D-Width, Metric Embedding, and Their Connections
Mohammad Ali Safari

M.Math., University of Waterloo, 2003

A THESIS SUBMITTED IN 'PARTiAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Doctor of Philosophy

. .
THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University of British Columbia
September 2007

© Mohammad Ali Safari, 2007

Abstract

Embedding between metric spaces is a very powerful algorithmic tool and lias been
used for finding good approximation algorithms for several problems. In particular,
embedding to an ¢; norm has been used as the key step in an approximation algo- —~
rithm for the sparsest cut problem. The sparsest cut problem, in turn, is the main .
ingredient of many algorithms that have a divide and conquer nature and are used -
in various fields. : ' o

While every metric is embeddable into ¢; with distortion O(logn) [13], and -~ .
the bound is tight [39], for special classes of metrics better bounds exist. Shortest
path metrics for trees and outefplanar graphs are isometrically embeddable into
¢y [41]. Series-parallel graphs [28] and k-outerplanar graphs [19](for constant k) are
embeddable into ¢; with constant distortion, planar graphs and bounded tree-width - =
graphs are conjectured to have constant distortion in embedding to ;. Bounded-- -
tree-width graphs are one of most general graph classes on which several hard prob-
lems are tractable. _ .

We study the embedding of series-parallel graphs (or, more generally, graphs -
with tree-width two) into ¢; and also the embedding between two line metrics.—
We then move our attention to the generalization of tree-width to digraphs and
hypergraphs and study several relevant problems.

1

Contents

N =1 7 o= Y1 R ii
CCOMEEIIES -« « v e ettt e e e e e e e e i
| I ECy T o) R =Y o) L= P vii
List of Figures ...ttt i i i aecnnaann viii
Acknowledgementsot i i et x
1 Introductionc.ocieioiuiuinininiitiiorereneansoeneonanenns 1
1.1 Metric Embedding E 1

L.1.1 Important Metrics 2
12 0y Metrics « o v v PUPE 3
1.2.1 An application o 3
1.3 Line Metrics e R 8
1.4 Directed Metrics e 10
1.5 Bounded tree-width graphs and digraphs R 10
151 Undirected Tree Widtho oottt 11
152 Directed Tree Widtho oot o 12

1.5.3 Directed tree-width and Directed Metrics 13

iii

1.5.4 Hyper-D-width e 14

1.6 Organization e 15
2 /; embedding of series-parallel graphs . e 16
2.1 Introduction 16
2.2 Constructing the embedding e .17
‘2.3 Flattening e [-. SR 20
2.4 Distortion 9.0 PR o ST 24
2.5 Distortion 6.0 . . SR .' e 25
2.6 Lower bound 29
2.7 Conclusion and Future Work 31
2.8 Proofof Lemmad 32
3 Embedding between Line JAY/ 11 5 o Uo7 T 40
3.1 Introduction40
3.2 Preliminaries U o P 42
3.3 Forbidden Permutations oL 44
3.4 Embedding between two line metvics 45
'3.4.1 Algorithm e 45
3.4.2 Largest Eigenvalue 0L . 46

343 Boundingdy 48

3.5 Computing Separability 49
3.6 Pattern 1'r1at(:;1’1i11g for permutationso 50
3.7 Sortable Permutations o 000 - 53
3.8 Conclusions ancl‘Future Worko T 55

4.1 Introduction. e o 57

4.2 Definitions 60

421 D-widtho IR 60

' 4.2.2 Directed tree-width and haven order 62
4.2.3 Cops and robber GAINIE e 64

43 Directed One TIees . . . o o o v oo 66

| 4.3.1 Algorithmic results e .70
‘ 4.4 Comparing D-width and directed tree-width T2
4.4.1 ~ Arbitrary gap between different games 73

4.4.2 Arbitrary gap between D-width, directed tree-width, and haven

| order L. e 76
4.5 Upper Bounds for D-width o o ... T8
4.5.1 Computing the étrongly cop-monotonicity 80

4.6 Conclusion and Future Work o0 0oL 82

5 Hyper-D-width ... [P 83
51 Introduction. P R 83
5.2 Background oL 83
5.3 Hyper-D-width 87
531 Definition L I 87

5.3.2 Basic Properties 88

533 Stability e 88

5.3.4 Comparison IR 90

5.3.5 cops and robber game L. R 92

5.3.6 Applications o o e 93

54 Introducing hyper-T-width | e 96

5.4.1 Properties e 98

542 Computation P 99

6 Conclusions and Research Directions, 103

6.1 0y metrics e 104

6.2 Line metrics e e e 104

6.3 D-width . . . oo o 105

6.4 Hyper-D-width o, 105
BIBLOZIAPIY - -« v vv v e eee et e e eeeeaeanns SR 107

|

vi

List of Tables

3.

[N

i C e 49

Vil

List of FigUres

o
p—

2.2

2.3

.l\D
.

3.1

3.3

3.4

4.1

4.3

4.4

The graph G for e = (sg,%6). - - -« « o« v v . PR 20
Flattening a triangle. The right figure is really two degenerate triangles. 21
A pair of flattened triangles in a triangle sequence from x to an an-

cestor edge with endpoint y. Considering this case provides some

intuition for our stronger, parameterized, inequality. 26
Lower bound example 30
The 4-separable permutation (2,4,1,3). 44
Algorithm.46
Illustration of permutation 5. 48
A separation tree. L 51
- 5-sortable permutation (*-” indicates coupling) L. o4
A digraph (left) with its D-decomposition of width one (right). . .. 61

Graph on which 4 cops have a winning strategy but 5 cops are required
for robber-monotone strategy. 75
Graph on which 4 cops have a robber-monotone winning strategy but

5 cops are required for cop-monotone strategy. 75

- Finding a strongly cop-monotone winning strategy 31

viil

51 A hyper-D—decomposition with width two. L
5.2 Solving decomposable problem F on a bounded hyper-D-width hy-

pergraph e AU

ix

Acknowledgements

This thesis and my entire career owes a lot to many people. I want to take the
opportunity to thank them all for their support and encouragement without which
I could not reach where I am. ' o

Throughout my PhD I have benefited from invaluable help that I received
from my supervisor, Professor William Evans. I had regular weekly meetings with
him during which T learned a lot from his insightful comments and brilliant mind
and learned how to discuss scientific problemis and how to efficiently do research.
Will generously shared with me his valuable experience in research and helped me
do my PhD research. I would like to deeply thank him for the opportunity that I
had to have him as my supervisor.

I am grateful to my supervisory committee members, Prof. David Kirk-
patrick and Prof. Pavol Hell, who helped me during the preparation of this thesis.
I would like to thank David, Pavol, and also the university examiners, Prof. Joel
Friedman and Prof. Richard Anstee for carefully reading the dissertation and for
their valuable comments for improving it. _

Before coming to UBC, I studied at the university of Waterloo and at Sharif

university of technology. I have learned a lot. by working with Prof.. Prabhakar

Ragde, Alex Lopez Ortiz, Therese Biedl, Mohammad Ghodsi, and Jafar Habibi and
am grateful to them.

My time in UBC couldn’t be as successful without having so many great and
supportive friends. Thank you Armin, Alireza, Baharak, Bahram, Hamid, Hossein,
Mahsa, Majid, Mohsen, Ramin, Reza, Saeid, Yaser, Zahra, and many others whose
name is missing for all your help and support.

21 years of continuous studying wouldn’t have been possible without the
support of my great dad, mom, sisters and brothers. I missed them ever since I
came to Canada, but they always supported me by regularly talking to me on the
phone and praying for my success.

Last, but definitely not least, one person has given the most effort during
these 4 years; my dear wife, Maryam. She made our home a very happy place to

live and always helped to relieve all of the stresses around me.

This thesis is dedicated to rmy pavents, brothers, and sisters, to my dear
Maryam, and to my dear Mana, my little daughter.

Credits. Parts of chapter 4 are based on an ongoing collaboration with Paul
Hunter. '

MOHAMMAD ALI SAFARI

The University of British Columbia

August 2007

Chapter 1

Introduction‘

The purpose of this chapter is to introduce metric embedding, directed tree-width
and study their connections. Its content is a mixture of background. information,
newest research results in the literature on relevant topics, and a summary of our

results which are fully explained in other chapters of the thesis.

1.1 Metric Embedding

Awﬁgtri’c M = (X,d) is a set of points X with non-negative dist‘ance function d
deﬁned’ on any pair of points with the constraint that the distances should satisfy
the triangle inequality, i.e. d(z,y) < d(z,z) + d(z,y), for.all z, y, and z; moreover,
distances are symmetric, i.e. d(z,y) = d(y,z) for all z and y, and d(z,z) = 0, for

all z1.

Remark 1. Throughout this thesis, we may specify a metric M = (X, D) by its
distance function D whenever X is clear from the context. So, we may write a

metric D which, in fact, means a metric whose distance function is D.

- n a metric, d(z,y) is zero if and only if 2 = y. If we remove this constraint and allow
~zero distance between different points then the metric is called a semi-metric.

An embedding from one metric A = (X4,da) into another metric B =
(XB,dB) is a mapping f from X4 to Xg. The ezpansion of f, denoted by exp(f),
is the largest expansion over all distances, i.e. sup,, dg (d};(gi)(y . The contraction

of embedding f, denoted by con(f), is the largest contraction over all distances, i.e.

SUpg EE('%%:%%)(T))' The distortion of embedding f is deﬁn.ed as exp(f) x con'(f).

During the last decade or so, low distortion embedding between metrics has
been used extensively to design efficient dpproximatién algorithms. The reason is
siﬁple: Some problems P are easily solvable if their input comes from some metric
class B but are hard for inputs from some other metric &lass A. If one can embed
an input metric in A to a new metr-ic in B with low distort1011 and solve P on the
new metric and translate the result on the original metric, this usually yields an :

approximation algorithm for metrics in A.

1:1.1. . Important Metrics

So"me.metrics are of particular interest for researchers because of their role in finding
apprdximation algorithms, or their connection to other interesting problems (see the
survey by Piotr Indyk [33]). Every edge-weighted, undirected graph defines a metric
where the po'ints in the metric are vertices in the graph and the distance between
two 'ﬁoints is the shortest path length between the corresponding vertices. Notice
tﬁé‘c 'évery metric corresponas to a complete graph with edge weights equal to the
distari;ce between edge end points. Some important metric classes of this type are
those derived from planar graphs (that correspdnd to shortest paths of weighted
planaf graphs), trees, outer-planar graphs, k-outer-planar graphs, and bounded tree-

width' graphs.

Another type of metric that appears frequently in the literature is E‘é metric

which is the set of points in R¢ where for any two points X = (z1,22,+--, z4) and

Y =(y1,¥2, -+ ,ya) the distance between them is defined as .

X =Yk =«'\°/lﬂc1 —yilf+ |z —y2l* + - + |zg — yal® (1.1)

for k = oo, || X —Y||leo = max{|z1 — y1], |z2 — y2|, - ;|24 — ya|}. In particular, the
£; metric, for its close connection with cut problems, the ¢5 or Euclidean metric, for
its familiarity, and the ¢, for its simplicify of computation, are of interest for many
researchers. Note that we use ¢ instead of ¢¢ when dirnension. is not a concern. .
Embeddings between various important metrics have been studied before.
For example, every n-point met‘ric is isometrically embeddable(i.e. with distortion

1) into £w, though with many dimensions (O(n)), and is-embeddable into the ¢

metric with distortion O('%%) [13, 39]."

) f
. 1

1.2 {1 Metrics

There are several reasons why ¢; metrics are important to éfudy. One main reason is
their close connection with the multi-commodity flow problem and its dual Ver'sion,
the sp;,rsest cut problem. While the maximum multi-commodity flow problem is
solvalz?le in polynomial time, the sparsest cut problem is known to be NP-hard [24].
" In general, if for any length assignment of edges on a given graph the associated

shortest path metric can be embedded into ¢; with distortion «, then the sparsest

cut problem can be solved on that graph with approximation factor at most «[28].

1.2.1 An application

In this section we show how embedding a graph metric into the £; metric is used

to obtain an O(log k) approximation for the sparsest cut problem with £ terminal

3

pairs [6].
| Let G = (V, E) be an undirected graph with capacities 611 its edges. Given k
terminal pairs (s;,t;) (1 = 1,2, ,k), s;,t; € V, and k real valued demands, dem;,
thé goal is to find a cut S, a subset of V, that minimizes the value C’(S)./dem(S),
where C(S9) is the total capacity of edges between S and S = V - S and dem(S) is
the total demand of those pairs (s;,t;) that have one node in S and one in 5, i.e.
CHsut}nS|=1. - |
Just like the maximum ﬂow minimum cut relationship, there is a gener-
alized maximum cut problem that corresponds to the sparsest cut problem.. In

the concurrent flow problem (or demand flow problem) k terminal pairs, (s;,t;) for

it =1,2,--- ,k, are given each having an associated demand, dem; for the ith. com-

modity. The goal is to find the maximum fraction A and concurrently routed flows,
while respecting edge capacity constraints; such that the flow corresponding to each
commodity is at least A times their demands. One easy way to model this is by
Cdnsi}(ierihg the flow associated with every path between commodity pairs. Let B
be the set of all paths from s; to ¢;. Let p{ be the 4% path in P, and fij be the flow

routed through it. The linear program is then as follows.

Magzimize A subject to ;
<de> Toifl <c Ve (LP1)
< ;> Zj fj > Adem; Vi
The dual of LP; is as follows.
Minimize), cede subject to

Teepide 290 (i, 5) (LP2)

-demi H Z 1 . : . i
2o @

One can view de;s‘as distances on edges. The first set of iriequalities means
5 is at most the shortest path value from s; to ¢;. Ae we better have p; as large as
possible in the second set of inequalities, the above LP reduces to

Minimize e Cede (LP3)
> demid(sity) >1 Vi

where d(s;,t;) is the shorteet distance between s; and t; defined by d.’s.

Fquivalently we can 'simpli‘fy LP3 as
disa met?ilcmon G 5@ ' (12)
where C(d) =}, cede énd D(d) =3, demqd(si, t;).

Let OPT™* be the solution to V(LP3). For any partition (S, V' —.5) the total ca-
pacity of edges between S and V — S is C(S) and there is a total demand of dem(S)
for commodities that have |{s;,#;} N S| = 1. Hence, the maximum fraction of de-
mands that can simultaneously be satisfied is at most C(S)/dem(S). Consedﬁently,
the minimum sparsest cut is at least OPT™.

Let d be a distance function on the vertices of G such that there exists a
set S and fer every edge e = {z,y} € Eg, d. = d(z,y) = 1 if exactly one of z and
y is in S, and is 0, otherwise. Such a distance fimction d defines a cut metric on
fﬁe vertices of G. One{can write the sparsesﬁ cut problem as a linear programming

problem as follows.

) min Z(x,y)EE C(l’, y)d(xa y) _ C(d)
d defines a cut-metric D i=1..k demid(si, ti) D(d)

(1.3)

* If we relax the condition that d defines a cut metric and allow it to be any

£1 metric then-the answer would be the same because of the following two lemmas.

Definition 1. Given m metrics My, = (X,d1), My = (X,d2), -+, My = (.X,ldm),
their sum, M = My + Mo+ - -+ M, is a metric (X, d) such that for any pair (z,y),
d(z,y) = >y di(m,y). M is a posz'-tz've weighted sum of metm’cs.Ml,MZ, s My,
if there exist positive values w1, ws, -+ , Wy such that d(z,y) = S widi(z,y) for

all pairs (z,y).

Lemma 1 (Folklore). Every ¢; metric can be written as a weighted sum of cut

metrics.

Proof. Every £, metric is a sum of line metrics (i.e. £} metrics) that correspond to
each dimension. So, it suffices to Iﬁrove it for line metrics. Assume fhat M is a line
metric of n one-dimensional points 1,2, - ,z, and 1 < z9 < --- < z,. Let S; be
a cut metric in which the distance between points p and ¢ (where p <lq) is one only
ifp<iand ¢ > and is zero, otherwise. Let a; = x;41 — z;. We claim that M can

be written as) ; @;5;. Let p and ¢ be two points and p < ¢. The distance between

points p and ¢ is x4 — zp = f;; o; which is equal to their distance in Yo ousi. O
Lemma 2. For positive real values a;, oy, G;(i = 1, 2, ce,n),
2 i
mln — <
/81 Ez azﬁl
Proof. Let A = min; %: Then,), a;oq >), a;f8;. Hence, %i‘%f > A O

. Let 6 be an ¢; metric that minimizes the value —g% over all #; metrics.
According to Lemma 1 we can write 6 as a weighted sum of cut metrics. Let
0 = w161 + wads + - - - + wp, 0, Where each §; is a cut metric and w;’s are all positive.

- Hence, C(6) = Y /2, w;C(6;) and D(8) = 2?117“1 (64). Therefore, according to

Lemma 2, there exists some index 7 such that C(C0) Since § minimizes the
D)

value:%(% over all ¢; metrics (that include cut metrics as well) we conclude that

C(;) _ C(s)
DG = D) |
Consequently, we can formulate the sparsest cut problem as a minimization

problem over #; metrics as follows.

. Z(;&,y)eE C($, y)d(l, y)
min
d is an ¢; norm. Zi=1...k dem;d(s;, t;)

(1.4)

By Lemmas 1 and 2, the value of (1.4) is equal to (1.3) and a solution to
(1.3) can be easily obtained from any solution to (1.4).

Let OPT be the answer to the sparsest cut problém. As mentioned bé’fore,
OPT > OPT*. Let d* be the corresponding distance function to OPT™.

How much does OPT* differ from OPT? According to Bourgain’s theorem
~ [13] d* can be embedded into some £; metric d* with distortion O(logn). Without

loss of generality assume that the embedding from d* to d* has no expansion. So,

OPT > OPT* = > Cedy S S cedd
- Z demid* (S’i, tz) - Z'd@mid* (Si, t,L)
Z Cedj . > OPT

z O(logn) > demd* (s, t;) — O(logn)
Hence, d* gives an O(loé n) approximation for the minimum sparsest cut.

: Noticé that what is important in the above inequality is the maximum con-
trééti;)n of distances d*(si,t;). With a slight modification to the embedding al-
gorithm one can use Boufgain’s theorem and make an embedding that is not an
expansion and guarantees that the contraction for only terminal vertices is th

more than O(log k), where k is the number of terminals. So, we can improve the

approximation factor to O(log k). See [6] for more details.

\

In order to improve the approximation factor, one need only improve the
distortion of fhe embédding into /5. Fér some graphs, in particular unit-weight
expander graphs, ‘this is not possible and the O(logn) bound for the distortion is
tight [39]. Several researchers have then tried to find better distortion for various
classes of graphs. Planar graphs and boﬁ_nded tree-width graphs are two widely
known classes that are ,conjecture-d to be embeddable into ¢; with constant dis-
tortion. Rao [43] proves distortion O(r3 logn) for any K,, minor free class of
_graphs. This yields O(y/logn) for planar graphs and bounded tree-width graphs.
Outerplanar graphs are a class of graphs that are isometrically embeddable into
¢1. Gupta et al. [28] show that the distortion for series-parallel graphs is at most
7+ 4v/3 ~ 13.928. We have improved this value to 6.0 and proved a lower bound
3.0 for the embedding algorithm provided by Gupta et al.. Later, Chekuri et al. [19]
prove that k-outerplanar graphs can be embedded into random trees, and hence into
@f, with constant distortion, namely, O(c¥), for soﬁle constaﬁt ¢. Finally, Carrol et
al. [16] recently found a low distortion embedding into ¢; for bounded bandwidth

graphs.

1:3" Line Metrics

A simple and interesting subclass of #; metrics are line metrics. A line metric is a
set of‘points on a reai line with distances measured using the #; norm (using any ¢
norm. is equivalent). Thus, line metrics are one dimensional versions of £y metrics
(E%) Because of their simplicity and their many applicatiqns, line metrics are often
the t@rget metric for low distortion embedding. |

Badoiu et al. [9] consider the problem of embedding a fixed graph metric

into the best line metric. That is, the authors choose the position of the points on

8

.

a line to minimize distortion.
" For the case that G is unit-weighted and has an optimal line embedding With
distortioﬁ ¢, they propose a O(n3c) time algorithm that finds an embedding with_
distortion O(c?). Since they can always find an embedding with distortion O(n) (m
linear tirﬁe) the best of these two embeddings gives an O(y/n)-approximation for
the optimal embédding. Folr unit-weighted trees, they propose an embedding with
distortion 8A+/clog ¢ + 4c where A is some parameter known to be at most c. This
yields a distortion O(nl/ 3) in general?. They also provide an exact algorithm which
has running time n°(©). In case that G is weighted and ¢ = 1+ ¢ < 1.5, they obtain
an O(n?) algorithm that finds an embedding f with distortion 1+ O(e).
| Later on, Badoiu et al.[8] consider the problem of embedding metrics corre-
sponding to weighted graphs into the line. Let the minimum inter-point distance be
1 and the maximum be A. They propose an approximate embedding with distor-
tion O(A3/4c1/4) and W for el.nbedding general weighted graphs and weighted
tfees’,'"respectively. For the latter case, they prove that it is hard to yapproximate the
of)tilﬁal embedding by Q(y/n). In ‘all cases, ¢ is the optimal distortion. We discuss
this result further in Section 3
Kenyon et al. [36] consider the problem of optimally embedding one fixed
line metric into another ﬁxéd one. This problem is different from what we have
se"e'nb 50 far in the sense that the target Imetrié is fixed and one only needs to find
the riéht mapping between points in the input and targét metrics. Such a problem
has applications in shape matching and objecf recognition. Kenyon et al. propose
a dyhamic programming based algorithm that computes the optimal embedding in

time O(n'?) in case the distortion is less than 3 + 2v/2 =~ 5.829. We later describe

20).means a rough approximation of O with log factors ignored. For example, nlogn =

a family of dynamic programming algorithms that compute optimal embeddings in
polynomial time provided the distortion is less than 13.60. The latter résult was
independently found by Kenyon et al. in an extension of their conference paper and

also by Chandran et al. [17].

