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Abstract 

Embedding between metric spaces is a very powerful algorithmic tool and lias been 
used for f inding good approximation algorithms for several problems. In part icular, 
embedding to an £\ norm has been used as the key step in an approximat ion algo- -
r i thm for the sparsest cut problem. The sparsest cut problem, in turn , is the main" • 
ingredient of many algorithms that have a divide and conquer nature and are used 
in various fields. 

Wh i l e every metric is embeddable into l\ w i th distort ion O ( logn ) [13], and -"' 
the bound is tight [39], for special classes of metrics better bounds exist. Shortest 
path metrics for trees and outerplanar graphs are isometrically embeddable into 
t\ [41], Series-parallel graphs [28] and A;-outerplanar graphs [19] (for constant A:) are 
embeddable into i\ w i th constant distort ion, planar graphs and bounded tree-width ---
graphs are conjectured to have constant distort ion in embedding to l\. Bounded-
tree-width graphs are one of most general graph classes on which several hard prob­
lems are tractable. - ' 

We study the embedding of series-parallel graphs (or, more generally, graphs 
w i th tree-width two) into i\ and also the embedding between two line metrics.—"" 
We then move our attention to the generalization of tree-width to digraphs and 
hypergraphs and study several relevant problems. 
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Chapter 1 

Introduction 

T h e purpose of this chapter is to introduce metric embedding, directed tree-width 

and study their connections. Its content is a mixture of background information, 

newest research results in the literature on relevant topics, and a summary of our 

results which are fully explained in other chapters of the thesis. 

1.1 Metric Embedding 

A metric M = (X, d) is a set of points X with non-negative distance function, d 

defined on any pair of points with the constraint that the distances should satisfy 

the triangle inequality, i.e. d(x,y) < d(x,z) + d(z,y), for. all x, y, and z\ moreover, 

distances are symmetric, i.e. d(x, y) = d(y, x) for all x and y, and d(x, x) = 0, for 

a l l x 1 . 

Remark 1. Throughout this thesis, we may specify a metric M — (X,D) by its 

distance function D whenever X is clear from the context. So, we may write a 

metric D which, in fact, means a metric whose distance function is D. 
1 In a metric, d(x,y) is zero if and only if x = y. If we remove this constraint and allow 

zero distance between different points then the metric is called a semi-metric. 
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A n embedding from one metric A — (XA,CLA) into another metric B — 

(XB,OIB) is a mapping / from XA to XB- The expansion of /, denoted by exp(f), 

is the largest expansion over al l distances, i.e. sup^, y

 dB^J^l'y-jy^ • The contraction 

of embedding /, denoted by con(f), is the largest contraction over all distances, i.e. 

s u p x y dB(?(x)Vf(y)) • distortion of embedding / is defined as exp(f) x con(f). 

Dur ing the last decade or so, low distort ion embedding between metrics has 

been used extensively to design efficient approximat ion algorithms. The reason is 

simple: Some problems P are easily solvable if their input comes from some metric 

class B but are hard for inputs from some other metric class A. If one can embed 

an input metric in A to a new metric in B w i th low distort ion and solve P on the 

new metric and translate the result on the original metric, this usually yields an 

approximat ion algor i thm for metrics in A-

1:1.1. Important Metrics 

Some metrics are of part icular interest for researchers because of their role in f inding 

approximat ion algorithms, or their connection to other interesting problems (see the 

survey by P io t r Indyk [33 ] ) . Every edge-weighted, undirected graph defines a metric 

where the points in the metric are vertices in the graph and the distance between 

two 'points is the shortest path length between the corresponding vertices. Notice 

that every metric corresponds to a complete graph w i th edge weights equal to the 

distance between edge end points. Some important metric classes of this type are 

those derived from planar graphs (that correspond to shortest paths of weighted 

planar graphs), trees, outer-planar graphs, /c-outer-planar graphs, and bounded tree-

width ' graphs. 

Another type of metric that appears frequently in the l iterature is if metric 
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which is the set of points in M d where for any two points X = (xi,x2, • • •, Xd) a n d 

Y = 0/i> 2/2, • • • j yd) the distance between them is defined as . 

\\X- Y\\k =-tf\x! -yi\k + \x2 - V2\k + --- + \xd- yd\k (1.1.) 

for k — oo, \\X - YWoo = max-fjzi - yi\, \x2 - 2/21, • • • ,\xd~ Vd\}- In part icular, the 

l\ metric, for its close connection w i th cut problems, the £2 or Eucl idean metric, for 

its famil iarity, and the £ o o , for its s impl ic i ty of computat ion, are of interest for many 

researchers. Note that we use £̂  instead of £f when dimension is not a concern. . 

Embeddings between various important metrics have been studied before. 

For example, every n-point metric is isometrically embeddable(i.e. w i th distort ion 

1) into £00, though w i th many dimensions (O(n)), and is embeddable into the £k 

metric w i th distort ion O ( ^ ) [13, 39]. 

1.2 li Metrics 

There are several reasons why £\ metrics are important to study. One main reason is 

their close connection w i th the mult i-commodity flow problem and its dual version, 

the sparsest cut problem. Whi le the max imum mult i-commodity flow problem is 

solvable in polynomia l t ime, the sparsest cut problem is known to be.NP-hard [24]. 

In general, if for any length assignment of edges on a given graph the associated 

shortest path metric can be embedded into £\ wi th distort ion .a, then the sparsest 

cut problem'can be solved on that graph wi th approximat ion factor at most a[28]. 

1.2.1 A n application 

In this section we show how embedding a graph metric into the £\ metric is used 

to obta in an 0(logA;) approximat ion for the sparsest cut problem w i th k terminal 
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pairs [6]. 

Let G = (V, E) be an undirected graph wi th capacities on its edges. Given k 

terminal pairs ( S J , £ J ) (i = 1,2, ••• ,k), S j , i j e V , and A: rea lva lued demands, derrii, 

the goal is to find a cut S, a subset of V , that minimizes the value C(S)/dem(S), 

where C ( 5 ) is the total capacity of edges between S and S — V — S and dem(S) is 

the total demand of those pairs (si,U) that have one node in S and one in S, i.e. 

| { s t , t i}ns| = 1. 

Just like the max imum flow m in imum cut relationship, there is a gener­

alized max imum cut problem that corresponds to the sparsest cut problem. In 

the concurrent flow problem (or demand flow problem) k terminal pairs, (si,£j) for 

i — 1, 2, • • • ,k, are given each having an associated demand, derrii for the ith- com­

modity. The goal is to find the max imum fraction A and concurrently routed flows, 

while respecting edge capacity constraints, such that the flow corresponding to each 

commodity is at least A times their demands. One easy way to model this is by 

considering the flow associated w i th every path between commodity pairs. Let Pi 

be the set of all paths from Si to £j. Let p\ be the jth path in Pi and j\ be the flow 

routed through it . The linear program is then as follows. 

Maximize A subject to 

<de> Eeep{ Pi < ce Ve (LPl) 

<<Pi> Hjfi > Xdemi V'i 

The dual of LP\ is as follows. 

Minimize Y J e

 c e ^ e subject to 

Eeepide ><Pi V(z,j) (LP2) 
. i , 

Y^idemifi > 1 • V'i 
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One can view d e ' s as distances on edges. The first set of inequalities means 

<fi is at most the shortest path value from S{ to t;. A s we better have tpi as large as 

possible in the second set of inequalities, the above L P reduces to 

Minimize Y"\ cede 

^ e (LP3) 

YJidemid{si,ti) > 1 V'i 

where d(si,U) is the shortest distance between Si and i j defined by de's. 

Equivalent ly we can simplify LP3 as 

m m , . (1.2) 
d is a metric on G T){d) 

where C(d) = Y J e cede and D(d) = Y,i=i-kdemid(si'ti)-

Let OPT* be the solution to (LP3) . For any part i t ion (S,V — S) the total ca­

pacity of edges between S and V — S is C(S) and there is a total demand of dem(S) 

for commodit ies that have |{sj,i;} f l S\ = 1. Hence, the max imum fraction of de­

mands that can simultaneously be satisfied is at most C(S)/dem(S). Consequently, 

the m in imum sparsest cut is at least OPT*. 

Let d be a distance funct ion on the vertices of G such that there exists a 

set S and for every edge e = {x,y} G EQ, de = d(x,y) = 1 if exactly one of x and 

y is in S, and is 0, otherwise. Such a distance funct ion d defines a cut metric on 

the vertices of G. One can write the sparsest cut problem as a linear programming 

problem as follows. 

' • • . E ( x , y ) e E V)d(x,y) C{d) „. 
m m ' — — = (1.3) 

d defines a cut-metric 2^iz=i...kdemid(si)ti) D(d) 

If we relax the condit ion that d defines a cut metric and allow it to be any 

l\ metric then the answer would be the same because of the following two lemmas. 
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Definition 1. Given m metrics M\ = (X,di), M2 = (A, ĉ ), •••, Mm — (X,dm), 

their sum, M = M\ + M2 + • • • + Mm is a metric (X, d) such that for any pair (x, y), 

d(x, y) = YliLi di(x, y). M is a positive weighted sum of metrics Mi, M2, • • • , Mm 

if there exist positive values w\,W2, • • • ,wm such that d(x,y) = YliLx widi{x,y) for 

all pairs (x,y). 

Lemma 1 (Folklore). Every t\ metric can be written as a weighted sum of cut 

metrics. 

Proof. Every i\ metric is a sum of line metrics (i.e. l\ metrics) that correspond to 

each dimension. So, it suffices to prove it for line metrics. Assume that M is a line 

metric of n one-dimensional points x\, X2, • • • ,xn and x\ < x% < • • • < xn. Let Si be 

a cut metric in which the distance between points p and q (where p < q ) is one only 

Hp <'i and q > i and is zero, otherwise. Let a.L = x.i+\ — xi. We cla im that M can 

be wr i t ten as aiSi. Let p and q be two points and p < q. The distance between 

points p and q is xq — xv = YJ?=p ai which is equal to their distance in YJj c^Sj. El 

Lemma 2. For positive real values ai, ai, (5i(i = 1,2, • • • , n), 

m m — < = * — — 
* Pi 2^iaiPi 

Proof. Let A = min* f,. Then , Y \0*04 > A 7^a,;A:- Hence, ^ > A. • 

'.• ;. Let 8 be an &\ metric that minimizes the value ^|^y over al l £\ metrics. 

Accord ing to L e m m a 1 we can write 8 as a weighted sum of cut metrics. Let 

8 = wi8\ -f- W282 + • • • + wm8m where each c\ is a cut metric and tUj's are al l positive. 

Hence, C{8) = J2ZiwiC(5i) a n d D(s) = J2ZiwiD(6i)- Therefore, according to 

L e m m a 2, there exists some index j such that jjfi^ < T$j- Since 8 minimizes the 
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value j£r^ over all l\ metrics (that include cut metrics as well) we conclude that 

DW) ~ D(S) • 

Consequently, we can formulate the sparsest cut problem as a min imizat ion 

problem over t\ metrics as follows. 

I2(x,y)eEc(x>y)d(x>y) ' n „ 
m m — - — — r - (1.4) 

d is an t\ norm- 2_a=i--fc « e m i " ( s i , U) 

B y Lemmas 1 and 2, the value of (1.4) is equal to (1.3) and a solution to 

(1.3) can be easily obtained from any solution to (1.4). 

Let OPT be the answer to the sparsest cut problem. A s mentioned before, 

OPT> OPT*. Let d* be the corresponding distance funct ion to OPT*. 

How much does OPT* differ from OPT? Accord ing to Bourgain's theorem 

[13] d* can be embedded into some l\ metric d+ w i th distort ion O ( l ogn ) . W i thout 

loss of generality assume that the embedding from d* to d+ has no expansion. So, 

OPT > OPT* = _ ^°ed*f > ^ Ced* 
YJdemid*(si,ti) derm d*(si,U 

> Ecedj . > OPT 
0 ( l og n) Y, demid+{sl,tl) 0 ( l og n) 

Hence, d+ gives an O( logn ) approximation for the m in imum sparsest cut. 

: Notice that what is important in the above inequality is the max imum con­

tract ion of distances d+(si,ti). W i t h a slight modif icat ion to the embedding a l ­

gor i thm one can use Bourgain 's theorem and make an embedding that is not an 

expansion and guarantees that the contraction for only terminal vertices is not 

more than 0(log&:), where k is the number of terminals. So, we can improve the 

approximat ion factor to 0(log/c). See [6] for more details. 
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In order to improve the approximation factor, one need only improve the 

distort ion of the embedding into £\. For some graphs, in part icular unit-weight 

expander graphs, this is not possible and the O( logn ) bound for the distort ion is 

tight [39]. Several researchers have then tried to f ind better distort ion for various 

classes of graphs. P lanar graphs and bounded tree-width graphs are two widely 

known classes that are conjectured to be embeddable into £\ w i th constant dis­

tort ion. Rao [43] proves distort ion 0{r3 \/\og n) for any Kr^r minor free class of 

graphs. Th is yields 0(\/\og n) for planar graphs and bounded tree-width graphs. 

Outerplanar graphs are a class of graphs that are isometrical ly embeddable into 

£\. G u p t a et al . [28] show that the distort ion for series-parallel graphs is at most 

7 + 4\/3 ~ 13.928. We have improved this value to 6.0 and proved a lower bound 

3.0 for the embedding a lgor i thm provided by G u p t a et al. . Later, Chekur i et al. [19] 

prove that fc-outer planar graphs can be embedded into random trees, and hence into 

£\, w i th constant distort ion, namely, 0(ck), for some constant c. F inal ly , Ca r ro l et 

al . [16] recently found a low distort ion embedding into £\ for bounded bandwidth 

graphs. 

1.3 Line Metrics 

A simple and interesting subclass of l\ metrics are line metrics. A line metric is a 

set of points on a real line w i th distances measured using the £\ norm (using any £ k 

norm, is equivalent). Thus , line metrics are one dimensional versions of £\ metrics 

(£\)- Because of their s impl ic i ty and their many applications, line metrics are often 

the target metric for low distort ion embedding. 

Bado iu et al . [9] consider the problem of embedding a fixed graph metric 

into the best.l ine metric. Tha t is, the authors choose the posit ion of the points on 
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a line to minimize distort ion. 

For the case that G is unit-weighted and has an opt imal line embedding w i th 

distort ion c, they propose a 0 ( n 3 c ) time algorithm that finds an embedding wi th 

distort ion 0 ( c 2 ) . Since they can always find an embedding wi th distort ion 0{n) (in 

linear time) the best of these two embeddings gives an 0 (y / n)-approx imat ion for 

the opt imal embedding. For unit-weighted trees, they propose an embedding wi th 

distort ion 8A\/c log c + 4c where A is some parameter known to be at most c. Th i s 

yields a distort ion 0 ( n 1 / / 3 ) in general 2 . They also provide an exact a lgor i thm which 

has running t ime . In case that G is weighted and c = 1 + e < 1.5, they obtain 

an 0(n2) a lgor i thm that finds an embedding / w i th distort ion 1 + 0(e) . 

Later on, Bado iu et al.[8] consider the problem of embedding metrics corre­

sponding to weighted graphs into the line. Let the m in imum inter-point distance be 

1 and the max imum be A . They propose an approximate embedding w i th distor­

t ion 0 ( A 3 / 4 c n / 4 ) and c ° W for embedding general weighted graphs and weighted 

trees^ respectively. For the latter case, they prove that it is hard to approximate the 

opt ima l embedding by Q(^/n). In all cases, c is the opt imal distort ion. We discuss 

this result further in Section 3 

Kenyon et al . [36] consider the problem of opt imal ly embedding one fixed 

line metric into another fixed one. Th is problem is different from what we have 

seen so far in the sense that the target metric is fixed and one only needs to find 

the right mapping between points in the input and target metrics. Such a problem 

has applications in shape matching and object recognition. Kenyon et al . propose 

a dynamic programming based algorithm that computes the opt imal embedding in 

t ime 0 ( n 1 2 ) in case the distort ion is less than 3 + 2\/2 ~ 5.829. We later describe 
20 means a rough approximation of 0 with log factors ignored. For example, n l ogn = 

0(n) . 
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a family of dynamic programming algorithms that compute opt imal embeddings in 

polynomia l t ime provided the distort ion is less than 13.60. The latter result was 

independently found by Kenyon et al. in an extension of their conference paper and 

also by Chandran et al. [17]. 

1.4 Directed Metrics 

There are several problems whose underly ing metric is not necessarily symmetric. 

A t r i v ia l example is opt imizat ion metric problems on directed graphs such as f ind ­

ing a shortest path. There have been some recent attempts to extend symmetric 

(undirected) metrics to asymmetric (directed) ones. Inspired by the directed version 

of cut problems, Char ikar et al . [18] study directed metrics for the first t ime and 

propose directed invariants of i\ metrics, t\ metrics, and some other metrics and 

study, their relationship w i th directed cut metrics. 

1.5 Bounded tree-width graphs and digraphs 

Tree-width has many connections to what we have talked about so far. For l\ 

metr ics , ' i t is conjectured that bounded tree-width graphs are embeddable into t\ 

wi th constant distort ion. G u p t a et al . [28] show that the distort ion for series-parallel 

graphs (and, in fact, for al l graphs w i th tree-width 2) is at most 7 + 4a/3 ~ 13.928. 

Trees, that have tree-width one, are also isometrically embeddable into t\. For the 

multi-cut p rob lem 3 , Cal inescu et al. [15] provide a polynomia l t ime approximat ion 

scheme ( PTAS ) for bounded degree and bounded tree-width graphs and digraphs. 

3 The multi-cut problem is related to the sparsest cut problem. In the multi-cut problem, 
there are k pairs of terminals and the aim is to delete edges of minimum total weight to 
disconnect all terminal pairs. 
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In this section we review the definitions of tree-width for graphs and digraphs 

and discuss some related results. 

1.5.1 Undirected Tree Width 

The not ion of tree-width is considered as a generalization of trees (trees have tree-

w id th 1) and many intractable problems are efficiently solvable on bounded tree-

w id th graphs. Examples include Hami l ton ian cycle, graph isomorphism, vertex 

coloring, and edge coloring. 

. A tree-decomposition of an undirected graph G = (V, E) is a pair (T, W), 

where T is a tree, and W is a function that assigns to every node i of T a subset 

Wi of vertices of G such that 

2. For each edge (u, v) € E, there exists some node i of T such that {u, v} C Wj. 

3. For- al l nodes i, j, k in T , if j is on the unique path from i to k then Wi Pi C 

W3. 

The width of a tree-decomposition (T, W) is the max imum of \Wi\ — 1 over all 

nodes i of T. The tree-width of G is the m in imum width over all tree-decomposition 

o f G . 

Notice that the above conditions can be interpreted as follows. For any 

connected set S of G, 

( G l ) T\s := {t\Wt n S ± 0} ^ 0, and 

(G2) The subgraph of T wi th vertex set T\s and edges { (s,t )|W s D W t D 5 ^ 0} 

forms a connected subtree of T . 
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It can be easily shown that it suffices that the conditions G l and G2 be true for 

only edges and vertices, i.e. min ima l connected sets. A connected set S is min ima l 

if there do not exist connected proper subsets A and B of S such that A U B = S 

and A n B ^ 0. 

1.5.2 Directed Tree Width 

In 1996 Reed et al . [46] proved Youngers's conjecture [53] roughly saying that every 

directed graph has either a large set of disjoint directed circuits or a smal l set of 

vertices that cover al l directed circuits. In their paper, they defined a version of 

well-linked sets for directed graphs and since the size of the largest well-linked set 

in undirected graphs has close relationship w i th tree-width [45] they suggested that 

the analogous definit ion of tree-width for directed graphs might be very useful, as 

pointed out in [44]. We believe that a proper definit ion should ideally measure the 

global connectivity of a digraph. For example the tree-width of a directed acyclic-

g raph (DAG) should be smal l because it has low connectivity. 

Unfortunate ly finding a definit ion for directed tree-width analogous to the 

undirected case is not easy, since almost al l concepts related to undirected tree-width 

behave differently in directed graphs. [For example, the bramble number is equal 

to the haven order in undirected graphs, while they may differ by a factor of two in 

directed graphs [48].] There is not an agreed-upon generalization of tree-width for 

directed graphs. 

For the first t ime Johnson, Robertson, Seymour, and Thomas[34] gave a 

formal definit ion of directed tree-decomposition (called arboreal-decomposition in 

their 'paper) and directed tree-width, and proved some theorems relating directed 

tree-width and haven order. Other researchers proposed different definitions for 
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the directed tree-width. Safari [47] introduces D-width as an alternative definit ion 

for directed tree-width and proved some facts to justify his definit ion as a proper 

measure for directed tree-width. 

