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Abstract 

The current trend in computation is one of concurrency and multiprocessors. Large 

supercomputers have long been eclipsed in popularity by cheaper clusters of small 

computers. In recent years, desktop processors with multiple cores have become 

commonplace. A plethora of languages, tools, and techniques for dealing with 

concurrency already exist. Where concurrency and multiprocessors meet modern, 

highly dynamic languages, however, is uncharted territory. 

Traditional distributed systems, however complex, tend to be simplified by 

assumptions of type consistency. Even in systems where types and not merely in

stances and primitive objects can be serialised and distributed, it is usually the 

case that such types are assumed to be static. The Python programming language, 

as an example of a modern language with highly dynamic types, presents novel 

challenges, in that classes may be altered at runtime, both through the addition, 

removal, or modification of attributes such as member variables and methods, and 

through modifications to the type's inheritance hierarchy. 

This thesis presents a system called PyRemote which aims to explore some 

of the issues surrounding type semantics in this environment. 
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Chapter 1 

Introduction 

T h e p r o b l e m of object d i s t r i b u t i o n a n d d i s t r i b u t e d c o m p u t a t i o n s is in no way a 

nove l one. However , few appl i ca t ions are v e r y w i d e l y k n o w n a n d used. T h e reasons 

for this are m a n i f o l d . T h e most obvious a n d cr i t i ca l one is that it is a n area r i d d l e d 

w i t h very difficult prob lems that have perhaps never been solved satisfactori ly. T h i s 

thesis does not aspire to address these f u n d a m e n t a l issues of object d i s t r i b u t i o n . 

However , o ther reasons w h y d i s t r i b u t e d objects have never 'caught on ' m a y 

inc lude the fact that most a t t e m p t s at t a c k l i n g the p r o b l e m have been either very 

academic i n nature , or very finely t u n e d to h igh ly specific app l i ca t ions . W h i l e object 

d i s t r i b u t i o n has been i m p l e m e n t e d in p r o g r a m m i n g languages, such as D i s t r i b u t e d 

S m a l l t a l k or E m e r a l d , in the past , these are not wide ly used languages a n d so have 

not been able to harness a large developer base, nor the benefits of pre-exis t ing , pow

erful tools a n d l ibraries . T h e r e are also libraries for exis t ing languages that aspire to 

prov ide d i s t r i b u t e d object capabi l i t ies . However , these are i n e v i t a b l y restr icted b y 

the f u n d a m e n t a l l imi ta t ions of the languages, a n d even language implementa t ions , 

a long w h i c h t h e y are used. 

T h e P y R e m o t e projec t a ims to tackle a n o l d p r o b l e m f r o m a different d i -
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rection: Neither the creation of a novel language, which—though it may be better 

designed from the ground up to be compatible with distribution requirements— 

suffers the inertia of any new programming language, most of which never meet 

with wide acceptance; nor the addition of a library, which will generally have no 

syntactic support and be limited by the underlying implementation; but by the mod

ification of an existing, dynamic, widely used programming language, Python, to 

support the necessary features and capabilities. 

1.1 Secondary objective 

A secondary objective of the PyRemote project is to address certain limitations 

within the Python language, particularly in its canonical interpretation; the Python 

interpreter, written in C (and so usually referred to as CPythori) available from 

ht tp: / /python.org. Although the Python standard library contains mechanisms 

for dealing with multiple threads of control, the ability of a Python program to scale 

with multiple processors or C P U cores is limited by the global interpreter lock, or 

GIL, which effectively prevents the underlying operating system from running more 

than one interpreter thread at once even where multiple execution units are available. 

Past attempts to eliminate the controversial GIL have been either prohibitively 

difficult or so inefficient that the effort has been counterproductive. There are also 

arguments that multi threading is not the optimal form of concurrency, and that a 

system based on multiple concurrent processes offers many benefits—in terms of 

stability, in terms of scaling on multi-core or multi-CPU systems where processors 

may not have symmetrical access to memory, et cetera. 

Although there is nothing to prevent Python programs from executing in a 

multi-process context, an obvious and basic requirement to use this mechanism for 
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distributed computation is a method of interprocess communication. Barring the 

socket interface and a few X M L marshalling libraries, no such method exists in the 

standard Python distribution; in particular, there is nothing to provide transpar

ent inter-process communication (which is to say, convenient, consistent with ordi

nary Python syntax and semantics, and intuitive). B y providing a location-agnostic 

method of IPC, the PyRemote system attempts to fi l l this role, and thereby make 

it easy—or at least easier—to write Python programs that scale to take advantage 

of multiple processors. 
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Chapter 2 

Related work 

2.1 Distributed programming languages 

2.1.1 Emerald 

The Emerald language [1, 2] was developed in the early 1980's with the original goal 

of addressing shortcomings in the Eden system, which inspired it. Its primary goals 

were to offer object-based distributed computation with uniform semantics for local 

and remote objects, and to do so efficiently, in stark contrast to existing systems, 

where distributed objects tended to be extremely heavy-weight. 

Emerald achieved its stated goals, and produced several incidental novelties 

in terms of its type structure, which can be broadly characterised as prototype-based 

rather than class-based, and its use of type specifications to which objects conformed 

without concern to internal implementation details (that is, what would today be 

called interfaces)—it is even argued that true polymorphism is only achieved when 

a type specification is polymorphic with respect to implementation [2]. 

The PyRemote project empathically does not aspire in any academic or theo

retical way to transcend Emerald, which presented a very clean solution to problems 
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in distribution. Rather, it is one of few known attempts to provide a reasonable sub

set of its features—uniform local and remote semantics, object mobility, et cetera— 

in a more widely used programming language; languages born in academia, such 

as Emerald, may boast pure and elegant solutions to theoretical problems, but are 

often stillborn in terms of widespread adoption, as any new programming language 

necessarily lacks comprehensive libraries, platform bindings, and so forth. 

Emerald was one of the primary inspirations for the PyRemote project. 

2.1.2 Distributed Smalltalk 

John Bennett's work on Distributed Smalltalk ('DS') [3] represents one of the 

projects most significant to the PyRemote project, and raised many of the issues 

that still face designers of distributed systems today. It provides transparent re

mote invocation, automatic marshalling, object mobility (by means of move and 

copy primitives), and distributed garbage collection, among many other features. 

The one important feature that DS appears to lack, as far as [3] is concerned (and 

in our view), is class sharing: Objects and their classes must be co-resident; an 

object's class must be present at a node where it is moved; and no support for 

class sharing is provided, beyond a weak guarantee that identically named classes, 

if already present on both nodes in a transaction, are compatible. 

DS was particularly interesting, given the goals of the PyRemote project, 

in that it too was an endeavour to add distributed computation facilities to an 

existing language. (It was arguably a simpler task: Smalltalk semantics are explicitly 

centered around message passing, and the interpreter already had an object reference 

indirection table.) 
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2.1.3 Erlang 

Erlang is a distributed programming language developed by the telecommunications 

company, Ericsson, to support large-scale, soft realtime applications [4]. Its syntax 

and semantics, in its 'local' subset, are declarative rather than imperative; it is his

torically based on Prolog [5], but is in appearance similar to functional programming 

languages. Concurrency is strictly explicit. 

An interesting point to note is that declarative languages by 'nature' and 

by design tend to have very few statements with side effects—which is to say that 

they tend to modify very few data structures save perhaps by assignment from 

return values. This also makes them intrinsically easier to modify to be distributed 

languages: Most of the problems that make distributed programming so hard stem 

from such side effects and the difficulties of keeping data structures synchronised 

across peers in a distributed system; non-existent problems in a purely functional 

language except perhaps in maintaining a namespace hierarchy. Functional subsets 

of languages are therefore interesting sections to inspect for possible exploitation in 

parallel and distributed languages. 

2.1.4 RTSync 

The RTSync project [6] represented an attempt to create a programming language 

offering soft real-time constraints in a distributed system. It was implemented by 

Petter Haggholm and Scott Stoddard in the summer of 2004 to support theoretical 

work by Dr. Stefan D. Bruda. It offered a multi-threaded, actor-based programming 

environment with object messages passed through synchronizer entities. Program

mers can also express end-to-end timing constraints; synchronizer entities schedule 

message passing in order to satisfy these constraints, and programmers may specify 
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the consequences of timing failures. The RTSync compiler infers, wherever possible, 

local 'sub-constraints'. 

Although the language itself (if not the runtime system!) was fairly simple, it 

is mentioned here as representing the author's earliest experience with implementing 

a distributed programming language. 

2.2 Distributed toolkits for Python 

There exist numerous tools for providing distributed computation in Python (in fact, 

several new ones have emerged since the PyRemote project was begun). Typically, 

however, they are limited in scope, in particular as pertains to dealing with types, 

and they tend to be written purely in Python. From an implementation point of 

view this is a considerably simpler task, but it may come at a cost since Python 

code will tend to run more slowly. (Although it is often said that Python code will 

run more slowly than C or C+-1- code by more than an order of magnitude, properly 

written Python can be quite efficient—sometimes even faster than Java and almost 

as fast as C++, if startup costs are ignored or amortised [7]. However, the issue here 

is that implementing proxies in Python would involve more lookups and indirections 

than code that can be injected directly into the type structures of the interpreter.) 