1.4 Directed Metrics

There are several problems whose underlying metric is‘not necessarily symmetric.
A trivial example is optimization metric problems on directed graphs such as find-
ing a shortest path. There have been some recent attempts to extend symmetric
(undirected) metrics to asymmetric (directed) onés. Inspired by the directed version
of cut problems, Charikar et al. [18] study directed metrics for the first time and
propose directed invariants of ¢; metrics, E% metrics, and some other metrics and

st:uld_y(t'h'eir relationship with directed cut metrics.

1.5 Bounded tree-width graphs and digraphs

Tree-width has many connections to what we have talked about so far. For ¢;
metrics, it is conjectured that bounded tree-width graphs are embeddable into £4;
with constant distortion. Gupta et al. [28] show that the distortion for series-parallel
graphs (and, in fact, for all graphs with tree-width 2) is at most 7 + 4v/3 ~ 13.928.
Trees, thét have tree-width one, are also isometrically embeddable into ¢;. For the
' multi-cut problem3, Calinescu et al. [15] provide a polynomial timé approximation

scheme (PTAS) for bounded degree and bounded tree-width graphs and digraphs.

3The multi-cut problem is related to the sparsest cut problem. In the multi-cut problem,
there are k pairs of terminals and the aim is to delete edges of minimum total weight to
disconnect all terminal pairs. ‘

10

In this section we review the definitions of tree-width for graphs and digraphs

and discuss some related results.

1.5.1 Undirected Tree Width

The notion of tree-width is considered as a generalization of trees. (t'rees have tree-
width 1) and many intractable problems are efficiently solvable on bounded tree-
width graphs. Examples include Hamiltonian cycle, graph isomorphism, vertex
coloring, and edge coloring.

. . A tree-decomposition of an undirected graph G = (V, E) is a pair (T, W),
where 1" is a tree, and W is a function that assigns to every node ¢ of T' a subset

W; of vertices of G such that
2. For each edge (u,v) € E, there exists some node 4 of T such that {u,v} C W;.

3. For all nodes i, j, k in T, if j is on the unique path from 7 to k then W; N W}, C

w;.

The width of a tree-decomposition (7', W) is the maximum of |W;| —1 over all

- nodes 4 of T'. The tree-width of G is the minimum width over all tree-decomposition

of G.
Notice that the above conditions can be interpreted as follows. For any

connected set S of G,
(G1) Tl|s:= {t{W; NS # 0} # 0, and

(G2) The subgraph of T' with vertex set T'|s and edges {(s,t)|Ws N W; N S # 0}

- forms a connected subtree of T'.

11

It car} be easily shown that it suffices that the conditions G1 and G2 be true for
only edges and vertices, i.e. minimal connected sets. A connected set S is minimal
if there do not exist connected proper subsets A and B of S such that AUB =S

and AN B # 0.

1.5.2 Directed Tree Width

In 1996 Reed et al. [46] proved Youngers’s conjecture [53] roughly saying that every
directed graph has either a large set of disjoint directed circuits or a small set of
vertices that cover all direcped circuits. In their péper, they defined a version of
well-linked sets for directed gréphs and since t'he size of the largest well-linked set'
in undirected graphs has close relationship with tree-width[45] they suggested that
the analogous definition of tree-width for directed graphs might be very useful, as
pointed out in [44]. We believe that a proper definition should ideally measure the
global connectivity of a digraph. For example the tree-width of a directed acyclic
érépH(DAG) should be small because it has low connectivity.

“' Unfortunately finding a definition for directed tree-width analogous to the
undirected case is not easy, since ahnoét all concepts related to undirected tree—width
behave differently in directed graphs. [For example, the bramble number is equal
t6 the haven order in undirected graphs, while they may differ by a factor of two in
dirécf_'ed graphs [48].] There is not an agreed-upon generalization of tree-width for

-~ directed graphs.

For the first time Johnson, Robertson, Seymour, and Thomas[34] gave a
formal definition of directed tree-decomposition (ca]led arboreal-decomposition in
tﬁeir:"béper) and directed tree-width, and proved some theorems relating directed

tree-width and haven order. Other researchers proposed different definitions for

12

the directed tree-width. Safari [47] introduces D-width as an alternative definition
for directed tree-width and proved some facts to justify his definition as a proper

measure for directed tree-width.

Definition 2 (D-decompositions and D-width). A D-decomposition of a di-
rected graph G is a pair (T, W) where T is a tree and W = {Wilt € V(T)} is a

family of subsets of V(G) such that for every strongly connected set S C V(G):

¢
(D1) T|s := {t|W; NS # 0} # 0, and
(D2) The subgraph of T with vertez set Tlg and edges {(s,)W 0 W NS # 0}

forms a connected subtree ofT

A subset S of vertices of G is strongly connected if G[S] is strongly connected. The
Wldth of a D-decomposition (T, W) is the minimum k' such that |W;| < k + 1 for
all W 6 W. The D-width of a directed graph G 1s the minimum width over all

-1

.D-decomposztzons of G.

In Chapter 4 we further extend these results and obtain lower and upper
bounds for D-width in terms of ‘certain cops/robber games on dlgraphs and other
parameters defined on digraphs. We also charactcrue the class of digraphs whose

D-w1dth is one.

1.5.3 Directed tree-width and Directed Metrics

The fact that bounded tree-width graphs have a close relation with £; metrics quickly
b.rings to mind that bounded tree-width digraphs might have good connections to
direct.ed metrics. Bounded tree-width digraphs are actually known to be connected
to cut problems: Calinesct et al. [15] propose a PTAS for bdunded degree, bounded

tree-width digraphs for the directed multicut problem on unit-weighted graphs. A

13

directed multicut in a digraph is a set of edges (or vertices in the vertex version)
whose removal leaves no strongly connected component containing both vertices of

a terminal pair (s;,%;).

1.5.4 Hyper-D-width

The way that D—width is defined suggests that it can be extended to hypergraphs.
Ina D-decomposi‘tion of a digraph G, the subtrees corresponding to vertices of every
- strongly connected set S must form a connected subtree together. S is, in fact, taken
. from the set of‘ minimal connected units of digraph G. If G waé undirected then S
was any.edge or any vertex. In case of hypergraphs, the minimal connected units
are single vertices or hypergraph edges. Let us formally define hyper-D-width.
| Let H = (V, E) be hypergraph. A hyper-D-decomposition of a 'H is a pair
(T,W) where T is a tree and W = {W;|t € V(T)} is a family of subsets of V(H)

such that for every connected set e € E(H):
(H1) T|e:= {t]WiNe # 0} #0, and

(H2) The subgraph of 7' with vertex set 7|, and edges {(s,t)|Ws N W; Ne # 0} |

forms a connected subtree of T'.

The width of a hyper-D-decomposition (T, W) is the maximum of | X;] — 1
ove',r ;.'Lll nodes z € T. The hyper-D-width of a hypergraph is the minimum width
6\;ér 2;11 its hyper-D-decompositions.

| | Hyper-D-width is useful for solving several hard prdblems. In particular, we
will show, in Chapter 5, how we can find polynomial-time ép‘proximation schemes
- (PTAS) for vertex.cover, dominating set, and multicut problems on hypergraphs

Whén,the hyper-D-width of the input hypergraph is constant.

1

14

" Next, for the purpose of computability, we introduce another measure, called
hyper-T-width, which is slightly different from hyper-D-width, inherits almost all
algorithmic and structural properties of hyper-D-width, and, in contrast to hyper-

D-width, is computable when hyper-T-width is constant.

1.6 Organization

In Chapter 2 we go through the details of our results on embedding series parallel
graphs into ¢; with distortion 6.0. In Chapter 3 we talk about embedding between
line metrics and discuss the usage of k-separable permutations in embedding be-
tween fixed line metrics and in other applications. We then move our attention to
tree-width on digraphs and hypergraphs. In Chapter 4 we review existing results
on‘generaliza’ciqn of tree-width on digraphs. In pa;rticular,'we study D-width and
characterize the class of digraphs with D-width one. We also compare D-width with
several other parameters defined on digraphs. Next, we generalize tree-width to
hypergraphs in Chapter 5 and compare our deﬁnition, hyper-D-width, with other
existing connectivity measures on hypergraphs. We also find several algorithmic
applicatiqns of hyper—D—width. We finally introduce hyper-T-width which is slightly
different from hyper-D-width and has the advantage that it is computable in poly-

nomial time when hyper-T-width is constant.

15

Ch'apter 2

Zi embedding of series-parallel

graphs

2.1 Introduction

' Thé 21 metric embedding is of particular interest for its connection to the sparsest
cut problem which, in turn, is the main ingredient of various algorithms that have
éA(;livide' and conquier nature [28]. As outlined in Section 1.2.1, ;che sparsest cut
problem can be interpreted as a minimization problem over ¢; metrics. One can
solve the problem as a 1nillilnizati011 over all shortest path metrics defined on the
‘underlying graph, by linear programming, and then embed the solution into £1. The
distortion incurred by the embedding is essentially the same as the approximation
fa._ctor... In fact, if for any edge weights on a graph G, we can embed the corresponding
r&atric into ¢; with distortion ¢ then the sparsest cut could be approximated on G
with factor c.

While every metric is embeddable into ¢; with distortion O(logn) [13] and

the bound is realized by graph metrics for expander graphs [39], for special classes

16

of metrics better bounds exist. Graph metrics for trees and. outerplanar graphs are
isometrically embeddable into £; [41].. In fact, a shortest path metric corresponding
to a graph G is isometrically embeddable info ¢; if and only if G exclude Kg 3 as a
minor [28]. Series-parallel graphs [28] and k-outerplanar graphs [19](for constant k)
- are embeddable into ¢; with constant distortion. Planar graphs and bounded tree-
width graphs are two widely know classes that are conjectured to be embeddable
into £1 with constant distortion. Rao [43] proves distortion O(r3/Iog n) for any K.,
minor free class of graphs. This yields distortion O(\/I—Sg—ﬁ) for .plar'lar graphs and
bounded tree-width graphs.

In this chapter, we prove an upper bound of 6.0 on the distortion of em-
bedding series-parallel graphs into ¢1. We also prove a lower bound of 3.0 for the
embedding algorithm given by Gupta et al. [28] even when the input metric is iso-

metrically embeddable into £;.

2.2 Constructing the embedding

In this section, we outline the method that Gupta et al. [28] use to obtain a constant-
distortion embedding of series-parallel graphs into ¢;.

y Series-parallel graphs are often defined in a recursive fashion: An edge (s,t)
is a series-parallel graph wifh terminals s and t. If Gy (resp. G2) is a series-parallel
graph‘4 with terminals 31 and t; (resp. sz and to) then a _sem‘es construction creates
a new series-parallel graph, with terminals s; and t,, by taking the union of G
and G9 and unifying ¢; with s9. A parallel construction creates a new series-parallel
ggaph, with terminals s; and t1, by takiﬂg the union of Gy and G’g‘, and unifying s;
Wi_t_h 52 and t; with £g.

An alternative way of constructing series-parallel graphs is more incremental.

17

We start with an edge. At each step, We.choose an existing edge (s,t), introduce a
new vertex z, and connect it to both s and t by edges (z,s) and (z,t). At the end
of the construction, we may remove any subset of edges. This actually constructs
all tree-width-2 graphs, which are more general than series-parallel graphs. Also
we may assume that 1o edges are removed at the end of the construction since
we may choose the weight of every removed edge to be infinity. Gupta et al. use
* this incremental construction to define an ¢;-embedding of the graph, which is the
embedding that we analyze in this section. Consequently, all the results in this
section apply to tree-width-2 gx'aplls:"

Gupta et al.[28] present two fundamentally different methods for embedding
series-parallel graphs into. £; with \constant distortion. The first one, which yields
a distortion factor at most 13.92, recursively computes an #;-embedding as a sum
(\jf. cut-metrics (See the definition in Section 1.2.1). Their second approach is to
represent series-parallel graphs as a probabilistic sum of trees and bundles (special
series—parallei graphs in which all pathé between the two terminals have the same
length) with distortion at most 8. Using the fact that trees are isornetrically em-
beddable into ¢, and bundles are ¢;-embeddable. with distortion at most 2, they
cdhcludé with an {;-embedding with distortion at most 16.

We focus on theif first approach. They use the incremental construction of ‘
series-parallel graphs to compute the £i-embedding as follows:

" Let u(z,y) be the shortest path distance between two vertices z and y and
i(z,y) be the ¢;-distance to be computed. Initially, when the construction starts
with é single edge (s,t) we set fi(s,t) = p(s,t). Assume that.ih one step we introduce
one vertex z and attach it to the endpoints of an existing edge (s,t). Let

N(xvt) _ M(xv S) + /J/(S) t)
2u(s,)

5 — M(xv S) + ,LL(CL‘,t) - /J‘(S>t)

5 and Py =

18

and for every existing vertex ¥ let
fi(z,y) =6 + Pyfi(s,y) + (1 — Ps)ia(t, y). : (2.1)

First, i is isometrically embeddable into ¢; since it is thé sum of a cut metric
and two isometrically émbeddable metrics. Next, to show that f has low distortion,
it is easy to verify that fi preserves edge lengths, i.e., for every edge (z,y) € G,
iMz,y) = p(z,y). However if z and y are not adjacent in G, we need to show
that a(z,y) > w(z,y)/c to prove that the distor‘tion is at most ¢. The fact that
flz,y) < p(z,y) follovs}s from p being a.shoxjtest path metric and from evéry edge
length being preserved in the new distance. |

To show that i(z,y) > u(z,y)/c, Gupta et al. consider two cases based on
thé éﬁcestor relation between z and y. The ancestor edges of vertex x are the parent
edge (s,t) to which z is attached during the incremental construction plus all the

ancestor edges of s and ¢t. Their cases are:

Case 1: y lies on an ancestor edge of z.

Case.2: Neither z nor y lies on an ancestor edge of the other.

For case 1, which turns.out to determine the distortion of the embedding, Gupta et

al. use an inductive argument to prove that

iy > 101

S e p(z,y)

for all.€ € (%, 1). In particular, for € = /3~ 1 this gives the best bound (1~€1i2§—1 ~
ﬁ. We show that the worst distortion in case 1 occurs when the sequence of
ancestor edges from z to y has a special degenerate'form (Lemma 3). Using this

fact and the proof technique of Gupta et al., we can show that the distortion of [

is-at most 9.0. However, in order to obtain our result, that the distortion of £ is at

19

84,85 33 $1, S2

aq
T = 80 v
Lg

t51t6‘ t27t37t4 thtl

S6

Figure 2.1: The graph G** for e = (sg, tg).

most 6.0, we need a more precise inductive argument than the one used by Gupta
et al. This argument appears in Lemma 4. |

We also show, in section 2.6, that the algorithm of Gupta et al. produces an
£1 metric fi with distortidn at least 3.0 on a family of outer-planar graph metrics;

metrics that are known to be isometrically embeddable into ¢;.

2.3 Flattening

For a vertex z and an ancestor edge e = (s,t) of z, let ((s1,t1), (s2,%2), ..., (Sk, tk) =
(s,t)) be the sequence of ancestor edges of z from z to (s,t). That is, (si,2;) is the
parent edge of either s;—; or ¢;_; depending on whether t; = t;_1 or s; = sj—1
respeqtively. To simplify our. deﬁnitions; we assume sp = x and tp = t;. Note that
.for' every 1 <14 < k either ¢; = t;_1 or s; = s;_;. Let G®° be the induced subgraph
of G that contains z and {s;, ;|1 <1 < k}. The graph G** is a sequence of edge-
weighted triangles. Let L; = ,Lt(s,-,ti), o = p(8i—1,8), and By = p(ti—1,t;). See
Figure 2.1. It is important to note that the shortest path between any two vertices
in G** is the same as the shortest path between thosé two vertices in G. Also, the
deﬁnifion of.ﬁ on the (series-parallel) graph G*€ is the same as i on the original

graph G restricted to the vertices in G*¢, as long as the order of construction used

in the two definitions is the same.

20

ti, ti-1 . ti,ti-1

Figure 2.2: Flattening a triangle. The right figure is really two degenerate triangles.

A triangle with edge lengths a, b, and ¢ is flat ifa=b+cora=|b—c.
The flattened version, F™°, of G*¢ contains two flat triangles for every triangle in

G®e. If s; # s;—1 (and t; = t;_1) then F*€ contains the flat triangles (s;—1, u;, ti—1
g

. . Li~Li_1+to; .

and (s, u;,t;) where u; is a new vertex not in G and wp(sj—1,u;) = +sz’
_ Li+Lioitai _

pug, tio1) = 225372 (s, i) = Ly,

p(ss,up) = Li‘l_—QLH_ai, and u(s;,t;) = L. If t; # ti—1 (and s; = s;—1) then F®°

contains the flat triangles (¢;—1;v4, 8i—1) and (t;,v;, 8;) where v; is a new vertex not

. Li—L;_ A Li+Li_ i
in G and p(ti—y,v) = Tﬁﬁ, p(vi, 8i-1) = —i21—+ﬁ> p(si—1,tic1) = Li-1,
w(ti,v;) = M, and p(s;, t;) = L;. For example, see Figure 2.2.

The graph F*¢ is series-parallel and it defines the same graph metric on the
vertices of G** as the graph G does. That is, the shortest path distance between
any two vertices in G*¢ remains unchanged in F*€. We may also construct F*°
following the order induced by the construction order of G with u; added after s;
and leefore si—1 (and v; added between t; and ¢;_1). Using this construction order,

let fir be the £; distance obtained by Gupta et al.’s construction (definition (2.1))

on F*¢ We first prove that gp(z,vy) < i(z,y).

11
i

21

Lemma 3. For an endpoint y of an ancestor edge e of x,
e (2,9) < lz.).

Proof. We prove, by induction of the order of addition of the vertices, that fip(w,y)
< p(w,y) for every vertex w in G*¢. If w is an endpoint of e then fp(w,y) =
i(w,y) = p(w,y). Otherwise, assume w = s;_; and s;_1 # s; (the case w=t;_q is

similar). According to the induction hypothesis, ar(si,y) < f(si,y) and fp(t;,y) <

/:L(ti,» y). Let a = L;—1, b = L;, and ¢ = ;. By definition (2.1) of fir, for pr = Efg;z,
fr(si-1,y) = 0+ privr (ui,y) + (1 — pr)ir (i, y)
: a—b+c -
= pr (T + pr(siy)) + (1= pr)ir(t,y)
a+-b+c ; .
< pr (~—2— + u(siv,y)> + (1 = pr)ilti,y)
By definition (2.1) of fi, for p = “'_QCIJH’,
- c+a—>b . . o
Alsi-1,y) = ——— +palsiy) + (1 = p)ilt:,y)
Hence,
N 3 . N - .cta-—b
Ar(si-1,9) = Alsi-1,y) < (pr = P)(Alsi,y) = Alts,y)) = (1 = pr)=—F—
c+a—>
< blpF —p' - (1 _pF)"““Q’"““
_la=b+c)b—a+c) (a—b+c)lb—a+c)
B 2a+b+c) 2(a+b+c)
=0
d

As Gupfa et al. fnention [28], we can view the construction of i as a proba-
bilistic pro'cess. If we are at a vertex z with parent edge (s,t), er accumulate § (for
the. triangle (z, s, t)) and then collapse (move) to either vertex s with probability P
or to veftex t with probability 1 — Ps. By repeating this process, we move from z té
the edge (sk,tx) and accumulate & fér some triangles in Athe sequence. Let P! be the
probability that when z moves to the edge (s;,t;) it moves to s; and let P} = 1— Pt
The expected sum of the accumulated 8’s plus P*Ly (resp. PFLy) is iz,) if y = t,
(resp. y = si). Define A to be the expected sum of the d’s accumulated over all

‘triangles up to the edge (si,t;). So, for example, A® = 0. Let A = A*. Then
iz, ty) = A+ PSI“L;c and alx, sk) = A+ PtkLk.
As a corollary of Lemma 3, we have

Corollary 1. For an endpoint y of an ancestor edge e of z,
fir(z,y) + Ap < fi(z,y) + A

where A (resp. Ar) is the expected total of 6’s over all triangles through which x is |

collapsed to y in G*¢ (resp. er)

Proof. Let e = (w,y) and L = p{w,y). Assume when z collapses to evin G%¢ (resp.
F*¢) it collapses to vertex y with probability pe (resp. pr) and to w with proBability
gc (resp. gr). According to Lemma 3, fir(z,y) < i(z,y) and fp(z,w) < gz, w).
Hence Ap+qrL = fir(z,y) < i(z,y) - A+qgL. Similarly, AF+pFL = ap(z,w) <
f(z,w) = A+ pgL. Hence Ap < A+ min{gs — qr,pc — pr} = A + min{pr —

PG, pc — pr} < A. Consequently, fip(z,y) + Ap < p(z,y) + A. O

23

2.4 Distortion 9.0

In this section we show how the flattening lemma (Lemma 3) enables us to use Gupta
et al.’s proof, with minor changes, to get a distortion 9.0 bound for series-parallel
graphs.

