed attacks 

in which different attack aggregates have a different optimal values of k. 

Active Internet Traffic Filtering [8] is another router-based solution, but 

avoids collateral damage by tracking per-flow behaviour. A I T F targets de­

ployment at the network edge, preferably at ISP edge routers. Each A I T F 

router appends their IP address and a random nonce into a section between 

the IP header and T C P header. The chain of IP addresses form the path 

needed by an A I T F router at the victim end to contact the appropriate A I T F 

router at the source end of the attack to request filtering. The authors admit 

the (gratuitous) use of random numbers as an authentication mechanism al­

lows malicious hosts to forge messages and hinder the effectiveness of A I T F . 

And again, A I T F requires deployment at both source and destination ends 

to be effective, adding the challenge of building political momentum and 

economic backing for the solution to the deployment strategy. 

Congestion puzzles [78] are another router-based defense mechanism, in 

which the client must solve cryptographic puzzles at a rate equal to the 

desired sending data rate. In theory, this currency-based approach forces 

a client to pay for consumed bandwidth with its own computing power. 
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However, an attacker can coax a large number of otherwise innocent clients 

into solving many puzzles on the attacker's behalf, allowing the attacker to 

gain an unreasonably large flow rate. Unlike the previous solutions, this 

scheme requires widespread deployment in both routers and end hosts, as 

end hosts must implement a congestion-puzzle-aware protocol directly in the 

OS network stack. 

D - W A R D [54] proposes source-based DoS filtering using per-flow out­

bound and inbound packet rates to detect attacks. While T C P is subject to 

balanced outbound and inbound packet rates, I C M P and U D P are subject 

simply to maximum rates since acknowledgements are not explicitly built 

into these protocols. As such, the mechanism is vulnerable to low-rate U D P 

attacks that simply consume the maximum rate. Flows are also considered 

guilty-before-proven-innocent, potentially resulting in innocent clients being 

denied service while the network suffers from even mild congestion. Further­

more, the router-based deployment assumes IP spoofing is possible, leaving 

. the mechanism vulnerable to memory exhaustion attacks. The complexity 

of building per-flow tracking into a router also hinders overall performance 

- a penalty innocent sources may be unwilling to pay. 

Reactive router-based DoS defense mechanisms are also vulnerable to 

low-rate attacks [80], where the attack maintains a sending rate below the 

threshold for attack detection, thereby avoiding the countermeasures alto­

gether. Pushback is vulnerable to attacks that maintain the drop rate of 

a target router just below the attack classification threshold. Flow-based 

schemes (i.e. R E D P D ) can be subverted with bursty on-off attack schemes, 

where the on period is short and the off period is long. These attacks 

mainly focus on generating T C P congestion, which forces non-malicious 

T C P senders to back off. These attacks however use probing traffic to get 
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feedback from the network to determine, in the Pushback case, the drop rate 

of a particular link. This probing traffic is by definition heavily asymmetric 

and will be severely punished by a symmetry limiter. 

5.4 Proactive defenses 

T C P service protection is explored in [29] and [20]. Both techniques push 

the T C P handshake away from the target to perimeter edge-routers of the 

victims ISP, where greater bandwidth and redundancy can potentially ab­

sorb an attack. In [29], a database stores a hash of the path (router hops) 

taken by the T C P S Y N packet to allow remaining traffic along that path to 

pass through the perimeter routers unabated. However, attackers can pig­

gyback flooding traffic on a validated path already stored in the database. 

In C A T [20], the victim's direct ISP is not necessarily assumed to be provi­

sioned enough to absorb an attack. Peered ISPs cooperate to push the T C P 

handshake to an ISP along the path that has the necessary provisioning. 

C A T hinges on the assumption that ISPs in an economic relationship are t 

mutually trusting. While there exists indirect economic incentive for transi­

tively connected ISPs, political momentum and startup investment, as well 

as the modifications required to B G P , inhibit the acceptance and deploya-

bility of the solution. Lastly, both these solutions only provide protection 

for connection exhaustion of T C P services - bandwidth floods remain a real 

and viable threat. 

