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Abstract 

In the never-ending pursuit to enhance user interaction with computer sys

tems, generating useful summaries can be highly beneficial. Summaries can 

provide the analyst with a map of past user behaviour that can aid in predict

ing future user actions. Tasks, such as forwarding an email or publishing and 

updating webpages, are composed of many individual user actions - as such, 

we view each task as a tree with the leaves of the tree representing the goal(s) 

of the task. We present a framework for modeling user actions as Navigation 

Trees and summarizing them into Summary Trees. The Summary Trees can 

be used to help streamline subsequent user action by acting as a guideline to 

semi-automate tasks. Using the concept of coverage and varying the num

ber of attributes considered, we show how the quality of a Summary Tree 

can be adjusted. We also discuss five algorithms that approach summariza

tion differently, compare their advantages and disadvantages, and provide an 

experimental study to empirically examine their individual characteristics. 
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Chapter 1 

Introduction 

As technology continues to advance, the amount of data a user deals with 

grows dramatically. Improvements in technology mean cheaper and larger 

hard drives, and a barrage of new software and files that contribute to a jungle 

of information the user has to navigate through. Even as the size of personal 

desktop-resident data is growing, the amount of remote data reachable by 

the user is also expanding quickly. The continuous growth of the Internet 

and the advent of file-sharing and remote-desktop-connection software yield 

a vast landscape of data available. Directory structure filing (i.e. creating the 

appropriate folders and placing relevant files in them) and browsing can be 

unsatisfactory and frustrating when dealing with such large amounts of data. 

Search tools (for both online and desktop use) aim to aid the user find desired 

data - however, search is only useful when the user remembers some feature 

of the data (e.g. keyword, date of creation/modification, author). Searching 

can be initiated by the user - as in the case of Google and Yahoo search 

engines - or, as in the case of some current research [10, 20], be initiated 

by the computer system. By capturing the current user context (e.g. email 

message) and identifying important features such as keywords and metadata, 

systems can proactively find other data that might be of interest to the user 

[10]. 

1 



Chapter 1. Introduction 

The research presented here purposes to enhance user interaction with 

a computer system by analyzing and summarizing past user actions. B y 

looking at past behaviour, we can cut the search space by predicting what 

data the user might be interested in. B y understanding the user, we can also 

anticipate the user's intentions and provide means to help the user complete 

a task faster and with less frustration. In this thesis, we present a framework 

for modeling user tasks, along with techniques to build summaries. Each 

summary can then be used as a tool to understand user behaviour or as 

a guideline for streamlining future user actions by way of semi-automated 

scripts. 

1.1 Motivation 

Typical users have certain tasks that they regularly perform on their com

puters. Examples of recurring tasks include downloading picture files from a 

digital camera into the hard drive, forwarding emails, and publishing blogs. 

Although the task itself does not change, the underlying data and frequency 

of recurrence varies. For example, the task of forwarding an email is common 

to most users but the data (i.e. the email being forwarded, the recipients, 

additions to the message body, etc.) usually differs. New photos are trans

ferred between camera and disk, blogs are published with different subject 

lines, body, and at different frequencies (e.g. daily, weekly). The extent to 

which the data differs also varies. Politically-charged blogs, though individu

ally unique in content, may have the same principal themes. We have certain 

expectations of the type of photos found in the camera of a sports photog-

2 



Chapter 1. Introduction 

rapher. The task itself, the data involved, and the amount of detail we wish 

to describe (i.e. summarize) said task, all affect the quality of the summary 

we can provide. We are able to make statements such as "These photos are 

of the N H L Vancouver Canucks" or, "These photos are of Game 7 of the '94 

Stanley Cup Finals between the Vancouver Canucks and New York Rangers" 

(being more specific), or "These photos are of a sporting event" (being more 

general). 

Consider the task of publishing course notes (a recurrent activity for 

academic instructors). A possible scheme could be: 

1. Open presentation software and create course slides. 

2. Export presentation to H T M L format. 

3. Export presentation to P D F format. 

4. Export presentation to Word format. 

5. A d d links to the course notes (in the various file formats) on the course 

webpage. The various file formats allow students to choose the version 

they are most comfortable with or capable of viewing. 

Suppose that our user performs the task of publishing course notes on a 

daily basis. Each day's slides would have different content and filename but 

we note that with appropriate software that is capable of exporting to the 

desired formats, steps 2-5 do not require further user input. In fact, if the 

system can recognize this daily task (by summarizing past instances of this 

task), it is possible to semi-automate the task so that for future course notes 

publishing, the user would just have to provide the system with the master 

3 



Chapter 1. Introduction 

copy of the course slides created by the presentation software and the system 

then automatically goes about creating the various format versions and adds 

the appropriate links on the course webpage. 

Given that users perform certain tasks routinely, our goal is to summa

rize the past instances of the user-performed task so that the summary can 

effectively aid future interactions with the personalized system. B y creating 

a summary that captures past user action sequences, we allow for oppor

tunities to create scriptable workflows that semi-automate recurring tasks, 

saving the user from performing tedious actions that do not require active 

participation (e.g. publishing course notes in other formats once the master 

copy is selected). The summary may also be used to anticipate the user's 

next action (by consolidating the number of times particular actions were 

taken) and predict the user's ultimate intention (i.e. the goal of performing 

a sequence of actions). 

1.2 Contributions 

The following contributions appear in this thesis: 

' 1. A Framework for Modeling User Actions - We introduce the idea of the 

Navigation Tree. 

2. Algorithms for Summarizing User Actions - We describe 5 different 

methods (known as Generalization Algorithms) for creating summaries 

and the concepts involved in doing so. 

3. Experimental Evaluation of the Generalization Algorithms - We per-

4 



Chapter 1. Introduction 

form experiments on clickstream data to gain some insight on the per

formance and utility of the summaries created by the different algo

rithms. 

1.3 Outline 

In Chapter 2, we state the problems tackled in this research and describe the 

Navigation Tree model for user action representation, including the intuitive 

and technical challenges behind creating a useful summary. Following this, 

Chapter 3 describes the Generalization Algorithms for creating Summary 

Trees. We provide some related work and concepts in Chapter 4. Experimen

tal results of the algorithms can be found in Chapter 5. Finally, Chapter 6 

closes this thesis with our conclusions from this research. 

5 



Chapter 2 

Problem Statement 

This thesis work attempts to answer the following problem: 

Given n Navigation Trees, how can we create a useful Summary 

composed of n-or-less Summary Trees? 

In order to answer the above problem, we need to explain what we mean 

by Navigation Tree and what constitutes a useful Summary. The following 

sections of this chapter discuss how we tackle these issues. 

2.1 Navigation Trees 

A Navigation Tree is a directed rooted tree, with edges pointing away from 

the root. Each node in the Navigation Tree represents a single Data Object 

(i.e. file). Edges represent the relationship between the two objects it con

nects - an edge is labeled with the user's reason for connecting the source' 

Data Object to the target (See Subsection 2.1.2 for more information). 

Consider the example Navigation Tree shown in Figure 2.1. 

Figure 2.1 illustrates how the Navigation Tree models the task of pub

lishing course notes on the course webpage. Each path in the tree represents 

the sequence of user actions that compose one part of the task. Also observe 

that each path is by itself a valid task - the user can choose to only publish 

6 



Chapter 2. Problem Statement 

CS404_October13ppt 

Export to PDF, 

CS404_October13.pdf CS404_October13.doc 

Add Link to 
course web page 

Add Link to 
course web page 

Export to HTML 

CS404 October13.html 

Add Link to 
course web page 

CS404/Course Notes.html CS404/Course Notes.html CS404/Course_Notes.html 

Figure 2.1: Navigation Tree Example. Modeling the task of course notes 

publishing with a Navigation Tree. 

7 



Chapter 2. Problem Statement 

the .pdf version of the slides. The leaves of the tree can be understood as 

the various goals of the task. In this example, the goals are to publish CS404 

notes on the course webpage for October 13 in the .pdf, .doc, and .html 

formats. A Navigation Tree models a past instance of a user action sequence. 

A Summary describes a set of Navigation Trees with varying detail, as anal

ogous to the greater amount of detail that a longer - as opposed to shorter -

summary of a literary work is capable of capturing. Later in Section 5.1, we 

show how Navigation Trees can be used to model clickstream data. 

2.1.1 Modeling Tasks as Trees 

We model tasks as trees because although actions are initiated one after the 

other (i.e. sequentially), the actions are not necessarily sequential from the 

logical perspective of the user. Consider the action sequence in Figure 2.2. 

Export Add Link 
CS404_October13.ppt CS404_October13.pdf ^ CS404/Course_Notes.html 

Export 

Y 
Export Add Link T 

CS404_October13.html-< CS404/Course_Notes.html CS404_October13.doc 

Add Link 

f 
CS404/Course Notes.html 

Figure 2.2: User Task Sequence Example. Modeling the task of course notes 

publishing'using a sequence. 

The Figure 2.2 sequence does not capture the logic that although the 

8 



Chapter 2. Problem Statement 

export actions occurred in sequence, they really stem from the .ppt slideshow 

file and each export action can be performed independently of each other. 

2.1.2 Edge Labels 

We do not provide a strict definition of the relationships between objects as 

it is not the main focus of this work. However, we envision the edges being 

flexible enough to capture "event"-oriented relationships (as in the example 

of the export and add link edges in Figure 2.1) and also "characteristic" -

oriented relationships. Event-oriented relationships refer to the class of ac

tions that the user invokes to modify the source and/or target Data Object. 

Characteristic-oriented relationships apply to properties of the Data Objects 

themselves that piqued the user's interest in the target Data Object after 

viewing the source Data Object. A n example of a "characteristic"-oriented 

relationship is connecting two objects because they contain the same key

word (this would represent the user opening the target Data Object because 

it contains the same keyword as the source). Another example would be 

connecting two email objects because they come from the same sender (rep

resenting the action of. the user opening the target email object because it 

comes from the same sender as the source email). Table 2.1 lists possible 

relationships that might be of benefit to capture. 

It is important to note that while edge labels help the system understand 

the user's logical flow better, they are not necessary. Edge labels provide 

more detail regarding the user's actions by discriminating between different 

contexts via which a user may access a Data Object (e.g. did the user se

lect the Target because it was authored by the same person as the Source 

9 



Chapter 2. Problem Statement 

E v e n t - o r i e n t e d 

Add L i n k - Target links to the Source via a hyperlink. 

Compress - Target is a compressed version of the Source. 

E x p o r t - Target is an exported version .of the Source, 

• p e n - the "default" relationship if the relationship is not known or not 

specified by the user. 

Cha rac t e r i s t i c -o r i en t ed 

L i n k e d From - Target was linked from the Source via a hyperlink. 

Same A u t h o r - Source and Target share the same author. 

Same D i r e c t o r y - Source and Target are located in the same directory. 

Same Keyword - Source and Target share the same keyword(s) in either 

file name and/or content. 

Same Sender - Source and Target emails share the same sender. 

Same Send Date - Source and Target emails share the same "send date". 

Same S u b j e c t T i t l e - Source and Target emails share the same subject 

title. This could signify an email "thread" that the user is 

interested in. 

Table 2.1: Example Relationships Between Data Objects 

10 
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Chapter 2. Problem Statement 

or because the Source and Target were located in the same directory?). B y 

knowing the reason a user selected a Target after viewing the Source, we can 

make a more informed suggestion to the user when attempting to predict a 

future action. For example, if we are able to recognize that the user opened 

a .doc file because it shared the same author as the .pdf document that 

was viewed earlier, we may be able to present the user with a dynamically-

updated list of .doc files that share the same author as any future .pdf 

document the user views. Event-oriented relationships can be incorporated 

into a personalized system as a semi-automated script that triggers when the 

system recognizes the user initiating a recurring task. Course notes publish

ing (Figure 2.1) is an example of a recurring task for which the system, upon 

realizing the user's intent to publish, can automatically create the various 

format versions (.pdf, .doc, .html) of the slides and add their correspond

ing links to the course notes webpage, without the user having to do more 

than identify the master copy (the .ppt presentation). However, if a rela

tionship is not determinable or not defined by the user, the "default" Open 

label can be imposed and the summarization techniques in this thesis are still 

applicable on the Navigation Trees; the edge labels merely serve to enhance 

the resulting summary. 

2.1.3 Attributes 

Data Objects contain a lot more attributes than simply its file name; e.g. 

most files contain metadata like size, file type, and the creation, modified and 

accessed date. Further, there are certain attributes that are only applicable 

to certain file types. Video and audio files have various bitrates and codecs 

11 



Chapter 2. Problem Statement 

associated with them whilst emails have fields such as sender, recipients, and 

subject. 

It is also possible for the edge labels to contain attributes. For example, 

we could attach Time Invoked and Date Invoked attributes to the edge labels 

in the Navigation Tree in Figure 2.1 (representing the time and date the 

e x p o r t and add l i n k actions occurred). Note that our Data Object method 

of modeling files allows us to capture the inter-object relationships by treating 

the edge labels (and any corresponding edge label attributes) as attributes 

of the target Data Object. For example, the C S 4 0 4 _ 0 c t o b e r l 3 . p d f Data 

Object in Figure 2.1 would contain an additional "edge label" attribute with 

the value "Export t o PDF" since that is the relationship stemming from 

its source (i.e. C S 4 0 4 _ 0 c t o b e r l 3 . p p t ) . Our focus is not in attaining the 

Navigation Trees, but rather, once attained, what we can do with them. 

2.2 Summary Trees 

We now introduce the concept of the Summary Tree and what we consider to 

be a useful Summary. Like Navigation Trees, a Summary Tree is a directed 

rooted tree, with edges pointing away from the root; the difference lies in that 

a node in a Summary Tree may not represent a single unique object. Whereas 

a Navigation Tree models a past instance of a user action sequence, the goal 

of a single Summary Tree is to represent, or "cover", a group of Navigation 

Trees, whilst retaining enough detail (i.e. attributes and edge labels) to be 

useful in predicting the user's future actions. We define a Summary, to 

be a collection of Summary Trees. Consider the Navigation Trees, iVi and 

12 



Chapter 2. Problem Statement 

N2, shown in Figure 2.3. 

Each Navigation Tree corresponds to past actions taken by the user to 

publish a set of notes (one set for each of October 13 and October 15). 

Note that only the f i l e name attribute is displayed. A possible Summary 

composed of one Summary Tree is shown in Figure 2.4. Due to the lack 

of detail (only the root and leaf Data Object's f i l e t y p e is captured), the 

Summary in Figure 2.4 provides a very simplistic view of the user's actions 

("The user opened a P P T file and exported it to some other file and then 

added the link to an H T M L page"). * i does not offer satisfactory predictive 

ability because it assumes that the user wants to perform e x p o r t and add 

l i n k actions to all . p p t files created. 

Another possible Summary, \&2 would be the collection of the 2 Navigation 

Trees (/Vi, N2) themselves (i.e. * 2 = {S i , £2} where S i = Nv, S2 = N2). * 2 , 

however, is too specific and is not helpful in anticipating future user actions 

(unless the user only deals with those very 9 Data Objects when performing 

the course notes publishing task). Unlike Summary , ^ 2 is too precise and 

covers nothing more than the iVi and iV 2 task instances. Intuitively, some 

"middle-ground" between ^1 and \I/2 is desirable. 

Summary ^ 3 (see Figure 2.5) is more precise than \&i but at the same 

time covers more than just iVi and N2. ^ 3 recognizes that the user created 

a . p p t file with the common keyword CS404 (relating to the course CS404), 

exported that file to the .pdf , .doc , and . h t m l formats, and finally added 

links to the exported files on the C S 4 0 4 / C o u r s e _ N o t e s . h t m l file. ^ 3 allows 

the system to anticipate that the next time the user creates a slideshow for 

course CS404, the user would also want to create .pdf , .doc , and . h t m l 

13 



Chapter 2. Problem Statement 

Navigation Tree 1 
CS404_October13.ppt 

Export to 

CS404_October13.pdf 

Add Link to 
course web page 

CS404 October13.doc 

Add Link to 
course web page 

Export to HTML 

CS404 October13.html 

Add Link to 
course web page 

CS404/Course Notes.html CS404/Course Notes.html CS404/Course Notes.html 

Navigation Tree 2 
CS404_October15.ppt 

Export to Pll 

CS404_October15.pdf 

Add Link to 
course web page 

CS404 October15.doc 

Add Link to 
course web page 

Export to HTML 

CS404 October15.html 

Add Link to 
course web page 

CS404/Course Notes.html CS404/Course Notes.html CS404/Course Notes.html 

Figure 2.3: Navigation Trees for Publishing Course Notes. Here are 2 Nav

igation Trees, each representing a separate instance the user performed the 

task of publishing course notes for the course CS404 

14 



Chapter 2. Problem Statement 

some PPT file 

Export I 
some file 

Add Link 

Y 
some HTML file 

Figure 2.4: Summary for Publishing Course Notes (Too General). Sum

mary summarizes the Navigation Trees in Figure 2.3 - however, it is too 

general and does not provide many details about the Data Objects other 

than the f i l e type 

CS404_*.ppt 

CS404_*.pdf CS404_*.doc CS404J.html 

CS404/Course_Notes.html CS404/Course_Notes.html CS404/Course_Notes.html 

Figure 2.5: Summary ^ 3 for Publishing Course Notes (Middle-ground). 

Summary ^ 3 summarizes the Navigation Trees in Figure 2.3 and provides 

some precision w.r.t. Ni and N2 while being flexible enough to anticipate 

future user action sequences on similar files 

15 



Chapter 2. Problem Statement 

counterparts to add to the course webpage - in doing so, the system can help 

the user by automating the export and add link actions. 

The utility of a Summary greatly depends on the Navigation Trees it 

summarizes - if the Navigation Trees reflect tasks that are dissimilar (e.g. 

publishing course notes vs. forwarding email), the Summary may not be 

able to concisely describe the Navigation Trees without becoming either too 

•specific or too general. Hence, we assume that Summary Trees summarize 

Navigation Trees that are similar in order that patterns and generalizations 

can be observed. To this regard, users can help by dictating the set of Navi

gation Trees to be summarized. Ideally, only Navigation Trees representing 

similar tasks are summarized into one Summary Tree (see Figure 2.3). How

ever, note that it is not a requirement for the Navigation Trees to be isomor

phic. By exploiting past instances of user-initiated tasks, a useful Summary 

can be created to semi-automate future tasks in order to enhance the user's 

experience with the system. 

2.3 Definitions 

N a v i g a t i o n Tree - A Navigation Tree, N, is a directed rooted 

tree with each node representing a single Data Object and edges 

representing the relationship between the source and target object 

(Section 2.1). 

S u m m a r y Tree - A Summary Tree, S, is a directed rooted tree 

with each node representing one or more Data Objects and edges 

representing the relationship between the source and target object 

16 
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(Section 2.2). 

Summary - A Summary, ^ , i s a collection of Summary Trees 

{5*1, 52,. . . , Sm} 

Given a Summary Tree S and a Navigation Tree N, N =4 S de

notes "N generalizes to 5" (see Subsection 2.3.1). 

We say that Summary ^ summarizes a collection of n Navigation 

Trees (Nlt J V 2 ) . . . , Nn) if * = {Si, S2,-• •, Sm} such that m < n 

and VW; (where i = 1,... ,n),3\ S G * such that iV* =̂  S. 

2.3.1 Generalization 

Recall that Data Objects (re: files) have certain attributes associated with 

them (Subsection 2.1.3). Attributes can be metadata common to all Data 

Objects (e.g. name, size, creation date, modified date) or characteristics 

specific to the Data Object's file type (e.g. .doc, .jpg, . a v i , .mp3, .html). 

