A Virtual Testbed to Evaluate Worm
Defense Techniques
by

Shuang Hao

B.Sc., Tsinghua University, 2002
M.Sc., Tsinghua University, 2005

A‘THESIS SUBMITTED IN PARTIAL FULFILMENT OF
- THE REQUIREMENTS FOR THE DEGREE OF

Master of Science
in
The Faculty of Graduate Studies

- (Computer Science)

The University Of British Columbia
October, 2007
(© Shuang Hao 2007

Abstract

The rapidly growing amount of malicious software (such as worms) on the .
Internet causes significant security problems in enterprise networks and has
been attracting increasing research attention. Many methods have been pro-
posed to detect, throttle or even prevent the spreading of malware. How-
ever, most of the research experiments to evaluate the effectiveness of these
defense mechanisms are based on off-line testing, synthetic data or mathe-
matical modelling, which are unable to convincingly validate the efficiency of
the defense systems. Better evaluation testbeds with live worms mixed with
realistic traffic are required to help facilitate research on malware defenses.

In this thesis we focus on developing a testbed which provides an emula-
tion of realistic traffic conditions for network and security researchers. The
system is constructed using virtual hosts, which makes the testbed scalable
and flexible. Network traffic is collected from a real enterprise network and
then replayed in the virtual environment. In the meantime, vulnerable ser-
vices on the virtual hosts allow actual malware to compromise individual
hosts and flood the virtual network. '

Our use of virtualization technology enables an all-software implementa- -
tion. It grants fast and convenient generation, startup and shutdown of the
testbed. The data-link layer virtualization and the port-based forwarding
VLAN strictly confine the released malware within the testing environment.
The virtual smart switches provide a platform for researchers to evaluate
the security and usability of their protection architecture against worms.

Table of Contents

Abstract U
Table of Contents e e e e 1il
ListhFigureS'...,..'....'...'..._ v
Acknowledgements B Vi
1 Introduction S 1
1.1 Motivation L. 1
1.2 Contribution e 5
1.3 Organization S 8

2 Background & Related Work9
2.1 Worms and Their Behaviors e e e 9-
2.2 Worm Mitigation Techniques e e 12
2.3 Other Evalation Testbeds P 13 .
231 vGround. o 14

2.32 DETER R ... 15

233 Flexlab o000 16

3 A Testbed to Validate New Enforcement Architectures . . 18
3.1 Enforcing Fine-grained Security Policies 18 .
3.2 Virtualization Implementation. - 20
3.2.1 Virtual Machines 20

3.2.2 Virtual Network 22

3.3 Testbed Structure L. 24

- 3.4 Deployment of Defense Systems 26

4 Design Details [P 29
4.1 Key Technologies29
+4.1.1 Virtualization (Xen) 29

iii

Table of Contents

4.1.2 Iptables & Ebtables e 30

4.1.3 Implementation Infrastructure (Emulab) 32

4.2 Background Traffic Replay IR 33
4.2.1 Data Collection e 33
4.2.2 Packets Replay e e 34
4.2.3 Synchronization for Causality 36
4.3 Isolated Details 37
4.3.1 Data-Link Layer Virtualization 38
4.3.2 VLAN Technique L. 39
433 Remote Control. 39

4.4 Resource Allocation 41
4.4.1 Time Dilation e 41
4.4.2 Parameter Setting 41
5 Evaluation, 0000000 43
5.1 Experiment Setting e e 43
5.2 Experiment Results. 47

6 Conclusion & Future Work e 52
Bibliography 54

iv

List of Figures

1.1 An example testbed for worm research R 2

1.2 Infection trace tree IR .. 4
2.1 Scheme of DETER testbed [15] 15
2.2 Scheme of Flexlab testbed [28] 17
3.1 A system virtual machine [29] e e e e e e e 21
3.2 A virtualized network e e e e 22
3.3 Topology of the worm experiment 25
4.1 Traversal scheme of network filters [1] - 31
42 Replayscheme 35 .
4.3 Synchronization for causality 37
4.4 Structure of the worm experiment with remote control 40
5.1 DARPA simulated network [9] 44
5.2 DARPA network topology [9] S .. 45
5.3 Statistics of daily TCP services [9] 46
5.4 Replaying between 2 machines 48
5.5 Replaying between 2 machines with tdf=10.0 49

5.6 Replaying in the whole DARPA network N 50

| Acknowledgements

T would like to express my gratitude to all those who have offered me help

in completing this thesis. Especially, I owe the greatest thanks to my su-

pervisors, Dr. William Aiello and Dr. Norman Hutchinson, who provided

me with excellent guidance and support in the entire process of this the-

sis project. I want to thank Dr. Andrew Warfield for giving me insightful -
comments on this work, and being my second reader.

I would like also to thank all the members of the system lab for their
constructive suggestions. Without their help, this work would not be done.
I thank all my friends at the University of British Columbia, who make my
life and study at Vancouver really happy.

Most importantly, I want to thank my family from the bottom of my
heart. They always encourage me to pursue my dream and their support is
the power for me to finish this thesis. '

vi

Chapter 1

Introduction

1.1 Motivation

Worms pose a significant threat to existing and future networking infras-
tructure, as they can infect hundreds or thousands of hosts in a very short
period of time. Malicious mobile codes, especially worms, have attractedrv
increasing attention. It cost a fortune to cleanse the infected hosfs and
the tainted networks. Especially infected enterprises suffer much from the
malicious behaviors of worms, since the LANs (Local Area Network) are
complex and the operating systems and software on desktops are usually
diverse. The breakout of a worm in an enterprise can cause millions of dol-
lars of damage. Moreover, active worms can potentially spread across the
Internet within seconds [30], therefore maniual detection and prevention is
impossible. Many automatic methods have been proposed to identify and
control the spreading of worms. The most dangerous worms are those newly _
released ones, since at that time the anti-virus community knows little about
which vulnerability the worms would exploit and what payload the worms
carry. In order to deal with novel worms, people have been trying to analyze

the network behaviors of the worms.

Providing a defense against malicious software requires us to walk a fine

Chapter 1. Introduction

line between security and usability. A éecurity policy may be so strict that it
adversely effects the usability /availability of the system. The extreme case
‘is when all packets on the network are dropped, thus no attack attempt is '
possible. However, this is equivalent to the network being cut 'off. An evént,
incorrectly identified by the defense system as being an intrusion when none
has occurred, is called a false positive [13]. On the other hand, a relaxed
security policy may be unable to detect the maﬁcious traffic. For example, if
it allows all the traffic through, the policy will guarantee the usability of the
network, but the worms are free to spread in the né_twork. A false negative
[13] is an event where the defense system fa'ils to identify an attack when
one has in fact occurred. Due to the complexity aﬁd diversity of the systems
and networks, it is impossible to build a fAawless system or design omnis-
cious anti-worm software. Therefofe researchers are continuously seeking a -
good tradeoff between security and usability, i.e., struggling to detect the
new worms’ spreading in their early stages while doing.little harm to legal

communication in the network.
T : T : T ; T ;
Infected Host o i e
) Defense System I :
T T

I
I 1
T
@ Defense System Defense System.

T
I
I

I
T

T
I

T T
|

Figure 1.1: An example testbed for worm research

Chapter 1. Introduction

A typical testbed setup is shown in Figure 1.1. The hdsts indicated
by English- characters, numbers and Roman numerals belong to different
network segments fespectively. The defense systems isolate those parts of
the network. When an infected machiﬁe (indicated as the bold ellipse) sends
out péckets carrying a malicious payload, the defense systems are expected
to detect the abnormality of the traffic and deploy the appropriate response. .
Afterwards, the dropped and allowed packets could be counted to measure
the accuracy of the defense systems. Security researchers would like testbeds
that contain authentic network traffic and provide a flexible playground to
investigate the effect of the defense systems. A lot of mathematical models
have been proposed to characterize the propagation of worms [18, 21, 30]. .
They provide a theoretical view to help us understand the worms’ nature
and defend against their spreading. However, those models are not very
suitable to evaluate the defense algorithms, since the concrete worms might
behave differently depending on the exploited. vulnerabilities and running
hardware systems. Another problem for testing on the synthetic worms’ -
propagation models is their lack of actual background traffic. People hope
to accurately test the rates of false positives and false negatives with the
" mixture of the worms’ spreading and the normal traffic. Many platforms,
such as Emulab and PlanetLab, have been constructed to facilitate network
and system research. Altilough fhe;lf provide full éystem privilege and easy -
network configuration, the security experiments might cause chaos if real
worms were released in the environment and the normal connections created
by the users do not reflect the actual traffic in real enterprise LANs.

An alternative scheme is to do the evaluation offline. Background traffic

Chapter 1. Introduction

and worm propagation could be collected separatedly and the two sets of
data can be mixed later for test. However, during the evaluation, the actions

of the defense system will break the recorded infection trace.