2.2.1 P Y R O 

P Y R O (Python Remote Objects) is a distributed object system written in pure 

Python [8]. It appears to present a very functional distributed object system (by 

far the most substantial project we found when we surveyed the field to see what 

efforts had been made in this area for the Python language). It supports sharing of 

arbitrary objects, so long as they can be "pickled" by the standard p i c k l e module 
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(for object serialisation), and handles semantics in an intuitive fashion (there are 

no special restrictions on objects as function parameters, et cetera). Exceptions 

are handled elegantly: Not only are they propagated to the caller, but the stack 

trace (attached to Python exceptions) is transmitted as well, to avoid confusing a 

programmer attempting to debug software with a stack trace in which the 'bottom' 

frame is a proxy call, with no hint as to the stack on the node where the actual 

invocation happened. 

P Y R O provides an event server system (publisher/subscriber) to ease event-

driven programming. There is also support for asynchronous function calls. To 

provide some security, P Y R O offers connection validators to restrict clients allowed 

to connect to services, and code validators to control whether mobile code is allowed 

from any given client. It should be noted, however, that Python itself is not a secure 

programming language. 

Limitations 

P Y R O has two different kinds of proxies: 'Simple' proxies, which are the default 

type, and 'dynamic' proxies, which support attribute access. It follows, therefore, 

that unless one explicitly requests such a proxy, the operations performed on proxies 

are constrained. The distinction exists because dynamic proxies are much slower; 

however, this may confuse programmers and makes P Y R O code much less trans

parent. Proxies also cannot be shared between threads. It is not clear from the 

documentation why this is so. Furthermore, while in a sense arbitrary objects can 

be shared, objects must be either derived from a P Y R O base class or decorated 

with a P Y R O delegate object. There are some exceptions: Not all objects can be 

'pickled'. For example, objects such as file and socket objects cannot be shared at 
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all. 

Although PYRO has limited support for mobility, it is not without prob

lems and subtleties. For example, dynamic proxy objects can cause unexpected 

exceptions to be raised if types the involved are not present on the caller side of a 

remote invocation: There is no support for automatic transmission of classes not 

present on one peer in a distributed system. (Classes that are present but not loaded 

are imported automatically; this is a regular feature of Python's pickle module.) 

Classes can be shared across different nodes, but only if they are available in separate 

modules—classes in the __builtin__ namespace cannot be shared at all. More unex

pected problems arise when accessing nested attributes (an_ob.an_attr.sub_attr). 

Very importantly, there is no guarantee of consistency. Once a class is copied 

from one host to another, PYRO will do nothing to ensure that the two stay con

sistent if one side is altered. 

2.2.2 RPyC 

RPyC (Remote Python Call) is a Python library providing remote calls [9]. It 

aims to provide (largely) transparent access to a remote 'slave' interpreter, though 

it does not provide any form of code mobility. Remote namespaces are brought 

into variables in the local namespace, allowing invocations to be made to slave 

interpreters. Remote objects are represented by proxies, or (in the case of immutable 

objects) copied by value. Exceptions thrown by remote calls propagate to the caller 

side in an intuitive manner. 

RPyC also supports asynchronous calling, where the results of a remote call 

may be polled to determine completion. 
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Limitations 

R P y C does not (and does not aspire to) offer a n y k i n d of object or code mobi l i t y ; it 

is a remote ca l l sy s t em a n d no more . F u r t h e r m o r e , it interacts p o o r l y w i t h t h r e a d e d 

p r o g r a m s . 

2.2.3 PyRCall 

P y R C a l l ( P y t h o n R e m o t e C a l l M o d u l e ) is another remote ca l l l i b r a r y for P y t h o n [10]. 

(Unfor tunate ly , the d o c u m e n t a t i o n we were able to f ind was somewhat sparse.) S i m 

i lar to R P y C , P y R C a l l offers remote access to objects . C o m p a r e d to R P y C , the 

remote calls are m u c h more expl ic i t i n that access to remote names involves ex

pl ic i t P y R C a l l func t ion calls ra ther t h a n i m p o r t i n g namespaces . Secur i ty is offered 

t h r o u g h S S L connect ions a n d t h r o u g h author i sa t ion keys whereby access to server 

objects m a y be l imi t ed . 

Limitations 

P y R C a l l appears to offer no s u p p o r t for code or object mobi l i ty . 

2.2.4 Thoughts on distributed toolkits 

A l t h o u g h the toolki ts discussed i n previous sections are quite funct ional , it is our 

o p i n i o n that none of t h e m are sufficiently t ransparent to be ent ire ly convenient to 

p r o g r a m m e r s . T w o of t h e m are i n no significant way c o m p a r a b l e to the a ims of 

the P y R e m o t e project , as they prov ide on ly remote func t ion calls, rather t h a n ful l -

featured mobi l e objects . ( T h e r e are, i n fact, some smal ler or less m a t u r e too lk i t s 

that do m u c h the same, not surveyed here. N o n e of t h e m , as far as we c o u l d f ind, are 

m o r e ambit ious . ) P Y R O goes m u c h further . However , none of the toolki ts f ound 
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or investigated offered all of the following features, which we consider crit ical to 

transparency: 

• Proxy representations of objects 

• Object mobility 

• Marshall ing and automatic transmission of types 

• A single set of uniform semantics on proxies and objects 

The PyRemote project provides all of these features. 
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Chapter 3 

The C P y t h o n implementation 

P y R e m o t e bu i lds u p o n the c a n o n i c a l P y t h o n i m p l e m e n t a t i o n , ' C P y t h o n ' , w h i c h 

is w r i t t e n in C . ( T h e vers ion w r i t t e n for this thesis is based o n the vers ion 2.4.3 

source code.) A l t h o u g h C P y t h o n is a fa ir ly large piece of software, cons is t ing of 

some 366,000 lines of code, m u c h of this resides i n module s not relevant to the 

P y R e m o t e i m p l e m e n t a t i o n . N o changes were m a d e to the parser, bytecode compi l er , 

stack mach ine , a n d so forth , a n d a l t h o u g h some u n d e r s t a n d i n g of some of these 

c o m p o n e n t s was necessary i n order to des ign P y R e m o t e a n d decide where best 

to i m p l e m e n t changes, they have no par t i n the i m p l e m e n t a t i o n . T h i s chapter thus 

discusses some key facets of the C P y t h o n i m p l e m e n t a t i o n that that are f u n d a m e n t a l 

to u n d e r s t a n d the low-level des ign of the P y R e m o t e projec t . 

3.1 Python objects 

3.1.1 PyObject 

Because the i m p l e m e n t a t i o n language is C , a n d because P y t h o n is a n object -or iented 

language w i t h p o l y m o r p h i s m a n d other features associated w i t h O O P , C P y t h o n 
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L i s t i n g 3.1: T h e basic P y t h o n object 

A 
* Tim is a simplified version of the PyObject-HEAD macro 
* See Include/object.h 
*/ 

# d e f m e P y O b j e c t _ H E A D \ 
int ob-refcnt; \ 
s t r u c t _typeobject *ob_type; 

t y p e d e f s t r u c t .object { 
P y O b j e c t - H E A D 

} PyObject; 

implements inher i tance "by h a n d " . T h e preprocessor m a c r o PyObject_HEAD defines 

the m i n i m a l i n f o r m a t i o n that a l l objects need, such as reference count , object type , 

a n d (depend ing o n c o m p i l a t i o n options) cer ta in o p t i o n a l fields to do w i t h garbage 

col lect ion a n d reference t r a c i n g . T h e basic object type i n C P y t h o n , PyObject, 

conta ins on ly this i n f o r m a t i o n . L i s t i n g 3.1 provides a n a p p r o x i m a t e idea of w h a t 

the PyObject s t ructure looks like (the rea l code is c o m p l i c a t e d b y more , a n d more 

sophis t icated , preprocessor macros for debugg ing a n d variable-s ize objects) . B y 

m a k i n g every object ( inc lud ing type objects) c o n t a i n PyObject_HEAD as its first 

i t em, it is t h e n possible to p e r f o r m generic operat ions u n i f o r m l y o n al l objects b y 

cas t ing t h e m as PyObject pointers . F u r t h e r m o r e , since the object type is one of 

the basic d a t a whose offset is k n o w n i n al l type s tructures , type l o o k u p c a n also be 

p e r f o r m e d . 

O b j e c t s m a y be either pure P y t h o n objects , or ' C objects' . T h e core b u i l t - i n 

types such as type, the object base class, i n t , s t r , a n d so for th , are a l l i m p l e m e n t e d 

i n C . T h e C interface allows p r o g r a m m e r s to wri te P y t h o n extensions i n C , w h i c h 

are largely transparent to the P y t h o n p r o g r a m m e r 1 . 