Definition 2 (D-decompositions and D-width). A D-decomposition of a di­

rected graph G is a pair (T,W) where T is a tree and W = {Wt\t E V(T)} is a 

family of subsets ofV(G) such that for every strongly connected set S C V{G): 
r 

(Dl) T\s := {t\Wt n S + 0} + 0, and 

(D2) The subgraph of T with vertex set T\s and edges {(s,t)\Ws n Wt n S ^ 0} 

forms a connected subtree of T. 

A subset S of vertices of G is strongly connected if G[S] is strongly connected. The 

wid th of a D-decomposition (T,W) is the minimum k such that \Wi\ < k + 1 for 

all Wi 6 W. The D-width of a directed graph G is the minimum width over all 

D-decompositions of G. 

In Chapter 4 we further extend these results and obta in lower and upper 

bounds for D-width in terms of certain cops/robber games on digraphs and other 

parameters defined on digraphs. We also characterize the class of digraphs whose 

D-width is one. 

1.5.3 Directed tree-width and Directed Metrics 

The fact that bounded treerwidth graphs have a close relation w i th l\ metrics quickly 

brings to mind that bounded tree-width digraphs might have good connections to 

directed metrics. Bounded tree-width digraphs are actually known to be connected 

to cut problems: Calinescu'et al. [15] propose a P T A S for bounded degree, bounded 

tree-width digraphs for the directed mult icut problem on unit-weighted graphs. A 
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directed mult icut in a digraph is a set of edges (or vertices in the vertex version) 

whose removal leaves no strongly connected component containing both vertices of 

a terminal pair (s j , i j ) . 

1.5.4 Hyper-D-width 

The way that D-width is defined suggests that it can be extended to hypergraphs. 

In a D-decomposition of a digraph G, the subtrees corresponding to vertices of every 

strongly connected set S must form a connected subtree together. S is, in fact, taken 

from the set of min ima l connected units of digraph G. If G was undirected then S 

was any edge or any vertex. In case of hypergraphs, the min ima l connected units 

are single vertices or hypergraph edges. Let us formally define hyper-D-width. 

Let H = (V, E) be hypergraph. A hyper-D-decomposition of a H is a pair 

(T,W) where T is a tree and W = {Wt\t € V (T ) } is a family of subsets of V(H) 

such that for every connected set e G E(H): 

(HI) T\e := {t\Wt n e ^ 0} ^ 0, and 

(H2) The subgraph of T w i th vertex set T\e and edges {(s,t)\Ws f l ^ n e f U } 

forms a connected subtree of T. 

The w id th of a hyper-D-decomposition (T, W) is the max imum of \X{\ — 1 

over al l nodes i € T. The hyper-D-width of a hypergraph is the m in imum wid th 

over all its hyper-D-decompositions. 

Hyper-D-width is useful for solving several hard problems. In part icular, we 

wi l l show, in Chapter 5, how we can find polynomial-time approximat ion schemes 

( PTAS ) for vertex cover, dominat ing set, and mult icut problems on hypergraphs 

when.the hyper-D-width of the input hypergraph is constant. 
\< ~ ' 
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Next , for the purpose of computabi l i ty, we introduce another measure, called 

hyper-T-width, which is slightly different from hyper-D-width, inherits almost al l 

algorithmic and structura l properties of hyper-D-width, and, in contrast to hyper-

D-width, is computable when hyper-T-width is constant. 

1.6 Organization 

In Chapter 2 we go through the details of our results on embedding series parallel 

graphs into l\ w i th distort ion 6.0. In Chapter 3 we talk about embedding between 

line metrics and discuss the usage of /c-separable permutations in embedding be­

tween fixed line metrics and in other applications. We then move our attention to 

tree-width on digraphs and hypergraphs. In Chapter 4 we review exist ing results 

on generalization of tree-width On digraphs. In part icular, we study D-width and 

characterize the class of digraphs w i th D-width one. We also compare D-width w i th 

several other parameters defined on digraphs. Next , we generalize tree-width to 

hypergraphs in Chapter 5 and compare our definit ion, hyper-D-width, w i th other 

exist ing connectivity measures on hypergraphs. We also find several algorithmic 

applications of hyper-D-width. We finally introduce hyper-T-width which is sl ightly 

different from hyper-D-width and has the advantage that it is computable in poly ­

nomial t ime when hyper-T-width is constant. 
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Chapter 2 
r , 

i\ embedding of series-parallel 

graphs 

2.1 Introduction 

The £\ metric embedding is of part icular interest for its connection to the sparsest 

cut problem which, in turn , is the main ingredient of various algorithms that have 

a-div ide 'and conquer nature [28]. As outl ined in Section 1.2.1, the sparsest cut 

problem can be interpreted as a min imizat ion problem over t\ metrics. One can 

solve the problem as a min imizat ion over all shortest path metrics defined on the 

"underlying graph, by linear programming, and then embed the solut ion into l\. The 

distort ion incurred by the embedding is essentially the same as the approximat ion 

factor. In fact, if for any edge weights on a graph G, we can embed the corresponding 

metric into t\ w i th distort ion c then the sparsest cut could be approximated on G 

wi th factor c. 

Whi le every metric is embeddable into t\ w i th distort ion O ( logn ) [13] and 

the bound is realized by graph metrics for expander graphs [39], for special classes 
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of metrics better bounds exist. G raph metrics for trees and outerplanar graphs are 

isometrical ly embeddable into t\ [41]. In fact, a shortest path metric corresponding 

to a graph G is isometrical ly embeddable into i\ if and only if G exclude as a 

minor [28]. Series-parallel graphs [28] and fc-outerplanar graphs [19] (for constant k) 

are embeddable into l\ w i th constant distort ion. P lanar graphs and bounded tree-

w id th graphs are two widely know classes that are conjectured to be embeddable 

into l\ w i th constant distort ion. Rao [43] proves distort ion 0(r3y/log n) for any Kr%r 

minor free class of graphs. Th i s yields distort ion 0(\J\ogn) for planar graphs and 

bounded tree-width graphs. 

In this chapter, we prove an upper bound of 6.0 on the distort ion of em­

bedding series-parallel graphs into t\. We also prove a lower bound of 3.0 for the 

embedding a lgor i thm given by G u p t a et al. [28] even when the input metric is iso­

metr ical ly embeddable into l\. 

2.2 : Constructing the embedding 

In this section, we outl ine the method that G u p t a et al. [28] use to obta in a constant-

distort ion embedding of series-parallel graphs into l\. 

Series-parallel graphs are often defined in a recursive fashion: A n edge (s,t) 

is a series-parallel graph wi th terminals s and t. If G\ (resp. G 2 ) is a series-parallel 

graph, w i th terminals s\ and £1 (resp. s2 and £2) then a series construct ion creates 

a new series-parallel graph, w i th terminals s\ and t2, by taking the union of G i 

and G2 and unify ing t\ w i th s2. A parallel construction creates a new series-parallel 

graph, w i th terminals s\ and t\, by taking the union of G\ and G2, and unify ing si 

wi th s2 and t\ w i th t2-

A n alternative way of constructing series-parallel graphs is more incremental. 
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We start w i th an edge. A t each step, we choose an exist ing edge (s,t) , introduce a 

new vertex x, and connect it to both s and t by edges (x, s) and (x,t). A t the end 

of the construct ion, we may remove any subset of edges. Th i s actual ly constructs 

al l tree-width-2 graphs, which are more general .than series-parallel graphs. A lso 

we may assume that no edges are removed at the end of the construct ion since 

we may choose the weight of every removed edge to be infinity. G u p t a et al . use 

this incremental construction to define an ^-embedding of the graph, which is the 

embedding that we analyze in this section. Consequently, al l the results in this 

section apply to tree-width-2 graphs. 

G u p t a et al.[28] present two fundamental ly different methods for embedding 

series-parallel graphs into. t\ w i th constant distort ion. The first one, which yields 

a distort ion factor at most 13.92, recursively computes an ^-embedding as a sum 

of cut-metrics (See the definit ion in Section 1.2.1). The i r second approach is to 

represent series-parallel graphs as a probabil ist ic sum of trees and bundles (special 

series-parallel graphs in which all paths between the two terminals have the same 

length) w i th distort ion at most 8. Us ing the fact that trees are isometrical ly em­

beddable into l\ and bundles are ^i-embeddable. w i th distort ion at most 2, they 

conclude w i th an ^-embedding wi th distort ion at most 16. 

We focus on their first approach. They use the incremental construct ion of 

series-parallel graphs to compute the ^i-embedding as follows: 

Let fi(x, y) be the shortest path distance between two vertices x and y and 

jl(x,y) be the £i-distance to be computed. Initially, when the construction.starts 

w i th a single edge (s, t) we set Ji(s, t) = /j,(s, t). Assume that in one step we introduce 

one vertex x and attach it to the endpoints of an existing edge (s,.t). Let 

6 = 
fi(x,s) + fj,(x,t) - n(s,t) 

2 
and Ps = 

n(x,t) - n{x,s) + fj,(s,t) 
2/x(s,t) 
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and for every existing vertex y let 

ji(x,y)=6 + Pap,(s,y) + (l-Pa)ii(t,y). (2.1) 

F i rs t , fi is isometrical ly embeddable into l\ since it is the sum of a cut metric 

and two isometrical ly embeddable metrics. Next , to show that /} has low distort ion, 

it is easy to verify that ft, preserves edge lengths, i.e., for every edge (x,y) € G, 

p,(x,y) = n(x,y). However if x and y are not adjacent in G, we need to show 

that p.(x,y) > ii[x,y)/c to prove that the distort ion is at most c. The fact that 

P{x, y) ^ M ĵ v) follows from \i being a shortest path metric and from every edge 

length being preserved in the new distance. 

To show that p,(x,y) > fx(x,y)/c, G u p t a et al. consider two cases based on 

the ancestor relation between x and y. The ancestor edges of vertex x are the parent 

edge (s, t) to which x is attached dur ing the incremental construct ion plus al l the 

ancestor edges of s and t. The i r cases are: 

Case 1: y lies on an ancestor edge of x. 

Case. 2: Neither x nor y lies on an ancestor edge of the other. 

For case 1, which turns.out to determine the distort ion of the embedding, G u p t a et 

al. use an inductive argument to prove that 

•.. ,, •A(x,y)> (1"f^"1)M(x,y) 

for al l-f '€ {\, 1). In part icular, for £ = \/3 — 1 this gives the best bound ( ^ K 2 ^ - 1 ) ~ 

1^02- We show that the worst distort ion in case 1 occurs when the sequence of 

ancestor edges from x to y has a special degenerate 1 form (Lemma 3). Us ing this 

fact and the proof technique of G u p t a et al., we can show that the distort ion of p, 

is at most 9.0. However, in order to obtain our result, that the distort ion of jl is at 
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Figure 2.1: The graph Gx>e for e = (s 6 , i 6 ) . 

most 6.0, we need a more precise inductive argument than the one used by G u p t a 

et a l . Th i s argument appears in L e m m a 4. 

We also show, in section 2.6, that the algor i thm of G u p t a et al. produces an 

l\ metric jj, w i th distort ion at least 3.0 on a family of outer-planar graph metrics; 

metrics that are known to be isometrically embeddable into l\. 

2.3 Flattening 

For a vertex x and an ancestor edge e = (s,t) of x, let ( (s i ,£i ) , (s2,t2)> • • • > (sk,tk) = 

(s,t)) be the sequence of ancestor edges of x from x to (s,t). Tha t is, (si,ti) is the 

parent edge of either s$_i or ti-\ depending on whether U — £j_i or Si = Sj_ i 

respectively. To simpl i fy our definitions, we assume SQ = x and to — h- Note that 

for every 1 < i < k either £j = ti-i or Sj = Si-\. Let Gx'e be the induced subgraph 

of G that contains x and {S J , £ J |1 < i < k}. The graph Gx'e is a sequence of edge-

weighted triangles. Let L j = = /i (s j_ i ,S i ) , and = / i (^_ i , t j ) . See 

Figure 2.1. It is important to note that the shortest path between any two vertices 

i n Gx,e is the same as the shortest path between those two vertices in G. A lso, the 

definit ion of jl on the (series-parallel) graph Gx,e is the same as p, on the, original 

graph G restricted to the vertices in Gx'e, as long as the order of construction used 

in the two definitions is the same. 
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Figure 2.2: F la t ten ing a triangle. The right figure is really two degenerate triangles. 

A triangle w i th edge lengths a, 6, and c is flat if a = b + c or a = \b — c|. 

The flattened version, Fx'e, of Gx'e contains two flat triangles for every triangle in 

Gx'e. If Si ^ Si-\ (and £j = £j_i) then contains the flat triangles ( S J _ I , itj, £j_i) 

and (si,Ui,ti) where i i j is a new vertex not in G and / X ( S J _ I , Uj) = L ' ~ L l
2 ~ 1 + Q ' , 

Ai(ui,£j_i) = L ' + Z " 2 " 1 + a ' , Ai(si-i,£i-i) = i i - i , 

^(si,Ui) = L ' ~ 1 ~ 2
L ' + a i , and fj.(si}ti) = Li. If £,; ^ £j_i (and Sj = Sj_i ) then F 1 ' 6 

contains the flat triangles (£i_i, Vi, s,_i) and (ti,Vi,Si) where i>j is a new vertex not 

in G and = L i ~ L ^ \ M K ^ - I ) = ^ ± % i ± ^ , v,(si-.x,ti-\) = ^ t - i , 

n(ti,Vi) = ; and n{si,ti) = Li. For example, see Figure 2.2. 

The graph F 1 ' 6 is series-parallel and it defines the same graph metric on the 

vertices of Gx,e as the graph G does. Tha t is, the shortest path distance between 

any two vertices in Gx,e remains unchanged in Fx'e. We may also construct Fx,e 

fol lowing the order induced by the construction order of. G w i th Ui added after S ; 

and before (and vi added between U and £i_i). Us ing this construct ion order, 

let ftp be the l\ distance obtained by G u p t a et al.'s construction (definition (2.1)) 

on Fx>e. We first prove that jlp(x,y) < ji(x,y). 
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Lemma 3. For an endpoint y of an ancestor edge e of x, 

P-F(X,V) < P(x,y). 

Proof. We prove, by induct ion of the order of addit ion of the vertices, that PF{W, y) 

< p\(w,y) for every vertex w in Gx>e. If w is an endpoint of e then p,p(w,y) = 

jl(w,y) = fi(w,y). Otherwise, assume :w — s.;_i and S j _ i / Si (the case w = U-i is 

similar) . Accord ing to the induct ion hypothesis, jlp(si,y) < jl(si,y) and jJ.F{~ki>y) < 

p,(ti, y). Let a = L j _ i , b — Li, and c = a^. B y definit ion (2.1) of ftp, for p^ = a ^ b
a

+ c , 

i2F{si-i,y) = 0+pFpF(ui,y) + (1 -PF)PF{U,V) 

= ^ - — ? r ^ ~ + pF(si,y^j + (1 ̂  PF)pF(ti,y) . 

B y definit ion (2.1) of / i , for p = 

jj.(si-i,y) = —-+pjl(s l,y) + (1 - p)jl{ti,y) 

Hence, 

A F ( S » - I , J / ) - p(si-i,y) < (pF-p){P{si,y) - - (1 ~ P F ) ^ | — -

< b\pF-p\ - (1-PF)^~—-

_ (a — b + c)(b — a + c) (a — 6 + c)(b — a + c) 
~ 2(a + 6 + c) 2(a + b + c) 

= 0 

• 
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As G u p t a et al. mention [28], we can view the construct ion of fi as a proba­

bi l ist ic process. If we are at a vertex x w i th parent edge (s,t), we accumulate <5 (for 

the triangle (x,s,t)) and then collapse (move) to either vertex s w i th probabi l i ty Ps 

or to vertex £ w i th probabi l i ty 1 — Ps. B y repeating this process, we move from x to 

the edge (sk,tk) and accumulate 8 for some triangles in the sequence. Let P s
l be the 

probabi l i ty that when x moves to the edge (si,U) it moves to Sj and let PI = 1 — Pl

s. 

The expected sum of the accumulated <5's plus P^L^ (resp. Pj°Lk) is fi(x, y) if y = tk 

(resp. y = sk). Define A 1 to be the expected sum of the <5's accumulated over all 

triangles up to the edge (si , t j ) . So, for example, A 0 = 0. Let A = Ak. Then 

p.(x, tk) = A + P*Lk and jl{x, sk) = A + Pt

kLk. 

As a corollary of L e m m a 3, we have 

Corollary 1. For an endpoint y of an ancestor edge e of x, 

A F ( Z , y) + A F < fi{x, y) + A 

where A (resp. Ap) is the expected total of S's over all triangles through which x is 

collapsed to y in Gx,e (resp. Fx,e). 

Proof. Let e = (w,y) and L = /j,(w,y). Assume when x collapses to e in Gx'e (resp. 

Fx'e) it collapses to vertex y w i th probabi l i ty pa (resp. pp) and to w w i th probabi l i ty 

qG (resp. qp). Accord ing to L e m m a 3, jj,p(x,y) < jl(x,y) and p,p(x,w) < fi(x,w). 

Hence Ap+qpL = fip(x,y) < fi(x,y) = A+qcL. Similarly, Ap+ppL = jlp(x,w) < 

jl(x, w) = A + PGL. Hence < A + min{Qc — qF,pG — PF} = A + mm{pp — 

PG,PG ~ PF} < A . Consequently, p,p(x,y) + Ap < jj,(x, y) + A . • 
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2.4 Distortion 9.0 

In this section we show how the flattening lemma (Lemma 3) enables us to use G u p t a 

et al.'s proof, w i th minor changes, to get a distort ion 9.0 bound for series-parallel 

graphs. 

They prove the following three inequalities for any £ G (5,1). 

(a) If Pi~l > £ then fj,(x, Sj) > £L(X, S i_ i ) + (2f - 1)^. 

(b) If Ptl> ( then p{x,Si) > A(s,ti_i) + (2£ - l )L i-

(c) Otherwise, 1 - £ < P ] " 1 < £ and p,(x, st) + ^ ( A * - A i _ 1 ) > p,(x, Si-i) + a*. 

The above three inequalities imply 

P(x,Si) + Y 3 ^ ( A i - A ' _ 1 ) ^ min{/i(x-,s i_i) + (2£ - 1 ) ^ , ^ , ^ - 1 ) + (2£ - l ) L i } 

(2.2) 

The left hand side of the inequality, when accumulated over al l values of i, generates 

a value not more than (1 + -^)p(x, s^). The right hand side is a (2£ — 1) factor 

of some path from x to Sfc. (At step i we choose either the edge w i th length c*i or 

the one w i th length Li depending on the min imiz ing argument.) Hence, jl(x,Sk) is 

at least a factor (2f - 1)/1 + = 0 f f.i(x, sk). Choosing £ = \/3 - 1 to 

maximize this factor gives a distort ion bound of at most 13.92. 

G iven flattened triangles, we can improve inequality (2.2) and obtain a better 
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.distortion bound. If a triangle is decreasing, i.e. L j = L j _ i — CVJ, 

A(x, Si) = A* + PJLi 

= A i _ 1 + P * " 1 ^ + P J " 1 ^ 

= A i _ 1 + P t \ U + Q i ) + (Pi-1 - Ptl)*i 

= / i ( a ; , S i - i ) + ( i ^ - 1 - P r 1 ) a i 

Similarly, /}(£, Sj) = / t ( x , £ i _ i ) + ( P / - 1 — P * _ 1 ) L j . For a decreasing triangle, P s = 1 

in Equat ion (2.1). Thus , the probabi l i ty of a move from S j _ i to £j is 0, which means 

Pi = pi-1 and A* - A i _ 1 = P ^ W Thus, 

(a) if P t 1 > | then ji(x, s{) = / i f o t i - i ) + ( P p 1 - P't^U > + 

(b) otherwise, P t
i _ 1 < § and p.(x,Si) + 2(Ai - A i _ 1 ) = jl(x,Si) + 2Pl

s~lai > 

jl(x, + ( 3 P * " 1 - P r 1 ) " * > * - I ) + f . 

Together, these inequalities imply 

ft(x, Si) + 2(A* - A*" 1 ) > m in S i _ i ) + j , fc(x, t^) + y } • (2-3) 

If the triangle is increasing, i.e. L j = + a, , then /i(x, si) = p.(x, Si) + ai, which 

again implies inequality (2.3). Us ing inequality (2.3) in place of (2.2) in G u p t a et 

al.'s proof gives us distort ion at most 9.0. 