The use of routing overlay networks to combat DoS attacks is explored 

in [45, 4, 49]. In SOS [45], a target only communicates directly with a small 

number of secret servlet nodes. Routers near the target are configured to 

accept traffic only from said secret servlets' IP addresses. A hash func-
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tion then determines the machines in the overlay that will act as the secret 

beacon nodes - the only other nodes that know the identities of the secret 

servlet nodes. Clients are authenticated (SSL or TLS) at designated entry 

points into the routing overlay, and the overlay eventually delivers the re­

quest through a beacon, then a servlet, and finally to the target. Mayday [4] 

generalizes SOS with a filter ring of routers located at the core-edge bound­

ary of the target's network, which are routed to by the overlay nodes. These 

systems count on strong assumptions regarding the secrecy of all servlets 

and beacons in the network. Protecting the target machine by keeping the 

target's address information secret advocates security-through-obscurity -

a well known blunder in designing secure systems. Once an attacker com­

promises the servlet or target's IP address, the malicious host(s) can simply 

send packets directly, skipping the overlay altogether. In [49], end-hosts 

specify the characteristics of traffic they are willing to accept, relying on 

well-provisioned edge routers to perform filtering on their behalf. A n end-

host is represented by a public and private identifier; the public identifier is 

widely distributed for general use, and the private identifier is known only to 

the routing overlay. Like SOS and Mayday, compromise of the private iden­

tifier or simply the IP address of the target renders the system completely 

useless, as attackers can send arbitrary traffic directly to the victim. • 

Firebreak [32] provides DDoS protection by taking IP reachability out of 

the hands of end-hosts, forcing end hosts to tunnel communication through 

firebreak boxes. The approach improves upon previous routing overlays, as 

attackers cannot simply skip the overlay to send IP packets directly to the 

protected host - such packets are consumed by routing/forwarding black-

holes within the firebreak fabric. However, the approach remains a security-

by-obscurity solution, as an attacker now simply requires a non-firebreak 
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monitored connection, and the knowledge of at least one of the firebreak 

machine's unicast addresses. Wi th this knowledge, the attacker can forge 

packets as if they originated from a firebreak node, and successfully flood 

the link of protected hosts. The authors also admit the solution requires 

significant initial deployment to be effective. 

P R I M E D applies the community-of-interest approach to DoS protection 

[74], providing a framework to allow customers to specify good and bad 

communities of interest. Here, a community of interest is a portion of the 

IP address space and the end host categorizes communities on their inno­

cence or malice. The end-host also specifies traffic regulation policy for each 

community based on the community categorizations. However, the "good 

clients" are identified using heuristics during an initial learning or quaran­

tine phase. It remains unclear as to whether such a learning phase could 

be completely free of malicious traffic, or whether a finite phase could ever 

identify all innocent clients. Admittedly, the solution perpetuates an arms 

race in the development of heuristics to discern good from bad clients and 

the counter-attacks for attackers to fool said heuristics. 

5.5 Sophisticated DoS attacks 

5.5.1 Cunning Attacks 

Reflector attacks [60] occur when the attacking machines coerce high-capacity 

servers into blasting the victim on their behalf. Attackers send forged T C P 

data requests to the server using the victim's IP address as the source ad­

dress, causing the destination server to send the reply traffic to the victim 

- not back to the attacker. Well-crafted attack packets requesting large 

objects from the servers can elicit massive amounts of traffic for the unfor-
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tunate victim. Such attacks are attractive (from the attacker's perspective) 

since there are a high-number of potential reflector servers throughout the 

internet with high bandwidth links. Fewer slaves are required when one 

slave can elicit flooding from several well-provisioned servers. The reflector 

also provides a layer of indirection between the victim and the source of at­

tack (the slaves), thus increasing the difficulty in tracing back to the attack 

source. However, since all reply traffic is reflected to the target victim, the 

forged request traffic will be subject to symmetry limiting, thereby reducing 

the attack strength. As well, attackers must be able to spoof source address 

information to trick the reflector into sending reply traffic to the victim -

which is also preventable with a symmetry limiter. 