1 Typically, C types are somewhat 'less mutable' than pure Python types; so for instance 
the methods of built-in types cannot be altered. 
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3.1.2 PyTypeObject 

T h e type of a P y t h o n object is def ined either in a s tructure generated at r u n t i m e 

( in the case of a l l user-defined, a n d m a n y l i b r a r y classes), or i n a (general ly static) 

s t ruc ture d irec t ly i n the C code. T h e P y T y p e O b j e c t is a n s tructure conta in ing a l l 

of the i n f o r m a t i o n p e r t a i n i n g to a type , such as the name , a l loca t ion i n f o r m a t i o n , 

a n d pointers to a l l of the operat ions o n objects of this type that are i m p l e m e n t e d i n 

C . W e shal l use the convent ion of referr ing to these as built-in methods , as opposed 

to regular m e t h o d s , w h i c h are i m p l e m e n t e d i n P y t h o n . B u i l t - i n m e t h o d s inc lude 

a l loca t ion a n d dea l locat ion , as well as c o m m o n , low-level operat ions such as ca l l ing 

(on cal lable objects such as funct ions a n d func t ion objects) , compar i sons , hash ing , 

a n d p r o d u c i n g a s t r ing representat ion. ( T h e y are not ' c o m m o n ' i n the sense of b e i n g 

c o m m o n to all objects , b u t ra ther i n the sense of b e i n g sufficiently c o m m o n , a n d 

sufficiently c o m m o n l y invoked, to mer i t specia l , efficient lookup. ) 

O p t i o n a l l y , the s t ruc ture m a y also conta in sub-s tructures of c o m m o n opera 

tions to a r i t h m e t i c types , sequence types (such as tuples a n d lists), mapping types 

(such as d ic t ionaries ) , a n d buffer types (prov id ing raw m e m o r y access). See L i s t i n g 

3.2 for a t r u n c a t e d v iew of the P y T y p e O b j e c t s tructure . T h e real P y T y p e O b j e c t 

s t ruc ture contains m a n y m o r e types of func t ion pointers , more m e t h o d suites, a n d 

m a n y m o r e b u i l t - i n m e t h o d s , b u t the e x a m p l e s h o u l d suffice to m a k e the general 

idea clear. 

M e t h o d l o o k u p for a b u i l t - i n m e t h o d of a n object o follows the code p a t h 

ou t l ined ( in r o u g h terms) below: 

• T h e object is passed to a n interpreter funct ion that acts o n P y O b j e c t pointers , 

such as P y O b j e c t J l e p r O , w h i c h re turns a ( P y t h o n ) s t r ing representat ion of 

14 



Listing 3.2: The object type object 

/* These are only excerpts: refer to In elude/object .h */ 
typedef PyObject * (*unaryfunc)(PyObject *); 
typedef PyObject * (*binaryfunc)(PyObject *, PyObject *); 
typedef PyObject *(*getattrfunc)(PyObject *, char *); 
typedef int (*setattrfunc)(PyObject *, char *, PyObject *); 

typedef struct { 
binaryfunc nb_add; 
binaryfunc nb_subtract; 
unaryfunc nb.positive; 

} PyNumberMethods; 

typedef struct _typeobject { 
PyObject.VAR-HEAD 
char *tp_name; 
destructor tp-dealloc; 
getattrfunc tp-getattr; 
setattrfunc tp_setattr ; 
PyNumberMethods *tp_as_number; 
PySequenceMethods *tp_as_sequence; 

} PyTypeObject; 

its object. 

• The function looks up the object's type object: 

PyTypeObject * t p = o->ob_type 

• Generic operations are invoked through the intrinsic method pointers, whose 

offsets are known (they are fields in PyTypeObject). 

• Invoke the function pointer with o as its first parameter: 

PyObject * r e s u l t = t p - > t p_ s t r ( o ) ; 

Although this is a very simplified account (partially for historical reasons, 

attribute lookup in CPython can internally be rather complex), it is sufficient to 

explain how PyRemote exploits these structures. It should be noted that there 

is an entirely different, more general code path for Python methods that are not 
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necessarily built-in operations. Below is an example for lookup up some method m 

of an object o: 

• The interpreter looks up the object's dictionary, o.__dict__ 

• The method m is looked up through an ordinary dictionary lookup: 

met = o. __dict__[m] 

• met's __call__() method is invoked with the proper parameters. 

Although more general, this codepath is of little interest to PyRemote, since 

it is handled automatically, so long as the low-level method lookups providing ser

vices such as dictionary lookup and the __call__() method are forwarded as appro

priate. These lower-level lookups correspond to the first code path outline. 

3.2 Name resolution 

Name resolution in Python is generally performed at runtime, using dictionaries. 

This is an extremely general approach and is reflected frequently throughout the 

system; so for instance a local variable within a function is looked up in the func

tion's dictionary, global variables in a global dictionary, an object's attributes in 

the object's dictionary, et cetera. Although not very fast, this mechanism enables 

Python to be a highly dynamic language, and manipulating key facets is often as 

simple as altering values in a dictionary. 

3.2.1 Method resolution order 

When a method on a Python object is invoked—or indeed any attribute lookup is 

performed—the interpreter potentially performs a series of lookups in object dictio-
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naries. Initially, the dictionary of the object itself is queried; if the desired attribute 

is not found, its type is queried; if again it is not found, then the superclasses of this 

type are queried. The precise lookup order is non-trivial. "Old-style" Python classes 

(see Section 6.1.3) used a simple algorithm; superclasses were queried depth-first in 

the inheritance graph, left to right. However, this approach is problematic in that it 

is not always monotonic. "New-style" Python classes, since version 2.3, use a more 

sophisticated ordering which guarantees monotonicity [11]. The general principle, 

however, is much the same; only the order of the dictionary lookups is changed. 
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Chapter 4 

Object mobi l i ty design 

W h e n we speak of 'object m o b i l i t y ' a n d the concept of ' m o v i n g ' a n object f r o m one 

c o m p u t e r to another , there are several semant ic interpretat ions of w h a t it means for 

host A (the client i n this p a r t i c u l a r transact ion) to request a n object o f r o m host B 

(the server). Poss ibi l i t ies inc lude 

• S e n d i n g a copy, where A receives a copy OA comple te ly independent of o; 

• S e n d i n g a proxy, where the object remains o n B a n d a n y operat ions A per forms 

o n it are p e r f o r m e d remotely , o n B; 

• A c t u a l l y moving the object , where A now acts as a server for o a n d B is left 

w i t h a p r o x y pa, referr ing to o—this is equivalent to a c o p y a n d a delet ion; 

• Replicating the object , where A a n d B each h o l d a 'real' object (as opposed 

to a proxy) b u t , unl ike i n the c o p y opera t ion , they c o n c e p t u a l l y refer to the 

same object , so that any changes to OA are reflected i n 03-

T h e default m e c h a n i s m for object m o b i l i t y i n P y R e m o t e is p r o x y semantics , 

b u t there is also s u p p o r t for copy a n d move s e m a n t i c s — a l t h o u g h due to l imi ta t ions 
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of the implementation and the constraints of working with the existing CPython 

code base, not all objects can be be moved, and some (though fewer) objects cannot 

be copied. Immutable objects comprise an exception to this general rule as they 

are always copied; see Section 4.2.1. Meanwhile, there are some objects, primarily 

resource handles, for which move operations do not make much sense (although 

remote access through proxies is st i l l relevant and functional). Types are also handled 

differently, as it is not feasible to have strictly remote type objects, as they are 

enmeshed rather deeply in the type system, and as they are typically read vastly 

more often than they are modified; it is more sensible to replicate rather than move 

them. 

4.1 PyRemote in action 

For readers unfamiliar with our use of terminology, inspired primarily by the Emer

ald language, this section provides a number of examples derived from the PyRemote 

test code to demonstrate how its facilities may be used. In order to show both code 

and results, the Python interpreter's interactive mode was used. Lines in the ex

amples indented with » > or . . . are code entered into the interpreter; lines not so 

prefixed are results printed to the standard output. 

We do not show server code; the server side of these transactions consists 

solely of launching a server thread and publishing an entry object. 

4.1.1 Example 1: Remote calls 

A client connects to a server and (in the current, ad-hoc system) receives an ad

vertised object. We may then perform operations on it as though it were a regular 

Python object, including type lookup, member listings, and method calls; see sec-
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tion 4.4. Although the object appears in every respect identical to local object, the 

i s p r o x y O function is provided to identify proxies. 

It is even possible to modify the type of the remote object. 

List ing 4.1: PyRemote example 1: Remote calls 

>>> import pyremote 

» > # Obtain a remote object proxy: 

>>> remote.ob = pyremote.connect() 

>>> # Inspect the proxy: 

... dir(remote.ob) 

['__add__', ' ..class— ' , ' —delattr__ ', ' __dict__ '__doc—', ' __getattribute__ ', 

'_Jiash__', ' __init__ ' , '__module__', '__new__', ' __reduce__ ' , ' __reduce_ex__ ', 

' __repr._ ', ' __setattr„ ' , ' __str__ ' , ' __weakref__', 'anotherJbo', 'class_name', 

' dict_str ' , ' dir_str ' , ' foo-class ' , 'frobble', 'named-foo', 'someJist ', ' ugly-class ', 

'x '] 

>>> type(remote_ob) 

<class 'testclass .Foo'> 

>>> isproxy(remote.ob) 

True 

>>> # Remote method call: 

... remote_ob.frobble() 

-14 

>>> # We may modify the remote type: 

... type(remote-ob).frobble = lambda self: self.x 

>>> remote-ob.x = 22 

>>> remote_ob.frobble() 

22 
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4.1.2 Example 2: Object mobili ty 

Given a remote object, we may request the real object by means of the new function 

r e a l ( ) , wherein the object is moved to the local peer; see sections 4.2 and 4.3. This 

is a 'soft request'; if the object is immovable, it wi l l return a proxy object (the 

argument). Note that at present, this only works for objects in certain namespaces 

(see section 5.1.3). 