2.5 Distortion 6.0 

The inductive construction of the graph and equation (2.1) encourage us to express 

fl(si-i,y) in terms of fi,(si,y) and jj,(ti,y), and to reverse the direction of induct ion 

used in G u p t a et al.'s proof. A lso , where the above approach derives an inequality 

based on a single vertex Sj (or, symmetrical ly, i j ) , we find that a parameterized 
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Figure 2.3: A pair of flattened triangles in a triangle sequence from x to an ancestor 
edge w i th endpoint y. Consider ing this case provides some intu i t ion for our stronger, 
parameterized, inequality. 

inequality based on an average of p,(si,y) and y) leads to a better distort ion 

bound. The price we pay for using this stronger inequality is a much more com­

plicated inductive step. In fact, the details of the proof are five pages of dense 

mathematics. In this section, we give some intui t ion for the result but leave the 

details to Section 2.8. 

Rather than a single flat triangle, consider the pair of triangles in F i g . 2.3. 

For that triangle pair, 

p(u, y) = pp,(v, y) + (1 - p)p.(t, y) = p/2(s, y) + (1 - p)ft{t, y) + prf 

and 

H(u, y) = min{^(s, y) + a + 7, n(t, y) + L + 7 - a} 

where p= • 

A n y distort ion inequality of the form fj,(u, y) > c[i(u, y) translates, using the 

above equations, into an inequality that has contr ibut ion from both s and t: 

pp(s,y) + (1 -p)ji(t,y) +pj> cmm{/j,(s,y) + a + j,p,(t,y) + L + 7 - a}. 
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B y replacing a w i th the equivalent (1 — p)(L + 7) and moving p*y to the right we 

obtain: 

pp(s,y) + (l-p)p(t,y) > c m i n { fj,(s, y) + (1 - p)L + (2 - p - p/c)j, 

n(t,y)+PL-py(l-l/c)} 

- W h e n we include a A 1 term on the left, this is very similar to the inequality 

(2.2) used by G u p t a et al. Notice that we can view 7 as a parameter and obtain 

al l flattened triangle pairs. The distort ion 6.0 result is based on inequality (2.4) by 

setting c = | , using A1 w i th coefficient one on the left side and replacing 27 w i th 

(3. We also add 2/3 min {P s
l , P t

l } L j to the right side to make the induct ion work. 

Let p\ — p,(si,y) and fi\ = /z(sj,y) for all i (p\ and [x\ are defined similarly) . . 

Let A j = A — A 1 , i.e., A j is the expected sum of the 5's accumulated over all triangles 

start ing from the edge (si,U) up to (sk,tk). 

The precise form our intu i t ion takes is 

¥s((3) = l /3min {/4 + P\U.+ (3{l - 2P*), £ + PIU - PJ0} + 2/3 m in { i » PfiLu 

and 

&t(J3) = l / 3 m i n K + P\U - P/./3, M j + P\U + (3(1 - 2P})} + 2/3min {P ; , P\}U. 

Lemma 4. For flattened triangle sequences, for all 0 .< i < k and all (3 > 0, 

Proof. See Section 2.8. • 

Let us derive the corollary that is used in proving that p.. has distort ion at 

most 6.0. 
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Corollary 2. For flattened triangle sequences from x to an endpoint y of an ancestor 

edge of x, 

Proof. Since P ° = 1, A = A n , and /i° + LQ > JJPs = fi(x, y), we have 

•P°£° + P ° £ ° + A 0 = £(* , y) + A > ¥ ° ( 0 ) = vr,°( 0) > 

The following theorem shows that G u p t a et al.'s construction produces an 

^i-embedding w i th distort ion at most 6.0. 

Theorem 1. For any two vertices x and y, ji(x,y) > 

Proof. We have two cases. 

Case 1: y lies on an ancestor edge of x. 

In this case, by L e m m a 3 and Corol lary 2, 2fi(x, y) > 2p,p(x, y) > fiF(x, y) + 

AF > which yields a distort ion of 6.0. 

Case 2: neither x nor y lies on an ancestor edge of the other. 

The proof of this case is essentially the same as in G u p t a et al. [28]. 

If x and y are not ancestors of each other then let (s,t) be the last edge 

added in the construct ion that is an ancestor edge of x and an ancestor edge of y. 

If (s,t) separates x and y (i.e. every path from x to y passes through s or t) then 

p,(x,y) = Ax + AV + (P?P? + P*PV)L 

where Ax (resp. Ay) is the expected sum of the <5's accumulated over al l triangles 

start ing from x (resp. y) to the edge (s,t) , Px (resp. Ps) is the probabi l i ty that 
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x (resp. y) collapses to s when it moves to (s,t) (similarly for Px and P?), and 

L = n(s, t). We know PXP? + PxPy > ± m i n { P f + P j , P* + P t"}. W i thou t loss of 

generality, suppose Px + P | = m i n { P f + P j 7 , P f + P t
y}. So, 

jl(x, y) = Ax + Ay + (PfP? + IfPV)L 
px i pV 

> Ax + Ay -\- s L 
2 

= A a + /i(a,t) A ^ + A(y,£) 
2 2 

> rix,t)+li(ytt) Corollaries 1 and 2 
6 J 

- 6 ' 

If (s, £) doesn't separate x and y then there must be a vertex q whose parent 

edge is (s,t) w i th (s, q) an ancestor edge of x and ( i , 5 ) an ancestor edge of y. Th is 

case reduces to the previous case by noting that fi,(x, y) is preserved by reordering 

the construct ion sequence in such a way that (s, q) becomes a common ancestor 

edge of x and y. (See G u p t a et al . [28] for details.) Consequently, the distort ion is 

at most 6.0. • 

2.6 Lower bound 

There are series-parallel graphs that cannot be embedded into t\ wi thout some 

distort ion. The best lower bound on this distort ion, of which we are aware, is 3/2 

and is obtained by showing that any ^i-embedding of the unweighted bipart i te graph 

K2,n (which is series-parallel) has distort ion at least 3/2 [4]. 

If we restrict our embeddings to be those produced by G u p t a et al.'s con­

struct ion, we can prove a better lower bound. The following theorem shows that 

there exist outerplanar graphs whose t\ embedding v ia that construction incurs dis-
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Vn-1 

Figure 2.4: Lower bound example 

tort ion arbi trar i ly close to 3.0, even though outerplanar metrics are isometrically 

embeddable into £\. 

Theorem 2. There exists a family of outer-planar graphs whose l\ embedding, by 

the construction of Gupta et ai, has distortion arbitrarily close to 3.0. 

Proof. Let G be defined as follows. V{G) = {xi : 0 < i < n}u{yi : 1 < i < n—1} and 

E(G) = {(xi, xi+i) of length 1 : 0 < i < n - 1} U {(xi,yi+i) of length 1 : 0 < i < 

n - 2} U {(xi, yi-i) of length 1 : 2 < i < n} U {(xi,yi) of length 2 : 1 < i < n - 1}. 

See F i g . 2.6. 

Every shortest path in G from xo to xn has length n. Assume that the first 

edge added in the incremental construction is (XQ,XI). The construction order of 

vertices is fixed once this first edge is added; they are added in increasing order of 

their index, i.e. (XQ,X\), y\, X2, y2, • •• • Let t ing /Ttj = fi,(xi,xo), we have 

A n - i + fhi-2 + 1 
to = ' o — 
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where po = 0 and pi = 1. Let g, = ptn - §, then 

9n = 
9n-l + 9n-2 

2 

where go = 0 and g i = | . Th i s implies that 0 < gn < 2/3 for all n, which means 

f < M n < f + 2/3or equivalently 

As n increases, we obtain distort ion arbi trar i ly close to 3.0. 

If the order of incremental construction starts w i th the edge (XJ,V) for v G 

{XJ+I,yj+i,Uj-i, Vj}, then either j < n/2 or j > n/2 and the same argument, w i th 

pi — p(xj,Xj+i) or pi = p(xj,Xj-i), respectively, gives distort ion approaching 3.0 

2.7 Conclusion and Future Work 

In this chapter we provided a careful analysis of G u p t a et al.'s construct ion and 

obtained an upper bound of 6.0 and a lower bound of 3.0 on the distort ion of 

embedding series-parallel graphs into l\ using that construction. 

One might also consider the problem of min imiz ing the dimension of the l\ 

metric as well as its distort ion. B r i nkman and Char ikar [14] show that embedding 

certain series-parallel graphs (diamond graphs) into l\ w i th constant distort ion re­

quires n^ 1 ) dimensions. Whether low dimensional, constant distort ion embeddings 

for al l series-parallel graphs can be constructed efficiently is an open problem. 

A very challenging problem is to embed bounded tree-width graphs into £\ 

wi th low distort ion and, as a first step, graphs w i th tree-width 3. 

as n approaches infinity. • 
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2.8 Proof of Lemma 4 

For flattened triangle sequences, for all 0 < i < k and all (3 > 0, 

P ^ + ̂  + A i > m a x { ^ s ( / 3 ) , ^ ( / ? ) } (2.4) 

Proof, (of L e m m a 4) The proof is by induct ion. We-assume the lemma is true for 

i, i + 1,.. •, k and show it is true for i — 1. 

We know 

A j . when L j = L j _ i + CVJ or L j = L j _ i + /3j 

A j - i = < p i a i + A j when L j = L j _ i - a,u 

^P/A + A j when U = U-X - for 

Since inequality (2.4) is symmetric in Sj and t j , we may assume without loss 

of generality, that £j = £j_i which means S j _ i collapses to ( S J , £ J ) . 

: " The proof relies on four technical lemmas (Lemmas 5, 6, 7, and 8). 

Case 1: (increasing triangle) L j = L j _ x + ai'. 

Notice that in this case A j = A j _ i and PI = P s - * s Li 

Li Li 

piiii+piti+Ai 

> ^l(P) (by the induct ion hypothesis) 

> * r : ( ^ ) (by L e m m a 5). 

We also need to show that P 1 ' 1 ^ + P ^ t i ' 1 + A i - i > ^ j - 1 ^ ) -
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UP}'1 > \ or ̂ - l + P l - l L i ^ l < f.Li-1+Pl

s-1Li^l then < * t _ 1 ( 0 ) for 

all /?.> 0. In this case P J - 1 ^ - 1 + ^ T ^ - 1 + A i - i > *s _ 1 (0) = *t _ 1 (0) > *t_1(0) 

for all 8 > 0 and we are done. 

. Otherwise, P*" 1 < ± and / 4 " 1 + P J _ 1 L i _ i > + P T ^ i - i -

Define 

^ _ M s ~ M t + ( - P t ~ - P s ) ^ ^ 5 ) 

Th is is the value of / 3 that maximizes ( / 3 ) b y making the two values in the first 
r 

min of ^\(8) equal, i.e., 

/4 + P\U - PiBi = £ + PtU + B%{\ - 2PI) 

Note that P * _ i > 0 since p}s~l + P^1 L^i > /Jf1
 + P s

i _ 1 X l _ i . A l so note that Bi > 0, 

since 

(^ + p * L i ) - ( M j + p s
i L . i ) 

Hence 

• p r v r 1 + v r 1 + A * - i = « + ^ + A * 

>max{*j ( jBi ) ,* i (0)} ( b y induction) 

> * j _ 1 ( P i _ i ) ( b y L e m m a 6) 
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Case 2: (decreasing triangle) Lt = L j _ i — a.;. 

In this case Pl

s = P S
L _ 1 , / i * , - 1 = ji\ + O j , = / i* + and A j _ i = A j + P^a;, so 

p r v r 1 + ^ r ^ r 1 + ^ - i = PM+<*)+piti + ^ 

= pi& + piti + Ai + 2 P > i 

> + 2ai) + 2 P s
i a i (by induction) 

> %^(P) (by L e m m a 7). 

We also need to show that P* - 1 /^ - 1 + P/ - 1 /^ - 1 + A i - i ^ ^ t ^ G 9 ) - I n t h i s 

case, 

p r v r 1 + p t l t i ~ l + A i _ i = P X + + A , + 2 P 5 v 

> ¥t(mzx{Bi, 0}) + 2 P ; a i (by induction) 

> * j _ 1 ( P i _ i ) (by L e m m a 8) 

Base Case 

The only remaining step is to prove the base case. Assume tk = y. We have 

Hk

8 = = Lk and ^ = / i * = 0. Thus , Pkjlk + Pftf + Ak = PkLk and 

*£(/?) = 1/3min{ A 4 + P / % + (3(1 - 2Pk),rf + PkU - Pk(3) 

+ 2/3mm{Pk,Pk}Lk 

< l/3PkLk + 2/3PkLk 

= PkL k-
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As for the inequality PkjJ.k + PtPt + A f c > ̂ t(P), as mentioned earlier, if 

Pt

k > \ then we are done because Pkfik + Pt

kjlk + Ak > tf*(0) = # £ ( 0 ) 

Otherwise, assume P t
f c < ±. It's clear that Bk = ~ p " ) L f c = ̂ L f c and 

* t
f c (P f c ) = 1/3 + P s

f e L f c + Bk(l - 2Pk)) + 2/3mm{Pk,Pk}Lk 

= 1/3 ( P*Lk + 2 P n i

p k

2 P " ] L k ) + 2/3PkLk 

2Lk(Pk - Pkf 
s 

Dk _ pk\2 

= P^Lk -
3Pk 

< PsLk 

= Pkpk + Pkjlk + Ak 

The proof is now complete. • 

Lemma 5. If Li = L j _ ! + oti then for all 8 > 0 

: *l(p)>V-l(8). 

Proof. Notice that since L j = + a j , A j = A j _ i and P* = P, :-i i i - i 

s - •«• s Li • 

¥s(3) = 1/3min{/4 + P t % + 8{l - 2Pl

s), & + Pl

sL,L - 1*8} 

+ 2/3mm{Ps

:,Pt

i}Li 

> 1 / 3 m i n K " 1 + P r ' ^ - i + ̂ (1 - 2Pi), M p 1 + ̂ T % - i - TO 

+ 2/3min {P J , P/ } L i 

since < A4 = ̂ "'t'^, *i = and P j = P * " 1 ^ 

' - > 1/3 m i n K - 1 + i T 1 ^ - ! + 0(1 - 2 P J - 1 ) , M l - 1 + * T ^ . - i - ̂ r V } 

+ 2 / 3 n u n { P J - 1
) P / - 1 } L i _ i 
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since P*.< P* " 1 

= * r i ( / ? ) - • 

• 

Recal l the definit ion of Bi from the equation 2.5. 

Lemma 6. If Li = L j _ i + and P j _ i > 0 then 

m^{¥t(Bi)^\{0)} >Wt-\B i-ij 

Proof If Pi < 1/2 then > tfj(O) and 

* r x ( ^ _ i ) - - I A A ; - 1 +K~ l L i - i+p t - i ( i - 2 P r x ) + 2 / 3 ^ - ^ - 1 

' -1/3(AJ + PtLi + Bi(l- 2PD) - 2/ZPtLi 

= l / 3 P i _ 1 ( l - 2 P / - 1 ) - l / 3 P l ( l - 2 P t
l ) - 2 / 3 a i 

= l / 3 P i _ 1 ( 2 P ; - 1 - 1) - l / 3 P i ( 2 P i - 1) - 2/3oi 

= i / a ^ - ^ + ^ i ; 1 - ^ - 1 ^ - ! ) 

Ps 

- l / s " ^ t + ^ ' P : ) L l ( 2 P ; - 1) - 2 / 3 ^ 
•* s 

1 i f pi—1- pi—!'> 

p i 
< 1 / 3 ^ ^ s ' t ~ 1 ( 2 P ] - x - l ) 

- l / 3 ^ s 1 ^ 1 + 1 P * 1 ) L i - 1 ( 2 P J - 1) - 2/3a* 
.s 

- 2 / 3 a * 

+ l / 3 ( M r 1 - M P 1 + {PI1 ~ P T ^ - i X i - T ^ r ) 
s P s 

< - 2 / 3 a , + l / 3 ( 2 P r 1 P . t - i ) ( p i _ ' ) 
Ps 

pi—1 _ pi—1 

< 0 
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Otherwise, if P\ > 1/2 then * j (0 ) > a n d 

tr 1^-!)-*^) - i / 3 ( z i r i + p r 1 ^ - i + ^ _ i ( i - 2 P r i ) + 2 / 3 P r 

-l/3(AJ + P s % ) - 2 / 3 P s % 

= i /3P i _ 1 ( i -2P t
i - i )+2/3 ( p r 1 - p r 1 ) ^ - i 

= i/s^' 1 - AT1 + (^r1 - ^r1)^-! ( 2 P i - i _ 1 } 

Ps 
+2/3(pr1 - p r ^ L i - i 

< i / 3 ^ - ^ ( 2 P r 1 - i ) + 2 / 3 ( p r 1 - p r 1 ) ^ 
Ps 

< 2 / 3 P r 1 L i - i ( 2 - - Jn )+2/3 ( p t

i - 1 - pr1)^-! 
Ps 

- 2/3 

< 0 

Lemma 7. 7/ L j = L j _ i — a j £/ien /or all B > 0 

. r s (/5 + 2aj) + 2 P > > v & r 1 ^ ) -

Proo/. Let /?' = /3 + 2aj . 

' * J
s(/3') + 2P s

la.j = 1/3 min{/4 + P/L, + - 2PJ), 

^ + P\L% - P^' } + 2/3min {P ; , P/}L, + 2 P > . • 

> 1/3 m i n K + PIU + SP^a, + p'(l - 2P*) , 

/4 + P JL j + 3 P > j - Pl

s0} + 2/3min {P s \ P^L^ 

(since 2/3min {P s
i , P t ' }L ; + P*a ; = 2/3min{P*, P t

l } ( L i - i - a,) + P > ; > 
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2 / 3 m i n { P s
i , P / } L i _ i + l/3P*«i > 2/3min { F * , P^ } L i _ i ) 

= 1/3min{/xr1 + PiU-x - c*i(2 - 4P*) + P'(l - 2PI), 

+ PiU-x + 2 i>i - Pi/3'} + 2/3min{P 5 \ P^L^x 

since /2* = fi\ + CUJ and L i = L j _ i — 

- l / S m i n i y - 1 + P r ^ i - i + 0(1 - 2^_1), 
^r1+pr1^-! - ̂ r1/?}+2/3 m i n ^ - 1 , p*- 1 }^ 

since P* = P* 1 and U = £j_i 

Recal l the definit ion of P j from the equation 2.5. 

L e m m a 8. If Li = L j _ i — cxi, P t
4 < 1/2, and Bi-\ > 0 £/ien 

. . * j (max { 0 ) B i } ) > * r 1 ( 5 i - i ) -2P i a i . 

Proo/. If P i > 0 then 

%{Bi) = l/3(/4 + P/L, - P/P,) + 2/3min{i* P t
J } L , 

= 1/3 (Vs + P*L, - - + (P t
l - Pi)Li^j + 2 / 3 P t % 

= 1/3 (fi-1 - ai + P / ( L i _ i -

- 1/3 ( ^ ( A C * - « i - M P 1 + tf? - Pi)(Li-i - a i ) ) 

+ 2 / 3 ^ ( ^ - 1 - ^ ) 
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since fj, l

s = ji\ 1 — a j , L j = L j _ i — a j , and P t
l = P/ 1 < 1/2 

= n ' \ B ^ ) - 1/3^(1 + 4P< - § ( 1 + P t
1)) 

•2 

= * r 1 ( P j _ 1 ) - 2 P ] a , + l / 3 a j ( 9 P s
l - 4 ) + 2 / 3 a j P | - . 

> tfj-^Bi-i) - 2 P ; a j (since P/ < 1/2). 

If P i < 0 then /Li» + U < 4 + P\Li and tfj(O) = l/3(/4 + P t % ) + 2/3P/Lj . 

Since P j - i > 0, P j can't be too negative. In fact, 

B = f4-j4 + {Pt- pi)Lt _ ̂ T1 - /xj- 1 + (pr1 - pr1)^-! - 2pr iaj 
p i p i 

-1 s -1 s 

2P}oi 2P\ai 
= Bi-i B y - > ~ pi 

* s 1 s 

Thus, 

* K 0 ) = l / 3 ( M * + P ^ i ) + 2 / 3 P t % 

= * j ( P j ) + 1/3P/PJ 

= ̂ -H ĵ-i) - l / 3 a , ( l + 4 P ; - § ( 1 + P^) + 1/3P/Pj 
Pi s 

2 

> ^ ( S i - i ) - l / 3 o i ( l + 4J» - § ( 1 + Pi)) - 2/3a P < pi '• - t /y - / —<• pj 

= ̂ rĤ i-i) - 2 P > j + l /3a j (9P ; - 4) 

> WftBi-i) - 2Pl

sai (since Pl

t < 1/2). 

• 
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Chapter 3 

Embedding between Line 

Metrics 

3.1 Introduction 

In this chapter, we focus on comput ing an opt imal embedding between two fixed 

line metrics. A line metric is a set of points on a real one-dimensional line w i th 

the distance between any pair of points being their l\ distance (any t\. distance is 

equivalent for one-dimensional points). 