Low-rate denial of service attacks are examined in [48] and [80]. The 

key insight is that well-timed short-lived but high-rate bursts can trick T C P 

senders into falsely detecting congestion and forcing senders into perpetual 

congestion recovery. The attacks claim to be low-rate since the average 

attack rate is low due to the relatively lengthy idle periods between each 

high-rate burst. However, these short-but-high-rate bursts are are heavily 

asymmetric and would be severely limited by a symmetry limiter, crippling 

the potency of such attacks. 

5.5.2 Protocol Vulnerabilities 

A T C P receiver can take advantage of the T C P vulnerabilities discussed 

in [64] to cause a T C P sender to inject unreasonably large bursts of data 

into the network, resulting in severe congestion collapse [68]. ACK-spli t t ing 

causes a sender to rapidly expand the congestion window far beyond the 

bottleneck capacity of the network. Similarly, optimistic acknowledgements 
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cause a sender to both expand the congestion window and transmit massive 

chunks of new data using the enlarged congestion window, even when previ­

ous data has not been received at the destination end. These attack vectors 

are unfortunate vulnerabilities of T C P itself, and end-hosts must tune their 

T C P sending behaviour to defend against such attacks. A symmetry limiter 

at the malicious receiver's network does provide additional benefit for the 

sender, keeping the optimistic acknowledgement increase to a linear factor, 

rather than exponential. Moreover, when a sender detects this malicious 

receiver behaviour, the symmetry limiter enables the sender to throttle the 

malicious receiver simply by discontinuing communication with that host. 

Source routing in IPv4 allows a sender to create a routing loop in the 

network by repeating the same addresses in the source route. The attacks 

are known as Routing Header Type 0 or RHO attacks, and the best solution 

remains to simply reject any source-routed packets. As such, there is signif­

icant momentum for the feature to be disable or removed from IPv6 [1]. As 

these routing loops can be caused by a small number of packets, symmetry 

limiting does not aid in combating such attacks. 

5.6 Drastic Measures 

As existing protocols and network infrastructure were not designed with 

security in mind and due to the prevalence of malicious activity on the 

Internet, it has become somewhat fashionable in the research community 

to consider modifying standardized protocols and even building completely 

new Internet architectures from the ground up, with security as a principle 

design goal. However, much like the previous solutions discussed, the critical 

mass of political and economic backing required to get such solutions widely 
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deployed significantly hinders their viability. 

5.6.1 New Network architectures 

In [37], the authors overhaul network addressing to mitigate the threat of 

denial-of-service attacks. Key changes to addresses include hop-by-hop do­

main name addressing, separate address spaces for clients and servers, for­

bidding client-to-client and server-to-server communication, and adding a 

state-setup bit to the IP protocol. The hop-by-hop addressing prevents 

source address spoofing and simplifies Pushback-esque techniques. The state 

setup bit is meant to aid filtering of connection exhaustion attacks (i.e. T C P 

S Y N floods). Forbidding client-to-client or server-to-server communication 

aims to slow virus and worm propagation, forcing a layer of indirection out 

of the monoculture. However, forbidding communication between two types 

of machines drastically reduces flexibility of network evolution, and more­

over, viruses and worms can still spread via tunneled communication - a 

worm needs only one compromised client and one compromised server in 

order to compromise any remaining machine. Although addresses would be 

traceable, a machine is still able to send a flooding attack to any other host 

on the network. And the accountability argument does not stand, since cur­

rent DDoS attacks do not spoof source addresses [53], as the true attacker's 

identity is hidden by the botnet already. 

Capability-based schemes [81, 6] prevent an end host from sending un­

wanted traffic to a destination using cryptographically secure capabilities, 

where a capability is granted by the destination to a. particular sender. 

Capability-carrying packets can be verified at each capability-enabled router 

along the path, providing defense-in-depth against abusive sources that may 
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be attempting to consume more bandwidth than they have been explicitly 

granted. A small portion of bandwidth is allocated for end-hosts to nego­

tiate capabilities, and as part of an incremental deployment strategy, this 

bandwidth is shared by legacy (non-capability-aware) traffic. Unfortunately, 

the shared capability-acquisition and legacy-traffic channel is left vulnerable 

to attack. Flooding this channel results in a denial-of-capability (DoC) at­

tack, preventing new connections from being established as new capabilities 

cannot be negotiated. 