List ing 4.2: PyRemote example 2: Object mobility 

>>> import pyremote 

>>> remote-ob = pyremote.connectQ 

>>> local.ob = real(remote_ob.another_foo()) 

>>> isproxy(locaLob) 

False 

>>> type(locaLob) 

<class '.Foo'> 

» > # Note (above) thai although we have copied the class, it is now a member of no 

... # module, since the module was remote and is not copied. 

> » local_ob.frobble() 

-14 

4.1.3 Example 3: Object consistency 

If a type is distributed over multiple machines, as it must be when real objects 

are copied, it should be kept synchronised. PyRemote does this, although it is a 

broadcast system that does not guarantee absolute consistency (there are no strict 

transactional semantics). 
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List ing 4.3: PyRemote example 3: Object mobility 

>>> import pyremote 

>>> remote.ob = pyremote.connect() 

>>> # We. obtain a purely local copy with the same type 

... locaLob = real(remote_ob.another_foo()) 

>>> type(local_ob).fruble = lambda self: 2 

>>> remote_ob.fruble() 

2 

>>> type(local_ob).fruble = lambda self: 1 

>>> remote.ub.frubleQ 

1 

4.2 Copying objects 

Copying objects is simple and, in general, achieved by using Python's built- in func

tionality through such tools as the p i c k l e and marshal modules, p i c k l e [12] is the 

primary tool used by Python programmers for marshalling and serialisation; it uses 

an extremely simple stack-based language to encode objects in a portable format 

suitable for transmission, and can handle quite arbitrary (though not all) objects 

as well as recursive structures. Copying is therefore—as far as implementation is 

concerned—a fairly tr iv ia l issue. 

The main exception to this rule is the copying of types, which cannot nor

mally be either 'p ick led ' 1 or 'marshalled'; however, it is not generally difficult to 

serialise and transfer their components (class name, methods, and so forth). A l -

x W h e n the Python pickle module encounters a type, it inserts a reference by fully 
qualified name. T o 'unpickle' it, therefore, it imports it, requiring the module where the 
type is defined to be already present. Th i s is a space efficient way of serialising objects with 
known types, but provides no facility for type transmission. 
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though intrinsic facilities do not exist to do this, the marshal module is capable of 

marshalling Python bytecode, including the code objects representing the bytecode 

of functions. 

Bu i l t - in types, of course, do not need to be copied (and in fact never are 

copied), as they exist on each peer in a PyRemote system, and share the same 

static identifier. Extension modules (not part of the standard library) implemented 

in C (or another compiled language, such as C++) present a special problem. If 

they are present on both nodes involved in a copy operation, they can be looked 

up and imported by name—this is done automatically. However, if only one of the 

nodes has a copy of the extension module, the copy operation wi l l fail. It is not 

possible, in the general case, to copy binary modules from one host to another. (We 

do not assume that peers in a system are in any way homogenous, save in running 

compatible Python/PyRemote interpreter versions.) 

We shall discuss further limitations of this system in Section 6.1.2. 

4.2.1 Immutable objects 

Immutable objects present a special case: Although Python is highly dynamic, there 

are some built- in types whose objects cannot in any way be modified. These include 

arithmetic and Boolean types, tuples (although tuple items can be modified), and 

strings. Since they cannot be modified, it is semantically equivalent to hold a proxy 

to a remote i n t object and to hold a local copy with the same 'unique' identifier. 

Another set of objects considered immutable are built- in types, which must 

be present at both peers. (Strictly speaking, it is necessary that the type type exist 

and be functionally equivalent; proxy types cannot be constructed without using 

type as a base type. To simplify and streamline the bootstrap process, we assume 
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that peers in a PyRemote system wi l l have compatible versions of all the built- in 

types.) 

4.3 Moving objects 

To move an object, it must be copied to the destination and deleted from the source. 

Copying is described in Section 4.2; move operations use the same mechanism. The 

deletion poses new challenges in terms of the implementation, because CPy thon 

was not originally designed with this in mind. In particular, CPython object refer

ences are simple pointers and may be held by references in dictionaries representing 

variable mappings as well as internal structures and functions, there is no tr iv ia l 

mechanism to trace them. This is unlike languages such as Distributed Smalltalk, 

which has an object indirection table (although not originally for the purpose of 

mobility), allowing the mobility system to simply modify this indirection entry to 

point to a proxy instead of a real object [3]. 

This problem should not be under-emphasised, nor its impact on the imple

mentation underestimated. In languages designed for object distribution, such as 

Emerald, object references may be made globally unique, and probably should be 

made so [2]. CPython, on the other hand, is designed to work within a single address 

space. It was therefore necessary to add to every object a globally unique identifier. 

However, this identifier cannot be used for local object lookups: Both in terms of 

performance and implementation effort, the consequences would be disastrous. The 

version 2.4.3 source code of the CPy thon interpreter contains 20,035 mentions of 

PyObject pointers (quite apart from pointers to specific types of objects!). How

ever, the vast majority of objects on a given node wi l l never be addressed by another 

node. Only those objects that are actually used in a 'distributed manner '—that is, 
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those which are sent as proxies, sent as copies, or distributed to other machines— 

truly need more sophisticated references. (Then, of course, the pointer value is no 

longer sufficient as an identifier as two different objects in different address spaces 

may have the same memory address.) 

The approach taken to the object-move problem is fairly straightforward: 

PyRemote attempts to replace any 'external ' references to an object—that is, ref

erences not held by PyRemote internal structures—by references to a proxy. If all 

external references can be resolved, the object is considered 'mobile ' and is moved; 

if some references remain unresolved, then the object is considered 'immovable' and 

the request to move it is refused. 

In searching for references to the object, there are various locations to con

sider (see Section 3.2 on name resolution in Python). Each module currently loaded 

has a dictionary mapping strings (identifiers) to Python objects. The dictionaries 

of al l loaded modules may thus be searched (linearly) for keys corresponding to the 

target object, and all such references can be replaced. Similarly, we may scan the 

dictionaries of objects (and type objects) containing their attributes, and the dic

tionaries of closure objects belonging to active functions and methods. See Section 

5.1.3 for a discussion on the possible policies. 

4.4 Proxies 

When a host A operates on some object o that is not loca l—that is, it resides wholly 

on some remote node B and is not copied to A—it is represented on A by a proxy 

object p0, whose task is to forward any requests made of it to its 'target' object o. 

This structure is similar to classical remote procedure call implementations—indeed, 

the basic idea of the structure dates back to at least the 1980's [13]. The primary 
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concern in the design of the proxy objects of the PyRemote project was to achieve 

transparency—as much as possible, it should not be (and is not) visible to a user 

whether an object is a local, ' real ' object or a proxy to a remote object. Not only 

are al l requests (attribute lookups, method calls, et cetera) forwarded to the target; 

an object o of type T is logically considered to have the exact same type as the 

proxy Po referring to o. A new built- in function, i s p r o x y O , is made available to 

distinguish proxies from 'real ' objects. 

4.4.1 Client-side proxies 

The basic mechanism of implementing proxies in CPython is relatively straightfor

ward in principle, if not in detail. Every object contains a reference to its type 

structure, as described in Section 3.1.2. The type object tracks built- in operations 

by function pointers, and functions that operate on generic PyObject pointers do 

so by performing function pointer lookups. 

PyRemote works by effectively intercepting these lookups. In p r inc ip le— 

an idealised implementation, such as might have been used in a language designed 

from scratch—a proxy object would simply refer to a generic Proxy type. The 

generic operation ' s lots ' 2 in this ideal class contain pointers to proxy functions, 

which marshal the arguments and send them to the appropriate peer, which would 

unmarshal them and, v ia a generic object stub function, dispatch them to the real 

object. The results may then be marshalled and returned to the proxy. 

If a remote invocation causes an exception to be thrown, this too should be 

intercepted, marshalled, and re-raised on the caller side. (That is, if p0 on host A 

2 We here use the word 'slots' in a rather generic way; this is not to be confused with the 
Python concept of slots for a fixed set of user-defined variables, saving space by using a fixed-
size __slots_- object member rather than a variable-sized dictionary member, —d iet (See 
http://docs.python.org/ref/slots.html.) 
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invokes an operation on o on host B, causing an exception to be raised, the caller 

on host A should be the one to deal wi th i t—no t host B.) The current PyRemote 

implementation does intercept, marshal, and transmit exceptions, although some 

traceback information is lost since the current implementation of p i c k l e does not 

support pickling of t r aceback objects (see Section 6.1.2). 