We use the file type attribute to atomically separate Data Objects; that 

is, Data Objects of a particular file type should only be compared to other 

Data Objects of the same file type. Similarly, a Data Object of a certain 

file type can only be generalized to a Multi-Data Object of that same file 

type. Each attribute value (other than file type) can be generalized to a 

more general, less specific, value.. As an example, the name attribute of the 

CS404_0ctoberl3.ppt and CS404_0ctoberl5.ppt data objects in Figure 2.3 

can be generalized to CS404_*.ppt by replacing the date with the regular 

expression *. The CS404_* .ppt data object now semantically covers all .ppt 

17 
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files that begin with the "CS404_" prefix. In general, each attribute has a 

corresponding generalization hierarchy (which can be user-specified or built 

using attribute-related ontology knowledge) that describes the set of possible 

values for that attribute. The creation-date attribute of a Data Object can 

be described by a date range hierarchy as in Figure 2.6 

full date (dd/mm/yy): 14/01/06 28/01/06 01/08/06 17/08/06 7".. 

Figure 2.6: Generalization Hierarchy for the Date Attribute. The creation-

date attribute can take any of the values given in the generalization hierarchy. 

Note that only a very small subset of all possible values are illustrated here. 

Values become more general as we move up the generalization hierarchy 

with the top-most value representing "any" value, analogous to suppressing 

the attribute in classical relational database systems. Each attribute of any 

Data Object has a most-specific, ungeneralized value (i.e. one of the values on 

the lowest level of the generalization hierarchy). Each node in a Navigation 

Tree is "fully-specified" as each represents a single Data Object. The nodes 

in a Summary Tree are either fully-specified Data Objects or generalized 

Mult i -Data Objects. A generalized Mult i -Data Object has one or more of 

its attributes generalized and refers to one or more Data Objects. The most 

"general" any Data Object can become is to have all of its attributes (except 

18 
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f i l e type) fully generalized to the any value, thus representing all Data 

Objects of the same f i l e type . For example, a fully-generalized . p p t Mul t i -

Data Object would cover all . p p t Data Objects. 

The idea of generalization applies to attributes, Data Objects, and Nav

igation Trees. If an attribute value, x, is a generalization (according to the 

generalization hierarchy) of another attribute value, y, then we say that 

y =4 x. A Mult i -Data Object, D\, is a generalization of another (Multi-) 

Data Object, D2,^ii f V attributes a£,x G D\, 3 attribute br>2 G D2, such that 

bo2 =4 o-D].', we s a y D2 =4 D\ (or equivalently, D\ covers D2). For a Navigation 

Tree N and a Summary Tree S, N =4 S i f f V Data Objects DN G N: 

• 3! Mult i -Data Object Ds G 5, such that Dn 4 Ds and 

• n t is the parent of Dn <=> the Mult i -Data Object generalization 

o f DNparent is the parent of Ds. 

The Data objects in the Navigation Tree are generalized to Mul t i -Data Ob

jects of the same depth in the Summary T -ee. Each Mul t i -Data Object in 

the Summary Tree covers one or more Data Objects from the Navigation 

Tree. The statements "N 4 5", UN generalizes to 5", "5 covers N", and US 

summarizes N" are equivalent. Figure 2.7 shows an example of a Navigation 

Tree N 4 Summary Tree S. 

2.3.2 Coverage Threshold 

As illustrated in Section 2.2, the utility of a generated Summary depends on 

how wide a "target" it covers. A Summary that is too general (see Figure 2.4) 

covers too many possible Data Objects and leads to a poor understanding 
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Navigation Tree N 

Figure 2.7: Navigation Tree N 4 Summary Tree S. The Data Objects of N 

are generalized into Mult i -Data Objects in S 
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of the user's intentions (e.g. the user may not want to export and publish 

every . p p t slideshow created). However, a Summary that is too specific does 

not lend much to predicting a user's future actions (e.g. the user does not 

only publish the C S 4 0 4 _ 0 c t o b e r l 3 . p p t course notes, but other course notes 

as well). We introduce the notions of Coverage and Coverage Threshold to 

help quantitatively define how general or specific a Summary should be. 

Coverage - the coverage of a Mult i -Data Object X in a Summary 

Tree is defined as the number of Navigation Tree Data Objects 

that maps to it via a generalization p, (See Figure 2.8). The gen

eralization fj, takes as input a group of Data Objects and returns 

a single Mul t i -Data Object that covers each of the Data Objects. 

The ideal output goal of p, is to return the Mul t i -Data Object 

that retains the most attribute details. The algorithms presented 

in Chapter 3 uses generalizations of the Data Objects of Navi

gation Trees to find suitable Mult i -Data Objects with which to 

construct the Summary Tree that is able to cover the Navigation 

Trees. We denote the coverage of X as C(X) = | / i _ 1 ( X ) | 

Coverage Threshold (CT) - given a collection of Navigation 

Tree Data Objects of the same f i l e t y p e (attained by captur

ing past user action sequences), each of whose parent maps to 

the same Mult i -Data Object in the Summary Tree, the Coverage 

Threshold (CT) is the minimum percentage of Data Objects that 

must map to a single Mult i -Data Object X. Let the Raw Coverage 

Threshold of X, R C T ( X ) = (CT x #Data Objects). 

We claim that Mult i -Data Object X satisfies the C T if C(X) > 
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R C T ( X ) . 

Figure 2.8: Coverage Described in Terms of Generalization Function Map

ping. Each Data Object in N maps to one Mul t i -Data Object in S via a 

generalization p 

Figure 2.9 gives an example of-how Coverage and Coverage Threshold 

relate to the summarization of Navigation Trees. The Summary Tree in 

Figure 2.9 is created with C T = 50%. At depth = 0, we have 3 .ppt Data 

Objects. Since CT=50%, and [3xCT] = 2, each depth = 0 .ppt Mult i -Data 

Object in Summary S must cover at least 2 or more Data Objects. However, 

since there are only 3 .ppt Data Objects at depth = 0, the corresponding 

Mult i -Data Object in S would have to cover all 3 Data Objects (recall in 

Subsection 2.3.1 that a single Data Object can only map to one Mult i -Data 

Object). Also note that at depth = 2, although there are 3 .doc Data 

Objects, the parent of one maps to a different .pdf Mul t i -Data Object than 

the parent of the other two. Hence, in S, only two .doc Data Objects end 

up as siblings (they are not generalized into a .doc Mul t i -Data Object since 

[2 x CT] = 1). Note that the Summary Tree is not unique - for example, at 
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Navigation Tree 1 Navigation Tree %'Z':: 

Navigation Tree 3 

Summary Tree S 

coverage 

Legend: 

.ppt file #data object I multi-data object 

.pdf file Qdata object multi-data object 

.html file @data object I multi-data object 

.doc file #data object 

Figure 2.9: Example Applying Coverage and Coverage Threshold. The 

3 Navigation Trees are summarized by Summary Tree S using a Coverage 

Threshold value of 50%. Note also that the Navigation Trees are not isomor

phic 
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depth = 1, another Summary Tree S/ can be created by mapping a different 

3-group combination of .pdf Data Objects to each of the .pdf Multi-Data 

Objects. 

In general, the higher the Coverage Threshold and the more varied the 

Data Objects in the Navigation Trees are, the less specific the Summary 

Tree will be (i.e. the wider a target it captures) - this occurs because more 

Data Objects will have to map to the same Multi-Data Object. Hence, we 

can use the Coverage Threshold as a tool to control how general or specific 

the Summary Tree is, thus affecting the usefulness of the Summary Tree 

(See Section 2.2) - we seek some "middle-ground" between a "too-general" 

(high Coverage Threshold) Summary Tree and a "too-specific" (low Coverage 

Threshold) Summary Tree. Note that for any given Coverage Threshold, the 

more similar the Navigation Trees are to each other, both in structure and 

Data Objects, the more specific the Summary Tree will be; at this extreme 

end, if all the Navigation Trees are the same (i.e. N\ — N2 = •. • = Nn) then 

the Summary Tree can be represented by any one of the Navigation Trees 

(i.e. S = N1 = N2 = ... = Nn). 

We define Thinness as a measure for how wide a target a Summary Tree 

covers. Each Data Object in a Navigation Tree is mapped to a Multi-

Data Object X in the Summary Tree as illustrated in Figure 2.8. Let 

Slack of X = Slack(X) = C(X) - RCT(X). We define the Thinness mea

sure as follows: 

Thinness = Ex&s[Slack(X)] 

For any given Coverage Threshold, the thinner the Summary Tree, the 

smaller the space of Data Objects it covers (i.e. the Multi-Data Objects 
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of a thinner Summary Tree will be more specific than those of a fatter Sum

mary Tree). As illustrated by the Summaries in Figure 2.4 and Figure 2.5, 

a fat Summary is not desirable as it covers too many possible Data Objects 

and may result in over-anticipating the user. Similarly, a Summary that 

is too thin may not cover enough of the Data Objects that the user might 

be interested in. The best generalization likely lies between the fattest and 

thinnest Summary and probably varies from user to user. Thus, a personal

ized system that allows the user to vary the Coverage Threshold to fine-tune 

the thinness (i.e. coverage) of a resulting Summary would allow the most 

flexibility in meeting the user's needs. 

2.4 Chapter Summary 

The focus of the research presented here is not on how to attain Navigation 

Trees. However, we would like to know, when given n user-specific Navigation 

Trees, how to create a useful Summary \t/ composed of m Summary Trees 

(m < n). In this Chapter, we showed how Navigation Trees logically model 

tasks performed by the user. We also described the intuition behind creating 

a useful Summary that is not too specific (so as to not be able to predict 

future user actions on similar Data Objects as those in the Navigation Trees) 

and not too general (so as to wrongly predict user actions on Data Objects 

not similar to those in the Navigation Trees). The idea of generalization 

was introduced in this Chapter and we also showed how Coverage Threshold 

can be used to control the extent of detail with which a Summary Tree can 

describe a collection of Navigation Trees. A Summary S can be used to 

25 



Chapter 2. Problem Statement 

understand user behaviour patterns, predict future actions, and streamline 

and improve the efficiency of interactions between the user and computer 

system. 

I 
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Summarizing Navigation Trees 

Summary Trees are constructed by merging Navigation Trees together using 

generalization techniques. As mentioned in Subsection 2.3.1, the file type at

tribute allows us to distinguish between mergeable Data Objects - only Data 

Objects of the same file type are mergeable. Hence, given n Navigation Trees, 

we need to first group them by file type so that we only merge Navigation 

Trees with roots having the same file type. A Typed Navigation Tree Group 

is a group of Navigation Trees with the same root file type. Program 3.1 

shows the pseudocode of the Merge algorithm. 

Figures 3.1, 3.2, and 3.3 provide a partial walkthrough of the Merge algo

rithm. In Step 1 of the Merge algorithm, the Dummy Root effectively creates 

a Typed Sibling Group (TSG) consisting of all the roots of the Typed Navi

gation Trees (see Level 1 in Figure 3.1). The tree consisting of the Dummy 

Root and the Typed Navigation Trees is known as the Intermediate Sum

mary. The Typed Sibling Group "TSG 1" and the Raw Coverage Threshold 

(RCT) is then passed to the Generalization Algorithm which then returns 

the representative Mult i -Data Objects that summarizes the T S G . In our ex

ample, Figure 3.2 shows that the Generalization Algorithm mapped each of 

the Data Objects of TSG 1 to one of two Mult i -Data Objects (details of how 

the Mul t i -Data Objects in the Summary are determined can be found in the 
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Program 3.1: Pseudocode of Merge Algorithm for Summarizing Typed Nav

igation Trees 

i n p u t : n N a v i g a t i o n T r e e s , C o v e r a g e T h r e s h o l d CT 

o u t p u t : 1 Summary composed o f m Summary T r e e s 

1. J o i n N a v i g a t i o n T r e e s u n d e r Dummy R o o t t o c r e a t e 

I n t e r m e d i a t e Summary 

2 . F o r e a c h l e v e l ( f r o m t o p t o b o t t o m ) u n d e r t h e Dummy R o o t 

i n t h e I n t e r m e d i a t e Summary: 

2 a . Group S i b l i n g Groups a c c o r d i n g t o f i l e t y p e 

2 b . F o r e a c h Typed S i b l i n g Group ( T S G ) : 

2 b . i . C a l c u l a t e Raw C o v e r a g e T h r e s h o l d 

(RCT = CT * |Typed S i b l i n g Group I) 

2 b . i i . C a l l G e n e r a l i z a t i o n A l g o r i t h m w i t h a r g u m e n t s 

T y p e d S i b l i n g Group and RCT 

2 b . i i i . Update I n t e r m e d i a t e Summary w i t h M e r g e d T y p e d 

S i b l i n g Group r e s u l t i n g f r o m G e n e r a l i z a t i o n 

2 b . i i i . A . A p p r o p r i a t e l y u p d a t e c h i l d r e n o f Merged TSG 

( i . e . t h e C h i l d r e n o f Merged Nodes a r e now s i b l i n g s ) 

3. R e t u r n F i n a l Summary = I n t e r m e d i a t e Summary 
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remaining sections of this chapter). The Intermediate Summary is then up

dated with the returned Multi-Data Objects, and the TSGs of the next level 

(Level 2) are considered (See Figures 3.2 and 3.3). At Level 2, we see from 

Figure 3.3 that there are multiple TSGs; for this particular example there 

are four TSGs (in general, there will be i TSGs). Each of the Level 2 TSGs 

(beginning with TSG 1) are then passed to the Generalization Algorithm in 

left-to-right order. The Generalization Algorithm will then return the Multi-

Data Objects that cover the TSG it received as input and the Intermediate 

Summary is accordingly updated with said Multi-Data Objects. After all the 

Level 2 TSGs have been processed, the Merge Algorithm moves on to the 

next level (Level 3), and so on until all levels of the Intermediate Summary 

have been processed. The resulting Intermediate Summary is the final Sum

mary returned by the Merge Algorithm. Note that the updating of any level 

of the Intermediate Summary creates new TSGs; that is, Data Objects that 

were not originally siblings might become siblings due to their parents being 

merged by the same representative Multi-Data Object (see Figure 3.2). The 

level-by-level merging of the TSGs in the Intermediate Summary creates a 

final Summary that is composed of m Summary Trees (each subtree below 

the Dummy Root represents a Summary Tree). The final Summary covers 

all the input Navigation Trees. 

The number and detail-level of Representative Multi-Data Objects is de

termined by the Coverage Threshold (see Subsection 2.3.2) and the General

ization Algorithm. The goal of summarizing is to find the thinnest (as defined 

in Subsection 2.3.2) Summary that satisfies the Coverage Threshold. In the 

following sections of this chapter, we will present two different generaliza-
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INPUT: Navigation Tree 1 Navigation Tree 2 Navigation Tree n 

Figure 3.1: Example Illustrating Merge Algorithm Part 1 of 3. Step 1 of 

Merge Algorithm. Continued on Figure 3.2 
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2 . Intermediate Summary 
dummy root 

LEVEL 1 

2a. 

2b.ii. 

2b.i i i . 

Intermediate Summary 
dummy root 

TSS1 

Tsei 9*1 ##2 
RCT 

input 
Generalization 0 U t P u t 

Algorithm 
#1,#2 — #n 

Intermediate Summary 
dummy root Q 

Figure 3.2: Example Illustrating Merge Algorithm Part 2 of 3. Continued 

from Figure 3.1. Step 2 of Merge Algorithm - Merge Level 1. Continued on 

Figure 3.3 
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2 . Intermediate Summary 
dummy root Q 

LEVEL 2 

2a. Intermediate Summary 
dummy root Q 

2b.ii. 

t s s i # 1 # , # 3 # 4 - > Generalization 
input m „ „ , i , i . m > 

RCT > Algorithm 1,3 2.4 

2b.ii i . Intermediate Summary 
dummy root Q 

jjî r i >i • 
T S S i - 2 • # ( ) TS6i 

TS6 i -1 

Figure 3.3: Example Illustrating Merge Algorithm Part 3 of 3. Continued 

from Figure 3.2. Step 2 of Merge Algorithm - Merge Level 2. Subsequent 

steps of the Merge Algorithm are not shown. 
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tion approaches used to merge Navigation Trees (Node-based Generalization 

Algorithms in Section 3.1 and Partition-based Generalization Algorithms in 

Section 3.2). 

3.1 Node-based Algorithms 

Consider a single Data Object (i.e. node in the Navigation Tree) and the 

many ways it can be generalized. Each Data Object has a number of gener-

alizable attributes associated with it. Recall from Subsection 2.3.1 that we 

treat the file type as fundamentally unalterable. Al l other attributes can be 

generalized to some degree (see Figure 2.6 for example). While each attribute 

has its own generalization hierarchy, the "any" generalization (aka suppres

sion, see Figure 3.4 and Section 4.1) can be applied to all Data Objects. 

For example, just as the Date Attribute of Figure 2.6 may be fully-specified 

(14/01/06), partially-specified (**/01/06, **/**/06), or completely gener

alized to "any" date (**/**/**), so can other attributes such as Author (full 

name, first or last name, "any" name) and Size (123KB, 1**KB, "any" size). 

In the rest of this section, we will only consider "any" generalizations. 

"any" value , i.e. * 

t 
fully-specified attribute 

Figure 3.4: "ANY" generalization (aka suppression). The "any" generaliza

tion is applicable to all generalizable attributes 
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The various states of generalization for a single Data Object can be cap

tured using a Lattice of Conditions (LOC). Figure 3.5 is an example of the 

node-based LOC for a text document. Note that the LOC can be signifi

cantly larger if hierarchical or range-based generalizations (e.g. Figure 2.6) 

are also considered. For the generalizations we consider, the number of gen

eralized states per level for any node-based LOC is shown in Figure 3.6. 

Note that the higher (more general) the LOC one travels, the greater the 

coverage. Conversely, the lower (more specific) the LOC one travels, the 

smaller the coverage. The states found in node-based LOCs are composed 

of attribute/value pairs. Hence similarly "typed" Data Objects with the 

same attributes may still differ in- their attribute values.. The two Node-

based Generalization Algorithms (Greedy and Enumerate All) use the LOC 

for selecting generalizations that satisfy a given coverage threshold. 

3.1.1 Greedy 

As illustrated by Figure 3.6, the LOC grows exponentially as the number of 

attributes increases. A Data Object (such as a Word document or mp3 file) 

can have upwards of 20 attributes (yielding a LOC with at least 1,048,576 

nodes/generalization states). Thus, materializing the whole LOC is not de

sirable. In fact, because coverage is monotonically increasing with respect 

to the L O C s level number, it is not necessary to materialize the LOC com

pletely. We can use the following logic to determine which portions of the 

LOC need to be materialized: 

Consider any node n (i.e. a generalized state) of the LOC. If the 

coverage of n satisfies the Raw Coverage Threshold, there is no 
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File Type = Text Document 
Author = Mary 
Date Created =21/04/06 
Size = 215kb 

File Type = Text Document 
Author = Mary 
Date Created = 21/04/06 
Word Count 

File Type = Text Document 
Author = Mary 
Size = 215kb 
Word Count = 

File Type = Text Document 
Date Created = 21/04/06 
Size = 215kb 
Word Count = 

File Type = Text Document 
Author = Mary 
Date Created = 21/04/06 
Size = 215kb. 
Word Count = 888 

Figure 3.5: Example of a Lattice of Conditions. This Lattice is built for a 

text document Data Object. Note that only 4 of the 5 attributes of the Data 

Object are constrained since file type is immutable 
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t 
Coverage 

Level n 
(n choose n-n) nodes 

with n-n conditions each 

(n choose n-(n-1)) nodes 
Level n-1 w j t h n . ( n . ^ conditions each 

Level 2 

Level 1 

Level 0 

(n choose n-2) nodes 
with n-2 conditions each 

(n choose n-1) nodes 
with n-1 conditions each 

(n choose n) nodes 
with n condition each 

Figure 3.6: A General Lattice of Conditions. Coverage of a generalization in 

any LOC is proportional to the generalization's Level. The top and bottom 

of the LOC is the most general and the most specific respectively. 