Currency based schemes [75, 9] attempt to bootstrap the DoC problem, 

forcing senders to "pay" for the consumption of destination resources via the 

consumption of their own bandwidth or computing power. DoS-resistant key 

exchange protocols [2] establish capabilities in a similar DoC resistant man­

ner. However, such defense remains governed by the currency possessed by 

the requestor (or the attacker), not the provisioning of the victim "host. At­

tackers can consume a greater portion of the victim's resources by obtaining 

a greater share of the currency, either bandwidth or computing power. Fur­

thermore, these techniques are geared towards resource exhaustion attacks 

and provide no defense against pure bandwidth flooding attacks. On the 

contrary, a symmetry limiter is a practical mechanism to protect a capabil­

ity negotiation channel from DoS floods, thereby preventing DoC attacks. 

Widely deployed symmetry limiters could protect the capability channels 

using a tight threshold specific to the capability negotiation protocol. 

Similar to packet symmetry, predicate routing [63] defines what is al­

lowed or good in the network and rejects everything else. The network 

topology is modelled in terms of uni-directional links of source-destination 

pairs. Associated with each link are boolean disjunctive predicates that 

specify which attributes of packets are allowed (or disallowed) to traverse 
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the link. Attributes include protocol fields such as IP addresses, protocol 

type, and port numbers. The predicates enable any node to locally deduce 

a packet's path simply from the packet's attributes. Local filtering decisions 

can be made based on this deduced and genuine path information. However, 

to make a local decision, the node must obtain all of the predicates in the 

network and run a linked-state-like algorithm to determine packet paths. As 

well, once a packet reaches a non-predicate-enabled router, all bets are off 

as to the integrity of any inferences on packet origin and path. 

S A N E [21] bolts a secure routing framework on to the data link layer, 

as a solution to secure services for enterprise networks. A centralized Do­

main Controller (DC) hands out capabilities (encrypted address routes) for 

services on the network. Switches and end hosts never learn the network 

topology - each node is privy only to its neighbours addresses due to the 

encrypted route data. A host must authenticate with the D C before it can 

acquire a capability. Once authenticated, the D C knows the machine's ex­

act location and can mitigate flooding attacks via rate limiting or capability 

revocation. However, this solution targets enterprise networks and requires 

significant hardware upgrade, a cost that may deter enterprises from this 

approach. 

5.6.2 Protocol Modifications 

The brittleness of the Internet routing infrastructure is surveyed in [55]. As 

end-host software continues to be patched, routing attacks are suspected 

to become more common as a means to disrupt the Internet. Of greatest 

importance, security enhancements to routing protocols often sacrifice per­

formance for better security, leading to impractical solutions for the real 
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world. Future improvements to the routing infrastructure must ensure the 

cryptography used is fast to make deployment feasible. De-coupling of con­

trol and data channels would also improve security, preventing data traffic 

from masquerading as control traffic. Also, routing security decisions are 

strictly boolean (i.e. allow or deny), where as a continuous scale of trust 

would make the protocols more flexible and robust. Firewalls and intrusion 

detection systems should also be integrated into the routing system, provid­

ing greater defense-in-depth. But again, all such improvements must focus 

on high performance requirements in order to make deployment feasible. 

As previously discussed, the symmetry limiting mechanism is fundamen­

tally very simple - simple enough to be implemented in hardware or F P G A . 

From this, and the performance results of the Linux prototype, a symmetry 

limiter built in specialized hardware seems a viable approach to achieving 

an extremely high-performance solution. 

Re-feedback [17] and explicit congestion notification (re-ECN) [18] ex­

plore simple modifications to IPv4 and IPv6 protocols that enable a network 

link to make accurate and truthful predictions regarding potential conges­

tion of the remaining upstream path. These modifications enable E C N po-

licers anywhere along the path to enforce QoS or DDoS protection policies. 

