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Abstract 

This thesis analyses several monotone schemes for degenerate second order parabolic PDEs 
over two-dimensional domains which is in most cases equal (0, l ) 2 . For such problems the 
degeneracy means that in addition to the axis spanned by the standard basis vectors, there 
exists another pair of orthogonal cordinate axes such that the spatial difference operator is 
of the second order in one of the directions, and of the first order in the remaining directions. 
The direction of one axis along which the spatial difference operator is of the second order 
we call the direction of diffusion. 

The thesis considers only constant coefficient PDE's and therefore the degeneracy 
can be easily determined by solving the eigenvalue problem for diffusion tensor. 

We analyse the impact of the direction of diffusion on the convergence of a scheme. 
Previous work on a second order elliptic problem has shown that central differences taken 
in the direction of diffusion produce a convergent scheme, wherease disalignment between 
the two result in non-convergent schemes. One of our aims was to check the validity of 
this finding and possibly improve the construction of schemes. As a result we present a 
novel approach to building monotone schemes from the diffusion tensor by taking spatial 
step sizes of different length in order to align the second order central differences with the 
direction of diffusion. We give a step by step algorithm and supply all of the findings. Our 
findings are based on M A T L A B m file, and C language implementations. 
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Chapter 1 

Introduction 

1.1 Introduction 
We focus our study on monotone schemes for a class of degenerate linear parabolic partial dif­
ferential equations. For the sake of comparison, monotone schemes for some non-degenerate 
problems are also analysed, such as the heat equation. Our goals are to 

(1) investigate the efficiency of monotone schemes in generating a "good1' numerical ap­
proximation, and 

(2) confirm or disprove through numerical calculations and mathematical tools the claim 
that monotonicity has impact on the convergence of a scheme. 

We consider two-dimensional problems on bounded domains. We limit ourselves to 
a square two-dimensional domain, which is in most cases (0, l ) 2 , and sometimes (—1, l ) 2 . 

For such domains the degeneracy means that there exists another pair of orthogonal 
coordinate axes such that the spatial differential operator is of the second order in one of 
the directions, and of the first order in the remaining directions. Therefore, for degenerate 
equations on the defined domains we use terminology in the direction of diffusion, meaning, 
in the direction of one axis along which the diffusion operator is of the second order. 

The monotone schemes are interesting because of the following simple fact. If stable 
and consistent, they are convergent, as proved by Barles and Souganidis [5]. Our findings 
confirm the work of Oberman [2] which states that central difference approximations to 
second order terms taken in the direction of diffusion result in a convergent monotone scheme 
for the corresponding elliptic problem'. To that result our next goal was to create a method 
for building monotone schemes for degenerate and non-degenerate parabolic equations where 
the central difference approximations are taken in the direction of diffusion. The idea rests 
on taking discretization steps of different size along axes in order to "align" the derivative 
approximations with the diffusion direction. 

Spatial discretization of linear PDEs gives a system of linear ODEs 

^u(t) + Au(t) = 0 , 
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where the matrix A is called the system matrix. For monotone schemes the system matrix has 
a particular structure. It has positive values along the diagonal and negative or zero values 
on the off-diagonal places. If we decide to solve the above system of ODEs using the explicit 
Euler method this special property of A allows us to compute the Courant-Friedrichs-Levy 
bound on the time step, r. In some cases (like the case of the two-dimensional heat equation) 
this bound can be found analytically, while in general it must be computed numerically, ff 
we decide to solve the system of ODEs using the implicit Euler, or some other implicit 
method, the described structure of A enables very easy implementation. 

It is important to note that there is a 1-to-l relationship between monotone schemes 
and matrices with above specified structure. Therefore, in order to build a monotone scheme 
for a linear P D E , one is in effect creating a system matrix of ODE's which has positive values 
along the diagonal and non-positive or zero values on the off-diagonal positions. 

A class of linear PDEs to which we limit our research are given in Section 1.2. The 
schemes for these equations are built from degenerate schemes of the individual terms in 
the respective equations. In [2] the author studied transformations preserving monotonicity. 
For instance, the sum of monotone functions is a monotone function. Therefore, we could 
also say that we built our monotone schemes by summing the monotone schemes of each 
individual term in a respective equation. For example, we sum a monotone scheme for 
a convective part of an equation with a monotone scheme for the difussive part of that 
equation thus obtaining a monotone scheme for the equation. The monotone sliemes we use 
are explained in Section 2.2.1. 

So far we have presented some benefits of using a degenerate, i.e. monotone differ­
ence scheme. However clue to the monotonicity requirement the accuracy of a monotone 
difference scheme is at most of the first order [2]. This fact was first explained by Barles 
and Souganidis [5]. .Higher than first order schemes such as E N O , and W E N O as given in 
Osher, Fedkiw [15] result in matrices that do not have the special property forementioned, 
and are therefore not monotone. Since we study monotone schemes we restrict ourselves to 
first order integration and use Forward Euler in deriving our solutions. 

The software implementations are present in two programming languages. One is the 
M A T L A B m language, and the other is C programming language. The files written in the in 
language are designed to work with a software package, the Toolbox of Level Set Methods, 
version 1.1, [1]. The Toolbox of Level Set Methods 1.1 is a set of routines implementing 
level set methods which solve time-dependent Hamilton-Jacobi partial differential equations. 
The C implementations are designed as stand-alone programs. The difference and reasons 
for two different implementations are given in Section 5. 

1.2 Motivation 
The analysis in this thesis is motivated by the research presented in [2], where degener­
ate elliptic and parabolic equations of the second order are examined for the purpose of 
constructing their numerical or approximate solutions. The emphasis is put on numerical 
methods which are called monotone schemes. For their definition refer to Section 2.1. The 
analysis of monotone schemes in this thesis focusses on three initial value problems on the 
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square domain, D = (0,1) x (0,1). We define the problems for a function / as follows 

Problem 1. 
Heat equation 

Problem 2. 
Degenerate heat equation 
with advection 

ft - °~t fxx ~ °l fyy = 0 

/,. + vV/ ~ a2 ./;,,, = 0 

Problem 3. ,i. 

General degenerate f\ — ^ a,; <), f — 0 
parabolic equation » j ' = 1 

Problem 4. ,i 

General degenerate parabolic /t + v V / — ^ a»j did-jf = 0 
equation with advection *>'=! 

We implemented an example of Heat equation to observe behaviour of numerical solution 
in time when the scheme used is monotone. However, since Heat equation is discussed in 
many differential equation books, for example Boyce, DiPrima [9], we skip its theoretical 
analysis. To execute the implemented example see Appendix. 

We supply initial and boundary conditions to the above problems in later chapters, 
yet we do not defer the definition of the parameters present in the above equations. The 
positive numbers a2, a2, a2 are usually called diffusion constants. Continuous functions v 
have two components vx,vy and define velocity fields on D — (0, l ) 2 . Continuous functions 
afj define a matrix a — {a%iSn which is called diffusion tensor. 

At this point we are obliged to explain our matrix notation. A matrix a = {<H'-j}n 
is a matrix with indices going from (1,1) to (2,2). 

The matrix a must be symmetric at each point of D and must be either positive 
definite or positive semidefinite. In the former case it has two positive eigenvalues and 
Problem 3. is non-degenerate. In the latter case the matrix a has one zero eigenvalue 
and one positive eigenvalue and the corresponding Problem 3. is degenerate. Actually 
the degeneracy does not need to be realized at each point of D. It is sufficient that the 
degeneracy happens at a single point of D = [0,1]2. 

Problem 3. can be rewritten in another form, which is utilized in Game theory, 

Problem 3. ft - tn\ce[LDR] = 0 

where L, R are 2 x 2 matrices and D is Hessian of / . The matrices L, and R. cannot be 
arbitrary since trace[LZ).R] must coincide with Ylij=i aijdi&j.f-

In order to introduce monotone schemes we start our analysis with Heat equation. 
Next, Degenerate heat equation is considered as a degenerate version of Heat equation. 
Monotone schemes which are developed for Heat equation are applied to Degenerate heat 
equation. An extension of investigation onto General degenerate heat equation is necessary 
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in order to draw conclusion on the efficiency of monotone schemes based on the results of our 
research. In addition, in the research of General degenerate heat equation we confirmed that 
the direction in which the central differences tire taken has an impact on the convergence of 
a scheme. Chapter 4 presents a new method, created by M. Limic, for building monotone 
schemes using spatial step sizes of different length. This method builds monotone schemes 
from a diffusion tensor of the degenrate elliptic differential operator. We conclude our 
analysis of monotone schemes with General degenerate parabolic equation with advection 
taking into account the importance of the direction of central differences. In the analysis 
we use the method 

The best way to demonstrate the efficiency of monotone schemes would be to com­
pare the solutions / of the considered problem and its numerical approximation fapp. Here 
we are presented with an obvious difficulty. Solutions are not known and this fact is the 
basic reason which forces us to look for numerical or approximate solutions. Apart from the­
oretical results telling us about the convergence of numerical solutions towards solutions / , 
the efficiency can be studied by using examples for which the unique solutions / are known. 
We say that solution / is known in a closed form. In this report we analyze numerical 
solutions using examples for which solutions / are known in closed forms. 

1 .3 Outline 
We have organized the material into eight chapters. Here we give a brief outline of the issues 
discussed in each chapter. 

(i) In chapter 1 we give the motivation and goals of this thesis. We also introduce the topic 
of monotone schemes, and note some important facts regarding the system matrices 
associated to monotone schemes and how schemes are built. 

(ii) Chapter 2 contains the theory of the degenerate elliptic and parabolic equations and 
corresponding numerical schemes. Following the theoretical background is a descrip­
tion of the central differences we had to construct to derive monotone schemes for 
problems considered. Finally we give our derivation of the.CFL condition for mono­
tone schemes and its comparison to the C F L condition implemented in the Toolbox 
of Level Set Methods 1.1. 

(iii) Chapter 3 is devoted to a detailed study of monotone schemes by analysing the 
problems of Section 1.2. We present the derivation of analytical solution to three 
examples of Degenerate heat equation, as well as solutions to the examples of General 
degenerate parabolic equation. We consider each problem in turn giving our findings as 
the concluding discussion. While Degenerate heat equation serves exclusively for the 
analysis of the efficiency of montone schemes, General degenerate parabolic equation 
is additionally used for an analysis of the importance of the direction in which the 
central differences are taken on the convergence of a scheme. 

(iv) Chapter 4 presents a method we developed for computing monotone schemes for the 
case of degenerate and non-degenerate diffusion tensors. This is achieved by taking 
numerical step sizes of different length along two coordinate axes. We present the 
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algorithm for deriving the step size in y-axis direction given the number of nodes in 
the .u-axis direction. Our findings are based on the implementation of several examples 
of General degenerate parabolic equation to this setting. 

(v) Chapter 5 is concerned with the implementation details of m files only. Since the C 
programming language implementations were not required at any time during this 
thesis research, their implementation will not be discussed here. They were done as 
an aid to help overcome the disadvantages of slowness and memory overconsumption 
of the m language implementations. If however, the reader is interested in obtaining 
the implementation details of C files as well at the C implementations themselves, 
they can contact me at mirnalim@cs.ubc.ca. 

(vi) Based on the work completed, in Chapter 6 we propose some topics that can be taken 
as further research. 

(vii) Appendix serves as a small manual for compiling and executing the programs. It 
contains a listing of the programs that implement the problems considered in the 
course of the thesis research. 

As an end note to this chapter it should be said that this thesis is written to be 
a learning tool just as much as a presentation of the published, work and our research 
conducted in the area of degenerate monotone equations and their schemes. 
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Chapter 2 

Theoretical background 

The theory we look at and develop in this thesis rests mainly on the published work in the 
field of degenerate elliptic and parabolic equations. Methods of the eigefunction theory are 
used for the purpose of deriving analytical solutions to PDEs. 

2.1 Degenerate equations 
In the work of Barles and Souganidis [5] it is shown that monotone, stable, and consistent 
schemes are also convergent. The only drawback in building such schemes is the fact that 
they are of the first order of convergence. If the coefficients of a P D E are smooth enough, 
schemes with higher order of convergence can be successfuly used. However, at points where 
the coefficients are not smooth one prefers to use monotone schemes due to the stability 
they have. 

Monotone schemes are not only used for linear P D E problems, but also for non­
linear PDEs. In effect, they are usually defined for non-linear PDEs. Spatial discretization 
of an initial value problem (IVP) for a P D E gives a system of ODEs of the form 

. ju^t) = F>(t,u(t)), i = l ,2 , . . . , iV , (2.1) 

where u(t, x) are the solutions of the IVP for a PDE. These solutions are at grid nodes .r f 

approximated by functions ui(t). These functions define a column vector u(t) of approximate 
solutions. The functions F'1 result from spatial discretization and can depend explicitly on 
t, as well as on the approximate solutions u;. The constructed system (2.1) of ODEs must 
be solved using discretization in the time variable. This means that we consider discrete 
times to = 0,ti,... ,t,M = T and approximate solutions «;(£fc) by numbers u\k\ Thus the 
columns u(tfc) are approximated by colums u1-^. In the case of the Forward Euler method 
applied to (2.1) we obtain 

u<*+1> = u f> + r f ( t t , u ( t > ) := ff'(r,tfc,u(fc)). (2.2) 

Based on the definition of monotonicity as given in [14] we give the following defi­
nition. 
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D E F I N I T I O N 2.1.1 (Monotone scheme) We say that a scheme is monotone if the 
functions Hl(r, tk, u'fc') do not decrease when their variables increase. 