As we mentioned earlier, Kenyon et al . [36] consider the problem of opt i ­

mal ly ; embedding one fixed line metric into another fixed one. They propose a 

polynomial-time, dynamic programming based, algorithm that computes the opt i ­

ma l embedding if the distort ion is less than 3 + 2\/2. To this a im; they show that 

any permutat ion that contains (3,1,4,2) (see F ig . 3.1) as a sub-permutation corre­

sponds to an embedding w i th distort ion at least 3 + 2\/2. A l l permutations that do 

not contain a (3,1,4,2) sub-permutation have a nice structure that allows finding 

the opt imal such permutat ion using dynamic programming in polynomia l t ime. It 

40 



is worth mentioning that the problem is recently proven to be NP-hard when the 

opt ima l distort ion is unrestricted. Ha l l et al. [29] prove that if the opt imal distort ion 

5 is at least n £ , for some constant e, then the distort ion is not even approximable 

w i th a factor <5 1 - e ' , for any e', unless P = N P . 

In this chapter, we extend the result of Kenyon et al . [36] by considering a less 

restricted class of permutations called /c-separable permutations. In part icular, we 

improve the threshold value on distort ion below which an opt imal embedding can be 

found in polynomia l t ime from 3 + 2^2 to 13.602. We also study several interesting 

problems related to permutations such as forbidden permutations, pattern matching, 

and stack sorting. 

We recently found that Kenyon et al . (in an extension of their conference 

paper [36]) and Chandran et al . [17] have also extended the 2-separable result to 

/c-separable permutations. B y considering 9-separable permutations, they obtain a 

polynomia l t ime dynamic programming solution that works in those cases when the 

distort ion is less than 5 + 2^/6 ~ 9.90. 

We obta in (independently) the same result and show that the same technique 

can be used, by considering larger values of k, to find opt imal embeddings when the 

distort ion is less than 13.602. We (as well as they) show that the technique does 

not work for distort ion greater than 13.928 no matter how large k is chosen to be. 

The structure of this chapter is as follows. After introducing basic definitions, 

in Section 3.2, we prove, in Section 3.3, that the class of /c-separable permutations 

have a finite set of forbidden permutations. Then , in Section 3.4, we propose a 

polynomia l t ime algorithms for embedding between two fixed line metrics provided 

the opt imal embedding permutat ion is /c-separable. We also study some algorithmic 

and non-algorithmic related results such as computing separability. Sections 3.6 is 
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devoted to the problem of finding a /c-separable permutat ion in a text permutat ion. 

We propose a polynomia l t ime dynamic programming algori thm for the problem. 

In Section 3.7, we interpret /c-separable permutations in terms of the way they are 

sortable using a queue. F inal ly , in Section 3.8, we address some open problems 

related to our work. 

3.2 Preliminaries 

Notice that we can view any embedding as a mapping from source points to destina­

t ion points or, simply, as a permutat ion. Assume the opt imal embedding between 

U and V is the permutat ion TT. We specify a permutat ion IT w i th the notation 

(vr(l) ,7r(2),-.. ) 7 r (n) ) . 

Permutat ion 7rn of size n contains permutat ion TT^ of size k, if there exist 

indices h < h < • • • < h such that for all 1 < i < j < k, iTk(i) < ^k(j) iff 

Kn{k) < Kn{lj)- In this case, we refer to ir^ as a sub-permutation of 7r n . In part icular, 

TTnV is the unique permutat ion of size y — x + 1 such that nfi'y(i) < ^n'v{j) iff 

7T n(i + 1 - X) < 7T n(j + 1 - X). 

A nice interval I in ix is either a singleton or is a set of at least two consecutive 

numbers from 1 to n such that their mapping, v ia TT, is st i l l a set of consecutive 

numbers. For example, the permutat ion (4,3,1,2) contains several nice intervals: 

[1,2], [3,4], [2,4] and [1,4]. 

If the interval [ l ,n] can be decomposed into a constant number of sub-

intervals such that each sub-interval is mapped, v ia TT, to a sub-interval in V and this 

property recursively holds for al l sub-intervals, then we can use dynamic program­

ming and find the opt imal embedding. More formally, an interval I is k-separable, 

wi th respect to ir, if either it has at most k points or it can be part i t ioned into 
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nice sub-intervals h,l2, • • • ,Im (1 < m < k) such that each Ii is /c-separable. TT is 

/c-separable iff the interval [ l ,n] is /c-separable w i th respect to TT. The separability 

of TT is the min imum k > 1 such that TT is /c-separable. 

For example, the permutat ion TT = (2 ,4 ,3 ,6 ,5 ,1 ) is 3-separable. I\ = [1,3], 

I2 = [4,5], I3 = [6], and it is clear that I\, I2, and I3 are 3-separable as well. 

Every 3-separable permutat ion is 2-separable, since for any three nice sub-

intervals that part i t ion a permutat ion, two may be merged to form a nice sub-

interval. Therefore, we don't have any permutat ion w i th separabil ity 3. It's also 

easy to see that for k > 4, there exist permutations of size k w i th separabil ity k. 

These permutat ion could be interpreted in a simpler way: they don't have any nice 

interval except the interval [1, k]. We refer to these special /c-separable permutations 

as non-separable permutations. 

The distort ion incurred by a permutat ion TT, denoted by d(jr), is the min i ­

m u m distort ion incurred by embedding any two line metrics U and V v i a TT. For 

example, d(?r) for the permutat ion in F ig . 3.1 equals 3 + 2\/2 and happens when 

[a, b, c, x, y, z] = [1,-^/2,1,1,-^,1]- As we see later, Theorem 5 states that d(7r) 

equals the largest eigenvalue of a 0-1 matr ix corresponding to TT. 

Corresponding to every permutat ion TT of size n, there exist three permuta­

tions TT°, TT1, and 7 r _ 1 that are similar to TT and incur the same distort ion. For all 

i's, TT°(i) = n + 1 — 7r(i), 7r1(7r( ,i)) = i, and 7r - 1( ' i ) = n + 1 — vr 1(i). For example, 

if TT = (2 ,4,1,3) , 7T° — 7T1 = (3,1,4,2) and 7 r _ 1 = TT. Throughout this chapter, we 

always assume that a permutat ion comes wi th all its four symmetric forms. For 

example, when we say 2-separable permutations avoid TT = (2,4,1,3) we mean they 

avoid (3,1,4,2) as well. 

Let Ll/j be the set of all non-separable permutations of size k. Let dk be the 
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l a 2 b 3 c 4 

7T 

Figure 3.1: The 4-separable permutat ion (2,4,1,3) . 

m in imum distort ion over all permutations in life. For example, II4 = {(2,4,1,3)}, 

n 5 = {(2,4,1, 5,3), (2, 5,3,1,4) , (3, 5,1,4,2)}, and it 's not hard to see that d 4 = 

al*, — 3 + 2\/2. Note that by ir € Tlfc we impl ic i t ly mean v r 0 , ^ 1 , ^ - 1 € 11̂  as well. 

So, (3,1, 5, 2, 4) is also in II5. 

3.3 Forbidden Permutations 

One commonly asked question regarding many permutat ion classes is whether they 

can be characterized by a finite forbidden set of permutations or not. For exam­

ple, a permutat ion is 2-separable if and only if it contains neither (2,4,1,3) nor 

(3,1,4,2)[12]. 

Interestingly one can generalize this statement for fc-separable permutations. 

Theorem 3. [3] A permutation is k-separable if and only if 

• For odd k, it doesn't contain any permutation in Hk+i-

• For even k, it contains neither a permutation in Tlk+i n o r nk+2-

where n^m is the permutation of size 2m in which TT*(2i)2m — i and 7r*(2i — l)2m — 

i + m. 

Alber t and Atk inson [3] (See Theorem 4 in their paper) use the notion simple 

44 • ' 



for non-separable and call Tx\m an exceptional permutat ion. They obtain their result 

by using some results from Schmerl and Trotter [49] on part ia l ly ordered sets. 

3.4 Embedding between two line metrics 

In this section we prove the following theorem which is a generalization of Kenyon 

et al.'s result. 

Theorem 4. For any two line metrics U and V and any k either the distortion 

of the optimal embedding between U and V is greater than dk+i or there exists an 

0(n5k+3) time algorithm for computing the optimal embedding. 

Recal l that dk+i is the m in imum distort ion over all permutations in Ilfc+i. 

Let 7r be the opt imal embedding permutat ion. If 7r is not /u-separable then, according 

to Theorem 3, ir contains either a permutat ion in Tik+i or 7 r £ + 2 (in case that A: is 

even). 

d(nl+2) is increasing and one can easily see that d(nl2) — 21.954 1 . Since 

dk+i < 7 + 4\/3, according to Theorem 6, we conclude that d(ir) > dk+i- Otherwise, 

if 7r is fc-separable, an algorithm for finding the opt imal embedding follows. 

3.4.1 Algorithm 

If the opt imal embedding ir is /c-separable then we can compute it in t ime 0 ( n 5 f c + 3 ) 

by a dynamic programming approach. Every sub-problem is a mapping between 

two sub-intervals I = {u{,Uj+i, • • • , U i + r n - i } and J = {VJ,VJ+\, • • • , ^ + m _ i } that 

we specify by the tr iple (i, j, m). Moreover, we need to know the mappings of the four 

boundary points of both intervals for comput ing the distort ion. Thus , each entry 
1TX12 = (7,1,8,2,9,3,10,4,11,5,12,6). In fact, it's not had to prove that d(ir^k) = 

2k + 2.yjk(k- 1) - 1. 
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i h k i + m-l 

Figure 3.2: A lgor i thm. 

in the dynamic programming table corresponds to 7 variables (i, j, m, i\, j i , 32) in 

which i and j are the start of both sub-intervals, m is the length of sub-intervals, 

i\ = 7r(z), %2 = 7r(i + m — 1), j i = 7 r _ 1 ( j ) , and 32 = TX~1{J + m — 1). (See F ig . 3.2.) 

Assume I is part i t ioned into at most k sub-intervals i i , I2, • • • ,Ik such that 

each Ix is mapped to an interval in J . There are 0 ^ f c _ 1 ) possibil it ies for part i t ioning 

I into Ix's. There are at most k\ possibilities for Jx's. (We assume that Jx is the 

mapping of Ix.) We also need to know the mapping for each boundary of Ix's 

and Jx's which has 0 ( n 4 f c _ 4 ) possibilities. (The mapping for four of the boundary 

points is already known.) Once we have fixed all the sub-intervals and the mapping 

for al l boundary points, we can compute the distort ion by using the distort ion 

corresponding to every sub-interval as well as the expansion and inverse expansion 

corresponding to single edges between boundaries of consecutive sub-intervals. In 

tota l , we need to consider 0(n5k~5) cases and it takes O(n) to compute the distort ion 

for each case. Since our dynamic programming table has 0 ( n 7 ) entries, the total 

running t ime would be 0 ( n 5 f c + 3 ) . 

3.4.2 Largest Eigenvalue 

Assume the distort ion corresponding to a permutat ion ix of [ l ,n] is A. Tha t means 

that for any two line metrics of n points each, the distort ion using ix is at least A and 
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there exists a pair of line metrics whose distort ion, using IT, is exactly A. In fact it is 

not hard to see that the max imum expansion and inverse expansion in embedding U 

to V happens for a pair of consecutive points, so we need to care only about them. 

F ind ing d(ir) corresponds to solving a set of linear equations. For example, for the 

permutat ion in F ig . 3.1, the linear equations are as follows. 

y + z < 

x + y + z < y/Xb 

x + y < y/Xc 

a + b < y/Xx 

a + b + c < y/Xy 

b + c < yfXz 

or equivalently AX < y/~XX, where A is the adjacency matr ix corresponding to IT 

and X is [a, b, c, x, y, z]T. In general, for a permutat ion IT of size.n that corresponds 

to embedding between two line metrics of s ize.n, A has 2n — 2 rows and columns 

where, for al l 0 < i,j <n, A[i,j] = A[n + i,n + j] = 0 and A[i,n + j] — A[n + i,j] 

is one iff the interval [7r(i),7r(i + 1)] (or [7r(i +~l),Tr(i)] if ir(i) > ir(i + 1)) contains 

the interval [j, j + 1] and is zero otherwise. 

We can also assume that, by scaling edge weights in U or V if necessary, the 

expansion and contraction both equal y/X. Thus, for any single edge in U and V we 

write an inequality to make sure that its corresponding expansion does not exceed 

Vx. 

Since we are interested in min imiz ing A we better make the equality AX = 

y/XX. Therefore, VX is an eigenvalue of A. It is well know that ([30], Chapter 

•8.2.) the only eigenvalue whose corresponding eigenvector is positive is the largest 
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Figure 3.3: I l lustrat ion of permutat ion 7T15. 

eigenvalue. Thus , \/A is the largest eigenvalue of A. 

Theorem 5. Let An be the 0-1 matrix corresponding to TT and let its largest eigen­

value be A. Then, the distortion of TT is exactly A 2 and is obtained when the edge 

lengths are taken according to the eigenvector corresponding to A. 

3.4.3 Bounding dk 

A l though dk is increasing in k, it remains bounded. Th is is somewhat disappoint ing 

since if it was unbounded we could imagine an algori thm that finds an opt imal 

embedding for any two line metrics, no matter how large the opt imal distort ion is, 

whose running t ime is a funct ion of the distort ion. 

Theorem 6. For any value k there exists a non-separable permutation irk whose 

distortion is at most 7 + 4v /3-

Proof. Let iTm be the permutat ion on [l,2n] where 7T2n(l) = 2, 7T2n(2n) = 2n — 1, 

•7T2n(2z) = 2i + 2, and 7i"2n(2i + 1) = 2i — 1, for i = 1, 2, • • • , n — 1. Similarly, 7T2n+i 

is defined as follows. 7r2n+i W = 7T2?i W> for i — 1, 2, • • • , n — 1, 7T2n+i(2n) = 2n + 1, 

and 7r2n+i(2n + 1) = 2n — l (See F ig . 3.3). 

' ' Set du(2i - l ,2 i ) = 1, dv(2i,2i + 1) = \/3, dv(2i - l ,2 i ) = 2 + \/3, and 

dy(2i, 2i + 1) = 3 + 2\/3. The distort ion corresponding to this pair of point sets is 

7 + 4\/3 which means dk<7 + 4a/3 ~ 13.928. 
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k 5 7 9 11 13 15 17 19 
distort ion 8.352 10.896 1-2.045 12.651 13.007 13.233 13.385 13.492 

Table 3.1: Dis tor t ion of TTK for several • values of k. 

fc 4 6 9 12 15 24 
dk 5.828 8.352 9.899 10.896 11.571 12.850 
k 30 34 38 42 46 
dk 13.131 13.316 13.443 13.534 13.602 

Table 3.2: dk. 

• 

Table 3.1 shows the exact distort ion of such permutations for smal l values 

of k. F i nd ing dk for small k's (by comput ing the eigenvalue corresponding to al l 

permutations in H.̂  and taking the min imum) suggests that df. converges to 7 + 4\/3. 

Table 3.2 shows the value of dk for different k's. 

Consequently we improve the result of Kenyon et al . [36] from 3 + 2\/2 ~ 

5.828 to 13.602. 

Theorem 7. There exists a polynomial algorithm for computing the optimal distor­

tion embedding between two line metrics, provided the optimal distortion does not 

exceed 13.602. 

3.5 Computing Separability 

Given a permutat ion TT of size n one can compute its separabil ity by the following 

greedy a lgor i thm. Init ia l ly set x = 1. F i n d the largest nice interval [x,y] (in case 

x = 1 don't choose y = n), set x — y + 1, and repeat. Recursively find the opt imal 

separation for each nice interval.. 
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Theorem 8. The above greedy algorithm, is correct. 

Proof. It suffices to show that the first step is correct. Assume / is the largest nice 

interval that contains x. Suppose an opt imal algorithm OPT behaves differently; 

let I\, I2, • • • ,Ik be al l intervals returned by OPT that have non-empty intersection 

w i th I. Since k > 2, because of the maximal i ty of I, we could take / and Ik — I 

instead of those k intervals in O P T and get a better or equal separabil ity consistent 

w i th our greedy algori thm. It is very easy to see that Ik — I is a nice interval. • 

3.6 Pattern matching for permutations 

The question of finding whether a permutat ion contains another permutat ion is of 

interest for many people because of its applications. It is sometimes called pattern 

matching in the literature and comes as either a decision or a counting problem: 

G iven two permutations a and TT decide if a contains TT or count the number of 

occurances of TT in a. The greedy algorithm for recognizing /c-separable permutations 

in subsection 3.5 is a similar problem: Given a permutat ion TT, does it avoid all 

permutations in Ilfe+i U 7 r £ + 2 ? 

Bose et al. [12] considered recognition of 2-separable permutations and pro­

posed an efficient a lgor i thm for both the decision and counting problem. They also 

show that the general decision problem is NP-Complete and the counting problem is 

#P-Complete . A n alternative way to recognize non-2-separable graphs, as pointed 

out in [12], is to consider the corresponding permutat ion graph. It' is not hard to 

see that a permutat ion is non-2-separable iff its corresponding permutat ion graph 

is Pi-free, meaning that it does not have any induced path of length four. One can 

use the linear t ime algori thm in [21] to recognize Pi-free graphs. It doesn't seem 
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Figure 3.4: A separation tree. 

to us that permutat ion graphs corresponding to /c-separable graphs, for k > 2, have 

any part icular structure. 

In proposing the linear time algor i thm, Bose et al. [12] introduce a special 

ordered binary tree called a separation tree corresponding to a permutat ion 7r of 1 

to n w i th the following properties: 

1. Leaves are 7r(l),7r(2), • • • ,7r(/c) in order. 

2. For any node v, if the set of leaves of the subtree rooted at v is {7r(i), ix{i + 1), 

• • •, 7r(z + j)} then [i, i + j] must be a nice interval. 

A separation tree corresponding to the permutat ion (3 ,4 ,1 ,2 ,8 ,5 ,6 ,7 ) is 

depicted in F i g . 3.4. 

S imi lar ly we can extend the definit ion of separation tree and allow it to be 

/c-ary instead of binary. The resulting tree is equivalent to /c-separable permutations. 

Theorem 9. A permutation TT is k-separable iff it has a k-separation tree. 

Proof. G iven a /c-separable permutat ion ir, one can easily bu i ld a /c-separation tree. 

Assume Ii, I2, • • • , Ik are the k /c-separable nice intervals. Recursively bui ld a k-

separation tree for each Ij and then connect the roots of all these k trees to a new 

root. 
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For the reverse direction, assume a /c-separation tree corresponding to TT is 

given. It is obvious that the set of numbers in the subtree rooted at the j t h chi ld is 

actually the j t h /c-separable nice interval. • 

Bose et al. [12] use the separation tree and obtain a dynamic programming 

algori thm to decide if any 2-separable permutat ion TT is contained in a (larger) 

permutat ion a. 

A recursive problem instance in their approach is given a sub-permutation 

a' = <T1j of a and any node u, that defines a subtree Tu, of the separation tree 

associated w i th TT, decide if TTU is contained in a', where TTU is the permutat ion 

corresponding to Tu. 

Not surprisingly, we can use a similar dynamic programming approach and 

compute matchings for /c-separable permutations. 

Theorem 10. Given a k-separable permutation TT and a permutation a of size n 

and m, respectively, one can compute the number of matchings of TT in a in time 

0(mnk+'2). 

Proof. Let M(u,i,j) be the number of matchings of TTU in a' — a1^. To avoid 

double counting, let's assume that i is used in every matching, i.e for every matching 

(*i)*2) • • • ,ik), nu(ix) = i, for some x. 

• Assume that u has k children u\,u-2, • • • ,uk in order of their appearance in 

TTU, i.e. every element in TTUX is less than every element in TTUX+1, for al l re's. TTU is, 

in fact, part i t ioned into TTU^S. It can be easily proven that 

M(u,i,j)= II M(ux,ix,ix+i - 1) 
(ii,*2,—ifc) x=l,— ,k 

52 



(Assuming that i\ = i and ik+i = j + 1-) We basically part i t ion a1 — a1'-7 into 

k ranges [ix,ix+i — 1] (for x = 1, 2, • • • , /c — 1) and compute the number of matchings 

of each Ui into corresponding sub-permutation of T'. Comput ing M(u,i,j) takes 

0 ( n f c _ 1 ) t ime and there are 0 ( m n 2 ) possibilit ies for it, i , j . Thus, a dynamic 

programming approach takes t ime 0(mnk+l) to compute M(u,i,j) for all values of 

u, i , and j. F inal ly , the value J2i=i • •• n^(uo>hn) equals the number of matchings 

of 7T into T , where ito is the root of the corresponding separation tree. One can 

easily augment the algor i thm to output the actual matching or list all the possible 

matchings as well. • 

3.7 Sortable Permutations 

Another interesting topic related to permutations is characterizing classes of per­

mutat ions in terms of whether they' are sortable using tools like stacks and queues. 