They prove the following three inequalities for any £ € (%, 1).

‘ (a) If Pi=1 > € then fi(z,s;) > f(w, si-1) + (26 — 1)ay.

(b) If PF=1.> ¢ then iz, s;) > (=, tim1) + (26 — 1) L.

(c) Otherwise, 1 — ¢ < Pi=! < ¢ and fi(z, s;) + 1—2_%([31 — AN > iz, 8i-1) + o

The above three inequalities imply

iz, 8) + I%(A’ -ATH > min{/l(x, Si—1) + (26 — Vo, iz, tim1) + (26 — 1)L}

(2.2)
The left hand side of the inequality, when accumulated over all values of i, generates
a val'Lie not more than (1 + %%)[A(m, sk). The right hand side is a (26 — 1) factor
of ”so;me path from z to sg. (At step ¢ we choose either the edge with length a; or
the or'1e with length L; depending on the minimizing argument.) Hence, fi(z, sg) is
at least a factor (26 — 1)/1 + TQZ% = 9—5—_1%);%1—_—@ of u(x,s;). Choosing € = /3 -1 to

maximize this factor gives a distortion bound of at most 13.92.

{ .
Given flattened triangles, we can improve inequality (2.2) and obtain a better

distortion bound. If a triangle is decreasing, i.e. LL =L; 11—,

iz, 5) = A + P L
= A" 4+ PL + P
= AT 4+ PN L+ au) + (P = PP Do

= (e, si-1) + (Py! = Py

Similarly, flz,si) = fi(z, tiz1) + (Pti‘1 — Pi~YL,. For a decreasing triangle, P* =1 .
in Equation (2.1). Thus, the probability of a move from s;_1 to ¢; is 0, which means
P} = P! and A* — A1 = P~ 1oy, Thus,

(a) if P > % then fi(z, sq) = julx,tic1) + (B = PN L > iz, ti) + %,
b) otherwise, P\ < 2 and fi(z,s;) + 2(A% — AN = fji(z,s;) + 2P ey >
t 3 s
/1(1'7 Si-—l) + (3Psl—1 - Pti—l)ai > ,[L(CL, Si—l) + %
Together, these inequalities imply
y i Ai-l - @ Li
f(z, s;) +2(A = A7) > min < iz, si-1) + X az,tiog) + 5[(2.3)

If the triangle is increasing, i.e. L; = L;j_1 + ay, then iz, s;) = iz, s;) + oy, which
again implies inequality (2.3). Using inequality (2.3) in place of (2.2) in Gupta et

al.’s proof gives us distortion at most 9.0.

2.5 Distortion 6.0

The inductive construction of the graph and equation (2.1) encourage us to express
f(si—1,y) in terms of fi(s;,y) and [(t;,y), and to reverse the direction of induction
used in Gupta et al.’s proof. Also, where the above approach derives an inequality

based on a single vertex s; (or, symmetrically, ¢;), we find that a pé,rameterized

25

Figure 2.3: A pair of flattened triangles in a tl;iangle sequence from z to an ancéstof
edge with endpoint y. Considering this case p1ov1des some intuition for our stronger,
parameterized, inequality.
inequality based on an average of fi(s;,y) and fi(t;,y) leads to a better distortion
bound. The price we pay for using this stronger inequality is a much more com-
plicated iﬁductive step. In fact, the details of the proof are five pages of dense
mathematics. In this section, we give some intuition for the result but leave the
details to Section 2.8. |

Rather than a single flat triangle, consider the pair of triangles in Fig. 2.3.

For that triangle pair,

i) = pie,9) + (1= p)it) = pis) + - it) + Py

and

p(u,y) = min{u(s,y) + o+ v, ult,y) + L+v—a}

L+y—a
Lty

where p =
Any distortion inequality of the form fi(u,y) > cu(u,y) translates, using the

above equations, into an inequality that has contribution from both s and t¢:

pi(s,y) + (1 = p)i(t, y) + py 2 cmin{u(s, y) Tot, p(t,y) + L+ —al.

20

By replacing o with the equivalent (1 — p)(L + 7) and moving py to the right we

~ obtain:

pi(s,y) + (1 —p)i(t,y) >cmin{ wu(s,y)+ (1 —-p)L+(2-p—p/c)v,

(b, y) +pL = py(1 = 1/0)}

- ‘When we inclﬁde a A! termr on the left, this is very shﬁilar to the inequality
(2.2) used by Gupta et al. Notice that we can view v as a parameter and obtain
all flattened triangle pairs. The distortion 6.0 result is based on inequality (2.4) by
setting ¢ = %, using A with coefficient one on the left éide énd replacing 2v with
(. We also add 2/3 min{P¢, P{}L; to fhe right side to make the induction work.

o Let it = fi(s;,y) and pt = u(s;,y) for all 4 (it and ué are defined similarly)..
Let AiA-—— A—AY ie., A; is the expected sum of the §’s accumulated over all triangles
starting from the edge (s;,¢;) up to (sg, tx).

The precise form our intuition takes is

W5(6) = 1/3min{uf + F/Li+ B(1 — 2PY), p + PiLi — PiB} +2/3min{ P}, P} Ls, o

“and
Ti(B) = 1/3min{p + P{L; — P!B, ut + PiL; + B(1 — 2P})} + 2/31nin{P;, PYL;.
Lemma 4. For flattened triangle sequences, for all 0 <1 <k and alz ﬁ >0,
Pifh + PUj + A, 2 max{ 8409, 009
P}“oof. See Section 2.8. : O

\

Let us derive the corollary that is used in ,proving. that . has distortion at

most 6.0.

27

Corollary 2. For flattened triangle sequences from x to an endpoint y of an ancestor

edge of z,

(T, y) + Ap > -‘f%i)

Proof. Since P? =1, A = Ag, and u? + Lo > p2 = u(z,y), we have

 o- N . z,y
PO+ BOA + Do = Az, 9) + A 2 0(0) = W(0) 2 M2,

O

The following theorem shows that Gupta et al.’s construction produces an

£1-embedding with distortion at most 6.0.
Theorem 1. For any two vertices = and y, ji(z,y) > “(%2

Proof: We have two cases.
Case 1: y lies on an ancestor edge of z.
In this case, by Lemma 3 and Corollary ?, 20(x,y) > 24F(z, y) >z, y)+
. Ap > L’:;yl which yields a distor.tion of 6.0. ' | 7
‘Case 2: neither z nor y lies on an éncestor edge of the other.
The proof of this case is essentially the same as in Gupta et al. [28].
If z and y are not ancestors of each other then let (s,t) be the Iaét edge
added in the construction that is an ancestor edge of x and an ancestor edge of y.

If (s,t) separates z and y (i.e. every path from z to y passes through s or t) then
fz,y) = AT + AV + (PEPY + PFPY)L

where A% (resp. AY) is the expected sum of the §’s accumulated over -all triangles

starting from z (resp. y) to the edge (s,t), P* (resp. FPY) is the probability that

28

z (resp. y) collapses to s when it moves to (s,t) (similarly for P® and PY), and
L = p(s,t). We know PEPY + PFPY > L min{P? + P¢, P + PY}. Without loss of

generality, suppose P? + PY = min{P? + PY, P* + PY}. So,

iz,y) = AT + AV + (PI P! + PFPY)L
T Y
> AT+ AV + 5—12*—&
AT+ iz, 1) | A+ iy, t)
+
2 2
u(z,t) + p(y,t)
6
u(z,y)
=

L

2

by Corollaries 1 and 2

2

If (s,t) doesn’t separate z and y then there must be a vertex ¢ whose parent
edge is (s,t) with (s,¢) an ancestor edge of z and (t,¢q) an ancestor edge of y. This
case reduces to the previous case by noting that fi(z,y) is preserved by reordering
the construction sequence in such a way that (é,q) becomes a common ancestor
edge of x an'd y. (See Gupta et al. [28] for details.) Consequently, the distortion is

at most 6.0. o (W

2.6 Lower bound

There are series-parallel graphs that cannot be embedded into ¢; without some
distortion. The best lower bound on this distortion, of which we are aware, is 3/2
and is obtained by showing that any ¢;-embedding of the unweighted bipartite graph -
K3 5, (which is series-parallel) has distortion at least 3/2 [4].

If we restrict our embeddings to be those produced by Gupta et al.’s con-
struction, we can prove a better lower bound. The following theorem shows that

there exist duterplanar graphs whose ¢; embedding via that construction incurs dis-

29

Yn~1

Yn—-2

Figure 2.4: Lower bound example

tortion arbitrarily close to 3.0, even though outerplanar metrics are isometrically

embeddable into ¢;.

Theorem 2. There exists a family of outer-plaha'r graphs whose £1 embedding, by

the construction of Gupta et al., has distortion arbitrarily close to 3.0.

Proof. Let G be defined as follows. V(G) = {z;: 0 <i <n}U{y; : 1 <i<n-1} and
E(G) = {(z4,zi41) of length 1 :0<i<n - 1} U {(zs,9i41) of length 1 : 0 <4 <
n— 2} U {(xs,yi—1) of length 1 : 2 <i<n}uU {(mz,yz) of length 2 : 1 <4 <n—1}
Seé Fig. 2.6.

Every shortest path in G from 2y to z, has length n. Assume that the first
edge added in the incremental construction is (o, z1). The construction order of
vertices is fixed once this first edge is added; they are added in increasing order of

their index, i.e. (zo, 1), y1, T2, Y2, -+ -. Letting fi; = fi(x;, o), we have

~ ,&'n—l + ,[1'71—2 +1
Hn = 5

30

where [ig =0 ‘and g1 =1. Let gn = jin —%, then,

In—1 + gn-2
o=y

where gg = 0 and g1 = 2. This implies that 0 < g, < 2/3 for all n, which means
: 3 g

3 < fin < § +2/3 or equivalently

/

™

<2<y 2
- - 3n’

oo|»—-'
¥
oW

As n increases, we obtain distortion arbitrarily close to 3.0.

If the order of incremental construction starts with the edge (z;,v) for v €
{#j+1,Yj41,¥j-1,9;}, then either j <n/2 or Jj> n/2 and the same argument, with
fii = fi(zj,T44) or fi; = ji(x4,2;—;), respectively, gives distortion approaching 3.0

as n approaches infinity. ' O

2.7 Conclusion and Future Work

In this chapter we provided a careful analysis of Gupta et al.’s construction and
obtaihed an upper bound of 6.0 and a lower bound of 3.0 on the distortion of
embeddir;g series-parallel graphs into 4; using that construction.

| One might also consider the problem of minimizing the dimension of the ¢;
metric as well as its distortion. Brinkman and Charikar [14] show that embedding
certain series-parallel graphs (diamond graphs) into ¢; with constant distortion re-
qL‘li'res nf1) dimensions. Whether lovy dimensional, constant distortion embeddings

fqr all series-parallel graphs can be constructed efficiently is an open problem.

A very challenging problem is to embed bounded trée-width graphs into £;

with low distortion and, as a first step, graphs with tree-width 3.

2.8 Proof of Lemma 4

For flattened triangle sequences, for all 0 <7 < k and all 8 > 0,
P + Py + &y 2 max{¥3(6), ¥1(6)} (24)

Proof. (of Lemma 4) The proof is by induction. We-assume the lemma is true for
i, +1,...,k and show it is true for i — 1.

We know

4

A when L; = Li_1 +a; or Ly = Li_1+ 5;

A= Ploay +A; when L; = Lisi— oy

Kptlﬂl +A; when L, =L;_1— 3;.
* Since inequality (2.4) is' symmetric in s; and ¢;, we may assume without loss
of generality, that t; = ¢;—; which means s;_; collapses to (s;,t;).

" The proof relies on four technical lemmas (Lemmas 5, 6, 7, and 8).

Case 1: (increasing triangle) L; = L;_1 + ;.

Notice that in this case A; = A;_1 and P! = Psi—lLiL—;l.

Ltlz

P BT Ay = PN)+ B Vi A

= Pyiiy + Py + A
> W) - (by the induction hypothesis)

> Uil(g) (by Lemma 5).

. We also need to show that P; Tpi-t 4 PL Ly 1 Ly A > \I/1 1(ﬁ)

32

P~ > or pb 4+ P Ly < pdm '+ P L then U1 (B) < WiH(0) for

B
all 8.> 0. In this case P/~ a1 4 PI it - Ay > Wi4(0) = Ui71(0) > T4 1(B)
for all 3 > 0 and we are done. - ‘

. Otherwise, Pti_1 < % and ui_l + Pf_lLi_l > ,ui“l + Psi—lLi_l.

Define A
i = i + (P = PL,
P '

This is the value of 8 that maximizes ¥¢(5) by making the two values in the first

4

min of ¥i(8) equal, i.e.,
pl 4+ PiL; — PIB; = ui + PIL; + B;(1 - 2P})

Note that B; 1 > 0 since ,u,g”l—l-Pf'lLi,l > ,u’fl +P§"1'Li_1. Also note that B; > 0,

since

(4% + P{L;) — (pi+PiLy)
>t -+ P L) = (i + Psi_.lLifl)

= (Wit + P/ L) — (it + P L)

Hence -

P + P+ iy = P + Pl + A

8

> max{¥Y(B;), ¥i(0)} (by induction)
> UY(Bi-1) (by Lemma 6)

> U (B).

33

Case 2: (decreasing triangle) L; = L;_; — ;.
' . In this case P! = P71, pi—l = il 4+ oy, pi™ = i + oy, and A1 = Ay + Ploy, s0
Pyt + P + Aoy = Pa(fis + i) + Pt + 8+ Pioy
= Pyjis + P{fiy + A; + 2Py
> UL (B + 204) + 2Py (by induction)

° > Ui1(B) (by Lemma 7).

~ We also need to show that Pi~1ai~1 4+ P11t 4 A,y > ¥1(B). In this
case,
Pl Pt Ay = Pt 4+ PRt + A + 2Pty
{ > U (max{B;,0}) + 2Py (by induction)
> UY(B;_) (by Lemma 8)

> U;7(6).
Base Case !

The only remaining step is to prove the base case. Assume tp = y. We have

pk = ik = Ly and pf = if = 0. Thus, P + PFk + Ay = PFLy and

UE(8) = 1/3min{u! + PFLi + B(1 — 2PF), uf + PEL; — PEB)
+2/3min{PF PF1L,
< 1/3PFL; +2/3PFL,

= P*L;.

34

As for the inequality P¥jif + PFik +.A_k > UF(B), as mentioned earlier, if

PF > 1 then we are done because PFfi¥ + PFif + Ay > UF(0) = TE(0) > Tk(p).

k_pbi(PE-PHL 2Pf
Bs—Hy +(PI€ s) k - Pkl Lk: a.nd
8

8

Otherwise, assume PF < % It’s clear that By =

OH(By) = 1/3 (uf + PELe+ B(1 - 2Pt’°)) +2/3min{P¥, P¥}L;

2PF(1 — 2PF
=1/3 <Pka + bt (Pk)
k)

2L (PF — PF)?
3Pk

Lk> - 2/3Pt’“Lk
= PFL; —
< Pfi;k
= PERS + Pl + Ay

The proof is now complete. ' g

Lemma 5. If L; = L;_1 + «; then for all 6>0

i(B) > ().

Proof. Notice that since L; = L;_1 + oy, Ay = Ay and P! = Pj_l%i——.

Ui(6) = 1/3min{p§ + PiLi + B(L - 2Fy), i + PiLi = Py}
| + 2/31ni11{Psi, P L
> 1/3min{u’? + P+ (1 - 21%), pt+ P — PIBY
4 2/3min{ P, Pf} L |

: i i pi_ P'Lioata i i—1Li—
since pt™! < oy + ik, Pf = S 1 o= ¢, and P =P} I—Lil

>1/3min{pi™ + PP Ly + B(1 - 2PN, uit - P Ly — PITIB)

+2/3min{P:"t, P71 Ly

35

since P! < P!

— ¥ (6).

Recall the definition of B; from.the equation 2.5.
Lemma 6. If L; = L;—1 + and_Bi_l > 0 then
max{W(By), Uj(0)} = V¢~ (Bio1)-
Proof. If P} < 1/2 then ¥i(B;) > ¥¢(0) and |

Vi (Bio1) = Vi(Bi) = 1/3(3 "+ P{ Loy + Bica(1— 2P +2/3F 7 Liy
—1/3(jié + P'L; + Bi(1 — 2P})) — 2/3P} L,
= 1/3B;_1(1 - 2P"Y) = 1/3B;(1 — 2P}) — 2/3q

= 1/3B;_1(2P™' —1) - 1/3B;(2P! — 1) — 2/3q;

i—1 i—1 i-1 i—1
Pt = (P = P Lt i
= 1/3%% L](Dit_l > (2Pt =1)
B
i1 Pi _ P'i Li . .
8
it _lui—l (Pl - Pi—l’)L,_l o
< 1/3= t (it_l $ (2P 1)
S
,ui—l _ 'ui——l + (Pi——l - Pi—-l)L__l)
—-1/3=2 : Pii § (2P —1) - 2/3w
= —-2/30(1'
i—1 i—1 i—1 i1 1 1
+1/3(/~Ls —H T (Pt - Py)Li—l)(']_ﬂ - Pi_l)
. . 8 S
. (o'}
< —=2/3q; +1/302P Ly 1) (————
< =2/30i+1/32P L) (g —)
Pi—l . Pt'i—l
= _2/3%37

S

< 0

36

Otherwise, if P} > 1/2 then ¥}(0) > ¥}(B;) and

WYB) = UH0) = 1/3(a 4+ PiLiy + Bia(1 - 2P) +2/3P 7 Ly
—1/3(it + PIL;) — 2/3PLL;
= 1/3B;_1(1 — 2P) +2/3(PF — PN Ly

-1 _ i1 i~1 _ pi-1y]. o
1/3/"43 He +(Pt Ps) 1—1 (2PSL—1 _1)

i1
8
+2/3(P Y = PEYL
2P Licy o e
< 1/333?;1(2133 1) +2/3(PF = PEYL
' o 1 i .
< 2/3PTLia(2- Eﬁf) +2/3(P~" = P{Y)Lim
(Pi—-l _ Pi‘l)QL‘_l‘
L= —2/3 P p—
S
0

A

Lemma 7. If Li=L;_1 — « then for oll 3 >0
CWL(B + 204) + 2Pjey 2 U (D).
Proof. Let B = B + 2¢;.

WL(B) +2Pia; = 1/3min{u + PIL; + f'(1 - 2F}),
pi 4 PiL;— PB'Y + 2/3min{ Pt PYYL; + 2Pl -
> 1/3min{y’ + P'L; + 3Ploy + B/(1 — 2PY),

pé+ PiL; + 3Pioy — Pif'} +2/3min{ P}, P{}L;

‘ (siﬂce 2/3min{ P, P{}L; + Ploy = 2/3min{ P, P} (Li-1 — ;) + Play >

37

2/3min{ P!, Pt}L;_1 + 1/3Ptc; > 2/3min{P}, P}}L;1)

=1/3min{ps + PiLi_1 — o;(2 — 4P%) + §'(1 — 2PY),
i+ Py + 2Pl — P18’} + 2/3min{ P}, P{}L; 4

since ﬂgwl = /jl,?g +o; and Ly; = L1 — oy

=1/3min{p + P MLy + B(1 - 2P,

pt 4 P — PBY 4+ 2/3min{ P, PN L
since Psi = Pj_l and t; = t;_4

=07(8).

Recall the definition of B; from the equation 2.5.
Lemma 8. If L; = L; 1 — oy, P} <1/2, aﬂd B;_1 > 0 then
Wi (max{0, B;}) > UY(B;) — 2Pl
. Proof. If B; .Z 0 then

WY(By) = 1/3(u + PEL; — PLB;) +2/3min{ P!, P*}L;

. . P . . .
= 173 (1 + PiLe = TG - i+ (P = PIL)) +2/3PL
S

=1/3 (Wit — o+ Pti(Li—l - ;)

) =2 . . .
-3 (R = = 4 (B P -)
8 .

-+ 2/3Pg(L1_1 - Oéi)

38

since pf = pil — oy, L = Li_y — oy, and PP = V™1 < 1/2

i— P = ;
= 0 (Bi) - 131+ 4B~ P14)
. .

t
Pt

= Ui"Y(B;_1) — 2P + 1/30; (9P — 4) + 2/3¢;

> U N(B;) - 2P'a; (since P} < 1/2).

If B; < 0 then p + PfL; < i+ PiL; and VH(0) = 1/3(u + PLL;) +2/3P} L.

Since B;_1 > 0, B; can’t be too negative. In fact,

pi— i+ (PP —POL; pit—pi 4+ (P = PO Li - 2Py

B; = . = _
' P P
’ 2PtiOti 2Ptiai
SHe T TR TR
Thus,

U;(0) = 1/3(ut + P{Li) + 2/3P; Li

= UY(B;) + 1/3P}B;

T

. N = .)
= Ui N (Bis1) — 1/3a;(1 + 4P} — =L (1+ P})) + 1/3P; B

P v
i1 i B p Py’

> U7 (Bi-1) — 1/3ai(1+ 4P — - (1 + FY)) — 2/30s—;
' Py P

= \Ili—l(Bi—l') - 2Psiai + 1/3%(91’; —4)

> U7 (Bi—1) — 2Py (since P} < 1/2).