(a) infection trace in an unprotected network

(b) infection trace in a protected network

Figure 1.2: Infection trace tree

 Suppose the infection trace we collect from an unprotected network is .
as shown in Figure 1.2 (a). A is the seed infected machine. Then B, C, D
are compromised (at time t1). Consequently B Wilvl infect F and F next (at
time t9). If the attack from A to B is successfully blocked by the defense

methods, then it is hard to estimate when B and its subnodes E and F will

be compromised in the environment with the defense systein deployed. At .

Chapter 1. Introduction

least B will not be infected at time: t1, and maybe later the 3 machines will
all be attacked by machine D as _shown in Figure 1.2 (b). This example
demonstrates that the nodes’ states and rhalicious traffic in a protected net-
work are difficult to be reconstructed from those in an unprotected network.
Therefore offline evaluation is unappropriate to test the anti-worm defense
mechanisms. |

Our gdal is to construct an experimental testbed, where actual worms .
will be released and mixed with.the background traffic sampled from a real
enterprise LAN. Our intention is to provide security researchers an effective
platform t01investigate the security vs. usability of tradeoff in the anti-worm
defense mechanisms. A testbed With authentic traffic and real vulnerable
systems will surely facilitate the development of research againét worm at-

tacks.

1.2 Contribution

In this thesis we explore constructing such a security testbed, based on
the technique of virtualization, i.e., an all-software implementation.' TheA
released worms have the illusion that they reside in the actual vulnerable
systems and propagate on the real network.

Obviously, people could build up a testing sandbox with several bhys—
ical machines. However, the scheme of using direct physical machines is

fundamentally hard for several reasons:

e The experiments suffer from the hardware restrictions. Most changes

in the experimental configuration will place extra requirements on the

5

-Chapter 1. Introduction

hardware. For example, if a machine is set to connect multiple network
segments, we have to open its box and manually install the correspond-

ing number of network devices;

e The scale of the ekperiment is limited by fhe number of available
physical nodes. It is no problem to build up a network with 10 or .
20 machines, but a large network with hundreds of nodes is hard to

construct;

e Once the machines are infected, it is a time-consuming work to cleanse
the systems of worms. In the worst case, we might need to reinstall

the systems.to start a new experiment;

e There are two monitoring modes for the experiment. 1) Users monitor
the experiment at the isolated testbed ﬂetwork, i.e., to operate on the
individual test nodes. Such setup brings no security problems; 2) In
the case where the monitor is not collocated in the:isoiatéd testbed .
network, a network connection is required out of .the testbed. This
configuration substantially increases the difficulty of guéranfeeing that

the malware remains contained within the testbed.

In order to overcome the problems listed above, this thesis represents an
initial step toward the construétion of an environment for safely evaluating ‘
active defenses against Internet worms in enterprise networks. Our proto-
type system uses a single physical hoét running the Xen virtual machine

monitor to emulate a medium-sized enterprise network containing tens of

hosts. Our system allows live, recorded background traffic to be replayed

Chapter 1. Introduction

with high-fidelity while live attack traffic is issued against hosts in virtual

machines. Our work makes the following contributions:

1. We build a complete system in which hosts under attack are isolated in
virtual machines on a completely virtualized Layer 2 network. This is

a simple, architectural solution to the containment of malicious traffic.

2. Taking advantage of previous work on the time dilation of virtual
machines, we demonstrate that background traffic, recorded from a .
real enterprise network, can be replayed with very high fidelity, -and
that as a consequence our testbed forms an excellent base for achieving

repeatable results in testing defense mechanisms.

Meanwhile, our design is also aiming to achieve the following potential

features in the future, and we discuss those rough ideas in the thesis.

e The testbed is easy to configure. The different system imagés could
be loaded to boot hundreds of virtual hosts within a few minutes..
After the experiment is finished, the tear-down of the virtual hosts
will automatically remove the worms too;

e The network can contain smart virtual switches which ére designed to
run the defense algorithms under test. An arbitrary number of virtual

NICs can be assigned in each smart switch to connect the virtual end

hosts;

e The worms are strictly confined within the testing environment. The

virtual environment is like an isolated island to the physical machines. -

Chapter 1. Introduction

Moreover, it is possible for users to remotely control the testbed, while .

the experimental traffic is unable to leak to the outside world.

1.3 Organization

This thesis presents the design of our testbed éystem and the technical details
of its implementation.

The remainder of the thesis is organized as follows. Chapter' 2 presents a
survey of relatediwork and introduces the background knowledge. In Chap-
ter 3, we state the basic idea and structure of the testbed for validating the
enforcement architecture. We further demonstrate the detailed implemen-
tation in Chapter 4. Chapter 5 contains the experimental evaluation of our |
testbed. Finally Wé draw conclusions in Chapter 6 with some discussions of

future work.

Chapter 2

Background & R(elated‘ Work

Malicious mobile codes are currently prevalent on the internet, -which is a
problem for both individuals and enterprises. Worms are notorious among
various kinds of malicious mobile codes, due to their wild breakouts. The ex-
isting worrﬁs have been carefully studied by security researchers, and many
defense mechanisms have been proposed to protect the computers and net-
works. However, it is still an unsolved problem to stop the zero-day worms.
There exist several testbeds for researchers to investigate worms’ behaviors
or to evaluate the éounter—worm methods. In this chapter, we will briefly
introduce some representative worms and the mitigation techniques against

them.

2.1 Worms and Their Behavioré

A computer worm is a program that self-propagates across a network ex-
ploiting security or policy flaws in widely-used services [33]. A distinguishing
feature of worms is that they spread and compromise machines without hu- .
man interaction, which makes them propagate very quickly on the network

and allows them to easily infect hundreds or even thousands of vulnerable

machines. Typically, a worm’s life cycle includes the following phases.

Chapter 2. Background & Related Work -

e Probing: In order to infect machines in a netWork, a worm needs
to first identify the existence of other machines. The simplest way
is to randomly scan the IP addresses. Even though thé randomly
created addresses might not be assigned to any machine or the scanned
machine may not be vuinerable to the wormé,‘ the automatic activation
still makes the worms spread very quickly. Recently, somex worms
begin to utilize localized scanning, i.e., scanning the addresses in the
same network segment with high probability and scanning randomly

" otherwise. There exist several potentially highly virulent scanning
techniques [30], including hit-list scanning, where the worm authors
collect a list of IP addresses beforehand and the worms will first try to
attack the listed addresses and permutation scanning, where a worm 4
is able to detect that a host is already infected and will not coﬂtinue

to scan the duplicated addresses.

. Exploitation: Once the worms detect a machine Tunning vulnerable
services, usually they will launch overflow at_técks (e.g., the attack .
methods of the first worm Morris and recent CodeRed [8]) to compro-
mise the machine. If the programmers did not make careful bounds
checking, the Wormé are able to override part of the normal codes
and make the program execute the malicious instructions. Then the

innocent machine will be infected by the worms.

e Propagation: A compromised machine will continue to infect others.
Some worms need human interaction to be activated, e.g., Nimda[7] is

activated after the machine is rebooted by the users. As the worms’

10 -

Chapter 2. Background & Related Work

propagation depends on users’ behavior, the spreading speed is com-
paratively slow. The fastest worms areself-activated, such as CodeRed
[8], which starts to spread malicious codes as soon as it exploits a vul-

nerable machine.

o Attacks: Worms are able to execute malicious tasks on the infected
machines, including theft of private information, installing backdoors,

launching DDoS attacks, spreading spam etc.

Even though researchers attempt to design secure systems, there still
exist a lot of potential vulnerabilities within current operating systems and -
software, which presents exploitation for future worms. The rapid devel-
opment of networks (including their bandwidth and scale) aggravates the
propagation of Wérms.

On July 19, 2001, more than 359,000 computers connécted to the Inter-
net were infected with the CodeRed (CRv2) worm in less than 14 hours.
The cost of this epidemic, including subsequent strains of CodeRed, is es-
timated to be in excess of $2.6 billion [27]. It will exploit a buffer-overflow
vulnerability in Microsoft’s IISv web servers. A backdoor will be installed
once a machine is infected by CodeRed. With probability -1/ 8, CodeRed
probes random IP addresses; the rest of the time scanning the local network ‘
with the same class A or B addresses.

~ Slammer (a.k.a. Sapphiré) was the fastest computer worm in history. As
it began spreading from 05:30 UTC on Saturday, 25 January 2003, the worm
infected more than 90 percent of vulnerable hosts within 10 minutes [26].

It simply sends a packet to UDP port 1434 to explcﬁt'the buffer-overflow '

1

Chapter 2. Background & Related Work

vulnerability on SQL servers. Despite the fact that Slammer also adopts a
random scanning strategy, its one-packet attack and small size (404 bytes)

allows fast spreading speed.