In reality, because CPython was not designed with remote invocation con

siderations in mind, the implementation is more complex. Type structures do not 

contain only function pointers, but also data, which are specific to types, such as 

the type name. It is therefore necessary to create a proxy type corresponding to 

each real type; because it would be prohibitively (and unnecessarily) expensive to 

do so on interpreter startup (or class creation time), this is done on demand. In 

general, however, these proxy types work much as the ideal Proxy type outlined 

above; indeed the creation of most of the proxy dispatch functions was automated. 

The difference is strictly the caching of type-specific data. 

PyRemote does, in fact, have an ideal proxy type (PyObjectProxy_Type), 

although no objects of this type are ever created. Instead, it is used as a template 

for specific proxy types. A partial listing of this class is given in List ing 4.4. When 

creating a real proxy type, a new PyTypeObject is allocated, and its fields are copied 

from either PyObjectProxy_Type, for al l forwarding methods, or the concrete type 

(the 'target' of the proxy), for data fields such as the name. PyRemote is thus able 

to create, at runtime, a proxy representation of any type, whether it is implemented 

in a C extension or in Python code. 

Actua l proxy objects (as opposed to proxy type objects) are extremely simple; 

they contain effectively no data (since their task is to forward requests to remote 

locations where the data actually reside). The full layout of a PyObjectProxy object 
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Listing 4.4: The object proxy type 

PyTypeObject PyObjectProxy_.Type = { 
PyObject-HEAD JNIT(&PyType.Type) 
0 , /+ obsize */ 
NULL, /* tp.name; provided by target */ 
sizeof(PyObjectProxy), /* tp.basicsi-ze */ 
0, / * tpJtemsize */ 
proxy_tp_dealloc, /* tp-.deall.oc */ 
NULL, /* lpjpri.nl (deprecated); unsupported */ 
proxy_tp_getattr, /* tp^getattr .+•/ 
proxy_tp_setattr , /* tpsetattr */ 

}; 

Listing 4.5: The proxy object 

typedef struct { 
PyObjectJfEAD; 
PyWeakReference *real_object; 

} PyObject Proxy; 

is given in List ing 4.5. For efficiency reasons, and because there are circumstances 

under which proxies may exist to objects residing on the local machine, proxy objects 

contain weak references3 to targets residing in the same address space; these allow 

much more efficient lookup of such objects, while adding only a negligible cost 

(compared to the I PC mechanism) to remote lookups. 

4.4.2 Server-side object stubs 

The server side of remote invocations is considerably simpler. Conceptually, we 

might envision an object stub for each and every type for which a proxy type ex

ists; much as we have a generic PyObjectProxy_Type, we might have a generic 

3Weak references are objects that look like ordinary references, but do not add to an 
object's reference count. If the target disappears, an attempt to use the weak reference will 
raise an exception. Weak reference objects can also be queried efficiently; PyRemote will 
not raise and catch exceptions every time a remote proxy is referenced. 
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Listing 4.6: Server side dispatch 

PyObject *server_dispatch(PyObject *remote.tuple) { 

switch (opcode) { 
case MP.LENGTH: 

if(PyRemote_ExtractArgs(remote_tuple, "O" , &u) != 0) 
goto error; 

if (u—>is_proxy) 
goto not Jiere; 

x = PyMapping-Length(u); 
res ='PyRemote.BuildArgs(opcode | REMOTE-RESPONSE, " i " , x); 
break; 

case ... 
... break; 

error: 
default: 

Py-XDECREF(res); 
res = N U L L ; 
i f (!PyErr_Occurred()) 

PyErr_Format(PyExc-RuntimeError, "Object stub error"); 
break; 

i f (PyErr.Occurred ()) 
res = bundle_exception(); 

return res; 

} 

PyObjectStub.Type, with an instance for each remotely referenced object. It turns 

out, however, that this is not necessary, since al l lookups on the conceptual server 

stubs are function lookups rather than data lookups (as data lookups cannot be for

warded and must therefore be handled by mirroring data in each proxy). A single 

se r ve r_d i spa tch ( ) function can therefore unmarshal requests and dispatch them 

through the appropriate function. List ing 4.6 presents a snippet of the dispatch 

code. 
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4.4.3 Method lookup and proxies 

Due to the nature of Python's method resolution order (see Section 3.2.1) and 

method lookup process, it is frequently the case that method lookups require ac

cess not only to an object's dictionary, but also to its type object's dictionary, and 

potentially a number of supertype dictionaries. This could easily lead to very large 

numbers of lookups, which might get prohibitively expensive if each lookup involved 

a pair of remote messages. However, each proxy contains a shallow copy of its tar

get's dictionary. (Dictionary keys are always copied; this is never problematic since 

Python requires dictionary keys to be immutable objects, and PyRemote already 

copies immutable objects. The dictionary values are copied by proxy.) As such, 

although invoking a method wi l l cause remote messages to be sent, querying an 

object for the method proxy is a purely local operation. 

4.5 Augmentation of Python objects 

Although PyRemote mainly added to CPython rather than modifying it, some mod

ifications were necessary. One of the more significant is that the PyObject -HEAD 

macro has been modified to contain information necessary for remote objects (see 

Listing 4.7): A flag ( is_proxy) was added, as well as a field for the globally unique 

identifier (GUID) necessary since an address unique within a single address spaces 

may clash with an address on another node. This increases the size of the basic 

Python object by s i z e o f ( int)+N for an AT-byte GUID. The current implementa

tion uses a 128-bit (16-byte) GUID. 

Another (more minor) modification was a conditional dispatch entered into 

the attribute accessor and mutator functions of PyTypeObject, the type of types: 
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Listing 4.7: New PyObjectJffiAD macro 

#defhie PyObject_HEAD \ 
int ob-i'efcnt; \ 
struct .typeobject *ob.type; \ 
PyGuid obJd; \ 
int is.proxy; 

In the general case, the type of a proxy is itself a special proxy type, but this 

regression must terminate, and the type of the special proxy type itself is simply 

type, represented internally by PyTypeObject; so although there exists a proxy for 

this type, its functions must be invoked through regular type operations. 

4.6 Type and object consistency 

A crucial problem in distributed systems in general, and one of the issues which 

this project aimed to explore, is the notion of consistency when objects are either 

copy-replicated or distributed by proxies: What changes made on one node need be 

reflected on other nodes, and to what degree is this achievable? 

The problem is particularly poignant in Python, due to the extremely dy

namic semantics of the language. Unlike many other programming languages, 

Python allows the creation of types at runtime; furthermore (and more problem

atically), types are first-class, mutable objects; finally, object type assignments are 

mutable—to say that object o has type t means only that o's type reference points to 

t\ it may be reassigned to some other type t!. Thus, at runtime, an object may have 

its type changed. For types implemented in Python, the type of an object does not 

affect its layout (all variables are stored by name in the object's __dict__ member). 

(See List ing 4.8 for an example.) Since, in general, an object's attributes are simply 

stored in its dictionary (this applies to type objects as well as to other objects), 
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it is similarly the case that classes may acquire methods (and class attributes) at 

runtime, and even type names may change. 

For proxies, the solution is quite straightforward: The generic mechanism for 

modifying an object is a special method called __ se ta t t r i bu te__ ( ) , which the proxy 

mechanism already intercepts. (Additionally, data members such as __dict__, the 

member dictionary, may be modified; however, these can already be represented as 

dictionary proxies. For regular objects, the simple process outlined here is sufficient. 

The difficulty arises, once again, wi th type objects; once again, because only method 

calls, not data accesses, are forwarded. When the server modifies the real type 

object, the information cached by proxies becomes stale. A type object that is 

updated should send an update message to all of its proxies (or broadcast an update 

message, if it does not know where they are). The node requesting the change receives 

update information in the reply. See Section 5.1.2 for a further discussion of this 

subject. 

4.6.1 Real object consistency 

Besides proxies, we also need to ensure that types are kept consistent across the 

system, lest we encounter unexpected behaviour when moving or copying an object 

from one host to another where the type exists on both nodes, but is not equivalent. 

It would perhaps be desirable to also be able to keep objects consistent—in other 

words, to be able to distribute an object, in order to make it faster to access and 

more resilient to fai lure—but this would be very difficult to efficiently implement; 

it is also our opinion that this is much less important than maintaining type con

sistency. It is particularly important that types be kept consistent because they 

may be copied implicit ly by PyRemote support routines (for example, if a node A 
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Listing 4.8: Type reassignment 
class Foo(object): 

d e f init ( self): 

self . x = 5 
d e f foo( self): 

r e t u r n self.x * self .x 

class Bar(object): 
d e f __init ( self): 

sel f .x = 'hello' 
d e f foo( self): 

r e t u r n self.x 

f = FooQ # x = 5, foo() — > x * x 
f . fooQ # returns 25 
f. _class__ = B a r # fooQ — > x 
f . fooQ # returns 5 

b = Bar() # x = 'hello ', fooQ - > x 
b.foo() # returns 'hello ' 
b. __class._ = Foo # foof) — > x * x 
b.fooQ # TypeError: can't multiply sequence by non—int 

requests a real object o from another node B to replace a proxy pa, its type is copied 

from B to A, invisibly to the user). Obviously, it would be highly undesirable for 

implicit operations that the programmer may not be aware of to risk introducing 

inconsistencies. 