39

Chapter 3

Embedding between Line

Metrics

3.1 Introduction

In this chapter, we focus on computing an optimal embedding between two fixed
line metrics. A line metric is a set of points on a real one-dimensional line with
the distance between any pair of points being their £; distance (any £) distance is
equivalent for one-dimensional points). |

As we mentioned ‘earlier, Kenyon et al. [36] consider the problem of opti-
mally embedding one fixed line metric into another fixed one. They propose a
polynomial-time, dynamic pfogramming based, algorithm that computes the opti-
mal émbedding if the distortion is less than 3 + 2\/2. To this aim; they show that
any permutation that contains (3,1,4,2) (see Fig. 3.1) as a sub-permutation corre-
sponds to an embedding with distortion at least 3 + 2v/2. All permutations that do

not contain a (3,1,4,2) sub-permutation have a nice structure that allows finding

the optimal such permutation using dynamic programming in polynomial time. It

40

is worth mentioning that the problem is recehtly proven to be NP-hard. when the
optimal distortion is unrestricted. Hall et al. [29] prove that if the optimal distortion
6 is at least n¢, for some constant e, then the distortion is not even approximable
with a factor 61~¢, for any €, unless P=NP.

In this chapter, We extend the result of Kenyon et al. [36] by considering a less
restricted class of permutations called k-separable permutations. In particular, we
impro.ve. the threshold value on distortion below which an optimal erﬁbedding can be
found in polynomiai time from 3 + 2v/2 to 13.602. We also study several interesting
problems related to permutations such as forbidden permutations, pattern ma’cchinlg,
and stack sorting.

We recently found that Kenyon et al. (in an extension of their conference
paper [36]) and Chandrén et al. [17] have also extended the 2-separable result to
k—s‘epara‘bl(e permutations. By COIlSiderillg 9-separable permutations, they obtain a
polyhomial time dynamic prograrﬁming’solution that works in those cases when the
distortion is less than 5 + 2v/6 ~ 9.90.

We obtain (independently) the same result and show that the same technique
can be used, by cbnsidering larger values of k, to find optimal embeddings when the
distortion is less than 13.602. We (as well as they) show that the technique does_
not work for distortion greater than 13.928 no m@ttef how large k is chosen to be.

The structure of this chaptér is as follows. After introducing basic definitions,
in Section 3.2, we prove, in Section 3.3, that the class of k-separable permutations
have a finite set of forbidden permutations. Then, in Section 3.4, we propose a
polynomial time-algorithms for embedding between two fixed line metrics provided
the optimal embedding permutaﬁion is k-separable. We also study some algorithmic-

and non-algorithmic related results such as computing separability. Sections 3.6 is

A

41

devoted to fhe problem of finding a k-separable permutation ‘in a text permutation.
We propose a polynomial time dynamic programming algorithm for the problem.
In Section 3.7, we interpret k-separable permutations in terms of the way they are
sortable using a queue. Finally, in Section 3.8, we address some open problems

related to our work.

3.2 Preliminaries

Notice that we can view any embedding as a mapping from source points to destina-
fion points or, simply, as a permutation. Assume the optimal embedding between -
U and V is the permutation 7. We specify a permutation 7 with the notation
(m(1),m(2), -+, m(n)).

Permutation 7, of size n contains permutation my of size k, if there exist
indices {1 < lp < --- <l such that for all 1 <@ < j < K, (1) < mp(4) iff
Tn(li) < mn(l;). In this case, we refer to my as a sub-permutation of m,. In particular,
meY is the uﬁique permutation of size y — « + 1 such that n2Y(i) < 7ZY(j) iff
(i + 1 —z) <mp(j+1-1).

A nice interval I in 7 is either a singleton or is a set of at least two consecutive
nur_nbers from 1 to n such tha‘_c their m.apping, via %, is still a set of consecutive
numbers. For example, the permutation (4, 3,1,2) contains several nice intervals:
(1,2], [3’,4]’ (2,4] and [1,4].

If the interval [1,n] can be decomposed into a constant number of sub-
intervals such that each sub-interval is mapped, via }r, to a sub-interval in V' and this
pfoperty recurs_ively holds for all sub-intervals, then we car;use dynamic program-
ming and find the optimal embedding. More formally, an interval I is k—éepamble,

with respect to m, if either it has at most & points or it can be partitioned into’

42

nice sub-intervals Iy, Iy, -+ , I, (1 < m < k) such that each I; is k-separable. = is
k-separable iff the interval [1,n] is k-separable with respect to . T he sepambz'lity
of 7 is the minimum k > 1 such that 7 is k'-separable.‘

For example, the permutation 7 = (2,4,3,6,5,1) is 3-separable. I} = [1,3],
I, = [4,5], Is = [6], and.it_is clear that I1, I, and I3 are 3-separable as well.

Every 3—Separablé permutation is 2-separable, since for any three nice sub-
intervals that partition a permutation, two may ‘be merged to form a nice sub-
interval. Therefore, we don’t have any permutation with separability 3. It’s also
eésy to see that for k > 4, there exist permutations of size k with separability k.
These permutation could be interpreted in a simpler way: they don’t have any nice ‘
interval except tfle interval [1, k]. We refer to these speciél k-separable permutations
as non-separable permutations.

.The distortion incurred by a permutation , denoted by d(r), is the mini-
mum distortion incurred by embedding any two line metrics U and V via 7. For
~example, d(r) for the permutation in Fig. 3.1 equals 3 + 2v/2 and happens when
[a,b,¢,z,9,2] = [1,v2,1,1,v/2,1). As we see later, Theorem 5 states that d(r)
equals the largest eigenvalue of a 0-1 matrix corresponding to .

Corresponding to every 'permutatibn 7 of size n, there éxist three permuta-

tions 70

, ', and 7! that are similar to 7 and incur the same distortion. For all
s, 70(i) = n+ 1 — (i), 7 (7 (i) = i, ana 7~ i) = n+1— 7). For example,.
if = (2,4,1,3), 7¥ = ! = (3,1,4,2) and 7~! = 7. Throughout this chapter, we
always assume that a permutation comes with all its four symmetric forms. For
eiémple, when we say 2-separable permutations avoid © = .(2, 4,1,3) we mean they

avoid (3,1,4,2) as well.

Let II; be the set of all non-separable permutations of size k. Let di be the

43

Figure 3.1: The 4-separable permutation (2,4,1, 3).

minimum distortion over all permutations in II,. For example, IIy = {(2,4,1,3)},
s = {(2,4,1,5,3),(2,5,3,1,4),(3,5,1,4,2)}, and it’s not hard to see that dy =
ds = 3 + 2v/2. Note that by 7 € II; we implicitly mean x°, 71,7~ € II) as well.

So, (3,1,5,2,4) is also in IIs.

3.3 Forbidden Permutations

One commonly asked question regarding many permutation classes is whether they

can be characterized by a finite forbidden set of permutations or not. For exam-

ple, a permutation is 2-separable if and only if it contains neither »(2.,4, 1,3) nor

Interestingly one can generalize this statement for k-separable permutations.
Theorem 3. [3] A permutation is k-separable if and only if
e For odd k, it doesn’t contain any permutation in Iy, ;.

e -For even k, it contains neither a permutation in gy nor mp_ .

where 75, is the permutation of size 2m in which ™ (2)2m =1 and 7(2{ — 1)gpm, =

i+ m.

Albert and Atkinson 3] (See Theorem 4 in their paper) use the notion simple

44

for non-separable and call 73,, an exceptional permutation. They obtain their result

by using some results from Schmerl and Trotter {49] on partially ordered sets.

3.4 Embedding between two line metrics -

In this section we prove the following theorem which is a generalization of Kenyon

et al.’s result.

Theorem 4. For any two line metrics U and V and any k either the distortion
of the optimal embedding between U and V is greater than dyg., or there exists an

O(nSk"T3) tithe algorithm for computing the optimal embedding.

Recall that dj.1 is the minimum distortion over all permutations in Ilg1.
Let 7w be the optimal embedding pérmutation. If 7 is not k-separable then, according
to Theorem 3, 7 contains either a permutation in Iz, or 7, (in. case that k is
e\;en);

d(mj,) is increasing and one can easily see thaﬁ d(m}y) =~ 21.954'. Since
dp41 < T+4V/3, according to Theorem 6, we conclude that d(m) > dg41. Otherwise,

if 7 is k-separable, an algorithm for finding the optimal embedding follows.

3.4.1 Algorithm

If the optimal embedding is k-separable then we can compute it in time O(n%*+3)
by a dynamic programming approach. Every sub-problem is a mapping between
two sub-intervals I = {uj, Uit1, ** , Uigm—1} and J = {vj,vj41, -+ ,Viym—1} that

we specify by the triple (1,3, m). Moreover, we need to know the 1nappings of the four

boundary points of both intervals for computing the distortion. Thus, each entry

Ity = (7,1,8,2,9,3,10,4,11,5,12,6). In fact, it’s not had to prove that d(n3,) =

2% +2,/k(k—1) — 1.

15

i J2 7 i+m-—1

|3/\°“ [.\oj

Lm'—'l'

Figure 3.2: Algorithm.

in the dynamic programming table corresponds to 7 variables (4, j,m, 1, %2, j1,j2) In
which ¢ and j are the start of both sub-intervals, m is the length of sub-intervals,
i1 =m(), ig =i +m—1), j1 = 77 1(j), and jo = 771 (j + m ~ 1). (See Fig. 3.2.)
Assume [is partitioned into at most k sub-intervals I, I3, - - - ,\Ik such that
each I is mapped to an interval in J. There are O(n’“”l) possibilities for partitioning
I into I’s. There are at most k! possibilities for .Jz.’s. (Wg assume that J, is the
mapping of I,.) We also need to know the mapping for each boundary of I’s
and J;’s which has O('n4k_4) possibilities. (The mapping for four of the boundary
points is already known.) Once we have fixed all the sub-intervals and the mapping
for all boundary points, we can compute the distortion by using the distortion
corresponding to every sub-interval as well as the expansion and inverse expansion
corresponding to ‘single \edges between boundaries of consecuti% sub-intervals. In
total, we need to consider O(n®*~5) cases and it takes O(n) to compute the distortion

for each case. Since our dynamic programming table has O(n”) entries, the total

running time would be O(n%+3).

3.4.2 Largest Eigenvalue

Assume the distortion corresponding to a permutation m of [1,n] is A. That means

that for any two line metrics of n points each, the distortion using = is at least \ and

46

there exists a pair of line metrics whose distortiqn, using 7, is exactly A. In fact it is
not hard to see that the maxﬁnum expansion and inverse expansion in embedding U
to V happens for a pair of consecutive points, so we need to care only about them.
Finding d(n) corresponds to solving a set of linear equations. For example, for the

permutation in Fig. 3.1, the linear equations are as follows.

Yy+z < Va
z+y+z < Vb
T+y < Ve
a+b < \/XL
a+b+c < Vy
b+c¢ < Viz

or equivalently AX < v/AX, where A .is the adjacency matrix cérrespondiné; to T
and X is [a,b, ¢, ,y,2]T. In general, for a permutafion 7 of size.n that corresponds
to embedding between two ﬁne metrics of size n, A has 2n — 2 rows and columns
where, for all 0 < 4,j <.n, Ai,j] = Aln+i,n+j] =0 and Afi,n + 5] = A[n +1,4)
is one iff the interval [7(¢), 7w (i + 1)] (or [7r(i 4 1), 7(3)] if #(¢) > (¢ + 1)) contains
the interval [4, j + 1] and is zero otherwise.
‘ We can also assume that, by scaling edge weights in U or V if necessary, the
‘expansion and contraction both equal VA, Thus, for any single edge in U and V we
write an inequality to make sure that its corresponding expansion does not exceed
VA
Since we are interested in minimizing A we better make the eqﬁality AX =
VAX. Therefore, v/X is an eigenvalue of A. It is well know that ([30], Chapter

82) ‘the only eigenvalue whose corresponding eigenvector is positive is the largest

47

Figure 3.3: Illustration of permutation 7?15;

eigenvalue. Thus, VA is the largest eigenvalue of A.

Theorem 5. Let A, be the 0-1 matrix corresponding to m and let its largest eigen-
value be \. Then, the distortion of T is exactly \? and is obtained when the edge

lengths are taken according to the eigenvector corresponding to .

3.4.3 Bounding dy

Although dy, is increasing in k, it remains bounded. This is somewhat disappointing
since if it was unbounded we could imagine an algorithm that finds an optimal
embedding for any two line metrics, no matter how large the optimal distortion is,

whose running time is a function of the distortion.

Theorem 6. For any value k there exists a non-separable permutation m, whose

distortion is at most 7 + 41/3.

Proof. Let gy, be the permutation on [1,2n] where 7o, (1) = 2, F2,(2n) = 2n — 1,
Tron (21) =2 + 2, and #3,(2i + 1) =20 — 1, for i = 1,2,--- ,n — 1. Similarly, Fon41
is defined as follows. Fron+1 (1) = fran (1), for i - 1,2,-,n—1, rgnt1(2n) = 2n + 1,
and 7gn4+1(2n + 1) = 2n — 1(See Fig. 3.3).

O Set dy(2i—1,2) = 1, dy(2i,2i + 1) = V3, dy(2i - 1,2i) = 2+ 3, and

dv(2i,2i + 1) = 3 + 2v/3. The distortion corresponding to this pair of point sets is

7 + 4v/3 which means dj, < 7 + 4v/3 ~ 13.928.

48

k 5 7 9 1 . 13 15 17 19
distortion | 8.352 10.896 12.045 12.651 13.007 13.233 13.385 13.492

Table 3.1: Distortion of 7}, for several.values of k.

k 4 6 9 12 15 24
dp | 5828 8352 9.899 10.896 11.571 12.850
k 30 34 38 42 46

dr | 13.131 13.316 13.443 13.534 13.602

Table 3.2: dk.
a

Table 3.1 shows the exact distortion of such permutations for small values
of k. Finding di for small k’s (by computing the eigenvalue corresponding to all
permutations in [and taking thé minimum) suggests that dy converges to 7+44/3.
Table 3.2 shows the vélue of dj, for different k’s.

Consequently we improve the result of Kenyon et al. [36] from 3 +2v/2 =~
5.828 to 13.602.

Theorem 7. There exists a polynomial algorithm for computing the optimal distor-
tion embedding between two line metrics, provided the optimal distortion does not

exceed 13.602.

3.5 Computing Separability

Given a permutation 7 of size n one can compute its separability by the following
greedy algorithm. Initially set z = 1. Find the largest nice interval [z,y] (in case
x =1 don’t choose y = n), set x = y + 1, and repeat. Recursively find the optimal

separation for each nice interval.

49

Theorem 8. The above greedy algorithm is correct.

. b

Proof. Tt suffices to show that the first step is correct. Assume I is the largest nice
interval that contains z. Suppose an optimal algorithm OPT behaves differently;
let Ii ,Ia, -+, It be all intervals returned by OPT that have non-empty intersection
vﬁth I. Since k > 2, because of the maximality of I, we could take I and I, -1 -
instead of those k intervals in OPT and get a better or equal separabiliﬁy consistent

with our greedy algorithm. It is \}ery easy to see that I — I is'a nice interval. [

3.6 Pattern mat(.:hi'ng for permutations

The question of finding whether a i)ermutation contains another permutation is of
interest for many people because of its applications. It is sometimes called pattern

matching in the literature and comes as either a decision or a counting problem:

Given two pérmutations o and 7 decide if o contains 7 or count the number of
occurances of 7 in . The greedy algorithm for recognizing k—sep'arable permutations

in subsection 3.5 is a similar problem: Given a permutation m, does it avoid all

‘permutations in g1 Umg, o7

Bose et al. [12] considered recognition of 2-separable permutations and pro-

p(_)_sed an efficient algorithm for bofh the decision and counting problem. They also .
show that the general decision problem is NP-Complete and the counting problerri is

#P-Complete. An alternative way to recognize non-2-separable graphs, as pointed

out in [12], is to consider the corresponding permutation graph. It is not hard to

see that a pefmutation is non-2-separable iff its corresponding permutation graph

is P4-ffee, meaning that it does not have any induced path of length four. One can

use the linear time algorithm in [21] to recognize Py-free graphs. It doesn’t seem

50

Figure 3.4: A separation tree.

to us that permutation grai)hs corresponding to k-separable graphs, for £ > 2, have
any particular structure.

In proposing the linear tim‘e_ algorithm, Bose et al. [12] introduce a special
ordered Binary tree called a. separation tree corresponding to a permutation 7 of 1

to n with the following properties:
1. Leaves are (1), 7(2), -+ ,7(k) in order.

2. For any node v, if the set of leaves of the subtree rooted at v is {m(¢), #(i+1),

oo, (i +4)} then [i,i + §] must be a nice interval.

A separation tree corresponding to the permutation (3,4,1,2,8,5,6,7) is
depicted in Fig. 3.4.
Similarly we can extend the definition of separation tree and allow it to be

k-ary instead of binary. The resulting tree is equivalent to k-separable permutations.
Theorem 9. A permutation T is k-separable iff it has a k-separation tree.

Proof. Given a k-separable permutation T, one can easily build a k-separation tree.
Assume Iy, I5,- -+, I are the k k-separable nice intervals. Recursively build a k-
separation tree for each I; and then connect the roots of all these & trees to a new

- TOOft.

o1

For the reverse direction, assume a k-separation tree corresponding to m is
given. It is obvious that the set of numbers in the subtree rooted at the 5% child is

actually the j** k-separable nice interval. O

Bose et al. [12] use the separation tree and obtain a dynamic programming
e;lgorithm to decide if any 2-separable permutation 7 is contained in a (larger)
permutation o. |

A recursive problem instance in their approach is given a sub-permutation
o' = 0% of ¢ and any ;1ode u, that defines a subtree T, of the separation tree
associated with =, decide if m, is contained in o', where m, is the permutation
corresponding to Ty.

Not surprisingly, we can use a similar dynamic programming approach and

compute matchings for k-separable permutations.

Theorem 10. Given a k-separable permutation m and a permutation o of size n

" and m, respectively, one can compute the number of matchings of ® in o in time

O(mnk+2?).

Proof. Let M(u,i,j) be the number of matchings of 7, in o/ = 0%/, To'avoid
double counting, let’s assume that ¢ is used in every matching, i.e for every matching
(11,42, ,ik), Ty(iy) = 1, for some z.

- Assume that w has & children wuy,ug, - ,ug in order of their appearance in
Ty, 1.6. every element in m;, is less than every element in m_,,, for all 2’s. m, is,

in fact, partitioned into m,_’s. It can be easily proven that

Muid)= > [] M@ icicss—1)

(’il,iz,-~~ik) =1,k

(Assuming that i, = ¢ and 4541 = j+1.) We basically partition o’ = ¢/ into
k ranges [iz,iz+1— 1] (forz =1,2,--- ,k—1) and compute the number of matchings
of each w; into corresponding sub-permutation of 7”. Com.puting M (u,i,7) takes
O(n*~1) time and there are O(mn?) possibilities for u, 4, j. Thus, a dynamic
programming approach takes fime' O(mnk*1) to compute M (u,1,j) for all values of
u, ¢,.and j. Finally, fhe value >, . , M(uo,i,n) equals the number of matchings
of 7 into T', where ug is the root of the corresponding separation tree. One can
easily augment the algorithm to out.put the actuai matching or list all the possible

matchings as well. 4

3.7 Sortable Permutations

Another interesting topic related to permutations is charécterizing ‘class'es of per-
mutations in terms of whether they are sortable using tools like stacks and queies.
" The simplest versions of this problem were studied by Knuth[38] who imag-

ined the elements of a permutation being an input sequence to a stack. A sequence
of push and pop operations results in an output sequence (the popped elements)
and tlhe 'question is what input permutation can be sorted (yield an ordered output
sequence). Tarjan[52], Even and Itai[23], and Pratt[42] generalized the model to
allow multiple stacks and queues. |
The answer to the simplestvcase is known: Single stack sortable permutations

can be recognized in linear time, are characterized by the forbidden permutation

-[2,3,1], and there are (27;1) /(n + 1) (the n** Catalan number) of them of length n.

Other researchers have studied variations of stacks: Avis and Newborn|[7] considered
a less powerful stack called pop-stack in which PUSH operations are as usual, but

POP olperations, called MPOP, pop the entire stack. They provide enumeration

53

[3e]
[=>}
~J
[V
—
i
|
e

1—2—3—d4—5— 67

Figure 3.5: 5-sortable permutation (*-’ indicates couplihg)

answers when we use unlimited pop-stacks or we use a fixed number of pop—sfacks
in series.

Bose et al.[12] also interpreted 2-separable permutations as sortable permu-
tations by the following device. The permutaﬁion is originally on a queue; each time
we can pick a fange of elements and reverse their order. Once we do so, all elements
of that range are coupled and remain coupled forever. For other related results like
parallel-stack sortable permutations-the reader is referred to [5] or [11].

Here we give an interpretation of k-separable permutations in terms of sort-
iné. Given a permutation 7 on a queué, we are allowed to do the following opera-

tions:

¢ Each time we can pick up to k consecutive ranges I, I, - - - , I, of elements of
7, and sort them. Once we do so, The entire sub-range I; U o U --- U I} gets

coupled and remains coupled forever.

e We are not allowed to pick a portion of a coupled range, however, we can

reverse the order of elements in a coupled range.

Let’s call the above sorting mechanism k-sorting. A 5-sortable permutation

is shown in Fig. 3.5.

Theorem 11.

54

k-separable permutations are exactly the class of permutations that are k-sortable.