It is important to note that a scheme is not monotone for all values of time increment 
T. This fact implies a necessity to analyse the monotonicity of a scheme with respect to the 
choice of the time step. The aim here is to find the biggest time step for which the scheme 
is monotone. This issue is discussed in Section 2.3. 

For example, take the parabolic equation ut — uxx = 0. After carrying out the 
central difference spatial discretization of uxx we get the O D E system 

d 

where the functions 

are defined by 

dtu(t) - F[u(t)] = 0, 

Fl{u) -

U; — U. i-l 

dx 
ui ~ui+i 

Then, in the present case, the system of difference equations (2.2) has the form 

~ V dx*) 1 + dx* \U'+l + Ui-1)' 

defining a scheme. Looking at the definition of monotonicity 2.1.1 we see that this scheme 
is monotone for all 0 < T < dx2/2. We computed this result by noting that we must have 

2r „ dx2 

in order for the considered scheme to be monotone. 
Next we give the definition of degenerate ellipticity for which we note that it includes 

the definition of monotonicity. For each node i the symbol N(i) denotes the neighbourhood 
of node i. 

D E F I N I T I O N 2.1.2 We say that a scheme 

Ui — Uj 
,.i = l N 

is degenerate elliptic if each F% is a non-decreasing function in each of its arguments. 
Given the above definition of degenerate ellipticity it follows that every degenerate 

scheme is also monotone. 
Next we would like to state an important theorem taken from [2] and class notes of 

[6] for our discussion on stability and monotonicity. 
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T H E O R E M 2.1 A scheme is monotone and non-expansive in the l°° norm if and only if 
it is degenerate elliptic. 

T H E O R E M 2.2 The accuracy of a monotone finite difference scheme is at most first order. 

The three problems defined in Section 1.2 must be supplied with boundary and 
initial conditions. So defined we call them initial boundary value problems for linear PDEs. 

In the remaining.part of this section we describe a procedure for constructing mono­
tone schemes. First we have to define conditions on the coefficients ay, U;, and c of a general 
linear elliptic differential operator of the second order 

d ' d 
A(x) = - __ a:jXxU),;i, + Y^ViWdi + c(x). (2.3) 

i,j = l i=l 

D E F I N I T I O N 2.1.3 The differential operator is called degenerate elliptic if the following 
three conditions are valid 

(a) The functions ay = aji; vt (i, j = 1, 2, . . ., d) and c satisfy the following conditions: 

\vi\i lcl fi M, c < 0, aij,v-i,c uniformly continuous on Rd. (2.4) 

(b) The differential operator (2.3) is elliptic on R d, i.e there exists a positive number M 
such that 

d 
M\z\\> Y _ a . y ( x ) ^ ^ > 0 , x e M d , (2.5) 

where Zi £ Cd are complex numbers and \z\2 the corresponding l2-norm. In other 
words, diffusion tensor is positive semidefinite. 

(c) There is a, point x £ Rd such that j=i aij{x)zi^j = 0. 

We say that the diffusion tensor is defined by functions a.y, convection is defined by 
velocities v-t and the function c is called the killing rate. For the problems considered in this 
thesis the killing rate is zero. 

Examples of this thesis have either homogeneous or non-homogeneous Dirichlet 
boundary conditions or periodic boundary conditions. Homogeneous Dirichlet boundary 
condition is specified by zero value of solution, non-homogeneous by non-zero value of solu­
tion. 

For an IVP defined by 

dtu(t,x) - A(x)u(t,x) = 0, 
u(0,x) = u0(x), • (2.6) 
u(t,x)dD = 0, 

we use those spatial discretizations for which we get monotone schemes. In Section 2.2.1 
some of the possibilities are described in detail. A discretization of the differential operator 
A(x) results in a system matrix A with entries A y , where indices i,j refer to grid nodes. 
Discretizations leading to monotone schemes are easily characterized using the notion of 
matrices of positive type [4], which we define next. 
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D E F I N I T I O N 2.1.4 A matrix A with entries Aij is said to be of positive type if it has 
positive'diagonal entries, non-positive off.-diagonal entries and positive or zero row sums, 

An > 0, Ai:j < 0 for i ± j, Aj = ]T A{j > 0. 
' i s / 

A matrix of positive type with zero row sums, Aj = 0 Vj £ / , is called conservative. 

If we wish to construct a monotone scheme for the IVP (2.6) we need to follow certain 
principles 

RULES OF DISCRETIZATION 

Spatial discretization of the differential operator A(x) must be carried out using the 
following two rules in order to ensure the monot'onicity of the resulting scheme 

1) The convection term Yli=ivi(x-)^iu's discret'ized using the upwinding scheme. 

2) The diffusion term —J2ij=iaij(x)^i^ju must be discretized in a way to make the 
resulting system matrix of positive type. 

If we abide to these rules, we build a system of ODEs of the form 

jtu{t) + Au(t) = 0, 

where the matrix A is of positive type. This matrix, as mentioned before, is called the system 
matrix. A system matrix of positive type results in a monotone scheme, and a monotone 
scheme always has a system matrix of positive type. Therefore we could laicaly say that 
system matrices of positive type and monotone schemes are in a 1—to—1 relationship. 

Let us define a diagonal matrix D with entries Du = An and a matrix B with 
entries Bij = —Ay i ^ j. Then 

A. = D - B. 

If we use Forward Euler method, the constructed O D E is converted into the following system 
of difference equations 

u<fc+1> = (/ - TD)U^ + T B U O 

This scheme is monotone for sufficiently small r. The computation of T is given in Section 
2.3 where we use the same decomposition of the matrix A onto D and B in order to compute 
the expression for calculating the upper bound on T, i.e. the C F L condition. 

2 . 2 Central difference approximations 
We would like to introduce a way of defining central differences that is different from the 
one available in the Toolbox of Level Set Methods 1.1 distribution. Central differences as 
defined below are the ones used by Oberman [2], and differ from the ones in the Toolbox of 
Level Set Methods 1.1 in their calculation of the second order mixed partial derivative. 
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2.2.1 C e n t r a l differences defined 

The orthogonal coordinate system in Rd is determined by unit vectors e; of the canonical 
basis. Points x = h Yl'i=x h^u h is the grid step, h £ Z, define a numerical grid G/i on R''. 

The partial differential operators of the first and second orders can be approximated 
in the usual way 

cV(x) -» a.,/(x) = ^ [/(x + eih) - / (x - eth)}, (2.7) 

• 9?/(x) - dufix) = i [ / ( x + e l / l ) - 2 / ( x ) + / ( x - e ^ ) ] , (2.8) 

where we use the symbol 3 to indicate the approximation to a first or second order derivative, 
and symbol —> to show that the operator to the left of the arrow is approximated by 
the discrete operator to the right of the arrow. Following our rules of discretization we 
discretize the operators Vidi by using the upwinding procedure rather than by using the 
central difference operator 3;/(x). Thus the first partial derivative in the a>axis direction 
would be approximated by one of the following two possibilities 

^ [/(x + eih) - /(x)] , i [/(x) - / (x - e</0] • 
which are called the forward and backward finite difference operators respectively. 

The second order partial differential operator df is approximated by two'subsequent 
applications of the first order operators. For example, if the first step of the approximation 
is the forward finite difference operator 

i [/(x + eth) - /(x)], 

then the application of the backward finite difference operator gives us 

I [ l ( / ( x + e I / l ) - / ( x ) ) - i ( / ( x ) - / (x - e i / 0 ) ] 
= £ [/(x + eth) - 2 /(x) + / (x - e,/t)] • 

We would have arrived at the same answer had we applied the directions of the approxima­
tion in the reversed order, i.e. first backward, and then forward. 

The mixed partial differential operator can be approximated by one of the following 
four possibilities 

OiOifix) -» a. i j/(x) = 
J _ f f(x±eih±ejh)-f{x±eih)-f(x±ejh) + f(x), (2.9) 
h? \ -f(x ± e i h - ejh) + f(x ± eth) + / (x =p ejh) - /(x). 

The above operators are derived by subsequent applications of forward finite difference 
operator and backward finite difference operator in the directions ei and e 2 . 

We now show how one of the four above discretizations for a mixed partial differential 
operator can be obtained. We take first the backward finite difference operator in the first 
variable, i. 

I[ / (x)- / (x- e i /0)] . 
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and then apply the backward finite difference operator in j 

i [ / ( x ) - / ( x - e ^ ) ) ] . 

The resulting expression is 

i [ i ( / ( x ) - / (x - eji)) - i ( / ( x ejh) -r / ( x - eih - ejh))] • 

= [/(x) - / (x - e.;/),) - / (x - ejh) + / (x - eji - e j / i ) ] . 

This is easily recognisable as one of the four possibilities given in (2.9). With a similar-
procedure one can obtain the remaining three possibilities given in (2.9). 

In the problems considered in this thesis we have used upwinding for the approxi­
mation of the first order derivatives. When approximating second order non-mixed terms 
we used operator 3a. For mixed partial derivative approximations we used half-sums of the 
operators defined in the expression (2.9). For example, a half sum of the first two operators 
of (2.9) is 

2^5 [/(x + e-ih + ejh) - / (x + e . ; / i ) - / (x + ejh) + /(x) + 

/ (x - eth - ejh) - / ( x - eth) - / (x - ejh) + / ( x ) j . 

Which half-sums are taken is explained in Section 2.2.4. The choice must give us a system 
matrix of positive type. 

2.2.2 Differences of the T o o l b o x of L e v e l Set M e t h o d s 1.1 

The difference approximations of second derivatives implemented in the Toolbox of Level 
Set Methods 1.1 differ from our central differences of Section 2.2.1 in their computation of 
the mixed partial derivative approximation. In place of upwinding, the Toolbox of Level 
Set Methods 1.1 implements 

- ^ ( / ( x + e f / i ) - - / ( x - e i / i ) ) 

as the approximation of the first order term in direction e;, which we recognize as our first 
order approximation operator B;/(x). 

Let the first order partial derivative approximation in the variable i be as above. 
Then applying to it the approximation in the variable j yields 

Wi [sTI + e i h + e J h ) ~ /(X ~ e i , } ' + eJh)) ~ 2ir(/(X + e i k ~ e J k ) ~ /(X - e i k - eJh))] = 

-^j | / (x + e . ; / i + ejh) - f(x - eji + ejh) - / (x + eth - ejh) + / (x - e-Ji - e J / i ) j . 

This difference approximation of the mixed partial derivative is not monotone. Therefore, 
schemes using these differences in general are not monotone. This is discussed further in 
Section 3.2.2. The non-monotonicity resulting from using the above non-monotone mixed 
partial derivative approximation can give a non-convergent scheme. This is discussed further 
for the case of General degenerate parabolic equation. 
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2.2.3 C h e c k i n g der iva t ive approx ima t ions 

It is well known that the second order difference operator 3 a is the correct approximation 

There exists a simple check which demonstrates that the four discretizations of d\d2 

(2.9) given in Section 2.2.1 are correct and ensure the convergence of numerical solutions 
to the unique solution of considered IVPs for PDEs. Here we show the calculation for one 
of possible four approximation of (2.9). A check for the other three approximations can 
be done using exactly the same procedure. Our check is based on the the necessary and 
sufficient condition for convergence [8] below. 

For any polynomial of the form 

P(xi,X2) = t̂ l-Tl + C02X2 + OJ3XiX2 

expressions d\d2P(x\,X2) and 3I2P ( :EI, .T2) must have the same value equal to LO3. 

It is obvious that d\d2P(x\,X2) is LO3, so let us check that 3i2-P(^i, 2:2) has value 
UJ3 for the example of Section 2.2.1 where two applications of the backward mixed partial 
difference operator were applied to derive the operator 3y, i ^ j . First we apply the 
backward differential operator in the first variable 

l ( p ( x ) - P ( x - e 1 / l ) ) = . 

= i [UJ\XI + u)2X2 + U3X1X2 - (u>i(xi - h) + W2X2 + OJ3(XI - h)x2^j 

= i (u>1h + (AJ3X2I1J 

and then the backward difference operator in the second variable. This gives 

i \ji(oJih + u!3x2h).- ±(uih + u3(x2 - /i)/i)j 

A similar check can be done for any of the other-three possibilities from (2.9). Therefore, 
we conclude that the operator 3y is a good approximation of the operator dLdj for i ^ j. 

2.2.4 Difference approx ima t ions and matr ices of pos i t ive t ype 

Using our discretizations, the quadratic operator a\i(d\)2 + a.22(<92)2 is approximated by the 
differences an 3 n + a-22 3 22 • 

Values of ay, i ^ j, dictate the choice of approximation for a^didj. If 0,12 > 0, 
then ai20ic*2 should be approximated by the half sum of the first two possibilities of (2.9), 
and otherwise by the half sum of the second two possibilities of (2.9). Thus when ai2 > 0 
we use the following approximation of the mixed partial derivatives 

2 ^ [/(x + eth + e,jh) - / (x + eth) - / (x + e,-/i)4-

/ (x - eih - ejh) - / (x - eth) - / (x - ejh) + 2/(x)j, 
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while when a\2 < 0 we use 

2^7 [ - / ( x + e{h - ejh) + / ( x + eji) + / ( x - ejh) 

- / ( x - e ; / i + ejh) + / ( x - eth) + / ( x + e ^ / i ) - 2 / ( x ) j . 

An approximation based on a different choice can result in a non-convergent method. 
For further discussion on this subject see Section 3.2. 

Discussed approximations of first and second order terms give us a system of ODEs 

4u(t) = -Au(t), u(0) = u 0 

at 
where A is the n x n system matrix, and uo is the initial condition. If we were to write 
out the terms of A, we would see that it has positive diagonal entries and non-positive 
off-diagonal entries. In other words matrix A is of positive type. 