This requires a sender (or other upstream node) to set the ECN-bit(s) in 

the IP header when a congestion event occurs, namely when there is lack 

of reply traffic. This approach simply makes congestion events explicit in 

the IP header - signaling which is implicitly inferred by a symmetry limiter 

without requiring any protocol changes. 
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Discussion and Conclusion 

6.1 Discussion 

6.1.1 A Current Defense 

The packet symmetry metric, as presented in this thesis, provides practical 

defense against malicious DoS activity and leaves the vast majority of inno-

' cent network traffic unscathed. While a handful of protocols or communi­

cation patterns break with symmetry limiting, the overall strategy is sound; 

link-local asymmetry, such as multicast DNS or syslog streams, can occur 

entirely behind a symmetry limiter; the threat model protects, rather than 

limits, media streaming servers sending high-rate one-way flows to clients; 

and limiting asymmetric I C M P messages generated by port scanning be­

haviour is a good security practice, slowing the scanning rates of malicious 

hosts. However, packet symmetry retrofits a fundamental principle on a 

network with protocols and applications that were not originally designed 

with this principle in mind. As such, the threshold values chosen in this 

thesis reflect the need to provide leeway to be more tolerant of innocent but 

less symmetric traffic patterns. In turn, these looser symmetry thresholds 

diminish the strength of protection - a common problem when security is 

implemented as an after-thought. 

Notice that if security properties (such as packet symmetry) were built 
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into the network infrastructure, the network would be automatically self-

critical. A l l end-hosts and routers would be forced to adhere to the security 

guarantees designed into the protocols they had to use to communicate with 

any other machine. However, building in security as after-thought leaves net­

work operators with the option to implement self-critical filtering manually, 

with ho requirement to implement such filtering. As such, the argument 

to deploy self-critical network filtering is socialist in nature, relying on the 

altruism of the ISP to take on the responsibility (and cost!) of filtering its 

own outgoing malicious traffic for the greater good. The density of broad­

band users has been directly correlated to the proportion of botnet enlisted 

machines [28], which suggests broadband ISPs are fueling botnet growth 

and have a social duty to protect the value of the network by combating 

this malicious activity. Unfortunately, altruism is not an abundant quality 

in many corporations with their main focus on maximizing profits. This 

leads back to the question of what direct financial incentive could motivate 

an ISP to deploy a symmetry limiter? 

The momentum to deploy self-critical networking filters suffers from a 

catch-22 - many deployments will lead to further deployments, but no de­

ployments prevents anyone from deploying. Ingress filtering once suffered 

from the same vicious cycle [36], though eventually the critical mass of 

momentum was formed as ISPs realized enforcing source address integrity 

actually helped in administering their own network [72], and today over 80% 

of net block addresses are non-spoofable (i.e. ingress filtered) [15]. Unfortu­

nately, symmetry limiting lacks this direct incentive by adding complexity 

to network administration, since innocent (i.e. non-DoS) packets can be 

dropped and cause some applications (ex. peer-to-peer file sharing) to mal­

function. Though the ISP might like to limit such asymmetric traffic in 
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the first place, the provider must cater to the demands of the consumer and 

provide connectivity that allows such applications to function correctly, oth­

erwise the consumer will simply switch to a different and more permissive 

ISP. 