Proof. 1t is obvious that any coupled range should be a set of consecutive numbers
in 1 to n, for if not we won’t be able to insert any element in a coupled range any
more. That means there is a correspondence between k-sorting steps and nodes of
a separation tree. Since we always pick at most k sub-ranges, the corresponding
separation tree is a k-ary which is equivalent to k-separable permutations according
to Theorem 9.
The other direction of the proof is simple. Given any k-separable permutétion
m, one can consider its separation tree and sort the permutation in a bottom-up
fashion. |
When we are at a node wu, all its children are already sorted; since it has at
most. k children, We can swap the orderings of children to g‘ét a sorted permutation

corresponding to the sub-tree rooted at w. : O

3.8 Conclusions and Future Work

We considered the problem of finding a minimum distortion embedding of one fixed
line metric into another fixed line metric. As a consequence, we studied properties
of permutations under ‘certain separability constraints, and discovered features of
these permutations in various contexts: forbidden permutations, metric embédding,
pattern matching, and st@ck sorting. The main open question that we would like to
address is whether or not we can still find a parameterized solution for embedding
two fixed line metrics. Notice that the problem is NP-hard [29] when the distortion
is af least n¢, for some constant €, but is unresolved for smaller values of distortion.

Althoﬁgh we proved that the idea of considering k-separable permutations does

55

not apply when the optimal distortion is greater than 13.602, there is sfill some
hope. One may consider a different class of permutations that are algorithmically
useful. Another important fact is that we are considering all permutations whereas
only a few of them are a candidate to be an optimal embedding. It seems to us
“that excluding permutaﬁions that cannot bé an optimal embedding from the set of
k-separable permutations would be a major iinprovement to our work.

Another interesting problem is to look for parameterized approximate solu-
tions. It appears that if we allow the optimal distortion to be approximated, we can

easily aveoid many permutations and only look for simple (possibly k-separable for

small k) permutations.

Chapter 4
D-Width

4.1 Introduction

Oﬁe of the most significant recent advances in-the field of algorithmics comes from
the Graph Minors project Qf Robertson and Seymour. In addition to being a major
addition to the structure theory of graphs, the tools developed during their work
imply algorithmic résults such as évery minor-closed graph property can be decided
in. polynomial time. The most far-reaching algorithmic contribution is the intro-
duction of graph decompositioné such as tree decompositions and measures sich és
tree—width, which have helped identify large classes of tractable instances of hard
(e.g. NP-complete) graph problems.

The key to the algorithmic ‘success of tree decomposit_i‘ons.is that they are
readily extendable to arbitrary relational structurés. By considering tree decompo-
sitions of the background (or primal) graph, large classes of tractable instances of
hard problems can be found for various structures including hypergraphs and di-
rected graphs. The main drawback of this approach is that oft.en information is lost

when considering the background graph, and this may be crucial. For instance, the

o7

background graph of a directed graph is the undirected graph obtained by forgetting
edge orientations. Thus efficient solutions to problems like Hamiltonicﬁy cannot be
found by t.his technique.

In [34], Johnson et al. attempted to rectify this (émd address problems in
directed graph structure theory) by introducing direCtéd tree-width, a generaliza-
tion of tree-width to directed graphs. Although they managed to demonstrate the
algorithmic benefits of arboreal decompositions by providing eflicient algorithms for
problems such as HamiRonicity and disjoint paths, their measure was awkwardly de- .
ﬁned and not as well behaved as tree-width, making it difficult to extend to further
results. Consequently, other measures such as D-width [48], DAG-width [10, 40],
and Kelly-width [31] have been introduced in an effort to find a more"pracﬁcai ,
generalization of tree-width to directed graphs. |

Also in [34], Johnson et. al. .introduced a graph' searching game to par-
tially characterize directed tre;e—width-. The game, similar to one that Seymour and
Thomas used to characterize tree-width [50], involves a robber who can run arbi-
trarily‘fast mn stmﬁgly connected components, and 'Oa set of cops who at‘gempt to
cz‘mpture' the robber by blocking his escape routes and landing on him. Johnson et
al. show that if G has directed tree-width k — 1 then k cops can capture the robber
in this game, and towards a converse, if k cops can capture the robber on G, then
G has directed tree-width at most 3k — 2. In addition, they show that the num-
be'r of cops fequiréd to capture a robber cop-monotonely (i.e. vacated vertices are.
never revisited by cops) is different from the number of cops required‘to capture a
robber without this restriction, and if & cops have a winning strategy, then 3k — 1
cops have a robber-monotone (i.e. the set of vertices the robber can reach is non-

increasing) winning strategy. ‘Adler [1] further extended these results by showing

o3

that robber-monotone and robber-non-monotone cop numbers do not coincide, énd
that the robber-monotone cop number and the directed tree-width also differ. |

On undirected graphs, the equivalence of the cops and robber géune and tree-
width is critical to the importance of tree-width as a measure of graph complexity.
On one hand, the game is a good indicator of structural properties of graphs. For
example, acyclic graphs only require 2 cops to capture the robber, and the number
of cops required does not increase under taking of minors. On the other hand, the
equi.valence of monotone and non-monotone strategies implies that the number of
cops required can be efficiently computed. Without a clean correspondence with such
games, it is difficult to establish similar results for dirécted-tree—width, particularly
results that can be used to efficiently compute the exémct directed tree-width of a
graph.

In this chapter, we fu'rther study D-width [48] and identify the class of di-
graphs with D—widfh one. We then study the game characterization of D-width and
show that D-width is bounded above and below by the number of éops reqﬁired in
certain versions of the cop-monotone game. In particular, we obtain a non-trivial
upper béund for D-width which is computable in polynomial time when that bound
is constant. |

We also compare various parameters and show that there exist arbitrarily
big gaps between haven order,A directed tree-width, and D-width.

The chapter is organized as follows. In Section 4.2 we formally define the cops

» and robber game and the concepts we use throughout the chapter. In Section 4.3 we’
prove the equivalence of D-width and directed tree-width ‘when D-width is one and
prévide several algorithmic applications of directed one trees. T hen, in Section 4.5

we compare D-width with other parameters such as haven order and directed tree-

59

width. In the final section, we obtain a non-trivial upper bound for D-width and

propose an algorithm for computing that bound provided the bound is constant.

4.2 " Definitions

In this chapter we assume all graphs are finite and directed unless otherwise stated.

We use standard graph theory terminology, see for example [22].

4.2.1 D-width

We recall the definition of D-width as defined in [48].

Definition 3 (Strongly connected set). A subset S of vertices of a digraph G is
called a strongly connected set if G[S], the subgraph induced by S on G, is strongly

connected.

Definition 4 (D-decompositions and D-width). A D-decomposition of a di-
rected graph G is a pair (T,W) where T 1is a tree.and W = {W|t € V(T)} is a

family of subsets of V(G) such that for every strongly connected set S C V(G):
(D1) T|s = {t e T|W, NS £ 0} £ 0, and

(D2) The subgraph of T with vertez set T'|s and edges {e = (s,t) € T|WsNW:NS #
0} forms a connected subtree of T'. On the other hand, an edge is included

_only if both its end points contain same vertex u of S.

The width of a D-decomposition (T, W) is the minimum k such that Wil <k+1
for all W; € W. The D-width of a directed graph G is the minimum width over all

D-decompositions of G.

60

Figure 4.1 shows a digraph with D-width one, together with an optimal D-

decomposition. One can verify the above condition for all 'sﬁrongly connected sets:

{a}, {b}, {c}, {d}, {e}, {a,b, c},, {a,c,d, e}, {a,b,c,d}, and {a,b,c,d, e}.

/ “ a | ' |
Cc 4+— 4— ¢ . ’
Figure 4.1: A digraph (left) with its D-decomposition of width one (right).

As D-decomposition is quite similar to tree-decomposition, it inherits all its
structural properties that can be used for algorithmic purposes. For example, similar
to the undirected variant [37], if a digraph has a D-decomposition of width w, then
it has a nice D-decomposition of width w. A D-decomposition (7', W) is nice if e\./ery
node 7 € V(Tj has either one child or two. If it has one child j then |W; — Wj| = 1.
Otilerwise, if it has two children j and k then W; = W; = Wj.

In addition a digraph G with D-width w .has a related undirected chordal

graph G’ with tree-width w that captures the connectivity of G.

Lemma 9. For é_very digraph G of D-width w, there exists an undirected chordal
graph.G’" with treewidth w such that every strongly connected set in G s a connected

set in G'.

Proof. Let (T, W) be a D-decomposition of G = (V, E) of width w. Let G' = (V, E')
where B/ = {(u,v)|3t s.t. v € W; and v € W,}. In other words, every set of vertices
Wy is a clique in G'. (T, W) is a tree-decomposition of G’. Moreover, every strongly

connected set in G is a connected set in G'. O

61

D-width has also the balanced-separator property similar to tree-width.

Lemma 10. For every digraph G of D-width w and any subset W, there exists a
subset X of at most w + 1 vertices such that every stro'ngly connected component of
G\X contains th most L%/—' vertices from W.

Proof. The proof is essentially similar to the undirected versi@n. Given a D- decom-
position T of G with width w, let i be the deepest node (pick an arbitrary node
as the root) such that the sub-tree rooted at ¢ has at least Ug——' vertices from W.

It’s clear that every strongly connected component of D\W; has then at most l%/—'

vertices from W. ‘ O

4.2.2 Directed tree-width and haven order

Here we introduce some relevant notation from [34]. Given two disjoint subsets
Z and S of vertices of a digraph G, we say S is Z-normal if every d.irecte.d path
which starts and finishes in S is either wholly contained in S or contains a vertex
in Z. Also, given a directed tree 17" with edges oriented away from a unique vertex
r € V(T) (called the root), we write ¢ > e for t € V(T') and e € E(T) if e occurs on
the unique directed path from r to ¢, and e ~ ¢ if e is incident with t. The foilowing

concepts were introduced in [34] and [35].

Definition 5 (Arboreal (pre-)decompositions and directed tree-width). An
arboreal pre;decomposition of a digraph G is a tuple (T, B,W) where T is a directed
tree with a unigue root, and B = {B|t € V(Y)} and W = {Wele € E(T)} are sets

of subsets of V(G) that satisfy:

(R1) B is a partition of V(G) into (possibly empty) sets such that B, # 0 for the

root v of T, and '

62

(R2) If e € E(T), then B} := J{Bs|t > €} is W,-normal or empty.

The width of an arboreal pre-decomposition (T, B, W) is the minimum k- such that

forallt € V(T), |Bt UUgs Wel < k+ 1. An arboreal decomposition is a pre-

e~t
decomposition in which all By are non-empty, and the directed tree-width of a di-

graph G, dtw(G), is the minimal width of all its arboreal decompositions.
If, in addition,‘an arboreal pré-decomposition satisfies:

(R3) For each t € V(T') we can order the outgoing edges ej, ez, ... such that for

1 < j there is no edge in G from Bij to Béi

we call the decomposition good. In [35], Johnson etv al. claim that an arboreal pre-
decomposition can be transformed into a good one bwith the same width, but this
does not follow from their results and remains an open prleéln. The importance
of this problem, and indeed the motivation for [35], arises from the fact that the
algorithmic results of [34] require a good arboreal decomposition. However, the
decomposition constructed in the proof of Theorem 3.3 of [34] is good, implying’
that their aigorithmic results do hold.

Our second definition is motivated by a similar definition in [50].

Definition 6 ((Pre-)haven and haven-width). Let G be a digmph. A pre-
haven of order k is a function B assigning to every set Z C V(G) with |IZ| <k, a
union of strongly connected components of G\ Z such that if X CY C V.(G) and
Y| < k then B(X) is the union of all strongly connected components lofG\X @hich
intersect B(Y). A ha{/en is a pre-haven such that ,B(Z) is a single strongly connected

coﬁponent of G\ Z for all Z C V(G) with |Z| < k. The 115Ven-width of G, hw(G),

18 the largest k such that G has a haven of order k

63

In [50] it was shown that if an undirected graph G has a pre-haven of order k
then it has a haven of order k. The analogous question for directed graphs remains

\

an open problem.

4.2.3 Cops and robber game

We recall the definition of the cops and robber game deﬁnea in [34]. The game
is played on a directed graph G, by two players: one -controlling a set of k cops
(k is a pérameter of the game), the other controlling a visible robber. The cdps
and the robber occupy vertices in the graph. A move consists of the cop player
announcing the next location of the cops and then proceeding to move the cops to
this location. During this, the robber can run at great speed along directed paths
which do not contain any cops not being moved provided there is also a cop—frqe
directed path back to his original starting position. In other words, the robber may
move to'any vertex in the same strongly connected component of G\ X where X is
the sef of locations occupied by étationary cops. If a cop lands on the position of the
robber then th.e cop player Wi.HS, otherwise, if the robber is able to evade capture
indefinitely, the robber player wins. More formally, the game consisﬁs of positions
(X, R) where X C V(G), |X] < k and R is either empty, or a strongly connected
component of G \ X. Initially the cop player chooses X C V(G) with]Xo.l <k
and the robber player chooses a strongly connected component Ry of G \ X to give
the initial position,'(Xo,Ro). If R # 0, a move, from position (X, R), consists of
the cop player choosing X' C V(G) with |X’| < k and the robber player choosing
R', a strongly connected component of G\ X’ such that R and R’ are contained
in' the same stro.ngly connected component of G \ (X N X’). If at any point the

robber is unable to choose such a strongly connected component, then R’ = (). This

64

gives the next position (X', R'). A play is a (possibly infinite) sequence of moves,
and it is winning for the cop player if it is finite and has a final position (X,0)
for somé X, ,othérwis\e it is winning for the robber. A play (XO,RO), (X1, Ry),--. .is
vcop—monotone if the c‘ops never revisit a vertex, that is for all h, 4,7 with h <1 < j,
XpNX; CX,. The play is robber-monotone if R; 2O R;y1 for all 7. For any digraph
G, we denote the minimum number of cops that are required to capture the robber
with a cop-monotone (resp. robber-monotone) strategy by cop-monotone(G) (resp.
robber-monotone(G)).

As is usual for these typeé of games, we are primarily concerned with win-
ning strategies. A (k-cop) strategy for the cop player is a tuple (Yp,) consisting of
set Yo C V(G) with |Yy| < k together with a function 7 : P(V(G)) x P(V(G)) —
P(V(G)), such that for X C V(G) with |X| < k if R is a strongly connected com-

. ponent of G\ X then (X, R)| < k, and 7(X,0) = 0. A play (Xo, Ro), (X1, R1), ..
is consistent with a strategy (Yp,7) if Xo = Yo and X;y; = n(X;, R;) for all 4, and
a strategy is winning (cop-monotoné, robber-monotone) if all consistent plays are
winning for the cop player (cop-monotone, robber-monotone respectively).

Variants of the game where the robber moves first or only one cop.can be
moved at a time or the cops are lifted and placed in separate moves are all equivalent
in. that the exiétence of a winning strategy for a given number'of cops does not
depend on the variant. |

For the results we present in the following sections, we introduce the idea of
a strategy forest. Fix G and k, and consider the directed graph with nodes labeled
by positions in the cops and robber game, and an edge from (X, R) to (X', R') if
such a transition is possible under the rules specified above. That is, if R # 0,

and either R’ = §) or R and R’ are in the same strongly connected component of

65

G\ (X NX'). We call this the positional graph defined by G and k. A strategy
o = (Yp,7) will define a subgraph II, of this graph, consisting of all roots of the
form (Yp, R), and edges ((X, R), (X', R')) if X' = 7(X, R). We also remove all edges
of the form (X,0). If ¢ is a winning robber-monotone strategy, I, takes a very

simple form.

Lemma 11. If 0 = (Yo, 7) is a winning robber-monotone. strategy, then 1l is a

forest of rooted trees, with each root having a label of the form (Yo, -).

Proof. Since ¢ is a winning strategy, HU_ is acyclic and all its roots are of the form
(Yo,). To show that it is a forest, we need only show that no node has more than
one pfedecessor. Suppose (X', R') has two predeceésors. These two predecessors
either have a common ancestor (X, R) with two distinct children (7(X, R), R;) and
(m(X,R), Ry) or are descended from two distinct roots (Yp, R1) and (Yp, R2) such
that RyNRy # 0. (By robbef—inonotonicity, the non-empty R’is a subset of R1NRy.)
But R; and Ry are strongly connected components of G\ 7(X, R) (or G\ Yp), so

R1 = Ry, contradicting the distinctness of the nodes. O

We call 11, the strategy forest associated with o.

4.3 Directed One Trees

~ Currently there is no known polytime recognition algorithm for bounded D-width -
digraphs. For the special case that D-width is one, however, there is a fast recogni-
tion algorithm based on a structural characterization of such digraphs. Moreover,
we prove that directed tree-width and D-width coincide in this case. This result is

achieved by comparing both measures to the haven order.

i

66

First, we prove the following theorem relating haven order and D-width of

directed one-trees.
Theorem 12. A digraph G has D-width one if and only if it has haven order two.

Proof. If G has a haven § of order at lee'mst 3 then. the robber can win against two
cops by stayiﬁg at B(X)-whefe X is the position of cops. Hence, by Theorem 17,
G must have D-width at least two. Since this is not the case, G has haven order at
most two. But, the haven order of G canndt be oﬁe because G has a cycle (otherwise
ifs D-width would be zero) and, thus, G has haven order at least two. (Simply set
B(0) = C and let B({z}) be, a strongly connected component the contains a vertex
of C' — {z}, where C is a cycle in G) Consequently G has haven order exactly two.
Next, we show if G has haven order two then its D-width is one. It suffices
to prove this for strongly connected G since if G has haven ofder two and D-width
d, it contains a strongly connepted component with haven order two and D-width
d.
| The proof is by induct'ion on the number of vertices of G. By Lemma 12, G
contains a verfex u with out-degree (or in-degree) one. Suppose u has out-degree one
(the in-degree one case is handled similarly) with edge (u,v) being its only outgoing
edée. ‘Contract the edge (u,v), by removing u and connecting all u’s incoming edges
to v (and ignoring loops if created), to obfain a new digraph G’. By Lemma 13,
G’ has haven order at most.two and, according to the induction hypothesis, has
D-width at most one!. Let 7’ be a D-decomposition of G’ with width at most one.
Add a new node r to T’ with W, = {u,v} and attach it to a node of 7" that contains
v. It is easy to verify that the resulting D-decomposition is a proper one forvG and

has D-width one because if S is a strongly connected set in G and u € S then S —{u}

1If G’ has haven order one then it is acyclic and trivially has D-width zero.

| 67

isa strohgly connected set in G' and v € S. . : O

Lemma 12. If G is strongly connected and has haven order two then G contains a

vertex with in-degree or out-degree one.

Proof. For any vertex u.,a strongly connected component C of G \ {u} is called a
,.u—roo‘t if there is no edge from a vertex in another component of G \ {u} to a vertex
in C. Similarly we say a component C is a u-leaf if there is no edge from C' to any
other component. Let rootleaf(u) be the minimum size over all u-root and u-leaf
components of G \ {u}.

If rbotleaf(u) = 1 for some vertex u, then there is a siﬁgle vertex v with
either out-degree or in-degree one (to or from u). Otherwise, rootleaf(u) is at least
two, for all w.

In this case, we show that G has haven order at least three, a contradic-
tion. Let u be the vertex with minimum rootleaf(u) and C, be the component that
minimizes rootleaf(u), ie. |Cy| = rootleaf(u). Assume, without loss of generality,
that C, is a u-root component. Notice that such components do exist as the graph
whose vertices are strongly connected components of G\{u} and whose edges are
{(A,B)|3u € A,3v € Bsit. (u,v) € G} is acyclic. It’s roots are u-roots and ité
leaves are u-leaves.

Lef B(x)?, for any single vertex z, be the strongly connected component of
G\ {z} that contains Cy, if z ¢ Cy, and the strongly connected component of G\ {z}
that contains u, otherwise. Let B({z,y}) be the strohgly connected component of
G\ {z,y} that contains B(z) N B(y). We argue that 3 is a haven of order three.

It is sufficient to show that f(z) N B(y) # 0 for all z and y. If z and y are

both in Cy, then both S(z) and B(y) have vertex u in common. Similarly, if both

2In what follows we use 8(x) for B({z}).

68

are in G \ Cy, then both ﬁ(x) and ((y) share C,.

For the final case, z € C’u and y € G\ C, it suffices to s.howv that B(x)
contains at least one vertex from.Cu. Let 51,152, ... S} be the strongly connectéd
components of G\ {z} that contain at least one vertex from C,, in topological order.
(At least one such component must exist because |Cyu| > 2.) If any S; contains u
then we're done. Otherwise, each S; contains only vertices from C, because every
path from v € G\ Cy, to a vertex in C, contains u (a consequence of C,, being a
- u-root). Thus, |S;| < |Cy|. We show that soﬁle’S,L- is an z-root or z-leaf component.
- This is a Contradicﬁi011 since Cy, is supposedly the smallest such component.

For all y € Cy \ {z}, there exists a path from wu to y that contains only
vertices in Cy \ {z} (in particular, that doesn’t contain z). If not, then the first
component S; (smallest ¢) that contains such a y is an z-root, a contradiction.

Since Cy, is a u-root and x € Cy, for all z € G \ Cy, there exists a path from
z'to u that doesn’t contain z. Hence S cannot have an outgoing edge (y, z) to a
vertefc z € G\ Cy, otherwise y, z, and u would be strongly connecteci via paths that

don’t contain z. This implies that Sy is an z-leaf, a contradiction. O

Lemma 13. If G’ is a digraph obtained by contracting an edge (u,v), with u having
out-degree one or v having in-degree one, in o digraph G then H(G') < H(G), where
H(G) 1is the haven order of G.

v

" Note: The same statement regarding directed tree-width -of G and G’ was

noted by Johnson et al. [34].