36 



Chapter 3. Summarizing Navigation Trees 

need to examine ancestors of n because their coverage cannot be 

lower than that of n. From our discussion of "best generalization" 

(Subsection 2.3.2), the generalization n is preferred over those of 

its ancestors because it is the most specific (i.e. thinnest) gen

eralization that meets the coverage threshold. The only possible 

generalizations that might be preferred over n are those on the 

same level as n, and those on lower (more specific) levels than n. 

Any LOC node that satisfies the coverage threshold is feasible. 

Thus, at each level of the LOC, we can label each node one of the follow

ing: 

• Under - A node labeled under is not feasible. 

• Closest - A node labeled closest is also not feasible but has the highest 

coverage among the infeasible nodes. 

• Above - A node labeled above is feasible. 

• Thinnest - A node labeled thinnest is also feasible but has the lowest 

coverage among the feasible nodes. 

The above labels are each node's relative coverage with respect to the Raw 

Coverage Threshold. Note that there may be multiple nodes with the same 

label due to a "tie" in their coverage. An appropriate course of action can be 

taken for each node depending on its label: an ancestor an of a node n needs 

to be examined i f f all descendants of an are infeasible. In other words, a 

single feasible descendant of an nullifies the need to check the coverage of an 
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- in this way, only necessary portions of the LOC need to materialized. Fig

ure 3.7 summarizes the possible coverage labels for nodes and the appropriate 

respective actions. 

As displayed in the worst case scenario of Figure 3.7, any ancestor of an 

under or closest node may contain the global thinnest node. Hence, in order 

to find the global thinnest node, the worst case scenario (each node is labeled 

either under or closest) forces us to materialize the whole LOC. The Greedy 

Algorithm avoids this complete materialization by selecting a local thinnest 

node. Given a Typed Sibling Group TSG and the Raw Coverage Threshold 

RCT, the Node-Based Greedy Generalization Algorithm will iteratively select 

a Data Object from the TSG that does not yet satisfy the RCT and generalize 

it using the LOC until the RCT is met. The algorithm uses the monotonically 

increasing property of the LOC to only materialize necessary portions. Pro

gram 3.2 displays the pseudocode for the Node-Based Greedy Generalization 

Algorithm. 

The Greedy Algorithm generalizes a given Data Object by selecting a 

local closest node at each level of the LOC, beginning from level 0, until it 

reaches a local thinnest node. Only ancestors of the closest node selected at 

each level are materialized and their respective coverages checked. Note step 

l h . , which "force-merges" the remaining nodes in the TSG with Bes tGen if 

the number of remaining nodes is less than RCT. That is, in the case where it is 

not numerically possible for the remaining nodes to meet the RCT, these nodes 

are merged with the last Bes tGen node regardless of how similar they are to 

BestGen; apart from the t y p e attribute, these nodes may very well be disjoint 

with Bes tGen. An example illustrating how the Greedy algorithm works can 
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Program 3.2: Pseudocode of Node-Based Greedy Generalization Algorithm 

input: Typed S i b l i n g Group TSG, Raw Coverage Threshold RCT 

output: Merged S i b l i n g Group MSG that sa t i s f i e s RCT 

MSG = {} 

1. While there exists Node(s) in TSG { 

l a . Current Node = F i r s t Node of TSG 

l b . Remove Current Node from TSG 

l c . Let BestGen = Bottom Node of LOC ( i . e . Current Node) 

Id. Let NextLevel = 1 

l e . i . While (Coverage(BestGen) < RCT) { 

l e . i . A . Let Gens = { a l l NextLevel generalizations of BestGen} 

l e . i . B . BestGen = Gens [0] 

l e . i . C . For( int i= l ; KGens . s i z e O ; i++) { 

Let Nodel = Gens[i] 

If (Coverage(Nodel) > BestGen) 

{ If (BestGen < RCT) { BestGen = Nodel > } 

Else If (Coverage(Nodel) >= RCT) 

{ BestGen = Nodel > 

> 

l e . i . D . NextLevel++ 

> 

If. MSG += BestGen 

l g . Remove from TSG a l l nodes covered by BestGen 

l h . If (TSG.size() < RCT) 

{ ' 'Force-merge'' remaining TSG with BestGen } 

} 

2. Return MSG 
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LEGEND: Expand & 
Examine 

Expand & 
Examine 

Discard Discard 

Under Closest 

( £ RCT } 

Thinnest Above 

WORST CASE 
SCENARIO: 

Expand & 
Examine 

Expand & 
Examine 

Expand & 
Examine 

Under Closest Under 

BEST CASE 
SCENARIO: 

Discard Discard Discard 

Above Thinnest Above 

Figure 3.7: Summary of a Node's Relative Coverage and Appropriate A n 

cestor Action. The monotonic property of the L O C allows the determination 

of a node's relative coverage which in turn aids the Generalization Algorithm 

to determine which portions of the L O C need to be materialized. 
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be found in Figure 3.8 and Figure 3.9. The materialized portion of the LOC 

visited by the Greedy algorithm resembles a tree since it only expands one 

node per level. Hence, the complexity with respect to the number of visited 

nodes in the LOC = n + (n - 1) + (n - 2) + ... + 1 = 0(n2). 

File Type = Text Document 
Author = Mary 
Date Created = 21/04/06 
Size = 215kb '". 

File Type = Text Document 
Author = Mary 
Date Created = 21/04/06 
Word Count = 888 i". 

File Type = Text Document 
Author = Mary 
Size = 215kb 
Word Count = 888 

File Type = Text Document 
Date Created = 21/04/06 
Size = 21Skb 
Word Count = 888. i" " 

File Type = Text Document 
Author = Mary 
Date Created = 21/04/06 
Size = 215kb ^ . 
Word Count = 666 . / , - - s/ 

Figure 3.8: LOC with Coverages and Global Thinnest. RCT = 5 

3.1.2 Enumerate A l l 

Consider again the Greedy example in Figure 3.8. The Greedy algorithm 

works by traversing up the LOC starting at the bottom and iteratively se

lecting the closest node until it finds a local thinnest node. As illustrated in 

Figure 3.9, the Greedy algorithm does not select the global thinnest node on 

level 2 because the closest selection made on level 1 does not have it as one 
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Step I, Level 0: 

File Type = Text Document 
Author = Mary 
Date Created = 21/04/06 
Size = 2i5kb 
Word Count = 888 , - -

, 1 

Step 2, Level I: 

Frle Type = Text Document 
Author = Mary 
Date Created = 21/04/06 
Size = 2i5krj i " 

File Type • Text Document 
Autrior = Mary 
Date Created = 21/04/06 
Word Count = 888 i" 

File Type = Tex! Document 
Autrior = Mary 
Size = 215xb 
Word Count = 888 

File Type = Text Document 
Author = Mary 
Date Created = 21/04/06 
Size = 215kb 
Word Count = 888 \ -

File Type = Text Document 
Date Created = 21/04/06 
Size = 2i5kb 
Word Count = 888. 

Step 3, Level 2: 

File Type = Text Document 
Author = Mary 
Date Created = 21/04/06 
Size = 215kb I* 

File Type = Text Document 
Author = Mary 
Date Created = 21/04/06 
Word Count = 888 

File Type = Text Document 
Author = Mary 
Size = 215kb 
Word Count = 888 ' " . 

File Type = Text Document 
Author = Mary 
Date Created = 21/04/06 
Size = 2i5kb 
Word Count = 888 r ~ 

i 1 

File Type = Text Document 
DateCreated=21/04/06 
Size = 215kb 
Word Count = 888. i 

Figure 3.9: Example of Node-based Greedy Generalization Algorithm. This 

example illustrates how the Node-based Greedy Algorithm works given the 

L O C of Figure 3.8. Current generalizations being examined are coloured as 

per the relative coverage the node is labeled with (see Figure 3.7). 
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of its ancestors. The Node-based Enumerate A l l Generalization Algorithm 

finds the global thinnest node by materializing the whole level in consider

ation; its pseudocode is shown in Program 3.3. The key difference between 

the Node-Based Greedy and Enumerate A l l algorithm is in step l e . i . A . . 

Here, all NextLevel generalizations are considered, as opposed to only the 

NextLevel generalizations of the greedy-selected closest node from the pre

vious iteration. The Enumerate A l l Generalization Algorithm is able to find 

the absolute thinnest L O C node in situations where its Greedy counterpart 

cannot due to Greedy selecting a closest choice whose ancestors do not in

clude the global thinnest. 

3.2 Partition-based Algorithms 

The Node-based Algorithms of the previous section attack the problem of 

finding the thinnest summary from a micro point of view. Node-based algo

rithms examine one node of the T S G at any given time, without consideration 

for the other nodes. As a result, a poor choice of a T S G node to generalize 

can lead to a needlessly "fat" generalization of the entire T S G . Consider the 

example in Figure 3.10. 

The selection of the "outlier" node (i.e. A) with which to generalize the 

remaining T S G nodes yields a non-optimal summary. Partition-based Algo

rithms attempt to minimize the effect such "outliers" have with T S G sum

marization by looking at all the T S G nodes simultaneously, hence adopting 

a more macro point of view. The basic idea behind these algorithms is to 

partition the T S G into groups that are as thin as possible with respect to a 

43 



Chapter 3. Summarizing Navigation Trees 

Program 3.3: Pseudocode of Node-Based Enumerate Al l Generalization A l 

gorithm 

input: Typed S i b l i n g Group TSG, Raw Coverage Threshold RCT 

output: Merged S ib l ing Group MSG that sa t i s f i e s RCT 

MSG = {} 

1. While there exists Node(s) in TSG { 

l a . Current Node = F i r s t Node of TSG 

l b . Remove Current Node from TSG 

l c . Let BestGen = Bottom Node of LOC ( i . e . Current Node) 

Id. Let NextLevel = 1 

l e . i . While (Coverage(BestGen) < RCT) { 

l e . i . A . Let Gens = {ALL NextLevel generalizations} 

l e . i . B . BestGen = Gens[0] 

l e . i . C . For( int i= l ; KGens . size () ; i++) { 

Let Nodel = Gens [i] 

If (Coverage(Nodel) > BestGen) 

{ If (BestGen < RCT) { BestGen '= Nodel } } 

Else If (Coverage(Nodel) >= RCT) 

{ BestGen = Nodel } 

} 

l e . i . D . NextLevel++ 

} 

If . MSG += BestGen 

l g . Remove from TSG a l l nodes covered by BestGen 

l h . If (TSG.size() < RCT) 

{ . ' 'Force-merge'' remaining TSG with BestGen } 

} 

2. Return MSG 
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RCT = 2 

TSG: . ' 
r \ 

File Type = Text Document File Type = Text Document File Type = Text Document File Type = Text Document 
Author = Mary Author = John Author = John Author = John 
Date Created = 21/04/06 Date Created = 03/12/06 Date Created = 06/11/06 Date Created = 30/9/06 
Size = 215kb Size = 315kb Size = 315kb Size = 653kb 
Word Count = 888 

\ 
Word Count = 150 Word Count = 200 Word Count = 150 

LU -IcJ IeJ 

Node-based MSG: 

File Type = Text Document 

a | b | c | d | 

Partition-based MSG: 

File Type = Text Document 

! 2 

\EET 

File Type = Text Document 
Author = John 
Size = 315kb 'V 

Figure 3.10: Node-based vs. Partition-based Algorithms. This example 

TSG illustrates the advantage Partition-based Algorithms have over their 

Node-based counterparts 
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RCT. Each of these groups are summarized by a representative Multi-Data 

Object. More formally, we say: 

V group m of a given TSG, 3 representative Multi-Data Object 

p such that 

V Data Object d e m, d =4 p 

Given a n-node TSG, we want to find [n/RCT\ representatives. Optimally, 

the TSG would be partitioned into equidepth "bins" with RCT number of 

items each. In general, a partition P is feasible if V blocks B £ P, \B\ > 

RCT. The Partition-based Algorithms presented in this section minimize 

the following cost-metric: 

Partition P = (Bi,B2, ...,Bn) 
n 

Cost(P) = ^2\{\Bi\ -RCT)\ 
1=1 

In the Figure 3.10 example, a partition Px with blocks B\p — { A , D} and 

B2pi = {B, C} is just as desirable as a partition P2 with 5 l p a = { A , C} and 

B2p2 = {B, D} because Cost(Pi) = Cost(P2) = 0 

In order to capture partition candidates when examining multiple nodes 

simultaneously, we introduce the concept of the Lattice of Attributes (LOA). 

Recall from Section 3.1 that the Lattice of Conditions is composed of nodes 

with attribute/value pairs. In contrast, the LOA is composed only of at

tribute combinations. See Figure 3.11 for an example of a LOA. 

The top node of the LOA is the "any" partition which has no constraints 

on any of the available attributes, effectively grouping all the Data Objects of 

the TSG into a single block. The bottom node on the LOA has all attributes 
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R C T = 2 

T S G : ' x y 

A 1 1 . 2 : 

B , 1 ' 2 j 
C , 2 '• 2 ] 

D j 3 i 2 i 

x Constrained 

P = <{A, B}{C}{D}> 

Cost(P) = 2 

No Attributes Constrained 

P = < {A, B, C, D) > 

Cost(P) = 2 

j A B C D 
x i -k • * ! * • 

y Constrained 

P = < {A, B, C, D} > 

Cost(P) = 2 

:A B C D 

2 : 2 

x and y Constrained 

P = <{A. Bj{Cj{D)> 

Cost(P) = 2 

;_A_ B C J) 
x I Tj~2 3 
y | 2 ] 2 j 2 2 

Figure 3.11: Example of a Simple Lattice of Attributes. The Lattice of At

tributes (LOA) is based on different combinations of constrained attributes. 
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constrained and partitions the TSG into blocks of smallest possible size. 

If the Data Objects contain a unique ID attribute (or uniquely-identifying 

combination of attributes such as the conjunction of file name and path 

attributes) the bottom node of the LOA would be composed of single-item 

blocks. The LOA is traversed by Partition-based Generalization Algorithms 

in order to find a feasible partitioning of a TSG. 

3.2.1 Greedy Bottom-Up 

The Greedy Bottom-Up Partition Algorithm begins with a fully-constrained 

partition (i.e. bottom node of the LOA) and recursively "fattens" infeasible 

blocks of the current best partition until it arrives upon a feasible parti

tion. Due to the recursive-"fattening" nature of the algorithm, the resulting 

LOA utilized is a more complex version of the Simple LOA introduced in 

Figure 3.11. Each partition (node) in a Simple LOA applies the same com

bination of attributes to each of its blocks. In contrast, a Mixed LOA allows 

a partition to contain blocks composed of different attribute combinations. 

An example of a Mixed LOA can be found in Figure 3.12. In this example, 

the algorithm begins with the bottom node at level 0 and attempts to fat

ten blocks {C} and {D} by relaxing one of the attributes (see dashed lines, 

solid lines represent the Simple LOA connections). The thinnest partition 

is discovered at the next level. The pseudocode for the Greedy Bottom-Up 

Partition Algorithm can be found in Program 3.4 and related Subroutine 

Program 3.5. 

Step l a of the Bottom-Up Partition Algorithm (Program 3.4) finds all 

groups of Data Objects that are exact matches (given the attributes consid-

48 



Chapter 3. Summarizing Navigation Trees 

Program 3.4: Pseudocode of Partition-Based Greedy Bottom-Up General

ization Algorithm 

i n p u t : Typed S i b l i n g Group T S G , Raw Coverage T h r e s h o l d RCT 

o u t p u t : B e s t P a r t i t i o n BP of TSG t h a t s a t i s f i e s RCT 

BP = TSG; G r e e d y C h o i c e P a r t i t i o n GCP = {} 

l a . F i n d E x a c t M a t c h e s ( BP ) 

l b . L e t ITSG = D a t a O b j e c t s of i n f e a s i b l e b l o c k s i n BP 

1c. Remove ITSG from BP 

I d . BP += BUGA( I T S G , RCT ) 

2. r e t u r n BP 
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Program 3.5: Pseudocode of B U G A Subroutine 

input: Typed S i b l i n g Group TSG, Raw Coverage Threshold RCT 

output: Best P a r t i t i o n BP of TSG that sa t i s f i e s RCT 

BP = TSG; GreedyChoicePartition GCP = {} 

1. Let attributesToRelax = TSG[0].attributesConstrained 

2. If ( (attributesToRelax.s ize() ==0) II (Cost(BP) == 0)) 

{ return BP } 

3a. Let Gens = a l l next l eve l up generalizations of ITSG / / r e l a x at tr ibute 

3b. GCP = Gens[0] 

3c. For (int i=0; KGens . s ize () ; i++) { 

3 c . i If (Number of Data Objects in Infeasible Blocks of Gen[i] >= RCT) { 

3 c . i . A . If (Cost(Gens[i]) < Cost(BP)) 

{ BP = GCP = Gens[i] > 

3 c . i . B . Else If (Cost(Gens [i]) < Cost(GCP)) 

{ GCP = Gens[i] > 

> 

> 

4. Let ITSG = Data Objects of infeas ible blocks i n BP 

4a. If ( ITSG.s izeO > 0) { 

Let greedyChoiceAttributesCombo = GCP[0].attributesConstrained 

4 a . i . For (int j=0; j<ITSG.size(); j++) 

{ ITSG[j] .attributesConstrained = greedyChoiceAttributesCombo } 

Remove ITSG from BP 

4 a . i i . BP += BUGA(ITSG, RCT) 

} 

5. return BP 

> 
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RCT = 2 

TSG: x y 

A 1 2 

B 1 2 

C 2 2 

D 3 2 

No Attributes Constrained 
P = < (A, B, C, D) > 
Cost(P) = 2 

C D 

1 = x and y Constrained 
Bi = No Attributes Constrained! 

P = <(A, B)(C, D)> 
Cost(P) = 0 

A B C D 

x 1 1 » « 

y 2 2 * * 

y Constrained 
P = < {A, B, C, D) > 
Cost(P) = 2 

A B C D 

X * * * * 

y 2 2 2 2 

Bi = x and y Constrained 
B2, Bs = x Constrained 
P = <(A,B|fC)(D)> 
Cost(P) = 2 

A B C D 

x 1 1 2 3 

y 2 2 * * 

Bi = x and y Constrained. 
Bz = y Constrained 
P=<(A,BKCD1> 
Cost(P) = 0 

B C D 
M 

y 2 2 

Thinnest s e l e c t e d by 
Greedy Bottom-Dp 
P a r t i t i o n ^Algorithm 

x and y Constrained 
P = c{A,B)|C)(D)> 
Cost(P) = 2 

A B C D 

x 1 1 2 3 

y 2 2 2 2 

Figure 3.12: Example of a Mixed Lattice of Attributes. This Mixed Lattice 

of Attributes is used by the Greedy Bottom-Up Partition Algorithm. Note 

that the algorithm only needs to materialize part of the L O A . 
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ered) and retains the Multi-Data Object Representatives of those that are 

feasible. The Data Objects of the infeasible blocks are passed on to the BUGA 

(Bottom-Up Generalization Algorithm) subroutine. Step 1 and 2 of Subrou

tine B U G A (Program 3.5) determine which attributes of the TSG are still 

available for relaxation (since the algorithm moves bottom-up on the Mixed 

LOA, progressively relaxing attribute combination constraints). If there are 

no more attributes to relax, only the TYPE attribute can be salvaged and the 

A N Y partition is returned. If the cost of the TSG is already minimal, the 

best partition is exactly TSG. The If statements in steps 3c . i and 3 c . i . A 

check to see if the cost of the current generalization is better than the current 

Best Partition BP and also that the remaining number of Data Objects in 

infeasible blocks is able to satisfy the RCT (i.e. no amount of generaliza

tion can satisfy the RCT if the \TSG\ < RCT). Step 4a checks if infeasible 

blocks exist in the current Best Partition BP. If there are infeasible blocks 

that require "fattening", each Data Object of these infeasible blocks is first 

updated with the cheapest combination of attributes greedily selected by the 

algorithm (step 4 a . i , using the greedily-selected attribute combination de

termined from steps 3b and 3 c . i . B). The algorithm is then called recursively 

on the TSG composed of the infeasible blocks (step 4 a . i i ) . 