2.2 Worm Mitigation Techniques

The outbreaks of worms cause much trouble to both individual and en-
terprises machines and cause signiﬁcant networks congestion. Security re- -
searchers pay a lot of effort to study techniques agz;inst worms and many
defense mechanisms have been proposed to identify and control their spread-
ing. Roughly they can be divided into 3 strategies: Proactive Protection,
Reactive Defense and Local Containment [17].

Proactive protection 'aims- to protect the system by reducing the poé— '
sibility for a worm to exploit a given vulnerability. Such methods include
sandboxing, privilege separation, system call monitoring, efc _[17]. Regard-
less of speciﬁé worms’ exploitation, proactive protection tries to enhance the
overall security. For example‘, since most worms take advantage of unchecked
buffers, an effective counter method is to randomly chaﬁge the addresses of
the stack or heap, which will make the worms éonfused about the internal
states of the niachines {16, 19, 37]. Proactive protection sometimes com-
pletely block the worm attacks, but it is impossible to construcf a system
or network without any vulnerabilities.

- Reactive defense needs specific information to prevent worms. Against |

the known worms, secuﬁty patches will be applied to eliminate the vulner-

ability. The defense systems also try to detect the anomaly in the packets’

12

Chapter 2. Background & Related Work

content to filter the malicious trafﬁc. If the legitimate states can be clearly '
specified, reactive defense might be able to stop the novel worms’ spreading.
Local containment treats each individual m.achine as a potential suspect
rather than a victim. The defense systems monitor the outgoing traffic and
prevent the infected machine from attacking the rest of the network. The
throttling schemes do not focus on extinguishing the worms; but on-greatly '
slowing their spreading speed [25, 31, 36]. The efficiency of throttling highly
depends on the deployment ratio [17]. If the defense systems can be ideélly
deployed in the entire network, the outbreak_of worms are able to be greatly

contained.

2.3 Other Evalation Testbeds

There exist several limits that encumber the evaluation for security mecha-

‘nisms.

e Lack of representative data: The traffic, topology and protocols on the
networks are too complicated to construct reasonable artificial data.
On the other hand, few ébnterprises or ISP share their data with the

public, due to privacy concerns.

e Deficiency of malware simulation: Researchers have tried to validate
the security mechanisms by mathematical models of the worm spread-
ing. However, theoretical analysis is not convincing from the system

view and the evaluation results are sometimes vague.

e Problem of evaluation in the real world: Evaluation can be processed

13

Chapter 2. Background & Related Work

in the real netwofk with authentic traffic and malware spreading (if
there exists any). The problems of such test include 1) The unmature
defense system might hinder the legitimate traffic; 2) The testing pro-
cedure can not be repeated, which makes the evaluation results hard
to be verified; 3)' The test network might not have target worms, and

the malicious codes can not be released to infect the realistic users.

How to clearly evaluate a defense system is still a dilemma for security
researchers. Several testbeds have been constructed to facilitate research .

into anti-worms.

2.3.1 vGround

~vGround [22] is a virtualized environment to investigate worms’ behaviors.

The designing intention is to observe, record and analyze the exploitation -
patterns of worms. Virtual machines running real-world operating systerms

and application programs can be created and torn down'easily. Virtual end

nodes, switches and routers form the virtual networks, where the malicious

worm éodes will be released and propagate. The playground provides a

conventional way to identify the probing behavior bf WOorms.

The technique of User-Mode Linux (UML) [10] is chosen to support the
virtual environment, which may contain several hundreds of virtual hosts
in a single physical machine. Link-layer network virtualization makes the
playground as an isolated sandbox aﬁd prevents the worms from leaking to
the outside world.

However, the only network traffic in the testbed is worms’ propagation.

14

Chapter 2. Background & Related Work

The background traffic not simulated or replayed in vGround, since the
concern focuses on the malicious packets containing worms’ payload. The
lack of background data makes vGround not suitable to evaluate new defense

mechanisms.

2.3.2 DETER

The DETER testbed is designed for medium-scale repeatable experiments

in computer security [15].

UCB Cluster

Control Control Network

Cisco and Nortel switch m Foundry and Nortel switch l

Figure 2.1: Scheme of DETER testbed [15]

The testbed is implemented in Emulab [2], where users have root privi-
lege on a cluster of physical machines. As shown in Figure 2.1, OS images
and file systems can be easily loaded from a 'User’ Server. The test nodes

are connected by switches to construct the experimental networks. The

15

Chapter 2. Background & Related Work

deployment of real-world machines to evaluate defense systems offers high
fidelity to security researchers. In order to enable remote access and confine
the malicious codes within the testbed environment, several guard methods

aré deployed in DETER, including placing firewalls and intrusion detection

systems on the outgoing path to monitor and filter the traffic. The purpose

of DETER is to provide a flexible and safe experiment environment to test
the defense mechanisms against the dangerous malwares.
DETER is a géneral prototype for security experiments. It does not

specify the detailed implementation such as background replay or allocation

of defense systems. Without virtualization techniques, the physical hosts

will be compromised by worms, which aggrdvates the security problems. The
control network is a weak point to be potentially attacked by worms. The
experiments also suffer from the hardware restrictions, such as the number
of physical network devices are fixed or the switches are not programmable

by users.

2.3.3 Flexlab

Flexlab [28] tries to combine the advantages of PlanetLab (with real network

conditions) and Emulab (with root privilege on the machines).

As shown in Figure 2.2, the rough idea is to monitor the traffic in Plan-

etLab (indicated as network modél part), and then setup thé corresponding
applicafion éervices in Emulab to replay the traffic with the same statistical
characteristics, such as packet loss aﬁdvlatency. Meanwhile, Emulab grants
complete control over the experiment.

However, Flexlab does not support to run malware, i.e. the emulation

16

Chapter 2. Background & Related Work

- -Qetwork MOCMD" = =| Measurement
i \ Repository .

P \Network Parameters
!—Emulator
i Emulator Path Emulator Emulator
Application
Ilzraffic

Figure 2.2: Scheme of Flexlab testbed [28]

of worm propagation is not embedded in the system. Thereforé, Flexlab is

insufficient for sécurity experime.nps. |
Anti-worm researchers look forwafd to an evaluation environment with -

realistic network conditions and lmalware propagation. Our testbed is de-

signed to fill up the requirement.

Chapter- 3

A Testbed to Validate New
Enforcement Architectures

In this chapter, we present the basic strﬁctur‘e of our testbed with the tech-
nology of virtualization. The overall goal of the evaluation system is to-
validate the enforcement ‘arch'itectures.- An example of a generic testbed
is shown in Figure 1.1, where the defense systems make judgements about
wh,efcher the traffic in the network is normal or a part of a worms’ éttack.
The detecting accuracy and the throttling impact are good measures of the

defense ability of the anti-worm system.

3.1 Enforcing Fine-grained Security Policies

The conventional firewalls are widely used to protect an enterprise network.
They focus on providing perimeter defenses and the internal local network .
is isolated from the outside internet. It is already hard enough for the
network administrators to set firewall rules, make proper configuration and
update software. Moreover, worms might be introd‘uced by mobile devices,
such as laptops, into the local network. In case that a host is infected, the |

firewall is not effective to protect the other machines from the worm attacks. -

18

Chapter 3. A Testbed to Validate New Enforcement Architectures

A technique used to overcome this‘problem 1s to vwatch all the individual
machines [36] Our assumption [12] is that an infected machine will try to
. c.onnect to different machines as fast as possible. But an uninfected machine -
has a different behavior: the connections are made at a lower rafe and
arevlocally correlatéed. Monitoring on the network can detect the abnormal

traffic.

The majority of the communication in enterprise networks uses the
server-client model. The server side usually uses the fixed \port numbérs‘
(a.k.a. well-known ports) for the clients to initiate the connections: In (25],
the coupling information of servers, clients and ports are extracted by clus-
ter methods. If a host suddenly sends many requests to the addresses and
ports which scarcely appear in its connection history, an alert will be set
on that host to indicate a suspect. But some application programs will use
temporarily constructed ports for comrhunication (called ephemeral ports).

, For example, F'TP is a service in that it utilizes two ports, a 'data’ port and

a 'command’ port (a.k.a the control port) [3]. Traditionally, on the server

side the command port is 21 and data port is 20. But when communicating

in the passive mode, the server sends its data port to the client and the
client side will initiate the connection.’ The data 'port is specified in the

command channel rather than being fixed in advance. The security mecha-

nism in [25] currently could not correlate the traffic using ephemeral ports

with the corresponding command trafﬁc. If a fine-grained security policy is

developed to track the states of the connections using éphemeral ports, it ‘
has the potential to greatly improve the detecting accuracy.