Proof. Let ' be a haven of order w for G’. We construct a haven, 8, of order w
for G. First, assume u has out-degree one. For any subset Z of vertices in G, if

u€ Z,let U(Z) = (Z — {u}) U {v}, otherwise let U(Z) = Z. For Z with |Z] < w,

69

let 8(Z) be the strongly connected component of G that contains §'(U(Z)). (Note:
lU(Z)| < |Z] so B'(U(Z)) is defined.) If C is a strongly connected component
of G'\ Z for some Z and u € Z then either C or C U {u} is a sfrongly connected
component of G\ Z. Thus, §(Z) equals either §'(U(Z)) or 8'(U(Z))U{u}. Therefore,
for any two subsets Z1 C Zy of less than w vertices of G, U(Z1) C U(Z), so
B(Z1) N B(Z) 2 BU(Z)) NB(UZ) = B(U(Z)) # 0. Thus, A(Z) € A(Zy).
Notice that if Cy and Cy are twb strongly C())nnected componets of G\Z; and G\ Z3,

respectively, then either Co € C; or C; N Cy = B. The case when v has in-degree

one is similar. O

Corollary 3. The three statements “G has D-width one”, “G has directed tree-width

»

one”, and “G has haven order two” are equivalent.

Proof. This follows from 12 and the following two theorems from [34] and [47].

Theorem 13 (Johnson et al. [34]). H(G) — 1 < tree-width(G) < 3H(G) + 1 for

digraphs G, where H(G) is the haven order of G.

Theorem 14 (Safari [47]). For any digraph G, tree-width(G) < D-width(G).

. 0

4.3.1 Algorithmic results

The nice property of directed one-trees is that they héve a contractible edge as per
Lemma 12. We can use this property to design recursive algorithms for certain
pfobieins on directed one-trees.

| In the following algorithms, we assume that the contractible edge is (u,v) .

(with u having out-degree one). We contract the edge by removing © and con-

70

necting all u’s incoming edges to v. The case when u has in-degree one is handled

analogously.

Reéognition To find a D-decomposi‘tion with width one, if it exists, in a digraph
G:

40. If G is a single vertex return a‘single node containing the vertex.

1. Find a contractible edge (u,v), contract it, and obtain a new digraph G'.
If no contractible edge exists then FAIL

2. Recursively find a D-decomposition 7" for G.

3. Look for a node of T’ that contai;is v, and add a new node r to it with
W, = {u,v}

If we keep the list of vertices ordered by in-degree and also by out-degree, we

can perform steps 1, 2, and 3 in O(n) time. Thus, the total runnihg time is O(n?).

Hamiltonianﬂ cycle To find a Hamiltonian .cycle, if it exists, in a directed one-tree
G in O(n?) time:

0. If G is a single vertex return the vertex. If G is acyclic then FAIL.

1. Find a contractible edge (u,v); contract it, and obtain a new digraph G'.
Also remove all edges (z,v) in G' where (z,v) is an edge in G. If no contractible
edge exists then FAIL. |

2. Recursively .ﬁnd a Hamiltonian cycle C in G'.

3. Replace the edge (z,v) in C with (z,u), (u,v) to obtain a Hamiltonian

cycle for G'.

71

4.4 Comparing D-width and directed tree-width

Tt is conjectured in [48] fhat D-width and directed tree-width are equal. We disprove
this conjecture in this section and prove that there is an arbitrarily gap between D-
width and directed tree-width, though it is still u-nknbw.n whether the two are within
a constant factor of éach other. We will also provide several inequivalence results
for other relevant parameters such as haven order.

- To this aim, we consider game characterizations of D-widthv and directed

trée—width.
Theorem 15. For every digraph G,
tree-width(G) < robber-monotone(G) < cop-monotone(G) < D-width(G)

Proof. tree-width(G) < robber-momnotone(QG)

It is proven in [34].

| | robber-monotone(G) < cop-monotone(G)

Let 0 = (Yp,m) be a cop-monotone winning strategy, then vs}e claim o ié a robber-
monotone winning strategy. Assume not.; we éhow the_robber can defeat ¢ by
moving to a vacated vertex, contradicting the assumption that ¢ is winning. Let
p = (XO,RO), (X1, Ry),... be a play consistent with o such that R; 2 Ry for
some i. From the definition of a play, it follows there exists r € RHi such that
r € X; \ Xiy1. Let p' = (X}, Ry), (X1, R}), - be a play consistent with o that
agrees with p up to (Xi+1,&+1), such that r € R for all j > . Néte that since
re R;+1 and o is cop-monotone, such a piay exists as there will always be a strongly

connected component containing r. But then this play is not winning for the cop

piayer.

cop-monotone(G) < D-width(G)
Assume a D-decomposition (T',W) of G of width k is given. Let T be rooted at
a node r. The cops can start at Xg = W,.. Let T1,T5,--- , Ty be subtree‘s of T
with roots r1,72,++ , 7y, children of 7. Let U; be the union of the sets W; over all
nodes j in 7;. According to conditions of D-decompositioﬁs, the robber can only
be at vertices in one of the sets U;. The cops can move to W,, and continue the
strategy until they trap the robber in one of the leaves. The connectivity condition

of D-decompositions énsures that this strategy will be strongly cop-monotone. O

4.4.1 Arbitrary gap between different games

We first observe that there can be an arbitrarily big gap between the number of

cops required to win by using different strategies in the cop/robber game.
. Theorem 16. For any m € N there exists:

1. A digraph on which 4m cops can capture a robber, but bm cops are required to

capture it with a robber-monotone strategy.

2. A digraph on which dm cops can. capture o robber with a robber-monotone

strategy, but bm cops are required to capture it with a cop-monotone strateqy.

Before we prove Theorem 16, we need to introduce the notion of lexicographic

product.

Definition 7. Let G and H be digraphs. The lexicographic product, G H, is the
graph with V(G e H) = V(G) x V(H) and

B(G o H) = {((@,), (¢/,))|(@, &) € B(G), or 5 =2 and (y,y') € E(H)}.

The proof relies on the following result, similar to one presented in [32].

73

Lemma 14. Let G be a digraph, K,, the complete digraph on m vertices. At least
k cops have a (cop-monotone, robber-monotone) winning strategy on G, if and only
if at least mk cops have a (cop-monotone, robber-monotone respectively) winning

strategy on G e K.

Proof. If k cops have a winning strategy on G, then a winning strategy for mk cops ’
on (G e K, is obtain:ed by simulating the game on G. If the robber’s position is
(r,s) € V(G o K,,) then we position a robber on r € V(G). We then consider the
cops’ play on G and play on;G e K,, by placing n cops on {(z,y)ly € V(Kn)}
whénever a cop would be placed on z € V(G). It’s easy to verify that the cop-
monotonicity and robb'er-monoto.nicity of the strategies do not change.'

For the converse we show that if the robber can defeat &k — 1 cops on G then
he cém defeat mk — 1 cops on (G e K,,. Again we simulate the game for G e K, on
G, but this time from the robber’s perspective. We place a cop on z € V(G) only
if all vertices in V(G o Ky,) of the form (a:,y), y € V(Kp,) are occﬁpied. By the
pigeon-hole principle, this requifes at most k — 1 cops on G. The robber’s current
position is projected as before. The robber’s response ' on G is lifted to Ge Ky
by playing to a non-occupied vertex of the form (v/,y). As 7’ is unoccupied in the
simulated game, at least one such vertex exists. As the robber can defeat k — 1
cdps on G, the strategy is winning. To complete the proof we need fo show that
if a strategy is not (cop-monotone, robber-monotone) on G then its corresponding
strategy on G e K, is not (cop-monotone, robber-monotone respectively) either.
The idea is that if the tobbers play according té the above strategy then the cops
either need to occupy all vertices of type (z,7), for any &, in G e K, or none of
them. Partially filling these vertices doesn’t impose any constraint 6n the robber’s

movement and, hence, is not useful. It’s now very easy to verify that if such a

74

Figure 4.2: Graph on which 4 cops have a winning strategy but 5 cops are required
for robber-monotone strategy.

Figure 4.3: Graph on which 4 cops have a robber-monotone Wmmng strategy but 5
cops are required for cop-monotone strategy.
strategy is (cop-monotone, robber-monotone) on G e K,,; then it’s corresponding

strategy on G is (cop-monotone, robber-monotone respectively). O
We now turn to the proof of Theorem 16.

Proof. In {1] it Was shown that 4 cops have a winning strategy on the graph‘ in
Figure 4.2, but 5 cops are required to capture the robber with a robber-monotone
strategy. In [34] it was observed that 4 cops .have a robber-monotone winning
lstrategy on the graph in Figure 4.3, but 5 cops are required to capture the robber
- with a cop-monotone strategy. The results then follow ny taking the lexicographic

product of these graphs with K,,, the complete graph on m vertices. a

75

4.4.2 »Ar'bitrary gap between D-width, directed tree-width, and

haven order

Theorems 15 and 16 immediately yield an arbitrary big gap between directed tree-
width and D-width. In this section we study the behavior of D-width, directed
tree-width and haven order under lexicographic product and independently prove
the existence of an arbitrary big gap for the above three parameters.

We first prove that D-width behaves well under lexicographic product.

Lemma 15. If G is o digraph, and K,, the complete graph on m wvertices, then
1+ D-width(G e Kp) = m - (1 + D-width(G)).

Proof. One can view G e K, as making a clique {u1,ug, - ,um} out of every vertex
| u of G and connecting u; to v; if and only if (u,v) € E(G). Let (T, W) be a D-
decomposition of width w of G. We construct a D-decomposition (7', W') of Ge K,
as follows. W' is a family of subsets of vertices of G e K, such that for any j and
i, u; € W/ if and only if u € W;. It can be easily proven that (T, W’) is a proper
D-decomposition of G e K,,, and has width m(w + 1) — 1. For the reverse direction,
let (I",W') be a D-decomposition of G e K, of width w’ such that Y, [W]] is

minimized. We first make the following observation.

Claim 1. For every u € G and i € T, either U C W] or UNW, = 0, where

U‘: {u11u27" : 7um}-

Proof. . As U is a clique in G e K,,, there must be a node j with U C WJ’ Let ¢ be
the furthest node from j that violates the above condition, i.e. there are u,, uqy € U
-with up € W, and u, & W]. Let k be tlre node before ¢ in the unique path from j to
i in T". We claim that dropping u, from W/ still leaves a proper D-decomposition

contradicting the assumption that)., |W;]| is minimum. If not, there must be a

76

sfrongly connected set S such that vertices of S do not make a connected subtree
in the new D-decomposition (obtained by dropping u, from W/). This is possible
only if SN W, NW, = {u,} and there are some vertices of S other than up in Wz’ .
But, then, the strongly connected set (S U {up})\{uq} does not make a connected
subtree in the original D-decomposition. As-i is vthe furthest node from j with
0 < |[UNW]| < m, iis a leaf of the subtree that contains u, (if a further node
I contained u, then |W/ NU| = m and thus u, € W/ so T’ lu, 18 not connected)
and, hence, dropping u, from W, does not violate conditions (D1) and (D2) for
T, | _ O
Now, given a D-decomposition with the above property we can replace every

node that contains all vertices of U by u and obtain a D-decomposition of G with

width 2L 1, | o O
A similar result holds for haven-width:

Lemma 16. If G is a digraph, and K,, the complete graph on m wvertices, then
hw(G o K) = m - hw(G).

Proof. For this proof we define a function f : P(V(GeK,,)) — P(V(G)) by f(X') =
{v|(v,k) € X' for all k € V(K,,)}. First we show that if. G e K, has a haven,
B, of order mk then G has a haven, ', of order k. We define & as ﬁ’(X) =
SfBX xV(Knp))). Now as BX XV (EKp))N(X XV (Kyp)) =0, every vertex (z,y) €
B(X x V(Ky,)) has z ¢ X. But then, since 8(X x V(K,,)) is a strongly connected
component (maximal strongly connected set), {z} x V(K,,) C B(X x V(K,,)) for

each such z, so f/(X) is non-empty and strongly connected. By observing that if

X CY then f(X) C f(Y), we see that §/(X) 2 §'(Y) whenever X C Y.

For the converse, we show that if G has a haven, 8, of order k then G e K,
has a haven, §, of order mk. For this we define 8/(X) = (B(f(X)) x V(Kn))\ X.
By the pigeon-hole principle, if |X| < mk then |f(X)| < k, so 8’ is well-defined on
sets X with |X'| < mk. Since f is a haven, G(f(X)) is non-empty and disjoint from
F(X). Thus.ﬁ(f(X)) X V(Kpm) has elements (z,y) such if (z,y) € X, there exists

.z € V(Ky,) such that (z,2) ¢ X. Thus §'(X) is non-empty and strongly connected.

Again, the monotonicity of f implies 5/(X) 2 8'(Y) whenever X C Y. (|

Unfortunately, directed tree-width is not obviously so well behaved. However,
by replacing vertices in an arboreal decomposition by cliques, we obtain one direction

of the analogous result.

Lemma 17. If G is a digraph, and K,, the complete graph on m wvertices, then

1+ dtw(G o Kpp,) < m (1 + dtw(G)).

We observe that the graph in Figure 4.3 has directed tree-width 3, D-width 4,
and haven-width 4, giving us an arbitrary gap between D-width, directed tree-width

and haven-width.
Corollary 4. For any m & N there exists:
1. A graph with D-width 5m — 1 and haven-width 4m, and

2. A graph with D-width 5m — 1 and directed tree-width < 4m -1

4.5 Upper Bounds for D-width

So far, we know some lower bounds for D-width, namely, directed tree-width, haven

order, cop-monotonicity, and bramble number®. In this section we obtain a non-

" 3The bramble number result appears in [48].

78

trivial upper bound for D-width which is computable in polynomial time when D-
width is constant. Unfortunately there doesn’t exist any algorithm for computing
optimal or nearly optimal D-decompositions. However, using the results of this
section along with those of the previous section, we can compute non-trivial upper
and IoWer bounds for D-width.

We prove that D-width is at most the number of cops required for a I'estrif;ted

cop-monotone winning strategy that we call strongly cop-monotone.

Definition 8. A strongly cop-monotone strategy 7 is a cop-mohotone strategy with

the additional constraint that 7(X,R) C X UR.

Theorem 17. Let G be a digraph. Then, if k+1 cops have a strongly cop-monotone

winning strategy on G then the D-width of G is at most k.

Proof. Let 0 = (Yp,) be a winning strongly cop-monotone strategy for k + 1 cops.
From Theorem 15, o must also bé robber-monotone. Let II, be the strategy forest

associated with . We define a D-decomposition (7', W) as follows:
L V(T) = V(IL,) U {r};
2. E(T) = E(Il,) U{(r,t)|t is a root of I, };*
3. W, = Y and Wy = n(X, R) for ¢ = (X, R) € V(IL,).

Itl is dear that (T, W) has width at most (k+ 1) — 1 = k. Because o is a winning
strategy, every vertex must be occupied by a cop at some point, so for every strongly
connected set S, T|s = {t|W; NS # 0} # 0. For condition (D2), let S be a strongly
connected set. From the construction of Hgvand the strong éop—monotonicity_ of

o, for any situation (Yy, R,) such that §N (Yo, Ry) # 0, there is a unique path

“For the decomposition to be undirected we ignore the directions on the edges in II,

79

(Yo, Ro), (Y1, R1), ..., (Yo, Ry) such that S A (Y Ry) # 0, for 0 < { < n and
S C Ry. Moreover, (Yp, Rg) is common in all such paths regardless of (Y5, Ry).
Hence, -it suffices to show that S remains connected alorig paths of II,. But this
follows immediately from the cop-monotonicity of o: if the cops occupy some of
S, leave all vertices in S, and then occupy some of S, either they yevisit a vertex
(contradicting cop-monotonicity), or the robber can defeat o on S (contradicting

the fact that o is winning).

a

4.5.1 Computing the strongly cop-monotonicity

Theorem 18. Given a digraph G and an integer k, determining if k cops have a

strongly cop-monotone winning strategy on G can be decided in time O(n*+3), where

n= |V(G)| Furthermore, the algorithm will find -such a strategy if one exists.

Proof. The algorithm we present in Figure 4.4 recursively computes a k-cop strohgly
cop-monotone strategy - from position (X, R) by iterating through all possible val-
ues for X’ which preserve monotonicity, and then checking that there is a winning
strategy from (X', R') for all R’ with a non-empty intersection with R. The correct-

ness and running time of this algorithm follow in the next two lemmas. (]

Lemma 18 (Correctness). Given a digraph G and an integer k, = = strategy
0, G, G, k) 1s a k-cop strongly cop-monotone winning strategy if, and only if, such

a strategy exists.

Proof. To show that the algorithim computes a strongly cop-monotone winning strat-
egy, we first show that the computed strategy is strongly cop-monotone and then

prove that it is a winning strategy. For every (X, R), n(X,R) C X UR, so 7 is

80

Algorithm strategy(X, R, G, k)

foreach X' C X UR with X' # X, |X'| =k do
Let Ri, Ry, ..., R, be all strongly connected components of
G\(X’' N X) that have nonempty intersection with R
Vi, let o; = strategy (X', R;, G, k)
if 0; # 0,Vi, then return o = (X, 7) where 7(X, R) X' and o
follows o; if the robber moves to R;.

end :

return 0

Figure 4.4: Finding a strongly cop-monotone winning strategy

strongly cop-monotone. To show tha‘c the strategy is winning, we show that it is
winning from each position (X , R). This is easily established by induction on the
size of R, as (X, R) is defined as a set X’ such that the strategy is winning from
(X', R') for all reachable positions (X', R'). As we observed above, R’ C R, and as
X # X' C XUR, X’ will include vertices from R, so R’ will be étrictly smaller than
R.

For the converse, we need to show that if there is a k-cop strongly cop-
‘monotone strategy o’ = (Yp, 7’) then 7/(X, R) is a possible return value for 7(X, R).
Without loss of generality, we can assume 7’(X, R) cXu R and |7 (X, R)| = k as
we can always transform ¢’ into a strongly cop-monotone strategy which does satisfy
these. From Theorem 15, ¢’ is also a robber-monotone strategy, so R is a strongly
connected component of G\ (X N'(X, R)). Finally, it is clear that if R’ is a non-

empty strongly connected component of G\ 7'(X, R), then '(n'(X, R),R') # 0. O

Lemma 19 (Running time). Given a digraph G and an integer k, strategy((/),
G, G, k) runs in time O(n**2), where n = |V(G)| .

Proof. We implement the algofithm using dynamic programming. There is an entry

- (X, R) in the dynamic programming table 7 for each subset of k vertices X and each

81

strongly connected component R of G\X. The table is filled in increasing order of
the size of R.

As there are at most n strongly connected components in G\ X, there exist
at most O(n**1) possibility for any (X, R) pair. Inlcomputing n(X, R) we try all
possible O(nk) subsets X’ of X U R and, for each one, it takes O(n?) time to check
if C is a strongly connected component of G\(X N X') (using depth-first search).
Since each R; is smaller than R, we can use dynamic programming (or memoization)

so that the check of m(X’, R;) takes constant time' (after its initial calculation). In

total, the running time of the algorithm is O(n¥+2).

4.6 Conclusion and Future Work

In this chapter we further study D-width and identify the class of digraphs with
D-width one. We also obtain non-trivial upper bounds for D-width in terms of the
number of cops that are required to capture the robber in (strongly) cop-monotone
cops/robber games. |

As D-width is an upper bound for directed tree-width, not only does D-width
inherit all the algorithmic advantages of directed tree-width, such as an efficient
algorithm for Hamiltonian cycle on bounded D-width graphs, but the simplicity
of D-decompositions may also be used to establish other algorithmic results for
digraphs with bounded D-width. Finding an algorithm for coﬁputing optimal or
nearly optimal D-decompositions would have a direct effect on the efficiency of these

solutions. Exploring the class of problems that are efficiently solvable on bounded

D-width graphs is also a very interesting direction of future research.

Chapter 5

Hyper-D-width

5.1 Introduction

In this. chapter, wé introduce hyper-D-width and hj/p@'/"— T-width as the first stable
(see definition 9) measures of connectivity for hypergraphs. After studying some
of their properties and, in particular, proposing an algorithm for computing nearly
optimal hyper-T-decompo§tion when hyper-T-width is constant, we introduce some
Aappli(;a,tions of hyper-D-width and hyper-T-width in solving hard problems such as

the minimum vertex cover.

5.2 Background

In this section, we review the definitions that we use in this chapter. A hypergraph
H = (V,E) consists of a set of .vertices V and a set of edges E where every edge
e € E is a subset of V. A path in H is a seduence of vertices uq,ug, , U, Such
that u; and w;4; are both in some edge in H for i = 1,2,--- ,m — 1. We say u is

connected to v if there is some path from u to v. A set S of vertices is connected if

83

every two vertices in it are connected. A connected component of H is any maximal
connected set of H. For a subset X of V, the hypergraph induced by X, denoted
- by H[X], is (X, E), Wher‘e IE' is the set of edges in E all of whose vertices are in
X. Finally, the hypergrabh H\X is H[V\X]: Notice our different interpretation of
~ connectivity in this Chapter. Given an edge e = {v1,v2, -+, vk}, we consider it as
a single connected unit meaning that-e collapses by removing any of v;’s. This is in
contrast with those definitions that define connectivity based on the primal graph.