The simplest versions of this problem were studied by Knuth[38] who imag­

ined the elements of a permutat ion being an input sequence to a stack. A sequence 

of push and pop operations results in an output sequence (the popped elements) 

and the question is what input permutat ion can be sorted (yield an ordered output 

sequence). Tarjan[52], Even and Itai[23], and Pratt[42] generalized the model to 

allow mult iple stacks and queues. 

The answer to the simplest case is known: Single stack sortable permutations 

can be recognized in linear t ime, are characterized by the forbidden permutat ion 

. [2,3,1], and there are (2")/(^ + 1) (the nth Cata lan number) of them of length n. 

Other researchers have studied variations of stacks: Av i s and Newborn[7] considered 

a less powerful stack called pop-stack in which P U S H operations are as usual, but 

P O P operations, called MPOP, pop the entire stack. They provide enumeration 
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2 6 7 3 1 5 4 

/, = <5} 

2 6 7' 

/, =12},;., = {U,7} 

I, = {4} 

3 1 4 — 5 

/:, = (3},;„ = {l} !y f, = (4;5} 

1 — 2 — 3 — 4 — 5 — 6 7 

Figure 3.5: 5-sortable permutat ion ('-' indicates coupling) 

answers when we use unl imited pop-stacks or we use a fixed number of pop-stacks 

in series. 

Bose et al.[12] also interpreted 2-separable permutations as sortable permu­

tations by the following device. The permutat ion is original ly on a queue; each t ime 

we can pick a range of elements and reverse their order. Once we do so, all elements 

of that range are coupled and remain coupled forever. For other related results like 

parallel-stack sortable permutations the reader is referred to [5] or [11]. 

Here we give an interpretation of /c-separable permutations in terms of sort­

ing. G iven a permutat ion 7r on a queue, we are allowed to do the following opera­

tions: 

• Each t ime we can pick up to k consecutive ranges I\, I2, • • • , Ik of elements of 

7T/. and sort them. Once we do so, The entire sub-range I\ U I2 U • • • U h gets 

coupled and remains coupled forever. 

• We are not allowed to pick a port ion of a coupled range, however, we can 

reverse the order of elements in a coupled range. 

Let 's call- the above sorting mechanism k-sorting. A 5-sortable permutat ion 

is shown in F i g . 3.5. • 

Theorem 11. 
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k-separable permutations are exactly the class of permutations that are k-sortable. 

Proof. It is obvious that any coupled range should be a set of consecutive numbers 

in 1 to n, for if not we won't be able to insert any element in a coupled range any 

more. Tha t means there is a correspondence between fc-sorting steps and nodes of 

a separation tree. Since we always pick at most k sub-ranges, the corresponding 

separation tree is a fc-ary which is equivalent,to fc-separable permutations according 

to Theorem 9. 

The other direction of the proof is simple. G iven any /c-separable permutat ion 

7r, one can consider its separation tree and sort the permutat ion in a bottom-up 

fashion. 

W h e n we. are at a node u, al l its children are already sorted; since it has at 

most k chi ldren, we can swap the orderings of children to get a sorted permutat ion 

corresponding to the sub-tree rooted at u. • 

3.8 Conclusions and Future Work 

We considered the problem of f inding a m in imum distort ion embedding of one fixed 

line metric into another fixed line metric. A s a consequence, we studied properties 

of permutations under 'certain separabil ity constraints, and discovered features of 

these permutations in various contexts: forbidden permutations, metric embedding, 

pattern matching, and stack sorting. The main open question that we would like to 

address is whether or not we can st i l l find a parameterized solution for embedding 

two fixed line metrics. Notice that the problem is NP-hard [29] when the distort ion 

is at least n e , for some constant e, but is unresolved for smaller values of distort ion. 

A l though we proved that the idea of considering /c-separable permutations does 
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not apply when the opt imal distort ion is greater than 13.602, there is st i l l some 

hope. One may consider a different class of permutations that are algorithmical ly 

useful. Another important fact is that we are considering al l permutations whereas 

only a few of them are a candidate to be an opt imal embedding. It seems to us 

that excluding permutations that cannot be an opt imal embedding from the set of 

^-separable permutations would be a major improvement to our work. 

Another interesting problem is to look for parameterized approximate solu­

tions. It appears that if we allow the opt imal distort ion to be approximated, we can 

easily avoid many permutations and only look for simple (possibly A:-separable for 

smal l k) permutations. 
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Chapter 4 

D - W i d t h 

4.1 Introduction 

One of the most significant recent advances in the field of algorithmics comes from 

the G r a p h Minors project of Robertson and Seymour. In addit ion to being a major 

addi t ion to the structure theory of graphs, the tools developed dur ing their work 

imp ly algorithmic results such as every minor-closed graph property can be decided 

in . po lynomia l t ime. The most far-reaching algorithmic contr ibut ion is the intro­

duct ion of graph decompositions such as tree decompositions and measures such as 

tree-width, which have helped identify large classes of tractable instances of hard 

(e.g. NP-complete) graph problems. 

The key to the algorithmic success of tree decompositions is that they are 

readily extendable to arbitrary relational structures. B y considering tree decompo­

sitions of the background (or primal) graph, large classes of tractable instances of 

hard problems can be found for various structures inc luding hypergraphs and d i ­

rected graphs. The main drawback of this approach is that often information is lost 

when considering the background graph, and this may be crucial . For instance, the 
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background graph of a directed graph is the undirected graph obtained by forgetting 

edge orientations. Thus efficient solutions to problems like Hami l ton ic i ty cannot be 

found by this technique. 

In [34], Johnson et al. attempted to rectify this (and address problems in 

directed graph structure theory) by introducing directed tree-width, a generaliza­

t ion of tree-width to directed graphs. A l though they managed to demonstrate the 

algorithmic benefits of arboreal decompositions by providing efficient algorithms for 

problems such as Hami l tonic i ty and disjoint paths, their measure was awkwardly de­

fined and not as well behaved as tree-width, making it difficult to extend to further 

results. Consequently, other measures such as D-width [48], DAG-w id th [10, 40], 

and Ke l ly-width [31] have been introduced in an effort to find a more practical 

generalization of tree-width to directed graphs. 

A lso in [34], Johnson et. al . introduced a graph searching game to par­

t ia l ly characterize directed tree-width. The game, similar to one that Seymour and 

Thomas used to characterize tree-width [50], involves a robber who can run arb i ­

t rar i ly fast in strongly connected components, and a set of cops who attempt to 

capture the robber by blocking his escape routes and landing on. h im. Johnson et 

al. show that if G has directed tree-width k — 1 then k cops can capture the robber 

in this game, and towards a converse, if k cops can capture the robber on G, then 

G has directed tree-width at most 3k — 2. In addit ion, they show that the num­

ber of cops required to capture a robber cop-monotonely (i.e. vacated vertices are. 

never revisited by cops) is different from the number of cops required to capture a 

robber without this restrict ion, and if k cops have a winning strategy, then 3k — 1 

cops have a robber-monotone (i.e. the set of vertices the robber can reach is non-

increasing) winning strategy. Adler [1] further extended these results by showing 
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that robber-monotone and robber-non-monotone cop numbers do not coincide, and 

that the robber-monotone cop number and the directed tree-width also differ. 

O n undirected graphs, the equivalence of the cops and robber game and tree-

w id th is cr i t ical to the importance of tree-width as a measure of graph complexity. 

O n one hand, the game is a good indicator of structural properties of graphs. For 

example, acyclic graphs only require 2 cops to capture the robber, and the number 

of cops required does not increase under taking of minors. O n the other hand, the 

equivalence of monotone and non-monotone strategies implies that the number of 

cops required can be efficiently computed. W i thout a clean correspondence w i th such 

games, it is difficult to establish similar results for directed tree-width, part icular ly 

results that can be used to efficiently compute the exact directed tree-width of a 

graph. 

In this chapter, we further study D-width [48] and identify the class of d i ­

graphs w i th D-width one. We then study the game characterization of D-width and 

show that D-width is bounded above and below by the number of cops required in 

certain versions of the cop-monotone game. In part icular, we obtain a non-trivial 

upper bound for D-width which is computable in polynomia l t ime when that bound 

is constant. 

We also compare various parameters and show that there exist arbitrar i ly 

big gaps between haven order, directed tree-width, and D-width. 

The chapter is organized as follows. In Section 4.2 we formal ly define the cops 

and robber game and the concepts we use throughout the chapter. In Section 4.3 we 

prove the equivalence of D-width and directed tree-width when D-width is one and 

provide several algorithmic applications of directed one trees. Then , in Section 4.5 

we compare D-width w i th other parameters such as haven order and directed tree-
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width . In the f inal section, we obtain a non-trivial upper bound for D-width and 

propose an algor i thm for comput ing that bound provided the bound is constant. 

4.2 Definitions 

In this chapter we assume al l graphs are finite and directed unless otherwise stated. 

We use standard graph theory terminology, see for example [22]. 

4.2.1 D - w i d t h 

We recall the definit ion of D-width as defined in [48]. 

Definition 3 (Strongly connected set). A subset S of vertices of a digraph G is 

called a strongly connected set if G[S], the subgraph induced by S on G, is strongly 

connected. 

Definition 4 (D-decompositions and D-width). A D-decomposition of a di­

rected graph G is a pair (T,W) where T is a tree and W — {Wt\t 6 V(T)} is a 

family of subsets ofV(G) such that for every strongly connected set S C V(G): 

(Dl)T\s:={teT\Wtr\S^$}^%,and 

(D2) The subgraph ofT with vertex setT\s and edges {e = (s,t) G T\WsnWtr\S / 

0} forms a connected subtree of T. On the other hand, an edge is included 

only if both its end points contain same vertex u of S. 

The w id th of a D-decomposition (T,W) is the minimum k such that \Wi\ < k + 1 

for all Wi 6 W. The D-width of a directed graph G is the minimum width over all 

D-decompositions ofG. 
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Figure 4.1 shows a digraph wi th D-width one, together w i th an opt imal D-

decomposit ion. One can verify the above condit ion for all strongly connected sets: 

{a}, {&}, {c}, {d}, {e}, {a,b,c}\ {a,c,d,e}, {a,b,c,d}, and {a,b,c,d,e}. 

a 

b 

c d •< e 

Figure 4.1: A digraph (left) w i th its D-decomposition of w id th one (right). 

A s D-decomposition is quite similar to tree-decomposition, it inherits all its 

structura l properties that can be used for algorithmic purposes. For example, similar 

to the undirected variant [37], if a digraph has a D-decomposition of w id th w, then 

it has a nice D-decomposition of w id th w. A D-decomposition (T, W) is nice if every 

node i G V(T) has either one child or two. If it has one chi ld j then |Wj — Wj \ = 1. 

Otherwise, if it has two children j and k then W i = Wj = Wk. 

In addit ion a digraph G w i th D-width w has a related undirected chordal 

graph G' w i th tree-width w that captures the connectivity of G. 

Lemma 9. For every digraph G of D-width w, there exists an undirected chordal 

graph.G' with treewidth w such that every strongly connected set in G is a connected 

set in G'. 

Proof. Let (T, W) be a D-decomposition of G = (V, E) of w id th w. Let G' = (V, E') 

where E' = {(u,v)\3t s.t. u G Wt and v G Wt}. In other words, every set of vertices 

Wt is a clique in G'. (T, W) is a tree-decomposition of G'. Moreover, every strongly 

connected set in G is a connected set in G'. • 
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D-width has also the balanced-separator property similar to tree-width. 

Lemma 10. For every digraph G of D-width w and any subset W, there exists a 

subset X of at most w + 1 vertices such that every strongly connected component of 

G\X contains at most ^p- vertices from W. 

Proof. The proof is essentially similar to the undirected version. G iven a D- decom­

posit ion T of G w i th w idth w, let i be the deepest node (pick an arbitrary node 

as the root) such that the sub-tree rooted at i has at least vertices from W. 

It's clear that every strongly connected component of D\Wi has then at most ^ 

vertices from W. • 

4.2.2 Directed tree-width and haven order 

Here we introduce some relevant notation from [34]. G iven two disjoint subsets 

Z and S of vertices of a digraph G, we say S is Z-normal if every directed path 

which starts and finishes in S is either wholly contained in S or contains a vertex 

in Z. A lso , given a directed tree T w i th edges oriented away from a unique vertex 

r G V(T) (called the root), we write t > e for t € V(T) and e G E{T) if e occurs on 

the unique directed path from r to t, and e ~ t if e is incident w i th t. The following 

concepts were introduced in [34] and [35]. 

Definition 5 (Arboreal (pre-)decompositions and directed tree-width). An 

arboreal pre-decomposition of a digraph G is a tuple (T, B, W) where T is a directed 

tree with a unique root, and B = {Bt\t G V (T ) } and W = {fVe|e G E(T)} are sets 

of subsets of V(G) that satisfy: 

(Rl) B is a partition of V(G) into (possibly empty) sets such that Br ^ 0 for the 

root r of T, and 
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(R2) Ife G E(T), then Be := |J{73 t|r > e} is We-normal or empty. 

The w id th of an arboreal pre-decomposition (T,B,W) is'the minimum k-such that 

for all t G V(T), \Bt U U e ~ t ^ e l < k + 1. An arboreal decomposit ion is a pre-

decomposition in which all Bt are non-empty, and the directed tree-width of a di­

graph G, dtw(G), is the minimal width of all its arboreal decompositions. 

If, in addit ion, an arboreal pre-decomposition satisfies: 

(R3) For each t G V{T) we can order the outgoing edges e i , e 2 , . . . such that for 

i < j there is no edge in G from B^- to B^ 

we cal l the decomposit ion good. In [35], Johnson et al . c la im that an arboreal pre-

decomposit ion can be transformed into a good one w i th the same width , but this 

does not follow from their results and remains an open problem. The importance 

of this problem, and indeed the motivat ion for [35], arises from the fact that the 

algorithmic results of [34] require a good arboreal decomposit ion. However, the 

decomposit ion constructed in the proof of Theorem 3.3 of [34] is good, imply ing ' 

that their algorithmic results do hold. 

Our second definit ion is motivated by a similar definit ion in [50]. 

D e f i n i t i o n 6 ( ( P r e - ) h a v e n a n d h a v e n - w i d t h ) . Let G be a digraph. A pre-

haven of order k is a function 3 assigning to every set Z C V(G) with \Z\ < k, a 

union of strongly connected components of G\Z such that if X C Y C V(G) and 

\Y\ < k then 3{X) is the union of all strongly connected components of G\X which 

intersect 3{Y). A haven is a pre-haven such that B(Z) is a single strongly connected 

component of G\Z for all Z C V(G) with \Z\ < k. The haven-width of G, hw(G), 

is the largest k such that G has a haven of order k 
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In [50] it was shown that if an undirected graph G has a pre-haven of order k 

then it has a haven of order k. The analogous question for directed graphs remains 

an open problem. 

4.2.3 Cops and robber game 

We recall the definit ion of the cops and robber game defined in [34]. The game 

is played on a directed graph G, by two players: one control l ing a set of k cops 

[k is a parameter of the game), the other control l ing a visible robber. The cops 

and the robber occupy vertices in the graph. A move consists of the cop player 

announcing the next location of the cops and then proceeding to move the cops to 

this locat ion. Dur ing this, the robber can run at great speed along directed paths 

which do not contain any cops not being moved provided there is also a cop-free 

directed path back to his original start ing posit ion. In other words, the robber may 

move to 'any vertex in the same strongly connected component of G \ X where X is 

the set of locations occupied by stationary cops. If a cop lands on the posit ion of the 

robber then the cop player wins, otherwise, if the robber is able to evade capture 

indefinitely, the robber player wins. More formally, the game consists of positions 

(X,R) where X C V(G), \X\ < k and R is either empty, or a strongly connected 

component of G \ X. Init ia l ly the cop player chooses X$ C V(G). w i th |Arj| < k 

and the robber player chooses a strongly connected component RQ of G \ X to give 

the in i t ia l position,-(XQ,RQ). If R ^ 0, a move, from posit ion (X,R), consists of 

the cop player choosing X' C V(G) w i th \X'\ < k and the robber player choosing 

R', a strongly connected component of G \ X' such that R and R' are contained 

in' the same strongly connected component of G \ (X D X'). If at any point the 

robber is unable to choose such a strongly connected component, then R' — 0. Th i s 
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gives the next posit ion (X',R'). A play is a (possibly infinite) sequence of moves, 

and it is winning for the cop player if it is finite and has a final posit ion (X, 0) 

for some X, .otherwise it is winning for the robber. A play (XQ, RQ), (X\, R\),... is 

cop-monotone if the cops never revisit a vertex, that is for all h,i,j w i th h <i < j, 

Xh f l Xj C Xi. The play is robber-monotone if Ri D Ri+i for all i. For any digraph 

G, we denote the m in imum number of cops that are required to capture the robber 

w i th a cop-monotone (resp. robber-monotone) strategy by cop-monotone(G) (resp. 

robber-monotone{G)). 

As is usual for these types of games, we are pr imar i ly concerned wi th w in ­

n ing strategies. A (k-cop) strategy for the cop player is a tuple (Yo, TT) consisting of 

set Yo C V(G) w i th |Y 0| < k together w i th a function vr : T(V{G)) x V(V(G)) -+ 

V(V(G)), such that for X C V ( G ) w i th \X\ < k if i? is. a strongly connected com-

. ponent of G\X then |TT(X,.R)| < fc, and 7r(X ,0) = 0. A play (X0,Ro),(X1,R1),... 

is consistent w i th a strategy (Yb,7r) if Xo = Yo and X j + i = it(Xi,Ri) for al l i , and 

a strategy is winning (cop-monotone, robber-monotone) if all consistent plays are 

winning for the cop player (cop-monotone, robber-monotone respectively). 

Variants of the game where the robber moves first or only one cop can be 

moved at a t ime or the cops are l ifted and placed in separate moves are all equivalent 

in that the existence of a winning strategy for a given number of cops does not 

depend on the variant. 

For the results we present in the following sections, we introduce the idea of 

a strategy forest. F i x G and k, and consider the directed graph wi th nodes labeled 

by positions in the cops and robber game, and an edge from (X,R) to (X',R') if 

such a transit ion is possible under the rules specified above. Tha t is, if R / 0, 

and either R' = 0 or R and i ? ' a r e in the same strongly connected component of 
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G \ (X n X'). We cal l this the positional graph defined by G and k. A strategy 

a = (YQ,TT) w i l l define a subgraph IT^ of this graph, consisting of all roots of the 

form (Y0, R), and edges ((X, R), (X',R')) if X' = n(X, R). We also remove all edges 

of the form (X, 0). If a is a winning robber-monotone strategy, 11^ takes a very 

simple form. 

Lemma 11. If a — (YO,TT) is a winning robber-monotone strategy, then Ua is a 

forest of rooted trees, with each root having a label of the form (Yo, -)• 

Proof. Since a is a winning strategy, Ha is acyclic and all its roots are of the form 

(Yo, _). To show that it is a forest, we need only show that no node has more than 

one predecessor. Suppose (X',R') has two predecessors. These two predecessors 

either have a common ancestor (X, R) w i th two dist inct chi ldren (TT(X, R),RI) and 

(n(X, R), R2) or are descended from two distinct roots (Yo,R\) and ( Y o , ^ ) such 

that i ? i n i ? 2 7^ 0- (By robber-monotonicity, the non-empty i ? ' i s a subset of i ? i D i ? 2 - ) 

Bu t R\ and R2 are strongly connected components of G \ rr(X, R) (or G \ Yo), so 

R\ = R2, contradict ing the distinctness of the nodes. • 

We call Ilfj the strategy forest associated.with a. 

4.3 Directed One Trees 

Current ly there is no known polyt ime recognition algor i thm for bounded D-width 

digraphs. For the special case that D-width is one, however, there is a fast recogni­

t ion algor i thm based on a structural characterization of such digraphs. Moreover, 

we prove that directed tree-width and D-width coincide in this case. Th is result is 

achieved by comparing both measures to the haven order. 
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F i rs t , we prove the following theorem relating haven order and D-width of 

directed one-trees. 

Theorem 12. A digraph G has D-width one if and only if it has haven order two. 