3.2.2 Greedy Top-Down 

The Greedy Top-Down Partition Algorithm is similar to its Bottom-Up coun

terpart but traverses down the Mixed LOA. Beginning at the top A N Y par

tition, the algorithm increasingly constrains attributes until'a partition with 

cost = 0 is found or no feasible cheaper partition is found at the next level 

52 



Chapter 3. Summarizing Navigation Trees 

examined. Program 3.6 and Subroutine Program 3.7 show the pseudocode. 

Program 3.6: Pseudocode of Partition-Based Greedy Top-Down Generaliza

tion Algorithm 

input: Typed S i b l i n g Group TSG, Raw Coverage Threshold RCT 

output: Best P a r t i t i o n BP of TSG that sa t i s f i e s RCT 

BP = TSG; GreedyChoicePartition GCP = {} 

l a . Let ANYPartition = new Partit ionRep 

lb . ANYPartit ion.attributesConstrained = {} 

l c . ANYPartit ion.attributesRelaxed = {TSG[0].attributesConstrained} 

2. return BP = TDGA( BP, ANYPartit ion, RCT ) 

Step l a , b , c of Program 3.6 creates the ANYPartition which does not 

have any attributes constrained (i.e. the top of the Mixed LOA). The entire 

TSG is then passed to the TDGA Subroutine for "thinning". In the TDGA 

subroutine (Program 3.7), the If statement of step 2 checks the possibility 

of further splitting the TSG argument. If split, the TSG must separate into at 

least two feasible blocks. There also must be at least one remaining attribute 

that has yet to be relaxed, otherwise, the TSG is already as thin as possible. A 

key difference between the Top-Down and Bottom-Up Partition Algorithms is 

that the current Best Partition of the Top-Down algorithm is always feasible. 

Hence, a partition P with a lower cost than the current Best Partition is only 

selected if it does not contain any infeasible blocks (step 3c. i ) . The benefit 
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Program 3.7: Pseudocode of T D G A Subroutine 

input: Typed S i b l i n g Group TSG, PartitionRep P, Raw Coverage Threshold RCT 

output: Best P a r t i t i o n BP of TSG that sa t i s f i e s RCT 

BP = TSG; f lag = false 

1. Let attributesToConstrain = P.attributesRelaxed 

2. If (( Cost(TSG) == 0 ) II ( T S G . s i z e O < 2*actualCT ) II 

( attr ibutesToConstrain.s ize() <= 0 )) 

{ return BP } / / P a r t i t i o n cannot be thinner 

3a.' Let Gens = a l l next l eve l part i t ions (one at tr ibute constrained) 

3b. For (int i=0; KGens . s i z e O ; i++) { 

3 c . i . If (no infeas ib le blocks in Gens [i]) { 

3 c . i . A . If (Cost(Gens [ i]) <= Cost(BP)) 

{ BP = Gens[i]; f lag = true > 

> 

} 

4. If (flag) { 

4a. For each Fat Block j i n BP { 

/ / a Fat Block contains >= 2*actualCT data objects 

4 a . i . Remove j from BP 

4 a . i i . PartitionRep PP.attributesConstrained = j[0] .attributesConstrained 

4 a . i i i . PP.attributesRelaxed = j [0] .attr ibutesRelaxed 

4a . i v . BP += TDGA(j, PP, RCT) 

} 

> 

Else { / / no next l eve l feasible p a r t i t i o n found, BP s t i l l = TSG } 

5. return BP 
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of this characteristic of the Top-Down Algorithm is that a feasible solution 

can always be returned at any stage of the program's execution, without 

having to wait for the program to complete at the base cases. Also, unlike 

Bottom-Up, even if a next level partition has the same cost as the initial TSG 

argument, this next level partition then becomes the current Best Partition 

since it constrains more attributes, which we understand intuitively to be 

thinner/more specific and thus preferred (see Subsection 2.3.2). Hence, the 

cost comparison at step 3c. i . A is not a strict inequality. Finally, if no feasible 

next-level lower-cost partition was found in step 3, the greedy-choice Best 

Partition is the TSG itself (see E l s e statement of the I f ( f l a g ) condition 

at step 4). However, if a new Best Partition was found, its Fat Blocks are 

recursively passed to Subroutine TDGA for further thinning. For the example 

given in Figure 3.12, the Top-Down algorithm would return the partition <A, 

B, C , D> (where only the Y attribute is constrained) as the Best Partition. 

3.2.3 Increasing Combination Size - ICS 

The two Partition-based Generalization Algorithms presented thus far ex

amine part of a Mixed LOA in order to greedily-select a cheap (i.e. thin) 

partition. We now present an algorithm inspired by the Incognito algorithm 

[17] for k-anonymity (Section 4.1) that uses the unmixed Simple LOA, as 

illustrated in Figure 3.11, to find a cheap partition. The ICS (Increasing 

Combination Size) algorithm makes use of the observation that the n-size 

attribute combination of a feasible partition is composed of A;-size attribute 

combinations, where 1 < k < n, that also yield feasible partitions. The ob

servation stems from the fact that relaxing an attribute can only merge blocks 
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together but never split them. Thus, if we are given a feasible partition, re

laxing any attributes of that partition only creates another feasible partition 

that is of equal or greater cost (due to the possibility of blocks being merged). 

The ICS algorithm starts at the top of the Simple LOA and finds all 

1-attribute-constrained combinations of feasible partitions. Each of these 

1-attribute-constrained combinations are then used as candidates for find

ing feasible 2-attributes-coristrained combinations. The algorithm iteratively 

uses (k)-size feasible combinations to find the (k + l)-size feasible combina

tions. When the largest-sized feasible combination is found, the algorithm 

returns the partition allowed by the combination. The pseudocode for the 

ICS algorithm is shown in Program 3.8. 

Step 1 of Program 3.8 determines which attributes are to be considered. 

Step 2 effectively materializes portions of the LOA downward, finding in

creasingly larger feasible attribute combinations. If a particular attribute is 

part of an infeasible combination and not part of any feasible combination 

(Step 2d), it is removed from the At t r ibu tesLis t before the next iteration 

uses the At t r ibu tesLis t to find a feasible combination that is 1 attribute 

larger. This follows the logic that all subsets of a feasible combination must 

also be feasible. 

Unlike the Greedy Bottom-Up and Top-Down Partition algorithms, the 

ICS algorithm does not need to make any greedy decisions. Moreover, be

cause all the blocks of the ICS-returned Best Partition are constrained by the 

same n-sized attribute combination rather than different attribute combina

tions (as in the greedy algorithms), all /c-sized (1 < k < n) feasible attribute 

combinations are implied by the solution. Any subset of the attribute combi-
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Program 3.8: Pseudocode of Partition-Based ICS Generalization Algorithm 

input: Typed S i b l i n g Group TSG, Raw Coverage Threshold RCT 

output: Best P a r t i t i o n BP of TSG that sa t i s f i e s RCT 

1. Let At tr ibutesLi s t = {TSG[0].attributesConstrained} 

2a. For( int i= l ; i <= A t t r i b u t e s L i s t . s i z e ( ) ; i++) { 

2b. Let Gens = A l l s i z e - i at tr ibute combinations ( i . e . generalizations) 

from At tr ibutesLi s t 

2c. ForCint j=0; j < Gens.s ize(); j++) { 

2d. If (Gens[j] i s feasible) { 

Mark attr ibutes of Gen[j] as DoNotRemove i n A t t r i b u t e s L i s t 

> Else { 

/ / Gens[j] i s not feasible 

Mark attr ibutes of Gen[j] as possiblyRemove i n A t t r i b u t e s L i s t 

} 

} 

2e. For each at tr ibute m in At tr ibutesLis t { 

If ((m marked possiblyRemove) && (m not marked DoNotRemove)) { 

Remove m from At tr ibutesLi s t 

> 

> 

> 

3. return BP = TSG grouped using At tr ibutesLis t 
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nation solution also yields a feasible unmixed partition. The ICS algorithm is 

exponential in the size of the largest attribute combination considered at the 

bottom of the LOA, but it does return the global optimal unmixed attribute 

combination solution. However, the inflexibility of not allowing mixed at

tribute combinations can lead to a partition that is less-preferred than its 

mixed counterpart. Consider the example in Figure 3.11 where the ICS al

gorithm returns the partition composed of attribute y Constrained, which 

is not as thin as the Bottom-Up Greedy mixed solution (see Figure 3.12). 

In general, mixed attribute combination partitions can yield more specific 

solutions than unmixed partitions. 

A common weakness that the ICS algorithm shares with the Bottom-

Up and Top-Down Partition algorithms is that attribute combinations (i.e. 

generalizations) are not considered simultaneously for feasible disjoint blocks 

that when combined together, create a feasible partition, even if the blocks 

originated from infeasible partitions. Consider the example in Figure 3.13. 

The ideal solution consists of block B\ = {A, B} with x Constrained and 

block I?2 = {C, D} with y Constrained. The ICS algorithm is not able 

to arrive at this optimal partition since it is a mixed partition. The Top-

Down algorithm is also unable to reach the optimal partition because both 

partitions under the ANY partition are infeasible. However, the Bottom-Up 

algorithm is able to reach the partition but due to its greedy nature, does 

not retrieve the most-specific attribute combination for one of the blocks (see 

Figure 3.14). 
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R C T = 2 

TSG: x y 

A 1 2 

B 1 3 

C 2 4 

D 3 4 

x Constrained 

P = <{A, B) (C) {D}> 

Cost(P) = 2 

A B C D 

x 1 1 2 3 

No Attributes Constrained 

P = < {A, B, C, D) > 

Cost(P) = 2 

Bi = x Constrained 
B2 = y Constrained 

P = <{A, B} (C, D}> 

Cost(P) = 0 

A B C D 

x 1 1 * * 

y * * 4 4 

x and y Constrained 

P = <{A}[B] (C) (D}> 

Cost(P) = 4 

A B C D 

x 1 1 2 3 

y 2 3 4 4 

y Constrained 

P = <{A}{B) {C, D)> 

Cost(P) = 2 

A 

x * 

y 2 

B C D 

3 4 4 

Figure 3.13: Common Weakness of Partition Algorithms. The Partition 

Algorithms do not consider piecing disjoint blocks from infeasible partitions 

in order to create a feasible partition. 
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RCT = 2 

TSG: x y 

A 1 2 

B 1 3 

C 2 4 

D 3 4 

No Attributes Constrained 
P = <{A,B,C,D1> 
Cost(P) = 2 

A B C D 

|Bi = x Constrained 
Bs = No Atttributes Constrained 

P = <(A, BKC.D)> 
Cost(P) = 0 

A B C D 

X 1 H 
y * * * * 

Bi = No Atttributes Constrained 
B2 = y Constrained 

P = <{A, B){C,D)> 
Cost(P) = 0 

A B C D 
x * * * * 
y * » 4 4 

x Constrained 
P = <{A, B)(C)[D)> 
Cost(P) = 2 

A B C D 

x 1 1 2 3 

y . . • . 

y Constrained 
P = <(A)(B){C,0)> 
Cost(P)=2 

A B C D 

x * * * * 

y 2 3 4 4 

x and y Constrained 
P = <{A){B){C){D}> 
Cost(P) = 4 

A B C D 

x 1 1 2 3 

y 2 3 4 4 

Figure 3.14: Bottom-Up Solution to Common Weakness of Partition A l 

gorithms. The Greedy Bottom-Up Partition Algorithm is able to find the 

feasible partition of cost=0 but cannot retrieve the most specific attribute 

combination characteristics (See Figure 3.13). 
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3.3 Chapter Summary 

In this chapter, we presented the concepts behind summarizing Navigation 

Trees. Using a "dummy" root, all Navigation Trees are brought together 

to create an Intermediate Summary. The Intermediate Summary is then 

processed, level-by-level beginning from the top, and Typed Sibling Group 

by Typed Sibling Group (TSG). Each TSG is passed to a Generalization 

Algorithm which returns Multi-Data Objects that represent the Data Objects 

of the TSG. We showed how the quality of the Summary is affected by the 

Generalization Algorithm and the Coverage Threshold. The five different 

Generalization Algorithms presented can be categorized as either Node-based 

(Greedy and Enumerate All) or Partition-based (Greedy Bottom-Up, Greedy 

Top-Down, and Increasing Candidate Size). When summarizing a TSG, 

Partition-based algorithms account for multiple Data Objects at a time while 

Node-based algorithms consider only one Data Object at a time. 
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R e l a t e d W o r k 

In this Chapter, we will examine work that share concepts and techniques 

that bear interesting similarities to our work of summarizing Navigation 

Trees. 

4.1 fc-anonymity 

.^-anonymity was described in [28] as a standard in which sensitive data 

(such as government, medical, and bank records) can be released without 

violating the privacy of individuals. Samarati and Sweeney [22] showed that 

individuals can be identified using "linking attacks" that combine datasets 

which, by themselves, do not uniquely identify individuals. An example of 

a "linking attack" is given in [28] where voter registration data and hospital 

patient data uniquely relate a patient to his/her disease when joined together 

on the shared attributes ZIP, Birth Date and Sex. Sweeney explains that 

using only the ZIP, Birth Date and Sex attributes, the unique identities of 

87% of the population of the United States can be determined [28]. The k-

anonymity property is the requirement that each record in a dataset belongs 

to a group of at least k - 1 other records within which they are indistinguish

able from each other with regards to the quasi-identifier attribute set. The 

quasi-identifier attribute set (also known as the virtual identifier [11, 31]) is 
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a subset of the total attributes of a record that.is known to expose individual 

identities if linked with other datasets. For example, (ZIP, Birth Date, Sex) 

would be the quasi-identifier attribute set in the example involving voter reg

istration and hospital patient data. Privacy can be retained by making sure 

that released data adheres to the /c-anonymity property. Sweeney explained 

how fc-anonymity can be achieved without violating data integrity by using 

attribute-value generalization and suppression [27, 28]. Suppression is simply 

the "removal" of the value altogether and can be understood as generalization 

to the ANY-value (indicated by "*") at the top of the attribute-value hier

archy (see Figure 2.6 for example). In our framework, we treat suppression 

as simply the ultimate form of generalization (Subsection 2.3.1). 

The approach we take in summarizing Navigation Trees is analogous to 

creating a /c-anonymized version of a table T. Recall that our Summary Tree 

is created by merging Navigation Trees (Section 3). The merging is facilitated 

by generalizing Data Objects in the Navigation Trees so that each Multi-

Data Object in the Summary Tree covers at least CT (Coverage Threshold, 

Subsection 2.3.2) number of Data Objects. Essentially, we can view each 

Data Object as a tuple of a table T that we wish to partition into groups of 

at least CT tuples each and where each tuple in a group is indistinguishable 

from the others in that group. The Coverage Threshold is analogous to the 

k value in /c-anonymity - as the value of CT (or k) increases, the larger the 

size of each group (i.e. partition) and hence, the less specific the Multi-Data 

Object that represents the group. 

Many different definitions of optimal fc-anonymization have been pro

posed. The intuition behind finding the optimal solution is to find the 
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anonymization that minimally distorts the data. Distortion is usually quan

tified with a cost metric that captures how much information is lost from 

generalization or suppression [3, 14, 15, 21, 27]. The hierarchy level to which 

a dataset must be generalized to is an example of such a cost metric and 

is used in some variation by Hundepool and Willenborg [14], Samarati [21], 

and Sweeney [27]. Fung et al. [11], Iyengar [15], and Wang et al. [31] tai

lored their cost metrics to solve the /c-anonymity problem with a focus on 

using the /c-anonymized data for classification purposes. The optimal K-

anonymity problem was shown to be NP-hard in [1, 18]. Optimal algorithms 

that guarantee minimality of the resulting A:-anonymization, such as Incog

nito [17] and K-OPTIMIZE [3] are exponential in the quasi-indentifier size. 

However, it is known that greedy heuristic algorithms such as "Datafly" [27] 

and Samarati's Binary Search [21] work well in practice despite having no 

optimality guarantee [3]. 

4.1.1 Global and Local Recoding 

One of the major differences among proposed rc-anonymity techniques is in 

the recoding model used. Recoding refers to the generalizations that attribute 

values can undergo. The two types of recodings possible are Global Recoding 

and Local Recoding [17]. Techniques that map all attribute values to gener

alized values on the same level of the generalization hierarchy are referred 

to as global recoding techniques. Techniques that allow individual instances 

to map to a generalized value on a different hierarchy level than other in

stances are known as local recoding techniques. To illustrate the concept 

more clearly, consider a table T (see Table 4.1) that we wish to fc-anonymize 
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with k = 2. Let the quasi-identifier = ( Date Modified ) and assume that the 

date hierarchy as shown in Figure 2.6 is used. 

i d F i l e N a m e D a t e M o d i f i e d 

t l CS404_Octoberl3.pdf 13/10/06 

t2 CS404_Octoberl5_.pdf 15/10/06 

t3 CS404_November25-Corrected.pdf 25/11/06 

t4 CS404_December05.pdf 05/12/06 

Table 4.1: Table T to A;-anonymize with k = 2 

By generalizing the quasi-identifier to **/mm/yy, t l and t2 satisfy the 2-

anonymity requirement butt3 and t4 generalize to ** / l l / 06 and **/12/06 

respectively. t3 and t4 have to be generalized to **/**/yy in order to be 

indistinguishable from at least 1 other record. Since **/mm/yy and **/**/yy 

are on different levels of the date hierarchy, Global Recoding would map 

all attribute values of T to their respective **/**/yy value (the "higher" 

generalization), as in Table 4.2. Local Recoding allows for attribute values 

to be on different generalization levels and hence permit the 2-anonymized 

version of T as shown in Table 4.3. 