For the two dimensional case where A = —^aijdidj using centered differences 
from (2.9) results in entries of the system matrix corresponding to the grid node (k, I) of 
the following form 

Akiki. - 2h-2[au + a 2 2 - K2I] 
Aklk±u = -h-2[an - \al2\] ^ ^ 
Akiki±i = -hr2[a22 - \a12W 
Akik±u±i = — h~2\ai2\ (= Akik±u^i). 

In the case that values in square brackets are positive the resulting matrix with entries Atj ki 
is of positive type, i.e. it has positive diagonal entries .and non-positive off-diagonal entries. 
Otherwise, schemes are not monotone. Motzkyn arid Wasov [4] suggest for non-monotone 
schemes to perform rotations. There is also another possibility. In order to obtain monotone 
schemes one can use stencils having different length in x\ and x2 directions. This idea is 
thoroughly pursued in this thesis. 

Let us apply the described approximation procedure for the general case of the 
differential operator A to Degenerate heat equation. For this equation the operator is 

2 2 
A = - ^ oij di dj + '"i Qi • (2-12) 

•y=i «=i 

In the present example the corresponding diffusion tensor a = {a^}^ is 

" 1 0 " 
0 0 

The off-diagonal entries in the system matrix corresponding to the grid node (/c, I) have the 
form 

/l _ /,-2„ u-i j ~vk+u f° r Vk+U Aki.k±u - ~h a.u - h < 1 c 2 
I vk-ll fOT Vk-U < 0 

A _ L - l / -Vll+l i m V t l + \ >0 

Aklkl±l — —n, ' 
- v l ^ iorv2 >0 " ( 2 1 3 ) 

Jki-x 1U1 uki-i 

13 
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where k, I, G N identify nodes on the grid k units in direction e\h, and I units in the direction 
e2h, and velocity at a node {k.l) is v^i = {vli,vlt). 

The above matrix A is of positive type if the velocities are chosen in such, a way to 
ensure that Akt k±u and Aki ki±i are non-negative. 

The diagonal entries of the system matrix must be equal to or greater than the 
negative sum of the off-diagonal entries in order to ensure monotonicity. In this thesis we 
have chosen to set the diagonal entries equal to the negative sum of the off-diagonal entries. 

Let us look at another example. On the elliptic differential operator of General 
degenerate parabolic equation 

2 
A = - "ij<h'h (2-14) 

ij=i 

one can apply the described approximation procedure when the corresponding diffusion 
tensor-has the form 

" 1 1 
1 1 

Observe that det(a) = 0, which means that the problem is degenerate. 
We can say that a discretization of General degenerate parabolic equation relies on 

the appropriate choice of the discretization of the mixed partial derivatives. What "a good 
choice" is, depends on the diffusion tensor. 

2.3 Courant-Friedrichs-Levy (CFL) condition for mono­
tone schemes 

We now present our derivation of the C F L condition for monotone schemes. 
Let us remind ourselves of the structure of a matrix A of positive type. It must have 

positive diagonal entries, negative or zero off-diagonal entries and the sum of entries in each 
row must be either zero or positive. Our differential operator (2.3) must be discretized by 
a matrix A, where A must be of positive type. 

The system matrix of the initial value problem for ODEs 

^u(t) + Au(t) = 0 

can be rewritten in the following form. Let 

A = D - B, 

where D is a diagonal matrix with entries du = an > 0, and B is a non-negative matrix 
with entries fey = —ay > 0, bu = 0. Set p = max; du and rewrite the matrix A as 

• A = PI - Q, 
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where the matrix Q has entries = bij for i ^ j and qa = p — du. Then the above initial 
value problem for ODEs has the form 

ju(t) - pu(t). + Qu(t) = 0. 

Using Forward Euler method we get a system for discretizations u^fc^ of u(ifc) 

U(fc+D = ( !_ p r ) u ( fc ) + T Q u ( * ) = o. (2.15) 

Then the C F L condition is determined by the maximal time-interval, TCFL, 

TCFL = P" 1-

For matrices A of positive type so determined TQFL is theoretical, and consequently optimal. 
The Toolbox of Level Set Methods 1.1 calculates the timestep by considering terms of a 
partial differential equation separately, meanwhile making sure not to incorrectly set the 
time step to the minimum of the advection time step and the diffusion time step, as shown 
in the following example. 

Let A = Ai + A2 where both matrices Ar are of positive type, Ar = prI — Qr, and 
p1 = p2. Then a bound of the maximal time interval r for the system (2.15) from the 
corresponding time intervals rr = l/pr is obtained as follows 

/ 1 1 \ 1 
. T < mm — , — I = —. 

Vpi p2J p 

However, the maximal time interval TCFL for A is 

1 
TCFL < 7T-2p 

So the actual maximal time step is twice smaller than the time step computed as a minimum 
of the Ti and T 2 . In other words the scheme is unstable for r = ^, since r > TCFL-

Let us now correctly state the above computation of the maximal time step. 

L E M M A . 2.1 Let A = A\ + A2 where both matrices Ar are of positive type, Ar = prI — Qr. 
Then a bound of the maximal time interval TCF'L for the system (2.15) can be obtained from 
the corresponding time-intervals TR = l/pr as follows 

( 1 1 
TCFL > 1 

W r 2 

A proof of this result follows simply from p <pi +p2- Therefore, taking r = + ^•)7 1 

makes the method stable. We have to point out that this is not the largest possible "stable" 
time step. It follows that the optimal value of TCFL should be calculated numerically from 
the diagonal entries du rather than using this lemma. 

Let us show an application of this lemma. In the case of level set equation in one 
dimension the matrix entries da are h~l\v{xi)\ so that the associated T\ must be 

h 
T\ = max v{xi)\' 
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This is the theoretical value of T \ . This T\ depends on the coefficients of differential operator 
and discretization procedure (upwinding in the considered case). In the case of level set 
equation in two dimensions we have theoretical values T\ , T2 and a bound on TCFL from the 
lemma. However, the theoretical TCFL is generaly larger and can be obtained directly from 
the entries da. 

Let us point out again that r depends on the coefficients of the elliptic differential 
operator A defined by (2.3) and the discretization procedure used for the approximation 
of the first and second order terms. For example, assume that we use discretization that 
results in the matrix entries (2.11) and .additionally that the system matrix is of positive 
type. Then TQFL = 1/p implies 

_ IS 

2 maxfci [an(xki) + a22{xki) - |ai2(x f c/)|] ' 

where xki are grid nodes. The obtained expression coincides with the well-known expression 

TCFL = / l

2 (4a 2 )" 1 for A = - a 2 £ 2

= 1 5.2. 

2.4 Consistency of monotone schemes 
We have shown in Section 2.3 how to ensure stability of a monotone scheme. Here we discuss 
the consistency of the monotone schemes investigated in this thesis starting with a definition 
from Strikwerda, [8]. 

D E F I N I T I O N 2.4.1 Given a-partial differential equation Pu = f and a finite difference 
scheme, P,u,dxV = f, we say the finite difference scheme is consistent with the partial 
differential equation if for any smooth function 4>(t, x\, x2) 

P4> — Pdt,<ix<t> —* 0 o.s dt —> 0, dx = (dxi, da;2) —> 0, 

the convergence being pointwise convergence at each grid point. 

In our case P = dt + J2ivi^i ~ J2i3 " o ' V ^ and 

Pdt.dx = Forward Euler difference operator + Upwinding difference operator 
— Second order difference operator. 

i 
In the class notes [6] it is shown that explicit Euler difference method, and Upwinding 

method are consistent. Therefore, we have to demonstrate that our Second order difference 
operator is consistent with Oijdidj. We denote them by Pdt,dx and P, respectively. 
We already know that both operators give the same result when applied to second order 
polynomials T2(.Ti, 2:2). Hence, if 

4>(x1,x2) = T2(xi, x2) + R3(dxx, d,x2)., .Ti = hk 4- dxx, x2 = hi + dx2, 

at a grid node (hk, hi) where T2 is a second order Taylor polynomial, then 

P^-PdtM = PR3.- Pdt,dxR3-

The remainder R3 is the series of monomials of arguments dx\ and dx2 of the order 3 and 
higher. Second order partial derivatives of R3 behave like 5 = \dxi\ + \dx2\ for small 
values of 5, proving the consistency. 
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Chapter 3 

Analysing Problems 2. and 3 

In this Chapter we focus on Degenerate heat equation and General degenerate parabolic 
equation using the tools developed in Chapter 2. 

3.1 Degenerate heat equation 
We write Degenerate heat equation 

where v is a velocity field. This parabolic equation is interesting since it has a convection 
and a diffusion term, where the diffusion is present only in the direction of the x-axis. We 
study the equation for three separate velocity fields for which analytical solutions can be 
found. 

3.1.1 G o a l and p r o b l e m set t ing 

Our goal is the implementation of monotone schemes for the three problems defined below. 
We consider these three cases in order to investigate the efficiency of monotone schemes 
for an equation involving constant and vortex velocity fields. We look at two examples of 
the constant velocity field, since in one of the examples the velocity is aligned with the 
coordinate axis, while in the other example it is not. 

We begin with the definition of our two examples for Degenerate heat equation 
which we will call Problem A, and Problem B. 

Problem A. Consider domain D = (0, l ) 2 , with initial condition 

'(/.,. (x) + v v u - uxx = 0 (3.1) 

{x,y) = g(y)f2sm(-Kx), 

where 
sin(27T7/) for y £ [0,1/2] 
0 for y £ [ 0 , 1 / 2 ] . 
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The velocity is constant v = (0,1), and the solution to (3.1) is 

u(t,x,y) = exp(—-n2t)g{y — i^i) \/2 sin(7r:r). 

The function u(t,x,y) is actually defined on a strip (0,1) x ( — 0 0 , 0 0 ) C K 2 , and has zero 
values at x = 0 as well as at x = 1. In addition, the function u is different from zero only 
for 0 < y — V2't < 5 . If we consider the problem for t S [0, then we can claim that 
solution has zero values on the whole boundary. 

Problem B. Consider again domain D = (0, l ) 2 . where velocity is field given as in 
[7], (dyO, —dx8), by the so called stream function 

0 = 8(x,y) = - sin2(7rrt) sm2{iry). 
n 

The initial condition is defined by 

oj(x.y) = sin(7r.r) sin(7rjy), 

and solution to (3.1) is given by 

u(t,x,y) = - exp(-i7T 2)w(.T, y). 

We have the boundary condition 0 everywhere on the boundary. 

The analytical solutions to the three problems are constructed by using methods of 
eigenfunctioiis [IS], [16]. 

3.1.2 D e r i v i n g ana ly t i c a l solut ions 

In this subsection we explain how we arrived at the analytical solutions of the three examples 
forementioned. 

Method of eigenfunctions 

Our objective is a construction of solutions of IVP for P D E 

iH + v V i i - uxx = 0 (3.2) 

where v is a constant velocity field, v = (vi,v2). The method is known by the name "ex­
pansion of solution in terms of eigenfunctions'''. We use the following differential operators 

H = at + P2 - a2, 
K = dt + vxdx - dl 

One-dimensional eigenvalue problem 

Let us consider the following eigenvalue problem 

(- dl + p2)</; = X6, 4>{0) = </>(!) = 0. (3.3) 
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Solutions are 
<t>k{x) = 2 1 / 2 sin;/;'-,:;. A f c = p2 + fcV. 

The functions (fik make an orthonormal basis of L2(0,1)- The orthogonality can be easily' 
checked. Consider first the scalar product (<pk — 4>i) f ° r k K 

(4>k\4>i) = 2 / sin(/c7ra;) sin(/7ra;)(i.'c 
Jo 

= 2 j ^ cos(/c7r.'j; — ITTX) — cos(kiTX + ITTX)^ dx 

11 1 - ii 1 
= — K sin((fc - l)ivx) - — sin((fc + l)irx) = 0. 

lo7r(A;-/) u ' ' Io7r(fc + 0 v v 

Now let's look at the case k = I. 