Proof. If G has a haven B of order at least 3 then the robber can w in against two 

cops by staying at B(X) where X is the posit ion of cops. Hence, by Theorem 17, 

G must have D-width at least two. Since this is not the case, G has haven order at 

most two. Bu t , the haven order of G cannot be one because G has a cycle (otherwise 

its D-width would be zero) and, thus, G has haven order at least two. (Simply set 

/3(0). = C and let B({x}) be a strongly connected component the contains a vertex 

of C — {x}, where C is a cycle in G.) Consequently G has haven order exactly two. 

Next , we show if G has haven order two then its D-width is one. It suffices 

to prove this for strongly connected G since if G has haven order two and D-width 

d, it contains a strongly connected component w i th haven order two and D-width 

d. 

The proof is by induct ion on the number of vertices of G. B y L e m m a 12, G 

contains a vertex u w i th out-degree (or in-degree) one. Suppose u has out-degree one 

(the in-degree one case is handled similarly) w i th edge (u, v) being its only outgoing 

edge. Contract the edge (u, v), by removing u and connecting al l u's incoming edges 

to v (and ignoring loops if created), to obtain a new digraph G'. B y L e m m a 13, 

G' has haven order at most, two and, according to the induct ion hypothesis, has 

D-width at most one 1 . Let T' be a D-decomposition of G' w i th w id th at most one. 

A d d a new node r to T" w i th Wr = {u, v} and attach it to a node of T" that contains 

v. It is easy to verify that the resulting D-decomposition is a proper one for G and 

has D-width one because if S is a strongly connected set in G and u G S then S — {u} 

Hi G' has haven order one then it is acyclic and trivially has D-width zero. 



is a strongly connected set in G' and v G S. • 

Lemma 12. If G is strongly connected and has haven order two then G contains a 

vertex with in-degree or out-degree one. 

Proof. For any vertex u, a strongly connected component C of G \ {u} is called a 

.u-root if there is no edge from a vertex in another component of G \ {u} to a vertex 

in C. S imi lar ly we say a component C is a u-leaf if there is no edge from C to any 

other component. Let rootleaf(u) be the m in imum size over al l iz-root and 'u-leaf 

components of G \ {u}. 

If rootleaf(u) = 1 for some vertex u, then there is a single vertex v w i th 

either out-degree or in-degree one (to or from u). Otherwise, rootleaf(w) is at least 

two, for all u. 

In this case, we show that G has haven order at least three, a contradic­

t ion. Let u be the vertex w i th m in imum rootleaf(u) and Cu be the component that 

minimizes rootleaf('u), i.e. \CU\ = rootleaf(u). Assume, without loss of generality, 

that Cu is a u-root component. Notice that such components do exist as the graph 

whose vertices are strongly connected components of G\{u} and whose edges are 

{(A,B)\3u G A,3v G B s.t. (u,v) G G} is acyclic. It's roots are -u-roots and its 

leaves are u-leaves. 

Let /3(x) 2, for any single vertex x, be the strongly connected component of 

G7\{x} that contains Cu, if x $ Cu, and the strongly connected component of G\{x} 

that contains u, otherwise. Let P{{x,y}) be the strongly connected component of 

G \ {x, y} that contains B(x) D B(y). We argue that B is a haven of order three. 

It is sufficient to show that B(x) n B(y) ^ 0 for all x and y. If x and y are 

both in Cu, then both B(x) and B(y) have vertex u in common. Similarly, if both 

2 I nwhat follows we use 3{x) for 0({x}). 
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are in G \ Cu, then both B(x) and B(y) share Cu. 

For the final G Cu and y G G \ Cu, it suffices to show that B(x) 

contains at least one vertex from Cu. Let S\, S2, • • • Sk be the. strongly connected 

components of G\{x} that contain at least one vertex from Cu, in topological order. 

(At least one such component must exist because \CU\ > 2.) I f any Si contains u 

then we're done. Otherwise, each Si contains only vertices from Cu because every 

path from v G G \ Cu to a vertex in Cu contains u (a consequence of Cu being a 

u-root). Thus , \Si\ < \CU\. We show that some 'Si is an x-root or x-leaf component. 

Th i s is a contradict ion since Cu is supposedly the smallest such component. 

For al l y G Cu\ {x}, there exists a path from u to y that contains only 

vertices in Cu \ {x} (in part icular, that doesn't contain x). If not, then the first 

component Si (smallest i) that contains such a y is an x-root, a contradict ion. 

Since Cu is a ix-root and x G Cu, for al l z G G \ Cu, there exists a path from 

z to u that doesn't contain x. Hence Sk cannot have an outgoing edge (y,z) to a 

vertex z G G\Cu, otherwise y, z, and u would be strongly connected v ia paths that 

don't contain x. Th is implies that Sk is an x-leaf, a contradict ion. • 

Lemma 13. If G' is a digraph obtained by contracting an edge (u,v), with u having 

out-degree one orv having in-degree one, in a digraph G then H(G') < H(G), where 

H{G) is the haven order of G. 

Note: The same statement regarding directed tree-width of G and G' was 

noted by Johnson et al . [34]. 

Proof. Let B' be a haven of order w for G'. We construct a haven, 8, of order w 

for G. F i rs t , assume u has out-degree one. For any subset Z of vertices in G, if 

u E Z, let U(Z) = (Z- {u}) U {v}, otherwise let U(Z) = Z. For Z w i th \Z\ < w, 
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let 3(Z) be the strongly connected component of G that contains 3'(U(Z)). (Note: 

\U(Z)\ < \Z\ so 3'(U(Z)) is defined.) If C is a strongly connected component 

of G' \ Z for some Z and u £ Z then either C or C U {it} is a strongly connected 

component of G\Z. Thus , 3{Z) equals either 3'(U{Z)) or / 3 ' ( [ / ( Z ) ) U { i x } . Therefore, 

for any two subsets Z\ C Z2 of less than i« vertices of G, XJ(Z\) C XJ{Z2\ so 

/3(Zx) D/3(Z 2 ) D /3'(C/(Zi)) n 3'(U(Z2)) = 3'{U{Z2)) # 0. Thus , 3{Z2) C /3(Zi). 

Notice that if C i and C2 are two strongly connected componets of G\Z\ and G\Z2, 

respectively, then either C2 C C i or C i D C 2 = -0. The case when v has in-degree 

one is similar. • 

Corollary 3. The three statements "G has D-width one", aG has directed tree-width 

one", and "G has haven order two" are equivalent. 

Proof. Th i s follows from 12 and the following two theorems from [34] and [47]. 

Theorem 13 (Johnson et al. [34]). H(G) - 1 < tree-width(G) < 3H(G) + 1 for 

digraphs G, where H(G) is the haven order of G. 

Theorem 14 (Safari [47]). For any digraph G, tree-width(G) < D-width(G). 

• 

4.3.1 Algorithmic results 

The nice property of directed one-trees is that they have a contractible edge as per 

L e m m a 12. We can use this property to design recursive algorithms for certain 

problems on directed one-trees. 

In the following algorithms, we assume that the contractible edge is (it, v) 

(with u having out-degree one). We contract the edge by removing u and con-
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necting all it's incoming edges to v. The case when u has iri-degree one is handled 

analogously. 

Recognition To find a D-decomposition w i th w id th one, if it exists, in a digraph 

G: 

0. If G is a single vertex return a single node containing the vertex. 

1. F i n d a contractible edge (u,v), contract it, and obtain a new digraph G'. 

If no contractible edge exists then FA I L . 

2. Recursively find a D-decomposition T' for G'. 

3. Look for a node of T' that contains v, and add a new node r to it w i th 

Wr = {u, v} 

If we keep the list of vertices ordered by in-degree and also by out-degree, we 

can perform steps 1, 2, and 3 in 0(n) t ime. Thus, the total running t ime is 0 ( n 2 ) . 

Hamiltonian cycle To find a Hami l ton ian cycle, if it exists, in a directed one-tree 

G in 0 ( n 2 ) t ime: 

0. If G is a single vertex return the vertex. If G is acyclic then FA I L . 

1. F i n d a contractible edge (u,v), contract it, and obtain a new digraph G'. 

Also remove al l edges (x, v) in G' where (x, v) is an edge in G. If no contractible 

edge exists then F A I L . 

2. Recursively find a Hami l ton ian cycle C in G'. 

3. Replace the edge (x,v) in C w i th (x,u),(u,v) to obta in a Hami l ton ian 

cycle for G'. 
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4.4 Comparing D-width and directed tree-width 

It is conjectured in [48] that D-width and directed tree-width are equal. We disprove 

this conjecture in this section and prove that there is an arbitrar i ly gap between D-

w id th and directed tree-width, though it is st i l l unknown whether the two are w i th in 

a constant factor of each other. We wi l l also provide several inequivalence results 

for other relevant parameters such as haven order. 

To this a im, we consider game characterizations of D-width and directed 

tree-width. 

Theorem 15. For every digraph G, 

tree-width(G) < robber-monotone(G) < cop-rnonotone(G) < D-width(G) 

Proof. tree-width(G) < robber-monotone(G) 

It is proven in. [34]. 

robber-monotone(G) < cop-monotone(G) 

Let a = (YQ,TT) be a cop-monotone winning strategy, then we c la im a is a robber-

monotone winning strategy. Assume not; we show the robber can defeat a by 

moving to a vacated vertex, contradict ing the assumption that a is winning. Let 

p = (XQ, RQ), (X\, Ri),... be a play consistent w i th a such that Ri J72 Ri+l for 

some i. F rom the definit ion of a play, it follows there exists r 6 R4+1 such that 

r E Xi\ Xi+i. Let p' = (X0, R'Q), (X[, R'x),... be a play consistent w i th a that 

agrees w i th p up to (X j+ i , Ri+i), such that r G R'j for al l j > i. Note that since 

r G Ri+i and a is cop-monotone, such a play exists as there wi l l always be a strongly 

connected component containing r. Bu t then this play is not winning for the cop 

player. 
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cop-monotone(G) < D-width(G) 

Assume a D-decomposition (T, W) of G of w id th k. is given. Let T be rooted at 

a node r. The cops can start at XQ = WR. Let T\,T2, • • • ,Tm be subtrees of T 

wi th roots r\,r2, • • • ,rm, chi ldren of r. Let Ui be the union of the sets Wj over al l 

nodes j in T;. Accord ing to conditions of D-decompositions, the robber can only 

be at vertices in one of the sets U. The cops can move to WTi and continue the 

strategy unt i l they trap the robber in one of the leaves. The connectivity condit ion 

of D-decompositions ensures that this strategy wi l l be strongly cop-monotone. • 

4.4.1 Arbi trary gap between different games 

We first observe that there can be an arbitrar i ly big gap between the number of 

cops required to win by using different strategies in the cop/robber game. 

Theorem 16. For any m G N there exists: 

1. A digraph on which 4m cops can capture a robber, but 5m cops are required to 

capture it with a robber-monotone strategy. 

2. A digraph on which 4m cops can. capture a robber with a robber-monotone 

strategy, but 5m cops are required to capture it with a cop-monotone strategy. 

Before we prove Theorem 16, we need to introduce the notion of lexicographic 

product. 

Definition 7. Let G and H be digraphs. The lexicographic product , G • H, is the 

graph with V(G • H) = V(G) x V(H) and 

E(G •H) = { ((x,y), (x',y'))\(x, x') G E(G), or x = x' and (y, y') G E{H)}. 

The proof relies on the following result, similar to one presented in [32]. 
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Lemma 14. Let G be a digraph, Km the complete digraph on m vertices. At least 

k cops have a (cop-monotone, robber-monotone) winning strategy on G, if and only 

if at least mk cops have a (cop-monotone, robber-monotone respectively) winning 

strategy on G • Km. 

Proof. If k cops have a winning strategy on G, then a winning strategy for mk cops 

on G • Km is obtained by simulat ing the game on G. If the robber's posit ion is 

(r, s) E V(G • Km) then we posit ion a robber on r E V(G). We then consider the 

cops' play on G and play on G • Km by placing n cops on {{x,y)\y E V(Km)} 

whenever a cop would be placed on x E V(G). It's easy to verify that the cop-

monotonic i ty and robber-monotonicity of the strategies do not change. 

For the converse we show that if the robber can defeat k — 1 cops on G then 

he can defeat mk — 1 cops on G • Km. Aga in we simulate the game for G • Km on 

G, but this t ime from the robber's perspective. We place a cop on x E V(G) only 

if al l vertices in V(G • Km) of the form (x,y), y E V(Km) are occupied. B y the 

pigeon-hole principle, this requires at most k — 1 cops on G. The robber's current 

posit ion is projected as before. The robber's response r' on G is l ifted to G • Km 

by playing to a non-occupied vertex of the form (r',y). A s r' is unoccupied in the 

simulated game, at least one such vertex exists. A s the robber can defeat k — 1 

cops on G, the strategy is winning. To complete the proof we need to show that 

if a strategy is not (cop-monotone, robber-monotone) on G then its corresponding 

strategy on G • Km is not (cop-monotone, robber-monotone respectively) either. 

The idea is that if the robbers play according to the above strategy then the cops 

either need to occupy all vertices of type (x,r), for any x, in G • Km or none of 

them. Par t ia l l y f i l l ing these vertices doesn't impose any constraint on the robber's 

movement and, hence, is not useful. It's now very easy to verify that if such a 
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Figure 4.2: G r aph on which 4 cops have a winning strategy but 5 cops are required 
for robber-monotone strategy. 

F igure 4.3: G r aph on which 4 cops have a robber-monotone winning strategy but 5 
cops are required for cop-monotone strategy. 

strategy is (cop-monotone, robber-monotone) on G • Krn then it's corresponding 

strategy on G is (cop-monotone, robber-monotone respectively). • 

We now tu rn to the proof of Theorem 16. 

Proof. In [1] it was shown that 4 cops have a winning strategy on the graph in 

F igure 4.2, but 5 cops are required to capture the robber w i th a robber-monotone 

strategy. In [34] it was observed that 4 cops have a robber-monotone winning 

strategy on the graph in F igure 4.3, but 5 cops are required to capture the robber 

w i th a cop-monotone strategy. The results then follow by tak ing the lexicographic 

product of these graphs w i th Km, the complete graph on m vertices. • 
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4.4.2 Arbi trary gap between D-width, directed tree-width, and 

haven order 

Theorems 15 and 16 immediately yield an arbitrary big gap between directed tree-

wid th and D-width. In this section we study the behavior of D-width, directed 

tree-width and haven order under lexicographic product and independently prove 

the existence of an arbitrary big gap for the above three parameters. 

We first prove that D-width behaves well under lexicographic product. 

Lemma 15. If G is a digraph, and Km the complete graph on rn vertices, then 

1 + D-width{G • Km) = m • (1 + D-width(G)). 

Proof. One can view G»Km as making a clique {u\, u2, • • • , um} out of every vertex 

u of G and connecting Ui to VJ if and only if (u,v) G E(G). Let (T,W) be a D-

decomposit ion of w id th w of G. We construct a D-decomposition (T, W') of G»Km 

as follows. W is a family of subsets of vertices of G • Km such that for any j and 

i, Uj G W[ if and only if u 6 W{. It can be easily proven that (T, W) is a proper 

D-decomposition of G • Km and has w id th m(w + 1) — 1. For the reverse direction, 

let (T',W') be a D-decomposition of G • Km of w idth w' such that Y2ieT< *s 

minimized. We first make the following observation. 

Claim 1. For every u G G and i G T, either U C W{ or U D W[ = 0, where 

U = {ui,u2, • • • ,um}. 

Proof. A s U is a clique in G • Krn, there must be a node j w i th U C W j . Let % be 

the furthest node from j that violates the above condit ion, i.e. there are up, uq G U 

wi th Up G W[ and uq G" W[. Let k be the node before i in the unique path from j to 

i in T ' . We c la im that dropping u p from W[ st i l l leaves a proper D-decomposition 

contradict ing the assumption that YlieT' 1^71 ^s m in imum. If not, there must be a 
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strongly connected set S such that vertices of S do not make a connected subtree 

in the new D-decomposition (obtained by dropping up from W(). Th i s is possible 

only if 5 Pi W[ D W'k = {up} and there are some vertices of S other than up in W[. 

Bu t , then, the strongly connected set (S U {up})\{uq} does not make a connected 

subtree in the original D-decomposition. A s i is the furthest node from j w i th 

0 < \U f l W(\ < m, i is a leaf of the subtree that contains up (if a further node 

1 contained up then \W[ D U\ = m and thus uq E W[ so T"| U ( J is not connected) 

and, hence, dropping up from W'L does not violate conditions (D\) and (-D2) for 

T'\Up. • 

Now, given a D-decomposition w i th the above property we can replace every 

node that contains all vertices of U by u and obtain a D-decomposition of G w i th 

w id th - 1. • 
m 

' A similar result holds for haven-width: 

Lemma 16. If G is a digraph, and Km the complete graph on m vertices, then 

hw(G • Km) = m • hw(G). 

Proof For this proof we define a function / : T(V(G»Km)) -* V{V{G)) by f{X') = 

{v\(v,k) E X' for al l k E V(Krn)}. F i rs t we show that if. G • Km has a haven, 

8, of order mk then G has a haven, 8', of order k. We define 8' as 8'(X) = 

J{8{X x V{Km))). Now as 8(X x V(Km))f](X x V(Km)) = 0, every vertex (x,y) E 

8(X x V(Km)) has x £ X. Bu t then, since 8(X x V(Krn)) is a strongly connected 

component (maximal strongly connected set), {x} x V(Km) C 8(X x V(Km)) for 

each such x, so /3'(X) is non-empty and strongly connected. B y observing that if 

XQY then f(X) C / (Y ) , we see that B'(X) 5 ^ ' (y ) whenever XQY. 
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For the converse, we show that if G has a haven, 8, of order k then G • Km 

has a haven, /?', of order mk. For this we define B'{X) = (3(f(X)) x V ( i v m ) ) \ X . 

B y the pigeon-hole principle, if |X | < mk then |/ (X) | < k, so 8' is well-defined on 

sets X w i th < m/c. Since 8 is a haven, 8(f{X)) is non-empty and disjoint f rom 

f(X). Thus B(f(X)) x V^i^m) has elements (x',y) such if (x,y) G X , there exists 

.z G V ( i f m ) such that (x,z) $ X. Thus 8'(X) is non-empty and strongly connected. 

Aga in , the monotonicity of / implies B'(X) 2 8'{Y) whenever X CY. • 

Unfortunately, directed tree-width is not obviously so well behaved. However, 

by replacing vertices in an arboreal decomposition by cliques, we obta in one direction 

of the analogous result. 

Lemma 17. If G is a digraph, and Km tJie complete graph on m vertices, then 

1 + dtw(G»Km) < m - ( l + dtw(G)). 

We observe that the graph in F igure 4.3 has directed tree-width 3, D-width 4, 

and haven-width 4, giv ing us an arbitrary gap between D-width, directed tree-width 

and haven-width. 

Corollary 4. For any m G N there exists: 

1. A graph with D-width 5m — 1 and haven-width Am> and 

2. A graph with D-width 5m — 1 and directed tree-width < 4m — 1 

4.5 Upper Bounds for D-width 

So far, we know some lower bounds for D-width, namely, directed tree-width, haven 

order, cop-monotonicity, and bramble number 3 . In this section we obtain a non-
3 The bramble number result appears in [48]. 

78. 



t r i v ia l upper bound for D-width which is computable in polynomia l t ime when D-

wid th is constant. Unfortunately there doesn't exist any algor i thm for comput ing 

opt imal or nearly opt imal D-decompositions. However, using the results of this 

section along w i th those of the previous section, we can compute non-trivial upper 

and lower bounds for D-width. 

We prove that D-width is at most the number of cops required for a restricted 

cop-monotone winning strategy that we call strongly cop-monotone. 

Definition 8. A strongly cop-monotone strategy ix is a cop-monotone strategy with 

the additional constraint that ir(X, R) C X U R. 

Theorem 17. Let G be a digraph. Then, if k + 1 cops have a strongly cop-monotone 

winning strategy on G then the D-width of G is at most k. 

Proof. Let a — (YQ,TT) be a winning strongly cop-monotone strategy for k + 1 cops. 

F rom Theorem 15, a must also be robber-monotone. Let Ua be the strategy forest 

associated w i th a. We define a D-decomposition (T, W) as follows: 

1. V(T) = V(Ua)u{r}; 

2. E(T) = E{lAa) U {(r,t)\t is a root of n a } ; 4 

3. Wr = Y0; and Wt = ir(X, R) for t = (X, R) 6 V(Ua). 

It is clear that (T, W) has w id th at most (k + 1) — 1 = k. Because a is a winning 

strategy, every vertex must be occupied by a cop at some point, so for every strongly 

connected set S, T\s = {t\Wt n S ^ 0} ^ 0. For condit ion (D2), let S be a strongly 

connected set. F rom the construction of Iia and the strong cop-monotonicity of 

cr, for any situat ion {Yn,Rn) such that S n ixiY^^Rn) ^ 0, there is a unique path 

4 For the decomposition to be undirected we ignore the directions on the edges in LTo-
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(Yo,Ro),(Y1,R1),...,(Yn,Rn) such that S n ir(Yi,Ri) ^ 0, for 0 < i < n and 

S C RQ. Moreover, (YO,RQ) is common in all such paths regardless of (Yn,Rn). 