Note that Local Recoding methods are more "flexible" than their Global 

Recoding counterparts and are able to provide re-anonymized views with less 

distortion. In the Globally-Recoded Table 4.2, all the tuples are merged 

into one set (tl, £2, £3, £4) since they are non-unique with regards to the Date 

Modified quasi-identifier. The Locally-Recoded Table 4.3 effectively parti

tions T into two groups, (£1,£2) and (£3, £4) and retains more of the original 
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id Fi le Name Date Modif ied 

t l CS404_Octoberl3.pdf ** y** ̂ Qg 

t2 CS404_Octoberl5_.pdf ** y** ̂ /Qg 

t3 CS404_November25_corrected.pdf y/** ̂ Qg 

t4 CS404_December05.pdf ** ^Qg 

Table 4.2: 2-anonymized with Global Recoding 

id Fi le Name Date Modif ied 

t l CS404_Octoberl3.pdf **/10/06 

t2 CS404_Octoberl5-.pdf **/10/06 

t3 CS404_November25_corrected.pdf ** y'Qg 

t4 CS404_December05.pdf 

Table 4.3: S-anonymized with Local Recoding 

information in T (the fact that t l and £2 were modified in October of 2006 

is captured). The /c-anonymity algorithms of Lefevre [17], Iyengar [15], Ba-

yardo and Agrawal [3], Fung et al. [11], and Wang et al. [31] are examples of 

Global Recoding techniques. Local Recoding is used in the algorithms of Ag-

garwal et al. [1], Meyerson and Williams [18], and Sweeney [27]. Except for 

the ICS partition algorithm (Subsection 3.2.3), the generalization algorithms 

in this thesis can be classified as Local Recoding models (See Chapter 3). 
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4.1.2 Differences with Current fc-anonymity 

Techniques 

The following lists the areas in which the known fc-anonymity techniques 

differ from our approach in summarizing Navigation Trees: 

• Quasi-identifier Size - The size of the quasi-identifier greatly affects the 

runtime of A;-anonymity algorithms [18]. The larger the quasi-identifier 

size, the more combinations of generalizations the algorithms have to 

examine, thus yielding a longer runtime. Thus far, algorithms only 

examined a small quasi-identifier size; As a reference, Lefevre examines 

up to a 9-attribute quasi-identifier for a 5.5MB table containing 45,222 

records [17], as does Iyengar [15], and Bayardo and Agrawal [3] for a 

data set with 30,162 records. Fung et al [11] tests a 14-attribute quasi-

identifier for up to only 1,000 records - this is the largest test quasi-

identifier size known. In comparison, we test a large quasi-identifier 

size of 822 for our clickstream data (Section 5.1). 

• Number of Times Generalization Algorithm Invoked - The A;-anonymity 

algorithms are invoked only once per dataset. However, in the case 

of summarizing Navigation Trees, our generalization algorithm is run 

multiple times. In particular, our generalization algorithm has to be 

run for each Typed Sibling Group on each level of the intermediate 

Summary Tree (Chapter 3). 

• Outliers - A number of A;-anonymity approaches allow for tuples to be 

completely excluded from the /c-anonymized view of the original dataset 
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[3, 21, 22]. These "excluded" tuples are considered to be outliers that 

would otherwise require significant generalization (i.e. distortion) of the 

dataset in order to satisfy the A;-anonymity property. In summarizing 

Navigation Trees, recall that the Navigation Trees have been created 

with the aid of the user (Section 2.2). Thus, no subset of Data Objects 

in the Navigation Trees are treated as outliers since the user has deemed 

all of them important to consider. 

• Coverage Threshold as a Percentage - We have chosen the Coverage 

Threshold (CT) to be a percentage (between 0% and 100%) rather 

than a natural number as defined by the k in A:-anonymity. The benefit 

of using a percentage is that the CT is always satisfiable - it is not 

. possible to encounter a dataset where k > # Data Objects. Since our 

generalization algorithm is performed at least once per Typed Sibling 

Group (see Chapter 3), the Raw Coverage Threshold (Subsection 2.3.2) 

has to change according to the size of the group in order to ensure 

satisfiability. 

• Attribute Generalization Hierarchy Height - Our work considers 2-level 

generalization hierarchies with the top level generalization being the 

"*" or any value (also equivalent to suppressing the attribute). We note 

that it is possible to increase the heights of the attribute generalization 

hierarchies by imposing domain-specific ontologies. Although our work 

deals with the 2-level hierarchies, it can be extended to multi-level 

hierarchies (the Lattice of generalizations would grow to include the 

multi-level possibilities, Chapter 3). 
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• Data - The data that we deal with in this research are files of all types 

as opposed to tuples of a relational database. However, we can view 

each file as a tuple by treating each file attribute as a field column of a 

relational database. 

4.2 Workflow Mining 

Workflow mining (also known as process mining) aims to discover workflow 

patterns from a log of recorded events (e.g. transaction logs) [2]. A workflow 

is an ordered set of events that is performed to accomplish a task. An 

instance, or case, of a workflow is an individual execution of the workflow. 

Each line in the transaction log corresponds to a particular step (e.g. "process 

book checkout request", "install back seats of vehicle") belonging to a specific 

instance of the workflow. Given a workflow transaction log, the goal of 

workflow mining is to extract the individual instances of the workflow and 

create a workflow model that best describes all of those extracted cases. As 

described in [30] and [25], workflows describe sequential events (e.g. "Event 

B follows Event A"), alternate events (e.g. "A or B"), parallel events (e.g. 
11A and B simultaneously"), and repeating events (i.e. cycles). In the process 

of workflow mining, outlier events can also be completely removed from the 

workflow model. 

In contrast, the Navigation Trees in our work capture the type of data the 

user dealt with while performing a task - individual nodes in our model do 

not refer to actions or "steps" but to (Multi-)Data Objects (see Section 2.1). 

Also, workflow mining does not consider generalizations of workflow instances 
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when creating the model. Workflow instances either contain steps that are 

included exactly (i.e. without generalizing) in the workflow model or not 

included at all (i.e. labeled as an outlier). Techniques to detect workflow 

outliers include heuristics [32] and stochastic models [13]. Finally, while 

our Navigation and Summary Trees do not allow for cycles, duplicate Data 

Objects are allowed whereas the majority of workflow research assume that 

each workflow event is unique (see [29], [2], and [23]). Our work can be viewed 

as a combination of workflow mining with ^-anonymity generalization - our 

Summary Trees try to describe all the Navigation Trees by generalizing their 

Data Objects. The resulting Summary Tree is similar to the workflow model 

in that it captures the order of events (re: Data Objects) performed by 

the user when accomplishing a particular task, but is also able to provide a 

description of the data encountered as well. 

4.3 Personalization 

The goal of Personalization is for the system to be able to automatically 

predict the user's intentions. Schlimmer describes Personalization systems 

as "self-customizing software" [24]. Work in this area has looked into pre

dicting web usage [8, 12, 19], UNIX commands [9, 16], responsive actions 

to emails [6], news-content interest [4, 5], and even calculator keystrokes [7].' 

Probabilistic models and artificial intelligence techniques have been applied 

to the goal of predicting the user's "next step". The majority of work per

formed in this field can be broadly categorized as event-based and content-

based prediction models. Event-based prediction models guess the type of 
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command/action that the user will next invoke (e.g. issuing a U N I X Is com

mand after using cp to copy files into the current directory). On the other 

hand, .content-based prediction models examine the content of the data in 

order to decide what other information might be of interest to the user (e.g. 

analyzing the contents of a particular news article in order to present other 

relevant news articles to the user). To our knowledge, the current personal

ization techniques do not construct complete task process models - prediction 

is based simply on the current step (e.g. the current U N I X command or news 

article being viewed) rather than the macroscopic view of where the current 

step lies in the process of task completion. Our work is unique in that we 

capture both the user action sequence and the type of data (i.e. content) 

encountered so as to be able to better predict user intention when performing 

recurring and similar tasks. 
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E x p e r i m e n t s 

The algorithms in this thesis have been implemented and tested for the pur

pose of comparing their respective runtimes and scalability, and to evaluate 

their advantages and disadvantages. The space and time complexities of the 

algorithms are directly related to the portion of the LOC (or LOA) that 

needs to be materialized in order to find a satisfactory generalization. The 

Greedy Node-based and Partition-based algorithms have a polynomial com

plexity due to only having to materialize certain branches of the Lattice, 

while the Enumerate Al l and ICS algorithms are exponential since in the 

worst case, they materialize the entire Lattice. However, due to each al

gorithm's individual characteristics, the quality of the Summaries returned 

differs as well. Thus, the goal of our experiments is not only to act as a "proof 

of concept" but also to attempt to evaluate the quality of our Summaries. 

Specifically, we would like to examine the relationship between Coverage 

Threshold, number of attributes considered, and the Summary quality. The 

dataset we will execute our algorithms on is a combination of those found in 

workflow and /c-anonymity. The Navigation Trees need to capture both the 

sequence (as in workflow) and the details (similar to /c-anonymity databases) 

of the Data Objects. In general, workflow-like data is hard to attain as spe

cial application-specific software is required [25] for this purpose. However, 
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we have found clickstream data to meet the dataset requirements for our 

experiments. 

5.1 Clickstream Data 

We have gathered clickstream data from the h t t p : //www. c s . ubc. ca domain 

for the period of January 1, 2005 to May 31, 2006. This domain belongs to 

the Department of Computer Science at UBC and the data represents all 

client web requests to web objects located on that domain. The clickstream 

data of the period collected was stored in daily access log files and totaled 

8.9GB compressed. The 541 access log files contain all the client requests for 

web objects. Each line of an access log provides the following information: 

• Client IP 

• Date and Time 

• Requested Object 

• Client's User Agent 

In order to protect user privacy, the actual Client IP was mapped to a unique 

non-negative integer that remained consistent throughout the access logs. A 

total of 5,125,472 unique Client IPs accessed the domain during the period 

in question. 

For our experiments, the Data Objects of concern are limited to web 

pages with textual content that are able to be rendered on standard Web 

browsers. Non-textual web objects such as picture, music, and video files 
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are not considered. A list of keywords was attained by combining the dic

tionary entries from h t t p : / / w w w . w e b o p e d i a . c o r a / C o m p u t e r _ S c i e n c e / with 

the names of UBC Computer Science Faculty and Course Codes (e.g. CPSC 

100). Any duplicate entries were removed, resulting in a list of 822 keywords. 

These keywords act as the attributes of the web page Data Object. If a web 

page Data Object contains a keyword, the value of that particular keyword 

attribute is 1, and 0 otherwise. Thus, each web page has a keyword bit index 

associated with it that represents the keywords it contains. Shared keywords 

among a group of web pages can be determined by executing a bitwise AND 

(/\) between the respective keyword bit indexes (see Figure 5.1). 

We will use Navigation Trees to represent user clickstreams. The click-

stream captures the sequence of webpages that the user visited. For example, 

a small clickstream could show that the user went from the UBC Computer 

Science Research page to the UBC DB Lab home page, and eventually ended 

up at the DB Lab Issues webpage. In order to construct Navigation Trees 

from the clickstream data, it was necessary to first determine the keyword 

indexes for all web pages on the c s . u b c . c a domain. To do this, we first 

crawled the entire domain using SiteMapBuilder.NET [26] and filtered out 

unwanted web objects. A total of 12,960 relevant web pages were found. 

Keyword indexes were then determined for each of the web pages. At this 

point, we have all the Data Objects, including their full attribute keyword 

description, necessary for Navigation Tree construction. The next challenge 

is determining the sequence of Data Objects in the Navigation Trees. 

Each Navigation Tree is user and session-specific. Hence, it is important 

to determine individual clients within the access log data. We note that the 
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URL1 contains: computer, database, machine, xml 

URL2 contains: artificial intelligence, database, recognition, vision, xml 
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Figure 5.1: Finding Shared Keywords Between Web Page Data Objects. 

With keywords represented by a bitmap, shared keywords can be determined 

with a bitwise AND (/\) on the keyword bit indexes of the web pages in 

question. 
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unique users as multiple users may share the same IP and User Agent. 

Our hope is that summarizing the Navigation Trees of a user will provide 

a useful overview of the user's browsing patterns and interest with regards to 

particular web pages on the cs.ubc.ca domain. In our scenario, interest is 

suggested by the keywords found in the web pages of the computed summary. 

Hence, the summary may act as a filter to reduce the number of web pages 

the user might be interested in (based on past displayed interest). On top of 

suggesting the types of web pages that may be of interest, the summary also 

captures the sequence in which they were accessed. This summarization may 

also aid in predicting the user's future web request sequence by suggesting 

a complete or partial path (to allow "skipping" nodes and directly accessing 

the goal leaf/end node) of the summary that best matches the user's current 

clickstream. 

5.2 Setup 

Experiments were conducted on a system running SuSE 10.1 using an Intel 

P4 3Ghz processor and 2GB PC3200 R A M . The algorithms presented in 

Chapter 3 were implemented using Java. Experiments were performed on 

varying data sizes (1MB, 2MB, 5MB, 10MB, 25MB, and 50MB) and with 

varying coverage thresholds (10%, 20%, 30%, 40%, and 50%). In addition 

to testing the set of all 822 keywords, the number of attributes considered 

(known as the "quasi-identifier size" [17]) was also varied to: 4, 8, 12, 16, 20. 

We ran 5 trials for each scenario, removed the max and min runtimes, and 

report the average runtime of the remaining 3 trials. 
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In our clickstream data, there are over 5 million different Client IPs, which 

combined with User Agent, yield an even greater number of unique users. 

No single unique user's clickstream data over the collection period totaling 

more than 1MB was found. Hence for the purpose of creating our experiment 

datasets, the navigation trees of multiple unique users were grouped together. 

Table 5.1 lists the number of Navigation T'ees each of the Datasets are 

composed of. 

Dataset Size # of Navigation Trees 

1MB 814 

2MB 1709 

5MB 6692 

10 MB 16885 

25MB 54688 

50MB 104225 

Table 5.1: Number of Navigation Trees Summarized Per Dataset Size 

Recall that each Data Object is associated with 822 keyword attributes 

(Section 5.1). Due to the hardware limitations of our test system, only the 

Node-based Greedy and Partition-based Top-Down and Bottom-Up algo

rithms are able to process all 822 keywords. Both the Node-based Enumerate 

Al l and the ICS algorithm are unable to consider all of the possible keyword 

combinations (as is required in their worst-case scenario). Hence, we also 

compare the algorithms in an attribute-limited fashion; this is akin to vary

ing the quasi-identifier (QI) size in [17]. The attribute-limited versions of 

our algorithms make an initial pass across the Typed Sibling Group (TSG) 
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of Data Objects to be generalized (see Chapter 3) and retain all the keywords 

that are shared by all Data Objects in the TSG. These retained keywords will 

be included in the Multi-Data Object(s) that the generalization algorithm 

returns. Then, the algorithm selects the top x most-occurring attributes 

(where x = |QI|= 4,8,12,16,20) from the remaining keywords that are not 

shared by all of the TSG members. The top x most-occurring keywords will 

then be the only attributes considered by the generalization algorithm for 

finding suitable Multi-Data Objects that satisfy the Coverage Threshold. 

In order to compare the quality of the summaries computed by the various 

algorithms, we also report the Average Slack and Average AvgDiff. The 

definition of the Average Slack is as follows: 

. „, , Thinness 
Average black = ——— — — 

#Multi — DataObjects 6 Summary 

with Thinness as defined in Subsection 2.3.2. 

The Slack gives us an idea of how well each algorithm was able to meet the 

Coverage Threshold, without surpassing it significantly. A lower Slack is 

preferred as this indicates a thinner summary. The AvgDiff measure reflects 

the number of keywords (i.e. level of detail) a Multi-Data Object was able 

to retain after summarizing the Typed Sibling Group from which it was 

derived. More formally, for a Multi-Data Object X in a Summary and the 

Typed Sibling Group TSG it summarizes, the AvgDiff of X is defined as: 

AvgDiffx = [| keywordsONy \ — \ keywordsONx |] 
yeTSG 

where keywordsONi is the set of keywords found in (Multi-)Data 

Object i (i.e. the bit index location for the keyword is set to ON, 
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or 1). Note also that | keywordsONy \ > \ keywordsONx \ since 

X is a generalization of y. 

Then, for all the Multi-Data Objects in the summary, we define 

AvgDiffx 

A A D ff X^Summary 

verage vg iff - ^ M u l t i _ r)a-f;aObjects G Summary 

The lower the AvgDiff, the more similar the Multi-Data Object is with the 

Data Objects it generalizes. Lower AvgDiff values also suggest that the 

summary does not "over-capture" too wide a target which is undesirable 

using the same argument for thinness (Subsection 2.3.2). 

5.3 Results 

Due to the size of our complete experimental results, only select tables and 

graphs will be displayed in this section. Please refer to Appendix A for more 

complete detailed results. 

Our experimental results support the following observations: 

• For our dataset, there was no significant improvement in summary 

quality when considering more than 20 attributes. The most significant 

improvement can be found when increasing the attributes considered 

(i.e. |QI|) from 4 to 8. Quality appears to converge as |QI| and Coverage 

Threshold (CT) increase. The graphs in Figure 5.2 and Figure 5.3 

show that as CT (x-axis) increases, the |QI| has less of an effect on 

the Average AvgDiff/Slack (y-axis in the corresponding graphs); this 

is indicated by the converging lines which represent different |QI|. Al l 
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the algorithms except for ICS suffer an upwards spike, in Average Slack 

when CT = 50%; this is likely due to the Navigation Trees not being 

able to be summarized exactly into half, thus resulting in numerous 

occasions where a Typed Sibling Group (TSG) is represented by a 

single Multi-Data Object. Note that ICS does not exhibit this pattern 

as it does not consider Slack cost when summarizing TSGs and hence 

has very high Average Slack values even at low CTs. 

• In general, the results of the Enumerate Al l algorithm follow very 

closely with that of the Greedy algorithm. Please see Figures 5.2(a), 

5.2(b) and 5.3(a), 5.3(b) for example. The execution times of Enumer

ate Al l are always at least as high as that of Greedy and very often 

they are arguably equal (refer to Tables A.2-A.6 and A.8-A.12 in Ap

pendix A). Instances where Enumerate Al l take considerably longer 

than Greedy can be due to the algorithm having to climb much higher 

up the Lattice of Conditions (LOC) for the thinnest generalization or 

that by progressively selecting the thinnest, the algorithm has to be 

invoked more often per TSG on the way to finding more representa

tive Multi-Data Objects. The Average Slack and AvgDiff quality of 

Enumerate Al l are often not of vast improvement to warrant the pos

sibility of greater runtime. At CT = 50%, Enumerate Al l and Greedy 

have almost identical runtimes and quality. Furthermore, there are a 

very small number of cases where Greedy slightly edges Enumerate Al l 

in quality (i.e. by hundreths or tenths). This phenomenon is likely 

attributed to Enumerate Al l building its LOC by selecting a Data Ob

ject which is more dissimilar to the remaining TSG members than its 
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(a) 25MB, Greedy (b) 25MB, Enumerate A l l 

— 

1..-i 

(c) 25MB, Partition Top-Down (d) 25MB, Partition Bottom-Up 

(e) 25MB, ICS 

Figure 5.2: Average AvgDiff for 25MB 

81 



Chapter 5. Experiments 

(e) 25MB, ICS 

Figure 5.3: Average Slack for 25MB 
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Greedy counterpart. 

• The attribute-limited Partition-Based Bottom-Up algorithm has very 

competitive runtimes for the 1MB and 2MB datasets. For the larger 

datasets, however, the runtimes are significantly higher than the other 

algorithms when considering |QI| = 12, 16, 20, 822 at the lower Cov

erage Thresholds (i.e. 10% and 20%). Please see Figure 5.4 for exam

ple. While the Bottom-Up algorithm exhibits relatively long execution 

times for the the 5MB, 10MB, 25MB, and 50MB datasets, the quality 

of its summaries is still in the top-2. The Partition-Based Bottom-

Up algorithm also displays the most markedly-increasing runtimes as 

|QI| increases. This algorithm considers the whole TSG simultaneously 

from bottom-up as opposed to the Node-based algorithms which con

sider generalizing one Data Object at a time, and the Partition-Based 

Top-Down and ICS algorithms which work from top-down by progres

sively "thinning" fat blocks. As with all the algorithms, relative results 

vary with different datasets. For example, the ICS algorithm displays 

the worst execution times for the 1MB and 2MB datasets. 

• In general, the ICS algorithm has the highest Average Slack amongst 

the evaluated algorithms. However, this is expected as the ICS algo

rithm does not attempt to minimize Slack in anyway. Instead, it is 

designed to find all unmixed attribute combinations that satisfy the 

CT, thus effectively returning one Multi-Data Object per TSG. 