PyRemote's method to cope with this is to mark all type objects that are 

distributed across two or more nodes as being synchronised. Whenever a synchro

nised object's attributes are modified (through the __getattribute__ method), the 

update is pushed onto the network in a message that is broadcast to all the peers 

that the current node are aware of. (Since the current PyRemote implementation 

uses TCP/IP v4, it is not a true broadcast message, but rather an asynchronous 

message sent iteratively over each peer connection.) 
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Chapter 5 

Results and evaluation 

The PyRemote system offers most of the features it was envisioned to have. P r i 

marily, it provides object sharing and remote method invocation through the use 

of proxy objects, in a manner entirely transparent to the programmer. Beyond in i 

tialising the system (with a single call) and connecting to a remote peer to obtain a 

reference to a remote object, a programmer does not need to use any non-standard 

syntax, semantics, or function calls (although functions to provide additional, op

tional functionality, such as requesting references to real object s— 'pu l l ' requests— 

are provided). W i t h very few exceptions, primarily ones regarding raw memory 

access (see Section 6.1.4), arbitrary operations are permitted on arbitrary types. 

Some objects naturally cannot be moved—such as handles to open resources, e.g., 

files and sockets—but they can nevertheless be accessed remotely, by proxy. When 

proxies to objects of unfamiliar types are requested, the necessary type information 

is conveyed automatically and transparently. 
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5.1 Design choices and tradeoffs 

During the implementation of the PyRemote system, some questions arose to which 

the proper answers at present are unclear and merit further research. In this section 

we shall discuss a few important policies that have been implemented, but are not 

necessarily the on ly—and not obviously the correct—choices. 

5.1.1 Immutable types 

As noted in Section 4.2.1, PyRemote never creates proxies for certain immutable 

types, as they can be freely copied. One potential drawback of th i s—or at least of 

applying it as ' indiscriminately ' as it is presently applied—is that if such objects 

are merely passed back and forth, large amounts of data may be copied. It might 

be prudent to perform a check and stil l present proxy objects for objects such as 

very large strings, which might represent entire text files. This is not currently done 

in PyRemote: It would add considerable extra complexity in that there are many 

operations on string objects that require them to be locally present, and it is not 

clear how the implementation would know when it is necessary to fetch large strings, 

and when it would be appropriate to leave them where they are. 

5.1.2 Proxy consistency policies 

It is not exactly clear how the proxy type data cache update should take place, and 

here is an important tradeoff between efficiency and strict semantic coherence. In 

order to guarantee total coherence—'Once the type object is considered updated, 

it is updated everywhere'—we would need a transactional system where, at the 

very least, al l the stale caches are marked stale before the operation takes place 

and returns an A C K . PyRemote does not implement such a transactional system, 
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although it would be interesting to investigate how much effort it would take to 

create it, and to see exactly what the tradeoffs would be. This sounds prohibitively 

expensive, and indeed we do not expect that a distributed system where every 

remote message obeys transactional semantics would be efficient, it should be kept 

in mind that this problem in PyRemote exists only for type objects, and although 

they present great flexibility as well as the greater challenge in terms of coherence, we 

may well expect that messages that modify type objects represent a very small subset 

of the messages sent during the run of a typical Python program. A transactional 

system, although expensive, might not turn out to be prohibitively expensive. 

5.1.3 Moving objects 

As discussed in Section 4.3, moving an object is implemented with the usual copy 

operation and detaching the object from plain object references by replacing al l 

such references with references to a proxy object in lookup dictionaries where it is 

present. We may envision a number of policies for this process. For example, we 

might search only the module corresponding to the script with which the Python 

interpreter is invoked (__main__); we might search all 'user' modules (as opposed to 

modules known to correspond to the standard library); we might search all loaded 

modules; or we might choose some intermediate option (e.g. excluding built- in 

modules 1). Other places where references may be held include object dictionaries 

(of attributes: 'member variables') and closures of function (and method) objects. 

The current implementation replaces references only in __main__2, and does 

1 ' B u i l t - i n ' modules are modules that are implemented in C ; they are generally fairly 
'immutable' and we do not expect to be able to perform the same kind of substitutions in 
these as in pure Python modules. 

2 Actua l ly , the current implementation, for testing purposes only, attempts to replace 
references also in a module named t e s t c l a s s , if present and loaded. 
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not look at any classes or objects , b u t this shou ld be cons idered a n in termediate 

state of deve lopment ra ther t h a n a f inal so lu t ion . W e expect that it is p r o b a b l y n o t 

the o p t i m a l so lu t ion —r at h e r , we expect that rep lac ing references i n the __main__ 

m o d u l e w o u l d be wise, at the very least, a n d quite poss ib ly a l l 'user' modules . 

T o p e r f o r m further searches a n d replacements w o u l d be s t ra ight forward a n d 

s imple , a l t h o u g h it is not done at the present state of deve lopment . T h e ques t ion is 

not whether or how this could be done, b u t i / a n d to what degree it should be done . A 

trade-off must be found between efficiency (bo th in terms of work o n the interpreter , 

a n d i n r u n t i m e per formance , as a l l of the s tructures m e n t i o n e d mus t be searched 

l inearly) a n d completeness . O n one extreme, no objects might ever be m o v e d at all; 

o n the other, every s t ruc ture capable of h o l d i n g a reference must be examined; the 

o p t i m a l a p p r o a c h lies obv ious ly somewhere i n between, b u t it is not clear where. 

T o f ind this genera l o p t i m u m requires prof i l ing of real ist ic appl i ca t ions m a k i n g use 

of the P y R e m o t e f r a m e w o r k — a n d of course, no such appl icat ions present ly exist. 

5.1.4 G U I D s 

T h e present i m p l e m e n t a t i o n of G U I D s is qui te p r i m i t i v e a n d sui table on ly for smal l -

scale test ing; a 128-byte f ingerprint is generated s i m p l y b y repeated ly ca l l ing the 

sy s t em r a n d ( ) funct ion . A l t h o u g h this suffices for the current i m p l e m e n t a t i o n , de

p l o y m e n t o n a larger sys tem w o u l d need a m o r e intell igent f ingerprint that prov ides 

(at the least) a reasonably s t rong probabi l i s t i c guarantee that G U I D s wi l l t r u l y be 

un ique . 

M o r e prob lemat ica l ly , a G U I D is generated every time a n object is created. 

T h i s is a very wasteful p o l i c y : T h e identifier is on ly necessary w h e n a n object is 

invo lved i n mobi l i ty . De ferred G U I D generat ion has been i m p l e m e n t e d , b u t e n a b l i n g 
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it causes an extremely obscure bug, possibly caused by a primitive copy within the 

interpreter resulting in multiple identical objects with the same 'nu l l ' identifier. As 

the system now stands, it would be expensive for a system that allocates large 

numbers of small objects. 

5.2 Local performance 

A series of tests were run to examine the performance of the modified interpreter 

on code that does not make use of any distributed features. We consider it essential 

that the modifications thus made not incur prohibitive costs to normal Python 

programs. Ideally, no additional cost should be incurred; however, we may expect 

that a project of this nature (and with only one programmer) should incur some 

costs on a first attempt. Please note that no major efforts have yet been made to 

optimise the system. 

The system used to run the tests was an Athlon 64 3000+ (2.00 GHz, 512 kB 

cache) with 1 G B of R A M , running Gentoo L inux (kernel version 2.6.21). The 

baseline Python interpreter used for comparison is the version that the PyRemote 

code was based on, version 2.4.3. A l l interpreters were compiled with gcc version 

4.1.2. Unless otherwise specified, compilation options were left at the defaults. 

The original intent was to run, at the very least, tests using two well-known 

Python benchmarking suites, PyBench and ParrotBench, as well as Pyrex as an ex

ample of a real-world application. Unfortunately, ParrotBench, specifically designed 

to be extremely demanding in terms of language compliance and used as much as 

a compliance test as a performance measure, failed to run using our modified in

terpreter due to an unexpected hash value. It is currently unclear whether this 

represents an invalid value, or an unexpected value that ParrotBench simply does 
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R u n 1 R u n 2 R u n 3 R u n 4 R u n 5 A v e r a g e 
P y R e m o t e 3604 3625 3621 3626 3605 3616 
C P y t h o n 2.4.3 3285 3275 3300 3239 3277 3275 

Table 5.1: PyBench results (times in milliseconds) 

not accommodate. 

5.2.1 PyBench 

PyBench is a benchmark suite for Python created by eGenix [14]. It performs a 

wide variety of tests. Each invocation of PyBench actually runs ten iterations of the 

entire test suite, producing detailed information as well as an over-all average. Scores 

here represent averages, and our tests represent entire sets of iterations. Table 5.1 

summarises the tests. On average, PyRemote is 10% slower than the stock CPy thon 

interpreter. It is not entirely clear exactly why the penalty is so great, since the 

changes to the interpreter were very smal l—note that no distributed computation 

was performed in this benchmark suite. 