In order to monitor individual hosts and implement the fine-grained

19

Chapier 3. A Testbed to Validate New Enforcement Architectures

policies, we need to attach the d‘efense systems close to each end host\ to
inspect the outgoing illegitimate traffic. The undeﬂying hardware devices
are assumed té have sufficient processing ability to analyze the packets (in
layer 3) and are cheap enough to be widely deployed in a local network.
Routers have great processing ability, but they are usually configured only
at the main passageway of a local network and it is impratical to connect .
each machine with a single router. Switches are already universally deployed
in the network to link machines or subnets, but most of them deal with layer
2 data only. It is natural to deyelop a kind of smart switch with the ability
to process the packets at layers 3 & 4. Accordingly our testbed is required to
easily support these layer 3 smart switches which embed the worm defense -

systems.

3.2 Virtualization Implementation

Due to the problems stated in Section 1.2, it is hard to construct a security
testbed with physical machines. System virtual machines, i.e., virtualizing
software emulating hardware abstractions [29], is a natural choice to support

such a testbed.

3.2.1 Virtual Machines

A virtual machine (VM) is implemented by adding a layer of software to a
real machine to support the desired virtual machine’s architecture[29]. It
provides users the illusion that an operating system or application runs on

the real hardware. A typical structure of a virtual machine is as shown in

20

'Chapter 3. A Testbed to Validate New Enforcement Architectures

Figure 3.1.
Appﬁcations Appliéations
Guest
VMM
Virtual
Machine
ardware
Host . "Machine"

Figure 3.1: A system virtual machine [29]

The underlying platform is called the host;, which provides hardware in-
terfaces to the upper layers of software. The virtualizing software, usually
referred to as the virtualvmachine monitor (VMM) or hypervisor, is set be-
tween the physical hardware and the conventional system software. On top
of the VMM resides the guest operating systems and pro‘cesses, which pro- |
vide the desired functionality to the users. The VMM fills the gap bepween
the hardware platform and guest system software, as shown in the right part
6f Figure 3.1, so the guest systems are unaware of the emulated virtualizing
software and execute as in the actual hardware.

‘Multiple guest operating systems can run simultaneously on one physical
host and share the underlying hardware resources. The VMM emulates
many kinds of resources; including cpu, memory storage, networking, 1 /.O,
etc., to support the guest systems. Some of the emulated resources can not
exceed the limit of the physical hardware, such as the total available cpu’s

cycles or the memory size; while other virtual devices won’t be affected

21

Chapter 3. A Testbed to Validate New Enforcement Architectures

by such restrictioﬁé, e.g., we are able to attach many NICs in the virtual
machine. Thié flexible resource allocation‘allows us to scale the virtual
machines to fit our experimenf. With our concerns for security evaluation,
we could create different 'versions of Windows, Linux or Mac systems with

worm-exploitable vulnerabilities, and load the needed images into the virtual

machines for evaluation.

3.2.2 Virtual Network

Since .our_research target is worm spreading, a virtual network environment,
including cables, end hosts and routers, is required to support the exper-
iment. Due to. efficiency and security considerations, we implement the
data-link layer in the virtualizaﬁion network, which is similar to that in [22]. - .

An example network configuration is demonstrated in Figure 3.2.

Virtual Router

Virtual Host | Virtual Host 2 Virtual Host 4

Virtual Host 3

11.1.1.2 o 1.L1L3 7| 1LLLL 1200007777775 Ty 12112 et

Figure 3.2: A virtualized network

The blank boxes are virtual machines, which are located in different
physical machines. The virtual network will allow the virtual hosts, such
as Virtual Host 1 (VH1), Virtual Host 2 (VH2) and Virtual Host 3 (VH3)
to communicate with each other. Each virtual machine has one or several

virtual NICs, indicated by the striped boxes. First, we demonstrate how

22

Chapter 3. A Testbed to Validate New Enforcement Architectures

to connect the virtual machines hosted in one physical machine. The link-

layer virtuélization is implemented by attaching the virtual network devices

to the linux bridges, which are indicated by the black boxes. The linuk

bridges are layer 2 devices which will forward all received frames to all but

the incoming port. They function as real-world cables to link the network
devices together, so the Ethernet data can be transferred from one end to

the other.b As shown in Figure 3.2, a data-link path is then constructed

from VH1 and VH2 to the virtual router,‘ so all virtual machines with [P

addresses in the same subnet 'can access each other. During the forwarding

process, packets will nof, traverse up to the IP layer, which is more efficient as '
resolving tﬂe headers of advanced protocols is not necessary. Although it is

possible to support hundreds of guest systems in one single physical machine,

the virtual machines are sometimes located in different physical hosts due

to resource limitations or special requirements. In order to communicate

between virtual hosts in different physical machines, the hardware network
devices (shown as grid boxes) connect the internal virtual network and the

outside actual-world cable. Since no IP addresses are assigned to the physical

network devices, the data-link layer virtualization is maintained. By this

means, the virtual machines in the same subnet but on diﬁerent physical‘
machines can communicate with each other. If there are more than one"
network segment in the experiment, we need to bring up virtual routers,

and they will function as the real-world routers to translafce‘the packets at

layer 3. Then the virtual hosts in different physical machines and in different

subnets respectively are able to talk to each other. |

The simulated network allows the virtual hosts to send packets through

23

4

Chapter 3. A Testbed to Validate New Enforcement Architectures

the TCP-IP stack, traverses tﬁe data through the intermediate network
and eventually makes the packets arrive at the destination. The virtual
hosts are unaware of the underlying software-implemented connections. We -
can manipulate the MAC addresses, IP addresses and routing tables of the
end host's; deploy various routing algorithms on the virtual routers, and
thereby configure whatever network topology is necessary to facilitate a

good experiment.

3.3 Testbed Structure

Currently we assume that the testbed is a closed environment, i.e., there
are no network connections to the outside world and users are required to
be physically at the testbed to use it. We will remove this restriction .in .
Section 4.3. Our implementation is illustrated by the small-scale example in
Figure 3.3. The worm experiments aciually run in the virtual hosts and the
virtual networks, and afe supposed to be contained in our test environment.
There are 3 physical machines in our example. The dotted boxes repre-
sent physical hosts. The solid rectangles with "VM’ are the virtual machines -
supported above the hardware. The black boxes are the standard linuk
bridges which connect the virtual hosts (including the virtual switches and
‘virtual routers). They not only act as virtual cables for network connec-
tions, but play an important vrole for replaying the background traffic as
well. That is the reason why each linux bridge is only attached to 2 virtual -
ne_twork devices in our architecture. The virtual switches (as shaded boxes

in Figure 3.3) are not prerequisite to allow the packets going through the

24

Chapter 3. A Testbed to Validate New Enforcement Architectures

LI

virtual
router

12.1.1.1

- VM
. 12.1.13

virtual
g switch

virtual
switch

P

Figure 3.3: Topology of the worm experiment

network, since linux bridges are enough to glue all the virtual hosts (includ-

ing the virtual router) together. We build up this kind of special virtual -
machines for the embeded defense system to filter the traffic in the virtual

environment.

In Figure 3.3, we assign 2 network segments to construct the virtual
networks, 11.1.1.x and 12.1.1.*. | There is a virtual router in nodeC to con-
nect those 2 virtual subnetworks. Due to the virtualized implementation, -
the virtual hosts could be placed on any physical machines, as long as we
configure the routing tables and the underlying bridge connections correctly.
. Each virtual host attaches to a bridge which leads to a virtual switch. Since

the bridges will record the MAC addresses on their sides and forward the

25,

Chapter 3. A Testbed to Validate New Enforcement Architectures

péqkets to the corresponding ports, an‘individual virtual host wiil only re-
ceive the packets sent to its address, and is unable to eavesdrop on traffic
destined to others. Once the worm codes are put in some of the virtual
hosts; they will begin to propagate on their own in the virtual network and .
infect the vulnerable systems. The dumped background traffic is injected
from the linux bridges. Then the defense mechanisms running in the virtual

switches will take care to monitor and filter the traffic

3.4 Deployment of Defense Systems

All our effort is constructing a convenient and realistic environment to eval-
uate the defense ability of an anti-worm system. Unlike the conventional
- firewall-based defense systems, the switch-based mechanism (as stated in
Section 3.1) aims to isolate each end host from the rest of the network. The |
rough idea is that once an individual machine is convicted of sending abnor-
mal traffic, the packets from that machine will be throttled or even blocked.
In order to develop such a defense mechanism, we néed smart switches placed
between each corresponding end host and the rest of the network.

Since 51hart switches are the key elements of our defense technology , we
need to decide how to implement them in the evaluation testbed. The vir-
tual switches (the shadowed boxes in Figure 3.3) are implemented with full
virtual machines, which run the typical operating systems and application
programs. Multiple virtual network cards are assigned in such switches, each
of which connects a‘ virtual end host via the linux logical bridge. In order .

to maintain the data-link layer virtualized network, a virtual wire is con-

~

26

Chapter 3. A Testbed to Validate New Enforcement Architectures

structed with the virtual switches', i.e., a bridge is géherated in each virtual .
switch to connect its virtual'N_ICs as well. Then the packets will traverse
the switches and be forwarded to the destination.