• The ICS and Partition-Based Bottom-Up algorithms generally have 

the lowest-2 Average AvgDiff values for the 5MB, 10MB and 25MB 
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(e) 5MB, |QI| = 20 

Figure 5.4: 

(f) 5MB 

Runtimes for 5 M B 
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datasets. For the smaller datasets, Bottom-Up tends to obtain the best 

Average AvgDiff value, with the Node-based algorithms occupying the 

next 2-lowest positions. Exceptions to this general behaviour can be 

found at 1MB with |QI| = 4, 8 and CT = 10%, 20%, 30%. 

• Generally, for the 10MB and 25MB datasets, the Partition-Based Bottom-

Up algorithm achieved the best Average Slack values with CT=10% 

and |QI|=4 and 8. The respective Average AvgDiff for the same speci

fications were also very competitive (scoring second-best to ICS in the 

majority of these occasions). 

• Results are very dependent on the dataset characteristics. Some datasets 

react better to being summarized top-down while others have slightly 

more similar Data Objects and can be effectively approached from 

bottom-up. Also, there is not a "one-size-fits-all" CT that always yields 

the best quality for the smallest runtime. Generally speaking, lower CT 

values yield better results but cause the algorithms to execute longer. 

In this regard, the mid-way CT value of 30% appears to be a good 

starting point from which the user can decide if the returned summary 

is satisfactory or a lower CT is required. 

• For almost all our experimental conditions, both the Bottom-Up and 

Top-Down Partition-based algorithms yield better-quality summaries 

than their Node-based counterparts, with the discrepancy being more 

significant for the 10MB and 25MB datasets. Examples of this be

haviour can be found in Figures 5.2, 5.3, and Tables A.20-A.24 in Ap

pendix A. 
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• As mentioned in Section 5.1, the clickstream data used in these exper

iments do not allow for error-free unambiguous discernment of unique 

users and their respective Navigation Trees. Also, we have had to merge 

the Navigation Trees of users known to be different for the purpose of 

creating our test datasets. Hence, a TSG is much more likely to con

tain dissimilar, and possibly disjoint, Data Objects which may not be 

able to be summarized as effectively as when considering similar-task 

Navigation Trees from a single unique user. Our generally-observed 

comparatively-longer runtimes of the algorithms that approach the 

LOC (or LOA) from bottom-up support our suspicion that these al

gorithms have to climb closer to the top of the lattice in order to find 

a satisfactory generalization (refer to Table 5.2 for instance). 

• For the most part, the Top-Down Partition-based algorithm seems to 

be a good compromise on quality and runtime (see Figure 5.4 and 

Tables A. 13-A. 18 in Appendix A for example). 

• For a given dataset size and a higher CT of either 40% or 50%, the 

number of attributes considered does not greatly affect the execution 

time (see Table 5.2). However, at lower CT values, the general observed 

behaviour of the algorithms is that larger sizes of |QI| increase the 

execution time. The algorithms do not always scale linearly across 

dataset size, especially with the larger sizes (10MB, 25MB, and 50MB) 

at lower CT values (10% and 20%). However, this behaviour is to be 

expected as having a twice-as-large dataset does not imply having to 

do only twice as many generalizations since the number of TSGs may 
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increase by more than double. Representative runtimes are displayed 

in Table 5.3. 
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Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

IQII =4 14160 17698 17738 37121 13409 

IQII = 8 17607 19824 72995 37226 13336 

|QI| = 12 23829 20418 73575 37525 13395 

|QI| = 16 24237 20907 73749 37460 13440 

|QI| = 20 24496 39809 73893 37698 13484 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

IQII = 4 14191 17594 17748 36960 13501 

IQII = 8 17686 21023 116100 37497 13527 

|QI| = 12 26437 24307 119655 37556 13460 

|QI| = 16 26625 34793 139334 38838 13808 

|QI| = 20 38567 260614 349361 48993 14655 

Partition-Based GREEDY TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

IQII = 4 52497 47531 52139 33378 24969 

|QI| = 8 61762 54410 48714 33368 24889 

IQII = 12 75804 57689 51619 33458 25106 

|QI| = 16 74730 55289 52617 33543 25211 

|QI| = 20 78361 62912 52501 33566 25142 

Partition-Based GREEDY BOTTOM-UP 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

IQII = 4 61680 32770 45265 43441 21360 

IQII = 8 72194 101890 69731 45414 21382 

|QI| = 12 342360 480370 148636 45454 21371 

|QI| = 16 1315672 1709049 162261 45132 21532 

|QI| = 20 3421940 4373999 165688 45540 21722 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

IQII = 4 14754 16376 17830 18653 9176 

IQII = 8 37085 44723 53730 21673 9113 

|QI| = 12 133054 97277 90822 21756 9372 

|QI| = 16 239875 194063 97100 23663 9528 

|QI| = 20 513581 456350 150345 58138 9990 

Table 5.2: Runtime (in ms) Across Varying |QI| for 10MB Dataset 
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Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

1MB 390 474 536 614 666 

2MB 815 1016 976 1168 1024 

5MB 2800 2992 4531 4530 2714 

10MB 17607 19824 72995 37226 13336 

25MB 714433 1801255 443535 286312 173917 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

1MB 409 512 599 638 670 

2MB 824 1227 1019 1548 1020 

5MB 2787 3040 5723 5123 2727 

10MB 17686 21023 116100 37497 13527 

25MB 699198 2762072 436421 281694 170980 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

1MB 451 521 567 626 661 

2MB 973 995 1031 1170 1075 

5MB 5538 5607 5213 4227 4084 

10MB 61762 54410 48714 33368 24889 

25MB 980582 836657 768169 501911 245478 

Partition-Based G R E E D Y B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

1MB 579 765 832 949 675 

2MB 1511 2387 1800 2036 1096 

5MB 9637 16308 6894 6218 3471 

10MB 72194 101890 69731 45414 21382 

' 25MB 1349348 1459566 1698772 707125 289608 

I C S 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

1MB 1441 1338 1482 1536 718 

2MB 3801 2688 2724 3246 1091 

5MB 7998 9451 10639 7069 2566 

10MB 37085 44723 53730 21673 9113 

25MB 526637 584812 557451 240857 91380 

Table 5.3: Runtime (in ms) Across Varying Dataset Sizes with |QI| = 8 
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C o n c l u s i o n 

In an effort toward improving user-computer interaction, this thesis proposed 

a framework to aid in streamlining user actions. In order to do so, we showed 

how Navigation Trees can capture both the context and details (in the form 

of attributes) of the Data Objects that make up single user actions. These 

Navigation Trees act as learning data that is analyzed and summarized to 

create Summary Trees which in turn aid the system in predicting future user 

actions. The Summary Trees act as a template to which current user actions 

can be compared so that the system can provide useful suggestions for the 

user's next step. 

We have also presented five different generalization algorithms for per

forming the summarization. The summarization process consists of pro

gressively merging a set of Navigation Trees in a top-down manner. The 

dynamically-evolving intermediate summary contains numerous Typed Sib

ling Groups (TSG) which are passed to the generalization algorithm to com

pute representative Multi-Data Objects and create the next-level TSGs. The 

two main types of generalization algorithms are Node-based and Partition-

based. The Node-based approach (Greedy and Enumerate All) examine in

dividual members of the TSG, independent of each other, in order to find 

a local-thinnest satisfactory generalization. On the other hand, Partition-
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based algorithms (Greedy Top-Down, Greedy Bottom-Up, and ICS) examine 

the entire TSG simultaneously to find a partition that satisfies the Coverage 

Threshold. 

Extensive experiments were conducted for comparing the runtimes and 

quality of the summaries produced by each of the presented methods. We 

examined the effect of varying the Coverage Threshold (CT) and the number 

of attributes considered on different sizes of clickstream data. While there 

was no unanimous "best" CT for any dataset, a CT of 30% appears to be a 

good starting point for further refinement. Moreover, we showed that the size 

of the attributes considered has greater effect when considering lower values 

of CT. Our results also suggest that in general, the Partition-based Greedy 

Top-Down and Bottom-Up algorithms yield better quality summaries than 

ICS and the Node-based approach. 

This thesis presented a first step to summarizing user action sequences. 

There is much room for future work on improving the efficiency and ef

fectiveness of the presented algorithms. Also, as identified at the end of 

Subsection 3.2.3, newer approaches with the ability to piece disjoint blocks 

with mixed attribute combinations still need to be discovered. Such meth

ods may be able to determine a global-thinnest solution and may result in 

vastly-improved summary quality. Finally, it would be beneficial to test our 

algorithms on data that more closely resemble our framework's Navigation 

Trees and also examine the utility of our summaries through real-life user 

feedback interaction. Doing so would involve building a system specifically 

for capturing individual user action sequences without discrepancies in dis

tinguishing unique users and grouping related actions. 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1510 1260 944 703 658 

Max AvgDiff 86.00 79.00 70.17 83.50 82.00 

Min AvgDiff 0.00 0.00 0.00 0.00 4.33 

Average AvgDiff 18.32 21.03 21.70 19.94 23.94 

Max Slack 208 268 249 149 407 

Min Slack ~ 0 0 0 0 0 

Average Slack 8.00 6.89 5.50 2.97 49.03 

Partition-Based GREEDY TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1324 886 705 658 650 

Max AvgDiff 88.00 91.80 88.00 88.00 74.50 

Min AvgDiff 0.00 0.00 1.00 0.00 0.00 

Average AvgDiff 25.27 25.93 24.54 19.81 21.11 

Max Slack 244 372 290 122 407 

Min Slack 0 0 0 0 0 

Average Slack 7.84 8.04 4.80 1.77 15.89 

Partition-Based GREEDY BOTTOM-UP 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 74747 21046 6176 1304 689 

Max AvgDiff 85.50 70.33 ' 53.67 70.31 48.50 

Min AvgDiff 0.00 0.00 0.00 0.00 1.00 

Average AvgDiff 16.76 19.05 20.11 19.31 20.90 

Max Slack 208 161 199 119 407 

Min Slack 0 0 0 0 0 

Average Slack 6.51 5.91 3.80 1.91 14.17 

Table A . l : 1 M B , 814 Navigation Trees - no limitation on Number of At

tributes considered 

99 



.Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 415 440 477 549 671 

Max AvgDiff 98.33 77.53 85.00 79.67 86.00 

Average AvgDiff 27.54 25.81 23.12 20.14 23.99 

Max Slack 391 310 315 169 407 

Average Slack 20.71 12.19 6.69 3.42 47.59 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 417 441 480 550 667 

Max AvgDiff 98.33 77.53 85.00 79.67 86.00 

Average AvgDiff 27.54 25.87 23.09 20.14 23.99 

Max Slack 391 310 315 169 407 

Average Slack 20.71 12.29 6.69 3.42 47.59 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 399 495 515 582 662 

Max AvgDiff 107.25 88.00 88.00 88.00 74.50 

Average AvgDiff 29.47 27.61 24.39 19.81 21.11 

Max Slack 352 372 290 122 407 

Average Slack 13.47 9.91 5.12 1.77 15.89 

Partition-Based GREEDY B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 372 377 567 635 669 

Max AvgDiff 88.00 84.04 88.00 70.13 68.50 

Average AvgDiff 29.42 26.63 23.29 20.09 20.81 

Max Slack 260 231 269 86 407 

Average Slack 11.02 8.63 3.89 2.08 13.50 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 525 595 848 862 665 

Max AvgDiff 68.14 56.35 36.53 49.00 50.00 

Average AvgDiff 27.37 24.70 24.00 22.74 21.99 

Max Slack 732 651 , 569 488 407 

Average Slack 26.85 20.82 110.00 72.98 23.54 

Table A.2: 1 M B , 814 Navigation Trees: # Attributes Considered = 4 
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Appendix A. Complete Experimental Results 

Node-Based G R E E D Y 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 390 474 536 614 666 

Max AvgDiff 77.00 85.09 81.00 83.50 83.00 

Average AvgDiff 25.59 25.91 23.01 19.79 23.97 

Max Slack 435 310 249 149 407 

Average Slack 15.02 8.36 5.77 2.82 49.03 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 409 512 599 638 670 

Max AvgDiff 77.00 85.09 81.00 80.50 83.00 

Average AvgDiff 25.88 25.76 22.93 19.78 23.97 

Max Slack 435 310 249 149 407 

Average Slack 15.37 8.20 5.59 2.82 49.03 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 451 521 567 626 661 

Max AvgDiff 88.00 91.80 88.00 88.00 74.50 

Average AvgDiff 27.98 26.90 24.61 19.81 21.11 

Max Slack 244 372 290 122 407 

Average Slack 8.91 8.20 4.82 1.77 15.89 

Partition-Based GREEDY B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 579 765 832 949 675 

Max AvgDiff 119.00 87.00 120.00 66.67 71.50 

Average AvgDiff 27.89 25.40 23.12 19.61 •21.07 

Max Slack 208 253 199 123 407 

Average Slack 9.09 7.98 3.89 1.88 14.32 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1441 1338 1482 1536 718 

Max AvgDiff 89.00 69.00 68.25 45.80 58.50 

Average AvgDiff 28.12 23.42 21.86 23.62 22.52 

Max Slack 732 651 569 488 407 

Average Slack 38.92 27.02 35.98 75.71 23.15 

Table A.3 : 1 M B , 814 Navigation Trees: # Attributes Considered = 8 
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Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 421 582 646 678 671 

Max AvgDiff 89.00 120.00 77.00 83.50 82.00 

Average AvgDiff 26.60 24.94 22.08 19.70 23.94 

Max Slack 210 295 249 149 407 

Average Slack 12.00 9.27 5.27 2.84 49.03 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 457 888 1434 944 669 

Max AvgDiff 89.00 79.00 77.00 79.50 81.00 

Average AvgDiff 25.80 23.35 22.25 20.08 23.90 

Max Slack 210 128 249 149 407 

Average Slack 12.87 5.35 6.53 3.06 49.03 

Partition-Based GREEDY TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 566 578 626 641 666 

Max AvgDiff 88.00 91.80 88.00 88.00 74.50 

Average AvgDiff 27.31 26.08 24.54 19.81 21.11 

Max Slack 244 372 290 122 407 

Average Slack 8.52 8.14 4.80 1.77 15.89 

Partition-Based GREEDY B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms)' 2112 2244 2396 1117 681 

Max AvgDiff 115.00 84.00 83.00 71.10 67.50 

Average AvgDiff 23.56 21.60 22.93 18.69 21.03 

Max Slack 208 228 199 119 407 

Average Slack 7.97 6.64 3.84 1.78 14.17 

ICS 
1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 5033 4116 3361 2084 1115 

Max AvgDiff 62.06 65.50 42.00 41.00 54.50 

Average AvgDiff 28.29 23.35 20.89 23.47 22.38 

Max Slack 732 651 569 488 407 

Average Slack 33.97 24.14 35.61 77.51 23.15 

Table A.4: 1 M B , 814 Navigation Trees: # Attributes Considered = 12 

102 



Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 454 754 829 706 670 

Max AvgDiff 89.00 74.00 73.00 83.50 82.00 

Average AvgDiff 25.32 23.32 22.36 19.68 23.94 

Max Slack 210 278 249 149 407 

Average Slack 10.81 6.85 5.43 2.84 49.03 

Node-Based E N U M E R A T E ALL 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 669 1904 15116 1883 704 

Max AvgDiff 89.00 85.00 84.21 79.50 81.00 

Average AvgDiff 25.30 22.90 22.51 20.04 23.90 

Max Slack 210 128 195 149 407 

Average Slack 11.09 4.95 4.88 3.08 49.03 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 634 636 659 650 661 

Max AvgDiff 88.00 91.80 88.00 88.00 74.50 

Average AvgDiff 26.95 26.08 24.54 19.81 21.11 

Max Slack 244 372 290 122 407 

Average Slack 8.10 8.14 • 4.80 1.77 15.89 

Partition-Based G R E E D Y BOTTOM-UP 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 3999 5408 4497 1233 693 

Max AvgDiff 112.00 80.00 85.00 70.31 63.50 

Average AvgDiff 23.24 20.99 20.31 19.96 20.97 

Max Slack 208 228 199 119 407 

Average Slack 7.09 6.76 3.83 1.91 14.17 

I C S 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 18655 16861 13041 3514 6034 

Max AvgDiff 49.71 55.50 59.00 37.00 53.50 

Average AvgDiff 23.65 24.34 21.02 23.39 22.31 

Max Slack 732 651 569 488 407 

Average Slack 123.23 32.08 17.61 77.51 23.15 

Table A.5: 1 M B , 814 Navigation Trees: # Attributes Considered = 16 
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Appendix A. Complete Experimental Results 

Node-Based G R E E D Y 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 488 823 873 715 667 

Max AvgDiff 89.00 70.00 70.17 83.50 82.00 

Average AvgDiff 24.73 21.80 22.19 19.97 23.94 

Max Slack 208 282 249 149 407 

Average Slack 10.41 5.81 5.43 2.97 49.03 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1254 42046 182804 2237 670 

Max AvgDiff 89.00 79.00 84.21 79.50 81.00 

Average AvgDiff 24.69 22.17 22.25 20.01 23.90 

Max Slack 208 128 195 149 407 

Average Slack 10.65 4.59 4.97 3.08 49.03 

Partition-Based GREEDY TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 697 702 672 655 661 

Max AvgDiff 88.00 91.80 88.00 88.00 74.50 

Average AvgDiff 26.45 26.02 24.54 19.81 21.11 

Max Slack 244 372 290 122 407 

Average Slack 8.27 8.07 4.80 1.77 15.89 

Partition-Based G R E E D Y B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 7484 9157 4210 1287 • 689 

Max AvgDiff 110.00 87.00 86.00 70.31 59.50 

Average AvgDiff 22.97 20.95 20.23 19.63 20.98 

Max Slack 208 228 199 119 407 

Average Slack 6.85 6.11 3.81 1.92 14.17 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 80925 199634 142693 3723 84477 

Max AvgDiff 52.00 92.00 55.00 43.45 51.50 

Average AvgDiff 26.91 24.61 20.93 23.30 22.22 

Max Slack 732 158 569 488 407 

Average Slack 100.75 21.11 17.67 75.71 23.15 

Table A.6: 1 M B , 814 Navigation Trees: # Attributes Considered = 20 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 7176 3713 1850 1277 1014 

Max AvgDiff 86.00 81.33 56.67 74.50 44.80 

Average AvgDiff 17.59 19.52 20.22 19.46 22.48 

Max Slack 656 340 616 397 854 

Average Slack 14.48 9.09 9.91 6.31 72.33 

Partition-Based GREEDY TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 3012 1904 1506 1214 1084 

Max AvgDiff 88.00 96.67 88.35 60.27 42.00 

Average AvgDiff 24.02 23.70 22.88 19.47 20.28 

Max Slack 412 868 203 196 854 

Average Slack 12.77 12.07 7.74 4.00 25.69 

Partition-Based GREEDY B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 282404 124927 12679 2214 1094 

Max AvgDiff 76.50 95.33 76.56 62.39 46.00 

Average AvgDiff 19.83 20.21 20.23 18.67 20.03 

Max Slack 431 528 543 233 854 

Average Slack 12.58 17.26 10.57 4.78 23.90 

Table A.7: 2 M B , 1709 Navigation Trees - no limitation on Number of At 

tributes considered 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 776 826 880 958 1026 

Max AvgDiff 85.00 84.00 79.41 79.00 46.67 

Average AvgDiff 24.78 24.24 21.92 19.76 22.52 

Max Slack 398 538 367 397 854 

Average Slack 29.09 18.19 10.87 7.33 64.00 

Node-Based E N U M E R A T E A L L 

Partition-Based G R E E D Y TOP-DOWN 

Partition-Based G R E E D Y B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 776 823 884 974 1040 