In order to trace the slowdown, the PyRemote interpreter running pybench 

was analysed using the gprof profiling tool included with the gcc compiler suite [15]. 

In section 5.1.4, we expressed a concern that the lack of deferred GU ID initialisation 

would slow down execution. We therefore examined the profile, extracting the data 

for initialisation and copying of GUIDs. As seen in Table 5.2, functions responsible 

for initialising and copying GUIDs accounted for about 1.26% of the program's 

total running time. This is not a very large number, but the cost of PyGuid_Make () 

is incurred at object creation time, and a test or application that spends more 

time creating small objects wi l l therefore incur a proportionally higher cost. It is a 

problem that should be el iminated—but it does not account for the entire slowdown. 
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Function % running time Seconds # calls 
P y G u i d _ M a k e 0.97 0.30 83,111,266 

P y G u i d _ C o p y 0.29 0.09 N o d a t a 

P y G u i d _ H a s h 0.00 0.00 2231 

T a b l e 5.2: C o s t of P y G u i d funct ions 

L i s t i n g 5.1: P y r e x test ing code 

#!/bin/sh 

for i in 1 2 3 4 5 
do 

# Ran 10 loops, repeat the whole exercise 5 times 
./python Lib/timeit.py —n 10 —r 5 \ 

—s 'from Pyrex.Compiler.Main import compile' \ 
' for x in xrange(lOO):' \ 
' compile("../pyrex—demos/spam.pyx")' \ 
' compile(" ../pyrex—demos/numeric.demo.pyx")' \ 
' compile(" ../pyrex—demos/primes.pyx")' 

done 

B r a n c h i n g was a d d e d to some b u i l t - i n t y p e operat ions (see Sec t ion 4.6), b u t prof i l ing 

i n f o r m a t i o n does not indicate that any significant t ime was spent i n these funct ions . 

5.2.2 Pyrex 

P y r e x is a p r o g r a m m i n g language created to a i d the deve lopment of P y t h o n m o d 

ules, a l lowing a m i x t u r e of P y t h o n classes w i t h C d a t a types a n d s tructures , f inal ly 

c o m p i l e d into C extens ion module s w i t h no b u r d e n o n the p r o g r a m m e r to exp l i c i t ly 

create glue code. In our tests, P y r e x was used to c o m p i l e the b u n d l e d example 

p r o g r a m s : n u m e r i c _ d e m o . p y x , s p a m . p y x , a n d p r i m e s . p y x . A s these p r o g r a m s are 

a l l v e r y smal l , each r u n of the test compi les each p r o g r a m 100 t imes. 

T i m i n g was p e r f o r m e d us ing the s t a n d a r d P y t h o n m o d u l e , t i m e i t , w h i c h 

a t t empts to use the best t i m i n g facilities avai lable o n a n y g iven target p l a t f o r m [16]. 
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R u n 1 R u n 2 R u n 3 R u n 4 R u n 5 A v e r a g e 
P y R e m o t e 4.49 4.48 4.52 4.50 4.51 4.50 
C P y t h o n 2.4.3 7.63 7.58 7.61 7.63 7.59 7.60 

Table 5.3: Pyrex timings (seconds per t i m e i t loop) 

The script presented in List ing 5.1 was used to invoke the tests. Results are given 

in Table 5.3. Curiously, PyRemote actually appears to run significantly faster than 

the stock Python interpreter—by as much as 69%! Since no effort has been made 

to optimise the interpreter, and since there is code in PyRemote that adds more 

code to be executed (PyGuid function calls, etc.; see Section 5.2.1), it seems unlikely 

that this reflects a true performance increase. If it represents an error in the tests, 

it is unclear wherein this error consists: Identical output is generated by the Pyrex 

compiler regardless of which interpreter is used to run it, and the timings obtained 

by the t i m e i t module are consistent with those obtained using the standard U N I X 

timing utility, t ime. 

Although we cannot explain these numerical results, they are presented for 

completeness and as a curiosity. We recommend that the PyBench results be viewed 

as representative of the true cost of PyRemote—and a sign that optimisation work 

should be done. 

5.3 Distr ibuted performance 

To test the overhead of PyRemote alone, we ran a distributed system of two nodes 

on the same computer—the results thus include the overhead of the T C P / I P stack, 

but not network transmission. The test program called a function of a remote object 

100 times; the function did nothing but return an integer (which was returned by 
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copy; see Section 4.2.1). The cost of evaluating the function call itself was negligible 

(see Table 5.4). 

The distributed test system was analysed using the p r o f i l e module of the 

Python standard library [16]. This particular profiler measures only time spent in 

Python code, not the lower-level C libraries; total C P U time in this test run (slowed 

down by the profiler) was measured as 75.58 seconds. The bottleneck is the client; 

the server spent the vast majority of its time waiting for user input (the test server 

is terminated by a key press). On the client side, although a few percent of the time 

was spent in networking code, output formatting, etc., the overwhelmingly largest 

culprits were the pickling code («19.6 seconds; 26%) and the a c q u i r e ( ) method 

of lock objects («12.9 seconds; 17%). The data are very approximate, and we do 

not wish to cite detailed data and give the impression of more confidence in these 

numbers, but should be taken as an indication of problem areas. 

It should be noted that Python actually contains two pickling modules: 

p i c k l e , which is implemented purely in Python, and c P i c k l e , which is imple

mented in C and, although somewhat less customiseable, is a very great deal more 

efficient—it is up to 1,000 times faster than the Python implementation [16]. Orig

inally, the PyRemote implementation used the Python p i c k l e module for ease of 

implementation, as some (very minor) changes had to be made; we expect that the 

system is more efficient using the c P i c k l e module. It turns out, however, that the 

variance of the timings is extremely high, rendering this comparison useless; prob

ably due to non-deterministic interaction of locks and threads (see Table 5.4). We 

do not show average values for the remote-call runs; the variance is too great for 

mean values to be meaningful. We may say with some confidence that the cost of 

a remote invocation—apart from network traffic, which is unpredictable—is on the 
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Run 1 Run 2 Run 3 Run 4 Run 5 A v e r a g e 
Remote ( p i c k l e ) 
Remote ( c P i c k l e ) 
Regular call 

138 
533 

0.00845 

546 
485 

0.00900 

506 
532 

0.00829 

155 
128 

0.00823 

174 
405 

0.00826 

N/A 
N/A 

0.00845 

Table 5.4: Distributed performance (seconds per 10,000 calls) 

order of 35 milliseconds (±25 milliseconds, or more). 

Running gprof to find the C profile of the same code reveals that almost 10% 

of the program's time was spent in a dictionary lookup method l o o k d i c t _ s t r i n g ( ) , 

mostly when called from G e n e r i c G e t A t t r O . This is not necessarily indicative of 

any problems; rather we should expect attribute lookup to consume a great deal 

of time, since the test involves the repeated lookup and call of a function which 

itself involves very l ittle processing. (The single most 'expensive' function was the 

interpreter function PyEval_EvalFrame ( ) , which evaluates a stack frame object; it 

accounted for some 34% of the runtime. It may be worth noting that it occupied 

over 54% of the time in the PyBench test.) 

We conclude that the PyRemote source code would benefit from retooling in 

terms of the locking scheme. Also, the data marshalling, even apart from switching 

to a version of the more efficient c P i c k l e module, is unoptimised and can probably 

be made much more efficient. The locking scheme, however, is likely to be the 

greater bottleneck in more complex scenarios where more threads compete for locks 

on resources related to greater numbers of remote peers. 
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Chapter 6 

Conclus ion and discussion 

6.1 The challenge of CPython 

The PyRemote project aspired to add capabilities to the Python programming lan

guage. This has obvious benefits—it harnesses the power of an existing and well-

tested programming language with a powerful standard library, many third-party 

libraries, existing applications, and developers. However, it also creates many chal

lenges in that the pre-existing system was in no way designed to support the type 

of modifications that were necessary, and in some cases was not easily amenable to 

these changes. 

Although Python, as a programming language, is simple, consistent, and 

employs an explicit policy that "There should be one, and preferably only one, 

obvious way of doing something" 1 , CPy thon is often rather confusing 'under the 

hood'; so for instance there are several ways in which a method call may be resolved, 

and several places where something so basic as an object attribute may be looked 

'From The Zen of Python by Tim Peters; see http://www.python.org/doc/Humor. 
html#zen. 

44 

http://www.python.org/doc/Humor


up . In the s implest case, m a n y at tr ibutes m a y be he ld either i n 'slots' i n the type 

object or i n the object 's a t t r ibute d ic t ionary; the m e t h o d ca l l reso lut ion is s t i l l more 

complex . 

6.1.1 Type equivalence 

S o m e of the more ins idious bugs that were uncovered in the course of i m p l e m e n t 

ing the P y R e m o t e projec t were re lated to the n o t i o n of type equivalence. Inter

nal ly , b u i l t - i n types i n C P y t h o n t e n d to have two ut i l i ty macros for efficient type 

checking, e.g., for the d i e t t y p e (PyDictObject), PyDict_Check(o) to check if 

a n object o is a d ic t ionary , a n d PyDict_CheckExact (o) to check if a n object o 

has exactly the type d i e t . T h e former accepts a subclass; the latter does not . 