/•1 
sin(fc7r.x) sin(A;7ra;)o!a; 

= 2 I'sm2(knx)dx= 2 Z' 1 . 1 ~ cos(2kirx) ^ = 2\'lx + J - l ' sm(2k*x) = 1. 
Jo Jo 2 lo 2 4/=7rlo 

In the above calculations we used the trigonometry formulas for the product of two sin 
functions [21]. In terms of the inner product (• | •) [10] this means {(f>k\4>i) = Ski-

It can be proved that any ./^-function can be approximated arbitrarily well by a 
finite linear combination of basis functions 4>k [16]. Therefore, "any" / on (0,1) can be 
represented by the series 

k 

where ck = (4>k\f) are called Fourier coefficients. Equality of two sides holds point wise for 
sufficiently smooth / . Therefore, we try to represent a solution of Hu(t, x) = 0 as a series 

i(t,x) = <*kit)4>k{x), 

where ak(t) can be considered as the the Fourier coefficients of u(t, •). If we apply H from 
the left onto u, and demand Hu = 0 we get 

(dt + A t ) ak{t) = 0, 

giving us the only possibility a.k(t) = ck exp ( — \kt) where ck 6 R. In a step by step 
computation we derive this result in the following way 

dtu{t,x) = Y^dtctk{t)<t>k(x), 
k 

p2u(t,x) = ^2p2ak(t)<t>k(x), 
k 

-d2:a(t:x) = ~J2Mt)dlMx) = ^^ak(t)k2ir2(j)k(x), 
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Hu = Y, [dtc*k(t) + Xkak(t)^k(x) = 0. 
k 

This gives us an ordinary differential equation in a(t) 

dta(t) + Xkak(t) = 0, 

which has the solution ak(t) = ck exp(—Xkt). 
Thus 

w(£, x) = 5 3 cfc exp ( - A fc t) <t>k{x), 
fc 

is a general solution of Hu = 0. 
Next we consider an extension 

(- dl + v x d x ^ = Xip, V(0) = V-(l) = 0. (3.4) 

and try to apply the same construction. Let us make an ansatz tp(x) = exp(vix/2)cj>(x). 
ff we plug ip(x) into the formulated eigenvalue problem (3.4), we get the problem (3.3) 
for 4> where p2 — v2/A. Hence, the eigenfunctions are 'ipk(x) = exp(vix/2)4>k(x) and the 
corresponding eigenvalues are as before. Therefore, we now write u as a Fourier series of 
the new eigen-basis 

u(t,x) = Y^(t)Mx)eM~), 
fc 

and try to solve Ku = 0. 

dtu(t, x) = 5 3 dtf3(t) exp{^y )<f>k(x), 
fc 

dxu(Lx) = E^W[y'exp(^)^(.x-)+exP(^)0:(.x-)] = £ f t ( t ) e x p ( ^ ) [^k(x)+<p'k(x)], 
fc fc 

Lx) = ^ / 3 f c ( £ ) ! l e x p ( ^ ) [ ^ ^ ( . T ) + 4>'k(x)] + pk(t)exp(^) '̂fc(x) + 4'k(*)], 

/ f u = ^exp(^)[a t /? f c ( t )^( .xO+/? f c W (^ F C ( A ; ) -^( .T))] =0. (3.5) 
fc , 

Since we know that <f>k — — \/2k2'K2sm{kixx) — —k2Tr2cj)k(x), the above calculation (3.5) can 
be written as 

Ku = 53exp (^) [c? t / 3 f c ( f ) +pk(t)(?± + k2^)]</>k(x) = 0. 
fc 

ff we identify ^ as p2, then the equation (3.5) can be rewritten as 

Ku = 5 3 e x p ( ^ ) [dt(3k(t) + \kpk(t)]Mx) = 0-

Similarily, as we did for ak(t) we now have an ordinary differential equation in Pk(t), with 
solution 

pk(t) = c fc exp(-Afei), 
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and thus 
u(t,x) = ^2exp(-\kt) exp(vlx/2)4>k(x). (3.6) 

fc 

The eigenfunctions i/'fc('';) a L e not orthonormal. Yet they define a basis, because the 
function exp in front of <j>k is bounded from bellow and above by the numbers exp(=p|-t;11/2). 
This gives us a possibility to built the above solutions of Ku = 0 in terms of ipk- In order 
to show that ipk are not orthonormal it is enough to show that either f^ip^dx yt. 1, or 
Jo i>k'i>i dx 0. Here we show that 'ip2. dx ^ 1 in general. Again, for the integration of a 
product of exp and sin we consulted [21]. 

W>A#fc) = 2 / exp{vix) sin2(kirx)dx 
•Jo 

, , 1 - COS (2/CTT.T) , 
= 2 J- exp{vxx) i '-dx 

l 

exp('Uia;) — exp(^iX') cos(2£;7r2;)dx 
o 

= (— exp^a:)! 1 - [ T^toK (vi cos(2A.-7r.T) + 2knsin(2knx))\1} ivy lo lv( + Akiixi JoJ 

= | - ( e x p ( , 1 ) - l ) - [ v 2 + A k ^ 2 j}-

The construction of solutions in terms of the eigenfunctions 4>K of the boundary 
value problem (3.4) is general so it does not depend on a particular choice of the boundary 
conditions. As an alternative to using the boundary conditions of (3.4) one can impose zero 
derivatives at the end points of the interval (0,1). Also, zero value can be set for a subset 
of the end-points of the domain, while zero derivative on the remaining end-points. This 
would, for example, require eigenfunctions <f>k with zero derivative at x = 0 and zero value 
at x = 1. For this particular case the sequence of orthonormal eigenfunctions is 

Mx) = V-2 cos ( £ * ± f e ) , . = 0,1,. . 

and the corresponding eigenvalues are 

A. . + , = 0,1 ' • 

3.1.3 T w o - d i m e n s i o n a l eigenvalue p rob lems 

To solve the 2-D problem (3.2) we utilize the same technique as for one-dimensional-prob­
lems. Thus we start with 

oo 

u(t,x,y) = fk(t,y) exp(vix/2)<pk(x), 
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where fk{t,y) are the new Fourier coefficients, and apply from the left the differential oper­
ator 

M = K + v2dy = 8t + Vldx + v2dy - d\ 

in order to calculate Mu = 0. The following result is obtained: 

Mu{t,x,y) = (dt + v2dyya(t,x,y) + (yidx - <92) u{t, x, y) 

= (dt + v2d^u{t,x,y) + Xku{t,x,y) =0 

= Efc (°t + v2dy + Xk\ fk{t,y) exp{v1x/2)<pk{x) 

implying 

(dt + v2dy + A f e) fk(t,y) = 0. 

The only non-trivial solution of this problem is 

fk(t, y) = exp {-Xkt) gk(y - tv2), 

where gk is a function on R. Hence, 
oo 

u{t, x, y) = ^ e x P ( " A<t *) cJk{y ~ tv2) exp(vix/2) (f>k{x). (3.7) 
fc=i 

Apparently, the constructed solution is on the set [0, oo) x (0,1) x K. 

3.1.4 Solu t ions on squares 

ff all the functions gk have supports in a set [0, a] C [0,1] then for times 0 < t < (1 — a)/v2 

the packages gk travel over the domain (0, f )2 from their initial supports towards 1 and 
eventully hit the right end-point at T = (1 — a)/v2. Within t 6 [0, T] solution (3.7) has zero 
values at the boundary of [0, l ] 2 . 

An example function is 

u{t,x,y) = exp{-Xkt)x{y ~v2t) Qxp{vxx/2)(j>k{x), 

where 
' f sin(2™) for x G [0,1/2] 

' U ' \ 0 for x i [0,1/2]. 

Therefore, when executing the code for the constant velocity field for Degenerate heat 
equation the running time of the simulation can be set to at most 0.5. 

3.1.5 S o l u t i o n w i t h the vor t ex ve loc i ty field 

We consider an fVP for the second order P D E of the following general form 

dt u{t, x) + v{x)Vu{t, x) + Au(t, x) = 0 for t > 0, x G D, 
u(t,-)\dD = 0 for t > 0, (3.8) 
u{0,x) = u0(x) for x G D, 
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where D C R 2 is a bounded domain with the boundary dD, x >—> v(x) is a divergence 
free velocity field on D, UQ is a function on D and A is a second order differential operator 
(degenerate or non-degenetate) of the following form 

2 
A = - ]T 0; d,. 

ij=l 

with a constant diffusion tensor a^. 
One of possibilites for the construction of solutions u(t, x) in terms of known func­

tions is given by the following two rules 

1) Solution has the general form u(t,x) = fi(t)f2(x). 

2) The function f2 has the property v(x)^ f2(x) = 0 and Af2(x) = Xf2(x). 

Let us point out that Af2 = Af2 means that f2 is an eigenfunction of A with the corre­
sponding eigenvalue A. 

When one inserts the assumed form of the solution into the P D E the following result 
is obtained 

dtfi(t) + A/ i ( i ) = 0, 
-u0 (a;) = f2(x). 

Thus, fi(t) = exp(—At), the function f2 must be an eigenfunction of A and the demanded 
equality vVf2 = 0 is ensured by choosing the divergence free velocity field of the form 

vi(x) = d2f2(x), • v2(x) = -dif2(x). 

We can conclude this brief description by the following conclusion. One has to construct 
explicitly in closed form an eigenfunction of the problem 

- E i , = i 0, i)j o[x) = X(p(x), 
4>(x) = 0, for x e dD. 

For simpler domains such as a square or rectangle and diagonal diffusion tensors this 
problem can be easily solved. Let us consider the case D = (0, l ) 2 . Any such eigenfunction 
is the product of two functions, <f>(x) = <fii{xi)<fi2(x2), and the functions 4>i must have zero 
values at 0 and 1. In addition there must hold d24> = number x <j>. Only sin functions satisfy 
these conditions. 

Now one can easily utilize this procedure. Given vortex velocity field v = (—d2'ip, dyip), 
where 

'ip(x.y) = — sin2(7ra;) sin 2(7rj/), 

a solution to (3.8) is the following function 

u(t,x,y) = exp(—7r2i) sin(7r.x-) sin(7ry). 

The following simple fact is used in the constuction of a solution to (3.8). If 
u(t,x,y) = exp(—Xt)x{x,y) is a solution to Af2 — Xf2 defined in 2) then we have vVu = 0 
for any velocity field v = (d2'4>, —di'ip) where the stream function is a polynomial of the 
function x- In our case we chose the second order power of X-, L e - iJ = A'2/71"-
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3.1.6 Findings 
The list of programs implementing Degenerate heat equation can be found in Appendix. For 
a detailed explanation of the in language implementation the user can consult the manual 
of the Toolbox of Level Set Methods 1.1 and visit Section 5.1 of this thesis report. The 
figures pertaining to our findings are included at the end of this section. 

The C F L bound computed in the C implementation is the theoretical bound as 
discussed in Section 2.3. Therefore, we use C implementation to generate errors and figures 
of analytical and numerical solutions at different time points of the time interval [0,2']. 

For the constant velocity field examples, the final time T , has to be < 1/2 in order 
for the boundary conditions to be satisfied. Note that for Problem B the final time can be 
any in R + . 

For both problems the number of nodes taken in each spatial direction is 100, and 
two sets of four images display the analytical and the numerical solutions at different times. 

Figures 3.1 and 3.2 show the results of the implementation of Problem A while 
Figures 3.3 and 3.4 show the results of the implementation of Problem B. 

The errors for the two problems, A and B, are calculated in the norm and are 
displayed to the console for a user-defined number of time points of the time interval [0,2']. 
Each line of the program's output contains three numbers. T'he first number is the time, 
the second number is the absolute error, and the third number is the relative error. 

For Problem A errors are 
maximum error at time 0.000000 i s 0.000000 ( in 7.) 0.00000000 
maximum error at time 0.166668 i s 0.0II709 ( in 7.) 8.57906057 
maximum er ror at time 0.333336 i s 0.002948 ( in 7.) 11. 1912132/ 
maximum error at time 0.500004 i s 0.000665 ( in 7.) 13.08010965 
For the vortex velocity case errors are 
maximum error at time 0.000000 i s 0.000000 ( in 7,) 0.00000596 
maximum error at time 0.166663 i s 0.000349 ( in 7.) 0.18079901 
maximum er ror at time 0.333327 i s 0.000139 ( in 7.) 0.37364951 
maximum error at time 0.499990 i s 0.000041 ( in 7.) 0.56455006 

The solutions go quickly to 0 as time increases, since they contain exp(—tir2) term. 
T'he time step taken is le—5 using C F L number 0.8, and the initial conditions for the two 
problems are their respective solutions at time t — 0. 

Numerical errors shown above, and illustrated by graphs, enable us to say that the 
monotone scheme of Degenerate heat equation appears to be better suited for an approx­
imation of problems with the vortex velocity field than the constant velocity field. The 
error of 13% for Problem A seems rather large. Looking at this figure alone we could doubt 
the quality of accuracy of monotone schemes. Especially since taking a smaller -time step 
produces almost the same error. Still, the error of 0.56% of Problem B leaves us in the need 
for further investigation of their accuracy. 

What can be said with certainty is that the maximal time step calculated from the 
TCFL bound produces a stable method in each of these three problems. 
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Figure 3.1: Analytical solution of Problem A computed for the final time 0.5 , bound­
ary condition 0. velocity v = (0,1), grid size [100 x 100], and initial condition 
sin(27ry)sin(7rri;)/v/2 V.-t £ domain D, and V-y e [0,1/2]. 
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Figure 3.2: Numerical solution of Problem A computed for the final time 0.5 bound­
ary condition 0. velocity v = (0. 1). grid size [100 x 100], and initial condition 
sin(27ri/)sin(7rx)/v

/2 Va: £ domain D, and Vi/ € [0,1/2]. 
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Figure 3.3: Analytical solution of Problem B computed for the final time 0.5 , bound­
ary condition 0, vortex velocity field, grid size [100 x 100], and initial condition 
sin(7ra;) sin(7rj/) Vx,y 6 domain D. 

analytic solution, t = 0 analytic solution, t = 0.16666 

analytic solution, t = 0.33333 analytic solution, t = 0.49999 

0 0.5 1 0 0.5 1 
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Figure 3.4: Numerical solution of Problem B computed for the final time 0.5 boundary condi­
tion 0, vortex velocity field, grid size [100 x 100], and initial condition sin(7ra) sin(7r.x) Va;, y £ 
domain D. 

numeric solution, t = 0 numeric solution, t = 0.16666 

0 0.5 1 0 0.5 1 

• numeric solution, t = 0.33333 numeric solution, t = 0.49999 

0 0.5 1 0 0.5 1 
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3.2 General degenerate parabolic equation 
Next we consider the third equation of interest, 

u t(x) - uxx(x) - 2uxy(x) - uxx(x) = 0. (3.9) 

This parabolic equation was obtained by adding time dependency to a particular example, 

d2u 
- {uxx + 2uxy + uyy) = - — = 0, v = (1,1) (3.10) 

of [2]. 