Max AvgDiff 85.00 84.00 79.41 57.00 46.67 

Average AvgDiff 24.78 24.24 22.10 19.49 22.52 

Max Slack 398 538 367 397 854 

Average Slack 29.09 18.19 10.99 8.00 64.00 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 819 883 917 1004 1076 

Max AvgDiff 131.00 88.00 88.35 60.27 42.00 

Average AvgDiff 26.95 24.93 22.92 19.47 20.28 

Max Slack 456 868 203 196 854 

Average Slack 18.15 13.34 7.86 4.00 25.69 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 805 921 1049 1246 1089 

Max AvgDiff 88.00 119.00 88.00 68.50 46.00 

Average AvgDiff 26.00 24.15 21.94 19.85 19.99 

Max Slack 334 430 295 301 854 

Average Slack 17.31 18.05 9.26 4.43 23.38 

ICS 

1 0 % ' 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 979 1267 1376 1463 1036 

Max AvgDiff 82.00 80.33 33.17 33.17 68.50 

Average AvgDiff 25.86 24.70 24.05 22.27 20.60 

Max Slack 845 1367 1196 1025 854 

Average Slack 30.08 65.83 176.59 121.40 27.54 

Table A.8: 2 M B , 1709 Navigation Trees: # Attributes Considered = 4 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 815 1016 976 1168 1024 

Max AvgDiff 90.80 81.00 81.00 60.61 44.80 

Average AvgDiff 24.91 23.65 21.60 19.43 22.81 

Max Slack 438 375 334 397 854 

Average Slack 21.59 14.18 9.75 6.94 71.41 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 824 1227 1019 1548 1020 

Max AvgDiff 90.80 81.00 81.00 70.33 44.80 

Average AvgDiff 24.44 23.07 21.06 19.72 22.80 

Max Slack 400 375 367 397 854 

Average Slack 18.77 14.02 9.10 7.85 71.41 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 973 995 1031 1170 1075 

Max AvgDiff 88.00 96.67 88.35 60.27 42.00 

Average AvgDiff 25.67 24.68 22.95 19.47 20.28 

Max Slack 412 868 203 196 854 

Average Slack 14.06 12.48 7.75 4.00 25.69 

Partition-Based G R E E D Y B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1511 2387 1800 2036 1096 

Max AvgDiff 86.00 87.00 87.00 64.97 52.33 

Average AvgDiff 22.29 21.33 20.33 19.61 20.07 

Max Slack 331 485 326 233 854 

Average Slack 15.70 17.77 9.28 4.49 24.12 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 3801 2688 2724 3246 1091 

Max AvgDiff 49.33 68.67 51.33 33.17 67.50 

Average AvgDiff 26.54 24.01 22.16 22.15 20.43 

Max Slack 1538 1367 1196 1025 854 

Average Slack 154.56 57.25 44.06 118.84 27.72 

Table A.9: 2 M B , 1709 Navigation Trees: # Attributes Considered = 8 
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Appendix A. Complete Experimental Results 

Node-Based G R E E D Y 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 906 1080 1087 1202 1025 

Max AvgDiff 80.00 82.06 77.00 60.61 44.80 

Average AvgDiff 23.47 23.71 21.29 19.49 22.60 

Max Slack 430 375 319 397 854 

Average Slack 18.04 13.83 8.33 7.30 72.33 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1106 1606 1930 2158 1022 

Max AvgDiff 80.00 80.25 77.20 70.33 44.80 

Average AvgDiff 23.81 23.34 20.98 20.37 22.59 

Max Slack 406 375 367 397 854 

Average Slack 16.73 13.17 8.73 7.83 72.33 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1137 1094 1192 1195 1077 

Max AvgDiff 88.00 96.67 88.35 60.27 42.00 

Average AvgDiff 25.00 23.81 22.91 19.47 20.28 

Max Slack 412 868 203 196 854 

Average Slack 13.19 12.05 7.72 4.00 25.69 

Partition-Based G R E E D Y B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 5520 "9551 4854 2115 .1097 

Max AvgDiff 87.00 117.00 84.74 61.39 46.00 

Average AvgDiff 21.88 22.53 21.74 19.38 19.99 

Max Slack 331 865 487 233 854 

Average Slack 14.73 17.99 9.51 4.88 24.12 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 9964 5662 6567 3997 1345 

Max AvgDiff 52.00 44.50 54.00 33.17 63.50 

Average AvgDiff 25.59 22.77 21.24 23.06 20.33 

Max Slack 1538 1367 1196 1025 854 

Average Slack 167.67 99.76 44.62 135.61 27.72 

Table A . 10: 2 M B , 1709 Navigation Trees: # Attributes Considered = 12 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1084 1215 1179 1242 1028 

Max AvgDiff 78.00 94.00 98.00 74.50 44.80 

Average AvgDiff 23.81 22.63 20.76 19.51 22.55 

Max Slack 453 376 • 319 397 854 

Average Slack 17.29 12.22 8.22 6.31 72.33 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1853 3663 7013 2574 1034 

Max AvgDiff 78.00 74.00 74.00 71.50 44.80 

Average AvgDiff 22.74 21.10 20.92 20.32 22.53 

Max Slack 383 376 367 397 854 

Average Slack 15.69 11.26 8.66 6.65 72.33 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1358 1276 1279 1209 1100 

Max AvgDiff 88.00 96.67 88.35 60.27 42.00 

Average AvgDiff 24.84 23.70 22.91 19.47 20.28 

Max Slack 412 868 203 196 854 

Average Slack 13.17 12.07 7.72 4.00 25.69 

Partition-Based G R E E D Y BOTTOM-UP 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 11496 12579 6142 2184 1104 

Max AvgDiff 112.00 70.00 85.00 62.39 46.00 

Average AvgDiff 20.53 21.80 20.10 18.54 20.03 

Max Slack 431 528 296 233 854 

Average Slack 14.60 17.96 7.80 4.67 23.90 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 43191 19804 25361 4367 2459 

Max AvgDiff 46.57 65.33 53.25 33.17 59.50 

Average AvgDiff 24.64 23.21 20.91 23.00 20.29 

Max Slack 1538 1367 1196 1025 854 

Average Slack 137.70 84.27 43.40 135.61 27.72 

Table A.11: 2 M B , 1709 Navigation Trees: # Attributes Considered = 16 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1191 1349 1501 1288 1026 

Max AvgDiff 100.50 94.00 69.00 74.50 44.80 

Average AvgDiff 22.40 22.49 20.59 19.49 22.51 

Max Slack 488 376 616 397 854 

Average Slack 17.04 11.95 9.81 6.31 72.33 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 6909 27009 11477 4100 1027 

Max AvgDiff 89.00 70.20 69.00 7L50 44.80 

Average AvgDiff 21.41 20.71 20.30 20.18 22.49 

Max Slack 383 376 319 397 854 

Average Slack 14.91 11.62 9.26 6.58 72.33 

Partition-Based GREEDY TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1547 1398 1354 1216 1079 

Max AvgDiff 88.00 96.67 88.35 60.27 42.00 

Average AvgDiff 24.79 23.70 22.88 19.47 20.28 

Max Slack 412 868 203 196 854 

Average Slack 13.11 12.07 7.74 4.00 25.69 

Partition-Based GREEDY B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 27305 17954 9976 2201 1103 

Max AvgDiff 86.00 48.50 86.00 62.39 46.00 

Average AvgDiff 20.97 20.88 20.92 18.75 20.03 

Max Slack 431 528 200 233 854 

Average Slack 13.65 17.53 8.24 4.86 23.90 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 267662 75959 88405 48780 4968 

Max AvgDiff 59.67 43.50 48.00 33.17 56.50 

Average AvgDiff 24.79 23.50 21.38 22.76 20.27 

Max Slack 1538 1367 1196 1025 854 

Average Slack 139.02 106.31 42.75 135.69 27.72 

Table A. 12: 2 M B , 1709 Navigation Trees: # Attributes Considered = 20 
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Appendix A: Complete Experimental Results 

Node-Based G R E E D Y 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 18881 8080 10669 4488 2667 

Max AvgDiff 80.80 85.09 90.80 47.00 38.57 

Average AvgDiff 17.37 18.70 19.76 18.89 16.35 

Max Slack 1317 1041 879 1210 3346 

Average Slack 41.74 33.92 21.72 32.18 94.05 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 18797 9816 6542 4174 4029 

Max AvgDiff 88.00 88.00 88.00 56.33 60.25 

Average AvgDiff 22.41 21.50 19.88 18.79 16.56 

Max Slack 1329 1003 884 1210 3346 

Average Slack 39.87 28.07 19.37 24.98 88.47 

Partition-Based G R E E D Y B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 13543483 1513646 32624 7520 3444 

Max AvgDiff 77.50 77.50 73.00 57.00 58.33 

Average AvgDiff 16.70 18.18 19.91 18.93 15.74 

Max Slack 1317 999 791 1077 3346 

Average Slack 41.63 32.73 19.86 17.13 89.00 

Table A . 13: 5 M B , 6692 Navigation Trees - no limitation on Number of 

Attributes considered 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 2595 2826 2978 4510 2707 

Max AvgDiff 69.85 73.00 74.50 50.00 38.57 

Average AvgDiff 22.01 20.91 19.51 18.90 16.27 

Max Slack 4582 1027 883 1210 3346 

Average Slack 83.92 40.70 24.24 44.81 94.73 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 2577 2805 2962 5012 2717 

Max AvgDiff 69.85 73.00 74.50 61.00 38.57 

Average AvgDiff 22.01 20.91 19.43 19.38 16.27 

Max Slack 4582 1027 883 1210 3346 

Average Slack 83.92 40.70 23.71 41.61 94.73 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 4721 4528 4719 4163 4098 

Max AvgDiff 88.00 88.00 88.00 56.33 60.25 

Average AvgDiff 23.46 22.10 19.65 18.79 16.56 

Max Slack 2538 1003 884 1210 3346 

Average Slack 51.94 30.23 20.90 24.98 88.47 

Partition-Based G R E E D Y B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 4060 3541 4611 6046 3431 

Max AvgDiff 85.00 66.00 80.50 69.00 50.00 

Average AvgDiff 23.31 16.56 18.88 19.61 16.22 

Max Slack 2252 1000 1619 1077 3346 

Average Slack 57.09 46.74 25.77 18.24 90.21 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 3522 3762 4030 4434 2547 

Max AvgDiff 78.00 52.50 47.33 41.00 37.80 

Average AvgDiff 19.68 18.68 14.74 14.04 16.14 

Max Slack 6022 5353 4684 4015 3346 

Average Slack 187.84 115.55 162.53 179.98 104.07 

Table A . 14: 5 M B , 6692 Navigation Trees: # Attributes Considered = 4 
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Appendix A. Complete Experimental Results 

Node-Based G R E E D Y 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 2800 2992 4531 4530 2714 

Max AvgDiff 82.00 81.00 76.56 54.50 38.57 

Average AvgDiff 22.26 20.48 20.40 18.69 16.35 

Max Slack 1692 . 1040 885 1210 3346 

Average Slack 61.80 38.10 • 21.80 42.55 94.05 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 2787 3040 5723 5123 2727 

Max AvgDiff 82.00 81.38 76.56 ' 42.57 38.57 

Average AvgDiff 22.18 20.79 19.23 18.42 16.35 

Max Slack 1692 1040 886 1210 3346 

Average Slack 61.99 32.55 21.06 40.22 . 94.05 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 5538 5607 5213 4227 4084 

Max AvgDiff 88.00 88.00 88.00 56.33 60.25 

Average AvgDiff 23.40 22.03 19.87 18.79 16.56 

Max Slack 1329 1003 884 1210 3346 

Average Slack 44.56 28.65 19.31 24.98 88.47 

Partition-Based G R E E D Y BOTTOM-UP 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 9637 16308 6894 6218 3471 

Max AvgDiff 77.00 61.00 67.00 60.50 58.33 

Average AvgDiff 19.70 19.46 21.35 19.50 16.30 

Max Slack 1320 1355 610 1077 3346 

Average Slack 54.06 40.98 20.95 17.06 89.00 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 7998 9451 10639 7069 2566 

Max AvgDiff 97.50 51.00 46.00 32.85 37.80 

Average AvgDiff 22.31 19.51 14.96 12.75 . 16.14 

Max Slack 6022 5353 4684 4015 3346 

Average Slack 112.88 101.44 147.23 155.07 104.08 

Table A . 15: 5 M B , 6692 Navigation Trees: # Attributes Considered = 8 



Appendix A . Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 2951 3149 6430 4498 2704 

Max AvgDiff 81.00 85.09 76.56 47.00 38.57 

Average AvgDiff 21.12 20.19 19.64 19.27 16.35 

Max Slack 1705 1041 880 1210 3346 

Average Slack 58.63 35.26 20.72 33.36 94.05 

Node-Based E N U M E R A T E ALL 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 3107 4340 14419 5357 2715 

Max AvgDiff 81.00 81.38 76.56 45.00 38.57 

Average AvgDiff 20.74 20.20 19.60 19.00 16.35 

Max Slack 1705 1041 880 1210 3346 

Average Slack 57.19 34.00 20.69 30.29 94.05 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 6850 6640 " 6212 4248 4126 

Max AvgDiff 88.00 88.00 88.00 56.33 60.25 

Average AvgDiff 23.37 21.99 19.88 18.79 16.56 

Max Slack 1329 1003 884 1210 3346 

Average Slack 43.98 28.14 19.37 24.98 88.47 

Partition-Based G R E E D Y B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 66419 91174 18129 6532 3418 

Max AvgDiff 89.74 108.00 86.00 67.00 58.33 

Average AvgDiff 19.44 17.96 18.11 19.57 16.23 

Max Slack 1317 •999 883 1077 3346 

Average Slack 55.16 39.53 19.56 17.11 89.00 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 20947 20878 23211 7516 2595 

Max AvgDiff 51.00 85.00 75.00 32.85 37.80 

Average AvgDiff 18.46 19.68 14.45 12.71 16.16 

Max Slack 6022 5353 4684 4015 3346 

Average Slack 211.90 71.05 133.89 155.07 103.26 

Table A . 16: 5 M B , 6692 Navigation Trees: # Attributes Considered = 12 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 3088 4180 10181 • 4511 2707 

Max AvgDiff 78.00 85.09 77.00 47.00 38.57 

Average AvgDiff 20.84 20.01 20.11 19.12 16.35 

Max Slack 1709 1041 879 1210 3346 

Average Slack 55.79 32.80 20.17 33.31 94.05 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 4452 22723 40588 6671 2718 

Max AvgDiff 78.00 91.72 76.56 42.00 38.57 

Average AvgDiff 20.91 19.75 19.34 18.71 16.35 

Max Slack 1709 1041 880 1210 3346 

Average Slack 52.41 31.14 19.57 31.22 94.05 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 7493 7456 6534 4230 4101 

Max AvgDiff 88.00 88.00 88.00 56.33 60.25 

Average AvgDiff 23.42 21.90 19.88 18.79 16.56 

Max Slack 1329 1003 884 1210 3346 

Average Slack 44.21 28.13 19.37 24.98 88.47 

Partition-Based GREEDY B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 278707 387286 27335 6864 3443 

Max AvgDiff 68.00 87.75 55.50 57.00 58.33 

Average AvgDiff 19.22 19.33 19.93 19.57 16.13 

Max Slack 1317 999 791 1077 3346 

Average Slack 50.81 32.05 20.78 16.81 89.00 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 56021 43034 31840 9767 2848 

Max AvgDiff 53.00 26.00 45.00 32.85 37.80 

Average AvgDiff 18.12 15.75 14.03 12.68 16.14 

Max Slack 6022 5353 4684 4015 3346 

Average Slack 230.95 335.03 146.90 ,155.07 103.26 

Table A . 17: 5 M B , 6692 Navigation Trees: # Attributes Considered = 16 
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Appendix A. Complete Experimental Results 

Node-Based G R E E D Y 

10% 20% 30% 40% 50% 

Runtime (ms) 3579 5098 10303 4528 2715 

Max AvgDiff 77.00 85.09 90.80 47.00 38.57 

Average AvgDiff 20.55 19.34 19.81 19.09 16.35 

Max Slack 1709 1041 879 1210 3346 

Average Slack 56.51 32.95 20.57 33.31 94.05 

Node-Based E N U M E R A T E ALL 

10% 20% 30% 40% 50% 

Runtime (ms) 12162 111601 62276 21237 2708 

Max AvgDiff 77.00 112.00 76.56 41.00 38.57 

Average AvgDiff 20.41 18.62 19.18 18.63 16.35 

Max Slack 1709 1041 880 1210 3346 

Average Slack 50.22 30.39 19.72 31.22 94.05 

Partition-Based G R E E D Y TOP-DOWN 

10% 20% 30% 40% 50% 

Runtime (ms) 8572 8599 6565 4217 4044 

Max AvgDiff 88.00 88.00 88.00 56.33 60.25 

Average AvgDiff 23.38 21.48 19.88 18.79 16.56 

Max Slack 1329 1003 884 1210 3346 

Average Slack 43.80 28.22 19.37 24.98 88.47 

Partition-Based G R E E D Y B O T T O M - U P 

10% 20% 30% 40% 50% 

Runtime (ms) 657418 934456 28009 7415 3442 

Max AvgDiff 86.00 70.00 73.00 57.00 58.33 

Average AvgDiff 19.43 18.66 19.28 19.27 16.05 

Max Slack 1317 999 791 1077 3346 

Average Slack 51.94 32.23 20.32 17.15 89.00 

ICS 

10% 20% 30% 40% 50% 

Runtime (ms) 316148 151577 34334 49402 4360 

Max AvgDiff 48.00 43.13 44.00 32.85 37.80 

Average AvgDiff 17.40 19.14 14.54 12.64 16.14 

Max Slack 6022 5353 4684 4015 3346 

Average Slack 235.11 121.35 147.32 155.07 104.08 

Table A . 18: 5 M B , 6692 Navigation Trees: # Attributes Considered = 20 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 224601 102234 71105 36039 12925 

Max AvgDiff 101.60 87.08 61.00 69.67 54.00 

Average AvgDiff 18.24 18.29 18.10 18.82 20.87 

Max Slack 2260 1681 1010 2650 8442 

Average Slack 33.75 23.55 21.95 18.39 165.87 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 128387 71200 51045 30686 24425 

Max AvgDiff 131.00 102.00 78.00 81.00 51.00 

Average AvgDiff 22.07 20.30 18.71 18.32 16.06 

Max Slack 2302 3653 1295 2237 8442 

Average Slack 25.61 31.60 21.65 15.47 232.88 

Partition-Based GREEDY B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) >17449254 17449254 165088 44798 20384 

Max AvgDiff n/a 67.50 85.71 67.25 37.00 

Average AvgDiff n/a 15.42 17.38 18.14 15.37 

Max Stack n/a 2075 6062 2702 8442 

Average Slack n/a 32.59 28.16 16.29 265.00 

Table A . 19: 10 M B , 16885 Navigation Trees - no limitation on Number of 

Attributes considered 
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Appendix A. Complete Experimental Results 

Node-Based G R E E D Y 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 14160 17698 17738 37121 13409 

Max AvgDiff 60.00 63.00 88.50 78.00 48.33 

Average AvgDiff 21.90 20.47 18.54 18.37 17.76 

Max Slack 10296 3147 1006 2650 8442 

Average Slack 132.57 64.12 34.90 21.67 180.17 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 14191 17594 17748 36960 13501 

Max AvgDiff 60.00 63.00 88.50 78.00 48.33 

Average AvgDiff 21.90 20.53 18.54 18.35 17.76 

Max Slack 10296 3147 1006 2650 8442 

Average Slack 132.57 61.25 34.90 21.52 180.17 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 52497 47531 52139 33378 24969 