The virtual smart switches have the following capabilities, which makes

them fit the purpose of security evaluation.

e Since the virtual switches are standard virtual machines, they provide
a flexible platform to install the user—speciﬁ(_ad defense systems. Many
application programs and libraries are available for users to filter the
‘packets. The straightforward method is to setup firewall rules to filter
the traffic, and researchers are encouraged to develop their own defense

algorithms;

e When listening on.the bridge within a switch, all the passing traffic
from the end hosts linked to that switch can be captured. The switches
are able to monitor the packets and run arbitrarily complicated algo-

rithms to analyze the traffic;

e Because the number of network devices created in a virtual machine
has no hard limitation (theoretically), we can configure the virtual
network and connect each virtual switch to as many end hosts as nec-
essary . Users are thus able to collect the packets of several interested
end hosts in a singlé virtual switch and do the judgement based on.
the 6verall traffic, as long as those virtual hosts are connected to thev.

same switch.

We assume that the anti-worm system on different ’smart’ switches will

27

Chapter 3. A Testbed to Validate New Enforcement Architectures

not communicate with each other to detect and throttle the worms. Such

“distributed defense system is not the focus of our work.

Chapter 4

Design Details

In this chapter, we further introduce the features of the virtual testbed and -
explain the design detailé, including the methods to capture the packets,
to replay the background traffic, to prevent worm leakage and to allocaté
the resource for the domains, etc. All the design considerations are mainly

based on the virtual infrastructure.

4.1 Kéy Technologies

4.1.1 Virtualization (Xen)

A number of virtual machine'systems have been developed, which are able
to virtualize the hardware, so that several operating systems can share it.
Such software products include VMware [11], Denali [34], Xen [14] and User-
Mode Linux (UML) [10]. We éhoose Xen to support our testbed, however
the ideas can be applied by using any other virtualization technology.

The reasons for utilizing Xeﬁ includé 1) Compared with other virtual-
ization techniques, Xen achieves high performance on the x86 architecture.

The performance of guest systems over Xen is practically equivalent to the

performance of the baseline linux [14]; 2) Xen’s motivation is to run a mod-

Chapter 4. Design Details

erate number of full-featured operating systems, which fits our design to

emulate a large network with various operating systems and implement the

programmable ’smart’ switches. 3) The underlying Xen hypervisor allows

several options to manage the network connections. One of them is to run

the networks with logical ethernet bridges. ‘Such a Conﬁguratioh is critical
for us to implement the data-link .1ayer connections and replay the back-

ground traffic; 4) Unmodified guest operating systems are enabled to run

within Xen virtual machines, starting with Xen 3.0. Therefore without

making any changes in the guest systems, people can perform tests on the

worms exploiting vulnerabilities in different Unix-like systems and Microsoft
Windows.

In Xen, the term guest operating system refers to one of the OSes that
Xen can host and we use the term domain to refer to a running virtual
fnacliine within which a guest OS executes [14]. A special dqmaiﬁ, named
domain0, is created in Xen to control and manage the other domains. In .
domain0, we can configure, create, terminate, and monitor the virtual ma-

chines; and specify what resource are allocated to each domain.

4.1.2 Iptables & Ebtables

Linux systems provide a set of hooks within the kernel for intercepting and -
manipulating network packets: The filter framework at the IP layer is Ipta-
bles [4]; While that at the Ethernet layer is Ebtables [1]. We can utilize either
technology to implement the candidate defense algdrithms and control the -
virtual network.

Ebtables works on the logical bridges. Kernel module codes, called -

30

Chapter 4. Design Details

chains, are attached to the different hooks in the bridge to process the pack-
ets, including BROUTING, PREROUTING, INPUT, FORWARD, OUT-
PUT and POSTROUTING chains, as shown in Figure 4.1(a).

~ BROUTE
BROUTING

r

il

(b) iptables chains

Figure 4.1: Traversal scheme of network filters [1]

The packets will go through different chains based on their destination
MAC addresses. In our testbed, we focus on the INPUT, FORWARD and
OUTPUT chains. After the incoming frames pass the BROUTING and
PREROUTING chains, if the bridge decides the frame is destined for the
local computer, the frame will go through the INPUT chain. Attaching to
the INPUT chains allows us to filter the frames destined for the bridge before

they are passed up to the network layer. Otherwise, the bridge will forward

31

Chapter 4. Design Details

the frames to other machines and make them go th‘roﬁgh the FORWARD

chain, where we can filter the bridged frames. Locally created frames will, '
. after the bridging decision, traverse the OUTPUT chain, which allows us to
filter the frames originating from the bridge box.

Iptables filters packets at the network layer. -It has the similar chains
to pfocess the packets, as shown in Figure 4.1(b). Our focuses are still
the three basic chains (INPUT, OUTPUT, and FORWARD), and the users |
can specify the filter rules based on the source or destination addresses,
apﬁlicationflayer protocols and working network devices, etc. One of the
important features built on top of Iptables is connection tracking. It allows
the kernel to keep track of all logical network connections or sessions. The
network connections with protocols using ephemeral ports could be traced
by the defense systems to implement the fine-grained security policies stated
in Section 3.1. The functioﬁalities of Iptables and Ebtables aré convenient

for users to configure their own smart switches.

4.1.3 Implementation Infrastructure (Emulab)

- In order to construct our testbed, several physical machines connected within

a local network are required. Emulab [35] provides such a environment:
fully-privileged machine nodes and an easily-configured network. There
are other system and network emulators, such as Modelnet (which empha-
sizes scalability) [32] and PlanetLab (which emphasizes services) [5], but we.
choose to use Emulab for the following reasons. |

1) Emulab provides realistic machines for users. Users are granted root

privilege to install software, manipulate kernels and configure the hardware.

32

Chapter 4. Design Details

The detailed hardware setting is described in [2]. It is noted that each
node has 5 Intel EtherExpress Pro GigE Ethernet network interface cards.
Four of them can be configured by users to form experimental networks, the
remaining one is reserved for remote control by Emulab.

2) Emulab allows users to create their own custom OS images. Users can
then specify to load them into the nodes autoinatically when an experiment
is created. It is convenient for us to.configure the physical machines running
Xen and to 'adjust the scale of the testbed.

3) Users specify thé NS scripts to configure the experimental networks iﬁ :
Emulab. High-speed Nortel éwitches are deployed to connect the end nodes

automatically.

4.2 Background Traffic Replay

Realistic background traffic is critical to accurately evaluate the usability
vs. security of an anti-worm mechanism, since the underlying intuition of
detection is to find out a good feature to distinguish normal traffic from
malicious traffic. We will first capture the traflic in a _real—world local area

network (LAN) and then inject these network data into the testbed.

4.2.1 Data Collection

The pcap (Packet Capture) library provides an efficient way to capture the
complete packet data transferred on the wire. The Linﬁx version of pcap,
libpcap [6], utilizes the BSD Packet Filter (BPF) [24] to receive and send .

raw link-layer packets and filter the packets at the kernel level. That utility

33

Chapter 4. Design‘Det;ails

fits our purpose of reblaying the background traffic.

The packets dumped via pcap are absolute.copies of the link-layer data
from the network devices, e.g., a TCP packet including the Ethernet header,
IP hearder, TCP header and the corresponding application data. Moreover,
pcap will 4encapsulate-the packet with its own header, where some important
information, such as the packet capturing time, is recorded_.. To collect
the backgrouﬁd trafﬁc, we will listen on an enterprise LAN to dump the .
passing packets. In order to map the topology of a real network into the
virtual environment, it is required to know the list of host addresses and how
they are connected by switches and routers. However, due to the privacy
consideration, the IP and MAC addresses in the enterprisze network might
be replaced by artificial ones, and the content at the application-layer will .
be changed to random bytes while being kept the same length.

Besides the binary format, another way of stbring the traffic trace is
to record them in plain text. The required components include protocols,
addresses, ports (if the packets are TCP or UDP) and time stamps. During
the replaying proceég, the whole packets are reconstructed form the text -
data trace. Compared with tcpdump data, the tfaces in text format need
more time in the user-level to prebrocess the packets; so we prefer the data

collection with tcpdump [6] in this thesis.

4.2.2 Packets Replay

The tcpdump format data can be directly sent out from the network devices
to the cables. If in each virtual host we replay the corresponding packets.

with the same source IP address as that of the host, the overall background

34

Chapter 4. Design Details

traffic will appear in the virtual -ﬁetwork and be ready for being analyzed
by the defel.lse system under test. |
| However, the virtual hosts run various kinds of operating systems, so

different programs would need to be developed for different systems. In

order to avoid making chanées in the virtual hosts, we move.t_he replaying
functionalities into the virtual machine monitor. In Figure 3.3, the packets

are injected into the logical bridges close to fhe virtual hosts, instead of in
the nodes themselves. A modiﬁed replaying program in Xen’s hypervisor

can handle all the replaying events. The whole data trace will be split based

on the source IP addresses and each of the split dump files will be replayed on '
the corresponding bridge. For example, in Figure 4.2 the packeté from VM

A are sent out at the logical bridge which is chnected to its domain. Layer 2-
bridges forward the. packets based on the desti'nation MAC addresses. Then

the replayed traffic will traverse the virtual network, go through the smart

switches and arrive at the destination VM B.