The example (3.10) was designed to show how choice of a difference scheme has an 
impact on the convergence of a method. The author of [2] demonstrates that the difference 
scheme 

Tjiuix + h,y + h) - 2u{x,y) + u(x - h,y - h)) (3.11) 

produces a convergent method of (3.10), while the scheme 

jir (2W(.T + h, y) + 2u(x, y + h) + 2u{x - h, y) + 
2u[x, y — h) — 6u(x, y) — u{x + h, y — h) — u(x — h, y + h)) 

results in a non-convergent method. Both schemes are central difference schemes. The first 
scheme takes central differences in the direction (1,1), while the second in the direction 
(-1,1). 

Oberman in [2] suggests an additional way to derive a convergent scheme for the 
above problem via coordinate axis rotation. This is an alternative, less elegant than central 
differences. 

3.2.1 G o a l and p r o b l e m set t ing 

Our goal is to confirm or contradict the findings of [2] by analysing associated parabolic 
equation (3.9). The findings of [2] state that the direction in which the central differences 
are taken has impact on the convergence of a method. Again, we'created implementations 
in both C programming and MATLAB's m languages., The m language implementation 
is a routine in the Toolbox of Level Set Methods 1.1 and therefore can not be run as a 
stand-alone program. 

The starting point is construction of an analytical solution. It is easily obtainable 
from the boundary conditions given in [2]. Therefore, we can now postulate the initial 
boundary value problem for General degenerate parabolic equation. 

Consider P D E (3.9) on the domain D = (0, l ) 2 , with initial condition 

u(0,x,y) =0, 

in the interior of the domain, and boundary condition 

sin(67r (x — y)) \/(x,y) G dp, t > 0 
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Apparently, the approximation converges to the classical solution 

u(t,,x,y) = sin(67r (x - y)) 

as 1: —i oo. 

We must bring into the correspondence the schemes (3.11) and (3.12) with the 
schemes of Section 2.2.1. 

Recall that (3.9) coincides with General degenerate parabolic equation, where the 
degenerate differential operator is A(x) = ~^2ij=iaij(,x)didj, and the elliptic diffusion 
tensor is atj = 1 for all i, j 6 {1, 2}. 

In accordance with the proposed discretizations of Section 2.2.1 we have at our 
disposal four possibilites for dido, defined by 

dijii. 2/i 
7'u(x ± e;/i ± ejh) — u(x ± e;/i) — u(x ± ejh) + u(x), 

— '«(x ± eih =F ejh) + v/(x ± e;/i) + u(x =F ejh) — u(x). 

Due to a 12 > 0 we have to use the first possibility, 

|̂ u(x ± e.;/i ± ejh) — u(x ± e;/i) — u(x ± ejh) + tt(x)J, 

to arrive at a converging method. When we apply the prescribed discretization to the 
differential operator . aijdidj we get 

duu(x) + 2 B,y«(x) + 3JJU(X) = 

= ^ |u(x + eih) - 2u(x) + w(x - e.;/i)] + 

+ 2 ^'«(x + e.;/i + ejh) + u(x — eih — ejh) — u(x + eih) 

—u(x — eih) — u(x + ejh) — u(x — ejh) + 2-u(x)j + 

-f-̂ y u(x + ejh) — 2u(x) + u(x — ej/i)j = 

= £ u(x + eih + ejh) — 2ti(x) -I- -u(x — e t/i — ejh) 

This is precisely the convergent scheme (3.11). 
If we use intentionally the second possibility to discretize the operator didj, i ^ j, 

we get a scheme which is not monotone 

B,,'«(x) + 2 Biju(x) + Ejjii,(x) = 

= ^ ['«(* + e,/i) - 2-u(x) + -u(x - e ; / i ) j + 

+ 2 2775 ^ — w(x + e.;/i — ejh) — u(x — e;/i. + ejh) + u(x -f eih) 

+ u(x — e^h) + u(x — ejh) + u(x + ejh) — 2u(x)j + 

u(x + ejh) — 2u(x) + u(x — e,-/i)J = 

2 u(x + eth) + 2u(x - e;/?,) + 2 u(x + ejh) + 2 u{x - ejh) + 

+ 6 u(x) + —w(x + eth — ejh) — u(x — eih + e^/i)]. 

_ 1 
~ h 
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Actually this is the non-convergent scheme (3.12). The absence of monotonicity results 
in the method being non-convergent. For' further discussion on monotonicity see the next 
section. 

The code in the Toolbox of Level Set Methods 1.1 handles a completely separate 
discretization of mixed partial derivatives, discussed in Section 2.2.2. It applies operator 
3if first in the variable i and then in the variable j. The resulting approximation operator 
is 

^ 2 (u(x- + eih + ejh) — i'.(x — e,/i + ejh) — u(x + e /̂i — ejh) + u(x — e-^h — ejh) 

Using this operator the discretization of the considered J2ij <>•<). is 

a.„u(x) + 2 r3jj'u(x) + 3JJU(X) = 

= jiy [u(x + eth) - 2-u(x) + u(x - e.(/i)j + 

(u(x + e;/?, + ejh) - u(x - eji + ejh) - (3.13) 

—u(x + eih — ejh) + i/,(x — e.;/i — ejh)) + 

+ jp [u(x + ejh) — 2u(x) + 'u(x — ej/i)j. 

It is easy to check that the resulting scheme is not monotone. 

3.2.2 M o n o t o n i c i t y of the schemes 
In this section we consider monotonicity of the schemes (3.11), (3.12), and (3.13) and show 
that only (3.11) is monotone, while (3.12) and (3.13) are not monotone. The analysed 
elliptic problem is defined by (3.10). For the definition of monotonicity refer to Section 2.1. 

We first consider scheme (3.11) to approximate the equation (3.10). In order to 
check the monotonicity of the approximation we write 1-1 i j c lS Si function of its neighbouring 
nodes, i.e. its arguments, Uij = /('«(,fc | W(,fc £ N(uij)), 

2uij = ui+xj+i +u.i-ij-i. 

Since both coefficients next to and ' U ; _ X J _ I are positive, Uij is nondecreasing in 
each of its arguments, and therefore scheme (3.11) is monotone. 

Next we write the scheme (3.12) in the same form 

6u-ij = 2iti+ij + 2 « i j + i + 2ui-itj + 2'(tjJ_i — Ui+itj_\ — 

Since u^j is decreasing in 'u; + i j_ i and t t i _ i J + i , the scheme is not monotone. 
Finally, we look at (3.13) 

16uj,j = 4ui+ij + 4u i_u + u i + i j + i - ui-ij+i - iLi+ij_1 + Ui_itj-i + Auij+i + 4w i j_ 1 . 

This scheme is non monotone since uitj is decreasing in and u l + i ^ - \ . 

The following can be said for the mixed partial derivative approximations imple­
mented in the Toolbox of Level Set Methods 1.1. Any scheme implemented in the Toolbox 
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which uses Toolbox's mixed partial derivative approximation is not guaranteed to be mono­
tone. 

This comes from the fact that schemes examined are built from schemes of individual 
terms. For example, Heat equation is build from two individual schemes. One for the u x x 

term, and one for u,jy term each of which happen to be monotone. Therefore, the scheme 
for Heat equation which adds these two monotone schemes is monotone. 

Let us now examine the individual schemes existing in the Toolbox of Level Set 
Methods 1.1. The Toolbox of Level Set Methods uses upwinding for the approximation of 
first order derivatives, which is a monotone approximation. It uses the differences approx­
imation operator, da, for the non-mixed second order term, which is also monotone. Yet, 
it uses the following expression 

2ai2 -^(ui+ij+i - — + W j - i j - i ) 

for the approximation of the mixed partial derivatives for the diffusion tensor a = {ay} 2 2-
As readily visible, depending on the sign of ayo two of the terms always have positive 
values, while the other two always have negative values. Therefore, once this approximation 
is combined with monotone approximations for upwinding and Bu, the result is a non-
monotone approximation. 

3.2.3 R o t a t i o n of coord ina te axes for G e n e r a l degenerate pa rabo l i c 
equa t ion 

As mentioned in Section 2.2.4 a way to obtain a monotone scheme would be to perform a 
coordinate axes rotation of a problem [4]. Here we consider this approach. 

. Let us recall the definition of the elliptic differential operator for a two dimensional 
problem 

2 
A = - a-ijdid,, (3.14) 

ij=l 

where the diffusion tensor a = {ay} 2 2 is positive semidefinite. Thus, either it is definite 
and has two real positive eigenvalues or it is semidefinite with one eigenvalue equal to zero 
implying det(a) — 0. In the original coordinates, which are denoted here by a: 1,2:2, the 
partial differentiation.operators are denoted by d{. 

We define new coordinates, x[. x'2 as 

X[ = t U X i + tX2X2; 

x'2 = £ 2 i xi + t.22 X2, 

and the corresponding partial differentiation operators d[. The following transformation 
between differentations in the original and new variables can be established 

di = t n d [ + t 2 1 d 2 , 

d2 = d[ + t22 &2-
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This can be rewritten in matrix form 

0i 
d2 

TT 

To obtain the elliptic operator A in new coordinates, we have to use these transfor­
mations of partial differential operators. Therefore, we insert expressions 6\ in terms of d[ 
into (3.14) to obtain 

2 • 2 
A = - Y *vhid'kthdl = - J2 <ud'kd'h 

ijkl=\ fc(=l 

where the new diffusion tensor has entries 

a'ki = 5Z* f c*a'J'*'J = ( T a T l ) ki­

ln the case of det(a) = 0 we have det(a') = det(T)det(a)det(TT) = 0, i.e. A is 
degenerate in the new coordinates as well. We know from Strang [10] that there exists a 
rotation defined by 

[ cos(a) sin(a) 
1 ( a) = • / > ( \ [ — sm(a) cos(a) 

such that the matrix a1 has one of the following forms: 

" p 0 " " 0 0 ' 
_ 0 0 _ 0 p . 

For non-degenarate diffusion tensors there exist difference schemes which discretize 
the elliptic differential operator (3.14) by matrices An of positive type. The idea is given in 
[4]. There are many elaborations such as [20]. In order to get discretizations An of positive 
type one has to use stencils of'different length in the xx and x2 directions. This idea we use 
for degenerate schemes to develop the method of Chapter 4. 

3.2.4 F i n d i n g s 

The C F L bound on the schemes which are monotone was computed as given in Section 2.3. 
The C F L bound for the non-monotone schemes cannot be computed using our described 
procedure. Still, 'we used the same C F L bound as the one for monotone schemes, namely 

hi 

2 maxfci [an(xu) + a 2 2 (x f c ( ) - |a12(ccfc()|] 

This time step when used with non-monotone schemes produces erroneous results which 
show non-convergence of these schemes. 

We must note that for parabolic problems with the zero initial condition and nonho-
mogeneous boundary conditions we do not show error values. Instead we show the difference 
between the numerical solution and the analytical solution at a point in time. In addition, 
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when we say that a solution is analytical, in some cases it is really an asymptotic solution. 
These cases are the ones for which the initial condition is not equal to the analytical solution 
at time zero. • ' • 

Figure 3.5 shows the result of using discretization (3.11) when running the imple­
mentation up to time 0.2 for grid size 100 x 100. The solution driven by the boundary 
conditions is quickly approaching the analytic solution as can be seen in the figure. The 
differences in norm are 

maximum difference at time 0 000000 is 0 998867 (in 7.) 100.00000000 
maximum difference at time 0 024997 is 0 919144 (in 7.) 92 01866571 
maximum difference at time 0 049995 is 0 706837 (in 7.) 70 76385770 
maximum difference at time 0 074992 is 0 529321 (in 7.) 52 99214182 
maximum difference at time 0 099990 is 0 395380 (in 7.) 39 58280635 
maximum difference at time 0 124987 is 0 296519 (in 7.) 29 68551002 
maximum difference at time 0 149985 is 0 222830 (in 7.) 22 30829146 
maximum difference at time 0 174982 is 0 167454 (in 7.) 16 76441874 
maximum difference at time 0 199980 is 0 125842 (in 7.) 12 59842562 

Figure 3.6 shows the result at time 1.0 for both the analytic and numeric solutions. 
The differences are 

maximum difference at time 0.000000 is 0.998867 (in 7.) 100.00000000 
maximum difference at time 1.000026 is 0.000135 (in 7.) 0.01350979 

An additional test was run with the initial condition being the solution in order 
to assert the validity of the implementation, and thus potentially observe the calculational 
error on a 100 x 100 grid with final time 0.5. 

maximum error at time 
maximum error at time 
maximum error at time 
maximum error at time 
maximum error at time 
maximum error at time 
maximum error at time 
maximum error at time 
maximum error at time 

0.000000 is 0.000000 
0.124987 is 0.000000 
0.249974 is 0.000000 
0.374962 is 0.000000 
0.499949 is 0.000000 
0.624936 is 0.000000 
0.749923 is 0.000000 
0.874911 is 0.000000 
0.999898 is 0.000000 

(in %) 0.00000000 
(in 7.) 0.00004028 
(in 7.) 0.00004028 
(in 7.) 0.00004028 
(in 7.) 0.00004028 
(in 7.) 0.00004028 
(in 7.) 0.00004028 
(in 7.) 0.00004028 
(in 7.) 0.00004028 

We conclude that the 4e—5 percent error is due to round off error. 
Figure 3.7 shows the same setting as in Figure 3.5 using discretization (3.12) on 

a 100 x 100 nodes grid for final time 1.2. It is readily visible how the non-convergence is 
materialized and remains with the running time. The differences obtained are 

maximum difference at time 0.150000 is 0.826923 (in 7.) 82.7861089311 
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maximum difference at time 0.300000 i s 0.906501 ( i n '/,) 90.7528988305 
maximum difference at time 0.450000 i s 0.900932 ( i n */,) 90.1953603932 
maximum difference at time 0.600000 i s 0.861522 ( in 7.) 86.2498673530 
maximum difference at time 0.750000 i s 0.665061 ( i n 7.) 66.5815557683 
maximum difference at time 0.900000 i s 0.946972 ( i n 7.) 94.8045391399 
maximum difference at time 1.050000 i s 1.081382 ( i n 7.) 108.2608615755 
maximum difference at time 1.200000 i s 0.941579 ( i n 7,) 94.2646321863 

When compared to the results of discretiazation (3.11) it is plain that discretization 
(3.11) produces a convergent method, while discretization (3.12) doesn't. 