Three graphs are often associated with any hypergraph H: The primal graph,
the dual graph, and the incidence graph. The primal graph is obfained by making
a'clique out of the vertices in every edge in H. The dual graph is obtained by rep-
resenting every edge by a vertex and connecting two vertices if their corresponding
edges intersect. The incidence graph is a bipartite graph whose ﬁrst part corre-
sponds to vertices in H and Whose second part corresponds to edges in H. A vertex
u in the first part is connected to a vertex e in the second part if u € e in H. The ‘
tree-widths of the primal, dual, and incidence graphs are often referred to as primal,
“dual, and the incidence tree-width, re‘spectively. |

A famous example of using hypergraphs is using them to model inputs to

the SAT problem A boolean formula in conjunctive normal forrn with clause sets

C1,Cy, - , Cpm, of variables X = {z1,z9, -+ ,z,} and their negations T1,%2," " +In
is modeled by a hypergraph H = (X, F) w11er'e E ={ej,es, - ,en} and, for all k,
T € € ‘iff either z; € C; or Zy € Cj.
For example, for ¢ = (avbVve)A(aVe)A(bVec)Ab, the corresponding
hypergraph is H = ({a, b, ¢}, {{a, b, c}, {a,c}, {b,c}, {b}}).
" For thése formulas, -theltree—width of the incidence graph seems to be the

most general parameter for which the SAT problem is fixed paraﬁneter tractable.

84

Theorem 19. [51] Satisfiability of clause-sets with bounded incidence tree-width is

fized-parameter tractable.

.A problem is fized parameter tractable, if it admits an algorithm with running
timé O(f(k)n®™) where k is some parameter independent of n, f is any function of
k, and « is a constant indeplendent of k and n. As k doesn’t appear in the exponent
of n, instances of large sizé n can be solved efficiently. |

Such a fact was already known for primal tree-width [27], but the above is
stronger as the incidence tree-width is always sm:aller than the primal tl'ee-widfh
plus one [51].

One parameter thafn is used-many times in the literature is hypertree-width
and similar variants which was first iﬁtroduced by Gottlob et al. [26]. One pa-
rameter that is used many times in the literature is hypertree-width and similar
variants which was first introduced by Gottlol:; et al. [26]. A generalized hypertree
decomposition of a hybergraph H = (V,E) is a triple (T, W, X), where (T, W) is
a tree-decomposition of the primal graph of H and A is a function that assigns to

'every vertex t of T a set of edges in E such that Wy C |J A(t). The width of (T, W, X)
is the maximum of |A(t)] over all nodes t of T. (Generalized) Hypertree—width'is
di.fferénfc from tree—width of the primal graph only in the way we measure the width
of a tree-decomposition: Instead of counting the number of vertices in a node, we
count the number of edges that cover these nodes. The genemlizéd hypertree-width
of H is the minimum width over all its generalized hypertree-decompositions. A
hypertree-decomposition (T, W,) is a generalized hypertree decomposition that sat-
isfies one special condition: (|JA(¢))NX(7};) C W;, where T is the subtree rooted at
t and X(Tt) is Uzer, Ws. This cbndition is added for technical reasons to make the

hypertree decomposition computable when it is constant. It is not known whether

85

generalized hypertree-width is coxnﬁutable in ﬁolynomial time when it is constant.
The hypertree-width of H is defined accordingly.)
Gottlob et al. (See [26] or [25] for a survey) show how an optimal hypertree-
decomposition can be computed for a hypergraph with bounded. hypertree—width by
associéting it with certain cops and robber games. Tiley also show that the con-

straint satisfaction problem is solvable in polynomial time for constant hypertree-

width hypergraphs. A constraint satisfaction problem is a set of constraints (S;, R;)

where S; is a tuple of variables from a set of variables X and R; is a list of
tuples of values from smﬁe domain D. A solution to/ CSP is a valuation sulch
that all constraints are satisﬁed. A valuation V : X — D satisfies constraint
((z1,x2, - ,zx), R) if (v(z1),v(x2), -+ ,v(zk)) € R. In this specific model, all pos-
siblé valuations of the tuple S; are explicitly given, i.e. are part of the input, and,
hence, the numbér of possible 'Valuations is upper bounded by the input size. For
example, in the SAT input ¢ = (a VbV c)A(aVE) A(bVc)ADb, the second clause
is represented as ((a,c), {(T, F),(T,T),(F,F)}) in this model. This is in contrast
to a typical input to SAT (and other problems), which represents the set of values.
that satisfy a constraint via a formula (e.g. (a V¢)). In this modél, if we add a big
constraint (i.e. S; is big) we can inake the problem easier to solve. For example, if -
a constraint contains all the variables, then we can Silnply try all valuations given
for that constraint and check if one works for the other constraints as well. That’s
bésically why hypertree-width is related to the time required to solve CSP. |
Adler et al. [2] prove that hypertree-width is within a factor 3 +.¢ of sev-
eral other hypergraph measures: generalized hypertree-width, (monotone) marshal-
width , hyperbramble numbe‘r, hypertangle number, hyperbranch-width, and hyper-

linkedness.

86

5.3 Hyper-D-width
5.3.1 Definition

Let H = (V, E) be a hypergraph. A hyper-D-decomposition of H is a pair (T, W)
where T is a tree and W = {W,|t' € V(T)} is a familyof subsets of V(H) such that

for every connected set S:
C(H1) Tl|s == {t{Wy NS # 0} # 0, and

(H2) The subgraph of T with vertex set T'|s and edges {(s,t)|W, N W; N S # 0}

forms a connected subtree of 7.

The width of a hyper-D-decomposition (7", W) is the maximum of |W;| — 1
over all nodes t € V(T'). The hyy;er—D—width of a hypergraph is the minimum width
over all its hyper-D-decompositions. - For ex‘ample, a hyper-D-decomposition with
width two for the hypergraph H = ({1,2,3,4},{{1,2,3},{1,4},{2,4},{3,4}}) is

depicted in Fig. 5.1. It’s not hard to prove that it’s, in fact, a minimum width

Figure 5.1: A hyper-D-decomposition with width two.

hyper-D-decomposition.

87

5.3.2 Basic Properties

Hyper-D-width is a generalization of tree-width. On regular graphs, where every
edge has two vertices, hyper-D-decomposition wants the two vertices in every edge

to share a node. This is exactly what any tree-decomposition wants.
Theorem 20. For every undirected graph G, tree-width(G) = hyper-D-width(G).

Let (T,W) be a hyper-D-decomposition for a hypergraph H. If we make a
regular graph on the vertices of H by connecting two vertices iff they share a node in

T, then the result' would be a chordal graph with the same tree-width as the width

of T

Theorem 21. For every hypergraph H with hyper-D-width w, there ezists an undi-
rected chordal graph G with tree-width w such that for any edge e of H with vertex

set S, G[S] is connected.

Hyper-D-width is inspired by D-width on directed graphs. In fact, every
minimal strongly connected set in digraphs is treated as an hyperedge in the defini-
tion of D-width meaning that hyper—D-width is, in sorne sense, a generalization of

D-width.

5.3.3 Stability

. Almost all existing connectivity measures for hypergraphs are very sensitive to big
edges, i.e. edges that contains many vertices. (Generalized) Hypertree-width, hy-
perlinkedness, hyperbramble number, (monotone) marshal-width are all constant
Wh.en we have an edge that contains all the vertices no matter what tile rest of the
hypergraph structure is. On the other hand, the tree-width of the primal graph is

always n — 1 for the above example, where n is the number of vertices.

88

We would like a connectivity (cyclicity) measure on hypergraphs to behave-
in a s;ﬁable way (aé tree-width does for regular graphs): adding a constant number
of vertices or edges shouldn’t substantially change the connectivity. All the afore-
mentioned measures violate this stability condition; so do the tree-width of the dual
- graph and the tree-width of the incidence graph.

Unlike all the above-mentioned connectivity measures for hypergraphs, hyper-
D-width is stable. Let’s formally define stability first and then provle the stability

of hyper-D-width.

Definition 9. A measure defined on hypergraphs is stable if after removing a con-
stant number of vertices (with all edges containing those vertices) or a constant
number of edges (defined on existing vertices) the measure decreases by only a con-

stant.
Theorem 22. Hyper-D-width is stable.

Proof. 1t’s sufficient to show that hyper-D-width changes by a constant when adding
one new vertex or one new edge. Assume we add a new vertex v and an arbitrary
number of edges containing u to a hypergraph H. Let (T, W) be an ‘o'ptimal hyper-
D-decomposition of H with width w.- Obviously, (T, W’), where W, = W, U {u}
for every t € V(T'), is a proper hyper-D-decomposition of the new hypergraph with
width w + 1. In case we add a new edge e = {vi,v2, -+ , vk} to the hypergraph

H, (T,W'), where W/ = W, U {v1} for every t € V(T), is a proper hyper-D-

decomposition of the new hypergraph with width at most w + 1. O

In contrast, all the existing alternative measures are unstable.

Theorem 23. (Generalized) Hypertree-width, hyperlinkedness, hyperbramble num-

ber, (monotone) marshal-width, (dual, incidence, or primal) tree width are all un-.

89

stable.

Proof. 1t’s proven in [2] that the first four parameters are within a constant factor of
each other. Hence it suffices to prove hypertree-width and (dual, incidence, primal_)
tree width are unstable. Let H be a hypergraph with big hypertree-width. Adding
one edge that contains all th_e vertices makes the hypertree-width equal to one. Thus,
hypertree-width is unstable. Similarly, the primal tree width is unstable. Now, let
H be a hypergraph with small dual tree-width. Let H’ be obtained from H by
adding a new vertex u and all possible edges that contain . (i.e. V2” edges where n
is the number of vertices). The dual graph of H' has a clique of size 2" (all edges
that contain u) which means it has dual tree-width at least 2" — 1, which shows
dual tree-width is unstable (under removal of vertex w).. Aé for the incidence graph
suppose H is a hypergraph with small incidence tree-width. We show that H ’., as
constructed above, has large incidence tree-width. Let I be the first 5 vertices of
H. The ﬁumber of edges in H' that contain all vertices in I is at least 2% which
means the incidence graph of H’' contains a K 30 (actually K 1 0% 3 well) subgraph.

Hence, its tree-width is at least Z. a

5.3.4 Comparison

~ In this section we compare hyper-D-width with other existing parameters defined
“on hypergraphs, namely, hypertree-width and the tree-width of the primal, dual,

and incidence graph.
‘Theorem 24. For any hypergraph H,
o hyper-D-width(H) < primal tree-width(H).

o hyper-D-width(H) < incidence tree-width(H).

90

o hyper-D-width(H) < dual tree-width(H) + 1.

. Proof. The ﬁrst‘inequality follows from the fact that every tll'ee—decomposition of
the primal graph is a hyper-D-decomposition. On’the other hand, there exist hy-
pergraphs with primal tree-width n — 1 and hyper-D-width one (a hypergraph with
one edge containing ‘all the vertices). |

" As for the incidenée tree width, let (7, W) be a tree-decomposition of the
incidence graph. For each edge e = {v1,v2, - ,ui}, replace every occurance of e in
W, for t € V(T') with vy. Since e and v; share some node of T, i.e. {e,v1} C'W; for
some t € V(T'), the nodes that contain v still make a connected subtree. Moreover,
since e shares some node with every v;, 1 < ¢ < k, the vertices vy, v, -+ ,vx make a
connected subtree in the resulting tree-decomposition. Again, there are hypergraphs
with small hyper-D-width, but large incidence tree-width. Assume H has 2n vertices
{1,2,--- ,2n} and n edges of the form e; = {1,2,--- ,n,n+ i} for 1 <i < n.. The
incidence graph has a K, », subgraph (every 7 is connected to e; for 1 < 4,5 < n) and,
hence, has tree-width at least n. However, its hyper-D-width is one. Its minimum
width hyper—D—decomposiﬁion is a star with root r containing W, = {1} and ith leaf
containing W; = {1,4} for 2 <4 < 2n.

Almost the same statement holds when comparing the dual tree width and
hyper-D-width. Given a tree-decomposition (7', W) with width w of the dual graph |
of hypergraph H, we show how a hyper-D-decomposition of H with width at most
w+ 1 can be constructed '. For any vertex v € V(H), all edges that contain u
make a clique in the dual graph. Hence, there is some node in 7T, say A(u), that
contains all such edges. In the first step, for all u € V(H) we add a ieaf {(u) with

Wiw) = Wi U {u} and attach it to the node A(u) in 7' . Next, for every edge

1On regular graphs we can remove the additive constant one in the inequality.

91

e € E(H), we pick an arbitrary vertex v € e and replace e with v in every W; for
t € V(T). Call the resulting decomposition (7", W’). Now, (1", W’) contains only
vertices of H. We claim that (77, W’) is a hyper-D-decomposition of H. First, the
new leaves insure that every vertex u € H is contained in some W; (in particular,
Wiwy) in T". Second, for any vertex u € H, all nodes t € 7" such that u € W, make
a connect_ed subtree. Every edge e replaced by v in creating T’, forms a connected
subtree in T that contains the node A(u). Hence, these subtrees are connected in T'
and they connect to the new leaf node I(u). Third, suppose e = {z1, 22, - ,:L‘k}‘iS
replaced by z1, then 7|, NT"|,; # 0. In fact, A(z;) € T'|z, NT"|4;. So the subtrees
corresponding to vertices of e form a cqnnected subtree. A star graph of size n has
tree-width one and (by Theorem 20) hyper-D-width one whereas its dual graph is a

clique and, hence, has tree-width n — 1. - O
Corollary 5. The class of bounded hyper-D-width hypergraphs contains the class of
bounded (primal, dual, or incidence) hypergraphs.

5.3.5 cops and robber game

In chapter 4 we obtained lower and upper bounds for D-width in terms of the number
of cbps that are required to win certain cops/robber game. An identical definition
of cops and robber games under the new definition of connected components enable

us to obtain similar results on hypergraphs. = -
Theorem 25. let h be a hypergraph.

1. Ifk+1 cops have a strongly cop-monotone winning strategy on H then H has

hyper-D-width at most k.

92

2. If H has hyper-D-width ot most k then k+1 cops have a cop-monotone winning

strategy on H.

In addition, there exist an algorithm for computing the strongly cop-monotonicity of

H in time O(n*+?),

5.3.6 Applicationé

In this section we show that there exist polynomial-time approximation schemes
(PTAS) for many problems including vertex cover, dominating set, and mulficut
problems on hypergraphs whenl the hyﬁer-D-width of the input hypergraph is con-
stant. |

Let a generic problem P be as follows: Find a minimum number of vertices
in a hypergraph that satisfy some constraint C.

We are especially interested in problems P with the following property.

(Decomposable Propei‘ty)Problem P is decomposable if it satisfies the
following condition. Let H be a hypergfaph. For any subset X of vertices of H, let
C1,Cy, -+ ,Cp be the connected components of H \X . Let D; be a solution for P
on H[C;]. Then, X U(DyUDyU---UD,,) is a solution of P on H.

The decomposable property lets us choose any suitable X, put it in the
solution, break the input hypergraph into smaller parts, and solve the problem on

each part independently. It’s easy to verify that multi-cut, dominating set, and

vertex cover are examples of such problems. For example, for the vertex cover

problem, if we choose all vertices in X then any edge that intersects both C; and

Cj (i # j) is covered. The rest is, then, solving the vertex cover problem on each
J g p

C; separately.

Now, we show how such problems have a PTAS on bounded hyper-T-width

93

hypergraphs. The idea is similar to the technique that Calinescu et al. [15] use to
find a PTAS for multicut on bounded trée-width graphs and digraphs. Let (7, B, W)
be a hyper—T—decompbsition with width w for the input hype‘rgraph. Let t € V(T)
be the bottom-most node such that there exists an optimal global solution that
contains at least w/e vertices in the subtree 1} rooted at t. If there is no such t
then the optimal global solution has fewer than w/e vertices. Such a solution can
be computed in time O(n*/¢). Otherwise, lét opt; be the number of vertices of an
‘optimal solution in 7;. Choosing and removing vall vertices in Ay = By U, We
- breaks T} iﬁto several connected components each having less than w/e vertices of
the optimal solution. Hence, the problem can be solved by brute force on all these
components in time O(n*/¢). Hence, the nulnbér of vertices that we pick is at most
opt: +w < opty(1 + €). Assuine that the rest of the hypergraph has o vertices in
the optimal solution. According to the induction hypothesis, we can find a solutioﬁ
with at ﬁiost o(1 + €) vertices. Hence, we can solve the problem on H by choosing
at most (1 + ¢€)(opt, + o) vertices, yielding a (1+ ¢)-factor approximation for P. The
details of the algorithm are shown in- Fig. 5.2.

To complete this section we prove that all aforementioned problems are hard

even on bounded hyper-D-width hypergraphs.

Theorem 26. The verter cover pmblem, the dommating set problem, and the mul-

ticut problem are NP-Complete on bounded hyper-D-width hypergraphs.

Proéf. Let Cy,C5, -+ ,Cy, be a SAT problem instance over variables z1, 2o, , Zy.
We make a hypergraph H = (V, E) with vertex set V = Ui<i<n{zi, T3, 2 } U{u} and
edge set e; = C; U>{u}, for 1 < ¢ < m and .e.m+z- = {2, Ti, 2z}, forl <i<n. We
claim that the SAT problem instance is satisfiable iff the hypergraph H has a vertex

- cover of size exactly n. Assume the SAT instance is satisfiable with setting all z;’s

94

Input: A hypergraph H together with an optimal
hyper-D-decomposition (7', W)
Output: Minimum number of vertices that satisfy P
/* Let Let Xt = Ut’ETtWt/' */
foreach t € T do
Let t;, 1 =1,2,--- ,m, be children of ¢.
foreach ¢ do
find an optimal solution o; to P of size at most w/e for
H[X,, — Wy.
If no such solution exist then try the next t.
end -
Let 0 = Us0;.
Recursively find a (1 + ¢)-factor approximation solution o' for H\X;.
Let opt; = o U o U W, .
end
return opt, with minimum size.

Figure 5.2: Solving decomposable probiem P on a bounded hyper-D-
width hypergraph

in a set X to be true and the rest to be false. In the hypergraph let the verteﬁ cover
be X U{Z;|z; & X}. Obviogsly, every edge of type C; U {u} and every edge of type
{x;, 73, z;} is covered and the size of the vertex cover is n. On the other hand, let
X be a vertex cover of size at most n. Obviously, it must have picked exactly one
vertex from every triple {z;,T;, 2}, 1 <4 < n which is at least n vertices. Moreover, '
every edge of type C; U {u} must be covered by some z; or %7 in C;, which makes a
" satisfiable solution. Finally, V\}e mention that the hypérgraph constructed above has-
hyper—D;Width at moét three. Make a star with root u and every leaf contéining
{u, i, T4,z }, for 1 < i < n.

It’s easy to prove that the above reduction works for the dominating set.
problem as well. The NP-Conipleteness of the multicut problem follows from its

NP-Completeness on bounded tree-width graphs proven by Calinescu et al. [15]. O

95

5.4 Introducing hyper-T-width

~ Although hyper-D-width has many nice properties and resembles undirected tree-
width in a natural way, it has one big disadvantage that we haven’t resolved yet:
We don’t know a polynomial time algorithm for computing optimal Or even approx-
imately (within a constant factor) optimal hyper-D-decompositions for bounded
hyper-D-width hypergraphs.

One option is to consider a generalization of directed tree-width (34, 35]

instead. Recall the following definition from [35].

Definition 10. Let T be a directed tree. For o vertex t and edge e we say e ~1t if t
1s one of the end points of e. We also say t > e if either t is the head of e or there

is a directed path from the head of e to t in T.

Definition 11 (Arboreal (pre-)decompositions and directed tree-width).
An arboreal pre decomposition of a digraph G is a tuple (T, B, W) where T is a
directed tree with a unique root, and B = {Bjt € V(T')} and W = {W,|e € E(T)}

are sets of subsets of V(G) that satisfy:

- (R1) B is a partition of V(G) into (possibly empty) sets such that B, # 0 for the

root v of T, and
(R2) Ife € E(T), then Bt := \U{B|t > e} is We-normal or empty.

The width of an arboreal pre-decomposition (T, B, W) is the minimum k such that
for allt € V(T), |B; U, We] < k+ 1. An arboreal decomposition is a pre-
decomposition in which all By are non-empty, and the directed tree-width of a di-

graph G, dtw(QG), is the minimal width of all its arboreal decompositions.

96

D-decomposition is, in fact,.a restricted variant of arboreal pre- decomposi-
tion. Given a D—decompoﬁtion (T, W) of width w of a digraph G, the following is
an arboreal pre-decomposition of width w for G. (1", B', W'), where T’ is obtained
from T by choosing a random root and directing all edges away from the root. For
any edgé e=(u,v)in T, B, = W, - W, and X, = W, n W,.

* According to Johnson et al. [34] a set S is Z-normal if every path from a
vertex in S to another vertex in S thaﬁ contains a vertex in V(G) — S has a vertex
in Z as well. On the other hand, there is no strongly connected component of G\Z
tha‘é contains vertices from both S and V(D) — S.

Inspired by the above definition, we define hyper-T-width as follows.

Definition 12 (Hyper T-decomposition and hyper T-width). A hyper T-
decomposition of a hypergraph H is a tuple (T, B,W) where T is a directed tree

with a unigue root, and B = {Bi|t € V(T)} and W = {Wele € E(T)} are sets of

subsets of V(H) that satisfy:

(R1) B is a partition of V(H) into possibly empty sets such that B, # 0 for the
root v of T', and

(R2) If e € E(T), then Bt = U{B|t > €} is Wo-normal or empty. A set S is

Z-normal if there is no connected component of H\Z that contains vertices

from both S and V(H) —S.