Drop . . . Replay -
Smart Virtual Switch
T 3 T
Bridge 2 Defense System Bridge | —
Destination . Source

Figure 4.2: Replay scheme -

If the replayed packets hit VM _B, B might generate replies for some
request packets. But the replied‘p(ackets.from VM B are in the du‘mp file as
well and will be replayed at bridge 2. Then the replayed packets from VM
A can not be actuailly received by B. In order to solve that problem, we

enable the Ebtables function to drop the replayed packets from VM A at the

35

Chapter 4. Design Details

bridge close to VM B. As the replayed packets will pass Ebtables’ OUTPUT
chain at the sending bridge, but go through the FORWARD chain at the |
receiving bridge, if we set the Ebtables rules as ACCEPT at OUTPUT chain
and DROP at FORWARD chain for each bridge, all the packets to the end
hosts will be dropped at the bridges.) | '

It is noticed that the live traffic between virtual hosts are blocked by
the Ebtables rules as well, which disables the real worms spreading in the
testbed. So we need to distinguish between the replayed traffic and live’
traffic. The solution is to change some unused bits in the dumped packets’
headers to a specified value. Once Ebtables detects such marked bits in the
packets, they will not be forwarded at the bridge. Therefore, the replayed
packets can not reach the end hosts, but the live traffic between the virtual

machines will come through the network without problem.

4.2.3 ° Synchronization for Causality

The replayed packets will be analyzed by the defense systems, so it is im-
portant to keep the packet causality of the connection. The sequence of the
packets should be messed by the replaying process, é.g., the request packets |
in a connection should not appear in the testbed before the corresponding
reply packets. In order to synchronize the packets, we monitor the traffic
on the bridges during replaying.

As shown in Figure 4.3, we demonstrate the communication befween
a host-pair A and B, where the packets from A are labelled with Englis'h' B
characters, and those from B are indicated by numbers. The first packet z
is read in at both bridges. At the side of A, the replaying process finds out

-

36

Chapter 4. Design Details

Host A - Host B

ij

|
i

w ~
L[ﬂ
w N

|

" Figure 4.3: Synchronization for causality

x originated from A, so the packet is directly sent out to the netWork. The
bridge at B analyzes the recei;/ed pac’ket and figures out that x is destined
~to B. Theﬁ the program will listen on the bridge to wait for the incoming
packet « from A. Once the bridge at B receives z, it will continue to process
the next packet. After the recorded time interval, packet 1 will be sent at -
the bridge close to B. Meanwhile, the bridge at A is waiting for packet 1
to appear on the network. This issue-and-wait process will repeat in turn
at the bridges of both sides. Therefore the traffic trace ’z,1,2,y,3,2’ is

correctly replayed in the virtual network.

4.3 Isolated Details

Now that the actual worms are released in our testbed, the simplest way to

guarantee no leakage of malicious codes to the outside real world is to make

37

Chapter 4. Design Details

the testbed isolated from other networks and run the experiments at the
desk. However, users hope to remotely access and control the experiments.
In this section, we investigate the methods to strictly confine the worms in

the testbed with remote connection ehabled.

4.3.1 Data-Link Layer Virtualization

Within our testbed the real worms reside in the virtual machines and try to
infeét the other vulnerable hosts. In case that the physical machines running
Xen were accessible by network connection from the virtuél machines, they |
could be attacked or even compromised as well. The design of the virtual
network (in Section 3.2.2) makes sure that will not happen.

The virtual networks are implemented at the Ethernet layer. The trans-
pbrt network devices, including logical bridges, smart virtual switches and
physical NICs for the experimental networks, do not have IP addresses, so
they will forward the frames only based on the MAC addresses.

So far no MAC-based worms have been discovered, i.e., the worms will
scan the IP address space and exploit the vulnerability of the application
services. Therefore the above mentioned physical and virtual devices will ‘
not forward the packets up to the application layer. Espeéially, the scanning
worms are not aware the existence of the underlying physical nﬁachines nor
are they able to establish network connections with them. The worms,
which launch network attacks, are unable to infecf the supporting physical

machines in the testbed.

38

Chapter 4. Design Details

4.3.2 VLAN Technique

There are many different experiments running in Emulab, and it will cause N
disaster if the worm traffic in éur testbed could reach the physi;:;ﬂ machines
inl other experiments.

The technique of VLAN ‘(virtual LAN) alleviates such worries. The un-
derlying networks in Emulab are éonstructed by physical (Nortel) switches
attached with end physical hosts. The machines in one experiment will
behave as if connected to the same link layer network, since the physical
switches will forward packets only to those pdrts specified iﬁ the experimen-
tal VLAN. Therefore, the traffic in one experiment’s VLAN Will not appeér
in others. Even if the testbed‘ are located on more than one physical machine,
where the malicious traffic gées*through the real-world wires, it is impossible)

for the worms to reach the physical machines in other experiments.

4.3.3 Remote Control

The remote control is a potential path for worms to leak to the outside
world. Emulab deploys the firewalls to isolate the testbed environment from
the outside network. However, in order to block various kinds of malicious
worms, the firewalls have to be updated with thé worms’ signatures. Our
design fundamentally solves the security problem of enabling remote access
to the testbed.

In Emulab, each physical machine has a separate NIC for remote control.
We take advantage of this architecture. Our configuration is that the NIC

connected to the experimental network is not assigned any IP address; while

39

Chapter 4. Design Details

the NIC for rembte control will have its TP address. Moreover, the control
NIC does not attach with any other network devices in Xen. Therefore
the worms have to bypass the physical machines iﬁ order to attack the
remote user via the control NIC. As long- as the physical machines are not
compromised (stated in Section 4.3.1), the remote control network is secure. ‘

The complete structure of our testbed is shown in Figure 4.4, where the

) : remote controller
156.1.1.1
@‘@

network devices of eth2 are for the control network.

eth2
156.1.1.3

...............

eth2 eth?
156.1.1.3] 1 156.1.1.3
lAl.l‘l.l] (VM]
virtual . 12.1.1.3
router virtual

12.1.1.1 switch
174

/______-____________,\
N e ameemm e

Figure 4.4: Structure of the worm experiment with remote control

- 40

Chapter 4. Design Details

4.4 Resource' Allocation

Since tens or hundreds of virtual hosts are supported in each physical ma- -
chine, we need to reasonably allocate the resources for the domains to make

the testbed run normally.

4.4.1 Time Dilation

We execute an user-level process for replaying the traffic between each pair of
hosts. Suppose the number of end hosts is N, then ther‘e are O(N?) replaying
processes. If the scale of the experiment is too large and the available
physical machines are not enough, the traffic will not be replayed accurately
and some packets will be los/t. In order to reduce ‘the CPU burden for
processing the packets, we slow down the traffic replaying speed in domain0. »
Correspondingly, the time passagé in the end hosts and the smart switches
should bé slowed down with the same factor as well. So we enable the
time dilation [20] in Xen’s guest domains. After being specified a time
dilation factor (TDF), the ticks in the domains will become TDF times that
in the real world. As we set the TDFs of replaying processes ar.ld in guest “
domains as the same, the guest domains (including the virtual end hosts and

the virtual switches) feel no difference about the network events no matter

whether the time dilation is enabled or not.

4.4.2 Parameter Setting

We assume that users will construct one smart virtual smart switch on each

physical host. Suppose there are a total of K physical machines involved in

41

Chapter 4. Design Details

the testbed, ny is the number of .‘virtual‘ machines in physical host k and ki -
" indicates the ith virtual host in it (¢ < ny). Within the physical machine &,
the required CPU resource for each virtual end host is' hi;; the CPU resource
for the smart virtual switch is sg; and the CPU resource for Xen (domain0)
is z. Further, assume the total available CPU power on machine k is c.
Usually, > 7%, hi; + s, + @ > cx, 1e., t.he required resource is greater th;m '
the available resource. If we set the time dilation factor in machine k as
T} in the‘ below formula, the domains in machine k& will have enough CPU

resource.

ok B+ Sk + Tk
Ck

T, =

In order to make the time paséage on different physical machines con-
sistent, we set the time dilation factor of the testbed as the maximum ratio

for all physical machines, T = maxy, Ti. Such setting will ensure that each

domain has sufficient CPU resources.

Chapter 5

Evaluation

In order to evaluate the effectiveness of our testbed, we test the accuracy
of the replaying procedure. The dumped real-world traffic reoccurs in the .
virtual network. Speéiﬁcally, the experiments are performed with two main
goals: to verify 1) replaying brocedure maintains the packets’ statistics. 2)
thé time dilation will not impact the fidelity of the background traffic. We
first describe the experiinental setting.in‘Section 5.1. The evaluatidn results

are then presented in Section 5.2.