Max AvgDiff 107.00 102.00 78.00 81.00 51.00 

Average AvgDiff 24.12 21.28 18.95 18.32 16.06 

Max Slack 4880 3653 1295 2237 8442 

Average Slack 51.41 40.83 22.33 15.47 232.88 

Partition-Based G R E E D Y BOTTOM-UP 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 61680 32770 45265 43441 21360 

Max AvgDiff 88.00 81.00 67.00 88.00 44.50 

Average AvgDiff 24.46 19.63 17.71 17.99 15.77 

Max Slack 4359 1691 4919 2702 8442 

Average Slack 38.28 49.65 25.89 16.05 265.00 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 14754 16376 17830 18653 9176 

Max AvgDiff 69.00 68.67 35.15 57.00 52.33 

Average AvgDiff 21.55 17.54 18.54 20.44 18.40 

Max Slack 15196 13508 11819 10131 8442 

Average Slack 298.71 209.92 337.63 213.02 203.31 

Table A.20: 10 M B , 16885 Navigation Trees: # Attributes Considered = 4 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 17607 19824 72995 37226 13336 

Max AvgDiff 74.50 64.00 84.33 78.00 48.33 

Average AvgDiff 22.42 20.36 18.48 19.11 17.76 

Max Slack 4835 3171 1005 2650 8442 

Average Slack 95.68 49.39 28.45 20.43 180.17 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 17686 21023 116100 37497 13527 

Max AvgDiff 74.50 74.00 84.33 78.00 48.33 

Average AvgDiff 22.31 20.70 18.53 19.00 17.76 

Max Slack 4835' 3171 1005 2650 8442 

Average Slack 87.48 46.83 28.52 20.39 180.17 

Partition-Based GREEDY TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 61762 54410 48714 33368 24889 

Max AvgDiff 107.50 102.00 78.00 81.00 51.00 

Average AvgDiff 24.38 21.09 18.80 18.32 16.06 

Max Slack 3211 3653 1295 2237 8442 

Average Slack 42.28 34.98 22.00 15.47 232.88 

Partition-Based GREEDY B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 72194 101890 69731 45414 21382 

Max AvgDiff 120.00 91.00 74.50 75.75 37.00 

Average AvgDiff 21.82 18.69 18.56 18.20 15.75 

Max Slack 4266 3862 6054 2702 8442 

Average Slack 31.20 51.90 36.11 16.06 265.00 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 37085 44723 53730 21673 9113 

Max AvgDiff 80.00 65.00 54.20 50.67 52.33 

Average AvgDiff 19.55 18.44 15.76 15.78 18.45 

Max Slack 15196 13508 11819 10131 8442 

Average Slack 300.84 189.54 300.29 232.60 204.87 

Table A.21: 10 M B , 16885 Navigation Trees: # Attributes Considered = 8 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 23829 20418 73575 37525 13395 

Max AvgDiff 84.22 79.70 61.00 78.00 57.00 

Average AvgDiff 21.56 19.43 18.64 19.11 18.01 

Max Slack 4859 3197 1010 2650 8442 

Average Slack 86.94 40.60 22.43 20.49 234.68 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 26437 24307 119655 37556 13460 

Max AvgDiff 76.60 87.80 67.50 78.00 57.00 

Average AvgDiff 21.43 19.32 18.03 18.77 18.01 

Max Slack 4859 3197 1010 2650 8442 

Average Slack 86.12 39.60 22.30 20.35 234.68 

Partiti on-Based GREEDY TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 75804 57689 51619 33458 25106 

Max AvgDiff 131.00 102.00 78.00 81.00 51.00 

Average AvgDiff 23.53 20.62 18.79 18.32 16.06 

Max Slack 2302 3653 1295 2237 8442 

Average Slack 33.59 33.45 21.73 15.47 232.88 

Partition-Based G R E E D Y BOTTOM-UP 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 342360 480370 148636 45454 21371 

Max AvgDiff 87.00 68.50 76.50 65.25 37.00 

Average AvgDiff 18.97 17.84 17.36 18.36 15.63 

Max Slack 5260 3681 6062 2702 8442 

Average Slack 30.63 44.92 26.41 15.92 265.00 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 133054 97277 90822 21756 9372 

Max AvgDiff 44.67 56.00 53.50 50.67 52.33 

Average AvgDiff 17.49 18.95 16.05 15.74 18.63 

Max Slack 15196 13508 11819 10131 8442 

Average Slack 844.54 153.06 262.08 232.60 201.89 

Table A.22: 10 M B , 16885 Navigation Trees: # Attributes Considered = 12 
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Appendix A. Complete Experimental Results 

Node-Based G R E E D Y 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 24237 20907 73749 37460 13440 

Max AvgDiff 71.33. 98.06 61.00 78.00 54.00 

Average AvgDiff 21.75 18.61 18.25 18.84 20.87 

Max Slack 4866 3198 1010 2650 8442 

Average Slack 73.68 36.61 22.10 18.39 165.87 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 26625 34793 139334 38838 13808 

Max AvgDiff 70.00 97.06 73.50 78.00 54.00 

Average AvgDiff 21.55 18.31 18.01 18.74 21.37 

Max Slack 4866 3198 1010 2650 8442 

Average Slack 79.28 35.18 20.63 18.51 188.92 

Partition-Based G R E E D Y TOP-DOWN , 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 74730 55289 52617 33543 25211 

Max AvgDiff 131.00 102.00 78.00 81.00 51.00 

Average AvgDiff 23.07 20.47 18.71 18.32 16.06 

Max Slack 2302 3653 1295 2237 8442 

Average Slack 32.67 32.69 21.65 15.47 232.88 

Partition-Based G R E E D Y BOTTOM-UP 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1315672 1709049 162261 45132 21532 

Max AvgDiff 78.00 64.50 74.59 66.00 37.00 

Average AvgDiff 19.14 16.76 17.23 18.31 15.51 

Max Slack 5260 2823 6062 2702 8442 

Average Slack 29.80 43.69 31.81 16.05 265.00 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 239875 194063 97100 23663 9528 

Max AvgDiff 74.00 76.00 44.00 50.67 52.33 

Average AvgDiff 18.30 19.16 15.99 15.75 18.61 

Max Slack 15196 13508 11819 10131 8442 

Average Slack 557.57 118.08 260.12 • 230.93 201.89 

Table A.23: 10 M B , 16885 Navigation Trees: # Attributes Considered = 16 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 24496 39809 73893 37698 13484 

Max AvgDiff 81.50 78.50 61.00 69.67 54.00 

Average AvgDiff 21.81 18.50 18.08 18.85 20.87 

Max Slack 4866 2010 1010 2650 8442 

Average Slack 68.61 25.89 21.85 18.39 165.87 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 38567 260614 349361 48993 14655 

Max AvgDiff 89.60 92.12 73.50 69.67 54.00 

Average AvgDiff 20.57 18.01 17.66 18.74 21.37 

Max Slack 4866 2010 1010 .2650 8442 

Average Slack 71.40 26.11 20.64 18.51 188.92 

Partition-Based GREEDY TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 78361 62912 52501 33566 25142 

Max AvgDiff 131.00 102.00 78.00 81.00 51.00 

Average AvgDiff 22.81 20.42 18.71 18.32 16.06 

Max Slack 2302 3653 1295 2237 8442 

Average Slack 31.61 32.15 21.65 15.47 232.88 

Partition-Based G R E E D Y B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 3421940 4373999 165688 45540 21722 

Max AvgDiff 64.00 68.00 80.33 65.00 37.00 

Average AvgDiff 19.87 18.05 17.24 18.20 15.42 

Max Slack 5260 2757 6062 2702 8442 

Average Slack 30.54 34.04 27.98 15.97 265.00 

ICS 
1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 513581 456350 150345 58138 9990 

Max AvgDiff 71.50 76.00 41.00 50.67 52.33 

Average AvgDiff 21.08 18.25 15.83 15.72 i8.60 

Max Slack 15196 13508 11819 10131 8442 

Average Slack 247.59 144.12 263.76 230.93 201.89 

Table A.24: 10 M B , 16885 Navigation Trees: # Attributes Considered = 20 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 32116599 6812556 903526 278610 169725 

Max AvgDiff 83.40 73.00 85.00 79.67 49.50 

Average AvgDiff 17.43 17.88' 18.27 18.12 •17.73 

Max Slack 11813 5360 3200 7006 27344 

Average Slack 42.81 34.49 31.85 26.08 386.14 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 2428575 1424873 873666 459948 234434 

Max AvgDiff 132.00 83.00 75.50 79.00 60.33 

Average AvgDiff 20.70 19.63 18.53 18.60 21.42 

Max Slack 7718 11938 3350 5886 27344 

Average Slack 31.73 43.34 29.18 23.49 290.52 

Partition-Based G R E E D Y B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) >97340527 97340527 5828499 683133 283025 

Max AvgDiff n/a 79.00 83.50 65.80 57.50 

Average AvgDiff n/a 17.84 17.63 17.79 17.41 

Max Slack n/a 9583 2863 7894 27344 " 

Average Slack n/a 45.15 33.08 24.72 345.59 

Table A.25: 25 M B , 54688 Navigation Trees - no limitation on Number of 

Attributes considered 
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Appendix A. Complete Experimental Results i 

Node-Based G R E E D Y 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 311992 307357 358565 277241 168699 

Max AvgDiff 85.41 109.00 82.50 92.50 50.50 

Average AvgDiff 20.58 20.96 18.91 18.19 18.09 

Max Slack 42840 25693 4387 7006 27344 

Average Slack 287.88 110.86 39.45 27.96 381.69 

N ode-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 321734 315359 368640 284300 173422 

Max AvgDiff 85.41 97.00 82.50 92.50 50.50 

Average AvgDiff 20.62 21.06 18.82 18.82 18.09 

Max Slack 42840 25693 4387 7006 27344 

Average Slack 284.05 113.45 40.35 29.02 381.69 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 753069 659811 511513 483531 238827 

Max AvgDiff 100.53 83.00 63.50 79.00 60.33 

Average AvgDiff 23.24 20.39 18.74 18.60 21.42 

Max Slack 16077 11938 20224 5886 27344 

Average Slack 84.27 69.11 55.10 23.49 290.52 

Partition-Based G R E E D Y BOTTOM-UP 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 890450 620233 561474 716886 278158 

Max AvgDiff 101.00 88.00 94.00 75.50 69.00 

Average AvgDiff 22.89 18.03 16.98 18.00 17.87 

Max Slack 13821 15964 19770 7894 27344 

Average Slack 60.36 69.61 59.17 22.66 345.59 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 180408 190810 183617 210786 92766 

Max AvgDiff 63.67 60.50 56.25 37.50 46.33 

Average AvgDiff 22.43 17.67 18.84 15.90 21.27 

Max Slack 49219 43750 38281 32812 27344 

Average Slack 364.31 681.80 573.84 676.92 460.59 

Table A.26: 25 M B , 54688 Navigation Trees: # Attributes Considered = 4 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 714433 1801255 443535 286312 173917 

Max AvgDiff 113.00 91.00 75.50 79.67 49.50 

Average AvgDiff 22.23 20.30 18.49 18.36 17.97 

Max Slack 32195 17051 3134 7006 27344 

Average Slack 136.03 60.92 29.35 26.27 383.91 

Node-Based E N U M E R A T E ALL 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 699198 2762072 436421 281694 170980 

Max AvgDiff 113.00 76.00 116.00 67.33 46.00 

Average AvgDiff 22.24 19.41 18.22 18.55 17.97 

Max Slack 32195 11484 3134 7006 27344 

Average Slack 127.41 64.44 28.61 27.72 383.91 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 980582 836657 768169 501911 245478 

Max AvgDiff 101.00 83.00 78.50 79.00 60.33 

Average AvgDiff 23.01 19.84 18.54 18.60 21.42 

Max Slack 12588 11938 3350 5886 27344 

Average Slack 61.51 53.98 29.86 23.49 290.52 

Partition-Based GREEDY B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1349348 1459566 1698772 707125 289608 

Max AvgDiff 125.00 77.67 76.50 70.33 66.00 

Average AvgDiff 21.78 18.56 17.66 18,48 17.78 

Max Slack 13581 16346 13654 7894 27344 

Average Slack 49.75 66.17 59.69 25.52 345.59 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 526637 584812 557451 240857 91380 

Max AvgDiff 56.00 74.33 53.50 64.00 46.33 

Average AvgDiff 20.65 18.22 18.15 16.10 21.18 

Max Slack 49219 43750 38281 32812 27344 

Average Slack 655.92 705.89 493.70 761.29 457.38 

Table A.27: 25 M B , 54688 Navigation Trees: # Attributes Considered = 8 
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Appendix A. Complete Experimental Results 

Node-Based G R E E D Y 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1959112 1775607 744359 280722 170857 

Max AvgDiff 113.00 72.42 79.00 79.67 49.50 

Average AvgDiff 22.13 19.42 18.39 18.26 17.76 

Max Slack 36640 17051 3200 7006 27344 

Average Slack 118.34 52.01 ' 32.29 26.30 386.14 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 4033531 2776798 1006939 282004 170983 

Max AvgDiff 111.00 66.50 92.50 67.33 45.00 

Average AvgDiff 22.20 18.57 18.34 18.47 17.75 

Max Slack 36640 11484 3134 7006 27344 

Average Slack 114.27 52.42 26.88 27.84 386.14 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1217027 966449 874992 470849 240728 

Max AvgDiff 128.00 83.00 78.50 79.00 60.33 

Average. AvgDiff 22.97 19.79 18.53 18.60 21.42 

Max Slack 7718 11938 3350 5886 27344 

Average Slack 47.40 45,36 29.40 23.49 290.52 

Partition-Based G R E E D Y BOTTOM-UP 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 3824181 4140974 4558053 707005 283963 

Max AvgDiff 124.00 77.44 71.50 66.00 62.00 

Average AvgDiff 19.48 19.85 18.15 17.98 17.73 

Max Slack 10569 14583 18689 7894 27344 

Average Slack 47.58 63.80 58.36 24.46 345.59 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 2110228 1175701 1252214 239779 91358 

Max AvgDiff 37.33 109.00 55.00 60.00 46.33 

Average AvgDiff 17.53 19.80 19.13 15.54 21.15 

Max Slack 49219 43750 38281 32812 27344 

Average Slack 1619.11 199.94 568.94 713.37 457.38 

Table A.28: 25 M B , 54688 Navigation Trees: # Attributes Considered = 12 
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Appendix A. Complete Experimental Results 

Node-Based G R E E D Y 

10% 20% 30% 40% 50% 

Runtime (ms) 1961663 2525915 930180 280724 170818 

Max AvgDiff 113.00 87.00 79.00 79.67 49.50 

Average AvgDiff 20.66 18.58 18.72 18.15 17.73 

Max Slack 36640 21204 3200 7006 27344 

Average Slack 102.06 63.83 31.93 26.08 386.14 

Node-Based E N U M E R A T E ALL 

10% 20% 30% 40% 50% 

Runtime (ms) 4138222 6418700 1807194 283246 171234 

Max AvgDiff 71.78 79.00 91.50 67.33 45.00 

Average AvgDiff 20.93 18.08 18.29 18.34 17.72 

Max Slack 36640 13210 3134 7006 27344 

Average Slack 97.20 49.34 26.92 27.64 386.14 

Partition-Based G R E E D Y TOP-DOWN 

10% 20% 30% 40% 50% 

Runtime (ms) 1256828 1029784 899539 485824 242311 

Max AvgDiff 128.00 83.00 78.50 79.00 60.33 

Average AvgDiff 22.54 19.71 18.50 18.60 21.42 

Max Slack 7718 11938 3350 5886 27344 

Average Slack 44.70 43.53 29.37 23.49 290.52 

Partition-Based GREEDY B O T T O M - U P 

10% 20% 30% 40% 50% 

Runtime (ms) 11005651 . 13109214 5855111 708125 283935 

Max AvgDiff 86.00 66.00 92.50 70.00 60.00 

Average AvgDiff 18.15 16.37 17.64 17.82 17.69 

Max Slack 9562 14583 2863 7894 27344 

Average Slack 46.50 61.79 31.64 24.96 345.59 

ICS 

10% 20% 30% 40% 50% 

Runtime (ms) 3288947 2075728 1439545 242236 91735 

Max AvgDiff 79.00 97.50 60.00 56.00 46.33 

Average AvgDiff 18.73 19.31 18.42 15.50 21.15 

Max Slack 49219 43750 38281 32812 27344 

Average Slack 1345.22 193.25 537.98 713.37 457.38 

Table A.29: 25 M B , 54688 Navigation Trees: # Attributes Considered = 16 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 3241516 2906904 881323 265175 159754 

Max AvgDiff 70.00 74.00 86.00 93.50 48.00 

Average AvgDiff 19.72 17.90 17.76 18.35 18.26 

Max Slack 42451 19078 3397 10443 27344 

Average Slack . 111.11 46.03 27.39 27.06 360.65 

Node-Based E N U M E R A T E A L L 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 8418184 12473990 1862795 281407 170180 

Max AvgDiff 79.00 86.00 74.50 , 88.50 48.50 

Average AvgDiff 19.97 17.66 17.42 17.74 18.23 

Max Slack 36640 15534 4836 10443 27344 

Average Slack 105.95 48.38 32.59 27.55 360.65 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 1263859 1116254 868199 448409 232059 

Max AvgDiff 106.00 91.00 75.50 79.00 60.33 

Average AvgDiff 20.92 19.88 18.72 18.60 21.42 

Max Slack 25490 11938 3350 5886 27344 

Average Slack 52.60 37.64 26.61 23.49 290.52 

Partition-Based GREEDY B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 24979105 38908230 5398037 700310 270852 

Max AvgDiff 117.00 85.00 83.00 65.80 57.50 

Average AvgDiff 19.24 18.88 17.63 17.77 17.65 

Max Slack 29436 17170 2863 7894 27344 

Average Slack 56.94 49.55 31.31 24.83 345.59 

ICS 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 4380736 3448144 1391588 242873 90958 

Max AvgDiff 101.00 85.00 55.00 52.00 46.33 

Average AvgDiff 18.91 19.03 18.48 15.46 21.15 

Max Slack 49219 43750 38281 32812 27344 

Average Slack 1068.95 201.21 575.53 713.37 457.38 

Table A.30: 25 M B , 54688 Navigation Trees: # Attributes Considered = 20 
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Appendix A. Complete Experimental Results 

Node-Based GREEDY 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 125710536 27261010 2333955 1026144 618838 

Max AvgDiff 87.50 95.50 92.33 98.00 61.67 

Average AvgDiff 18.34 18.89 19.48 19.30 18.56 

Max Slack 23358 21611 32121 11521 52112 

Average Slack 39.30 40.22 48.14 24.21 274.23 

Partition-Based G R E E D Y TOP-DOWN 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) 10325656 5772992 3778416 1849491 833396 

Max AvgDiff 119.00 93.50 89.50 89.33 54.67 

Average AvgDiff 21.14 20.86 19.95 19.86 17.04 

Max Slack 15316 23426 5825 11521 52112 

Average Slack 42.98 44.04 27.68 22.32 250.26 

Partition-Based GREEDY B O T T O M - U P 

1 0 % 2 0 % 3 0 % 4 0 % 5 0 % 

Runtime (ms) >125710536 55456082 14939727 2809191 1329151 

Max AvgDiff n/a 84.00 87.50 83.00 60.00 

Average AvgDiff n/a 18.65 18.97 19.02 17.65 

Max Slack n/a 11719 36268 15837 52112 

Average Slack n/a 34.40 50.02 20.58 255.90 

Table A.31: 50 M B , 104225 Navigation Trees - no limitation on Number of 

Attributes considered 
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