Figure 3.8 shows the differences obtained by using the discretization (3.13). The 
non-convergence happens due to the scheme being non-monotone. The differences for a grid 
with 100 x 100 nodes and final time 1.2 are 

maximum difference at time 0.150000 i s 0.492477 ( i n 7.) 49.3035721126 
maximum difference at time 0.300000 i s 0.456759 ( i n 7.) 45.7276746742 
maximum difference at time 0.450000 i s 0.454310 ( i n 7.) 45.4825515735 
maximum difference at time 0.600000 i s 0.451359 ( in 7.) 45.1870767231 
maximum difference at time 0.750000 i s 0.450665 ( i n 7.) 45.1176407953 
maximum difference at time 0.900000 i s 0.461395 ( i n 7.) 46.1918515911 
maximum difference at time 1.050000 i s 0.465639 ( i n 7.) 46.6167256667 
maximum difference at time 1.200000 i s 0.546891 ( i n 7.) 54.7510753188 

Let us point out once more that schemes (3.12) and (3.13), which are not monotone, 
result in a non-convergence, while the monotone scheme (3.11) is convergent. 

We also investigated what would happen on a grid with periodic boundary condi­
tions when domain is (—1, l ) 2 using the Toolbox of Level Set Methods 1.1 implementation 
of the boundary calculation, addGhostPeriodic .m. The initial condition is sin(67r(a; — y)) 
everywhere within the domain, and the central differences approximation is (3.11). The 
result for the final time 1.2 on a grid with 100 x 100 nodes using the discretization (3.11) 
surprisingly produces a non-convergent scheme. This can be seen from the percentage errors 
computed at nine different time points from 0 to 1.2 

maximum error at time 0.150000 i s 0.521210 ( i n 7.) 52.1801004934 
maximum error at time 0.300000 i s 0.514805 ( in 7.) 51.5388485854 
maximum error at time 0.450000 i s 0.376802 ( in 7.) 37.7229136800 
maximum error at time 0.600000 i s 0.377520 ( in 7.) 37.7948549638 
maximum error at time 0.750000 i s 0.428266 ( i n 7.) 42.8751591476 
maximum error a t ' t ime 0.900000 i s 0.522602 ( i n 7.) 52.3194115335 
maximum error at time 1.050000 i s 0.395414 ( i n 7.) 39.5862203809 
maximum error at time 1.200000 i s 0.555725 ( i n 7.) 55.6355194335 

Figure 3.9 shows the above example at four time points. 
Further on, we tested the discretization (3.13) with the periodic boundary condi-
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tions of the Toolbox of Level Set Methods 1.1. For a grid with 100 x 100 nodes, and final 
time 0.2, the result is shown in Figure 3.10. The errors generated are 

maximum error at time 0.025000 is 0.565357 (in '/.) 56.5998184766 
maximum error at time 0.050000 is 0.961642 (in 7.) 96.2732027284 
maximum error at time 0.075000 is 0.952116 (in 7.) 95.3195222936 
maximum error at time 0.100000 is 1.004376 (in 7.) 100.5514906582 
maximum error at time 0.125000 is 1.256236 (in 7.) 125.7660333185 
maximum error at time 0.150000 is 1.016355 (in 7.) 101.7507094230 
maximum error at time 0.175000 -is 1.133993 (in 7.) 113.5278499173 
maximum error at time 0.200000 is 1.076474 (in 7.) 107.7694694336 

We conducted a test with boundary conditions sin(67r(.x + y)) on a grid of 100 x 100 
nodes for final time 1.0 with discretizations (3.11) and (3.12). We expected that if we were 
to use discretization (3.11) we would obtain a non-convergent method, while if we were to 
use discretization (3.12) the method would be convergent. Our results depicted in Figures 
3.11, 3.12 show our findings, and the following difference figures confirm our expectation. 

Differences for the discretization (3.12) are 

maximum difference at time 0 000000 is 0 998867 (in 7.) 100.00000000 
maximum difference at time 0 333333 is 0 027840 (in 7.) 2.78714085 
maximum difference at time 0 666667 is 0 000715 (in 7.) 0.07162458 
maximum difference at time 1 000000 is 0 000135 (in 7.) 0.01350979 

while those foi discretization (3.1.1 ) are 

maximum difference at time 0 125000 is 0 709033 (in 7.) 70.9837158757 
maximum difference at time 0 250000 is 0 894754 (in 7.) 89.5768376666 
maximum difference at time 0 375000 is 1 061009 (in 7.) 106.2211725151 
maximum difference at time 0 500000 is 0 937179 (in 7.) 93.8241215025 
maximum difference at time 0 625000 is 0 697497 (in 7.) 69.8287873810 
maximum difference at time 0 750000 is 1 031804 (in 7.) 103.2973533648 
maximum difference at time 0 875000 is 0 703944 (in 7.) 70.4741875121 
maximum difference at time 1 000000 is 0 864096 (in 7.) 86.5075695024 

We conducted convergence studies of the examples with asymptotic solution sin(67r(.x'— 
v/)), sin(67r(.x —2y.)), and sin(67r(3.x — 2y)). The results obtained in convergence studies show 
non-convergence of the first two examples, and a jump in the convergence of the third 
example. 

The negative values appear due to the fact that the numerical solution at a time 
point is compared to an asymptotic solution, rather than the analytic solution. In order to 
obtain true convergence studies' values, we would have to let time go to infinity. Since we 
execute the implementations up to a finite time t, both convergent, and divergent results 
are possible. 
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Our findings show that montone schemes are stable and in most cases very accurate 
approximations of the analytical solutions. 
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Figure 3.5: Numerical solution for the final time 0.2 for the discretization (3.11), boundary 
condition sin(67r(.T — y)), grid size [100 x 100], and initial condition 0 Vx,y. 
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Figure 3.6: Analytical and numerical solutions for the final time 1.0 for the discretization 
(3.11), boundary condition sin(67r(.T - y)), grid size [100 x 100], and initial condition zero. 
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Figure 3.7: Final time 1.2 for the discretization (3.12), boundary condition sin(67r(a; — 
grid size [100 x 100], and initial condition 0 Vx,y. 
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Figure 3.8: Final time 1.2 for the discretization (3.13), boundary condition sin(67r(.x -y)), 
grid size [100 x 100], and initial condition zero for all x,y. 
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Figure 3.9: Final time 0.2 for the discretization (3.11), periodic boundary conditions, 
size [100 x 100], and initial condition sin(6Tr(x — y)). 
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Figure 3.10: Final time 0.2 for the discretization (3.13), periodic boundary conditions, 
size [100 x 100], and initial condition sin(67r(.r — y)). 



Figure 3.11: Numerical solution for the final time 1.0 for the discretization (3.12). boundary 
condition sin(67r(.-i; + y)), grid size [100 x 100], and initial condition 0\/x,y 6 D. 
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Figure 3.12: Numerical and analytical solutions for the final time 1.2 for the discretization 
(3.11), boundary condition s'm(6n(x+y)), grid size [100 x 100], and initial condition 0 V.T, y € 
D. 
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Chapter 4 

Build ing monotone schemes 

In this chapter we present our general procedure for building monotone schemes from positive 
semidefinite and positive definite diffusion tensors. We restrict our research to PDEs with 
purely diffusive terms such as General degenerate parabolic equation. 

4.1 Central difference approximations 
Let a be an m x n matrix and D be the Hessian, i.e. the square matrix of second order 
derivatives. Then we have 

2 

trace^aDa1) = trace(oL aD) = ajjdjdj, 
ij=i 

where the entries of the matrix a = a1a are denoted by ay, and the matrix a is positive 
definite or semidefinite. 

Discretizations of differential operators in Section 2.2.1 are given for the case of equal 
spatial step size h, in both discretization directions. We now define these discretizations with 
spatial steps /ij and h2. where h\ is the step size in the x-axis direction, while / i 2 is the step 
size in the y-axis direction. The corresponding expressions for the forward and backward 
difference operators are 

3 J ( x ) - + l ( / ( x ) - / ( x - e A ) ) -

Then r3;;/(x) has the form as before with /ij instead of h. Similarity, the mixed partial 
differential operator can be approximated by one of the following four possibilities 

9 i 3 j / ( x ) - a i j / ( x ) = 
1 f / (x ± e A ± ejhj) - / (x ± e.,;/?,) - / (x ± eff^) + /(x), (4.1) 

hih2 1 - / ( x ± eihi T ejhj) + /(x ± e,^) + /(x T ejhj) - /(x). 

We construct discretizations of the operator a 1 1(9i) 2 + 2ai2<9i<92 + a.22(c>2)2 by u s ' n g o.ii3n + 
2o.i2 3i2 + a22 322 a s i n the previous case. The resulting entries of the system matrix are 

46 



Au k±u 
Au. u.±i 
Aid k±u±i 

= — 2 \hl

 2an + h2 

= h~l\h~lau 

hi h2 \ai2 

(4.2) 

now 
-2 

<-2 a22 -

h~l\al2\ 
h~l[h~la22 - h~l\a,i2\ 
/ i f ' / i2 l\ai2\ (= Auk±u^i) 

In order to get monotone schemes we must have system matrices of positive type. 
This implies that the following conditions must be satisfied 

hi l a n 

/i 2" 1a 22 

h-2l\ai2\ >0, 

h~l\ai2\ >0. 
(4.3) 

Let us analyse these conditions. We know that the matrix a is positive definite or 
semidefinite. In the former case we have a\2 < a u a 2 2 and in the latter case a\2 = ano.22-
This conclusion follows from the conditions det(a) > 0 and 'det(a) = 0, respectively, ff the 
matrix a is positive definite, there exist plenty of possibilities of choosing the pairs hx,h2 

in order to satisfy (4.3). For instance if we fix h\ > 0, then there are as many h2 as there 
are real numbers. If a is semidefinite. then the choices are very restricted. If we fix hi > 0. 
then / i 2 is also fixed since it is calculated from the expression 

h2 

hi 
l f l12| 
an 

(4.4) 

assuming that an ^ 0. The above ratio was computed knowing that in case of a degeneracy 
the equations (4.3) are one and the same equation for which a strict equality holds as the 
following computation shows. 

Take (4.3) and plug into each one |a,i2| = N / a , u a 2 2 , 

h i 
v/ 0 ' ll°'22 

h o 
> 0 

a22 
~h~2 

s/ana22 

hi 
> 0 

Now divide the one on the left with 

v/aTT 

/ a n , and one on the right with Ja22, 

h 

hi 

V°22 
h2 

> o s/0,22 

h2 

Win >o, 
hi 

- > 
/022 

h2 

\^2~2 

h2 - hi ' 

In other words 

But this means that 

/Q-22 v a n 
hi 

/ a n 
hi 

/«22 

hi l a u - h2

 l\ai2\ = 0, 

h2

 l a 2 2 - hx

 l\an\ = 0. 

The reason for equation (4.4) is simple. There exists only one rotation such that in the new 
coordinates the diffusion tensor has the form 

1 0 
0 0 
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Thus we can draw the following conclusion. Instead of rotations we use the original 
coordinate system and spatial grid steps of different sizes. 

Let x = (fc, I) be a grid node. Then the system matrix has non-trivial entries for 
those grid nodes which are on the cross through x and additional two grid-knots as illus­
trated in Figure 4.1. These sets can be called numerical neighbourhoods. 

4 . 2 Computational procedure 
1. Given a calculate a = o1 a. 

2. Let M l be a given number of grid intervals in the x-axis direction, which means that 
there are M l + 1 grid nodes in the ei direction. Then h\ = 1/M1 is the corresponding 
grid step size. 

3. Calculate 
K2I K2I 

?'i = , 'f'2 = • 

° ' l l °'22 
If both rk < 1, then the spatial differential operator is of the second order in more 
than one coordinate directions so take h2 = hi and construct the system matrix. 

4. Otherwise, calculate the number 

and set h 2 = ghi. • 

The number g is calculated from (4.3) 

5. The number p, = l/h2 is not an integer so one needs to take the nearest integer M2. 
This integer determines the number of grid intervals in the second direction. In this 
way the domain D is equal to a rectangle of sides h\Ml and h2M2. This rectangle is 
very close to the unit square for fine grids. 

6. If Q 4 2 > 0 the system matrix is constructed by using the numerical neighbourhoods 
depicted in Figure 4.1(a), and for 'a\2 < 0 one uses the numerical neighbourhoods 
depicted in Figure 4.1(b). 

Figure 4.1: The numerical neighbourhoods used in the calculation of the terms of the system 
matrix A in (4.2). 

(a): 012 > 0 (b): al2 < 0 
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4.3 Problem definition 
We would like to test out implementation on three problems. Two degenerate and one non-
degenerate. We call them Problem C, Problem D, and Problem E. All three problems are 
examples of General degenerate parabolic equation. The P D E analysed in Problem C is 

ut - {Auxx + Auxy + uyy) = 0, (4.5) 

while the one for Problem D is 

ut - {4uxx + l2uXtV + Quyy) = 0. (4.6) 

We define these two problems next. 