A l t h o u g h we consider a P y R e m o t e p r o x y type logically equivalent to its target 

type , PyDict_CheckExact() looks for a reference to the precise C s tructure rep

resent ing the type object . T h e consequence of this is that a type that passes 

PyDict_CheckExact () m a y be safely a s sumed to have the exact m e m o r y layout a n d 

d a t a m e m b e r s specified b y PyDictObject. A t y p e that on ly passes PyDict_Check(), 

therefore, s h o u l d have the m e t h o d s specified b y the t y p e object , b u t m a y not have 

the exact same m e m o r y layout . 

U n f o r t u n a t e l y , some of the code i n the d i c t o b j e c t m o d u l e as sumed pre

cisely this , a n d therefore fai led ( in unexpec ted ways) w h e n faced w i t h d i c t i o n a r y 

proxies (which obv ious ly do not have the same m e m o r y layout as a c t u a l d ict io

n a r y objects ! )—that is, PyDict_Check() was used where PyDict_CheckExact () was 

needed. Several such bugs were found , a n d we suspect that there m a y be more that 

P y R e m o t e tests have not uncovered (and that P y R e m o t e m a y be ent irely unaffected 

b y ) . S ince the code chiefly deals w i t h in terna l s tructures , w h i c h i n the n o r m a l course 

45 



of execution wi l l never be anything but precisely d i e t objects, it is not likely that 

they wi l l be encountered except by modification of the sort we have done. 2 

Errors of this type, whether caused—as in this example—by bugs in the 

CPython interpreter, or—as in many, many cases—by programming error in writing 

PyRemote due to an incomplete or faulty understanding of the CPython codebase 

caused the implementation to consume much more time than initial ly estimated. 

6.1.2 Pickling limitations 

PyRemote uses Python's existing object marshalling facilities, the p i c k l e and 

marshal modules. Although minor additions were made (e.g., the ability to mar

shal types as described in Section 4.2), there are certain objects that are presently 

'unpicklable'. This is here considered to be more in the nature of a l imitation of the 

library than of PyRemote: The solution is deferred to improving the p i c k l e l ibrary 

rather than working around it. 

6.1.3 Old and new classes 

For historical reasons, the Python language actually supports two types of classes 

and instances. While largely transparent to users, the underlying implementa

tions in CPython are completely different. The PyRemote implementation does 

not presently support the use of "old-style" classes. Although it could be done in 

much the same way as the proxy system for "new-style" classes, it was deemed an 

irrelevant duplication of effort for the purposes of this project; furthermore, the use 

in Python of "old-style" classes is discouraged. In future revisions of CPython, they 

2 W e plan to examine the PyDictObject code for instances of this problem and submit 
patches when more time is available. It would probably not be relevant to do so based on 
the existing PyRemote code, however, as it is based on a C P y t h o n codebase several minor 
versions behind the current one. 
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wi l l be removed. 

6.1.4 Unsupported operations 

Not quite al l 'standard' operations are supported by PyRemote proxies, for the 

simple reason that the arguments cannot be transmitted. Certain entries in the 

type structure's table are functions that expect, as parameters, pointers to raw 

memory, which cannot intelligently be marshalled. Operations not supported by 

PyRemote proxies include the intrinsic t p _ p r i n t ( ) method (which is deprecated 

and should not pose a problem), coercion in numeric types (this also is not so great 

a problem as it may seem, as intrinsic number types are small, immutable objects 

which are always copied and never sent by proxy) and operations on the b u f f e r 

type (whose purpose is precisely to expose object data as raw bytes). 

6.2 Future work 

PyRemote, in its present state, more or less represents a proof of concept and not a 

production ready system. Certain unsupported operations (see Section 6.1.4) should 

be implemented or at the very least handled more gracefully (for example, buffers 

might be copied automatically rather than having operations thereupon refused). 

Garbage collection is not presently implemented for remote objects. Finally, some 

features were left out due to simple lack of time and underestimations of the com

plexity of the implementation task. 

6.2.1 Garbage collection 

The present PyRemote implementation does not perform distributed garbage col

lection. To a certain extent, the problem is 'easy': The Python interpreter performs 
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reference counting (the default implementation uses a reference counting garbage 

collector with cycle detection), and the only thing that prevents an object, once 

proxies to it exist, from being properly garbage collected, is the existance of a refer

ence to the object held by the PyRemote machinery, used to resolve remote requests. 

A garbage collection mechanism, therefore, would 's imply ' need to track the number 

of remote peers that own proxies to the object; once this number reaches 0, unless 

there exist local proxies, the object may be removed from the PyRemote cache, and 

garbage collected if appropriate. However, this requires a proper distributed garbage 

collector to deal intelligently with 'ordinary' problems of the area. This is beyond 

the scope of this thesis. 

Given a distributed garbage collection algorithm, it would probably be fairly 

straightforward to implement distributed garbage collection in PyRemote. The sys

tem already satisfies the local tracking criteria mentioned by Bennett in his design 

of the Distributed Smalltalk garbage collector [3]: Purely local garbage is collected, 

and references to remote objects are stored in a centralised location where a dis

tributed collector can easily look them up. 

6.2.2 Object mobility policies 

For reasons laid out in Section 6.1, the PyRemote implementation does not support 

all the features that were originally planned. One of the more interesting features 

that were left out, inspired by the object mobility paper on Emerald [1], is the no-' 

tion of need or usage pattern based object mobility policies. In effect, the system 

may detect whether an object, invoked remotely, is likely to be used enough (more 

accurately, whether the remote usage is likely to exceed the local usage by a suffi

cient margin) that it would be profitable to move it rather than to create a proxy. 

i 
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This was, then, to be accompanied by a form of 'stickiness' property whereby a 

programmer might request that the object stay put. While this may seem micro-

management, it may be relevant for objects where availability is a crit ical point 

and certain nodes in a network may be known or expected to be more reliable than 

others. 

Unfortunately, there was not enough time to implement this feature, which 

could perhaps substantially improve performance of applications making heavy use 

of remote calls. It would be necessary to implement some limited form of dynamic 

profiling, and a policy to move objects based on these measured parameters. 

Perhaps more useful st i l l is the notion of using profiling (whether wholly dy

namic or cached) to determine which portions of an application execute in isolation 

and so make good candidates for 'shipping off' to other nodes for processing. This 

feature is not in the current version of PyRemote, but the groundwork exists: In 

Python, due to its powerful introspection, and the profiling module present in the 

standard library; and in PyRemote, which can move code objects to remote nodes. 

6.2.3 Transactional consistency semantics 

As mentioned in Section 4.6, it could be interesting to investigate the possibility 

of implementing real transactional semantics for type consistency, rather than the 

more efficient but somewhat ad-hoc approach used in the current implementation. 

6.2.4 Nameserver 

The current PyRemote implementation does not have an elegant way of connecting 

to a remote peer and obtaining a directory of services provided. Indeed, the present 

service is rather ad-hoc in nature, where a server offers an arbitrary (user-specified) 
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object, and clients must connect to the server by IP address and port (although a 

default server port of 10101 is used). A useful addition to the system would be a 

more intelligent interface, and a more flexible encoding of hosts. 

6.3 F ina l thoughts 

It is perhaps in the nature of a thesis of this type that it is even more a learning 

experience of existing systems than it is a production of novel knowledge. When the 

PyRemote project was begun, the CPy thon interpreter was an opaque unknown, 

and the early stages of modification were very much in the nature of t r ia l and 

error, where core features of the interpreter were overlooked or entirely unknown. 

Significant amounts of time (it is tempting to say 'inordinate') were spent (or lost) 

on not only fixing bugs, but refactoring or redesigning the core PyRemote modules 

as interactions between different interpreter components became more clear. 

6.4 Obtain ing the code 

The code shown in examples and used to produce the cited test results was locally 

denoted as revision 215. It may be obtained as a patch set against Python version 

2.4.3. It is a fairly large diff set which includes al l modifications, test code, and 

various generation scripts. (The size of the diff, 37 M i B uncompressed, is rather 

disproportionate to the relatively smaller amount of changes to the code base.) If 

you want to hack on the latest version of PyRemote, a further diff is available 

of revision 243, which is current as of the finalisation of this thesis. This revision 

contains some incomplete work and may not be entirely functional, but in particular 

contains more and more robust consistency code. 
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Python 2.4.3 source code (several download options, checksums listed): 

h t tp ://python.o rg/down load/re leases/2 .4 .3/ 

PyRemote diff, revision 215 against Python 2.4.3 (6.0 M iB ) : 

h t tp : //pe t te rhaggho lm.ne t/py remote/py remote - r 215 -d i f f . t a r . b z2 

md5sum: bc47b0378859e3468cd0516a939e3acb 

PyRemote diff, revision 243 against revision 215 (3.3 M iB ) : 

h t tp ://pet te rhaggho lm.ne t/py remote/py remote - r215_243 -d i f f . t a r .bz2 

md5sum: 514651a78705a979b6f7e6062ecfd06c 
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