Hence, it suffices to show that 5 remains connected along paths of n^. Bu t this 

follows immediately f rom the cop-monotonicity of a: if the cops occupy some of 

S, leave all vertices in S, and then occupy some of S, either they revisit a vertex 

(contradicting cop-monotonicity), or the robber can defeat a on S (contradicting 

the fact that a is winning). 

• 

4.5.1 Computing the strongly cop-monotonicity 

Theorem 18. Given a digraph G and an integer k, determining if k cops have a 

strongly cop-monotone winning strategy on G can be decided in time 0(nk+3), where 

n — |V(G)| . Furthermore, the algorithm will find such a strategy if one exists. 

Proof. The a lgor i thm we present in F igure 4.4 recursively computes a k-cop strongly 

cop-monotone strategy TT from posit ion (X, R) by iterating through al l possible val ­

ues for X' which preserve monotonicity, and then checking that there is a winning 

strategy from (X1, R') for all R' w i th a non-empty intersection w i th R. The correct­

ness and running time of this algorithm follow in the next two lemmas. • 

Lemma 18 (Correctness). Given a digraph G and an integer k, TT = strategy 

(0, G, G, k) is a k-cop strongly cop-monotone winning strategy if, and only if, such 

a strategy exists. 

Proof. To show that the algorithm computes a strongly cop-monotone winning strat­

egy, we first show that the computed strategy is strongly cop-monotone and then 

prove that it is a winning strategy. For every (X, R), ir(X,R) C X U R, so TT is 

80 



Algorithm strategy(X, R, G, k) 
foreach X' C X U R with X' ± X, \X'\ = k do 

Let R\, i? 2 , • • •, Rrn be al l strongly connected components of 
G\(X' n X) that have nonempty intersection w i th R 
V i , let <7j = strategy(X f, R4, G, k) 
if <7j ^ 0,Vi, then return a = (X , 7r) where IT(X,R) = X' and cr 
follows Ui if the robber moves to R4. 

end 
return 0 

Figure 4.4: F ind ing a strongly cop-monotone winning strategy 

strongly cop-monotone. To show that the strategy is winning, we show that it is 

winning from each posit ion (X,R). Th is is easily established by induct ion on the 

size of R, as TT(X, R) is defined as a set X' such that the strategy is winning from 

(X',R') for al l reachable positions (X',R'). A s we observed above, R' C R, and as 

X y£ X' C XuR, X' w i l l include vertices from R, so R! w i l l be str ict ly smaller than 

R. 

For the converse, we need to show' that if there is a &>cop strongly cop-

monotone strategy a' = {YQ,IT') then ir'(X, R) is a possible return value for ir(X, R). 

Wi thou t loss of generality, we can assume TT'(X, R) C X U R and \TT'(X, R)\ = k as 

we can always transform a' into a strongly cop-monotone strategy which does satisfy 

these. F rom Theorem 15, a' is also a robber-monotone strategy, so R is a strongly 

connected component of G \ (X n rc'(X, R)). F inal ly , it is clear that if R' is a non­

empty strongly connected component of G\7r ' (X , R), then TT'(TT'(X, R), R') ^ 0. • 

Lemma 19 (Running time). Given a digraph G and an integer k, strategy(0, 

G, G, k) runs in time 0(nk+2), where n = \V(G)\ . 

Proof. We implement the algori thm using dynamic programming. There is an entry 

(X, R) in the dynamic programming table n for each subset of k vertices X and each 
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strongly connected component R of G\X. The table is fil led in increasing order of 

the size of R. 

As there are at most n strongly connected components in G\X, there exist 

at most 0(nk+1) possibi l i ty for any (X, R) pair. In comput ing rt(X, R) we try al l 

possible 0(nk) subsets X' of X U R and, for each one, it takes 0 ( n 2 ) t ime to check 

if C is a strongly connected component of G\(X n X') (using depth-first search). 

Since each R4 is smaller than R, we can use dynamic programming (or memoization) 

so that the check of 7r(X',Ri) takes constant time' (after its in i t ia l calculation). In 

tota l , the running t ime of the algor i thm is 0(nk+2). 

• 

4.6 Conclusion and Future Work 

In this chapter we further study D-width and identify the class of digraphs w i th 

D-width one. We also obta in non-trivial upper bounds for D-width in terms of the 

number of cops that are required to capture the robber in (strongly) cop-monotone 

cops/robber games. 

As D-width is an upper bound for directed tree-width, not only does D-width 

inherit a l l the algorithmic advantages of directed tree-width, such as an efficient 

a lgor i thm for Hami l ton ian cycle on bounded D-width graphs, but the simpl ic i ty 

of D-decompositions may also be used to establish other algorithmic results for 

digraphs w i th bounded D-width. F ind ing an algorithm for comput ing opt imal or 

nearly opt imal D-decompositions would have a direct effect on the efficiency of these 

solutions. Exp lo r ing the class of problems that are efficiently solvable on bounded 

D-width graphs is also a very interesting direction of future research. 
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Chapter 5 

Hyper-D-width 

5.1 Introduction 

In this, chapter, we introduce hyper-D-width and hyper-T-width as the first stable 

(see definit ion 9) measures of connectivity for hypergraphs. After studying some 

of their properties and, in part icular, proposing an algori thm for computing-nearly 

opt imal hyper-T-decomposition when hyper-T-width is constant, we introduce some 

applications of hyper-D-width and hyper-T-width in solving hard problems such as 

the m in imum vertex cover. 

5.2 Background 

In this section, we review the definitions that we use in this chapter. A hypergraph 

H = (V, E) consists of a set of vertices V and a set of edges E where every edge 

e € E is a subset of V. A path in i f is a sequence of vertices u\, U2, • • • , um such 

that Ui and Ui+i are both in some edge in H for i = 1, 2, • • • , m — 1. We say u is 

connected to v if there is some path from u to v. A set S of vertices is connected if 
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every two vertices in it are connected. A connected component of H is any maximal 

connected set of H. For a subset X of V, the hypergraph induced by X, denoted 

by H[X], is (X,E')t where E' is the set of edges in E all of whose vertices are in 

X. F inal ly , the hypergraph H\X is H[V\X]. Notice our different interpretation of 

connectivity in this Chapter . Given an edge e = {u\,v2, • • • ,i>fc}, we consider it as 

a single connected unit meaning that e collapses by removing any of vis. Th i s is in 

contrast w i th those definitions that define connectivity based on the pr imal graph. 

Three graphs are often associated w i th any hypergraph H: The primal graph, 

the dual graph, and the incidence graph. The pr ima l graph is obtained by making 

a clique out of the vertices in every edge in H. The dual graph is obtained by rep­

resenting every edge by a vertex and connecting two vertices if their corresponding 

edges intersect. The incidence graph is a bipart i te graph whose first part corre­

sponds to vertices in H and whose second part corresponds to edges in i f . A vertex 

u in the first part is connected to a vertex e in the second part iiu € e in H. The 

tree-widths of the pr imal , dual , and incidence graphs are often referred to as primal, 

dual, and the incidence tree-width, respectively. 

A famous example of using hypergraphs is using them to model inputs to 

the S A T problem. A boolean formula in conjunctive normal form w i th clause sets 

C\,C%, • • • ,Crn of variables X = {xi,x2, • • • ,xn] and their negations x~i,x~2, • • • ,x^ 

is modeled by a hypergraph H = (X, E) where E = {e\, e2, • • • , em} and, for all k, 

x\. 6 ej iff either xk 6 Cj or x^ 6 Cj. 

For example, for ip = (a V b V c) A (a V c) A (6 V c) A 6, the corresponding 

hypergraph is H = ({a, b, c], {{a, b, c}, {a, c}, {b, c},{b}}). 

For these formulas, the tree-width of the incidence graph seems to be the 

most general parameter for which the S A T problem is fixed parameter tractable. 
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Theorem 19. [51] Satisfiability of clause-sets with bounded incidence tree-width is 

fixed-parameter tractable. 

. A problem is fixed parameter tractable, if i t admits an a lgor i thm w i th running 

t ime 0(f(k)na) where k is some parameter independent of n, f is any function of 

k, and a is a constant independent of k and n. As k doesn't appear in the exponent 

of n, instances of large size n can be solved efficiently. 

Such a fact was already known for pr imal tree-width [27], but the above is 

stronger as the incidence tree-width is always smaller than the pr ima l tree-width 

plus one [51]. 

One parameter that is used many times in the l iterature is hypertree-width 

and similar variants which was first introduced by Got t lob et al. [26]. One pa­

rameter that is used many times in the literature is hypertree-width and similar 

variants which was first introduced by Gott lob et al. [26]. A generalized hypertree 

decomposition of a hypergraph H = (V, E) is a triple (T, W, A), where (T,W) is 

a tree-decomposition of the pr imal graph of H and A is a funct ion that assigns to 

every vertex t of T a set of edges in E such that Wt C (J A( i ) . The w id th of (T, W, A) 

is the max imum of |A(t)| over all nodes t of T. (Generalized) Hypertree-width is 

different f rom tree-width of the pr ima l graph only in the way we measure the w id th 

of a tree-decomposition: Instead of counting the number of vertices in a node, we 

count the number of edges that cover these nodes. The generalized hypertree-width 

of H is the m in imum wid th over all its generalized hypertree-decompositions. A 

hypertree-decomposition (T, W, A) is a generalized hypertree decomposit ion that sat­

isfies one special condit ion: (|J X(t))f)X(Ti) C Wt, where Tt is the subtree rooted at 

t and X(Tt) is ( J s e T t Ws- Th i s condit ion is added for technical reasons to make the 

hypertree decomposit ion computable when it is constant. It is not known whether 
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generalized hypertree-width is computable in polynomia l t ime when it is constant. 

The hypertree-width of H is defined accordingly. 

Got t lob et al. (See [26] or [25] for a survey) show how an opt imal hypertree-

decomposit ion can be computed for a hypergraph w i th bounded hypertree-width by 

associating it w i th certain cops and robber games. They also show that the con­

straint satisfaction problem is solvable in polynomia l t ime for constant hypertree-

wid th hypergraphs. A constraint satisfaction problem is a set of constraints (Si, Ri) 

where Si is a tuple of variables from a set of variables X and Ri is a list of 
j 

tuples of values from some domain D. A solution to C S P is a valuation such 

that al l constraints are satisfied. A valuation V : X —• D satisfies constraint 

((x\,X2,--- ,Xk),R)if (v(xi), v(x2), • • • , v(xk)) G R- In this specific model , all pos­

sible valuations of the tuple Si are expl ic i t ly given, i.e. are part of the input, and, 

hence, the number of possible valuations is upper bounded by the input size. For 

example, in the S A T input tp = (a V b V c) A (a V c) A (6 V c) A b, the second clause 

is represented as ((a,c),{(T,F),(T,T),(F,F)}) in this model. Th i s is in contrast 

to a typica l input to S A T (and other problems), which represents the set of values, 

that satisfy a constraint v i a a formula (e.g. (a V c)). In this model , if we add a big 

constraint (i.e. Si is big) we can make the problem easier to solve. For example, if 

a constraint contains all the variables, then we can simply t ry al l valuations given 

for that constraint and check if one works for the other constraints as well. That ' s 

basically why hypertree-width is related to the time required to solve CSP . 

Adler et a l . [2] prove that hypertree-width is wi th in a factor 3 +-e of sev­

eral other hypergraph measures: generalized hypertree-width, (monotone) marshal-

w id th , hyperbramble number, hypertangle number, hyperbranch-width, and hyper-

linkedness. 
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5 . 3 Hyper-D-width 

5.3.1 Definition 

Let H = (V, E) be a hypergraph. A hyper-D-decomposition of H is a pair (T, W) 

where T is a tree and W — {Wt\t'€. V(T)} is a f a m i l y o f subsets of V(H) such that 

for every connected set S: 

. (HI ) T\s := {t\Wt n S ^ 0} / 0, and 

(H2) The subgraph of T w i th vertex set T\s and edges {(s,t)\Ws D Wt n 5 ^ 0} 

forms a connected subtree of T . 

The w id th of a hyper-D-decomposition (T, W) is the max imum of \Wt\ — 1 

over al l nodes t € V ( T ) . The hyper-D-width of a hypergraph is the m in imum wid th 

over all its hyper-D-decompositions. For example, a hyper-D-decomposition w i th 

w id th two for the hypergraph H = ( {1,2,3,4}, {{1,2,3}, {1,4}, {2,4}, {3,4}}) is 

depicted in F ig . 5.1. It's not hard to prove that i t 's, in fact, a m in imum wid th 

hyper-D-decomposition. 

F igure 5.1: A hyper-D-decomposition w i th w id th two. 
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5.3.2 Basic Properties 

Hyper-D-width is a generalization of tree-width. O n regular graphs, where every 

edge has two vertices, hyper-D-decomposition wants the two vertices in every edge 

to share a node. Th is is exactly what any tree-decomposition wants. 

Theorem 20. For every undirected graph G, tree-width{G) = hyper-D-width(G). 

Let (T, W) be a hyper-D-decomposition for a hypergraph H. If we make a 

regular graph on the vertices of H by connecting two vertices iff they share a node in 

T , then the result 'would be a chordal graph wi th the same tree-width as the w id th 

o f T . 

Theorem 21. For every hypergraph H with hyper-D-width w, there exists an undi­

rected chordal graph G with tree-width w such that for any edge e of H with vertex 

set S, G[S] is connected. 

Hyper-D-width is inspired by D-width on directed graphs. In fact, every 

min ima l strongly connected set in digraphs is treated as an hyperedge in the defini­

t ion of D-width meaning that hyper-D-width is,, in some sense, a generalization of 

D-width. 

5.3.3 Stability 

Almost al l exist ing connectivity measures for hypergraphs are very sensitive to big 

edges, i.e. edges that contains many vertices. (Generalized) Hypertree-width, hy-

perlinkedness, hyperbramble number, (monotone) marshal-width are all constant 

when we have an edge that contains all the vertices no matter what the rest of the 

hypergraph structure is. O n the other hand, the tree-width of the pr ima l graph.is 

always n — 1 for the above example, where n is the number of vertices. 
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We would like a connectivity (cyclicity) measure on hypergraphs to behave 

in a stable way (as tree-width does for regular graphs): adding a constant number 

of vertices or edges shouldn't substantial ly change the connectivity. A l l the afore­

mentioned measures violate this stability condition] so do the tree-width of the dual 

graph and the tree-width of the incidence graph. 

Unl ike al l the above-mentioned connectivity measures for hypergraphs, hyper-

D-width is stable. Let 's formally define stabi l i ty first and then prove the stabi l i ty 

of hyper-D-width. 

Definition 9. A measure defined on hypergraphs is stable if after removing a con­

stant number of vertices (with all edges containing those vertices) or a constant 

number of edges (defined on existing vertices) the measure decreases by only a con­

stant. 

Theorem 22. Hyper-D-width is stable. 

Proof. It's sufficient to show that hyper-D-width changes by a constant when adding 

one new vertex or one new edge. Assume we add a new vertex u and an arbitrary 

number of edges containing u to a hypergraph H. Let (T, W) be an opt imal hyper-

D-decomposition of H w i th w id th w. Obviously, (T, W), where W[ = Wt U {u} 

for every t £ V(T), is a proper hyper-D-decomposition of the new hypergraph wi th 

w id th w + 1. In case we add a new edge e = {i>i,i>2, • • • , Vfc} to the hypergraph 

H, (T,W), where W[ = Wt U {vx} for every t 6 V(T), is a proper hyper-D-

decomposit ion of the new hypergraph w i th w id th at most w + 1. • 

In contrast, all the existing alternative measures are unstable. 

Theorem 23. (Generalized) Hypertree-width, hyperlinkedness, hyperbramble num­

ber, (monotone) marshal-width, (dual, incidence, or primal) tree width are all un-
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stable. 

Proof. It's proven in [2] that the first four parameters are w i th in a constant factor of 

each other. Hence it suffices to prove hypertree-width and (dual, incidence, primal) 

tree w id th are unstable. Let if" be a hypergraph wi th big hypertree-width. A d d i n g 

one edge that contains al l the vertices makes the hypertree-width equal to one. Thus , 

hypertree-width is unstable. Similarly, the pr imal tree w id th is unstable. Now, let 

i f be a hypergraph w i th small dual tree-width. Let i f ' be obtained from i f by 

adding a new vertex u and all possible edges that contain u (i.e. 2 n edges where n 

is the number of vertices). The dual graph of i f ' has a clique of size 2 n (all edges 

that contain u) which means it has dual tree-width at least 2 n — 1, which shows 

dual tree-width is unstable (under removal of vertex u).. A s for the incidence graph 

suppose i f is a hypergraph wi th small incidence tree-width. We show that i f ' , as 

constructed above, has large incidence tree-width. Let I be the first ^ vertices of 

i f . The number of edges in i f ' that contain al l vertices in I is at least 2 2 which 

means the incidence graph of i f ' contains a Kn " ( ac tua l l y K„ a as well) subgraph. 
2' 2 2' 

Hence, its tree-width is at least | . • 

5.3.4 Comparison 

In this section we compare hyper-D-width w i th other existing parameters defined 

on hypergraphs, namely, hypertree-width and the tree-width of the pr imal , dual , 

and incidence graph. 

Theorem 24. For any hypergraph i f , 

• hyper-D-width(H) < primal tree-width(H). 

• hyper-D-width(H) < incidence tree-width(H). , 
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• hyper-D-width(H) < dual tree-width(H) + 1. 

Proof. The first inequality follows from the fact that every tree-decomposition of 

the pr ima l graph is a hyper-D-decomposition. O n the other hand, there exist hy­

pergraphs w i th pr ima l tree-width n — 1 and hyper-D-width one (a hypergraph w i th 

one edge containing all the vertices). 

As for the incidence tree w idth , let (T, W) be a tree-decomposition of the 

incidence graph. For each edge e = {v\, v2, • • • , Vk}, replace every occurance of e in 

Wt for t G V(T) w i th v\. Since e and v\ share some node of T, i.e. {e, vx} C'Wt for 

some t G V(T), the nodes that contain v\ st i l l make a connected subtree. Moreover, 

since e shares some node w i th every v-i, 1 < i < k, the vertices v\)v2) - • • ,Vk make a 

connected subtree in the resulting tree-decomposition. Aga in , there are hypergraphs 

w i th smal l hyper-D-width, but large incidence tree-width. Assume H has 2n vertices 

{1, 2, • • • , 2n} and n edges of the form e$ = {1, 2, • • • , n, n + i] for 1 < i < n. The 

incidence graph has a Kn>n subgraph (every i is connected to ej for 1 < i, j < n) and, 

hence, has tree-width at least n. However, its hyper-D-width is one. Its m in imum 

w id th hyper-D-decomposition is a star w i th root r containing Wr = {1} and ith leaf 

containing Wi — {l,i} for 2 < i < In. 

Almost the same statement holds when comparing the dual tree w id th and 

hyper-D-width. G iven a tree-decomposition (T, W) w i th w id th w of the dual graph 

of hypergraph H, we show how a hyper-D-decomposition of H w i th w id th at most 

w + 1 can be constructed l . For any vertex u G V(H), al l edges that contain u 

make a clique in the dual graph. Hence, there is some node in T , say X(u), that 

contains all such edges. In the first step, for all u G V(H) we add a leaf l(u) w i th 

Wj(u) = WA(U) O {u} a n d attach it to the node X(u) in T . Next , for every edge 

: O n regular graphs we can remove the additive constant one in the inequality. 
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e G E(H), we pick an arbitrary vertex v 6 e and replace e w i th v in every Wt for 

£ € V(T). C a l l the resulting decomposit ion (T',W). Now, (T", W ) contains only 

vertices of H. We cla im that (T',W) is a hyper-D-decomposition of H. F i rs t , the 

new leaves insure that every vertex u G H is contained in some Wt (in part icular, 

Wj( u)) in T". Second, for any vertex u € H, all nodes £ 6 X" such that it € W t ' make 

a connected subtree. Every edge e replaced by u in creating T ' , forms a connected 

subtree in T that contains the node X(u). Hence, these subtrees are connected in T" 

and they connect to the new leaf node l(u). T h i r d , suppose e = { x i , X 2 , • • • ,Xk} is 

replaced by x i , then T'\Xl C\T'\Xj ^ 0. In fact, X(XJ) G T'\Xl n T " ^ . . So the subtrees 

corresponding to vertices of e form a connected subtree. A star graph of size n has 

tree-width one and (by Theorem 20) hyper-D-width one whereas its dual graph is a 

clique and, hence, has tree-width n — 1. • 

Corollary 5. The class of bounded hyper-D-width hypergraphs contains the class of 

bounded (primal, dual, or incidence) hypergraphs. 