Problem C. Consider domain D = (0, l ) 2 , equation (4.5) with analytical solution 

u(t,x,y) = sin(67r(a; - 2y)), 

where boundary condition is given by the function 

u{0,x,y) = sin(67r(a: - 2y)), 

and zero initial condition. We analyse numerical solution as t —> co. 

Problem D. The domain is D = (0, l ) 2 , the equation is (4.6), the analytical solution 
is 

u(t,x,y) = sin(67r(3.-r - 2y)), 

the boundary condition is given by the function 

' u(0,x,y) = sin(67r(3rt - 2y)), 

and the initial condition is zero. Again, we analyse numerical solution as t —> oo. 

The difference between the above two problems and Problem E is in the fact that 
Problem E is designed to test our implementation with a positive definite diffusion tensor. 
The P D E studied in Problem E is 

ut - {a,lxuxx + 2o i 2 uXiV + a 2 2 U y y ) = 0, (4.7) 

with the corresponding diffusion tensor a = {ay}?? , 

"1 0.5 " 
0.5 1 

We chose to write the P D E in this way to point out that we could have used any other 
positive definite diffusion tensor of the form 

a b 
b a ' 
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for the solution 
(1-2/) u(t, x, y) = -xK- + yy- J-L 

a\\ a22 

to still hold. 
Given our choice of the diffusion tensor we define Problem E as follows. 
Problem E. Consider again the domain D = (0, l ) 2 , equation (4.7) with the solution 

V i is 
u(t, x, y) = -x{l - x) + 2,(1 -y). - (4.8) 

Numerical boundary condition on the top and bottom borders of the domain is — x(l — x), 
while the one on the left and right borders of the domain is y{\ — y). We analyse numerical 
solution as t —> oo. 

4.4 Findings 
Al l three problems were tested on the domain discretized by Nl = 100 grid nodes in the 
x-axis direction. The number of nodes in the y-axis direction is computed from Nl as 
discussed in Section 4.2. 

For Problems C and D we generate the results using both non-equally and equally 
spaced grids. Problem E we will investigate only on an equally spaced grid since its associ­
ated diffusion tensor requires an equally spaced grid. 

We must note that for problems C, D, and E the difference figures do not show the 
actual numerical error. Instead they show the difference between the numerical solution and 
the analytical solution at a point in time. This is why the percentage change decreases with 
the increase in the running time. 

The differences of Problem C generated for unequal grid step sizes and final time 
0.1 are 

maximum difference at time 0.000000 is 1.000000 (in 7.) 100.00000000 
maximum difference at time 0.033330 is 0.341236 (in 7.) 34.12359953 
maximum difference at time 0.066660 is 0.091538 (in '/.) 9.15384889 
maximum difference at time 0.099990 is 0.024577 (in '/,) 2 .45770812 

As the final running time of the simulation increases, the difference decreases. Fig­
ures 4.2 and 4.3 depict the numerical and the analytical solutions for Problem C respectively 
for the final time 0.1. Figure 4.4 shows the result obtained when using equally spaced grid 
for final time 0.25. We include the following differences generated by the equally spaced 
grid scheme for the final time 0.25. 

maximum difference at time 0.000000 is 0.998867 (in 7.) 100.00000000 
maximum difference at time 0.031247 is 0.493938 (in '/,) 49.44984886 
maximum difference at time 0.062494 is 0.341225 (in 7.) 34.16121397 
maximum difference at time 0.093740 is 0.310776 (in 7.) 31.11286388 
maximum difference at time 0.124987 is 0.304707 (in 7.) 30.50522153 
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maximum difference at time 0.156234 is 0.303492 (in 7.) 30.38361548 
maximum difference at time 0.187481 is 0.303254 (in 7.) 30.35983013 
maximum difference at time 0.218728 is 0.303245 (in 7.) 30.35888731 
maximum difference at time 0.249975 is 0.303245 (in 7.) 30.35888731 

The relative difference remains close to 30.35%, as illustrated in Figure 4.4 and 
evident from the following differences 
maximum difference at time 0.000000 is 0.998867 (in 7.) 100.00000000 
maximum difference at time 0.333333 is 0.303245 (in 7.) 30.35888731 
maximum difference at time 0.666667 is 0.303245 (in 7.) 30.35888731 
maximum difference at time 1.000000 is 0.303245 (in 7.) 30.35888731 

Problem D on an unequally spaced grid is shown in Figure 4.5. The difference fig­
ures for the Problem are shown below for final time 0.25. 

maximum difference at time 0.000000 is 0.999998 (in 7.) 100.00000000 
maximum difference at time 0.083333 is 0.003905 (in '/,) 0.39048283 
maximum difference at time 0.166667 is 0.003208 (in */.) 0.32080485 
maximum difference at time 0.250000 is 0.003208 (in 7.) 0.32080485 

Figure 4.6 illustrates the numerical solution to Problem D computed on an equally 
spaced grid. Again, the equally spaced grid scheme produces a non-convergent method as 
can be seen from the following differences. 

maximum difference at time 0.000000 is 0.998867 (in 7.) 100.00000000 
maximum difference at time 0.083333 is 0.689878 (in */,) 69.06607524 
maximum difference at time 0.166667 is 0.689878 (in 7.) 69.06607524 
maximum difference at time 0.250000 is 0.689878 (in 7.) 69.06607524 

This is also visible in Figure 4.6. We could say that a lower bound on difference is 
69.06%. 

Figures 4.7 and 4.8 show the numerical and analytical solution to Problem E for 
final time 0.05. In Figure 4.7 it can be seen how the solution is being formed. We ran the 
same setup for final time 0.1 to obtain the following difference values 

maximum difference at time 0.000000 is 0.239976 (in 7.) 100.00000000 
maximum difference at time 0.033330 is 0.006672 (in 7.) 2.78036850 
maximum difference at time 0.066660 is 0.000312 (in 7.) 0.12986445 
maximum difference at time 0.099990 is 0.000015 (in 7.) 0.00604490 

From the presented tests we conclude that methods with unequal step sizes give far 
better results than methods with equal step sizes. 
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Figure 4.2: Numerical solution for the final time 0.1 using unequal grid step sizes dis­
cretization, boundary condition sin(67r(.x — 2y)), grid size [100 x 201], and initial condition 
O V i . y e D . 
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Figure 4.3: Analytical solution for the final time 0.1 using unequal grid step sizes discretiza­
tion, and grid size [100 x 201]. 
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Figure 4.4: Numerical solution for the final time 0.25 using equal grid step sizes dis­
cretization, boundary condition sin(67r(x — 2-t/)), grid size [100 x 100], and initial condition 
0\/x,yeD. 
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Figure 4.5: Numerical and analytical solutions for the final time 0.25 using unequal grid 
step sizes discretization, boundary condition sin(67r(3a: — 2y)), grid size [lOOx 68], and initial 
condition 0 Vrt, ye D. 
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Figure 4.6: Numerical solution for the final time 0.25 using equally spaced grid step sizes, 
boundary condition sin(67r(3.T — 2j/)), grid size [100 x 100], and initial condition 0 V.T, y 6 D. 



Figure 4.7: Numerical solution for the final time 0.05, with boundary condition —x on 

the top and bottom ends of the domain, o n the left and right ends of the domain, 
and grid size [100 x 100]. 
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Figure 4.8: Analytical solution for the final time 0.05, with boundary condition —x ' on 
the top and bottom ends of the domain, y on the left and right ends of the domain, 
and grid size [100 x 100]. 

analytic t = 0 analytic t = 0.017 

0 0.5 1 0 0.5 1 

58 



4.5 Analysing Problem 4. 
Now that we have developed our method of unequal step sizes in we can look at the final 
equation of interest, General degenerate parabolic equation with advection, 

u t(x) + v v '« - (uxx + 2uxy + uyy) = 0. (4.9) 

This equation is interesting since it combines convection with diffusion terms discretized 
using our unequal step size method. The first order term vy i t is discretized using upwinding, 
while the second order terms using By developed in Section 2.2.1. 

4.5.1 P r o b l e m D e f i n i t i o n 

In accordance with our alphabetical naming we call this example Problem F. 
Problem F. Consider P D E (4.9) over domain D = (0, l ) 2 . The solution is 

u(t, x, y) = sin(67r(.T — (y — V2t))) for v\ = 0, 

where t is time and (x,y) are grid-node coordinates. The boundary condition is computed 
at every time step from the value of the analytical solution. The velocity is constant v = 
(vi,vo). We have chosen v = (0,0.5). 

4.5 .2 F i n d i n g s 

We ran the implementation of Problem F until final time 1.0 on D discretized by 100 x 100 
nodes. The differences are 

maximum difference at time 0.000000 is 0.000000 (in 7.) 0.00000000 
maximum difference at time 0.333333 is 0.091789 (in 7.) 9.18926738 
maximum difference at time 0.666667 is 0.093522 (in 7.) 9.36283003 
maximum difference at time 1.000000 is 0.093567 (in 7.) 9.36730545 

The difference is noticeable in Figure 4.9 for t = 0.33, for exampje. A closer look at 
difference values shows that the magnitude of velocity drives the magnitude of percentage 
difference. I.e. the larger the velocity is, the larger is the percentage difference between the 
numeric and analytic solutions. To show this we include the following difference values for 
final running time 0.5 and velocity v = (0,1) on D 

maximum difference at time 0.000000.is 0.000000 (in 7.) 0.00000000 
maximum difference at time 0.166667 is 0.153738 (in 7.) 15.39127710 
maximum difference at time 0.333333 is 0.170976 (in 7.) 17.11701003 
maximum difference at time 0.500000 is 0.171830 (in 7.) 17.20244873 

These differences are depicted in Figure 4.10. The difference figures can appear 
surprising at first. However, the error magnitude of h coming from the discretization of 
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first order derivatives when multiplied by the velocity v does not render the differences 
completely unexpected. 

We also note that the percentage differences decrease with the increase in the number 
of grid-nodes. 

Table 4.1 shows the results of the convergence study of Problem F. Since the example 
does compare the numerical solution at a time point to the actual analytical solution the 
values in the table confirm the method's convergence. 

Table 4.1: Example of the IVP sin(67r(.x- - (y - v2t))) for final time 1.0, and v = (0,0.5). 
JV1 Loo r L i r L 2 r 
50 0.172639 0.04204 0.05861 
100 0.093567 0.88 0.02254 0.90 0.03122 0.90 
200 0.050461 0.89 0.01505 0.58 0.01839 0.76 
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Figure 4.9: Numerical solution for the final time 1.0, with boundary condition sin(67r(x-
(y — V2t))), where v2 = 0.5, grid size [100 x 100], and initial condition sin(67r(x- — y)). -
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Figure 4.10: Numerical solution for the final time 0.5, with boundary condition sin(67r(.7; 
(y — v2t))), where v2 = 1, grid size [100 x 100], and initial condition sin(67r(.T — y)). 
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Chapter 5 

Software implementat ion 

In this chapter we take a close look at the way we have implemented our programs in 
MATEAB ' s M language. The implementations are located within files with extension m, 
for example filename.rn. Therefore, we call such a file m, file,. 

A list of programs created in this thesis can be found in Appendix where it is also 
explained how to execute the programs. 

5.1 Implementation details of m files 
The Toolbox of Level Set Methods 1.1. package developed by I. Mitchell [1] is a set of in 
files that are ready to be executed and edited by the user. The package is distributed from 
Http://www.cs.ubc.ca/ mitcflell/ToolboxLS/index.Html 
and comes with a manual explaining its contents and usage. In order to understand the m 
language implementations of this thesis it is important to understand the simple convective 
flow example explained on the pages 14 to 27 of the manual. The thesis m file implemen­
tations follow the layout of the convective flow example. In this section we explain on one 
example implementation the most iniortant parts of the code under separate headings. The 
other implementations have layout very similar to the one of the example implementation. 

Let our example implementation be the m program GDPdiricHlet .m which imple­
ments the monotone discretization (3.11) of General degenerate parabolic equation for the 
boundary values sin(67r(n; — y)) and initial condition zero on a cartesian grid. The P D E 
solved by this problem is (3.9). and an example run of this implementation is depicted in 
Figure 3.5. 

A reader will notice that we use the name of an m file to name the function the file 
contains. In effect, the name of the function can be any. Execution of M A T L A B functions 
is done by a call to the filename containing the function, not by the function name itself. 
This, however, is true only if a file contains a single function. Function calls within an m 
file are clone by function names. Most of our in files contain just one function and so when 
refering to a function we interchange the file name with the function name. 

When specifying file names below we use asterisk (*) in the usual UNIX wildcard 
sense. I.e. * means zero or more characters. 
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BOUNDARY CALCULATION 
The boundary values are computed by using two functions located in two separate m files. 
The first m file calculates the (x,y) coordinates of the boundary nodes of the grid. It then 
calls the other m file which contains the function to be used to calculate the value of the 
numerical solution on the boundary nodes given their (x,y) positions at time t. 

In GDPdirichlet .m example the function that calculates the (x,y) coordinates of 
grid-nodes is called computeBoundary.m. The function that computeBoundary .m calls is 
named boundaryFunction.m. boundaryFunction.m contains function sin(67r(a; — y)) to be 
used in the calculation of the numerical solution for (x, y) position at time t. 

boundaryFunction.m is designed to operate on a set of values, rather than indi­
vidual (x,y) positions to reduce the computation time. A user should not feel the need 
to edit-the computeBoundary .m file. This is due to the fact that the Toolbox of Level 
Set Methods 1.1 works only with rectangular domains without "holes", and changing the 
computeBoundary .m would change the look of the domain. The boundaryFunction.m in the 
GDPdirichlet .m implementation is set up to hold the analytical solution to the problem, 
so it should not be changed either. 