5.1 Experiment Setting

Since the raw packets on the network reveal the topology information and _
the application data, few enterprises or organizations are willing to share
their LAN’s internal traffic due to the above mentioned privacy concerns.
Fortunately, the appearance of the DARPA data set alleviates the problem
of lacking data for security experimeﬁt’s.

The 1999 DARPA Intrusion Detection Evaluation Program [23] Was pre-
pared and managed.'by MIT Lincoln Labs. The purpose was to evaluate
research in intrusion detection. Lincoln Lébs set up an environment to ac-

quire nine weeks of raw TCP dump data for a local-area network (LAN)

43

Chapter 5. Evaluation

simulating a typical U.S. Air Force LAN. As show in Figure 5.1, hundreds
of different types of users, including programmers, workers, managers and
system administrators, etc., were emulated in the LAN. The network traffic
involved over 20 kinds of services, including dns, finger, ftp, http, ping, pop,
snmp and telnet. Therefore the characteristics of the automatically created
traffic represent those of realistic traffic. Especially, the application services,
such as email, ftp and web, are close to the real-world communication. The
contents of the packets are mainly collected by 2 ways: one is from public

documents, and the other is from syntax statistics.

Simulated UNIX Hosts (1000's)

Simulated Users (100’s)
*Secretarles
*Programmers
‘Workers
*Managers
*System Administrators
*Attackers

Inside
Eyrie AF Base

Services/Protocols

*smtp *SQL/Telnet

*pop3 *‘DNS
*FTP “finger
*IRC ssnmp
*Telnet *time

Figure 5.1: DARPA simulated network [9]

Figure 5.2 shows the network structure of the 1999 DARPA intrusion de-
tection evaluation program. The networks are partitioned as 2 parts: inside
and outside. The air force LAN is emulated in the inside network, where 4

machines are set up as attacking targets with OS of Linux 2.0.27, SunOS

44

Chapter 5. Evaluation

4.1.4, Sun Solaris 2.5.1 and Windows NT 4.0 respectively. Meanwhile, a
gateway is deployed to emulate hundreds of internal machines. In order to
simulate the outside traffic, one machine emulates the traffic of the outside
network; another machine is used to simulate web services. Although one
significant feature of DARPAevaluation program is that part of the data
contain various typical network attacks, for the purpose of validating the
fidelity of our replay mechanism it is sufficient to run the experiment on the

attack free data set.

INSIDE OUTSIDE
(Eyrie AF Base)

1000'S OF
EMULATED
'ORKSTATION

100'S OF
EMULATED PC’S

AND AND WEB SITES
WORKSTATIONS
cisco
ROUTER
[AuDIT 4—-———-—% é INSIDE
| DATA @-F—m] i L SNIIFFER

SolarisNT Linux SunOS l L

vV V¥

[FILE SYSTEM DUMPS] [SNIFFER DATA]

Figure 5.2: DARPA network topology [9]

We show the average TCP connections during one day in Figure 5.3.
Everyday, about 441M bytes of data were transferred on the simulated net-
work. The running time is roughly from 8:00 am to 6:00 pm. The major
protocols include TCP (384M bytes), UDP (26M bytes) and ICMP (98K

bytes). However, our replaying focuses on the internal communication, so

45

Chapter 5. Evaluation

we discarded the simulated outside traffic in DARPA data trace. Then
the size of the dump file will reduce to 10% of its original size. Since our
experiment only replayed the internal traffic in the DARPA data, we just
reconstructed the 28 internal machines in our testbed, and didn’t simulate

the outside Internet (as shown in Figure 5.1).

100000

http smtp ftp- telnetfinger ftp pop3 time ssh irc ident
data

CONNECTIONS PER DAY

Figure 5.3: Statistics of daily TCP services [9]

Due to the function of gateways, the machines with different IP addresses
do not have distinguished MAC addresses in the DARPA data trace. So
we manually constructed a mapping between MAC and IP addresses, and
changed the corresponding MAC addresses in the dump files. As stated in
Section 4.2.2, we mark the source MAC addresses in the dump files to be
ended with byte 0x22, while the individual virtual hosts’ MAC addresses are
ended with byte Oxdb. Therefore the Ebtables function on the intermediate -
virtual switches will not forward the replayed packets, but allow the live
traffic through.

For simplicity, right now we run all the experiments on a single test

46

Chapter 5. FEvaluation

node in Emulab. The machine in UBC Emulab has Intel(R) Pentium(R) 4
CPU 3.20GHz and 512M bytes memory. We set the minimum memory size
for domain0 to 196M bytes ;nd the memory size of virtual smart switch to
128M bytes. The memory allocated for each virtual end host is 16M bytes,

since the end hosts do not require too much resource for the replaying test.

5.2 Experiment Results

We first focus on the 'traﬂic replaying betwéen 2 machines. We chose the
hosts with IP addresses of 172.16.112.20 and 172.16.112.100 in the DARPA ,
data set as a communication pair. The connection of these 2 hosts is sim-
ilar .to the configuration in Figure 4.2. jHost A and B are set with 2 IP
addresses, and the dumped packets are r_eplayed- at bridge 1 and 2 respec-
tively. We monitored the replayed packets in the virtual switch to compare
the throughput with the original data trace. |

The throughput of the original DARPA data is shown in Figure 5.4(a),
which has the peak of around 140 packets per second. If we simply replay
the packets regafdless of the causality, the throughput on the network will
be quite different. It will take a long time to replay with a lower rate as
shown in Figure 5.4(b). It is obvious that réplaying time is greatly delayed, -
and the peak throughput (37 packets per second) is decreased. When we
correctly maintain the packets’ sequence by waiting the opponents’ packets,-
the throughput (shown in Figure 5.4(c)) matches that in the DARPA data
trace. As long as the prdcessor has enough ability to proceed the dumped

‘packets, the replayed traffic will have the similar statistical characteristics

47

Chapter 5. Evaluation

140
120
100t .

got|

pkt/sec

60

40}

201

0 20 40 60 80 100 120
time(s)
(a) original DARPA data trace

40

0 100 200 300 400
. time(s) i
(b) replaying traffic without causality synchronization
140
120}
100}

801

pkt/sec.

601

40t

20

0 20 40 60 80 100 120
time(s)
(c) replaying traffic with tdf=1.0

Figure 5.4: Replaying between 2 machines

Chapter 5. FEvaluation

as the ofiginal traffic.

Next we test the éffect of time dilation on the replaying process. The
replaying speed is slowed down by a factor of 10, and fneanwhile the time
passage in the virtual sWitCh is slowed by the the same factor. The throughQ
put measurement in the virtual switch is shown in Figure 5.5. The result
is still consistent with that in DARPA data trace, so this verifies that from -
the point of view of the virtual machines, the replaying speed is not changed

after time dilation.

140

120
100} . \

80r

pkt/sec

601

401] -

201

00 20 40 ., 60 80 100 120
time(s)

Figure 5.5 Replaying between 2 machines with tdf=10.0

We simulated the whole local network with 28 hosts specified in the
DARPA 99 trace as well. All the virtual hosts are connected to the single
virtual switch. A segment of the data trace is shown in Figure 5.6(a). '

As the number of replaying' processes have been dramatically increased
cbmpared to the previous experiment, the resources are not enough to ex-
ecute the replaying processes. When we replayed the packets with a small

TDF, e.g., set TDF as 3, the lack of resources would cause much delay as

49

Chapter 5. Evaluation

120
100
801

601

pkt/sec

40

o

0 200 400 600 800
time(s)
(a) original DARPA data trace

801

601

pkt/sec
H
(o]

201

0 200 400 _ 600 800
time(s)
(b) Replaying traffic with tdf=3.0

120
100+
80r

60r

pkt/sec

401

20t

0 200 400 _ 600 800
time(s)
(¢) Replaying traffic with tdf=10.0

Figure 5.6: Replaying in the whole DARPA network

50

Chapter 5. Evaluation

shown in Figure 5.6(b), i.e the pfocessi'ng of replaying packets can not cope .
with the original traffic speed. When we increased the TDF to ’10, the pro-
cessing ability would handle the replaying speed. The result became better
in Figure 5.6(b). The method of time dilation is effective to alleviate the
‘resource limitation. However, a side effect is that the experiment will run
TDF times longer.