One concrete financial incentive for an ISP to deploy self-critical packet 

symmetry limiters could come from the legal community, if the calls to 

update computer crime legislation to specifically outlaw DoS attacks are 

answered [66, 44, 52]. Presently, computer crime legislation does not specify 

DoS attacks as a crime, preventing prosecutors from securing convictions 

even when the perpetrators can be identified [41]. If DoS attacks were made 

illegal, not only could the attackers be convicted, but the' attack victims 

would have the legal grounds on which to sue for damages incurred as a re­

sult of the attack. Sorting out who is liable for the damages of a botnet-based 

DoS attack may be less clear - is the botnet mastermind solely responsible 

for the attack, or are the zombie machine owners partly responsible for a lack 

of following network security best-practices and allowing their machine to 

be compromised? In this light, self-critical symmetry limiting could provide 

both the subscribers and the ISP with the clear financial benefit of being 

absolved of legal liability for DoS attacks perpetrated by their subscribers, 

since the contribution of each subscriber to a flooding attack is at most the 

packet bootstrapping rate PB (see Section 2.1.3). Following similar logic, 

spammers have been arrested and taken to court [61, 69], with perpetrators 

typically charged under extortion or fraud legislation. Nevertheless, perhaps 

in an effort to avoid liability concerns, A O L , one of the largest North Amer­

ican service providers, now takes self-critical action on its outgoing email 

to reduce the amount of spam generated by its subscribers [7]. Note that 

for symmetry limiting to absolve an organization of negligence, the method-

105 



Chapter 6. Discussion and Conclusion 

ology (including the parameter values to establish PB) would have to be 

recognized as a best-practice by the networking community. This recog­

nition would require a critical mass of political momentum to bolster the 

packet symmetry solution, which may be further complicated with support 

for the many other DoS protection and prevention solutions proposed in the 

past (see Chapter 5). 

6.1.2 Future Network Architectures 

Initiatives to develop the next-generation Internet architecture [34] are gen­

erating significant activity in the research community. The related work 

chapter of this thesis notes several proposals for new DoS-resistant archi­

tectures, using new cryptographically secure protocols, building explicit sig­

naling and control directly into the network fabric. However, these initia­

tives are clearly not focussed solely on DoS attack prevention. A complete 

redesign of the network presents the opportunity to consider several key 

and fundamental design properties of the network, including how to spec­

ify names, how to organize routing to support mobility, multi-homing and 

network heterogeneity, as well as the direct integration of authentication, 

access control and other security paradigms. As the Internet may well be in 

store for a complete and total redesign, that begs the question; does packet 

symmetry have a role in the network architecture of the future? 

The analysis in this thesis suggests that symmetry should be a funda­

mental design property of network protocols and as such be an integral part 

of a next-generation Internet. However, not all protocols need to implement 

perfectly symmetric communication - mainly signaling and control protocols 

should be designed to exhibit symmetry to a very high degree (i.e. 1:1) to al-
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low strong protection for session-establishing control channels. This prevents 

denial-of-capability attacks that flood a control channel with bogus requests, 

blocking innocent clients from establishing new connections to protected ser­

vices. Note as well that the metric need not be packet symmetry specifically, 

as the next generation network may not even be packet switched. Funda­

mentally, a generic-symmetry limiting mechanism that enforces a balance of 

outgoing-to-incoming traffic units should be widely deployed at the network 

edge. These modules cannot- be deployed on the end host since the end 

host cannot be trusted - even with virtual machine systems, trusted com­

puting platforms, and tamperproof hardware, a client always has ultimate 

control over their machine, and could thus subvert a protection mechanism. 

Therefore, while the metric may not be exactly as described here, nor the 

thresholds the same, symmetry seems a fundamentally useful property to 

consider for modern network design. 

6.2 Conclusion 

This thesis evaluated and further developed packet symmetry [47] as a 

proactive source-based filtering mechanism to prevent DoS attacks. The 

packet symmetry metric captures the implicit signaling already present in 

network communication protocols and applications, requiring no changes to 

end hosts or routing infrastructure for deployment. Analysis of real net­

work traces lead to the development of a packet symmetry threshold that is 

effective in discerning good from malicious traffic with extremely few false-

positives. A thorough security evaluation showed that symmetry-limiting 

defends well against flooding DoS attacks and enables victims to manage 

defense against resource-exhaustion attacks with local administration. Fur-
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ther analysis demonstrated the mechanism's own resilience against attacks. 

The symmetry limiter prototype for the Linux kernel proved the feasibil­

ity of the approach, both in terms of performance and usability. Deployment 

on a network bridge allows a symmetry limiter to be easily incorporated into 

a network without requiring any modifications to end hosts or routers. The 

solution is immediately deployable and provides incremental benefit with in­

creased deployment. Widely deployed symmetry limiting may serve as both 

a temporary solution for the current Internet architecture, as well as a cor­

ner stone for a next-generation secure network architecture, bootstrapping 

protection for control or capability-acquisition channels. 
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