COMPARISON OF SOLUTIONS 
The analytical solution to a problem is kept in a separate file. In the case of GDPdirichlet. m 
the solution is kept in the file solutionGDP .m. The function that actually does the compari­
son of the numerical and analytical solutions, compareSols .m, is called by GDPdirichlet .m. 
Any file containing an analytical solution can be edited by the user. However, the solution 
for the GDPdirichlet ,m is set to the one solving the P D E (3.9), so the user should not feel 
the need to change it. 

DERIVATIVE DISCRETIZATION • 
The discretization of the first and second order terms, &\,<9y, is computed by a separate 
function called hessian* .m. All of the hessian* .m functions follow the same layout. In the. 
case of GDPdirichlet .m the file is called hessianDegenerate .m. hessianDegenerate .m 
computes the derivative approximations in two directions: bottom-left to top-right, and 
bottom-right to top-left. Bottom-left to top-right direction was used for P D E (3.9) where 
the analytical solution is sin{Qix(x - y)). Bottom-right to top-left direction was used to 
generate the example with the analytical solution .S'm(67r(x + '</))• 

THE term* FUNCTIONS 
There are several term*.m functions to be found in the Toolbox of Level Set Methods 1.1, 
and we have build ours following the same layout. The integrator functions can be found in 
7ToolboxLS- l . l /Kernel /Expl ic i t ln tegrat ion/Term directory, where " is the directory 
into which the Toolbox of Level Level Set Methods 1.1 is installed. A term*.m function can 
be viewed as a driver of the numerical approximation. It is the file that repeatedly calls 
the discretization and integration routines. We mention it here since at a first glance its 
role in the implementation might be confusing to a novice user of the Toolbox of Level Set 
Methods 1.1. 
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A term function is also responsible for computing the C F L bound on the time step 
for every iteration. 

Finally, a few notes on the integrator function used in the thesis even though the 
implementation of the integrator function was not a part of this thesis but was already 
provided with the Toolbox of Level Set Methods 1.1. In all the m file implementations of the 
thesis, the integrator function is odeCFLl.m, which approximates Forward Euler integration. 
A user could try to use a different integrator (all integrator functions can be found inside 
of 7ToolboxLS- l . l /Kernel /Expl ic i t ln tegrat ion/ In tegrators directory), but then the 
resulting system matrix would not be of positive type. 

It is noticeable that GDPdirichlet. m is implemented in a way so as not to be 
changeable. So why then do we have separate files containing the analytical solution and 
the function to be used in the calculation of the boundary values when we could have written 
the analytical solution and the boundary function in GDPdirichlet .m.? We wanted to keep 
the same layout for all our implementations. Examples of Chapter 4 can all be tested on one 
m file implementation by changing the m files that contain the solution and the function to 
be used in the calculation of the boundary values. In this way we made the implementations 
easier for a user to understand. 

Since the Toolbox of Level Set Methods 1.1 is designed to calculate the C F L condi­
tion and the derivative approximations at every time step, we had to follow this pattern. 

The m files contain comments on the implementation of a numerical example, but 
not comments on the in language syntax. .For questions regarding the m language syntax 
we refer the user to the MATLAB's online help website 
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html, or the MAT­
L A B help provided with a M A T L A B distribution. In addition, a simple google search 
(http://www.google.com) can return many examples. 

5.2 m file v.s. C language implementations 
The monotone implementations of Problems 1., 2., 3., and 4. have been implemented both 
in the m files, as a part of the Toolbox of Level Set Methods 1.1, and as. stand-alone C 
programs. The non-monotone examples exist only as m file implementations. 

Some reasons for advocating a C implementation vs. an m file implementation 
stem from the fact that a C implementation is faster and requires less memory storage. In 
addition, the C F L condition computed in the C implementations is guaranteed to be the 
theoretical one. This bound is computed once, before the numerical solver is called. In this 
way, the time step is calculated only once and used in every iteration of the numerical solver. 
The arrays that contain the values of the system matrix are also calculated only once, as 
are the values of the boundary for examples where the calculation of the boundary values 
is time independent. 

Contrary to this, the implementations of the Toolbox of Level Set Methods 1.1 
compute a guess on the C F L bound at every time step. Also, the system matrix and 
the values on the boundary are computed at every time step. Moreover, the boundary is 
allocated and deallocated at every time step. This means additional storage space is required 
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to store the values that will be copied into the boundary at every time step once the boundary 
for that time step gets created. Finally, the passing of structures and arrays to a function 
written in the MATLAB's m language is a "pass by value" if the passed in argument(s) 
are changed within the function. This means that every array is copied into a new memory 
location when being passed to a function that changes it. Thus executing M A T L A B m 
files can quickly appropriates a substantial amount of available memory, depending on the 
implementation and the size of the arrays. 

We include the following comparison of the m files versus C language implemen­
tations with respect to memory and speed. An m language implementation of any of the 
explicit method examples presented in this thesis cannot be run on a 256MB R A M , Pentium 
4, machine with 2GB of swap space if the grid has 100 x 100 nodes, due to thrashing. Yet 
a grid of 100 x 100 .can be used on the same machine using the C implemetations without 
problems. 

The domain in the Toolbox of Level Set Methods 1.1 can only be a square or 
a rectangle without "holes". The same holds for the domain in the current C language 
implementations. However, the C implementations are made in a way to allow a user-
specified domain, but then the computation of the diagonal terms of the system matrix 
would have to be changed. 

We note that the implicit Midpoint Runge-Kutta example is only implemented in 
C language. 

5.3 Implementation of C files 
The C implementations are not a requirement of this thesis. Therefore, their implemen­
tation will not be discussed here. They were done by the principal investigator as an aid 
in overcoming the memory and running time difficulties of the m file implementations. In 
effect, most of the results shown in this thesis are obtained using C language implementa­
tions. If, however, an interested reader would like to obtain a detailed description of the C 
language implementations as well as the implementations themselves, they should contact 
the principal investigator at mirnalimScs .ubc . ca. 
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C h a p t e r 6 

Future work 

• Extension to three and n dimensions 
The work conducted in this thesis involves only two-dimensional problems. One can continue 
in the reseach of the importance of stencil directions for three and higher dimensional spaces. 

The three-dimensional case, we expect, would present more difficulty to program, 
but not to draw given the MATLAB's graphing capabilities. It is uncertain what demands 
on programming and displaying would higher than three dimensions pose. 

In order to test the implementation in three-dimensional space one would have to 
obtain an analytical solution to a three-dimensional problem. One could argue that a two 
dimensional example could be used by setting diffusion to be zero in one of the spatial 
dimensions. However, the question remains on whether two-dimensional examples can be 
utilized to test properly a three-dimensional implementation. 

Further research could involve the implementation of the method presented by Ober-
man in [14], and its comparison to the method of Chapter 4. The idea of [14] is to use an 
equally spaced grid, but a wider stencil, thus allowing for more choices of the direction of dis­
cretization. The discretization direction which is closest to the direction of diffusion should 
be taken since then the central differences approximations will be aligned with the diffusion 
as much as possible. We did not implement the method of [14] for a two-dimensional case. 
Once implemented it could be easily compared to the method of varying step sizes given 
the examples of this thesis. 

• Implicit and implicit-explicit methods 
The Midpoint Runge-Kutta is the only implicit method implemented in this thesis research. 
We decided not to include it as part of the thesis due to the fact that it was our introduction 
into the implicit methods that has already been thoroughly researched in published work. 
Further research of implicit methods could involve implementation of another equation(s) 
using Midpoint or other implicit Runge-Kutta methods such as Hammer-Hollingsworth and 
Diagonal implicit Runge-Kutta. Since the implementation of the Midpoint Runge-Kutta 
was only written in C programming language, the next step would be to write a Toolbox of 
Level Set Methods 1.1 implementation. 

[t is known that implementations of implicit schemes take more time to run than 
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do the implementations of explicit schemes. Speed and memory requirements would need 
to be investigated when considering implicit implementations within the Toolbox of Level 
Set Methods 1.1. 

Additional research could involve the implicit-explicit (IMEX) methods. The idea 
is to solve the second order terms in an equation via an implicit solver, and first order 
terms using an explicit solver. The reason being that the second order terms require a much 
smaller time step than do the first order terms if solved using an explicit solver. So to have 
as big of a time step as possible in an IMEX scheme, the second order terms could be solved 
by using an implicit method, while the first order terms by using an explicit method. The 
work of Ascher, et. al. [19] develops several Runge-Kutta based IMEX schemes. 

The issues remaining to be considered are the running time and memory require­
ments of IMEX implementations. Since we have not implemented an IMEX scheme we 
cannot claim any findings. C language implementations would give insight into the speed 
of IMEX schemes since in C, unlike in M A T L A B , pointers to arrays can be passed between 
functions, and so the running time would be that of the underlying solver rather than that 
of the solver plus time for memory allocations and deallocations. 
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Appendix 

The Toolbox of Level Set Methods 1.1 can be downloaded from 
http:/ /www.cs.ubc.ca/ mitchell /ToolboxLS/index.html 
website together with the installation instructions. 

The Toolboox of Level Set Methods 1.1 is a set of m files to be executed within a 
M A T L A B process. M A T L A B m files do not require compiling. In order to execute an m 
file type the name of the file followed by the list of arguments enclosed in parentheses at the 
M A T L A B prompt. The following is an example call to a function stored in file filename .m 
which takes arguments argi to arg n : 
f i lename(argi, a r g 2 , a r g n ) ; 

The description of the arguments accepted by a function is located at the beginning 
of the file that contains the function itself, ft is important to note that if the program called 
does not reside in the current directory (i.e. the directory the user is currently in), the entire 
path to that program needs to be specified, or the directory in which the program resides 
must be added to the MATLAB's search path using addpathO. Fo example, to run an m 
file named filename.m from outside of the directory in which it resides one would execute 
/path.to_toolbox/ToolboxLS-l .1/Examples/Basic/f i lename(argi, . . . , a r g „ ) ; 
or one could store in a file, path- f i le , the following command 
addpath(genpath(' /path_to_toolbox/ToolboxLS-l. l /path_to_desired_directory')); 
and then from a subdirectory call 
run( 'path_to_path_f i le /path- f i l e ' ) ; 
where path_to_toolbox and path_to_pathJ: i l e are the absolute paths from the root direc­
tory, / , to the directory containing the Toolbox of Level Set Methods 1.1, and the path_f i l e , 
respectively. 

Before we list the programs developed as a part of this thesis we would like to 
comment on the writing conventions used in order to simplify the table listing of the m file 
implementations. 

We will assume that the user has installed the Toolbox of Level Set Methods 1.1 in 
directory dir. Then, the m file implementation of Heat equation (Problem 1) is stored in 
dir /ToolboxLS-1.1 /Examples/Basic /pl / 
directory. The m file implementation of Degenerate heat equation (Problem 2) is contained 
in 
dir /ToolboxLS-1. l /Examples/Basic/p2/ 
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directory, and those of General degenerate parabolic equation (Problem 3) in 
d l r /Too lboxLS- I . I /ExampIes /Bas ic /p3 / 
directory. The rn file implementation of General degenerate parabolic equation with advec-
tion (Problem 4) can be found in directory 
d i r /Too lboxLS- I . I /ExampIes /Bas ic /p4 / . 

Having said that, we write program filenames in Table A . l without specifying the 
path to them. We will also use abreviations of P D E problems 
• H for Heat equation, 
• DH for Degenerate heat equation, 
• G D P for General degenerate parabolic equation, 
• GDPA~ gor General degenerate parabolic equation with advection. 

Problems A~-F each fall into one of the above P D E problems 
• A , B are under D H , 
• C, D, E are under GDP, 
• F is under G D P A . 

When specifying file names in the table, we use asterisk (*) in the usual UNIX 
wildcard sense. I.e. * means zero or more characters. OSER identifies the user of a 
M A T L A B session who initiates an execution of a program. 

When both numerical and analytical solutions to a problem are graphed, then two 
separate graphs are used where at a certain time ti, one graph shows the numerical solu­
tion at ti, while the other graph shows the analytical solution at ti. Otherwise, only the 
numerical solution is graphed. 
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Table AM list of m ( M A T E A B ) files implemented in the Toolbox of Level Set Methods 1.1. 

Program Name P D E Problem Is called by 

heat2d.m H USER 

heat2dSolution.m H heat2d.m 

lid. in D H USER 

hdsConstant.m D H hd.m 
hdsVortex.m D H hd.ni 

add GhostPuiictiori2D. m G D P GDP* . in 

coinputeBoimdary.nl GDP, G D P A GDP* . in 

b o u n d ar y Fu n c t ion. in G D P GDPdirichlet.ni 

boundaryPYmctionMono.nl G D P GDPmono.m 

GDPdirichlet.ni G D P USER 
GDPmono.m G D P USER. 

GDPperiodic.in G D P USER 

hessianDegenerate.nl G D P GDPdirichlet.m, GDPperiodic.in 

hessianMono.m G D P GDPmoiio.m 

soliitionGDP.ni G D P GDPdirichlet.m, GDPperiodic.ni 

solutionGDPA.m G D P GDPdirichletl.m 

solutionMono.in G D P GDPmono.m 

terniDegeiierate.nl G D P GDPdirichlet.ni., GDPperiodic.in 

terniMono.ni G D P • GDPmono.m 

GDPdirichletl.ru G D P A USER 

coniputeBoundaryt.nl G D P A GDPdirichletl.m 

b ou n d ary Function 1. m G D P A GSPdirichletl.m 

compareSols.m A L L A E E called by U S E R 

visualizeEevelSetl.m A L E • A E E called by U S E R 
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