5.3.5 cops and robber game 

In chapter 4 we obtained lower and upper bounds for D-width in terms of the number 

of cops that are required to win certain cops/robber game. A n identical definit ion 

of cops and robber games under the new definit ion of connected components enable 

us to obta in similar results on hypergraphs. 

Theorem 25. let h be a hypergraph. 

1. Ifk + l cops have a strongly cop-monotone winning strategy on H then H has 

hyper-D-width at most k. 
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2. IfH has hyper-D-width at most k then k+l cops have a cop-monotone winning 

strategy on H. 

In addition, there exist an algorithm for computing the strongly cop-monotonicity of 

H in time 0(nk+2). 

5.3.6 Applications 

In this section we show that there exist polynomial-time approximat ion schemes 

( PTAS ) for many problems including vertex cover, dominat ing set, and mult icut 

problems on hypergraphs when the hyper-D-width of the input hypergraph is con­

stant. 

Let a generic problem P be as follows: F i n d a min imum number o f vertices 

in a hypergraph that satisfy some constraint C. 

We are especially interested in problems P w i th the following property. 

(Decomposable Property)Problem P is decomposable if it satisfies the 

following condit ion. Let i f be a hypergraph. For any subset X of vertices of H, let 

C i , C2, • • • , Cm be the connected components of H\X. Let Di be a solution for P 

on H[d]. Then , X U ( D i U D2 U • • • U Dm) is a solution of P on H. 

The decomposable property lets us choose any suitable X, put it in the 

solution, break the input hypergraph into smaller parts, and solve the problem on 

each part independently. It's easy to verify that multi-cut, dominat ing set, and 

vertex cover are examples of such problems. For example, for the vertex cover ' 

problem, if we choose all vertices in X then any edge that intersects both Ci and 

Cj (i 7̂  j) is covered. The rest is, then, solving the vertex cover problem on each 

Ci separately. 

Now, we show how such problems have a P T A S on bounded hyper-T-width 
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hypergraphs. The idea is similar to the technique that Cal inescu et al . [15] use to 

f ind a P T A S for mult icut on bounded tree-width graphs and digraphs. Let (T, B, W) 

be a hyper-T-decomposition w i th w id th w for the input hypergraph. Let t € V(T) 

be the bottom-most node such that there exists an opt imal global solution that 

contains at least w/e vertices in the subtree Tt rooted at t. If there is no such t 

then the opt imal global solution has fewer than w/e vertices. Such a solution can 

be computed in t ime 0(nw/e). Otherwise, let optt be the number of vertices of an 

opt imal solution in T t . Choosing and removing all vertices in A t = Bt U [Je^tWe 

breaks Tt into several connected components each having less than w/e vertices of 

the opt imal solution. Hence, the problem can be solved by brute force on al l these 

components in t ime 0(nw^e). Hence, the number of vertices that we pick is at most 

optt + w < optt(l + e). Assume that the rest of the hypergraph has o vertices in 

the opt imal solution. Accord ing to the induct ion hypothesis, we can find a solution 

w i th at most o ( l + e) vertices. Hence, we can solve the problem on H by choosing 

at most (1 + e)(optt + o) vertices, y ielding a (1 + e)-factor approximat ion for P. The 

details of the algor i thm are shown in F ig . 5.2. 

To complete this section we prove that all aforementioned problems are hard 

even on bounded hyper-D-width hypergraphs. 

Theorem 26. The vertex cover problem, the dominating set problem, and the mul­

ticut problem are NP-Complete on bounded hyper-D-width hypergraphs. 

Proof. Let C\, C2, • • • , Cm be a S A T problem instance over variables x\, x2, • • * , xn. 

We make a hypergraph H = (V, E) w i th vertex set V = Ui<i<n{xi,x~i, Zi} \J{u} and 

edge set e$ = C j U {u}, for 1 < i < m and e m + j = { X J , S 7 , Zi}, for 1 < i < n. We 

c la im that the S A T problem instance is satisfiable iff the hypergraph H has a vertex 

cover of size exactly n. Assume the S A T instance is satisfiable w i th setting all Xj 's 
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Input: A hypergraph H together w i th an opt imal 
hyper-D-decomposition (T, W) 

Output: M i n i m u m number of vertices that satisfy P 
•/* Let Let Xt = \Jt>eTtWt,. */ 
foreach t e T d o 

Let ti, i = 1, 2, • • • , m, be children of t. 
foreach i do 

find an opt imal solution o.L to P of size at most w/e for 
H[XU - Wt]. 
If no such solution exist then try the next t. 

end 
Let o = UjOj . 
Recursively find a (1 + e)-factor approximat ion solution d for H\Xt-
Let optt = oUdUWt. 

end 
return optt w i th m in imum size. 

F igure 5.2: Solving decomposable problem P on a bounded hyper-D-
width hypergraph 

in a set X to be true and the rest to be false. In the hypergraph let the vertex cover 

be X U {x~i\xi 0 X}. Obviously, every edge of type Q U {u} and every edge of type 

{xi,x~i,Zi} is covered and the size of the vertex cover is n. O n the other hand, let 

X be a vertex cover of size at most n. Obviously, it must have picked exactly one 

vertex from every tr iple {x{, xi, Zi}, 1 < i < n which is at least n vertices. Moreover, 

every edge of type Ci U {u} must be covered by some Xi or x~[. in d, which makes a 

satisfiable solution. F inal ly , we mention that the hypergraph constructed above has 

hyper-D-width at most three. Make a star w i th root u and every leaf containing 

{u, Xi,xi, Zi}, for 1 < i < n. 

It's easy to prove that the above reduction works for the dominat ing set 

problem as well. The NP-Completeness of the mult icut problem follows from its 

NP-Completeness on bounded tree-width graphs proven by Cal inescu et al. [15]. • 
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5 . 4 Introducing hyper-T-width 

Al though hyper-D-width has many nice properties and resembles undirected tree-

w id th in a natural way, it has one big disadvantage that we haven't resolved yet: 

We don't know a polynomia l t ime algori thm for comput ing opt imal or even approx­

imately (within a constant factor) opt imal hyper-D-decompositions for bounded 

hyper-D-width hypergraphs. 

One opt ion is to consider a generalization of directed tree-width [34, 35] 

instead. Recal l the following definit ion from [35]. 

Definition 10. Let T be a directed tree. For a vertex t and edge e we say e ~ t ift 

is one of the end points of e. We also say t > e if either t is the head of e or there 

is a directed path from the head of e to t inT. 

Definition 11 (Arboreal (pre-)decompositions and directed tree-width). 

An arboreal pre decomposit ion of a digraph G is a tuple (T, B, W) where T is a 

directed tree with a unique root, and B = {Bt\t G V(T)} and W = {W e|e G E(T)} 

are sets of subsets ofV(G) that satisfy: 

(RI) B is a partition of V(G) into (possibly empty) sets such that Br ^ 0 for the 

root r of T, and 

(R2) If e G E(T), then B\ := \J{Bt\t > e] is We-normal or empty. 

The w id th of an arboreal pre-decomposition (T,B,W) is the minimum k such that 

for all t G V(T), \Bt U U e~t^e| < k + 1. An arboreal decomposit ion is a pre-

decomposition in which all Bt are non-empty, and the directed tree-width of a di­

graph G, dtw(G), is the minimal width of all its arboreal decompositions. 
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D-decomposition is, in fact, a restricted variant of arboreal pre- decomposi­

t ion. G iven a D-decomposition (T, W) of w id th IU of a digraph G, the following is 

an arboreal pre-decomposition of w idth w for G. (T', B', W), where T' is obtained 

from T by choosing a random root and directing all edges away from the root. For 

any edge e = (u, v) -in T", B'v = Wv - Wu and Xe = Wvn Wu. 

Accord ing to Johnson et al . [34] a set S is Z-normal if every path from a 

vertex in S to another vertex in S that contains a vertex in V(G) — S has a vertex 

in Z as well. O n the other hand, there is no strongly connected component of G\Z 

that contains vertices from both S and V(D) — S. 

Inspired by the above definit ion, we define hyper-T-width as follows. 

D e f i n i t i o n 12 ( H y p e r T - d e c o m p o s i t i o n a n d h y p e r T - w i d t h ) . A hyper T-

decomposit ion of a hypergraph H is a tuple (T,B,W) where T is a directed tree 

with a unique root, and B = {Bt\t G V(T)} and W — {We\e G E(T)} are sets of 

subsets ofV(H) that satisfy: 

(RI) B is a partition of V(H) into possibly empty sets such that Br / 0 for the 

root r of T, and 

(R2) If e G E(T), then B^ := \J{Bt\t > e} is We-normal or empty. A set S is 

Z-normal if there is no connected component of H\Z that contains vertices 

from both S andV(H) - S. 

The w id th of a hyper T-decomposition (T.B,W)' is the minimum k such that for 

all t G V(T), \Bt U Ue^t We\ < k + 1. The hypef T-width of a hypergraph H is the 

minimal width of all its hyper T-decompositions. 

In the following section we show that hyper-T-width has al l the nice prop­

erties of hyper-D-width. It's stable, has the balanced-separator property, and has 
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al l currently known algorithmic advantages of hyper-D-width. In addit ion, we can 

compute an approximate hyper-T-decomposition when hyper-T-width is constant. 

5.4.1 Properties 

Theorem 27. Hyper-T-width is stable. 

Proof. It's sufficient to show that hyper-T-width changes by a constant when adding 

one new vertex or one new edge. Assume we add a new vertex u and an arbitrary 

number of edges containing u to a hypergraph H. Let (T,B,W) be an opt imal 

hyper-T-decomposition of H of w id th w. Obviously, (T, B', W ) , where W[ = Wt U 

{u} for every t G V(T) and B'r = Br, when r is not the root and B'r — Br U {u} for 

the root r, is a proper hyper-T-decomposition of the new hypergraph. Moreover, 

(T, B', W') had w id th 'tu + 1. In case we add a new edge e = {vi,V2, • • • , ffc} to the 

hypergraph H, (T, W ' , 73'), where W[ = Wtli {vi} for every t G V ( T ) , is a proper 

hyper-T-decomposition of the new hypergraph. • 

As mentioned in ther earlier section, a hyper-D-decomposition is a restricted 

version of a hyper-T-decomposition. Hence, 

Theorem 28. For any hypergraph H, the hyper-T-width of H is less than or equal 

to its hyper-D-width. 

Therefore, 

Theorem 29. The class of bounded hyper-T-width hypergraphs contains the class 

of bounded (primal, dual, and incidence) hypergraphs. 

Proof. Th i s is a direct consequence of Theorems 24 and 28. • 
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As for algorithmic applications of hyper-T-width we show that a problem P 

that satisfies the decomposable property admits a P T A S on bounded hyper-T-width 

hypergraphs. The idea is quite similar to hyper-D-width. We consider the deepest 

edge e = (r, r') (i.e. r has max imum depth) such that the subgraph Be has more 

than j vertices of some opt imal solution, where w is the hyper-T-width of the input 

hypergraph and e is any constant. Now adding all vertices Xe in the solution does 

not change the number of vertices in the solution by more than a mult ipl icat ive 

factor 1 + e. 

5.4.2 Computation 

The big advantage of hyper-T-width over hyper-D-width is the fact that we can' 

approximately compute it when it is constant. Johnson et al. [34] prove this for 

directed tree-width and their proof generalizes immediately to hypergraphs. In 

part icular, they introduce the notion of haven order and prove that directed tree-

w id th and haven order are w i th in a constant factor of each other. 

Theorem 30 (Johnson et al. [34]). H{G) - 1 < tree-width{G) < ZH{G) + 1 for 

digraphs G, where H(G) is the haven order of G. 

Their proof for tree-width(G) < 3LT(G) + 1 is constructive. If the haven order 

of G is at most w then it builds an arboreal decomposit ion of w id th at most 3w+l. In 

this section we show that the construction quickly transfers to hypergraphs without 

any major change. 

We basically mimic the proof of Johnson et al . [34] here. As our definitions of 

connectivity and havens are different from theirs, the proof is completely i l lustrated 

below. 

Let 's start w i th defining haven order on hypergraphs. 
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Definition 13 (haven and haven-order). Let H be a hypergraph. A haven of 

order k is a function 3 assigning to every set Z C V(H) with \Z\ < k, a connected 

component of H \ Z such that ifXCYC V(H). and \Y\ < k then 3(Y) C B(X). 

The haven-order of H is the largest k such that H has a haven of order k 

Theorem 31. H(H) - 1 < hyper-T-width(H) < 3H(H) + 1 for hypergraphs H, 

where H(H) is the haven order of H. 

Proof. (Left inequality) 

Let (T, W, B) be a hyper-T-decomposition of w id th w of H. For any node 

t let Xt — BtU U e ~t We- F h s t observe that w + 1 cops can catch a robber in the 

cops/robber game. Assume a hyper-T-decomposition (T, W, B) of G of w id th w is 

given. The cops can start at XQ = A r , where r is the root. Let T\,T2, • • • ,Tm be 

subtrees of T w i th roots ri,r2, - • • ,rm, chi ldren of r. Let = (r, ri). Accord ing to 

conditions of hyper-T-decompositions, the robber can only be at vertices in one of 

the sets B^. The cops can then move to XTi and continue the strategy unt i l they 

trap the robber in one of the leaves. 

O n the other hand if H has a haven of order h then the robber has a winning 
t 

strategy against h—1 cops by staying at @(Z), where Z is the set of vertices occupied 

by the cops. Consequently, H(H) — 1 < hyper-T-width(i J ) . 

(Right inequality) Assume H has no haven of order w. F i rs t , let's prove 

the following crucial lemma. 

Lemma 20. If H has no haven of order w then for every set Y of vertices of H 

with \Y\ < 2w — 1 there is a subset Z of vertices of H such that \Z\ < w and every 

connected component of H\Z has at most w — 1 vertices ofY. 

Proof. Assume not. Then for every set Z w i th \Z\ < w there is one connected 
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component of Z , say 0(Z), such that \B(Z) f l Y\ > w. But , this is a contradict ion 

as B is a haven of order w. For any Z and Z ' w i th Z C Z ' and |Z'| < w, bo th /3(Z) 

and /?(Z') contain at least w vertices from Y. A s \Y\ < 2w — 1, we conclude that 

B(Z') n /3(Z) / 0 which means B(Z') C /3(Z)'. . • 
s 

Consider a hyper-T-decomposition (T, PF, J5) of H w i th the following restric­

tions. 

1. For any node r, if r is not a leaf then |£?r| < w and |A r | < 3w — 1. 

2. For any edge e, |W e| < 2w — 1. 

3. Subject to the above conditions we take the hyper-T-decomposition that m i n ­

imizes the max imum of |J5r|, for all r's. 

A s the obvious hyper-T-decomposition w i th one vertex r and BR = V(H) sat­

isfies the first two conditions, we conclude that there exist a hyper-T-decomposition 

(T,W,B) satisfying the above three conditions. If there is no leaf w i th \BR\ > r 

then we are done and (T, W, B) would have w id th at most 3w — 2. Otherwise, take 

the leaf r w i th max imum ]BR\. Assume r' is the unique root of r, e = (r',r) and 

Y = WE. Accord ing to lemma 20 there exist a set ZQ of at most w — 1 vertices of 

H such that every connected component of H\ZQ contains at most w — 1 vertices 

from Y. Let Z = Z U {u} for some arbitrary vertex u in BR. We bui ld a new 

hyper-T-decomposition satisfying the first two conditions, but a smaller \BR\ which 

is a contradict ion. 

Let X\,X2, ••• ,XM be the connected components of H[BR]\Z. We create 

m new leaves r i , ^ , - - - ,rm and connect them to r (i.e. create edges from r to' 

each ri). Set BN = .Xi and change BR to .Z D BR. For the edge = (r, r,) set 
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Wei = Z U ( y n Xi). A s \Y nXi\ < 2w - 1 this insures that \Wei| satisfies condit ion 

2. B y the way, A r = Z U Y; thus, |A r | <3w - 1 . • 

The .p roo f that hyper-T-width( i f ) < 3H(H) + 1 is constructive and can 

be used to obta in an approximate hyper-T-decomposition. There is at most n 

opt imizat ion steps dur ing which we find a set Z and add now leaves to the existing 

hyper-T-decomposition. F ind ing a set Z of size less than w and verifying that 

al l connected components H\Z contain less than w vertices of Y can be done in 

t ime 0(nw+2). Hence the. total running time for f inding an approximate hyper-T-

decomposit ion would be 0(n™+3). 
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Chapter 6 

Conclusions and Research 

Directions 

In this thesis we covered problems related to metric embedding and tree-width. 

We obtained a low distort ion embedding of series-parallel graphs into £\, computed 

opt imal embeddings between line metrics when the distort ion was small enough, 

and proposed tree-width-like connectivity measures, D-width, hyper-D-width, and 

hyper-T-width , for digraphs and hypergraphs. 

As series paral lel graphs and /c-outerplanar graphs have bounded tree-width 

and both are known to have constant distort ion (for constant k) embedding into £i, 

bounded tree-width graphs are conjectured to have bounded distort ion embedding 

into £\. Since a good distort ion embedding into £\ implies good-approximation 

for several fundamental problems, such as the sparsest cut and mult icut problems, 

the study bounded tree-width graphs and their connection to £\ metrics becomes 

important . 

Such a connection between tree-width and metric embedding and, also, the 
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fact that the study on tree-width has found numerous applications in practice, i n ­

spires people to extend it to similar class of objects: digraphs and hypergraphs. 

A m o n g many proposed measures for directed graphs, D-width seems to be 

the simplest. A s for hypergraphs, hyper-D-width and hyper-T-width are the first 

stable- connectivity measures for hypergraphs and are more general than pr imal , 

dua l , and incidence tree-width. They also have appl icat ion in m in imum vertex 

cover, m in imum dominat ing set, and mult icut problems. 

6.1 £\ metrics 

We've proven that the algorithm given by G u p t a et al. gives an embedding w i th 

distort ion at most 6.0 for every series parallel graph, but gives distort ion at least 

3.0 even for some outerplanar series parallel graphs. 

A n interesting open problem is to close this gap. Some other relevant open 

problems are min imiz ing the number of used dimensions (which is exponential w i th 

G u p t a et al.'s approach) or embedding higher tree-width graphs (tree-width 3 as 

the first step) into l\ w i th bounded distort ion. 

6.2 Line metrics 

We currently know how to compute an opt imal embedding between two line metrics 

when the opt imal distort ion is small (less than 13.602) and know it is hard to do so 

when the distort ion is at least n e for some constant e [29]. A n open problem is to 

close this gap and, for example, study its hardness when the distort ion is 0 ( l o g e n ) . 

Another very interesting problem is to look for embeddings that have close to 

the opt imal distort ion. A l though f inding a constant-factor approximat ion when the 
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opt imal distort ion is at least n e is hard [29], finding such an approximate distort ion 

seems to be a lot (easier for smaller distortions. 

6.3 D-width 

A very challenging open topic is to study the connection between D-width and d i ­

rected metrics or directed cut problems. Bounded D-width digraphs admit P T A S 

for multi-cut • problems (when two vertices are considered separated if they belong 

to two different strongly connected components). Chuzhoy and K h a n n a [20] re­

cently proved than the sparsest cut problem and the mult icut problem are hard to 

approximate w i th in a factor 2 n ( l o g l 6 n ) for any constant e even on directed acyclic 

graphs. Th is is a big negative result that basically says that D-width and directed 

tree-width are irrelevant to cut problems and directed metrics, but st i l l leaves the 

open problem of studying digraph classes that admit constant-factor approximate 

solutions for cut problems. 

One other research direction is to explore other algorithmic aspects of D-

wid th such as its computat ion w i th D-width is constant. 

6.4 Hyper-D-width 

Hyper-D-width and hyper-T-width are very new and there exist several open prob­

lems related to them. A n efficient algorithm (showing it is fixed parameter tractable 

in particular) for comput ing opt imal (or approximate) hyper-D-decompositions for 

smal l hyper-D-width would be very useful problem. Exp lo r ing algorithmic aspects 

of hyper-D-width and hyper-T-width is also a very nice research direction. There are 

some fundamental problems (such as solving CSP , S A T , and finding Nash Equ i l i b r i a 
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of certain games) that seem to be relevant to hyper-D-width and hyper-T-width and 

finding those connections is an interesting problem. 
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