The width of a hyper T-decomposition (T, B,W) is the minimum k such that for
allt € V(T), |Bt UlUgy We| < k+1. The hypet T-width of a hypergraph H is the

minimal width of all its hyper T-decompositions.

In the following section we show that hyper-T-width has all the nice prop-

erties of hyper-D-width. It’s stable, has the balanced-separator property, and has

97

all currently known algorithmic advantages of hyper-D-width. In addition, we can

compute an approximate hyper-T-decomposition when hyper-T-width is constant.

5.4.1 Properties

Theorem 27. Hyper-T-width is stable.

Proof. 1t’s sufficient to show that hyper-T-width changes by éconstant when adding
one new vertex or one new edge. Assume we add a new vertex u and an arbitrary
number of edges containing w« bto a hypergraph H. Let (7, B,W) be an optimal
hyp.e'r—T-decomposition of H of width w. Obviously, (7', B', W'), where W/ = W; U
{u} for every t € V(T) and B] = B,, when r is not the root and B, = B, U {u} fér
the root r, is a proper hyper-T-decomposition of the new hypergraph. Moreover,
(T, B, W') had width w + 1. In case we add a new edge e = {v1,va, -+ , U} to the '
hypergraph H, (T, W', B'), where W/} = W, U {v; } flor every t € V(T'), is a proper

hyper-T-decomposition of the new hypergraph. O

As mentioned in ther earlier section, a hyper-D-decomposition is a restricted

version of a hyper-T-decomposition. Hence,

Theorem 28. For any hypergraph H, the hyper-T-width of H is less than or equal

to its hyper-D-width.

Therefore,

Theorem 29. The class of bounded hyper-T-width hypergraphs contains the class

of bounded (primal, dual, and mcide'rice) hypergraphs.

Proof. This is a direct consequence of Theorems 24 and 28. d

98

As for algorithmic applications of hyper-T-width we show that a problem P
that satisfies the decbmposable property admits a P'TAS on bounded llyper;T-width
hypergraphs. The idea is quite similar to hyper-D-width. We consider the deepest
edge e = (r,7’) (.e. r has maximum depth) such that the subgraph Bt has more
than % vertices of some optimal soliution, where w is the hyper-T ~width of the input
hypergraph and € is-any constant. Now adding ali vertices X, ip the solution does
not change the numBer of vertices in the solution by more than a multiplicative

factor 1 + €.

5.4.2 Computation

The big advantage of hyper-T-width over hyper-D-width is the fact th"dt we can
approximately compute it when it is constant. Johnson et al. [34] prove this for
directed tree-width and their proof generalizes immediately to hypergraphs. In
particular, they introduce the notion of haven order and prove that directed tree-

width and haven order are within a constant factor of each other.

Theorem 30 (Johnson et al. [34]). H(G) — 1 < tree-width(G) < 3H(G) + 1 for

digraphs G, where H(G) is the haven order of G.

Their proof for tree-width(G) < 3H(G)+1 is constructive. If the haven order
of G is at most w then it builds an arboreal decomposition of width at most 3w+1. In
this section we shpw that the construction quickly transfers to hypergraphs without
any major charige.

We basically mimic the proof of Johnson et al. [34] here. As our definitions of
copnectivity and havens are different ffom theirs, the proof is completely illustrated
below.

Let’s start with defining haven order on hypergraphs. -

99

Definition 13 (haven and haveﬁ-order). Let H be a hypergraph. A haven of
order k is a function § assigning to every set Z C V(H) with |Z| < k, a connected
component of H\ Z such that if X CY C V(H) and |Y| < k then B(Y) C B(X).

The haven-order of H is the largest k such that H has a haven of order k

Theorem 31. H(H) — 1 < hyper-T-width(H) < 3H(H) + 1 for hypergraphs H,

where H(H) 1is the haven order of H.

Proof. (Left inequality)

Let (T, W’B), be a hyper—T-decomposition of width w of H. For any node
tlet Ay = By UlJ,; We. First observe that w + 1 cops can catch a robber in the
* cops/ robber game. Assume a hyper-T-decomposition (T', W, B) of G of width w is
given. The cops can start at Xg = A, Where r is the root. Let 11,15, , 1), be
subtrees of 7" with roots r1, 79, - , 7y, children of r. Let e; = (r,7;). According to
conditions of hyper-T-decompositions, the robber can only be at vertices in one of
the sets Béi. The.cops can then move to Ar; and continue the strategy until they
trap the robber in one of the leaves. |

On the other hand if H has a haven of order h then the robber has a wigming
strategy against h—1 cops by staying at 8(Z), where Z is the set of vertices occupied
by the cops. Consequently, H(H) — 1 < hyper-T-width(H).

) (Right inequality) Assume H has no haven of order w. First, let’s prove

the following crucial lemma.

Lemma 20. If H has no haven of order w then for every set Y of vertices of H
with |Y| < 2w — 1 there is a subset Z of vertices of H such that |Z| < w and every.

connected component of H\Z has at most w — 1 vertices of Y.

Proof. Assume not. Then for every set Z with |Z| < w there is one connected

100

component of Z, say #(Z), such that |§(Z) NY| > w. But, this is a contradiction
as [is a haven of order w. For any Z and Z’ with Z C Z’ and |Z'| < w, both 5(Z)

and G(Z’) contain at least w vertices from Y. As |Y| < 2w — 1, we conclude that
S

" B(Z"YN B(Z) # 0 which means 8(Z') C B(Z). O

5

Consider a hyper-T-decomposition (7, W, B) of H with the following restric-

tions.

1. For any node r, if 7 is not a leaf then |B,| < w and |A| < 3w — 1.
2. For any edge e, |We| < 2w — 1.

3. Subject to the above conditions we take the hyper-T-decomposition that min-

imizes the maximum of |B,|, for all r’s.

As the o_bvious.hyper—T—decomposition with oné vertex r and B, = V(H) sat-
isfies the first tWo conditions, we conclude that there exist a hypér—T—decmnposition
(T,VV,B) satisfying the above three conditions. If there is no leaf with |Br| >
then we are done and (T, W, B) would have width at most 3w — 2. Otherwise,. take
the leaf r with maximum |B,|. Assume 7’ is the unique root of r, e = (r',r) and
Y =W,. According to lelﬁlna 20 there exist a set Zy of at most w — 1 vertices of
H such that every connected component of H\Zy contains at most w — 1 Vertiées
from Y. Let Z = Z U {u} for some arbitrary vertex u in B,. We build a new
hyper-T-decomposition satisfying the first two conditions, but a smaller |B,| which
is a contradiction.

Let Xl,Xg’, <o+, X, be the conﬁected ‘components of H[B;]\Z. We create
m new lea{/es 71,72, ,Tm and connect them to r (i.e. create edges froxh r to

each ;). Set B,, = X, and change B, to.Z N B,. For the edge e; = (r,7;) set

101

We, = ZU(Y NX;). As |Y N X;| < 2w — 1 this insures that |W,,| satisfies condition

2. By the way, A, = ZUY; thus, |A/| < 3w - 1. : |

The proof that hyper-T-width(H) < 3H(H) + 1 is constructive and can
be used to obtain an approximate hyper-:f—decomposition. There is at most n
optimization stéps during which we find a set Z and add now leaves to the existing
hyper-T-decomposition. Finding a set Z of size less than w and verifying that
all connected cc;mponellts H\Z contain less than w vertices of ¥ can be done in
time O(n¥*t?). Hence the total running time for finding an approximate hyper-T-

decomposition would be O(n¥*3).

102

Chapter 6

Conclusions and Research

Directions

In this thesis we covered -prbblems related to metric embedding and ﬁee-width.
We obtained a low distortion embedding of series-parallel graphs into £1, computed
optimal embeddings between line metrics when the distortion was small enough,
and proposed tree-width-like connectivity measures, D-width, hyper-D-width, and
hyper-T-width , for digraphs .and hypergraphs. |

As series parallel graphs and k-outerplanar graphs have bounded tree-width

and both are known to have constant distortion (for constant k) embedding into ¢;,

bounded tree-width graphs are conjectured to have bounded distortion embedding
into #;1. Since a good distortion embedding into ¢, implies good -approximation
for several fundamental problems, such as the sparsest cut and multicut problems,
‘ﬁhe study bounded tree-width graphs and their c@nnection to £1 metrics becomes
imporfant.

Such a connection between tree-width and metric embedding and, also, the

103

fact that the study on tree-width has found numerous applications in practice, in-

. spires people to extend it to similar class of objects: digraphs and hypergraphs.

Among many proposed measures for directed graphs, D-width seems to be
the simplest. As for hypergraphs, hyper-D-width and hyper-T-width are the first
stable' connectivity measures for hypergraphs and are more general than primé,l,
dual, and incidence tree-width. They also have application in minimum vertex

cover, minimum dominating set, and multicut problems.

6.1 ¢; metrics

We’ve proven that the algorithm given by Gupta et al. gives an embedding with
distortion at most 6.0 for every series parallel graph, but gives distortion at least
3.0 even for some outerplanar series parallel graphs.

An interesting open problem is to close this gap. Some other relevant open
problems are minimizing the number of used dimensions (which is exponential with
Gupta et al.’s approach) or embedding higher tree-width graphs (tree-width 3 as

the first step) into £; with bounded distortion.

6.2 Line metrics

We currently know how to compute an optimal embedding between two line metrics
when the optimal distortion is small (less than 13.602) and know it is hard to do so

when the distortion is at least n¢ for some constant e [29]. An open problem is to

_ close this gap and, for example, study its hardness when the distortion is O(log®n).

~Another very interesting problem is to look for embeddings that have close to.

the optimal distortion. Although finding a constant-factor approximation when the

104

optimal distortion is at least n¢ is hard [29], finding such an approximate distortion

seems to be a lot!easier for smaller distortions.

6.3 D-width

A very challenging open topic is to study the connectioe between D-width and di-
rected metrics or directed cut problems. Bounded D-width digraphs admit PTAS
for multi-cufproblems (when two vertices are considered. separated if they belong
to two different strongly connected components). Chuzhoy and Khanna [20] re-
cently proved than the sparsest cut problem and the multicut problem are hard to
approximate within a factor 29(1‘.’3'1_6“) for any constant € even on directed acyclﬁc
graphs. This is a big negative result that basically says that D-width and directed
tree-width are irrelevant to cut problems and directed metrics, but still leaves the
open problem of studying digraph classes that admit constant-faétor appreximate
solutions for cut problems.

One other research direction is to explore other algorithmic aspects of D-

width such as its computation with D-width is constant.

6.4 Hyp’ef-D-width

Hyper-D-width and hyper-T-width are very new and there exist several open prob-
lems related to them. An efficient algorithm (showing it is fixed parameter tractable
in particular) for computing optimal (or approximate) hyper-D-decompositions for
‘small hyper-D-width would be very useful problem. Exploring algorithmic aspects
of hyper-D-width and hyper-T-width is also a very nice rese\arch direction. There are

some fundamental problems (such as solving CSP, SAT, and finding Nash Equilibria

105

of certain games) that seem to be relevant to hyper—D-width and hyper-T-width and

finding those connections is an interésting problem.

106

Bibliography

[1] Isolde Adler. Directed tree-width examples. Journal of Combinatorial The-

ory(Series B), 2007. To appear.

[2] Isolde Adler, Georg Gottlob, and Martin Grohe. Hypertree-width and related
hypergraph invariants. In Stefan Felsner, editor,‘ 2005 European Conference on
Combinatorics, Graph Theory and Applz'catioﬁs (EuroComb ’05), volume AE of
DMTCS PTocéedings, pages 5-10. Discrete Mathematics and Theoretical Com-

puter Science, 2005.

(3] Michael H. Albert and Mike D. Atkinson. Simple permutations and pattern

restricted permutations. Discrete Mathematics, 300(1-3):1-15, 2005.

[4] A. Andoni, M. Deza, A. Gupta, P. Indyk, and S. Raskhodnikova. Lower bounds
for embedding edit distance into normed‘spaces. In Proceedings of Annual
ACM-SIAM Symposium on Digcv"ete Algorithm, pages 523-526, Phil,adelphi;d,
PA, USA, 2003. Society for Industrial and Applied Mathematics.

[5]) Mike Atkinson and Derek Holton, editors. Permutation patterns. Electronic
Journal of Combinatorics, Clemson, SC, 2003. Including selected papers from
the conference held in Otago, February 10-14, 2003, Electron. J. Combin. 9

(2002/03), no. 2.

107

[6]

8

[9]

[10]

[12]

[13]

Y. Aumann and Y. Rabani. An o(log k) approximate min-cut max-flow theorem

and approximation algorithm. SIAM Journal on Computing, 27, 1998.

D. Avis and M. Newborn. On pop-stacks in series. Utilitas Mathematica,

19:129-140, 1981.

Mihai Badoiu, Julia Chuzhoy, Piotr Indyk, and Anastasios Sidiropoulos. Low-
distortion embeddings of general metrics into the line. In Proceedings of Annual
ACM Symposium on Theory of Computing, pages 225-233, New York, NY,
USA, 2005. ACM Press.

Mihai Badoiu; Kedar Dhamdhere, Anupam Gupta, Yuri Rabinovich7 Harald
Racke, R. Ravi, and Anastasios Sidiropoulos. Approximation algorithms for
low-distortion embeddings into low-dimensional spaées. In Proceedings of An-
nual ACM-SIAM Symposium on Discrete Algorithm, pages 119-128, Philadel- ,

phia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer. Dag-
width and parity games. In The 23rd International Symposium on Theoretical

Aspects of Computer Science, pages 524-536, 2006.

Miklés Béna. A survey of stack-sorting disciplines. FElectr. J. Comb., on(2),
2002.
Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for

permutations. Inf. Process. Lett., 65(5):277-283, 1998.

J. Bourgain. On lipschitz embeddings of finite metric spaces in hilbert spaces.

Israel Journal of Mathematics, 52:46-52, 1985.

(14]

[15]

[16]

[17]

[18]

[19]

[20]

William John Brinkman. Metric Space Emebeddings into l;: An optimization

approach. PhD thesis, Princeton University, November 2004. |

Gruia Calinescu, Cristina G. Fernandes, and Bruce Reed. Multicuts in un-
weighted graphs and digraphs with bounded degree and bounded tree-width.
Journal of Algorithms, 48(2):333-359, 2003.

Douglas E. Carroll, Ashish Goel, and_Adam Meyerson. Embedding bounded
bandwidth graphs into 11. I’ The 83rd International Colloquium on Automata,

Languages and Programming, pages 27-37, 2006.

Nishanth Chandran, Ryan Moriarty, Rafail Ostrovsky, Omkant Pandey, and
Amit Sahai. Improved algorithms for optimal embéddings. Electronic Collo-

quium on Computational Complezity (ECCC), (TR06-110), 2006.

Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Dirécted met-
rics and directed graph partitioning problems. In Proceedings of Annual ACM-
SIAM Symposium on Discrete Algorithm, pages 51-60, New York, NY, USA,
2006. ACM Press. |

Chandra Chekuri, Anupam Gupta, [lan Newman, Yuri Rabinovich, and Alistair .

Sinclair. Embedding k-outerplanar graphs into ¢,. In Proceedings of Annual

. ACM-SIAM Symposium on Discrete Algorithm, pages 527-536, Philadelphia,

PA, USA, 2003. Society for Industrial and Applied Mathematics.

Julia Chuzhoy and Sanjeev Khanna. Polynomial flow-cut gaps and hardness of
directed cut problems. In Proceedings of Annual ACM Symposium on Theory

of Computing, New York, NY, USA, 2007. ACM Press.

109

[21]

[22]

[23]

[26]

D.G. Corneil, H. Lerchs, and L. Stewart Burligham. Complement-reducible

graphs. Discrete Applied Math., 3:163-174, 1981,
R. Diestel. Graph Theory. Springer, 3rd edition, 2005.

S. Even and A. Itai. Queues, stacks, and graphs. In Theory. of Machines and
Computations, Z. Kohavi and A. Paz, Eds., pages 71-86, New York, NY, USA,

1973. Academic Press.

M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP—C’ompleteﬁess. W. H. Fréeinan, 1979.

Georg Gottlob, Martin Grohe, Nysret Musliu, Marko Samer, and Francesco
Scarcello. Hypertree decompositions: Structure, algorithms, and applications.
In Dieter Kratsch, editor, Proceedings of the 81st Intématz’onal Workshop on
Graph-Theoretic Concepts in Computer Science (WG05), volﬁme 3787 of Lec-
ture Notes in Computer Science, pages 1-15. Springer-Verlag Berlin Heidelberg, |

’

2005.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decomposi-
tions and tractable queries. Journal of Computer and System Sciences, 209:1-

45, 2002.

Georg Gottlob, Francesco Scarcello, and Martha Sideri. Fixed-parameter com-

plexity in ai and nonmonotonic reasoni‘ng. Artif. Intell., 138(1-2):55-86, 2002.

Anupam Gupta, Alistair Sinclair, Ilan Newman, and Yuri Rabinovich. Cuts,

trees and £1-embeddings of graphs. Combinatorica, 24(2):233-269, April 2004.

Alexander Hall and Christos Papadimitriou. Approximating the distortion. In

APPROX-RANDOM, pages 111-122, 2005.

110

[30]

[31]

[34]

Roger A. Horn and Charles R. Johnson. Matriz analysis. Cambridge University
Press, New York, NY, USA, 1986.

Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions,
games‘, and orderings. In Proceedings of Annual ACM-SIAM Symposium on
Discrete Algorithm, New York, NY, USA, 2007. ACM Press.

Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions,

games, and orderings. Theoretical Computer Science, 2007. Submitted.

P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In
Proceedings of IEEE Symposium on Foundations of Computer Science, page 10,
Washington, DC, USA, 2001. IEEE Computer Society.

T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed Tree-

- Width. Journal of Combinatorial Theory(Series B), 82:128-154, 2001.

[35]

[36]

37

[38]

T. Johnson, N. Robertson, PA. D. Seymour, and R. Thomas. Addendum to

“Directed Tree-Width”. manuscript, 2002.

Claire Kenyon, Yuval Rabani, and Alistair Sinclair. Low distortion maps be-
tween point sets. In Proceedings 'of Annual ACM Symposium on Theory of

Compdting, pages 272-280, New York, NY, USA, 2004. ACM Press.

T. Kloks. Treewidth, Computation and Approzimation. Berlin : Springer-

Verlag, 1994.

Donald E. Knuth. Art of Computer Programming, Volume 1: Fundamental

Algorithms. Addison Wesley Professional, 1973.

111

(39]

[40]

iy

42]

[43]

Nathan Linial, Eran London, and Yuri-Rabinovich. The geometry of graphs

and some of its algorithmic applications. Combinatorica, 15:215-245, 1995.

Jan Obdrlek. Dag-width: connectivity measure for directed graphs. In Proceed-
ings of Annual ACM-SIAM Symposium on Discrete Algorithm, pages 814-821,
New York, NY, USA, 2006. ACM Press.

H. Okamura and P. D. Seymour. Multicommodity flows in planai graphs.

Journal of Combinatorial Theory (Series B), 31:75-81, 1981.

Vaughan R. Pratt. Computing permutations with double-ended qtielies, parallel
stacks and parallel queues. In Proceedings of Annual ACM Symposium on

Theory of Computing, pages 268-277, New York, NY, USA, 1973. ACM Press.

Satish Rao. Small distortion and volume preserving embeddings for planar and

euclidean metrics. In SCG ’99: Proceedings of the fifteenth annual symposium

\

on Computdtional geometry, pages 300-306, New York, NY, USA, 1999. ACM

" Press.

[44]

[45]

[46]

[47]

B. Reed. Tree width and tangles: A new connectivity measure and some ap-

plications. Suervey in Combinatorics, 241:87-158, 1997.

B. Reed. Introducing directed tree width. In H.J. Broersma, U. Faigle,
C. Hoede, and J.L. Hurink, editofs, Electronic Notes in Discrete Mathemat-

ics, volume 3. Elsevier, 2000.

B. Reed, N. Robertson, P. Seymour, and R. Thomas. On packing directed

circuits. Combinatorica, 16:535-554, 1996.

M.A. Safari. Directed tree-width. Master’s thesis, School of Computer Science,

University of Waterloo, 2003.

112

[48]

[49]

Mohammad Ali Safari. D-width: A more natural measure for directed tree
width. In Joanna Jedrzejowicz and Andirzej Szepietowsk, editors, Proceedings

30th International Symposium on Mathematical*Foundations of Computer Sci-

“ence, MFCS’05, Lecture Notes in Computer Scz’enc% volume 3618, pages 745

756, Berlin, 2005. Springer-Verlag.
| | S
James H. Schmer] and William T. Trotter. Critically indecomposable partially

ordered sets, graphs, tournaments and other binary relational structures. Dis-

crete Math., 113(1-3):191-205, 1993:

P. Seymour and R. Thomas. Graph searching, and a min-max theorem for

treewidth. Journal of Combinatorial Theory (Series B), 58:239-257, 1993.

Stefan Szeider. On fixed-parameter tractable parameterizations of sat. In SAT,

pages 188-202, 2003

Robert Tarjan. Sorting using networks of queues and stacks. J. ACM,

19(2):341-346, 1972.

D. H. Younger. Graphs with interlinked directed circuits. In Proceedings of the
Mid-west Symposium on Circuit Theory, volume 2, pages XVI 2.1 — XVI 2.7,
1973. -

113