Our experiments validate that the replaying mechanism will maintain
‘the fidelity of the background traffic. Even with time dilation, the statistics

of the traffic will appear the same from the view of the virtual machines.

t

51

Chapter 6

Conclusion & Futuré Work

In this thesis we proposed a virtual testbed to facilitate the evaluation of the
usability vs. security of anti-worm algorithms. Our main contributions in-
clude (1) The virtualized implementation allows the scale of the experiment
to be expanded or reduced without hard limitation, e.g., tens or hundreds
of virtual machines can be set up in a single physical host; (2) We main-
tain the high fidelity of the background traffic by deliberately replaying the
dumped packets; (3) Since the real-world operating systems and application
programs run in the virtﬁal machines, we can introduce the realistic.worm ,
codes into the virtual environment and mix them with background traffic for
testing; (4) .T he behaviors of the layer 3 switches are accurately emulated,
so researchers can evaluate switch-based security policies in our testbed; (5) '
The malicious traffic is strictly confined within the testbed.

Our work is still an ongoing project, and we plan to address several .
future directions. First, the mixture of live and replayed traffic may cause
some problems. For example, in a TCP Session,'fhe port numbers may

conflict in the two different types of traffic. If some defense systems trace the

connection based on the port numbers, such conflicts will make the defense

system become confused. Therefore, the replaying mechanism needs further -

Chapter 6. Conclusion & Future Work .

adjustment when being combined with worm propagation. Second, currently
we just built up the testbed o’n.a single physical machine. In principle the
virtual machines can be located on several different physical.hosts. The-
emerging problems are how to reasonably assign the Qirtual machjnes into
the given physical machines and whether users can change the assignment
during the experiment; Finally, in order to verify the effectiveness of our
testbed, we need to deploy some defense systems in our testbed and comp@re
their defense abilities. Basically, the future direction is to make the testbed

more flexible and reliable to evaluate the worm defense systems.

53

Bibliography

(1] Eb‘;ables. http://ebtables. sburceforge .net/.
[2] Emulab. http://wuw.emulab.net/.
(3] Ftp rfc. http://rfc.net/rfc959 . html.
‘ [4] Iptables. http://ww\w.netfilter.org/.
[5] Planetlab. http://wuw.planet-lab.org/.
[6] Tcpdump. http: /‘/www .tcpdump.org/.

[7] CERT. CERT advisory ca-2001-26 nimda worm. http://www.cert.

org/advisories/ca-2001-26.html.

[8] eEye Digital Security.- http://www.eeye.com/html/research/

advisories/al20010717.html.

(9] MIT Lincoln Labs, DAPAR intrusion detection evaluation. http://-

www.ll.mit.edu/IST/ideval/.

[10] User Mode Linux. http://user-mode-1linux.sourceforge.net/.

[11] Vmware. http://www.vmware.com/.

http://ebtables.sourceforge.net/
http://www.emulab.net/
http://rfc.net/rfc959.html
http://www.netfilter.org/
http://www.planet-lab.org/
http://www.tcpdump.org/
http://www.cert
http://www.eeye.com/html/research/
http://
http://www.ll.mit.edu/IST/ideval/
http://user-mode-linux.sourceforge.net/
http://www.vmware.com/

Chapter 6. Conclusion & Future Work

(12]

[13]

[14]

[15]

[16]

[17)

William Aiello, Charles Kalmanek, Patrick McDaniel, Subhabrata Sen,
Oliver Spatscheck, and Jacobus Vanﬁ der Merwe. Analysis of communi-
ties of interest in data networks. In PAM’05: Proceedings of 6th Passive

and Active Measurement Workshop, 2005.

Julia Allen, Alan Christie, William Fithen, John McHugh,-Je(i Pickel,
and Ed Stoner. State of the practice of intrusion detection te(;hnologies.
Carnegie Mellon University, Technical Report CMU/SEI-99-TR-028,
1999. |

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. In SOSP’03: Proceedings of 19th ACM Sym-

posium on Operating Systems Principles, 2003.

Terry Benzel, Robert Braden, Dongho Kim, Cliford Neuman, Anthony
Joseph, and Keith Sklower. Experience with deter: A testbed for secu-

rity research. In TRIDENTCOM’06: Proceedings of 2nd IEEE Confer- |

ence on testbeds and Research Infrastructures for the Development of

Networks and Communities, 2006.

Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney.- Efficient tech-
niques for comprehensive protection from memory error exploits. In

USENIX’05: Proceedings of 14th USENIX Security Symposium, 2005.

David Brumley, Li-Hao Liu, Pongsin Poosankam, and Dawn Song. Tax- -

onomy and effectiveness ofworm defense strategies. Carnegie Mellon

University, Technical Report CMU-CS-05-156, 2005.

Chapter 6. Conclusion & Future Work

18

[19)

[20]

21]

[22]

23]

24]

Zesheng Chen, Lixin Gao, and Kevin Kwidt. Modeling the spread of
active worms. In INFOCOM’03: Proceedings .of 926th Annual IEEE

Conference on Computer Communications, 2003.

Stephanie Forrest, Anil Somayaji, and David H. Ackley. Building di-
verse computer systems. In Hot0S’97: Proceedings of 6th workshop on

Hot Topics in Operating Systems, 1997.

Diwaker Gupta, Kenneth Yocum, and Marvin McNett. To infinity and
beyond: Time-warped netowrk emulation. In NSDI’06: Proceedings

of 8rd Symposium on Networked Systems Design and Implementation, -

2006.

Herbert W. Hethcote. The mathematics of infectious diseases. Society

for Industrial and Applied Mathematics, 42(4):599-653, 2000.

Xuxian Jiang, Dongyan Xu, Helen J. Wang, and Eugene H. Spafford.
Virtual playgrounds for worm behavior investigation. In RAID’05: Pro-
ceedings of 8th International Symposium on Recent Advances in Intru--

sion Detection, 2005.

Matthew V. Mahoney and Philip K. Chan. An analysis of the 1999
darpa/lincoln laboratory evaluation. In RAID’03: Proceedings of the

6th International Symposium on Recent Advances in Intrusion Detec-

tion, 2003.

St‘even McCanne and Van Jacobson. The bsd packet filter: A new-
architecture for user-level packet capture. In USENIX ’93: " Proceedings
of the Winter 1993 USENIX Conference, 1993.

56

Chapter 6. Conclusion & Future Work

[25]

[26]

[27]

28]

29]

[30]

[31]

Patrick McDaniel, Shubho Sen, Oliver Spatscheck, Jacobus Van der
Merwe, William Aiello, and Charles Kalmanek. Enferprise security: A

community of interest based approach. In NDSS’06: Proceedings of

- Network and Distributed Systehs Security 2006, 2006.

David Moore, Vern Pakson, Stefan Savége, Colleen Shannon, Stuart
Staniford, and Nicholas Weaver. Inside the slammer worm. In Proceed-

ings of 2003 IEEE Symposium on Security and Privacy, 2003.

David Moore, Colleen Shannon, and Jeffery Brdwn. Code-red: a case
study on the spread and victims of an internet worm. In USENIX 02:
Proceedings of the 11th USENIX Security Symposium, 2002.

Robert Ricci, Jonathon Duerig, P;ramoci Sanaga, Daniel Gebhardt,
Mike Hibler, Kevin Atkinsoh, Junxing Zhang, Sneha Kasera, and Jay
Lepreau. The flexlab approach to realistic evaluation of -netw‘orked sys- -
tems. In NSDI’07: Proceedings of' the 4th USENIX Symposium on

Networked Systems D'esign. and Implementation, 2007.

James E. Smith and Ravi Nair. Virutal Machines: Versatile Platforms

for Systems and Processes. Elsevier Press, 2005.

Stuart Stanifor‘d, Vern Paxson, and Nicholas Weaver. How to Own the
internet in your spare time. In USENIX’02: Proceedings of the 11th
USENIX Security Symposium, 2002. -

Jamie Twycross and Matthew M. Williamson. Implementing and test-
ing a virus throttle. In USENIX’03: Proceedings of 12th USENIX Se- ‘

curity Symposium, 2003.

o7

. Chapter 6. Conclusion & Future Work

[32]

- [33]

[34]

35

(36]

37

Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan

Kostic, Jeff Chase, and David Becker. Scalability and accuracy in a

large-scale network emulator. In OSDI’02: Proceedings of 5th Sympo-

sium on Operating Systems Designs and Implementation, 2002.

Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunning-
ham. An taxohomy of computer worms. In WORM’03: Proceedings of

the 1st ACM Workshop on Rapid Malcode, 2003.

Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and

'performance in the denali isolation kernel. In OSDf ’02: Proceedings

of 5th Symposium on Operating Systems Designs and Implementation,

2002.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad‘ Barb, and Abhijeet
Joglekar. An integrated experimental eﬁvironment for dis’cri‘buted sys-
tems and networks. In OSDI’02: Proceedings of 5th Symposium on

Operating Systems Designs and Implementation, 2002.

Matthew M. Williamson. Throttling viruses: Restricting propagation
to defeat malicious mobile code. In ACSAC’02: Proceedings of the 18th

- Annual Computer Security Applicatiohs Conference, 2002.

Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Transparent
runtime randomization for security. In SRDS’03: Proceedings of 22nd

International Symposium on Reliable Distributed Systems, 2003.

58

